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Summary

The work presented in this thesis is on the characterisation of the single stranded DNA 

(ssDNA) binding protein of the human herpesvirus, Kaposi’s sarcoma herpesvirus (KSHV), 

encoded by the ORF6 gene. There is a core set of six proteins conserved throughout the 

herpesvirus family that are required for viral DNA replication and are active at the 

replication fork. These proteins function as a DNA polymerase and its processivity factor, a 

trimeric helicase-primase complex and a single-stranded DNA binding protein. In KSHV 

these functions are carried out by the proteins expressed by the following genes: ORF9 

(DNA polymerase), ORF59 (processivity factor), ORF56 (helicase), ORF44 (primase), 

ORF40/41 (helicase-primase associated factor) and ORF6 (single-stranded DNA binding 

protein). Current models of herpesvirus DNA synthesis are based mostly upon knowledge 

of the herpes simplex virus type 1 (HSV-1) replication fork proteins, which have been more 

extensively studied than any of their homologues in other herpesviruses. The DNA 

replication proteins in KSHV have not been well studied and therefore their roles in KSHV 

DNA synthesis have been largely predicted by analogy with their HSV-1 counterparts.

To date there has been no published characterisation of the KSHV ssDNA binding protein 

(pORF6). The work completed for this thesis describes the over-expression and purification 

of pORF6 and characterisation of its binding to ssDNA.

A recombinant baculovirus expressing pORF6 was constructed and used to infect 

Spodoptera frugiperda cells. The protein was purified from these cells using heparin 

sulphate and mono-Q columns. Following successful purification of pORF6 it was



established that it could bind to ssDNA, using an electrophoretic mobility shift assay 

(EMSA) and surface plasmon resonance measurements on a BIAcore instrument. The 

number of nucleotides required for pORF6 to bind to ssDNA and the effect of NaCl on 

binding were also investigated, revealing that optimal binding occurred at 150 mM NaCl. 

Fourteen nucleotides were required for pORF6 to bind, however, binding became more 

efficient as the length was increased to twenty.

ICP8, the HSV-1 homologue of pORF6 has been shown to bind to ssDNA in a cooperative 

manner. The binding mechanism of pORF6 to a ssDNA of thirty-two nucleotides was 

investigated, again using an EMSA and surface plasmon resonance. This revealed that 

pORF6 may also bind to single-stranded DNA cooperatively. A comparison of ICP8 and 

pORF6 binding to ssDNA using the BIAcore indicated that they bind to single-stranded 

DNA with a similar affinity.

A panel of monoclonal antibodies was generated against pORF6 and was tested by western 

blotting, immune-fluorescence and immune-precipitation, using Spodoptera frugiperda cells 

infected with a recombinant baculovirus expressing pORF6. Human B-cells infected with 

KSHV that had been induced into their lytic cycle were also used in immune-fluorescence 

assays, which revealed pORF6 to be present in globular areas within the cell, reminiscent of 

herpesvirus DNA replication compartments.
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Chapter 1 
Introduction



1.1 Introduction

The work presented in this thesis is on the characterisation of the ssDNA binding protein 

of the human herpesvirus, Kaposi’s sarcoma-associated herpesvirus (KSHV), encoded by 

the ORF6 gene. The introduction will begin with a discussion of some of the general 

properties of the herpesvirus family. More detailed descriptions of herpesvirus DNA 

replication and other ssDNA binding proteins will follow.

1.2 The Herpesviruses

1.2.1 Herpesvirus characteristics

The herpesviruses are a large and diverse family of over 100 viruses that have been 

identified in mammals, birds, fish, amphibians and reptiles. They share a variety of 

common characteristics, including their genome type, virion morphology, basic mode of 

replication and the ability to establish latent infection in their natural hosts. The 

herpesvirus-common characteristics have been summarised by Roizman et al. (1992) and 

Davison & Clements (1998).

Herpesviruses possess large, linear double-stranded DNA genomes and hence have the 

capacity to encode many viral proteins and enzymes. The length of DNA ranges from 

approximately 120 to 250 kbp. Herpesvirus virions are large and complex with a 

common morphology consisting of four elements: core, capsid, tegument and envelope 

(Dargan, 1986) (figure 1.1). The core consists of the dsDNA genome, which is packaged 

into an icosahedral capsid (Widly et al., 1960; Furlong et al., 1972). The nucleocapsid is 

surrounded by an amorphous layer known as the tegument (Roizman and Furlong, 1974). 

The tegument is enclosed within an envelope consisting of a lipid bilayer, derived from 

golgi membranes, which contains viral glycoproteins (Spear and Roizman, 1972). The 

number of different viral glycoproteins on the virus particle varies between different



Envelope
glycoproteins

Tegument

DNA core
Viral

envelope

Icosahedral
Capsid

Figure 1.1 Generalised structure of a Herpesvirus virion

A schematic representation o f a herpesvirus particle virion is shown, with 
the DNA core, icosahedral capsid, tegument layer and lipid envelope 
indicated. The viral envelope also contains various glycoproteins which 
protrude from the surface. The number o f envelope glycoproteins varies 
amongst the herpesviruses.



herpesviruses.

Herpesviruses encode a variety of enzymes involved in nucleotide metabolism 

(thymidine kinase, thymidylate synthase, dUTPase, ribonucleotide reductase), which 

enable them to replicate in resting cells (Kit and Dubs, 1965; Pyles et al., 1992; Bacetti et 

al., 1986; Brown et al., 1995). They also produce viral enzymes involved in DNA 

synthesis (e.g. DNA polymerase, DNA helicase, primase).

Herpesviruses are able to alter the cellular environment to suit their needs. These 

alterations include shutting off or stimulating host cell molecular synthesis, inhibiting or 

inducing host cell replication, or immortalizing the host cell. Although many 

herpesviruses encode genes that can transform cells in experimental systems, in only a 

few cases is it a part of the in vivo life cycle, e.g. the immortalization of B cells by 

Epstein Barr Virus (EBV) in the process of establishing latency (Miller et a l , 1982).

The lytic life cycles of the herpesviruses are similar. Virus entry to the host cell is 

through glycoprotein-mediated binding and fusion with the cell membrane (Sears et a l , 

1991; Spear, 1993). The nucleocapsid complex is then transported to the nuclear pore, 

where the viral genome is released into the nucleus (Sodiek et a l , 1997). Replication of 

the viral genome and assembly of progeny nucleocapsids takes place in the nucleus 

(Furlong et al, 1972). After encapsidation of the genomic DNA, the nucleocapsids are 

released from the nucleus by budding through the inner nuclear membrane (Vlazny et a l , 

1982; Vernon et a l , 1981). It is thought that virions acquire their final envelope from 

post-endoplasmic reticulum cytoplasmic compartments (Skepper et a l, 2001). Mature 

virions are thought to exit the cell by a process of exocytosis. Ultimately, production of 

infectious progeny virus is usually accompanied by destruction of the infected cell. DNA



replication is mediated largely by viral enzymes but is dependent on host cell enzymes 

for several functions.

Herpesvirus genome arrangements consist of various combinations of unique sequences 

and repeated elements. These repeated elements may be present either internally or at the 

genome termini. This gives rise to a variety of distinct genome organisations and sizes 

depending on the sequence arrangements and the copy number of the repeated regions, 

respectively. Hence, herpesvirus genomes have been classified into seven groups 

according to genome arrangement, as described by Roizman et al.(1992) and Davison & 

McGeoch (1995). The structures of the seven genome classes are represented in Figure 

1.2 .

Group 0 genomes have a single unique coding region with no repeat units (e.g. tree 

shrew herpesvirus). Group 1 genomes have single direct repeats at each terminus (e.g. 

human herpes virus 6). The genomes of group 2 have multiple repeats at each terminus 

(e.g. KSHV). Group 3 genomes also have multiple repeats at each terminus but 

additionally have internal copies of these repeats in the opposite orientation, resulting in 

a genome with two unique regions (e.g. cottontail rabbit herpesvirus). Group 4 genomes 

consist of two unique regions separated by a group of internal repeats. Like groups 2 and 

3, each end of the genome is also flanked by groups of direct terminal repeats but these 

are unrelated to the internal repeats (e.g. EBV). The genomes of group 5 have two 

unique regions, each region being flanked by a pair of unrelated inverted repeats, but 

those flanking the U l are very short (Varicella-zoster virus). Group 6 genomes are 

related to the group 5 genomes but have much longer repeats flanking the U l region. 

They also contain a sequence repeats that are found in the same orientation at each 

terminus and in inverted orientation between the internal repeats flanking U l and Us (e.g.
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Figure 1.2 Herpesvirus genome structures
A schematic representation o f the various genome structures o f the herpesviruses. Unique 
regions are represented as single lines. Repeat regions are shown as boxes with their relative 
orientation indicated by an arrow (Roizman et al., 1992; Davison and McGeoch, 1985). The a 
sequence o f  the group 6 viruses contains the minimal packaging and cleavage sequences.



herpes simplex virus-1).

The presence of long inverted repeats flanking Us in the group 5 genomes results in the 

Us region being able to invert through recombination. This results in the group 5 

genomes existing as a mixed population of two isomers. The increased size of the U l 

repeats in in group 6 genomes means that both the U l and the Us regions can invert at 

high frequency resulting in four genomic isomers (Hayward et a l, 1975).

A distinctive feature of the herpesviruses is their ability to establish latent infections in 

their natural hosts, an effective mechanism of evading the host immune system. 

Following primary infection, viral DNA takes the form of a closed circular molecule, 

which is present at low copy number. Few, if  any viral proteins are expressed. In 

dividing cells, the viral DNA is replicated via specific viral origins and cellular 

replication proteins, and is then segregated into the daughter cells (Yates et a l , 1984; 

Yates et al., 1985; Hu et a l, 2002). Such latent infections typically last for the entire life 

of the host. The cell type in which latency is established varies between the different 

herpesviruses e.g. latent HSV-1 is found in neurons of dorsal root ganglia whereas latent 

EBV is primarily found in B lymphocytes. Reactivation to productive infections may 

occur sporadically throughout the life span of the host.



1.2.2 Herpesvirus classification

The mammalian and avian herpesviruses comprise three subfamilies (Roizman et al., 

1981). Classification has traditionally been made on the basis of differing biological 

properties, such as host range, length of reproductive cycle, cytopathology and site of 

latent infection. However, increasingly genome sequence data are being used for the 

purpose of herpesvirus phylogeny (e.g. McGeoch et al., 1995). In most cases, the 

original classifications have been substantiated by the groupings, which have now been 

made on the basis of comparison of sequence data. The updated herpesvirus 

classifications were published in the current International Committee on Taxonomy of 

Viruses report (Minson et al., 2000). The herpesvirus sub-families are as follows:

Alphaherpesvirinae

These are typically neurotropic viruses with a short reproductive cycle. They spread 

rapidly in culture and have a wide host range in vitro. They are highly cytolytic and 

some members have been shown to establish latent infections in sensory ganglia. This 

subfamily contains the genera Simplexvirus, Varicellovirus, “Marek’s disease like virus” 

and “Infectious laryngotracheitis-like virus”

Betaherpesvirinae

The reproductive cycle of these viruses is long and the infection progresses slowly in 

culture. Infected cells often become enlarged and fuse to form multinucleate cells called 

cytomegalia. Another characteristic is a restricted host range. Latent infections have 

been associated with cells of the monocyte series. This subfamily contains the genera 

Cytomegalovirus, Muromegalovirus and Roseolovirus.



Gammaherpesvirinae

Gammaherpesviruses are generally lymphotropic and often establish latency in T or B 

lymphocytes. Host range in cell culture and length of reproductive cycle is variable, as is 

the resulting cytopathology. Productive infections are associated with the development 

of lymphoproliferative disorders. Some members also cause lytic infection in epithelioid 

and fibroblastic cells. The subfamily contains two genera: Lymphocryptovirus and 

Rhadinovirus.

1.2.3 Human herpesviruses

Human herpesviruses are generally ubiquitous, with large proportions of the world-wide 

population having been exposed to and latently infected by one or more of these viruses. 

They are usually spread by close contact via bodily secretions. Eight herpesviruses that 

infect humans have been identified to date. Generally, primary herpesvirus infection in 

immunocompetent hosts does not result in severe or fatal disease. However, herpesvirus 

infections in certain susceptible populations, such as immunocompromised individuals, 

may cause serious illness.

Three alphaherpesviruses are known to infect humans. Herpes simplex viruses 1 and 2 

(genus Simplexvirus) are closely related. Both are associated with mucosal infections 

and establish latency in sensory ganglia. HSV-1 is primarily associated with mucosal 

infections of the mouth and throat and may cause symptoms including fever and more 

commonly, oral lesions (cold sores), but is also associated to a lesser extent with genital 

mucosal infections. Conversely, HSV-2 is primarily associated with mucosal infections 

of the genitalia and to a lesser extent the mouth and throat. Both viruses can reactivate,



which is manifested by lesions in the skin. Varicella-zoster virus (genus Varicellovirus) 

is the third human alphaherpesvirus and the causative agent of chicken pox during 

primary infection. VZV establishes latency in sensory neurones and reactivation results 

in shingles.

Human cytomegalovirus (genus Cytomegalovirus) is a betaherpesvirus that causes 

widespread infection in humans. As with other human herpesviruses, primary infection 

is usually asymptomatic but severe disease can occur in susceptible individuals infected 

with HCMV. Human herpesvirus-6 and human herpesvirus-7 (genus Roseolovirus) are 

more recently identified human betaherpesviruses. Both are associated with febrile 

illnesses in children and post-transplant disease in immunosuppressed transplant 

recipients. Human herpesvirus-6 has been found in a latent state in macrophages (Levy, 

1997) whereas the site of latency for human herpesvirus-7 is unclear.

The final two human herpesviruses are members of the Gammaherpesvirinae. EBV 

(genus Lymphocryptovirus) was the first human gammaherpesvirus to be identified and is 

the causative agent of infectious mononucleosis. EBV establishes latency in B- 

lymphocytes and has been associated with malignancies including Burkitt’s lymphoma, 

Hodgkin’s disease and nasopharyngeal carcinoma. Human herpesvirus-8 (genus 

Rhadinovirus), also known as Kaposi’s sarcoma-associated herpesvirus (KSHV), is the 

most recently identified human herpesvirus. It is the causative agent of Kaposi’s 

sarcoma (KS) and is also associated with two other human cancers, primary effusion 

lymphoma (PEL) and multicentric Castleman’s disease (MCD).



1.3 KSHV

1.3.1 Discovery and epidemiology of KSHV

KSHV was first identified from an AIDS-KS skin lesion in 1994 using representational 

difference analysis (Chang et a l, 1994). Within two years of its discovery the KSHV 

genome was sequenced from a PEL-derived cell line and from a KS lesion (Russo et a l, 

1996; Neipel et a l, 1997).

Unlike most human herpesviruses, KSHV is not ubiquitous but is distributed according 

to a combination of geographic and behavioural risk factors. In northern Europe and 

northern America less than 10% of the population have been infected with KSHV 

(Iscovich et a l, 2000). The rates of infection in Mediterranean countries are higher and, 

within Europe, KS occurs most frequently in elderly males of Mediterranean ethnicity 

(Simpson et a l, 1996). In some areas of Africa, adult populations have infection rates of 

over 50% (Gao et a l, 1996).

KSHV seroprevalence in high-risk populations is much greater than in the general 

population. Homosexual men can have asymptomatic infection rates approaching 40% 

and KS is more frequent among HIV negative homosexual men than the general male 

population (Gao et a l, 1996; Martin et a l,  1998, Blackboum et a l,  1999). In many 

developed countries women are much less likely to be infected than men (Keddes et a l, 

1997). Epidemiologic studies show that only a small percentage of healthy adults who 

are infected with KSHV will develop symptomatic disease. Symptomatic disease 

primarily occurs among individuals with immune suppression e.g HIV positive 

individuals, chemotherapy and transplant patients, and the elderly.



1.3.2 KSHV disease manifestations

Three diseases have been associated with KSHV infection so far. Kaposi’s Sarcoma is a 

vascular tumour composed of proliferating spindle cells, thought to be derived from an 

endothelial lineage. PEL is a B-cell lymphoma, which occurs as malignant effusions in 

visceral cavities, although malignant cells can be found in adjacent visceral organs and in 

the peripheral circulation. MCD is a reactive lymphadenopathy, involving enlargement 

of lymph nodes.

1.3.3 Types of KS

Four clinical categories of KS have been described. These are classical KS (found 

predominantly in the Mediterranean), endemic KS, epidemic KS (AIDS-KS) and 

immuno-suppression associated KS. Endemic KS in sub-Saharan Africa is responsible 

for up to 12% of all malignancies and has the worst disease prognosis of all the KS types 

(Armes, 1989). KS in childhood is virtually nonexistent in North America or Europe but 

it occurs in endemic areas of Africa. Childhood KS is aggressive and rapidly fatal. 

Immuno-suppression KS is often associated with transplant patients with 1 in 500 

patients developing the disease.

1.3.4 KSHV transmission

KSHV is mainly spread through sexual contact, with gay and bisexual men being most 

susceptible to infection in the developed world (Martin et a l , 1998, Blackboum et a l , 

1999). In Africa KSHV is spread via casual contact between children and young adults.



The exact means of transmission is not known but it may be associated with oral contact 

(Pauk et al., 2000).

1.3.5 Treatment of KSHV

As herpesvirus DNA replication is largely autonomous from the host cell replicative 

machinery, this stage of the life cycle is a suitable target for antivirals. Herpesvirus DNA 

replication enzymes are sufficiently distinct from the cellular replication enzymes to 

allow specific targeting of viral functions. The majority of anti-herpetic drugs are 

nucleoside analogues.

Some of the drugs that were developed to treat other herpesvirus infections (HSV-1 and 

HCMV) successfully prevent KS, but it is not clear whether they treat existing tumours 

(Kedes and Ganem, 1997). KSHV is sensitive to both gancyclovir and cidofovir, but is 

insensitive to acyclovir. Treatment of the underlying immune deficiency appears to be 

the best current approach for controlling KSHV associated diseases. In cases of AIDS- 

KS, treatment with an effective antiretroviral therapy can cause KS tumours to regress. 

When individuals receiving chemotherapy have their medication withdrawn, tumour 

regression is also observed.

1.4 KSHV molecular biology

1.4.1 Genome structure

KSHV is the only human member of the Rhadinovirus genus discovered to date (Moore 

et al., 1996). It was first sequenced using cosmid and phage genomic libraries from the 

BC-1 cell line and 81 ORFs were identified (Russo et al., 1996). Other genes were



subsequently discovered by Neipel et al. (1997) and Sarid et al. (1998). The structure of 

KSHV is similar to herpesvirus saimiri (HVS) as it has a long unique region (LUR) 

flanked by terminal repeats (TR). The long unique region of the KSHV genome is about 

145 kb in length and contains at least 87 genes. Its sequence is composed of about 

54.5% G+C and includes all identified KSHV ORFs. The TR regions consist of multiple 

tandem 801-bp direct repeat units. These have 84.5% G+C content with potential 

packaging and cleavage sites (Russo et al., 1996). The genomes of KSHV and HVS are 

essentially co-linear and KSHV genes are named after their HVS counterparts. KSHV 

genes that are not homologous to genes of HVS are given a K prefix (e.g. ORF K1 to 

K15). Like HVS, KSHV encodes thymidine kinase, thymidylate synthase and 

dihydrofolate reductase. It is the only human herpesvirus, which contains all three of 

these genes. In addition to this, KSHV is also unusual in possessing a large number of 

genes encoding homologues of host genes. Many of the host genes that are expressed by 

KSHV are induced by other herpesviruses, most notably EBV. For example, KSHV 

encodes a homologue of cyclin D2 whereas EBV LMP-1 induces cyclin D2 in B-cells, 

which do not normally express this protein (Davis et al., 1997; Arvanitakis et al., 1995). 

The acquisition of host genes may enable KSHV to control host cell processes and avoid 

anti-viral responses.

1.4.2 Virus structure

Like other herpesviruses, KSHV has a nucleocapsid core surrounded by a tegument and a 

lipid envelope. Three-dimensional reconstruction of the KSHV capsid imaged by 

electron microscopy revealed a size and structural organisation similar to previously 

studied herpesviruses (Trus et al., 2001). Because of the difficulties in transmitting the



virus in vitro, little is known about the mode of cell entry or the cellular receptor for 

KSHV.

1.4.3 KSHV Gene Expression

As with other herpesviruses, KSHV gene expression can be classified into distinct kinetic 

stages. The temporal sequence of gene expression has been monitored by Northern blot 

and microarray analyses (Sun et al., 1999, Jenner et al., 2001).

Immediate early genes are expressed in the absence of de novo protein synthesis. Early 

gene expression is dependent on the products of immediate early genes binding to their 

promoters and driving early gene expression. Late gene expression begins at the onset of 

viral DNA replication. Latent gene expression occurs when the virus is in its latent 

cycle.

Latent gene expression

During latency few viral genes are expressed. Because KSHV is latent in the majority of 

cells that it infects, the genes that are expressed in latency may have a major role in the 

pathogenesis of KSHV associated cancer. Genes shown to be expressed during latency 

include v-cyclin, v-FLIP and Kaposin (Davis et al., 1997; Sturzl et al., 1999; Muralidhar 

et al., 1998). LANA-1 is also expressed which acts to tether the viral episomes to the 

host chromosomes (Rainbow et al., 1997; Kedes et al., 1997, Fejer et al., 2003).

Immediate early gene expression

A number of immediate early transcripts have been identified including those from the 

ORF50 gene (Zhu et al., 1999). Sequence comparison indicated that the ORF50 gene is



a homologue of the EBV BRLF1 gene, which encodes the EBV transactivator protein 

Rta (Sun et al., 1998). The ORF50 product has been demonstrated to activate the KSHV 

viral lytic cycle (Lukac et al., 1998; Gradoville et al., 2000, Xu et al., 2005).

Early gene expression

The ORF50 protein activates the expression of the ORFK8 gene (Chen et a l, 2000; 

Lukac et a l, 1998). The product of K8 is a bZip protein that shows homology to Zta, an 

EBV transactivator and origin binding protein (Fixman et a l 1995). Other early genes 

expressed are regulators of gene expression e.g. ORF57 and ORF45 (Zhu et a l, 1999).

Delayed early gene expression

The delayed early gene products include the conserved replication fork proteins that are 

required for viral DNA replication. These are the products of ORF6, the ssDNA binding 

protein; ORF9, the DNA polymerase; ORF59, the polymerase processivity factor; 

ORF56, the primase; ORF44, the helicase and ORF40/41, the primase associated factor. 

Although little is known about the lytic DNA replication of KSHV these proteins were 

shown to be able to substitute for their EBV counterparts, driving replication from the 

EBV origin of lytic replication (oriLyt) (Wu et a l, 2001).

Late gene expression

The late genes encode primarily structural proteins that are present at the late stage of the 

viral lytic cycle. Examples are the products from the K8.1A and K8.1B genes. 

Differential splicing of the K8.1 transcript gives rise to these two proteins. They are 

glycoproteins that are associated with the virion envelopes and the surfaces of transfected 

BCBL-1 and COS-1 cells (Zhu et a l, 1999b).



1.5 Herpesvirus DNA replication

1.5.1 Pathway of DNA replication in HSV-1

HSV-1 input genomes locate to structures in the cell nucleus called ND10 domains. As 

the lytic cycle of the virus progresses these structures become disrupted through the 

action of the immediate early viral protein ICPO (Everett et al., 1998; Everett and Maul,

1994). Pre-replicative sites form at the disrupted ND10 domains. These mature into 

replication compartments, which represent the sites of active viral DNA replication. 

Expression of the DNA replication proteins is followed by their localising into the 

nucleus, assembling onto the parental viral DNA in the pre-replicative sites and 

replicating the viral DNA (Lukonis and Weller, 1996; Lukonis and Weller, 1997; Liptak 

et al., 1996; Zhong and Hayward, 1997; Taylor et al., 2003;Taylor and Knipe, 2004).

The current model for HSV-1 DNA replication proposes that initial rounds of replication 

proceed via a theta-like mechanism, followed by a rolling-circle mode of replication at 

later times in infection (reviewed by Boehmer & Lehman, 1997). It had been reported 

that linear HSV-1 genomes were rapidly circularised following infection, probably via 

direct ligation of the complementary single overhanging nucleotides at their termini 

(Mocarski & Roizman, 1982; Poffenberger and Roizman, 1985; Garber et al, 1993). 

Circularisation overcomes the problems of replicating the genomic termini and a theta- 

like mechanism is consistent with exponential accumulation of viral DNA during early 

stages of DNA synthesis (Zhang et al., 1994). A rolling-circle mechanism of DNA 

replication later on in infection has been suggested by the prevalence of “endless” DNA, 

which restriction enzyme analysis indicated to consist of tandem head-to-tail 

concatemers (Jacob et a l, 1979; Severini et a l, 1994; Zhang et a l, 1994).



However, Jackson and Deluca (2003) have challenged this model. They failed to observe 

circularisation of HSV-1 genomes during productive infection and also observed that 

ICPO, which is known to be involved in the reactivation from latency, inhibited the 

formation of circular genomes. They suggest that HSV-1 may actually replicate its 

genome via a linear method. The genomic termini would be replicated following 

homologous recombination and concatemer formation similar to T4 and T7 

bacteriophage (Leider and Mosig, 1982; Richardson, 1983). Further evidence is required 

to support this model, and the circularisation of the genome during lytic infection has not 

yet been definitely excluded.

Once the viral DNA has been replicated, encapsidation occurs by a process in which 

cleavage of HSV progeny DNA concatemers into unit-length genomes and packaging of 

the DNA into the capsid are tightly linked (Varmuza and Smiley, 1985; Ladin et al., 

1982; Deiss et al., 1986).

1.5.2 DNA synthesis

DNA synthesis begins at defined sites within herpesvirus genomes, known as origins of 

replication. There is considerable variation in the size, sequence and structure of origins 

amongst the human herpesviruses suggesting that different mechanisms may be 

employed in the initiation of DNA synthesis. In contrast, the ORFs encoding essential 

replication fork proteins are amongst the conserved genes found in all herpesviruses, and 

once a replication fork has been established, DNA synthesis is presumed to proceed via a 

common mechanism. HSV-1 was the first herpesvirus in which the origins of replication 

and the proteins essential for viral DNA replication were identified. Having been 

extensively studied, it has become the model system for the study of herpesvirus DNA



replication and much of our knowledge regarding DNA replication in other herpesviruses 

has been inferred by analogy to HSV-1. Of the gammaherpesviruses, DNA lytic 

replication has been most extensively studied in EBV. As it is a comparatively close 

relative of KSHV its DNA lytic replication is also discussed.

The seven HSV-1 proteins found to be essential for origin-dependent viral DNA 

replication comprise an origin binding protein and six proteins that function at the 

replication fork. The replication fork proteins function as a ssDNA-binding protein, a 

heterodimeric DNA polymerase holoenzyme and a heterotrimeric complex possessing 

helicase and primase activity. Homologues of all of these six proteins, have been 

identified in all mammalian and avian herpesviruses sequenced to date, including the 

human herpesviruses EBV (Baer et al., 1984), HCMV (Chee et al., 1990), VZV 

(Davison & Scott, 1986) and KSHV (Wu et a l , 2001). The names and functions of the 

six conserved DNA replication proteins in HSV-1, and their proposed homologues in the 

human herpesviruses, are listed in Table 1.1.

1.5.3 Origins of replication

The lytic origins (oriLyt) of herpesviruses belonging to different subfamilies differ 

significantly and the OBP, unlike the other replication proteins, is not conserved. The 

alphaherpesviruses and the members of the roseolovirus genus of the betaherpesviruses 

have a distinct OBP that initiates DNA synthesis (Inoue et a l , 1994; Stow, 1982; Weller 

et a l , 1985; Elias & Lehman, 1988; Olivo et a l , 1988). The oriLyt of the 

gammaherpesviruses contains regions that are involved in transcriptional activation, and 

the OBP has roles both in transcriptional activation and the initiation of DNA synthesis 

(Schepers et a l , 1993; Schepers et a l , 1996; Lin et a l , 1999).
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1.5.4 HSV-1 origins of replication

HSV-1 contains two different origins of replication, known as oris and oriL(Stow, 1982; 

Weller et al., 1985). Oris is located in the inverted repeat sequence (TRs/IRs) which 

flanks the Us segment and hence two copies are present within the genome. One copy of 

oriL is present in the centre of the U l region. Although they vary in size, the sequences 

of oris and oriL are very similar. Each contains palindromic sequences centred around a 

region consisting of A and T residues only. The core region of oris is approximately 80 

bp and contains an imperfect 45 bp palindrome with a central 18 bp A+T region. Within 

and adjacent to the palindromic sequence flanking the A+T region of oris are three related 

sequences, box I, box II and box III, which are binding sites for the HSV-1 origin- 

binding protein, UL9. Box I (CGTTCGCACT) has the highest affinity for UL9, with a 

five-fold higher affinity than box II (TGCTCGCACT) and 1000-fold higher affinity than 

box III (CGTTCTCACT) (Olivo et al., 1988; Koff & Tegtmeyer, 1988; Elias et al.,

1990; Hazuda et al., 1991). (M l is larger and more symmetrical than oris and contains a 

perfect 144 bp palindrome with a 20 bp A+T central region. OriL contains one box I and 

one box III sequence on each arm of the palindromic sequence. Hence, oriL contains two 

very high affinity UL9-binding sites.

The functional significance of the presence of three origins of replication within the 

HSV-1 genome and the structural differences between oris and oriL is not known. There 

appears to be a degree of redundancy between oris and oHl as mutant viruses lacking 

either oriL or both copies of oris grow as well as wild type virus in cultured cells 

(Polvino-Bodnar et al., 1987; Igarashi et al., 1993). It is possible that they are differently 

activated depending on cell type. For example, oriL contains a functional glucocorticoid 

receptor binding site, which is involved in stimulation of its activity by dexamethosome



in nerve growth factor-differentiated PC-12 cells (Hardwicke and Schaffer, 1997).

1.5.5 HCMV origin of lytic replication

The HCMV lytic origin comprises a sequence spanning approximately 2.4 kbp near to 

the centre of Ul. This region contains the highest content of inverted and direct repeats in 

the HCMV genome (Anders et a l , 1992; Masse et a l , 1992). It includes various 

repeated sequence motifs, transcription factor binding sites including ATF, CREB and 

Sp-1, and also an AT rich segment. An oligopyrimidine sequence is also necessary for 

oriLyt function.

The possible role of transcription units in HCMV oriLyt function has been investigated 

(Huang et a l , 1996). Of particular interest was the identification of a series of short, 

non-polyadenylated transcripts called the smallest replicator transcript (SRT). Spanning 

approximately 0.22 kbp, with a common 5’ terminus and heterogeneous 3’ ends, SRTs 

are early transcripts driven by an upstream promoter. The structure of SRT suggests that 

it is not an mRNA, leading to the suggestion that it may have a role in the initiation of 

DNA synthesis. Recently a strong promoter with bidirectional activity was located 

within the core region of the oriLyt, which is required for efficient amplification of 

oriLyt (Xu et a l , 2004).

1.5.6 EBV Origin of lytic replication

The EBV genome has two copies of oriLyt containing two essential core elements and an 

auxiliary domain. One core element contains Zta responsive elements (ZREs) for the



transactivator protein Zta, which were shown to be absolutely required in a transient- 

transfection assay (Hammerschmidt and Sugden, 1988; Schepers et a l, 1993; Schepers et 

a l, 1996). The other core element contains two AT rich palindromes and an adjacent 

polypurine-polypyridimine tract. The auxiliary domain is an enhancer region containing 

DNA binding sites for Rta (viral transactivator) and Zta. Rta is not essential for oriLyt 

dependent DNA synthesis but it has a significant stimulatory effect on replication 

efficiency (Fixman et a l, 1995). Whilst the core region ZREs are essential for 

replication, the enhancer region ZREs are dispensable (Schepers et a l, 1996). The 

regions of Zta that are critical for the Zta-mediated DNA replication are nearly identical 

to regions that have previously been identified to be crucial for transcriptional activation 

of Zta dependent promoters.

1.5.7 Essential DNA replication proteins in HSV-1

The identification of the HSV-1 origins of replication enabled investigation of the 

identity of the viral-encoded proteins involved in DNA synthesis. A series of plasmids 

containing cloned fragments of the HSV-1 genome were tested for their ability to support 

replication of a plasmid containing an HSV-1 origin of replication when all were co­

transfected into cells. This led to the identification of six fragments of HSV-1 DNA, 

which supplied the necessary trans-acting functions required to replicate the transfected 

origin (Challberg, 1986). Systematic sub-cloning of these fragments resulted in the 

identification of seven viral genes, which were necessary and sufficient for origin- 

dependent replication (Wu et a l, 1988). The results of the transient assay were in 

agreement with detailed mapping of DNA negative mutant HSV-1 viruses (reviewed by 

Boehmer & Lehman, 1997) and were confirmed by the demonstration that replication of 

an origin-containing plasmid is supported by infection of S f  cells with recombinant



baculoviruses expressing the seven replication proteins (Stow, 1992).

The HSV-1 DNA polymerase isolated from HSV-1 infected cells is a heterodimer 

consisting of the UL30 and UL42 proteins (Vaughan et al., 1985). UL30 (pol) is the 

catalytic sub-unit, which has been extensively studied. It shares sequence similarity to 

other DNA polymerases, and hence has also been studied as a model eukaryotic DNA 

polymerase. In addition to its polymerase function, UL30 possesses a 3’->5’ 

exonuclease activity and RNase H activity (Knopf, 1979; O’Donnell et al., 1987; Crute 

& Lehman, 1989). These properties are presumed to confer a proof-reading activity and 

the ability to remove RNA primers during the processing of Okazaki fragments.

UL42 is a phosphoprotein with sequence-independent ds DNA-binding activity that 

associates with UL30 and serves to increase its processivity (Gallo et al., 1988; 

Hernandez & Lehman, 1990; Gallo et al., 1989; Gottlieb et al., 1990). It is monomeric in 

solution and binds to ssDNA as a monomer (Randell and Coen, 2004). It was thought 

that by interacting with UL30 and ds DNA simultaneously, UL42 tethers UL30 to the 

template, enabling the synthesis of long DNA chains (Gottlieb & Challberg, 1994). 

However, Chaudri and Parris (2002) suggest that the interaction between UL30 and 

UL42 may change the conformation of UL30 so that UL30 has a more closed 

conformation around the DNA. This would result in UL30 having a stronger attachment 

to the DNA and would therefore increase processivity. The interaction between UL30 

and UL42 is mediated by a short sequence (35aa) at the C-terminus of UL30 and appears 

to be critical for DNA replication. Deletion of this sequence has no effect on the DNA 

polymerase activity of UL30 but abolishes its ability to support long chain synthesis 

(Digard et al., 1993; Tenney et al., 1993) and origin-dependent DNA replication (Stow,

1993).



Essential helicase and primase functions in HSV-1 infected cells are provided by a 

heterotrimeric complex comprised of the UL5, UL52 and UL8 proteins (Crute et al, 

1989). The 5’->3’ helicase has associated ATPase and GTPase activities (Crute et al 

Lehman, 1991). The primase exhibits strong sequence preference for the 

synthesis of short oligoribonucleotide primers of between 8-10 bases (Tenney et al., 

1995; Crute & Lehman, 1991). The UL5 protein contains six motifs characteristic of 

helicases and UL52 contains a sequence motif similar to that found in other DNA 

primases (McGeoch et a l , 1988), hence the helicase and primase functions have been 

assigned to the UL5 and UL52 subunits, respectively. A sub-assembly of the UL5 and 

UL52 proteins displays both helicase and primase functions (Calder & Stow, 1990; 

Dodson & Lehman, 1991). In addition, site-directed mutagenesis studies have 

demonstrated that the helicase and primase active sites reside within the UL5 and UL52 

components, respectively (Zhu & Weller, 1992; Klinedinst & Challberg, 1994), although 

neither protein alone exhibits significant enzymatic activity. More recently it was shown 

that the two proteins demonstrate an interdependence for DNA binding and that the 

UL52 protein may have a more active role in helicase activity than previously thought 

(Biswas and Weller, 2001).

The role of the UL8 protein was initially unclear, as it does not appear to perform any 

obvious enzymatic functions and does not bind to DNA (Parry et a l , 1993). Several 

studies have now indicated it is likely that UL8 has several auxiliary roles at the 

replication fork. It is known to be necessary for efficient primer utilisation by the 

polymerase in a model of lagging strand synthesis (Sherman et a l , 1992), to stimulate 

primer synthesis (Tenney et a l , 1994) and is required for efficient nuclear translocation 

of the helicase-primase complex (Calder et al., 1992; Marsden et a l , 1996). UL8 is 

known to interact with several other replication proteins, indicating a multifunctional role



at the replication fork.

UL9 functions as an origin-binding protein, involved in the initiation of DNA replication. 

It exists as a homodimer in solution, binds to specific sequences present in HSV-1 

origins (Elias & Lehman, 1988; Olivo et al., 1988) and possesses DNA-dependent 

ATPase and helicase activities (Fierer & Chalberg, 1992; Boehmer et al., 1993). The 

amino-terminal portion of the protein mediates the helicase, ATPase and dimerisation 

activities whilst the carboxy-terminal domain is involved in sequence-specific DNA 

binding. The non-sequence specific helicase activity of UL9 appears to be required for 

DNA synthesis as the introduction of mutations into the helicase motifs renders the 

protein unable to support DNA replication (Martinez et al., 1992). Binding of UL9 to 

sites I and II in oris is co-operative, indicating that an interaction occurs between UL9 

protein(s) bound at each site (Elias et al., 1990). The helicase activity of UL9 is 

stimulated by the ssDNA-binding protein, ICP8, by its interaction with UL9 (Fierer & 

Challberg, 1992; Lee and Lehman 1997). An interaction has also been demonstrated 

between UL9 and UL42, which also stimulates the helicase activity of UL9 (Monahan et 

a l , 1998; Trego and Parris, 2003).

ICP8 (UL29) is the ssDNA binding protein in HSV-1. As it is the homologue of KSHV 

pORF6 and it has been extensively studied, a detailed review of it is given in section 

1.7.2.

1.5.8 Essential DNA replication proteins in EBV

Homologues of six of the core replication proteins found in HSV-1 are also encoded by 

EBV (Fixman et a l, 1992). These are the DNA polymerase (BALF5) and its accessory



factor (BMRF1), the ssDNA binding protein (BALF2), the helicase (BBLF4), the 

primase (BSLF1) and the primase-associated protein (BBLF2/3). Their functions are 

sufficiently conserved that the HSV-1 homologues in the presence of Zta and Rta can 

drive replication from EBV oriLyt (Fixman et a l, 1995).

The polymerase and polymerase accessory protein have been shown to interact by co- 

immunoprecipitation, and together mediate DNA replication with strand displacement in 

model replication systems (Kiehl and Dorsky, 1991; Lin et a l, 1991; Tsurumi et a l, 

1993; Tsurumi et a l, 1997). The holoenzyme exhibits both 5’ to 3’ DNA polymerase 

and 3’ to 5’ exonuclease activities (Tsurumi, 1991).

BALF2 is the homologue of pORF6. It binds with limited cooperativity to ssDNA and 

functions to melt out secondary structure from ssDNA, which facilitates the activity of 

the DNA polymerase (BALF5). The presence of BALF2 eliminates pausing by BALF5 

during DNA replication (Tsurumi et a l, 1996). BALF2 has been found to contact the 

DNA polymerase (Zeng et a l, 1997) and also possibly the helicase-primase complex 

(Gao et a l, 1998). The latter interaction has been shown to be necessary in HSV-1 for 

localising the ssDNA binding protein (ICP8) to pre-replicative sites (described in section 

1.5.11) (Liptak et a l, 1996; Lukonis et a l, 1997).

In addition to being a transcriptional activator, Zta also acts as the OBP. A cotransfection 

assay in EBV negative cells showed that Zta (in addition to the six conserved replication 

fork proteins) was absolutely required for replication from EBV oriLyt (Fixman et a l,

1995). Mutation of the four Zta binding sites in the promoter region abolished oriLyt- 

dependent replication (Schepers et a l, 1996). An interaction between Zta and the 

helicase-primase complex has been demonstrated (Gao et a l, 1998). This interaction



between the helicase protein of the helicase-primase complex and Zta has been mapped 

to aa 22 to 86 of the Zta protein, (Liao et a l , 2001).

Interactions between the helicase-primase subunits were demonstrated by 

immunofluorescence assays. Expressed individually, the proteins showed either mixed 

nuclear and cytoplasmic, or cytoplasmic staining. When all three proteins were 

transfected, nuclear localisation of all three was observed (Gao et a l , 1998). Co- 

immunoprecipitation experiments revealed that each component of the BBLF4-BSLF1- 

BBLF2/3 complex directly interacts with the other two (Yokoyama et a l , 1999).

In addition to interacting with Zta, the helicase-primase has also been shown to interact 

with the polymerase through both the BSLF1 and BBLF2/3 subunits. (Fujii et a l , 2000). 

The polymerase interacts with its accessory factor, which in turn binds to Zta (Zhang et 

a l , 1996). Co-immunoprecipitation assays have also demonstrated an interaction 

between the helicase-primase associated factor and the cellular zinc finger protein 

ZBKR1, which binds to EBV oriLyt. It has been suggested that ZBKR1 may be acting 

as a tethering point on oriLyt for the replication complex, through its interaction with the 

helicase-primase complex. (Liao et a l , 2005).

1.5.9 Host cell-encoded functions involved in HSV-1 DNA replication

HSV-1 DNA replication is largely autonomous from the host cell, however, several 

essential functions are not encoded by HSV-1 and are therefore assumed to be provided 

by host cell enzymes. For example, a topoisomerase is expected to be required to 

remove supercoils from replicating DNA, and a DNA ligase for joining the Okazaki 

fragments produced during lagging strand synthesis.



1.5.10 Model for origin unwinding and initiation of DNA replication in HSV-1

Using the information that has been gathered regarding the HSV-1 origins, replication 

proteins and how they interact with each other, a model for the unwinding of the 

replication origin and establishment of a replication fork has been proposed (Boehmer & 

Lehman, 1997 and Stow, 2000), however, it should be noted that not all the events 

proposed have been substantiated experimentally. Although the initial events in 

unwinding the replication origins may vary amongst the different herpesviruses, the 

subsequent recruitment of DNA replication proteins and establishment of a replication 

fork may follow a similar pathway to that which is proposed for HSV-1. Steps 1-3 are 

illustrated in figure 1.3.

1) The initial step involves the binding of UL9 to recognition sites (box I and/or II) on 

either side of the AT region at the centre of oris and oriL.

2) Bound UL9 proteins interact with each other, possibly mediated by a leucine zipper 

motif within the N-terminal region of UL9. This interaction results in a distortion of 

the DNA helix in the AT region between the binding sites. Specifically, it has been 

suggested that the intervening DNA is held in a loop configuration as a result of the 

interaction (Koff et al., 1991).

3) The interaction between UL9 and ICP8 serves to recruit ICP8 to the origin, where it 

binds to the distorted DNA in the AT region. ICP8 stimulates the sequence 

independent helicase activity of UL9 and increases its processivity allowing 

unwinding of the duplex DNA adjacent to the origin. The interaction between UL9 

bound to the opposite sides of the origin is maintained during initial unwinding and 

ssDNA extruded from the UL9-ICP8 complex is stabilised by coating with ICP8. 

Sequence specific unwinding of an HSV-1 origin by UL9 has been demonstrated 

only in the presence of ICP8, indicating the importance of the UL9-ICP8 interaction
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to the unwinding process (Lee & Lehman, 1997).

4) Once unwinding of the duplex DNA has begun, recruitment of the helicase-primase 

and polymerase functions is necessary for DNA synthesis to commence. It is 

postulated that the arrival of the helicase-primase and polymerase enzyme complexes 

result in either the displacement of UL9, or disruption of the interaction between UL9 

proteins, allowing the origin to take the form of a replication bubble. It is probable 

that the helicase-primase heterotrimer is recruited via protein-protein interactions 

involving the UL8 component, as UL8 physically interacts with UL9 (McLean et al.,

1994) and an interaction with ICP8 is also strongly suggested (Falkenberg et al.,

1997; Tanguy Le Gac et al., 1996).

5) The helicase-primase complex then directs the synthesis of short RNA primers on 

both unwound DNA strands for elongation by the DNA polymerase holoenzyme.

6) Recruitment of the polymerase holoenzyme to the sites of unwound and RNA-primed 

DNA is possibly mediated through interactions of the polymerase holoenzyme with 

UL9 and or the UL8 subunit of the helicase-primase complex. The polymerase 

accessory protein, UL42, specifically interacts with the N-terminal region of UL9 

(Monahan et al., 1998) and this interaction may also contribute to the proposed 

dissociation of UL9 to allow formation of a replication bubble. The other interaction, 

which may be involved in recruitment of polymerase occurs between UL30 (catalytic 

subunit) and the UL8 subunit of the helicase-primase complex. Characterisation 

studies indicate that the region spanning the C-terminal 32 amino acids of UL8 is 

involved in the interaction (Marsden et al., 1997). It is interesting to note, therefore, 

that a UL8 mutant lacking the C-terminal 33 residues does not support origin- 

dependent replication (Barnard et al., 1997), supporting the hypothesis that the UL8- 

UL30 interaction may be crucial for DNA synthesis.

7) Once polymerase has been recruited to the replication fork, the RNA primers are



extended and bi-directional DNA synthesis is established. The helicase-primase 

complex proceeds to further unwind the duplex DNA and synthesise primers for 

lagging strand synthesis as the replication fork moves away from the origin.

1.5.11 HSV-1 Replication fork

As replication progresses the remaining six DNA replication proteins (UL5/UL52/UL8, 

UL30/UL42 and ICP8) may function together as a multiprotein complex co-ordinating 

DNA synthesis on the two strands. A complex of these six proteins was shown to be able 

to carry out rolling-circle type DNA synthesis on circular plasmid templates (Skaliter and 

Lehman, 1994).

A model for the DNA replication fork has been proposed in which the lagging strand is 

looped in a manner such that the leading and lagging strand DNA polymerases can both 

move along the DNA in the same direction as the replication fork. In the case of HSV-1 

this would allow a UL5-UL8-UL52 trimer to unwind the duplex DNA and prime lagging 

strand DNA synthesis (Figure 1.4) (Stow, 2000). The UL8-ICP8 interaction may serve 

to direct the helicase-primase complex to regions of ssDNA and to modulate the 

enzymatic activities of the complex. ICP8 stimulates the DNA-dependent ATPase and 

helicase functions of the complex (Hamatake et al., 1997), and efficient helicase-primase 

activities on ICP8-coated templates are dependent on the presence of UL8 (Falkenberg et 

al., 1997; Tanguy Le Gac et al., 1996). The UL8-UL30 interaction probably has a role in 

the co-ordination of DNA unwinding and leading strand synthesis and also co-ordinates 

the synthesis of RNA primers with lagging strand synthesis.
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1.5.12 Recombination events in HSV-1

During replication of the HSV-1 genome events such as DNA damage may lead to 

double-stranded breaks and the collapse of the replication fork. To repair these and 

continue replication a recombination strategy may be employed. Recombination is also 

responsible for the genomic inversions during replication in which the U l and the Us 

components invert their relative orientation. Homologous recombination between co- 

infecting viruses has also been well documented (Schaffer et al., 1974; Honess et al., 

1980; Umene, 1985; Brown et al., 1992). Two viral proteins that have been implicated 

in these processes are the alkaline nuclease (UL12) and the ssDNA binding protein 

(ICP8). Possible mechanisms for recombination are discussed in section 1.7.2

1.6 KSHV lytic DNA replication

1.6.1 KSHV origin of lytic replication

Two duplicated copies of the DNA replication origin (oriLyt) have been identified 

(AuCoin et al., 2002). They are located between K4.2 and K5 and between K12 and 

ORF71. The two ori-Lyt share an almost identical 1.1 kb sequence and 600 bp GC rich 

repeats. The whole 1.7 kb DNA sequences are necessary and sufficient for lytic 

replication (Lin et al., 2003). Within these sequences the most important c/5-acting 

elements have been shown to be eight C/EBP (CCAAT/enhancer binding protein) 

binding motifs, arranged as four spaced palindromes; an 18 bp AT palindromic sequence 

where local unwinding of ds-DNA during initiation of replication is thought to occur, and 

an ORF50/Rta-dependent promoter that is composed of Rta response element and a 

TATA box. These lytic origins closely resemble the lytic origin of the rhesus macaque 

rhadinovirus (Pari et al., 2001) with both having GC-rich regions adjacent to an AT-rich 

domain.



The lytic origin and the trans-acting factors involved in KSHV DNA replication were 

investigated further by AuCoin et a l (2004). The use of site directed mutant plasmids in 

a transfection replication assay revealed that the AT-rich sequences, three API 

transcription factor binding sites and a downstream component containing an ORF50 

response element and a TATA box were necessary for efficient replication of oriLyt 

(figure 1.5). The organisation of the lytic origin is similar to that of EBV and the API 

transcription binding sites in EBV function as Zta response elements. The ORF50 

response elements were further investigated in this study. The use of luciferase reporter 

constructs containing the ORF50 response element revealed that they were responsive to 

K-Rta (ORF50 product) and that it is a region of active transcription within the viral 

genome. The EBV oriLyt also contains two Rta binding sites.

1.6.2 KSHV DNA replication proteins

Although a homologue of the OBP in HSV-1 (UL9) has not been identified, the HHV8 

encoded protein- K8, has been shown to bind to the oriLyt and may be serving as an 

initiator protein. K8 is thought to be a homologue of Zta (OBP for EBV). The two 

proteins have limited sequence homology, corresponding genomic locations, similar 

splicing patterns and are both members of the bZIP family (Lin et a l , 1999). Although 

no direct interaction has yet been proven between K8 and the other KSHV replication 

proteins, K8 has been shown to co-localise with a KSHV viral DNA replication complex 

comprising the KSHV homologues of the six conserved herpesvirus replication fork 

proteins (Wu et a l , 2001). These are the protein products of ORF6, the ssDNA binding 

protein (SSB); ORF9, the DNA polymerase (Pol); ORF59, the polymerase processivity 

factor (PPF); ORF56, the helicase (HEL); ORF44, the primase (PRI) and ORF40/41 the 

helicase-primase associated factor (PAF).
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Wu et a l (2001) also investigated the nuclear location of these proteins and the 

formation of KSHV replication compartments. When expressed individually in Vero 

cells, SSB and PPF were transported to the nucleus and diffuse nuclear staining was 

observed. POL, HEL and PRI were localised in the cytoplasm, whereas PAF gave a 

mixed but predominantly cytoplasmic staining. Cotransfection of POL with PPF was 

sufficient to translocate POL to the nucleus. Complete nuclear staining of PAF required 

all six proteins to be present.

In the presence of all six core replication proteins pseudo-replication compartments that 

excluded cellular DNA were formed. On co-transfection with a plasmid containing the 

EBV oriLyt and Zta, newly synthesised EBV oriLyt plasmid DNA was observed, 

confirming that these pseudo replication compartments could accommodate DNA 

replication and that the EBV and KSHV replication fork proteins were interchangable. 

Inspection of KSHV infected cells undergoing lytic infection demonstrated similar 

replication compartment structures that contained newly synthesised DNA and co­

localised with K8 (Wu et a l , 2001).

A cotransfection replication assay demonstrated that in addition to the core conserved 

herpesvirus DNA replication proteins, K-Rta and K8 were also required for replication of 

KSHV oriLyt to be detected. The regions of K8 that were essential for DNA replication 

were explored. Mutation of the leucines within the leucine zipper motif demonstrated 

that this region of the protein is essential for its activity and for efficient oriLyt 

dependent DNA replication. This study demonstrated that although K8 may be the 

primary origin binding protein, K-Rta may also have a role in DNA replication from 

oriLyt (Aucoin et a l , 2004).



A recent study using a KSHV mutant that had a large deletion in the ORF50 gene (K- 

Rta) further demonstrated that K-Rta is required for lytic viral reactivation and also the 

transactivation of viral genes contributing to DNA replication (Xu et al., 2005). This is 

in contrast to EBV where the K8 homologue Zta drives the lytic cycle. Zta also performs 

essential transactivation and DNA replication functions within EBV oriLyt whereas K8 

does not appear to have a corresponding transactivation function.

To date, the only interaction between KSHV replication proteins that has been studied in 

detail, is between the polymerase (Pol) and its processivity factor (PPF). To determine 

whether the interaction between the two proteins was functionally significant, the DNA 

synthesis activity of pol in the presence and absence of PF was investigated using primed 

M l3 ssDNA as the template in an in vitro DNA synthesis assay (Lin et al., 1998). In the 

absence of PF, Pol could only incorporate a few nucleotides. PF was required for pol to 

synthesize extended DNA products. The effect of the PF from HSV-1 (UL42) on KSHV 

pol was also tested. UL42 was not able to confer processivity on pol demonstrating that 

the functional interaction between KSHV pol and PF is specific.

To confirm that pol and PF physically interacted the two were successfully co- 

immunoprecipitated (Chan and Chandran, 2000). The pol binding domain of PF was 

then investigated using PF deletion mutants demonstrating an essential role for amino 

acids 10-27 in the interaction with pol.



1.7 Single stranded DNA binding proteins

1.7.1 General

KSHV pORF6 belongs to the family of single-stranded DNA binding proteins (SSB).

The most extensively studied of this class are SSB from E.coli, DBP (DNA binding 

protein) from adenovirus, gp 32 (gene 32 protein product) from bacteriophage T4, gp 2.5 

(gene 2.5 protein product) from bacteriophage T7 and RPA (Replication protein A), the 

eukaryotic SSB. These proteins are involved in recombination, repair and replication. 

They bind to ssDNA in preference to dsDNA in a sequence independent manner.

Recognition of DNA is mediated by their OB-fold (apart from the adenovirus DBP, the 

only SSB identified to date without an OB-fold). The OB-fold is a small structural motif 

originally named for its oligonucleotide/oligosaccharide binding properties (Murzin, 

1993). They range in length from 70 to 150 amino acids and there is only a low degree 

of sequence similarity among them (Wutte et al., 2003). However, the fold has a distinct 

topology. It consists of two three-stranded anti-parallel P-sheets, where strand 1 is 

shared by both sheets. The proteins interact with nucleic acids mostly through stacking 

interactions with aromatic amino acid side chains, electrostatic charge interactions and 

packing interactions with hydrophobic side chains or the aliphatic portions of polar 

groups such as lysine and arginine (Kelly et a l , 1976; Prigodich et a l , 1984; Curth et a l , 

1993; Kim and Richardson, 1993; Kallenpoulos et a l , 1995).

The adenovirus DBP and T4 gp 32 are monomeric up to a certain concentration where 

they self-associate to form dimers and higher molecular weight aggregates (Schechter et 

a l, 1980; Alberts and Frey, 1970; Carroll et a l 1972). Gp 2.5 (T7) exists as a dimer 

(Kim and Richardson, 1994) and the E.coli SSB assembles as a homotetramer (Molineux



et a l, 1974; Weiner et a l, 1975). The eukaryotic RPA is a heterotrimeric protein (Wold 

and Kelly, 1988).

Binding to ssDNA is in a cooperative fashion and facilitates their activity. (Alberts and 

Frey, 1970; Kuil et a l, 1989; Lohman and Overman, 1985; Kim and Wold, 1994). Helix 

destabilisation is promoted since the binding of one molecule to the exposed ssDNA 

region, increases the affinity of others, helping to prevent renaturation of the two 

strands. During elongation of the DNA, covering of the ssDNA template not only aids 

the polymerase by removing secondary structure from the DNA but it also protects the 

DNA from nuclease digestion (figure 1.6). Gp 2.5 may stimulate the T7 DNA 

polymerase, not just by removing secondary structure from DNA, but also by a direct 

physical interaction (Kim et a l, 1992; He et a l, 2003). An interaction has also been 

demonstrated between eukaryotic RPA and DNA polymerase alpha (Domreiter et a l  

1992).

The C-terminal region of the adenovirus DBP appears to be important for protein-protein 

interactions that aid cooperative binding. DBP has a C-terminal arm that hooks onto a 

second DBP monomer, which results in the formation of long protein chains along the 

ssDNA (Tucker, 1994). Conversely, the region required for cooperative binding in gp 32 

(T4) lies at the very N-terminus of the protein (Spicer et a l, 1979; Lonberg et a l, 1981). 

The cooperative binding domain of the E.coli SSB also lies in the N-terminal region 

(Williams et a l, 1984).

Another feature of gp32 (T7) is its ability to bind to RNA and possibly control gene 

expression at the level of translation. The specificity of gp32 for gp32 mRNA and not 

other T4 mRNA lies in a uniquely structured region that spans 50nt ( Krisch et al., 1982).
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Figure 1.6 The effect of single-strand DNA-binding proteins on the structure of 
single-stranded DNA
As each protein molecule prefers to bind next to a previously bound molecule, long rows 
o f the protein form on a DNA single strand. This cooperative binding removes secondary 
structure from the DNA template and facilitates the DNA polymerisation process.



Gp 32 has a higher affinity for ssDNA than its mRNA ensuring that all ssDNA is 

saturated before it will bind to its mRNA to control its own expression level (Krisch et 

a l , 1974; Russel et a l , 1976; Newport et a l , 1981). SSB (E.coli) and DBP (adenovirus) 

also bind to RNA with a lower affinity than they bind to ssDNA and may also have a role 

in controlling their own expression levels (Molinuex et a l , 1975; Cleghon and Klessig, 

1986). Eukaryotic RPA can also bind to RNA but again with a lower affinity than it 

binds to ssDNA (Kim et a l , 1992).

SSBs also have a role in recombination and repair. Recombination and replication are 

coupled events, and homologous recombination is a strategy used to repair double­

stranded breaks in the DNA. The SSB of E.coli aids the RecA protein in strand exchange 

by removing secondary structure from the DNA (Kowalczyowski et a l , 1987; Lavery 

and Kowalczyowski, 1992). T4 gp32 has been demonstrated to aid strand exchange 

(George et a l , 2001) and T7 gp2.5 has been shown to be involved in DNA annealing 

(Kong and Richardson, 1996; Kong and Richardson, 1998). The adenovirus DBP 

enhances DNA renaturation (Zijderveld et a l , 1993). RPA has been shown to be 

required for strand exchange. (Moore et a l  1991).

1.7.2 ICP8

ICP8 is the HSV-1 homologue of KSHV pORF6 , the protein studied in this thesis, and is 

the most extensively studied of the SSBs from the herpesviruses. It is a zinc 

metalloprotein with a MW of approximately 128 kDa (Ruyechan, 1983). The zinc 

enhances structural integrity and is not involved in binding to DNA (Gupte et a l , 1991). 

Like other proteins in this family (SSBs) ICP8 has a role in recombination, repair and



replication. It has helix destabilising properties and has a higher affinity for ssDNA than 

ds-DNA (Boehmer and Lehman, 1993; Purifoy and Powell, 1976).

During initiation of replication ICP8 is believed to bind to the C-terminal domain of the 

OBP at the origin of replication and assists in the ATP-dependent unwinding of the 

origin (Boehmer and Lehman, 1993; Boehmer et a l , 1994; Makhov et a l , 1996; Lee and 

Lehman, 1997) (figure 1.3). As elongation of the DNA proceeds, ICP8 is proposed to act 

at the replication forks to hold the DNA in an extended conformation, facilitating the 

activity of the DNA polymerase and also protecting exposed ssDNA from nuclease 

attack. ICP8 also interacts with the UL8 subunit of the helicase-primase and stimulates 

the helicase activity of this complex (Tanguy le Gac et a l , 1996; Hamatake et a l, 1997).

Whilst a direct physical interaction between ICP8 and the HSV-1 polymerase has not 

been demonstrated, a functional interaction was shown by ICP8 stimulating the 

enzymatic activity of the DNA polymerase (O’Donnell et a l, 1987). ICP8 is also 

required for the polymerase to localise to pre-replicative sites within the HSV-1 infected 

cell, demonstrating another functional interaction (Bush et a l, 1991).

Like other SSBs, aromatic and basic residues mediate protein-nucleic acid contacts via 

stacking and electrostatic interactions (Ruyechan and Olson, 1992). The binding site size 

has been reported to be between 12-40 nt per monomer (Ruyechan, 1983; O’Donnel et 

a l, 1987 ; Gustafasson et a l, 1995; Bortner et a l, 1993; Makov et a l, 1996; Dudas and 

Ruyechan, 1998). This lack of agreement may be due to differences in experimental 

technique, concentration of protein used or differences between protein preparations.

The use of deletion mutants and photoaffinity labelling has placed the minimum region 

for binding between amino acids 332 to 902 (Leinbach and Heath, 1989; White and



Boehmer; 1999). Within this stretch lies the predicted zinc finger motif between amino 

acids 499 and 512 (Gupte et a l, 1991).

ICP8 binds to ssDNA in a cooperative manner, which induces a conformational change 

in the protein (Ruyechan, 1983; Lee and Knipe, 1985; Dudas et a l, 2001). The region of 

the protein that is responsible for mediating the protein-protein interactions required for 

cooperative binding includes the C-terminal 60-residues (Mapelli et al., 2000). The C- 

terminus additionally contains a nuclear localisation signal (Gao and Knipe, 1992). 

Binding to ssDNA is optimal at 150mM NaCl and neutral pH (Ruyechan and Weir,

1984).

The crystal structure of ICP8 has recently been resolved (Mapelli et a l, 2005). The 

protein preparation used was not the whole protein (1196aa) as this had previously failed 

to yield well deffacting crystals, but a deletion mutant lacking the C-terminal 60 residues. 

The structure is composed of a large N-terminal domain (9-1038) and a smaller C- 

terminal a-helical domain (figure 1.7). The N-terminal domain is described as consisting 

of head, neck and shoulder regions. The neck region contains a structure similar to the 

OB fold, which mediates ssDNA binding and has been found in all SSBs described to 

date (except for adenovirus SSB). Although the C-terminus was missing 60 residues, the 

C-terminal domain fits loosely into a concave surface on the back of the N-terminal 

domain, revealing the structure that confers co-operativity of ICP8 binding to ssDNA. It 

is thought that the C-terminal 60 residues would reach round and bind to a hydrophobic 

region on the N-terminal domain, stabilising this interaction.



,;lit '"-OOM

Figure 1.7 Structure of ICP8
A Overall view o f the ICP8 structure. Dotted lines represent disordered regions with blue and 
red balls signifying the N and C-terminal ends o f the disordered regions. The shoulder region 
is blue, the zinc binding region is green, the part o f the polypeptide chain linking the neck and 
shoulders as a single folding unit is orange. The neck is coloured yellow (front) and grey 
(back). The head is red and the C-terminal helical domain is purple.
B The structure rotated 60° along x-axis relative to A. In this orientation the C-terminus is 
behind the neck, (from Mapelli et al., 2005).



As previously mentioned, ICP8 and UL12 together are capable of catalysing an in vitro 

strand exchange reaction. Further studies demonstrated that ICP8 has a strong 

recombinase activity and it has been likened to other recombinases such as RecA, UvsX 

and Rad 51 (Reuven et a l , 2004). Likes these recombinases, ICP8-ssDNA filaments are 

helical, and in solution, in the absence of DNA it forms helical self-filaments.

ICP8 , in conjunction with the viral helicase-primase, has been shown to catalyse strand 

exchange (Nimonkar and Boehmer, 2002). In contrast to the work from Reuven et al. 

(2004) this was UL12 independent. Also demonstrated was its ability to promote the 

assimilation of ssDNA into homologous supercoiled DNA, resulting in the formation of a 

displacement loop (Nimonkar and Boehmer, 2003). Renaturation of complementary 

DNA strands by ICP8 has also been shown (Dutch and Lehman, 1993).

A co-immune-precipitation study of HSV-1 infected cells, using ICP8 monoclonal 

antibodies revealed a number of cellular proteins that co-precipitated with ICP8 (Taylor 

and Knipe, 2004). The majority of the proteins were components of cellular complexes 

that coordinate DNA recombination and repair. HSV-1 may recruit some of these 

cellular proteins to participate in HSV-1 replication and also the repair of damaged viral 

DNA that may arise during replication.

ICP8 also has a role in viral transcription, affecting it in at least two ways. It can repress 

transcription from input parental viral genomes and can also stimulate late gene 

transcription (Godowski and Knipe, 1985; Gao and Knipe 1991). An interaction between 

ICP8 and ICP27 has been established (Zhou and Knipe, 2002; Olesky et al., 2005).

ICP27 stimulates expression of some early viral genes and transcription of some late 

viral genes. The two proteins were also shown to associate with cellular RNA



polymerase II, which is responsible for transcription of all of the viral genes. It is 

hypothosised that the ICP27-ICP8 interaction plays a role in the stimulation of late gene 

transcription.

A direct interaction between ICP8 and RNA has recently been demonstrated which 

provides a possible molecular basis for the role of ICP8 in the regulation of viral gene 

expression. (Boehmer, 2004). Its ability to form R-loops may also be related to its role in 

recombination. R-loops are triple stranded structures formed between RNA and duplex 

DNA in which the RNA strand displaces the DNA strand of identical sequence (Kabak et 

al., 1979). The RecA protein from E.coli uses R-loops to initiate recombinatorial repair 

of DNA breaks (Kasahara et al., 2000; Zeitsev and Kowalczykowski, 2000)



1.8 Aims

There has been little work carried out so far on the core set of six replication proteins that 

are required for the DNA replication of KSHV. To date the protein product of the KSHV 

ORF6 gene (pORF6) had not been purified and characterised. The aims of this project 

were to firstly over-express and purify pORF6 and then to characterise its binding to 

ssDNA.

Initial work involved the generation of a baculovirus expression system in which the 

protein could be expressed to a high level. Successful expression led to the purification 

of the protein by column chromatography. Preliminary experiments demonstrated that 

the purified pORF6 could bind to ssDNA. Characteristics of binding were then 

investigated by electrophoretic mobility shift assay (EMSA) and surface plasmon 

resonance. A panel of monoclonal antibodies (MAbs) against pORF6 were also 

generated and characterised, and studies were initiated to examine the effects of the 

MAbs on the interaction of pORF6 with ssDNA.



Chapter 2 
Materials and Methods



2.1 Materials

2.1.1 Chemicals and reagents

All chemicals were obtained from Sigma Chemicals Company or BDH Laboratory 

Supplies with the following exceptions;

Amersham Pharmacia Biotech (APB)

BIAcore

Roche

Bio-Rad Laboratories

Calbiochem Corporation 

Prolabo

New England Biolabs 

Smithkline Beecham Research

ECL western blotting detection reagents, 

Rainbow protein MW markers

Surface plasmon resonance chips and buffer

Tris base, Nonidet-P40, complete EDTA- 

free protease inhibitor tablets

Ammonium persulphate, 30 % 

acrylamide/bis-acrylamide solution, protein 

assay dye reagent concentrate

Clelland’s reagent (DTT)

Methanol

Lambda DNA-BstE II digest markers 

Ampicillin

2.1.2 Enzymes

Enzymes were obtained from:

New England Biolabs, USA : T4 polynucleotide kinase, T4 DNA ligase, calf intestinal 

phosphatase



Roche: BamYil, EcoKV

2.1.3 Antibodies

Antibodies were supplied by the following:

Sigma Chemical Company Goat anti-mouse IgG-HRP conjugate, Goat 

anti-mouse IgG-FITC conjugate, Goat anti­

mouse IgG-Cy5 conjugate, Goat anti-rabbit 

IgG-HRP conjugate

Dr Susan Graham, MRC Virology Unit Ab726 (Polyclonal anti-peptide antibody

made against C-terminus of pORF6)

2.1.4 Radiochemicals

y-32P-ATP and 35S-Methionine and were supplied by NEN.

2.1.5 Plasmids

Plasmid pACLL29.1 was described previously (Livingston and Jones, 1989). Cos 86 

was obtained from Dr Andrew Davison, MRC Virology Unit, Glasgow.

Dr Terry McDonald Made the peptide corresponding to the C- 

terminus of pORF6 used to make Ab726.

2.1.6 Oligonucleotides



Oligonucleotides used for PCR amplification and sequencing of ORF6 were obtained 

from MWG-Biotech AG.

Oligonucletotides used for EMSAs were obtained from Sigma-Genosys.

2.2 Miscellaneous materials

Other materials used in experimental work were obtained from the following;

Amersham Pharmacia Biotech Nitrocellulose membrane

Medicell International Ltd Dialysis membrane

Dynex Technologies Inc, USA Immulon 1 microtitre plates

Whatman International Ltd 3MM filter paper, anion exchange paper

Kodak Ltd X-omat film

UKC Chemical Laboratories Citifluor





AE buffer

100 mM Tris-HCl (pH 8), 100 mM NaCl, 2 mM 
EDTA, 0.5% (v/v) deoxycholate, 1% (v/v) NP40, 
10% (v/v) glycerol, 1 complete protease inhibitor 
tablet per 50 ml

Cell Fix solution -20°C acetone/methanol (1:2) solution

Cell freezing Mix Appropriate cell medium + 10% DMSO

Cell Permeabilisation Solution
19 ml PBS, 1 ml 10% NP40, 2 g sucrose

Coomassie blue gel stain
5% (v/v) methanol, 7% (v/v) acetic acid, 0.2 % 
Coomassie brilliant blue

DNA loading buffer (5x)
4% sucrose, 0.25% bromophenol blue, 0.25% 
xylene cyanol

ELISA washing buffer (lOx)
1.45 M NaCl, 75 mM Na2H P04, 28 mM NaH2P 0 4, 
0.5% (v/v) Tween-20

Gel destain
5% (v/v) methanol, 7% (v/v) acetic acid, 88% (v/v) 
water

IP wash
100 mM Tris-HCl (pH 8), 100 mM NaCl, 2 mM 
EDTA

PBS
170 mM NaCl, 3.4 mM KC1, 10 mM Na2HP04, 1.8 
mM KH2P 0 4, 6.8 mM CaCl2, 4.9 mM MgCl2 (pH 
7.2)

PBS-Tween
PBS with 0.001% Tween-20

Resolving gel buffer 0.74 M Tris-HCl (pH 8.0), 1% SDS

SDS-PAGE sample buffer 6% SDS, 30% stacking gel buffer, 30% glycerol, 
210 mM P-mercaptoethanol, 0.3% bromophenol 
blue

SDS-PAGE tank buffer 52 mM Tris, 53 mM glycine, 0.1% SDS

Stacking gel buffer 0.122 M Tris-HCl (pH 6.7), 0.1% SDS

TAE 40 mM Tris-acetate, 1 mM EDTA

TBS 20 mM Tris-HCl (pH 7.5), 500 mM NaCl

Towbin transfer buffer
25 mM Tris base, 192 mM glycine, 20% methanol 
(v/v), 0.01% SDS (w/v)



2.4 Cells and cell culture

2.4.1 Bacterial cells and culture

E. coli strain DH5a was used for the maintenance and propogation of plasmid DNA. 

Bacterial cells were grown in LB. Agar plates were made using 1.5 % (w/v) agar in LB. 

When necessary, media and agar plates were supplemented with the appropriate 

antibiotics.

2.4.2 Eukaryotic cells

All cell media and supplements were obtained from Gibco, BRL. The following cell 

lines were used in experimental work. The S f  cells were obtained from the cytology 

department in the Institute of Virology. The B cell lines were obtained from Dr David 

Blackboum from the Institute of Virology.

Spodoptera frugiperda-2\ (Sf) Insect cell line derived from worm ovarian tissue

(Vaughn et al., 1977).

BCBL1 B cell line latently infected with KSHV established

from a human primary effusion lymphoma (Drexler 

etal., 1999).

BJAB EBV negative B-lymphoma cell line. (Source: 

American type culture collection)



2.5 Cell Culture

2.5.1 Insect cell culture

S f  cells were grown in 175cm2 plastic flasks containing 50 ml TC-100 medium 

supplemented with 5% FCS, 1% penicillin-streptomycin and incubated at 28°C without 

C 02. Cells were passaged by removing the existing medium then shaking the cells into a 

small amount of fresh S f  medium added to the vessel. Harvested cells were typically 

split 1:4 into fresh flasks.

2.5.2 B-cell culture

B cells were grown in 80 cm plastic flasks containing 20ml RPMI medium 

supplemented with 10% FCS, 1% L-glutamine, 1% non-essential amino acids, 1% 

neomycin. Cells were passaged every 5 days by diluting with fresh medium, typically 

1:4, and transferred into fresh flasks.

2.5.3 Hybridoma cell culture

Hybridoma cells were cultured in 96 well plates in Dulbecco’s medium supplemented 

with HAT (0.1 mM sodium hypoxanthine, 0.4 pM aminopterin, 0.01 mM thymidine), 

10% FCS, 1% L-glutamine, 1% penicillin-streptomycin. On the appearance of a single 

colony the cells were transferred into 24 well plates. Cells were subsequently cultured

9 9into 25cm flasks and then 80cm flasks.



2.6 DNA Manipulation

2.6.1 PCR amplification of ORF6

PCR amplification was performed on an Eppendorf Mastercycler PCR machine. 

Reaction mixtures were subjected to an initial denaturation step of 95°C for 5 minutes, 

then allowed to cycle 30 times through the following sequence of temperatures; 1) 

template denaturation at 95 °C for 1 minute, 2) primer annealing at 55°C for 1 minute, 3) 

DNA polymerisation for 4 minutes at 72°C. Specimens were then held at 4°C.

Reaction mixtures contained primers (lOOng), 10 x vent buffer, lOmM dNTP mix, vent 

DNA polymerase (10 units), cos 86 (lOOng) (cosmid containing pORF6 gene) in 50 pi.

The primers used to amplify the ORF6 gene from Cos 86 were:

5 ’-GGCCCGGATCCATGGCGCTAAAGGGCACACAAA-3 ’ (forward)

5 ’-GGCCCGGAICCCTACAAATCCAGGTCAGAGAGC-3 ’ (reverse)

The stop and start codons are shown in red and the BamRl sites are underlined.

2.6.2 Restriction enzyme digestion of DNA

Restriction enzyme digestions were carried out using commercial enzymes and 

corresponding buffers. Typically, 0.5-2 pg of DNA was digested in a final volume of 10- 

20 pi using an excess of enzyme (5-10 units/digest) and the corresponding buffer at the 

recommended temperature for 1-2 hours.

2.6.3 Agarose gel electrophoresis of DNA

DNA samples were mixed with a 1/5 volume of DNA loading buffer and loaded into 

wells in horizontal 1% agarose gels made in lx  TAE containing 0.5 pg/ml EtBr. 

Electrophoresis was carried out using Bio-Rad sub-cell DNA gel electrophoresis systems 

with the gel submerged in lx  TAE also containing EtBr for approximately 40 minutes at 

70 V. DNA was visualised using either a short wave or long wave UV transilluminator, 

as appropriate.



2.6.4 Purification of DNA from non-denaturing agarose gels

DNA fragments resolved by agarose gel electrophoresis were visualised under long-wave 

UV illumination and the required bands were cut from the gel. The DNA was purified 

using the Geneclean kit by Bio 101 Inc., according to the manufacturer’s instructions and 

using supplied materials. The volume of the gel slices was determined and 3x volumes 

of Nal were added. The gel was melted by incubating at 45°C for 5-10 minutes. A 10 pi 

volume of DNA-binding glassmilk was added and the solution was incubated at room 

temperature, with mixing, for approximately 15 minutes. The glassmilk was pelleted at 

13 000 rpm for 5 secs and washed using 400 pi of wash solution. This wash was repeated 

twice. After the final wash, tubes were left open at room temperature for 10 minutes to 

ensure ethanol from the wash solution had evaporated. The DNA was re-suspended in 

dH20 , approximately 20 pi for ~ 5 pg of DNA.

2.6.5 DNA ligation reactions

Ligation of DNA fragments and linearised plasmid DNA was carried out as follows. 

Fragment and plasmid DNA were mixed such that the fragment or insert DNA was in 

molar excess over the plasmid DNA by approximately 3-fold. One unit of bacteriophage 

T4 DNA ligase enzyme was added along with an appropriate amount of 10X ligase 

enzyme buffer in a final volume of 20 pi. Reactions were incubated overnight at room 

temperature. The plasmid was subjected to treatment using calf intestinal phosphatase 

(CIP) enzyme prior to the ligation, in order to prevent recircularisation during the ligation 

reaction. Typically, 10 units of CIP along with phosphatase buffer was added to 1 pg of



restriction enzyme-digested plasmid DNA in a final volume of 20 pi and incubated at 

37°C for one hour.

2.6.6 Preparation of competent DH5a E. coli cells

A single colony of DH5a E. coli cells was used to inoculate 5ml of LB and grown 

overnight at 37°C in an orbital shaker. The next day, 1 ml of the overnight culture was 

diluted in 50 ml LB and allowed to grow for 2 hours at 37°C, with shaking. Cells were 

chilled on ice for 20 minutes and then pelleted at 3000 rpm (microfuge) for 5 minutes at 

4°C. The pellet was resuspended in 25 ml 0.1 M CaCl2 and incubated on ice for 30 

minutes. The cells were pelleted again at 3000 rpm (microfiige) for 5 minutes at 4°C and 

finally resuspended in 4 ml 0.1 M CaCl2. Cells were stored at 4°C for at least one hour 

before use in transformation reactions.

2.6.7 Transformation of competent DH5a E.coli cells

Approximately 100 ng of DNA (either unmodified plasmid DNA or that from ligation 

reactions) was mixed with 200 pi of competent cells and incubated on ice for 30 minutes. 

Competent cell/DNA mixtures were then subjected to “heat-shock” by incubating at 

42°C for 90 seconds. 800 pi of LB was added immediately and samples were incubated 

at 37°C for 1 hour, with shaking. Cells were then pelleted at 13000 rpm in a microfiige 

for 30 seconds and 800 pi of the supernatant discarded. The cell pellet was resuspended 

in the remaining 200 pi of medium and then spread onto LB agar plates, containing



ampicillin (50 pg/ ml) using a sterile plastic spreader. Plates were incubated overnight at 

37°C.

In the case of cells transformed using DNA from ligation reactions, individual bacterial 

colonies that had grown were picked from agar plates into 5 ml of sterile LB containing 

the appropriate antibiotic (to which the transformed plasmid confers resistance) and 

shaken overnight at 37°C. The following day, small-scale preparations of plasmid DNA 

were made.

2.6.8 Small scale preparation of plasmid DNA (mini-prep)

Bacteria contained in 10 ml of overnight culture were pelleted by centrifugation at 13000 

rpm (microfuge) for 30 seconds and the supernatant discarded. Plasmid DNA was then 

isolated using a ‘Perfect Prep’ kit (5’->3’, Inc) according to the manufacturers 

instructions and using reagents as supplied. Plasmid DNA was eluted from the column 

using 60 pi of dH20  at 65°C, and stored at -20°C.

2.6.9 Large-scale preparation of plasmid DNA (maxi-prep)

A single colony of bacteria was used to inoculate 100 ml of LB containing the 

appropriate antibiotic, using a sterile loop. Cultures were grown in 500 ml flasks. The 

cells were pelleted by centrifugation at 3000 rpm for 15 minutes and the supernatant was 

discarded. The DNA was extracted using a Qiagen maxi-prep kit following the 

manufacturers instructions.



2.6.10 DNA sequencing

An ABI automated sequencer was used for sequencing of double-stranded recombinant 

plasmid DNA, using the dideoxy method of Sanger, (1977). Sequencing was carried out 

by Aidan Dolan. Alignment of the DNA sequence was carried out using Gap4 (Staden et 

al., 1998).

2.7 Analysis of Proteins

2.7.1 SDS-PAGE

Complex protein mixtures were resolved using SDS-PAGE. The Bio-Rad Mini Protean 

II gel apparatus was used to prepare and run mini gels. Usually 10 % polyacrylamide 

resolving gels (acrylamide:bisacrylamide 37.5:1) were prepared in lx running gel buffer 

and poured between vertical mini-gel plates. A 7.5% polyacrylamide stacking gel 

(acrylamide:bisacrylamide 19:1) prepared in lx stacking gel buffer was polymerised on 

top of the resolving gel. Prior to loading into gel wells, protein samples were mixed with 

1/3 volume of SDS-PAGE sample buffer and boiled for 5 minutes. Gels were 

electrophoresed at 180 mA for 40-60 minutes, until the dye front reached the bottom of 

the gel. Proteins were detected by staining gels in 0.2 % Coomassie blue stain for 10 

minutes followed by de-staining or transferred onto nitrocellulose membrane by western 

blotting for detection using antibodies.



2.7.2 Western Blotting

Proteins were transferred from polyacrylamide gels onto nitrocellulose membranes 

according to the method of Towbin et al. (1979). Gels were placed on top of Whatman 3 

MM paper presoaked in Towbin transfer buffer. A sheet of nitrocellulose membrane 

followed by another sheet of 3 mm paper (both pre-soaked) were placed on top of the 

gel. This assembly was transferred into a Bio-Rad mini trans-blot cartridge and tank as 

instructed. Electro-blotting was carried out in Towbin transfer buffer for 1 hour at 200 

mA.

2.7.3 Detection of proteins on nitrocellulose membrane using antibodies

Nitrocellulose membranes were immersed in blocking buffer, consisting of 5% dried 

milk in PBS, and agitated for 1 hour at room temperature or overnight at 4°C. Blocking 

buffer was rinsed off using PBS containing 0.001% Tween-20 (PBS-Tween) and then the 

membranes were incubated with primary antibody, either in sealed plastic bags or 

suitable plastic containers, at room temperature for 1-2 hours. After three 5 minute 

washes in PBS-Tween, the membranes were incubated with either anti-mouse or anti­

rabbit IgG horseradish peroxidase-conjugate antibody (depending on the source of 

primary antibody), diluted 1:1000 in PBS-Tween, at room temperature for 1 hour, with 

agitation. Unbound secondary antibody was removed by three 5 minute washes using 

PBS-Tween. Membranes were then transferred onto glass plates and treated using 

Amersham ECL western blotting reagents according to the manufacturer’s instructions. 

After incubation, the nitrocellulose was covered with transparent film and then exposed 

to Kodak X-Omat film, which was processed using a Konica 101 SRA film developer.



2.7.4 Quantification of proteins

Protein concentrations were determined using the Bio-Rad protein assay kit (micro­

assay), which is based on the Bradford dye-binding protein assay (Bradford, 1976), 

according to the manufacturers instructions. A standard curve of protein concentration 

against absorbance at 595 nm was produced, using BSA as the standard protein at the 

following concentrations (pg/ml); 50,100, 200, 400, 800 and 1000. The absorbance of 

the sample proteins was measured and protein concentration calculated from the standard 

curve. OD was read at 280 nM.

2.8 Generation of recombinant Baculovirus

2.8.1 Transfection

The recombinant baculovirus was made using a BacPAK kit (Clontech). S f  cells were set 

up in 35ml dishes at of lxlO6 cells/plate (2 mis) and were incubated at 28°C overnight. 

The following day two tubes were prepared containing: tube 1) 0.5 pg of viral DNA 

(linearised baculovirus DNA) and 2 pg of plasmid DNA (pIDl), made up to a volume of 

500 pi with TC100 without supplements; tube 2) 15 pi of lipofectin and 485 pi of TC100 

(without supplements). The contents of the two tubes were mixed together and incubated 

at room temperature for 15 minutes. The growth media from the 35 ml dishes was 

removed and the cells were washed twice with TCI 00 without supplements. 1 ml of the 

DNA/liposome mix was then added to the plates, which were incubated for 4 hours at 

28°C. The cells were washed with TCI 00 (complete). 2mls of TCI 00 (complete) was 

then added to the dishes, which were subsequently incubated for 3 days at 28°C.



2.8.2 Screening progeny from transfection (Plaque assay)

S f  cell monolayers set up in 35ml dishes at lxlO6 cells/plate (2 mis) were incubated at 

28°C overnight. The transfected cells (see above) were harvested with their media and 

were placed into bijoux bottles and sonicated. Serial 10-fold dilutions were prepared in 

TCI00 without supplements. These were neat, 10'1, 10'2, 10'3 and KT4. The medium 

from the S f  cells set up the day before was removed and 200pl of the diluted virus was 

added. This was adsorbed for 1 hour at room temperature. The inoculum was then 

removed and 2mls of 3% LGT agar diluted 1:1 with complete TCI00 was added. Once 

set, 1ml of complete TCI00 was added. The plates were then incubated for 3-5 days 

until plaques had formed.

2.8.3 Picking plaques

The medium left on the agarose was removed and 1ml of neutral red diluted 1/25 with 

complete TCI00 was added. The plates were incubated at 28°C for 3 hours. Next the 

neutral red was removed and the clear plaques were picked using sterile yellow tips and 

placed into 500pl of complete TCI00 in bijoux bottles. The agar plug was pipetted out 

of the tip and was then vortexed thoroughly. Half of this solution was frozen at -70°C 

and the other half was used to inoculate a cell suspension containing 5xl05 S f  cells in 1 

ml of medium per well in a 24 well plate. As controls two of the wells were left 

uninoculated. The cells were incubated for 4 days at 28°C and were then checked for 

CPE compared to the control cells.



2.8.4 Screening for recombinants expressing ORF6 protein 

Wetern blot

The cells and media were harvested from each well into eppendorf tubes and were spun 

at 13000 rpm (microfuge) for 5 minutes. The supernatant was removed and stored in an 

eppendorf tube at -70°C. The cell pellet was washed twice with PBS with intervening 2 

minute spins at 13000 rpm. It was then resuspended in 30 pi of SDS-PAGE sample 

buffer. This was run on a SDS-PAGE minigel and a western blot performed to determine 

which samples were positive for the ORF6 protein. The blot was probed with polyclonal 

antibody Ab726 which had been made against the very C-terminus of the ORF6 protein.

35S-methionine labelling

24-well dishes were seeded with 1x10 6 S f  cells/well in 1 ml medium. At approximately 

70% confluency, they were infected with 100 pi of virus from the picked plaques, or 

parental PAK6 baculovirus at a MOI of 10. Virus was adsorbed for 1 hour at 28°C, then 

fresh medium was added and the cells were incubated at 28°C overnight. The next day, 

the medium was replaced with 500 pi of methionine-free S f  cell medium containing 30 

pCi per well of S-methionine. Cells were incubated at 28°C overnight. The medium 

was removed and the cells were harvested in 500 pi of cold TBS and then pelleted by 

centrifugation at 6000 rpm (microfuge). The supernatant was discarded and the cells 

were washed twice more in 500pl TBS. The cells were centrifuged again at low speed, 

the supernatant was removed and the pellet was resuspended in SDS-PAGE sample 

buffer, boiled for 5 minutes and analysed by SDS-PAGE. The gel was exposed to Kodak 

X-Omat film, which was processed using a Konica 101 SRA film developer.



2.8.5 Preparation of stocks of AcNPV-ORF6

Large scale stocks of baculovirus AcNPV-ORF6 expressing pORF6 were generated. 

60mm dishes were seeded with 2.5x106 s f  cells in 5mls of complete TCI 00. The 

following day the media was removed and the cells were infected with 300 pi of the 

supernatant that had previously been stored at -70°C (2.8.4). This was adsorbed for 1 

hour then 2 mis of complete TCI00 was added and the plates were incubated at 28°C for 

4 days. The cells and media were then harvested and sonicated. Large flasks were set up 

with S f  cells. When the cells were -70% confluent they were infected with 1ml of the 

virus from the 60 mm dishes. This was adsorbed for 1 hour then 20 mis of TCI 00 was 

added and the cells were incubated at 28°C for 3 days. The cells and media from the 

flasks were then harvested and stored in bijoux bottles at -70°C. This was the original 

stock. An elite stock was made from this using the same method but using 5 flasks for 

and then a working stock was made from the elite stock also using 5 flasks. The working 

stock was concentrated by pelleting the virus from the supernatant at 12 000 rpm at 4°C 

in a Sorvall SLA1500 rotor for 2 hours. The pellet was resuspended in 3mls of complete 

media and stored at -70°C. Virus was titrated by a plaque assay, as described in section 

2 .8 .2 .

2.8.6 Sterility of viral stocks

The sterility of viral stocks was checked by streaking samples onto blood agar plates.

The plates were incubated at 31°C for up to 5 days and any viral stocks containing 

bacterial contamination were discarded.



2.9 Purification of ORF6 protein

2.9.1 Infection of S f  cells with baculovirus AcNPV-ORF6

n
Typically, 10 large flasks of S f  cells at approximately 70% confluency (3.5x10 cells/ 

flask) were infected with recombinant baculovirus AcNPV-ORF6 at a MOI of 10. Virus 

was adsorbed for 1 hour, and then 20 ml medium was added to the flasks, which were 

then incubated for 48hrs at 28°C.

2.9.2 Harvesting of infected Sf cells and extraction of protein

Cells from the flasks were harvested into the existing cell medium by shaking and 

transferred to Falcon 225 ml conical centrifuge bottles. The cells were pelleted by 

centrifugation at 3000 rpm for 7 minutes at 4°C (Sorvall RT-7 Benchtop centrifuge) and 

the supernatant discarded. The pellet was washed 3 times by resuspension in 80 ml ice- 

cold TBS followed by centrifugation at 3000 rpm for 7 minutes at 4°C, each time the 

supernatant being discarded. The cells were kept on ice throughout this procedure. 

Following the final wash, cell pellets were resuspended in 10 mis of extraction buffer (20 

mM Hepes (pH7.6), 0.5 mM DTT, 0.5 mM MgCl2, 10 mM NaHSCb, 1 protease inhibitor 

tablet per 50 ml) then transferred to a dounce homogeniser. The cells were lysed by 10 

strokes in the homogeniser and pelleted at 4000 rpm and the supernatant discarded. The 

pellet was resuspened in 10 mis of high NaCl extraction buffer (20 mM Hepes (pH7.6),

3.4 M NaCl, 0.5 mM DTT, 0.5 mM MgCl2, 10 mM NaHSC>3, 1 protease inhibitor tablet 

per 50mls) and incubated on ice for 10 minutes. The lysed cell suspension was 

transferred to Sorvall 35 ml centrifuge tubes and centrifuged at 40000 rpm for 1 hour at 

4°C in a Sorvall T865 ultracentrifuge rotor. The final supernatant was carefully decanted 

and kept on ice.



2.9.3 Ion exchange chromatography

All chromatography was carried out using the AKTA 900 purification system. 

pORF6 was purified from the insect cell lysate by a two-step chromatography process. 

The first column was a heparin sulphate column (5 ml). Heparin sulphate is a high 

capacity cation exchanger. The column was firstly equilibrated with hepes buffer (20 

mM hepes (pH 7.6), 0.5 mM DTT, 0.5 mM EDTA, 100 mM NaCl, 10% glycerol). 

Clarified cell extract that had been dialysed overnight against hepes buffer, was loaded 

onto the column at a flow rate of 2 ml/minute. The column was washed with 5 column 

volumes of hepes buffer. Finally a 0-1M NaCl gradient in hepes buffer was applied over 

20 column volumes at a flow of 5 ml/minute. Fractions of 1ml were collected, 50 pi was 

taken from each fraction for use in subsequent analysis and the remainder was kept at 

4°C.

Fractions eluted from the column were analysed by SDS-PAGE and staining with 

Coomassie blue. Fractions containing pORF6 were pooled and dialysed overnight 

against Tris buffer (see below).

The second column was a monoQ column (1 ml), which is a strong anion exchanger.

The column was firstly equilibrated with Tris buffer (20 mM Tris-HCl (pH8), 0.5 mM 

DTT, 0.5 mM EDTA, 100 mM NaCl, 10% glycerol). The pooled and dialysed fractions 

from the previous column were loaded onto the column. The column was washed with 5 

column volumes of Tris buffer. A 0-1M NaCl gradient in Tris buffer was applied over 

50 column volumes at a flow rate of 1 ml/minute. Fractions of 1ml were collected and 

analysed on a Coomassie blue stained SDS-PAGE gel. Peak fractions were aliquoted 

into 50 pi volumes and frozen at -70°C.



2.9.4 Gel filration chromatography of pORF6

A 24 ml superose column 12 HR 10/30 (Amersham) was used to determine the size of 

pORF6 in solution. Tris running buffer (20 mM Tris-HCl (pH8), 0.5 mM DTT, 0.5 mM 

EDTA, 100 mM NaCl, 10% glycerol) was used at a flow rate of 0.2 ml/min. 200pl of 

Blue dextran, Aldolase and BSA each at a concentration of 1 mg/ml were firstly loaded 

onto the column, as molecular markers. These were eluted with 1.5 column volumes and 

a second identical run was started using 200 pi of pORF6 (2 mg/ml). 0.5 ml fractions 

were collected and analysed by western blot for the presence of pORF6.

2.10 Purification of MAb52
A protein G column (5 ml) was used to purify MAb52. The MAb52 supernatant was 

dialysed overnight in a 20 mM sodium phosphate buffer (pH 7). The column was 

equilibrated with the same buffer. The dialysed supernatant was applied to the column. 

Any unbound protein was washed out with 5 column volumes of running buffer. Bound 

protein was eluted with a 0.1M glycine buffer (pH 2.7) over 5 column volumes. The 0.5 

ml fractions were eluted into eppendorfs containing 40 pi 1M Tris (pH 9) to neutralise 

the solution.

2.11.Generation of ORF6-specific MAbs

2.11.1 Preparation of immunogen

Protein pORF6 was purified from insect cell lysate by two-column chromatography as 

described in section 2.9.3. Protein of at least 95% purity was used for immunisation.



2.11.2 Immunisation schedule

Female Balb/c mice were immunised subcutaneously initially using 20pg of soluble 

pORF6 emulsified in Freund’s complete adjuvant. This was followed by three booster 

injections of 20 pg pORF6 emulsified in Freund’s incomplete adjuvant, at two week 

intervals. Sera from test bleeds were titrated against pORF6 in ELISA to ascertain which 

animals exhibited the best antibody response. In preparation for the fusion, the 2 best- 

responding mice were given final intra-peritoneal boosts of 60 pg pORF6 emulsified in 

Freund’s incomplete adjuvant.

2.11.3 Preparation of spleen cells for fusion

Mice were killed by cervical dislocation and the spleens removed immediately and 

placed in sterile DMEM medium on ice. Spleen cells were isolated by puncturing the 

spleen surface several times with a 26-G needle and injecting sterile medium into the 

spleen using another 26-G needle and syringe, forcing cells out through the perforations. 

The extracted cells were pelleted at 1400 rpm (Sorvall RTH-250 rotor) for 10 minutes at 

4°C , the supernatant was removed and 10ml of sterile DMEM was used to resuspend the 

cells, which were then counted.

2.11.4 Preparation of Myeloma Cells

Confluent Sp2/0-Agl4 cells were harvested by shaking into their existing medium and 

then pelleted at 1400 rpm (Sorvall RTH-250 rotor) for 10 minutes at 4°C. The cell pellet 

was stored on ice. Some of the supernatant was retained for use in the conditioned 

medium to be added subsequently to the cells following fusion.



2.11.5 Fusion protocol

1 x 107 myeloma cells and 1 x 108 spleen cells, were mixed in a 50 ml tube and pelleted 

at 1400 rpm (Sorvall RTH-250 rotor) for 5 minutes. The supernatant was removed and 

the cell pellet tapped loose. Fusion of the splenocytes and myeloma cells was achieved 

by adding 1 ml of 50% PEG (1 ml of PEG mixed with 1 ml of DMEM at 37°C) to the 

cells and mixing gently. After 1 minute, the PEG was diluted 1:2 using 1 ml of DMEM. 

Dilution of the PEG was repeated by adding a further 4, 8 and 16 ml DMEM at 2, 3 and 4 

minutes respectively. The cells were then centrifuged at 1400 rpm (Sorvall RTH-250 

rotor) for 15 minutes and resuspended in conditioned HAT medium, comprising 75% 

fresh HAT medium and 25% pre-conditioned Sp2/0-Agl4 cell medium (medium in 

which Sp-2 cells had previously been grown) at a final concentration of 107 Sp2/0-Agl4 

cells per 100 ml. The cell suspension was distributed into 96 well microtitre plates by 

adding 150 pi per well, and incubated at 37°C in a humidified incubator with 5% C 02.

2.11.6 HAT selection and maintenance of fused myeloma/spleen cells

The cells were checked after 3 days to ensure the HAT medium was killing the Sp2/0- 

Agl4 cells. At 7-10 days following the fusion, the wells were monitored for the 

appearance of large colonies of hybrid myeloma/spleen cells. The supernatant from 

wells containing single colonies of diameter approximately one third of the well was 

screened for reactivity against ORF6 by ELISA, as described below.

2.11.7 ELISA screening of hybridoma cell supernatant

Immulon 1 microtitre plates were coated with 200 ng/well of purified pORF6 diluted in 

PBS at 37°C overnight, then blocked using 2% BSA in PBS (100 pl/well) for 1 hour at 

37°C. Hybridoma cell supernatant (50 pi) was added to the wells and incubated at 37°C



for one hour. The plates were washed 6x in PBS + 0.005% Tween 20 and were tapped 

dry before adding 50 pl/well of anti-mouse-HRP conjugate secondary antibody and 

incubating at room temperature for 1 hour. Unbound conjugate was removed by washing 

6x using PBS/Tween-20 and the plates tapped dry. 100 pi per well of ABTS-peroxidase 

substrate was added and the colour change in each well after twenty minutes was 

measured by reading the optical density at 405 nm. pORF6-reactive supernatant was 

designated as that producing a reading more than twice that produced by control 

supernatant from Sp-2 cells.

2.11.8 Propagation of positive-secreting hybridoma cell lines

Cells secreting positive antibody were transferred to small flasks and topped up with 

fresh HAT medium. Once the cells had reached confluency in the small flasks, the 

supernatant was tested again for reactivity against ORF6 to ensure they were still 

secreting ORF6-reactive antibodies. If positive for anti-ORF6 antibody, cells were 

harvested and transferred to medium flasks and, ultimately, large flasks. Once cells were 

confluent in large flasks, the supernatant medium was collected and frozen in aliquots at 

-20°C. The hybridoma cells were aliquoted in HAT medium containing 10% DMSO and 

frozen down for long-term storage in liquid nitrogen.

2.12 Testing of MAbs

2.12.1 Testing reactivity of MAbs against ORF6 in western blotting

Cell extracts from S f  cells infected with the recombinant baculovirus AcNPV-ORF6 or 

PAK6 baculovirus were used. The cell extracts were subjected to SDS-PAGE and 

transferred to nitrocellulose as described in section 2.7.2. The nitrocellulose membranes



were cut into 0.5 mm strips and incubated in blocking buffer overnight at 4°C.

Individual strips were incubated with 1 ml of a single hybridoma cell supernatant at room 

temperature for 1 hour. The remainder of the western blot was carried out as described 

in 2.7.3.

Cell extracts from B cells infected with KSHV were also used. Cells were induced by 

adding sodium butyrate (1 mM). At various times after induction the cells were pelleted 

in a microfuge at 6000 rpm for 5 minutes and lysed in a cell lysis buffer (100 mM Tris- 

HCl, 100 mM NaCl, 2 mM EDTA, 2 mM EGTA, 1% NP40, 0.5% sodium deoxycholate, 

0.5 mM PMSF). The cell extracts were used in a western blot as described in sections 

2.7.1-2.7.3.

2.12.2 Testing reactivity of MAbs to ORF6 in immunofluorescence

S f  cells were set up in 35 ml dishes at lxlO6 cells/ml (2 ml) and were incubated at 28°C 

overnight. The next day, the medium was removed and the cells were infected with 

recombinant baculovirus AcNPV-ORF6 or PAK6 baculovirus at a MOI of 10 and 

incubation continued at 28°C. After 48 hours, the cells were washed 3 times using PBS- 

Tween. The cells were then resuspended in PBS and placed onto a slide using a cytospin 

(800 rpm for 3 min) and fixed by soaking in -20°C acetone/methanol (1:2) solution at 

-20°C for 20 minutes. After a further 3 washes with PBS-Tween, blocking solution (1% 

FCS in PBS-Tween) was added and left at 37°C for 1 hour. This solution was removed 

and 400 pi of undiluted supernatant medium from monoclonal hybridoma cells was 

added. After 1 hour at 37°C, the cells were washed 3 times using PBS-Tween (1%). A 

1:200 dilution of a-mouse-FITC conjugate was added to the cells (150 pi) and incubated 

at RT for 1 hour. The cells were again washed 3 times using PBS-Tween. Coverslips 

were mounted onto a small drop of Citifluor solution (UKC), covering the cells.



Examination of immunolabelled cells was performed using a Zeiss LSM 510 confocal 

microscope attached to a computer operating the appropriate LSM 510 software.

Immunofluorescence of B cells infected with KSHV was carried out using a similar 

method except the cells were placed onto the microscope slide by pelleting the cells (2ml 

at 7xl05/ml), resuspending in 20 pi of PBS and spotting onto the slide which was then air 

dried.

2.12.3 Screening MAbs for reactivity against pORF6 by immunoprecipitation: 

expression of radiolabelled pORF6 protein

24-well dishes were seeded with 1x10 6 S f  cells/well in 1 ml medium. At approximately 

70% confluency, they were infected with AcNPV-ORF6 or PAK6 baculovirus at a MOI 

of 10. Virus was adsorbed for 1 hour at 28°C, then fresh medium was added and the 

cells were incubated at 28°C overnight. The next day, the medium was replaced with 

500 pi of methionine-free S f  cell medium containing 30 pCi per well of S-methionine. 

Cells were incubated at 28°C overnight. The medium was removed and the cells were 

harvested in 500 pi of cold TBS and pelleted by centrifugation at 6000 rpm (microfuge). 

The supernatant was discarded and the cells were washed twice more in 500 pi TBS.

The cells were centrifuged again at low speed, the supernatant was removed and the 

pellet was kept on ice. Proteins were extracted by resuspending the cell pellet in 150 pi 

of cold AE buffer and incubating on ice for 20 minutes. Extracts were then centrifuged 

at 35000 rpm for 30 minutes at 4°C in a Beckman TLA-100.2 rotor (Beckman TLA-100 

benchtop ultracentrifuge). Small samples of the supernatant containing extracted 

proteins from AcNPV-ORF6 and PAK6-infected cells were analysed by SDS-PAGE to



check that pORF6 had been expressed. The gel were dried and exposed to a 

phosphorimage screen.

2.12.4 Immunoprecipitation of pORF6 from insect cell extracts

Proteins were extracted in cold AE buffer as described above. Cell extracts were mixed 

with 100 pi of MAb (undiluted hybridoma cell supernatant) for 2.5 hours at 4°C. 50 pi 

of a 50% suspension of Protein A-sepharose beads in buffer AE was then added and 

mixed for a further 1.5 hours at 4°C. Samples were then centrifuged at 6000 rpm in a 

microfuge for 2 minutes to pellet the protein A sepharose beads and the supernatant was 

discarded. The beads were then washed to remove any proteins not specifically bound. 

The beads were re-suspended in 500 pi of cold AE buffer and centrifuged at 6000 rpm in 

a microfuge for 2 minutes. The supernatant was discarded and the beads were washed 

twice. After the final wash, the pelleted beads were mixed with 50 pi of SDS-PAGE 

sample buffer and boiled for 5 minutes to dissociate the bound proteins. The beads were 

briefly centrifuged again at 6000 rpm and the supernatant was analysed by SDS-PAGE, 

together with a whole insect cell lysate sample to allow identification of the pORF6 

protein band. Following electrophoresis, gels were vacuum dried at 80°C for 1 hour and 

exposed to a phosphorimage screen.



2.13 DNA-Protein binding assay

2.13.1 Preparation of radio labelled DNA

Single stranded DNA (poly dT) was 5’ labelled using T4 bacteriophage polynucleotide 

kinase and y-32P ATP (30 pCi per reaction) in 1 x buffer (70 mM Tri-HCl (pH 7.6), 10 

mM MgCh, 5 mM D TT) in a volume of 30 pi for 30 mins at 37°C. Labelled DNA was 

stored at 4°C.

2.13.2 Electrophoretic Mobility Shift Assay (EMSA)

A 5% non-denaturing polyacrylamide gel (30:1 acrylamide : bisacrylamide) was 

prepared and pre-run for 1 hr at 100-150 V using 0.5x TBE as tank buffer. Binding 

reactions were set up in 1.5 ml eppendorf tubes containing the specified amounts of 

pORF6 and 32P labelled poly dT in 1 x buffer (20 mM tris, 0.5 mM DTT, 0.5 mM EDTA, 

100 mM NaCl, 10% glycerol) in a volume of 30 pi. These were incubated for 30 min at 

37°C. The samples were loaded onto the gel without sample loading buffer.

Bromophenol blue containing sample buffer was loaded onto a separate lane to observe 

how far the gel had run. The gel was run for approximately 4 hours at 100-150 V in a 

4°C room until the dye front was two thirds of the way to the bottom of the gel. The gel 

was then placed onto DE81 anion exchanger chromatography paper (Whatman), which in 

turn was placed onto a sheet of 3MM paper and a sheet of transparent film was placed on 

top of the gel. The gel was vacuum dried at 80°C for 1 hour and then exposed to a 

phosphorimage screen.



The phosphorimages were quantified using the Bio-rad quantity one software. Areas of 

the same size were highlighted around the bands to be quantified and volume analysis 

was carried out to determine the relative counts of radioactivity in the selected regions.

2.14 Surface plasmon resonance
Surface plasmon resonance was performed using the BIAcore 2000 in conjunction with 

chips and buffers supplied by BIAcore. A streptavadin chip, which consisted of four flow 

cells coated with streptavadin was employed. The chip was conditioned by three 1 min 

injections of 1M NaCl in 50 mM NaOH at a flow rate of 20 pl/min. Biotin 5’ end- 

labelled DNA dissolved in buffer (10 mM Hepes pH 7.4, 150 mM NaCl, 3.4 mM EDTA, 

0.005% v/v surfactant P20) was loaded onto the chip to about 100 response units. Two 

injections of 50 pi of free biotin (1 mg/ml) were then flowed over the cell to block any 

free streptavadin sites. One of the flow cells had no DNA loaded onto it, and was used as 

a reference. The 5’ biotin end labelled oligonucleotides used were poly (dT)is and an 

oligodeoxyribonulceotide of 32 nt with the sequence

GAACGCGAAGCGAAGCGTTCGCACTTCGTCCC which was kindly donated by Dr 

Graeme Thompson (MRC Virology Unit, Glasgow).

For all experiments the BIAcore 2000 was run at 37°C. A series of dilutions of pORF6 

were made using the running buffer and were individually flowed across the chip, at a 

flow rate of 70 pl/min. Association and dissociation times were 180 seconds. Both the 

flow cells, with and without DNA were used. In between injections of pORF6, the chip 

was regenerated with injections of 0.5 M NaCl to remove all bound protein.

The data was analysed using the BIAevaluation software.



Chapter 3
Expression and purification of pORF6



3.1 Introduction

The aim of the work described in this section was to express and purify the product of 

KSHV ORF6 (pORF6) for use in subsequent experiments including the generation of 

monoclonal antibodies. The recombinant baculovirus expression system was selected for 

this purpose as it had previously been successfully employed to express the SSBs of 

other human herpesviruses (Boehmer and Lehman, 1993a; Tsurumi et a l , 1998), and it 

has advantages being a eukaryotic expression system. Column chromatography was 

carried out to purify pORF6 to near homogeneity, and was also employed to investigate 

the multimerisation state of the purified pORF6 in solution.

3.2 Construction of a recombinant baculovirus expressing ORF6

To construct the recombinant baculovirus, the ORF6 gene was firstly PCR amplified and 

cloned into the baculovirus transfer vector, pAcCL29.1 (figure 3.1), under the control of 

the strong polyhedrin promoter. PCR amplification of the ORF6 gene was from Cos86 

DNA, a cosmid containing nucleotides 1-7437 of the KSHV genome, which was kindly 

supplied by Dr Andrew Davison (MRC Virology Unit, Glasgow). The primers were 

designed to amplify a 3.4 kbp fragment spanning nucleotides 3210-6611 containing the 

complete ORF6 gene (accession number U93872). BamRl sites were incorporated into 

the primers to facilitate cloning into the transfer vector.

The PCR reaction was performed as described in methods (section 2.6.1) and the 

products digested with BamHI. Plasmid pAcCL29.1 was digested with BamHl in the 

presence of CIP to prevent recircularization during ligation. The digested PCR product 

and linearized pAcCL29.1 were run on an agarose gel (figure 3.2). The bands were 

excised and the DNA purified as described (section 2.6.4). The gel purified DNAs were
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POLYHEDBIN
TERMINATOR

POLYHEDRIN 
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Insert (ORF6)

ATG
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Figure 3.1 pAcCL29.1 transfer vector and insert
The ORF6 gene was inserted into the Bam HI site. The Bam HI and Eco RV sites on the 
insert are indicated by an arrow. The start codon is indicated with a red line. The Eco RV site 
in the plasmid and the unique site in the ORF6 gene allows orientation of the cloned inserts to 
be determined. AMP represents an ampicillin resistance gene and ORI represents the plasmid 
origin of replication.



M  p A c C L 2 9 .1  P C R

(v e c to r )  F ra g m en t

Figure 3.2 plasmid pAcCL29.1 and PCR fragment of ORF6.
T h e  lin e a r ise d  p la sm id  p A c C L 2 9 .1  and th e P C R  fra g m en t c o n ta in in g  th e  a m p lif ie d  O R F 6  
g e n e  w e r e  r e s o lv e d  on  a 1 % a g a r o se  g e l ,  w h ic h  is  s ta in ed  w ith  e th id iu m  b ro m id e . M =  L a m b d a  
D N A - B s t E  II D ig e s t  m ark ers. S iz e s  o f  th e  ap p rop ria te  b a n d s are in d ic a te d  o n  th e  le ft.



ligated and the products were used to transform competent E.coli strain DH5a cells. The 

transformed cells were plated out and ampicillin resistant colonies selected. Twelve 

colonies were picked, grown in 10 ml liquid cultures and small scale plasmid 

preparations were made.

To identify plasmids containing the 3.4 kbp insert, DNA samples were cleaved with 

BamRl and the fragments resolved on an agarose gel alongside RrtEII cleaved 

bacteriophage lambda DNA markers (figure 3.3a). The gel shows DNA from 2 colonies 

which produced two fragments of the sizes expected for the vector and PCR-amplified 

fragment.

Plasmids containing the ORF6 gene in the correct orientation were identified by 

digestion with EcoRV, which cleaves approximately 80 bp upstream of the polyhedron 

promoter and asymmetrically within the ORF6 gene (figure 3.1). Plasmids containing 

the ORF6 gene in the correct orientation should generate fragments of approximately

10.3 kbp and 755 bp, whilst insertion in the opposite orientation would yield fragments 

of approximately 8.2 kbp and 2.5 kbp. Figure 3.3b shows the digest patterns for two 

representative colonies. The fragments generated are consistent with the insert being in 

the wrong orientation in colony 1, but in the correct orientation in colony 2.

A colony containing the insert in the correct orientation (colony 2) was selected, named 

pIDl, and a large scale preparation of DNA made. To confirm that no errors had 

occurred during PCR, the sequence of the entire insert was determined. This sequence 

was identical to the DNA sequence (accession number U93872) except for two 

nucleotide substitutions: a C to T change at position 207, and an A to G change at 

position 1149. These substitutions change codon 68 of the ORF6 gene from AAC to
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Figure 3.3a Analysis of plasmid DNA from transformants
BamHl d ig e s ts  o f  D N A  from  tw o  c o lo n ie s  run a lo n g s id e  la m b d a  D N A  Z?s/EII m o le c u la r  
w e ig h t  m ark ers ( la n e  M ) o n  a 1% a g a r o se  g e l . T h e  ap p rop ria te  m ark er b an d  s iz e s  are 
in d ic a te d  o n  th e  le ft.



Figure 3.3b Digestion of plasmids containing ORF6 insert with E co K \

D N A  from  c o lo n ie s  1 and 2 (sa m e  as f ig u r e  3 .3 a )  c le a v e d  w ith  EcoRV. T h e  fra g m en ts  w e r e  
r e s o lv e d  o n  a 1% a g a ro se  g e l . L an e M  c o n ta in s  la m b d a  D N A  ZfatEII m o le c u la r  w e ig h t  
m ark ers an d  th e  s iz e s  o f  th e  ap p rop ria te  b a n d s  are in d ic a te d  o n  th e  le ft . T h e  7 5 5  bp  fra g m en t  
d ia g n o s t ic  o f  in ser tio n  in  th e co rrect o r ien ta tio n  is  c ir c le d  in  la n e  2 .



A A T , an d  c o d o n  3 8 3  fro m  A C  A  to  A C T , b ut in  e a c h  c a s e  th e  e n c o d e d  a m in o  a c id  

r e m a in s  th e  sa m e  (a sp a r a g in e  and th r eo n in e , r e s p e c t iv e ly ) .

T o  g e n e r a te  th e  re co m b in a n t b a c u lo v ir u s , p la sm id  p I D l  w a s  c o -tr a n s fe c te d  in to  .S/’c e l ls  

w ith  lin e a r iz e d  D N A  o f  th e  b a c u lo v ir u s  P A K 6  (c lo n te c h  B a c P A K  B a c u lo v ir u s  

e x p r e s s io n  sy s te m )  as re c o m m e n d e d  b y  th e  m a n u fa c tu rers. T h e  c e l ls  w e r e  in c u b a te d  fo r  

3 d a y s  at 2 8 °C , p r o g e n y  v ir u s  w e r e  h a rv es te d  an d  titrated  o n  m o n o la y e r s  o f  S / c e l l s .  

P la q u e s  w e r e  p ic k e d  and ex a m in e d  for  e x p r e s s io n  o f  p O R F 6 .

3.3 Recombinant baculovirus AcMNPV-ORF6 expresses the ORF6 protein 

(pORF6)

T o  s e le c t  w h ic h  re co m b in a n t b a c u lo v ir u s  w a s  to  b e  u s e d  fo r  p r o d u c tio n  o f  O R F 6  p r o te in  

(p O R F 6 ) , in d iv id u a l p la q u e  iso la te s  w e r e  first te s te d  fo r  e x p r e s s io n  p O R F 6 . Sf  c e l ls  that  

h a d  b e e n  in fe c te d  w ith  th e  reco m b in a n t b a c u lo v ir u se s  w e r e  la b e lle d  w it h  35S -  

m e th io n in e , fo r  th e  id e n tific a t io n  o f  e x p r e sse d  p r o te in s . T h e  la b e lle d  c e l l  ex tr a c ts  w e r e  

ru n  o n  an  S D S -P A G E  g e l ,  w h ic h  w a s  th e n  e x p o s e d  to  K o d a k  X -O m a t  f ilm , w h ic h  w a s  

su b s e q u e n t ly  d e v e lo p e d  (f ig u re  3 .4 ) .  A s  a c o n tro l Sf  c e l l s  in fe c te d  w ith  th e  p aren ta l 

b a c u lo v ir u s  (P A K 6 )  w e r e  a lso  u sed . T h is  e x p e r im e n t d e m o n str a te d  th a t th e th ree  

re c o m b in a n t b a c u lo v ir u s e s  w e r e  a ll e x p r e s s in g  a  p ro te in , w h ic h  c o r re la ted  w ith  that o f  

th e  p r e d ic te d  s iz e  o f  p O R F 6  (1 2 6  k D a ). I so la te  n u m b e r  n in e  e x p r e s s e d  it m o r e  s tr o n g ly  

th a n  th e  o th e rs .

T h e  p aren ta l b a c u lo v ir u s  a lso  e x p r e sse d  a  p ro te in  o f  a s im ila r  s iz e ,  g a la c to s id a s e  

( 1 1 4  k D a ). T o  c o n fir m  that it w a s  in d e e d  p O R F 6  that h a d  b e e n  e x p r e s s e d  b y  th e  

r e c o m b in a n t b a c u lo v ir u s e s  and n o t a n o th er  p r o te in  o f  a  s im ila r  s iz e ,  a  w e s te r n  b lo t  w a s
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Figure 3.4 35S labelling of 5 / c e l l s  infected with recombinant (ORF6) and parental
b a c u lo v ir u s .
S f  cells infected with a recombinant or parental baculovirus were labelled with °S -
methionone. The cells were then boiled for 5 minutes in SDS-PAGE sample buffer and 
resolved by SDS-PAGE. The gel was then exposed to Kodak X-Omat film, which was 
processed using a Konica 101 SRA film developer. Numbers 6, 8 and 9 represent different 
isolates. PAK6 is the parental baculovirus. pORF6 is -126  kDa. The location o f the 97 kDa 
marker is indicated.

p O R F 6
97kDa

6 8 9 PAK6

Figure 3.5 Western blot of cell extract from .S/cells infected with recombinant (ORF6)  
a n d  p a r e n t a l  b a c u lo v ir u s
5 /ce lls  that had been infected w'ith a recombinant baculovirus were boiled for 5 minutes in 
SDS-PAGE sample buffer and resolved by SDS-PAGE. The proteins were transferred onto a 
nitrocellulose membrane and a western blot was carried out using an anti-peptide polyclonal 
antibody (Ab726) made against the very C-terminus o f pORF6. Numbers 6, 8 and 9 represent 
different isolates. PAK6 is the parental baculovirus. pORF6 is 126 kDa. The location o f the 
97 kDa marker is indicated.



carried out using an anti-peptide polyclonal antibody that had been made against the C- 

terminal 15 aa of pORF6 (Ab726) (figure 3.5). Again, S f  cells infected with the parental 

baculovirus were used as a control. This confirmed that all three isolates were 

expressing pORF6 as the antibody reacted against a protein of the correct size and no 

reactivity was seen in the control. A breakdown product of pORF6 was also detected. 

The antibody reacted most strongly against isolate number nine. As this was the 

baculovirus that was expressing pORF6 at the highest level this was chosen for the 

generation of ORF6 protein. Large scale stocks of this virus (named AcNPV-ORF6) 

were produced and titrated for use in subsequent experiments.

3.4 Purification of pORF6

For characterisation of pORF6, purified protein was required. Ten large flasks of S f  cells 

at approximately 70% confluency were infected with the recombinant baculovirus 

(AcNPV-ORF6). After a three day incubation period, the cells were harvested and lysed. 

Column chromatography was employed for the purification. The cell extract was 

dialysed overnight against the column running buffer and applied to the first column, a 

heparin sulphate column. A 0-1M NaCl gradient was run and 1 ml fractions were 

collected. Samples of each fraction were analysed by SDS-PAGE. pORF6 eluted from 

the column at approximately 0.3 M NaCl in seventeen 1 ml fractions corresponding to a 

major peak in the UV absorbance trace (figure 3.6). A stained gel of the peak fractions is 

present in figure 3.7 which shows that pORF6 is the major protein in these fractions.

The peak fractions were pooled and dialysed overnight against the running buffer of the 

second column, a mono-Q column, to which it was applied. A protein peak was 

observed at 0.3M NaCl (figure 3.8) and confirmed as pORF6 by SDS-PAGE. In addition



pORF6

Beady

Figure 3.6 Heparin sulphate column
After being dialysed against the column running buffer the s f  cell extract containing pORF6 
was loaded onto the column. Protein that bound to the column was eluted with a NaCl 
gradient (150m M -lM ). pORF6 was eluted with 0.3M NaCl. The trace shows the UV 
absorbance o f fractions and the position o f the peak o f pORF6 is labelled.
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Figure 3.7 Analysis of pORF6 fractions collected from the heparin sulphate  
column by SDS-PAGE
S/cells were infected with a recombinant baculovirus expressing pORF6. The cell 
extract was applied to a heparin sulphate column and peak fractions were collected. 
These fractions were analysed by SDS-PAGE along with cell extract, purified ICP8 
and markers. The gel was then stained with Coomassie blue.
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Figure 3.8 Mono-Q column
The peak fractions from the heparin sulphate column were pooled and dialysed against the 
column running buffer for this column. They were then loaded onto the column. Protein that 
bound to the column was eluted with a NaCl gradient (150m M -lM ). pORF6 was eluted with 
0.3M NaCl. The trace shows the UV absorbance o f fractions and the position o f the peak o f 
pORF6 is labelled.
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Figure 3.9 Purification of pORF6
pORF6 was purified using a two-step column chromatography method. Samples from each 
stage were resolved on a 10% acrylamide gel and stained with Coomassie blue. M= markers 
(high molecular weight rainbow markers (Amersham)). 1= nuclear extract. 2= Pooled peak 
fractions from heparin sulphate column. 3= Pooled peak fractions from the monoQ column. 
pORF6 is -126 kDa. The 97 kDa marker is indicated.



to further purifying the protein (figure 3.9) this procedure also concentrated it, as the 

protein was eluted in a smaller amount of buffer (3ml).

Figure 3.9 shows an example of the peak fractions containing pORF6 collected from the 

two columns. The fractions from the heparin sulphate column had additional faint bands 

that could be seen on the gel but not on the scanned version. There were no additional 

bands seen after purification with the monoQ column. This demonstrates that the protein 

has been purified to near homogeneity. Several preparations of pORF6 were made 

throughout the project. The concentration of pORF6 was ~2mg/ml, as determined by a 

Bradford assay.

3.5 Confirmation that pORF6 has been purified

To confirm that it was indeed pORF6 that had been purified and not another protein, 

samples of purified pORF6 and ICP8 (HSV-1) (20 pg of each) were western blotted and 

the membrane was reacted with Ab726 (figure 3.10). A strong band of the correct size 

was seen in the lane with purified pORF6, whereas there was no reaction in the lane with 

ICP8. This result indicates that pORF6 was purified successfully and that the purification 

process has removed the breakdown fragments (figure 3.5). It also showed that the 

antibody did not cross-react with ICP8.

Ab726 was made against a branched peptide consisting of the 15 C-terminal amino acids 

of pORF6 (figure 3.11). Figure 3.12 shows this sequence aligned with the 15 C-terminal 

amino acids of ICP8. Although there are a few conserved amino acids and some of the 

amino acids are conserved in their properties, this is not sufficient for a cross reaction of 

Ab726 with HSV-1 ICP8.



pORF6 ICP8

Figure 3.10 Western blot of  purified pORF6
pORF6 that had been purified by column chromatography was resolved by SDS-PAGE (20 
pg). It was then transferred onto nitrocellulose paper and a western blot was carried out using 
an anti-peptide polyclonal antibody made against the very C-terminus o f pORF6. As a control 
purified ICP8 was also used (20 pg).
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Figure 3.11 Structure of branched peptide used to generate Ab726
A schematic o f the branched peptide that was used to make Ab726. Four peptides comprising 
o f the C-terminal 15 aa o f  pORF6 are linked together by lysines.

pORF6
G K K R K  I A S L L S D L D  L
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Figure 3.12 Alignment of pORF6 and ICP8 C-terminus
An alignment o f the C-terminal 15 aa o f pORF6 and ICP8. Identical amino acids are shown in 
red connected with a red line. The amino acids with conserved properties are shown in blue.



3.6 Mass spectrometry of pORF6

For additional conformation that pORF6 had been purified mass spectrometry was 

employed. Mass spectrometry of a tryptic digest of the purified protein was carried out 

by Dr Robin Antrobus (University of St. Andrews). The peptide masses were submitted 

to an on-line search engine (Mascot, Matrix science). It identified the protein as the 

KSHV-ORF6 product, as 37 of the peptides matched to this sequence (figure 3.13). 

Search scores above 74 are considered significant and the search score for KSHV was 

359. This was the only match that scored above 74 confirming that pORF6 had been 

purified.

3.7 Purified pORF6 is monomeric in solution

ICP8 (SSB from HSV-1) has been shown to be monomeric in solution up to 

concentrations of 5mg/ml, by the use of size exclusion chromatography and ultra­

centrifugation (Mapelli et al., 2000). Both T4 gene 32 protein and the adenovirus DBP 

exist as monomers in solution, but only up to a concentration of ~ 0.1 mg/ml (Alberts and 

Frey, 1970; Schechter et al., 1980). Above this concentration, self-association of the 

proteins occurs, creating dimers and sometimes higher molecular weight species, 

depending on the conditions.

To establish whether ORF6 is monomeric in solution, a superose 12 sizing column (24 

ml) was used. The column was first calibrated with proteins of known molecular weight. 

These were aldolase (150kDa) and BSA (67kDa). Blue dextran (2000kDa) was also used 

to mark the exclusion volume of the column, which is 300kDa. Molecules of a greater 

molecular weight than this are eluted at the same point. The aldolase and the BSA were



10  2 0  3 0  4 0  5 0  6 0

MALKGPQTLE ENIGSAAPTG PCGYLYAYLT HNFPIGEASL LGNGYPEAKV FSLPLLHGLT

7 0  8 0  9 0  1 0 0  1 1 0  1 2 0

I I I I I I
VESDFPLNVK AVHKKIDATT ASVKLTSYHR EAIVFHNTHL FQPIFQGKGL EKLCRESREL

1 3 0  1 4 0  1 5 0  1 6 0  1 7 0  1 8 0

FGFSTFVEQQ HKGTLWSPEA CPQLPCANEI FMAVIVTEGF KERLYGGKLV PVPSQTTPVH

1 9 0  2 0 0  2 1 0  2 2 0  2 3 0  2 4 0

I I I I I I
IGEHQAFKIP LYDEDLFGPS RAQELCRFYN PDISRYLHDS IFTGIAQALR VKDVSTVIQA

2 5 0  2 6 0  2 7 0  2 8 0  2 9 0  3 0 0

SERQFVHDQY KIPKLVQAKD FPQCASRGTD GSTLMVIDSL VAELGMSYGL SFIEGPQDSC

3 1 0  3 2 0  3 3 0  3 4 0  3 5 0  3 6 0

I I I I I I
EVLNYDTWPI FENCETPDAR LRALEVWHAE QALHIGAQLF AANSVLYLTR VAKLPQKNQR

3 7 0  3 8 0  3 9 0  4 0 0  4 1 0  4 2 0

I I I I I I
GDANMYNSFY LQHGLGYLSE ATVKENGASA FKGVPVSALD GSSYTLQHLA YASSFSPHLL

4 3 0  4 4 0  4 5 0  4 6 0  4 7 0  4 8 0

ARMCYYLQFL PHHKNTNSQS YNWDYVGTA APSQMCDLCQ GQCPAVCINT LFYRMKDRFP

4 9 0  5 0 0  5 1 0  5 2 0  5 3 0  5 4 0

I I I I I I
PVLSNVKRDP YVITGTAGTY NDLEILGNFA TFREREEEGN PVEDAPKYTY WQLCQNITEK

5 5 0  5 6 0  5 7 0  5 8 0  5 9 0  6 0 0

I I I I I I
LASMGISEGG DALRTLIVDI PSFVKVFKGI DSTVEAELLK FINCMIKNNY NFRENIKSVH

6 1 0  6 2 0  6 3 0  6 4 0  6 5 0  6 6 0

HILQFACNVY WQAPCPVFLT LYYKSLLTVI QDICLTSCMM YEQDNPAVGI VPSEWLKMHF

6 7 0  6 8 0  6 9 0  7 0 0  7 1 0  7 2 0

I I I I I I
QTMWTNFKGA CFDKGAITGG ELKIVHQSMF CDLFDTDAAI GGMFAPARMQ VRIARAMLMV

7 3 0  7 4 0  7 5 0  7 6 0  7 7 0  7 8 0

I I I I I I
PKTIKIKNRI IFSNSTGAES IQAGFMKPAS QRDSYIVGGP YMKFLNALHK TLFPSTKTSA

7 9 0  8 0 0  8 1 0  8 2 0  8 3 0  8 4 0

LYLWHKIGQT TKNPILPGVS GEHLTELCNY VKASSQAFEE INVLDLVPDT LTSYAKIKLN



SSILRACGQT QFYATTLSCL SPVTQLVPAE EYPHVLGPVG LSSPDEYRAK VAGRSVTIVQ

9 1 0 9 2 0 9 3 0 9 4 0 9 5 0
I

9 6 0
|

STLKQAVSTN GRLRPIITVP LWNKYTGSN GNTNVFHCAN
1

LGYFSGRGVD
1

RNLRPESVPF

9 7 0
1

9 8 0 9 9 0
|

1 0 0 0
|

1 0 1 0
I

1 0 2 0
|

1
KKNNVSSMLR KRHVIMTPLV

1
DRLVKRIVGI

1
NSGEFEAEAV

1
KRSVQNVLED

1
RDNPNLPKTV

1 0 3 0
|

1 0 4 0
|

1 0 5 0 1 0 6 0 1 0 7 0 1 0 8 0
I1

VLELVKPPRW SSCASLTEED VIYYLGPYAV LGDEVLSLLS TVGQAGVPWT
1

AEGVASVIQD

1 0 9 0 1 1 0 0 1 1 1 0 1 1 2 0 1 1 3 0

IIDDCELQFV GPEEPCLIQG Q S W E E L FP S PGVPSLTVGK KRKIASLLSD LDL

Figure 3.13 Peptide matches from the mass spectrometry of purified pORF6
Mass spectrometry o f purified pORF6 was carried out by Dr Robin Antrobus (University o f 
St. Andrews). The peptide masses were submitted to an on-line search engine (Mascot, 
Matrix science). Thirty-seven o f the peptides matched to the ORF6 sequence. These are 
shown in red.



eluted from the column at 12.32ml and 18.98ml, respectively (fig. 3.14). The pORF6 that 

was loaded onto the column was at a concentration of ~ 2mg/ml. The peak of pORF6 

was eluted at 15.01ml, which lies in between the two markers. The peak is asymmetrical 

with a smaller co-joining peak eluting just before the main peak, which is discussed 

below.

To confirm that pORF6 was eluted at this point, fractions were collected and a western 

blot was carried out using Ab726 (figure 3.15). pORF6 has a predicted monomeric 

molecular weight of 126kDa. As it is eluted after the 150Kda marker this suggests that it 

is monomeric in solution. However, the asymmetric shape of the peak suggests there may 

be an equilibrium between monomers and dimers of pORF6, with the monomeric form 

being favoured. There was no evidence of a peak corresponding to a stable dimer of 

pORF6.
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Figure 3.14 Superose 12 column
200 j l x 1 o f pORF6 at a concentration o f ~ 2mg/ml was loaded onto the column. The fractions 
(0.5 ml) were collected and saved. The UV absorbance trace for the pORF6 run is shown. 
The green arrows indicate where the markers were eluted on an identical run. The main peak 
o f pORF6 is indicated.
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Figure 3.15 Western blot against eluted fractions from superpose 12 column.
Peak fractions were collected from the superose 12 column and were resolved by SDS-PAGE. 
The proteins were transferred onto a nitrocellulose membrane and a western blot was carried 
out using an anti-peptide polyclonal antibody that had been made against the very C-terminus 
o f pORF6 (Ab726). The label underneath indicates which fraction is loaded onto the lane. 
pORF6 is 126 kDa. The location o f the 97 kDa marker is indicated.



3.8 Discussion

A recombinant baculovirus was successfully constructed that expresses pORF6 (AcNPV- 

ORF6). After infection of S f  cells with this baculovirus, pORF6 was successfully over­

expressed and purified to near homogeneity, by a two-step chromatography process.

This resulted in pORF6 being produced at a concentration of ~2mg/ml.

The baculovirus system was used to over-express pORF6 as it is a eukaryotic system, 

and therefore post-translational modifications take place. The HSV-1 homologue of 

pORF6, ICP8, has been shown to be phosphorylated and this may also be true for 

pORF6. The purification method that was used was chosen as ICP8 (HSV-1) had been 

purified successfully by similar methods (Bohmer and Lehman, 1993; Dudas and 

Ruyechan, 1998). An advantage of this purification method is that attachment of a tag to 

the protein (e.g. a His tag) is not required. It is not known how the attachment of such 

tags would affect the folding or the function of the purified protein.

An anti-peptide antibody (Ab726) against pORF6 was used to confirm that pORF6 had 

been purified and not another protein of a similar size. This antibody had also been used 

to verify that the recombinant baculovirus constructed (AcNPV-ORF6) expressed 

pORF6. Mass spectrometry of the purified protein further confirmed the identity of the 

protein as pORF6, the ssDNA binding protein from KSHV.

To investigate the state of pORF6 in solution the protein was loaded onto a sizing 

column at a concentration of ~2mg/ml. However, running the sample through the 

column led to an inevitable dilution of the protein since the volume loaded onto the 

column was 200pi and pORF6 was eluted in 2mls of buffer it was diluted approximately



tenfold. It can therefore be concluded that pORF6 is monomeric up to 0.2mg/ml but may 

form higher order aggregates at higher concentrations.

As pORF6 had been purified and its state in solution had been investigated, it could now 

be used in experiments that characterise its binding to ssDNA. The following chapters 

describe such experiments.



Chapter 4 

EMSA analysis of pORF6 binding to

ssDNA



4.1 Introduction

Once the ORF6 protein had been successfully over-expressed and purified to 

homogeneity, it was necessary to ascertain whether the purified protein was functional. 

As other ssDNA binding proteins have been shown to bind to ssDNA in a cooperative 

manner, experiments were also carried out to characterise the binding of pORF6 to 

ssDNA. The experiments described in this chapter used an electrophoretic mobility shift 

assay (EMSA). The basis of the EMSA is that protein-DNA complexes remain intact 

when fractionated by gel electrophoresis and migrate as distinct bands, more slowly than 

the free DNA fragment.

This method was employed to investigate pORF6 binding to ssDNA since the binding of 

ICP8 (HSV-1) to ssDNA had been successfully studied using EMSA (Mapelli et a l , 

2000). An advantage of this method is that a qualitative result is gained by visual 

inspection with free and bound DNA being clearly distinguishable. For quantitative 

analysis, it is possible to determine the relative amount of radioactivity present in 

different DNA bands in the gel (volume analysis).

Volume analysis was carried out using the phosphorimager and associated software. 

Areas of the same size were highlighted around the DNA that needed to be determined 

and the amount of radioactivity within these selected areas quantified.



4.2 Purified pORF6 binds to ssDNA

To establish whether purified pORF6 could bind to ssDNA, an EMSA was employed 

using 32P labelled (dT)35 single-stranded oligonucleotides. After the pORF6 had been 

incubated with the labelled DNA the protein-DNA complexes were resolved on a gel, 

which was dried and exposed to a phosphorimage screen (figure 4.1a). Lane 1 has protein 

only loaded onto it, lane 2 contains the binding assay with both DNA and pORF6 and 

lane 3 the probe in absence of the protein.

In the absence of protein a fast migrating band corresponding to free DNA was seen 

(lane 3). Two additional slower migrating bands were observed when pORF6 was 

present (lane 2). These correspond to protein-DNA complexes and demonstrate that 

purified pORF6 can bind to ssDNA.

To gain further information on the process, the gel was stained with Coomassie blue 

(figure 4.1b). The lane with protein only (lane 1) shows most of the protein to be present 

as a slow migrating smear. There is also a band of protein that migrates more quickly, 

which may be a breakdown product. Incubation of pORF6 with the labelled probe (lane 

2) resulted in the appearance of two slower migrating bands (A and B), which correspond 

to the protein-DNA complex in figure 4.1. Bands A and B may represent two or one 

molecules, respectively, of pORF6 bound to the probe. Alternatively, they may represent 

binding of intact pORF6 and a smaller breakdown product.

The results in these figures show that the majority of the protein is capable of binding to 

DNA and that the preparation of protein is therefore highly active.
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Figure 4.1a pORF6 binds to ssDNA
pORF6 was incubated with 32P labelled ssDNA (dTbs for 30mins at 37°C. 60 pmole of 
labelled DNA was used in each reaction (30pl), except for lane 1 which was a control with 
pORF6 only (140 pmole) and no DNA. Lane 2 has DNA and pORF6 (140 pmole). Lane 3 
has DNA only. The DNA-protein complexes were resolved by EMSA. The gel was then 
stained with Coomassie blue, dried and exposed to a phophoimage screen. DNA bound by 
pORF6 and free DNA are labelled.

Figure 4.1b pORF6 binds to ss-DNA
Coomassie blue staining o f  the gel shown in figure 4. la



4.3 pORF6 requires between 14 and 20 nucleotides to bind to ssDNA

The estimated DNA binding site size for ICP8 (HSV-1 homologue of pORF6) is between 

12 and 40 nt, based on experiments investigating strand displacement and annealing 

activities (Boehmer and Lehman, 1993), nuclease protection (O’Donnell et al., 1987) and 

electron microscopy (Ruyechan and Weir, 1984). To investigate the length of DNA 

required for pORF6 to bind, an EMSA using 32P labelled DNA was again employed. 

Oligo-dT probes of 10, 12, 14, 20 and 28 nt (equimolar amounts) were incubated with 

pORF6 and the complexes were then resolved on a gel. Figure 4.2 shows the result of a 

representative experiment.

Binding of pORF6 to ssDNA occurred on lengths from 14 nt upwards. No binding was 

observed on oligonuceotide lengths shorter than this. Although binding to DNA 

occurred with the oligonucleotide length of 14 nt, the ability of the protein to bind to the 

DNA increased substantially when the DNA length was increased to 20 nt. As the length 

of DNA was further increased, binding of pORF6 to the DNA did not appear to increase, 

demonstrating that the 20 nt oligonucleotide was adequate for pORF6 to bind efficiently. 

Although the minimum number of nucleotides required for pORF6 to bind to ssDNA in 

this assay is fourteen, this clearly represents only a weak interaction with between 14 and 

20 nt being required for full activity.

4.4 The effect of NaCl on pORF6 binding to ssDNA

It is thought that protein-DNA interactions are particularly sensitive to changes in salt 

concentration due to the cations interacting with the nucleic acid. An investigation into 

the effect of the NaCl concentration on ICP8 binding to ssDNA revealed that optimal
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Figure 4.2 pORF6 requires greater than 12 nt to bind to ssDNA
pORF6 was incubated with '“P labelled ssDNA (poly dT) o f the indicated lengths 
(nucleotides) for 30mins at 37°C. Each 30pl reaction contained lOOpmole o f DNA and 
60pmole o f pORF6. The DNA-protein complexes were resolved by EMSA. The gel was 
then dried and exposed to a phophorimage screen, DNA bound by pORF6 and free DNA 
are labelled



binding occurred at 150mM NaCl with a sharp decrease in binding at 300mM (Lee and 

Knipe, 1985). Binding further decreased as the NaCl concentration was increased to 1M.

The effect of the NaCl concentration on the binding of pORF6 to ss-DNA was analysed 

by EMSA. A number of incubations were set up which were identical, except for the 

concentrations of NaCl which were 50mM, lOOmM, 150mM, 300mM, 500mM and 

lOOOmM. The complexes were resolved by EMSA. A representative example of this 

experiment is shown in figure 4.3a.

At high NaCl concentrations the mobility of the free DNA probe was affected. Binding 

of pORF6 to ssDNA was quantified by the amount of labelled DNA in the shifted band, 

which was determined by using the volume analysis program. Figure 4.3b shows a graph 

of these results. Maximal binding of pORF6 to ssDNA occurs at 150mM NaCl, the same 

as was observed for ICP8, by Lee and Knipe (1985), using a filter binding assay. 

However, the capacity of pORF6 to bind to ssDNA did not decrease as sharply at 

300mM NaCl as was found for ICP8. At this NaCl concentration the binding capacity of 

ICP8 had decreased by approximately two thirds. The concentration of NaCl required to 

elute pORF6 from a ssDNA column is 300mM, so it was expected that the amount of 

shifted complex would have been reduced dramatically. In addition, binding did not 

decrease as much as expected at the highest concentration of NaCl (1M).

These observations may be due to some dilution of the sample occurring when loading 

onto the gel, allowing increased binding of the protein to the DNA.



DNA-pORF6
complex

50 100 150 300 500 1000

NaCl concentration (mM)

Figure 4.3a Effect of NaCl on pORF6 binding to ssDNA
pORF6 was incubated with 2P labelled ssDNA (dT>2ofor 30mins at 37°C, in buffer 
containing the indicated final concentrations o f NaCl. The DNA-protein complexes were 
resolved by EMSA. The gel was then dried and exposed to a phophoimage screen. In each 
30pl reaction lOOpmole o f DNA and 60pmole o f pORF6 was used. DNA bound by pORF6 
and free DNA are labelled.
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Figure 4.3b Effect of NaCl on pORF6 binding to ssDNA
The amount o f DNA shifted in the EMSA in figure 4.3a was determined by volume 
analysis, as relative counts. This was plotted as a function o f NaCl concentration.



4.5 Titration of pORF6

Many ssDNA binding proteins have been found to bind to long ssDNA molecules 

cooperatively. This arises from direct protein-protein interactions between nearest 

neighbours (Alberts and Frey, 1970; Ruyechan, 1983).

The aim of the next experiment was to determine whether pORF6 binds to ssDNA in a 

cooperative manner. If pORF6 binds cooperatively to ssDNA it is expected that the 

relationship between the amount of DNA bound and the concentration of pORF6 would 

not be linear. Above a certain concentration of pORF6, the amount of DNA shifted 

would be more sensitive to an increase in concentration due to the second molecule of 

protein binding having a higher affinity for the DNA, if a cooperative binding model is 

occurring.

To investigate the binding of pORF6 to ssDNA a titration was carried out using fixed 

amounts of ssDNA ((dT)60) labelled with 32P and varying the concentration of pORF6. 

This length of DNA was used as it should accommodate more than one molecule of 

pORF6, since it was shown previously that pORF6 can bind to a minimum of 14nt in this 

type of assay. In each reaction there was 3 pmole of DNA. The pORF6 quantity ranged 

from 0 to 30 pmole. After incubation at 37°C, protein-DNA complexes were resolved by 

EMSA (figure 4.4a). Three shifted bands of DNA were observed, which probably 

represent three, two and one molecules of pORF6 binding to a molecule of ssDNA. This 

is indicated by a schematic diagram next to the figure.

The total amount of DNA shifted at the different concentrations of pORF6 used was 

calculated by densitometry and was plotted on a graph (figure 4.4b). The graph has a 

sigmoidal shape which is indicative of cooperative binding.



Inspection of the figure 4.4a also shows that the ssDNA probe used contains breakdown 

products. On comparing these breakdown products with a range of oligonucleotides that 

had been run on another gel under the same conditions, the smallest of these breakdown 

products was estimated to be approximatelyl5 nt in length. These shorter fragments will 

accommodate fewer ORF6 molecules than the 60-mer. With increasing pORF6 

concentration it can be seen that the longer DNA molecules are completely shifted into 

protein-DNA complexes before the smaller DNA molecules. This is again consistent 

with cooperative binding i.e. free pORF6 molecules bind with higher affinity to a 

protein-DNA complex (provided there is space) than to free DNA.
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Figure 4.4a Titration of pORF6 binding to ssDNA
Different amounts o f pORF6 were incubated with 3 pmole ,_P labelled ssDNA (dT)6o- 
The amount o f  protein in each reaction is shown underneath in pmol. The DNA- 
protein complexes were resolved by EMSA. The gel was then dried and exposed to a 
phosphorimage screen. The breakdown products o f the DNA probe are indicated with 
the approximate size o f the smallest breakdown product shown. A schematic is 
shown o f the number o f  molecules o f pORF6 possibly binding to the ssDNA in the 
shifted complexes.
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Figure 4.4b Titration of pORF6 binding to ssDNA
The amount o f DNA shifted in figure 4.4a was determined by volume analysis, as 
relative counts. This was plotted as a function o f amount o f protein. Amounts o f 
pORF6 > 15 pmole are not shown.



4.6 Discussion

The work described in this chapter produced results that gave both qualitative and 

quantitative information on the binding of pORF6 to ssDNA. Firstly it demonstrated that 

the pORF6 that had been over expressed and purified could bind to ssDNA and that the 

majority of molecules could participate in the formation of a protein-DNA complex and 

was therefore functional (figure 4.1).

The DNA molecules used in these experiments were dT homopolymers. These were 

used to ensure that there would be no secondary structure formed in the DNA, which 

may have interfered with binding. Future experiments could use heteropolymers to 

investigate whether this makes a difference to pORF6 binding to ssDNA, since this is 

what pORF6 would bind to in vivo. Another difference that could be made when 

conducting future experiments would be to use ficoll in the binding buffer instead of 

glycerol. Both of these agents are used in protein buffers to stabilise the protein. 

However, the use of ficoll apparently reduces the smearing of the edges of the DNA 

bands that have been bound by the protein (Gamer and Revzin 1991). This would make 

quantification of the phosphorimage easier and more accurate.

One of the quantitative results for the binding of pORF6 to ssDNA was the observation 

of the minimum number of nucleotides required for pORF6 to bind to ssDNA being 

between 14 and 20 nt. As mentioned previously, the number of nt required for ICP8 to 

bind to ssDNA varied depending on the type of assay used, being between 12 and 40 nt.

It would be interesting to carry out these assays using pORF6 to see if the same 

variations occurred.



NaCl concentration has an effect on the binding of SSBs to DNA. Two binding modes 

have been identified in the E.coli SSB when bound to ss-DNA, that are dependent on 

NaCl concentration (Lohman and Overman, 1985). As NaCl concentration increases the 

DNA binding site size also increases from 33nt to 65nt. Cooperativity of binding to ss­

DNA of the E.coli SSB also changes with NaCl concentration, with the level of 

cooperative binding decreasing as NaCl is increased (Lohman et al., 1986). At the lower 

NaCl concentrations (below lOmM) unlimited cooperative binding is observed with long 

chains of protein binding to the ss-DNA. At the higher NaCl concentration (above 

200mM) limited cooperative binding is observed with the protein binding to the DNA as 

dimers. These observations suggest that increasing NaCl concentration may affect the 

protein-protein as well as DNA-protein interactions. Kowalczykowski et al. (1981) 

demonstrated that the binding constant of gp32 (T4 bacteriophage) to polynucleotides 

decreased as the NaCl concentration was raised above 200mM. The cooperativity 

parameter however did not change. A similar phenomenon was also shown for DBP 

from the adenovirus (Kuil et al., 1989).

A change in NaCl also had an effect on the binding of pORF6 to ssDNA (figure 4.3). 

Although binding was observed at low NaCl, 150mM NaCl was required for maximal 

binding. As the concentration of NaCl was increased above 150mM the ability to bind to 

DNA decreased. Since figure 4.3 was performed using (dT)2o it is not possible to 

determine whether NaCl concentration affected cooperativity. It would be interesting to 

repeat this experiment with the (dT)6o probe used in figure 4.4 and to quantify the total 

amount of shifted DNA and whether NaCl affects the relative binding to the shorter 

breakdown products in the same way as to the (dT)6o-



ssDNA binding proteins characteristically bind to ssDNA in a cooperative manner. It is 

thought to aid their role in recombination, repair and replication. During initiation of 

replication, as an area of DNA becomes unwound to reveal ssDNA the SSB begins to 

bind to the area. Additional molecules then bind with greater affinity, keeping the DNA 

strands apart. As the replication fork advances, cooperative binding of the protein to the 

DNA results in a protein chain being formed along the lagging DNA strand. (Ruyechan, 

1983; Alberts and Frey, 1970; Kuil et a l , 1989; Boehmer and Nimonkar, 2003). This 

holds the DNA in an extended conformation, which facilitates the polymerase activity 

and also protects the ssDNA from nuclease digestion.

The titration of pORF6 with ssDNA revealed that pORF6 may bind to ssDNA in a 

cooperative manner, consistent with its proposed role during DNA replication. This 

experiment needs to repeated to confirm that pORF6 binds cooperatively. If this is 

confirmed, future work could also employ deletion and point mutations within the 

protein to identify the residues involved in cooperative binding.

A deletion mutant of ICP8 was constructed that had the 60 C-terminal amino acids 

deleted and also had two internal cysteine residues changed to serines. The ability of the 

protein to bind to oligo- dT probes of 14, 20, 28 and 35 was investigated by EMSA 

(Mapelli et al., 2000). The analysis indicated that neither removal of the 60 C-terminal 

amino acids or the two internal mutations affected the intrinsic ability of ICP8 to bind to 

ssDNA. However, the C-terminal deletion mutants exhibited a loss of cooperativity on 

the longer DNA molecules (20-35 nt). A similar phenomenon was observed in a deletion 

mutant of the human mitochondrial SSB that had the 60 C-terminal amino acids removed 

(Curth et al. 1994). Again the implication is that the C terminus is involved in the 

molecular mechanism of cooperativity. Hooking of the 17 residue C-terminal region of



the adenovirus DBP to the nearest neighbour on the protein bound to ssDNA has been 

observed by crystallography and is presumed to be the mechanism by which the protein 

binds cooperatively (Tucker et al., 1994).

After confirmation that pORF6 binds to ssDNA cooperatively, it would be interesting to 

make a similar deletion to pORF6 and to investigate its effect on it binding to ssDNA to 

see if the C-terminus of this protein, like some of its homologues is involved in co­

operative binding. If deleting the 60 C-terminal had the same effect as it had on ICP8, 

additional deletion mutants could be made to further locate the region critical for co­

operative binding e.g. 50, 40, 30 etc amino acids deleted.



Chapter 5
BIAcore analysis of pORF6 binding to

ssDNA



5.1 Introduction

This chapter describes work that was carried out using a BIAcore 2000, which utilizes 

surface plasmon resonance (SPR) and continuous flow technology to monitor molecular 

interactions in real time. This is an advantage over other methods that investigate 

binding, which only give a ‘snap shot’ of the events occurring during association, 

equilibrium and dissociation. Using the BIAcore, the entire events of association, 

equilibrium and dissociation can be monitored, although it should be noted that the 

equilibrium stage seen is not a true equilibrium but is actually a steady state, as it is an 

open system that is being continually supplied with ligand dissolved in buffer. This 

approach was used to investigate further the interaction of pORF6 binding with ssDNA.

Surface plasmon resonance is a phenomenon that occurs when light is reflected off thin 

metal films. A fraction of the light energy incident at a sharply defined angle can interact 

with the delocalised electrons in the metal film (plasmon) thus reducing the reflected 

light intensity. The precise angle of incidence at which this occurs is determined by a 

number of factors, but in the BIAcore the principal determinant is the refractive index 

close to the backside of the metal film. Target molecules are immobilised on this surface 

(ligand) and bound by molecules in a mobile phase (analyte) running along a flow cell. If 

binding occurs to the immobilised target, the local refractive index changes, leading to a 

change in SPR angle, which can be monitored in real-time by detecting changes in the 

intensity of the reflected light. The change in SPR angle can be related to a resonance 

signal indicative of the mass bound to the chip and plotted over time to produce a 

sensorgram.



The essential components of the BIAcore system are the sensor chip where the 

interaction takes place, the optical system responsible for the generation and the 

detection of the SPR signal and the liquid handling system for the transport of samples to 

the sensor surface (sensor chip).

As mentioned above, one of the molecules of interest is immobilized to the surface of the 

chip. The other molecule is free in solution, which flows over the chip surface. As 

molecules from the solution bind to the immobilized ligand, the resonance angle changes 

and a response is registered. Figure 5.1 shows a diagram outlining the events.

The raw data are presented as a real-time graph of response units (RU) against time and 

is referred to as a sensorgram. During injection of analyte, changes in signal result from 

two processes: association to and dissociation from the surface. At the end of injection, 

running buffer continues to flow over the chip; at this stage the change in signal results 

from dissociation only. Figure 5.2 depicts the details of a sensorgram.

The experiments detailed in this chapter were carried out by immobilizing ssDNA to the 

chip and injecting a solution containing pORF6 over it. The chips used were coated with 

streptavidin. The ssDNA was adhered to the chips by using ssDNA with a 5’biotin end 

label and taking advantage of the strong interaction between streptavidin and biotin (K d 

= 10'14 M). It is important to ensure that the chip is regenerated properly between each 

injection of analyte and that the baseline returns to its initial level. This was achieved by 

injecting a 0.5M NaCl solution over the chip, which eluted any protein remaining on the 

chip. For all experiments the BIAcore was set to 37°C.



Optical
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Figure 5.1 Surface plasmon resonance on the BIAcore
A diagram showing the details o f events on the BIAcore. The analyte is flowed over the 
cell in which the ligand has been adhered. Binding o f the analyte to the ligand causes a 
change in the angle o f reflection o f the polarised light beam that is applied to the gold film 
on the sensor chip. This is converted into a resonance signal. Adapted from 
www.biacore.com

http://www.biacore.com
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Figure 5.2 Details of a curve produced using the BIAcore
Shown is a schematic o f  a curve created using the BIAcore with the different areas labelled 
Adapted from www.biacore.com.

http://www.biacore.com


As a control, one of the flow cells on the chip was not reacted with the DNA ligand. The 

same dilutions of pORF6 were also applied to this flow cell and the signal generated was 

subtracted from the flow cell containing DNA.

The majority of work was carried out on the BIAcore 2000. One of the advantages this 

has over the BIAcore 1000 is that the same injection of protein is flowed over both the 

cell with DNA attached, and the control cell, and the signal generated by the control cell 

is automatically subtracted from the cell with DNA bound. It is important that this is 

done as the buffer by itself produces a signal. Figure 5.3 shows an example with the 

signal from both the experimental and control cell and the automatic subtraction to give 

the signal representing specific binding.

5.2 pORF6 binding to ssDNA

It was firstly determined whether binding of pORF6 to ssDNA could be detected by 

surface plasmon resonance using the BIAcore. An oligonucleotide of 32nt that was 5’ 

biotin labelled, was attached to one of the flow cells on a streptavidin chip. This was 

carried out by injecting a DNA solution in running buffer over the chip until 

approximately 100 response units of DNA had been attached. Free biotin was then 

flowed across the cell to block any free streptavidin sites, which may have produced 

background binding. The following concentrations of pORF6 were flowed across the 

DNA-containing and control flow cells: 160nM, 80nM, 40nM, 20nM, lOnM and 5nM. 

The serial dilutions of pORF6 were made using the running buffer, which was a hepes 

buffer. A regeneration injection of 0.5M NaCl was flowed across between each protein 

application. The curves from the sensorgram were aligned using the BIAevaluation 

software.
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11' î  <u -a x<u
Q c  =s c ~0 o o d=S-
^ 3
C/2 r-

o . J-T 
3 C/3
+-» <l>
<U -£
2 »
6  £ 
£ X+- to
2 3
3 3
c ~> cO w2 <u> ■ 1

GO OQ
« ! Q  'c i s s y

Th
e 

red
 

tra
ce

 
is 

the
 

si
gn

al
 p

ro
du

ce
d 

af
te

r 
su

bt
ra

ct
io

n 
of 

the
 

co
nt

ro
l 

ce
ll 

si
gn

al
 f

rom
 

th
at

 p
ro

du
ce

d 
fro

m 
the

 
ce

ll 
w

ith



Preliminary experiments used an association time of 120 seconds and did not reach 

steady state (Figure 5.4). However, the data demonstrated that pORF6 does bind to 

ssDNA in this assay and that the initial rate of binding increases as concentration of 

pORF6 increases. Label A indicates when the ligand was applied (association and 

dissociation occurring) and label B shows where only buffer is applied (dissociation is 

occurring).

The experiment with the ssDNA was repeated with an association time of 180 seconds, 

which allowed a steady state to be reached. The dissociation time during which running 

buffer minus analyte was applied was also 180 seconds. Figure 5.5a presents the raw 

data from the experiment as a sensorgram showing several sequential applications. The 

points at which the chip was regenerated with NaCl are indicated on the figure. Figure 

5.5b shows the transformed data for this experiment.

This figure again demonstrates that the initial rate of binding increases as the 

concentration of pORF6 is increased. It also shows that the steady state level increases 

with increasing pORF6 indicating that more pORF6 is bound as its concentration 

increases.

To investigate the relationship between the concentration of pORF6 and the amount of 

pORF6 bound to ssDNA at equilibrium (steady state), a graph was plotted of the two 

variables (figure 5.6). The data used for this graph was derived from the curves shown in 

figure 5.5b.

The shape of the curve appears sigmoidal suggesting that pORF6 may be binding to 

ssDNA in a cooperative manner in this assay. This is reminiscent of the data obtained in
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mobility shift assays shown in figure 4.4b, which also demonstrated a sigmoidal response 

between the amounts of pORF6 binding to ssDNA at equilibrium, and the pORF6 

concentration. Again further experiments would need to be done to strengthen the 

conclusion that pORF6 binds cooperatively. It should be noted that binding had not 

reached saturation by 80 mM pORF6 and further experiments using higher 

concentrations of pORF6 would be required to determine whether the signal observed 

with 160 nM corresponds to saturation. It would also be informative to include 

concentrations in between the points already used.

5.3 A comparison of pORF6 binding to oligonucleotides of 15 and 32 nt in length

As two molecules of pORF6 can bind to a ssDNA probe of 32 nt, it was decided to 

investigate binding of pORF6 to a DNA length that would accommodate only one 

molecule of pORF6. A 5’ biotin end labelled oligonucleotide of 15 nt was attached to a 

chip to approximately 100 response units and pORF6 was flowed across it. The raw data 

from the binding of pORF6 to the 15 nt DNA strand was aligned and compared with raw 

data from pORF6 binding to the 32 nt DNA strand. The curves were aligned using the 

BIAevaluation software. Figure 5.7 shows the curves generated with 80nM pORF6 

applied to the flow cells with both the 32 nt and the 15 nt DNA strands attached.

The initial rate of association of pORF6 with the ssDNA is greater for the 32 nt DNA 

strand that for the 15 nt strand. Inspection of the dissociation phase shows the slope for 

the 15 nt DNA to be much steeper than for the 32nt DNA. The majority of pORF6 

appears to dissociate rapidly from the 15 nt DNA whereas it dissociates at a much slower 

rate from the 32 nt DNA.
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pORF6 therefore has a greater affinity for the 32 nt DNA strand than for the 15 nt strand 

DNA. This is probably because two molecules are binding to the 32mer and binding of 

the second molecule occurs cooperatively whereas only one binds to the 15mer. 

However, the mobility shift assay in figure 4.2 demonstrated that although pORF6 binds 

to ssDNA of 14 nt, it binds with a greater capacity to ssDNA of 20 nt. Thus a ssDNA of 

15 nt may not be sufficiently long to enable optimum binding of a single pORF6 

molecule. In addition, because the ssDNA is linked to the chip surface its full length 

may not be available for unhindered binding of pORF6.

5.4 A comparison of ICP8 and pORF6 binding to ssDNA

It was next decided to compare ICP8 and pORF6 binding to ssDNA. As ICP8 is the SSB 

from HSV-1 it was expected that its binding to ssDNA would be similar. ICP8 was 

purified using the same methods as were used for purifying pORF6 (section 3.8).

Binding was investigated using the 32nt ssDNA probe. A series of dilutions of ICP8 

were made and these were individually applied to the flow cell. Curves generated using 

the same concentration of each protein (pORF6 and ICP8) were aligned and compared 

with each other. Figures 5.8a and 5.8b show the aligned curves for 40 nM and 80 nM 

applied protein, respectively.

The initial association rates for both proteins were similar, but ICP8 did not reach 

equilibrium in this time period, suggesting that the association rate for pORF6 may be 

greater. However, the dissociation rate of pORF6 from ssDNA in both cases appeared to 

be greater than for ICP8. The overall affinity of each protein for ssDNA is therefore 

likely to be similar. To establish this, the affinity constant would need to be calculated. 

For simple bimolecular interactions the affinity constant Kd = kd/ka. However, the



interactions of ICP8 and pORF6 with a 32 nt ssDNA strand are more complex since 

more than one molecule can interact with DNA and binding is cooperative, and Kd 

values calculated by the above formula are not meaningful. However, consistent with the 

two proteins exhibiting similar overall affinities it can be seen that the steady state 

binding levels were probably also very similar, although ICP8 had not quite reached 

equilibrium.
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5.5 Discussion

This section of work further investigated pORF6 binding to ssDNA and it provided 

additional evidence that the protein may bind to ssDNA in a cooperative manner, 

although this work needs repeating and extending to corroborate this. A comparison of 

pORF6 binding to ssDNA strands of 32 and 15 nt demonstrated a higher affinity for the 

32nt strand. However, unlike the 15 nt strand the 32 nt DNA strand used was not a 

homopolymer. This work needs be repeated with a 32 nt poly dT strand to confirm that 

the difference is due solely to the length of the ssDNA strand rather than its composition 

or sequence.

In the experiment comparing the binding of pORF6 and ICP8 to ssDNA (figure 5.8), 

good data was not achieved at all of the concentrations of ICP8 used. This work could be 

repeated and extended to different lengths of ssDNA strands, and the relationship of 

steady-state binding levels to ICP8 protein concentration investigated as in figures 5.6 

and 5.7 to gain a more complete comparison of the two proteins. Nethertheless the data 

presented in figure 5.8 suggests that there are differences between the kinetics of 

interaction of the two proteins with ssDNA. Even though their overall affinities for 

ssDNA appear similar it is not clear whether the differences reflect between the protein- 

DNA or protein-protein interactions or both.

Initially pORF6 binding to dsDNA was also investigated. On repeating this experiment 

to achieve equilibrium pORF6 did not bind to the dsDNA. This may be due to the DNA 

having been degraded on storage. Future work would investigate the binding of pORF6 

to dsDNA using the BIAcore and comparing it to ssDNA.



One of the advantages of using the BIAcore system to study binding rates is that the 

whole event of association, equilibrium and dissociation is monitored. Using the BIA 

core to investigate DNA-protein interactions does not impose structural constraints on 

either of the molecules being investigated if the DNA is bound to the chip. Binding the 

DNA to the chip via a 5’biotin label should not alter the structure of the DNA or inhibit 

its dynamic movement. This contrasts with the situation when the BIAcore is used to 

characterise protein-protein interactions during which one of the proteins is attached to 

the chip. This is usually achieved by binding free amine groups on the protein to a 

carboxymethylated dextran chip. A disadvantage of this is that the protein is no longer 

dynamic which may inhibit conformation changes associated with binding to another 

molecule. The orientation in which the protein is fixed to the chip may also be 

inappropriate, resulting in the masking of a binding site.



Chapter 6
Generation and charaterisation of pORF6

specific MAbs



6.1 Introduction

The purification of native pORF6 was described in chapter 3. This chapter describes the 

use of that protein to generate a panel of monoclonal antibodies and their preliminary 

charaterisation.

Antibodies are an important tool in the study of proteins and their function. Mono­

clonal antibodies (MAbs) are especially useful as their highly specific and unique 

binding properties can be exploited for many purposes. A further advantage is that they 

can be produced repeatedly and in limitless quantities. Producing MAbs would be 

expected to give rise to a range of antibodies, each with unique individual specificities, 

but collectively, with reactivity to a variety of epitopes on the ORF6 protein. The 

production of a panel of MAbs is also more likely to result in a selection of antibodies, 

which are suitable for a wider range of applications. This is an important consideration, 

as polyclonal antiserum does not always suit every application. Also, once epitope- 

mapping of a monoclonal antibody has been carried out, its unique specificity to a 

defined region can often be employed in relating protein structure to function.

Having isolated MAbs, it is necessary to characterise their properties to determine their 

affinities and the applications in which they may be useful. This is an important 

objective as the hybridoma cell lines used in this study were selected and isolated on the 

basis of screening against pORF6 in ELISA only. Immunochemical techniques used to 

test the reactivities to pORF6 of each monoclonal were western blotting, immune 

precipitation and immunofluorescence.



Principles of monoclonal antibody production

MAbs are secreted from single clones of hybridoma cells. These cells are created 

following the fusion of mutant myeloma cells that have lost the ability to produce 

hypoxanthine phosphoribosyltransferase (HPRT) and therefore cannot synthesise purines 

via the salvage pathway, and antibody-producing immune lymphocytes. Polyethylene 

glycol (PEG) is the agent used to promote membrane fusion between the cells in a 

process first described by Kohler & Milstein (1975). Hybridoma cells inherit both 

immortality from the myeloma cells and antibody-producing capability from the B 

lymphocytes. Following fusion, the hybrid cells are selected from the mixture of spleen 

cells, myeloma cells and hybrids by the addition of HAT (hypoxanthine, aminopterin, 

thymidine) to the culture medium. Aminopterin is an antibiotic that inhibits de novo 

nucleic acid synthesis by blocking purine and pyrimidine synthesis. However in normal 

cells, this pathway can be bypassed by using the salvage pathway, which requires the 

substrates hypoxanthine and thymidine for purine and pyrimidine synthesis, respectively. 

As the mutant myeloma cells are deficient in the salvage pathway, they do not survive. 

Neither do the unfused spleen cells due to their limited life span in culture. Hence the 

only cells that survive are hybrid cells that have inherited the ability to utilise the salvage 

pathway from the spleen cells and long-term viability from the myeloma cells. Some of 

these hybrid cells will also have antibody producing capacity of the splenic lymphocytes. 

The culture supernatant from single colonies of the hybridoma cells is then tested for the 

presence of the antibodies of the desired reactivity. Cell lines positive for the secretion 

of antibody are propagated and frozen down at -140°C for long-term storage.



6.2 Generation of pORF6 MAbs

pORF6 was purified as described in Materials and Methods and mice were immunised as 

described in methods. 33 hybridoma cell lines secreting pORF6-specific antibodies were 

isolated following the fusion of Sp2/0-Agl4 myeloma cells and spleen cells from the 

immunised mice. Positive cell lines were identified by using the hybridoma supernatant 

in an ELISA. An OD reading was taken and the supernatant was deemed positive if  it 

produced a reading more than twice than that produced by control supernatant from Sp-2 

cells.

6.3 Reactivity of pORF6-specific MAbs to pORF6 over-expressed in S f  cells in 

western blotting assays

For western blot analysis of the MAbs that had been raised against pORF6, cell extract 

was made from S f  cells that had been infected with a baculo virus (AcNPV-ORF6), 

expressing pORF6. As a positive control, polyclonal antibody 726 (anti-peptide antibody 

raised against the C -terminus of pORF6) was used. Negative controls were western 

blots using cells infected with the parental baculovirus (PAK6) and a control MAb 

against a different protein, UL8 (HSV-1).

The thirty-three MAbs that had been positive in an ELISA were tested and twenty-two of 

these reacted positively in a western blot. As some breakdown of the ORF6 protein used 

on the blot had occurred, different patterns of reactivity were observed with the MAbs 

suggesting reaction with different regions of the protein. Representative reactions are 

shown in figure 6.1. By comparing the pattern of the western blots with that of a western 

blot using Ab726 (figure 6.1a), which reacts against the very C-terminus of pORF6, three 

patterns of reactivity could
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Figure 6.1 Reactivity of pORF6-specific MAbs to pORF6 over-expressed in S f  cells in 
western blotting
Cell extract from S /cells that had been infected with AcORF6 was resolved by SDS-PAGE 
and blotted nitrocellulose which was then cut into strips. The strips were incubated in 1ml 
o f MAbs (undiluted supernatant from individual hybridoma cell lines), Ab726 or control 
hybridoma cell supernatant. Strips were then washed and incubated with either anti-mouse 
HRP-conjugated antibody or anti-rabbit HRP-conjugated antibody, as appropriate. After 
further washing, strips were treated with ECL reagents and exposed to photographic film.
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Figure 6.2 Regions of pORF6 that the MAbs react towards in a western blot
A schematic diagram o f the pORF6 protein showing the putative regions with which the 
MAbs react.



be deduced. One group of the MAbs, exemplified by MAb 52, gave a similar reaction 

pattern to that of Ab726, as a strong reaction to the full length protein and a strong 

reaction to a breakdown product (x ~ 30kD) towards the bottom of the blot, was observed 

(figure 6.1-b). This leads to the suggestion that these MAbs are reacting to an epitope 

near the C-terminus of pORF6.

Another set of the MAbs (exemplified by MAb 141) reacted to the whole protein and 

also to breakdown products not much smaller than pORF6, while other MAbs 

(exemplified by Mab 160) reacted to both these and intermediate size fragments (figure 

6.1- c&d). It can be deduced that both these sets of MAbs interact with epitopes that lie 

outside the C-terminal ~ 30 kDa. Figure 6.2 summarises the reactivity of the MAbs 

towards pORF6 in a western blot.

6.4 Reactivity of pORF6-specific MAb 15 to pORF6 in HHV8 infected B-cells in 

western blotting assays

As many of the MAbs could react with pORF6 that had been over-expressed in S f  cells, a 

western blot assay was carried out using cells that were infected with KSHV to ascertain 

whether levels of pORF6 in a natural infection were sufficient to be detected. A B-cell 

line (BCBL1) latently infected with KSHV, which had been established from a primary 

effusion lymphoma, was used. To induce the virus into lytic infection, sodium butyrate 

was added. At 24, 48 and 72 hours post induction cell extracts were made and analysed 

in a western blot (figure 6.3). As controls, cell extracts of uninduced cells were also made 

at these times and a B-cell line not infected with KSHV (BJAB) was also used.



24(1) 24 48(1) 48 72(1) 72 BJAB

Figure 6.3 Reactivity of pORF6-specific MAb with pORF6 in HHV8 infected B-cells.
B cells that were latently infected with HHV8 were induced with sodium butyrate. At the 
indicated times (h) post induction cell extracts were made. The proteins were resolved by 
SDS-PAGE and blotted onto nitrocellulose. The nitrocellulose was incubated in 1ml o f 
MAb (undiluted supernatant from individual hybridoma cell lines). The membrane was 
then washed and incubated with anti-mouse HRP-conjugated antibody. After further 
washing, the blot was treated with ECL reagents and exposed to photographic film. As 
controls, uninduced cells and also a B-cell line uninfected with HHV8 were used (BJAB). 
The numbers indicate hours after induction the cell extracts were made. Cells that were 
induced are represented with (I) after the number. An anti- ft-actin MAb was also used to 
confirm that a similar amount o f  cells had been used in each lane.



A western blot of these samples was reacted with MAb 15 (figure 6.3). pORF6 was 

detected at 48h and 72h in the induced samples but not at any time in the uninduced or 

BJAB controls. To confirm the same amount of cells had been loaded onto the wells an 

antibody against P-actin was also used. After chemical induction, KSHV early genes can 

be detected at about 13 hours (Sun et a l , 1999) and so pORF6 had probably not 

accumulated to a high enough level for the Mab to detect by 24h. The decrease of 

pORF6 at 72 hours is probably due to cell viability decreasing as sodium butyrate is toxic 

to the cells, and an associated breakdown of pORF6.

6.5 Reactivity of pORF6-specific MAbs to pORF6 over-expressed in S f  cells in 

immune-fluorescence assays

The MAbs were also tested to see if they could react to pORF6 over-expressed in S f  

cells, in an immune-fluorescence assay. The cells, which had been infected with 

AcNPV-ORF6 for 48hrs were mounted onto slides using a cytospin. The cells were then 

fixed, permeabilised and incubated with the MAbs and subsequently an anti-mouse-FITC 

conjugated antibody. Controls used were S f  cells infected with the parental baculo virus 

(PAK6) and a control Mab was also used (anti-HSV-1 UL8). The stained cells were 

visualised using the LSM 510 (Zeiss) confocal microscope. Figure 6.4 shows the pattern 

obtained with one of the positive MAbs, MAb 199. In total eighteen out of the thirty- 

three antibodies gave a positive result. The pORF6 was located in the nuclei of infected 

S f  cells in agreement with its previously demonstrated intrinsically nuclear location in 

Vero cells (Wu et a l, 2001).
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Figure 6.4 Reactivity of pORF6-specific Mabs with pORF6 over-expressed in S f  cells 
in immune-fluoresence

5/^cells were infected with a recombinant baculovirus expressing pORF6 or the parental 
baculovirus (control). After 48hrs infection they were mounted onto slides using a cytospin, 
fixed and permeabilised and incubated with MAbs. After washing the cells were incubated 
with an anti-mouse-FITC conjugated antibody and visualised using a confocal microscope 
(LSM 510, Zeiss). AcNPV-ORF6 infected cells were also reacted with a control MAb 
against the HSV-1 UL8.



6.6 Reactivity of pORF6-specific MAbs with pORF6 in HHV8 infected B-cells in 

immune-fluoresence assays

As some of the MAbs were positive by immune-fluorescence for interaction with pORF6 

over-expressed in S f  cells, it was next determined if similar reactivity could be observed 

in cells infected with KSHV. Again B-cells latently infected with KSHV were used. 

Cells were induced using sodium butyrate (20-40% are usually induced) and after 48 

hours they were mounted onto a slide, fixed with acetone/methanol and then incubated 

with MAbs 15 and 199. They were then incubated with anti-mouse-Cy5 conjugated 

antibody. A Cy5 conjugated antibody was used in this experiment as the virus expresses 

GFP, which fluoresces at the same wavelength as FITC. MAbs 15 and 199 reacted with 

pORF6 in this assay (figures 6.5 a and 6.5b) and nuclear staining was again observed 

(panels B and D, figure 6.5a; panel B figure 6.5b).

To visualise the nucleus more clearly, the cells were also stained with DAPI, which binds 

to DNA. pORF6 was found in globular areas, typical of herpesvirus replication 

compartments in agreement with previous data demonstrating that KSHV replicates in 

such structures (Wu et a l, 2001). The DAPI staining seemed to be confined largely to 

regions outside those containing pORF6 (figure 6.5a, A-C and figure 6.5b, A-C). In the 

case of HSV-1, cellular chromatin is pushed aside and becomes condensed as the viral 

replication compartments expand (Monier et a l , 2000). This may also be occurring here 

and could account for the appearance of the cellular DNA. Presumably there will be 

viral DNA within the replication compartments, but this may not be visibly stained by 

the DAPI because there is a large excess of stained cellular DNA.



Figure 6.5a Reactivity of pORF6-specific MAbs to pORF6 in KSHV infected B- 
cells in immune-fluoresence assays
B-cells that were latently infected with KSHV were induced into lytic infection by 
adding sodium butyrate. At 48hrs they were mounted onto slides, fixed with 
methanol/acetone and then incubated with pORF6- MAbl5. After washing they were 
incubated with anti-mouse-Cy5 conjugated antibody. Following further washing they 
were stained with DAPI. As a control cells that were uninduced were used. A 
control MAb (against HSV-1 UL8) was also used on induced cells. A-C induced cells 
incubated with MAbl5 (A,merged image; B, Cy5; C, DAPI); D, induced cells 
incubated with MAbl5, showing Cy5 staining; E, uninduced cells incubated with 
MAb 15 showing Cy5 staining; F, induced cells incubated with control antibody 
(UL8).





Figure 6.5b Reactivity of pORF6-specific MAbs to pORF6 in KSFIV infected B- 
cells in immune-fluoresence assays
B-cells that were latently infected with KSHV were induced into lytic infection by 
adding sodium butyrate. At 48hrs they were mounted onto slides, fixed with 
methanol/acetone and then incubated with pORF6- M Abl99. After washing they 
were incubated with anti-mouse-Cy5 conjugated antibody. Following further 
washing they were stained with DAPI. As a control, cells that were uninduced were 
used. A-C induced cells incubated with M Abl99 (A, merged image; B, Cy5; C, 
DAPI staining); D- uninduced cells incubated with MAb 15 showing Cy5 staining



6.7 Reactivity of pORF6-specif!c MAbs with pORF6 over-expressed in S f  cells in 

immune-precipitation assays

S/cells were infected with recombinant baculovirus AcNPV-ORF6. After 24 hours the 

medium was replaced with methionine-free medium containing S-methionine and 

incubated for a further 24 hours. Cells were harvested and washed in TBS, then proteins 

were extracted in cold AE buffer and incubated with MAbs at 4°C. A suspension of 

protein A sepharose beads was added. After mixing for 1 hour the beads were pelleted 

by centrifugation, washed in AE buffer boiled in SDS-PAGE buffer. The beads were 

pelleted by centrifugation and the supernatant was analysed by SDS-PAGE. The gels 

were dried and then exposed to a phosphorimage screen. A representative experiment 

using some of the MAbs is shown in figure 6.6. As a control S f  cells infected with the 

parental baculovirus (PAK6) were also used. Some of the Mabs reacted strongly e.g. 199 

while others reacted weakly e.g. 1 and 15 or not at all e.g. 120. In total, ten of the Mabs 

were able to immune-precipitate pORF6.

6.8 A protein in the hybridoma supernatant binds to ssDNA

To give more information on the binding of pORF6 to ssDNA, it was decided to test the 

effect of the MAbs in an EMSA with pORF6 and ssDNA. This would be expected to 

result in a supershift of the DNA-pORF6 complex, or, depending on which part of the 

protein the antibody bound, to, might result in pORF6 no longer being able to interact 

with ssDNA. Such an approach would help to elucidate the region of pORF6 involved in 

ssDNA binding. MAb52 was chosen for an initial experiment as it had reacted well in 

the immune assays. Binding assays were set up with MAb, pORF6 and P-labelled poly 

(dT)35. After incubation complexes were resolved by on an acrylamide gel, which was 

dried and exposed to a phosphorimage screen (figure 6.7).
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Figure 6.6 Reactivity of pORF6-speciFic MAbs in immune-precipitation assays
S f  cells were infected with recombinant baculovirus AcNPV-ORF6. After 24 hours the 
medium was replaced with methionine-free medium containing S-methiomne and 
incubated for a further 24 hours. Extracts were prepared and immune-precipitated with the 
MAbs. Samples o f extract from mock-infected (MI) and infected (CE) cells were analysed 
alongside the immunoprecipitates by SDS-PAGE. A phosphorimage o f  the dried gel is 
shown. The numbers correlate to the Mab used.
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Figure 6.7 A protein in the hybridoma supernatant binds to ssDNA
Binding assays were carried out containing 1- MAb52 and (dT )35 2-MAb52, pORF6 and (dT)35 
3- (dT )35 for 30 mins at 37°C. Prior to addition o f DNA the MAb and pORF6 were incubated 
for 1 hour at 37°C. The DNA-protein complexes were resolved by EMSA and the gel was then 
dried and exposed to a phophorimage screen.



On inspecting the lane 2, which contained all the components, a novel additional band 

migrating more slowly than the pORF6 complex was apparent suggesting that the 

antibody might be binding to, and further reducing the mobility of the complex.

However, the control with MAb and ssDNA only, revealed that the slower migrating 

band represented a protein from the hybridoma supernatant (probably from the foetal calf 

serum) binding to the DNA. The MAb was therefore purified from the supernatant 

medium in an attempt to remove this binding activity.

6.9 Purification of MAb 52 raised against pORF6

MAb 52 was purified using a protein G column. Thirty mis of the hybridoma 

supernatant was dialysed overnight in the protein G column running buffer and applied to 

the column. The MAb was eluted using a glycine buffer (pH 2.7) into tubes containing 

1M TRIS-HC1 (pH 9) to neutralise the eluant. Figure 6.8 shows a chromatogram of the 

purification. The antibody was eluted in three 0.5ml fractions. To verify the purity of 

the antibody, samples were resolved by SDS-PAGE and the gel was then stained with 

Coomassie blue (figure 6.9). The presence of heavy and light chains of the antibody 

confirmed that the antibody had been purified to near homogeneity.

Unfortunately due to time constraints the EMSA experiments with the purified MAb 

were not completed. This is work that could be done in the future.
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Figure 6.8 Purification of MAb52 raised against pORF6
Thirty mis o f dialysed hybridoma supernatant was loaded onto the protein G column using 
a sodium phosphate buffer. MAb 52 was eluted from the column using a glycine buffer 
(pH 2.7). The antibody was eluted in three 0.5 ml fractions. The trace shows the UV 
absorbance o f fractions and the position o f the peak o f eluted antibody.
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Figure 6.9 Purification of iVIab raised against pORF6
The peak fractions from the purification (figure 6.8) were resolved by SDS-PAGE. The 
gel was then stained with Coomassie blue. As it is a denaturing and reducing gel the heavy 
and the light chains o f the antibody become separated.



6.10 Discussion

This chapter described the work that was carried out with MAbs raised against pORF6. 

The MAbs were tested in different assays that had pORF6 in different states i.e. in the 

western blot it is denatured whereas in the immune-precipitation it is in its native state. 

The immune-fluorescence assay also used pORF6 in its native state but inside an intact 

cell. The number of positive results was greatest with the western blot. As pORF6 

denatured in this assay, the epitopes recognised by the MAbs may have been more 

accessible.

It would be useful to use the MAbs that may be reacting to the N-terminal region of 

pORF6 in the DNA binding reactions. As mentioned previously, the C-terminal region 

of HSV-1 ICP8 does not affect the intrinsic binding ability of ICP8 to ssDNA, but the 

cooperative nature of binding. The ability of ICP8 to bind to DNA may be due to a 

region in the N-terminus, which may also be true for pORF6. Any of the MAbs which 

blocked DNA binding could be epitope mapped and this might provide some information 

on the nature and location of the DNA binding site.

The antibodies that could immune-precipitate ORF6 could also be used in a co-immune- 

precipitation assay to identify the proteins that pORF6 interacts with. ICP8 has been 

shown to bind to the origin binding protein of HSV-1. An interaction with the helicase- 

primase associated factor has also been demonstrated. The origin binding protein 

function of KSHV is speculated to be carried out by the K8 protein. If an interaction 

between pORF6 and K8 could be demonstrated, this would be further support for K8 in 

this role. An attempt was made to construct a baculovirus expressing K8 that could be



used for co-immune-precipitation assays. Unfortunately repeated attempts to clone K8 

were unsuccessful and this was left in order to concentrate on other work. It is also 

possible that certain MAbs might block a particular protein-protein interaction, and in 

this instance epitope mapping might provide information on the region of pORF6 

involved in the interaction.

The study of the formation of replication compartments in KSHV could also be carried 

out using the MAbs that have a positive reaction to pORF6 in immuno-fluoresence. 

KSHV positive cells that have been induced into lytic replication could be fixed and 

studied at a range of times and the progression of the replication compartment formation 

and maturation could be followed.



Chapter 7 
Discussion



7.1 General Discussion

The set of DNA replication proteins required for origin-dependent KSHV DNA 

replication includes six core replication fork proteins that are conserved amongst the 

herpesvirus family (Wu et a i, 2001). So far the KSHV core replication proteins have not 

been well characterised. The aim of this was project was to purify and characterise one of 

these core KSHV proteins, the ssDNA binding protein, pORF6. To date there has been 

no work published reporting the binding of pORF6 to ssDNA.

In this thesis the ability of pORF6 to bind to ssDNA was firstly established and then 

further investigated. This included determining the number of nucleotides required for 

pORF6 to bind to ssDNA, the effect of NaCl concentration on pORF6 binding, and 

establishing whether, like its homologue in HSV-1, ICP8, it binds to ssDNA in a 

cooperative manner (Ruyechan, 1983; Lee and Knipe, 1985; Dudas et al., 2001). This 

involved using two different DNA binding assays, EMSA and surface plasmon resonance 

(BIAcore).

The results demonstrated that pORF6 binds to ssDNA in both DNA binding assays. Like 

its homologue, ICP8, and other SSBs, pORF6 may bind cooperatively to ssDNA, as was 

demonstrated in both the EMSA and in the data generated from the BIAcore.

Cooperative binding would ensure that during viral DNA replication, KSHV ssDNA 

becomes covered by pORF6. This would not only aid the DNA polymerase by removing 

secondary structure but also protect the ssDNA from nuclease attack. As stated before 

this work should be repeated and extended to verify that pORF6 binds cooperatively to 

ssDNA.



The work carried out using the BIAcore also compared ICP8 and pORF6 binding to 

ssDNA, and demonstrated that each protein binds to ssDNA with a similar affinity. 

pORF6 associates with ssDNA at a slightly greater rate but is also dissociates from 

ssDNA slightly faster. The work using the BIAcore also compared pORF6 binding to 

ssDNA of 32 nt and 15 nt, and demonstrated a higher affinity for the 32 nt strand. This is 

probably because two molecules of pORF6 can bind cooperatively to the 32 nt DNA. 

However, this result could also be explained by 15 nt being too short for optimal binding 

of a single molecule of pORF6.

Previous publications have reported that the number of nucleotides required for ICP8 to 

bind to ssDNA lies within the range 12-40 nt (Ruyechan, 1983; O’Donnell et a l, 1987 

Gustafasson et a l , 1995; Bortner et a l , 1993; Makov et a l , 1996; Dudas and Ruyechan, 

1998.) These differences may depend in part on the experimental procedure used to 

determine this parameter. Also the occluded binding site (the length of DNA covered or 

rendered inaccessible when the protein is bound) and the interaction site (the length of 

DNA that directly interacts with the protein) may be different. The work for this thesis 

found that the minimal number of nucleotides required for pORF6 to bind to ssDNA in 

an EMSA was 14. However, an increase to 20 nt led to an increase in the level of 

pORF6 binding. It may be that 14 nt is not enough for the whole protein to bind to with 

20 nt allowing the whole protein to bind.

As previously mentioned, protein-DNA interactions are thought to be particularly 

sensitive to a change in NaCl concentration due to the cations interacting with the nucleic 

acid. A study on ICP8 investigated the effect of NaCl concentration on ICP8 binding to



ssDNA using a filter-binding assay (Ruyechan and Weir, 1984). Optimal binding was 

observed at 150mM NaCl and at 300mM NaCl the binding of ICP8 to ssDNA was 

dramatically reduced.

The effect of NaCl concentration on pORF6 binding to ssDNA was investigated by an 

EMSA in this study. Similar to HSV-1 ICP8, optimal binding occurred at 150mM NaCl. 

However, pORF6 was less sensitive to an increase in NaCl concentration than ICP8. This 

may be because of a dilution effect of loading the sarnies onto the gel. It would be 

informative to study the effect of NaCl on the binding of pORF6 and other SSBs, using 

the same method for each. This would establish whether any differences observed were 

because of real differences in the binding of these proteins to ssDNA or because different 

assays have been used. The results from the BIAcore indicated that although the pORF6 

and ICP8 bind to ssDNA with a similar affinity the kinetics of binding are not identical.

It is possible that this may be indicative of subtle differences between the functioning of 

the two proteins in infected cells e.g. the phase of viral DNA synthesis in KSHV infected 

cells is longer than during HSV-1 infection.

The panel of MAbs made against pORF6 were tested in immune assays using S f  cells 

infected with a recombinant baculovirus expressing pORF6, to establish which were 

positive for each assay. These were western blot, immune fluorescence and immune- 

precipitation assays. The results indicated that more MAbs may recognise linear than 

conformational epitopes as the western blot assay gave the most positive results.

Two of the MAbs that were positive in these assays were used in a western blot and 

immune fluorescence assays against KSHV infected B cells. The pORF6 expressed



during KSHV infection was detected by these antibodies demonstrating that reactivity is 

not confined to pORF6 over-expressed in S/bells. The immune fluorescence assay 

showed pORF6 to be in globular areas that may represent the replication compartments 

in which herpesviruses DNA synthesis is known to occur (Lukonis and Weller, 1996). It 

would be interesting to fix cells at several time points after induction and to monitor the 

development of the KSHV replication compartments with these antibodies.

Interactions of pORF6 with ssDNA and the other replication fork proteins could also be 

characterised using these MAbs. It would be useful to define the region of pORF6 

recognised by each MAb, by epitope mapping. The MAbs could then be used to 

determine the regions of pORF6 critical for its intrinsic binding to ssDNA, and also the 

region important for co-operative binding. Using these MAbs in co-immune 

precipitation assays with extracts from cells infected with KSHV could identify 

interactions between pORF6 and the other KSHV replication fork proteins or other 

KSHV proteins.

One potential interaction that could be tested for between pORF6 and the OBP of KSHV. 

The protein that is thought to play the role of OBP in KSHV is K8 (Lin et a l , 1999; 

AuCoin et a l , 2004). In HSV-1, ICP8 (SSB) and UL9 (OBP) have a functional 

interaction that stimulates the helicase activity of UL9 (Boehmer and Lehman, 1993). If 

K8 is the OBP of KSHV then it may also have a functional interaction with pORF6. If 

an interaction were to be established between these two proteins it would be more 

evidence that K8 plays the major role in origin recognition and the initiation of viral 

DNA synthesis.



The C-terminal region of ICP8 and also of adenovirus DBP is involved in cooperative 

binding of these proteins to ssDNA. Deletion mutants of ICP8 established that the C- 

terminal 60 residues are critical for cooperativity (Mapelli et a l , 2000). The crystal 

structure of this protein reveals that the C-terminal domain fits loosely into a concave 

surface on the back of the N-terminal domain (Mapelli et a l , 2004). The crystal 

structure of adenovirus DBP also reveals that it has a C-terminal ‘arm’ that hooks onto a 

second DBP monomer, which results in the formation of long protein chains along the ss­

DNA (Tucker, 1994). If pORF6 has a similar structure to ICP8 and DBP in that it has a 

C-terminal ‘arm’ that links onto the next molecule then a MAb binding to this region 

may abolish cooperativity. Deletions made in the C-terminus of pORF6 would provide 

more information on the mechanism of its cooperative binding.

The structure of ICP8 and pORF6

As mentioned previously the crystal structure of the homologous HSV protein, ICP8, has 

been solved. The protein consists of a large N-terminal region and a smaller C-terminal 

region (Mapelli et a l, 2005). The N-terminal region is described as consisting of head, 

neck and shoulder regions (see figure 1.7). The head region consists of eight helices, the 

front of the neck contains a five-stranded p-sheet and two helices (structurally similar to 

an OB-fold), the back of the neck has a three-stranded P-sheet and the shoulder contains 

an a-helical and p-sheet region. The C-terminal domain is entirely helical and is 

connected to the N-terminal domain by a disordered linker.

The neck region (530-1028) is proposed to be involved in DNA binding, since there are a 

number of aromatic and positively charged residues that are exposed. This is the same 

region of ICP8 that has been previously suggested for this function based on mutagenesis 

studies (Leinbach and Heath, 1989; White and Boehmer, 1999). The exposed residues
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Figure 7.1 An alignment of the SSBs from the human herpesviruses
The SSBs from the eight human herpesviruses were aligned using ClustalW and 
annotated using CHROMA. The virus from which the protein is from is indicated on 
the left hand side. Conserved amino acids involved in DNA binding in ICP8 (HSV-1) 
are highlighted with a red arrow. Conserved residues that form a hydrophobic patch 
on the N-terminus o f ICP8 are highlighted with a blue arrow. Conserved residues that 
are involved in zinc binding are indicated with a light green arrow. A FNF m otif 
conserved among the alpha herpesviruses is highlighted with a pink line below the 
alignment. The secondary structure o f ICP8 is shown above the alignment.
Horizontal cylinders indicate a-helices, horizontal arrows indicate (3-sheet. Elements 
are coloured dark pink for the head, blue and orange for the shoulder, light pink and 
grey for the neck, green for the zinc binding loop, mauve for the C-terminal helical 
domain. The dashed line indicates the region that was absent from the crystal 
structure. The number at the end o f each line indicates the residue number o f ICP8 at 
the end o f the line.The colour code for the amino acids is shown on the next page.
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that may be involved in DNA binding are Tyr543, Asn551, Arg772, Lys774, Arg776, Tyr988, 

Phe998 and Asn1002. Figure 7.1 shows an alignment of the SSBs from the eight human 

herpesviruses. The sequences were aligned using ClustalW and annotated using 

CHROMA (Goodstadt and Ponting, 2001), which colours conserved regions. The above 

mentioned residues are fairly well conserved within these herpesviruses and have been 

highlighted with a red arrow below the sequence. Arg772 is not conserved between ICP8 

and pORF6 but the replacement amino acid, lysine, also contains a basic side chain and 

would be able to contribute in the same electrostatic interactions with DNA as arginine. 

Also shown in the figure above the alignment is the secondary structure of ICP8 

determined by crystallography (Mapelli et a l, 2005). This secondary structure is likely to 

be largely conserved throughout human herpesvirus SSBs.

ICP8 is a zinc metalloprotein containing one zinc atom per molecule that as predicted is 

coordinated by three cysteines (Cys499, Cys502, Cys510). These amino acids are conserved 

in the human herpesviruses and have been highlighted with a light green arrow. Also 

conserved is Thr513, which further stabilizes the zinc loop in ICP8. These residues most 

likely have the same function in pORF6 as in ICP8.

The C-terminus of ICP8 has been shown to be important for cooperative binding. It is 

thought that it interacts with a hydrophobic patch in the head region of another molecule 

of ICP8 that is formed by Phe827, Phe843, Trp844, Leu857 and He865. These residues have

O'yn
been highlighted with a blue arrow in figure 7.1. The phenylalanine and the 

tryptophan are conserved within the human herpesviruses. Phe and Leu are not
0̂ -1 Of'7

conserved but in pORF6 the replacements, Leu and Pro are also hydrophobic. lie 

is also not conserved and pORF6 is the only herpesvirus SSB in which the replacement 

amino acid does not have a similar side chain chemistry. The other proteins also contain



a hydrophobic residue at this point but pORF6 contains a cysteine. However, there is still 

a hydrophobic patch created by the other conserved amino acids that could interact with 

the C-terminus of an adjacent pORF6 molecule.

The extreme C-terminus of the human herpesvirus SSBs does not appear to have much 

sequence conservation. However, there is a FNF motif that is conserved within the alpha 

human herpesviruses that is thought to interact with the hydrophobic patch on the N- 

terminus of the next protein molecule. This is highlighted with a pink line underneath 

the alignment in figure 7.1. The other viral proteins shown in the alignment do not 

contain this motif but they do have two hydrophobic residues in the same region, which 

could also interact with the hydrophobic patch on the N-terminus of an adjacent protein 

molecule.

Figure 7.2 shows the secondary structure prediction of pORF6 generated using PSIPRED 

(Jones, 1999). Overall this is very similar to the actual structure of ICP8 for the 

corresponding regions of the alignment (figure 7.1). In ICP8, the region containing the 

amino acids involved in zinc binding has an a-helical structure (499-513 (figure 7.1-light 

green arrows)). The corresponding region containing the conserved residues in pORF6 is 

also predicted to be a-helical (455-470). The sequences containing the amino acids 

involved in DNA binding in ICP8 form a loop region (543-541) and two P-sheets (772- 

776 and 998-1002) (figure 7.1-red arrows). The first of these regions mainly consists of 

a loop structure in ICP8 but in pORF6 it is also predicted to contain a small a-helical 

structure (499-509). However, the two p-sheet regions in ICP8 have a calculated 

corresponding p-strand predictions in pORF6 (725-732 and 925-939). The hydrophobic 

patch in the head region of ICP8 that binds to the C-terminus of an adjacent molecule is 

a-helical with loop regions (827-865 (figure 7.1-blue arrows). The corresponding region
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Figure 7.2 Secondary structure prediction of pORF6
The pORF6 amino acid sequence was analysed using the PSIPRED protein secondary 
structure prediction programme http://insulin.brunel.ac.uk/cgi-bin/psipred (Jones 
1999). The programme assigns an amino acid residue to a secondary structure m otif 
within the context o f the surrounding amino acids. The figure shows which amino 
acids are likely to form a-helices, (3-sheets or non-specific coiled loops.

http://insulin.brunel.ac.uk/cgi-bin/psipred


in pORF6 is also predicted to be a-helical with loop areas (772-792). In addition, the C- 

terminus of ICP8 is a-helical, which is also the predicted structure of the C-terminus of 

pORF6.

The regions of pORF6 discussed above that contain the conserved important functional 

residues have the same secondary structure as ICP8 consistent with them functioning in 

the same manner in the binding with ssDNA. Similarly, the cooperative nature of 

pORF6 binding with ssDNA may like ICP8, be due to a C-terminal ‘arm’ linking onto 

the next molecule and consistent with this, the predicted structure in this region of 

pORF6 is very similar to the ICP8 structure. The information gained from the alignment 

and secondary structure prediction provides a greater understanding of how pORF6 may 

be binding to ssDNA. In addition, knowledge of the structure of ICP8 and the 

identification of residues involved in important functions of the protein provides 

information that could be used to design mutations in pORF6 to further characterise its 

binding to ssDNA.

Investigating the DNA replication proteins of the herpesviruses not only provides 

additional information on how these viruses replicate, but also characterises a potential 

target for anti-viral therapy. The disruption of protein-protein interactions between the 

DNA replication proteins of the herpesviruses represents a novel anti-viral strategy. The 

interaction between the HSV-1 DNA polymerase (UL30) and its processivity factor 

(UL42) can be disrupted by short peptides corresponding to the C-terminus of UL30 

(Marsden et al., 1994; Digard et al., 1995; Bridges et al., 2000), which inhibits the ability 

of UL30 to synthesise long DNA chains. Loregian et al. (1999) demonstrated that a 

peptide corresponding to the C-terminal 27 residues of UL30 fused to the B subunit of



E.coli enterotoxin can enter the nucleus of HSV-1 infected Vero cells and inhibit viral 

replication. A peptide corresponding to the C-terminus of the HCMV DNA polymerase 

also blocks the interaction between the HCMV polymerase and its accessory factor and 

specifically inhibited the stimulation of the polymerase by the accessory factor (Loregian 

et a l , 2003). However, using a peptide as an anti-viral drug imposes the potential 

problem of an immune response from the host. More recently small molecules that also 

inhibit the interaction between UL30 and UL42 have been identified (Pilger et al., 2004). 

One of these molecules had more potent anti-viral than cytotoxic activity. Molecules of 

this type may have better potential as anti-viral drugs than peptides as they are less likely 

to cause an immune response.
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