
 
 
 
 
 
 
 

https://theses.gla.ac.uk/ 
 
 
 

 

Theses Digitisation: 

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ 

This is a digitised version of the original print thesis. 

 

 
 
 
 
 
 
 

Copyright and moral rights for this work are retained by the author 
 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 
 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 
 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 
 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 
 
 
 
 
 
 
 
 
 
 
 
 

 
Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


An investigation into the causes and 
consequences of variability in community 

structure in a large freshwater loch

Hazel Macleod 
BSc (Hons)

Submitted in fulfilment of the requirements for the 
Degree of Doctor of Philosophy

University of Glasgow 
Department of Evolutionary and Environmental

Biology

December 2004



ProQuest N um ber: 10800575

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10800575

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



(GLASGOW
UNIVERSITY
LIBRARY



2

Abstract

In order to explore the causes and consequences of variability in community 

structure in Loch Lomond, submerged macrophyte biomass values were 

assessed. The introduction of non-native species and changing nutrient levels 

are identified as threats to the macrophyte communities of the loch. Loch 

Lomond is diverse in habitat and this is evident in fish and invertebrate 

community structure. For a single fish species, there was evidence of between- 

site variability in a number of aspects of its ecology at relatively small spatial 

scales making Loch Lomond an ideal location for the investigation of the 

consequences of variability in community structure. An exploration was also 

made into a novel technique for the estimation of trophic niche width by use of 

the variance in stable nitrogen isotope signatures (515N) which lead to the 

conclusion that there are significant potential strengths in using 515N as a 

measure of trophic niche width. The 815N technique was used to explore a 

number of hypotheses related to the effect of community structure on trophic 

niche width, leading to the conclusion that the physical factors of a study site 

were more important than community structure in controlling trophic niche width 

of ruffe in Loch Lomond. Finally, the consequences for individuals of modified 

trophic niche width were investigated and lead to the conclusion that in Loch 

Lomond there was no clear relationship between trophic niche width and 

individual fitness.
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Chapter 1. Introduction

Much of the theory of ecology is built upon the ecology of populations. By 

examining how populations are limited by factors such as food and competition, 

we can begin to determine what controls the abundance of species in nature. 

Knowing what factors affect populations can help us combat species extinctions, 

lessen species endangerment, and maximise sustainable yields in fisheries and 

forests. Following on from this, community ecology focuses on why certain areas 

have high numbers of species compared with other areas that have low species 

numbers. Species richness is of interest because we may wish to preserve 

species-rich areas, and also because there may be a link between species 

richness and community function, as it is generally thought that species-rich 

communities have characteristics that make them less susceptible to change 

than species-poor communities Allen (1998).

Plant and animal populations do not operate in isolation. They exist within a 

community, share the same environments and habitats, and interact with one 

another in various ways. Within the community, some species may interact more 

strongly among themselves than with others, utilising habitat or food resources in 

a similar manner. All communities have certain characteristics that define their 

biological and physical structure and these characteristics vary in both space and 

time. Communities are characterised not only by the mix of species (the 

biological structure), but also by physical features of the biotic and abiotic 

environment.

Clearly community events result from, and are therefore determined by, biotic 

processes, such as breeding and competition. However, other aspects of the 

community are determined by environmental factors such as disturbance
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(Connell 1978), temperature (Turner et al. 1987), and exposure (Keddy 1982, 

1983), and such factors constrain biotic processes. Studies (Hilborn and Sterns 

1982; Fisher and Grimm 1991; Woodward and Hildrew 2002) have led to the 

conclusion that communities are structured by multiple interactions of organisms 

with their biotic environment and with abiotic factors as well. Which of these 

interactions are most important can vary from one type of community to another, 

and even among different components of the same community (Ricklefs and 

Schluter 1993; Begon etal. 1996).

The experimental quantification of community structure, and factors which 

regulate it, has proved to be very difficult (Fisher 1995; Mduma et al. 1999). It is 

usually impossible to employ the same method of measurement over the whole 

community leading to problems of compatibility of measurement within studies

The programme of work presented in this thesis is divided into two distinct pads. 

The first is largely observational and descriptive and provides information on 

species composition of the natural plant community within Loch Lomond. This 

section provides an insight into the level of primary production by aquatic 

macrophytes in Loch Lomond, describes recent changes in the plant community 

within the loch as a result of alien introductions, and provides an insight as to the 

implication of these introductions to the native flora of the loch.

In the second part of the study, further descriptive information is provided on the 

loch communities, focusing on the benthic macroinvertebrate and fish 

communities of the loch, in order to identify changes in community structure as a 

result of biotic and abiotic factors. The implications of community structure on the 

trophic niche width of a ruffe (Gynmocephalus cernuus) population, ubiquitous in 

Loch Lomond is explored, and a comparison made between traditional
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methodology and stable isotope analysis in determining trophic niche width. 

Finally, the consequences of modified niche width on individual fitness is 

investigated.

1.1 General Introduction to the Loch Lomond Area

The physical and biological characteristics of Loch Lomond make it the ideal 

choice of study site for this programme of work. With a surface area of 70.27 km2 

(Best and Traill 1994), Loch Lomond is Britain’s largest area of fresh water. Due 

to its near north-south orientation, the loch cuts across the main structural trends 

and geological features of Scotland (Macdonald 1974). The most important of 

these is the Highland Boundary Fault. This is a geological fault line that transects 

Scotland from the west to the east coast, marking the transition from the southern 

edge of the Highlands, where the bedrocks are mainly schist/schistose grits, to 

the northern edge of the Central Lowlands where the rocks are mainly sandstone 

(Macdonald 1974). The unique geology of the area means that along its 36.25 

km length, the loch is comprised of a chain of largely discrete basins, of 

increasing width and decreasing depth (Figure 1.1). The northern basin is narrow 

and steep, reaching a depth of 200m with a breadth of 1.5 km (Tippett 1994). The 

mid basin, south of Ross Point, opens out to form a wider (3.5 km (Tippett 1994)) 

and shallower basin with a maximum depth of 66 m (Pomeroy 1994). In the 

southern basin, the loch is shallow with the depth here rarely exceeding 20m 

(Pomeroy 1994). It is here that the loch reaches its maximum breadth of 8.8 km 

and is dotted with islands (Pomeroy 1994).
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Figure 1.1 M orphometry of Loch Lomond (adapted from Smith et al. 1981) 
illustrating position of islands (shaded black) and depth contour lines.

The influence of the geology of the catchment area is not restricted to basin 

topography alone. The southern catchment of Loch Lomond consists of soft 

sedimentary rocks and fertile soils, which leach soluble minerals into the loch via 

river inflow and water runoff (Macdonald 1974), while the hard and peat-covered 

rock of the northern basin contributes very little in the way of minerals to the 

waters of the loch (Macdonald 1994). Differing land use in these areas adds to 

the disparity in fertility of the northern and southern basins (Dickinson 1994). The 

poor soils of the northern catchment are generally used for grazing sheep or 

forestry purposes, whereas the southern catchment is farmed more intensively, 

with mineral fertilisers and organic matter applied to enrich the soil in this much 

more densely populated portion of the catchment (Dickinson 1994).

Being within easy driving distance of the populace of the Central Belt of Scotland, 

Loch Lomond sees huge numbers of visitors in the summer. The immense 

popularity of the area results in many forms of stress being put on the loch 

environment. It is used for recreation, for hydroelectric power and as a potable 

water supply. In addition, numerous single dwellings, camping and caravan



Hazel Macleod, 2004 Chapter 1,17

parks, youth hostels, hotels and small villages discharge effluent into the loch. 

The continuing pressures placed on Loch Lomond has implications for its fauna 

and flora and has facilitated the introduction and rapid growth of populations of 

invasive species offish (Adams 1994), invertebrate and euhydrophyte (Murphy et 

al. 1994; Macleod and Murphy 2002). Through this programme of work, the 

insights gained into the trophic functioning of the loch will enhance our 

understanding of the manner in which the loch responds to natural and human 

disturbance. With the designation of Loch Lomond and the surrounding area as 

Scotland’s first National Park from 2002, there is a need for detailed information 

on the natural resource base of the loch and how it is changing in response to 

new pressures on the ecosystem. This information is essential if we hope to 

conserve and enhance the natural resources of the area.

1.2 Food Web Studies

Food webs are typically very complex, and some conceptual simplifications are 

necessary in order to disentangle them (Vander Zanden et al. 1999). One of 

these utilised here is the notion that organisms can be grouped together into 

trophic levels (Schoener 1989; Pimm et al. 1991; Martinez 1994). The 

assignment of organisms to these trophic levels is determined by the number of 

energy transfers that they are away from the original source of the energy i.e. 

photosynthesis (Schoener 1989; Pimm et al. 1991; Martinez 1994). The number 

of these trophic levels (also known as food chain length) is commonly referred to 

as the trophic structure of the system.

The trophic level concept has proven useful in studies of trophic cascades (Smith 

et al. 1981; Power 1990; Mazumder 1994) and continues to provide a framework 

for models and field studies of food web dynamics, often making these studies
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possible by simplifying trophic structure to a manageable form (Vander Zanden et 

al. 1999).

The trophic structure of a system has implications for both community and 

ecosystem patterns and processes, such as the regulation of species diversity 

(Paine 1980) and the biomass of trophic levels (Hairston et al. 1960; Oksanen et 

al. 1981; Power 1990; Hairston and Hairston 1993; Mazumder 1994; Abend and 

Smith 1995). The difficulty of determining trophic relationships in natural 

ecosystems is a major obstacle to our understanding of ecosystem processes, as 

for example, lakes that are similar in terms of community composition can differ in 

trophic structure when energy flow is taken in to account (Vander Zanden et al. 

1999).

Food chain analysis provides the basis for most studies of food web dynamics, 

but fails to incorporate the complexity and omnivory that characterises natural 

ecosystems (Polis and Strong 1996). The approach provides overly simplistic 

trophic depictions by assuming no omnivory and the existence of discrete trophic 

levels (Polis 1991; Polis and Winemiller 1996). Another disadvantage is that 

feeding links are not weighted according to their energetic or functional 

importance (Vander Zanden and Rasmussen 1996). Presented in this thesis is 

the theoretical background and empirical evidence to support the theory that 

stable isotope analysis is a powerful tool to investigate and elucidate trophic 

structure. The stable isotope approach can provide information on trophic status 

which is continious, rather than discrete and also provides an integrated measure 

of assimilation, making it possible to assess the relative contribution to the food 

web of resources with distinct isotopic signatures (Lajtha and Michener 1994).
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Atoms consist of a nucleus of protons and neutrons surrounded by a cloud of 

electrons. An element is defined by the number of protons in the nucleus of the 

atom. For example, the element carbon has six protons, whereas the element 

nitrogen has seven. Although the number of protons is fixed for a particular 

element, the number of neutrons can vary. Carbon can have six, seven or eight 

neutrons whereas nitrogen can have seven or eight neutrons in the nucleus. The 

various combinations of protons and neutrons are called isotopes, which are 

distinguished on the basis of atomic mass (Criss 1999). Atomic mass is the 

number of protons plus the number of neutrons and therefore the naturally 

occurring isotopes of carbon are carbon-12 (6 protons + 6 neutrons), carbon-13 

(6 protons + 7 neutrons), and carbon-14 (6 protons + 8 neutrons) which are 

abbreviated as 12C, 13C, and 14C respectively. The naturally occurring isotopes of 

nitrogen are nitrogen-14 (7 protons + 7 neutrons), and nitrogen-15 (7 protons + 8 

Neutrons) and are abbreviated as 14N and 15N respectively. The isotope 14C has 

an unstable nucleus which is transformed into another configuration without the 

addition of energy from the outside. 14C undergoes radioactive decay to an 

isotope of nitrogen (14N). and as a result of this, 14C is called a radiogenic or 

‘unstable’ isotope. In contrast, the stable isotopes of carbon (12C and 13C) and 

nitrogen (14N and 15N) do not undergo radioactive decay and are called stable 

isotopes. In the case of both carbon and nitrogen the lighter of the two stable 

isotopes had a much higher % natural abundance. 12C had a natural abundance 

of 98.89% while 13C has a natural abundance of 1.11% (Platzner 1987), while 14N 

has a natural abundance of 99.63% and 15N has a natural abundance of 0.37% 

(Platzner 1987).
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Table 1.1 Nuclear compositions of carbon and nitrogen atoms (adapted from 
(Holtzclaw et al. 1999)

\ sSymbol Atomic
number

Number
of
protons

Number
of
neutrons

Mass
(amu)

% Natural 
abundance

Carbon l2C 6 6 6 12.0000® 98.89
,3C 6 6 7 13.0033 1.11
14c 6 6 8 14.0032

Nitrogen l4N 7 7 7 14.0031 99.63
15n 7 7 8 15.0001 0.37

a mass assigned as exactly 12 by international agreement.

The environmental isotopes such as carbon, nitrogen and hydrogen are the 

naturally occurring isotopes of elements found in abundance in our environment. 

These are principal elements of hydrological, geological and biological systems 

and the stable isotopes of these elements serve as tracers of water, carbon, 

nutrient and solvent cycling. They are light elements, and as a consequence, the 

relative mass differences between their isotopes are large (Table 1.1), imparting 

measurable fractionations during physical chemical and biological processes, 

resulting in a change in isotopic abundance between chemical species.

Fractionation of isotopes describes a change in the isotopic ratio of a substance. 

A substance may become partitioned into two or more fractions which have a 

ratio of ‘heavy’ to ‘light’ isotopes, different to that of the initial naturally occurring 

(geochemical) ratio. Following isotopic analysis, if there is found to be an 

increase in the heavy isotope when compared to the starting ratio, the sample is 

considered isotopically enriched through fractionation processes. Conversely, if 

there is a decrease in the proportion of the heavier isotope, then the sample is 

considered to be depleted in that isotope due to fractionation processes (Criss 

1999).

Two different types of processes -  equilibrium and kinetic isotope effects -  cause 

isotopic fractionation. Equilibrium isotopic fractionation occurs among chemical



Hazel Macleod, 2004 Chapter 1,21

species linked by equilibria as a result of bond strength differences between the 

isotopic species (Hayes 1993) while kinetic isotope effects occur because of 

differences in the rate of transport or rate of reaction of isotopic species 

(Farquhar et al. 1989; Hayes 1993). Biological processes are generally 

unidirectional and are kinetic isotope reactions. During these biological 

processes, organisms preferentially break down and excrete the lighter elemental 

isotope since the energy required to break these bonds is less. As a result of this, 

the heavier isotope is retained and incorporated into the tissues and this causes 

significant and measurable fractions which can be traced through the food web 

(Rundel et al. 1988; Lajtha and Michener 1994; Abend and Smith 1995; Grifftiths

1998).

1.4 Introduction to Stable Isotope Analysis

In general, lighter isotopes tend to form weaker bonds and to react faster than 

heavier isotopes. As a consequence of these bond-energy and reaction rate 

differences, the abundance of stable isotopes of an element will vary between 

chemical species.

Stable environmental isotopes are measured as the ratio of the two most 

abundant isotopes of a given element. For carbon these are 12C which has an 

abundance of 98.90% and 13C which has an abundance of 1.10% (Table 1.1). 

The nitrogen isotopes are 14N, with an abundance of 99.634%, and 15N, with an 

abundance of 0.366% (Table 1.1). To make measurements of isotopic 

abundance of a manageable magnitude, because they can be very small, the
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isotopic composition of most materials is expressed as the normalised ratio of the 

sample to a standard, in parts per thousand (per milie, %o):

6X = [(R Sample / R Standard) -  1] * 1000

Where R Sample and R Standard are the ratios of heavy to light isotopes for the 

sample and the standard respectively (Gaston and Suthers 2004). A positive 5X 

value means the sample has more of the heavier isotope than the standard and 

is referred to as enriched.

The use of natural abundance variations in stable isotopes as tracers relies on 

the fractionations that occur during chemical, physical and biological processes. 

Differences in fractionation during these processes lead to distinct “isotopic 

signatures” for biological materials (Rundel et al. 1988; Ehleringer et al. 1993; 

Lajtha and Michener 1994; Grifftiths 1998). However, there is considerable 

variation among ecosystems at the base of the food web in the 513C (813Cbase) 

and the 515N (515NbaSe) from which organisms draw their nitrogen and carbon 

(Rounick and Winterbourn 1986; Zohary et al. 1994; Cabana and Rasmussen 

1996; Macleod and Barton 1998; Vander Zanden and Rasmussen 1999). 

Baseline values of S13C and 515N show spatial and temporal variation both within 

a lake (France 1995; Vander Zanden and Rasmussen 1999) and among lakes 

(Cabana and Rasmussen 1996; del Giorgio and France 1996) and as a result the 

stable isotope signature of an organism alone provides little information about its 

absolute trophic position or source of carbon since without a suitable estimate of 

513Cbase and 515Nbase there is no way to determine if variation in the isotopic 

signature of an organism reflects changes in food web structure and carbon flow 

or if it is simply a result of differences in baseline isotopic signature. Therefore,
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when conducting a study such as this, it is essential that baseline isotopic 

signatures are taken into account.

1.4.1 Nitrogen Isotopes

The abundance of 15N in the tissues of a consumer is typically enriched over the 

level found in their prey due to the preferential excretion of the lighter isotope 

during metabolic processes (Macko et al. 1982; Minagawa and Wada 1984; 

Peterson 1999). This means that there is a detectable isotopic enrichment in the 

15N of animal tissues relative to their food source and this can be used to indicate 

trophic position (Doucett et al. 1996). The 815N of a consumer is typically 

enriched by 3.4%0 relative to its diet (DeNiro and Epstein 1981; Minagawa and 

Wada 1984; Peterson and Fry 1987; Post 2002). In order to determine trophic 

position accurately using stable isotopes, it is important to interpret the S15N of a 

consumer relative to an appropriate baseline as this provides a continuous 

energy flow-based measure of the mean number of transfers between the 

producer organisms and the species under investigation (Vander Zanden et al.

1999). During the course of the study, S15N values were determined as a relative 

measure of niche width within a single community and this measure was 

compared between communities.

The nitrogen isotopic content of an organism does not reveal which prey species 

are consumed by it but has the advantage of taking into account not just ingested 

food, but food that is actually assimilated (Peterson and Fry 1987; Kling et al. 

1992; Cabana and Rasmussen 1996). Bearing in mind that species composition 

and gut content analysis provide only indirect information on trophic interactions,
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which may be misleading if assimilation is not considered (Grey et al. 2002), it is 

understandable that stable isotopes are increasingly used in food web studies 

(Peterson and Fry 1987). Stable isotope analysis has proved to be particularly 

useful when combined with conventional dietary analysis (Hobson and Welch 

1995; Vander Zanden et al. 1997; Beaudoin et al. 2001; Grey 2001) and this 

concept was used to elucidate the food web structure in Loch Lomond.

1.4.2 Carbon Isotopes

Carbon atoms occur in three different masses, or isotopes (see Table 1.1). Unlike 

high temperature processes in deep earth, low temperature biological processes 

such as photosynthesis are sensitive to these differences in mass and actively 

filter different carbon isotopes (Park and Epstein 1960; Keeley and Sandquist 

1992). Thus the ratios of carbon isotopes in organic materials, plants, animals 

and shells, vary and are also measurably different from those in the carbon 

dioxide of the atmosphere and the oceans (Keeley and Sandquist 1992).

The ratio of carbon isotopes (513C) within tissues changes little as trophic level 

increases and carbon moves through the food web (Rounick and Winterbourn 

1986; Peterson and Fry 1987). As a result of this, 13C is a useful indicator of 

sources of production since differential fractionation of stable isotopes of carbon 

in aquatic and terrestrial plants can cause primary [ roducers to have distinct 

carbon isotope signatures (Griffith 1992; Keeley and Sandquist 1992). The 

differences in diffusional resistance between terrestrial and aquatic systems (with 

resistance being orders of magnitude greater in the aquatic environment) means 

that in aquatic systems there is reduced mixing of the carbon pool in the
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boundary layer with that of the bulk solution and as a result aquatic plants are 

forced to draw from a finite carbon pool, resulting in a reduction of discrimination 

against the heavier isotope. Terrestrial C3 plants have a 513C between -2 0  and -  

25%0 whereas aquatic C3 plants are markedly less negative. Because S13C values 

are conserved up the food chain but vary at the base of the food chain, the 513C 

of aquatic consumers can provide information about the sources of energy 

exploited by higher consumers (Rounick and Winterbourn 1986; Peterson and 

Fry 1987).

The S13C content of components of fresh waters can vary widely depending on 

the source of dissolved carbon in the water, with a value of +1%o where the 

carbon source is present in the form of HCO'3 derived from limestone to 

approximately -7%o for C 0 2 dissolved in air-equilibrated water (Keeley and 

Sandquist 1992). Where source carbon is derived autochthonously, through 

respiration of aquatic flora or fauna, or allochthonously through decomposition of 

litter input to the system, 513C values can be as low as -30%o (Keeley and 

Sandquist 1992; Ehleringer et al. 1993; Gannes et al. 1998).

These concepts were used to investigate the functioning, regulation and status of 

the aquatic food web in Loch Lomond.

1.5 Project Aims

The main aims of the project were to investigate the mechanisms of energy 

transfer through trophic cascades in lakes, in order to determine the role of 

community structure in modulating trophic niche position and width for an 

individual species, and to determine the consequences for individual organisms 

of modified trophic niche. Specifically, traditional dietary analysis was used to
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describe and quantify the degree of interaction in contrasting food webs from six 

sampling sites in Loch Lomond. The mean value of 813C and 515N between 

species pairs was used as an index of the potential for competition. These 

indices were calculated for a ubiquitous species (ruffe) in six discrete 

communities within Loch Lomond, in order to test hypotheses on the effect of 

food chain complexity on trophic position and niche breadth. The consequences 

of changes in trophic position and niche breadth on the fitness of individual 

organisms were examined by determining fat deposition rate and growth of 

organisms with differing trophic status.

In chapter 2, the role of the macrophyte community as a primary producer in 

Loch Lomond is examined, and the historical changes which have taken place 

within the macrophyte community of the loch are described.

In chapter 3, the degree of variation in the community structure is examined at six 

sampling sites in Loch Lomond. It is postulated that the observed variability in 

community structure may be driving variation in trophic niche width in ruffe.

In cnapter 4, an argument is put forward for the use of the standard deviation of 

nitrogen stable isotope signatures as a measure of trophic niche width. A test of 

this hypothesis is made using gut content analysis.

In chapter 5, the physical and biotic drivers of variation in niche width are 

examined for ruffe at 6 sites in Loch Lomond. The consequences of variations in 

trophic niche width for individuals within a population are explored.
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Chapter 2. Temporal and Spatial Variation in 

Submerged Macrophyte Communities of 

Loch Lomond, Scotland

Submerged macrophyte biomass values were assessed monthly from May to 

October 2001. Samples were taken from 12 sites, 4 from within each of the three 

basins of Loch Lomond to meet the following aims.

• The data were used to identify macrophyte communities present, 

dominant species, and seasonal variation within and between basins.

• A comparison was made with data from a similar survey carried out in 

1990 and this information was used to assess longer-term changes in the 

macrophyte communities of Loch Lomond.

• The invasion of non-native species and changing nutrient levels were 

identified as threats to the macrophyte communities of Loch Lomond.

This chapter has been published as a paper: Macleod, H & Murphy, K.J.

(2002) Temporal and distributional variation in submerged macrophyte

communities of Loch Lomond, Scotland. Proc 11th EWRS International

Symposium on Aquatic Weeds, Moliets, France, 39-42 (Appendix 1).
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Loch Lomond supports a wide range of freshwater plant communities located 

along a unique gradient of environmental conditions (Murphy et al. 1994). 

Measuring 70 km2, the loch is Britain’s largest area of fresh water (Best and Traill 

1994- Pomeroy 1994) and the catchment area includes some of the most 

attractive and easily accessible scenery in Western Europe (Dickinson 1994). 

The loch is located near Glasgow, the largest centre of population in Scotland, 

and more than half the population of Scotland live within one hour’s journey of 

the shores (Tippett 1994). As a result of this, Loch Lomond experiences heavy 

recreational use (Adams 1993), is used as a hydroelectric power source and also 

as a potable water supply (Dickinson 1994). On the 19th of July 2002, the Loch 

Lomond and Trossachs National Park, the first of its kind in Scotland, became 

fully operational. Loch Lomond is the centrepiece of the National Park, and the 

National Park Authority is required to prepare a National Park Plan, which will set 

out how the authority will manage the National Park to achieve its aims in the 

coming years. As a direct result of this designation, new legal restrictions are 

likely on planning, water quality protection and recreational use in Loch Lomond. 

In this context there is a need for specific information on the natural resource 

base of the loch, and how it is changing in response to new pressures on the 

ecosystem.

Macrophytes are an important component of the aquatic ecosystem. Their 

physical structure plays a large role in determining fish, zooplankton, and benthic 

habitats in the littoral zone of lakes, influencing food web structure (Cyr and 

Downing 1988; Beklioglu and Moss 1996; Diehl and Kornijow 1998; Jeppesen et 

al. 1998). Broad changes in the abundance of individual species and community 

compositions provide valuable information on how and why an ecosystem might
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be changing (Palmer 2001). Macrophytes are also becoming increasingly valued 

as a means of indirectly monitoring water quality, as for instance, eutrophication 

can produce a progressive change in species composition and a loss of species 

diversity (Rorslett et al. 1986; Blindlow 1992).

The data gathered here were used to identify macrophyte communities present, 

to explore differences in macrophyte production between basins and to examine 

the possible consequences of eutrophication (Best and Traill 1994) on the 

submerged macrophyte communities. In order to assess long-term trends of 

change within the loch system, a comparison was made with a previous survey of 

Loch Lomond carried out in 1990 (Murphy et al. 1994).

2.2 Methods

Monthly surveys of submerged macrophyte biomass were carried out in the three 

basins (South, Mid and North) of Loch Lomond during May to October 2001 (see 

table 2.1 for survey dates). Four sites with varying intensities of wind exposure 

were selected from each basin (Figure 2.1). Spence (1964) calculated that up to 

20% of the total surface area of Loch Lomond was suitable for plant growth. This 

corresponds approximately with the 10m-depth contour of the loch (Figure 2.3). 

Of this area, he estimated that only 1% is actually colonised by plants, probably 

due the high levels of unsuitable substrates such as rippled sand found within the 

loch (Spence 1964). With this in mind, sites were chosen to ensure that sampling 

was carried out at sites where conditions were suitable for macrophyte growth.
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Figure 2.1 Loch Lomond map illustrating 2001 sampling sites.
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Figure 2.2 Map of Loch Lomond illustrating 1990 sampling sites.
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From each of the sampling sites, three Ekman grab samples (area 0.155m x 

0.155m) were taken. All plant material within the sample was collected, washed, 

identified to species, and dried at 60°C prior to weighing.

Table 71  Details of macrophyte sampling dates, number of sites sampled and 
the number of samples taken.

Date of Survey Number of sites 
sampled

Total number of 
samples

24 May 2001 12 36
21 June 2001 12 36
20 July 2001 12 36

10 August 2001 12 36
30 August 2001 12 36
15 October 2001 12 36

Data collected in 2001 were compared to that collected in 1990 by Murphy et al 

(1994). Figure 2.2 illustrates 1990 sampling sites. TWINSPAN (Hill 1979) 

analysis was used in the classification of this data into groups. TWINSPAN 

provides a hierarchical divisive classification of the data matrix (Gauch 1982), 

classifying both samples and species and constructing an ordered two-way table 

which expresses succinctly the relationships of samples and species within the 

data set. It also identifies ‘indicator species’ which separate the sample groupings 

at each level of division. This allows the classification of species onto groups and 

this was carried out on combined 1990 and 2001 data to identify trends of 

change in the macrophyte communities of Loch Lomond over the 11 year period 

between these two surveys.
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During the course of the 2001 study, twelve species of aquatic macrophyte were 

identified in Loch Lomond (Table 2.2). Of these twelve species, ten were native 

and two were invasive species. Both of the invasive species recorded were of the 

genus Elodea, Elodea nuttallii and Elodea canadensis, and contributed a total 

biomass of 3.19g/m2 dry weight, which accounts for 5.76% of the total biomass 

recorded. Littorella uniflora, which is native to Loch Lomond, was the most 

common species recorded and contributed over 40% (22.48g/m2) of the total 

macrophyte biomass in Loch Lomond (Table 2.2).

Table 2.2 Macrophyte species, status and average biomass (g dry weight/m2) 
recorded for Loch Lomond over the period May to October 2001.

Species Status Average biomass 
(g/m2 dry weight)

%  Biomass

Littorella uniflora Native 22.4796. 40.6338
Isoetes lacustris Native 15.0531 27.2097
Myriophyllum alterniflorum Native 9.2741 16.7637
Elodea nuttallii Invasive 3.0174 5.4542
Nitella flexilis Native 2.0858 3.7702
Lobelia dortmanna Native 1.5132 2.7353
Juncus bulbosus Native 1.4023 2.5348
Potamogeton perfoliatus Native 0.2359 0.4264
Elodea canadensis Invasive 0.1682 0.3041
Callitriche hamulata Native 0.0879 0.1590
Fontinalis antipyretica Native 0.0045 0.0081
Potamogeton friesii Native 0.0005 0.0009
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Figure 2.3 Distribution of the approximate euphotic zone: 0 - 10m in 
Loch Lomond (adapted from Murphy et. al. 1994).
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There were differences in the values of macrophyte biomass recorded within 

each basin of Loch Lomond (Figure 2.4). The mid basin of the loch had the least 

macrophyte growth and this was true for each of the species identified within the 

mid basin. Levels of macrophyte growth were similar within the north and south 

basins of Loch Lomond, however there are many more sites which are suitable 

for macrophyte growth within the south basin than in the north basin of the loch 

(Figure 2.3) and as such overall basin macrophyte growth can be considered to 

be at its highest within the south basin of Loch Lomond.

Between Basin Com parison o f Biom ass
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Figure 2.4 Between basin comparisons of average monthly macrophyte 
biomass (g dry weight per m2 ± standard error)

Comparison of 1990 and 2001 data using TWINSPAN analysis identified three 

main community types, labelled A, B and C in Table 2.3. Group A comprises the 

twc sites with the highest number of species recorded, both of which are 1990 

sites. This group contains 20 of the 25 species recorded over the course of the 

1990 and 2001 studies. The indicator species for group A are Utricularia spp. 

Group B is made up entirely of 2001 sampling sites and comprises 9 species. 

This group has two indicator species, Elodea nuttallii and Lobelia dortmanna. The
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remaining sites which, contain 12 species, make up group C, with Elodea 

canadensis and Potamogeton perfoliatus as indicators.

Table 2.3. Table of sites x species produced by TWINSPAN for the combined 
1990 and 2001 Loch Lomond vegetation data sets. Groups A-C are shown 
with indicator species underlined.
Groups: B C A
Sites: 11 1222 112111 11

0217839 52690134562178 34

E lo d e a  c a n a d e n s i s  - 1 -------------111111-111------------11
P e r s i c a r i a  a m p h ib ia n  ------------------- --------------- 1 ----------- ----
P o ta m o g e to n  f r i e s i i   1 -----------------------------  - -
P o ta m o g e to n  p e r f o l i a t u s  1 --------------1-11-----------3 . - - 1 - -
R an u nculu s  p e l t a t u s  ------------------------------------- 1 -------------
I s o e t e s  l a c u s t r i s  1 1 1 1 1 1 1  1 1 1 1 - 1 1 1 1 1 1 ------  11
L i t t o r e l l a  u n i f l o r a  1111111 11111111111-11 11
M y r i o p h y l l u m  a l t e r n i f l o r u m  11-1111 111111111111—  11
N i t e l l a  f l e x i l i s  -1--111 ------------ 11111111 1-
E l o d e a  n u t t a l l i i  111--11 111------------------------- - -
L o b e l i a  dor tm anna  11111-- -----------------------------------  11
F o n t i n a l i s  a n t i p y r e t i c a  ---------------------------------1 ---------------- - 1
Apium in u n da tu m     1 -
C a r e x  sp.     -1
H y d r o c o t y l e  v u l g a r i s     - 1
Ju n cu s  a c u t i f l o r u s      -1
S pargan ium  a n g u s t i f o l i u m     - 1
Eurynchium p r a e l o n g u m      - 1
Sphagnum c u s p i d a t u m  ---------------  ------------------------------- - 1
Sphagnum subsecundum  ---------------  ------------------------------- - 1
Sphagnum sp. ---------------  ------------------------------- -1
U t r i c u l a r i a '  sp.    11
Leafy liverwort     -1
Ju n cu s  b u l b o s u s    1-- 11
C a l l i t r i c h e  h a m u la t a  11 --------------- 11

Note: [-] = absent from site; [1] = present in the site; numbers in bold represent

2001 sampling sites (site codes: read downwards). Sample codes: South basin

1990:15 16 17 18 19 20 & 21; 2001:1 2 3 & 4; Mid basin 1990:22 & 23; 2001:5 6

7 & 8; North basin 1990:13 & 14; 2001:9 10 11 & 12.
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Loch Lomond supports a wide range of freshwater plant communities located 

along gradients of conditions from oligotrophic to eutrophic (Murphy et al. 1994). 

Eutrophication (Best and Traill 1994) is an increasing threat to these aquatic 

macrophytes and may facilitate the growth and spread of invading nuisance 

species adapted to richer nutrient conditions such as Elodea spp. which may out 

compete and exclude native submerged species adapted for growth in an 

oligotrophic-mesotrophic waterbody. During their study of the macrophyte 

community of Loch Lomond, Murphy et al. (1994) reported that within the south 

basin of Loch Lomond during 1992-1993, Littorella uniflora and other isoetid 

plants were covered by dense growths of epiphytic algae. However, Marrs 

(1994), who carried out a survey of the loch in 1991, found little evidence of 

epiphytic algal growth on Littorella from the same area. This requires further 

investigation as increases in epiphytic algae are a well-known warning sign of 

eutrophication (Phillips et al. 1978). Further evidence of the growing threat of 

eutrophication in the southern basin of Loch Lomond is contained within a report 

published by the Scottish Environment Protection Agency on Phosphorus Control 

in Loch Lomond (SEPA 2000). The report states that phosphorus levels in the 

southern basin of the loch have increased from 8.8 pg/\ in 1995 to 11.6 pg/\ in 

2000. Predictive models have suggested that phosphorus concentrations have 

risen over the last 60-140 years (SEPA 2000a), and further evidence of these 

increasing phosphorus levels comes from palaeolimnological studies on diatom 

remains in sediment cores and from phytoplankton monitoring (SEPA 2000b).

The results demonstrate that, as in 1990 (Murphy et al. 1994), Littorella uniflora 

remains the dominant species in Loch Lomond, followed by Isoetes lacustris and 

Myriophyllum alterniflorum (Table 2.2). During their 1990 survey, Murphy et al.
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(1994) recorded the spread of Elodea canadensis, thought to have invaded Loch 

Lomond between the time of Idle’s survey in 1967 (summarised by Bailey-Watts 

and Duncan 1981) and a Glasgow University field course in 1988, when it was 

one of the common species recorded. Since 1990, a second invasive species, 

Elodea nuttallii, has colonised the loch (Macleod and Murphy 2002). Elodea 

nuttallii is now present throughout the length of Loch Lomond and in the relatively 

short space of time since its appearance (some time between 1990 and 2001) 

has spread rapidly and is now the fourth most common macrophyte species 

found in the loch (Macleod and Murphy 2002). Comparison of 1990 and 2001 

data indicate that E. nuttallii and E. canadensis serve as indicator species for 

different community types. This is significant since it was initially thought that E. 

nuttallii would outcompete and replace E. canadensis throughout Loch Lomond 

and as yet this has not taken place.

Spence (1964) calculated that up to 20% of the total surface area of Loch 

Lomond was suitable for plant growth. This corresponds approximately with the 

10m-depth contour of the loch (Figure 2.3). Of this area, he estimated that only 

1% is actually colonised by plants, probably due the high levels of unsuitable 

substrates such as rippled sand found within the loch (Spence 1964). The 

majority of areas suitable for plant growth lie within the South basin. Data 

collected in 2001 (Figure 2.4) suggest that biomass values are lower in the mid 

basin of Loch Lomond, possibly due to higher shoreline exposure in this area. 

The South and North basin sampling sites were similar in levels of macrophyte 

production although areas suitable for macrophyte colonisation were greatly 

lower in the North basin compared to the South basin (Figure 2.3).

The introduction of non-native aquatic macrophyte species, coupled with 

changing nutrient levels, pose a very real threat to the euhydrophyte communities
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of Loch Lomond. Increasing nutrient levels have the potential to facilitate the 

growth and spread of invading species adapted to richer nutrient conditions. 

These may out compete and exclude native submerged species such as 

Littorella and Isoetes lacustris which are adapted for growth in oligotrophic- 

mesotrophic conditions (Murphy et al. 1994). Significant changes have already 

taken place and although it is almost impossible to prevent the introduction of 

non-native species to the loch, the question of eutrophication is one which must 

be addressed.
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Chapter 3. Variation in Littoral Community 

Structure Between Sites In Loch Lomond

In this chapter the degree to which the invertebrate and fish community structure 

varies at sites across Loch Lomond was explored to determine whether:

• The loch shows habitat heterogeneity at small spatial scales.

• Diversity was manifest as variability in the invertebrate and fish 

community structure within the littoral zone.

• For a single fish species (the ruffe - Gymnocephalus cernuus L.) there 

was between-site variability in a number of aspects of its ecology, at 

relatively small spatial scales (e.g. diet, niche width).

It is suggested that variability in community structure between littoral sites in Loch 

Lomond may be driving variation in trophic niche width in ruffe. This is explored 

further in chapters 4 and 5.

3.1 Introduction

The general approach adopted in this study is designed to look for community 

effects on the feeding web structure, and specifically on the trophic responses in 

a single target species, the ruffe Gymnocephalus cernuus. By comparing animal 

communities at a number of sites within a single, highly heterogeneous lake, it 

may be possible to tease apart the effect of variations in community structure and 

the trophic response of ruffe to this variation. However, in temperate climates 

such as Loch Lomond, seasonality plays a large role in determining community
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structure (Keast, 1979). Within this study, sampling took place in summer and 

winter to establish any seasonal differences in community structure which may be 

evident within sampling sites.

Standing waters can be divided into horizontal zones based on factors such as 

photosynthetic activity, fluctuating water levels and the action of wind generated 

waves. The littoral zone, or shallow water zone, is the area in which light is able 

to penetrate to the bottom. The littoral zone of lakes are extremely diverse even 

within one lake (Maitland 1981) and it is within this zone that the greatest number 

of habitats are found. Littoral substrates range from bare rock to boulders, 

stones, gravels, sands, fine clays or organic muds. The effect of water movement 

in the littoral zone is essential in determining which type of substrate is present 

and which organisms are capable of growth in such an area.

Within an organism, different tissues will have different turnover times and in the 

case of stable isotope analysis, will integrate information on dietary preferences 

over different temporal scales (Hobson and Clark 1992; O'Reilly and Hecky 

2002), producing an average ratio related to tissue turnover rate and the life of 

the organism. Liver has a fast turnover time of only days (Hesslein et al. 1993) 

and in fish, provides the best isotopic indicator of recent diet. Turnover time for 

white muscle tissue is on a intermediate time scale (Hesslein et al., 1993; 

(Tieszen et al. 1983) while bone tissue will integrate dietary information over the 

longest time scale (Schoninger and DeNiro 1984; Sholto-Douglas et al. 1991) 

making it possible to track dietary preferences of each individual over time.

A prerequisite for this type of study is that local study areas are significantly 

different in a range of characteristics that may influence the trophic position of the
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focal species. Thus the basic general hypothesis to be tested here was that there 

was significant variation in a number of specific community structure variables.

3.2 Choice of Study Sites

Based upon physical properties, six sampling sites were selected from Loch 

Lomond in order to encompass the wide range of littoral habitats available within 

the loch. The properties of the sites are summarised in Table 3.1 and the location 

of sampling sites are illustrated in Figure 3.1.

In the lacustrine environment, wind is the most important forcing factor for wave 

activity (Keddy 1982). An index of exposure was calculated for each study site 

based on fetch and direction/velocity of wind using the formula previously 

successfully used in lake vegetation studies by Keddy (1982), Weisner (1987) 

and Murphy et al (1994):

Ee = Y,\exceedance 9„x fetch J 

Where:

• Ee is the exceedance exposure index,

• Exceedance90 is the % of time during which winds of greater than 4.0ms'1 

velocity blew onto the shoreline at the sampling point per 90° quadrant of 

the compass rose. Modelled data for Loch Lomond was used here.
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• fetch90 is the mean fetch (in km) per quadrant, visible from the shoreline 

sampling point.

Exceedance values were calculated for each site using synthetic wind data 

generated by models developed for Loch Lomond (EU EUROLAKES project -  

www.eurolakes.com). This permitted much more accurate calculation of exposure 

values than had been possible previously using meteorological wind data from 

fixed points. This is because these fixed points are usually relatively distant from 

actual biological sampling points (in the case of Loch Lomond the closest 

available fixed point wind data was that recorded at Glasgow airport) and takes 

no account of local variation in wind due to factors such as small-scale 

topography. Average fetch per quadrant was calculated as the mean distance to 

the opposite shore, or visible land, for quadrants containing open water. At least 

four fetch values were measured per quadrant, but where the shoreline was 

complex, or islands were visible from the sampling point, up to four more 

measurements were made depending on the complexity of the shoreline. All 

fetch distances were measured in mm on a 1:25,000 map and converted into km.

With an exceedance value of 111.5, Ross Priory in the south basin was the most 

exposed of all the sampling sites. This site also had the highest recorded pH 

values. The sampling site at Inchlonaig, located in a small bay on the south shore 

of the island, was the most sheltered of the sampling sites and had an 

exceedance value of only 20. Inchlonaig had the highest phosphate and 

Biological Oxygen Demand (BOD) levels (Table 3.1). A general trend of 

increasing pH, BOD and phosphate levels was observed with the transition from 

the north to the south basin of Loch Lomond (Table 3.1).

http://www.eurolakes.com
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3.3 Methods

Chapter 3, 45

3.3.1 Field sampling methods

Fish collection

Fish were collected from each of 6 littoral study sites around Loch Lomond 

(Figure 3.1). Samples were collected seasonally, in winter (March and April 2002) 

and in summer (August and September 2002). Table 3.2 lists fish sampling 

dates. In all cases, nets were set on the bottom in the late afternoon, between 4- 

6 pm, and retrieved the following morning between 9 and 11 am. Initially four gill 

nets were set at each site (two nets of 0.8m x 21m, with a mesh size of 21mm; 

one net of 0.8m x 20m, with a mesh size of 21mm; and one net of 1.5m x 25m, 

with a mesh size of 23mm). In the event that the number of fish caught was 

below that required for the study (a minimum of 10 ruffe), more gill nets were 

reset at the same site the following day. If after a number of attempts, the number 

of fish caught in the nets remained below ten, fyke nets were also set. These 

were left in situ for a period of up to 7 days. At one site, Ross Priory, 

supplementary fish were also obtained from the water pumping station on the 

south shore of Loch Lomond (Figure 3.1). Fish trapped on band screens of 8mm 

mesh size were removed daily and frozen. The fish caught on the screens at the 

pumping station and by fyke net do not accurately reflect their relative abundance 

within the community (Adams and Maitland 1998) and were not used to establish 

community structure, but provided supplementary biomass offish where required.
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Inverhoulin

Rubha Mor

Ross Point

Loch Lomond

Sallochy Bay

Inchlonaig

Ross Priory

Figure 3.1 Map of Loch Lomond illustrating the location of sampling points.
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Invertebrate collection

Benthic invertebrate samples were collected from the littoral zone of 6 sites within 

Loch Lomond. Invertebrates were collected during the same sampling periods 

and at the same sites as fish. There are various recognised methods for the 

sampling of invertebrates such as kick and grab sampling. These methods vary 

in their effectiveness, depending on the physical conditions in the area to be 

sampled (Mackey 1972; Pearson et al. 1973). In this study, samples were taken

Table 3.2 Fish sampling dates. * indicates dates where fyke nets were in 
place, gill nets were used on all other sampling dates.

March April August September
Inverhoulin 18-19 14-15

19-20 15-16

Rubha Mor 18-19 4-9’ 10-11
19-20 9-17’ 11-12
28-29 17-25* 28-29

Ross Point 12-13 11-12
12-13

Sallochy Bay 29-30 17-18

Inchlonaig 20-21 1-6 13-14
21-22 4-9

9-17*
Ross Priory 20-21 3-4 14-15

21-22 6-7 16-17

using a modified airlift sampler developed as part of the study. Airlift samplers 

have an advantage over other sampling devices in that they can operate over a 

wider range of substrate types compared to alternative methods (Mackey 1972; 

Pearson et al. 1973). This allowed for the same sampling system to be used over



nazei Macieoa, zuu4 unapxer 40

the wide range of substrate types encountered within sampling sites in Loch 

Lomond.

The airlift sampler consisted of a 44.5cm length of curved PVCu pipe with a 

diameter of 15.5cm (Figure 3.2). The weights attached to the sampler ensure that 

the base of the sampler lies flat on the substrate giving an enclosed sampling 

area of 189 cm2 and allowing quantitative samples to be obtained from a very 

specific area. Compressed air from an air cylinder was directed down into the 

substrate by two copper pipes. This blast of air disturbed the sediment, which

Scale

0 cm 15 cm

Air inlet tube

WeightsCollecting net

>

Sample area =189 cm2

Figure 3.2 A modified airlift sampler.

with any attached invertebrates, was lifted in the air/water emulsion, up through 

the tube and deposited into a fine mesh (400pm) collection net placed over the 

opening of the tube (Mackey 1972; Southwood 1978). This sampler was 

designed to operate over a greater range of water depths than most airlift
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samplers (Mackey 1972; Pearson et al. 1973). The design of the sampler meant 

that this device could be deployed at depths of as little as 50cm and yet still 

function well at depths of 30m. Fifteen samples were collected at each site by 

administering a 10 second blast of air to disturb the substrate at a constant 

sampling depth of approximately 2.5 meters. Sampling was conducted at a depth 

of 2.5 meters at all sampling sites to reduce the confounding effects upon the 

invertebrate community of changes in depth throughout the littoral zone. In 

addition, two bulk samples consisting of five, 10-second blast samples were 

taken from each site to increase the weight of tissue available for analysis. The 

invertebrates from these additional samples were used purely to provide 

supplementary biomass for stable isotope analysis and not to determine 

community structure at the sampling locations.

3.3.2 Laboratory methods 

Fish

Once removed from the net, fish were identified and fork length and weight 

measurements taken prior to dissection. A sample of white muscle tissue from all 

fish caught was taken from an area on the flank, immediately posterior to the 

operculum. All bone and skin was removed from the tissue sample at this stage. 

The tissue was then placed in a glass vial and frozen immediately until further 

preparatory work could be carried out. Freezing and freeze drying have been 

found to be the only preservation methods that do not affect carbon and nitrogen 

stable isotope ratios (Bosley and Wainright 1999). For the principal study 

species, ruffe, additional tissue samples were also taken. The opercular bone
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was dissected from the right side and the liver was also removed. These tissues 

were frozen immediately in glass vials. Stomach contents were removed from 

ruffe by dissection. Only material present in the main stomach was removed for 

identification. Stomach contents were stored in 70% ethanol and subsequently 

identified to the lowest taxonomic level possible. A count was made of the 

number of prey items in each stomach.

Invertebrates

In the laboratory, invertebrate samples were emptied into plastic trays and hand 

sorted for a period of 30 minutes or until all invertebrates had been removed from 

the sample. The invertebrates were then identified to the lowest taxonomic level 

possible, counted, and frozen for further analysis. Any species which could not 

be identified (eight), were assigned a letter (A to H) and counted as a species in 

order to make an assessment of richness. Identification was made using 

Freshwater Biological Association identification keys and reference specimens 

from the Harry Slack Memorial Collection located at the University Field Station, 

Loch Lomond.

3.3.3 Procedure for determination o f dry weight 

measurements

After identification, fish tissue and whole invertebrate samples were transferred 

into pre-weighed vials. The material was dried at 60°C for at least 36 hours. After 

cooling in a desiccator, dry mass was determined to the nearest 0.01 mg.
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3.3.4 Preparation o f opercular bones for lipid extraction

Opercular bones were dissected from ruffe and any attached tissue removed 

using a scalpel. About 50mg of bone was placed in a 10ml glass vial for 

decalcification in order to remove the inorganic mineral phase of the bone. This 

was carried out so that an accurate mass for the collagen present in the sample 

could be determined, and also to remove any potential carbon contamination 

from carbonate preserved within the hydroxyapatite mineral of the bone (DeNiro 

and Epstein 1978). 5ml of 0.5 N HCI was added to the sample. This was agitated 

for 10 minutes and then refrigerated for 2-3 days. At the end of this period, to 

assess whether decalcification was complete, samples were removed from their 

vials and checked for flexibility. When it was possible to bend or squash samples 

easily, decalcification was deemed complete. If samples remained rigid, the acid 

was changed and the samples refrigerated for a further 2 days. Once 

decalcification was complete, the HCI was removed and the samples washed 5 

times with distilled water, then oven dried at 60°C to constant weight in 

preparation for lipid extraction.

3.3.5 Preparation o f samples for stable isotope analysis

All samples were dried and ground prior to stable isotope analysis. Fish muscle, 

liver and bone tissue samples were further treated to remove lipid. Due to small 

biomass levels it was not possible to remove lipid from invertebrate samples. 

Differences in the carbon isotopic composition of the major biochemical 

components of an organism have been identified by DeNiro and Epstein (1977). 

The lipid fraction is relatively depleted in 13C with respect to the other
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components such as protein and carbohydrate and also with respect to the total 

organism. The observed 13C depletion has been attributed to the process of 

oxidation of pyruvate to acetyl coenzyme A during the metabolism of glucose 

(DeNiro & Epstein 1977). Kinetic isotope effects during the pyruvate 

dehydrogenase reaction account for the 13C depletion of the lipid fraction 

observed in organisms as they exist in nature. As the basis of lipid synthesis is 

the same in all organisms, this depletion in 13C may affect ecological 

interpretations in most species.

Lipids were removed using the following method. Six ml of methanol: chloroform: 

water in the ratio 2:1:0.8 was added to the finely ground sample and agitated. 

The mixture was then spun down at 1800g in a centrifuge and 2 ml of water was 

added to the vial. Upon the addition of water, the solution separated into two 

distinct phases: an upper layer of methanol and water and a bottom layer of 

chloroform which contained the lipids. A large amount of lipid in the chloroform 

phase gave a milky appearance. The supernatant was decanted from the sample 

and discarded. The procedure was repeated until the supernatant remained clear 

when the water was added, indicating that all lipids had been successfully 

removed. In some cases it was necessary to repeat this step up to four times to 

achieve complete removal of lipids. Once all lipids had been removed, and the 

supernatant remained clear when water was added, the sample was washed 5 

times with water and the pellet of lipid-free tissue was dried at 60°C to constant 

weight. These lipid-free samples were reground prior to analysis.
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3.3.6 Stable isotope analysis of samples

Approximately 1 mg of tissue from each sample was loaded into a 4x6 mm tin 

capsule and combusted in a Carlo Erba C/N/S analyser (Thermoquest, Hemer 

Hempsted, UK) interfaced with a Finnigan Tracer Matt continuous flow isotope 

ratio mass spectrometer (CF-IRMS). All stable isotope ratios are reported in 

permil (%0) using the 8 notation according to the following equation:

SX =
D

sample

D
V j tan dard

- I x 1000

Where X is 13C or 15N and R is the corresponding ratio of 13C/12C or 15N/14N. 

Rstandard for 513C is the Pee Dee Belemnite and for £15N is atmospheric nitrogen 

(Smith et al. 1996; Ponsard and Arditi 2000). The precision with which 513C and 

515N can be measured is at least ±0.3%o, and previous work using the same 

machine has shown that replicate analysis of samples from fish, results in a very 

high degree of sample reproducibility (McCarthy and Waldron 2000).

Stable isotope analysis was carried out on white muscle, liver and opercular bone 

tissue of ruffe collected from all six sampling sites during the summer sampling 

period. Stable isotope analysis was also carried out on invertebrates collected 

from all six sampling sites within Loch Lomond (Appendix 2).

3.3.7 Baseline correction of isotope signatures

Due to the differences in the isotopic ratios of carbon 513C and nitrogen 615N 

available for uptake by organisms at the base of the food web, 515Nbase and 

513CbaSe have high spatial and temporal variation between, and within, aquatic
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systems (Toda and Wada 1990; Kling et al. 1992; Kline et al. 1993; Gu et al.

1994; Cabana and Rasmussen 1996). Without suitable estimates of baseline

515N and 513C values at each site, there is no way to determine if variation in lipid- 

free stable isotope signatures reflect changes in food web structure and carbon 

flow, or just variation in baseline^ isotopic signatures. Variation in 515Nbase and 

515Cbase is difficult to resolve using plankton because of the large temporal 

variability in isotopic signatures of small organisms that have fast tissue turnover 

(Cabana and Rasmussen 1996; Vander Zanden et al. 1997). Snail isotopic 

signatures at each of the six sampling sites were used in this instance to 

represent baseline values, as snail isotopic signatures have been shown to be a 

reliable indicator of baseline isotopic signature (Vander Zanden et al. 1999; Post 

2002). Baseline correction of stable isotope values was carried out according to 

Vander Zanden et al (1997) using the following formula:

Trophic position = [(organism 515N -  baseline 615N)/3.4] + 2

Where 3.4 represents a 1.0 trophic level increment in 515N.

3.4 Statistical Analysis

The degree of species diversity observed in the communities at each sampling 

site was determined using species richness scores, expressed simply as the 

number of species recorded at each sampling site (Stiling 2002). One major 

problem with this approach is that it does not take species abundance into 

account. To overcome this, the Shannon Weiner index was also calculated using 

the following equation.
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Where pt is the proportion of individuals found in the ith species and In is the

natural logarithm (Stiling 2002). The Shannon-Weiner index has an advantage 

over simple species richness scores in that it integrates an element of species 

abundance in the calculation of species diversity (Stiling 2002). The Shannon- 

Weiner index was also calculated for the stomach contents of fish at each site to 

give an indication of feeding niche width between sites. f-Tests (p>0.05) were 

employed to identify seasonal differences. Two way ANOVA was used to 

investigate differences in stable isotope signature between tissue types and sites.

3.5 Results

3.5.1 Are there differences in community structure 

between study sites?

Species richness and Shannon-Weiner scores were calculated for the combined 

fish and invertebrate communities at each of the six sampling sites in Loch 

Lomond (Table 3.3).

Figure 3.3 illustrates the species richness scores for each of the six sampling 

sites (winter and summer data combined). When combined community structure 

was explored over both sampling periods, the northern (Inverhoulin and Rubha 

Mor sites) and southern (Inchlonaig and Ross Priory sites) basins displayed 

similarities in terms of species richness. The two mid basin sampling sites (Ross 

Point and Sallochy Bay) produced the most extreme results. Despite the fact that 

these sites are geographically closer than the others, they lay at opposite ends of
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Table 3.3 Whole community diversity scores for sampling sites in Loch 
Lomond.

Species Richness 
Score

Shannon-Weiner
Score

Inverhoulin 27 2.28

Rubha Mor 28 2.64

Ross Point 23 1.91

Sallochy Bay 32 2.72

Inchlonaig 23 2.66

Ross Priory 28 2.37

the diversity scale. Sallochy Bay in the mid basin of Loch Lomond had the 

highest diversity recorded during sampling with a score of 32 while Ross Point, 

also located in the mid basin of the loch, had the lowest number of taxa with only 

23 recorded. Inverhoulin, the most northerly of all the sampling sites, and Ross 

Priory, the most southerly sampling site, had the same species richness score of 

28 (Figure 3.3).

35
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IH RM RP SB IL RPR

Figure 3.3 Loch Lomond whole (fish and invertebrate) community structure 
expressed as species richness. Winter and summer data combined. Sites are 
ordered from north to south, Inverhoulin (IH), Rubha Mor (RM), Ross Point 
(RP), Sallochy Bay (SB), Inchlonaig (IL) and Ross Priory (RPR).

332318202
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To incorporate an element of evenness into the exploration of whole community 

structure, the Shannon-Weiner Index was calculated. Data from both winter and 

summer sampling periods were combined to incorporate temporal changes which 

may occur due to seasonality (Figure 3.4).

The Shannon-Weiner scores display the same pattern as those of species 

richness. The sampling locations in the mid basin of the loch, Ross Point and 

Sallochy Bay, had the lowest and highest scores respectively. There was no 

evidence of a predictable pattern of community structure emerging with the 

transition from the north to the south basin of Loch Lomond, despite the general 

trend of increasing pH, BOD and phosphate level at the more southerly sampling 

sites (Table. 3.1).

*//////////
V / / / / / / / / /V / / / / / / / / /
V / / / / / / / / /V / / / / / / / / /V / / / / / / / / /
V / / / / / / / / /'//////////
fy ////////*
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IH RM RP SB IL RPR

Figure 3.4 Loch Lomond whole (fish and invertebrate) community structure 
expressed as a Shannon-Weiner score. Winter and summer data combined. 
Sites are ordered from north to south, Inverhoulin (IH), Rubha Mor (RM), 
Ross Point (RP), Sallochy Bay (SB), Inchlonaig (IL) and Ross Priory (RPR)
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To examine further the structure of the fish and invertebrate communities at each 

of the sampling sites, samples collected during the winter and the summer 

sampling periods were examined separately. As may be expected, species 

richness scores were significantly higher (t = -19.295, P = 0.001) for invertebrate 

communities examined than for fish communities (Figure 3.5). Once again the 

major difference in species richness scores lay between the mid basin sites of 

Sallochy Bay and Ross Point. However, the most northerly of the sampling sites, 

Inverhoulin, displayed the lowest fish species richness score.

30

25

(0
2 20 c £O
S 15 (0 © o
•  10Q .

GO
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Fish community

IH RM RP SB 
RPR

Invertebrate community

IL RPR SB IL

Figure 3.5 Fish and invertebrate species richness for combined winter and 
summer data. Sites are ordered from north to south, Inverhoulin (IH), 
Rubha Mor (RM), Ross Point (RP), Sallochy Bay (SB), Inchlonaig (IL) and 
Ross Priory (RPR).

Shannon-Weiner scores were also calculated separately for the fish and 

invertebrate communities at each of the sampling sites. Once again, Sallochy
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Figure 3.6 Fish and invertebrate Shannon-Weiner scores for combined 
winter and summer data. Sites are ordered from north to south, Inverhoulin 
(IH), Rubha Mor (RM), Ross Point (RP), Sallochy Bay (SB), Inchlonaig (IL) 
and Ross Priory (RPR).

Bay displayed the highest Shannon-Weiner score for both fish and invertebrate 

communities while Inverhoulin had the lowest score (Figure 3.6).

Fish catches were dominated by large numbers of perch (Perea fluviatilis) at all 

sites except for Sallochy Bay where ruffe made up 45% of the catch and was the 

most common species caught in gill nets . Table 3.4 details catch per unit effort 

data for fish collected from the six sampling sites on a seasonal basis. The 

pattern of dominance in catch of perch at sampling sites is reflected in the 

Shannon-Weiner scores (Figure 3.6). The three more northerly sites, Inverhoulin,
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Figure 3.7 Fish catches in Loch Lomond reported as the % of all fish caught.

Rubha Mor and Ross Point, where perch and ruffe made up more than 92% of 

the catches, had low Shannon-Weiner scores. Perch and ruffe also dominated 

the southern basin sites of Inchlonaig and Ross Priory but the percentage of 

these species caught in gill nets was lower at 72% and 76% respectively. Figure 

3.7 illustrates the total percentage of fish caught over the two sampling seasons
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3.5.2 Are there seasonal differences in community 

structure within sites?

Species richness scores were calculated separately for fish and invertebrates in 

summer and winter. A paired f-test was performed on this data to establish if site 

community structure changed significantly with season.

The paired f-test demonstrated that there was no significant difference in fish 

species richness scores between summer and winter (f = -0.52, P = 0.632).

Winter
Invertebrates

Summer
Invertebrates

Winter Fish Summer Fish

■  I H 0 R M B R P H S B 0 L H  RPR

Figure 3.8 Species richness for fish and invertebrate communities in Loch 
Lomond sampled in winter (03/02) and summer (09/02). Sites are ordered 
from north to south, Inverhoulin (IH), Rubha Mor (RM), Ross Point (RP), 
Sallochy Bay (SB), Inchlonaig (IL) and Ross Priory (RPR)
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Neither was there any clear pattern of change evident in invertebrate species 

richness between the two sampling periods (t = -0.50, P = 0.636).

In winter, Sallochy Bay fish and invertebrate species richness scores were higher 

than those for all other sampling sites. During the summer sampling period, the 

fish community species richness between sites was much more uniform, with a 

difference of only 2 between the minimum and maximum scores compared to 

that of the winter period where there was a difference of 5 (Figure 3.8). The same 

trend was observed for the difference in minimum and maximum species 

richness scores of the invertebrate communities between sites. This decreased 

from 10 in winter to 8 in the summer sampling periods (Figure 3.8).

As was the case with species richness scores, paired f-tests revealed no 

significant differences in Shannon-Weiner scores between sites in the two 

sampling periods for invertebrates (t = -1.34, P = 0.23) or fish (t = -1.08, 

P=0.328). Overall, there seems to be no clear differences in structure except for 

fish in summer where the Shannon-Weiner score apparently increased from the 

north to the south basin of Loch Lomond. A two-sample t test was carried out on 

this summer data and demonstrated that the increase in Shannon-Weiner scores 

from the north to the south basin of Loch Lomond was significant (t=6.07, 

P=0.02).
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2.50

Winter 
Invertebrates

Summer 
Invertebrates

Winter Fish Summer Rsh

□  RPR

B IH 0  RM g  RP El SB Q IL □  RPR

Figure 3.9 Shannon-Weiner Scores for fish and invertebrate communities in 
Loch Lomond sampled on a seasonal basis. Sites are ordered from north to 
south, Inverhoulin (IH), Rubha Mor (RM), Ross Point (RP), Sallochy Bay 
(SB), Inchlonaig (IL) and Ross Priory (RPR).

3.5.3 Stomach Contents

To determine variability in diet choice, ruffe stomach contents were removed and 

identified (Table 3.6). Species richness (Table 3.5) and Shannon-Weiner scores 

(Figure 3.10 and Figure 3.11) were calculated in order to provide an indication as 

to the diversity and evenness of species ingested by ruffe at each of the six study 

sites. This was carried out for individuals collected from each site during the 

summer and winter sampling periods.
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Table 3.5 Species richness scores of ruffe stomach contents

Ruffe Stomach Contents Species Richness

Winter Summer Combined

Inverhoulin
3 10 11

Rubha Mor
6 12 12

Ross Point
2 4 5

Sallochy Bay
6 12 12

Inchlonaig
4 7 11

Ross Priory
5 9 8

There was a significant difference in species richness scores of ruffe stomach 

contents between winter and summer (paired t = 5.81, P = 0.002). In all cases 

the number of species present in the stomach contents was higher in summer 

than in winter. Table 3.6 provides details on ruffe stomach contents from each of 

the sampling sites during both the winter and summer sampling periods.

Gammaridae and chironomidae larvae were present in stomach contents of ruffe 

from all sites collected during the summer sampling period however there was no 

common species recorded in stomach contents during the winter sampling 

period. The stomach contents of ruffe caught at the sampling site at Ross Point 

had the lowest species richness in both winter (2) and summer (4) while fish from 

Sallochy Bay and Rubha Mor had the highest stomach content species richness 

scores in winter (6) and in summer (12) (Table 3.5).



Ta
bl

e 
3.6

 
Ru

ffe
 

sto
m

ac
h 

co
nt

en
ts

 
for

 
ea

ch
 

of 
the

 
sa

m
pl

in
g 

sit
es

 
in 

wi
nt

er
 

an
d 

su
m

m
er

.

Ro
ss 

Pr
io

ry Su
m

m
er

% X S X S X X X X X X

W
in

te
r

X X \ X X X X X X S N X X X X

In
ch

lo
na

ig

Su
m

m
er

\ \ X S X X X S S S S X X X X X X

<u■4-1c
5

X X X X X X X s s X X X X X X

Sa
llo

ch
y 

B
ay

L.0)
a
a3

CO

X X X \ \ X \ S X S S

W
in

te
r

X N S X X X X S s X X X X X X

Ro
ss 

Po
in

t

Su
m

m
er

X X X X X X X S X % X % X X X X

W
in

te
r

X X X X X X X S X X X X X X X S X

Ru
bh

a 
M

or

Su
m

m
er

S X S X s S % S S S X S s X X

W
in

te
r

\ X \ X X X X s X X X \ X X X

In
ve

rh
ou

lin

Su
m

m
er

S X \ X \ X S X s s X X X

W
in

te
r

X X S X X X X % S X X X X X X X X

/

C
la

do
ce

ra
C

op
ep

od
a

A
se

lli
da

e
Sp

ha
er

iid
ae

Ph
ys

id
ae

Co
leo

pt
er

a 
pu

pa
Co

leo
pt

er
a 

la
rv

ae
G

am
m

ar
id

ae
C

er
at

op
og

on
id

ae
C

hi
ro

no
m

id
ae

L
ar

va
e

Ch
iro

no
m

id
 

pu
pa

E
ph

em
er

op
te

ra
Pl

ec
op

te
ra

T
ri

ch
op

te
ra

H
em

ip
te

ra

CA0£
OX

w H
yd

ra
ca

ri
na



Ruffe stomach content data was also expressed as Shannon-Weiner scores. 

There were no significant difference between sites in mean Shannon-Weiner 

values of ruffe stomach contents collected in winter (F5i64 = 0.797, P= 0.556). 

Rubha Mor fish had the highest stomach content Shannon-Weiner value of 0.39 

while Ross Priory had the lowest value of 0.13 (Figure 3.10).

1.2 

1.0

"O
"  .8
-H 
!_
°  ec .6 
©
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o 0.0s
-.2 

-.4
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SITE

Figure 3.10 Shannon-Weiner scores (scores ± 1 standard deviation) for 
stomach contents of ruffe collected during the winter sampling period. Sites 
are ordered from north to south, Inverhoulin (IH), Rubha Mor (RM), Ross 
Point (RP), Sallochy Bay (SB), Inchlonaig (IL) and Ross Priory (RPR).

However, there were significant differences in stomach content Shannon-Weiner 

values between the six sampling sites sampled in summer (F5i79 = 5.016, 

P<0.001). Multiple comparison tests demonstrated that Ross Point was 

significantly different from Sallochy Bay (p=0.007), Inchlonaig (p=0.001) and from 

Ross Priory (p=0.009) Inchlonaig had the highest stomach contents diversity 

score while Ross Point had the lowest score and lowest variance (Figure 3.11).



Figure 3.11 Shannon-Weiner scores (± 1 standard deviation) for stomach 
contents of ruffe collected during the summer sampling period. Sites are 
ordered from north to south, Inverhoulin (IH), Rubha Mor (RM), Ross Point 
(RP), Sallochy Bay (SB), Inchlonaig (IL) and Ross Priory (RPR)

3.5.4 Stable Isotope Analysis

Are there seasonal differences in isotopic signature between sites?

White muscle tissue was dissected from ruffe collected at all six sampling sites in 

both the winter and summer sampling periods and analysed to determine if there 

was any shift in the isotopic signature of this tissue with changing site and 

season. All stable isotope results and values quoted have been baseline 

corrected.
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Figure 3.12 Mean 615N stable isotope signature of ruffe muscle tissue ± 1 
standard deviation illustrating seasonal differences within sites. Sites are 
ordered from north to south, Inverhoulin (IH), Rubha Mor (RM), Ross Point 
(RP), Sallochy Bay (SB), Inchlonaig (IL) and Ross Priory (RPR) for winter 
and summer data. An arrow box containing a probability value marks 
significant differences in stable isotope signature between summer and 
winter within a single site. All quoted isotope values are baseline corrected.

Figure 3.12 illustrates that there was a significant difference between sites in the 

mean 515N stable isotope signature of ruffe white muscle tissue recorded in 

winter (F5i72 =6.185, P < 0.01) and summer (F5t84 = 12.496, P = 0.01). This 

suggests that ruffe in different sites are feeding on isotopically distinct prey items. 

When all sampling sites were considered together, there was also a significant 

difference in ruffe muscle 515N signatures between the two sampling periods, 

winter and summer (t166 = -3.348, p = 0.01) suggesting that changes in dietary 

preferences take place on a seasonal basis. Mean 515N values decreased very 

slightly but not significantly between winter and summer at Rubha Mor in the north 

basin, and at Inchlonaig in the south basin of the loch. Fish tissues at all other



sampling sites were enriched in 15N between sampling periods and this was 

statistically significant for Ross Point (t = -36.012, p = 0.001) where there was no 

overlap in the standard deviation of muscle 515N between seasons. This was also the 

case at Ross Priory (t = -36.380, p = 0.001), suggesting that there was a dramatic 

shift in dietary preferences at these sites between seasons (Figure 3.12).

Ruffe white muscle tissue values exhibited a significant difference in mean 513C 

values between sites in summer (F5i84 = 7.906, P < 0.01) and winter (F5(72 = 

2.775, P = 0.024) (Figure 3.13). However there was no significant difference in

P=0.007
o

o
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Figure 3.13 613C stable isotope signature of ruffe muscle tissue (mean ± 1 
standard deviation) for summer and winter sampling periods. Sites are 
ordered from north to south, Inverhoulin (IH), Rubha Mor (RM), Ross Point 
(RP), Sallochy Bay (SB), Inchlonaig (IL) and Ross Priory (RPR) for winter 
and summer data. An arrow box containing probability value marks 
significant differences in stable isotope signature between summer and 
winter.
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seasonal 513C signatures (t166 = 1.366, p = 0.174) suggesting that carbon 

signatures and sources remain relatively constant within Loch Lomond over time 

(Figure 3.13).

Variation in isotopic signature between tissues

A One-Way ANOVA was carried out to explore the differences in isotopic 

signature of the three ruffe tissue types (white muscle, liver and bone). There 

were highly significant differences in the 515N isotopic signatures of these three 

tissues (F2 , 267 = 40.042, P < 0.001) and a multiple comparison test revealed that 

differences in isotope signature were highly significant between muscle and liver, 

(t = 1.7818, P = 0.001), muscle and bone (t = 1.0056, P = 0.001) and liver and 

bone (f = -0.7762, P = 0.001) (Figure 3.14). This is most likely due to the differing

11

6

5
Bone MuscleLiver

TISSUE



tissue turnover rates, which in turn reflect the dietary preferences of ruffe as they 

change seasonally and as a result of increasing body size.

There were also highly significant differences in the mean 515N signatures of 

muscle (F5i84 = 12.496, P < 0.001), liver (F5i84 = 7.237, P < 0.001) and bone (F5t84 

= 8.714, P < 0.001) tissues between sites (Figure 3.15). Once again a multiple 

comparison test was carried out to identify differences in isotopic signature of 

muscle tissue (Table 3.3), liver (Table 3.4) and bone (Table 3.5) between sites.

Table 3.7 Multiple comparison of muscle 81SN signatures between sites. P 
values are provided for sites which were significantly different.

' Inverhoulin Rubha Mor Ross Point
Inverhoulin - - -

Rubha Mor 0.001 - -

Ross Point 0.001 -

Sallochy Bay 0.002
Inchlonaig 0.001 0.001
Ross Priory 0.005

Table 3.8 Multiple comparison of liver 815N signatures between sites. P values 
are provided for sites which were significantly different.

'  — Inverhoulin Rubha Mor Ross Point
Inverhoulin - - -

Rubha Mor 0.001 - -

Ross Point 0.001 -

Sallochy Bay 0.008
Inchlonaig 0.041 0.006
Ross Priory



Table 3.9 Multiple comparison of bone 815N signatures between sites. P 
values are provided for sites which were significantly different.

' Inverhoulin Rubha Mor Ross Point
Inverhoulin - - -

Rubha Mor 0.040 - -

Ross Point 0.001 0.010 -

Sallochy Bay 0.028 0.015
Inchlonaig 0.001
Ross Priory 0.040 0.010

Ruffe white muscle tissue was consistently enriched in 15N relative to bone and 

liver tissue from the same site. Liver stable isotope signatures, which reflect 

recent diet, are generally less enriched in 815N while bone signatures, which 

integrate dietary preferences over a longer time scale, tend to show intermediate 

enrichment. This suggests that dietary preferences have altered temporally at 

each site and this change is reflected in the stable isotope signature of muscle 

and liver. Bone isotopic signatures were intermediate between muscle and liver 

signatures and from this it would seem that bone isotopic signatures reflect 

overall change as would be expected from a tissue capable of long term 

integration.
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Figure 3.15 Mean dl5N ± 1 standard deviation of muscle, liver and bone 
samples collected from ruffe at each of the sampling sites. Sites are ordered 
from north to south, Inverhoulin (IH), Rubha Mor (RM), Ross Point (RP), 
Sallochy Bay (SB), Inchlonaig (IL) and Ross Priory (RPR).

There were also changes in the variance associated with tissue type at the same 

site. The standard deviation of liver, which has a short turnover time, is relatively 

high compared to that of muscle and bone at the same site with the exception of 

Ross Point. This suggests that there have been recent changes in the range of 

prey taken. This change in feeding niche width (Bearhop et al. 2004) is also 

accompanied by a reduction in mean S15N values at this site.

A One-Way ANOVA, carried out to explore the differences in 513C of the three 

ruffe tissue types (white muscle, liver and bone) was also highly significant (F2i 2qi 

= 25.610, P = 0.001) (Figure 3.16). Once again this is most likely a function of the 

differing tissue turnover rates, which will reflect temporal changes in ruffe dietary

t



preferences or may possibly reflect a seasonal change in baseline 513C 

signatures.
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Figure 3.16 Mean bone, liver and muscle tissue 613C+ and -  1 standard 
deviation for all summer sites combined.

Mean 513C signatures also displayed highly significant differences in the 

signature of muscle (F5i84 = 7.906, P < 0.001), liver (F5i84 = 5.988, P < 0.001) and 

bone (F5i84 = 8.102, P < 0.001) tissues between sites (Figure 3.17). A multiple 

comparison test was carried out to identify differences in isotopic signature of 

muscle tissue (Table 3.3), liver (Table 3.4) and bone (Table 3.5) between sites.

Muscle

TISSUE
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Table 3.10 Multiple comparison of muscle 813C signatures between sites, p 
values are provided for sites which were significantly different.

Inverhoulin Rubha
Mor

Ross
Point

Sallochy
Bay

Inchlonaig Ross
Priory

Inchlonaig 0.001 0.024 - -

Ross
Priory

0.026 0.005 0.001 -

Table 3.11 Multiple comparison of liver S13C signatures between sites, p 
values are provided for sites which were significantly different.

Inverhoulin Rubha
Mor

Ross
Point

Sallochy
Bay

Inchlonaig Ross
Priory

Inchlonaig 0.004 - -

Ross
Priory

0.042 0.021 0.001 -

Table 3.12 Multiple comparison bone of 813C signatures between sites, p 
values are provided for sites which were significantly different.

Inverhoulin Rubha
Mor

Ross
Point

Sallochy
Bay

Inchlonaig Ross
Priory

Ross Point 0.003 - - - -
Sallochy
Bay

0.034 - - -

Inchlonaig - -
Ross
Priory

0.002 0.001 0.000 -

Muscle tissue was consistently enriched in 13C relative to liver (Figure 3.16). This 

was the case at all sampling sites (Figure 3.17). However, muscle tissue was 

depleted in 13C relative to bone. Bone stable isotope signatures were consistently 

enriched in S13C compared to liver and muscle tissues at all sites. Liver tissue 

was the most depleted in §13C and muscle tissue values lie between the two. 

Unlike 515N, standard deviation values for 513C remained relatively constant 

within sites with the exception of Sallochy Bay.
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Figure 3.17 Mean dl3C ± 1 standard deviation of muscle, liver and bone 
samples collected from ruffe at each of the sampling sites. Sites are ordered 
from north to south, Inverhoulin (IH), Rubha Mor (RM), Ross Point (RP), 
Sallochy Bay (SB), Inchlonaig (IL) and Ross Priory (RPR).

3.6 Discussion

Within Loch Lomond there was significant spatial (between site) and seasonal 

variation in a range of physiochemical and community structure attributes. 

Amongst the physiochemical variables, there was a 5 fold variation in site 

exposure, a 12 fold variation in beach slope, 2.5 fold variation in BOD and an 8 

fold variation in total phosphate concentrations (Table 3.1). Amongst the 

biological characteristics of the sites, there was variation in community species 

richness scores which ranged from 23-32, and also in community diversity scores 

which ranged from 1.8 -  2.7 between sites. There was also evidence of 

significant trophic variation in one ubiquitous fish species (the ruffe) between 

sites. Species richness scores of ruffe diet ranged from 2 and 12 and Shannon
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richness scores of ruffe diet ranged from 2 and 12 and Shannon Weiner diversity 

scores also varied significantly between sites (range 0.02 to 0.59).

3.6.1 Are there differences in community structure 

between study sites?

The sampling sites within Loch Lomond were chosen as a result of differences in 

their physical properties. This diversity of habitats within Loch Lomond may 

create an opportunity for more spatial heterogeneity in community structure at 

particular sampling sites. It has been suggested that these differences in habitat 

complexity can have a strong influence upon community structure by affecting 

encounter rates between predators and prey (Jeffries and Lawton 1984; Werner 

and Gilliam 1984; Jeffries and Lawton 1985; Werner 1986). Within Loch Lomond, 

sampling sites in the north and south basins were similar in community structure 

however, the mid basin sites of Ross Point and Sallochy Bay produced the most 

extreme results, lying at opposite ends of the diversity scale. It may be expected 

that diversity would be highest in the mid basin of the loch, as organisms here 

are not exposed to the more extreme physical conditions in the north and south 

basins. This would explain the high diversity values reported at Sallochy Bay. 

Ross Point however, had the lowest of all diversity scores, despite its location in 

the mid basin of the loch. This site had an exposure value of almost double that 

of Sallochy Bay which may explain the low diversity score.

Loch Lomond is a northern temperate loch and displays typical patterns of 

seasonality with different prey peaking in availability at different times (Keast 

1979). Despite this, there was no clear pattern of change in community structure 

over the two sampling periods suggesting that the community structure at the
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sampling sites examined within Loch Lomond remains relatively stable between 

seasons.

3.6.2 Stomach Contents

The availability of prey changes seasonally in temperate lakes (Keast 1979), and 

this was reflected in stomach contents of ruffe, with an increase in the number of 

species present between summer and winter and in some cases a doubling of 

this value was recorded between sampling periods. Ross Point had the lowest 

score and lowest variance possibly due to the relatively simple community 

structure at this site (Figure 3.11).

3.6.3 Are there seasonal differences in isotopic 

signature between sites?

The interpretation of stable isotope ratios relies on the assumption that the 

isotopic composition of the animal reflects that of its diet (Gannes et al. 1997). 

Trophic enrichment factors, from diet to tissue for carbon (1%o) and nitrogen 

(3.4%0) have been well established and applied in many investigations (DeNiro 

and Epstein 1978, 1981; Rau et al. 1983; Minagawa and Wada 1984; Vander 

Zanden and Rasmussen 2001). Within Loch Lomond, there were seasonal 

differences in the stable isotopic signature of ruffe between sampling sites. Over 

all sites the greatest seasonal variation observed in 515N was 3.19%o. Since the 

trophic enrichment factor for nitrogen has been established as 3.4%0 per trophic
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level, the observed seasonal variation of 3.19%o can be said to equate to 0.9 

trophic level. In 513C the greatest variation observed was 4.79%o.

3.6.4 Variation in isotopic signature between tissues

The level of within tissue variation differed among the three tissue types analysed 

(muscle, liver and bone). The greatest variation was found for the 813C 

composition of liver. This is most likely due to the fast turnover of carbon in liver 

tissue where changes in isotopic composition of the diet can be reflected in the 

liver within days (Gaston and Suthers 2004). Bone had the least variation of all 

tissues for both 513C and 815N, probably due to the relatively slow turnover rate of 

bone (2-10 years, (Burnstead 1985)).



Hazel Macleod, 2004

Chapter 4. Variation in 815N as a Measure of 

Trophic Niche Width

The aim of this chapter was to explore a novel technique for estimating trophic 

niche width using the population standard deviation of measurements of the 

stable isotope ratios of N (815N). The possible strengths and some weaknesses of 

this approach are discussed and the use of standard deviation of 815N is tested 

against more traditional estimates of trophic niche width such as stomach 

contents analysis. The following hypothesis are explored:

• There are significant potential strengths in using 515N as a measure of 

trophic niche width. These are:

o 515N integrates over a more ecologically realistic time scale 

compared with more traditional methods such as diet estimated 

from stomach contents analysis which provide only an 

instantaneous ‘snapshot’ of dietary preferences.

o It provides a single scale over which differing diets can be 

compared. This allows direct comparison amongst individuals, 

populations, and species through the arrangement of species 

along a single diversity scale.

o Data collection can be fast and potentially non-destructive in some 

species.

o The integration period can be modified by choosing different tissue 

types. Liver integrates over a number of days (Hobson and Clark
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1992a; Gaston and Suthers 2004), muscle integrates over weeks 

(Hobson and Clark 1992a; Gaston and Suthers 2004) and bone 

integrates over several months or years (Bumstead 1985; Hobson 

and Clark 1992b).

• Using a simple but realistic model of likely standard deviations in 515N 

(gathered from the literature), it is possible to produce estimates of the 

statistical precision of limits of change using 815N as in index of trophic 

niche width. Based on this model, it is predicted that:

o Foraging specialist populations (with low standard deviation in 

815N) would require a smaller numerical change in n standard 

deviation than would a generalist population in order to be 

detectable

o The top 20% of each of the tails of the normal distribution of diet 

variability would have to shift by at least 0.068 trophic levels in 

extreme specialist and 0.232 trophic levels in an extreme 

generalist population to be statistically detectible.

The ability of S15N to predict more traditional methods of trophic niche width 

measurement is explored by comparing standard deviation in 815N of ruffe tissue 

from the six Loch Lomond sites with a more traditional measure of trophic niche 

width (the Shannon-Weiner Index of stomach contents).

Having established a sound basis for the use of S15N as a measure of niche width 

the following was then carried out.
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• An examination of the possibility that variance in 515N can be used to 

separate population from individual generalism.

• Empirical data was used to test the relationship between trophic niche 

width and variance in 815N.

• The potential precision of the use of S15N for the estimation for trophic 

niche width was quantified using published data.

4.1 Introduction

The theoretical basis for the use of 815N as a means of estimating trophic niche 

width in consumers is explored. A part of this chapter forms the basis of a 

published paper (see Appendix 1).

4.1.1 Trophic niche width and its estimation

The term niche was used by (Hutchinson 1957) to describe the range of physical 

and biological conditions, including limiting resources, required by a species in 

order to maintain a stable or increasing population size. Hutchinson’s definition is 

that of an n-dimensional hypervolume, where the n dimensions correspond to 

independent physical and biological variables that affect the abundance of that 

species. The range of values of each of these variables within which the 

individual or population can persist is known as niche width.

Trophic niche explored through conventional dietary analysis is the most reliable 

and frequently studied element of niche space (Hyslop 1980; Bearhop et al. 

2004). Dietary analysis provides detailed information on the range of prey items 

consumed by individuals and has the potential to yield information on prey
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preferences of the study organism (Post 2002). However, this type of dietary 

analysis does have a number of drawbacks (Zerba and Collins 1992; Schindler et 

al. 1997). A major disadvantage is that it provides only an instantaneous 

snapshot of dietary preference at a particular point in time (Grey 2001), yet many 

animals are highly opportunistic foragers and their diet may vary substantially 

over time (Pinnegar and Polunin 1999; Post 2002). Furthermore, the method is 

cumbersome and labour-intensive, and under-estimates and over-estimates of 

the relative abundance of prey items are common since the technique does not 

account for differing rates of digestibility or differences in prey assimilation rates 

(Grey 2001; Bearhop et al. 2004). An alternative to dietary analysis, which is 

used increasingly by ecologists to determine trophic relationships, is that of 

stable isotope analysis (Peterson and Fry 1987; Hobson and Wassenaar 1999). 

Although this technique does not give the detailed picture of dietary preferences 

provided by gut content analysis, stable isotope analysis can provide an average 

estimate of an organisms preferred diet which is much less subject to temporal 

bias and also takes into account not just ingested but assimilated food (Hesslein 

et al. 1993; Postet al. 2000).

The problems associated with determining trophic relationships in natural 

ecosystems are a major obstacle to our understanding of ecosystem processes 

(Paine 1988; Yoshioka and Wada 1994). In order to produce a useful and robust 

alternative measure of trophic niche width, there are a number of criteria which 

should be met. Firstly, it is essential that a direct comparison along a single 

diversity scale of individuals, populations and species can be made regardless of 

their location, dietary preference or trophic level (Bearhop et al. 2004). For 

example, it is usual to find studies of stomach content analysis to include dietary 

items identified to class, family, genus and species mixed within a single study 

(Vander Zanden et al. 1999), thus real dietary diversity is difficult to determine.
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This is the criterion least frequently met by current techniques and is a stumbling 

block to comparative studies. Secondly, the ability to determine the diversity of 

dietary composition with regards to richness and evenness of assimilated dietary 

components is also very important. Finally, as an organism’s diet may display 

both spatial (France 1995; Vander Zanden and Rasmussen 1996) and temporal 

(Post 2002) variation with changing season and stage of development (Magnan 

and FitzGerald 1984; Werner and Gilliam 1984; Werner 1986), the integration of 

dietary information over different time scales, preferably from a single sampling 

event is important (Bearhop et al. 2004).

4.2 The use of stable isotope analysis to determine 

trophic niche width

Stable isotope ratios of nitrogen and carbon have been used increasingly by 

ecologists to elucidate patterns in food webs (Peterson and Fry 1987; Kling et al. 

1992; Cabana and Rasmussen 1994; Bearhop et al. 2004; Grey et al. 2004). 

Despite this, little attention has been given to the variation associated with mean 

isotopic signatures within communities (Bearhop et al. 1999; Genner et al. 1999). 

The potential application of this variance in stable isotope signature as a 

measure of trophic niche width is theoretically sound and simple to use (Bearhop 

et al. 2004). The technique meets all the criteria set out in section 4.2 and has 

the potential to produce a dynamic measure of trophic niche breadth.

Within any community, one would expect to see a degree of variance in individual 

stable isotope signatures around a group mean (Bearhop et al. 1999). The extent
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of the variance exhibited by a community will be governed by the following 

factors.

1. The range of isotopically distinct prey species consumed. In general, a 

population of animals which consume a wide range of prey species 

would be expected to exhibit a wider variation in isotopic signatures 

than those consuming a narrow range of prey.

2. The evenness of prey components in the diet over time is also 

important. Populations where individuals consume widely differing 

proportions of each of their prey items over time would be expected to 

show more variation in tissue stable isotope ratios than those which 

consume a consistent proportion of each prey.

3. The range of trophic levels from which prey is drawn also affects 

variance. Populations where individuals consume prey from a broad 

spectrum of trophic levels would be expected to show more isotopic 

variance than those which feed on prey species drawn from one 

trophic level

4. Geographic foraging area would also be expected to play a role in 

determining variance in stable isotope signature. Studies have 

demonstrated that spatial differences in stable isotope signatures are 

commonplace, even within single lake ecosystems (Angradi 1994; 

France 1997; Vander Zanden et al. 1999). Since this variation at the 

base of the food web will propagate through to higher levels, 

populations where individuals forage in a range of geographic areas

would be expected to show more variation in the stable isotope 

signatures of their tissues than those from less mobile populations.
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5. Stable isotope signatures can also be affected by variability in 

individual physiology. Physiological differences among individuals 

within a population, or within the same individual over time will result 

in variance in tissue isotope signature. For example variability in 

metabolic rates may lead to inter-individual variation in tissue isotope 

signatures (observed during studies of captive individuals, (Hobson 

and Clark 1992b; Bearhop et al. 2002). Furthermore, it has been 

reported that the tissues of individuals in poor nutritional condition 

have elevated 15N compared to those of individuals of better condition 

(Hobson et al. 1993). It is likely that the influence this may have on 

population or serially sampled individual variance will be small and will 

manifest in noise, rather than causing error between populations or 

individuals. Nevertheless, more work is required in this area as 

despite recent advances, our understanding of how variability in 

physiology influences tissue stable isotope signatures is still limited.

6. Finally, variability in diet-tissue fractionation must also be considered. 

Diet-tissue isotopic fractionation may vary with the type of food being

consumed (France and Peters 1997; Vander Zanden and 

Rasmussen 2001; Post 2002; McCutchan et al. 2003) or through

differential mobilisation of stored resources (Adams and Sterner

2000). However, since enrichment factors for the same tissue type

fuelled by different diets differ by up to 2%o for S15N and by just over

1%o for 813C (Hobson and Clark 1992b; Haramis et al. 2001; Bearhop

et al. 2002), this degree of variability ought only to account for a large

proportion of the variance when the dietary isotopic variance is small.
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In order that variance in mean isotopic signature can be used as a useful 

measure of trophic niche breadth, there are a number of conditions which must 

be met.

1. It is essential that the isotopic signature of prey items available to 

consumers exhibit differences in stable isotope signature. If this variation 

were not evident, further consideration of niche width (through 

examination of consumer isotopic variance) would be useless (Matthews 

and Mazumder 2004). The validity of this assumption can be verified by 

direct measurement of the isotopic signature of potential prey items 

(Matthews and Mazumder 2004).

2. Isotopic signatures and diets of prey species should remain relatively 

constant over time at the base of the food web. Studies (Zohary et al. 

1994; Post 2002; Matthews and Mazumder 2003) have demonstrated that 

baseline isotopic signatures can be affected by temporal shifts in nutrient 

inputs and primary production. Furthermore, dietary preferences of the 

target species for particular prey items may change over time (Post 2003). 

As long as the variance caused by these elements is less than the 

* jsrisnce resulting from a consumer dietary shift (revealed by sampling of 

prey items), stable isotope variance is likely to remain a robust measure 

of trophic niche width.

Adopting the appropriate tissue (i.e. bone, liver or muscle) for stable isotope 

analysis is important because tissues and tissue components differ in turnover 

rate, and hence, the temporal resolution for dietary analysis differs among them 

(Tieszen et al. 1983; Schoninger and DeNiro 1984; Sholto-Douglas et al. 1991; 

Hobson and Clark 1992b; Hesslein et al. 1993; O'Reilly and Hecky 2002). In a
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population of generalists, variability in diet amongst individuals would be 

expected to exist at only shorter temporal scales, and this variation is likely to 

become lost through averaging of stable isotope signature over longer periods. In 

such a situation, tissues with integration times shorter than the period of niche 

width assessment will likely provide a better indicator of niche width. For 

example, where a whole population shifts diet synchronously is to be compared 

with another population that doesn’t, serial sampling of tissues which integrate 

relatively short-term information would be required. As is the case when 

employing more traditional approaches to the study of trophic niche width 

(Bearhop et al. 2004), the detail of the question being asked will determine the 

most appropriate choice of tissue.

4.3 Is it possible to discriminate between 

population and individual generalism?

Where a generalist feeding strategy is identified, it is important to attempt to 

determine w'hether the pattern is evident for the population as a whole or purely 

on an individual basis. Two types of generalist feeding have been identified. A 

Type A generalist population is characterised by generalist individuals all taking a 

wide range of food types, whereas a Type B generalist population is composed of 

individuals each specialising on a different but narrow range of food types (Van 

Valen 1965; Grant et al. 1976). Using conventional methods to address this 

problem has required labour intensive field observations and often populations of 

identifiable individuals (Bearhop et al. 2004). However, either by serial sampling 

or utilising the differential rate of tissue turnover, stable isotope analysis 

potentially offers a powerful approach to consider the extent of population, or
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individual generalism with relative ease. Since different animal tissues integrate 

dietary signatures over different temporal scales (Hobson and Clark 1992b; 

O'Reilly and Hecky 2002), in a population of generalists, variance among tissues 

that integrate diet over short temporal scales (shorter than the period of trophic 

variation), should be larger than the variance for tissues that integrate diet over 

longer temporal scales (that cover the period of trophic variation). Thus for 

example, tissues that integrate over days and weeks such as blood plasma, 

blood cells or liver tissue (Hobson and Clark 1992; Hesslein et al. 1993; Gaston 

and Suthers 2004), are much more likely to discriminate dietary generalism than 

are tissues which integrate variation over the life-time of the animal such as 

bone, groups of feathers, fish otoliths or scales (Schoninger and DeNiro 1984; 

Sholto-Douglas et al. 1991). It follows that, for a population of specialists, one 

would predict little or no change in variance between long- and short-term 

integrators.

Consumer

Prey

Specialist
Population

Generalist 
Population 
(Type A)

2 %i U% J 16%

Generalist 
Population 
(Type B)

OOO

2%d 14%) 16%

Figure 4.1 Illustration of the mechanisms by which three different 
populations may achieve the same isotopic signature of 8%o made up of the 
mean signature of the prey population (4%o in all cases) plus the enrichment 
factor of 4%o
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If we assume that diet/tissue fractionation is constant at 4%0, that prey isotope 

ratios remain constant over time and that Type A individuals consume all prey 

types in equal amounts then there are potentially three sampling regimes that 

could enable the use of stable isotope variance in animal tissue to discriminate 

between Type A and Type B generalism when food is consumed as illustrated in 

Figure 4.1.

• Sampling a tissue that integrated dietary information over long 

temporal scales would allow identification of a population of Type B 

generalists and would likely give consumer population values (mean ± 

s2) similar to those in Table 4.1.

Table 4.1 Isotopic signature and variance of populations sampled using 
tissues which integrate over long temporal scales used to identify Type B 
generalists.

Specialist Generalist Type A Generalise Type B

8%o ± 0 8%o ± 0 8%o ± 4

• Sampling a tissue that integrated dietary information over short 

temporal scales (with a large sample size) would allow identification of 

a population of specialists and would likely give consumer population 

values (mean ± s2) similar to those in table 4.2.
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Table 4.2 Isotopic signature and variance of populations sampled using 
tissues which integrate over short temporal scales used to identify specialists.

Specialist Generalist Type A Generalise Type B

8%o ± 0 8%o ± 4 8%o ± 4

• Assuming that the tissue being sampled integrates dietary information 

over a shorter period than that which diet varies over, serial sampling 

the same tissue (integrating very short-tern dietary information, such 

as blood plasma samples, or short sections from feathers, hair or 

possibly whiskers) from the same individual over time would allow 

identification of a Type A generalist population and would likely give 

individual values (mean ± s2) similar to those in table 4.3.

Table 4.3 Isotopic signature and variance of populations sampled using 
tissues which integrate over a shorter period than that over which diet varies 
used to identify Type A generalists.

Specialist Generalist Type A Generalise Type B

8%0 ± 0 8%o ± 4 6, 8 or 10%o ± 0

4.3.1 An empirical test of variance in S15N as a measure 

of trophic niche width

Sampling sites selected from within Loch Lomond (see chapter 3) were shown to 

conform to the general requirements set out in section 4.3 for S15N.
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As a result, the variance (expressed as the standard deviation) in mean 515N 

isotopic signatures of ruffe populations from each of these sampling sites was 

used to test the hypothesis that variance in stable isotope signature is a robust 

measure of trophic niche breadth. The Shannon-Weiner index of stomach 

contents (a measure of trophic niche width) was calculated for ruffe populations 

at each of the sampling sites. These stomach contents Shannon-Weiner values 

were then regressed on the variance in mean 515N values of ruffe muscle tissue 

(Figure 4.2). Shannon-Weiner scores and variance in 515N were calculated for 

ruffe populations at each of the sampling sites in both summer and winter.
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Figure 4.2. Standard Deviation in Ruffe Muscle 8 1SN and Ruffe Stomach 
Contents Shannon-Weiner Based on Site Mean Values Showing 95% Cl. 
Open circles indicate winter sampling sites and filled circles indicate summer 
sampling sites. Sites are coded as follows. 1 and 7 = Inverhoulin, 2 and 7 = 
Rubha Mor, 3 and 9 = Ross Point, 4 and 10 = Sallochy Bay, 5 and 11 = 
Inchlonaig and 6 and 12 = Ross Priory.
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Regression of 515N against the Shannon-Weiner of ruffe stomach contents was 

significant (F110 = 6.654, P = 0.027) and explained 40% of the variation in 

stomach contents Shannon-Weiner scores. The regression generated the 

regression model:

Stomach contents Shannon-Weiner = (0.220 * 515N) + 0.104

This demonstrates that the standard deviation of 815N of ruffe muscle tissue 

predicted the diversity of stomach contents, and supports the hypothesis that the 

standard deviation of S15N is a realistic measure of trophic niche width in ruffe.

4.4 The precision of detectable change in variance 

-  a modelling approach

For variance in stable isotope signatures to be a useful tool for quantifying niche 

width, we must be able to detect changes in tissue stable isotope signatures over 

time, or differences between sites or populations. To determine the sensitivity of 

isotopic variance as a measure of niche width, one is required to model the 

detection limits for a range of realistic probable measures of variance (standard 

deviation) in the stable isotope signatures of animal tissues.

Clearly the ability to detect a significant change in standard deviation over time, 

or difference between populations, is dependent on the magnitude of the 

change/difference with respect to the size of the two standard deviations. The F- 

distribution provides the theoretical probability that two measures of sample 

variance are drawn from a normal population distribution with the same variance. 

This variance ratio test (F-test) provides a method by which it is possible to 

calculate the minimum change in a standard deviation of, in this example, 815N
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that would be statistically significant. In this instance the example of feather 

analysis of stenophagus shags Phalacrocorax aristotelis (L.) with a relatively 

narrow trophic niche width (515N standard deviation 0.57 %o) and polyphagus 

cormorants Phalacrocorax carbo (L.) with a relatively broad niche width (815N 

standard deviation 2.01 %o) (Bearhop et al. 1999), was examined. A probability 

level of p=0.05 and a realistic but moderate sample size of 20 was applied to the 

data to determined the minimum change in 815N standard deviation required to be 

statistically detectable in the analysis of trophic niche width using stable isotope 

analysis.

4.5 Model output

For a population where the standard deviation is initially low (e.g. the shag), the 

difference between standard deviations would need to be at least 0.27 %0 to be 

significant (for p=0.05, N=20). Trophic enrichment factors have been established 

for nitrogen where an increase of one trophic level is equivalent to an increase in 

the nitrogen signature of a consumer of 3.4%o (Minagawa and Wada 1984; 

Vander Zanden and Rasmussen 2001). Based upon this, a difference between 

standard deviations of 0.27 equates to a dietary shift of 0.079 of one trophic level, 

For a population where the standard deviation of the population is initially high 

(e.g. the cormorant), the difference between standard deviations would need to 

be 0.94 %0, which equates to a dietary shift of 0.276 of one trophic level, (for 

p=0.05, N=20) to be statistically detectable. Thus the technique is potentially 

more sensitive than the limits of the analytical instrumentation (precision is 

typically 0.2 to 0.3 %o for 815N). The theoretically required change in the shape of 

the normal distribution for both of these populations are shown in Figure. 4.3.
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Figure 4.3 The chance in standard deviation of the normal distribution that is 
statistically detectable (P=0.05) for a sample size of 20, for (A) a specialist 
population with a small initial standard deviation (shags S.D. = 0.57) and (B) 
for a generalist population, with an initially high standard deviation 
(cormorants; S.D.= 2.01).
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Assuming that the tissue 515N signatures in the population remains normally 

distributed, the z-distribution can be used to predict the change in 815N that would 

be required for individuals at different positions within the normal distribution to 

generate the required change in standard deviation. Thus, for the lowest possible 

detectable change in standard deviation from the shag population for a sample 

size of 20 and a 5% probability, the 1% of the population that deviates most from 

the mean (i.e. at the extreme tails of the normal distribution) would be required to 

become higher in the upper tail and lower in the lower tail by 0.62 %0 or 0.182 of 

one trophic level. Similarly 20% of the population in each tail would need to 

deviate by 0.23 %o which equates to 0.068 of one trophic level (Figure. 4.4) and 

so on. In contrast, for the cormorant population with an initially broad standard 

deviation, for N=20 and P=0.05, 1% of the population in each normal distribution 

tail would be expected to deviate by 2.16%o which is 0.636 of one trophic level 

and 20% by 0.79 %o or 0.232 of one trophic level. Stable isotope variance as a 

measure of niche width therefore appears sensitive to relatively subtle changes in 

population niche width, where only a proportionally small number of individuals 

alter their behaviour, a response that may be predicted for resident species in a 

system where alien introductions have occurred (Kidd et al. 1998). Such effects 

have proved difficult to detect conventionally, although the use of stable isotope 

tissue signatures as indicators of trophic status and foraging area have provided 

insights into the impacts of introduced predatory fish upon North American lake 

biota (Vander Zanden et al. 1999).
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Figure 4.4 Statistically detectable change (P=0.05; N=20) in 81SN for 
individuals at different starting points in the normal distribution (expressed 
as population percentage deviations from the mean) for a generalist feeding 
population (cormorants) and a specialist feeding population (shags).

The absolute change in 51SN required in a normal distribution at the extremes of 

the distribution depends upon the initial standard deviation of the population. 

Figure 4.5 shows the relationship between position in the normal distribution and 

change in 515N required for a range of starting standard deviations for a sample 

size of 20 and a probability of 0.05. Thus, for a realistic range of initial population 

815N and standard deviations from 0.5 %0 to 2.5 %o (indicating narrow vs. relatively 

wide trophic niche width), the change in 815N required by the 10% on each tail of 

the population normal distribution in terms of trophic level, ranges from 0.087 to 

0.440 of one trophic level. Clearly the absolute sensitivity of the technique to 

determine niche width change is dependent upon initial niche width. However the 

magnitude of dietary change required in individuals even at large but realistic 

starting standard deviations is feasible: The shift in 515N of assimilated diet



Hazel Macleod, 2004 Chapter 4, 99

required in 1% of the extremes of the population approximates 0.8 of one trophic 

level, which is equivalent to a shift in isotopic signature of 2.7%0.
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Figure 4.5 Statistically detectable (P=0.05; N=20) changes in trophic level for 
individuals in a normal distribution expressed as the population percentage 
deviation from the mean for each of the tails in a normal distribution for 
starting standard deviations ranging from 0.5 to 2.5.

4.6 Discussion

Here it has been shown that there is a good theoretical basis for the use of the 

standard deviation of §15N as an indicator of trophic niche width and that this 

technique may have significant advantages over more traditional techniques 

which:
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• Rarely lie along a single scale making comparisons between populations 

or species difficult;

• Have difficulty in combining dietary prey diversity and evenness in an 

ecologically meaningful way;

• Fail to integrate diet over ecological timescales thus usually only comprise 

single snapshots of niche width.

• Tend to be rather cumbersome and labour intensive

Also empirical data from Loch Lomond (Figure 4.2) supports the hypothesis that 

515N standard deviation is as good a predictor of niche width as that measured 

using more traditional techniques. Here it has been demonstrated that the 

standard deviation of a population 515N correlates with the diversity of the 

stomach contents of the same population.

There is also good reason to believe that this technique can discern between two 

very different types of generalism (Type A and Type B), either by serial sampling 

or by utilising the differential rate of tissue turnover (Figure 4.1). A Type A 

generalist population is characterised by generalist individuals all taking a wide 

range of food types, whereas a Type B generalist population is composed of 

individuals each specialising on a different but narrow range of food types (Van 

Valen 1965; Grant et al. 1976).

Where individuals within the population were identifiable, serial sampling from the 

same individuals could distinguish Type A and Type B generalists. Serial 

sampling could comprise multiple blood samples, sampling sections of feathers
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grown at different times in the moult cycle or sampling multiple sub-sections of 

long hairs such as vibrissae. In the case of fish, where non-destructive sampling 

is not possible, tissues of differing turnover rates such as liver, muscle and bone 

will provide similar information. When such a sampling regime is employed the 

variation exhibited by individuals from a Type A generalist population will be 

approximately equal to that exhibited by the population as a whole. On the other 

hand, the variation exhibited by an individual displaying Type B generalism will 

be low relative to the variation displayed by the population as a whole (Figure 4.1 

and Table 4.3).

The difference in Type A and Type B generalists can be discerned by utilising the 

differential rate of tissue turnover as follows. In a population of generalists the 

variance among tissues that integrate diet over short temporal scales (shorter 

than period of trophic variation), will be larger than the variance for tissues that 

integrate diet over longer temporal scales (that cover the period of trophic 

variation). However, tissues which integrate over days and weeks, (such as blood 

plasma, blood cells or individual feathers (Hobson and Clark 1992b; Hilderbrand 

et al. 1996; Bearhop et al. 2002), are much more likely to discriminate dietary 

generalism than tissues which integrate variation over much longer time scales 

such as bone, groups of feathers, fish otoliths or scales (Hobson and Clark 

1992a; Begg and Weidman 2001). In this instance, a population of specialists 

would display little or no change in variance between long- and short-term 

integrators (Figure 4.1, Table 4.1 and Table 4.2).

For variance in stable isotope signatures to be a useful tool for quantifying niche 

width, it must be possible to detect changes in tissue stable isotope signatures 

over time, or differences between sites or populations. The ability to detect 

change in 515N standard deviation depends upon the initial population standard
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deviation in 815N (i.e. the initial niche width). Here it has been demonstrated that 

changes in populations with a narrow niche width are easier to detect than 

changes in populations with a wide niche width starting point. Despite this, it has 

been demonstrated that the shift in 515N of assimilated diet required in 10% of the 

extremes of a population with a 615N standard deviation of 2.5 approximates 0.8 

of one trophic level, which is equivalent to a shift in isotopic signature of 2.7%o 

demonstrating that the magnitude of dietary change required in individuals even 

at large but realistic starting standard deviations is feasible. This demonstrates 

that the use of variation in population 515N as a measure of trophic niche width is 

a robust technique that is relatively easy to employ and offers many advantages 

over traditional methods.
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Chapter 5. Causes and Consequences of 

Variation in Trophic Niche Width

In this chapter a number of hypotheses are explored related to the effect of 

community structure on trophic niche width in ruffe. In addition, an examination is 

made of the possible consequences of variation in trophic niche width for 

individuals at different study sites.

• In this study there was a significant relationship between competition and 

community complexity

• However, there was no evidence of the hypothesised relationship 

between community competition and trophic niche width

• There was also no evidence for a relationship between maximum trophic 

chain length and trophic niche width

• Nor was there evidence for an effect of community complexity on trophic 

niche width

• Physiochemical characteristics such as BOD and phosphate levels of the 

sampling site were shown to affect trophic niche width

• There was no significant relationship between community characteristics 

of sampling sites and trophic niche width

• There was no evidence for the hypothesised relationship between niche 

width and individual fitness
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5.1 Introduction

Hutchinson (1957) used ‘niche’ to describe the range of physical and biological 

conditions required by a species in order to maintain a stable or increasing 

population size. Hutchinson’s definition is that of an n-dimensional hypervolume, 

where the n dimensions controlling niche width correspond to independent 

physical or biological variables that affect the abundance of that species.

The constraints imposed upon the niche width of a particular community by such 

factors are of two distinct types.

• Abiotic constraints originating in the external environment and,

• Biotic constraints arising from interactions with other species in the same 

environment.

Within the abiotic category of constraints, the niche width of an organism is 

regulated by physical needs alone. If these needs are met then the organism is 

able to maintain a stable population. This is described as the fundamental or pre

interactive niche of a species (Hutchinson 1957). The observation that a species 

does not always occur in an area where conditions are within acceptable limits 

and where necessary resources are available suggests that there are other 

factors controlling its presences or absence. The occurrence of a particular 

species in an area may be precluded by the action of individuals of other species 

which compete with it or prey upon it. This is referred to as the realised or post

interactive niche (Hutchinson 1957) and describes the situation where a species 

is forced to share resources with any number of interacting organisms in the 

community. Thus realised niche for any species is likely to be a function of both
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the physical environment and the biotic characteristics at any site (Hutchinson 

1957).

Therefore, where changes in niche width and/or trophic position are observed as 

a function of changing community structure, it is predicted that there would be 

implications for the fitness of individuals within that community.

Here the potential biotic and abiotic factors leading to modification of trophic 

niche width, expressed as variation in 515N in a community, are explored and the 

implications of niche modification on community fitness are assessed. Specifically 

the following questions are tested:

• Does competition increase with increasing community complexity?

Although largely untested, the scope for competitive interaction is likely to 

be significantly affected by the community to which any organism is 

exposed and more specifically the structure of the food web. For example, 

food web complexity may affect the trophic position and foraging niche 

width of a species (Bolnick 2001). Food webs with a high level of 

complexity contain a large number of interacting species, providing 

greater scope for modification of the trophic position of a single species 

and for a reduced foraging niche width (Bolnick 2001). Theory would also 

predict that this effect would not occur in all species equally, with the 

effect of community complexity upon competition increasing with the 

degree to which species are capable of foraging upon a wide range of 

food (Connell 1961; Byers 2000).

• Is trophic niche width affected by community competition?
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Competitive exclusion and niche separation theory predicts that for any 

organism, the foraging niche determined by the basic functional feeding 

morphology constraints of the species (the “fundamental foraging niche”) 

will be modified by competitive interaction with other species (Connell 

1961). Thus the actual trophic position that any species takes within a 

community (the “realised feeding niche”) is determined by competition 

operating upon functional morphology constraints (Hutchinson 1957). 

Competition will lead to diversification by depressing fitness of individuals 

using the original resource to the point where previous sub optimal 

resources have a higher value (Bolnick 2001). High levels of intraspecific 

competition will lead to niche expansion while interspecific competition will 

cause niche width to contract (Bolnick 2001).

• Does community complexity affect trophic niche width in a single predator 

species?

Theory predicts that community complexity will have an affect upon 

trophic niche width since the diversity of feeding categories available to a 

predator will increase with increasing species richness. A greater range of 

food resources will be available in more species rich communities, leading 

to an increase in feeding niche width (Hilldrew 1992).

• Do the physical characteristics of a foraging site affect the trophic niche 

width expressed within a species?

In lakes, a greater diversity of habitat will create an opportunity for a more 

spatially heterogeneous community (Vander Zanden et al. 1999). 

Structurally complex environments are often associated with higher
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abundances and diversity of invertebrate resources which are important 

for benthivorous fish such as ruffe (Gilinsky 1984).

• Do biological characteristics of a foraging site affect the trophic niche 

width expressed within a species?

Since the publication of Hairston et. al. (1960), a major topic of interest in 

ecology has been that of species interactions and how these interactions 

can be used to predict community dynamics (Paine 1980; Pimm 1982; 

Carpenter et al. 1985; Carpenter et al. 1987; Persson et al. 1988). If the 

physical needs of an organism are met, the organism is able to persist in 

that environment. However, biological aspects of the foraging site such as 

the occurrence of additional species which occupy the same general 

region of the n-dimensional hypervolume, will lead to reductions in the 

size of the organisms realised niche (Hutchinson 1957).

• Are biological or physical characteristics more important in explaining 

niche width?

Both physical and biological factors contribute to the modification of 

trophic niche width, however it may be that one of these factors exerts a 

larger influence on niche width.

• Does invertebrate density affect trophic niche width?

A detailed study of the guild of detritivorous stoneflies (Plecoptera) in four 

streams differing in species richness has provided evidence that density 

compensation occurs, niche width decreases and niche overlap declines 

as species richness increases (Hilldrew 1992).
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• Does expressed trophic niche width affect fitness of individuals within a 

community?

Here it is hypothesised that the body condition of fish in a population will 

be affected by variations in community complexity, competition, and niche 

width, leading to changes in individual survival and or fecundity (Begon et 

al. 1996). Furthermore, it is hypothesised that changes in the level of 

community complexity, competition and trophic niche width typically lead 

to changes in rates of resource intake per individual, and thus to 

decreased rates of individual growth or development, or perhaps to 

decreases in amounts of stored reserves.

The annual cycle for temperate fish species in a lake such as Loch 

Lomond can be divided into warm ‘growing’ and cold ‘non-growing’ 

seasons (Conover 1992). In the summer, environmental conditions permit 

body size and energy stores to increase (Griffiths and Kirkwood 1995). 

These energy stores are built up over the summer and may be consumed 

in maintenance over the winter (Newsome and Leduc 1975; Pierce et al. 

1980). Overwinter mortality in some species has been linked to 

exhaustion of energy stores (Newsome and Leduc 1975; Post and Evans 

1989; Adams and DeAngelis 1987). It is known that for some fish species 

lipid stores are critical to overwinter survival and individuals will radically 

alter foraging to maintain sufficient lipid levels for survival (Metcalfe and 

Thorpe 1992). In this programme of work, ruffe body size (measured as 

fork length and weight) and lipid deposition levels were used as proxies 

for fitness.
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5.2.1 Selection of Study Sites

Generally, niche width studies involve the comparison of systems that are 

ecologically similar, contain similar communities and are located within a 

restricted geographic region (Smith and Smith 2001). Although this goes some 

way to address the problems of making comparisons between systems, there are 

still some inherent differences that may confound results. Loch Lomond is an 

ideal site to study niche width since, as a result of its division by the Highland 

Boundary Fault, this loch has in a single water body, 3 basins of very different 

nutrient status, the impact of which can be examined without the confounding 

effects of comparisons between different water bodies. In addition, pilot studies 

have shown that the extensive habitat heterogeneity found in the littoral zone of 

Loch Lomond causes significant modification of invertebrate community structure 

and population size (Adams, unpublished data), and this information can be 

utilised to test hypotheses relating to community structure.

5.2.2 Selection o f a Study Species

In order to investigate trophic niche width and the factors controlling it, it was 

essential to identify a species with the potential to modify its niche as a result of 

the environment to which it was exposed. It was also essential to study a species 

that was ubiquitous throughout Loch Lomond and available in both summer and 

winter. The ruffe Gymnocephalus cernuus fulfils all these criteria. Ruffe were first 

discovered in Loch Lomond in 1982 (Adams and Maitland 1998) and are thought
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to have been introduced into the loch by anglers who used them as live bait for 

fishing of northern pike Esox lucius (Maitland and Lyle 1991). Ruffe in Loch 

Lomond are benthivorous omnivores, and are extremely catholic in their diet, 

which includes a wide range of invertebrates, fish ova and fish (Johnson 1965; 

Adams and Tippett 1991). There is also evidence that the diet of ruffe changes 

both geographically and seasonally within Loch Lomond (Adams and Maitland 

1991). These fish are also very hardy and able to function in a wide range of 

environments. They have a relatively high temperature tolerance range with an 

upper lethal limit of 31 °C (Varley 1967) yet they can maintain foraging in water 

temperatures at least as low as at least 4°C (Bergman 1987; Adams and Tippett 

1991). They also have a short generation time (Muss and Dahlstrom 1967; 

Varley 1967) and high fecundity (Muss and Dahlstrom 1967; Varley 1967). The 

age at which 50% of individuals spawn in a stable ruffe population has been 

reported as 1 year old for males and 2 years for females (Muss and Dahlstrom 

1967; Varley 1967) which allows them to respond rapidly to the environment in 

which they live. The traits listed above make ruffe an ideal study species to 

investigate trophic niche width in Loch Lomond.

5.2.3 Collection o f samples for stable isotope analysis

Invertebrate and fish samples analysed for stable isotope signature were the 

same as those in chapter 3 and therefore were collected from the same sites, 

and identified, prepared, and analysed following the methodology described in 

chapter 3.
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5.2.4 Competition, community complexity and trophic

niche width

Competition index

An index of competition was derived for each site to investigate the impact of 

varying competition levels on the trophic niche width of ruffe. The site-specific 

competition index was calculated based upon the stable isotope signature of 

organisms within that site. Previous studies have demonstrated that the 515N 

value of a consumer is enriched by 3.4%o over that of its diet (Minagawa and 

Wada 1984; Vander Zanden and Rasmussen 2001). Based upon this, any 

species in the same community with a 515N value of within ± 3.4%o (one trophic 

level) of the mean ruffe 515N at a particular sampling site was considered to be a 

potential competitor (as it was feeding within 1 trophic level). The mean 51SN and 

corresponding 513C values for all organisms within a site were plotted on a graph, 

in a space defined by axes X and Y, and the Euclidean distance was calculated 

using the following equation:

Dy = [(Xj -  X ,)2 + (Yj -  Yj)2] /2

Where Dy is the length of the straight line connecting the position of ruffe with a 

competitor. The reciprocal of this value was taken in order to give more weight to 

species very close to ruffe in both 515N and 513C. This was carried out for all 

species with a S15N value within 3.4%o of ruffe 815N values to produce a ruffe 

competition index (henceforth the RCI) for each sampling site where:

RCI = Z  of Euclidean distances for all species within 3.4%o of ruffe.
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Community complexity

Two indicators of community complexity were derived for each sampling site (see 

chapter 3.5). Firstly species richness determined as the simple number of 

species present was calculated (Table 3.3). The Shannon-Weiner index was also 

calculated for each site to incorporate the evenness of species recorded (Table 

3.3).

Trophic Niche width

In this part of the study, variation in the 615N signature of ruffe from the six 

sampling sites was used as a proxy for trophic niche width (see chapter 4). 

Variation in trophic niche of the ruffe population at each of the sampling sites was 

measured as the population standard deviation. A small standard deviation in a 

population suggested feeding specialisation leading to a narrow feeding niche 

width, while a large standard deviation indicated that a more generalist feeding 

strategy was being adopted, and consequently leading to a broad niche width.

5.2.5 Determining Fish Condition

To assess the body condition of ruffe at each sampling site in Loch Lomond, 

measurements were made of fish lipid content, weight and fork length. Size has 

been used as a proxy for fitness (Metcalfe and Thorpe 1992) and lipid levels 

have been shown to be highly important in survivorship in fish (Metcalfe and 

Thorpe 1992).
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At each of the sampling sites, individual trophic position and ruffe population food 

chain length were estimated using the method of Vander Zanden and 

Rasmussen (1999). Within lake differences in 515N values at the base of the food 

web preclude the use of consumer 515N values as an absolute measure of 

consumer trophic position. To avoid this difficulty, the trophic position of 

consumers was estimated by interpreting consumer tissue 515N values relative to 

the 515N of primary consumers, which were used as indicators of ‘baseline 

isotopic values’. Snail isotopic signatures from each of the six sampling sites 

were used in this instance to represent baseline values, as snail isotopic 

signatures have been shown to be a reliable indicator of baseline isotopic 

signature (Vander Zanden et al. 1999; Post 2002). As in chapter 3.4.7 Baseline 

correction of stable isotope values was carried out according to Vander Zanden 

et at (1997).

5.3 Statistical Analysis

Stepwise multiple regression analysis was used to determine which biological 

and physical factors (Table 5.1) most strongly predict niche width and as such 

may influence feeding choices. Further analysis was carried out to explore the 

relationship between community complexity, competition and niche width using 

simple linear regressions. Finally the effect of variation in niche width on the 

condition of ruffe at each of the sampling sites was examined using linear 

regression of niche width upon the lipid deposition, fork length and weight 

condition factors measured for ruffe at each of the sampling sites.
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Regression analysis was used to test for the influence of community 

characteristics on niche width. The importance of these characteristics may be 

masked by the use of multivariate statistics due to co-correlation between 

predictive variables. To overcome this, simple linear regressions were carried 

out.

5.4 Results

The relationships between niche width, community complexity and competition 

were tested individually. There are a number of important biological 

characteristics of communities that in theory would be predicted to have a direct 

impact upon niche width.

5.4.1 Does competition increase with increasing 

community complexity?

There was no evidence in this study of a relationship between competition (RCI) 

and community complexity expressed as species richness (F2 ,9 = 0.176, P = 

0.842; multiple regression using two predictors invertebrate and fish species 

richness). However, when community complexity was expressed as a Shannon- 

Weiner value, there was a significant relationship (F2i9 = 5.891, P = 0.023) 

between competition and community complexity (multiple linear regression using 

two predictors: invertebrate and fish community Shannon-Weiner indices (Table 

5.2).
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Table 5.2 f-test of deviation from 0 for intercept and gradients of biological 
predictors of 615N standard deviation.

Variable Intercept/gradient t P

Intercept -0.271 -2.215 0.054

Fish

Shannon-Weiner

-0.0544 -0.809 0.439

Invertebrate

Shannon-Weiner

0.220 3.382 0.008

5.4.2 Is trophic niche width affected by community 

competition?

The level of competition observed within a community may play a role in 

determining the niche width of the organisms present within that community, with 

an increase in interspecific competition leading to a reduction in trophic niche 

width. However, ruffe collected from the sampling sites in Loch Lomond showed 

no correlation between interspecific competition and ruffe trophic niche width 

(F1t10 = 2.252, P = 0.164).
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5.4.3 Does community complexity affect trophic niche 

width?

Having demonstrated that a relationship exists between community complexity 

(expressed as the Shannon-Weiner index) and competition, it may be expected 

that both of these factors would play an important role in the modulation of the 

feeding niche width displayed in a single species.

Community complexity has been shown to vary between sampling sites in Loch 

Lomond (see chapter 3) and theory would suggest that such differences would 

have the potential to impact upon niche width. Within ruffe populations examined 

in Loch Lomond there was no significant relationship between community 

complexity expressed as a species richness score and niche width (F2i9 = 0.160, 

P = 0.854). This was also the case when community complexity was expressed 

as a Shannon-Weiner index (F2,g = 0.195, P = 0.826).

5.4.4 Do the physical characteristics o f a foraging site 

affect the trophic niche width expressed within a 

species?

To attempt to produce a model which predicts trophic niche width, expressed as 

the standard deviation of 815N, a number of physical characteristics (Table 5.1) 

specific to each site were entered into a forward stepwise multiple regression. 

Sixty five percent of the variation was explained by the variables BOD (step 1)
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and phosphate (step 2) (F2i9 = 8.317, P = 0.009; Table 5.3) and generated the 

regression model:

51SN standard deviation = (-2.409 * BOD) +(295.9 * P04) + 2.199

Table 5.3 /-test of deviation from 0 for intercept and gradients of physical 
predictors of 51SN standard deviation.

Variable Intercept/gradient t P

Intercept 2.199 7.902 <0.001

BOD gradient -2.409 -3.317 0.009

Phosphate

gradient

295.893 2.858 0.019

BOD values were positively correlated with niche width and explained thirty three 

percent of the variation. The second step, phosphate, was negatively correlated 

with niche width and explained further thirty two percent of the variation. No 

other variable (see table 5.1 for list) was identified as a significant contributor to 

the explanation of variance of 515N of ruffe populations at a particular site.
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5.4.5 Do the biological characteristics o f a foraging site 

affect the trophic niche width expressed within a 

species?

The biological predictors of niche width (as detailed in Table 5.1) were entered 

into a forward stepwise multiple regression to determine their role in niche width 

modulation. No biological characteristic was identified as a significant contributor 

to the explanation of variance of ruffe population (Table 5.3).

5.4.6 Are biological or physical characteristics more 

important in explaining niche width in ruffe?

Theoretically (see above), both physiochemical and biological factors (related to 

community structure) have the potential to control niche width. However, in 

natural systems, neither of these factors work in isolation and it can often be very 

difficult, if not impossible, to distinguish one from the other. As such it is important 

to investigate the combined influence of these factors on trophic niche width of 

ruffe. In this instance, all biotic and abiotic variables listed in Table 5.1 were 

entered into a forward stepwise multiple regression. Sixty five percent of the 

variation was explained by the variables BOD (step 1) and phosphate (step 2) 

(F2,9 = 8.317, P = 0.009;) (Table 5.4) and generated the regression model:

51SN standard deviation = (-2.409 * BOD) + (295.9 * P04) + 2.199

No other physical or biological characteristic significantly contributed to the 

explanation of variation in 515N.
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Table 5.4 /-test of deviation from 0 for intercept and gradients of both 
physical and biological predictors of 51SN standard deviation.

Variable Intercept/gradient t P

Intercept 2.199 7.902 <0.001

BOD gradient -2.409 -3.317 0.009

Phosphate

gradient

295.893 2.858 0.019

5.4.7 Does expressed trophic niche width affect fitness 

of individuals within a community?

Differences in the standard deviation of 515N (in this instance used as a measure 

of trophic niche width) were observed for ruffe populations examined at each of 

the six study sites in Loch Lomond (chapter 3.6.4). Theory would suggest that 

such changes in trophic niche width would play an important role in dictating 

individual condition, with a decrease in condition occurring as individuals were 

forced to reduce their feeding niche width and feed on food of lower nutritional 

value. Here ruffe body size (fork length and weight) and lipid deposition were 

used as proxies for body condition. This was analysed using simple linear 

regression.

There was no significant relationship between trophic niche width and ruffe fork 

length (F1i10 = 0.012, P = 0.916), ruffe weight (F1i10 = 0.100, P = 0.758), or lipid 

deposition (Fii10 = 0.182, 0.679), although there was a trend towards the 

reduction of lipid deposition with increasing niche width.
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The trophic niche width of an organism is usually described as varying on a 

continuum from narrow to broad (Begon et al. 1996). The wider the niche, the 

more generalised the species is considered to be in its prey selection, while the 

narrower the niche, the more specialised the species is considered to be 

(Bernays and Minkenberg 1997). Species which have relatively wide niches 

sacrifice efficiency in the use of a narrow range of resources for the ability to use 

a wider range of resources (Bernays and Minkenberg 1997). As competitors, 

organisms with a wide trophic niche are superior to specialists if resources are 

somewhat undependable (Bernays and Minkenberg 1997). Keast (1979) 

suggests that this type of feeding plasticity may be particularly advantageous in 

cold temperate lakes. Organisms with a narrow trophic niche are equipped to 

exploit a very specific set of resources. As competitors they are superior to 

generalists if resources are dependable and renewable, as these resources are 

closely partitioned among specialists to produce low interspecific overlap 

(Roughgarden 1974).

Within the Loch Lomond system with it’s narrow, deep, oligotrophic north basin 

and more nutrient rich, warmer south basin we might expect to see organisms 

exhibiting a range of trophic niche characteristics. As a result of this, these 

organisms may provide us with an insight as to the causes and consequences of 

variation in trophic niche width.
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5.5.1 Niche width, competition and community 

complexity

Since Darwin (1859), ecologists have considered interspecific competition, 

especially competitive exclusion, as the cornerstone of community structure. Lack 

(1954; 1971), Hutchinson (1959), and Macarthur (1960; 1972), among others, 

have stressed the role of competition in shaping community organisation, 

including species distribution, resource allocation and niche segregation.

Since the role of competition in shaping plant communities was discovered, 

studies have been undertaken to demonstrate the role of interspecific competition 

in determining community structure, with emphasis on the animal component of 

communities (Connell 1983; Schoener 1983). Many of these studies suggest, 

even if they do not prove with certainty, that competition exists between certain 

species pairs and within guilds of species (Huffaker 1958; Huffaker et al. 1964; 

Reed 1978).

As community complexity increases, a greater range of food will be available in 

these more species-rich communities (Martinez 1992; Williams and Martinez 

2000). However, where there is evidence of interspecific competition, theory 

would suggest that this would lead to decreases in niche overlap (Schoener 

1974, 1982; Winemiller and Pianka 1990). In this study, there was a significant 

relationship between the fish and invertebrate Shannon-Weiner scores and 

competition (see section 5.5.1). However, there was no significant relationship 

between competition or community complexity and niche width (sections 5.5.2 

and 5.5.3).
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There are a number of potential explanations for this observation. It may be that 

sample sizes were not adequate, but due to the high costs associated with stable 

isotope analysis it was not possible to increase sample numbers. Also, the one 

system approach adopted in this study greatly reduced the confounding effects of 

comparing isotopic signature between lochs, but had a potential weakness in that 

this may have subsequently resulted in lower variation in some community 

variables.

Generally competition is considered to be asymmetrical, with one species being 

less affected by competition than the other (Schoener 1983). The nature of ruffe, 

being a highly opportunistic and plastic species, which is able to maintain feeding 

at low temperatures, may result in ruffe being less affected by competition than 

are the native fish of Loch Lomond, and may explain why community complexity 

and competition was not strongly correlated with niche width in this species.

Classical competition theory assumes that the environment is stable and 

competition is continuous (Weins 1977), but in reality interspecific competition is 

probably discontinuous (Weins 1977; Chesson 1986; Weins et al. 1986) because 

environments are variable and populations are patchily distributed in space and 

time. It may be the case that in Loch Lomond competition may only occur in 

certain years in which resources are scarce (Weins 1977).

Furthermore, the relative abundance of a species is not necessarily a measure of 

its importance to the interactions that characterise the community. An organism’s 

size and activity also play a major role. A large predator, for example, may 

strongly affect the populations of many other species, even though the predator 

is not particularly abundant (Jonsson and Ebenman 1998). Furthermore, there is 

evidence that predation and other forces also play a major role in shaping
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ecological communities and it has been suggested that the most important effect 

of a predator on community structure is to moderate competition among its prey 

species (Jonsson and Ebenman 1998). This study may have benefited from 

consideration of factors such as predation that play a role in modification of 

competition in a community.

5.5.2 Physical and biological correlates of niche width

Both the physical and biological characteristics of a site play a role in determining 

the niche width of an organism (Hutchinson 1957; Carpenter et al. 1987). If the 

relative importance of these characteristics can be determined, then it may be 

possible to determine whether communities are tightly or loosely structured 

entities. If biotic factors are of overriding importance, then communities may be 

tightly knit entities, however if abiotic forces have the greater influence, then 

community structure may be loose and ephemeral.

One of the general aims of this chapter was to attempt to find biological and 

environmental correlates of the observed variation in niche width, which may 

suggest regulatory mechanisms. A wide range of biological and physical 

characteristics were tested at each site for concurrent variation in trophic niche 

width in ruffe and the ability of these factors to predict this variation. Interestingly, 

none of the biological characteristics tested predicted adequately the trophic 

niche width variation. However physical characteristics of the site were a good 

predictor of variation in the trophic niche width of ruffe, suggesting that the 

community structure at sampling sites in Loch Lomond may be loose and
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ephemeral. Specifically Biological Oxygen Demand, an indirect measure of the 

concentration of biologically degradable material present at each site, predicted 

33% of variation in niche width. In a stepwise multiple regression P04 predicted a 

further 32%. Thus 64% of variability in ruffe trophic niche width was predicted by 

these physiochemical characteristics of the site

5.5.3 Implications o f modified niche width on individual 

fitness

Variations in community complexity, competition and niche width are 

hypothesised to cause stress and affect body condition. It has been suggested 

that stress in vertebrates can act on the individual through a physiological 

feedback involving the endocrine system. The feedback is most closely 

associated with the functioning of the pituitary and adrenal glands (Christian 

1963, 1978; Davis 1978). Stress triggers hyper activation of the hypothalamus- 

pituitary-adrenocorticular system, which in turn alters the secretion of growth and 

sex (gonadotrophic) hormones. Profound hormonal changes suppress growth, 

curtail reproductive functions, and delay sexual activity (Sinclair 1977).

Further these hormonal changes may suppress the immune system and cause 

the breakdown of white blood cells, increasing an individual’s vulnerability to 

disease (Sinclair 1977). Despite this, there was no significant relationship 

between body size (fork length or weight) or lipid deposition and niche width, 

possibly a function of the small sample size at each site. However there was a 

trend towards a reduction in lipid deposition with increasing niche width which 

merits further investigation.
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Chapter 6. General Discussions

There has been increasing recognition of the importance of food web structure in 

regulating a wide range of ecologic patterns and processes (Paine 1980; Pimm 

1982; Carpenter et al. 1985; Hairston and Hairston 1993; Schindler et al. 1997). 

However studies of food webs have been limited by poor empirical descriptions 

of these inherently complex systems and as a result, the conclusions of many of 

these studies have been limited (Polis 1991) leading to calls for the development 

of an approach capable of quantifying energy flow and feeding interactions along 

a single scale (Cohen and Newman 1991; Kenny and Loehle 1991; Martinez 

1991; Pimm et al. 1991). The stable isotope approach can provide information on 

trophic status which is continious, rather than discrete and also provides an 

integrated measure of assimilation, making it possible to assess the relative 

contribution to the food web of resources with distinct isotopic signatures (Lajtha 

and Michener 1994).

The physical and biological characteristics of Loch Lomond make it an ideal 

choice of study site for the investigation of energy flows. Within the loch the 

highland north of the catchment favours the adaptable, phenotypically plastic, 

generalist species, such as the salmonids, and the conditions in the shallower, 

more nutrient rich, warmer south in general tend to favour more specialised 

species, such as the cyprinids (Adams 1994).The diversity of habitat available 

within littoral sampling sites creates further opportunities for spatial heterogeneity 

in community structure.

The work presented here was divided into two distinct parts. The first was largely 

observational, and examined temporal variability in the macrophyte community 

while attempting to quantify the degree of variability in the invertebrate and fish
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communities in Loch Lomond at a local scale. The physical structure of aquatic 

macrophytes plays a large role in determining habitat heterogeneity in the littoral 

zone of lakes. Macrophytes can provide food, shelter and refuge for fish, 

zooplankton and benthic invertebrates and as such play a major role in 

influencing food web structure (Cyr and Downing 1988; Beklioglu and Moss 

1996; Diehl and Kornijow 1998; Jeppesen et al. 1998). Two invasive plant 

species were identified in Loch Lomond, both from the genus Elodea, and the 

increasing threat of eutrophication (Best and Traill 1994; SEPA 2000a; 2000b) 

may facilitate the growth and spread of these invading nuisance species adapted 

to richer nutrient conditions.

In terms of fish and invertebrate community structure, the north and south basins 

of the loch were similar while the mid basin sites of Ross Point and Sallochy Bay 

produced the most extreme results. For the ruffe, which was ubiquitous across all 

sites, there was between-site variability in the trophic ecology e.g. diet and 

variability in its prey items as determined by stomach contents analysis. There 

was also evidence of seasonal diet variation. Stable isotopes analysis of C and N 

showed local variation in the stable isotopic signature of ruffe tissues between 

sampling sites. In addition (as was predicted) there were differences in the stable 

isotope signature of liver, bone and muscle tissues from the same fish, most 

likely due to the different turnover rates of these tissues.

The second part of the study focused on a new technique for the investigation of 

trophic relationships specifically the determination of trophic niche width using 

stable isotope analysis. This technique was then used to investigate the physical 

and biological factors governing trophic niche width and the implications for 

individuals of modified trophic niche width. Within the Loch Lomond system with 

it’s narrow, deep, oligotrophic north basin and more nutrient rich, warmer south



Hazel Macleod, 2004 Chapter 6, 128

basin we might expect to see organisms exhibiting a range of trophic niche 

characteristics.

Keast (1979) suggests that feeding plasticity may be particularly advantageous in 

cold temperate lakes. The feeding niche width of an organism is usually 

described as varying on a continuum from narrow to broad (Begon et al. 1996). 

Species which have relatively wide niches sacrifice efficiency in the use of a 

narrow range of resources for the ability to use a wider range of resources 

(Bernays and Minkenberg 1997). As competitors, organisms with a wide trophic 

niche are superior to specialists if resources are somewhat undependable 

(Bernays and Minkenberg 1997). Organisms with a narrow trophic niche are 

equipped to exploit a very specific set of resources. As competitors they are 

superior to generalists if resources are dependable and renewable, as these 

resources are closely partitioned among specialists to produce low interspecific 

overlap (Roughgarden 1974).

The results presented here show that there is variability in niche width within a 

single species (ruffe) in Loch Lomond, although the pattern of variability is not 

based on latitudinal variation or a simple differential between basins. Rather this 

pattern of variation is more of a mosaic with a patchwork of trophic niche width 

variation in this species (see chapter 3). This observed variation most likely 

reflects very local variation at a much smaller scale that that of simple basin 

differences.

As community complexity increases, a greater range of food will be available in 

these more species-rich communities (Martinez 1992; Williams and Martinez 

2000). However, where there is evidence of interspecific competition, theory 

would suggest that this would lead to decreases in niche overlap (Schoener
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1974, 1982; Winemiller and Pianka 1990). In this study, there was a significant 

relationship between the fish and invertebrate Shannon-Weiner scores and 

competition (see section 5.5.1). However, there was no significant relationship 

between competition or community complexity and niche width (sections 5.5.2 

and 5.5.3).

There are a number of potential explanations for this observation. It may be that 

sample sizes were not adequate, but due to the high costs associated with stable 

isotope analysis it was not possible to increase sample numbers. Also, the one 

system approach adopted in this study greatly reduced the confounding effects of 

comparing isotopic signature between lochs, but had a potential weakness in that 

this may have subsequently resulted in lower variation in some community 

variables.

Generally competition is considered to be asymmetrical, with one species being 

less affected by competition than the other (Schoener 1983). The nature of ruffe, 

being a highly opportunistic and plastic species, which is able to maintain feeding 

at low temperatures, may result in ruffe being less affected by competition than 

are the native fish of Loch Lomond, and may explain why community complexity 

and competition was not strongly correlated with niche width in this species.

Classical competition theory assumes that the environment is stable and 

competition is continuous (Weins 1977), but in reality interspecific competition is 

probably discontinuous (Weins 1977; Chesson 1986; Weins et al. 1986) because 

environments are variable and populations are patchily distributed in space and 

time. It may be the case that in Loch Lomond competition may only occur in 

certain years in which resources are scarce (Weins 1977).
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Furthermore, the relative abundance of a species is not necessarily a measure of 

its importance to the interactions that characterise the community. An organism’s 

size and activity also play a major role. A large predator, for example, may 

strongly affect the populations of many other species, even though the predator 

is not particularly abundant (Jonsson and Ebenman 1998). Furthermore, there is 

evidence that predation and other forces also play a major role in shaping 

ecological communities and it has been suggested that the most important effect 

of a predator on community structure is to moderate competition among its prey 

species (Jonsson and Ebenman 1998). This study may have benefited from 

consideration of factors such as predation that play a role in modification of 

competition in a community.

Both the physical and biological characteristics of a site play a role in determining 

the niche width of an organism (Hutchinson 1957; Carpenter et al. 1987). If the 

relative importance of these characteristics can be determined, then it may be 

possible to determine whether communities are tightly or loosely structured 

entities. If biotic factors are of overriding importance, then communities may be 

tightly knit entities, however if abiotic forces have the greater influence, then 

community structure may be loose and ephemeral.

Variations in community complexity, competition and niche width are 

hypothesised to cause stress and affect body condition. It has been suggested 

that stress in vertebrates can act on the individual through a physiological 

feedback involving the endocrine system. The feedback is most closely 

associated with the functioning of the pituitary and adrenal glands (Christian 

1963, 1978; Davis 1978). Stress triggers hyper activation of the hypothalamus- 

pituitary-adrenocorticular system, which in turn alters the secretion of growth and



Hazel Macleod, 2004 Chapter 6, 131

sex (gonadotrophic) hormones. Profound hormonal changes suppress growth, 

curtail reproductive functions, and delay sexual activity (Sinclair 1977).

Further these hormonal changes may suppress the immune system and cause 

the breakdown of white blood cells, increasing an individual’s vulnerability to 

disease (Sinclair 1977). Despite this, there was no significant relationship 

between body size (fork length or weight) or lipid deposition and niche width, 

possibly a function of the small sample size at each site. However there was a 

trend towards a reduction in lipid deposition with increasing niche width which 

merits further investigation.

In summary the main conclusions from this study are:

• Loch Lomond is highly diverse in habitat with 3 main basins but also

shows habitat heterogeneity at smaller spatial scales

• Within the littoral zone, diversity is also manifest as variability in the 

invertebrate and fish community structure

• There is also significant seasonal variability between sites.

• For a single fish species (the ruffe) there is also between-site variability in

a number of aspects of its ecology at relatively small spatial scales (e.g.

diet, niche width etc).

• There are significant potential strengths in using 815N as a measure of 

trophic niche width. These are:
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o 515N integrates over a more ecologically realistic timescale 

compared with diet estimated from stomach contents analysis

o it provides for a single scale over which differing diets can be 

compared

o data collection can be fast and non-destructive

o the integration period can be modified by choosing different tissue 

types

• Using a simple but realistic model of likely standard deviations in 515N

(from the literature), estimates of the statistical precision of limits of

change using 815N as an index of trophic niche width showed that:

o foraging specialist populations (with a low standard deviation in 

515N) would need a smaller numerical change in 515N standard 

deviation than would a generalist population.

o the diet shift required to detect change in extreme but realistic 

generalist and specialist populations are biologically realistic.

• There is empirical evidence from this study that standard deviation in 515N

for ruffe from Loch Lomond does adequately predict real trophic niche 

width (based on stomach contents analysis).

• Here there was no evidence of a hypothesised relationship between 

community competition and trophic niche width for Loch Lomond ruffe



Hazel Macleod, 2004 Chapter 6, 133

• There was no evidence for a relationship between maximum trophic chain 

length and trophic niche width.

• Nor for an effect of community complexity on ruffe trophic niche width.

• Physiochemical characteristics of sites significantly predicted variation in 

ruffe trophic niche width but evidently no elements of community structure 

had an effect on trophic niche width of ruffe in this study.

• The best predictor of trophic niche width in ruffe was biological oxygen 

demand, with water phosphate concentration also contributing to the 

variation in ruffe trophic niche width.

• Variability in trophic niche width did not seem to consequences for two 

measures of fitness in ruffe (lipid deposition levels, growth or overall size).
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Appendices

Appendix 1 Temporal and Distributional Variation in 

Submerged Macrophyte Communities of Loch 

Lomond, Scotland

Variation Temporel et Spatial des Communautes de 
Macrophytes Submergees de Loch Lomond, Ecosse

Temporal and Distributional Variation in Submerged 
Macrophyte Communities of Loch Lomond, Scotland

Hazel Macleod, Kevin Murphy

IBLS-DEEB, University Of Glasgow, Glasgow, G12 8QQ, Scotland.

Tel: +44 (0)141 330 6632 Fax: +44 (0)141 330 5971 Email: 
k.murphy@bio.gla.ac.uk

Resume: Les valeurs de la biomasse de macrophytes submergees ont ete evalues de mai a 
octobre 2001 aux sites dans les trois bassins de Loch Lomond. Les donnees ont ete 
utilisees pour identifier les communautes presentes, les especes dominantes, et les 
variations des saisons dans et entre les bassins. Une comparaison a ete fait avec les 
donnees d’une investigation precedente, en 1990, pour qualifier les changements de 
longue terme. L’introduction des especes pas-indigene, et les changements chimiques de 
l ’eau de la lac, sont menaces aux communautes de macrophytes submergees de Loch 
Lomond.

Mots cles: Loch Lomond, eutrophication, plantes invasives
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Abstract

Submerged macrophyte biomass values were assessed monthly from May to October 
2001 from sites within the three basins o f loch Lomond. The data were used to identify 
communities present, dominant species and seasonal variation within and between 
basins. A comparison is made with data from a similar survey carried out in 1990 and 
used to assess longer-term changes. The introduction o f non-native species and changing 
nutrient levels are identified as threats to the macrophyte communities of Loch Lomond.

Key words

Loch Lomond, eutrophication, invasive species

Introduction

Loch Lomond is Britain’s largest area of fresh water (70.27km2). It experiences heavy 
recreational use, and is also used for hydroelectric power and potable water supply. Loch 
Lomond supports a wide range of freshwater plant communities located along gradients 
of environmental conditions. Loch Lomond and its surrounding area will form Scotland’s 
first National Park from 2002, with new legal restrictions likely on planning, water 
quality protection and recreational use. In this context there is a need for hard information 
on the natural resource base of the loch, and how it is changing in response to new 
pressures on the ecosystem. The data gathered were used to identify communities present, 
seasonal changes in macrophyte biomass and also to identify differences in the level of 
macrophyte production between basins. Eutrophication (Best & Traill 1994) is an 
increasing threat to these aquatic plants and may facilitate the growth and spread of 
invading species adapted to richer nutrient conditions. These may outcompete and 
exclude native submerged species adapted for growth in oligotrophic-mesotrophic 
conditions. In order to assess longer-term trends of change within the loch system, a 
comparison is made with similar survey data from Loch Lomond collected in 1990 
(Murphy et al. 1994) which identified three separate euhydrophyte communities in the 
loch.

Methods

Monthly surveys of submerged macrophyte biomass were carried out in the three basins 
(South, Mid and North basins) o f Loch Lomond during May to October 2001. Four sites 
with varying intensities of wind exposure were selected from each basin. From each of 
these sites, three Ekman grab samples (area 0.155m x 0.155m) were taken. All plant 
material within the sample was collected, washed, identified to species and dried at 60°C 
before weighing. TWINSPAN (Hill 1979) analysis of combined 1990 and 2001 data is 
used to identify trends of change in the macrophyte communities of Loch Lomond over 
the 11 year period.
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Results

The results suggest that, as in 1990 (Murphy et al 1994), Littorella uniflora is the 
dominant species in Loch Lomond, followed by Isoetes lacustris and Myriophyllum 
alterniflorum (Figure 1).

Average Macrophyte Biomass

CD Litorella uniflora

□  Isoetes lacustris

B  Myriophyllum alterniflorum 

E3 Elodea nutallii 

B  Nitella flexilis

□  Lobelia dortmanna 

■ Juncus bulbosus

□  Potamogeton perfoliatus 

■  Elodea canadensis

B  Callitriche hamulata 

t l  Fontinalis antipyretica 

S  Potamogeton friesii

Species

Figure 1. Average macrophyte biomass (g/m2 dry weight ± standard error) recorded for 
Loch Lomond over the period May to October 2001.

During the 1990 survey, Murphy et al. (1994) recorded the spread of Elodea canadensis, 
thought to have invaded Loch Lomond between the time of Idle’s survey in 1967 
(summarised by Bailey-Watts 1981) and a Glasgow University field course in 1988 when 
it was one of the common species recorded. Since 1990, a second invasive species has 
colonised the loch. Elodea nuttallii is now present throughout the length of Loch Lomond 
and in the relatively short space of time since its appearance, has spread rapidly.

4515
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Spence (1964) calculated that up to 20% of the total surface area of Loch Lomond is 
suitable for plant growth. Of this, he estimated that only 1% is actually colonised by 
plants. The majority of this area lies within the South basin. Data collected in 2001 
(Figure 2) suggest that biomass values are lower in the mid basin of Loch Lomond, 
possibly due to higher shoreline exposure in this area. The South and North basin 
sampling sites show similar levels of macrophyte production although areas suitable for 
macrophyte colonisation are much less in the North basin than in the South basin.

Between Basin Comparison of Biomass

JmbD

u
Q

12
10
8
6
4
2
0

=  1

South Mid North

Basin

□  24-Mar-Ol 

El 21-Jun-00 

0 2 0 - Jul-01

□  10-Aug-01 

0 3 0 - Aug-01

□  15-Oct-Ol

Figure 2. Between basin comparison of average monthly macrophyte biomass (g/m2 ± 
standard error)
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Table 1. Two-way table of sites x species produced by TWINSPAN for the combined 
1990 and 2001 Loch Lomond vegetation data sets. Groups A-C are shown with indicator 
species underlined.

Groups B C A
Sites: 11 1222 11211111

021783 95269013456217834

4 Elod cana -1----- 111111-111 11 0000
12 Pers amph --------------- 1-------  0001
13 Pota frie ------ 1---------------- 0001
14 Pota perf 1----- 1-11 1-1-“I”  00°1
20 Ranu pelt ---------------- 1------  0001
6 Isoe lacu 11111111111-111111 11 0010
9 Litt unif 111111111111111111-1111 0010

11 Myri alte 11-1111111111111111--11 0010
21 Nite flex -1--1111-------11111111- 0010
23 Elod nutt 111--11111-------------  0011
10 Lobe dort 11111----------------11 01
17 Font anti -------------- 1 1 100
1 Apiu inun------------------------1- 1010
3 Care spp -----   1 1010
5 Hydr vulg -------------------1 1010
7 June acut -------------------1 1010

15 Spar angu  1 1010
16 Eurh prae  1 1010
18 Spha cusp  1 1010
19 Spha subs -------------------1 1010
22 Spha sp -------------------1 1010
24 Utri sp ------------------11 1010
25 Leaf live -------------------1 1010
8 June bulb -------------- 1--11 1011
2 Call hamu 11----------------- 11 11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
000000011111111111111

Note: [-] = absent from site; [1] = present in the site; numbers in bold represent 2001 sampling 
sites (site codes: read downwards). Sample codes: South basin 1990:15 16 17 18 19 20 & 21; 
2001:1 2 3 & 4; Mid basin 1990:22 & 23; 2001:5 6 7 & 8; North basin 1990:13 & 14; 2001:9 10 
11 & 12. Key to species: Apiu inun: Apium inundatum-, Call hamu: Callitriche hamulata; Elod 
cana: Elodea canadensis; Elod nutt: Elodea nuttallii\ Eurh prae: Eurynchium praelongum; Font 
anti: Fontinalis antipyretica; Hydr vulg: Hydrocotyle vulgaris; Isoe lacu: Isoetes lacustris; June 
acut: Juncus acutiflorus-, June bulb: Juncus bulbosus; Leaf live: Leafy liverwort; Litt unif: 
Littorella uniflora; Lobe dort: Lobelia dortmanna; Myri alte: Muriophyllum alterniflorum-, Nite 
flex: Nitella flexilis\ Pers amph: Persicaria amphibia-, Pota frie; Potamogeton friesii-, Pota perf: 
Potamogeton perfoliatus; Ranu pelt: Ranunculus peltatus; Spar angu: Sphagnum angustifolium; 
Spha sp: Sphagnum sp.; Spha cusp: Sphagnum cuspidatum; Spha subs: Sphagnum subsecundum-, 
Utri sp: Utricularia sp.

Comparison of 1990 and 2001 data using TWINSPAN analysis identified, at level 2 of 
the divisive classification, three main community types, labelled A-C in Table 1. Group A 
comprises the two sites with the highest diversity of species, both of which are 1990 sites. 
The indicator species for this group is Utricularia sp. Group B is made up entirely of 
2001 sampling sites. The indicator species for this group are Elodea nuttallii and Lobelia 
dortmanna. The remaining sites make up group C, with Elodea canadensis and 
Potamogeton perfoliatus as indicators. That E. nuttallii and E. canadensis serve as 
indicator species for different groups is significant since it was initially thought that E. 
nuttallii would outcompete and replace E. canadensis throughout Loch Lomond: this has 
not yet happened.
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Conclusion

The introduction of non-native aquatic macrophyte species, coupled with changing 
nutrient levels, pose a very real threat to the euhydrophyte communities of Loch Lomond. 
Significant changes have already taken place. Although it is almost impossible to prevent 
the introduction of non native species to the loch, the question of eutrophication is one 
which must be addressed in order to prevent these species outcompeting and excluding 
native species adapted for growth in this oligotrophic-mesotrophic waterbody.
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Determining trophic niche width: a novel approach using 
stable isotope analysis
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Summary

1. A lthough  conceptually robust, i t  has proven d ifficu lt to  find  practica l measures o f 
niche w id th  that are simple to obtain, yet provide an adequate descriptor o f  the ecological 
position o f the popu la tion  examined.
2. Trophic niche has proven more tractable than other niche dimensions. However, 
indices used as a proxy fo r trophic niche w id th  often suffer from  the fo llow ing  difficulties. 
Such indices rarely lie along a single scale m aking com parisons between populations or 
species d ifficu lt; have d iffic u lty  in  com bin ing  d ie ta ry  prey d ive rs ity  and evenness in an 
ecologically m eaningful way; and fa il to  integrate diet over ecological time-scales thus 
usually only comprise single snapshots o f  niche w id th .
3. We propose an alternative novel method fo r the com parison o f  troph ic  niche w idth: 
the use o f variance o f tissue stable isotope ratios, especially those o f  n itrogen and carbon.
4. This approach is a po ten tia lly  pow erfu l m ethod o f measuring troph ic  niche w id th , 
particu larly i f  combined w ith  conventional approaches, because: i t  provides a single 
measure on a continuous axis tha t is comm on to  a ll species; i t  integrates in fo rm a tion  on 
only assimilated prey over tim e; the in tegration period changes w ith  choice o f  tissue 
sampled; and data production is theoretically fast and testing among popu la tions simple.
5. E m pirica l studies are now required to  test the benefits o f  using iso top ic  variance as 
a measure o f niche w id th , and in  doing so help refine th is approach.

Key-words: carbon isotope, diet, generalist, n itrogen isotope, specialist.

Journal o f  Anim al Ecology (2004) 73, 1007-1012

Introduction

Hutchinson’s (1957) conceptualization o f niche as an 
/i-dimensional hypervolume was a crucial foundation 
upon which ecologists have tried to understand the 
development o f community structure. Occupied niche 
space implies resource use, and understanding factors 
that lead to change in niche parameters is central to 
understanding the evolutionary process. For example 
ecological character displacement is regarded as a

Correspondence: Stuart Bearhop, Medical and Biological 
Centre, School of Biology and Biochemistry, Queens University 
Belfast, Belfast BT9 7BL, Northern Ireland (tel. 0289033 5786; 
fax 0289033 5877; e-mail s.bearhop@qub.ac.uk).

key driving force by evolutionary ecologists (Losos 
2000) and cladogenesis can be viewed as an emergent 
property o f competition for resources (Bridle &  Jiggins 
2000).

Niche parameters can respond very rapidly to changes 
in intraspecific and interspecific competition as well as 
prey abundance. For example, competition for niche 
space is relaxed on islands as a consequence o f species 
impoverishment, thus insular forms typically show an 
expanded niche width relative to their mainland counter
parts (M acArthur, D iam ond & K a rr 1972). D iffe r
ences in niche width are conventionally demonstrated 
using proxies such as b ill size (Grant 1965; Gosler & 
Carruthers 1994), body size (Grant 1968; Clegg & 
Owens 2002), feeding ecology or prey preferences

mailto:s.bearhop@qub.ac.uk
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(Carrascal, Moreno & Valido 1994; McDonald 2002) 
and habitat choice (Diamond 1970; MacArthur et al. 
1972; Blondel, Chessel & Frochot 1988).

Niche width is usually expressed by calculating the 
heterogeneity within a set o f ecological measurements, 
often borrowing indices derived as measures o f evenness 
and richness (Shannon & Weaver 1949; Simpson 1949; 
Margalef 1958). Trophic niche w idth, often assessed 
using dietary diversity, is the most tractable and fre
quently studied component o f niche space. How'ever, 
there are practical problems associated with quantify
ing trophic niche width using conventional dietary 
analysis.
1. It is difficult to measure accurately the relative abund
ance o f differing dietary prey items, and over- or under
estimates are possible. For example, pellet-contents 
analyses overestimate the proportion o f birds in the 
diet o f great skuas Catharacta skua (Brunnich) (Votier 
et al. 2001).
2. Temporal integration o f dietary information is often 
difficult to quantify, such that many dietary studies are 
‘snapshots’ o f dietary prey at a point in time.
3. Conventional dietary analysis techniques, in most 
instances, are unable to take account o f variation in prey 
assimilation rates.

In addition to these observational biases, conven
tional dietary analysis is often intrusive and can be 
cumbersome and labour-intensive. For example, a 
crucial question to ask of a population that appears to 
show a large dietary niche width is whether it is com
posed o f generalist individuals all taking a wide range 
o f food types (Type A  generalization), or individuals 
each specializing on a different but narrow range o f 
food types (Type B generalization) (Van Valen 1965; 
Grant et al. 1976). Distinguishing the form o f popula
tion generalization is im portant for constructing 
evolutionary hypotheses (e.g. Clegg & Owens 2002), 
but discriminating between the alternatives using 
conventional approaches requires laborious sampling 
o f individuals over extended time periods followed by 
integration of the information, which is often difficult 
to achieve.

Criteria defining a useful and robust measure o f 
dietary niche width should (i) allow direct comparison 
amongst individuals, populations and species through 
the arrangement o f samples along a single diversity 
scale; (ii) combine information on richness and even
ness o f dietary composition; and (3) allow temporal 
integration o f dietary information over different time- 
scales, preferably from a single sampling event.

Currently we have no robust measure o f niche width 
that satisfies all o f these basic requirements for pract
ical application. O f the criteria least frequently met by 
current techniques, is the ability to compare between 
populations and species on a single scale. Here we pro
pose anew method that meets all o f the basic requirements 
listed, is theoretically strong, and is simple to apply; 
namely the use o f variance in stable isotope ratios of 
consumer tissues (see also Matthews &  Mazumder 2004).

Conventional applications of stable isotope 
analysis to ecology

Over the past 15 years, stable isotope ratios o f nitrogen 
and carbon have been used increasingly by animal eco
logists to elucidate patterns in food webs. Their utility 
lies in the fact that stable isotope ratios in the proteins 
o f consumers reflect those o f the proteins in their diet in 
a predictable manner (Hobson &  Clark 1992a; Hobson 
1999a). Conventionally expressed as 815N (%o), the ratio 
o f 15N to MN  generally exhibits a stepwise enrichment 
(increase in the value o f SI5N) at each trophic level and 
consequently the 515N values in the tissues o f consum
ers tend to be between 2-5%o and 5%o greater than those 
o f their diets (e.g. DeNiro &  Epstein 1981; Hobson & 
Clark 1992b; Bearhop et al. 2002). The ratio o f 13C to 
12C (813C) also increases w ith trophic level, but to a 
much lesser degree than 515N, in the order o f l% o  (e.g. 
DeNiro &  Epstein 1978).

Carbon and nitrogen stable isotope ratios at the 
base o f food webs may also vary spatially, and this is 
reflected in spatial variability in isotopic composition 
among food webs. Such spatial variability can be on a 
grand scale -  fo r example the difference in 8I5N and 
813C o f basal marine food webs resources from that of 
a terrestrial food web is reflected throughout all o f the 
species within each web (Hobson 1999a) -  or on a smaller 
scale -  geographical differences in baseline 8I5N signa
tures may occur w ithin the same category o f ecosystem 
(Hobson 1999b; Vander Zanden &  Rasmussen 2001). 
Such differences are often to the observer’s advantage. 
For example, spatial variability in 8l3C can reveal the 
relative importance o f other carbon pools to a consumer, 
discriminating between inshore and offshore feeding at 
a variety o f spatial scales, from the open sea (Hobson, 
Piatt &  Pitocechelli 1994) to relatively small freshwater 
lakes (France 1995), or by helping distinguish animals 
feeding in moist primary forests from those feeding in 
drier second growth scrub (Marra, Hobson &  Holmes 
1998).

The carbon and nitrogen isotopic composition o f 
consumer tissues are thus a function of; 8|5N and 8I3C 
o f each prey species; the relative proportions o f each 
prey species assimilated; the isotopic fractionation 
associated w ith  converting prey tissue into consumer 
tissue; and in certain instances, foraging location. 
Moreover, the stable isotope signatures of tissues gen
erally reflect the diet over the period during which the 
tissue was synthesized (Hobson &  Clark 1992a; Bearhop 
et al. 2002), such that tissues w ith different turnover 
rates w ill integrate dietary information over different 
temporal periods. For example, blood is a short-term 
integrator whereas bone integrates the dietary nitrogen 
over a much longer time-scale (Hobson & Clark 1992a; 
Haramis et al. 2001; Bearhop et al. 2002; Pearson et al. 
2003). Finally, tissues that are metabolically inert after 
form ation, such as hair, feathers, baleen or claws, 
w ill preserve this record indefinitely (Schell, Saupe & 
Haubenstock 1989; Hobson 1999a; Bearhop et al. 2003).
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Combined, such qualities render stable isotope ana
lysis a powerful tool to study diet. However, to date rel
atively few studies have given thought to the variation 
associated with the mean isotopic signature (e.g. Genner 
et al. 1999; Bearhop el al. 1999), which when combined 
with conventional assessment o f diet, we propose has 
the potential to be a powerful integrative measure of 
foraging niche width.

Stable isotope variance as a measure of niche width

For this approach to provide a useful measure o f niche 
width we make the following theoretical assumptions.
1. Prey species must d iffer isotopically. This can be 
assessed by isotopic characterization o f potential prey 
items. I f  variation does not exist then this assumption 
would be invalid, and further consideration o f niche 
width (through isotopic variance of the consumer) would 
be futile.
2. The isotope signatures at the food-web base, and the 
diets o f prey species remain relatively invariant over 
time. Several studies have shown that baseline isotope 
signatures can change over time as a consequence 
o f primary production shifts or nutrient inputs, and 
dietary preferences o f prey may also change (Yoshioka, 
Wada & Hayashi 1994). In practice, i f  the isotopic 
signature o f the (combined) prey exhibits temporal vari
ation, as long as this variance is less than the variance 
resulting from a consumer dietary shift (revealed by 
sampling o f prey items), stable isotope signature variance 
should remain a robust measure o f trophic niche width.
3. The tissue analysed reflects the period over which 
the niche width is expressed. In a population o f generalists 
(particu larly Type A generalists) variability in diet 
amongst individuals w ill tend to exist at only shorter 
temporal scales, and this variation is likely to become 
lost through averaging o f the stable isotope signature 
over longer periods. In this case, tissues with integration 
times slightly shorter than the period o f niche width 
assessment will likely provide the best indicators of 
niche width. However, where a whole population shifts 
diet synchronously for comparison with a population 
where individuals shift asynchronously, serial sampling 
o f tissues integrating relatively short-term information 
would be required. In keeping with more traditional 
approaches to trophic niche-width estimation, the detail 
o f the question being asked w ill determine the most 
appropriate choice o f tissue.

Where these assumptions are met, we propose the 
following will influence the isotopic variance exhibited 
by a consumer population, or an individual serially 
sampled over time:
1. the range o f prey species consumed;
2. the evenness (in its ecological sense) o f prey com
ponents in the diet over time;
3. the range o f trophic levels from which prey is drawn;
4. foraging location;
5. variability in individual physiology; and
6. variability in diet-tissue fractionation.

Numbers 1-4 have been used previously as indic
ators o f foraging niche width; numbers 5 and 6 should, 
in most cases, result in small variations in stable isotope 
variance and thus add only a small amount of noise to 
variance estimates. Here we consider the effect each 
control will exert in more detail and derive specific pre
dictions relating to the use of stable isotope analyses as 
a measure o f foraging niche width. At this stage in iso
tope ecology studies, due to larger trophic differences 
and proportionally smaller measurement precision, 
variance in 5I5N is the most powerful parameter to con
sider, thus much o f the following discussion will focus 
on this, although with respect to geographical foraging 
area 8I1C may offer considerable utility.

( 1 )  T H E  R A N G E  O F  P R E Y  S P E C I E S  C O N S U M E D

Prediction 1: in general, populations that consume a 
wide range o f prey species will exhibit wider variation 
in their tissue isotopic signatures than those consuming 
a narrow range of prey items. For example, a population 
o f shags Phalacrocorax aristotelis (L.) that fed exclu
sively on a single prey type at a single foraging site had 
a smaller variance in 8I5N (feather) (0-33%n) than feath
ers o f cormorants Phalacrocorax carbo (L.) which had 
been feeding on multiple prey types at multiple sites 
(4 04%o) (Bearhop et al. 1999).

( 2 )  T H E  E V E N N E S S  O F  P R E Y  C O M P O N E N T S  I N  

T H E  D I E T  O V E R  T I M E

Prediction 2: populations where individuals consume 
widely differing proportions o f each o f their prey items 
over time w ill tend to show less variation in tissue stable 
isotope ratios than w ill those consuming a constant 
proportion o f each prey type. This is demonstrated in 
Fig. 1. Further, asynchronous population diet switching 
would lead to large isotopic variability, synchronous 
population variation would lead to small isotopic vari
ability. Detecting whether variation was asynchronous

1JL1 ill
A B C A B C A A A A B C

B C A B C A A A A B C A

C A B C A B
I I

A A B C A A

A B C A B C A B C A A A

B C A B C A B C A A A A

C A B C A B C A A A A B

Fig. 1. The matrices represent two populations, one with high 
evenness in the diet (I) the other with low evenness in the diet 
(II). Each row represents the diet of a different individual over 
time and each letter a different type of prey item. The arrows 
indicate a sampling event and the boxes show the population 
sampled at each sampling point. Because the prey preferences 
of the consumer populations do not fluctuate synchronously, 
sampling a population with high dietary evenness will tend to 
yield higher variances than one with low evenness.
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Consumers

Prey Type ) { 4 % c ) { 6%c

ooo
f  t  f

2̂%̂) (4%?)

I f  we assume that diet/tissue fractionation is constant (4%o), prey isotope ratios remain constant 
over time and that Type A individuals consume all prey types in equal amounts then:

(A) Sampling a tissue that integrated dietary information over long temporal scales would 
likely give consumer population values (mean + s2) of

Specialist Generalist (Type A) Generalist (Type B)

8%o± 0 , ±0 i ± 4

(B) Sampling a tissue that integrated dietary information over short temporal scales (with a 
large sample size) would likely give consumer population values (mean ±  s2) o f

Specialist

8%«±0

Generalist (Type A) 

83*. ± 4

Generalist (Type B) 

8%c ±  4

(C) Assuming that the tissue being sampled integrates dietary information over a shorter 
period than the diet varies over, serial sampling the same tissue (integrating very short
term dietary information, such as blood plasma samples, or short sections from feathers, 
hair or possibly whiskers) from the same individual over time would likely give 
individual values (mean ±  s2) o f

Specialist Generalist (Type A) Generalist (Type B)

8%« ±  0 8%c ±  4 6, 8 or 10%« ±  0

Fig. 2. Sampling regimes that could enable the use of stable isotope variance in animal tissues to discriminate between Type A and Type 
B generalism. For clarity, the examples represent idealized predator-prey systems, where dietary specializations represent extremes 
of the specialist/generalist and type I/type II continua and the problems of estimating population-level variances are ignored.

/synchronous between two populations would be possible 
through a sampling regime similar to Fig. 2 (part (c)).

(3 )  T H E  R A N G E  O F  T R O P H I C  L E V E L S  F R O M  

W H I C H  P R E Y  IS D R A W N

Prediction 3: populations where individuals consume 
prey over a broad spectrum o f trophic levels w ill tend to 
show more isotopic variance than those which feed on 
the same number o f prey species, but all drawn from the 
same trophic level.

( 4 )  G E O G R A P H I C  F O R A G I N G  A R E A

Prediction 4: since spatial variation at the food-web base 
is reflected throughout the food web, populations where 
individuals forage in a range of geographical areas are likely 
to show more variation in the stable isotope signatures 
o f their tissues than those from sedentary populations.

( 5 )  V A R I A B I L I T Y  I N  I N D I V I D U A L  P H Y S I O L O G Y

Prediction 5: physiological differences among ind i
viduals within the population (or within the same individual

over time) w ill cause some variance in tissue-isotope 
signatures. A  first consideration should be variability in 
nutritional condition. For example, the tissues o f indi
viduals in poor nutritional condition had elevated 5I5N 
compared to those o f individuals in better condition 
(Hobson, Alisauskas& Clark 1993). Variability in meta
bolic rates may also lead to inter-individual variation 
in tissue isotope signatures (observed during studies of 
captive individuals; Hobson &  Clark 1992a; Bearhop 
et al. 2002). However the magnitude o f this effect on 
population or serially sampled individual variance is 
likely to be small and would manifest in noise, rather 
than forcing error between populations or individuals. 
Nevertheless, despite recent advances, our understand
ing o f how variability in physiology influences tissue 
stable isotope signatures is still limited, and more work 
is required in this area.

( 6 )  V A R I A B I L I T Y  I N  D I E T - T I S S U E  

F R A C T I O N A T I O N

Prediction 6: diet-tissue isotopic fractionation may 
vary with the type o f food being consumed or through 
differential mobilization o f stored resources (Adams &
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Sterner 2000). Captive birds subject to artificial diet 
switches exhibited variation in diet-tissue isotopic frac
tionation (Bearhop et al. 2002), perhaps as a function 
o f diet quality. However, since enrichment factors for 
different diets to the same tissue type differ by up to 2%o 
for 8 1:,N and by just over l%o for 513C (Hobson & Clark 
1992b; Haramis et al. 2001; Bearhop et al. 2002), such 
variability may only account for a large proportion o f 
the variance when the dietary isotopic variance is small.

Despite a thorough literature review, finding empir
ical studies to support these predictions has proved 
extremely difficult since data have not been collected 
with these hypotheses in mind (to our knowledge). For 
example there are few studies o f wild populations where 
serial sampling o f the same tissue type (or individual) 
has been undertaken contemporaneous with monitor
ing isotopic composition o f the diet, or insufficient 
individuals from comparable populations have been 
measured to allow the appropriate statistical analyses. 
However, with relatively simple sampling protocols, 
and the appropriate experimental design, there is the 
potential to address a number o f questions with respect 
to niche width. For example, the question posed in the 
introduction regarding the manner in which niche width 
is expressed (i.e. Type A or Type B generalists) could be 
investigated in the manner described in Fig. 2.

D I S C R I M I N A T I N G  B E T W E E N  P O P U L A T I O N  

A N D  I N D I V I D U A L  G E N E R A L I S M

Using conventional methods to address this problem 
has required labour intensive field observations and 
often populations o f identifiable individuals. However, 
either by serial sampling or utilizing the differential 
rate o f tissue turnover, stable isotope analysis offers a 
powerful approach to estimate the relative prevalence 
o f population, and individual, generalism. Because 
different animal tissues integrate dietary signatures 
over different temporal scales (Hobson & Clark 1992a; 
Bearhop et al. 2002), in a population o f generalists we 
predict the variance among tissues that integrate diet 
over short temporal scales (shorter than period o f trophic 
variation) to be larger than the variance for tissues that 
integrate diet over longer temporal scales (that cover 
the period o f trophic variation). Thus for example, 
tissues that integrate over days and weeks, such as blood 
plasma, blood cells or individual feathers (Hobson & 
Clark 1992b; Hilderbrand et al. 1996; Bearhop et al. 
2002), are much more likely to discriminate dietary 
generalism than tissues which integrate variation over 
much longer time-scales, such as bone, groups o f feathers, 
fish otoliths or scales (Hobson &  Clark 1992a; Begg & 
Weidman 2001). I t  follows that i f  we have a population 
o f specialists we would predict little  or no change in 
variance between long- and short-term integrators (Fig. 2, 
parts (a) and (b)).

I f  individuals within the population were identifi
able, serial sampling from the same individuals would 
also distinguish Type A and Type B generalists. Serial

sampling could comprise multiple blood samples, sam
pling sections o f feathers grown at different times in the 
moult cycle or sampling multiple subsections o f long 
hairs such as vibrissae. We would expect the variation 
measured sequentially within individuals from popu
lation of Type A generalists to be approximately equal 
to the variation found in sample representative o f the 
population, whilst for Type B generalism, we would 
expect variance derived from sequentially measured 
individuals to be low compared with the variance derived 
from a single sample o f the population at any one time 
(Fig. 2, part (c)). This latter approach, although poten
tially increasing animal stress in the case of blood due 
to multiple re-captures, would in general be more desir
able than the multiple tissue approach, which may 
require the sacrifice o f animals.

Closing remarks

We conclude that using variance in stable isotope ana
lysis, particularly o f 5I5N, may offer a significant addi
tion to the range o f techniques for estimating trophic 
niche width in animals and comparisons can be under
taken using a simple variance ratio test ( / ’-test). The 
technique, potentia lly at its most powerful when 
combined w ith conventional approaches, would be 
best applied in closed systems, or where nutrient inputs 
or changes in production could be easily quantified, 
such as freshwater lakes or islands. Under certain cir
cumstances marine systems, which tend to be more 
isotopically homogeneous (over moderate spatial and 
temporal scales), may be suitable. Potential confound
ing effects o f physiology should also be considered. 
While our understanding o f physiological effects upon 
tissue stable isotope signatures has increased consider
ably in recent years due to an increase in the number of 
controlled dietary studies (Hobson &  Clark 1992a, 
1992b; Hilderbrand et al. 1996; Haramis etal. 2001; 
Bearhop et al. 2002; Pearson et al. 2003), more work o f 
this nature is required. We suggest that the technique 
could provide valuable insights in to the processes 
underlying insular evolution and the impacts of alien 
introductions upon the communities they invade. The 
challenge now lies w ith the ecological community to 
evaluate fu lly the usefulness o f this approach through 
the design and execution o f empirical studies that use 
isotopic variance as a measure o f niche width.
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