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Abstract

The Drosophila Malpighian tubule is an ideal model epithelium for the study o f fluid 

transport and cell signalling. The tubule is the primary osmoregulatory tissue in the fly and 

Ca signalling plays a critical role in controlling the fluid secretion rate o f this organ. This 

project describes the use o f powerful transgenic and fluorescent reporter techniques to
94-further understand the mechanics o f Ca signalling in the cells o f this tissue. In particular,

9 +  94-the contribution of internal Ca stores to the diuretic peptide-induced Ca signals has 

been investigated.
9  .

In an attempt to unravel the role o f the ER in these signals, an approach involving the Ca 

sensitive photoprotein aequorin was undertaken. Transgenic flies were generated that could 

express ER-targeted aequorin; this in theory would have allowed real-time measurements
94-of [Ca ] e r  m  tubules dunng agonist stimulation. Unfortunately this method is presently 

not achievable in Drosophila, due to problems with targeting signals and the retention 

properties of the insect ER. As an alternative strategy a fluorescent Ca2+ reporter was 

developed that is targeted and functional in the ER. Transgenic flies were generated that 

could express this new reporter, ERpicam, in a cell specific manner. This has allowed real-
94-time monitoring of [Ca ] e r  levels in a live intact tissue during stimulation with 

neuropeptides. The results were surprising, as they imply that the ER plays no role in the 

generation of DVinduced Ca2+ signals in some cells o f the tubule.

The impact of these Ca2+signals on mitochondrial Ca2+ levels was also investigated using 

targeted aequorin and new improved targeted fluorescent reporters. Mitochondria in the 

tubule do take up Ca2+ during the signalling events, however, the dynamics o f this uptake 

are in contrast with the majority o f data collected in other cell systems. Both the aequorin
94*and fluorescent reporter techniques revealed that [Ca ]mt levels in both cell types of the 

tubule do not increase in conjunction with the primary HVinduced component o f the signal 

but instead with the slower secondary response.

This project also describes the identification and characterisation o f the Drosophila 

secretory pathway Ca2+/Mn2+ ATPase (SPCA). The discovery that this multiply-spliced 

ATPase is targeted to multiple organelles will have important implications for further 

understanding of Ca2+ and Mn2+ transport in all cellular systems. Furthermore, it has 

uncovered roles for this protein in tubule function and has proved to be a powerful tool for
94-dissecting the Ca signals in this tissue through overexpression studies. Most interestingly,

94-overexpression of a Golgi-localised SPCA results in a potentiation o f HVinduced Ca 

increases in cells of the tubule, implying that this organelle plays a significant role in 

generating these responses.
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During the initial investigation o f the Drosophila SPCA, development o f a new gene 

knock-in method for Drosophila was theorised in an attempt to elucidate the expression 

and function of the SPCA. This technology is based on spliceosome-mediated trans- 

splicing. It can allow specific targeting of pre-mRNAs in transgenic Drosophila and enable 

reprogramming o f the mature mRNA. The system has been adapted and successfully 

demonstrated in transgenic flies, however further work and refinement is needed before it 

can be used as a generic tool.

These approaches have made significant advances into understanding the unusual Ca2+ 

signalling events o f this epithelium and this work can be continued to gain further insight 

into how renal function is controlled in Drosophila and higher organisms.
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Chapter 1 

Introduction



1.1 Ca2+ signalling

1.1.1 Ca2+ as a signalling molecule

Calcium (Ca ) is a ubiquitous second messenger involved in numerous cellular responses, 

such as fertilisation, muscle contraction, proliferation, differentiation, secretion and 

epithelial renal function (Galione et ah, 1991; Ebashi and Endo, 1968; Dolmetsch et 

ah,1997; Gu and Spitzer, 1995; Petersen, 1992; Rosay et ah, 1997). To allow Ca2+ to act as
7+a second messenger within the cell for multiple responses, the concentration of Ca has to 

be tightly controlled, both spatially and temporally. This is achieved by Ca2+ pumping, 

Ca2+ buffering and the low diffusibility of the molecule. Ca2+ concentration at resting state 

is approximately 100 nM in the cytoplasm ([Ca2+],), ~500 p,M in the endoplasmic 

reticulum (ER) (Montero et ah, 1997; Barrero et ah, 1997) and ~300 pM in the Golgi 

(Pinton et ah, 1998). The concentration of external Ca2+ is generally within the mM range. 

As the [Ca2+]j is so low compared to the extracellular and internal store concentrations, the 

cell has to continuously pump Ca2+ out of the cytoplasm by using Ca2+ ATPases on the 

plasma membrane, the ER and the Golgi.

1.1.2 The control of diverse cellular functions by Ca2+ signals

The speed, amplitude and spatio-temporal patterning o f Ca2+ release/entry allow for the 

versatility required for a single second messenger to control so many processes. An 

example of the temporal versatility is the Ca2+ triggered exocytosis at synaptic junctions, 

which occurs within microseconds. This is contrast to the [Ca2+]i increases that control 

events such as gene transcription and the cell cycle, which last several minutes. The spatial 

flexibility o f Ca2+ events is demonstrated in smooth muscle cells. High [Ca2+]j increases 

cause contraction of the cell (Ebashi and Endo, 1968), whereas smaller, more localised 

‘sparks’ of Ca2+ activate Ca2+-dependant potassium channels, causing hyperpolarisation 

and relaxation o f the cell (Nelson et ah, 1995).

The frequency and amplitude of Ca2+ oscillations can control diverse biological systems, 

such as fluid secretion rate in the salivary gland of Calliphora erythrocephala (Rapp and 

Berridge, 1981), neural differentiation in Xenopus embryonic neurons (Gu and Spitzer, 

1993) and has been implicated in memory and learning behaviour in Drosophila (Rosay et 

al., 2001). The single secretory granule (acrosome) in human sperm has been shown to act 

as a functional Ca2+ pool (De Bias et ah, 2002). The acrosome causes a localised [Ca2+]i 

increase, by releasing internal stores to activate its own exocytosis upon interaction with 

the oocyte. Furthermore, B-lymphocytes respond to antigens with different amplitudes of 

Ca2+ responses with respect to whether they have encountered it before (Healy et ah, 

1997). Whether it is a large (naive B lymphocyte) or a small (tolerant B lymphocyte)
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7-4-[Ca ]j increase determines which specific transcription factors are activated for the 

appropriate cellular response.

It is evident that cellular machinery can manipulate [ C a 2+]j spatially and temporally to 

control a vast array o f different biological processes. These control mechanisms are 

discussed in the next section.

1.1.3 Mechanisms of C a2+ signalling
2+ 2*4-

The Ca ATPases and Ca buffering proteins (such as calreticulin) play an important role 

in the ‘o f f  reactions within a cell to remove Ca2+ from the cytoplasm. Conversely the 

inositol 1,4,5-trisphosphate receptor (IP 3R.S) channels, ryanodine receptor (RyRs) channels 

and plasma membrane Ca2+ channels all contribute to ‘on ’ reactions to allow Ca2+ to enter 

the cytoplasm, either from internal stores or the external medium (see figure 1.2).
• 7-4* • •A typical cellular Ca response involves an extracellular ligand (such as a hormone/ 

peptide/ neurotransmitter) binding to a receptor on the plasma membrane. This induces a 

conformational change in the receptor thus activating a heterotrimeric G-protein, which 

then goes on to activate phospholipase C (PLC). PLC catalyses the hydrolysis o f

phosphatidylinositol 4,5-bisphosphate (PIP2) to diacylglycerol (DAG) and inositol 1,4,5-
2+ ,

tnsphosphate (IP3). IP3 then binds to IP3R channels on the ER, causing release o f Ca into 

the cytoplasm (for review see Berridge, 1993, also see figure 1.1).

R eceptor

H O O C

IP 3 R

Figure 1.1 M echanism  of a typical IP3 
-m ediated C a2+ release from the ER.
An extracellular ligand (L) binds to a 
specific G-protein coupled receptor. This 
activates the G-protein com plex (G), 
which in turn activates PLC. Active PLC 
results in the production o f  IP3 which 
opens the IP3R Ca2+ channels on the ER 
membrane.

DAG

f f l i m wmmmm
ER  lumen

i i i lmmmm
r
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SERCA PUMP

ER ~500mM

EPjR or 
RYR channel

lOOnM

PMCA PUMP

CALCIUM CHANNEL 
(VOC, ROC, SOC or SMOC)

Figure 1.2 The basic elem ents that control [C a2+] j . The plasma m em brane Ca2̂  ATPase (PM CA) pumps 
Ca‘ ’ from the cytoplasm  into the extracellular space. The sarco/endoplasm ic reticulum  Ca2+ ATPase 
(SERCA) pumps Ca2' from the cytoplasm  into the endoplasm in reticulum  (ER). The voltage-operated 
(VOC), receptor-operated (ROC), store-operated (SOC) and second m essenger-operated (SM OC) channels 
allow influx o f  extracellular Ca2\  Inositol 1,4,5-trisphosphate receptor channels (IP3Rs) and ryanodine 
receptor channels (RyRs) allow release o f  ER C a2+.

Fundamental 
event <

Elementary 
event <(

Global
event

Stimuus
intensity

Wave

Low Intermediate

Figure 1.3 A hierarchical organisation of intracellular calcium  signalling.
The stimulus intensity seems to determine which events are elicited. Fundam ental events are the 
consequence o f opening single intracellular channels to give blips. Elem entary events, represented by 
puffs, result from  the concerted opening o f small groups o f IP3Rs. These elem entary events appear to be 
the building blocks o f  the global events, which develop as a wave resulting from the progressive 
recruitment o f neighbouring receptors through a process o f  Ca2+-induced Ca2+ release (CICR). [Figure is 
taken from Berridge, 1997.
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This depletion o f Ca2+ from intracellular stores invariably leads to an influx of Ca2+ from 

the extracellular medium. The process by which this store depletion activates Ca2+ entry 

has been termed capacitative Ca2+ entry (CCE) (Putney, 1986) or store operated Ca2+ entry 

(SOCE) (for review see Berridge, 1995). In excitable cells, an interaction between the RyR 

on the sarcoplasmic reticulum (SR) and the voltage-operated channel (VOC) on the plasma 

membrane initiate the Ca influx (Chavis et al., 1996). Surprisingly, the mechanism of 

SOCE in non-excitable cells has yet to be elucidated, though several models have been 

proposed. These include the small diffusible messenger model (Randriamampita et al, 

1993; Parekh et al., 1993), functional interaction between the IP3R channel and the store- 

operated Ca2+ channel (SOC) (Kiselyov et al, 1998) and the vesicle insertion model (Yao et 

al., 1999; Patterson et al., 1999). The small diffusible messenger model suggests that a 

messenger molecule is released from the depleted store, which activates opening o f plasma 

membrane channels. The vesicle insertion model suggests that active Ca channels are 

present in vesicular structures close to the plasma membrane and upon depletion o f stores, 

they insert the channels into the membrane. There is evidence supporting all three o f these 

models in various cell systems; however there is mounting evidence against a diffusible 

messenger model and now more evidence to support the functional interaction model (for 

review see Elliot, 2001).

Influx of extracellular Ca2+ occurs through plasma membrane channels and some o f the 

various methods o f activation are mentioned above. Voltage-operated channels (VOCs) are 

generally located in neural or innervated muscle tissues, they generate the rapid Ca 

influxes that control fast cellular processes like muscle contraction and exocytosis at 

synaptic endings (for review see Weiss and Burgoyne, 2002). The receptor-operated 

channels (ROCs) act in a very direct manner, opening o f the channel is triggered by 

binding o f an extracellular ligand such as glutamate (MacDermot et al., 1986) or ATP 

(Valera et al., 1994). There are also the second messenger-operated channels (SMOCs), 

which include cyclic nucleotide gated channels (for review see Broillet and Firestein,

1 9 9 9 ) and the arachidonate-regulated Ca2+ channel (Iarc) (Mignen and Shuttleworth,

2000). Furthermore, the diverse transient receptor protein (TRP) ion-channel family are 

Ca2+ channels that can be activated by stimuli such as temperature, cell stretching or 

internal Ca2+ store depletion (SOCE) (for reviews see Minke and Cook, 2002; Montell et 

al., 2 0 0 2 ).

The hierarchical organisation of intracellular Ca2+ signalling is shown in figure 1.3. These 

events occur and propagate due to the process o f Ca2+ induced Ca2+ release (CICR), which 

is dependant on the IP3RS and RyRs being sensitive to Ca2+ itself (for review see Berridge, 

1997). A fundamental event is due to the opening o f a single IP3R channel to give a ‘blip’
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of Ca2+ release from the ER. Elementary events arise from the opening o f small groups of 

channels to give ‘puffs’ o f Ca2+ release. These elementary events can instigate Ca2+ waves 

because o f the activation o f channels by Ca2+, these waves can pass through the whole cell 

in a global event. These events were first observed in HeLa cells (Bootman et al., 1997) 

and this mechanism of CICR explains the Ca2+ wave that propagates through the well 

studied polarised pancreatic acinar cell (Osipchuk et al., 1990; Kasai et al., 1990; Bird et 

al., 1991). Ca can enter the cell through dynamically controlled channels, other second 

messengers can trigger Ca release from intracellular pools and even Ca itself can
94*trigger its own release from these stores. The nature o f these Ca stores is discussed in the 

next section.

1.1.4 Intracellular Ca2+ pools

1.1.4.1 ER Ca2+ pool

The ER is a dynamic signalling organelle, that in addition to controlling the entry and
sy,

release of Ca , plays an important role in protein synthesis, sterol biosynthesis and

apoptosis (for review see Berridge, 2002). The high [C a 2+]ER is maintained by Ca2+-

transporting ATPases of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) family

(Lytton et al., 1991). Ca2+-binding proteins such as calreticulin reside in the ER to assist in

storing the high quantity o f Ca2+, to buffer levels and also to control Ca2+ uptake and
• 2+release proteins on the ER membrane (for review see Johnson et al., 2001). The high Ca 

is required to provide a releasable pool (through IP3RS and RyRs) for signalling events and 

to provide the correct environment for protein folding.

The Ca2+ signalling role o f the ER has been extensively studied in pancreatic acinar cells; 

the organelle resides predominantly in the basolateral region o f the cell with fine tendrils of 

ER extending into the apical side (for review see Ashby and Tepikin, 2002). The ER is 

able to provide localised agonist-induced [Ca2+]j increases in the apical region by specific 

localisation of IP3RS on its membrane. Additionally, it has been demonstrated that the ER 

(at least in pancreatic acinar cells) is a functionally continuous Ca2+ pool; Ca2+ released 

from the apical region o f ER can be replenished from the larger basolateral region o f the 

ER (Park et al., 2000).

1.1.4.2 Golgi apparatus Ca2+ pool

The Golgi apparatus was first observed to contain high Ca2+ levels by Chandra et al., 1994 

and it was demonstrated by Pinton et al., 1998, using a targeted aequorin approach, that it 

was a functional nVsensitive intracellular Ca2+ store. It was shown that the Golgi had 

resting levels o f Ca2+ of ~300pM, which were only partially sensitive to thapsigargin (a
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potent SERCA inhibitor). Furthermore, calreticulin was not acting as a Ca2+ storage protein 

in the Golgi. CALNUC (nucleobindin) is a resident Golgi protein that has been shown to 

involved in Ca2+ storage and release (Lin et al., 1999) and has a similar role to that of 

calreticulin in the ER. Moreover, it has been reported that Golgi luminal Ca2+ participates 

in controlling key processes that occur in the organelle, such as post-translational 

modification and protein sorting and trafficking (Camell and Moore, 1994; Duncan and 

Burgoyne, 1996).
9+Maintenance of Golgi Ca levels appears to be in part dependent on SERCA activity 

(Pinton et al., 1998). There is growing evidence that the other thapsigargin insensitive 

component of Golgi Ca2+ uptake may be a homologue o f the yeast Ca2+/Mn2+ ATPase, 

PMR1. These Ca2+ ATPases are similar to the SERCA and PMCA pumps, however they 

form a discrete group known as the secretory pathway Ca2+ ATPases (SPCA). All studies, 

to date have shown that these ion pumps localise to the Golgi apparatus and possess 

distinct biochemical and functional properties (for more detail see chapter 5).

1.1.4.3 Mitochondrial uptake of Ca2+

Mitochondria and Ca2+ have an intimate relationship, while Ca2+ signals can control 

mitochondrial activity (Jouaville et al., 1999), mitochondria play an important role in 

shaping and controlling intracellular Ca2+ signalling (Gilabert and Parekh, 2000). Uptake 

of Ca2+ into mitochondria is not reliant upon ATP but occurs through an electrogenic 

transporter (Gunter et al., 1990). This ‘Ca2+ uniporter’ has not yet been characterised at a 

molecular level. Export o f Ca2+ from the mitochondria is via a Na+/Ca2+ exchanger (Jung et 

al., 1995). Targeted aequorin and luciferase were used to measure Ca2+ levels and ATP 

levels in mitochondria (Jouaville et al., 1999). It was shown that accumulation o f Ca2+ in 

the mitochondria activates the metabolic machinery, therefore increases the levels o f ATP.
9  .

Additionally, the amount o f ATP produced was dependant on the amount o f Ca 

accumulated, which is probably related to the Ca2+ sensitivity of the matrix 

dehydrogenases. Mitochondria also buffer and redistribute Ca2+ within the cell; Gilabert 

and Parekh (2000) elegantly demonstrated how mitochondria are important in the process 

of store operated Ca2+ entry. The mitochondria are coupled or in very close proximity to
9 i

the ER (Rizzuto et al., 1998) and upon release o f Ca from the ER store, the mitochondria
9  .

accumulate a lot o f this released Ca . SOCE is activated by store levels depleting below a 

certain threshold; however, if  the mitochondria are blocked from taking up Ca2+ then the 

released Ca2+ is immediately recovered by the store and the levels do not deplete 

sufficiently to activate SOCE. More recent work has demonstrated a more complex 

interaction between mitochondria and SOCE (Glitsch et al., 2002). Evidence against the
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control of SOCE by increased ER refilling and Ca2+-dependent negative feedback was 

shown and a model was proposed that involved the Ca2+-dependent release of a 

mitochondrial factor that can control SOCE.

1.1.4.4 Lysosomal Ca2+ pool

Lysosomes and lyosomal-related organelles have recently emerged as functional Ca2+ 

stores in various cell types. There is an HVsensitive lysosomal Ca2+ in Madin-Darby 

canine kidney (MDCK) cells (Haller et al., 1996), an agonist and thapsigargin insensitive 

lysosomal store in Drosophila melanogaster S2 cells (Yagodin et al., 1999), the acrosomal 

Ca in human sperm (De Bias et al., 2002) and the lysosome-related reserve granules in 

sea urchin eggs (Churchill et al., 2002). The uptake and release mechanisms for these pools 

vary between cell types, though generally uptake o f Ca into these acidic organelles
2  j j

generally appears to be via a Ca /H exchanger that is driven by a proton V-ATPase 

(Yagodin et al., 1999; Churchill et al., 2002).

It is evident that various intracellular organelles act as dynamic Ca pools, that can 

functionally interact with each other to control and shape the Ca signalling events which 

control a vast array o f cellular functions.

1.2 Ca2+ reporters

1.2.1 Synthetic Ca2+ indicators

The first rationally designed fluorescent reporters for Ca2+ were synthesised by Roger 

Tsien (Tsien, 1980). The design was based on the Ca2+ chelator EGTA, in which the 

methylene groups o f EGTA were replaced with two benzene rings, allowing it to function 

as a chromophore. The conformational change caused by the Ca2+ binding altered the 

chromophore, therefore altering the excitation and/or emission o f the dye. Improved 

derivatives of this design evolved to give quin-2 (Tsien et al., 1982), the ratiometric fiira-2 

(Grynkiewicz et al., 1985) and other variants with different Ca2+ sensitivities. The 

development o f polycarbonate dyes that could be incubated with acetoxymethyl esters 

allowed the ester-dye complex to be taken up by the cell in a non-invasive manner 

(intracellular cleavage by cellular esterases releases the hydrophilic dye) (Tsien, 1981). 

Although these Ca indicators are easy to use, they only function transiently, they cannot 

be targeted to organelles (apart from mitochondrial rhod-2 (Minta et al., 1989)) and in 

some cases are actively transported out of the cell/tissue e.g., the Drosophila Malpighian 

tubule (Dow and Cheek, unpublished).
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1.2.2 The photoprotein aequorin

Aequorin is a chemiluminescent protein from the jellyfish Aequorea victoria that emits 

photons upon binding to Ca2+ (Shimomura et al., 1962). Until the cDNA for (apo)aequorin 

was isolated (Prasher et al., 1985), the protein had to be carefully extracted from the 

jellyfish and micro-injected into cells. Apoaequorin could then be expressed in cells, 

incubated with the ligand coelenterazine to form active aequorin (fig. 1.4) and then the 

luminescence measured using a photon-multiplier device. Further understanding o f this 

reaction has been aided by the recent solving o f the crystal structure o f  aequorin (Head et 

al., 2000). Aequorin was found to be a globular molecule containing a hydrophobic core

cavity that holds the ligand coelenterazine-2-hydroperoxide. The structure also showed
2+ .

domains that help stabilise the peroxide and suggest a mechanism for how Ca activates 

the luminescent reaction.

Aequorin allows for monitoring o f changes in Ca levels; however, it also allows
2+ . . . .  9 *r

quantitative measurements o f Ca . During an experiment using aequorin, the Ca 

concentration at a time t is proportional to the light emitted at time t divided by the total 

remaining luminescence in the sample (for a more detailed description see Button and 

Eidsath, 1996). This allows retrospective calculation o f Ca concentrations after all the 

luminescence has been discharged.
• 9 IRecombinant expression o f aequorin introduced a new concept in the Ca reporter field as 

it allowed intracellular localisation o f the reporter, using specific signal sequences to 

organelles such as the mitochondria (Rizzuto et al., 1992), the ER (Montero et al., 1995) 

and the Golgi (Pinton et al., 1998). Additionally it has enabled real-time monitoring o f 

[C a 2+]j in live tissues by using a transgenic approach, in plants (Knight et al., 1991) and in 

Drosophila (Rosay et al., 1997). Due to the limited photon-emitting abilities o f aequorin, 

the amount o f photons emitted from a cell population is adequate for fast measurements o f 

Ca2+, however it is not sufficient for single cell imaging o f Ca2+ events (apart from large 

cells such as oocytes).

AEQUORIN A PO A EQ U O RIN

(very fast)

coelenterazine + O
+ coelenteramide

Figure 1.4 Aequorin reaction. Reconstitution o f  apoaequorin with its analogue coelenterazine produces 
active aequorin. Upon binding o f Ca2r ions to aequorin, the molecule reverts back to apoaequorin, 
producing one photon o f  light, coelenteram ide and C 0 2.



1.2.3 Genetically encoded fluorescent indicators for Ca2+

The advantages of using a genetically encoded fluorescent Ca reporter to measure 

intracellular Ca2+ levels include the ability to target the reporter to specific cells and to 

specific organelles. The photoprotein aequorin can also be targeted in this manner; 

however an encoded fluorescent reporter does not require a co-factor and can also give a 

strong enough signal to allow fast real-time imaging o f Ca2+ changes in a single cell.

The first o f these reporters to be developed were the ‘cameleons’. They consist o f tandem 

fusions of the cyan-emitting mutant o f the green fluorescent protein (ECFP), calmodulin, 

the calmodulin-binding peptide M l3 and the enhanced yellow-emitting mutant o f GFP 

(EYFP) (Miyawaki et al., 1997). Binding o f Ca2+ to the calmodulin EF hands causes 

calmodulin to wrap around the M l3 domain, which causes an increase in FRET 

(fluorescence resonance energy transfer) between the two GFPs (see figure 1.5A). As the 

Ca2+ concentration is proportional to the ratio o f fluorescence emitted at two different 

wavelengths, it is possible to quantify Ca2+ concentrations using this reporter as well as
^  i

just observing Ca changes. However the cameleons have limited signal intensity and the 

signal-to-noise ratio is low. Truong et al., 2001 developed an improved cameleon that 

possessed a greater FRET dynamic range, again though the signal-to-noise ratio is not 

exceptional. Transgenic approaches have allowed the utilisation o f cameleons to study 

Ca2+ transients in C. elegans (Kerr et al., 2000) and also Drosophila (Fiala et al., 2002). 

The second form of encoded Ca2+ reporter to be developed was ‘Camgaroo’ by Baird et al., 

1999. This reporter consists of a circular permuted version o f EYFP with calmodulin 

inserted between the two halves. The reporter’s mode o f function involves Ca2+ binding to 

the calmodulin domain, this in turn brings the two halves o f the permuted EYFP protein 

closer together, allowing the formation o f the fluorophore (see figure 1.5B). This reporter 

does not allow quantitative measurements (as it had a single excitation and single emission 

peak spectra) but it does show a large change in fluorescence between Ca2+-bound and 

Ca2+-ffee states. Camgaroo’s disadvantage is that its sensitivity range (~500nM to ~50/xM) 

is higher than the physiologically significant range (~50nM to ~5/*M), large increases in 

cytoplasmic Ca2+ concentrations can be seen but any small or secondary responses are not 

detected. Nonetheless, transgenic expression o f camgaroo in Drosophila has allowed 

visualisation of Ca2+ transients in mushroom body neurons (Yu et al., 2003).

The third form o f reporter is also based on a circular permuted GFP (cpGFP). The 

‘pericams’ consist of cpGFP fused to calmodulin and the M13 peptide (Nakai et al., 2001;
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Nagai et al., 2001). The binding o f Ca2+ causes calmodulin to interact with M l3, this 

turn causes a change in the structure o f the protein which leads to an alteration o f the 

environment surrounding the chromophore (see figure 1.5C).

B
EYFP (1 - 1 4 4 )

--------------------------
C A L M O D U L IN EYFP ( 1 4 6 - 2 3 8 )

_ - . __ -
480 nm 535 nm
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\  s
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V
E 1 0 4 QI
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EYFP 
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EYFP 
1 -  144

XENOPUS CALMODULIN

................................. - ......................

415 nm 515 nm 494 nm 515 nm
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Figure 1.5 Diagrams of the 3 types of genetically encoded fluorescent C a2+ reporters.
(A) cam eleon (B) camgaroo (C) ratiometic pericam. Reproduced or m odified from 
M iyawaki et al., 1997; Baird et al., 1999 and Nagai et al., 2001.



Nagai et al. produced pericams that increased in fluorescence when in a Ca2+-bound form 

(flash pericam), decreased in fluorescence (inverse pericam) and a pericam that changed its 

excitation wavelength in relation to the Ca2+ concentration (ratiometric pericam). The 

benefit o f ratiometric pericam is that it can perform quantitative measurements as well as 

having a good dynamic range. However, ratiometric pericam, like the cameleons and 

camgaroo is still very sensitive to pH.

1.3 The Drosophila melanogaster Malpighian tubule

1.3.1 Drosophila as a genetic model

Drosophila melanogaster is an excellent model organism. Despite its small size, it is an 

organism that can be easily genetically manipulated and studied, yet still possesses an 

effective analogy to higher organisms. Due to the short generation time and the ease of 

culturing, the fruitfly has now been studied extensively for nearly a century. Genetically, 

Drosophila is well defined, with a small (relative to other eukaryotes) genome of 

approximately 13,600 genes (Adams et al., 2000), arranged in four chromosomes, and a 

genome project which is complete, covering 120 MB o f the Drosophila euchromatic 

portion of the genome (Adams et al., 2000). Polytene chromosomes from Drosophila 

salivary glands make it possible to correlate molecular and cytogenetic maps. Balancer 

chromosomes can be used to maintain lethal mutations in heterozygotes in a manner that 

does not require selection in each generation (Rubin and Lewis, 2000).

However the most useful molecular genetic tool available for manipulating Drosophila 

genes, is the presence o f transposable elements and especially the use of the P element 

(Rubin and Spradling, 1982; Spradling and Rubin, 1982). The P element is a transposable 

element able to mobilise itself within a genome. This transposable element has been 

modified (O'Kane and Gehring, 1987) and used for a wide variety o f applications. These 

include tagging genes (Lukacsovich et al., 2001, Morin et al.,2001), ectopic expression 

(Brand and Perrimon, 1994), gene overexpression (Rorth, 1996; Rorth et al., 1998), rescue 

(Rubin and Spradling, 1982), enhancer trapping (O'Kane and Gehring, 1987), homologous 

recombination (Rong and Golic, 2000; Rong and Golic, 2001; Rong et al., 2002) and RNAi 

based gene silencing (Martinek and Young, 2000; Kennerdell and Carthew, 2000; Piccin et 

al., 2001; Kalidas and Smith, 2002).

This wealth of molecular and genetic tools available for use on Drosophila aid researchers 

in addressing questions o f gene identification and function using reverse genetics. 

Biochemical, cell biology and electrophysiological techniques can also be applied to 

Drosophila, permitting multidisciplinary approaches such as integrative physiology and
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functional genomics (Dow and Davies, 2003), developmental biology and neurobiology 

(Rubin, 1988).

1.3.2 P element technology

1.3.2.1 P element technology and germline transformation

The discovery and utilisation of P elements revolutionised Drosophila genetics. They are 

used as tools in a vast array of genetic, developmental and cell biological studies. The P 

element is a 2.9kb autonomous transposable element found in natural populations of 

Drosophila melanogaster, with the ability to hop from one chromosomal location to 

another throughout the genome. Spradling and Rubin were the first to use of P elements to 

insert recombinant DNA into a random location o f the Drosophila genome (Spradling and 

Rubin, 1982). They used a marker gene called rosy (ry+), which encodes for a xanthine 

dehydrogenase. Mutations in this gene cause an abnormal eye phenotype, which can be 

easily scored. The idea o f this experiment was to introduce a wild-type copy o f this gene 

back into flies with a rosy mutant phenotype using P element-mediated transposition. 

When this P-element vector was injected into syncytial blastoderm embryos that expressed 

the necessary active transposase enzyme, a high efficiency o f transposition was detected by 

observing a rescue of the eye phenotype. The present method o f germline transformation 

is based on Spradling’s and Rubin’s work, however the P-element is injected into white' 

embryos, the marker gene is the mini-white" gene and it is usually co-injected with a ‘A2-3 

helper’ plasmid that allows transient expression o f transposase (see figure 1.6). The use o f 

the helper plasmid enables the P element vector to be injected into embryos that don’t 

express active transposase, ensuring that the P element remains stable after transposition. 

This technology has led to the development of a wide range o f molecular and genetic 

techniques that were briefly mentioned in the last section.

1.3.2.2 Enhancer trapping

Enhancer trapping is the technique by which a P element with a weak promoter coupled to 

a reporter gene (eg. lacZ), allows the analysis o f cfs-acting patterning information, such as 

enhancers (Bier et al., 1989; O'Kane and Gehring, 1987). The first generation o f enhancer 

traps involved a weak promoter, such as the P element promoter or the P element 

transposase promoter coupled to a reporter gene such as the /3-galactosidase gene (lacZ) 

(O'Kane and Gehring, 1987; Bier et al., 1989). These P elements also have a visible marker 

such as rosy" or mini-white¥ to permit selection o f transformants and plasmid sequences 

that can be used to rescue flanking genomic DNA from both sides o f the P element (Bier et 

al., 1989). When a P element, such as p {lacW} inserts near an enhancer, lacZ expression as
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Figure 1.6 Germ line transform ation of D rosophila m elanogaster. Reproduced from Guo, 1996. The 
cloned DNA is inserted into a vector carrying a w hite+ m arker gene to perm it selection o f transformed 
flies. This DNA is then co-injected with a helper plasm id (transposase-producing) into white embryos. 
Adults flies that emerge post injection and potentially have the transposon o f  interest inserted in their germ 
cell chromosom es are then crossed back to white' flies. The progeny o f  this cross, if  transform ed have 
w hite{ marker, which gives them  red eyes.
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Figure 1.7 Directed gene expression in D rosophila m elanogaster. Reproduced from Brand and 
Perrimon, 1993. The GAL4 gene is randomly inserted into the genom e, driving GAL4 expression from a 
number o f different enhancers. The GAL4-dependent target gene is constructed by placing the gene 
sequence behind GAL4 binding sites. The gene is silent in the absence o f  GAL4. This permits activation 
o f target gene in a cell-specific or tissue-specific manner. Flies carrying the target (UA5-Gene X) are 
crossed to flies carrying the GAL4 transcription factor (enhancer trap GAL4). The progeny o f  this cross 
have active GAL4, and this perm its expression o f  Gene X in the same pattern as the enhancer trap 
GAL4.



detected by X-gal staining reveals the endogenous expression o f the enhancer. Flanking 

DNA sequences can be rescued and used to identify the gene involved. However, the 

pattern detected by the enhancer trap needs to be verified by other means, such as in situ 

hybridisation, as it may be affected by other factors and not reflect the complete expression 

pattern of the nearby gene.

A second generation o f enhancer traps was described, which utilises a binary expression 

system based on the yeast transcription factor GAL4 (Brand and Perrimon, 1993). GAL4 is 

a transcriptional activator of genes involved in galactose catabolism in the budding yeast 

(Gill and Ptashne, 1987). It binds to a specific sequence called UASg to activate 

transcription. Yeast GAL4 was shown to activate gene transcription in Drosophila 

melanogaster in a tissue-specific manner, but only when the Drosophila promoter is linked 

the GAL4 binding sites (Fischer et al., 1988). This observation was utilised by Brand and 

Perrimon in generating a binary enhancer trap system (Brand and Perrimon, 1993).

GAL4 was inserted randomly into the Drosophila genome to drive GAL4 expression by a 

variety of genomic enhancers, by replacing the lacZ gene as the reporter for enhancer- 

trapping (Bier et al., 1989; Brand and Perrimon, 1993). The gene o f interest is then 

introduced into Drosophila in a P element containing GAL4 binding sites in its promoter, 

or UAS sites (upstream activating sequences) (Brand and Perrimon, 1993) (see figure 1.7). 

This system permits expression of a gene in a directed and controlled fashion, in a cell- 

specific or tissue-specific manner. It separates the target gene from its transcriptional 

activator in two distinct lines, allowing only the progeny of the cross to synthesise the gene 

product. Lethal or toxic genes can therefore be expressed in a controlled fashion and 

increase the applications of this system. The UAS sequence can be coupled to lacZ to 

initially determine the expression pattern of the enhancer trap line, and subsequently the 

enhancer trap line crossed to a variety o f UAS-Gene X lines. Another reporter gene widely 

used for determining enhancer trap patterns is UAS-GFP which permits study o f live 

tissues or organs (Brand, 1995).

A more recent P element trap system has been developed, that allows study o f endogenous 

proteins fused with GFP (Morin et al., 2001). GFP, flanked by strong splice donor and 

acceptor sites was engineered into a P element. If the element landed in an intron after 

transposition, then the cis-acting splice sites would incorporate the GFP reading frame into 

the gene mRNA. This element was mobilised in the genome and the progeny screened for 

fluorescence; the resulting gene trap lines are very useful as they allow study of the 

intracellular localisation of the respective protein as well as the cell type expression 

pattern.
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1.3.3 The Drosophila M alpighian tubule.

The Drosophila Malpighian tubule is rapidly becoming recognised as an excellent model 

epithelium for the study o f fluid transport and cell-specific signalling and ion transport 

pathways (see review, Dow and Davies, 2003). Combined with the robust qualities of the 

tubule for physiological study and all the genetic and transgenic tools available to the 

Drosophila community, the Drosophila Malpighian tubule is an ideal tissue to study cell 

signalling events in an organotypic context i.e. in a whole, intact organ.

Drosophila melanogaster have four Malpighian tubules, arranged in two pairs, one 

pointing towards the anterior and one towards the posterior o f the fly. The tubules from 

each pair join to form a common ureter and are joined to the gut at the junction between 

the midgut and the hindgut (see figure 1.8A). Drosophila Malpighian tubules perform 

analogous roles to the vertebrate kidney and are involved in generation o f urine and also 

selective reabsorption o f certain desirable solutes (Dow et al., 1998).

The Malpighian tubules are relatively simple, one cell thick, tubular epithelia, with each 

tubule comprising of approximately 150 cells (Sozen et al., 1997). The structure o f the 

Drosophila Malpighian tubules is shown in figure 1.8, both as described by classical 

physiology (figure 1.8A) and by molecular genetic analysis (figure 1.8B). Each tubule 

comprises o f six regions with a number o f different cell types, two o f which appear most 

important, type (I) or principal cells and type (II) or stellate cells. These regions of the 

tubule have been shown to be defined genetically and physiologically shown to have 

different functions (Sozen et al., 1997).

The main segment of the Malpighian tubule is involved in ion and fluid secretion and the 

lower segment is reabsorptive (O'Donnell and Maddrell, 1995). This correlates with the 

genetically defined regions within the tubule as identified and characterised using enhancer 

trapping (Sozen et al., 1997). Fluid secretion is energised by an apical H+ V-ATPase 

(proton pump) that is confined to the principal cells o f the main segment (Davies et al.,

1996). The primary physiological assay for the tubule is the fluid secretion assay (Dow et 

al., 1994) shown in figure 1.9.

A number o f studies on fluid secretion from the Drosophila tubule and its neurohormonal 

control have uncovered the signalling pathways involved and the neuropeptides which are 

involved in the fluid secretion process. These studies have uncovered the synergistic way 

in which neuropeptides stimulate fluid secretion, acting via different cell types or through 

different second messenger pathways.
!I
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Figure 1.8 Drosophila melanogaster Malpighian tubules. (A) Classical morphology o f the Malpighian tubules 
(Wessing and Eichelberg, 1978). (B) Malpighian tubule architecture as shown by enhancer trapping technology. 
Numbers indicate number of principal and stellate cells in each domain as verified by EtBr staining, standard errors <1 
in each case (reproduced from Sozen et al., 1997). (C) Schematic diagram o f neuropeptide induced signalling 
pathways in principal and stellate cells. Abbreviations are as follows: NO, nitric oxide; dNOS, Drosophila nitric oxide 
synthase; GC, guanylate cyclase; PDE, phosphodiesterase; cGK, cyclic G-kinase; V, V-ATPase; DLK, Drosophila 
leucokinin. Diagram was reproduced and adapted from Terhzaz et al., 1999 and Dow and Davies, 2003.

36



Posterior
tub u les

[¥
^  Anterior 

tub u les

20 10 0

Figure 1.9 The fluid secretion assay. Malpighian tubules were dissected from the fly in Schneider's insect 
culture medium. Tubules were dissected and separated as pairs by severance o f  the ureter. One tubule was 
wrapped around an anchoring pin whilst the other rem ained in a drop o f  1:1 mixture o f 
Schneider's:Z>asop/7//a saline, under mineral oil. Amaranth is added to the saline to aid visualisation o f the 
secreted fluid. As the tubule secretes, a bubble o f secreted fluid is form ed at the ureter. This bubble can be 
removed with a finely pulled glass rod and the diameter measured. The volume o f liquid can be calculated 
from the diameter o f the bubble and consequently the fluid secretion rate can be determined.

The two main cell types, principal and stellate cells, and the major signalling pathways in 

each cell type are shown in figure 1.8C. CAP2b is a cardioacceleratory peptide, originally 

identified from the tobacco hawkmoth (Manduca sexta (Huesmann et al., 1995)). 

Consequently capa-1 and capa-2, the Drosophila homologues o f CAP2b have been 

identified and characterised (Kean et al., 2002). These insect neuropeptides ultimately 

stimulate the Drosophila principal cell V-ATPase via a Ca2+/nitric oxide (NO)/cGMP 

signalling pathway (Davies et al., 1995; Rosay et al., 1997; Kean et al., 2002). More 

specifically CAP2b-like peptides activate the capa G-protein-coupled receptor (Iverson et 

al., 2002; Park et al., 2002) and raise intracellular [Ca ] via an IP3 induced release from 

internal stores (Pollock et al., 2003). This [Ca2+]j increase activates a Drosophila nitric 

oxide synthase (NOS) which generates NO. NO activates a soluble guanylate cyclase, 

increasing cGMP levels, which in turn activates cGM P-dependent protein kinases, 

PKG1/2, which finally is thought to act on the apical H+-translocating V-ATPase (Davies 

et al., 1997).

When the V-ATPase activity is up-regulated, the increased proton translocation is 

proposed to drive greater secondary K+ transport across the membrane into the lumen via 

one or more alkali-metal/proton exchangers (in agreement with the Wieczorek model 

(Wieczorek et al., 1991)). This movement of K+ produces an osomotic gradient that 

promotes the flow o f water from the extracellular medium into the lumen. Flow o f water is
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passive, possibly by water channels of the major intrinsic protein family (MEP) localised to 

the stellate cells (O'Donnell et al., 1998; Dow and Davies, 2002).

A cAMP signalling pathway is also active in the principal cell and is activated by a 

Drosophila homologue of the corticotropin-releasing factor (CRF)-like diuretic peptide 

(Cabrero et al., 2002) and also the calcitonin-like peptide (Coast et al., 2001). This 

pathway also activates an increase in fluid secretion, however the downstream components 

leading to the activation o f V-ATPases is not yet understood.

The stellate cells are stimulated by the neuropeptide, Drosophila leucokinin (drosokinin). 

Drosokinin is the most potent diuretic hormone identified in Drosophila and it acts through 

an increase in [Ca2+]j in stellate cells (Terhzaz et al., 1999). More specifically, drosokinin 

binds a G-protein coupled receptor (dLKR) (Radford et al., 2002) causing the production
94-of IP3 (Pollock et al., 2003) and the resultant [Ca ]j rise stimulates an increase in chloride 

shunt conductance (O’Donnell et al., 1998).

1.3.4 Role of Ca2+ in the Malpighian tubule
9+As mentioned in the previous section, Ca places an integral role in cell signalling in both 

the principal cells and the stellate cells. The two characterised neuropeptides, CAP2b-like 

peptides and Drosokinin both increase fluid secretion via a [Ca2+]j increase in the 

respective cell types (Rosay et al., 1997; Terhzaz et al., 1999). Initially, measuring Ca2+ 

concentrations in the tubule appeared difficult. The cells were too small to allow
91

measurement using ion specific microelectrodes; and fluorescent Ca -sensitive dyes, such

as fura-2, were found to be actively excreted by the tubule (Dow and Cheek, unpublished).
2+

However, [Ca in the cells o f the tubule can be measured by transgenic expression of the
2+

Ca -sensitive luminescent protein aequorin (see section 1.2.2). In the Malpighian tubule, 

aequorin expression can be driven in specific regions or cells o f the tubule by utilising the 

GAL4/UAS binary system (Brand and Perrimon, 1993) as was demonstrated by Rosay et 

al, 1997 (see figure 1.10). Further details o f the assay are described in section 2.17.1.

P{GAL4} line 
with tubule 
specific 
expression

In progeny, GAL4 
expression drives 
aequorin expression

UAS-aequorin 
line

Add agonist

D issec t____
tubules.
Add
coelenterazine.

h o  470

•Record luminescence

Figure 1.10 Measuring [Ca2+]i in the tubule using aequorin.
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Using such a method it was found that CAP2b caused a rapid, dose-dependent rise in [Ca ]{ 

exclusively in the main segment principal cells (Rosay et al, 1997). Experiments performed in
9 +  94-Ca free medium suggested that this rise is due to an influx o f extracellular Ca (Rosay et al,

1997). However, the interpretation of these results may be debatable and this is discussed in

more detail in chapter 5. More recent experiments revealed a secondary component, consisting
2+

of a more sustained rise in [Ca ]{ (Kean et al., 2002). Furthermore, CAP2b-like peptide
9 +stimulated fluid transport is also dependent on extracellular Ca , confirming that this pathway

2+acts via a Ca signal. It was also found that leucokinm-IV, stimulated a rise m [Ca ]{

exclusively in the main segment stellate cells (Rosay et al., 1997; O’Donnell et al., 1998).
2+

More recently drosokinin has been shown to elicit a biphasic rise in [Ca ],• o f the stellate cells 

(Terhzaz et al, 1999), similar to that induced by CAP2b in principal cells (but with a different 

timecourse).
9*4-Stellate and principal cells have been shown to have differing Ca cycling mechanisms,

2+
evident when the effects o f the Ca -ATPase inhibitor, thapsigargin are examined (Rosay 

et al, 1997). Thapsigargin blocks the Ca2+ ATPase that actively pumps Ca2+ into the
9 +endoplasmic reticulum (ER), thus causing a rise in the cytoplasmic Ca concentration. In

2+the absence of external Ca , thapsigargin stimulates a rise in [Ca ]{ only in the stellate 

cells. However, this does not negate a role for internal stores in the principal cells and it is 

possible that either a thapsigargin induced release is too small to be detected, or the Ca2+ 

pool may be maintained by a thapsigargin insensitive mechanism, or thapsigargin is 

actively transported out of the cell. It could be possible that there is a Drosophila secretory 

pathway Ca2+ ATPase (SPCA) that is maintaining a functional Ca2+ store in the principal 

cell, as SPCAs are insensitive to thapsigargin (Sorin et al., 1997). This is discussed in more 

detail in chapter 5.

Studies o f plasma membrane Ca2+ channels in the tubule have implicated their importance 

in the Ca2+ signalling events that lead to increased fluid secretion (MacPherson et al., 2001; 

MacPherson et al., submitted). The L-type Ca2+ channel subunits D m calD  and DmcalA  

are both expressed in the tubule and inhibitor studies have shown their importance in fluid 

secretion stimulation (MacPherson et al., 2001). Additionally, mutant studies o f the 

transient receptor potential genes, trp and trpl, have demonstrated the importance of TRP 

Ca2+ channel function in the tubule (MacPherson et al., submitted). TRP channels act as 

store-operated Ca2+ channels (SOC -  see 1.1.3) in Drosophila photoreceptor cells (for 

reviews see Hardie, 2001 and Minke and Cook, 2002). However, it appears that their role 

in the tubule is different to that in the eye; for example, in tubules TRP and TRPL do not 

function as SOC channels (MacPherson et al., submitted). Null mutants for trp do not
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reduce [Ca2+]j increases in the principal cell. Yet a hypomorphic allele o f trp, trp365, that is 

functionally disrupted (Yoon et al., 2000) causes a complete ablation o f the principal cell 

secondary [Ca ]j increase and prevents a CAP2b-induced fluid secretion increase 

(MacPherson et al., submitted). It appears that complete loss o f one type o f TRP channel
9+does not impede Ca entry (possibly due to compensation by other channels) but a small 

amount of dysfunctional TRP has a severe affect on Ca2+ entry. TRPL is important in 

tubule function and unlike TRP it can not be compensated for when knocked out. The trpl
9  i

null tubules do not possess a CAP2b stimulated secondary [Ca ]i increase and are unable 

to be stimulated by CAP2b to increase fluid transport.
9  i

The accepted paradigm for hormonally-stimulated increases o f [Ca ]j in non-excitable 

cells occurs via G-protein coupled activation of PLC upon ligand-receptor binding, 

resulting in an intracellular increase o f DAG and IP3 (see 1.1.3). IP3 binds to IP3RS on the 

ER, resulting in the opening of the channel and release o f Ca2+. Mutants for norpA (which 

encodes PLC) prevent CAP2b and drosokinin-induced fluid transport, which suggests a role 

for PLC in both cell types (Pollock et al., 2003). Additionally hypomorphic mutants for 

itpr (IP3 R) display reduced CAP2b and drosokinin-induced fluid transport and [Ca2+]j 

responses (Pollock et al., 2003). This evidence indicates that neuropeptide-induced [Ca2+]j 

increases are due to the production of IP3 in both the principal and stellate cells. 

Furthermore, it suggests that these responses are releasing Ca2+ from an internal store in 

both cell types.

1.4 Aims and objectives

Given the intriguing possibilities of the role o f the ER and other Ca2+ stores in fluid 

secretion, the original aim of this project was to investigate the signalling role o f the ER 

Ca2+ stores in the principal and stellate cells. The initial approach involved utilising ER- 

targeted aequorin; by creating transgenic flies that express this reporter, this could allow 

the first real-time measurements of [Ca2+]ER in an intact tissue. Furthermore, it was also an 

objective to investigate how mitochondrial Ca2+ levels are affected by the reported 

neuropeptide-induced [Ca2+]j increases. This could be achieved by generating transgenic 

flies that express mitochondrially-targeted aequorin. By using these non-invasive 

transgenic approaches, it could provide further insight into the Ca2+ signalling mechanisms 

of this intriguing tissue and also provide novel phenotypic assays for studying the effects 

o f mutant alleles.
9 +In addition, this project set out to investigate other intracellular Ca stores in the tubule,

* ? 1with respect to how these stores are maintained and how they are involved m Ca 

signalling events.
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Materials and Methods



2.1 Drosophila melanogaster

2.1.1 Drosophila stocks

Table 2.1 Drosophila melanogaster strains used in this study.

Strain Genotype Purpose

Oregon R Wild type Genomic DNA, cDNA, protein.

w’ii8

(Hazelrigg et al., 1984)

wim Microinjection.

c710 (Sozen et al., 1997) w ; +/+; c7 10/c710 GAL4 crosses (drives expression 

in stellate cells)

c710 marked (Sozen et al., 1997) w ; Bl/CyO; c7lO/TM6 GAL4 crosses

c42 unmarked (Rosay et al., 1997) w ; + /+ ; c42/c42 GAL4 crosses (drives expression 

in principal cells)

c42 marked w ; Bl/CyO; c42/TM6 G A M  crosses

4534 w *; +/+;Sb'/TM3, P{w+mC=ActGFP}JMR2, 

Ser'

GFP balancer line on 3rd, for 

lethal phase studies.

UAS-GFP w ; UAS-GFP/UAS-GFP; + /+ GAL4 expression patterns

Marker line w'; Bl/CyO; TM2e'/TM6Tb' 

Hup'

Balancing lines and localising P 

element insertions

aequorin, c42 line (Rosay et al., 

1997)

w' aeq/aeq; +/+; c42/c42 Line expressing aequorin in 

principal cells.

aequorin, c7 10 line (Rosay et al., 

1997)

w~ aeq/aeq; +/+; c710/c710 Line expressing aequorin in 

stellate cells.

aequorin marked w' aeq/aeq; Bl/CyO; TM2e'/TM6Tb' 

Hup'

For making stable aequorin lines

daG32 kind gift from K.O’Dell 

(Wodarz et al., 1995)

w';+/+;daG32/TM3Sb 

Canton S

For GAL4 crosses (drives 

expression in all tissues)

Actin5C GAL4 (Ito et al., 1997) y ' w*; P{w+mC=Act5C-GAL4}25F0l/Cyo, 

/ ;  +/+

For GAL4 crosses (drives 

expression in all tissues)

Actin5C GAL4 (Ito et al., 1997) y 'w * ; +/+; P{w+mC=Act5C-GAL4}17bF01 

/TM6b, Tb‘

For GAL4 crosses

10205 y ' w " 's; +/+;P{w+mC=lacW }I(3) 

L7251l725,/TM3. Ser'

LacZ P-element line, insertion 

site in the CG32451 gene.

12799 wiiis; + /+ p {w+mC= (jT l}B G 01168 Dual gene trap P-element line, 

insertion site in the CG32451 

gene.

Listed above are various Drosophila lines utilised in this study, their genotypes and 

application. Lines shown in the grey boxes were lab stocks, the rest are from the 

Bloomington stock centre. The lines from the stock centres were identified by map 

position using BDGP database or FlyBase Cytosearch.
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2.1.2 Drosophila rearing

Flies were reared in vials on standard Drosophila medium (appendix 1) at 22-25°C in a 

12: 12, light: dark cycle. If large quantities o f flies were required, rearing was in large 

bottles on standard medium. For egg collection, flies were reared in cages and egg 

collection was from standard grape-juice agar plates (appendix 1).

2.2 Escherichia coli

2.2.1 E.coli strains and plasmids

Table 2.2 E.coli strains used in this study.

Strain Genotype

TOP 10 competent cells 

(Invitrogen)

(F' mcrA, A(mrr-hsdRMS-mcrBC), tySOlacZ AM15, AlacX74, recAl, 

deoR, araD139, A(ara-leu)7697,gal\J, galK, rpsL, (StrR), 

endAl,nupG).

DH5a™ subcloning efficiency 

competent cells (Invitrogen)

(F' <J)80d/acZ AMI5, A(lacZYA-argF), U169, deoR, recAl, endAl, 

hsdRM (rK-,mK+), phoA, supE44,X', thi-1, gyrA96, relAl).

Rosetta® BL21 pLysS 

competent cells (Novagen)

hsdS gal (XcltsSSl itidl Sami ninS /acUV5-T7 gene 1)

Table 2.3 Plasmids utilised in this study.

Plasmid Purpose

pP{UAST} For germline transformation of cloned sequences under control of the 

UAS enhancer sequence (Brand and Perrimon, 1993).

pP{A2-3} Transposase source for germline transformation. (Spradling and Rubin, 

1983)

pP {CaSpeR-hs-act} For germline transformation of cloned sequences under heat-shock 

control. (Thummel et al., 1988)

pCR®2.1 and pCR ®II 

TOPO

For cloning of PCR products according to the TOPO TA cloning kit 

protocol (Invitrogen).

pMT/V 5-His-TOPO® For cloning of PCR products for expression in S2 cells (Invitrogen)

pMT/V5-His A For expression in S2 cells (Invitrogen)

pCR®T7/NT TOPO For cloning of PCR products for expression in E.coli. The vector 

includes a 6X His-tag at the N-terminus for protein purification 

purposes. (Invitrogen)

pcDNA3.l/V5-His-TOPO® For cloning of PCR products for expression in mammalian cells. 

(Invitrogen)

43



pEGFP-Nl Contains enhanced GFP sequence. From Clontech, (Prasher et al., 1992)

pEYFP-Nl Contains enhanced YFP sequence (Clontech)

pDsRed2-N 1 Contains enhanced DsRed2 sequence (Clontech)

pcDN A3-ratiometric pericam Contains ratiometric pericam template. Kind gift of A. Miyawaki (Nagai 

et al., 2001)

pcDNA3-inverse pericam Contains inverse pericam template. Kind gift of A. Miyawaki (Nagai et 

al., 2001)

pcDNA3-flash pericam Contains flash pericam template. Kind gift of A. Miyawaki (Nagai et al., 

2001)

LD03227 Drosophila EST clone containing the full coding sequence of CG32451- 

PA

RH52668 Drosophila EST clone containing the full coding sequence of CG32451- 

PB

RE31249 Drosophila EST clone containing the full coding sequence ofCG32451- 

PC

pMT/V 5-His-aequorin S2 cell expression vector containing the aequorin template (J. Radford)

pMT/V5-His-drosokinin

receptor

S2 cell expression vector containing the drosokinin receptor template (J. 

Radford)

pWAYGAL4, kind gift of Y. 

Hiromi (Ito et al., 1997)

pCaSpeR vector containing the actin5C promoter elements, the yellow 

gene and the GAL4 CDS.

pBluescript (pBS-KS) Used as a sub-cloning vector (for vector map see www.stratagene.com)

2.2.2 Transformation of E.coli

Plasmids were transformed into DH5a™  subcloning efficiency chemically competent 

cells by the addition of 50-100 ng o f plasmid to 50 pi o f cells on ice and leaving for 15 

min. The cells were then heat shocked at 37°C for 45 s, left on ice for a further 2 min, 

and 250 pi of L-broth added. This was followed by 30 min incubation at 37°C to allow 

expression of the ampR gene. 100 pi o f the transformation was then spread onto L-Agar 

(appendix 2 ) plates containing 1 0 0  pg/ml ampicillin.

Transformation o f Invitrogen TOPO® constructs into One Shot® chemically-competent 

TOP 10 cells is described in section 2.6.5.

2.2.3 Plasmid selection

Most plasmids used contained the ampicillin resistance gene encoding p-lactamase, and 

so were selected for by the presence o f 100 pg/ml ampicillin when being grown on L- 

Agar or in L-Broth. This antibiotic was made as a 100 mg/ml stock solution (w/v) in 50%

44

http://www.stratagene.com


H2 O, 50% ethanol) and stored at -20°C. Other antibiotics used for selection of plasmids 

included chloramphenicol and kanamycin. Chloramphenicol resistance was selected for 

by the presence of 170 pg/ml chloramphenicol when being grown on L-Agar or in L- 

Broth. This antibiotic was made as a stock solution o f 34 mg/ml in 100% ethanol and 

stored at -20°C. Kanamycin was purchased in a 50 mg/ml solution from Sigma and 

stored at 4°C. Selection for kanamycin resistance was performed by the presence of 50 

pg/ml kanamycin on L-Agar or in L-Broth.
(ft)Selection of pCR 2.1 construct-containing transformants requires further selection using 

X-gal. Forty pi of a 40 mg/ml (w/v) stock solution in dimethylformamide (DMF) (stored 

at -20°C) was spread onto an ampicillin or kanamycin L-Agar plate an hour before use.

2.2.4 Storage of bacterial cultures

1 ml o f bacterial culture was added to 1 ml o f 2 % (w/v) peptone, 40 % (v/v) glycerol 

solution (in H2 O) before being frozen in liquid nitrogen. Frozen stocks were stored at 

-70°C.

2.3 Oligonucleotide synthesis

Oligonucleotides were synthesised by the MWG Biotech custom primer service on a 0.01 

pmol scale, purified by High Purity Salt Free (HPSF®) technology, and their quality 

assessed by Matrix Assisted Laser Desorption Ionisation - Time o f Flight (MALDI-TOF) 

analysis. Oligonucleotides were received as a lyophilised pellet, resuspended in H2 O to a 

stock concentration of 100 pM, and further diluted with H2 O to a working concentration 

o f 6 . 6  pM. All primers were stored at -20°C. A list o f all the primers used in this study is 

provided in appendix 3

2.4 Nucleic acid isolation and quantification

2.4.1 Plasmid DNA isolation

Small scale plasmid DNA preparation was carried out using the Qiaprep Spin Miniprep 

kit or the Sigma GenElute™ Plasmid purification Miniprep kit. Large scale preparation 

for germline transformation and cloning was carried out using the Qiagen Plasmid Maxi, 

Endofree Maxi kit or the Qiagen Hi-Speed™ Plasmid Maxi kit according to the 

manufacturers’ instructions (Qiagen).
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2.4.2 Genomic DNA preparation

For inverse PCR and other procedures that required moderate amounts o f genomic DNA, 

the Berkeley Drosophila Genome Project Quick Fly Genomic DNA prep, by E. Jay 

Rehm, was used (see http://www.fhiifly.org/about/methods/inverse.pcr.html).

Thirty anaesthetised flies were collected in a 1.5 ml eppendorf tube and briefly frozen at 

-70°C. The flies were then ground in 200 pi o f Buffer A using a disposable tissue grinder 

(Kontes). An additional 200 pi of Buffer A was then added and grinding continued until 

only cuticles remained. The suspension was the incubated at 65°C for 30 min. 800 pi of 

LiCl/KAc solution was then added and the resulting solution incubated on ice for at least 

10 min. Spinning followed for 15 min at 13,000 rpm at RT.

1 ml of the supernatant was then transferred into a new tube, avoiding floating crud. 600 

pi of isopropanol were then added, the solution mixed, and spinning followed for 15 min 

at 13,000 rpm at room temperature. The supernatant was aspirated away, and the DNA 

was then washed with 70 % ethanol (v/v) in H 2 O and air-dried. The DNA was then 

resuspended in 150 pi of TE. DNA was stored at -20°C. Buffers used for 30 fly genomic 

DNA were as follows:

Buffer A

100 mM Tris-HCl, pH 7.5 

100 mM EDTA 

lOOmMNaCl 

0.5 % (w/v) SDS

2.4.3 Quantification of nucleic acids

Nucleic acid concentrations were estimated by spectrophotometry at A2 6 0 /A2 8 0  (CECIL 

CE2021 2000 Series Spectrophotometer), where an OD of 1 at 260 nm corresponds to 50 

pg/ml of double-stranded DNA and 40 pg/ml o f single-stranded DNA and RNA. 

Readings were zeroed with the solution in which the samples had been diluted. The ratio 

o f A2 6 0/A2 8 0  provided an estimate of nucleic acid purity. Values o f 1.8 for DNA and 2.0 

for RNA indicated pure preparations. Double-stranded DNA was also semi-quantified by 

comparison with specific bands of lkb ladder (Invitrogen) on an agarose gel.

LiCl/KAc Solution 

Mix

1 part 5 M KAc stock: 2.5 parts 6 M LiCl stock
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2.5 Restriction digests, electrophoresis and ligations

2.5.1 Restriction digests

DNAs were restricted for 1-2 h at 37°C in single strength REact® buffer (Gibco BRL) 

appropriate to the restriction enzyme being used (Invitrogen). When double digestion 

was required the reaction was initiated with the enzyme with the lower strength buffer, 

and after heat inactivation at 65°C for 20 min, an appropriate amount o f salt was added 

before addition of the second enzyme. When this was not feasible, purification o f the first 

digestion product was performed using the Qiagen PCR purification kit according to the 

manufacturers’ instructions. Amounts of DNA in a restriction digest varied from 200 ng 

to 4 pg for plasmid DNA or PCR product, dependent on the downstream application.

2.5.2 Agarose gel electrophoresis of DNA

DNAs were separated in 1 % agarose in 0.5x TBE [90 mM Tris, 90 mM boric acid (pH 

8.3), 2 mM EDTA] containing 0.1 pg/ml EtBr as described in (Sambrook and Russell, 

2001), using 0.5x TBE as the electrophoresis buffer. Sizes were compared to a lkb 

ladder (Invitrogen). Prior to loading, 6x loading dye [0.25 % (w/v) bromophenol blue, 

0.25 % (w/v) xylene cyanol, 30 % (v/v) glycerol in water] was added to the samples to a 

final lx  concentration of loading dye in the sample. In cases where UV damage to the 

DNA needed to be avoided (i.e. in difficult cloning procedures), DNA was separated on a 

crystal violet gel, crystal violet (Sigma, C 3886) was added to 0.5x TBE at a final 

concentration of 10 pg/ml. The same concentration o f dye is used in the TBE running 

buffer. DNA samples were loaded in 2% Ficoll 400 with 0.002% xylene cyanol.

2.5.3 Purification of DNA from gels

DNA bands were excised from the gel using a clean scalpel blade and the DNA extracted 

using the Qiagen Gel Extraction Kit according to the manufacturers’ instructions. DNA 

was typically eluted in 30 pi of H2 O.

2.5.4 DNA ligations

For cloning inserts into vectors, plasmid DNA containing the vector and the insert were 

digested with appropriate restriction enzymes as described in section 2.4.1. For 

directional cloning o f inserts, two different enzymes were used to restrict the vector and 

the insert, which permits cloning of the insert into the vector in a directional manner.
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When a non-directional ligation was performed, both vector and insert were restricted 

with a single restriction enzyme and the vector was dephosphorylated prior to the ligation 

reaction to prevent it from reannealing to itself. Dephosphorylation was carried out 

during the last 20 min of the restriction digest, by addition o f 1 U o f calf intestinal 

alkaline phosphatase (Promega). After the restriction digest, both vector and insert were 

electrophoresed on a 0.8-1 % agarose gel and the DNA bands excised from the gel and 

gel-purified. For more challenging cloning strategies (usually involving large vectors) the 

cut vector DNA would be run out on a crystal violet gel to prevent any damage from UV 

radiation (see section 2.5.2).

For the ligation reaction, a molecular ration of 3:1 insert: vector was used, typically using 

50-100 ng o f vector. Ligation reactions were carried out using the Roche Rapid DNA 

Ligation Kit. The ligation mixture was prepared according to the instructions and the 

ligation reaction left for 5 to 30 minutes before transformation.

2.6 Polymerase chain reaction (PCR)

2.6.1 S tandard  PCR

Standard PCR protocols were used in the everyday amplification o f DNAs. Amounts of 

template DNA varied, with 0.5 pg o f genomic template DNA used per reaction and 0.1 

pg or less of plasmid template. For reactions using Mannheim Taq polymerase, dNTPs 

(Boehringer Mannheim) were added at 200 pM each to single strength PCR buffer, left 

and right primers at a concentration o f 0.5 pM with 1 U o f Taq polymerase. When 

Applied Biosystems Reddy Load Mix Taq was used, only template and primers (at the 

same concentration as above) were added to the pre-aliquoted mix.

Cycling was performed in thin walled 0.2 ml PCR tubes in a Hybaid OmnE, Hybaid PCR 

Sprint or Hybaid PCR Express-Gradient thermocycler.

Cycling procedures were typically:

94°C for 1-3 min to ensure template denaturation.

16-45 cycles; denaturing at 94°C, 15 sec/ annealing at 50-60°C, 30 sec/ extension at 

72°C, 1-3 min 

72°C, 5 min.

Annealing temperatures depended on the primers used. When multiple PCR reactions 

were run at the same time or same samples run using different annealing temperatures,
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the Hybaid Gradient PCR machine was used and a gradient imposed for the annealing 

temperatures across the block.

2.6.2 Pfu PCR

Pfu DNA polymerase (Promega) is a thermostable enzyme from Pyrococcus furiosus 

which catalyses DNA dependent polymerisation of nucleotides into duplex DNA in the 

5’->3’ direction, exhibits 3’->5* exonuclease (proofreading) activity and is used for PCR 

reactions requiring high fidelity synthesis such as expression constructs.

The reaction mix was set up as described in the manufacturers’ protocol as follows: 

single strength Pfu DNA polymerase buffer, dNTPs each at 200 pM, primers at 260 nM, 

DNA template up to 0.5 pg, Pfu DNA polymerase 1.25 U, final volume of 50 pi with 

H2 O. The Pfu polymerase was added to the mix last to prevent the polymerase 

proofreading activity from degrading the primers. Hot start was used to improve the 

lifespan of the enzyme.

The reaction was cycled as follows:

94°C, 2 min

18-45 cycles; 94°C, 30 sec/ 45-65°C, 30 sec/ 72°C, 2-10 min (Pfu amplifies 0.5 kb /min) 

72°C, 5 min.

2.6.3 Fusion PCR

This procedure involved fusing up to four different pieces o f dsDNA in a PCR reaction. 

Each piece of DNA was initially amplified using primers designed to overlap with the 

next piece o f DNA. A more detailed description o f the process is shown in figure 2.1. All 

fusion reactions were performed using Pfu polymerase (Promega) except when this was 

unsuccessful and Expand High Fidelity polymerase was used (Roche). 16-45 cycles and 

annealing temperatures o f 45-65°C were used.

2.6.4 Reverse transcriptase (RT) PCR

PolyA+ RNA was obtained using the magnetic Dynabeads mRNA DIRECT kit (Dynal®) 

according to the manufacturers’ instructions. Various tissues o f up to three flies were 

used in the extraction. Tissues were ground in 0.5 ml eppendorf tubes with matching 

homogeniser. Once the mRNA was extracted a reverse transcription reaction was set up. 

This reaction contained: 0.2 mM of each dNTP, 40 U RNAseOUT (Invitrogen), 10 mM
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Figure 2.1 Method of fusion PCR. Primers are designed to amplify the DNA sequences that are to be fused 
together. The primers are designed to overlap with the adjoining sequence (prim ers P2 and P3) and also can 
include restriction enzyme sites (RS) for consequent cloning procedures. (A) In separate PCR reactions; 
template A is am plified using prim ers PI and P2 and template B is am plified with prim ers P3 and P4. The 
resultant products are purified and used together with primers PI and P4 in the fusion PCR reaction. (B) In the 
initial stages o f the fusion PCR, single strands o f the two DNA tem plates anneal together at their overlapping 
regions. The 3 ’ ends o f the templates act as primers to allow the polym erase to fill in the rest o f the sequence. 
(C) Once a few fully fused DNA molecules are present, PI and P4 can am plify them  in the standad PCR 
manner. The resultant DNA can either be digested with restriction endonucleases and cloned, or can be directly 
TOPO-cloned. For further details o f the PCR reactions, see sections 2.6.2 and 2.6.3.
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dithiothreitol (DTT), lx  first strand buffer (Invitrogen), final volume 18 pi in H2 O.

After an initial 10 min incubation at 42°C to expose the single-stranded mRNA, 2 pi 

Superscript™ II RNAse H~ Reverse Transcriptase (Invitrogen) was then added to start the 

reaction. Reactions were incubated at 42°C for 30-50 min, with tapping every 10 min to 

resuspend the beads. The beads were collected using the Dynal MPC magnet, washed in 

50 pi of TE and resuspended in 20 to 50 pi o f TE, the suspension being stored at -20°C. 

1 pi of the Dynabead solution was sufficient template for a standard PCR reaction.

When previously purified total RNA was used for RT-PCR, the reverse transcription was 

set up with a few minor changes, 1-5 pg o f total RNA was added and lx  hexanucleotide 

mix (random hexamers, Roche) was used instead of oligo dT beads to prime the reaction. 

The reaction was terminated by 15 min incubation at 70°C and the RNA in the 

RNA/DNA duplex degraded using 1 pi RNAse H (Invitrogen) and incubating at 37°C for 

20 min, before setting up the PCR reaction using 1 pi o f the synthesised cDNA.

2.6.5 Cloning of PCR products

PCR products were directly cloned, using the Invitrogen TOPO TA cloning kits into 

appropriate TOPO vectors according to the manufacturers’ instructions and transformed 

into TOP 10 cells. If there was sufficient PCR product, the PCR product would be 

digested with the appropriate restriction enzymes and ligated into the vector o f choice.

In some cases PCR products were generated using Pfu PCR (which does not introduce A 

overhangs on the 3’ end o f the PCR product) that required TOPO TA cloning. In these 

cases, A overhangs were introduced after the PCR reaction. The PCR product was 

purified using the PCR purification kit, or gel-purified into 30 pi o f buffer EB. The 

volume of the reaction made up to 50 pi in single strength Taq buffer, with 20 pM dATP 

(lp l of 10 mM stock), and 2 U of Taq polymerase, incubated at 72°C for 15 min and 

used as a normal PCR product.

Ligations using TOPO® vectors were done by adding 1-2- pi o f the PCR product (gel- 

purified if  necessary) to 0.5 pi o f TOPO linearised vector and 0.5 pi o f 6x salt solution 

(1.2 M NaCl, 0.06 M MgCk), the volume of the reaction made up to 3 pi with H2 O and 

the reaction left at room temperature for 5 min.

Transformations were accomplished by adding 3 pi o f the ligation reaction and gently 

stirring on ice. The cells were left on ice for 30 min then heat-shocked at 42°C for 30 sec. 

The cells were then put back on ice for another 2 min before the addition o f 250 pi of 

SOC medium (appendix 2) then incubated on their side for at least 30 min at 37°C.
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100 pi o f the transformed cells was then spread onto L-agar plates containing 100 pg/ml 

ampicillin and incubated overnight at 37°C. These plates sometimes contained X-gal (see 

section 2.2.3). The transformants were removed as single colonies and grown overnight 

(with shaking) at 37°C in 5 ml L-broth (appendix 2) containing 100 pg/ml ampicillin.

2.6.6 Targeted PCR mutagenesis

Targeted PCR mutagenesis was performed according to the Stratagene mutagenesis 

protocol. Primers were designed with the desired mutation and at least 20bp of 

complementary sequence either side. The plasmid template was PCR amplified using 

these complementary primers, with Pfu enzyme, an annealing temperature o f 55°C and 

15-22 cycles. The PCR reaction was purified using the Qiagen PCR purification kit and 

digested with Dpnl restriction enzyme (this only digests the template DNA, which is 

dam-methylated). 3pi o f the digest was used to transform chemically competent DH5a 

cells.

2.6.7 PCR colony screening

To identify the presence and orientation o f a DNA insert in a vector, bacterial colonies on 

a plate could be tested using PCR (before overnight cultures were set up). PCR reactions 

were set up with one primer that bound to the insert and one primer that bound to the 

vector (facing into the cloning site). Applied Biosystems Reddy Load Mix was used. The 

colony was touched with a sterilised tip and then the tip was used to pipette the PCR 

solution up and down. The PCR program consisted o f 30 cycles and an annealing 

temperature o f 55°C.

2.7 Automated DNA sequencing

Automated sequencing was performed at the Glasgow University Molecular Biology 

Support unit (MBSU), or by Baseclear, in the Netherlands (http://www.baseclear.nl). 

Automated sequencing at the MBSU was performed as a single-stranded reaction with 

template and primer supplied at 1 pg and 3.2 pmol, respectively, with a PCR mix 

containing fluorescently labelled dideoxynucleotides. Samples were run on an agarose 

gel with the nucleotides being detected on an ABI automated DNA sequencer. Analysis 

was performed using a Applied Biosystems automated sequence analysis programme and 

the sequences were down-loaded from the server onto Editview (version 1.0, free DNA 

sequencing software from Perkin Elmer) and further analysed.
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When samples were sent to Baseclear for sequencing, bacteria containing the plasmid o f 

interest were streaked onto an L-agar plate and sent o ff for double-stranded sequencing.

2.8 Generation and details of DNA constructs

All the relevant DNA constructs generated are shown in table 2.4. Details o f their 

construction are also displayed in the table. Variants o f constructs produced by PCR 

mutagenesis are not shown.

Table 2.4 Generation and details o f DNA constructs. W hen TOPO® cloning (see section 2.6.5) was not used, the 
restriction enzymes used for ligation cloning (see section 2.5.4) are shown. Details o f the vectors are in table 2.3. For 
further details on fusion PCR, see section 2.6.3 and figure 2.1. All PCR am plifications and PCR fusions were perform ed 
using Pfu polymerase, unless stated otherwise. The sequences o f  the prim ers can be found in appendix 3. in31, in67 and 
in 140 are all variants o f  inverse pericam  with different calm odulin mutations (see chapter 4). CTS, calreticulin signal. 
AEQ, aequorin.

Construct Source/tem plate for 
insertion

M ethod of 
cloning

PCR
am plified

Assem bly  
by fusion  

PCR

Primers
used

pBS KS erAEQ pSVAEQERK EcoRI & Notl - - -

pP{UAST-erAEQ} pBS KS erAEQ EcoRI & Xhol - - -

pP {CaSpeR-hs-act-erAEQ} pP{UAST-erAEQ} EcoRI & Xbal - - -

pMT/V5-His A-mtAEQ pcDNAI-mtAEQ EcoRI - - -

pP {UAST-mtAEQ} pcDNAI-mtAEQ EcoRI - - -

pP {CaSpeR-hs-act-mtAEQ} pcDNAI-mtAEQ EcoRI - - -

pCRT7/NT-GolgiAEQ
pMT/V5-His-AEQ & 

pP {UAST-GolgiECFP} 
genomic DNA (Taq)

TOPO® 3-6

pP {UAST-GolgiAEQ} PCRT7/NT-GolgiAEQ EcoRI & Notl - - -

pCRT7/NT-camgaroo
Drosophila CTS & calmodulin 
(Taq, from genomic). pEYFP- 

N1
TOPO® 7-14

pCRT7/NT-ER-targeted 
ratiometric pericam

Drosophila CTS & pcDNA3- 
rationietric pericam TOPO® y y 15-18

pCRT7/NT-ratiometric
pericam pcDNA3-ratiometric pericam TOPO® y - 19 & 20

pCRT7/NT-flash pericam pcDNA3-flash pericam TOPO® - 19 & 20

pCRT7/NT-inverse pericam pcDNA3-inverse pericam TOPO® y - 19 & 20

pMT/V5-His-ERpicam pCRT7/NT-in31 & 
pSVAEQERK TOPO® y y 21-24

pMT/V5-His-Golicam pCRT7/NT-in31 & pCRT7/NT- 
GolgiAEQ TOPO® y y 3, 20, 25 & 

26

pcDN A3.1 -ERpicam pMT/V5-His-ERpicam TOPO® y - 21 & 24

pcDNA3.1-Golicam pMT/V5-His-Golicam TOPO® - 3 & 20

pcDNA3.1-in67 pCRT7/NT-in67 TOPO® v' - 19 & 20

pcDNA3.1-inl40 pCRT7/NT-inl40 TOPO® / - 19 & 20

pcDNA3.1 -m itycam-1
pCRT7/NT-in67 & pMT/V5- 

His A-mtAEQ TOPO® y 20, 27-29

pcDNA3.1 -mitycam-2 pCRT7/NT-inl40 & pMT/V5- 
His A-mtAEQ TOPO® 20, 27-29

pP {UAST-ERpicam} pMT/V5-His-ERpicam EcoRI & Notl - - -

pP{UAST-Golicam} pMT/V5-His-Golicam EcoRI & Notl - - -

pP (UAST-ratiometric pCRT7/NT-ratiometric pericam EcoRI & Notl - - -
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pericam Q69M} Q69M

pP{UAST-in67} pcDNA3.1-in67 EcoRI & Notl - - -

pP{UAST-inl40} pcDNA3.1-inl40 EcoRI & Notl - - -

pP{UAST-mitycam-l } pcDNA3.1 -mitycam-1 EcoRI & Notl - - -

pP{UAST-mitycam-2} pcDN A3.1 -mitycam-2 EcoRI & Notl - - -

pMT/V5-His-CG32451 -PA-c- 
myc LD03227 TOPO® v' - 73 & 74

pM T/V5-His-CG32451 -PB- 
GFP RH52668 TOPO® / S  (Expand) 75-78

pMT/V5-His-CG32451-PC- 
YFP

RE31249 TOPO® V S 76-79

pP {UAST- CG32451 -PA-c- 
myc}

pMT/V5-His-CG32451 -PA-c- 
myc

EcoRI & Notl - - -

pP{UAST- CG32451-PB- 
GFP}

pMT/V5-His-CG32451 -PB- 
GFP & pEGFP-Nl EcoRI & Notl - - -

pP{UAST- CG32451-PC- 
YFP}

pMT/V5-His-CG32451 -PC- 
YFP & pEYFP-Nl

EcoRI & Notl - - -

pMT/V5-His-c-myc-
peroxisomal-Dsred2 pDsred2-N 1 TOPO® - 81 & 82

pP{UAST-SPoCk-PTM l} LD03227, pEGFP-N 1 & 
genomic DNA EcoRI & Notl ■/ s 83-90

pP{UAST-SPoCk-PTM2}
LD03227, pEGFP-N 1 & 

genomic DNA
EcoRI & Notl / s 88-94

pP{UAST-vha55-PTM} pP{UAST-vha55} (Juan Du), 
pEGFP-N 1 & genomic DNA EcoRI & Notl S / 93-99

pP{UAST-2XGFPc-myc} pEGFP-N 1 K pnl, Mlul & 
Xbal

S 101-104

pP {UAST-dLKR-PTM 1 - 
2XGFPc-myc}

pMT/V5-His-dLKR (J. 
Radford) & genomic DNA Notl & Kpnl S / 105-108

pP{UAST-irk3-PTM} cDNA, pEGFP-N 1 & genomic 
DNA

EcoRI & Notl S 109-113

Avha55GAL4 pP {U AST-vha55-PTM} Nhel S 114-115

ALKRGAL4 Genomic DNA Nhel S 116-118

2.9 Detection of (3-galactosidase

Flies containing p [lacW] insertions were anaesthetised on ice, decapitated and dissected 

in PBS (130 mM NaCl, 7 mM Na2HP04 , 3 mM NaH2P 0 4) then pinned out to display 

their internal organs onto a Sylgard-coated petri dish. They were fixed with 1 % (v/v) 

glutaraldehyde in PBS (see appendix 5) for 20 min, washed thoroughly in PBS twice, 

then stained overnight in Fe-NaP staining buffer [10 mM NaH2P 0 4> 10 mM Na2H P 0 4, 

150 mM NaCl, 1 mM MgCl2, 3.1 mM K4(Fe2+CN)6, 3.1 mM K3(Fe3+CN)6, 0.3 % Triton- 

X-100, (pH 7.0)], containing 0.2 % (w/v) X-gal (from an 8 % (w/v) stock in DMSO), at 

37°C overnight. Flies were then washed three times in PBS then viewed under a light 

microscope (Leica WILD M3C) and photographed using a Leica WILD MPS 5 IS 

camera (WILD Photoautomat MPS 4S shutter release system).
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2.10 Germline transformation

2.10.1 Embryo collection and preparation

Several hundred flies (wJ1]8) between 3 and 7 days old were set up in an egg collection 

cage the day before embryos were required. The day embryos were required, grape-juice 

agar plates were changed hourly until sufficient eggs were produced for injection (more 

than 30) in a 30 min period. The eggs were removed to a slide and de-chorionated with 

fine forceps under a light microscope and lined up on the edge o f a slide that had a thin 

layer of glue (Scotch tape dissolved in heptane) along the edge. The embryos were placed 

with the posterior pole facing outwards, dehydrated for 5 to 6  min and covered with 

Halocarbon oil (Sigma).

2.10.2 Needle preparation

Needles were pulled on a Sutter Instrument moving-coil electrode puller, model P-97, 

from borosilicate glass capillary tubes (Harvard Apparatus Limited) o f dimensions 1.0 

mm (OD) x 0.78 mm (I.D), with the puller settings on 

Heat 580

Pull 100

Velocity 105

Time 150

Needles were filled with the DNA solution. The sealed tip was broken by a slight tap on 

the edge of the glass slide.

2.10.3 Microinjection

The embryos were injected with a mixture of the pP{UAST} or pP{CaSpeR-hs-act} 

containing the insert of interest (200 ng/pl) and the helper plasmid pP{A2-3} (100 ng/pl), 

which had been purified on a Qiagen PCR purification column and eluted in filter-

sterilised injection buffer (0.1 mM Na2HPC>4 , 0.1 mM NaH 2 P0 4 , 5 mM KC1, pH 7.8).

Embryos were injected with this solution into the posterior end. Embryos were viewed 

under a Zeiss Axiovert 25 inverted stage microscope. Microinjection was carried out 

using an Eppendorf rig, consisting of an InjectMan micromanipulator and a Femtojet air 

supplier. Only undeveloped embryos (syncitial blastoderm or earlier) were injected, and 

all other (cellularised) embryos were squashed using forceps.
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2.10.4 Post-injection care

Slides containing injected embryos were removed to a fresh grape-juice agar plate. The 

embryos were left to recover for 1-3 days and any hatched larvae were transferred to
7 7 7J?

standard food. Surviving adults were individually crossed back to w  flies and the 

progeny screened for eye colour change. Transformants were crossed again to the host 

strain and transformed progeny o f this cross were mated to siblings to generate 

homozygous transformants for the insertion.

2.10.5 Determining the chromosome of insertion

See figure 2.2 for a summary o f the crossing scheme employed in this procedure.

K4s ; - ; - £

-  B l TM2e~  Y  -  U A S . + 
W ’ CyO  ’ TM6Tb~ * UAS  ’ +

+  . UAS*v -----
+  UAS

B llC vO  TM2e~!TM6Tb~ -  B lfC yO  TM2e~/TM6Tb~ B lfC yO  . TM2e~f TM6Tb~
UAS ; *------------ X-------------  W  , ~ U A S '>-------------+   ~  * UAS

BI TM2e~
’ CyO  ’ TM6Tb~

Chromosome 1/X

Red eyes, ebony, bristles, 
and curly wings

B l TM2e~ 
X  w  5 CyO  5 TM6Tb~

V
.  B lfC yO ' TM2c~ 

w  ’ UAS * TM6Tb~

Chromosome 2

Red eyes, ebony, 
bristles or curly wings

B l TM2e~f TM6Tb~ 
W 5 CyO  ’ UAS

Chromosome 3

Red eyes, bristles, 
and curly wings

Figure 2.2 The crossing scheme for determining the chromosome of insertion in transgenic fly lines.
Lines homozygous for each individual insertion line were crossed to the marker fly line. The fl progeny of 
this cross were then back-crossed to the marker line, and the £2 progeny analysed for visible phenotypic 
markers. CyO confers a curly winged phenotype, Bl confers a bristled hairs phenotype, TM6Tb' confers a 
tubby pupal phenotype, and TM2e confers an ebony body phenotype when in combination with TM6Tb'.

In order to determine which chromosome P-element insertions were on, lines 

homozygous for each construct were crossed to a marker line (w'; Bl!CyO\ TM2e 

ITM6Tb'). This knowledge is important for creating stable lines containing more than one



ransgene insertion. The Bl marker chromosome confers a bristle phenotype on the hairs 

if the fly, and the CyO chromosome confers a curly wing phenotype. The TM6Tb~ 

(hromosome confers a tubby pupal phenotype, whereas the TM2e chromosome in 

(ombination with the TM6Tb' chromosome confers an ebony colour on the cuticle. The 

ed-eyed fl progeny of this cross are then backcrossed to the marker line, and the red

eyed f2 progeny analysed for phenotypic markers. If there are red-eyed f2 progeny with 

dbony bodies, curly wings and bristles, then the insertion must be on the X (1) 

chromosome. If there are red-eyed f2 flies with ebony bodies, but only curly wings or 

bistles, then the insertion is on the 2nd chromosome. If  there are red-eyed £2 progeny 

vith bristles and curly wings, but not ebony bodies, then the insertion is on the 3rd 

chromosome.

2.11 Protein Extraction, electrophoresis and western blotting

211.1 Protein extraction from  Drosophila tissues

Different methods were used for extraction o f proteins from Drosophila tissues. The 

smplest protocol consisted o f dissecting different organs (eg. 6  bodies, 30 heads) into 

400 pi of Tris-Lysis buffer (2 % (w/v) SDS, 70 mM Tris, pH 6 .8 ) containing 2 pi of 

Sigma protease inhibitor coctail in a 2 ml Nunc tube. The tissues were homogenised 

using either a Kontes Cordless Motor hand homogeniser or a Microson Ultrasonic Cell 

Disrupter, until the sample appeared homogeneous. The sample was then centrifuged at 

15,000 rpm for 1 0  min to remove debris and the supernatant transferred into a new tube. 

A different protocol was used for extracting membrane proteins (Xu et al., 1997) 

Samples, such as 1000 heads, or bodies were dissected into 400 pi o f SMART buffer (0.2 

% (w/v) dodecyl-P-maltoside, 2.7 mM KC1, 10 mM NaHPCU, 1.8 mM KH 2PO4 , 500 mM 

NaCl, 5 mM EDTA, 5 mM EGTA, 8  mM MgCl2 , 2 pg/ml aprotinin, 10 pg/ml leupeptin, 

0.1 mM PMSF, 10 mM NaPPi, 50 mM NaF, 1 mM GTP, pH 7.3). Homogenising 

followed until the sample was homogeneous and the debris then spun down at 15,000 

rpm for 10 min. The supernatant was then transferred to a new tube.

2.11.2 Lowry protein assay

The Lowry protein assay (Sanderman and Strominger, 1972) was used to estimate 

protein concentration of different protein samples. The following reagents were used for 

the assay:
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Reagent 1 . 1 %  (w/v) C11SO4 * ^ 0  

Reagent 2. 2 % (w/v) NaK Tartrate 

Reagent 3. 2 % (w/v) Na2 C0 3  in 0.1 M NaOH 

Folin-Ciocalteu reagent (Sigma) 1:1 (v/v) with H2 O

A mix was made up prior to use, taking into account the number o f protein samples and 

standards and for each sample the following amounts o f the above reagents were used: 

100 pi of reagent 1, 100 pi o f reagent 2, 1 ml o f reagent 3.

15-25 pi samples o f each protein sample and 0-25 pg o f BSA (lm g/m l stock made up 

from 10 mg/ml solution and stored at -20°C) as standards were placed in 1.5 ml 

eppendorf tubes. 1 ml of the above mix and 100 pi o f the Folin Ciocaltau reagent were 

added to each sample and the solution was mixed. The samples were then left at room 

temperature for 20 min and the OD read at 750 nm using a no BSA standard as the blank. 

A standard curve was then plotted using the BSA standards on Cricket Graph, a best fit 

curve (linear) calculated and the protein concentration of the samples estimated using the 

resulting equation.

2.11.3 Protein electrophoresis

Protein electrophoresis was performed using either the Novex NuPAGE™, Bio-Rad 

Ready Gel Mini-PROTEAN II Cell kit, or Bio-Rad Mini-PROTEAN 3 Cell kit 

Electrophoresis systems. In the case o f the Novex electrophoresis system, the Xcell II™ 

kit was used with 12-well 4-12% Bis-Tris-HCl (Bis(2-hydroxyethyl)imino- 

tris(hydroxymethyl) methane-HCl) buffered (pH 6.4) polyacrylamide gels. The running 

buffer used was lx  NuPAGE™ MOPS SDS Running Buffer, diluted from a 20x MOPS 

SDS Running Buffer stock solution (see appendix 5). The gels were then run at 200 V 

constant with an expected current o f 100-115 mA/gel at the start and 60-70 mA/gel at the 

end, for approximately 50 min.

When the Bio-Rad Ready Gel Cell kit was used for SDS-PAGE electrophoresis, the gels 

used were Bio-Rad Ready gels, 4-15% Tris-HCl 10-well gels, and the running buffer 

used was lx  Tris-Glycine buffer (see appendix 4). When the Mini-PROTEAN 3 Cell 

system was used, gels were prepared as described in appendix 5, with 10 or 15-well 

combs. The gels were run at 150 V constant for approximately 1 h.

Using either electrophoresis system, the samples were prepared by adding 6x SDS-PAGE 

loading buffer to the protein sample (15-60 pg) and then briefly vortexed, heated to 95°C

58



for 5 min, pulse-spun and vortexed before loading into the well o f the gel. Pre-stained 

Rainbow marker from Amersham Pharmacia was used for sizing the proteins on the gel.

2.11.4 Coomassie staining of SDS-PAGE gels

When required, the gels after running were stained using Coomassie Brilliant Blue 

(appendix 4). The gel was transferred to a sandwich box and soaked overnight in 

Coomassie on a horizontal shaker. The gel was then destained using destaining solution 

(appendix 4) on a shaker. The destaining solution was changed frequently until the bands 

on the protein gel appeared sharp and the background on the gel clear.

2.11.5 Western blotting

When blotting o f SDS-PAGE gels was required, the gels were blotted onto Hybond C or 

Hybond ECL membrane from Amersham-Pharmacia, using a Bio-Rad Minigel Blotting 

Kit or a Novex Xcell II™ Blot module. This was done placing the gel and the wet 

membrane between pieces o f Whatmann 3MM paper and in the blot module. The 

Transfer buffer used is described in appendix 5 and the transfer was done using ice packs 

to minimise heating up of the blotting apparatus and gels, at 50V constant for 1 h.

2.11.6 Western hybridisation

After transfer the blots were removed from the blotting apparatus and briefly stained with 

Poncau S staining solution (appendix 4) to check the efficiency o f the transfer. After 

staining, the blots were washed with water to make the bands visible and after 

visualisation, washed with transfer solution before blocking. Blocking was done in PBS, 

0.1 % (v/v) Tween 20, 5 % (w/v) Marvel milk for lh  (at RT) to overnight (at 4°C). The 

blots were briefly washed for 15 min in PBS, 0.1 % (v/v) Tween 20. The primary 

antibody (at various concentrations) was then incubated in blocking solution for 3 h (at 

RT) to overnight (at 4°C). Washes followed in PBS, 0.1 % (v/v) Tween 20, lx  15 min, 

3x 5 min on a horizontal shaker at room temperature. The secondary antibody (at various 

concentrations) was then incubated in PBS, 0.1 % (v/v) Tween 20 for 1 h at room 

temperature and the blot washed well for at least 3 h at room temperature in PBS before 

detection.
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2.11.7 Western signal detection

HRP-conj ugated (horseradish peroxidase) secondary antibodies were used to detect 

signals on Western blots. Horseradish peroxidase activity can be detected using either 

chemiluminescence or DAB substrates.

Chemiluminescence detection, using the ECL™ Western Blotting analysis system 

(Amersham Pharmacia), was performed by adding equal volumes o f reagent 1 and 

reagent 2 to the filter, incubating at RT for 1 min, and then exposing the blot, covered in 

Saran Wrap to ECL film (Amersham Pharmacia) for different lengths of time before 

developing using the X-OMAT film processor.

2.11.8 Primary and secondary antibodies used

The primary and secondary antibodies used for the immunocytochemistry and Western 

hybridisation are shown in the Table 2.6, along with the dilutions at which they were 

used.

Table 2.5 Antibodies used for Western hybridisations and immunocytochemistry.

Antibody and Source Dilution and Use

Anti-Myc-tag (mouse monoclonal, NEB) 1:500 (immunocytochemistry)

Anti-GFP (mouse monoclonal, ZYMED) 1:2000 (Western)

Anti HisG (mouse monoclonal, Invitrogen) 1:5000 (Western)

Anti-GM130 (ML07) (rabbit polyclonal, kind gift from Martin Lowe, 

Manchester)

1:300 (immunocytochemistry)

Anti-aequorin (rabbit polyclonal, Covalab) 1:2000 (immunocytochemistry)

Anti-discs large (mouse polyclonal, Developmental Studies 

Hybridoma Bank (DSHB))

1:800 (immunocytochemistry)

HRP labelled anti-rabbit IgG H & L (donkey polyclonal, Amersham) 1:5000 (Western)

HRP labelled anti-rabbit IgG H & L (sheep polyclonal, Amersham) 1:5000 (Western)

Alexa Fluor®568-labelled anti-rabbit IgG H & L (goat polyclonal, 

Molecular Probes)

1:500 (immunocytochemistry)

Alexa Fluor®568-labelled anti-mouse IgG H & L (goat polyclonal, 

Molecular Probes)

1:500 (immunocytochemistry)

FITC-labelled anti-rabbit IgG H & L (donkey polyclonal, Diagnostics 

Scotland)

1: 250 (immunocytochemistry)
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2.12 Immunocytochemistry

2.12.1 Intact Malpighian tubules

Malpighian tubules were dissected carefully in Schneider’s medium and arranged on pre

treated Poly-L-lysine coated (100 jag/ml) BDH microscope slides in 100 pi o f PBS. The 

PBS was carefully removed and the tubules were then fixed in 4% (w/v) 

paraformaldehyde in PBS at RT for 5-30 min. The tubules were washed three times in 

PBS and permeabilised using PBS, 0.3% (v/v) Triton X-100 (PBT) for 30 min. This was 

followed by incubation with filter-sterilised PBS, 0.3% (v/v) Triton X-100, 0.5% (w/v) 

BSA (PAT) for 3 h at RT. Primary antibody, diluted to the desired concentration in PAT, 

was then applied and the slides incubated in a humidified box overnight at RT.

The following day the tubules were washed in PAT 3x 15 min and incubated in 

PAT-2% (v/v) goat serum (Diagnostics Scotland) for 3 to 4 h. Secondary antibody, 

diluted to the desired concentration in PAT-2% goat serum, was then applied and the 

slides incubated in a dark humidified box overnight at RT. The tubules were then washed 

in PBT 3x 1 h and in PBS 3x 5 min. Slides were mounted in Vectashield mounting 

medium (Vector) using 22 mm square BDH coverslips, and sealed with glycerol/gelatin 

(Sigma).

In some slide preparations, the nuclei were visualised using DAPI staining. Prior to 

mounting in Vectashield DAPI was applied to slides at 500 ng/ml for 2 min in PBS, 

diluted from a 10 mg/ml (in H2 O) stock solution. Slides were then washed 3 times in 

PBS before mounting as normal.

Samples were viewed using either fluorescence microscopy or confocal microscopy. 

Fluorescence microscopy was carried out by using a Zeiss Axiophot microscope using 

either a fluorescein or rhodamine filter. DAPI was visualised using a UV filter. Most 

images were captured by a Zeiss Axiocam HRC system and processed using Axiovision 

3.0.6 software. Confocal microscopy of samples is described in section 2.15.1.

2.12.2 S2 cells

Coverslips were coated with Poly-L-lysine solution (100 /xg/ml) for 30 min, washed with

H2 O and allowed to dry. S2 cells were added at a density o f 6x l0 6  cells/ml and left for

15 min to allow cells to settle and adhere. Excess solution was removed and the samples

washed 3 times with PBS. Samples were then fixed by the addition of 4% (w/v)

paraformaldehyde in PBS for 15 min at RT. Samples were then washed 3 times with

PBS, and blocked in PBS, 0.2% (w/v) BSA, 0.1% Triton X-100 for 10 min at RT. They

were then incubated overnight at RT in a humidified box with primary antibody diluted
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to the desired concentration in PBS/BSA/Triton X-100. Samples were then washed 3 

times with PBS and incubated for 1 h at RT with the appropriate secondary antibody, 

diluted to the desired concentration in PBS/BS A/Triton X-100. Samples were then 

washed 3 times in PBS and, if  required, DAPI stained as described in section 2.12.1. The 

coverslips to which samples were attached were then mounted on slides using 

Vectashield mounting medium and sealed with glycerol-gelatin. Samples were viewed by 

either fluorescence microscopy or confocal microscopy, as described in section 2.12.1 

and 2.15.1.

2.13 Bacterial expression of proteins

2.13.1 pCRT7/NT vectors and constructs

The pCRT7/NT TOPO vector (Invitrogen) contains an N-terminal tag, which includes a 

6X histidine repeat for protein purification purposes. Primers were designed to amplify 

the chosen sequence for expression, the start o f the forward primers were designed to 

ensure that the sequence would be in frame with the His-tag. PCR products were cloned 

into pCRT7/NT as described in 2.6.5.

2.13.2 Expression of His-tag fusion proteins

pCRT7/NT constructs were transformed into chemically competent Rosetta® BL21 

pLysS cells (Novagen). These cells were plated on lOOpg/ml ampicillin and 34pg/ml 

chloramphenicol (to retain the pLysS plasmid) LB plates. 20ml overnight cultures were 

used to inoculate 400ml of L broth (ampicillin and chloramphenicol). These were grown 

for ~3hrs until the culture had an OD6 0 0  o f -0 .5 , then induced with ImM IPTG and then 

left to express at RT for ~16hrs.

2.13.3 His-tag purification of proteins

The E. coli were spun down at 6000 rpm for 15 minutes and resuspended in 40ml o f IX 

binding buffer (Novagen) containing IOjllI o f protease inhibitor cocktail (Sigma). This 

was sonicated on ice (Sonics and Materials Inc. Vibra-cell) for five repeated 10 second 

intervals and then spun down at 12,000 rpm for 30 minutes. The soluble fraction was 

purified using the Novagen His*Bind Resin Column Chromatography kit, according to 

the manufacturers’ instructions. Eluted fractions were collected in 200 pi aliquots.



2.14 In vitro characterisation of fluorescent reporters

2.14.1 Ca2+ calibrations of fluorescent reporters

Purified fluorescent reporter protein was added at a ^ :1 0 0  dilution factor to 250pl of 

calcium buffered solution (Molecular Probes, Calcium Calibration kits #2 and #3). For 

free calcium concentrations higher than ImM (highest concentration available in the 

kits), solutions were prepared using calculated amounts o f CaCb (with 100 mM KC1, 30 

mM MOPS, pH 7.2). Fluorescent measurements were performed in a Berthold Mithras 

LB940 96-well plate reader.

2.14.2 pH calibrations of fluorescent reporters

pH buffered solutions (10 mM HEPES, 10 mM K phthalate, 10 mM Na borate, 125 mM 

KC1 and 20 mM NaCl) were prepared, ranging from pH 5.0 to pH 13.0 by dropwise 

addition of concentrated HC1 or NaOH solutions. Purified fluorescent reporter protein 

was added at a : 100 dilution factor to 250 pi o f pH buffered solution. Fluorescent 

measurements were performed in a Berthold Mithras LB940 96-well plate reader.

2.14.3 Spectral analysis of fluorescent reporters

The excitation spectra of the purified pericam proteins were analysed using a Cairn 

Optoscan. The purified protein was diluted (at > lOOx dilution) in a buffered solution 

containing either no calcium (EGTA) or 1 mM CaCl2 . The samples were scanned from 

3 0 0 -5 5 0  nm using a 5 nm bandwidth.

2.15 Confocal microscopy

2.15.1 Confocal microscopy of fixed samples

Samples were imaged using a Zeiss Pascal confocal system coupled to a Zeiss 

microscope. A HeNel 543nm laser and a 561-625 band pass filter, were used for imaging 

the Alexafluor® 568 secondary antibody. An Argon 488 laser and a 505-530 band pass 

filter were used for imaging the FITC antibody or fluorescent proteins. For visualisation 

o f DAPI, a pseudo-DAPI technique was used. The DAPI was excited using the standard 

UV source (mercury lamp) and the image captured using the confocal photomultipliers. 

The DAPI image was then merged with the other channels retrospectively, using Adobe 

Photoshop 7.0. A 63x objective was used in all cases.



2.15.2 Confocal imaging of fluorescent reporters in living tissue

Dissected Malpighian tubules were carefully stuck (in PBS) to the bottom of a glass 

bottomed dish (Mattek) that had been treated with poly-L-lysine. The PBS was 

immediately removed and 3ml of Schneider’s solution added. The samples were left for 

at least an hour before imaging. This was to allow the tubules to recover from being in 

PBS and to prevent the interference of any stimuli that may have occurred within the fly 

prior to dissection. The imaging was performed using a Zeiss 510 Meta confocal system 

coupled to an inverted Zeiss microscope. The reporters were excited with an Argon 488 

laser and the emission filtered through a 505-530 band pass filter. A 20x objective was 

used for all live imaging.

2.16 S2 cell culture

2.16.1 Passaging of S2 cells

S2 cells were maintained in DES medium (Invitrogen) supplemented with 10% heat- 

inactivated foetal calf serum (FCS, Invitrogen). Cells were grown in suspension at 23°C 

at an initial density of 2-4x106 cells/ml. Following the withdrawal o f DES medium from 

production by Invitrogen, S2 cells were maintained in Schneider’s medium supplemented 

with 10% heat-inactivated FCS. Using this medium S2 cells were grown in suspension at 

28°C. Cultures were passaged when a density o f approximately 1x10 cells/ml had been 

reached. Cell density was determined with the use o f a bright line haemocytometer 

(Hauser Scientific), viewed under an inverted bright field microscope (Olympus Tokyo).

2.16.2 Transient transfection of S2 cells

S2 cells were transfected using a calcium phosphate transfection kit (Invitrogen)

according to manufacturer’s instructions. Three ml S2 cells were seeded at a density of

lx l0 6 cells/ml in a 35 mm culture dish and grown for 16 h or until a density o f 2-4x106

cells/ml was reached. DNA mix (recombinant DNA and 36 pi o f 2 M CaCl2 made up to

300 pi with sterile H2 O) was then added drop-wise to 300 pi 2x HEPES-buffered saline

(HBS) (50 mM HEPES, 1.5 mM Na2H P04, 280 mM NaCl, pH 7.1) while continuously

mixing with sterile air. The resulting solution was left at RT for 30-40 min, vortexed and

added drop-wise to the cells with gentle agitation to mix. Cells were transfected with

either 19 pg (single transfection) or 1 0  pg (co-transfection) o f each relevant expression

construct. All transgenes used in this study were expressed from the pMT/V5-His vector,

which is under transcriptional regulation via a metallothionein promoter. After

incubation for 18 h, the transfected cells were washed twice with fresh medium. This was
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achieved by harvesting the cells by centrifugation at 1,000 x g  for 3 min, followed by 

resuspension in 4 ml medium. Cells were then re-plated into the original dish in 3 ml 

fresh medium, immediately induced with 20 pi 100 mM CUSO4  and returned to the 

incubator. Cells were used 24 h post induction.

2+
2.17 [Ca ]j measurements using aequorin

2+
2.17.1 [Ca ]j measurements in aequorin expressing tubules

The method for measurement o f [Ca2+]j in aequorin expressing tubules is described in 

Rosay et al, 1997, and is as follows. For reconstitution o f intracellular aequorin, 20-30 

tubules from 3-7 day old adults were dissected in Schneider's medium and placed in 160 

pi o f Schneider with coelenterazine added to a final concentration o f 2.5 pM. Samples 

were then incubated in the dark for 3-4 hours. Bioluminescence recordings were carried 

out using an LB9507 luminometer (Berthold Wallac). To control for transients due to 

the injection process itself, samples were 'mock' injected with 25 pi o f Schneider's before 

injection with the appropriate agonist at the desired concentration. At the end o f each 

recording tubules were disrupted with 300 pi lysis solution (1% (v/v) Triton X-100, 100 

mM CaCb), causing discharge of the remaining aequorin and allowing estimation o f the
7+total amount of aequorin in the sample by integration of total counts. Ca concentrations 

for each time point in an experiment were calculated by backward integration, using a 

program written in Perl, based on the method described by Button and Eidsath (1996).

2+
2.17.2 [Ca ]j measurements in S2 cells expressing aequorin

Transiently transfected S2 cells were harvested and incubated with 2.5 pM 

coelenterazine (Molecular Probes) in the dark at room temperature for 1 h. 25000 cells 

were used per sample tube in DES medium (Invitrogen) supplemented with 10 % FCS. 

Peptide agonists were diluted to working concentration in DES medium/FCS. At the end 

of each recording, the cells were disrupted in 300 pi lysis solution (1% (v/v) Triton X- 

100, 100 mM C aC y  and the calcium concentrations calculated as described in 2.18.1

2.18 Fluid secretion assays

Malpighian tubules from adult female and male Drosophila flies were dissected using

forceps under Schneider’s Drosophila medium (Invitrogen). The fluid secretion assays

were performed as described by Dow et al., 1994. A Petri dish was filled with paraffin

wax and depressions made for the bathing medium drops. The bathing medium was 1:1
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Schneider’s and Drosophila saline/glucose. Drosophila saline consisted of (in mM): 

NaCl, 117.5; KC1, 20; CaCl2, 2; MgCl2, 8.5; N aHC03, 10.2; NaH2 P 0 4, 4.3; HEPES, 15;

glucose, 20. Drops of 9 pi of bathing medium were placed in each depression and the 

dish filled with mineral oil (to prevent evaporation). A pair o f tubules, still linked by the 

ureter, were placed in the drop using a fine glass rod. One end o f the tubule was then 

pulled out of the drop and wrapped around a thing steel pin, to which it adhered by 

surface tension. The secreted fluid emerged at the cut end o f the ureter and the drops 

were removed from the ureter at 10 min intervals. The diameter o f the droplets was 

measured using an ocular micrometer and thus the volume o f the secreted fluid calculated 

in nl/min. The data was analysed using Excel 5.0. All data was reported as mean ±SEM 

and viewed using GraphPad Prism. Statistical significance o f differences between 

treatments was assessed using Student’s /-test for unpaired sample, taking the critical 

value of P  to be 0.05 (two tailed). Cardioacceleratory peptide 2b, CAP2b and Drosophila 

leucokinin were custom-synthesised by Research Genetics, Inc, and added to tubules at 

10' 7 M (diluted to 1 mM in H20 and then further in Schneider’s/saline).

2.19 Cyberscreening and DNA and protein sequence analysis

Cyberscreening was performed using Netscape Communicator on an Apple Macintosh 

computer or Internet Explorer on a PC. NCBI (http://www.ncbi.nlm.nih.gOv/I and BDGP 

(http://www.fruitflv.org) databases were searched using BLASTN, BLASTP, BLASTX 

or TBLASTN searches as appropriate.

DNA sequences were viewed and manipulated in MacVector 7.0 (Oxford Molecular 

Group PLC.). This programme was used to deduce restriction enzyme sites, for primer 

design and to translate sequences into protein using the open reading frame and 

translation features.

Protein sequences were aligned either directly in MacVector 7.0 or using ClustalW 

(http://www.ebi.ac.uk/clustalW/index.html) (Thompson et al., 1994) on the default 

settings. Bootstrap tree plots were also performed in ClustalW on default settings. Protein 

alignments were viewed in BioEdit (Hall, 1999) and Tree alignments in Treeview 

version 1.6.6 (Roderic D. M. Page).

PSORT II (http://psort.nibb.ac.ip/form2 .html) (Nakai and Horton, 1999), InterProScan 

(http://www.ebi.ac.uk/interpro/scan.htm 1) and MacVector 7.0 were used to look at 

secondary protein structure, targeting and subcellular localisation.
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Chapter 3

Measuring organellar Ca2+ in the Malpighian tubule using

targeted aequorin

67



3.1 Summary

This chapter discusses the undertaking o f a transgenic approach to measure organellar Ca2+
94-in the Malpighian tubule using targeted aequorin. Aequorin is a Ca sensitive photoprotein 

(see section 1 .2 .2 ) which, with the addition of encoded targeting motifs, can be localised to 

specific organelles.

The principal aim of this project was to generate transgenic Drosophila that could express
94-ER-targeted aequorin in a cell specific manner and allow real-time monitoring o f [Ca ] e r  

in the tubule. Transgenic flies were made but it became apparent that the targeting 

sequences were interfering with the photoprotein’s function. Other targeting sequences 

were investigated, however due to the retention properties o f insect ER it seems that the 

use of aequorin for measuring insect [C a 2+]ER is presently not feasible.
94-Mitochondrial Ca responses in the tubule have been successfully monitored using

94-targeted aequorin. The neuropeptides capa-1 and drosokinin both elicit [Ca ]mt increases 

in the respective cell types o f the tubule. Typically, an nV induced Ca2+ event results in an
94-immediate large uptake o f Ca into mitochondria. However, the responses m the tubule 

are different, as they are slower, smaller and appear to correspond to the secondary 

component o f the [Ca2+]j event, rather than the primary. This data could represent unusual
94-dynamics of Ca signalling in the tubule, or could reflect mitochondrial placement within 

the cells.

Additionally, generation o f Golgi-targeted aequorin fly lines has allowed the investigation 

into a possible means of real-time measurement of [Ca2+]ooigi in the tubule.



3.2 Introduction

3.2.1 ER-targeted aequorin
I

The ER is the principle Ca signalling organelle in non-excitable cells. Upon stimulation
9+of a cell with an HVproducing agonist, the ER releases Ca into the cytosol to produce a 

increase in [Ca2+]i. This increase can activate downstream signalling pathways or directly 

act to change the action of the cell. Measuring Ca2+ levels in the ER would provide a 

greater insight into how this organelle contributes to these signals.
9-4-The first attempt to measure [Ca ] e r  with aequorin, involved attachment o f the calreticulin 

targeting sequence at the N-terminus and the KDEL retention sequence at the C-terminus 

o f wild type aequorin (Kendall et al., 1992b) (see figure 3.1 A). They estimated the resting
o i

[Ca ] e r  was 1-5 mM in COS cells and also demonstrated a reduction in luminescence
9 +  9 +when cells were treated with the Ca ionophore ionomycin in the absence of external Ca . 

It was also shown that 90% of the active aequorin would be consumed within minutes at 

resting conditions, due to the high levels of Ca2+ in the ER. A strategy to attenuate the rate
9 +at which aequorin is consumed in environments o f high Ca , yielded a mutated version of 

aequorin (D to A at position 119) (Kendall et al., 1992a). This engineered aequorin 

possessed a 20-fold reduction in affinity for Ca2+, so would allow a longer period o f time 

to measure [C a 2+]ER before the active aequorin was consumed.

This method o f targeting aequorin to the ER was discovered to be flawed with the 

discovery that any addition of residues (i.e. KDEL) to the aequorin C-terminus causes 

instability o f the protein and drastically alters its luminescent properties (Nomura et al., 

1991; Watkins and Campbell, 1993). As the calreticulin sequence alone is not sufficient for 

efficient targeting o f aequorin to the ER (Kendall et al., 1992b), an alternative N-terminal 

targeting sequence would be required. This problem was solved by Montero et al. (1995), 

who fused aequorin (D119A) to domains o f the Ig7 2 b heavy chain immumoglobulin (see 

figure 3.1 B). This is an N-terminal tag that retains aequorin in the ER by interacting with 

the resident ER protein BiP.

To allow reconstitution of ER-targeted aequorin with coelenterazine, the ER has to be 

depleted sufficiently of Ca2+ beforehand. This is achieved by removal o f extracellular Ca2+, 

addition o f Ca2+ chelators and use o f SERCA inhibitors (Montero et al., 1995). The 

coelenterazine is then added and after reconstitution the cells are washed and Ca 

reintroduced to the extracellular medium. With available Ca2+, the ER rapidly refills and 

consequently begins to consume the active aequorin. However, the active aequorin in the 

ER is consumed within minutes after the beginning o f refilling (even with the mutant 

aequorin) (Montero et al., 1995). The use of a coelenterazine analogue, coelenterazine n 

(Shimomura et al., 1993) reduces the rate of emission of luminescence by aequorin. This
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94 -further extends the ability of aequorin to report high Ca levels and using this method,
9+accurate monitoring o f [Ca ] er  has been performed by several groups (Barrero et al., 

1997; Montero et a l, 1997; Robert et al., 1998). Barrero and colleagues (1997) showed 

resting [Ca2+]ER levels in HeLa cells are 500-600 pM and that agonists induce a fast but 

relatively small decrease in [C a 2+]ER. Measurements using Mag-Fura-2 in pancreatic acinar 

cells reported similar values for [C a2+]sR of 100-300 pM (Mogami et al., 1998).
9 i

The ER is the principal DVsensitive, Ca releasing store in most cell types. Two o f the 

diuretic hormones that act on the Drosophila Malpighain tubule (capa and drosokinin) act 

via an n y C a 2+ pathway. Therefore the ER is the primary intracellular Ca2+ store to be 

investigated as a possible contributable pool in the respective Ca2+ responses. Due to the 

previous development o f an aequorin-based Ca2+ assay for Malpighian tubules (Rosay et
94-al., 1997), an ER-targeted aequorin approach to measuring [Ca ] e r  in the tubule would be 

the most practical way forward.

3.2.2 Mitochondrially-targeted aequorin

Mitochondria were effectively put on the shelf, with respect to Ca2+ signalling and 

homeostasis when it became apparent that they only contained minute amounts of Ca2+ 

(Somlyo et al., 1985) and that by indirect measurement o f [Ca2+]i (Grynkiewicz et al., 

1985), they released no or marginal quantities o f Ca2+. However Rizzuto and colleagues 

rescued mitochondria from this oblivion when they targeted aequorin to mitochondria and 

observed the unique [Ca2+]mt response to Ca2+ mobilising agonists (Rizzuto et al., 1992). 

This response is of a similar shape to the bulk cytoplasmic response, however the 

concentrations reached can be as much as 5 times greater. As mentioned in section 1.1.4.3, 

this is believed to be due to the close proximity or coupling o f the mitochondria to the ER 

(Rizzuto et al., 1998). The mitochondrial Ca2+ uptake machinery (the electrogenic importer
9 +of the inner membrane) possesses a low affinity for Ca (for review see Benardi, 1999). 

The paradox of how the mitochondria accumulate the high concentrations o f Ca2+, 

considering the characteristics of the uniporter, is explained by the proximity of the 

mitochondria to the supramicromolar [Ca2+]j microdomains next to the release channels on 

the ER (Rizzuto et al., 1993). In some cells this large mitochondrial uptake has been found 

to be even higher that first estimated. Montero and colleagues utilised a lower affinity 

mitochondrially-targeted aequorin (mtAEQmut) to demonstrate stimulated [Ca2+]mt levels 

o f up to 800 pM in chromaffin cells (Montero et al., 2000).

The targeting o f aequorin to mitochondria is achieved by addition o f the mitochondrial- 

targeting pre-sequence (MPS) of human cytochrome c oxidase subunit VIII to the N-
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terminus o f aequorin (see figure 3.1 C). A HA1 epitope is also incorporated to allow 

immuno-histochemical localisation o f the recombinant aequorin.

Real-time measurements o f [Ca2+]mt in the Drosophila M alpighian tubule with aequorin 

would help determine the nature o f any mitochondrial response to the intracellular Ca 

increases invoked by diuretic hormones such as capa-1 and drosokinin.

3.2.3 Golgi-targeted aequorin
, 9+ ,

The Golgi apparatus is also emerging as an important and functional Ca store (see section
9  4 - • •1.1.4.2). Understanding o f the Golgi Ca pool was greatly enhanced with the real-time

9 -1- • •

measurements o f [Ca ]c0igi with a recombinant targeted aequorin (Pinton et al., 1998). The 

mutant variant o f aequorin (D119A) was targeted to the Golgi by the N-terminal addition 

o f residues 1-69 o f the human sialyltransferase (ST) protein (see figure 3.1 D). This region 

o f ST includes a transmembrane domain responsible for retention within the Golgi 

apparatus. Pinton and colleagues discovered that the resting [Ca2+]c0igi was -3 0 0  pM,
• 9 4 - •

which is as almost as high a level as the ER. Due to these high levels o f Ca , the Golgi
2 “happaratus has to be depleted o f Ca before the recombinant aequorin (D119A) can be 

reconstituted with coelenterazine n (in a similar method to measuring [Ca2+]ER with 

aequorin).

[Ca2’ ] G o i g i plays a critical role in the processing o f  proteins (see section 1.1.4.2), therefore 

will conceivably be tightly regulated for this purpose in the Malpighian tubule. An 

intriguing possibility though, is whether the Golgi is acting as an HVsensitive Ca2+ pool in 

either o f the two main cell types o f the Malpighian tubule.
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Figure 3.1 Targeted aequorins. (A) The original ER-targeted aequorin. (B) The more recent and functional 
ER-targeted aequorin. (C) M itochondrially-targeted aequorin. (D) G olgi-targeted aequorin. D119A is the 
amino acid substitution that reduces aequorin sensitivity to Ca2+. Abbreviations are as follows: CTS, 
calreticulin signal; HA, haemaglutinin epitope tag; L, VDJ and CHI are all com ponents o f  the Ig72b heavy 
chain immumoglobulin; MPS, m itochondrial-targeting pre-sequence o f  hum an cytochrom e c oxidase subunit 
VIII; hST, human sialyltransferase region sufficient for targeting to the Golgi. 71



3.3 Results

3.3.1 Problems of using aequorin as a calcium reporter in the ER of Drosophila

The initial aim of the project was to generate transgenic Drosophila that could express ER- 

targeted aequorin under the control o f the GAL4/UAS system and additionally under heat- 

shock control. A construct containing an ER-targeted aequorin template (pSVAEQERK) 

was obtained from Molecular Probes and the template was cut out and cloned into the 

appropriate P-element vectors (see table 2.4). These constructs were used to produce two 

separate transgenic lines for both pP{UAST-ERaeq} and pP {CaSpeR-hs-act-ERaeq}.

Initial experiments involved heat-shocking pP {CaSpeR-hs-act-ERaeq} flies, dissecting out 

tubules and incubating them with coelenterazine n. These tubules did emit light and the 

luminescence increased dramatically when the tubules were exposed to total luminescence 

(TL) solution. This was encouraging, as there was a luminescent signal, however the TL 

signal did not decrease immediately but remained high for a considerable amount o f time 

(which was not expected). Consequent experiments involved attempts, using various 

protocols, to deplete [C a 2+]ER of the tubule sufficiently to allow reconstitution with 

coelenterazine. This included incubating the tubules in Ca2+-free Schneider’s medium 

(Sigma), using the Ca2+ chelator EGTA and also incubating with the reversible SERCA 

inhibitors tert-butylhydroquinone (BHQ) and cyclopiazonic acid (CPA). This never 

appeared to be successful, as after washes and addition o f Ca2+ refilling o f the ER store 

was never observed and the TL response was always unusual (data not shown).

Eventually it became apparent that the ER-targeted cDNA template used, encoded the 

aequorin targeted with the calreticulin signal and the KDEL m otif (see section 3.2.1). As 

previously mentioned the KDEL sequence destabilises aequorin and affects its luminescent 

properties. This explained the lack o f success and furthermore the template contained the 

wild-type sequence for aequorin, not the mutant version (D119A) required for successful
n  i

measurement o f [Ca ] e r .

In response to this, I investigated the possibility o f using the aequorin targeted to the ER 

with the Ig ilb  heavy chain immumoglobulin (Montero et al., 1995). However, after 

searching the literature regarding the ER retention o f this class o f immuoglobulin in insect 

cells, it became evident that this approach may not succeed in Drosophila. Kirkpatrick and 

colleagues (1995) demonstrated that these immunoglobulins are secreted from insect Sf9 

cells, rather than being retained in the ER. Although this could be a unique property o f Sf9 

cells, there would be high risk of this approach also being unsuccessful due to the 

possibility of the aequorin not being retained within the ER of the Malpighian tubule.

It appears that with the problem of being unable to use C-terminal retention sequences on 

aequorin and the retention properties o f insect ER, that the present technology cannot allow
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us to perform aequorin-based measurements o f  [Ca2+]ER in insect cells. An alternative 

strategy was then pursued, the development o f an encoded fluorescent reporter that could 

be targeted to the ER and possessed a suitable sensitivity to Ca2+ (see chapter 4).

3.3.2 M easurem ent of m itochondrial C a2+ in Drosophila S2 cells

The cDNA template for mitochondrially-targeted apoaequorin was cloned into the 

expression vector pMT/V5-His A (Invitrogen) (see table 2.4). This construct was co

transfected in S2 cells, with another construct containing the cDNA for the Drosophila 

leucokinin receptor (Radford et al., 2002). Immunocytochemistry was performed on these 

cells to check targeting o f the aequorin (see figure 3.3). The results show that the 

localisation is not cytoplasmic, however, co-localisation with a mitochondrial marker 

would be required for confirmation. Calcium assays were carried out using these cells (as 

described in 2.17.2), using the drosokinin peptide at a concentration o f 1CT7 M. Control 

experiments were also performed using a non-targeted cytoplasmic aequorin construct. The
• 9 4 - • •

results o f these experiments are shown in figure 3.3. The [Ca ]mt response to drosokinin 

was much larger than the bulk cytoplasmic response, with the maximum level reached 

being approximately twice the value.

It was additionally noticed that the initiation o f the [C a 2t"]mt response was delayed by 

approximately 200 ms, compared to the [C a 2']j response (see figure 3.3B).

*

Figure 3.2 ICC localisation o f m itochondrially-targeted aequorin in S2 cells. The anti-aequorin antibody 
was used at 1:2000 dilution and the FITC secondary antibody (green) at 1:2000 dilution. The nuclei are 
stained with DAPI (blue). Pictures taken on a Zeiss A xiophot microscope (see chapter 2).

9 4 - •Although the kinetics o f these responses fully the reporting o f  [Ca ]mt, it has not been 

fully confirmed that the aequorin biosensor is localising efficiently in these insect cells. 

Until the aequorin is co-localised (as mentioned above) and the effect o f  mitochondrial 

uncouplers on the signal is observed, it can only be presumed that these are mitochondrial 

responses. This should be kept in mind throughout the rest o f this chapter.
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Figure 3.3 M easurem ent of m itochondrial Ca2+ in S2 cells using targeted aequorin. S2 cells 
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3.3.3 Measurement of mitochondrial Ca2+ in the Malpighian tubule using aequorin

To allow real-time measurements o f [Ca2+]mt in the tubule, transgenic flies had to be 

generated. The mitochondrially targeted aequorin template (as used by Rizzuto et al., 

1992) was cloned into the P-element vectors pP{UAST} and pP{CaSpeR-hs-act} (see 

table 2.4). These constructs were micro-injected to produce two separate transgenic lines 

for both pP{UAST-mtAEQ} and pP{CaSpeR-hs-act-mtAEQ}.

The assays for measuring [Ca2+]mt in the tubule were performed in the same manner as for 

measuring [Ca2+]j (see section 2.17.1). The only difference was the quantity o f tubules used 

for each assay; due to the targeting there is less aequorin per cell, therefore more tubules 

were used to compensate for this. pP{CaSpeR-hs-act-mtaeq} tubules were used in the 

initial experiments, however even using 60 tubules per sample the luminescent signal was 

very low. This was partially due to the targeting but in most part due the comparative 

weakness of the hsp70 promoter compared to the GAL4/UAS system (general observation 

and personal communication from Martin Kerr). Therefore all subsequent experiments 

utilised the pP{UAST-mtaeq) flies.

The pP{UAST-mtaeq} flies were crossed with the GAL4 lines c42 and c710, which are 

enhancer trap lines (see section 1.3.2.2) that specifically express GAL4 in the principal 

cells (c42) and the stellate cells (c710) of the tubule (Sozen et al., 1997). The resulting Fi 

generation specifically expressed mtAEQ, either in the principal or stellate cells. 

Approximately 30 tubules were used for each sample for the principal cell measurements 

and 60 for the stellate cell measurements. The experiments were performed as described in 

2.17.1. Figures 3.4 and 3.5 show typical measurements o f [Ca2+]mt in each cell type and 

also examples o f respective [Ca2+]j responses for comparison.

As described in section 3.2.2 and demonstrated in the last section, an nym ediated  [Ca2+] 

response in most cell types results in a [Ca2+]mt rise that is greater than the bulk [Ca2+]j rise 

and occurs within half a second o f the stimulus. However, upon addition of capa-1 to the
9 +tubule, a principal cell [Ca ]mt response directly after the stimulus is hardly perceivable, if  

present at all (see figures 3.4A - D). However there is a delayed (by approximately 30 -  60
9 +seconds), slower and sustained response that coincides with the secondary [Ca ]i response.

^  i
This [Ca ]mt rise was heterogeneous between samples (as shown by figures 3.4A -  D), 

with respect to the maximum levels reached and the shape o f the response.

The stellate cell [Ca2+]mt responses to drosokinin were also delayed, the [Ca2+]mt increase 

appears to coincide with the secondary response rather than the primary (figure 3.5A). The 

dynamics of the [Ca2+]mt rise in the stellate cells were more consistent between samples, 

compared to the principal cell measurements. Figure 3.5B shows a the initial response to
9 +drosokinin in more detail; the [Ca ]mt increase does not start until approximately 1 second

75



[C
an

 
(n

M
) 

[C
a 

] (
nM

)
A B

Cytoplasm
Mitochondria200 -

100 -

0 50 100 150 200

Cytoplasm
Mitochondria20 0 -

c

o 50 100 150 200
Time (sec) Time (sec)

C

Cytoplasm
Mitochondria200 -

100 -

0 50 100 150 200
Time (sec)

D

200 -

*  100 -

Cytoplasm
Mitochondria

50
— i—

100 150 200
Time (sec)

200-i

150-|
1 , 00-oB

U
50-

Figure 3.4 M easurem ent o f mitochondrial Ca2+ in principal cells using targeted aequorin. The capa-1 
peptide was added at 10 seconds at a concentration o f 10'7 M. (A) -  (D) Exam ples o f  [Ca2+]mt responses to 
capa-1 in the principal cell. A typical [C a2+]j response is also shown for com parison. (E) Bar graph showing 
maximum increase above basal levels for the control primary and secondary response and the m itochondrial 
response (n >13).

76



A
2 0 0 -

U 100

Cytoplasm 
—  Mitochondria

: \\

20
~T~
40

Tim e (sec)

~i
60

B

C

200 -

a
U  100

Cytoplasm
 Mitochondria

/vN

S ’

A- v>,V4/V >
■v/v

“ I—
10 12

Tim e (sec)
14 16

2 0 0 -i

150-

£  100 -

50-

2+ 2+o o

Figure 3.5 M easurem ent of mitochondrial C a2+ in stellate cells using targeted aequorin. The
drosokinin peptide was applied at 10 seconds at a concentration o f  10'7 M. (A) A typical [Ca2+]m, and 
control [C a2+]j response. (B) M agnified region, showing the detailed dynam ics o f  the response directly 
after the addition o f  the peptide. (C )  Bar graph showing m axim um  increase above basal levels for the 
control primary and secondary response and the m itochondrial response (n >10).



after addition of the peptide and the rise in [Ca2+]mt levels are more gradual than the
• 94 - 9 +primary [Ca ]j increase. Furthermore, in both cell types the [Ca ]mt response is only equal 

to or less than the average [Ca2+]j levels reached. This is in contrast with the [Ca2+]mt 

response in S2 cells, which was much greater.

3.3.4 Golgi-targeted aequorin in the Malpighian tubule

Due to a template for Golgi-targeted aequorin not being freely available, a suitable cDNA 

was constructed using fusion PCR (section 2.6.3 and figure 2.1) and targeted mutagenesis 

(for construction details, see table 2.4). The sialyltransferase sequence (required for 

targeting) was fused to the 5’ end of the aequorin sequence and cloned into pCRT7/NT. 

This construct was used in PCR mutagenesis to introduce a D119A change into aequorin. 

The template was then cut out and cloned into pUAST. Four separate transgenic lines were 

generated. These flies were crossed to the GAL4 line c42 (as described in the last section) 

to produce flies expressing Golgi-targeted aequorin in the principal cells. Confirmation of 

the intracellular localisation of the aequorin has not yet been performed; however, this 

could be achieved by using either an antibody for the sialyltransferase domain or for 

aequorin.

Approximately 24 tubules were dissected (for each sample) in standard Schneider’s
^ I

medium and then transferred to Ca -free Scheider’s (Invitrogen). The tubules were 

initially incubated in Ca2+-ffee Schneider’s solution with coelenterazine for 3 hours. It has 

been previously reported that depletion of [Ca2+]ooigi in cell lines causes a reorganisation of 

the Golgi apparatus This can be prevented by performing the incubation step at 4°C and 

then re-warming the sample 15 minutes before the experiment (Pinton et al., 1998). 

Therefore this strategy was employed with the tubule samples.

A concentration of 5.4 mM CaCU (standard Schneider’s medium concentration) was 

restored to the sample by injection. This caused a small sharp transient rise in 

luminescence (see figure 3.6), however there was no gradual increasing o f luminescence, 

as would be expected if the depleted stores were refilling. Additionally, the total 

luminescence (TL) was very low, suggesting that the Golgi apparatus was not depleted of 

Ca sufficiently for the apoaequorin to be reconstituted. To ensure all traces o f external 

Ca2+ were removed, ImM of the Ca2+ chelator EGTA was included in the incubation step. 

This approach was successful in allowing an abundance o f apoaequorin to be reconstituted 

(see TL peak in figure 3.6), but the re-addition o f external Ca2+ did not elicit a refilling of
9 +the store. The addition of Ca did cause a large transient increase in luminescence, though 

this is probably due to aequorin from damaged or expired tubules.
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Without refilling of the store it is not possible to perform any functional experiments. 

Other approaches were attempted to try and overcome this problem, such as using
• • • 9 +coelenterazme n and shortening the incubation time (in case the prolonged absence o f Ca 

was killing the cells). However, so far none o f these protocols have succeeded in refilling 

of the Golgi apparatus.
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Figure 3.6 Attempts at refilling depleted Golgi Ca2+ stores. (A) Tubules 
incubated in Ca2+-free Schneider’s without EGTA. (B) Tubules incubated in 
Ca2+-free Schneider’s with 1 mM EGTA. CaCl2 and total luminescence (TL) 
were added at times indicated. Standard Schneider’s medium contains 5.4 mM 
CaCl2, hence 5.4 mM CaCl2 was added to Ca2+-free Schneider’s and 7.4 mM 
CaCl2 to Ca2+-free Schneider’s containing 1 mM EGTA.
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3.4 Discussion

It was unfortunate that the ER-targeted approach was unsuccessful, as it could have
9 +enabled real-time, quantitative measurements o f [Ca ] e r  in the tubule. This approach may 

be possible in the future, if  an efficient N-terminal ER retention signal is discovered that 

works in Drosophila. Alternatively, an aequorin variant that is not affected by a C-terminal 

tag could be utilised, as it would allow the addition of the KDEL motif. A variant of 

aequorin, with no cysteine residues has been reported to function with a C-terminal tag 

(Deo and Daunert, 2001), however it is not known whether this would work for measuring 

[C a 2+]ER. Due to this method being fruitless, an alternative strategy of developing a 

fluorescent reporter was undertaken. This is described in chapter 4.

The Golgi-targeted aequorin approach, although it has not yet been successful, should in 

theory be possible, if  the correct conditions can be achieved to allow refilling o f the stores 

after reconstitution. Potential reasons for the inability o f the stores to refill are that either 

the cells are dying because of the removal of external Ca2+ or the re-addition o f such high 

levels o f Ca2+ are in some way inhibiting the Ca2+-ATPases o f the cells. Future attempts at
9+refilling the stores could consist of re-introducing the Ca at initially very low 

concentrations and also washing of the tubules after the incubation to remove the EGTA. 

The application of mitochondrially-targeted aequorin in S2 cells demonstrated that an IP3 - 

mediated response elicited a typical [Ca2+]mt rise. This comparatively large [Ca2+] observed 

in the mitochondria was first described by Rizzuto and colleagues and has been observed 

in many other cell types (Rizzuto, 1992). As mentioned in section 3.2.2, the large [Ca2+]mt 

increase is believed to be due to the close interaction o f the ER and the mitochondria 

(Rizzuto et al., 1998). The 200 ms delay before the initiation o f Ca2+ uptake into the 

organelle is likely to be due to the time required for activation o f the mitochondrial 

uniporter.

The data obtained from using the mitochondrially-targeted aequorin in the tubule was very 

different to the S2  cell response. In the principal cells there was no large [Ca2+]mt increase
91

coinciding with the HVmediated primary [Ca ]j response, although there was a delayed 

and slower [Ca2+]mt rise that only reached 63 ± 8  nM above basal levels (see figure 3.4).
91

There are two possible reasons for this lack of an initial mitochondrial Ca uptake; either 

the mitochondria are not coupled or in close proximity to the ER, or the ER is not the IP3-
9 .

releasable Ca pool. In chapter 4 there is data to support that the ER is not the IP3- 

releasable pool in the principal cell and furthermore, chapter 5 provides evidence 

supporting the involvement of an alternative intracellular pool. Additionally, in the 

principal cell, a large proportion of the mitochondria are localised in or are in close 

proximity to the apical microvilli (Eichelberg and Wessing, 1975; general observation).
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This distribution of mitochondria will affect Ca2+ uptake, especially if  the [Ca2+]i rise is 

predominantly perinuclear or basolateral.

The beginning of the [Ca2+]mt increase in principal cells does not start until 30-60 seconds
9+after addition of the peptide and the peak usually corresponds to the secondary [Ca ]i 

peak. This suggests that the Ca2+ taken up by the mitochondria (after capa-1 stimulation) 

originates from the same source that provides the secondary [Ca2+]j rise. The source of the 

secondary [Ca2+]j response is still not clarified, although there is strong evidence for an
9  .

influx of Ca from the external medium (see chapter 7 for more details). The observed
9 I

[Ca ]mt increase in the principal cell may be due to a subpopulation o f plasma membrane- 

proximal mitochondria that are taking up Ca2+ because o f the local microdomain of high 

[Ca2+]j produced by opening of plasma membrane Ca2+ channels. This may be specific to 

either the basolateral or apical membranes or it may be occurring at both. The alternative 

possibility is that the long period of the secondary [Ca2+]j rise could cause a global rise in
9 . 94.

Ca levels (not just in local domains) resulting in a marginal Ca uptake by all
91

mitochondria. A similar atypical [Ca ]mt response has been observed in subpopulations o f 

mitochondria in pancreatic acinar cells (Park et al., 2001). Mitochondria further from the 

nVreleasable apical region of the ER in these cells have an attenuated response to the 

agonist acetylcholine. However, this response is not delayed like the increase seen in 

principal cells. This is most likely due to the differences in kinetics o f the secondary 

responses in these two cell types.

The stellate cell [Ca2+]mt response is also atypical; the initiation o f the rise is also delayed 

by more than expected (though only by approximately 1 second) and the rate o f increase is
9  .

also a lot slower than that of the primary [Ca ]j increase (see figure 3.5B). The primary 

[Ca2+]j peak may be priming the mitochondria for Ca2+ uptake, however analogous to the 

principal cells, the source of the Ca2+ appears to be the same as the source driving the
9 .

secondary [Ca ],• rise. Therefore, it again appears that the stellate ER is not the IP3 - 

releaseable pool or that the mitochondria in the stellate cell are not in close proximity to 

the ER.

The tubule [Ca2+] mt responses imply that the principal and stellate cells’ Ca2+ signalling 

mechanisms do not function in a typical manner. It raises the intriguing questions o f how 

and why these mechanisms are different. This is discussed in more detail in chapter 7. One 

thing to be noted is that the [Ca2+]mt values were calculated from the raw RLU counts using
9 +the same program used for calculating [Ca ]i in Drosophila. This should still produce 

accurate values, as the aequorin possesses the same affinity for aequorin. However, there is 

always the possibility that any pH difference in the mitochondria may effect the calculated 

values, if  it alters the manner in which aequorin binds Ca2+. An important future
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experiment will be to verify these calculated results by calibrating the targeted aequorin in 

conditions representing the internal environment o f Drosophila mitochondria.

Although the dynamics o f [Ca2+]mt in the Malpighian tubules o f insects have not been 

previously studied, there have been studies o f mitochondrial movement in the tubules of 

Rhodnius prolixus. Bradley and Satir (1979,1981) used electron microsopy to monitor the 

movement of mitochondria after the Rhodnius tubule had been stimulated with 5- 

hydroxytryptamine (5-HT). The mitochondria moved from a position below the cell cortex 

to one inside the microvilli within 10 minutes o f stimulation with 5-HT. It is believed that 

the purpose of this movement is to bring the activated mitochondria in closer proximity to
9 -4-the V-ATPases that drive fluid secretion. It is not unreasonable to propose that a Ca 

response invoked by 5-HT could be stimulating the mitochondria to produce more ATP 

and to move to the cellular microdomain that is requiring the ATP. The [Ca2+]mt increases 

in the Drosophila tubule may be playing an integral role in stimulating the mitochondria to 

respond in a similar manner.

Despite the majority of mitochondrial Ca2+ studies focusing on the fast and large [Ca2+]mt 

response associated with close proximity to the ER, several groups have recently
9 +investigated the reaction o f mitochondria to lower, more sustained [Ca ]j rises. Studies in 

HeLa cells (Collins et al., 2001) and rat adrenal cells (Pitter et al., 2002) have shown that 

mitochondria will slowly accumulate Ca2+ even when the [Ca2+]i has only risen from 60 -  

140 nM. Additionally, they have demonstrated that this slow Ca2+ accumulation is 

sufficient to increase the metabolic activity o f the mitochondria (consistent with activation
9 -4-of the Ca -dependant mitochondrial dehydrogenases). This information could be 

important for understanding how mitochondria react in the principal cell to the capa- 1  

stimulus. The results in this chapter show that the principal cell mitochondria accumulate
9 +  9 +Ca in conjunction with the secondary component o f the capa-1 Ca signal. This evidence 

proposes a model in which capa-1 may activate mitochondria (to produce more ATP to 

drive fluid secretion), via the prolonged characteristics o f the secondary [Ca2+]j response 

that it generates.
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Chapter 4

Development of improved fluorescent calcium reporters and 

their utilisation in monitoring organellar calcium in the

Malpighian tubule
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4.1 Summary

This chapter describes the in vitro development o f a new ER-targeted fluorescent calcium 

reporter and the generation of transgenic flies which express this reporter, thus allowing 

real-time monitoring of [C a 2+]eR in an intact tissue. The ‘pericam’ reporter was used as a 

template and mutated to lower its sensitivity to Ca2+. Retention signals were also fused to 

it, which allowed correct targeting. Malpighian tubules, expressing this reporter in either 

the principal cells or the stellate cells were imaged using confocal microscopy in order to 

determine the role o f the ER in the neuropeptide induced [Ca2+]j signals. Surprisingly both 

cell types showed a slight increase in [C a 2+]ER upon stimulation, rather than a typical 

decrease associated with a release of Ca2+ from the ER.

Additionally this chapter describes the generation o f transgenic fluorescent reporter fly 

lines in an attempt to monitor Ca levels in other sub-cellular compartments i.e., the Golgi 

and mitochondria, at a smgle cell level. Using a novel, highly sensitive pencam, [Ca ]mt 

levels were successfully monitored in the tubule during stimulation by neuropeptides.
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4.2 Introduction

The aequorin based Ca2+ assay has been an excellent tool for understanding Ca2+ signalling 

in the tubule, however, the technology cannot be used for single cell imaging in most 

systems, as the signal is too weak. One would require an encoded fluorescent reporter to be
9-4- • • •able to image Ca events in a single cell in the tubule. Furthermore, with the available set 

o f targeting tools, fluorescent reporters can be localised to different organelles within the 

tubule to enable real-time imaging o f organellar Ca2+. Due to the technical difficulties o f
• 2"F • i *applying aequorin technology to investigate [Ca ] e r  in Drosophila  (see section 3 . 3 . an

ER-targeted fluorescent reporter could provide the first insight into the dynamics o f
2̂ .

Drosophila [Ca ] e r .

94- • • •The various types o f encoded fluorescent Ca reporters are described in section 1.2.3 and
• • r» 2 4 "  # •the genetic targeting of these reporters has allowed measurements o f Ca in various 

cellular compartments and domains (summarised in table 4.1).

T able  4.1 Genetically encoded fluorescent Ca2' reporters and details o f  their docum ented subcellular 
targeting.

Reporter Fluorescence
source

Excitation  
X (nm)

Em ission  
X (nm)

Subcellular
targetting

Reference

Cameleon CFP/YFP 
CFP/Venus 
CFP/Citrine

430 480/535 cytosol M iyawaki et al., 1997

ER

m itochondria

nucleus

Golgi Griesbeck et al., 2001

caveolae Isshiki et al., 2002

plasm a membrane Em m anouilidou et al.,

secretory granules 1999

Ratiometric cpYFP 415/490 525 cytosol Nagai et al., 2001

pericam m itochondria

nucleus

subplasm alem m al
space

Pinton et al., 2002

Cam garoo YFP 490 525 cytosol Baird et al., 1999

Cytoplasmic targeted cameleon, camgaroo and pericam have been expressed in transgenic 

animals (Kerr et al., 2000; Yu et al., 2002; Wang et al., 2003; Higashijima et al., 2003). 

However these approaches do have drawbacks; eg., one main concern is that the required 

high expression o f these reporters could interfere with calcium homeostasis. It is likely that
9-4- • •

the calmodulin domain of these biosensors significantly buffers Ca levels (Miyawaki et
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al., 1999). Additionally, as mentioned in section 1.2.3, the cameleons have a low signal-to- 

noise ratio and unfortunately camgaroo’s sensitivity range is not optimal for monitoring

[Ca2+] j .

In spite of these drawbacks, these reporters have and will contribute a great deal to 

understanding Ca2+ signalling in vivo. Progress in this field would benefit from the 

development o f improved reporters and the generation o f transgenic animals expressing 

subcellular targeted reporters.

4.3 Results

4.3.1 Development of a new genetically encoded fluorescent reporter for the ER

Cameleon-based reporters have already been developed for monitoring [Ca ] er  

(Miyawaki et al., 1997). These reporters do have disadvantages; they possess a low signal-
9+to-noise ratio and their Ca sensitivity is not adequate to report across the whole range of 

possible[Ca2+]ER levels. Furthermore, as these were not available to our laboratory, I 

decided to endeavour to develop an ER reporter based on either camgaroo or the pericams. 

The sequence for an ER-targeted camgaroo was assembled in a four-piece PCR fusion 

reaction. It contained the Drosophila calreticulin signal, the two halves o f YFP and 

Drosophila calmodulin (figure 4.1 A). The fusion PCR product was TOPO® cloned and 

fully sequenced by BaseClear. DNA templates for flash, inverse and ratiometric pericams 

were kindly donated by Dr. Atushi Miyawaki (Riken Institute, Japan). As a putative 

ratiometric ER reporter would be most practical, the Drosophila calreticulin signal and the 

KDEL sequence were fused to ratiometric pericam (figure 4.1 B). For further details of the 

construction o f these two DNA templates, see table 2.4.

In order to produce a less sensitive Ca2+ reporter that would function in the ER, a strategy 

was undertaken to mutate residues in the Ca2+ binding EF hands o f the calmodulin domain. 

Calmodulin has four EF hands, each containing a conserved glutamic acid (E) residue that
94-has a critical role in Ca binding (Babu et al., 1988). Mutants o f calmodulin with glutamic 

acid to glutamate (E-* Q) and glutamic acid to lysine (E-» K) substitutions have been 

demonstrated to affect Ca2+ binding (Maune et al., 1988; Maune et al., 1992). The 

glutamic acid (negatively charged) residue assists binding o f the Ca2+ ion in an 

electrostatic manner (see figure 4.2A); therefore a change to glutamate (neutral) will 

weaken the interaction; while a change to lysine would have a more severe effect due to its 

positive charge. The approach was to generate mutants o f the two types o f reporter that had 

E-» Q and/or E-» K mutations at various EF hand sites. The plan was that the reporters
94-could then be expressed in bacteria, purified and tested in vitro for their Ca sensitivity.
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GGT
A

EL

DROSOPHILA
CTS EYFP (1-144) CALMODULIN EYFP (146-238) KDEL

B i i
H148D Y203F

VDGGSGGTG GT
E104Q

M13
XE NOPUS

CTS EYFP (145-238) EYFP (1-144) CALMODULIN KDE

c GGSGG GTG
i ^  > r 1

M13 EYFP (145-238) EYFP (1-144)
XENOPUS

CALMODULIN

D H148T Y203F
I I

VDGGSGGTG GT E104QI

M13 XENOPUS
EYFP (145-238) EYFP (1-144) CALMODULIN

Figure 4.1 Schem atic representation of the reporter tem plates used for m utagenesis. (A) ER-
targeted camgaroo. (B) ER-targeted ratiometric pericam. (C) Flash pericam. (D) Inverse pericam. 
Abbreviations are as follows; CTS, calreticulin signal; EYFP, enhanced yellow fluorescent protein.

Figure 4.2 Schem atic diagram of a calmodulin EF hand binding C a2+ and the structure of 
calmodulin binding the M13 peptide. (A) The 41'1 EF hand o f  calm odulin, residues interacting with the 
Ca: ’ ion are shaded in a darker colour. The critical glutamic acid (E) that was mutated in the development 
o f  a less sensitive pericam  is highlighted. (B) The solved structure o f  calm odulin binding to the M13 
peptide in the presence o f  Ca2+ (Ikura et al., 1992). The N-term inus o f  M l3 and the C-terminus o f 
calmodulin are indicated by white arrows.
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Figure 4.1 shows a schematic representation o f the different reporter templates that were 

mutated. All the original pericam reporters contain a E104Q mutation in calmodulin 

(Nagai et al., 2001); therefore before different alternative mutations could be made, this 

site had to be reverted to wildtype (Q104E). All the changes to calmodulin were produced 

by targeted PCR mutagenesis (see section 2.6.6 and primers 30-51). The templates were in 

the pCRT7/NT vector, therefore all subsequent mutated isoforms were ready to be 

expressed and purified from bacteria (see section 2.13).

The site-mutation strategy for the camgaroo and the pericam was loosely based on the 

original Ca2+ sensitivity o f the reporters and predicted severity o f each mutation. Table 4.2 

displays all the various templates that were generated, including whether expression in 

bacteria was successful and if  so, whether the purified product was fluorescent.

Expression o f the ER-targeted camgaroo in bacteria was unsuccessful; only a very faint 

band was detected on a western (see figure 4.3). This may have been due to the codon 

usage o f the Drosophila calreticulin signal and calmodulin domains, though this should 

have been compensated for by the use o f the ‘codon preference’ Rosetta® cells. Expression 

o f the ER-targeted ratiometric pericam was more successful and the recombinant protein 

could easily be detected by western analysis using a His-tag antibody. The proteins were 

expressed and purified as described in sections 2.13.2 and 2.13.3. The purification step had 

to be optimised because it became apparent that the protein was eluting from the column at 

low concentrations o f imidazole (see figure 4.3).

A B
C Rat. C Cam.

1 05-««v  »

Im idazole conc. (mM)

Figure 4.3 Expression of fluorescent reporters in E. coli. (A) W estern blot showing detection o f 
recombinant reporter protein in the soluble fraction o f  E. coli lysate. Prim ary antibody, His-G at 1:5000 
dilution. Secondary antibody, anti-mouse HRP at 1:5000 dilution. C, control; Rat., ratiometric pericam; 
Cam., camgaroo. (B) Coomassie gel showing different fractions collected from  the His-bind purification 
column. The m ajority o f  the reporter protein is eluted with 80 mM imidazole. L, ladder; RO, run-off from 
column before elution step.

Unfortunately, the purified proteins were not fluorescent. Considering the possibility that 

the ER retention signals were interfering with the reporter protein folding or function, non-
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Table 4.2 pCRT7/NT constructs generated. For each construct, achievem ent o f  bacterial expression 
and production o f  a fluorescent protein is indicated.

Template Calm odulin
mutation

Expression in 
bacteria?

Fluorescent?

Camgaroo with ER 
retention signals

E31Q X -

E31K X -

E67Q X -

E67K X -

E104Q X -

Ratiometric pericam with 
ER retention signals

E31Q / X

E31K / X

E67Q / X

E67K / X

E140Q / X

Ratiometric pericam E31Q / X

E67Q / X

E140Q / X

with ex tended  linker 1 E31Q / X

with ex tended  linker 2 E31Q / X

Hash pericam E31Q / /

E67Q / -

Inverse pericam E31Q S V

E67Q / /

E140Q / /

lo g  [Ca]

1 0 0 i  —o—/j 3Sence 0f ̂ a2+

P re sen c e  o f  C a2+

0 u«1Xa
£

50-

Figure 4.4 C a2+ and pH sensitivity of flash pericam  E31Q . (A) Ca2+ sensitivity. Kd = 34/rM 
and Hill coefficient = 0.79. (B) pH sensitivity. (F-Fo)/(Fm ax-Fo) allows the fluorescence to be 
quantified as a percentage o f  the maximum possible fluorescence.
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targeted ratiometric pericam was mutated and purified. Once again though, this yielded 

non-fluorescent proteins.

It appears that ratiometric pericam can form a fluorophore with the E104Q mutation in 

calmodulin but if  this mutation is exchanged for a similar mutation in any o f the other three 

EF hands, then there is no formation of the fluorophore. It is conceivable that the structural 

alignment of the two halves of circularly permuted EYFP is critical in the formation of the 

fluorophore and any change in the structure o f the pericam could disrupt this. The 

alternative mutations in calmodulin are probably affecting the way that the calmodulin and 

M l3 interact, therefore disrupting the alignment between the two halves of EYFP. Based 

on this interpretation, a possible way to allow the two halves o f EYFP to re-align in these 

mutants would be to make the linkers between the domains more flexible. This was 

attempted by the addition of a glycine residue in the linker between the two EYFP halves 

and also between EYFP and calmodulin domains (in separate proteins). Unfortunately, this 

strategy was also unsuccessful in yielding a fluorescent ratiometric pericam with an 

alternative calmodulin mutation.

The next step was to investigate whether flash and inverse pericam could be mutated and 

still retain their fluorescent properties. Inverse pericam is identical to ratiometric pericam, 

apart from a D148T change in EYFP. This change alters the fluorescent properties o f the 

pericam; therefore there was a possibility that this mutation, in conjunction with a 

calmodulin mutation, might restore fluorescent properties to the protein. As table 4.2 

shows, the mutated flash and inverse pericams that were generated, were all able to form a
i

fluorophore. The fluorescent proteins acquired were then used in in vitro Ca and pH 

sensitivity assays (see figures 4.3 and 4.4). The flash pericam containing the E31Q 

mutation displays a reduced sensitivity to Ca2+ (figure 4.4A), which is suitable for 

measuring [Ca2 +]ER. Nevertheless, the fluorescent properties o f the protein are very 

sensitive to pH (figure 4.3B) and at pH 7 (the approximate pH o f the ER (Kim et al., 

1998)) the maximum fluorescence and the fluorescent change between Ca2+-free and Ca2+- 

bound states is dramatically reduced. The inverse pericam mutants (in31, in67 and in i40) 

are all a lot more robust in terms of pH-sensitivity (figure 4.5) and at pH 7, they operate at 

near maximum efficiency. These pericams still function in an inverse fashion, ie., an
^  I

increase in Ca results in a decrease in fluorescence. Furthermore the in31 isoform
9+possesses a broad range of Ca sensitivity (K<j = 4pM; Hill coeff. = -0.48) which can 

easily accommodate the full range of possible [Ca2+]ER. The in31, in67 and inl40 pericams 

all have a single excitation wavelength peak at -485 nm (see figure 4.5A-C), which is 

similar to the published spectra of the original inverse pericam (Nagai et al., 2001). 

Interestingly, in67 (K<j = 47nM) was in fact more sensitive to calcium than the original
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in31 in67 inl40

100- 100-

fa 50- fa 50- 50-

400 425 450
Wavelength (nm)

475 500 400 425 450
Wavelength (nm)

475 500 475400 425 450
Wavelength (nm)

500

100-100- 100 - Kj = 500 nM 
HiDcoeff. = -1.20

Kd = 47nM 
HiD Coeff. = -1.39

Kj = 4jiM 
KIlCoefiF. =-0.482

*
1 50- fa 50-

ofa

-10-9 -7 -0 -5

log [Ca]
-4 -3 -2

log [Ca]

Figure 4.5 In vitro properties of the inverse pericam mutants: in31 (ERpicam) (A, D and G), in67 (B, E and H) and 
inl40 (C, F and I). Excitation spectra (A-C, dashed lines represent absence of Ca2+ ), pH sensitivity (D-F, open circles 
represent absence of calcium), and Ca2+ titration (G-I). (F-Fo)/(Fmax-Fo) allows the fluorescence to be quantified as a 
percentage of the maximum possible fluorescence.
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inverse pericam (K<j = 200nM) and in 140 was slightly less sensitive (K*t = 500nM). The 

in31 pericam is an excellent candidate for an ER reporter; however, the only drawback is 

the fact that the reporter has only one excitation wavelength (therefore ratiometric 

measurements will not be possible).

A schematic representation o f the development o f the ER reporter is shown in figure 4.7.

4.3.2 Expression of an ER-targeted pericam in S2 cells and transgenic Drosophila

The in31 pericam was fused to the mammalian calreticulin signal and the KDEL sequence 

(see figure 4.6). It was decided to use the mammalian calreticulin signal, as the reporter 

could also be tested and used in mammalian cells and it was apparent that this signal was 

just as effective in Drosophila cells (personal communication from Adrian Allan). The 

structure o f calmodulin bound to the M 13 peptide has been solved (Ikura et al., 1992) and 

the N-tenninus o f M13 and the C-terminus o f calmodulin are free from the tertiary 

structure o f the complex (see figure 4.2B). Therefore in theory, the retention signals should 

not interfere with the function o f the pericam. The template for ER-targeted pericam 

(ERpicam) was TOPO* cloned into the DES expression vector for expression in S2 cells) 

and the pcDNA3.1 vector (for expression in mammalian cells). From the DES construct, 

the template was cloned into pUAST (for further details see table 2.4) and six separate 

transgenic lines were generated.

A
H148T Y203F

I
VDGGSGGTG GT

E31Q

CTS M13 XENOPU S
EYFP (145-238) EYFP (1-144) CALMODULIN KDEI

B
H148T Y203F

I
VDGGSGGTG GT

E31Q

XENOPU S
ST M13 EYFP (145-238) EYFP (1-144) CALMODULIN

C
H148T Y203F

VDGGSGGTG GT E67Q

XENOPU S
M PS M13 EYFP (145-238) EYFP (1-144) CALMODULIN

Figure 4.6 Schematic diagram of the new targeted pericam s. (A) ERpicam  (B) Golicam  (C) M itycam-1. 
Abbreviations are as follows: CTS, calreticulin signal; EYFP, enhanced yellow fluorescent protein; ST, sialyl 
transferase signal; MPS, mitochondrial pre-targeting sequence. c
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ERpicam was initially expressed in S2 cells. Transfected cells gave a bright fluorescent 

signal, which was excluded from the nucleus (see figure 4.8). The fluorescence displayed a 

predominantly perinuclear localisation and reticular patterns associated with the ER 

structure. It was not possible to do real-time imaging o f ERpicam in S2 cells, as the 

required confocal microscopy facilities were not available.

4.3.3 Monitoring of [Ca2+]ER in mammalian cell lines

A collaboration was set up with Dr. Michael White’s group at the University o f Liverpool, 

enabling us to use their confocal facilities. As part o f this collaboration, the group at 

Liverpool are testing and using the pcDNA3.1 pericam constructs that were made. All the 

work using ERpicam in mammalian cells was done by Dr.Violaine See at Liverpool. 

However some of this preliminary work will be mentioned to demonstrate application and 

functionality of ERpicam.

The pcDNA3.1-ERpicam construct was used to transfect neuroblastoma cells. The 

fluorescence displayed a clear reticular pattern within the cell (see figure 4.9A). Serum
9+starved neuroblastoma cells elicit an increase in [Ca ]j upon addition o f serum (personal 

communication from Violaine See). Cells expressing ERpicam were monitored during the 

addition of serum and an increase in fluorescence was observed. As the reporter works in 

an inverse manner, then this increase in fluorescence indicates a decrease in [Ca2+]ER (see 

figure 4.9B).

4.3.4 Monitoring of [ C a 2+]ER in the Malpighian tubule

Homozygous pP{UAST-ERpicam} flies were crossed to the GAL4 lines c42 and c710, 

and the specific expression of ERpicam in principal and stellate cells was verified (for 

examples, see figures 4.1 OB, 4.10D and 4.11C). The signal in principal cells was strong, 

whereas in the stellate cells it was a lot weaker. This is to be expected, as a stellate cell 

occupies much less volume than a principal cell and also electron microscopy o f principal 

cell shows them to contain a high density o f ER extending to all regions o f the cell 

(Ashbumer and Wright, 1978). A reticular pattern o f fluorescence is difficult to discern in 

the principal cells, though is most likely due to the ubiquitous distribution and the high 

density of ER.

Transgenic tubules expressing ERpicam were imaged in a small glass-bottomed petri dish, 

on a Zeiss LSM 510 Meta microscope (see section 2.15.2). The real-time images o f the 

tubule expressing ERpicam were captured and average fluorescence values for specified 

regions of interest (ROI) calculated. These values were subtracted from an arbitrary higher
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Figure 4.8 Pictures of S2 cells expressing ERpicam . Images were captured with a Zeiss Axiocam  
system using standard fluorescence microscopy and a lOOx objective (see section 2.12.1).

A

B
c
3

£3U

S erum

■fi3
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71u■*->3<ywc©w

15050 1 0 00

Time (sec)
Figure 4.9 Expression of ERpicam in neuroblastoma cells. (A) Picture o f  neuroblastom a cells 
expressing ERpicam. Image captured on a Zeiss 510 M eta m icroscope using a 63x objective. (B) 
ERpicam reporting ER calcium levels in a single neuroblastom a cell starved o f  serum. Image 
and data courtesy o f  Violaine See, Liverpool University.
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an artifact, resulting from photoconversion o f  the probe (see text for further details).
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value to give relative values of [Ca2+]nR concentration. Plots o f [Ca2+]ER concentration in 

principal and stellate cells are shown in figures 4.10 and 4.11.

The fluorescence value is not significantly affected by a mock addition o f medium (figure 

4.10G). Reduction of external Ca2+ caused a marked reduction in [Ca2+]ER and this could 

be restored by the addition of CaCh (figures 4.10A, 4.10C, 4.11A and 4.1 IB). Surprisingly
9 +the addition of capa-1 and drosokinin did not show a decrease in [Ca ] e r  in the respective 

cell types. A decrease in [Ca2+]ER would normally be expected upon stimulation of a cell 

with a nyproducing agonist. Furthermore the level o f [Ca2+]ER actually increased slightly 

upon stimulation and it is apparent from figures 4.10A, 4 .10C, 4.10E and 4.1 OF, that there 

is a miniature reflection o f the principal cell primary and secondary cytosolic responses 

within the ER. When the dynamics of this [Ca2+]ER increase were compared to the 

dynamics of the [Ca2+]j response (measusured with aequorin), they were very similar, apart 

from the change in the ER being delayed by approximately 1 second and possessing a 

more prolonged primary increase.
9+There is also an initial increase in [Ca ] er  in the stellate cell upon addition o f drosokinin, 

though greater temporal resolution would be required to distinguish whether this was a 

reflection of the stellate [Ca2+]j increase. Additionally, in the stellate cells (but not the 

principal cells) there is a drop in [Ca2+]ER levels immediately after the initial neuropeptide- 

induced peak (see figure 4.11). Preliminary experiments suggest that the SERCA inhibitors 

thapsigargin (figure 4.1 OH) and cyclopiazonic acid (data not shown) have no effect on the 

resting levels of [Ca2+]ER in both cell types.

During the imaging experiments photobleaching was observed, that resulted in the 

fluorescence initially decreasing by about 15% and then levelling off after a minute. 

Importantly the probe still retains its Ca2+ sensitivity after this photoconversion event (as 

shown in figures 4.10 and 4.11). This has been recently reported to occur with the 

mitochondrially targeted ratiometric pericam (Filippin et al., 2003), therefore is likely to be 

an intrinisic property of pericams.

4.3.5 Investigation into monitoring cytoplasmic [Ca2+] in the tubule with a fluorescent 

reporter

The aequorin based Ca2+ assay has been an excellent tool for understanding cytosolic Ca2+ 

signalling in the tubule, however as previously mentioned, the technology does not allow
9+ #

imaging of events in a single cell. To be able to image cytosolic [Ca ] a single cell m the 

tubule, one would require an encoded fluorescent reporter. Using the pericam templates 

acquired, separate transgenic fly lines were generated expressing non-targeted flash, 

inverse and ratiometric pericam under control o f the UAS/GAL4 system. Unfortunately
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when these lines were crossed to relevant GAL4 lines there was no detectable fluorescent 

signal in the tubules o f the F| generation. This was apart from a very weak signal present in 

the stellate cells o f  larval tubules expressing inverse pericam. This lack o f signal is likely 

to be largely due to the pH sensitivity o f  the pericams.

It has been reported that a Q69M mutation in EYFP can reduce its environmental 

sensitivity to pH and halide ions (Greisbeck et ah, 2001). In a strategy to reduce the 

environmental sensitivity o f ratiometric pericam, this mutation was introduced. Protein was 

purified and transgenic flies generated. Figure 4.12 shows that this change made no 

difference to the pH sensitivity o f the pericam and furthermore the transgenic flies showed 

no fluorescent signal.

"B— Ratio, pericam  - absence o f Ca2' 

_e— Ratio, pericam  - presense o f  Ca2 ' 

'e — Q69M  ratio. - presence o f Ca2+ 

Q69M  ratio. - absence o f  Ca2+

 1------- 1---------1------1--------1------- 1------- 1----
5 6 7 8 9 10 11 12

PH

Figure 4.12 Effect of pH on the fluorescence ratio of standard and Q69M  ratiom etric pericam s.

During the development o f the ER reporter the pericams in67 and in 140 were generated

(see section 4.3.1). As these are both relatively insensitive to pH, they were candidates for

a cytoplasmic reporter that may actually function in vivo. They were both cloned into

pUAST (for further details see table 2.4) and transgenic flies generated. Contrary to

previous attempts, these reporters produced a fluorescent signal in both cell types o f adult

tubules. However the signal was still weak and interestingly, the signal from the stellate

cells was greater than that from the principal cells. Although the fluorescence can be

detected on a fluorescence microscope with a long exposure, it is barely detectable when

trying to perform a time series experiment on a confocal microscope. Real-time imaging

has been performed using these lines, though only with a high expression level (either with
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stable lines or driven by actin-GAL4). These experiments showed no response to 

neuropeptide stimulation, this could be because o f the buffering properties o f the pericam 

calmodulin domain (as mentioned in section 4.2).

The in67 and in i40 templates were cloned into pcDNA3.1 and through the collaboration 

with the University of Liverpool, it has been shown that they work well in mammalian 

cells (data not shown).

4.3.5 Investigation into monitoring [Ca2+]Goigiin the tubule with a fluorescent reporter
7+A conceivable method for investigating the role o f the Golgi Ca store in the signalling 

pathways of the tubule was to make a Golgi targeted pericam “Golicam”. The in31 

pericam was fused to the sialyltransferase signal (see figure 4.6) and cloned into the DES, 

pcDNA3.1 and pUAST vectors (see table 2.4). A very faint signal was detected in S2 cells, 

however nothing was detected in mammalian cells or in transgenic tubules. This may be 

due to the low pH of the Golgi apparatus or the processing and folding o f the protein.

4.3.6 Monitoring of [Ca2+]mt in the Malpighian tubule at a single cell level

The templates for in67 and in i40 were fused to the mitochondrial pre-targetting sequence 

(see figure 4.6) and cloned into pcDNA3.1 and pUAST (see table 2.4). Transgenic flies 

were generated that could express mitochondrially-targeted in67 and in i40 (mitycam-1 and 

mitycam-2). Both reporters give a strong signal, when expressed in both cell types (for 

examples see figures 4.13C and 4.14D). Both mitycam-1 and mitycam-2 were initially 

used to investigate [Ca2+]mt changes in single principal or stellate cells. However, it became 

apparent that experiments with mitycam- 2  did not show any significant responses to capa- 1  

or drosokinin. Data shown in chapter 3, using a targeted aequorin approach shows that both 

the cell types display a relatively small [Ca2+]mt increase in response to the respective 

neuropeptides. With this in mind, all consequent experiments utilised mitycam-1, as this 

pericam is more sensitive to small [Ca2+] changes (see section 4.3.1).

Monitoring o f [Ca2+]mt in the tubule with mitycam - 1  is shown in figures 4.13 and 4.14. The 

capa- 1  response observed with mitycam - 1  is similar to ones observed using the aequorin 

technology (see figure 3.4), with a slow increase that peaks approximately 100 seconds 

after stimulation. The drosokinin response observed with mitycam-1 is also similar to 

aequorin-based data, however the dynamics o f the increase appear different. The peak 

appears to take longer to reach and the levels decrease at a slower rate.
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Figure 4.13 M onitoring [Ca2+]m, levels in principal cells using m itycam -1. Experiment was 
performed as described in the text and in section 2.15.2. The peptide capa-1 was added at 30 
seconds at a concentration o f  10 7 M. (A) First example o f  a typical experiment. (B) Second 
exam pleof a typical experiment. (C) Typical example o f  a captured image.
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Figure 4.14 M onitoring [Ca2+]mt levels in stellate cells using m itycam -1. Experiment was 
performed as described in the text and in section 2.15.2. The peptide drosokinin was added at 30 
seconds at a concentration o f  10'7 M. (A) First example o f  a typical experiment. (B) Second 
example o f  a typical experiment. (C) Third example o f  a typical experiment. (D) Typical example 
o f a captured image.
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4.4 Discussion
• 2 +  i •The new reporters based on inverse pericam are useful tools for studying Ca signalling. 

As demonstrated, in31 can be targeted to provide a high signal, pH-robust ER reporter with 

good signal-to-noise ratio. in67 and in i40 provide new cytoplasmic and mitochondrial 

reporters that are pH-robust and appear to function better than previous pericams in 

transgenic tissues. Additionally in67 and in 140 have different sensitivities to Ca2+; in67
94-(more sensitive) can be used for studying smaller, more delicate Ca transients, while 

in i40 can be used for looking at larger increases.
94-Even though many reporters were tried, real-time imaging o f [Ca ]j m the tubule was 

elusive. Refinement o f the confocal settings may allow this to be possible in the future. No 

signal from Golicam was detected in the tubule, nevertheless further improvements of 

these reporters may yield a more robust version that could be targeted in the same manner.
94-Application o f mitycam-1 in the tubule has confirmed the unusual [Ca ]mt responses 

described in chapter 3. This is also a good example o f how the sensitive in67 pericam can 

be put to use.

The differences in the kinetics of the responses observed with aequorin and mitycam-1 in 

the stellate cell are difficult to explain. This may be due to differences in looking at a 

single cell, rather than a population o f cells. Another possibility is that the targeting o f the 

pericam is affecting its ability to report fast changes in [Ca2+], although mitochondrially- 

targeted ratiometric pericam has been reported to function adequately in mammalian cells 

(Nagai et al., 2001; Filippin et al., 2003). These transgenic lines, expressing mitycam-1
94-and mitycam-2, could also be put to use for investigating possible circadian Ca events in 

the tubule or for studying [Ca2+]mt in other tissues.

The road to developing a new ER reporter for use in the tubule was a long one, however it 

was successful and it has provided important information regarding the role o f the ER in 

the signalling events of the tubule. The data acquired, implies that the ER does not release 

Ca2+ when the principal cell is stimulated, but in fact takes up some o f the cytosolic Ca2+ to 

portray a reflection o f the [Ca2+]i response within the ER. The fact that the elevation o f IP3 

does not release Ca2+ from the ER is very intriguing; firstly, why are the cells in the tubule 

not using the ER as the DVreleasable Ca2+ pool? Secondly, where is IP3 releasing Ca2+ 

from, if it is not the ER? It maybe that because these cells are highly specialised and form a 

highly active transporting epithelium, that the ER is not a practical Ca2+ pool to be 

released. It is conceivable, with the densely packed ER in the principal cell, that a release 

from this organelle would create a damagingly high increase in [Ca2+]j and [Ca2+]mt. This is 

in contrast with other secreting polarised epithelial cell types; the ER in the pancreatic
94-acinar cell plays an integral role in the tightly controlled, spatial Ca signalling events that
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regulate secretion (for review, see Petersen et al., 1999). With regards to where the IP3 

could be acting, there have been reports of nVm ediated release from the Golgi (Pinton et 

al., 1998), lysosomes (Haller et al., 1996) and a suggested localisation o f the IP3R on the 

plasma membrane (Putney, 1997). Evidence in the next chapter implicates the Golgi 

apparatus as being an EVreleasable pool in the tubule.
94-The effect of reducing the external [Ca ] and then restoring it with an excess of CaCl2 ,

 ̂I
unmasked some interesting properties of the principal cell ER Ca pool. Figures 4.10A

and 4.1 OH show that the addition o f the CaCh appears to cause the store to

overcompensate with its uptake o f Ca2+ and to overfill. This store refilling reaches a peak

and then the levels begin to return to normal. This may be due the time taken for negative

feed back mechanisms to act upon the ER Ca uptake machinery. This could alternatively

be due to a phenomenon seen in heart tissues called the Ca2+ paradox. Reperfusion of the

heart with a Ca2+ -containing solution after a period o f extracellular Ca2+ -free perfusion

produces irreversible tissue damage (Zimmerman and Hulsmann, 1966). According to the

‘Na+ hypothesis’ (Chapman and Tunstall, 1987); upon removal o f extracellular Ca2+, Na+
2+

enters the cell via L-type Ca channels resulting in an increase in Na j. Then when 

extracellular Ca2+ is reintroduced, Na+ exits the cell via a Na+/Ca2+ exchanger causing a 

large increase in Ca2* that is believed to cause cell death. The same series of events may 

also occur in the principal cell, resulting in the overfilling o f the ER that is observed upon 

repletion of extracellular calcium.

The SERCA inhibitors, thapsigargin and cyclopiazonic acid had no effect on the [Ca2+]ER 

levels in the principal cell. This data can be interpreted in different ways; firstly it may be 

possible that the entourage of transporters on the principal cell plasma membrane are 

removing the inhibitor before it could reach and effect any putative SERCA pumps present 

on the ER. Secondly, it could be argued that if  the ER in the principal cell is not leaky, then 

blocking the uptake with thapsigargin will not effect [Ca2+]ER resting levels. However, this 

argument is discredited by the data shown in figure 4.1 OH, as the thapsigargin does not 

prevent the uptake o f Ca2+ after the addition of CaC^. Thirdly, it may be that there are no 

thapsigargin-sensitive SERCA pumps resident on the ER membrane. I f  this is the case,
94-alternative uptake mechanisms might include a thapsigargin-insensitive ATPase or a Ca - 

exchanger of some description. The presence o f a thapsigargin-insensitive store is 

supported by previous experiments on the tubule by Rosay and colleagues (1997); they 

demonstrated that 1 pM thapsigargin cannot elicit an increase in [Ca2*],- in principal cells
94-with the external Ca removed. Preliminary experiments using ERpicam in stellate cells, 

also suggest that these SERCA inhibitors have no effect on the stellate [Ca2+]ER levels, 

although more experiments will be required to confirm this.
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Due to its simplicity (single excitation and single emission) and robustness (insensitivity to 

pH and bright signal), ERpicam could be useful in many different systems. This could 

include utilisation in mammalian cell lines (already underway at the University of 

Liverpool), investigation into the [Ca2+]ER levels in other tissues o f Drosophila, application 

in other transgenic animals and also for examining [Ca ] s r  (sarcoplasmic reticulum) at a 

single cell level. Furthermore, we are investigating using this reporter as a basis for a high- 

thoughput cell-based assay for screening drugs/receptors that act through an IP3 pathway.



Chapter 5

Identification and characterisation of the Drosophila Secretory

Pathway Calcium ATPase
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5.1 Summary

This chapter describes the identification and characterisation o f the Drosophila Secretory 

Pathway Calcium ATPase. Additionally, this chapter investigates the role o f this ATPase 

in the Malpighian tubule. Previous data in our laboratory suggested the possible 

involvement o f a thapsigargin-insensitive Ca2+-ATPase in tubule function. The yeast Ca2+- 

ATPase, Pm rl is thapsigargin-insensitive and since its discovery, homologues have been
94-identified that form the new separate SPCA subgroup o f Ca -ATPases. Using the protein 

sequences o f the yeast Ca2+-ATPase PMR1 and the human SPCA1, the completed 

Drosophila genome database was searched and the gene CG7651 (now CG32451) was 

identified as possessing high similarity to these SPCAs. The Drosophila Flybase database 

has annotated this gene as having three alternative transcripts, however this study has 

uncovered another three transcripts. In tradition with previous nomenclature of Drosophila 

genes, I have decided to name this gene SPoCk (Secretory Pathway Ca2+-ATPase) as it sits 

next to a gene called Jim.

Surprisingly, the protein products o f transcripts A, B and C all possess different 

intracellular localisations. The translated product o f SPoCk-trA localises to the Golgi 

apparatus, SPoCk-trB to the ER and SPoCk-trC localises to vesicular bodies resembling 

peroxisomes. The tubule expresses two transcripts, SPoCk-trA and SPoCk-trC. Transgenic 

overexpression of tagged versions of SPoCk-trA, SPoCk-trB and SPoCk-trC in the tubule 

has an impact on the dynamics of the neuropeptide induced Ca2+ signals. Most 

interestingly, overexpression of SPoCk-trA in the principal cells results in a potentiated 

primary Ca2+ response to capa-1 and also increases the basal and stimulated fluid secretion 

rate of the tubule. Additionally, overexpression o f SPoCk-trA and SPoCk-trB in stellate
94- • ►cells results in an increased primary Ca response to drosokinin.

This is the first demonstration o f the localisation o f a Ca2+/Mn2+-ATPase to a vesicular 

body and of a Ca2+/Mn2+-ATPase (distinct from the SERCA pump) localising to the ER in 

Drosophila. Furthermore, studying the localisation and overexpression o f these proteins 

has begun to shed light on the importance o f this gene in tubule function. It appears that 

they play a significant role in maintaining an HVreleasable Golgi Ca2+ pool. Additionally 

they may have a role in Ca2+ storage and Mn2+-mediated removal o f superoxide radicals.
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5.2 Introduction - Secretory Pathway Calcium ATPases (SPCAs)

5.2.1 Identification of SPCAs

The ER has been the principally studied intracellular Ca2+ store. However more recently it 

has become apparent that the Golgi is also an important functional Ca2+ store that requires 

high levels of Ca2+ for protein processing and can release Ca2+ in response to R e

producing agonists (Zha et al., 1995; Pinton et al., 1998; Van Baelen et al., 2001).

The P-type ATPase that primarily maintains the Golgi apparatus calcium store was first 

identified by Antebi and Fink (1992). They identified a gene Pm rl in the yeast 

Saccharomyces cerevisiase that is required for normal Golgi functions. They showed the 

Pmrl gene product was required for normal secretory processes and that it localised to the 

Golgi apparatus. However it was Sorin and colleagues (1997) who identified PMR1 as a 

calcium transporting ATPase.

The first mammalian homologue was cloned from rat (Gunteski-Hamblin et al., 1989) and 

since its discovery in yeast, PMR1 homologues have been identified in many other species. 

It is apparent from their amino acid sequence difference and biochemical properties (see 

next section) that they form a discrete Ca2+-ATPase subgroup.

5.2.2 Biochemical and structural characteristics of SPCAs

The yeast PMR1 pump is insensitive to the potent SERCA inhibitor thapsigargin and is 

only inhibited by very high concentrations (Ki o f 200 pM) o f another SERCA inhibitor, 

cyclopiazonic acid (Sorin et a l, 1997). Evidence for a PMR1 homolog in HeLa cells was 

indirectly shown by Pinton et al. (1998) who identified the Golgi apparatus as being a IPS- 

sensitive calcium store that was predominantly insensitive to thapsigargin. Like other P- 

type ATPases, SPCA pumps are sensitive to vanadate (Kj o f 130 pM) and are also 

inhibited by the calcium channel blocker lanthanum (K,- o f 55 pM) (Sorin et al., 1997). A 

specific inhibitor of SPCAs is still yet to be found.

Interestingly, SPCAs can also transport manganese (Mn2+) and the first evidence for this 

was the ability o f Pm rl mutants to rescue superoxide dismutase (SOD) mutants in yeast 

(Lapinskas et a l, 1995). It was suggested that PMR1 was maintaining Mn homeostasis in 

the cell by pumping it into the Golgi; when this was disrupted, the cytoplasmic Mn levels 

increased and these elevated Mn2+ (or Mn2+-complex) levels scavenged superoxide 

radicals, therefore compensating for the loss of SOD. It was later shown that the residue 

Gin , in the sixth transmembrane domain o f yeast PMR1 was a critical residue for the 

selectivity and transport of Mn2+ (Mandal et al., 2000). Additionally, there are packing 

interactions between the 4th and 6 th transmembrane segments which are crucial for Mn2+
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transport, it has been proposed that this region is a gate for access o f Mn2+ ions (Mandal et 

al., 2003).

Van Baelen et a l  (2001) cloned and characterised the C. elegans SPCA and demonstrated 

that this too was localised to the Golgi, was thapsigargin insensitive and transported both 

calcium and manganese. This was the first time a PMR1 homologue from a multi-cellular 

organism had been demonstrated to actively transport Ca2+ and to have an equal affinity for 

transporting both calcium and manganese.

The structure o f the SERCA pump is well characterised (Toyoshima et al., 2000; 2002) and 

though the sequence of the human SPCA1 is shorter than SERCA, the alignment between 

the two indicates that all 10 membrane segments are present (see figure 5.2). Additionally 

the alignment shows the presence of residues crucial for pump function, such as the 

phosphorylation site and the ATP-binding and FITC-binding regions. It is also apparent 

that, like in PMCA (plasma membrane calcium ATPase) that there is only one site for 

coordinating binding o f calcium, therefore it is likely that only one calcium ion is 

transported per ATP molecule hydrolysed (Wei et al., 2000). In yeast Saccharomyces 

cerevisiase, the N-terminus of PMR1 appears to modulate ion transport (Wei et al.,1999), 

however whether this is the case in other species is yet to be confirmed.

Nucleotide binding domain

Actuator domain

Phoshorylation
domain

Cytoplasm
oO)CO

Organellar
space

Figure 5.1 Predicted structure of the secretory pathway ATPase (SPCA). Based on the structure of 
SERCA, taking into account the sequence similarity between SPCA and SERCA (see fig. 5.2). ‘ATP’ 
shows the area of ATP binding and ‘P ’ is the area of phosphorylation. Adapted from Wuytack et al., 2002. 
The actuator domain is believed to move relative to the rest of the protein, to aid in the movement of the 
Ca2+ ion in to the lumen (Xu et al., 2002).

5.2.3 SPCA expression and physiological roles

In yeast the PMR1 pump maintains both Ca2+ and Mn2+ levels, which is important for 

providing the correct ionic environment for maturation o f secretory products in the lumen
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Figure 5.2 Alignment of the amino acid sequences of human SERCA2a, ATP2C1, ATP2C2 and S. cerevisiae PMR1 (PID 
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of the Golgi (Antebi et al., 1992) as well as helping to prevent Mn toxification (Axelsen 

and Palmgren, 2001). There is evidence that there is an independent requirement for Mn 

in protein glycosylation (Ton et al., 2002). In mammals the SPCA pump plays two 

significant roles in the mammary gland; it is thought to be responsible for the increased
94- 9 +Ca transport required for the high concentration o f Ca in milk (Reinhardt et al., 2000)

91
and the pumped Mn is critical for the Golgi-based lactose synthase (Powell and Brew, 

1976).

Analysis of the subcellular localisation of SPCA pumps has presently only indicated a 

Golgi localisation (Van Baelen et al., 2001; Missiaen et al., 2002). However, it has been 

proposed that a PMR1 homologue is responsible for maintaining a thapsigargin-insensitive 

store in dense core secretory vesicles of pancreatic cells (Mitchell et al., 2001). The most 

abundant human SPCA, ATP2C1, is considered to be a housekeeping gene, while human 

ATP2C2 (60% homology to ATP2C1) has a more restricted expression pattern (Ton et al., 

2002). This suggests that SPCA plays a universal role in maintaining Golgi calcium levels 

as well as possibly performing more specialised roles in specific tissues, either by 

alternative subcellular localisation or by altered ion transport properties.

Another possible physiological role of the SPCA pump could be its involvement in
9 .

producing baseline Ca oscillations. COS-1 cells overexpressing SPCA display 

cytoplasmic Ca2+ oscillations upon stimulation with ATP (Missiaen et al., 2002). The 

model proposed for the presence of these oscillations involves the Golgi being a second 

(the ER being the first), less sensitive HVreleasable store. After an agonist induced 

response, the elevated [Ca2+]j is partially extruded by the SPCA into the Golgi. When the 

store’s limit is reached, a small [Ca2+]j increase occurs, which activates the IP3R on the 

Golgi causing a calcium spike (Wuytak et al., 2003). The model infers that these 

oscillations require an increased transport of Ca2+ into the Golgi, mediated by SPCA. This 

maybe the endogenous method o f producing Ca2+ oscillations in specialised cell types, 

either the SPCA could be up regulated or a more actively transporting SPCA variant may 

be present.

5.2.4 SPCA and disease phenotypes

Hailey-Hailey disease (HHD) is keratinocyte disorder characterised by incomplete cell 

adhesion. Two separate reports identified that mutations in the human SPCA cause HHD 

(Hu et al., 2000; Sudbrak et al., 2000), these mutations result in defective desmosomes, 

which normally ensure epidermal keratinocyte adhesion. With the identification that 

mutations in the SERCA protein ATP2A2 cause another keratinocyte disorder (Darier’s
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disease (Sakuntabhai et al., 1999)), it is evident that calcium homeostasis is critical for 

epithelial integrity.

Additionally SPCA may play a role in amyloidoses in mammals (such as Alzheimer’s 

disease), as endoproteolytic convertases (Davidson et al., 1988) and secreatases (LaFerla, 

2002) are dependant on calcium homeostasis in the Golgi and secretory vesicles.

5.2.S Role of a SPCA in the M alpighian tubule?

As mentioned in section 1.3.4, there is evidence from experiments performed by Rosay and 

colleagues (1997) that suggests the involvement o f a thapsigargin-insensitive store in the 

principal cells. If there is such a store in these cells, it is conceivable that a member o f the 

SPCA family is maintaining this Ca2+ store. Furthermore, the tubule is the principal Ca2+ 

storage organ in the fly (Dube et al., 2000), therefore it is possible that a SPCA -like pump 

is playing a role in the accumulation of Ca into organelles.

To answer these questions, the existence o f a Drosophila SPCA has to be established. 

Once identified, the expression, intracellular localisation and physiological role of this 

Ca2+-ATPase can be investigated using molecular techniques and reverse genetics.
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5.3 Results

5.3.1 Identification of Drosophila SPCA by in silico methods

The S. cerevisiae PMR1 (accession 6321271) and human ATP2C1 (accession 12644373) 

amino acid sequences were used separately to blast the Drosophila predicted proteins 

database (BDGP). The top match in both cases was the gene product o f CG7651 

(chromosome 3L, 80A2), having a 48% identity (65% positives) with PMR1 and 59% 

identity (72% positives) with ATP2C1. The next closest match, in both cases was the 

Drosophila SERCA gene Ca-P60A. The FlyBase report had automatically identified the 

gene as encoding for a protein with calcium-transporting ATPase activity.

The sequence similarity strongly suggested that this was the Drosophila SPCA gene, 

however further sequence analysis would be required for confirmation.

5.3.2 Alignment and phylogenetic relationships

For further support that CG7651 was a member o f the SPCA family and also to analyse its 

similarity to other SPCAs and other Ca2+ ATPases, a sequence similarity tree was 

constructed (see figure 5.3). The tree shows the three subtypes o f Ca2+-ATPases; the 

SERCA group, the plasma membrane (PMCA) group and the SPCA group. Each group is 

distinct with respect to sequence similarity, as well as intracellular localisation and cellular 

function. The tree also clearly depicts CG7651 as a member o f the SPCA group. The 

closest match to the CG7651 is a protein identified from the recently sequenced Anopheles 

gambiae genome.

Most of the predicted structure and function of SPCA proteins have been based on their 

sequence similarity to the well studied SERCA proteins (see figure 5.2). Figure 5.4 shows 

the alignment o f CG7651, PMR1 and ATP2C1 amino acid sequences. All the critical 

domains for Ca2+-ATPase function are present in CG7651, such as ATP binding sites, the 

phosphorylation site, a N-P domain connection site and site II Ca2+-coordinating residues. 

Additionally the 10 membrane domains appeared to be conserved. Also, the SPCA-specific 

residues that have been shown to be critical for Mn2+ transport are present.

This sequence comparison and analysis confirms that CG7651 does indeed encode for the 

Drosophila SPCA. As mentioned in the summary, I have decided to call this gene SPoCk.

5.3.3 Predicted structure and localisation of SPoCk isoforms

In August, 2002 the genome annotation database (GADFLY) was updated; new EST 

sequencing data revealed two more alternatively spliced transcripts for CG7651, one of 

which included an upstream gene CG I4449. The gene was then renamed CG32451. Both 

of the two new transcripts contained extra coding sequence that would result in proteins
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Figure 5.3 Sequence sim ilarity analysis of Ca2+-ATPase protein sequences. The sequences dem onstrate the 
distinct clustering o f the three main subtypes o f  Ca2+-ATPases. These are the secretory pathway Ca2+-ATPases 
(blue), sarco/endoplasm ic reticulum Ca2+-ATPases (yellow) and the plasm a m em brane C a2+-ATPases (green). 
These subtypes are separated by their sequence sim ilarity as well as their intracellular localisation. The 
Drosophila  gene CG7651 clearly falls within the SPCA group o f  Ca2+-ATPases. Sequences were aligned 
using ClustalW  and displayed using TreeView. PID accession numbers, beginning with S. cerevisiae PMR1 
are given in a clockwise order: 6321271, 3138890, 12644373, 285369, 3327220, 7296577, 21287896, 
3875247, 7291680, 3878521, 3211977, 114305, 2826866, 114312, 1083756, 5714364, 14286104, 7304318 
and 3549723.
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Figure 5.4 Alignment of the amino acid sequences of CG32451-PA, human ATP2C1 and S. cerevisiae PMR1 (PID accession 
no.21287896, 7656910 and 172199). Alignment made with ClustalW and similarity shading performed with BioEdit. Predicted 
transmembrane domains are underlined. The phosporylation site (P), residues involved in ATP binding and FITC binding are indicated. 
Site II Ca2" -coordinating residues are indicated by triangles ▲ below the alignment. “Mn2+” indicates the Gin residue contributing to 
Mn2" selectivity in the SPCA pumps. Sequence annotation based on transmembrane plots (figure 5.7) and alignments by Wuytack e t  
al., 2002 and Van Baelen et al., 2001.
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with an extended N-terminus (see figures 5.5 and 5.9). CG32451-PB (trB) encoded an 

extra 133 residues, whilst CG32451-PC (trC) encoded an extra 23 residues. The originally 

identified CG7651 transcript was changed to CG32451-PA (trA).

These extra domains were analysed using PSORTII to determine if  there were any obvious 

localisation signals. The extra 143 residues in trB had a putative vacuolar targeting site 

(ILPK) at position 109, whilst trC had both an ER-membrane targeting sequence (XXRR 

(MLRARRTIS....Y) and a mitochondria pre-targeting cleavage site (RRT | IS). Furthermore 

these extra amino acid sequences were taken and submitted into the NCBI standard protein 

blast server and the BDGP protein blast server. This was to investigate if  these domains 

shared similarity to other proteins and if so, their possible function may be elucidated. The 

extra trB domain appears to share no sequence similarity with any other protein in the 

NCBI or the BDGP database, using standard BLAST settings. However, when the protein 

sequence for trB was submitted into the InterProScan protein analysis program, the first 

-140 residues of sequence were identified has possessing similarity to a ATP-binding ABC 

transporter domain. The trC domain is similar to repeated regions in several Drosophila 

ubiquitin-like proteins (see figure 5.6). These include polyubiquitin and the gene product 

o f parkin.

The hydrophilicity and transmembrane prediction plots for SPoCk-trA clearly depict the 10 

transmembrane regions of the protein (see figure 5.7A). The hydrophobic domains match 

up well with the predicted transmembrane domains. The extra N-terminal section in trB 

was also investigated (figure 5.7B) and this did not show any extra transmembrane regions.

5.3.4 RT-PCR analysis of SPoCk transcrip ts

Before the discovery o f alternative splice variants, RT-PCRs had been carried out using 

primers spanning exons 3 and 4 (primers 64 and 65). This showed expression o f the gene 

at all developmental stages and in all tissues examined (data not shown). When the 

existence of trB and trC was realised, new primers (primers 66-69) were designed to 

distinguish between the different splice variants. The binding regions o f these primers are 

shown in figure 5.9 and the results of the RT-PCRs shown in figure 5.8.

The primers designed to detect trB (579 bp product), show that this transcript is expressed 

throughout the four main developmental stages o f the fly and is expressed in all tissues 

examined, apart from the tubule. The primers designed to detect both trA (350 bp product) 

and trC (404 bp product) demonstrated the ubiquitous expression of trA, throughout 

development and in all tissues tested. trC is present throughout development and in every 

tissue, apart from the testes. Although the RT-PCRs are not quantitative, it is still possible 

to compare relative amounts of trA with trC between different samples. For example, it is
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evident that there is greater expression of trC relative to trA in the tubule compared to the 

whole fly (see figures 5.8A and 5.8B).

The primers for trA and trC also generated other unexpected products o f approximately 

500 bp, 650 bp, and 750 bp in size (see figure 5.8A and B). To determine whether these 

bands indicated extra splice variants, the bands were cut out, TOPO® cloned and 

sequenced. The sequencing results demonstrated that these bands did indeed represent 

new, unidentified transcripts of SPoCk. Annotation of these transcripts is shown in figure

5.9 and for exact details of the intron/exon boundries see appendix 6 . These extra 

transcripts do not result in any new SPoCk proteins with different N-terminal domains, 

however trE does contain a small reading frame that may produce a 35 a.a. protein (see 

figure 5.9).

5.3.5 SPoCk P element mutants

The first P element insertion (in the SPoCk gene region) to be identified was in the 10205 

line. The flybase annotation does not show 10205 as an allele o f SPoCk, however the 

element was detected on the Flybase Genome Browser as being approximately lOObp from 

the first exon of trA. These flies were available from the Bloomington stock centre. The 

insertion site has already been pinpointed using inverse PCR (for protocol, see BDGP site), 

this sequence data places the insertion 40 bp from the beginning o f the first exon o f trA. To 

verify this, PCR was performed on genomic DNA (prepared from 10205 flies) using 

primers that bound upstream and downstream from the predicted insertion site and the P31 

primer (binds the inverted repeats at the ends of P elements). This confirmed the position 

o f the P element (data not shown).

The insertion is a P{w+mC=lacW} P element (O’Kane and Gehring, 1987), therefore if  it 

has ‘trapped’ an enhancer then p-galactosidase will be expressed in the cells specific to 

that enhancer. LacZ staining (see section 2.9) was performed on the 10205 flies but no 

staining could be detected. The 10205 insertion is homozygous lethal; so to determine the 

lethal phase of the homozygotes, a stable line containing the 10205 insertion balanced over 

a GFP balancer was set up:

w ;  +/+; 10205 P{w*mC=lacW}/TM3, P{w*mC=ActGFP}JMR2, Ser1

The 10205 homozygous progeny of these flies (from embryo onwards) can be 

distinguished form heterozygotes, as they are not fluorescent. The homozygotes were 

found to reach the first instar stage o f development, where they stop developing and were 

observed to live for as long as 2  weeks.
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Figure 5.10 RT-PCR analysis o f the effect o f the P element insertion 10205 on the expression o f SPoCk.
RT-PCRs were carried out on 1st instar larvae (as homozygote 10205 flies die at 1st instar larvae). (A) Analysis 
using primers that detect trA, trC, trD, trE and trF. (B) Analysis using prim ers that detect trB.

Control trBControl trA

Figure 5.11 W estern analysis o f flies overexpressing tagged SPoC k isoform s. (A) W estern blot 
showing trA-c-myc expression in w ; trA-c-myc; C42 flies. M ouse m onoclonal anti-c-m yc antibody 
was used at a 1:2000 dilution and a anti-mouse HRP secondary at 1:5000 dilution. (B) W estern blot 
showing expression o f trC-YFP and trB-GFP in w ; trC-YFP; C42 and w'; trB-GFP; c7 I0  flies. 
M ouse monoclonal anti-GFP antibody was used at 1:2000 dilution and a anti-m ouse HRP secondary 
at 1:5000 dilution.
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To determine whether this insertion was preventing expression o f any of the SPoCk 

transcripts, RT-PCR was carried out on the homozygous first instar larvae (see figure 

5.10). Transcripts A, C, D, E and F are still present, however trB is completely knocked 

out. This evidence suggests that it is the lack of trB protein that is causing the phenotype in 

the homozygous 10205 larvae.

The second P element to be identified in the SPoCk gene region was the homozygous 

viable 12799 insertion. This line is documented to have an insertion ~100bp upstream of 

the first exon of trB (by inverse PCR). This is a P{w+mGT=GTl} insertion (Lukacsovich et 

al., 2001), which functions as a GAL4 enhancer trap. Therefore it is possible that this line 

can report the expression pattern of trB. When the 12799 line was initially crossed to a 

UAS-GFP line, fluorescence was observed in the mushroom bodies o f the adult brain. 

However, this fluorescence has not been seen in any consequent experiments. This could 

be due to the line being unstable or a temporal expression problem.

A recent mutagenesis program using piggyBac-bascd elements (Hacker et al., 2003) has 

identified an insertion of one of these elements in the intron between exon 1 and exon 2  o f 

trA. However, this line is not yet publicly available.

5.3.6 Generation of SPoCk over-expression m utants

For overexpression studies, it is necessary to tag the protein. This is so that overexpression 

can be confirmed and also the subcellular localisation o f the protein can be determined. It 

was decided to tag SPoCk at the C-terminus. This was based on two pieces o f information; 

firstly Missiaen and colleagues (2002) had shown that a C-terminally GFP-tagged PMR1 

appeared to localise and function properly. Secondly, the predicted structure of SPCA 

depicts the C-terminus on the cytoplasmic side and free from interaction with the rest of 

the protein (see figure 5.1). trA was tagged with a c-myc epitope, trB with GFP and trC 

with YFP. trA-c-myc was generated by amplifying the ORF from an appropriate EST 

using a primer that included the c-myc epitope (see table 2.4). trB-GFP and trC-YFP were 

made by fusion PCR (see table 2.4).

It has to be noted, that cloning and preparation o f the overexpression constructs was very 

difficult. Once the templates had been cloned into the pMT/V5-His vector, the E. coli 

carrying the plasmid grew slower than normal and the DNA yield was also very poor. It 

appeared that the plasmids were toxic to the bacteria. Additionally, after ligation and 

transformation of the template into pUAST, the positive colonies only appeared after being 

incubated overnight at 37°C a n d  approximately 3 days at RT! This is likely to be due to 

low level transcription and translation o f the SPCA in the bacteria; even a small amount of
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SPCA must have impeded the bacterial growth. Interestingly, the construct carrying trC 

was observed to be less toxic to the E. coli.

The pUAST constructs were used to generate transgenic fly lines. These lines were marked 

up (see section 2.10.5) and stable lines established, that expressed the tagged transcript in 

either the principal cells or stellate cells (see table 5.1). It was not possible to create a non

marked stable line for w~; trB-GFP; c42, as the flies became sterile with increased copies 

o f the transgene and the c42 GAL4 insertion (the separate parental lines are perfectly 

healthy).

Table 5.1 Stable fly lines expressing dSPCA transcripts in the tubule.

Genotype Expression in tubule

W; trA-c-myc; c42 Principal cells

\v; trA-c-myc; c710 Stellate cells

w ; trC-YFP; c42 Principal cells

W; trC-YFP; c7J0 Stellate cells

w ; trB-GFP/Cyo; c42/TM6Tb- Principal cells

w ; trB-GFP; c710 Stellate cells

Expression o f these transgenes was confirmed by western analysis o f  the stable fly lines 

shown in table 5.1. The western blots in figure 5.11 show a specific band for trA-c-myc at 

the expected size o f ~100kDa and a band for trC-YFP at the expected size o f  ~125kDa. 

However for trB-GFP there is only a faint band at the expected size o f ~140kDa and a 

much stronger band at ~125kDa. It is possible that the extra 133 a.a. o f  trB are cleaved off 

after a processing event.

5.3.7 Subcellular localisation of tagged SPoCk isoforms

Localisation o f SPoCk by ICC in w~; trA-c-myc; c42 tubules revealed a punctate and 

predominantly basolateral pattern in the principal cells (see figures 5.12L -» 5.12Q). 

Furthermore, at high magnification it is possible to see trA-c-myc staining on the periphery 

o f Golgi-like bodies (see figures 5.12L and figure 5.12N). In S2 cells the staining was 

similar (figures 5.12A, 5.12D and 5.12G), although more perinuclear than in principal 

cells. As all previously studied SPCA proteins have been shown to localise to the Golgi 

and the ICC results depict a Golgi-like pattern, it is very likely that trA-c-myc is also 

localised to the Golgi apparatus. This was verified by expressing trA-c-myc in S2 cells and 

treating them with 10 pM brefeldin A. Brefeldin A is an antibiotic drug that inhibits the 

formation o f the Golgi apparatus (Mendez, 1995); figures 5.12J and 5.12K show that after
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Figure 5.12 Im m uno-fluorescence confocal microscopy o f S2 cells and M alpighian tubules expressing trA-c-myc.
(A) -* (F) trA-c-myc co-expressed with trC-YFP. (G) -» (I) Com parison o f  M L07 Ab staining with trA-c-myc. (J) & 
(K) Effect o f treatment with brefeldin A. (L) -*■ (Q) Localisation o f  trA-c-m yc, expressed in principal cells (driven by 
the c42 GAL4 driver). The bright field channel and pseudo-DAPI (blue nuclei) were included where appropriate (and 
possible). All red staining represents trA-c-myc and the green represents trC-YFP (apart from  (H) & (I), where green 
represents the ML07 Ab). All images were captured on a Zeiss Pascal confocal using a 63x objective. 123
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Figure 5.13 Confocal microscopy of S2 cells and M alpighian tubules expressing trB-G FP and trC-YFP.
(A) -* (E) trB-GFP. (F) (I) trC-YFP. (A) -* (C), (F) & (G) S2 cells. (D), (E), (H) & (I) principal cells,
driven by c42 GAL4. The bright field channel and pseudo-DAPI (blue nuclei) were included where appropriate 
(and possible). All images were captured on a Zeiss Pascal confocal using a 63x objective.
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the cells have been treated for 1 hour and then fixed and ICC performed, that there is very 

little staining (or none) in the treated cells compared to the control cells. ICC was 

performed on some o f the cells before treatment to confirm expression o f trA-c-myc and 

trC-YFP was also co-expressed to verify that the specific cells being studied (after 

treatment) had been transfected.

Co-localisation experiments were also performed in S2 cells using the ML07 antibody. 

This antibody has been previously shown to specifically bind to a Golgi resident protein in 

Drosophila (Kondylis et al., 2001). Figure 5.121 demonstrates the level o f co-localisation 

between the trA-c-myc and ML07 staining; although the ML07 antibody appears to be 

binding to the same intracellular regions as the c-myc antibody, there are also areas of 

additional ML07 staining. It is unclear whether this is because o f non-specific binding of 

the ML07 antibody, or because of trA-c-myc only localising to a subcompartment of the 

Golgi apparatus.

Surprisingly, expression o f trB-GFP in S2 cells and principal cells revealed an ER 

localisation of trB (see figures 5.13A -* 5.13E). Although this ER localisation has not yet 

been confirmed by co-localisation, the confocal images display the reticular pattern typical 

of an ER resident protein. Additionally, the extent o f the ER distribution in the principal 

cell (as reported by trB-GFP) is consistent with the documented electron microscopy data 

(as mentioned in chapter 4; Ashbumer and Wright, 1978). Treatment o f S2 cells with 10 

pM brefeldin A for 1 hour did not effect the localisation or presence o f trB-GFP (see figure 

5.13C).

Analysis of S2 cells and principal cells expressing trC-YFP unveiled yet another distinct 

intracellular localisation of a SPoCk isoform (see figures 5.13F 5.131). trC-YFP

localises to some sort of vesicular body; they are relatively large with an approximate 

diameter of 0.5 - 1 pm and they can also form large conglomerations in both S2 cells and 

principal cells. When trA-c-myc and trC-YFP were co-expressed in S2 cells, there was an 

interesting relationship between the localisation o f the two isoforms (see figures 5.12A -> 

5.12F). It appears that the Golgi apparatus envelops the vesicular structures in which trC- 

YFP is localised.

Initial thoughts on the identity o f these organelles included lysosomes and vacuoles. An 

experiment described later in this chapter (see figure 5.17C) provided evidence against a 

lysosomal localisation. It then became apparent that the size and distribution o f these 

bodies in S2 cells was similar to the lysosome-related organelle, the peroxisome. To 

attempt to verify a peroxisomal localisation of trC, a construct was co-transfected with trC- 

YFP that expresses peroxisomal targeted DsRed2 (for construction details, see table 2.4). 

Unfortunately the DsRed2 was not localised in S2 cells, it just showed a cytoplasmic
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distribution (data not shown). It is possible that the targeting sequence (SKL) is not 

recognised in Drosophila cells.

An unexpected observation when studying overexpression o f these isoforms in the tubule 

was the ubiquitous presence of both trA-c-myc and trC-YFP when driven with the c710 

GAL4 driver. trB-GFP is only detected in stellate cells when driven by c710, however trA- 

c-myc and trC-YFP protein was detected in all cells in the adult tubule. This could be 

explained by the very high level of expression in combination with a transport system 

between the stellate cells and principal cells. The tagged ATPases may be carried to the 

principal cell on the membrane o f exocytic components o f the secretory pathway, either 

directly or via the lumen.

5.3.8 The effect of overexpressing SPoCk isoforms on Ca2+ signalling in S2 cells

Drosophila S2 cells were transfected with expression constructs for aequorin, the 

drosokinin receptor and either SPoCk-trA, trB or trC. This would enable investigation into
9 +whether overexpression of SPoCk could alter a typical [Ca ]j response, by using an 

aequorin-based Ca2+ assay. Cells were challenged with drosokinin ( at 10' 7 M) and the data 

for each isoform is shown in figure 5.14. There was no detectable change in the maximum
9 +[Ca ]j response or the dynamics o f the response (data not shown) m cells expressing either 

trA-c-myc or trC-YFP. However, overexpression of trB-GFP resulted in a much larger 

response (371 ± 4 nM above background) compared to the control response (271 ± 7 nM 

above background).

5.3.9 The effect of overexpressing SPoCk isoforms on the Ca2+ signalling in the tubule
9 i

To investigate the effect of overexpression o f these SPCA pumps on the dynamics o f Ca 

signalling in the tubule, flies were needed that possessed the appropriate GAL4 driver, the 

XJAS-SPoCk transgene and the UAS-aequorin transgene. In order to do this, males from 

the stable lines in table 5.1 were crossed with virgins o f the stable aequorin/GAL4 lines.

e.g. w~; trA-c-myc; c42 $  x aeq; +; c42 §  -> aeq/+; trA-c-myc/+; c42 (Fi)

The resulting Fi generation have one copy of both the UAS transgenes and two copies of 

the GAL4 driver. Ca2+ assays were performed as described in section 2.17.1, apart from the 

use of 22-26 tubules for principal cell measurements and 40-50 tubules for stellate cell 

measurements (due to only one copy of the aequorin transgene being present). The tubules
9 i

were challenged with the appropriate Ca -mobilising neuropeptide (either capa-1 or 

drosokinin) and the results are shown in figures 5.15 to 5.18.
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Figure 5.14 Effect o f the overexpression of SPoCk isoform s on a neuropeptide-induced [Ca2+]j 
response in D rosophila  S2 cells. S2 cells transfected with expression constructs for aequorin, the 
drosokinin receptor and a SPoCk isoform were challenged with drosokinin at a concentration o f 10'7 M. 
(A) M axim um  [Ca2+]j increase above resting levels in S2 cells expressing SPoCk-trA  (n = 10). (B) 
Increase in cells expressing trC-YFP (n = 10). (C ) Increase in cells expressing trB-GFP (n = 10). The 
increase in cells expressing trB-GFP is significantly greater than in control cells (P < O.TTtl). 'D) Plots 
o f typical [C a 2+]j responses on control and trB-GFP expressing cells. E rror bars represent S.E.M.
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Figure 5.15 Effect o f overexpression of trA-c-m yc on the capa-1 [Ca2+]j response in principal cells o f intact 
tubules. The capa-1 peptide was applied at a concentration o f 10 7 M. (A) Typical capa-1 response in principal cells 
overexpressing trA-c-myc, compared with a typical control response. (B) Bar graph showing the m axim um  increase o f 
[Ca2 ,]j above resting levels, for both the prim ary and secondary responses (n = 17). Overexpression o f  trA results in a 
significantly higher increase for the primary response (P = 0.0043) and a significantly reduced increase for the 
secondary response (P = 0.0011). (C) Average [Ca2+]j increase above background for the first 15 seconds after 
addition o f capa-1 (prim ary response). The trA-c-myc average is significantly larger than the control (P < 0.0001). 
Error bars represent S.E.M.
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Figure 5.16 Effect of overexpression of trB-GFP on the capa-1 [Ca2+|, response in principal cells of 
intact tubules. The capa-1 peptide was applied at a concentration o f  10'7 M. (A) Typical capa-1 response in 
principal cells overexpressing trB-GFP com pared with a typical control response. (B) Bar graph showing the 
maximum increase o f  [C a 2+]j above resting levels, for both the prim ary and secondary responses (n >11). 
Overexpression o f  trB results in a significantly reduced secondary response increase (P = 0.0039). Error bars 
represent S .E .M .
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Figure 5.17 Effect of overexpression of trC-YFP on the capa-1 [Ca2+]j response in principal cells o f intact 
tubules. The capa-1 peptide was applied at a concentration o f 10'7 M. (A) Typical capa-1 response in principal 
cells overexpressing trC-YFP compared with a typical control response. (B) Bar graph showing the maximum 
increase o f [C a2 ]; above resting levels, for both the primary and secondary responses (n =  17). Overexpression o f 
trC results in a significantly reduced secondary response increase (P < 0.0001) (C) Typical response o f the 
principal cells to 200pM  o f  the lysosomal disruptor GPN. (D) Com parison o f  the average increase in response to 
GPN (above background), between control and trC-YFP overexpressing tubules. Error bars represent S.E.M.
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Figure 5.18 Effect of overexpression of SPoCk isoforms on the stellate [Ca2+]j drosokinin response in intact 
tubules. The drosokinin peptide was applied at a concentration o f 10'7 M. The green arrows indicate measurem ent points 
for the prim ary and secondary responses (1° at 1.0 sec. and 2° at 5.0 sec.). (A) Typical response in stellate cells 
overexpressing trA-c-myc com pared with a typical control response. (B) A typical exam ple for trB-GFP. (C) A typical 
example for trC-YFP. (D) Bar graph showing the increase o f the prim ary and secondary [Ca2+]j responses above resting 
levels (n > 8 ). O verexpression o f  trA and trB results in a significantly higher increase for the prim ary response (P = 
0.0112 and P = 0.0264). Overexpression o f  trA, trB and trC results in a significantly reduced increase for the secondary 
response (P = 0.0016, P = 0.0014 and P < 0.0001). Error bars represent S.E.M.
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Overexpression of these Ca2+-ATPases has a profound effect on the dynamics of the capa-
 ̂I

1 and drosokinin [Ca ]\ responses. Overexpression o f all 3 isoforms results in a reduction 

o f the secondary response in the two cell types. Additionally, the secondary response in the 

principal cells appears to be much more prolonged. Although all isoforms reduced the 

maximal secondary response, the reduction caused by trC was significantly greater than by 

trA and trB (data not shown).

Furthermore and most interestingly, overexpression o f trA causes an increase in the capa-1 

primary response, whereas trB and trC do not. The maximum capa-1 primary peak for trA 

is significantly larger than the control (P = 0.0043), however to confirm this result the 

[Ca2+]j for the first 15 seconds after capa-1 addition was averaged to give an indication of 

the amount o f Ca2+ released (see figure 5.15). This method o f measuring the primary 

response gave a more significant difference (P < 0.0001). For the stellate cells the data is 

not as clear cut; overexpression of both trA and trB cause an increase in the drosokinin 

primary response (P = 0.0012 and P = 0.0264), whereas trC does not (see figure 5.18). 

Figures 5.17C and 5.15D show the results o f the treatment o f tubules with 200 glycyl- 

L-phenylalanine-p-naphthylamide (GPN). GPN is a substrate for the lysosomal protein 

cathespin C and GPN causes permeabilisation o f lysosomes by osmotic swelling.
9 +Investigating a possible lysosomal localisation of trC, the Ca responses of aeq; +; c42 

and w~; trC-YFP/+; c42 tubules were monitored after the addition o f GPN. If trC was 

localised to the lysosomes, then overexpression would increase the [C a 2+]]ySosome> therefore 

GPN treatment would result in a higher [Ca2+]j response. However the average [Ca2+]j 

increase was not different between the two sets o f samples. This is evidence against a 

lysosomal localisation o f trC.

5.3.10 The effect of overexpressing SPoCk isoforms on the fluid secretion rate of the 

tubule

Secretion assays were performed on the w'; trA-c-myc; c42 and w~; trC-YFP; c42 lines, 

using the parental UAS and GAL4 lines as controls (see figure 5.19). Overexpression of 

trA in the tubule causes an increase in basal levels and an increase in the maximum 

stimulated rate upon addition o f capa-1. Although the w~; trC-YFP; c42 line showed 

increased secretion rates compared to the w~; +; c42 line it was not different from the w'; 

trC-YFP; + line. This suggests an insertional effect o f the trC-YFP transgene and that 

overexpression does not have an impact on fluid secretion rates.

As the c710 driven overexpression of the transgenes did not result in a stellate cell specific 

localisation o f the tagged protein (see section 5.3.7), secretion assays were not performed 

on these lines, as the results would be difficult to interpret.
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Figure 5.19 Effect of the overexpresion of SPoCk-trA and SPoCk-trC on capa-1 stim ulated fluid 
secretion. Secretion assays on tubules overexpressing trA and trC in the principal cells. The neuropeptide 
capa-1 was added at a concentration o f 10'7 after the 30 minute reading. Details o f  the assay are described 
in sections 1.4.3 and 2.19. Error bars represent S.E.M.
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5.4 Discussion

Using the protein sequences of the yeast PMR1 and the human SPCA1, the Drosophila 

SPCA gene (SPoCk) was successfully identified. Further protein analysis clearly groups 

SPoCk with the SPCA family of ATPases and identifies the product of an Anopheles 

gambiae gene as the closest known homologue. This is not to be unexpected, as Anopheles 

is closely related to Drosophila and this protein is presumably the Anopheles SPCA.

When the genome annotation was updated, it revealed two extra transcripts (trB and trC) 

that encoded for SPCA proteins with extra N-terminal domains. This was intriguing, as it 

would seem very likely that these extra domains must have a purpose, either to alter the 

localisation of the pump or to change its functional properties. Additionally, alternatively 

spliced transcripts that contain these accessory domains have not been identified for any 

other SPCAs studied in other organisms. The in silico investigation into these extra regions 

was confusing; it appeared that the extra 23 amino acids o f trC might target the ATPase to 

the ER membrane, mitochondria or possibly interact with the ubuiquitination machinery in 

the cell. However the extra 143 residues of trB did not match to any sequence in the NCBI 

database, had a putative vacuolar targeting site and possesses similarity to the ABC 

transport family of proteins. To truly understand the function o f these regions, these 

proteins were tagged and overexpressed in S2 cells and in transgenic Drosophila. 

Overexpression revealed that trA possessed a Golgi apparatus localisation. This was 

predicted, due to the previous studies of SPCAs in other organisms. trA is presumably 

playing a house-keeping role, in maintaining [Ca2+]coigi at the required level for Ca2+- 

dependent protein processing events. Additionally, as the Golgi has been shown to be a 

functional nyreleasable Ca2+ pool (Pinton et al., 1998), trA will be playing a role in 

maintaining this pool (this is discussed in greater detail later on). The predominantly 

basolateral localisation o f trA-c-myc in the principal cell is interesting; either all the Golgi 

apparatus is restricted to this region or trA is specifically targeted to a sub-compartment of 

the Golgi. Co-localisation experiments with well characterised Golgi-markers could help to 

determine this.

SERCA pumps are absent from a large number o f eukaryotes, including fungi, protozoans
9 +and plants. The question of how these organisms maintained their [Ca ] e r  levels was 

unanswered until recently. It appears that the ER is maintained by ATPases distinct from 

the PMCA, SERCA and SPCA groups (Liang et al., 1997; Furuya et al., 2001; Vashist et 

al., 2002), that are possibly more related to more primitive Ca2+-ATPases. However, in
9+insect and vertebrate organisms, it is well documented that [Ca ] e r  is  maintained by the 

SERCA pump. Therefore the ER localisation o f trB was surprising because there is an
9 .

existing mechanism for pumping Ca into the ER in Drosophila (the SERCA pump,
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encoded by the Ca-P60A gene). Nevertheless, the discovery o f a Pmrl-like ATPase in the 

ER is not wholly unprecedented; overexpression studies o f calreticulin in HEK-293 cells 

have implied the additional presence of a thapsigargin-insensitive Ca2+-ATPase in the ER 

(Amaudeau et a l, 2002). Amaudeau and colleagues suggested that this may be a member 

o f the PMR1 family of Ca2+-ATPases. The discovery o f the ER-targeted SPCA in 

Drosophila (trB) sheds light on this mystery; it is likely that HEK-293 cells (and other 

cells in insects and vertebrates) possess an ER-targeted thapsigargin-insensitive Ca2+- 

ATPase that is either the product o f an alternatively spliced transcript from a SPCA gene 

(like trB) or is the product of a second SPCA gene (e.g. the ATP2C2 gene in humans).

The subcellular localisation studies for trC are the first demonstration o f the existence o f a
9+ • • • •Ca -ATPase targeted to either lyosomes or peroxisomes. The initial prediction, as to the 

identity of these organelles, included lysosomes. However, several lines o f evidence argue 

against this hypothesis; firstly lysosomes have been previously studied in S2 cells 

(Yagodin et al., 1999) and are found to be a lot more abundant and distributed differently 

compared to the staining pattern of trC-YFP. Secondly, studies on the uptake o f Ca2+ into 

lysosomes have all implicated the involvement o f a pH sensitive Ca2+/H+-exchanger rather 

than an ATPase (Yagodin et al., 1999; Srinivas et al., 2002; Churchill et al., 2002). Finally, 

experiments (described earlier in this chapter) using the lysosomal disruptor GPN show 

that overexpression of trC-YFP does not increase the amount o f Ca2+ released from these 

organelles.

It then became apparent that trC may be localising to peroxisomes (a lysosome-related 

organelle). There are various lines of evidence to support this localisation; firstly the 

abundance and distribution of the trC-YFP fluorescence in S2 cells is similar to that of 

peroxisomes in yeast (Vizeacoumar et al., 2003). Secondly, peroxisomes have been studied 

in the Drosophila Malpighian tubule (Beard and Holtzman, 1987) using electron 

microscopy; the organelles were described as 0.2-0.5 pM in diameter, round to oblong in 

shape and sometimes appeared as multiple, interconnecting bodies. This describes the 

pattern of fluorescence observed in principal cells expressing trC-YFP (see figures 5.13H 

and 5.131). Thirdly, Beard and Holtzman reported that peroxisomes are abundant in the 

Malpighian tubule and gut of Drosophila, which correlates well with the relative o f 

expression of the SPoCk trC transcript (see figure 5.8). Finally, the extra 23 residues of 

trC, that allow the ATPase to be targeted to this organelle are very similar to repeated 

domains of ubiquitin (see figure 5.6). It has been shown that the peroxisomal protein Pex4p 

is a ubiquitin-conjugating enzyme that is anchored to the cytoplasmic surface of 

peroxisomes (Wiebel and Kunau, 1992; Koller et al., 1999) and can couple to ubiquitin in 

vitro (Crane et al., 1994). Pex4p is important for import o f proteins into peroxisomes and it
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is conceivable that the Drosophila homologue o f Pex4p binds to the extra region o f trC and 

imports the ATPase into the peroxisome membrane.

Overexpression of the SPoCk variants provided important information, concerning 

confirmation of SPoCk’s Ca2+ transporting activity and also the manner in which the Ca2+ 

pools shape neuropeptide [Ca ], responses in the tubule. Ca assay studies in S2 cell 

revealed that overexpression of trA and trC have no effect on Ca2+ signalling, while 

overexpression of trB resulted in a much larger DVmediated Ca release from internal 

stores. This fits well with the ER localisation o f trB in the cell; overexpression o f trB-GFP 

in the S2 cells would result in an increase of Ca2+ stored in the ER, and upon opening of 

the IP3RS the amount o f Ca2+ released would be greater.

Overexpression of SPoCk has confirmed and helped to understand the unusual Ca2+ 

signalling mechanisms present in the principal cell. Unlike S2 cells, overexpression of trB 

did not result in an increased [Ca2+]j peak in response to an nVgenerating agonist. 

However, overexpression of trA (Golgi localisation) does increase this response. This 

suggests that in the principal cell, the ER is not the HVreleasable store and that it is instead 

the Golgi apparatus. These results fit in well with the data described in chapters 3 and 4. 

Overexpression in stellate cells also had an impact on the [Ca2+],- dynamics, both trA-c-myc 

and trB-GFP increased the primary response. Although statistically significant, the P 

values (0.0112 and 0.0264) were only just within the acceptable boundaries, therefore 

concrete conclusions cannot be presently made about the roles o f these stores in this cell 

type. However, these results could imply that both the ER and the Golgi contribute to the 

primary drosokinin response. Another possibility is that in this cell, these pools are 

functionally connected and an increase in luminal [Ca2+] in one organelle can increase 

luminal [Ca2+] in the other.

Evidence for the Ca2+ transporting activity o f these ATPases was demonstrated by their 

impact on the secondary [Ca2+]j response dynamics in the tubule. All 3 isoforms reduced 

the maximum levels of the secondary response in both cell types. It is also apparent that in 

the principal cell, the secondary response took longer to reach its maximum. It is 

conceivable that the influx of Ca2+ driving this response, continues until the [Ca2+]i has 

reached a specific value. The high Ca2+ buffering conditions, resulting from 

overexpression of these pumps would prevent the [Ca2+]i from this reaching this value as 

quickly.

The secretion assay performed on w ; trA-c-myc; c42 tubules revealed an increased basal 

and capa-1-stimulated secretion rate. This may be due to the modification of the Ca 

signalling dynamics by overexpression of trA or it may be due to altered processing of 

proteins in the Golgi (because of increased [Ca2+]Goigi or [Mn2+]c0igi levels) that are

136



important in regulating the secretion rate. Further work would be required to determine 

exactly how trA-c-myc increases the fluid secretion rate.

In conclusion, this chapter has identified the Drosophila secretory pathway Ca2 +/Mn2+ 

ATPase and characterised its multi-functionality achieved by its 3 protein coding 

transcripts. Overexpression studies using the SPoCk isoforms have provided a powerful 

tool in dissecting the Ca signalling mechanisms in the tubule. This has uncovered a role 

of the Golgi Ca2+ pool in the principal cell, it appears that this is the primary DVreleasable 

Ca2+ store.

Furthermore, to summarise the role o f the SPoCk isoforms; trA looks like a house-keeping 

protein that is required for maintenance of Golgi [Ca2+] levels necessary for processing of 

proteins and also for in specialised tissues (i.e. the tubule) where the Golgi is an important 

signalling organelle. trB is an another ER-targeted Ca2+-ATPase (the other being the well 

characterised SERCA pump); the function of which is unclear, it maybe required as an 

alternatively regulated Ca2+-uptake mechanism into the ER or maybe to pump Mn2+ ions 

into the ER lumen. trC appears to be a peroxisomal Ca2+/Mn2+ ATPase that may facilitate 

the storage o f Ca2+ in these organelles or to possibly provide Mn2+ ions for a peroxisomal 

Mn dependant superoxide dismutase. To further understand the roles o f these different 

proteins, antibodies have been generated and work is currently undergoing to determine 

their expression pattern in the whole fly.

137



Chapter 6

Developing a new gene knock-in technology for Drosophila

based on trans-splicing
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6.1 Summary

This chapter describes the development o f a new technology for Drosophila research that 

allows targeting and alteration of endogenous RNA transcripts. This system is based on the 

elegant spliceosome-mediated trans-splicing (SMaRT) technology developed by Puttaraju 

and colleagues (1999). This method of reprogramming mRNA involves a pTQ-trans- 

splicing RNA molecule (PTM) that binds in an anti-sense manner to the target gene’s pre- 

mRNA intron. The splicing machinery will then additionally splice into the PTM’s 

acceptor site as well as the gene’s endogenous acceptor site.

I have generated transgenic lines expressing PTMs under the control o f the UAS/GAL4 

system or the actin5C promoter. The advantage o f this system is that it may be possible to 

tag or alter a gene product without altering the gene’s expression pattern or level of 

expression. This has primarily been utilised to tag endogenously expressed proteins with 

the green fluorescent protein (GFP). Successful £ra«s-splicing in the transgenic flies has 

been demonstrated using RT-PCR.

Although GFP fluorescence has been detected in tissues o f these flies, it has become 

apparent that this is primarily not a result o f altered endogenous protein but o f leaky 

translation of the PTM RNA molecule. Despite this, the basic technology has been shown 

to be successful, and with further development it has the potential to become a very 

powerful tool in Drosophila research.
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6.2 Introduction

6.2.1 Endogenous fra/zs-splicing in Drosophila

Cz's-splicing is the process o f combining exons from the same pre-mRNA to produce 

mature mRNA, whereas /razzs-splicing combines exons from separate pre-mRNA 

molecules. 7ra«s-splicing was first discovered in trypanosomes (Murphy et al., 1986; 

Blumenthal, 1995) and then in mammalian cells (Eul et al., 1995; Li et al., 1999). More 

recently it has been demonstrated that it occurs naturally in insects (Labrador et al., 2001; 

Dorn et al., 2001) at the complex mod(mdg4) locus in Drosophila.

The mod(mdg4) locus produces transcripts that all contain the common exons 1-4 from the 

5’ of the locus. However, the alternatively spliced 3’ exons are found in five separate 

clusters, on both DNA strands. Dorn et al proved that fraas-splicing was the mechanism 

for producing many of the different transcripts from this locus, using transgenics and RT- 

PCR. They showed that the common exons (1-4) could trans-splice to an alternative tagged 

3’ exon being expressed at a different chromosomal location.

With the more detailed study of gene expression in Drosophila, this method of producing 

variation in gene products is becoming more apparent; recently, another gene called lola 

has been identified as naturally utilising /razw-splicing (Horiuchi et al., 2003).

6.2.2 mRNA alteration using fra«s-splicing ribozymes

Ribozymes (RNAs with catalytic activity) have generated significant interest for the 

potential genetic and therapeutic use o f catalytic RNA molecules. (Cech, 1988; Haseloff 

and Gerlach, 1988) The hammerhead ribozyme is the smallest o f the known ribozyme 

motifs (Haseloff and Gerlach, 1988) and can cleave a specific RNA target. The 

hammerhead ribozyme has been utilised in Drosophila to knock down levels o f fushi 

tarazu mRNA (Zhao and Pick, 1993). Since then RNA interference (RNAi) has become a 

more effective and easier method of knocking down mRNA levels in Drosophila in order 

to study gene function (Kennerdell and Carthew, 2000; Tavemarakis et al., 2000).

Group I introns were first discovered in T. thermophila (Cech et al., 1981); certain rRNA 

molecules acted as ribozymes as they could self-splice their own introns. Group I introns 

have also been shown to mediate /raws-splicing of RNA in vitro (Inoue et al., 1986). 

Continuing this work, the lab of Bruce Sullenger has been developing these ribozymes to 

alter or repair pre-mRNA in vivo (Sullenger and Cech, 1994; Jones et al., 1997; Lan et al., 

1998; Watanabe and Sullenger, 2000; Rogers et al., 2002). The engineered ribozyme trans

splices into the target mRNA and replaces the remaining exons with repaired or altered 

exons. This research has demonstrated the partial repair o f sickle p-globin, p53 and 

chloride channel mRNAs.
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Until recently, ribozyme-mediated /raws-splicing was not very efficient. In cell lines only 

1.2% trans-splicing of the target mRNAs had been achieved (Rogers et al., 2002). 

However, Sullenger’s group have now developed an improved ribozyme that can repair 

10%-50% of sickle beta-globin RNAs in transfected mammalian cells (Byun et al., 2003).

6.2.3 mRNA alteration using spliceosome-mediated fraws-splicing

Lloyd Mitchell’s lab at Intronn, North Carolina, first developed RNA molecules that were 

capable o f effecting spliceosome-mediated RNA trans-splicing reactions with a target 

messenger pre-mRNA (Puttaraju et al., 1999). The pre-fraws-splicing RNA molecule 

(PTM) binds in an antisense manner to the target gene intron. The splicing machinery will 

then occasionally splice into the PTM’s splice acceptor site rather than the gene’s 

endogenous acceptor site (see figure 6.1 A).

They developed a system repairing mutated lacZ transcripts in human cells as a tool for the 

design and in vitro evolution of improved PTMs. Using SMaRT technology they were 

able to correct a CFTR mutation in human cystic fibrosis airway epithelia (Mansfield et al., 

2 0 0 0 ), and further improved the mechanism to show a 2 2 % restoration o f protein function 

in vivo (Liu et al., 2002). This technology has great potential for gene therapy applications, 

as correction of the gene is achieved without over-expression or mis-localised expression 

of the respective protein.

More recently this group has developed a 5’ exon replacement system based on this 

technology (Mansfield et al., 2003). This involves expressing a PTM that contains the 

altered 5 ’ exons followed by a donor splice site and an intron-binding domain (see figure 

6.1B).

6.2.4 7><ws-splicing as a tool in Drosophila research

The development of germline transformation in Drosophila has provided many useful tools 

in Drosophila research. These include P-element mutagenesis (Rubin and Spradling, 1982) 

ectopic expression (Brand and Perrimon, 1994), enhancer trap screens (O’Kane and 

Gehring, 1987), RNAi (Kennerdell and Carthew, 2000), GFP gene trap screens (Morin et 

al., 2001) and homologous recombination approaches (Rong and Golic, 2000). However, 

the only strategy to enable a targeted gene knock-in has been the homologous 

recombination method (Rong and Golic, 2001; Rong et al., 2002), which although a 

complete knock-in when accomplished, is very complicated and labour intensive.

The possibility of developing a system in Drosophila that uses ^raws-splicing to alter or tag 

endogenous proteins is an attractive one. Although it is unlikely that 100% £ra«s-splicing 

could ever be achieved in vivo, the technology could allow tagging o f proteins, dominant
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Figure 6.1 Diagram showing the principle of spliceosome-mediated RNA trans-splicing (SMaRT). When trans- 
splicing occurs the wildtype sequence from the PTM is incorporated to form the mature mRNA, thus correcting the 
DF508 mutation. (A) 3’ exon replacement method. (B) 5’exon replacement method. BP, branch point. PPT, 
polypyrimidine tract. Adapted from Mansfield et al., 2000 and Mansfield et al., 2003.
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negative mutations, targeting of specific splice-variants, production o f hypomorphs and a 

targeted GAL4 enhancer trap system. Additionally, the constructs are relatively easy to 

assemble and only a single transgenic fly would be needed to be generated to target a gene. 

I initially began developing this technology to try and determine the expression pattern and 

subcellular localisation of the Drosophila secretory pathway Ca2+-ATPase (see chapter 5), 

by reprogramming the pre-mRNA to include the GFP coding sequence.
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6.3 Results

6.3.1 Adaptation of SMaRT technology for use in transgenic Drosophila

The first attempt to implement SMaRT technology in Drosophila involved designing a 

PTM to target the SPoCk pre-mRNA and reprogram it to include the coding sequence for 

GFP at the 3 ’ end of the gene’s coding sequence. The PTM contained an intron-binding 

domain (-155 —> -15 of exon 4), a spacer and a yeast splice-acceptor site (as used by 

Puttaraju et al., 1999), the coding regions o f exons 4 and 5 and the GFP sequence. To 

prevent translation of the exons and GFP, the 5’ end of the PTM was checked for an early 

start codon followed by a stop codon. The PTM template was constructed by PCR 

amplification of the intron-binding domain, exons 4 and 5 and the GFP sequence 

separately. The intron-binding domain and exons were then re-amplified using primers that 

included the sequence for the spacer and acceptor site. Finally, the 3 fragments were fused 

together by PCR to form the complete template (SPoCk-PTMl). The product was then 

cloned into pUAST (for further details of construction, see table 2.4).

Transgenic flies were generated for this construct and crossed to the c42 GAL4 line and 

the daG32 (ubiquitous, low level expression) GAL4 line. For both crosses, no fluorescence 

could be detected in the tubules or in the rest of the fly. Additionally cDNA was prepared 

from flies crossed to daG32 and RT-PCR performed in order to detect /raws-splicing. 

Primers were used that bound to exon 3 (not in the PTM) and GFP (primers 119-107); 

therefore a PCR fragment could only be produced if  targeted trans-splicing was occurring 

(see figure 6.2 for primer binding sites). Various annealing temperatures and cycles were 

used for the PCR but no product could be detected. This evidence suggested that this 

particular PTM was not eliciting any fraws-splicing reactions with the SPoCk pre-mRNA. 

The PTM was re-designed so that it had an organism specific splice-acceptor site and an 

intron-binding domain that covered all the endogenous splice-acceptor site. The acceptor 

site o f the 19 exon of the Drosophila myosin heavy chain II gene has been shown to be an 

efficient and strong splice site (Hodges and Bernstein, 1992; Morin et al., 2001). This site 

was incorporated into the PTM instead of the yeast acceptor site, in the hope that it would 

function more efficiently in transgenic Drosophila. The intron-binding domain was 

extended to cover the endogenous acceptor site; this was based on the idea that if  this site 

was covered it would inhibit cw-splicing and promote trans-splicing. The new PTM 

template (SPoCk-PTM2) was constructed in the same manner to the previous one, and 

cloned into pUAST (for more details, see table 2.4). Transgenic flies were generated.

When the flies were crossed to the c42 and daG32 lines, once again there was no 

detectable fluorescence. However RT-PCR on tubules (primers 106-107) demonstrated 

successful trans-splicing (see figure 6.2). To confirm this result the PCR product was
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Topo®  cloned and sent to be sequenced. The sequencing revealed in-frame trans-splicing 

of the PTM into the endogenous SPoCk transcript, including the GFP coding sequence at 

the end. This confirms that this technology can work in Drosophila. However, it appears 

that the present efficiency must be low, as the GFP fluorescence cannot be detected and the 

/ra«s-spliced mRNA could only be detected after 40 cycles o f PCR. These observations 

could also be due to a low level expression o f this gene or an incompatible PCR primer 

pair.

The efficiency o f trans-splicing can be increased by increasing the amount of PTM present 

(Puttaraju et al., 1999). Therefore, if  the expression of the PTM transgene is driven harder, 

then the efficiency in vivo may improve. To do this the pP{UAS-SPoCk-PTM2} line was 

crossed to two separate actin-GAL4 lines (high, ubiquitous expression o f GAL4). 

Unfortunately this cross did not yield adult flies with both the transgene and the driver, it 

seems that driving expression of the PTM this high has lethal effects. This may be because 

of problems with non-specific taws-splicing.

The next step was to attempt to target a gene that was known to be expressed at high 

levels, and also to integrate a mechanism to increase specificity o f the targeting. The vha55 

gene was chosen as it is known to be highly expressed in the tubule and has been 

extensively studied in our laboratory. The strategy behind increasing the specificity 

involved engineering a sequence at the 5 ’ end o f the PTM that would anneal to the myosin 

heavy chain acceptor site. In theory, this should inhibit the PTM from splicing non- 

specifically into another pre-mRNA until the target had been bound (see figure 6.3). This 

modified PTM template was constructed and transgenic flies generated (for details, see 

table 2.4).

The transgenic flies were crossed to the actin-GAL4 line and the progeny were found to be 

viable. Additionally fluorescence was observed in specific cells and tissues of the fly, as 

well as in specific subcellular localisations within the cells. Figure 6.4 shows examples of 

GFP fluorescence in flies expressing vha55-PTM; fluorescence was observed in apical 

regions of principal cells of the tubule, and was absent in stellate cells. The fluorescence 

was also detected in areas of other tissues that are known to express V-ATPases; i.e. the 

rectal pad and hindgut (see figures 6.4D 6.4G). This was convincing data to support

successful specific /ra«s-splicing of the target pre-mRNA, as the fluorescence was only 

present in cells known to express vha55. RT-PCR analysis, using primers (120-121) 

designed in the same manner as for SPoCk-PTM flies, established successful /ra«s-splicing 

(figure 6.4A). This band was also cloned and sequenced to further confirm this result. 

Figure 6.4B shows a western blot of control (v/iaJJ-PTM) whole fly protein and vha55-
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F igu re  6.4 Is the v//«55-PTM  eliciting efficient trans-splicing? (A) RT-PCR to detect trans-splicing. Trans- 
splicing occurs in flies expressing the v/ta55-PTM  (1600 bp product). (B) W estern blot analysis o f  flies 
expressing v/za55-PTM, using a mouse m onoclonal anti-GFP antibody. (C) GFP fluorescence in the adult 
tubule from a fly expressing v/ta55-PTM. Apically located fluorescence can be seen in the principal cells, with 
no fluorescence detected in the stellate cells. (D) GFP fluorescence in the adult rectal pad and hindgut from a 
fly expressing v/?a5J-PTM. Images were captured using standard fluorescence m icroscopy. (E) -* (G) 
expression pattern o f other V-ATPase subunits; GFP gene trap data for vha I6  and vhaSFD, and in situ data for 
vha44  (images kindly provided by Adrian Allan). Scale bars for images are not shown.
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PTM + actin-GAL4 whole fly protein. The GFP antibody detects a clear band at an 

approximate size of 75 kDa.

However, if a successfully GFP-tagged endogenous vha55 protein is being detected, the 

size of the band should be nearer to 80 kDa (~55 kDa for vha55 and ~25 kDa for GFP). 

One possible explanation for this is that the size estimation o f the detected band is 

inaccurate (due to irregular separation of the protein on the acrylamide gel). The other less 

appealing explanation, is that the protein detected did not originate from a trans-spliced 

mRNA, but in fact results from leaky translation o f the PTM RNA molecule. After 

studying the vha55-PTM sequence, it is apparent that if  the ribosome can bypass the stop 

codons engineered into the 5’ o f the PTM; there is an ATG present that will allow 

translational read-through of the majority of the vha55 coding sequence and GFP. If this 

did occur it would result in a GFP tagged protein of ~70 kDa in size. The cell specific 

detection of GFP could then only be explained by degradation of vha55 protein in cells in 

which it is not required. If the vha55 subunit is expressed in cells where its partner subunits 

are not present, there will be no V-ATPase complex to integrate with, possibly leaving the 

subunit prone to ubiquitination and degradation.

It is not presently possible to say conclusively which scenario is happening; however, I 

believe that there is specific /raws-splicing occurring, but only at a low level and the 

majority of the fluorescence observed is due to leaky translation o f the PTM. It appears 

that this may be a inherent problem with this technology due to evidence resulting from 

other fly lines that have been generated. These included lines designed to tag leucokinin 

receptor (dLKR), inward rectifying potassium channel 3 (irk3) and IP3R proteins. 

dLKR-PTMl and irk3-PTM were assembled using fusion PCR and cloned into pUAST 

(see table 2.4 for further details). These constructs were used to create transgenic lines. 

Pictures of tubules expressing dLKR-PTMl and irk3-PTM are shown in figure 6.5. dLKR- 

PTMl results in stellate cell specific GFP fluorescence, which is where the receptor is 

endogenously expressed (Radford et al., 2002). However, the reported expression in the 

rest of the fly was a lot more ubiquitous than had been shown with an anti-dLKR antibody 

(Radford et al., 2002). Furthermore, the intracellular localisation shown by the GFP 

fluorescence includes perinuclear staining. This is not the endogenous localisation of 

dLKR in the stellate cell (Radford et al., 2002) and may be explained by a lack of the N- 

terminus of LKR (as it may have been translated from the PTM) or the improper 

processing of the protein due to the GFP tag.

The GFP fluorescence produced by expression of irk3-PTM was very weak, but it did 

show fluorescence in stellate cells and possibly principal cells o f the tubule (see figure 

6.5B). This fits well with in situ analysis of irk3 expression, which indicates expression in

148



B

Figure 6.5 GFP fluorescence in tubules expressing dL K R -PT M l and irk3-PTM . (A) Confocal projection o f 
a tubule expressing dLK R-PTM l (driven by actin-GAL4). The red staining is the localisation o f discs large, a 
cell junction protein (detected using a anti-discs large antibody at a 1:800 dilution). (B) Fluorescence microscopy 
o f a tubule expressing irk3-PTM (driven by actin-GAL4). Scale bars are not shown.
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Figure 6.6 Schematic representation of constructs to enable targeted enhancer trapping 
in Drosophila. (A) Construct designed to express GAL4 only in cells where vha55 is 
expressed. (B) Construct designed to express GAL4 only in cells where leucokinin receptor is 
expressed. Their design and proposed mechanism o f  action is described in the text.
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both cell types (Adrian Allan, personal communication). As with the targeting of vha55 

pre-mRNA, the degree o f GFP fluorescence that is resulting from trans-splicing rather than 

leaky translation o f the PTM, has not been determined. Future analysis of these lines could 

answer this question and also help in the development o f a more efficient and practical 

system.

6.3.2 Development of a targeted enhancer trap system

After realising that targeted trans-s^Xiomg is achievable in transgenic flies (RT-PCR 

evidence), I endeavoured to design a targeted enhancer trap system based on this 

technology. This was undertaken before the discovery o f the inherent problems of the 

system. Two methods were attempted, both involved the incorporation of the GAL4 coding 

sequence in the PTM. The designs of these PTMs are shown in figure 6 .6 . The basic idea is 

that if  you can specifically trans-splice into an endogenous pre-mRNA, then it should be 

possible tag or replace this RNA with the transcription factor GAL4. This would be a 

powerful technique as it would allow expression o f a UAS-transgene in cells specific to the 

gene in question. This is analogous to the present enhancer trap system in Drosophila (see 

section 1.3.2.2). However, this importantly provides a targeted system which may also be 

achievable without disruption o f the endogenous gene.

The constructs shown in figure 6 . 6  were assembled using fusion PCR, and non- 

directionally cloned into the AyGAL4 vector (actin-GAL4) in between the actin promoter 

and the GAL4 coding sequence (for further details see table 2.4). Figure 6 .6 A shows the 

construct that was made in an attempt to try and ‘trap’ the vha55 gene’s expression pattern. 

The theory was that the actin promoter would drive high expression o f the PTM, which 

would specifically splice into the endogenous vha55 pre-mRNA. This would produce a 

vha55 protein with GAL4 on the C-terminus, which can be cleaved off to allow it to drive 

the expression of a desired reporter transgene. A known Drosophila neuropeptide 

proteolytic cleavage sequence KRD (Veenstra, 2000) was placed in between vha55 and 

GAL4 to allow the cleavage o f the GAL4 post-translation. Transgenic flies were generated 

using the construct shown in figure 6 .6 A. When these transgenic lines were crossed to 

UAS-GFP no fluorescence was detected. This may be because the splicing is not occurring 

or that the KRD site is not being cleaved. Processing o f the KRD site may require 

additional factors, including other signal sequences, the presence o f necessary processing 

machinery (such as endoproteolytic convertases) and correct trafficking through the 

secretory pathway.

A second approach was attempted which involved replacing the ORF with GAL4 (see 

figure 6 .6 B). This method is simpler because there is no need for a cleavage site, but the
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drawback that it can be only used on a gene that does not have the start codon in the first 

exon. Additionally, if  the achieved splicing efficiency is high, then the levels o f expression 

of the endogenous gene will be affected. The dLKR gene (Radford et al., 2002) was 

targeted, as there is a specific antibody available, the protein has been demonstrated to be 

expressed in the stellate cells of the tubule. Four transgenic fly lines were generated but 

unfortunately the transformants either died within a day or two, or if  they survived longer, 

they were sterile. Although this was a hinderance, it was also encouraging as it implied that 

the PTM was causing this phenotype (it is unlikely that the 4 separate transgenic lines can 

all give the same phenotype due to random insertion effects). Preliminary western blot 

analysis performed using the anti-dLKR antibody on protein extracted from one o f these 

flies (data not shown), showed a down-regulation o f LKR compared to control flies. 

Although loading controls were unsuccessful, the western blot suggests that a down- 

regulation of dLKR protein levels may be eliciting the observed phenotype. The construct 

was re-injected and the injected flies reared and crossed back at 18°C instead of 22°C. This 

was successful and new transgenics have recently been generated that are viable and virile 

at 18°C. Due to time constraints, experiments on these flies have not yet been undertaken.

6.4 Discussion

This chapter has described the initial development o f a gene knock-in technology in 

Drosophila, which has the potential to be a very powerful research technique. However, a 

lot more work and refinement will be required if  this is ever to be a generic tool. The two 

main problems to overcome are to prevent leaky expression o f the PTM and to improve the 

trans-splicing efficiency.

To prevent leaky expression of the PTM there are two possible approaches. Firstly, the 

PTM could be engineered to inhibit translation by the addition o f cis-acting elements or 

upstream ORFs. Secondly, the PTM could be engineered so that it is prevented from being 

exported from the nucleus. The majority o f the PTMs described in this chapter were 

designed with an ATG at the beginning, followed almost immediately by a stop codon. 

Having such a short reading frame may increase the possibility o f the ribosome re

initiating translation. The incorporation o f a larger ORF (encoding a nonsense protein) may 

help the ribosome to terminate translation on a more permanent basis before subsequent 

ORFs within the PTM are reached. The insertion of cfs-acting sequences may also be a 

simple way to prevent translation; RNA sequences that result in stem-loop secondary 

structures have been shown to repress translation in prokaryotes and eukaryotes (Kosak, 

1989; Beuzon et al., 1999; Wang and Wessler, 2001).
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Preventing nuclear export of the PTM this would be beneficial in two ways. Firstly, leaky 

translation would not occur and secondly, it may increase the concentration of the PTM 

within the nucleus resulting in an increased level o f fraws-splicing. Unfortunately, I have 

not been able to find a suitable method for achieving this. An obvious approach would be 

to prevent the addition of a poly-A tail to the PTM. However, if  performing 3’exon 

replacement, the modified mRNA would also be prevented from being exported.

Regarding the improvement o f /rans-splicing efficiency, this could be increased by 

elevation of PTM concentration, or by inhibition o f czs-splicing. The use of a strong 

promoter (i.e. the actin promoter) or, as previously mentioned, preventing nuclear export of 

the PTM could increase PTM concentration. Puttaraju and colleagues (2001) have already 

investigated the effects of masking the endogenous acceptor site with an intron binding 

domain. This was found to enhance fraws-splicing, and furthermore, creating RNA loop 

structures in this region increased splicing levels even more. This chapter has described the 

use of PTMs that cover the endogenous acceptor site, however, future work could include 

these secondary RNA loop-structures in the PTM design.

There is still more to be learned from analysing the transgenic flies generated to express 

GAL4 in dLKR cells. This work could include western blot analysis (with loading 

controls), quantitative RT-PCR and investigation o f GAL4 expression within these flies. If 

the phenotype observed in these flies could be attributed to a knock-down of LKR levels, it 

will demonstrate that high efficiency targeted /raws-splicing is achievable in a transgenic 

organism, and that this technology can also be used to create hypomorphs.

Due to their documented low trans-splicing efficiency, ribozymes were not previously 

considered as an approach to reprogram RNAs in Drosophila. However, with recent 

publications (Byun et al., 2003) demonstrating efficiencies o f up to 50%, these self- 

catalytic RNAs could also be put to use in Drosophila. One advantage o f a ribozyme-based 

system is that the target does not just have to be pre-mRNA, ribozymes can also splice into 

mature mRNA. However, as with the SMaRT technology, leaky translation o f the 

ribozyme would have to be prevented.

The SMaRT technology was originally developed for a gene therapy application. 

Developing and improving the technology in Drosophila will provide a powerful tool for 

Drosophila research, but will act as an excellent model for further advancing gene therapy 

approachs. The majority o f previous work on this technology has been using cell culture 

techniques to analyse different PTMs. However, the ease o f creating transgenic Drosophila 

lines facilitates the development o f this system within a multicellular context. Furthermore, 

with regards to modelling gene therapy approaches in Drosophila, it has been recently 

documented that many disease causing genes in humans have homologues in Drosophila
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(Reiter et al., 2001; Dow and Davies, 2003). In the post-genomic era, this technology could 

provide another valuable tool in closing the genotype-phenotype gap, in not just 

Drosophila, but also in other model organisms.
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Chapter 7 

Future work and summary



7.1 Future work

This thesis has described the development of several new powerful tools and techniques, in 

addition to the identification of a novel multiply-spliced Ca2+-ATPase in Drosophila. This 

work has opened the door for a host of possible future experiments and projects, the 

majority of which are described below.

The discovery that SPoCk-trB can be targeted to the ER by a N-terminal 133 amino acid 

sequence raises the possibility of fusing this sequence to target aequorin to the ER in 

Drosophila, without disrupting its function. Although the ERpicam reporter has allowed
9+monitoring o f [Ca ] e r  levels, targeted aequorin could provide quantitative measurements. 

Regarding the Golgi-targeted aequorin reporter, I believe this can be successfully utilised, 

requiring only the appropriate conditions to be found in order to allow refilling o f the store. 

An important future experiment, utilising the mitochondrially-targeted aequorin, and 

possibly mitycam-1, will be to investigate whether Ru360 (a previously documented 

blocker o f mitochondrial Ca2+ uptake (Matlib et al., 1998)) can prevent Ca2+ uptake into 

principal cell mitochondria. If this is the case, then it should be possible to determine 

whether it is the uptake of Ca that activates mitochondria to produce more ATP in 

response to capa. This could be performed by using secretion assays and also by using the 

mitochondrial redox-state sensitive dye JC-9 (Smiley et al., 1991).

During development of ERpicam, it became evident that residue 148 of YFP in the 

pericam is a critical ‘hinging’ residue (see chapter 4). Using site-directed mutagenesis it 

would be possible to investigate the effect o f different amino acids at this position, in 

conjunction with different calmodulin EF hand mutations. This might result in a 

combination of mutations that allows alignment of the two halves o f YFP in such a way 

that produces a ratiometric pericam, suitable for use in the ER.

Future work, involving live imaging o f the pericams in the tubule, could comprise of 

refining the procedure to permit higher resolution imaging o f single cells. It may then be 

possible to observe spatial differences within single cells during stimulation with 

appropriate agonists. Stable fly lines expressing the pericams could also be generated to 

improve the strength of the fluorescence signal in the tubule. However, the implications of
9 . 9 .

expressing such high levels of a Ca -binding protein on Ca buffering effects would have 

to be carefully considered.

There is a great deal of potential future experiments in the SPoCk project. The primary 

objective will be to confirm the intracellular localisation and determine the cellular 

expression pattern of the 3 isoforms using antibodies. Specific antibodies have recently 

been generated and preliminary results look promising (Selim Terhzaz, personal 

communication). It would also be interesting to look at the impact o f overexpressing these
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pumps on Mn2+ homeostasis. As previously documented (Lapinskas et al., 1995),
 ̂I

alterations of Mn levels in eukaryotic cells can prevent oxidative damage. Therefore, 

overexpression of these pumps may alter levels o f oxidative damage on an organismal 

scale, and could have a significant effect on the life span of the fly. Additionally, with the 

available overexpressing fly lines and the new antibodies, it will be possible to perform co- 

immunoprecipitation experiments. This may facilitate the identification o f proteins that 

interact with these novel Drosophila ATPases.

Regarding SPoCk-trA maintaining the DVreleasable Ca2+ store in the principal cell, a 

crucial experiment will be to determine the localisation o f IP3RS in this cell. Based on the 

model described in the section 7.2, they should localise to the Golgi apparatus and not to 

the ER.

Future work on developing the /raws-splicing gene knock-in technology is discussed in 

section 6.4.
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7.2 Summary

Previous studies in our laboratory have described the cytoplasmic Ca2+ responses to the 

diuretic peptides capa and drosokinin within the principal and stellate cells o f the 

Malpighian tubule (Rosay et al., 1997; Terhzaz et al., 1999; Kean et al., 2002). Both cell 

types respond in a biphasic manner, with an initial fast primary spike followed by a more 

prolonged secondary wave. The most plausible model for these responses (based on the 

majority o f previous studies of cellular Ca2+ signalling events) would involve the elevation 

o f IP3 levels upon activation of a receptor. The IP3 would then elicit a release of Ca2+ from 

an internal store (most probably the ER), producing the primary [Ca2+]i peak. This would 

then initiate a Ca2+ influx from extracellular sources via plasma membrane channels, 

producing the secondary response. This basic model is supported by work by Pollock et al 

(2003), who demonstrated that capa and drosokinin elevate IP3 levels, and that mutations
<2 1

m the Drosophila IP3R gene reduce the primary Ca response. Furthermore, when 

heteromultimers of TRP channels are disrupted by a mutant channel, the secondary 

response in the principal cell is almost completely abolished (MacPherson et al., 

submitted). However, not all the previous work fits with this model. In 1997, Rosay et al. 

showed that when tubules are incubated in Ca -free medium both the primary and the 

secondary rises in the principal cell were eliminated, suggesting that both aspects of the 

signal require external Ca2+. However, these experiments have been repeated using EGTA 

to remove the extracellular Ca2+ only minutes before stimulation, in order to minimise 

depletion of internal stores (Terhzaz et al., unpublished). Using this method, the primary 

response is still present (although slightly reduced), and the secondary response is very 

small or completely abolished. Similar experiments in stellate cells demonstrate the same 

effect; the primary response remains and the secondary response is lost. This is further 

support for the previously described model o f Ca2+ signalling in the tubule involving a 

release from internal stores followed by an influx o f external Ca .

This evidence provides the first step towards understanding the Ca signalling in this renal 

tissue. However, there are a lot more questions to be answered. For example, whether the 

ER is the HVreleasable pool in the principal and stellate cells; and are other organelles 

such as the mitochondria involved or affected by these Ca2+ signalling events? This thesis 

has begun to answer these questions by a variety o f approaches, including the development 

and utilisation of targeted genetically encoded Ca probes and studying the effects o f 

overexpressing differentially targeted Ca2+-ATPases.

Data from chapters 3, 4 and 5 provide evidence that the principal cell ER plays no role in
7+the capa-induced Ca signalling event. Firstly, the application o f an ER-targeted

7  »

fluorescent reporter demonstrated that upon stimulation with capa-1 the [Ca ] e r  levels do
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not drop, but instead mimic the cytoplasmic response. Secondly, overexpression o f an ER-
94- 9 +targeted Ca -ATPase (SPoCk-trB), which has been shown to potentiate DVgenerated Ca 

increases in S2 cells, has no effect on the primary response to capa-1 in principal cells.
9  _L

Thirdly, the mitochondria in this cell do not take up Ca during the primary response. 

Mitochondria have been shown to be coupled or in very close proximity to the ER (Rizzuto 

et al., 1998), and upon release o f Ca2+ from the ER they are subjected to a microdomain of 

high [Ca2+], resulting in a rapid uptake of Ca2+. As this does not occur in principal cells,
94-the primary implication is that the ER is not releasing Ca during the primary response. As 

mentioned in chapter 4, the principal cell is densely packed with ER, and so a possible 

reason for the lack of participance of the ER in the signalling events may be that a release 

from this organelle could cause dangerously high o f [Ca2+]j and [Ca2+]mt levels. Another 

possibility for why the ER plays no role, is that the ER could be acting as a tunnelling 

system for the movement o f ions or organic compounds from the basolateral to the apical 

membrane. Consequently, a release of Ca2+ might impede this function.

The next obvious question is where is the Ca2+ being released from, if  it is not the ER? The 

effects of overexpressing a Golgi-targeted Ca2+-ATPase (SPoCk-trA) in the principal cell 

strongly suggest that it is in fact the Golgi, which is acting as the primary DVreleasable 

pool. Pinton and colleagues (1998) have demonstrated that the Golgi can act as an IP3 - 

releasable in conjunction with the ER. Nevertheless, these studies in the principal cell have 

for the fist time shown the Golgi acting as the primary releasable Ca2+ pool, with no 

contribution from the ER. It will be very interesting to see whether this unusual method of
94-Ca signalling is present in other renal tissues, such as the proximal convoluted tubule in 

mammalian kidneys.

The impact of these Ca2+ signals on the mitochondria has been studied in the principal and 

stellate cells using a targeted aequorin and targeted pericam approach. Both methods have
94-shown that in the two main cell types o f the tubule, the uptake o f Ca into the 

mitochondria upon agonist stimulation is atypical. The uptake occurs in accordance with
94-the secondary cytoplasmic Ca event and not the primary. As discussed in chapter 3, it 

appears that the influx of external Ca2+ (secondary response) drives the uptake o f Ca2+ into 

mitochondria, and that this uptake should be sufficient to produce an increase in ATP 

production, via activation of the matrix dehydrogenases. This provides an elegant link 

between stimulation of the principal cell with capa, and the consequent requirement o f 

ATP for the activated V-ATPase complexes.

The discovery of the alternatively targeted SPCA ATPases (SPoCk-trB and SPoCk-trC) is
91

intriguing and will hopefully lead to a greater understanding o f how cells handle Ca and 

Mn2+. As previously discussed in chapter 5, it seems peculiar that a second ER-targeted
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Figure 7.1 Present model for Ca2+ signalling and Ca2+ pool characteristics in the principal cell. The
model is described in the text. Abbreviations are as follows: V, V-ATPase; Pex, peroxisom e; ER, 
endoplasmic reticulum; trA, SPoCk-trA Ca2+/M n2+-ATPase; trC, SPoCk-trC Ca2+/M n2+-ATPase; R, 
receptor; G, G protein; PLC, phospholipase C; PMCA, plasma m em brane Ca2+-ATPase; TRP, transient 
receptor potential channel; CNG, cyclic-nucleotide gated channel. Red oval structures represent 
mitochondria. Electron microscopy has shown that ER channels connect w ith the infoldings o f  the basal 
plasmalemma in the principal cell (Ashbum er and Wright, 1978); this is represented by the joining o f  the 
ER and the basolateral membrane on the diagram.

ucleus

TRP, L-type and CNG  
Ca2+ channels
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Ca ATPase (trB) is required in some cell types. However, this may be due to the need for

an ER pump with different transporting properties, or possibly one that can supply Mn2+ to

the ER. If indeed SPoCk-trC does localise to peroxisomes it will raise the question o f why
9 +  94 -this enigmatic organelle requires a Ca /Mn ATPase. Possible explanations are that
 ̂I  ̂I

peroxisomes may act as functional Ca stores and/or that Mn is needed for resident 

peroxisomal enzymes (such as Mn2+-dependent SOD).
9 *4-Figure 7.1 displays an updated model for Ca signalling within the principal cell. This 

model describes a cell where a predominantly basolateral Golgi Ca2+ pool, maintained by 

SPoCk-trA, releases Ca2+ upon an agonist mediated stimulus. Although the ER is extensive 

throughout the cell, it does not contribute to HVbased Ca2+ events, and the manner by 

which its Ca2+ levels are maintained is still unclear. Mitochondria are found mainly in the 

apical region, and peroxisomal Ca2+ stores/pools (maintained by SPoCk-trC) are present
9 -4-throughout various regions of the cell. The secondary Ca response occurs via an influx of 

extracellular Ca2+, possibly through a complex of TRP, L-type and/or CNG-gated plasma 

membrane channels. Whether both the Ca2+ signalling events are required for activation of 

downstream signalling pathways is yet to be resolved. However, the secondary response 

looks likely to be required for the increase in ATP production via the activation of 

mitochondria. The work described in this thesis has helped contribute to this model, and, 

like many models of intracellular systems, it will continue to evolve.
91

The Drosophila Malpighian tubule is an excellent model system for studying the Ca - 

signalling events that control renal function. The application o f powerful transgenic and 

fluorescent reporter techniques has made it possible to alter and observe these signalling 

events in a live intact tissue. This work has made significant advances into understanding 

these events, and will hopefully be continued to gain further insight into how renal 

function is controlled in Drosophila and higher organisms.
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