

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Modelling and Analysis of Next Generation Home Networks

Duncan J McLaren

A Thesis Submitted To

The Universities of

Edinburgh

Glasgow

Heriot-Watt

Strathclyde

For the Degree o f

Doctor o f Engineering in System Level Integration

© D. J. McLaren
February 2007

ProQuest Number: 10800612

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10800612

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

fGLA&;dw
UN IVERSITY

JL1BRARV; -

Abstract

As Home Networking grows over the next 20 years the need for accurate models for

both the network and the hardware becomes apparent. In this work, these two areas are

considered together to develop a combined hardware and network model for a

HomePlug power line based network. This change o f focus is important when the type

o f devices that will be running on tomorrow’s home network is considered. It will have

evolved from a simple network o f PCs sharing an Internet connection to a large

heterogeneous structure o f embedded System-on-Chip devices communicating on a

variety o f linked network technologies.

This work presents a novel combined hardware and network modelling tool that address

the following areas:

1. Development o f a system level model o f a HomePlug power-line based network,

including the fundamental network protocols, the SoC hardware and the physical

channel.

2. Use the developed model to explore various system scenarios.

3. Development o f alternative hardware algorithms within the design.

The model developed uses a Discrete Event simulation method to allow designers to

explore areas such as:

1. How does the networking hardware (i.e. the components on the SoC) interact,

and what are the issues of changing the algorithms.

2. How do the nodes on the network interact, as the traffic patterns are different to

those found on traditional (office-based) networks, as there will be a greater

amount o f streaming media.

Acknowledgements

I would like to thank everyone who has helped me in completing this work. In no

particular order:

Jim Herd, Jim Mellon and James McClean for all their academic, technical and moral

support throughout the last 5 years. Their advice and support has been invaluable, and

has really helped me to complete the work.

Sandie Buchanan and all the staff at the ISLI, without whom I wouldn’t have started the

course. Tony Kirkham for letting me moan about things, and offering advice when I

asked for it.

And finally to my friends and family. I owe a huge debt o f gratitude to Gareth. His

support and a friendly shoulder to cry on at various times have been very much needed

and appreciated, along with the friendly kick up the backside when needed! I also need

to thank my parents, Helen and John, and my sister Catriona who have put up with me

as I’ve completed this. I haven’t been the nicest person to live with and their patience

and understanding has been a huge support to me through all the highs and lows. This

work is as much for them as it is for me.

And finally to the EPSRC and Cadence who funded me through the research, I would

like to say thank you.

Author’s Declaration

No portion o f work contained in this thesis has been submitted in support o f any

application for any other degree or qualification o f this or any other university or

institute o f learning.

I declare that the work presented in this thesis is entirely my own contribution, unless

otherwise stated.

D J McLaren

October 2005

Table of Contents

Abstract..i

Acknowledgements.. ii

Author’s Declaration.. iii

Table o f Contents..iv

Table o f Figures.. vii

Table of Tables.. xi

Abbreviations Used..xiv

Chapter 1 — Introduction...1

1.1 Introduction..1

1.2 Overview... 3

1.3 Aims... 10

1.4 Summary... 11

Chapter 2 - Literature Review... 12

2.1 Introduction... 12

2.2 N etwork Modelling...13

2.2.1 Overview..13

2.2.2 Types o f Network Model... 14

2.2.3 Languages Used to Model Networks..15

2.2.4 Power Line Network Modelling..15

2.2.5 Network Modelling Summary.. 17

2.3 Hardware Modelling... 18

2.3.1 Overview... 18

2.3.2 Languages.. 19

2.3.3 Simulation Issues..22

2.3.4 Summary of Hardware Modelling/Simulation............................. 23

2.4 Summary...25

Chapter 3 - Background Theory...26

3.1 Introduction 26

iv

3.2 Computer Networking... 27

3.2.1 History...27

3.2.2 OSI M odel..27

3.2.3 IEEE Networking Standards...29

3.3 HomePlug...31

3.3.1 Overview... 31

3.3.2 HomePlug MAC...33

3.3.3 HomePlug PHY...45

3.4 Channel Model...53

3.4.1 Transfer Function... 53

3.4.2 Noise M odel.. 56

3.5 Summary... 59

Chapter 4 - M odelling Environment Requirements and Control............................ 60

4.1 Introduction.. 60

4.2 Requirements..61

4.3 Top Level Model Structure...64

4.4 M essage/Event System...67

4.4.1 Event System Overview.. 67

4.4.2 System Events and Sequences...69

4.4.3 Event Structure..74

4.4.4 Event Handling Within Node-Threads... 77

4.5 System Controller...81

4.5.1 Overview.. 81

4.5.2 Command File Parsing... 81

4.5.3 System Controller Event System... 83

4.5.4 System Controller Event Processing Algorithms.........................85

4.6 Node-Thread Event Handling...88

4.6.1 SoC Node-Thread... 88

4.6.2 MAC Node-Thread...90

4.6.3 PHY Node-Thread...93

4.7 Summary... 96

Chapter 5 - M odelling Environment H om ePlug Components. 97

5.1 Introduction. 97

5.2 MAC Model... 98

5.2.1 MAC Frame Assembler (assemble).. 99

5.2.2 MAC Frame Re-Assembler (disassemble)..................................... 104

5.3 PHY Model.. 108

5.3.1 PHY Encoder..109

5.3.2 Frame Control FEC Encoder (fc_encode)_................................... I l l

5.3.3 Payload FEC Encoder (data_encode)..115

5.3.4 OFDM Encoder (ofdm_encode).. 124

5.3.5 PHY D eco d er...130

5.3.6 OFDM Decoder (ofdm_decode).. 134

5.3.7 Frame Control Decoder (fc_dec)..140

5.3.8 Payload Decoder (payload_dec)..144

5.4 Channel Model...155

5.5 Summary...158

Chapter 6 - Results..159

6.1 Introduction..159

6.2 Software Suite.. 160

6.3 Typical Use Case..161

6.4 Throughput Verses Number o f Nodes.. 163

6.5 Latency Verses Buffer Size...165

6.6 Summary... 167

Chapter 7 - Conclusions..168

7.1 Introduction... 168

7.2 The Problem.. 169

7.3 The Solution.. 171

7.4 Evaluation o f W ork ... 174

7.5 Future W ork.. 176

7.6 Summary...178

Chapter 8 - References...179

vi

Table of Figures

Figure 1.1 — Broadband Internet Penetration in major econom ies.................................. 3

Figure 1.2 — Home Network Market Value... 4

Figure 1.3 — Tomorrows Home Network..7

Figure 1.4 — System-on-Chip Block Diagram..8

Figure 2.1 — Layers o f Abstraction in Hardware M odelling...19

Figure 2.2 — C ++ Based Hardware Design Flow...20

Figure 3.1 — Basic Model Block D iagram ... 26

Figure 3.2 — Two Devices Communicating Using the OSI 7-Layer M odel.................... 28

Figure 3.3 — Data Encapsulation.. 29

Figure 3.4 — Network Protocol Stack.. 29

Figure 3.5 — ETSI & HomePlug Power-line Frequency R anges.......................................32

Figure 3.6 — HomePlug Logical N etw ork... 33

Figure 3.7 — Frame Assembly Sequence..35

Figure 3.8 — Service Block Structure... 36

Figure 3.9 — MAC Frame Structure... 37

Figure 3.10 — Frame Control S tm cture...38

Figure 3.11 — Segmentation Process ... 39

Figure 3.12 - Response Frame C on tro l...39

Figure 3.13 - Response Frame T im ing..41

Figure 3.14 - Channel Access Process... 42

Figure 3.15 - Channel Access Timing ..44

Figure 3.16 - PHY Transmitter Block D iagram ...45

Figure 3.17 - Frame Control FEC Block D iagram ... 47

Figure 3.18 - Product Encoder M atrix..47

Figure 3.19 - Frame Control Interleaver Bit Spreading.. 48

Figure 3.20 - Payload FEC Block D iagram ..48

Figure 3.21 - Scrambler Block D iagram 49

Figure 3.22 - Reed-Solomon Encoder Block D iagram .. 49

Figure 3.23 - Convolutional Encoder Block D iagram ..50

vii

Figure 3.24 - Bit Puncturer..50

Figure 3.25 - OFDM Encoder Block Diagram .. 51

Figure 3.26 — Channel M odel..53

Figure 3.27 - Two-port Model... 53

Figure 3.28 - Simple Network M odel.. 55

Figure 3.29 — Noise M odel..56

Figure 3.30 — Extended Noise M odel... 57

Figure 4.1 — Model S tructure.. 64

Figure 4.2 — Event Com m unications.. 68

Figure 4.3 — Phase 1 Event Sequence..71

Figure 4.4 — Phase 2 Event Sequence ... 71

Figure 4.5 — Phase 3 Event Sequence ... 72

Figure 4.6 — Phase 4 Event Sequence ... 72

Figure 4.7 — Phase 5 Event Sequence ... 73

Figure 4.8 — Example Command F ile ... 81

Figure 4.9 — System Controller Operation.. 84

Figure 4.10 — Outgoing Event Nassi-Shneiderman Diagram 1 ...85

Figure 4.11 — Outgoing Event Nassi-Shneiderman Diagram 2 ...85

Figure 4.12 — Outgoing Event Nassi-Shneiderman Diagram 3 ...86

Figure 4.13 — Incoming Event Nassi-Shneiderman Diagram 1 ...86

Figure 4.14 — Incoming Event Nassi-Shneiderman Diagram 2 ...87

Figure 4.15 — SoC Event Nassi-Shneiderman Diagram 1 ..89

Figure 4.16 — SoC Event Nassi-Shneiderman Diagram 2 ..89

Figure 4.17 — MAC Event Nassi-Shneiderman Diagram 1 ..91

Figure 4.18 — MAC Event Nassi-Shneiderman Diagram 2 ..91

Figure 4.19 — MAC Event Nassi-Shneiderman Diagram 3 ..92

Figure 4.20 — PHY Event Nassi-Shneiderman Diagram 1 ...94

Figure 4.21 — PHY Event Nassi-Shneiderman Diagram 2 ...94

Figure 4.22 — PHY Event Nassi-Shneiderman Diagram 3 ...94

Figure 4.23 — PHY TRANSMIT Event Nassi-Shneiderman Diagram 95

Figure 4.24 — PHY NEW _DATA Event Nassi-Shneiderman D iagram95

Figure 5.1 — MAC Structure C hart...98

viii

Figure 5.2 — Service B lock ...100

Figure 5.3 — PHY Frame Form at..102

Figure 5.4 — Service Block Re-creation Process... 106

Figure 5.5 — PHY Structure C hart ... 108

Figure 5.6 — PHY Encoder Structure C h a rt... 109

Figure 5.7 — PHY Encoder Data F low .. 109

Figure 5.8 — Frame Control FEC Block diagram... I l l

Figure 5.9 — Product Encoder M atrix ... 112

Figure 5.10 — Product Encoder Parity G eneration..113

Figure 5.11 — Symbol Generator Process..114

Figure 5.12 — Payload FEC Encoder Block D iagram ... 115

Figure 5.13 — Scrambler C ircu it..118

Figure 5.14 — Reed Solomon Encoder Circuit..119

Figure 5.15 — Convolutional Encoder Circuit ...120

Figure 5.16 — Bit Puncturing... 121

Figure 5.17 — Interleaver Process..122

Figure 5.18 — ODFM E ncoder... 124

Figure 5.19 — Modulation Constellations ..126

Figure 5.20 — Mapper O pera tion ..126

Figure 5.21 — IFFT O peration.. 127

Figure 5.22 — Cyclic Prefix ...128

Figure 5.23 — Pulse Shaper...129

Figure 5.24 — PHY Decoder Structure C h art... 130

Figure 5.25 — PHY Decoder Data F low ... 130

Figure 5.26 — OFDM D ecoder...134

Figure 5.27 — Cyclic Prefix Rem over..135

Figure 5.28 — Channel Filter Circuit..................... 137

Figure 5.29 — De-Mapping Operation .. 138

Figure 5.30 — Frame Control FEC Decoder Block D iagram ...140

Figure 5.31 — Product Decoder O peration... 142

Figure 5.32 — Payload FEC Decoder Block Diagram ...144

Figure 5.33 — De-Puncture Operation..148

Figure 5.34 — Reed Solomon Decoder Block D iagram ...151

Figure 5.35 — Channel M odel.. 156

ix

Figure 5.36 — Channel Model Message Passing..156

Figure 6.1 — Typical Home Network Scenario.. 161

Figure 6.2 — Home Network Scenario Simulation O u tp u t..162

Figure 6.3 — Throughput Simulation Setup ... 162

Figure 6.4 — Throughput Simulation G raph ... 164

Figure 6.5 — Latency Simulation Setup ... 165

Figure 7.1 — Model Structure.. 171

Figure 7.2 — SoC Design F low .. 174

Table of Tables

Table 1.1 — Chapter C ontents...2

Table 1.2 — Power-line Networking Standards.. 5

Table 1.3 — 802.11 Technologies..6

Table 3.1 — Description o f OSI Layers...28

Table 3.2 - IEEE 802 Sub-Groups.. 30

Table 3.3 — Segment Control Field Structure...37

Table 3.4 - MAC Management E n trie s ...45

Table 3.5 - Blocked HomePlug Frequencies ..46

Table 3.6 - Bits Per Carrier for HomePlug M odulations... 46

Table 3.7 - Reed-Solomon Modes...49

Table 3.8 - Multi-paths Through Network M odel...55

Table 3.9 — Noise Characteristics 57

Table 4.1 — Modelling System Mandatory Requirements... 62

Table 4.2 — Modelling System Non-Mandatory Requirem ents...63

Table 4.3 — Model Terminology... 64

Table 4.4 — Model Command File Instructions...65

Table 4.5 — Modelling System E v en ts ... 70

Table 4.6 — Event Structure.. 74

Table 4.7 — Event Data S tructure ..75

Table 4.8 — Event Linked List Functions... 78

Table 4.9 — SoC Thread Package Structure.. 88

Table 4.10 — SoC E v e n ts ...88

Table 4.11 — MAC Thread Package S tructure... 90

Table 4.12 — MAC E v en ts .. 90

Table 4.13 — PHY Thread Package Structure...93

Table 4.14 - PHY Events 93

Table 5.1 — MAC Frame Assembler Inputs and O u tpu ts 99

Table 5.2 — MAC Service Block Inputs and O u tp u ts ...100

xi

Table 5.3 — Segmentation Information Inputs and O utpu ts ..101

Table 5.4 — MAC Service Block Inputs and O u tp u ts ...102

Table 5.5 — MAC Frame Re-Assembler Inputs and O utpu ts.. 104

Table 5.6 — MAC Service Block Inputs and O u tp u ts ... 105

Table 5.7 — MAC Service Block Inputs and O u tp u ts ...106

Table 5.8 — MAC Service Block Recreation Inputs and O utpu ts 107

Table 5.9 — PHY Encoder Inputs and Outputs.. 109

Table 5.10 — Frame Control FEC Input and Outputs ...I l l

Table 5.11 — Product Encoder Input and O utpu ts... 112

Table 5.12 — Frame Control Interleaver Input and Outputs...113

Table 5.13 — Payload FEC Inputs and O utpu ts...115

Table 5.14 — Scrambler Function Inputs and Outputs ...118

Table 5.15 —Reed-Solomon Encoder Function Inputs and O u tp u ts119

Table 5.16 — Convolutional Encoder Inputs and Outputs ..120

Table 5.17 — Bit Puncture Inputs and Outputs ... 121

Table 5.18 — Interleaver Inputs and O u tp u ts ...122

Table 5.19 — OFDM Encoder Inputs and O u tpu ts.. 124

Table 5.20 — Mapper Inputs and O u tpu ts .. 126

Table 5.21 — IFFT Inputs and O u tpu ts...128

Table 5.22 — Cyclic Prefix Inputs and Outputs ... 128

Table 5.23 — Cyclic Prefix Inputs and Outputs ... 129

Table 5.24 — Frame Control Decoder Inputs and O u tpu ts... 131

Table 5.25 — Payload Decoder Inputs and Outputs ... 131

Table 5.26 — Channel Estimator Inputs and O utpu ts...132

Table 5.27 — OFDM Decoder Inputs and O utpu ts.. 134

Table 5.28 — Cyclic Prefix Remover Inputs and O u tp u ts .. 136

Table 5.29 — FFT Block Inputs and O u tp u ts ...136

Table 5.30 — Channel Filter Inputs and O u tpu ts ...137

Table 5.31 — De-Mapper Inputs and Outputs...138

Table 5.32 — Frame Control Decoder Inputs and O u tpu ts ... 140

Table 5.33 — Bit Generator Inputs and O u tpu ts ..141

Table 5.34 — De-Interleaver Inputs and O u tp u ts ..142

Table 5.35 — Product Decoder Inputs and O u tp u ts ... 142

Table 5.36 — Payload Decoder Inputs and Outputs ... 144

xii

Table 5.37 — Payload De-Interleaver Inputs and O u tp u ts ... 147

Table 5.38 — De-Puncturer Inputs and O utpu ts.. 149

Table 5.39 — Viterbi Decoder Inputs and O utpu ts..149

Table 5.40 — Reed-Solomon Decoder Inputs and O u tp u ts ...151

Table 5.41 — Scrambler Function Inputs and O u tp u ts ...153

Table 6.1 — Channel Characteristics..160

Table 6.2 — Network Traffic.. 161

Table 6.3 — Home Network Scenario Results..162

Table 6.4 — Throughput Simulation Results.. 163

Table 6.5 — Latency Simulation Traffic.. 165

Table 6.6 — Latency Simulation Results..166

Table 7.1 — Modelling System Mandatory Requirements... 173

xiii

Abbreviations Used

ACK Acknowledgement
AHB Advanced High-performance Bus
AMBA Advanced Microcontroller Bus Architecture
APB Advanced Peripheral Bus
ARM Advanced RISC Machines
ARQ Automatic Repeat Request
ASIC Application Specific Integrated Circuit
AV Audio-Visual
B-PAD Block Pad
BPSK Binary Phase Shift Keying
CAP Channel Access Priority
CIFS Contention Inter-frame Space
CMOS Complementary Metal Oxide Semiconductor
CPU Central Processing Unit
CRC Cyclic-Redundancy Check
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
DBPSK Differential Binary Phase Shift Keying
DCF Distributed Control Function
DES Data Encryption Standard
DQPSK Differential Quadrature Phase Shift Keying
DSP Digital Signal Processing
EDA Electronic Design Automation
E-PAD Encryption Pad
ETSI European Telecommunications Standards Insititue
FCC Federal Communications Commission
FCS Frame Check Sequence
FEC Forward Error Correction
FFCS Frame Control Frame Check Sequence
FFT Fast Fourier Transform
FIR Finite Impulse Response
FTP File Transfer Protocol
GCC Gnu C Compiler
GF Galois Field
GFSK Gaussian Frequency Shift Keying
GPIO General Purpose Input/Output
HA Vi Home Audio Video Interoperability
HDL Hardware Description Language
HPNA Home Phone-line Network Alliance
HTTP Hyper-Text Transfer Protocol
I2C Intelligent Interface Controller
ICV Integrity Check Value
IEEE Institute o f Electrical and Electronic Engineers
IFFT Inverse Fast Fourier Transform
IP Intellectual Property/Internet Protocol
IRDA Infrared Data Association
ISM Industrial, Scientific and Medical
ISO Internationa] Standards Organisation
LAN Local Area Network
LLC Logical Link Control

xiv

MAC Media Access Controller
MAN Medium Area Network
M b/s Mega-bits per Second
MHz Mega-hertz
MOC Methods o f Computation
MPDU MAC Protocol Data Unit
MPEG Moving Picture Experts Group
MSDU MAC Service Data Unit
NACK Negative Acknowledgement
OFDM Orthogonal Frequency Division Multiplexing
OO K O n-O ff Keying
OSI Open Systems Interconnection
PAN Personal Area Network
PCS Physical Carrier Sense
PSD Power Spectral Density
PHY Physical Layer
PRS Priority Resolution Symbol
QoS Quality o f Service
RAM Random Access Memory
RIFS Reduced Inter-Frame Space
ROBO Robust OFDM
ROM Read Only Memory
RS Reed-Solomon
RTL Register Transfer Level
SMB Simple Message Block
SMTP Simple Mail Transfer Protocol
SoC System on Chip
SPICE Simulation Program With Integrated Circuit Emphasis
SSH Secure Socket Shell
TAP Test Access Point
TCP Transmission Control Protocol
UDP User Datagram Protocol
UPnP Universal Plug-n-Play
VCS Virtual Carrier Sense
VHDL Very High Speed Hardware Description Language
VLAN Virtual LAN
WAN Wide Area Network
WLAN Wireless LAN
XML Extendible Mark-up Language

X V

Chapter 1 - Introduction

Chapter 1 - Introduction
Introduces the thesis, giving the reader the necessary background to the problem that

is being addressed, as well as the content o f the rest o f the Thesis. It also gives the

main aims o f the research.

1.1 In t r o d u c t io n

Many o f the concepts and ideas that are the basis o f the work carried out will be

introduced, and the context set for the work. This is necessary due to the large si2e o f

the areas being considered within the work, namely home networking, network

modelling and hardware modelling. Traditionally these have been considered separately;

however as the usage o f networking within the home increases, the need to consider

these together becomes apparent. This is a concept which is expanded upon in

subsequent chapters.

A brief overview of home networking is given, highlighting some o f the business issues

which are important to consider alongside the technical ones. It also gives a summary o f

the various technologies used within the home. It introduces some of the challenges

resulting from the likely hardware that the network technology will be implemented

upon, which is likely to be System-on-Chip (SoC), that by its very nature is resource

constrained and presents unique challenges o f its own.

The structure o f the thesis is as follows:

Chapter 1 Introduces the thesis, giving the reader the necessary

background to the problem that is being addressed, as

well as the content o f the rest o f the Thesis. It also

gives the main aims o f the research

Chapter 2 A walk-through o f the relevant literature on the topics

o f network and hardware modelling, giving some o f the

important concepts, and how they can be mapped onto

the problem situation being looked at here.

Page I

Chapter 1 - Introduction

Chapter 3 Provides a more detailed description o f the theory and

standards that were used in creating the system model.

It starts with a brief history o f computer networking

and highlights some of the relevant standards. The

HomePlug power-line standard is then described in

some detail, before a brief overview o f the channel

model is given

Chapter 4 Describes the model that was developed. It first gives

the requirements o f the model (based on the

discussions of previous chapters), and then describes

the structure o f the model, and how it is controlled. It

also introduces the terminology used to describe

aspects o f the model.

Chapter 5 Continues the description o f the model, with the focus

being on the way the data is modified by the

algorithms. It starts with a description o f the MAC

functions, before describing the PHY and finally the

channel.

Chapter 6 Provides the results o f using the model developed to

explore some simple use cases. It also shows how the

model can be used to explore alternative algorithms.

Chapter 7 Concludes the work presented previously, by giving a

summary o f the problem area and then the model that

was developed. It finishes with a discussion o f the

future work that could be carried out.

Table 1.1 - Chapter Contents

Page 2

Chapter 1 Introduction

1.2 O v e r v ie w

Hom e networking, as we know it, is likely to change dramatically over the next 15-20

years. Today, when we talk about hom e networking we generally mean two (or more)

com puters connected together via E thernet or Wi-Fi to share an Internet connection and

peripherals such as printers. This need to share an Internet connection has grown out o f

the increased adoption oi broadband throughout the western world, as shown in Figure

1.1 [1],

Subscribers per 100 population

25

20

15

10

5

0
& •Q>

-•K orea
— Sweden

Japan
— US
— Germany

France
— UK

Source. Ofcom/OECD

Figure 1.1 — Broadband Internet Penetration in major economies

This trend is likely to continue, yet luture growth in hom e networking will not only be

driven by this need but also by the need to share digital multimedia traffic throughout the

home. Although many people are predicting that tom orrow ’s hom e network will be used

mainly for streaming media throughout the home [2, 3], it is equally probable that it will

integrate many currently un-connected devices such as home entertainment, white-goods,

PCs (in whatever form they take), home autom ation, communications, etc. This

integration o f many disparate devices will lead to many different types o f traffic on the

network(s) irom high bandwidth, low latency video traffic to low bandwidth higher

latency autom ation traffic. Many in industry are also suggesting the demise o f the PC as

it is known today. In its place will be a “H om e Gateway” [4] which will act as a server in

many respects, by piping the incoming broadband stream throughout the hom e and

ensuring that the internal traffic is routed to the appropriate locadon within the home. If

som eone wants access to the Internet say, they will use a terminal device (for example a

PDA or display screen) and the inform ation will be routed via the gateway to and from

the Internet. O ne im portant factor o f the gateway is it must be easy to maintain and

upgrade, either by the hom eow ner or by a sendee provider.

Page 3

Chapter / - Introduction

A nother differentiating aspect o f future hom e networks will be the actual network

technology, as many homeowners will be unwilling or unable to run Cat5 E thernet

cabling throughout their home. To overcome this problem, the electronics industry has

been proposing so-called “no-new-wires” technologies which make use o f either the

hom e’s existing wiring (i.e. the phone- and power-lines) or wireless. Figure 1.2 shows the

predicted market value o f the home networking sector up to 2002, broken down by

technology [5]. Although the figures suggest that phone line will be the m ost

predom inant, time has shown that this is not the case and that wireless has become the

predom inant hom e networking technology. Unfortunately further data on the market

value was not obtained.

60

co
E

013
>

1996 1997 1998 1999 2002 20032000 2001

-P hone line

- W ireless

-P ow erline

Ethernet

Figure 1.2 - Home Network Market Value

Phone-line networking uses the existing phone lines within the house to transport data,

and the main standard is H om ePN A (Hom e Phone-line Networking Alliance) [6].

Version 1 o f the standard was developed Irom technology produced by Tut Systems in

the mid-90’s, and was capable o f IM b /s using the 4-10MHz frequency range (much

higher than the analogue voice signals). Version 1 has an effective range o f 150m, and it

will support 25 connections. Version 2 was released around 2000, from technology

developed by Broadcom, and it is capable o f 10M b/s with a range o f 350m.

Page 4

Chapter 1 - Introduction

The primary power-line networking standard is HomePlug. HomePlug is an industrial

consortium made up o f many key players who released VI in July 2001 [7]. VI allows

speeds up to 14Mb/s, although true speed is somewhere between 4 and 5 depending on

channel conditions. The technology is based around OFDM and the standard defines

both the Physical and Media-access layers (further details are provided in Chapter 3).

They are currently working on HomePlug AV, which is a 100-200 M b/s system aimed at

audio/visual networks. Again this is based on OFDM, using more sub-carriers and

larger bandwidth than the current system, along with a re-designed MAC latey. There

have been many different power-line standards developed over the years. In the past

these have mainly focused on home automation, rather than home networking, however

recent developments in ASIC and DSP have enabled more advanced modulation

techniques that allow true networking over the power-line. Table 1.1 summarises some

of the main technologies developed [8].

Technology Primary Use Data Rates Frequency Range Modulation
HomePlug Data Comms 14 Mb/s 4.47 to 20.1 MHz OFDM with

BPSK,
DBPSK,
DQPSK or
ROBO

X-10 Home
Automation

50 or 60 b/s 120 kHz

CEBus Home
Automation

8.5 kb/s 100 to 400 kHz Spread
Spectrum

LONWorks Industrial
Control

10 kb/s,
5 kb/s or
2 kb/s

100 to 450 kHz,
125 to 140 kHz, or
9 to 95 kHz

Spread
Spectrum

Mainnet Data Comms 2.5 Mb/s
nSine Data Comms 2.5 Mb/s

(40 Mb/s
planned)

8 to 32 MHz WAM with
OOK or
GFSK

ds2 Data Comms 45 Mb/s 1 to 38 MHz OFDM
A scorn Data Comms 3 Mb/s

Table 1.2 - Power-line Networking Standards

Wireless networking is primarily provided by two different standards, IEEE 802.11 and

Bluetooth. Bluetooth is a lower rate system, with a typical device operating at speeds o f

up to IM b/s over a range o f 10m. It is commonly used to create Personal Area

Networks (PANs), where small mobile devices are connected together such as a mobile

telephone and a hands-free headset. The channel can support both synchronous (voice)

and asynchronous (data) traffic. The 802.11 standards are used to create Wireless LANs

Page 5

Chapter 1 - Introduction

and have a much higher data rate and range. There are three different versions currently,

802.11a, 802.11b and 802.1 lg and Table 1.2 summarises the main features o f each.

Technology Data Rates Range
(Inside/Outside)

Frequency
Range

Modulation

802.11a Up to 54 Mb/s 16m / 33m 5.4GHz
ISM Band

Coded OFDM

802.11b Up to 11 Mb/s 50m / 100m 2.4GHz
ISM Band

Spread Spectrum

802.1 lg Up to 54 Mb/s 50m / 100m 2.4GHz
ISM Band

Spread Spectrum
(up to 11 Mb/s)
OFDM (11 to 54
Mb/s)

Table 1.3 - 802.11 Technologies

At present 802.1 lg is becoming the dominant standard, as it is faster than 802.11b

(which was the primary standard, as the cards were cheaper than the faster 802.11a

devices). 802.1 lg uses the same frequency range as 802.11b, but has the speed o f

802.11a, which is allowing companies to roll out the faster 1 lg networks whilst still

maintaining backwards compatibility with the l i b devices they already have. Work is

currendy underway to develop the next generation of wireless networks (802.1 In) and

this is due to be released sometime in the next few years.

While each o f these technologies can solve the problem of connecting devices, they

cannot satisfy the needs o f tomorrow’s home network. Although each has strengths,

they also each have weaknesses, and it is therefore likely that a hybrid system will be

adopted that uses the technology where it is most appropriate. For example, a wall-

mounted plasma screen doesn’t really need to be connected via wireless, and so would

probably use the power-line. A potential home networking scenario is shown in Figure

1.3.

Page 6

Chapter 1 - Introduction

1 1 V
11

$

a

n
j Internet

Figure 1.3 - Tomorrows Home Network

As m entioned above, future home networks are likely to integrate many different

devices. The technology that will allow this is System-on-Chip (SoC), as this will enable

the networking hardware to be integrated with the rest o f the system. For example, a

networked display screen (i.e. a large plasma) would have an integrated SoC which

would be responsible for displaying the correct inform ation on the display screen

(probably using a hardware M PEG decoder for digital video), communicating on the

network (whichever one is being used), interacting with the user, etc. An example

System-on-Chip is shown in Figure 1.4.

Page 7

Chapter I Introduction

ARM
M icroprocessor

RAM ROM

\ 7TAP
Interface

AH8

Z \ z \

\ 7A Z
AHB/APB Bridge

M PEG V ideo D ecoderH om ePlug Controller

APB

7 7

7 7

I2C InterfaceG PIO Interface IRDA Interface Tim ers

Figure 1.4 - System-on-Chip Block Diagram

This adds two further potential complications to the network. The first is how to get

these different devices to com m unicate with each other. The second being how the use

o f the SoC will impact on the operation/perform ance o f the system, as a SoC is more

resource limited than a general purpose computer.

There has been much academic and industrial research into how to get disparate devices

to communicate with each other. Currently the main contenders are UPnP [9] (Universal

Plug’n ’Play) and HAVi [10] (Hom e Audio Video interoperability). These efforts have

mainly focused at the higher layers o f the network protocols, as it is the higher layers

where the data starts to take meaning.

N o t as much focus has been made on how the lower levels of this type o f networking

system interact as this has traditionally been seen as two separate areas, one being the

hardware itself, the other being the network. In this type o f network, the issue is more

how both the hardware and the network interact.

Page 8

Chapter 1 - Introduction

A standard design practice is to develop a software model o f the hardware components.

This gives the design engineer the ability to explore various alternative hardware

algorithms very quickly, as well as providing a golden reference model for the hardware

verification stage o f the design. In the past the model has been either a hardware model

or a network model, but without consideration o f the interaction between the two parts

(i.e. the network model will not model how the actual hardware running the protocol will

operate). By separating the hardware from the network, system designers are not able to

explore how the whole system interacts. In the complex network described, this could

pose a major shortfall, as the designers will be unable to evaluate the effects different

hardware algorithms might have on the operation o f the system as a whole.

The final part o f the problem is the communication channels themselves. Using the “no-

new-wires” technologies, these are going to be some o f the noisiest and most hostile

transmission channels available. In the past channel models have tended to be either

statistical models (i.e. so many packets will be in error over a particular period o f time) or

focused on frequency ranges outwith those that are used for the new standards (i.e. a

power-line model that is used to determine the loss characteristics o f the mains signal).

In order for the system level model to be o f any use, accurate, or at least adequate,

channel models are needed.

Page 9

Chapter 1 - Introduction

1.3 A im s

Given the issues and problems raised in the previous section, the aims o f this research

are:

• To develop a system level model for the next-generation home network, as

described above. This will focus on one particular technology, the HomePlug

V I.0 Power-line standard, to provide a proof o f concept. The model will:

o Model the Soc, MAC and PHY components o f each node in the network

o Model the communications channel

o Follow the modulation/encoding mechanism for HomePlug

o Follow the HomePlug channel access mechanism

• Using the model developed, run various scenarios to explore how the system will

operate under normal conditions

• Use the model to explore abnormal conditions, i.e. under what conditions will

the network fail

• Develop alternative hardware algorithms for components within the design

Page 10

Chapter 1 - Introduction

1.4 Su m m a r y

A brief overview o f home networking has been given, focusing on the technologies

involved and the challenges faced in developing products in what is a rapidly growing

market. As the market has grown there is an increasing need to develop products for it.

However as it is a consumer electronics market, these products need to be easy to use for

the end user. This need is one o f the drivers for developing models o f these systems, so

that developers have a better understanding o f the issues involved.

The concepts introduced here are expanded upon in subsequent chapters to show why a

model is relevant, and what the requirements o f any such model would be. These

requirements are then used to develop the model which is the focus o f the work

presented here.

Page 11

Chapter 2 - Literature Review

Chapter 2 - Literature Review
A walk-through o f the relevant literature on the topics o f network and hardware

modelling, giving some o f the important concepts, and how they can be mapped onto

the problem situation being looked.

2.1 In t r o d u c t io n

The work presented covers two areas, namely network modelling and hardware

modelling/simulation. This in itself poses a problem as the two areas have traditionally

been treated separately, however as the number o f networked devices increases, and the

fact that a lot o f these will be smaller embedded SoC-type devices, the need to consider

network and hardware modelling/simulation together becomes apparent.

Network modelling will be explored in the first section and some of the techniques and

methods are explained. This section looks at the choice o f what to model and how to

model it, for example what language to use. In the next section, the focus is on hardware

modelling and simulation and it introduces some o f the key points. In the final section

the findings o f the network and hardware modelling sections are compared and a

combined approach to network and hardware modelling is proposed.

Page 12

Chapter 2 - Literature Review

2.2 N e t w o r k M o d e l l in g

2.2.1 O v e r v ie w

There are three main ways to model a network.

1. Analytical Based.

2. Simulation Based.

3. Emulation Based.

An analytical model uses mathematical equations or Markov Models to describe how the

data is affected as it progresses through the model. Often these are compared with

experimental results done on real systems to provide some level o f validity to the model.

They tend to be more suited to modelling how the data is modified within the system.

A simulation based model uses discrete events to determine when things happen within

the model. At these times, data can be updated, using either an analytical based equation

or an algorithm that describes what happens to the data. These types o f models are

better suited to modelling data transactions and interactions between “devices”.

An emulation model uses real hardware to model different network protocols using

existing (known) protocols. For example, in [11] an extension to the Linux kernel is used

to emulate various protocols using an Ethernet LAN. These types o f model do however

require much more hardware than an analytical or simulation based model.

Early attempts at modelling networks tended to focus on analytical approaches, for

example [12] uses an analytical approach to model a packet radio system, and [13] uses it

to model Radio-Frequency, Laser and Satellite based networks. The reason for the early

use of analytical models is the computational intensive nature o f simulation [12].

Analytical approaches are still widely used as they are useful when exploring a particular

aspect o f a network, for example [14] uses an analytical method to explore the

Distributed Control Function (DCF) o f the 802.11 Media Access Control (MAC). When

looking at more than one aspect o f a network however, simulation is better suited as it is

easier to integrate the effects o f concurrent events. In [15], [16] and [17] for example, the

authors use both simulation based modelling and analytical based modelling.

Page 13

Chapter 2 - Literature Review

Simulation models are more widely used when modelling either many layers within the

network protocol stack, as in [18] and [19] or when modelling networks where multiple

nodes are involved, as in [20] and [21].

As well as there being different ways to model a network, there are different aspects

within the network to model. These can range from the channel itself, as in [22] and [23]

through the lower layers o f the network protocol (as in [24]) to modelling higher level

issues such as routing and traffic (as in [25]). The focus o f the model often impacts the

choice o f modelling technique; however, often the same area can be modelled in

different ways. For example, the Distribution Control Function (DCF) o f the 802.11

MAC was modelled using an analytical approach in [14], but was also modelled using a

simulation based approach in [21].

There is also the question o f how many nodes are in the networks being modelled as this

can have an impact on the type o f model used. The common theme seems to be to use

an analytical approach for simple point-to-point type networks, but simulation for multi

point networks.

2.2 .2 T y p e s o f N e t w o r k M o d e l

This section attempts to give an overview of the range o f network types that have been

modelled. The purpose is to show the wide range that has been covered over the years.

Even using the papers referenced in this section ([11] through [41]) as a small sample, a

wide variety o f networks have been modelled, including (but not limited to)

• Wireless LAN (802.1 lx, Bluetooth, etc.)

• ATM (Telephony backbone protocol)

• LANs (Ethernet, Token Ring, etc.)

• Power and Phone Line

• Wide Area Networks

The focus o f much o f the research has been in wireless technologies. This is probably

due to the ever increasing popularity o f these networks, and the amount o f research

Page 14

Chapter 2 - Literature Review

(both Academic and Industrial) that is occurring. There is a lot o f benefit from getting a

better understanding o f this environment as it allows better data rate, improved Quality

o f Service, etc.

2.2.3 La n g u a g e s U s e d t o M o d e l N etw o r k s

As well as the choice o f what part and type o f the network to model, there is the choice

o f how to model it, i.e. the choice o f programming language or modelling method to use.

This choice is as varied as the choice o f what to model, and often depends on the type of

model.

A common theme is to use graph-theory or mathematical equations (including

probability equations) for analytical type models [26], and either general purpose

programming languages, such as C or C ++, or specialised languages, such as ns2 [27],

O pN ET [28] or BONeS [29] for simulation models. It should be noted that the

specialised languages mentioned here are themselves extensions to C or C ++ and can

often be used within a standard C /C + + program.

This split is due to the nature o f analytical vs. simulation models. In simulation the focus

is often the sequence of events (control) that occur during operation, for example the

channel access procedure in a wireless network [21] and a programming language by its

very nature is more suited to this type o f modelling.

2.2.4 P o w e r L i n e N e t w o r k M o d e l l in g

As the work presented here is on modelling a HomePlug power line network, a review of

the efforts made in modelling both HomePlug networks and power line networking in

general is beneficial. This area isn’t as active a research area as wireless networking

however there has still been substantial work carried out.

Much of the work focuses on a single aspect o f the system, such as the Media Access

[30], data modulation [31] or the channel [32]. To date there hasn’t been a unified model

o f a power line networking system presented. Further many of the models make

assumptions that are unrealistic if considering a resource limited SoC based system. For

example, in [33] the authors limit the data encoding to QPSK 3A rate (although

Page 15

Chapter 2 - Literature Review

HomePlug has many different encoding schemes) and in [34] the authors assume

unlimited buffer for the storage o f MAC frames.

Many authors propose extensions/alterations to HomePlug to improve the Quality of

Service or Throughput o f the protocol. In [35] and [36] two different research teams

look at altering the Contention Window algorithm used in HomePlug (see section 3.3 for

details o f this) to obtain a higher throughput. The main differences in the methods are

the way in which the results are obtained. In [36] the authors use an analytical model

back up with a discrete-time simulation, whereas in [35] the authors use only a discrete

time model (developed using ns2) along with the power line channel model presented in

[32]. The choice o f channel model is odd however, as [32] is presenting a model o f the

local transformer/substation to the home (the “last-mile” o f a power line network),

however HomePlug is an in-home system which has different characteristics.

Other work looking at alterations to the MAC include [37] which looks at modifying the

framing o f the data to increase efficiency o f transmission, [38] which looks at a new

MAC level access scheme called Periodic Contention-Free Multiple Access and [39]

which presents a new MAC entirely which the authors call HomeMAC. They take the

slightly different approach of using an emulation system to develop it, and implement a

PC based network (running FreeBSD) using their MAC but mnning on Ethernet as the

physical communication link.

Further work has been done in [31] and [40] looking at extensions to the standard

HomePlug Physical Layer. In [31] the authors look at an alternative to the HomePlug

ROBO modulation scheme for poor channel conditions (see Section 3.x for more details

o f ROBO). In [40] the authors present an extension to the OFDM scheme used in

HomePlug, namely Discrete Multi-Tone (DMT), which is a multi-carrier system similar

to OFDM , but using a variable bit-rate encoder for the subcarriers (in OFDM all sub

carriers are modulated using the same scheme, but in DM T different sub-carriers can be

modulated with different schemes).

Some interesting work has been carried out in [30] and expanded upon in [34]. In these

papers the authors look at the Throughput o f the HomePlug MAC under both saturation

conditions and normal operating conditions. They developed an analytical model o f the

Page 16

Chapter 2 - Literature Review

HomePlug MAC using a Markov model (a tri-dimensional discrete-time Markov Chain).

The conclusion of the work is the throughput decreases as more stations are added.

2.2.5 N e t w o r k M o d e l l in g Su m m a r y

Although modelling networks is considered important, the area is so broad that there are

many different methods and approaches to the problem. This in turn suggests that there

is no single unified approach to modelling networks.

However, certain solutions are more suited to certain problems. For example, when

modelling a specific aspect o f a protocol, often analytical approaches are taken, and when

modelling more than one aspect, or the interaction between components, often a

simulation (or emulation) based approach is taken. This isn’t always the case however,

for example in [14], the author models the DCF of the 802.11 MAC using Markov

Models, but in [27], the same function is modelled using ns2, which is a simulation based

approach although in both cases the choice o f how to model the network is unclear.

Much o f the focus of modelling power line systems has been looking at one specific

aspect o f the protocols, such as the MAC throughput [30] or PHY encoding [40]. There

are currently no models o f the whole protocol and system. Many o f the models that

have been developed are analytical based, and don’t place many real-world conditions on

the simulation (such as limited processing power or memory availability).

Page 1 7

Chapter 2 - Literature Review

2.3 H a r d w a r e M o d e l l in g

2.3.1 O v e r v ie w

As hardware has become more complex and the time-to-market has been reduced, the

need for high-level models has grown [41]. Today it is almost unheard o f to produce a

complex SoC without a model with which to generate a set o f golden reference figures.

Models are also widely used to explore alternative solutions to problems [42].

Most hardware modelling languages are based around an object-orientated methodology

such as SystemC [43, 44] or HASoC [45]. These have many advantages in hardware

modelling as they appear to naturally match the nature o f hardware [46]. However other

languages have been used to model hardware — from dedicated hardware modelling

languages such as Verilog and VHDL to higher level constructs such as data-flow models

[47].

In this section, the various approaches to modelling hardware are described, along with

some of the methodologies used. A useful point to raise at this time is levels o f

abstraction in hardware modelling. Ultimately, hardware is a series o f connected

transistors on a piece o f silicon that produce a specific function or achieve a specific task.

However, given that even the simplest designs are approaching millions o f transistors, it

is obvious that thinking o f hardware at this level is not a good thing to do. Figure 2.4

shows the levels of abstraction in modelling hardware. The higher the level o f

abstraction, the simpler the design flow (for example at Behavioural Level, the designer is

concerned with how the system works, but doesn’t care what interactions are required to

make it work).

Page 18

Chapter 2 - Literature Review

Transaction /
Behavioural Level

Register Transfer Level (RTL)

Gate Level

Transistor Level

Circuit Level

Figure 2.1 - Layers o f Abstraction in Hardware Modelling /48 /

An analogy that can be drawn between the hardware and software worlds is that o f

compilers. Behavioural models can be thought o f as a high-level program ming language,

such as C, with the RTL level being the machine code that it gets compiled to.

2 .3 .2 L a n g u a g e s

As m entioned above, m ost hardware modelling languages use C [49, 50] or C + + [51, 52],

an extension/derivation o f these (SystemC [43, 44], SpccC [53, 54, 55], HandelC [56],

etc.), or use the hardware description languages (HDLs) V H D L or Yerilog [57]. Using

H D Ls, whilst it might sound like the best approach as the final hardware will more than

likely be in that language, isn’t always the best approach, as they don’t offer the wide

range o f program ming constructs that general purpose languages do [58], although this is

being addressed with the advent o t System Yerilog [59) for example.

In [49], the author uses C to develop an M PEG -2 D ecoder Intellectual Property (IP)

Block. Whilst this isn’t directly associated with networks, the design o f IP blocks

requires the same basic approach regardless o f the end application. O ne o f the reasons

for using C (or indeed any o f the languages described here) is the reduction in simulation

time com pared to the IID L implementation. A nother advantage identified by the author

o f [49] is the fact that a non-hardware model can be used, which they term a “C-Soft”

model, to verify the hardware model (in both C and Verilog). In their case, the hardware

C model had the same hierarchy and function as the final Yerilog model. The main

benefit the authors found was the ability to verify the hardware block during simulation.

This was done by com paring the outputs o f the C hardware and Verilog models with the

C software model.

Page 19

Chapter 2 Literature Review

Along with C based approaches to modelling hardware, C + + has also proved popular (or

more exacdy, object-orientated approaches [60] which are invariably im plemented in

C ++). In [61] the authors describe an implementation o f an O rthogonal Frequency

Division Multiplexing (OFDM) based Wireless LAN (WLAN) transceiver, based on a

C + + model and implemented in 0.18pm CMOS. They stress the importance o f being

able to go easily from the high-level C + + model to a register transfer level (RTL) model

from which the design/m odel can be realised in hardware, as well as the need to be able

to explore different architectural decisions. A nother im portant point that is raised is the

need to convert the initial floating-point model to a fixed-point representation, and the

need to be able to explore different fixed-point representations. They proposed the

design flow in Figure 2.5.

OCAPI C++ Based Flow

A lgorithm S e lec tio n
Q u a n tisa tio n

C o d e R e fin e m e n t

A lgorithm
c o m plex ity contro l,

m em o ry a c c e s s ,
la ten c y

HDL C o d e G e n e ra tio n

S y n th e s is

A rea , S p e e d ,
P o w er

P la c e & R o u te

Traditional Back-End Flow

C + + R T M odel

C + + D a ta F low M odel

HDL RT D e scrip tio n s

HDL G a te L evel D esc rip tio n s

A SIC L ayou t

Figure 2.2 - C++ Based Hardware Design Flow / 6 l /

Page 20

Chapter 2 — Literature Review

Another paper using C++ as a modelling language is [62]. In it the authors point out

that C /C + + as it stands is unable to model hardware specific concepts, such as

concurrency and reactivity and needs an extension to be able to cope with this. They

also propose that if the design doesn’t need to be translated from C /C + + to HDL (prior

to hardware synthesis), then there is less chance o f error and the systems engineer can be

involved much later in the design flow. The main approach is to abstract the hardware

issues as much as possible and have a behavioural model that can be mapped direcdy to

hardware.

Extensions to C and C ++ are proving extremely popular as methods to model hardware.

Perhaps one o f the most popular at the time of writing is SystemC [63] and there have

been many research papers on this [43, 44]. SystemC is a C ++ class library that provides

extensions to C ++ that support hardware interaction/modelling.

In [64], the authors describe using SystemC to go from a high-level description down to

a gate-level representation. At the time of the paper, there were no direct approaches to

convert from SystemC to hardware, unless a subset of C /C + + was used that removed a

lot o f the high-level features (such as pointers and object orientation) which made using

C++/System C attractive. To date there are still not any direct conversion/synthesis

tools that go from SystemC to gate-level. The authors go on to describe an extension to

SystemC that attempts to solve this problem, however it requires yet another tool

(ODETTE) and uses object oriented H D L’s, which are not widely used in industry.

SystemC has been used to model many different types o f hardware system. In [65], the

authors use SystemC to model and verify a simple on-chip bus, similar to the AMBA

AHB. In [66], the authors use SystemC to develop a model o f an existing ASIC (a

networking chip), for the purposes o f comparing the simulation time with that of the

Verilog at RTL level, as well as attempting to trace a problem with the speed at which the

chip was transmitting. They found that the SystemC model ran sufficiendy fast to allow

them to explore the problem they had with the chip. In [67], the authors use SystemC to

develop a model o f a SoC running a version o f embedded Linux, and found the speed up

compared to RTL simulations to be significant, reportedly up to 10,000 times faster.

Page 21

Chapter 2 - Literature Review

An extension to C proposed for hardware modelling is SpecC [68], and this has been

used widely as a teaching tool [69]. SpecC allows the same semantics and syntax to be

used to represent a design at the various stages through the design flow [70]. It has been

used to model various devices, such as asynchronous circuits [71], multi-processor SoCs

[72] and real-time emulators o f electromechanical systems [73].

The final main approach to modelling hardware is to use the H D L’s themselves.

Although these offer many o f the higher level constructs o f a general purpose language,

such as for loops, these are generally not used when the HD L is used for RTL

descriptions o f the hardware. However they still do not offer the flexibility that a general

purpose language does. Using HDLs does mean that a single language can be used to

describe the model and describe the RTL description to the final place-and-routed gate-

level description. To this end, the IEEE is working on the next version o f the Verilog

HDL (Verilog-2005) to include SystemVerilog and address some of these issues.

2.3.3 Sim u l a t io n Issu e s

Along with the issue o f how to model the hardware, there is also the issue o f how to

simulate the hardware model. I f the model is in an HDL, then it can be simulated using

one o f the many HDL simulator tools (such as Cadence’s Verilog-XL or Mentor’s

ModelSim). If the model is implemented in a high-level language, then the issue o f how

to best model the hardware as though it is actually hardware becomes an issue.

In [74], the authors discuss methods o f computation for embedded systems. They state

that concurrency (i.e. multiple components running simultaneously) must be considered

at all levels o f the model. This is essential, as one o f the fundamental properties of

hardware is its concurrent nature. This can also be termed reactivity, i.e. hardware reacts

to events that occur, generally outwith its control. This is a concept backed up by [75].

As well as any simulation model requiring concurrency, the authors o f [74] also state that

the components that make up the model need to be able to communicate with each

other. This is intertwined with their concept o f Models o f Computation (MOC), and the

most relevant one they suggest is Discrete Event. In this model, communication is

achieved by multiple-writer, single-reader signals/messages that carry information as well

as time. This method they say, is well suited to simulation as it is the only one that

Page 22

Chapter 2 - Literature Review

represents time. This is the model used by logic simulators. Other MOCs proposed

include; Data Flow networks where data is passed from one process to another in zero

time; Petri Nets where data is ordered over transitions on graphs or nets; and

Synchronous State Machines, where events occur at discrete “clock” events (time

instants).

In [76], the authors give some of their key requirements for a hardware simulator:

1. Precision The model needs to be sufficiently accurate in

describing the hardware (although “sufficiently”

depends on the application)

2. Efficiency The model must simulate as quickly as possible

3. Separation o f Events The simulation will likely only want to

emphasise certain aspects of the model under

test/simulation

4. Flexibility The model must be easily adapted and extended

The sort of models that the authors o f [76] are talking about are macro cell models

(which are gate-level models of transistors to replace SPICE models), however the points

that they making are perfectly valid for higher-level abstraction models, such as those

considered here.

A final point about the simulation o f the model is raised in [77], where the authors

describe what they call a hardware modeller, although a more accurate description would

be hardware emulator. They do however raise one important point, which is any

modelling software, needs to be portable across various implementation platforms.

2.3 .4 Su m m a r y o f H a r d w a r e M o d e l l in g / S im u l a t io n

In this section a brief walkthrough of hardware modelling and simulation has been

presented. This is still a very active research area, especially as the complexity of

hardware increases. The section introduced some of the important concepts of

modelling, such as the level o f abstraction that the model takes. The more abstract the

model the quicker it will simulate, however there is a risk o f not modelling important

Page 23

Chapter 2 - Literature Review

aspects o f the hardware device in question. As with most engineering problems, there is

a trade off between how accurate the model is and how quickly the engineer wants it to

run.

Also introduced are the various languages used to model hardware. These are almost as

varied as those used to model networks; however a common theme here is the use of

high-level (general purpose) languages such as C or C ++ to model the hardware. There

is a caveat to this, in that language extensions are required to support the “hardware”

aspects o f the model, such as the concurrent nature o f any hardware system.

This brings into play the other important point raised, that is how to simulate the

hardware models. As hardware is concurrent “processes” that communicate with each

other, a method is needed to model this. It already exists in HDL simulators; however

these are too low an abstraction level for the work considered. The method to provide

the functionality required is known as Discrete Event simulation, in which events are

passed between the concurrent processes to enable functions or tasks to be performed.

Page 24

Chapter 2 - Literature Review

2.4 Su m m a r y

In this chapter a joint look has been taken at both network and hardware modelling.

Network modelling has been around for much longer (since the first networks were

developed) and many different approaches have been proposed over the years.

Hardware modelling hasn’t been around quite as long (probably 20 years or so), but there

are many different approaches to this as well. A common theme in both is to use a high-

level language such as C or C ++ to model the network or hardware. This provides many

advantages, such as speed o f simulation, ease o f development and abstraction away from

some o f the complex issues o f realising a design in an ASIC.

In order for C /C + + to be used in simulation, which is one o f the most common

methods o f modelling multi-protocol level network models, extensions need to be

developed to provide the elements necessary to model the concurrent, reactive nature

inherent to hardware. Several hardware modelling extensions have been presented such

as SystemC and Spec, however as long as the model developed shows concurrency and

uses a discrete event simulator, the ability to simulate the network/hardware will be met.

The ideas presented in this chapter are the basis of the requirements of the network

model presented in Chapter 4. In that chapter a lot of the abstract ideas introduced in

this chapter are expanded to provide a working network/hardware model.

Page 25

Chapter 3 - Background Theory

Chapter 3 - Background T
Provides a more detailed description o f the theory and standards that were used in

creating the system model. It starts with a brief history o f computer networking and

highlights some o f the relevant standards. The HomePlug power-line standard is then

described in some detail, before a brief overview o f the channel model is given.

3.1 I n t r o d u c t i o n

From the discussions in the previous chapter, it can be seen that a model that includes all

aspects o f a communication system is required, not just specific com ponents. To

validate this idea, the system shown in Figure 3.1 was developed. This is built around the

Hom ePlug Power-line networking standard, and includes an abstract version o f the

higher level com ponents, along with the Media Access Controller (MAC), Physical Layer

(PI IY) and channel. This chapter contains a description o f these com ponents.

HIGHER
LAYERS

HIGHER
LAYERS

MAC MAC

PHYPHY

CHANNEL

Figure 3 .1 - Basic Model Block Diagram

Page 26

Chapter 3 — Background Theory

3.2 Co m p u t e r N e t w o r k in g

3.2.1 H ist o r y

In the 1970s the use o f computers in business and industrial applications started to

dramatically increase, however the cost o f the equipment was still very high. At this

time, various people realised the advantage o f connecting the computers together, which

meant that expensive resources such as processors and printers could be shared along

with data. Initially various companies (such as IBM and Xerox) developed their own

proprietary networking standards that only enabled their equipment to be connected.

This was a far from ideal situation, as it meant that a company was tied to one brand for

all its networking equipment, and if they chose the wrong one it could have

consequences for the business. This issue was dealt with by the standard bodies

developing industry-wide standards describing how computers should communicate.

The major networking protocols were standardised in the late 1970s by the 802

committees o f the Institute for Electrical and Electronic Engineers (IEEE). The IEEE

Standards are based on the International Organisation for Standardisation (ISO) Open

Systems Interconnection (OSI) 7-layer network model. They do however concentrate on

the lower layers o f the ISO-OSI model which are the ones associated with the actual

physical medium that is used to transmit the data, rather than the higher layers, which

give meaning and structure to the data.

3.2 .2 OSI M o d e l

The OSI network model, which was released in 1979, gives an abstract description of

how two devices communicate with each other using a hierarchical layered model. Each

layer provides services to the layer above, and uses the services o f the layer below. In

this way, data from any application can be transmitted over any physical network. Table

3.1 summarises the function of each o f the seven layers in the OSI model.

Layer Function
Application Provides the interface between the communications environment and the

applications using it. Example applications include electronic mail, web
browsers, distributed databases and network operating systems.

Presentation Provides services to application layer such as file transfer, virtual Terminal,
text compression and encryption.

Session Starts to add meaning to the data and provides basic user orientated services.
It also provides the mechanism for controlling the dialogue between
presentation entities.

Page 27

Chapter 3 - Background Theory

Layer Function
T ransport P rovides the m echan ism s for the initial e s tab lishm ent o f c o m m u n ica tio n s

channe l, the transfer o f data and the final re lease o f the channel. It also
in terfaces with the N etw ork layer to ensure an error free virtual point- to-
point connec tion .

N e tw o rk Provides rules for routing in the ne tw ork, and ensures not too m any packets
are in the system. It is also responsib le for ne tw ork address ing and call se t
up and c learing .

Data Link Ensures re liable com m u n ica t io n over the physical layer, and provides the
struc ture o f the data (i.e. the frame format), a long with the rules for
access ing the channel. It a lso p rovides flow control and error correc tion and
recovery .

Physical Defines the physical (electrical and m echanical) a ttr ibutes o f the ne tw ork ,
includ ing m odu la t ion scheme, cable sizes, c onnec to r types, etc. It provides
the m eans to t ransm it data across the ne tw ork m edium .

Table 3.1 - Description o f OSI Layers

W hen two devices are communicating, each layer thinks it has a direct link with the

corresponding layer of the other device, however in reality the only layers in direct

contact are the Physical layers. Figure 3.2 shows how one device communicates with

another (with an interm ediate bridge/repeater which allows the two devices to have

different physical layers)

APPLICATION

PRESENTATION

SESSIO N

TRANSPO RT

NETWORK

DATA-LINK

PHYSICAL

4

NETW ORK

4

DATA-LINK

PHYSICAL

LOGICAL
DATA FLOW

- N

APPLICATION

PRESENTATION

SESSIO N

TRANSPO RT

NETWORK

DATA-LINK

PHYSICAL

Figure 3.2 - Two Devices Communicating Using the OSI 7-Layer ModeI

As the data passes down the layers trom the Application Layer, extra control and routing

inform ation is added that is necessary for the correct operation o f that layer. This

process is known as encapsulation, and is shown in Figure 3.3. The sort o f inform ation

added includes IP Addresses, CRC checksums, protocol versions, etc.

Page 28

Chapter 3 B ackground Theory

L3 II L4 || L5

L2 | L3 I L4 11 L5

LI L2 L3 L4 I ! L5

DATAn r
DATA

~ir

DATA

□ E

L5 L4 | L3

L5 L4 [I L3 | L2

L5 L4 | | L3 I L2 | L1

DATA TO BE TRANSMITTED

4
APPLICATION LAYER

4
PRESENTATION LAYER

SESSION LAYER

4
TRANSPORT LAYER

NETWORK LAYER

4
DATA LINK LAYER

PHYSICAL LAYER

Figure 3.3 - Data Encapsulation

The OSI model describes an abstract networking model and protocols have been

developed and refined to fit this model. These range from physical network protocols

(such as E thernet and wireless), through transportation protocols (T C P /IP , NetBIOS) to

application protocols (HTTP, FTP, etc.). The relationship between these protocols and

the OSI model is shown in Figure 3.4.

APPLICATION LAYER

PRESENTATION LAYER

SESSION LAYER

TRANSPORT LAYER

NETWORK LAYER

DATA-LINK LAYER

PHYSICAL LAYER

HTTP, SMTP, FTP, etc.

XML, SMB

SSH

TCP, UDP

IP, ICMP, ARP

ETHERNET TOKEN RING WIRELESS

Figure 3.4 - Network Protocol Stack

3.2.3 IE E E N e t w o r k in g St a n d a r d s

Most o f the work standardising the physical network protocols has been done by the

various IE E E 802 sub-committees. They have been primarily concerned with the

bottom two layers (Data-Link and Physical) and have developed many ditferent types o f

network, the m ost com m on today being E thernet (802.3) and Wireless (802.11), although

the work being carried out in Personal Area Networks (PANs) and M etropolitan Area

Page 29

Chapter 3 - Background Theory

Networks (MANs) by the 802.15 and 80.216 sub-committees to create more ubiquitous

networks might have more importance in the future. The more common network

protocols developed are given in Table 3.2. W ork is ongoing to improve and enhance

these standards to exploit technological advances. This can be seen in the evolution of

the 802.3 (Ethernet) standard, from a 2M b/s system, through 10Mb/s and 100Mb/s to a

1GB/s system.

Sub-Group Standard
802.1 LAN/MAN Management, Bridging
802.2 Logical Link Control
802.3 Ethernet (CSMA/CD)
802.4 Token Bus
802.5 Token Ring
802.6 Distributed Queue Dual Bus
802.10 Interoperable LAN/MAN Security
802.11 Wireless LAN
802.15 Wireless PAN
802.16 Wireless MAN

Table 3.2 - IEEE 802 Sub-groups

The IEEE split the Data-link layer into two sub-layers, the Logical Link Control (LLC)

layer and Media Access Control (MAC) layer. This provides a standard interface to the

higher layers through the LLC for any M AC/PHY that is developed. The MAC is the

part o f the protocol that controls access to the network and ensures each device follows

the correct procedure for gaining control o f the physical medium. It also provides the

last level o f framing before the binary data is modulated by the Physical (PHY) layer, as

well as possibly segmenting the incoming message if it is larger than the maximum

permitted message size on the PHY. A maximum PHY frame size is often imposed to

allow fair access to the medium. Generally, the M AC/PHY comes as a pair, as the

framing and access mechanisms will be unique to the specific PHY being used, although

there are some exceptions, notably the Home Phone-Line Network Alliance (HPNA)

PHY uses a standard Ethernet MAC. This was done to allow easy development of

HPNA products by companies that already had Ethernet products.

Page 30

Chapter 3 - Background Theory

3.3 H o m e P l u g

3.3.1 O v e r v ie w

The HomePlug Consortium [7] was established in the late 1990s by leading

communication companies to develop a robust, high-speed data-networking standard for

the power-line. The companies involved realised that unless they worked together then

each could develop a proprietary standard that wouldn’t work with other products,

similar to the situation that arose in the early days o f data networks. Some o f the

founding members include Intellon (who provided much o f the technology for the

subsequent standard), Conexant, Panasonic and Sharp. There are currently over 40

members.

Version 1.0 o f the standard was released in June 2001 [78], and has a raw data rate of

14Mb/s (so roughly equivalent to early Ethernet). Due to the way the data is transmitted

on the channel this rate is not guaranteed, and it will in fact adapt to the conditions o f

the channel. A slower, more robust modulation will be used on poorer channels.

Extensive field trials have been conducted in the United States (however the results are

confidential), as many o f the products are only available there as it is a very large market,

plus many of the companies involved are American. One o f the reasons adoption o f the

technology in Europe has been slower is the different electricity supply, which is 240V,

50Hz single-phase in Europe and 120V, 60Hz two-phase in the US. There is also a

regulatory issue, as the European Telecommunications Standards Institute (ETSI — the

European equivalent o f the Federal Communications Commission, FCC) have specified

the frequency ranges to be used for power-line communications, and have split these into

“Access” and “In-Home”. “Access” is using the power-line entering the house to carry

broadband traffic and “In-home” is networking internal to the house (i.e. a power-line

LAN such as HomePlug).

Unfortunately, this split is in the middle o f the frequency range used by HomePlug, and

so this means that the maximum raw data rate will be lower (about half, or around

7Mb/s). Figure 3.5 shows the ETSI-specified frequencies, along with those used by

HomePlug. There is however, a second version o f the regulations that should overcome

this problem, and allow use o f the full frequency range, as long as there are no “Access”

services present [79].

Page 31

C hapter 3 - B ackground Theory

HomePlug

ACCESS IN HOUSE

1.6MHz 4 .5 M H z 10MHz 2 0 .7 M H z 30MHz f

Figure 3.5 - ETSI & HomePlug Power-line Frequency Ranges

The standard specifies both the Media Access (MAC) and Physical (PHY) layers and

these are similar to the MAC and PHY used by the wireless networking standard

(802.11). The reason for this is that the power-line exhibits much o f the same

characteristics as the wireless channel in that it has fading multi-path channels (see

Section 3.3), and is a very noisy and hostile environm ent through which to transmit data.

The MAC uses a Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)

access scheme, with a four-level priority scheme and frame acknowledgements to

improve Quality o f Sendee (QoS). The PHY uses Orthogonal Frequency Division

Multiplexing (ODFM) with Fonvard E rror Correction (FEC) to increase the probability

that the frame is received error free. O FD M is a form o f multi-carrier m odulation that

uses many (equally spaced) sub frequencies over a given bandwidth and each sub-carrier

is m odulated separately. In H om ePlug’s case, there are 84 carriers between

approximately 4 and 20 M Hz, and each can carry 2, 1, or ’A bits depending on the

m odulation scheme used.

Security is an issue, with Hom ePlug using encryption to ensure that adjacent homes

cannot read each others data. This creates logical networks over the shared physical

medium and is shown in Figure 3.6. Each FlomePlug station m ust be able to store at

least one encryption key; however, it is feasible for the station to store m ore than one

key, thereby letting it operate on m ore than one logical network.

Page 32

Chapter 3 - Background Theory

MAINS P O W E R LINE

Figure 3 .6- Home Plug Logical Network

3.3.2 H o m e P l u g MAC

As stated, the Hom ePlug MAC is similar to the 802.11 MAC, but with some

enhancements to improve the Quality-of-Service (QoS). The M \C also uses message

segmentation to support the rate adaptive nature o f the PI IY. As the physical channel

exhibits many properties similar to the wireless channel (i.e. fading multi-path), each

node m ust perform channel estimation prior to transmission to determine the PHY

m odulation parameters. Each node’s MAC maintains a list o f the usable carriers,

modulation technique and convolutional code rate for transmission to various

destination nodes. The usable carriers, m odulation technique and convolutional code

rate are referred to as the Tone Map, and the list is called the Tone Map Index.

I lomePlug also uses an acknowledgement scheme (i.e. Automatic Repeat Request or

ARQ) to ensure frames get delivered, although it isn’t compulsory. The

acknowledgement can either be positive (ACK) or negative (NACK or FAIL). A

NACK response indicates that the frame was received, but with errors and a FAIL

response indicates the receiving node doesn’t have the resources to decode the trame.

Hom ePlug also implements a “Partial A R Q ” scheme for multicast frames, in which a

single station acknowledges the recepdon o f a frame for all the nodes on the network.

The MAC is capable o f transpordng frames between 46 and 1500 bytes in length, and so

can transport E thernet frames by encapsuladng them within Hom ePlug frames. This

allows easy bridging between Hom ePlug and other networks. Standard IE E E 48-bit

addressing is used at the MAC level.

Page 33

Chapter 3 - Background Theory

HomePlug uses a four-level priority scheme and before transmission all the nodes on the

network will perform Priority Resolution to determine the priority o f the traffic that is

transmitted on the network. This stops lower priority traffic from congesting the

network. I f a node has multiple segments to transmit (to a single destination) it can use

Segment Bursting, which means that once it has gained access to the network it can

transmit the complete segment without releasing control, unless higher priority traffic

appears. This idea is extended for a node that has multiple highest priority frames to

send (not necessarily all to the same destination) in Contention Free Access. This allows

the node, once it has the channel, to transmit up to seven consecutive frames without

needing to perform the normal channel access procedures.

Encryption is provided using a 56-bit Data Encryption Standard (DES) scheme, and this

is done before the frame is segmented and transmitted. Details o f what is encrypted are

given in Section 3.3.2.1.

3.3.2.1 Frame Assembly

The frame assembly process in HomePlug is more complicated than that of Ethernet due

to the nature o f the PHY encoding scheme. This is because the amount o f data that can

be transmitted in a maximum length PHY frame is variable, and the MAC needs to take

account o f this when generating the frames for transmission. The sequence of events is

shown in Figure 3.7, and described in the paragraphs following.

Page 34

Chapter 3 — Background Theory

WAIT FOR NEW
DATA FROM

HIGHER LAYERS

CALCULATE PHY
PARAMETERS

CREATE FRAME(S)
NEEDED TO

TRANSMIT DATA

START CHANNEL
ACCESS

PROCEDURE

ENCRYPT DATA,
CALCULATE ICV

AND E-PAD

DETERMINE IF
MESSAGE NEEDS

SEGMENTED

Figure 3 .7 - Frame Assembly Sequence

Before the MAC begins the frame assemble process, it needs to know the parameters

used by the PHY during encoding, namely the modulation technique, number o f usable

carriers and the convolutional code rate. This information is held in the Tone Map,

which is obtained by the nodes involved in the transfer performing channel estimation,

prior to data transmission to determine the fastest stable transfer rate and is a MAC

management function (see Section 3.3.2.3).

When the MAC gets a request to send data (called a MAC Service Data Unit or MSDU),

it begins the segmentation and PHY frame assembly process. Segmentation might be

necessary if the MSDU (plus MAC level information) is larger than the maximum length

PHY frame. The MSDU consists o f the payload (the data from the higher layers), an

optional Virtual LAN (VLAN) tag for 802.8 compatibility aqd a Type/Length field,

along with the source and destination MAC addresses. The addresses are used to

determine the status o f the Tone Map, and are present in each frame transmitted. If the

Tone Map is invalid, then the MAC will send a Channel Estimation MAC Management

frame (see section 3.3.2.3 for information on MAC Management data).

Once the MAC has the information from the Tone Map, it will begin to assemble the

frame(s) needed to transmit the MSDU (also known as MAC Protocol Data Units or

MPDU). The first part o f this is to encrypt the MSDU (for the logical networks), and

Page 35

Chapter 3 - Background Theory

generate the Encryption Control, Encryption Pad (E-PAD) and Integrity Check Value

(ICV) fields. The Encryption Control field contains the 1-byte Encryption Key Select

field (which is the key used to encrypt the data) and the 8-byte Initialisation Vector field

(which is the “starting” value o f the encryption engine). These are needed by the

receiver to properly decrypt the MSDU. Because the encryption engine operates on data

in blocks o f 64-bits, the E-PAD field is used to ensure that the MSDU is a multiple o f

64-bits. The ICV is a 32-bit CRC that is calculated over the bits from the start o f the

Encryption control field to the end o f the E-PAD. This gives the “Service Block” which

is then segmented into the frames needed before being transmitted on the channel. The

structure o f this is shown in Figure 3.8 along with those fields that are encrypted and

those that are used to calculate the ICV. It also gives the size (in bytes) o f the various

fields.

t y p e /

9 BYTES
4

BYTES
04/1 2

BYTES BYTES

LENGTH 0-N
BYTES

0-7
BYTES

4
BYTES

ENCRYPTION
CONTROL

VLAN
TAG

MAC
MAN'MENT

*
PAYLOAD E-PAD ICV

1
ICV FIELDS

"" ENCRYPTED FIELDS ^

Figure 3.8 - Service Block Structure

Before the Service Block is segmented, the MAC has to calculate the number o f bytes

that can be transmitted in a PHY block (or more specifically, the number o f bits that are

transmitted in each PHY symbol). The HomePlug PHY transmits blocks o f 20 and 40

symbols1 (up to a maximum o f four 40-Symbol blocks or 120 symbols). Once these

calculations have been performed, the number o f frames required to transmit the Service

Block is determined. There is an additional overhead o f 19 bytes (composed o f the

frame header and the CRC) for each frame transmitted, which the MAC must take into

account when doing the segmentation.

Once the MAC has determined the number o f frames that are needed to send the service

block, it can begin to segment the message and generate the other fields that are needed

to create the complete frame. These are the Segment Control, Destination Address,

1 A symbol is the unit o f data that is transmitted on the PHY. It consists o f multiple bits, depending on

the parameters used in the PHY, up to a maximum o f 168 bits for HomePlug.

Page 36

Chapter 3 - Background Theory

Source Address, Payload, Block Pad (B-PAD — although this is only in the last frame of

the Service Block) and Frame Check Sequence (FCS). Figure 3.9 shows the layout o f

these fields (which is also the layout o f the frame that is sent to the PHY).

5 BYTES 6 BYTES 0 BYTES VARIABLE BYTES VAR
BYTES 2 BYTES

SEGMENT
CONTROL

DESTINATION
ADDRESS

SOURCE
ADDRESS

FRAME
BODY B-PAD FCS

FCS FIELDS

Figure 3 .9 - MA C Frame Structure

The Segment Control field is a 5-byte long field which contains the information needed

for the receiver to re-assemble the frame, and Table 3.3 shows the sub-components that

make up this field, their sizes and what they are for. The Destination and Source

addresses are standard 48-bit IE E E MAC addresses and are given to the MAC when it is

requested to send an MSDU. Payload is a variable field containing the portion o f the

Service Block that is being transmitted in this frame. B-PAD is only present in the last

(or only) frame of a segmented message, and is required to ensure that the data out o f the

MAC is o f sufficient length to fill a complete 40 or 20 symbol PHY block. The size o f

this is calculated at the same time as the parameters for the segmentation. The FCS is a

16- bit CRC that is used to determine if the frame has been received error free.

Field Definition Byte Bits Description
FPV Frame Protocol Version 0 7-5 Indicates the protocol version. Set to 000
RSVD Reserved 0 3-4 Reserved. Set to 00
MCF Multicast Flag 0 2 Indicates the MPDU contains a multicast

payload and the destination address indicates a
unicast address. This allows the Partial ARQ
to be used

CAP Channel Access Priority 0 1-0 The priority o f the message. It is repeated in
the End Frame Control

SL Segment Length 1
2

7-0
7-1

The number o f bytes in the Frame body,
exclusive o f the control information

LSF Last Segment Flag 2 0 Indicates current segment is last or only
segment o f the Service Block

SC Segment Count 3 7-2 The number o f the current segment. It is
incremented for each segment o f a Service
Block, and is used by the re-assembly process

SN Sequence Number 3 1-0 Identification number for each new Service
4 7-0 Block that is transmitted.

Table 3.3 - Segment Control Field Structure

The final part o f the frame that needs to be generated is the start and end delimiters.

These consist o f a preamble which allows the receiver PHYs to “wake-up” and to

Page 37

Chapter 3 — Background Theory

determine the channel conditions (although the preamble is in fact generated by the

PHY) and a Frame Control field. The Frame Control field is a 25-bit field with the

structure shown in Figure 3.10. It is encoded in the PHY as a 4-symbol block.

1 3 13 8
c
c TYPE VARIENT FRAME FCS

Start Frame Control
(TYPE = 000, 001)

End Frame Control
(TYPE = 010, 011)

Figure 3.10 - Frame Control Structure

The Start Frame Control gives the receiver the length o f the frame (in terms o f PHY

blocks) and the Tone Map index. The length o f the frame gives the nodes on the

network the information needed to determine the time for the Virtual Carrier Sense

(VCS) timer (along with the frame type, as this indicates if a response frame is needed).

The Tone Map Index allows the receiver to select the correct Tone Map to allow the

PHY to decode the incoming message. The CC field (present in all frame control)

indicates if the message is part o f a Segment Burst or Contention Free access. The

Frame FCS (FFCS) is an 8-bit CRC used to determine if the Frame Control was received

error free. The End Frame Control contains the priority o f the message (CAP) and an

invalid flag, which is set to 0 on transmit and if it is received as a 1 then the Frame

Control is invalid (although this would probably be picked up by the FFCS). The rest of

the End Frame Control is reserved, and is set to all 0’s. Figure 3.11 shows the frame

assembly process from the data received by the MAC to the data passed to the PHY.

8 5

FRAME LENGTH TONE MAP
INDEX

2 1 10

CAP
I
N
V

RESERVED

Page 38

Chapter 3 - Background Theory

SERVICE BLOCK
SEGMENTATION (OPTIONAL)

LAST MSDU (IF SERVICE BLOCK IS
SEGMENTED)

ONLY MSDU (IF SERVICE BLOCK
IS NOT SEGMENTED)

DATA

ENCRYPTION
CONTROL

FIRST MAC PROTOCOL SERVICE START END
UNIT (MSDU) (NB - ONLY IF FRAME SEGMENT CONTROL DA SA FRAME BODY 1 FCS FRAME

SERVICE BLOCK IS SEGMENTED) CTRL CTRL

l aSTART END
FRAME SEGMENT CONTROL DA SA FRAME BODY N B-PAD FCS FRAME
CTRL CTRL

Figure 3.11 — Segmentation Process

At the receiver side, the process is reversed. It will receive each frame from the PHY,

and determine if the frame is error free by checking the received FCS against the locally

calculated version, and checking both the start and end frame delimiters. There are also

certain fields within the delimiters and frame header that are reserved and these must be

the correct value. I f they are incorrect or the FCS is invalid, then the frame is in error.

Once the receiver has determined the status o f the frame, it will generate the appropriate

response frame. This can be one of three; Positive Acknowledgement (ACK), Negative

Acknowledgement (NACK) or Fail (FAIL). ACK indicates that the frame was received

without error, NACK indicates the frame was received with error and needs to be

retransmitted, and FAIL indicates that the receiver does not have sufficient resources to

process the frame (for example it has received a lot o f frames, and its buffers are full).

The response frames are the same as the start and end delimiters (i.e. they are made up o f

Preamble and a Frame Control), however with the appropriate value in the type field.

The format is shown in Figure 3.12.

1 3 13 8

TYPE VARIENT FRAME FCS

Positive Acknowledgement
(TYPE = 100)

Negative Acknowledgement
(TYPE = 101)

Figure 3.12

2 11

CAP RFCS

2 1 10

CAP R
T RFCS

Response Frame Control

Page 39

Chapter 3 — Background Theory

The “CAP” field is a copy of the “CAP” field in the Segment Control block and gives

the priority o f the transmitted message, “RT” is the Response Type and indicates if the

negative acknowledgement in an ACK (RT=0) or a FAIL (RT=1). “RFCS” is the

received Frame Check Sequence from the transmitted frame, and is used by the node

sending the original frame to ensure the response is for that frame.

They are transmitted at a specific time after the end o f the received frame (the Response

Interframe Space or RIFS), as shown in Figure 3.13. O ther nodes on the network know

if the frame that has just been transmitted will require a response (from the Frame Type

in the Start and End Frame Control), and will not begin the Channel Access process until

a Contention Interframe Space (CIFS) has passed. The diagram gives two views o f the

process. The upper view shows time progressing down the diagram, and the flow o f data

between the two nodes involved in the transmission. The second view shows the data as

it appears on the physical network (with time progressing left to right).

Page 40

Chapter 3 - Background Theory

NODE B

RIFS
(26m s)

START OF PRIORITY
RESOLUTION

START OF PRIORITY
RESOLUTION

DATA FRAME

RESPONSE FRAME

END OF DATA FRAME

RESPONSE FRAME

r* - ---------------------------

RESPONSE
PREAMBLE

j RESPONSE
i FRAME
i CONTROL

START OF PRIORITY
RESOLUTION

(26m s) (35 .84m s)

Figure 3.13 - Response Frame Timing

3.3.2.2 Channel Access

As mentioned above the MAC’s other function is channel access. This ensures all

stations access the channel in the proper manner and at the proper time. It also ensures

that access is fair. The basic access mechanism is Carrier Sense Multiple Access with

Collision Avoidance (CSMA/CA). The MAC uses two types o f carrier sense to

determine when the physical network is busy, Virtual Carrier Sense (VCS) and Physical

Carrier Sense (PCS). VCS is maintained by the MAC and is updated depending on the

control information that is received by the node. This uses the information in the Start

and End Delimiters to determine the time that the channel will be busy and the delimiter

type to determine what the next thing on the network will be (i.e. the start o f the channel

access or a response frame).

Page 41

Chapter 3 - Background Theory

Once the MAC has a properly formatted frame to transmit, which will consist o f a Start

Delimiter, Payload and End Delimiter, it will begin channel access. The flow chart in

Figure 3.14 shows the process pictorially, and it is described in the next paragraphs.

ARE THERE
HIGHER

PRIORITIES?

YES

NO

NO

IS THE BACK O F F \ YES
COUNTER ZERO? /

NOYES / IS THE CHANNEL
\ BUSY?

WAIT FOR A SLOT TIME
PERIOD

DETERMINE PRIORITY OF
OTHER NODES

SELECT RANDOM BACK
OFF TIME

DECREMENT THE BACK
OFF COUNTER

WAIT FOR VCS TO
INDICATE START OF

PRIORITY RESOLUTION

GAINED ACCESS TO
CHANNEL

TRANSMIT PRIORITY OF
MESSAGE

Figure 3.14 - Channel Access Process

The first step is to wait for the VCS timer to expire which indicates that the previous

frame (and any response) has been transmitted. At this point, the priority resolution

period can begin. Each node on the network should begin this at the same time, as they

Page 42

Chapter 3 - Background Theory

will have been monitoring the traffic on the network and will have set their VCS timers

accordingly. At the first Priority Resolution Symbol (PRS) symbol time, the stations will

transmit their first priority symbol and at the same time will receive the PRS symbols

transmitted by all the other nodes. Due to the way the symbols are modulated a PRS1

will “over-write” a PRSO, and so if a station transmits a 0 and receives a 1 it will know it

has lost the priority resolution, and will not transmit its second PRS symbol. Those

nodes that haven’t lost the first PRS symbol will transmit the second one at the correct

time, and again will receive what the other nodes have transmitted. If the node doesn’t

loose the second PRS symbol, it will begin the contention period, which is needed

because there could be more than one node with the same priority.

At the start o f the contention period, each node will chose a random value that is within

the contention window for that transmission (if this is the first attempt to gain channel

access for the frame) or continue with the value it had when it lost contention the last

time. The size o f the contention window depends on the priority o f the message, plus

the number o f times that the node has attempted to transmit the message and it has

failed (i.e. the node has actually transmitted the message, but the receiving station has

returned a NACK or FAIL response). During the contention period, each node will wait

for the Slot Time (35.84ps) and then get the status o f the channel from the PHY (via the

PCS). If the channel is busy, then the node has lost contention and must wait for the

next priority resolution period (as determined by the VCS) and the value it currently

holds for the contention counter should be stored for the next attempt. I f the channel is

idle, then the node will decrement the contention counter and wait for the next slot time.

I f the counter reaches zero and the channel is still idle, then the node has won the

contention period, and on the next slot time, it can begin to transmit the frame. The

timing for the full channel access procedure is shown in Figure 3.15. Again this is split

into two sections, with the upper section showing the interaction between nodes during

this process, and the lower section the data as seen on the channel.

Page 43

Chapter 3 - Background Theory

PRIORITY
RESOLUTION

CONTENTION
PERIOD

CIFS
(35.84ns)

(35.84ns)

(35.84ns)

SLOT
TIME

(35.84ns)
SLOT
TIME

(35.84ns)
SLOT
TIME

(35.84ns)

PRS0
PRS

1

RESPONSE FRAME

CHECK
CHANNEL

PRS0
PRS1

CIFS
(35.84ns)

(35.84ns)

(35.84ns)

SLOT
TIME

(35.84ns)
SLOT
TIME

(35.84ns)
SLOT
TIME

(35.84ns)

END OF LAST
TRANSMISSION

CHECK
CHANNEL

PRIORITY
RESOLUTION CONTENTION PERIOD

PR SO PRS1

CIFS
(35.84ms) (35.84ms) (35.84ms)

SLOT
TIME

(35.84ms)

SLOT
TIME

(35.84ms)

SLOT
TIME

(35.84ms)

Figure 3.15 - Channel Access Timing

3.3.2.3 MAC M anagement

The MAC has the ability to send and receive management information, which is done via

the MAC Management field of the frame. The field consists o f a 2-byte type field, a 1-

byte control field and then groups o f MAC Management Header, MAC Management

length and MAC Management data (collectively know as a MAC Management Entry).

The control field contains the number of MAC management entries. Table 3.4 indicates

the types o f management information that can be transmitted. The last column indicates

if the MAC Management can be sent along with the normal data frame.

Page 44

Chapter 3 - Background Theory

M-TYPE Value Interpretation Prepend to host
frame

0 0000 Request Channel Estimation Allowed
0 0001 Channel Estimation Response Allowed
0 0010 Vendor Specific Allowed
0 0011 Replace Bridge Address Only
0 0100 Set Network Encryption Key Allowed
0 0101 Multicast with Response Only
0 0110 Confirm Network Encryption Key Allowed
0 0111 Request Parameters and Statistics Allowed
0 1000 Parameters and Statistics Response Allowed
0_1001 - 0_1 111 Reserved on transmit, ignore MME on

receive and continue processing service
block

No

1_0000 - 1_1 111 Manufacturer-specific. Never transmitted
on medium

No

Table 3.4 - M A C Management Entries

3.3.3 H o m e P l u g P H Y

The HomePlug PHY uses Orthogonal Frequency Division Multiplexing (OFDM) as the

modulation scheme, with added error correction blocks for both the Frame Control and

Payload. The basic block diagram of the transmitter is shown in Figure 3.16.

FRAME CONTROL
(from MAC)

POWER
LINE

PAYLOAD
(from MAC)

FRAME
CONTROL

FEC

DATA
FEC

ANALOGUE
FRONT END

OFDM
ENCODER

Figure 3 .1 6 - PH Y Transmitter Block Diagram

HomePlug has a bandwidth o f 25MHz that is split into 128 evenly spaced sub-carriers

(i.e. each sub-carrier is 195,312.5 Hz apart), however only those between approximately

4MHz and 20MHz are used to carry data (more exactly frequencies 23 to 106). This

gives a maximum of 84 carriers that can be used for data transmission. N ot all o f these

are used however, as some are permanently blocked to allow the system to meet FCC

emission regulations [80]. The blocked frequencies are given in Table 3.5, along with the

reason that they are blocked. The most common reason is to stop interference with

HAM radio bands.

Page 45

Chapter 3 - Background Theory

Carrier Frequency
(MHz)

Reason

13 7.03125 40m Amateur Radio Band
14 7.2265625 40m Amateur Radio Band
29 10.15625 Fixed Applications (i.e. public phone lines) Band and

30m Amateur Radio
49 14.0625 20m Amateur Radio Band
50 14.2578125 20m Amateur Radio Band
51 14.453125 Fixed Applications, and close to 20m Amateur Radio
69 17.96875 Aeronautical Mobile/Emergency Band
70 18.1640625 17m Amateur Radio Band

Table 3.5 - Blocked HomePlug Frequencies

Each sub-carrier can be modulated using one o f four schemes: Binary Phase Shift Keying

(BPSK), Differential Binary PSK (DBPSK), Differential Quadrature PSK (DQPSK) and

Robust OFDM (ROBO). In OFDM all sub-carriers must be modulated using the same

scheme in any one transmission. There is a version o f OFDM called Discrete Multi-

Tone or DM T that allows each sub-carrier to use a different modulation scheme in a

single transmission, which leads to more complex encoder and decoder circuitry. O f the

modulation schemes listed above, BPSK is only used for the frame control and the

others only for payload. The choice o f modulation scheme gives the number o f bits that

will be transmitted per sub-carrier, and is given in Table 3.6.

Modulation Mnemonic Bits Per Carrier
Binary Phase Shift Keying BPSK 1
Differential Binary Phase Shift Keying DBPSK 1
Differential Quadrature Phase Shift Keying DQPSK 2
Robust OFDM ROBO Va

Table 3 .6 - Bits Per Carrier fo r HomePlug Modulations

3.3.3.1 Frame Control FEC

Due to the importance o f the Frame Control data (in that it is used by all nodes on the

network to determine the network status) it has a very robust FEC, which consists o f a

Product Encoder and an Interleaver, which are shown Figure 3.17

Page 46

Chapter 3 - Background Theory

FRAM E C O N TR O L
(2 5 BITS)

MAXIMUM 3 3 6
BITS100 BITSP R O D U C T

EN C O D ER

FRAM E
C O N TR O L

INTERLEA VER

CONTROL
(from MAC)

LINE

(from MAC)

FEC

FEC

ANALOGUE
FRONT

END

Figure 3.17 - Frame Control FEC Block Diagram

The Product Encoder uses a (100, 25) product code to create 100 encoded bits from the

25 input bits. This is done by placing the input data into a [5x5] matrix and calculating

row and column parity using a shortened extended (10,5) I lamming code. This is shown

in Eigure 3.18, along with the generator matrix that is used.

|5 x 5 |

Pc
|5 x 5 |

Pr
|5 x 5 |

|5 x 5 |

P R O D U C T E N C O D E R
O U T PU T

I =
|5 x 5 |

10 15 110 115 120

II 16 111 116 121

12 17 112 117 122

13 18 113 118 123

14 19 114 119 124

C O N T E N T S O F INFO RM ATIO N
MATRIX

(FRA M E C O N T R O L DATA)

G =

0 0
I 0
0
0 0
0 0

0 1
I 1
1 1
1 0
0 0

1 I
1 0
0 0
0 1
1 1

G E N E R A T O R MATRIX

Figure 3.18 - Product Encoder Matrix

The second stage o f the FEC is an interleaver, which takes the 100 bits from the product

encoder, and interleaves them so that logically adjacent bits aren’t transm itted physically

adjacent. This improves the systems robustness against burst errors. The interleaver also

places the 100 interleaved bits over 4 O FD M symbols. This introduces yet another level

Page 47

Chapter 3 B ackground Theory

o f redundancy as each bit can potentially be transmitted 4 times. The symbols are placed

in such a way so that the same bit isn’t transmitted on the same carrier in each symbol.

Figure 3.19 shows how the interleaved data is spread over the four O FD M symbols.

0 1 2 3 83 CARRIER #

V i[0] Vim Mask V i[2) • • • • Vi[wi SYMBOL 1

0 1 2 3 83 CARRIER#

Vi[251 V i[26 l Mask V i[27] • V i[99] V i [0] • V i[X] SYMBOL 2

0 1 2 3 83 CARRIER #

V i[5 o i V i{5 i] Mask Vi[521 • V i[9 9] V i[0] • ViM SYMBOL 3

0 1 2 3 83 CARRIER#

V i(75] V i(76] Mask V i[77] • V i[99] V i(0) • V i [zl SYMBOL 4

Figure 3.19 - Frame Control Interleaver Bit Spreading

3.3.3.2 Payload FEC

The payload FEC is based around a Reed-Solomon encoder and a Convolutional

encoder, along with a bit puncturing block (to give a 3A-rate convolutional code) and an

interleaver. Depending on the m odulation technique used by the PHY, one o f two

interleavers will be used. The block diagram is shown in Figure 3.20.

FRAME

SOLOMON
ENCODER

PUNCTURING INTERLEAVERCONVOLUTIONAL
ENCODER

Figure 3.20 - Payload FEC Block Diagram

The first stage o f the encoding process is a scrambler. This is used to make the data

appear more “random ” by exclusive-oring the incoming data stream with a pseudo

random bit stream. This is done to im prove the error correcting capability o f the RS and

convolutional encoder by getting rid o f long streams o f 0’s and l ’s that might be present

in the payload. The block diagram for the scrambler is shown in Figure 3.21.

Page 48

Chapter 3 - Background Theory

SCRAMBLED
DATA OUT

Figure 3.21 - Scrambler Block Diagram

The next stage o f the encoding process is the Reed-Solomon (RS) encoder. The RS

encoder is a block-based encoder, which uses symbols2 o f 8-bits to generate parity data

that can be used to correct errors. As the code uses 8-bit symbols, the incoming bit

stream is grouped into bytes and these are then used in the encoder. They symbols are

part o f a Galois-field (GF), which has a generator polynomial:

f { x) = xs + x 4 + x 3 + x 2 +1.

The RS encoder has two modes, one for ROBO modulation and one for DBPSK and

DQ PSK modulation. They use a different parity code generator, and are capable of

correcting a different number o f errors. Table 3.7 summaries the key differences and the

basic block diagram of the RS encoder is shown in Figure 3.22.

Modulation Primary RS
Code

Parity
Symbols

Max. Error
Correcting

Min. RS
Symbols3

Max. RS
Symbols

DBPSK,
DQPSK

RS(255,239) 16 8 23 238

ROBO RS(255,247) 8 4 31 43
Table 3 .7 - Reed-Solomon Modes

0 (1)

.PI*)

P(0)

C(X)

Figure 3.22 - Reed-Solomon Encoder Block Diagram

2 These symbols are different to the OFDM symbols introduced previously

3 The RS Encoder used in HomePlug is either a shortened RS(255,238) or RS(255,247) encoder and the

Min and Max RS Symbols in the table give the range o f RS symbols that will be passed to the encoder

(below the full number o f symbols the encoder can handle)

Page 49

Chapter 3 - Background Theory

The next stage is the Convolutional Encoder, which is a standard Vi-rate, K=7 encoder.

This means that for every input bit, two bits are output and the value o f these depends

on the last seven inputs. The block diagram for the encoder is shown in Figure 3.23. At

the end o f the data stream, the encoder is “flushed” with six zero tail bits, which returns

the encoder to its initial state. This improves the performance o f the Viterbi decoder.

x OUTPUT
DATA

INPUT
DATA

Y OUTPUT
DATA

Figure 3.23 - Convolutional Encoder Block Diagram

If the channel conditions are good enough, the ’A-rate data from the convolutional

encoder can be “punctured”, which removes bits to reduce the overhead o f the encoding

thereby allowing more data to be transmitted. This produces a 3A-rate code although the

trade-off is a reduced error correcting ability. Figure 3.24 shows the sequence o f bit

removal that occurs in the puncturer.

S O U R C E DATA

EN C O D ED
DATA

Xo X, X2 X3 X4 Xs Xs x 7 Xs

Vo V, y 2 y 3 Y4 Y5 Y6 y 7 Ys

P U N C T U R E D
BIT

\ 7

PU N C T U R E D DATA Xo Y0 Y, x2 X3 y 3 y 4 Xs Xs Ys y 7 X8

Page 50

Chapter 3 — Background Theory

Figure 3.24 - B it Puncturer

The final stage o f the Data FEC is the interleaver. There are two interleaving algorithms,

one for ROBO data and one for non-ROBO data. Both are described as row/colum n

block interleavers, as they take the incoming bit stream and place it in a matrix in rows,

and read it out in columns. After each column, a shift o f 8 is applied. The number of

columns is 10 for a 20-Symbol PHY block (or a ROBO block) and 20 for a 40-Symol

PHY block. The number o f rows is equal to twice the number o f usable carriers. The

ROBO interleaver adds additional redundancy by outputting the interleaver matrix four

times, and shifting the starting output row between each read.

3.3.3.3 OFDM Encoder

The OFDM encoder consists o f a Mapper, an Inverse FFT, a Cyclic Extender and a

Pulse Shaper. Figure 3.25 shows the structure o f the encoder.

CONTROL
(from MAC)

POWER
LINE -

PAYLOAD
(from MAC)

FEC

FRAME
CONTROL

FEC

ANALOGUE
FRONT

END

OFDM
ENCODER

PULSE
SHAPERMAPPER INVERSE

FFT
CYCLIC
PREFIX

Figure 3.25 - OFDM Encoder Block Diagram

The first stage o f the OFDM encoding process is the Mapper. This takes the bit stream

from either the Frame Control FEC (for the frame control data) or the Payload FEC (for

the payload data) and maps it onto the constellations that are used for the transmission.

It also ensures that those frequencies that cannot be used either through regulation (i.e.

those in the Tone Mask) or from the channel estimation (i.e. those in the Tone Map) do

not carry data. In the case o f the carriers that are blocked in the Tone Mask, the mapper

Page 51

Chapter 3 - Background Theory

will insert a phase o f zero and a magnitude o f zero (ensuring no power is transmitted on

those frequencies). For the carriers that are blocked in the Tone Map, the mapper will

insert a pseudo-random binary value, which will be mapped in the same way as the

normal data. Only DBPSK and DQPSK modulations obey the Tone Map. The other

function o f the mapper is to add a reference phase. In the case o f BPSK this is the same

phase for every sub-carrier. For the other modulations, the reference phase is the phase

o f the previous symbol at that frequency. The first symbol will use the last Frame

Control symbol’s phase as its reference. The output o f the Mapper is the input data

arranged into OFDM symbols, ready for encoding through the IFFT.

The IFFT takes the mapper output (which is arranged as symbols) and places it into the

correct frequency “bins” to ensure that the data is transmitted at the correct frequency.

In HomePlug this is frequency bins 24 to 106 (or frequencies 4.47MHz to 20.7MHz). It

will then perform a 256-point IFFT on this data, which will give an output o f 256

samples per symbol.

The 256-samples out o f the IFFT are then extended to 428 samples, by taking the last

172 samples o f each symbol and placing them at the beginning o f the symbol. This is

done to reduce the effect o f inter-symbol-interference (ISI) as by choosing a cyclic

extension that is longer than the longest delay in the channel, it ensures that any

interference from the previous symbol is minimised.

The final stage is pulse shaping, which takes the 428 samples from the cyclic prefix block,

and applies a Raised-Cosine shape to the pulses. The samples are then sent to the

analogue front end before being transmitted on the power-line.

Page 52

Chapter 3 — Background Theory

3.4 C h a n n e l M o d e l

In order to verify the operation o f the networking system under realistic conditions, a

model o f the channel is required. This has two main components, a transfer function

and a noise model. The transfer function describes how the signal is attenuated as it

travels down the wire. The noise model describes the extra interference that is

introduced to distort the transmitted signal between source and destination. These are

described in the next two sections. Figure 3.26 shows the basic channel model [81, 82,

83, 84].

H(f)
(C h an n el

T ra n s fe r function)
R EC EIV E RTRA N SM ITTER

N oise
G e n e ra to r

Figure 3.26 - Channel M odel

3.4.1 T r a n s f e r F u n c t io n

This can range from a simple point-to-point single path model, to a more complex multi

tap, multi-path model. When modelling a wire or cable, the general method used is a

two-port model, which is shown in Figure 3.27 [85].

AAA
R(f)Ad l(f)Ad

G(f)Ad

Figure 3 .27 - Two-port M odel

Page 53

Chapter 3 - Background Theory

This describes the length of cable in terms o f its characteristic Impedance (R(f)),

Inductance (1(f)), Capacitance (C(f)), and Reactance (G(f)). These are dependant on the

frequency o f the signal being transmitted. They also depend on the length o f the cable

(Ad). A set o f equations describing these parameters in terms o f their physical properties

is given below [85].

G(f) =

™ \ a c

71(7

cosh 11 —
2 a

S im

L{ f) = — cosh_,(— | H i m
n 12 a

C(f) =
TIE

cosh'
F / m

Where pc — Permeability o f conductor

a c = Conductivity o f conductor

a = Radius o f conductor

D = Distance between conductors

p = Permeability o f dielectric

a = Conductivity o f dielectric

£ = Permittivity o f dielectric

From the above equations two important parameters that describe the cable can be

determined, the propagation constant, y, and the characteristic impedance, Z 0.

r = J(R + jcoL\G + jeoC) = a + j f l

_ \ {R + ja>L)
Z o _ r i G + > c)

From these the attenuation o f the cable can be calculated [86]

A(f , d) = e~aif)d where a = Re{/(/)}

From this the multi-path transfer function o f a network can be found

(= 1

Where

N is the number o f paths to calculate

Page 54

Chapter 3 - Background Theory

g is a weighting factor for the path, dependant on the nodes its passes through

A. (f,dj) is the attenuation factor for the path

Ti is the delay o f the path and can be determined using

permittivity o f dielectric and c0 is the speed o f light.

, where er is the

This gives the transfer function for a length o f wire. Using a simple network, as shown

Figure 3.28, the transfer function from A to C can be calculated [83, 84, 85]

cA B
t,b

Figure 3.28 - Simple Network M odel

Assuming A and C are matched, ZA = ZL1, Zc = Z L2 and therefore don’t cause reflection.

The transmission and reflection coefficients, used to calculate g;, can be defined as

^(ZL2 II ZL7̂)—ZiA ^
r.j. =

r3b =

{ {Zl2 II Z L3) + Z

f (z u II z j - z
(ZL2 || ZLI) + ZV

(7 - 7
^ D L3

7 + 7̂L3 y

B I r\b

L3 y

[NB the | | indicates a voltage divider operation]

The paths through the network (and their lengths) can be defined as

No, / Path Weighting F actor ,# Length, rf,
1 A —» B —» C t/b h + h
2 A —̂ B —> D —̂ B —> C tlb ' 3̂d t3b // + 2 -13 + I2

N A B (-> D -» B)n —» C tlb ' f3d'(f3b ■1'3C/)(N2) ■t3b I, + 2(N-1) -13 + I2

Table 3.8 - Multi-paths Through Network M odel

Page 55

Chapter 3 - Background Theory

Once these have been calculated, the transfer function can be determined for the link

between A and C, which can then be used to determine the impulse response o f the

channel, which gives the filter-taps required to model the channel as an FIR filter. This

method can be extended to create more complicated network layouts.

3.4 .2 N o is e M o d e l

There are multiple sources o f noise in the power-line, and they exhibit different

characteristics, however they are all additive (i.e. they will add together to give the final

noise figure as seen at the receiver side). Figure 3.29 shows this in relation to the basic

channel model (Figure 3.26) [87].

RECEIVERTRANSMITTER

Noise
G enerator

H(f)
(Channel
Transfer
function)

5. Asynchronous
Impulse Noise

4 . Periodic
Impulse Noise,
synch to mains

1. Coloured
Noise

(Background)

3. Periodic
Impulse Noise,
asych to mains

2. Narrow Band
Noise

Figure 3.29 - Noise M odel

The 5 types o f noise are summarised in Table 3.9.

Number Type Description
1 Coloured Noise This is general background noise, caused by many different low-

power noise sources, and has a very low Power Spectral Density
(PSD).

2 Narrow Band
Noise

Sinusoidal signals, mainly caused by broadcasted radio signals.

Page 56

Chapter 3 - Background Theory

Number Type Description
3 Periodic Impulse

Noise,
asynchronous to
mains

Periodic impulse noises, caused by switching power supplies, with a
repetition rate between 50kHz and 200kHz.

4 Periodic Impulse
Noise, synchronous
to mains

Periodic impulse noises, with a repetition rate equal to the mains
frequency. Generally short duration (a few microseconds) and are
caused by power supplies operating synchronously with the mains
cycle (e.g. dimmer switches)

5 Asynchronous
Impulse Noise

Random switching transients in the network, have duration o f some
microseconds up to a few milliseconds. These can have quite large
noise values, sometimes up to 50dB above the background noise.

Table 3 .9 - Noise Characteristics [86]

Noise types 3-5 can be thought o f as a noise source, which itself is affected by its own

channel, so in the case o f the power-line, something like a induction m otor will introduce

noise, however this will be attenuated in the same way as the data signal as it travels from

the source to the receiver. This will be a different transfer function to that used by the

data (unless the noise comes from the same location as the data signal). The extended

version o f the noise model is shown in Figure 3.30 [87].

NOISE
SOURCE

NOISE
SOURCE

NOISE
SOURCE

NOISE
MODEL

NARROW BAND
NOISE

COLOURED
NOISE

(BACKGROUND)

Figure 3.30 - Extended Noise Model

Various methods can be used to describe the noise sources, and for the periodic a

common method is Markov models. However these results need empirical evidence to

back them up (i.e. experiments carried out to provide the data). Many different people

have carried out these experiments; however, they have not supplied enough data to re

create a model o f the noise. However the background noise which is fairly simple can be

modelled using the following equation

A r(/) = 10(*-3,5'10"’/>(T7j

Page 5 7

Chapter 3 - Background Theory

This allows a very simplified noise model to be added to the transfer function described

above, to create a complete channel function.

Page 58

Chapter 3 — Background Theory

3.5 S u m m a r y

In this chapter, the necessary background required to understand the rest o f the work has

been presented. It started with a summary o f networking in general, showing the

hierarchical, layered approach that is the way in which networks have operated since they

were introduced. This allows a focus to be made on a specific area, and also allows any

physical network to communicate with a different physical network, for example an

Ethernet network can communicate with a wireless network.

The HomePlug powerline standard was then introduced, and the operation o f the Media

Access Layer (MAC) and Physical Layer (PHY) was described. The HomePlug MAC

uses a CSMA/CA scheme for channel access, with an added priority scheme to allow for

higher priority traffic. The PHY uses OFDM to encode the data, which makes it robust

in the powerline environment.

The chapter closed with a look at a possible channel model, based on an attenuation

function and injected noise models. The figures and equations presented are based on

others work and no experiments were carried out to back these up.

Page 59

Chapter 4 - Modelling Environment Requirements
and Control

Chapter 4 - Modelling Environment Requirements

and Control
Describes the model that was developed. It first gives the requirements o f the model

(based on the discussions o f previous chapters), and then describes the structure o f

the model, and how it is controlled. It also introduces the terminology used to

describe aspects o f the model.

4.1 In t r o d u c t io n

This chapter builds upon the discussion o f previous chapters and introduces the solution

that was developed to solve the problem of modelling home networks. The

requirements o f such a system (based on the discussions o f Chapter 2) are given,

followed by the top-level model structure and the details o f how the model operates.

The data processing elements o f the model (i.e. those parts that change the binary into

properly formatted HomePlug frames) are described in Chapter 5, with this chapter

concentrating on the control o f the execution o f the data processing.

The requirements o f the system are given in Section 4.2, the main requirements being the

model is a simulation-based, event-driven system. This premise is used to develop the

top-level modelling structure that is described in Section 4.3, and the event system

described in Section 4.4. Section 4.4 also describes how the event system controls the

simulation o f the model, along with the description o f the System Controller given in

Section 4.5. These two things control the Node-Threads (a definition o f which is given

in Section 4.3) which in turn run the data processing algorithms that implement the

HomePlug protocol.

Page 60

Chapter 4 - Modelling Environment Requirements
and Control

4.2 R e q u ir e m e n t s

From the discussion in Chapter 2, it can be seen that there are many approaches to

solving this problem. Therefore before describing the solution that has been developed,

it is necessary to state the problem that is being solved as well as the requirements o f the

solution.

The thesis outlines a development tool to explore System-on-Chip (SoC) based home

networking solutions which brings together network modelling and hardware modelling.

The development system assists the designers in two ways:

1. How does the networking hardware (i.e. the components on the SoC) interact,

and what are the issues o f changing the algorithms.

2. How do the nodes on the network interact, as the traffic patterns are different to

those found on traditional (office-based) networks, as there will be a greater

amount o f streaming media.

From the discussions in previous chapters a basic set o f requirements was developed.

These were split into two areas, mandatory requirements and non-mandatory (i.e. “nice-

to-have”) requirements. The mandatory requirements are given in Table 4.1, and the

non-mandatory requirements in Table 4.2.

Ease o f Use As the model will be used by non-programmers, it

needs to be easily understood so that they can easily

explore alternative solutions. This is more important

for the protocol specific aspects o f the design rather

than the general message handling parts, however if

new protocols are to be developed then this part will

also need to be easily understood.

Event Based By using events to manage timing o f the model, the

control will be more realistic [69], and a full sequence

of events will not need to be pre-calculated at the start

of the simulation.

Simulation Based By simulating the algorithms rather than using an

Page 61

Chapter 4 — Modelling Environment Requirements
and Control

analytical approach, the results will more closely match

those from a real system [49]. This also makes it easier

to explore alternative algorithms and reduces the time

needed to convert the model to actual hardware.

Multiple Nodes The sort o f networks that are being explored are likely

to have many nodes attached (say up to 20) and

therefore the model has to take into account the effect

this will have.

Multiple Levels As there are up to seven different levels to a

networking system, the solution needs to model these

(to a greater or lesser degree), and the effect they will

have on the data that is being transmitted. For this

model, the mandatory networking layers that need to

be modelled are the Physical and Data-Link (or Media

Access if the IEEE naming convention is used), along

with how these interact with the rest of the node (i.e.

the interaction with the other network protocol layers

running on the SoC).

Data Metrics In order to provide useful feedback on the design

decisions taken in the various components o f the

network (such as alternate algorithms or different

implementations o f the protocol) data transfer metrics

are needed. These will give information on throughput

of the system, frame latency, etc.

Table 4.1 - Modelling System Mandatory Requirements

Multiple Protocols As the home network solution is unlikely to rely on a

single protocol, it is important that the model

developed can allow a multi-protocol environment to

be explored. The solution given here focuses on a

HomePlug based system.

Usable with Hardware If the model can be integrated within the actual

Simulators hardware simulation environment then this will allow it

to be used as a reference model to aid verification, or

Page 62

Chapter 4 - Modelling Environment Requirements
and Control

allow design engineers to use it to generate data as

input to the part they are developing (for example using

the MAC model to create accurate frames as input to a

PHY design).

Table 4 .2 - Modelling System Non-Mandatory Requirements

Given these requirements, there is the important choice o f implementation language. An

initial Physical layer model was developed in Matlab; however this was slow and didn’t

allow the modelling of the interaction between multiple nodes within the system. Also it

would have been difficult to use this within hardware simulators. There are many

possible languages that could have been chosen, such as C, C ++, Java, System C,

BONeS, NS2, etc., however the model was developed using C with the pthreads library

[90]. The pthreads library was used to provide the event handling/concurrent features

required. The decision was taken to implement the model in C as this was the most

readily available language and the one the developer was most familiar with. It is also

highly portable, as all that is needed is a C compiler and the pthread library. A Linux

based PC with GCC was used as the development machine.

Page 63

Chapter 4 - M odelling Environment Requirem ents
and Control

4.3 T o p L e v e l M o d e l St r u c t u r e

The model consists o f a System Controller, multiple nodes and a channel. Figure 4.1

shows these com ponents and how they interact.

© S y s te m C on tro lle r

zy

zz
S oC

z Z
S oC

zz
S o C

MAC MACMACN o d e 1 N o d e 2 N o d e n

PHYPHY

zy
PHY

zy

© C h a n n e l

D a ta Flow

4 > C on tro l Flow

Figure 4.1 - Mode! Structure

To ease confusion, a set o f terminology to describe the various parts o f the model is

introduced. Table 4.3 gives the terms used to describe elements within the model, and

the num bers highlight these in relation to Figure 4.1.

Element Number Description
System Contro lle r 1 C on tro l l ing thread o f the model.
N o d e 2 A “ D ev ice” on the ne tw ork, which consists o f a

SoC, M A C and PHY
N ode-T h read 3 Sub-co m p o n en t o f the node. Independent thread

that perform s the tasks o f the node. It’s one o f
Soc, M A C or PHY.

C hannel 4 T ransm iss ion m edium , consis t ing o f a single
T ransm it channe l- th read and m ultiple Rece ive
channel- threads .

Table 4.3 - Model Terminology

The System Controller, the node-threads and the channel-threads all run as independent

threads. This allows them to operate in “parallel” (although there will only be one thread

Page 64

Chapter 4 - Modelling Environment Requirements
and Control

running at any single time on a single CPU computer). The reason for this is to allow the

node-threads to be performing different tasks simultaneously. For example, the PHY

node-thread could be decoding a frame, whilst the MAC node-thread is assembling the

next one for transmission.

There are two aspects to the model; the protocol specific part and the system interaction

part. The protocol part is responsible for encoding and decoding the messages that are

being sent through the system according to the details o f the protocol (see Section 4.3

for details o f this for the HomePlug protocol). The system interaction part is responsible

for ensuring the various events/actions happen at the correct “time”, so that the model

will reflect a real-life system.

The System Controller is responsible for ensuring events occur at the correct time. It

also starts and stops the nodes (or more correctly the node’s node-threads). The System

Controller is actually the “main” function (or more exactly is a while loop within the

“main” function), and one o f its tasks is to read and parse the command file at start-up.

This file gives the instructions to be carried out for the test/simulation that is being run.

The format o f each line in this file, which is parsed when the is run, is

< In s t r u c t io n > < T i m e > < O p t i o n s >

The instructions, and a description, are given in Table 4.4. The options depend on the

instruction, and these are also given in Table 4.4.

Instruction Description Options
CM DSTOP Stops the simulation run. Is

always the last command in
the file

None

CM DADDNODE Adds a new node to the
model, and starts it

<Node ID Number> <RX Buffers> <RX
Buffer Prioritys> <TX Buffers>

CMD_DELNODE Stops/deletes an existing
node from the model

<Node ID Number>

C M D T X Initiates the transmission of
a message from one node to
another

<Source Node> <Destination Node>
<Priority> <Length>

CMD_TX_STREAM Initiates the transmission o f
a data stream

<Source Node> <Destination Node>
<Priority> <Length> <Data Rate>

CM DNOCHAN Indicates that no channel
characteristics are to be
used

None

CMDJJSECHAN Use a specified set o f
channel characteristics

<Channel Characteristic Directory>

Table 4.4 — Model Command File Instructions

Page 65

Chapter 4 - Modelling Environment Requirements
and Control

The CMD_TX_STREAM Command is used to model data sources (traffic models).

The command file parsing function uses the data about the length and data rate and

converts it into a number o f “TX” events, sufficient to transmit the data at the rate

specified.

A full description o f how the System Controller operates is given in Section 4.5.1.

A potential use o f the modelling system is to allow engineers to explore various

alternative implementations/algorithms, and compare their effectiveness (using what

ever criteria is relevant, i.e. speed, area o f the hardware, power consumption, accuracy,

etc.). This could potentially have a big impact on the final hardware, and it is important

to explore the alternatives before the design progresses to the hardware implementation

stage. An example o f this is given in Chapter 6, where the multipliers used in the PHY

are replaced with logarithmic multipliers. These sacrifice accuracy for area and speed

improvements [91]. A further example is given using different buffer sizes and seeing

the effect this has on latency.

Page 66

Chapter 4 - Modelling Environment Requirements
and Control

4.4 M e ssa g e / E v e n t Sy st e m

4.4.1 E v e n t S y s te m O v e r v ie w

To allow the various node-threads within the model to communicate with each other

(where they are permitted to) an event handling mechanism was developed which allows

events to be passed between the node-threads and between the controller and the node-

threads. The events that can be handled along with the sequence o f events are described

in the first part o f this section. The second part details the mechanisms that are used to

send the events.

Figure 4.2 shows the flow of events between the node-threads, and between the node-

threads and the controllers. Nodes cannot communicate events direcdy to each other, as

all transmissions o f this sort have to follow the HomePlug rules. In this case the

“events” are passed as data through the channel, and the only valid event is

“NEW _DATA”. The events that are sent between components are given in the next

section.

Page 67

Chapter 4 M odelling Environm ent Requirem ents
and Control

— System SoC

-SoC » System

i — System * MAC

MAC —* System

System — PHY

System • RxC — ►

T ran sm it C h an n e l

R e c e iv e C h an n e l

S y s te m C ontro ller

Figure 4.2 - Event Communications

The features o f the event system are listed below:

• Each node-thread has its own time, controlled by the incoming events.

• Each node-thread holds a list o f expected events, based on past events, to ensure

that “unknow n” events are processed at the correct time.

• It an unknown (unexpected) event occurs, then the node-thread will decide if the

event is processed or stored.

• Most events have associated future events, for example, instructing the MAC to

assemble a trame results in a channel access event being expected by the

controller.

• M ost events cause the node-thread to process some data, which will take an

associated am ount o f time, and this will be reflected in the next event.

Page 68

Chapter 4 - Modelling Environment Requirements
and Control

4.4 .2 S y s te m E v e n t s a n d S e q u e n c e s

A description o f all the events used within the system is given in Table 4.5. The actions

that are taken when these occur are given in Sections 4.5 and 4.6. The table is grouped

into the events that occur between the various components within the model, as shown

in Figure 4.2.

Event Description
System to SoC Events
STOP Stops the SoC Node Thread
START Starts and initialises the SoC Node Thread
NEW_FRAME Requests the SoC to begin the message/frame assembly

process by telling the MAC to begin frame assembly
System to MAC Events
STOP Stops the MAC Node Thread
START Starts and initialises the MAC Node Thread
SLOTTIME Tells the MAC to check the status o f the channel during the

random back off process
PRS Tells the MAC to initiate the Priority resolution process
System to PHY Events
STOP Stops the PHY Node Thread
START Starts and initialises the PHY Node Thread
TRANSMIT Tells the PHY to transmit the next OFDM symbol on the

channel
System to Transmit/Receive Channel
STOP Stops the transmit/receive channel
START Starts and initialises the transmit/receive channel
LOAD Tells the channel to load the filter coefficients from the filter

data structure
SoC to MAC Events
AHB Indicates a transfer over the AHB Bus
APB Indicates a transfer over the APB Bus
MAC to SoC Events
AHB Indicates a transfer over the AHB Bus
INT Indicates an interrupt from the MAC to the SoC (for a new

message reception)
APB Indicates a transfer over the APB Bus
MAC to PHY Events
PRS Tells the PHY to transmit a PRS symbol over the channel
CHAN STATE Tells the PHY to check the status o f the channel
NEW FRAME Tells the PHY that there is a frame ready for encoding
PHY to MAC Events
PRS Result of the PRS symbol - indicates to the MAC if the node

has won or lost that symbol
CHAN STATE Tells the MAC what the status o f the channel is
GOT FRAME Tells the MAC that the PHY has a decoded frame
PHY to Transmit Channel Events
N EW D A TA Tells the Transmit Channel that there is a new symbol ready

for filtering and transmission
Transmit to Receive Channel Events
NEW DATA Tells the Receive Channel that there is a new symbol ready

for filtering and transmission to the PHY
Receive Channel to PHY Events
NEW DATA Tells the PHY that a new symbol has been received

Page 69

Chapter 4 - Modelling Environment Requirements
and Control

Event Description
PHY to System Events
READY Tells the System Controller that the PHY has encoded the

frame and is ready to transmit it at the correct time
LASTD ATA Tells the System Controller that the next symbol is the last for

this frame
RXD Tells the System Controller that the PHY has received the

current OFDM symbol
MAC to System Controller Events
SLOTTIME Tells the System Controller what the outcome o f the random

back off was for the MAC concerned
A D D B O Tells the System Controller that the node didn’t loose priority

resolution and so needs to begin the random back off
GOTFRAM E Tells the System Controller the MAC has a frame, and needs

to transmit a response
A D D P R S Tells the System Controller that the MAC has a frame to

transmit and needs a PRS event at the time specified
SoC to System Controller Events
GOT FRAME Tells the System Controller that the SoC has received a frame

Table 4.5 - Modelling System Events

These events allow the model to initiate and control transmission of frames/data

between nodes. There are five phases needed to achieve this, and each has its own

sequence o f events, which are described here. The five phases are:

1. Transfer and encoding o f the data to the MAC

2. The channel access procedure

3. Transfer of the frame to the PHY, encoding and transmission over the channel

4. Decoding o f the frame and generation o f the response frame

5. Transferring the data to the receiving SoC

The transfer o f the data to the MAC (phase 1) is started by the Controller sending a

NEW_FRAME event to the SoC, which then gets the data to be transmitted, and sends

it to the MAC via the APB/AHB. When the MAC has assembled the PHY frames, it

will send an ADD_PRS event to the Controller so that at the correct time, the MAC can

initiate the channel access procedure. Figure 4.3 shows this sequence.

Page 70

Chapter 4 - M odelling Environm ent Requirem ents
and C ontrol

N E W _F R A M E A P B R e p e a te d Until C o m p le te
^ M e s s a g e H a s B e e n

T ra n s fe r to M ACAHB

AHB

A s s e m b le
F ra m e (s)A D D _ P R S

MACS o C
S y s te m

C o n tro lle r

Figure 4.3 - Phase 1 Event Sequence

The channel access procedure (phase 2) follows the rules o f the H om ePlug standard

(given in Section 3.3.2.2). At the correct time (the next priority resolution period), the

MAC will begin priority resolution. I f the MAC doesn’t loose this, it will then begin the

random back-off process. At the end o f this, if the node has won, it will send a

“W O N _B O ” event to the Controller, so that it can transmit the frame at the correct

time. The sequence o f events for phase 2 is shown in Figure 4.4.

First Priority
Resolution Symbol

PRS PRS
NEW DATA

NEW DATA
PRS

S econd Priority
Resolution Symbol

PRS PRS
NEW DATA

NEW DATA
PRS

ADD_BO

Random Backoff
Repeated Until Won
or Lost

SLOTJTM E CHAN_STATE

CHAN_STATE
SLOT_TIME

MAC
System

Controller ChannelPHY

Figure 4.4 - Phase 2 Event Sequence

The next stage o f the process is for the M \C to transfer the frame to the PHY, which

encodes it and then transmits it over the channel to the o ther nodes in the system. The

transmission is done O FD M symbol by O FD M symbol. This allows the controller to

Page 71

C hapter 4 - M odelling Environm ent Requirem ents
and C ontrol

change the characteristics o f the channel during transmission if needed. The sequence o f

events for phase 3 is shown in Figure 4.5.

Encoding

R epeats Until
Last Symbol of

TransmittingTransmittingSystem
(Tx and Rx)

Figure 4.5 - Phase 3 Event Sequence

Stage four involves the receiving node decoding the frame, and generating the

appropriate response. Once the response is generated, the receiving PH Y will signal to

the Controller, which will then signal the PHY to transmit the response. The sequence

o f events tor phase 4 is shown in Figure 4.6. Before checking the trame, the recieveing

MAC will also check it it has sufficient butter space for the node. It it doesn’t then it will

generate a FAIL response.

Transmitting Transmitting Channel Receiving Receiving
MAC PHY (Tx and Rx) PHY MAC

Decoding

NEW_FRAME

READY

LASTFRAME

NEW DATA

NEW DATA ^NEW DATA
RXD 4---►

4 — . - RXD

Figure 4 .6 - Phase 4 Event Sequence

The final phase is transferring the received message from the receiving MAC to the

receiving SoC, once all the frames have been received (this is given by the Last Segment

flag in the Segment Control field o f the received frame). This is the inverse o f the

transmission phase, and involves the MAC generating an interrupt, and then transferring

Page 72

Chapter 4 M odelling Environm ent Requirements
and C ontrol

the data over the A PB /A H B back to the SoC which then checks that the data is correct.

The sequence o f events is shown in Figure 4.7.

INT

A P B (R e a d
In te rru p t R e g is te r)

A P B
R e p e a te d Until C o m p le te

^ M e s s a g e H a s B e e n
T ra n s fe r to S o CAHB

AHB

C o m p a re M e s s a g e
C a lc u la te M etricsG O T F R A M E

R e c e iv in g MAC R e c e iv in g S o C
S y s te m

C o n tro lle r

Figure 4.7 - Phase 5 Event Sequence

Page 73

Chapter 4 - Modelling Environment Requirements
and Control

4.4.3 E v e n t St r u c t u r e

The events system described above is implemented using a thread-safe data structure,

and a set o f functions to send and receive data. There are three main functions, and two

auxiliary functions associated with the event structure. The main functions are:

1. Initialisation — Clears the data in the event data structure, and creates the

mutual exclusion lock and semaphore.

2. Send an Event — Stores the event information and then signals the

receiving thread (via the semaphore) that there is an event waiting.

3. Wait on an Event — Blocks the thread and waits for the send event to

signal that an event has occurred. It then copies the event data back to

the calling thread.

The auxiliary functions are for debug purposes and print the event that has occurred to

the screen or to a file.

The event structure follows a “Producer-Consumer” model [90], where a single thread

will use the “Wait on an Event” function (the consumer) and other threads will use the

“Send an Event” function (the producers). This allows multiple threads to communicate

with each thread, for example the MAC thread can respond to events sent from the

controller thread, the SoC thread and the PHY thread. The event structure consists of

the control devices needed, plus the actual data. The event structure is given in Table

4.6, and the event data is given in Table 4.7. The functions themselves use a pointer to

the event structure in order to manipulate the data within.

Field Type Description
lock pthread mutex t Event structure mutual exclusion lock
sem pthread sem t Event semaphore, indicates a new event
data event data The event data
cond pthread cond t Conditional variable for the empty flag
empty int Flag to indicate the event data is empty

Table 4 .6 - Event Structure

Page 74

Chapter 4 - Modelling Environment Requirements
and Control

Field Type Description
id int The ID o f the node sending the event
time int The “time” o f the event
desc event desc The description o f the event
dir eventdir The direction of the event. Internal (i.e. MAC—»PHY)

or External (i.e. Controller—̂ PHY)
src int The source node (for transmitting data)
dest int The destination node (for transmitting data)
msg id int The message to send (for transmitting data)
flag int Variant field, its meaning depends on the event
fname charf] The filename

Table 4 .7 - Event Data Structure

The algorithm for the initialisation function (e v e n t _ i n i t) is as follows.

1. Create the mutual exclusion lock (protects the event and data structures)

2. Create the conditional variable (allows threads to block waiting on the event structure

becom ing empty)

3. Create the sem aphore

4. Clear each elem ent of the event data structure

5. S et the “Empty” flag (allows threads to send events)

The parameters to the function are:

e v e n t_ t *eventp A pointer to the actual event structure

e v e n t_ a t t r _ t * a t t r p Event structure attributes. These are not

used in this version o f the structure

The algorithm for the send function (e v e n t_ s e n d) is as follows:

1. Lock the mutual exclusion lock. This prevents other threads using structure

2. Wait until the data structure is empty

2.1. If it is not, re lease the mutex lock, and block until it is

3. Copy the input data to the event data structure

4. Send the sem aphore indicating that an event is waiting

5. Unlock the mutual exclusion lock. This allows other threads to now u se the structure

The parameters to the function are:

e v e n t_ t *eventp A pointer to the actual event structure

e v e n t_ d a ta d a ta _ in The event data to send

Page 75

Chapter 4 - Modelling Environment Requirements
and Control

The algorithm o f the wait function (e v e n t _ w a i t) is as follows:

1. Block waiting for the sem aphore

2. Lock the mutual exclusion lock

3. Copy the event data to the function output

4. S et the “Data Empty” flag, and send the indication so waiting threads can send their

event

5. R elease the mutual exclusion lock

The parameters to the function are:

e v e n t_ t *eventp A pointer to the actual event structure

ev en t d a ta *da ta ou t The received event data

Page 16

Chapter 4 - Modelling Environment Requirements
and Control

4 .4 .4 E v e n t H a n d l in g W i t h i n N o d e -T h r e a d s

Using the event structure described above, the various threads can communicate with

each other and pass information about events that are occurring. As the time an event

happens could be some time in the future (from the time the node-thread is at) each

node-thread holds a list o f expected and pending events. This means that if an event

arrives with a time after the next pending or expected event, then the node-thread will

store the event. This situation could occur depending on how the node-threads are

scheduled, which depends on the underlying operating system.

Within each node-thread the basic algorithm is as follows

1. While the STOP event h asn’t occurred

1.1. Determine what event to p rocess or block waiting for an event

1.2. S et the time of the node-thread to the time of the event (if one is being

processed)

1.3. P rocess the event

Step 1.1 is common across all node-threads and will be described here. Step 1.3. depends

on the node-thread (i.e. Soc, MAC, and PHY) and the specifics will be described in

subsequent sections.

As mentioned above, each node-thread uses the same algorithm to determine what event

to process, based on the status o f two lists:

1. Pending Events List — Those events that have arrived at the node-thread, but

haven’t been processed.

2. Expected Events List — The events that haven’t arrived at the node-thread, but

are expected to some time in the future.

The algorithm used to determine what event to process is given below.

1. If there are no pending events or the next pending event is after the next expected

event

1.1. Wait on the event (e v e n t _ w a i t)

1.2. Determine if the arriving event will be p rocessed or pended. If there are no

expected events, or the event is the next expected event or it occurs before

the next expected event

1.2.1. S et the p rocess event flag

Page 77

Chapter 4 - Modelling Environment Requirements
and Control

1.2.2. If the event is the expected on, rem ove it from the expected event list

(e v e n t_ l l is t_ g e t)

1.3. E lse the event should be pended

1.3.1. Add the event to the pending list (even t l l i s t i n s e r t)

2. Else p rocess the next pending event

2.1. Get the event from the pending list (e v e n t_ l l is t_ g e t)

2.2. Set the p rocess event flag

2.3. If the pending event is the next expected event

2.3.1. R em ove it from the expected event list (e v e n t_ l l is t_ g e t)

The event lists are based on a singly-linked list, which is sorted on the time o f the event.

When an event is added to a list the function searches for the correct place in the list to

insert the event, before inserting the event into the list and updating the list pointers.

When an event is removed from the list, the event at the start of the list is always

returned (unless the list is empty). There are also various auxiliary functions used to

compare events, etc.

The functions for managing the linked lists are given in Table 4.8, and the algorithms for

the primary functions (initialise, add and remove) are given.

Function Description
event Hist init Initialises the linked list
event Hist insert Inserts the event into the correct place in the list
event Hist get Gets the event at the start o f the list
is empty Checks if the list is empty
issam e Checks if the event passed in is the same as the one at the start

of the list
is_same_sys Checks if the event passed in is the same as the one at the start

of the list. Version for the system controller, as “same”
means different things depending on the event

is s a m e lis t Checks if the events at the start o f the two lists passed in are
the same

is after Checks if the start o f list 1 is after (in time) the start o f list 2
isbefore Checks if the event passed in is before (in time) the start o f

the list
Table 4 .8 - Event Linked List Functions

The parameters to the initialisation function are:

e v e n t _ l l i s t *e lp The pointer to the event list

The algorithm for the initialisation function is

1. Make the first node in the list NULL

Page 78

Chapter 4 - Modelling Environment Requirements
and Control

2. Return su c c e ss

The parameters to the Insertion function are:

e v e n t _ l l i s t * e l p The pointer to the event list

e v e n t _ d a t a d a t a The data to insert into the list

The algorithm for the insertion function is

1. Get the first node in the list

2. If the list is empty (first node is NULL)

2.1. Create sp a ce for the new node

2.2. Copy each elem ent of the event structure to the node

2.3. Set the first node of the list to point to the new node

3. Else if the new event occurs before the first node

3.1. Create sp a ce for the new node

3.2. Copy each elem ent of the event structure to the new node

3.3. Make the “next” node of the new node the current first node of the list

3.4. Make the first node of the list the new node

4. E lse search through the list to find the correct location

4.1. While the new node position has not been found, and the end of the list

h asn’t been reached

4.1.1. If the next node is after the event

4.1 .1 .1 . S et the found flag

4.1.2. E lse

4 .1 .2 .1 . Move to the next node in the list

4.2. Create sp a ce for the new node

4.3. Copy each elem ent of the event structure to the new node

4.4. If a location in the list w as found

4.4.1. Set the new n ode’s “next” node to the current n ode’s “next” node

4.5. Else

4.5.1. Set the new node’s “next” node to NULL

4.6. S et the current n ode’s “next” node to the new node

The parameters to the Get event function are:

e v e n t _ l l i s t * e l p The pointer to the event list

e v e n t _ d a t a * d a t a The data at the start o f the list

The algorithm for the get event function is:

1. If the list is empty

Page 79

Chapter 4 - M odelling Environment Requirements
and Control

1.1. Return failure

2. Else

2.1. Get the first node in the list

2.2. Copy each elem ent of the event structure to the new node

2.3. Update the first node in the list to be the next node

2.4. Free the sp a ce used by the old first node

2.5. Return su c c e ss

The rest o f the functions are simple ones that do the tasks given in the description in the

table. W hen checking if two events are the same, the function checks that the t im e ,

i d , d e s c and d i r fields are the same.

These functions and the algorithms given above for the event handling give the

mechanism in which events are managed within the system. The next section describes

the actions each node-thread takes when it processes one o f the events given in Section

4.4.2.

Page 80

Chapter 4 - Modelling Environment Requirements
and Control

4.5 Sy s t e m Co n t r o l l e r

4.5.1 O v e r v ie w

The system controller is more complex than the node-threads, as it also has to initiate

events at the correct time. Consequently it doesn’t use the same event handling system

that the node-threads use, but a modified one to allow it to also initiate new events (such

as starting the transmission o f a frame).

The main functions o f the system controller are:

• Creating space in memory for the event system data structures, data transfer

structures and the node-threads.

• Parsing the command file at start-up.

• Starting and stopping the nodes.

• Initiating message transfers.

4.5.2 C o m m a n d F il e Pa r s in g

Once the system controller has initialised its event structures, it parses the command file

to determine the steps it should take during the simulation. As mentioned in Section 4.3

the command file is a list o f command and options associated with them. An example

command file is given in Figure 4.8.

ADD_NODE 0 1
ADD_NODE 0 2
NO_CHAN 0
TX 2 1 2 0 3 0 1
STOP 1 0 0 0 0 0
END_____________________________

Figure 4 .8 - Example Command File

The algorithm used to parse the command file is as follows.

1. Open the file “test.cm d” in the directory given

1.1. Return an error if the open fails

2. Read the first com m and

3. While the com m and isn’t “END”

3.1. Convert the com m and string to an enumerated type

Page 81

Chapter 4 - Modelling Environment Requirements
and Control

3.2. Read the time of the command from the file

3.3. If the com m and is “CMD_STOP”

3.3.1. Create the list entry for a STOP event at the specified time

3.3.2. Add the event to the event list (e v e n t _ l l i s t _ i n s e r t)

3.4. If the com m and is “CMD_ADDNODE”

3.4.1. Read the Node ID from the file

3.4.2. Create the list entry for an ADD_NODE event at the specified time,

with the “src” field se t to the ID from the file

3.4.3. Add the event to the event list

3.5. If the com m and is “CMD_DELNODE”

3.5.1. Read the Node ID from the file

3 .5.2. Create the list entry for a DEL_NODE event at the specified time,

with the “src” field set to the ID from the file

3.5.3. Add the event to the event list

3.6. If the com m and is “CMD_TX”

3.6.1. Read the source and destination nodes from the file

3.6.2. Read the m essa g e length from the file

3.6.3. Read the priority from the file

3.6.4. Create the list entry for a TX event at the specified time, with the

source and destination nodes, m essa g e ID and flag (with information

from 3.6.3) from the file

3.6.5. Add the event to the event list

3.7. If the com m and is “CMD_TX_STREAM

3.7.1. Read the source and destingation from the file

3.7.2. Read the m essa g e length, priority and data rate

3.7.3. Calculate the number of fram es needed

3.7.4. Calculate the time betw een frames

3.7.5. For each frame

3.7.5.1. Add a TX event at the specified time (as for 3.6.4) to the

event list

3.8. If the com m and is “CMD_NOCHAN”

3.8.1. Create the list entry for a NO_CHAN event at the specified time

3.8.2. Add the event to the event list (e v e n t _ l l i s t _ i n s e r t)

3.9. If the com m and is “CM DJJSECHAN”

3.9.1. Read the directory containing the channel definitions

3.9.2. Create the list entry for an USE_CHAN event at the specified time

3.9.3. Add the event to the event list (e v e n t _ l l i s t _ i n s e r t)

3.10. Read the next command from the file

4. C lose the file

5. Return su c c e ss

Page 82

Chapter 4 - Modelling Environment Requirements
and Control

4.5 .3 Sy st e m Co n t r o l l e r E v e n t Sy st e m

As it is the System Controller that initiates events, it needs a list o f the events that are to

occur as well as those that are expected from the node-threads. When the model starts

this is filled with data from the command file, however as the model is executing certain

incoming events will cause new events to be added to the outgoing event list. For

example, after an “AD D_BO” event, a “SLOT_TIME” event will be added to the

outgoing list.

Although the event system is more complex, as the controller initiates events as well as

responding to incoming ones, the controller uses the same event list and event passing

structures and mechanisms that the node-threads do. However, when processing events,

the outgoing list needs to be checked to determine if the event is one from the outgoing

or incoming lists.

The algorithm for determining this is quite complex, and is shown in the flow chart in

Figure 4.9. The “Process Outgoing Events” and “Process Incoming Events” steps are

described in detail in the next section.

Page 83

Chapter 4 - Modelling Environment Requirements
and Control

Initialise system , and
p a rse command file

la the STO P flag

the expe
incoming list

empty?

the ne
expected event

after the
outgoing?

the Pending li
em pty o r the pending

event after the
outgoing?

Get th e outgoing event P rocess outgoing event

expected event
after the first

ing?

W iit on the Incoming
.-'• 'fsthe n e x N .

/E x p e c te d e ven t t h e \ YES Set th e P rocess Event
event ""s. sam e a s the __’

^ s ^ M n d i n g ? /^ ^
flag

Get the next Pending
event

Is is the expected
one?

expected even t the Rem ove the event from
the Expected list

C lear the P rocess Event
flag

Is the P rocess
E vent Flag se t?Add the incoming event

to the Pending list
Remove the event from

the incoming list

P rocess the Incoming

Figure 4 .9 - System Controller Operation

Page 84

Chapter 4 - M odelling Environm ent Requirem ents
and C ontrol

4 .5 .4 Sy s t e m C o n t r o l l e r E v e n t P r o c e s s in g A l g o r it h m s

As m entioned previously, the system controller can process outgoing and incoming

events (as shown in Figure 4.9). The steps taken for each o f these are shown in the

Nassi-Shneiderman diagrams [92] in Figures 4.10 to 4.12.

What is the Outgoing Event?

Is the Node Running?

Initialise the Data PassingWait until the Transmit Channel thread stops

Copy the pointers to the SoC
Node-Thread PackageFor every node in the system

Copy the pointers to the MAC
Node-Thread Package Wait until the Node-Threads have stopped

Copy the pointers to the PHY
Node-Thread Package

Copy the pointers to the Rx
Channel Thread Package

Is the 'No Chan* Flag set?

Set the STOP Flag

Figure 4.10 - Outgoing Event Nassi-Shneiderman Diagram 1

What is the Outgoing Event?

Set the "No Chan" Flag Send the Outgoing event to the MAC Node-thread indicated

Add the event to the incoming list

Copy the message data (message ID. Priority, etc) to the SoC Copy the coefficients to the Transmit Channel data structure

Copy the coefficients to the Transmit Channel data structure

Add DATAGEN_RESP to Incoming event list For every possible node in the system

Is the Node Running?

Copy the filter coefficients to the node's Receive

Figure 4.11 - Outgoing Event Nassi-Shneiderman Diagram 2

Page 85

Chapter 4 M odelling Environm ent Requirem ents
and Control

What is the Outgoing Event?

Add a 'SLOT_TIME' event to the incoming event list Get the number of nodes in the system

Send a SLOT_TIME event to the MAC node-thread specified ir Create an ‘RXD* event with a time equal to the transmission ttr
of and OFDM symbol

For every node in the system

Add the *RXD* event to the incoming event list

Figure 4.12 - Outgoing Event Nassi-Sh n eider man Diagram 3

Figures 4.13 and 4.14 describe the steps the controller takes when processing incoming

events.

What is the Incoming Event7

Add a TRANSMIT event to the outgoing event list (with the
incoming event Node's ID as the destination)

Add a GOT_FRAME event to the incoming event list For every node

Store the transmitting Node ID Clear the ’Added GOT_FRAME* flag

Has the sending Node already sentIs a Channel Specified7
Add the PRS event to the outgoing event list

Open the channel definition file

Increment the number of RXD’s for this symbol Add the PRS event to the outgoing event list

Is the event from the transmitting
Create the incoming PRS event

Store the next transmitting time from the event flag Add the PRS event to the incoming event list

symbol7

Clear the RXD List (ready for the next symbol)

Is the End of Data (EOD)
Flag set7 ^

Add to the Outgoing eventAdd a LAST_DATA event to the incoming event list

Add a GOT_FRAME event to the incoming event list (from the
destination Node ID)

Clear the ’Added GOT_FRAME” flag

Figure 4.13 - Incoming Event N a ssi-S hn eider man Diagram 1

Page 86

C hapter 4 M odelling E nvironm ent Requirements
and C ontrol

What is the Incoming Event?

Create a SLOT_TIME event at the time specified in the
event flag

Create a READY event at the current time plus the PHYSet the channel state to busyevent at the next slot time period

Add the SLOT_TIME event to the outgoing event list Add the READY event to the incoming event listend of the PHY processing timethe outgoing event list

Set the next slot time to the time specified in the event
flag Increment the next transmit time by the RIFS periodincoming event list

Clear the End of Data (EOD)

Increment the next slot time by the value of

Figure 4.14 - Incoming Event Nassi-Shneiderman Diagram 2

Page 87

Chapter 4 - Modelling Environment Requirements
and Control

4.6 N o d e -T h r e a d E v e n t H a n d l in g

This section describes how the node-threads handle the events that occur, and the steps

they take to process the information. It also describes how the System Controller

operates. The controller is much more complex than the node-threads as it also has to

generate events as well.

4.6.1 S oC N o d e -T h r e a d

This section describes how the SoC component o f the node operates, and how it

responds to the incoming events from the System Controller and the MAC, which are

given in Table 4.10. The actions that are carried out for each event are described below.

When the SoC node-thread is started, various pointers are passed to it to provide it with

the information it needs to operate. This is done via the SoC package variable, and the

contents o f this are given in Table 4.9.

Variable Name Type Description
id int Node’s ID number
event buf event t * Pointer to the SoC’s event buffer
sys event buf event t * Pointer to the System Controller’s event buffer
mac event buf event t * Pointer to the MAC’s event buffer
info sys info * Pointer to the System Information structure
info struct rdwr struct t * Pointer to the RDWR Information structure
ahb ahb t * Pointer to the AHB model
apb apb t * Pointer to the APB model
socdata rdwr soc t * Pointer to the Data structure for the SoC to create the

frame to transmit
output dir char * Output directory for log and debug files
log file FILE * File ID for log files
debug file FILE * File ID for debug files

Table 4 .9 - SoC Thread Package Structure

Event Description
STOP Stops the MAC node-thread
START Starts the MAC node-thread
NEW_FRAME Indicates that there is a frame to transmit over the channel,

and the SoC needs to send it to the MAC
APB Indicates a transfer over the APB bus
AHB Indicates a transfer over the AHB bus
INTERRUPT Indicates that an interrupt has occurred

Table 4.10 - SoC Events

The algorithm used to process each event is given in the Nassi-Shneiderman diagrams in

Figures 4.15 and 4.16.

Page 88

Chapter 4 - M odelling Environm ent Requirem ents
and C ontrol

What is the Incoming Event?

Set the STOP flag Open and store the SoC Memory file Copy the data required to transmit the frame

Close the log and debug files if they are open Open the message ID file and store in the buffer

Open and store the node address file Copy the message address to the APB (TX_ADDR_REG)

Copy the MAC address to the APB Structure

Generate the Transmit Control Register and write it to the APB
(TX_CTRL_REG)

Figure 4.15 - SoC Event Nassi-Shneiderman Diagram 1

What is the Incoming Event?

Create an APB Read request from the Interrupt Register

Copy to the APB

Interrupt Reg Rx Ctrl Reg

ServB Interupt?
Copy the data to memory Get the length of the MAC Data

Write an AHB_OK response to

Full Message?

Copy the rest of the incoming
AHB data to the outgoing AHB

Figure 4 .1 6 - SoC Event Nassi-Shneiderman Diagram 2

Page 89

Chapter 4 - Modelling Environment Requirements
and Control

4.6 .2 MAC N o d e -T h r e a d

This section describes how the MAC component of the node operates, and responds to

the incoming events from the System Controller, SoC and PHY, given in Table 4.12.

The process that is carried out for each event is also given. When the MAC node-thread

is started, various pointers are passed to it to provide it with the information it needs to

operate. This is done via the MAC package variable, and the contents o f this are given in

Table 4.11.

Variable Name Type Description
id int Node’s ID number
event buf event t * Pointer to the MAC’s event buffer
sys event buf event t * Pointer to the System Controller’s event buffer
soc event buf event t * Pointer to the SoC’s event buffer
phy event buf event t * Pointer to the PHY’s event buffer
info sys info * Pointer to the System Information structure
info struct rdwr struct t * Pointer to the RDWR Information structure
macphy rdwr macphy t * Pointer to the MAC/PHY Data transfer structure
tm tran rdwr tm t * Pointer to Tone Map transfer structure
ahb ahb t * Pointer to the AHB model
apb apb t * Pointer to the APB model
output dir char * Output directory for log and debug files
log file FILE * File ID for log files
debugfile FILE * File ID for debug files

Table 4.11 - M AC Thread Package Structure

The HomePlug algorithm for channel access is implemented at this level, as it relies

heavily on timing interaction between the various node-threads and the system

controller. This is an implementation o f the theory given in Section 3.3.2.2.

Event Description
STOP Stops the MAC node-thread
START Starts the MAC node-thread
APB Indicates a transfer over the APB bus
AHB Indicates a transfer over the AHB bus
PRS Priority Resolution response (from the PHY)
SLOTTIME Used during the Random Back-off period to tell the MAC to

check the status o f the channel
CHAN STATE Channel status response (from the PHY)
GOT FRAME Indicates that the PHY has a fully decoded frame

Table 4.12 - M A C Events

The algorithm used to process each event is given in the Nassi-Shneiderman diagrams in

Figures 4.17 to 4.19.

Page 90

C hapter 4 - M odelling Environm ent Requirem ents
and Control

What is the Incoming Event?

Set the STOP flag Set the MAC node-thread time to zero Read the data from the APB Bus

Close the log and debug files if they were open Set the default receive memory write address •Perform action from below*

i toe to w 2 bytes of pwdata

Figure 4 .1 7 - MAC Event Nassi-Shneiderman Diagram 1

What is the Incoming Event?

Copy the data from hrdata to
the message buffer

Figure 4. IS - MAC Event Nassi-Shneiderman Diagram 2

Page 9 1

Chapter 4 - M odelling Environm ent Requirem ents
and C ontrol

What is the Incoming Event?

Copy the frame from the PHY

Copy the frame being transmitted toSet the outgoing event

Get the Tone Map and copy to the Send a FAIL Response if the RX Get the Tone Map for the TMIincoming list

Convert the payload to bytes Copy to the PHY

Store the response expected flag

Clear the frame transmitting flag

Set the outgoing event flag to 1

Copy Response frame to PHY

Add AHB event to incoming list

Copy data to AHB

Figure 4.19 - MAC Event Nassi-Shneiderman Diagram 3

Rage 92

Chapter 4 M odelling Environm ent Requirem ents
and Control

4.6.3 PH Y N o d e - T h r e a d

This section describes how the PHY operates, and responds to the incoming events

given in Table 4.14. The process that is carried out for each event is also given. When

the PH Y node-thread is started, various things are passed in to it via the PHY Package

variable. The details o f this are given in Table 4.13.

Variable Name Type Description
id int N o d e ’s ID num ber
even t b u f event t * Pointer to the P H Y ’s event buffer
sys event b u f event t * Pointer to the System C o n tro l le r ’s event buffer
txc event b u f event t * Pointer to the T ransm it C h a n n e l ’s Event buffer
m ac event b u f event t * Pointer to the M A C ’s event buffer
info sys info * Pointer to the System Inform ation structure
m acphy rdw r m acphy t * Pointer to the M A C /P H Y Data t ransfer structure
txc data chan t * Pointer to PHY to C hannel data transfer structure
rxc data chan t * Pointer to C hannel to PH Y data transfer structure
tm tran rdwr tm t * Pointer to T one M ap transfer structure
o u tpu t dir char * Output director}' for log and d ebug files
log file FILE * File ID for log files
deb u g file FILE * File ID for debug files

Table 4.13 - PHY Thread Package Structure

Event Description
ST O P Stops the node-thread
S T A R T Starts the node-thread
N E W F R A M E Indicates that there is a PHY frame ready for encod ing and

t ransmiss ion
T R A N S M IT Tells the PH Y to transmit the next O F D M sym bol
N E W DA TA Tells the PHY that there is an O F D M sym bol on the channel
PRS Request to tell the PH Y to transm it a PR S sym bol (the value

is encoded in the event flag)
C H A N S T A T E Instructs the PH Y to check the status o f the channel (from the

M A C)
RX T O N E M A P Indicates that the T one M ap for the rece iv ing fram e is

avai lable
Table 4 . 14- P H Y Events

The algorithm used to process each event is given in the Nassi-Shneiderman diagrams in

Figures 4.20 to 4.22.

Page 93

C hapter 4 - M odelling Environm ent Requirem ents
and C ontrol

What is the Incoming Event?

Set the stop flag Copy the frame from the MAC

Set the “Receiving SFC" flag to ensure correct path through theClose the log and debug files if they Copy the Tone Map for the frame

Create a copy of the reference phase

Determine if a response is needed from the Frame Type in the

Encode the frame through the PHY encoder

Get the number of 20 & 40 symbol PHY's from the Frame Length

What is the frame type?

Response

Figure 4.20 - PHY Event Nassi-Shneiderman Diagram I

What is the Incoming Event?

CHAN.STATE

Copy the Tone Map for the received message

Set the *RX Tonemap' valid flag

Set the event flag to 0 Set the event flag to 1

Generate a preamble symbol,
and copy the first to the outputSet the output to all zeros

Copy the output to the channel

Send a NEW_DATA event to the channel with the flag set to 1

Figure 4.21 - PHY Event Nassi-Shneiderman Diagram 2

VWiat is the Incoming Event?

TRANSMIT ' NEWDATA ~------------------

‘See Figure 5.23* Copy the symbol from the Receive Channel

‘See Figure 5.24*

Send an RXD event to the Controller

Figure 4.22 - PHY Event Nassi-Shneiderman Diagram 3

As the functionality for the TRANSMIT and NEW _DATA events is complicated, the

algorithms are described in Figures 4.23 and 4.24.

Page 94

Chapter 4 M odelling Environm ent Requirem ents
and Control

Figure 4.23 - PHY TRANSMIT Event Nassi-Shneiderman Diagram

ST_PL

Copy the symbol to the received payloadCopy the received data to the premable Copy the received data to the received Start Frame Control

Increment the number of symbolsIncrement the number of sybols Increment the number of sybols

Have all the payloadHas all the preamble been all the SFC symbols

payloadDecode the frame type

frame type?

(N)ACK

Get the length of the
payloadClear the number of symbols

Create a copy of the reference
phase

Copy the frame to the MAC

ST_PRS

Get the value of the PRS symbolCopy the symbols to the received EFC

Clear the number of symbols Increment the number of PRS symbols receivedIncrement the number of sybols

Have all the EFC symbols
Copy the reference phase

Set the outgoing event flag to 0 Set the outgoing event flag to 1

Have both the PRS symbols
Clear the number of symbols

Figure 4.24 - P H Y N E W D A TA Event Nassi-Shneiderman Diagram

Page 95

Chapter 4 - Modelling Environment Requirements
and Control

4.7 S u m m a r y

In this chapter, the basic requirements o f the modelling system were introduced, namely

an event-based simulation model o f a home networking system. This was used to

describe a top-level structure o f the system developed, which consists o f a System

Controller, multiple Nodes (which have separate Node-Threads to model the SoC, MAC

and PHY components o f the Node), and a Channel.

The event system used to pass events between the threads within the system was

described, along with the events that can be passed. Once the events had been described

the actions the components o f the model take when receiving these events were

described.

The structure described here is the command and control aspects o f the model. The

data processing parts (i.e. the parts that are more specific to the HomePlug protocol),

which build upon these parts, are described in the next chapter.

Page 96

Chapter 5 - Modelling Environment HomePlug
Components

Chapter 5 - Modelling Environment HomePlug

Components
Continues the description o f the model, with the focus being on the way the data is

modified by the algorithms. It starts with a description o f the MAC functions, before

describing the PHY and finally the channel.

5.1 In t r o d u c t io n

In the previous chapter the way the model is controlled and behaves was described. This

chapter focuses on how the model takes the data to be transmitted, and encodes it

according to the HomePlug standard. It describes an implementation o f this standard,

although without the Channel Access parts o f the MAC.

The chapter is split into three main sections.

1. The Media Access (MAC) functions.

2. The Physical Layer (PHY) functions.

3. The channel functions.

The functions developed follow the specification given in the HomePlug standard, for

both transmission (encoding) and reception (decoding). The standard gives detailed

descriptions o f the encoding functions; however, less information (almost none), is given

on the decoding functions. Often the decoding functions are more complicated,

especially for the error correcting ones.

The encoding and decoding functions developed can be used independently o f the rest

o f the model, as they don’t rely on any o f the time/message handling functionality that

was described in the previous chapter. This means they could be used to generate a

properly formatted PHY frame for example.

Page 97

Chapter 5 - M odelling Environment HomePlug
Components

5.2 M A C M o d e l

Figure 5.1 shows the components that implement the HomePlug specific parts o f the

MAC. The MAC takes the message to send from the SoC and creates the frames that

the PHY encodes before transmission on the channel. At the receiver this process is

reversed, and additionally the frame is checked to determine the correct response frame

to send.

MAC

Frame
Cheek

Figure 5.1 - M AC Structure Chart

Page 98

Chapter 5 - Modelling Environment HomePlug
Components

5.2.1 MAC Frame A ssem bler (assemble)

The Frame Assembler takes the data from the SoC and generates the correct frame(s) to

send to the PHY. It consists o f three sub-functions, which are given below.

1. Service Block Create (s e r v b _ c r e a t e)

2. Segment (s e g m e n t)

3. Frame Create (f r a m e _ c r e a t e)

The inputs and outputs to the function are given in Table 5.1.

Variable Name Type Direction Description
frames macphy ent * Output The correctly formatted PHY Frames
ahb data UINT8 * Input The data from the AHB (the data to transmit)
len ahb int Input The length o f ahb data
mgmt data UINT8 * Input The MAC Management data
len mgmt int Input The length o f the management data
enc key UINT8 Input The encryption key
cap U1NT8 Input Priority o f the frame
cc UINT8 Input Contention Control bit
resp type UINT8 Input Response frame required
tm data tm * Input Pointer to the Tone Map data structure
num frames int * Output The number o f frames in the message

Table 5.1 - M AC Frame Assembler Inputs and Outputs

The algorithm for the function is given below:

1. Copy the source and destination ad d resses from the AHB data (source is the first 6

bytes, destination the second)

2. Copy the seq u en ce number from the AHB data (next 2 bytes)

3. Get the Tone Map and its status

4. If the Tone Map is stale or invalid

a. U se the default (ROBO) Tone Map

5. Create the Service Block (s e r v b _ c r e a t e)

6. Get the segm entation information (s e g m e n t)

7. Create the fram es (NB all fram es are created, and the transmission of th ese to the

PHY is controlled by the top-level MAC function).

5.2.1.1 Service Block Create (s e r v b _ c r e a t e)

This function takes the information from the data passed to the MAC (along with the

data to transmit) and creates the Service block, which is shown in Figure 5.2.

Page 99

Chapter 5 - Modelling Environment HomePlug
Components

TYPE/

4 O-M 2 LENGTH 0-N 0-7 4
9 BYTES BYTES BYTES BYTES BYTES BYTES BYTES

ENCRYPTION
CONTROL

VLAN
TAG

MAC
MAN’MENT

k s '

PAYLOAD E-PAD ICV

1
ICV FIELDS

ENCRYPTED FIELDS

Figure 5 .2 - Service Block

Certain fields (VLAN Tag, Type/Length and Payload) are passed to the MAC, and the

rest are generated internally by the function. The inputs and outputs to the function are

given in Table 5.2.

Variable Name Type Direction Description
enc servb UINT8 * Output The complete and encrypted Service Block
data in UINT8 * Input The input data from the AHB
datast int Input The starting byte o f the input data (as it also contains

the addresses)
length int Inptu The length o f data in
mgmt data UINT8 * Input The MAC Management data
mgmt len int Inptu The length o f the management data
enc key UINT8 Input The Encryption Key
epad len int * Output The length o f the E-PAD

Table 5 .2 - M AC Service Block Inputs and Outputs

The algorithm for the function is given below:

1. Is a VLAN Tag present (1st and 2nd byte is 0x8100)

a. Copy the VLAN to the Service Block

b. Set the start of the payload to the start of the data (i.e. the end of the

ad d resses) plus the VLAN length

2. Else

a. Set the start of the payload to the start of the data

3. If the length of the MAC M anagem ent data is greater than 0

a. Add the MAC M anagem ent data to the Service Block

4. Add the rest of the data to the Service Block

5. Calculate the length of the E-PAD

6. Add the E-PAD to the Service Block

7. Calculate the Intergrity Check Value (ICV) (c a l c i c v)

8. Add the ICV to the Service Block

9. Encrypt the full Service Block (e n c r y p t)

10. Return the length of the Service Block

Page 100

Chapter 5 - Modelling Environment HomePlug
Components

5.2.1.2 Segmentation Information (segm en t)

This block calculates the number o f segments needed to transmit the Service Block;

along with the number o f 20- and 40-Symbol PHY blocks in the last segment (all the

others will have 4 40-Symbol PHY blocks). Other information returned is the size o f the

B-PAD and the number o f bytes in a 20- and 40-Symbol PHY Block.

The inputs and outputs to the function are given in Table 5.3.

Variable Name Type Direction Description
servb len int Input The length o f the Service Block
num carriers int Input The number of carriers
modulation modi Input The modulation scheme
code rate punct Input The convolutional code rate
output seg in fo Output Information about the segments (function return

value)
Table 5.3 - Segmentation Information Inputs and Outputs

The algorithm for the function is given below:

1. Initialise (clear) the output structure.

2. Calculate the overhead associatied with each frame (Segm ent Control length plus the

source and destination address length plus the Frame Check S eq u en ce length)

3. Calculate the number of bytes in a 20- and 40-Sym bol PHY block (b l o c k _ b i t s)

4. Calculate the maximum number of bytes in a frame (4 tim es the number of bytes in a

40-Sym bol PHY block)

5. Determine the number of maximum length frames, and the number of segm en ts

6. If there is data left, calculate the number of 20- and 40-Sym bol PHY blocks

a. Increment the number of segm en ts

b. While there is sufficient data for a 40-Sym bol PHY

i. Increment the number of 40-Sym bol PHY blocks

ii. Decrem ent the data left by the amount in a 40-Sym bol PHY

c. If there is more data than would fit in a 20-Sym bol PHY Block

i. Increment the number of 40-Sym bol PHY Blocks

d. Else

i. Increment the number of 20-Sym bol PHY Blocks

7. Determine the length of the B-PAD

8. Return the output structure

Page 101

Chapter 5 - Modelling Environment HomePlug
Components

5.2.1.3 Frame Create (£ r a m e _ c r e a te)

The Frame Creation function takes the Service Block, along with the segmentation

information and creates the PHY frames needed to transmit the Service Block. The

format o f the frame is shown in Figure 5.3.

VARIABLE BYTES

Figure 5.3 - PH Y Frame Format

The function returns an array o f structures containing the Start Frame Control, Payload

and End Frame Control required to transmit the Service Block. The inputs and outputs

to the function are given in Table 5.4.

Variable Name Type Direction Description
frames m acphyent * Output The properly formatted PHY frames for

transmission
segmentation seg info Input The segmentation information
serv block UINT8 * Input The Service Block to transmit
tmi UINT8 Input The Tone Map Index (for the SFC)
src addr UINT8 * Input The source MAC address
dest addr UINT8 * Input The destination MAC address
cap UINT8 Input Channel Access Priority
cc UINT8 Input Contention Control bit
resp type UINT8 Input Response type (0=No response, l=response)
epad len int Input Length o f E-PAD
seq num int Input Sequence number for this Service Block

Table 5 .4 - M AC Service Block Inputs and Outputs

The algorithm for the function is given below:

1. Initialise the variables

2. For each segm ent

a. Determine if this is the last segm ent

b. Create the Start Frame Control (SFC)

Copy the Contention Control bit to the SFC

Create and copy the Delimiter Type to the SFC

Determine the frame length from the number of 20- and 40-Sym bol

PHY blocks

iv. Copy the Frame Length to the SFC

v. Copy the Tone Map Index bits to the SFC

vi. Calculate the Frame Control Check S eq u en ce (FCCS) (c a l c _ f c c s)

vii. Copy the FCCS to the SFC

Create the End Frame Control (EFC)

i. Copy the Contention Control bit to the EFC

Page 102

Chapter 5 - M odelling Environment HomePlug
Components

ii. Create and copy the Delimiter Type to the EFC

iii. Copy the frame priority to the EFC

iv. Fill the reserved fields with 0 ’s

v. Calculate the FCCS (c a l c _ f c c s)

vi. Copy the FCCS to the EFC

d. Create the payload

i. Create the 5 bytes of the Segm ent Control Field and copy them to

the frame

ii. Copy the destination address to the frame

iii. Copy the source address to the frame

iv. Copy the bytes of the m essa g e to the frame

v. If this is the last frame, copy the B-PAD

vi. Calculate the Frame Check S eq u en ce (FCS) (c a l c _ f c s)

vii. Copy the FCS to the frame

viii. Convert the bytes of the frame to bits, and store in the frame output

array

Page 103

Chapter 5 - Modelling Environment HomePlug
Components

5.2.2 MAC Frame Re-Assem bler (disassemble)

The re-assembler function takes the frames from the PHY and re-creates the Service

Block. It also checks the validity o f each frame and creates the appropriate response

frame. It is made up o f three functions, which are given below.

1. Frame Checker (f r a m e _ c h e c k)

2. Response Frame Creations (r e s p _ c r e a t e)

3. Service Block Re-Assembler (s e r v b _ r e c r e a t e)

The inputs and outputs to the function are given in Table 5.5.

Variable Name Type Direction Description
sfc UINT8 * Input Start Frame Control
payload UINT8 * Input Frame payload
efc UINT8 * Input End Frame Control
pi len int Input Payload length
segs seg blocks* In/Out Segments that make up the service block
rfc UINT8 * Output Response Frame Control
rx servb UINT8 * Output The decoded Service Block
servb len int * Output The length o f the service block

Table 5 .5 - M AC Frame Re-Assembler Inputs and Outputs

The algorithm for the function is given below:

1. Check the validity of the received frame (f r a m e _ c h e c k)

2. Get the FCS from the received frame (for the response)

3. Get the priority of the frame

4. G enerate the R esp on se Frame Control (RFC) (r e s p _ c r e a t e)

5. If the frame is valid

a. Get the Segm ent Count from the payload S egm en t Control field

b. Copy the payload to the segm ent structure (holds the received frames)

c. Get the Last Segm ent Flag from the Segm ent Control field of the payload

d. If this is the last segm ent

i. Check if all the reiceved fram es are valid

ii. If they are, recreate the Service Block (s e r v b _ r e c r e a t e) , and set

the return value to “Complete Service Block”

iii. If they are not, se t the return value to “Incomplete Service Block”

e. Otherwise

i. se t the return value to “Incomplete Service Block”

6. Return the status of the service block

Page 104

Chapter 5 - Modelling Environment HomePlug
Components

5.2.2.1 Frame Checker (f rame__check)

The frame check function takes the incoming frame and checks that the FCCS in the

Start and End Frame Controls and the FCS in the Payload are valid (i.e. there are no

errors in the frame). It also checks if any the fields within the frame are invalid. For

example, maybe the Frame Length field is wrong, which could happen if the frame came

from a device running a different version o f the protocol (although at this time there is

only Version 1.0 o f the HomePlug standard available). The function will return a value

indicating if the frame is valid (0). The inputs and outputs to the function are given in

Table 5.6.

Variable Name Type Direction Description
sfc UINT8 * Input Start Frame Control
payload UINT8 * Input Payload
efc UINT8 * Input End Frame Control
pi len int Input Length o f the payload

Table 5 .6 - M AC Service Block Inputs and Outputs

The algorithm for the function is given below:

1. Calculate the FCS based on the received payload (c a l c f c s)

2. Compare this with the received FCS. If they are different, mark the frame a s invalid

3. Check the FCCS of the Start Frame Control (c a l c _ f c c s)

4. Compare this with the received FCCS. If they are different, mark the frame a s invalid

5. Check the FCCS of the End Frame Control (c a l c _ f c c s)

6. Compare this with the received FCCS. If they are different, mark the frame a s invalid

7. If the Tone Map Index (in the SFC) is greater than 0x10, the frame is invalid

8. If the Frame Length (in the SFC) is greater than 0x08, the frame is invalid

9. If the “Invalid” flag is set (in the EFC), the frame is invalid

10. If the Frame Protocol Version (in the Payload Segm ent Control) is not 0, the frame is

invalid

11. Return the validity of the frame

5.2.2.2 Response Frame Create (r e s p _ c r e a t e)

The response frame creation function creates the appropriate Response Frame Control

(RFC) based on the validity o f the received frame. The inputs and outputs to the

function are given in Table 5.7.

Page 105

Chapter 5 - Modelling Environment HomePlug
Components

Variable Name Type Direction Description
rfc UINT8 * Output Response Frame Control
rfcs UINT8 * Inptu Received Frame Check Sequence
cap UINT8 Input Channel priority
cc UINT8 Input Contention Control
resp type int Input Type o f response (1=ACK, 0=NACK)

Table 5 .7 - M AC Service Block Inputs and Outputs

The algorithm for the function is given below:

1. Copy the Contention Control bit to the RFC

2. Set the upper 2 bits of the Delimiter Type to 10 (response frame)

3. Copy the m essa g e priority

4. If the R esp on se frame is valid

a. Set the last bit of the Delimiter Type to 0 (ACK R esp onse)

b. Copy the received FCS to the RFC

5. Else

a. S et the last bit of the Delimiter Type to 1 (NACK/FAIL R esponse)

b. Set the R esp on se Type to 0 (NACK R esp onse)

c. Set the remaining bits to 0

6. Calculate the FCCS (c a l c _ f c c s)

7. Copy the FCCS to the RFC

5.2.2.3 Service Block Recreate (s e r v b _ r e c r e a t e)

The final stage is to recreate the Service Block as it was transmitted, from the frames that

make it up. This is shown in Figure 5.4.

Figure 5 .4 - Service Block Re-creation Process

The inputs and outputs to the function are given in Table 5.8.

Page 106

Chapter 5 - Modelling Environment HomePlug
Components

Variable Name Type Direction Description
segs seg blocks* Input The received segments
servb UINT8 * Output The re-created service block

Table 5 .8 -M A C S erv ice Block Recreation Inputs and Outputs

The algorithm for the function is given below:

1. Initialise the pointers

2. While the segm ent isn’t the last

a. Copy the payload to the Service Block

b. Increment the segm ent number

3. Return the length of the Service Block

Page 107

Chapter 5 - Modelling Environment HomePlug
Components

5.3 P H Y M o d e l

Figure 5.5 shows the components that make up the HomePlug functionality o f the

Physical Layer model. These are the non-threaded components (except for the top level

PHY block) and can be used as stand-alone functions.

i

Fram e Control
FEC Encoder

Fram e Control
FEC Decoder

Encoder

C reate
Pre-am ble

OFDM
Encoder

Payload
FEC Encoder

Channel

PHY

Figure 5 .5 - PH Y Structure Chart

The diagram is split into the transmitter function (Encoder) and the receiver functions

(Frame Control Decoder and Payload Decoder). The decoder is split into two sections

so the block can process the Frame Control separately. This is needed as the block

communicates information in the Frame Control (namely the Tone Map Index) to get

the correct information with which to decode the Payload. The transmitter and receiver

functions are described below and the diagram above is expanded to give further details.

The algorithms for each block (and their sub-blocks) are also given.

Page 108

Chapter 5 - M odelling Environment HomePlug
Components

5.3.1 PH Y E n c o d e r

The PHY Encoder takes the Start Frame Control, Payload and End Frame Control from

the MAC and encodes the data for transmission on the channel. Figure 5.6 gives the

structure chart that shows the sub-functions that make up the encoder. Figure 5.7 shows

the data flow through these blocks.

Symbol

Shapvr

Puncturing

Figure 5.6 — PH Y Encoder Structure Chart

(from MAC)

Figure 5.7 - PH Y Encoder Data Flow

The inputs and outputs to the encoder are given in Table 5.9.

Variable Name Type Direction Description
phy data float * Output Signal to transmit on the channel
sfc UINT8 * Input Start Frame Control (25 bits)
efc UINT8 * Input End Frame Control (25 bits) or NULL
payload UINT8 * Input Payload (variable bits)
pi len int Input The length o f the payload (in bits)
tonemask UINT8 * Input The system wide Tone Mask
tonemap tm data Input The Tone Map to use for this transmission
phase float * Input The reference phase for the OFDM encoder
prefix int Input The length o f the cyclic prefix
dest dir char * Input Results directory to store the encoded data in.

Table 5 .9 - PH Y Encoder Inputs and Outputs

I f the encoder is transmitting a response frame, then the efc and payload inputs will be

NULL and the payload length zero. The function will determine the frame type from

the Frame Type field in the Start Frame Control.

Page 109

Chapter 5 — Modelling Environment HomePlug
Components

The algorithm for the encoder is given below:

8. Determine the type of frame from the Start Frame Control

9. Calculate the number of carriers for the Frame Control (from the Tonem ask)

10. Create the preamble (p r e a m _ c r e)

11. Encode the Start/R esponse Frame Control through the Frame Control FEC

(f c _ e n c o d e)

12. Encode the Frame Control FEC output through the OFDM encoder (o f d m e n c o d e)

13. If the frame is a Data frame (Frame Type in SFC = 3 ’b000 or 3 ’b001)

a. Calculate the number of usable carriers for the payload

b. Get the number of 40 and 20 Symbol PHY blocks from the Frame Length

(d e c o d e _ f 1)

c. Encode the Payload through the Data FEC (d a t a _ e n c o d e)

d. Encode the Data FEC output through the OFDM encoder (o f d m _ e n c o d e)

e. Encode the End Frame Control through the Frame Control FEC

(f c _ e n c o d e)

f. Encode the Frame Control FEC output through the OFDM encoder

(o f d m _ e n c o d e)

After each encode phase, the output will be stored in the directory given as an input,

unless the directory is NULL. The output from the OFDM encoding is also copied to

“phy_data” and at the end o f the function this will contain the complete signal that will

be transmitted on the channel (the transmission o f which is controlled by the thread part

of the PHY). The functions f c _ e n c o d e , d a t a _ e n c o d e and o fd m _ e n c o d e

implement the functionality described in Sections 3.3.3.1 through 3.3.3.3 respectively,

and the implementation o f each is described in the following three sections.

Page 110

Chapter 5 - Modelling Environment HomePlug
Components

5.3.2 F r a m e C o n t r o l FEC E n c o d e r (fc_ encode)

The Frame Control FEC is the implementation o f the description given in Section

3.3.3.1 and is shown again in Figure 5.8. It consists o f three sub functions:

1. Product Encoder (f c _ p r o d e n)

2. Frame Control Interleaver (f c _ i n t e r)

3. Symbol Generator (f c _ sy m g e n)

FRAME CONTROL
(25 BITS)

MAXIMUM 336
BITS100 BITS

(torn MAC)

FRAME
CONTROL

INTERLEAVER

PRODUCT
ENCODER

Figure 5 .8 - Frame Control FEC Block diagram

The first two sub functions correspond directly to the description given in Section 3.3.3.3

and the last function ensures the interleaved data is placed on the correct bit positions on

each of the 4 OFDM symbols that make up the Frame Control on the channel. In the

HomePlug specification this is part o f the interleaver function, however to give

orthogonality with the decoder, it was separated into a function o f its own. The inputs

and outputs o f the function are given in Table 5.10.

Variable Name Type Direction Description
output UINT8 * Output The encoded data stream, ready for encoding via the

OFDM encoder
input UINT8 * Input The 25-bits Frame Control from the MAC
num car int Input The number o f usable earners

Table 5 .1 0 - Frame Control FEC Input and Outputs

The algorithm for the function is simply to pass the input data through each o f the

functions in turn. This gives the required number of encoded bits for the OFDM

encoder. Each o f the functions is now described.

Page 111

Chapter 5 - Modelling Environment HomePlug
Components

5.3.2.1 Product Encoder (f c_j?roden)

The Product Encoder takes the 25 bits o f the Frame Control (from the MAC) and

generates 100 output bits that consist o f the column and row parity o f the input data.

Table 5.11 gives the input and output from the function.

Variable Name Type Direction Description
prod data UINT8 * Output The 100 Encoded output bits
data UINT8 * Input The 25-bits Frame Control from the MAC

Table 5.11 - Product Encoder Input and Outputs

The function uses a 100-element array to represent the [10x10] matrix used in the

product encoding algorithm. Figure 5.9 shows the indexes o f the matrix (starting at 1)

and how these correspond to the position with in the matrix, as well as what groups

correspond to the theoretical description given in Chapter 3.

11 21 31

12 22 32

13 %3 33

«
15 25 35

41

42

43

44

45

45

47

48

49

50

51

52

53

54
55

56

57

58

59

SO

61 71 81 91

6 f > 7 2 « «

63 173 J.3 93
p O 'j

64 74 84 94

65 75 85 95

16 26 36

17 27 37P
18 * 28 38

19 29 39

20 30 40

66 76 86 96

67 77 87 97
H

66 (79 88 98
*15x51

69 79 89 99

70 80 90 100

Figure 5 .9 - Product Encoder Matrix

The algorithm for the function is given below.

1. Copy the input data to position “I” (as shown in the diagram above)

2. For each column of data (the first 5 at this time), calculate the parity and place the

results in position “Pc”.

3. For each row of data (there are 10 now), calculate the parity and place the results in

position “Pr” (for the position “I” data) and in position “Pp” (for position “Pc” data)

The function used for calculating the parity is a set o f exclusive-or’s. These are shown

diagrammatically in Figure 5.10. They show the input bits which are exclusive-or’d

together to create each parity bit (the circle on the intersection between the horizontal

and vertical lines).

Page 112

Chapter 5 - Modelling Environment HomePlug
Components

0 1 2 3 4

■ O

 0 o a
1 I

6— 4 —

-0 o a

Input Data

Parity 0

Parity 1

Parity 2

Parity 3

Parity 4

Figure 5.10 - Product Encoder Parity Generation

5.3.2.2 Frame Control Interleaver (f c _ i n t e r)

The next function is the Frame Control Interleaver. This takes the 100 bits from the

product encoder and applies the interleaving algorithm given in the HomePlug

specification. Table 5.12 gives the input and output from the function.

Variable Name Type Direction Description
output UINT8 * Output The 100 interleaved bits
data UINT8 * Input The 100 bits from the product encoder

Table 5.12 — Frame Control Interleaver Input and Outputs

The algorithm used is from the HomePlug Specification [62] and as implemented in the

model. This ensures the data is sufficiently “random”.

5.3.2.3 Frame Control Symbol Generator (f c__symgen)

The final stage o f the Frame Control FEC is to place the 100 bits from the interleaver

over the four OFDM symbols. The process is to place the interleave bits sequentially

over the four symbols, excluding unused carriers, and applying a shift o f 25 bits at the

end o f each symbol. This is shown in Figure 5.11. The indexes are those for the default

HomePlug Tonemask.

Page 113

Chapter 5 - Modelling Environment HomePlug
Components

0 1 2 3 83 CARRIER #
Vijoj Vim Mask Vta • • ♦ • Viw SYMBOL 1

0 1 2 3 83 CARRIER #
Vi(25) Vipe) Mask Vi{27] • V199J Vijcj • V»lx] SYMBOL 2

0 1 2 3 83 CARRIER #
Vipoj Vipi] Mask Vij52] • Vi[99] V*io] • V'ly) SYMBOL 3

0 1 2 3 83 CARRIER #
Vi[75] Vipq Mask Vi[771 • Vipaj Vito, • Vizi SYMBOL 4

Figure 5.11 - Symbol Generator Process

Page 114

Chapter 5 - Modelling Environment HomePlug
Components

5.3.3 P a y l o a d FEC E n c o d e r (data_ encode)

The Payload FEC encoder is the implementation o f the description given in Section

3.3.3.2 and the block diagram is shown again in Figure 5.12. It consists o f five sub

functions

1. Data Scrambler (s c r amb 1 e)

2. Reed Solomon Encoder (r s _ e n c)

3. Convolutional Encoder (c o n v _ e n c)

4. Bit Puncturing (p u n c t u r e)

5. Data Interleaver (i n t e r l e a v e)

Figure 5.12 — Payload FEC Encoder Block Diagram

The inputs and outputs to the function are given in Table 5.13.

Variable Name Type Direction Description
enc pi UINT8 * Output The encoded payload
payload UINT8 * Input The complete payload to encode
mod modi Input The modulation scheme to use
mode punct Input Half or Three quarter rate puncturing
num car int Input The number of usable carriers
length int Input The length o f the payload (in bits)
num20 int Input The number of 20 Symbol PHY blocks
num40 int Input The number of 40 Symbol PHY blocks
dir char * Input The directory to store the results in

Table 5.13 - Payload FEC Inputs and Outputs

The algorithm isn’t quite as simple as that o f the Frame Control FEC encoder, as

depending on the size o f the payload and modulation scheme used the functions might

be called repeatedly. This happens if there is more than one 40-symbol PHY block.

Also the Reed-Solomon Encoder is configured differently when ROBO modulation is

used. The algorithm is:

Page 115

Chapter 5 - Modelling Environment HomePlug
Components

1. Calculate the number of bits in a 20- and 40-sym bol PHY block, plus the s ize and

number of R eed-Solom on blocks (using the b l o c k _ b i t s function)

2. Read the R eed-Solom on generator functions (from file) for the modulation mode.

3. For each 40-Sym bol PHY block

a. Get the input bits that m ake this PHY block

b. Scramble the data from 3a (s c r a m b l e)

c. S ave the results of the Scrambler (se e algorithm below)

d. If there is only one RS block

i. Encode the scrambled data through the R eed-Solom on Encoder

(r s _ e n c) .

ii. Calculate the length of the encoded data

e. Otherwise

i. Calculate the length of the encoded data

ii. For each R eed-Solom on block

1. Calculate the number of bits in the block (this is either a full

R eed-Solom on block or the remainder)

2. Extract the number of bits in the block from the Scrambled

data

3. Encode the bits from the step above through the R eed-

Solom on Encoder (r s e n c)

f. S ave the results

g. If using half-rate convolutional encoding

i. P a ss the R eed-Solom on encoded data through the convolutional

encoder (c o n v _ e n c) and calculate the length of the resulting data.

ii. S ave the results

h. e lse

i. P a ss the R eed-Solom on encoded data through the convolutional

encoder (c o n v _ e n c)

ii. P a ss the en cod ed data through the bit puncturer (p u n c t u r e) . This

function returns the length of the output

iii. S ave the results

i. Interleave the data through the Data Interleaver (i n t e r l e a v e)

j. S ave the results

k. Copy the fully encoded PHY block to the output

4. If there is a 20 Symbol PHY

a. Get the input bits that m ake this PHY block

b. Scramble the data from 3a (s c r a m b l e)

c. S ave the results of the Scrambler (se e algorithm below)

d. If there is only on e RS block

Page 116

Chapter 5 - Modelling Environment HomePlug
Components

i. Encode the scrambled data through the R eed-Solom on Encoder

(r s _ e n c) .

ii. Calculate the length of the encoded data

e. Otherwise

i. Calculate the length of the encoded data

ii. For each R eed-Solom on block

1. Calculate the number of bits in the block (this is either a full

R eed-Solom on block or the remainder)

2. Extract the number of bits in the block from the Scrambled

data

3. Encode the bits from the step above through the Reed-

Solom on Encoder (r s _ e n c)

f. S ave the results

g. If using half-rate convolutional encoding

i. P a ss the R eed-Solom on encoded data through the convolutional

encoder (c o n v e n e) and calculate the length of the resulting data.

ii. S ave the results

h. e lse

i. P a ss the R eed-Solom on en cod ed data through the convolutional

encoder (c o n v _ e n c)

ii. P a ss the encoded data through the bit puncturer (p u n c t u r e) . This

function returns the length of the output

iii. S ave the results

i. Interleave the data through the Data Interleaver (i n t e r l e a v e)

j. S ave the results

k. Copy the fully encoded PHY block to the output

As noted in the algorithm, the save results is not a simple case o f outputting to a file.

The algorithm used is

1. If the directory to sa v e in is not NULL

a. Create the full file nam e (appropriate to the stage of the algorithm)

b. If this is the first time through

i. Set the a c c e s s m ode to open and over-write

c. e lse

i. Set the a c c e s s m ode to open and append

d. Open the file with the correct nam e and a c c e s s m echanism

e. If it fails to open, report an error

Page 117

Chapter 5 — Modelling Environment HomePlug
Components

f. Otherwise print the output of the current stage of the main algorithm, and a

separator

Each of the functions that make up the Payload FEC Encoder is described below.

5.3.3.1 Data Scrambler (s c r a m b le)

The first block is the scrambler. This ensures that there are no runs o f ones or zeros

which could happen where there is zero padding in the payload for example. Runs of

ones and zeros reduce the effectiveness o f the error correcting algorithms. The

scrambler function is an implementation o f the circuit shown in Figure 5.13.

DATA IN

SCRAMBLED
DATA OUT

Figure 5.13 - Scrambler Circuit

The inputs and outputs o f the function are given in Table 5.14.

Variable Name Type Direction Description
data UINT8 * In/Out The data stream to be scrambled
length int Input The length o f the data (in bits)

Table 5.14 - Scrambler Function Inputs and Outputs

The algorithm of the function is

1. Initialise the pseudo random seq u en ce to all o n es

2. For each bit in the data

a. Calculate the exclusive-or value (x7 ® x4)

b. Shift the seq u en ce to the left (ie x7 = x6, etc)

c. Store the exclusive-or value in x1

d. S et the output value equal to the input value exclusive-or’d with the input

value

Page 118

Chapter 5 - Modelling Environment HomePlug
Components

5.3.3.2 Reed Solomon Encoder (r s_ e n c)

The second function the data passes through is the Reed-Solomon Encoder, which

encodes the data using the Reed-Solomon algorithm [78]. This adds parity to the end o f

the data. The number o f parity symbols generated depends on the modulation scheme

used. If it is DQ PSK or DBPSK then there are 16 parity symbols and if the modulation

is ROBO then there are 8 parity symbols. The function implements the Reed-Solomon

Encoder shown in Figure 5.14.

(3(1) 0 (0)G(2>

,P(«)

C(K)

Figure 5.14 - Reed Solomon Encoder Circuit

The inputs and outputs o f the function are given in Table 5.15.

Variable Name Type Direction Description
msg UINT8 * In/Out The input message (binary) - the parity is appended

to this
mod modi Input The modulation
length int Input The length o f msg (in bits)
gen int * Input The generator polynomial to encode the data

Table 5.15 -Reed-Solomon Encoder Function Inputs and Outputs

The algorithm o f the function is

1. Determine the number of parity sym bols (8 if ROBO modulation, 16 if DQPSK or

DBPSK)

2. Create the arrays to convert between power and tuple form (f i e l d g e n)

3. Convert the input into R eed-Solom on sym bols in power form (8 bits per symbol).

U ses the tup2pow array from the previous step.

4. Clear the parity array

5. For each symbol in the m essa g e

a. Calculate the feedback value (current symbol © last parity symbol)

b. For each parity symbol

i. Calculate the addition of the feedback value and the generator

coefficient

ii. Calculate the new value of the parity symbol (addition from step

above © the previous parity symbol)

6. Convert the parity sym bols back to binary and append to the input m essa g e .

Page 119

Chapter 5 — Modelling Environment HomePlug
Components

5.3.3.3 Convolutional Encoder (c o n v _ e n c)

The next stage is the convolultional encoder. This takes the data from the Reed-

Solomon encoder and encodes the data using the circuit in Figure 5.15. The function

(conv_enc) is the implementation o f this circuit. This generates double the amount of

output data as input; hence it is a half-rate code.

Figure 5.15 - Convolutional Encoder Circuit

The inputs and outputs o f the function are given in Table 5.16.

Variable Name Type Direction Description
output UINT8 * Output Output data stream (interleaved X-Y)
input UINT8 * Input Input data stream
length int Input Length o f input stream

Table 5.16 - Convolutional Encoder Inputs and Outputs

The algorithm used by the function is

1. Initialise the shift register (set all elem ents to zero)

2. For each bit in the input

a. Calculate the X stream output (input © shift[0] © shift[1] © shift[2] © shift [5])

b. Calculate the Y stream output (input © shift[1] © shift[2] © shift[4] © shift [5])

c. Store the X and Y values in the output (interleaving them so that the output is

X-Y-X-Y)

d. Update the shift register (shift[x] = shift[x-1]), and store the input bit in shift[0]

3. Flush the shift register with zeros (this returns it to a known state for d ecod e and u ses

the sam e algorithm a s step 2)

Page 120

Chapter 5 - Modelling Environment HomePlug
Components

5.3.3.4 Bit Puncturing (p u n c tu r e)

After the data has been through the convolutional encoder, it is optionally passed

through the bit puncturer. This makes the half-rate data created in the convolutional

encoder three-quarter rate by removing the bits according to the pattern in Figure 5.16.

ENCODED
Xo X, X, X, X4 Xs X. x7 X.

DATA
Yo Y, Yj Yj y4 y 5 Y» Yt Y,

PUNCTURED DATA

\ 7

Figure 5 .1 6 - Bit Puncturing

The inputs and outputs for the function are given in Table 5.17.

PUNCTURED
BIT

Xo Yo Y, X2 X, Yj y 4 Xs X, Y, Y 7 X,

Variable Name Type Direction Description
output UINT8 * Output Punctured data stream
input UINT8 * Input Input data stream (contains X & Y)
mode punct Input Puncture Rate ('A or % rate)
len in int Input Length o f input stream (in bits)

Table 5 .1 7 - Bit Puncture Inputs and Outputs

The algorithm used by the block is given below

1. For each input bit

a. If the bit is not punctured (i.e. is not a multiple of 3)

i. Copy the input bit to the output

ii. Increment the output stream index

2. Return the output stream index (this g ives the length of the output)

5.3.3.5 Data Interleaver (i n t e r l e a v e)

The final stage is the interleaver. This ensures that the logically adjacent data isn’t

transmitted physically adjacent, and also introduces the extra redundancy when ROBO

mode is used. The interleaver itself is a simple row/colum n interleaver, which populates

a matrix by filling it column wise and reading out the data row wise. This is shown in

Figure 5.17. The function is an implementation o f this.

Page 121

Chapter 5 - Modelling Environment HomePlug
Components

READ DOWN
ROWS

WRITE ACROSS
COLUMNS

Figure 5 .1 7 - Interleaver Process

The inputs and outputs o f the function are given in Table 5.18.

Variable Name Type Direction Description
data UINT8 * In/Out Data stream to be interleaved
mod modi Input Modulation scheme being used
len int Input Length o f the input data stream
num car int Input Number o f carriers that can be used
b locksize int Input Size o f the PHY block that is being created - either

20 or 40
Table 5.18 - Interleaver Inputs and Outputs

The algorithm used is given below.

1. S et the parameters for the interleaver, depending on the modulation

a. ROBO - Number of rows is number of carriers, number of colum ns is 10 and

number of sym bols 4

b. DQPSK or DBPSK - Number of rows is twice number of carriers, number of

colum ns is 10 or 20 (for a 20 or 40 symbol PHY block respectively) and the

number of sym bols is 1

2. Calculate the s ize of the output (number of sym bols * number of rows * number of

colum ns)

3. For each row (as determined in step 1)

a. Set the initial row index

b. For each column (as determined in step 1)

i. If the modulation is DQPSK, com bine the bits from the “2"

interleavers (2*data[current input, secon d matrix] + data[current

input, first matrix]). P lace this in the interleaver at [current

row][current column]

ii. If the modulation is DBPSK or ROBO, place the current data in the

interleaver at [current row][current column]

iii. Increment the current input

Page 122

Chapter 5 - Modelling Environment HomePlug
Components

iv. Update the current row (8 le ss than previous), wrapping round if this

is le ss than zero

4. Copy the interleaver to the output, creating the redundancy if using ROBO

modulation.

The functions above will create the encoded version o f the input data stream from the

MAC and also ensure that there is sufficient data for the OFDM encoder.

Page 123

Chapter 5 — Modelling Environment HomePlug
Components

5.3.4 OFDM E n c o d e r (ofdm_ encode)

The OFDM Encoder function (o fd m _ e n c o d e) is the implementation o f the

description given in Section 3.3.3.3. The block diagram of the function is given again in

Figure 5.18, and the function consists o f four main sub-functions

1. Data Mapper (m ap p er)

2. Inverse Fast Fourier Transform (i f f t _ b l o c k)

3. Cyclic extender (c y c l i c)

4. Pulse Shaper (p u l s e _ s h a p e)

LINE

MAPPER PULSE
SHAPER

INVERSE
FFT

CYCLIC
PREFIX

Figure 5.18 - ODFM Encoder

The inputs and outputs o f the function are given in Table 5.19.

Variable Name Type Direction Description
output float * Output The Output data stream
data UINT8 * Input The binary input stream
tonemask UINT8 * Input The system-wide Tone Mask
tonemap UINT8 * Input The link specific Tone Map
modulation modi Input The modulation scheme to use
phase float * In/Out The reference phase (gets updated)
num syms int Input The number o f symbols
num car int Input The number o f usable earners
dir char * Input The results directory

Table 5 .1 9 - OFDM Encoder Inputs and Outputs

The algorithm of the function is given below.

1. While there are still sym bols left to en cod e

a. Determine the s ize of this PHY block (either 40 if there are more than 40

sym bols left, or whatever is left)

b. Calculate the number of bits required for the PHY block and copy th e se from

the input (number of bits = block s ize * number of carriers)

Page 124

Chapter 5 - Modelling Environment HomePlug
Components

c. S ave this if requested

d. Calculate the number of sym bols left

e. P a ss the data from (b) through the Mapper

f. S ave the mapped data if requested

9- P a ss the m apped data from (e) through the IFFT

h. S ave this if requested

i. Add the cyclic prefix

j- S ave this if requested

k. Apply pulse shaping

1. S ave this if requested

m. Copy the OFDM encoded data to the output

The “Save if requested” steps in the algorithm above use the same algorithm as the

similar steps in the Payload FEC encoder.

5.3.4.1 Data Mapper (m apper)

The first block in the OFDM encoding process is the mapper. This takes the binary data

from either the Frame Control FEC or Payload FEC and maps them to the correct phase

and amplitude information (in the complex plane) for the IFFT. The function uses the

constellations given in Figure 5.19, and it also adds in a reference phase1. If the data is

from the Frame Control FEC, this phase comes from Table 11 in the HomePlug

Specification, and if the data is from the Payload FEC the reference phase is the phase of

the data sent on that sub-carrier on the previous OFDM symbol, with the first symbol

taking its reference phase from the last Frame Control symbol. This is shown in Figure

5.20.

1 The inputs refer to the values in the interleaver matrix. In the case o f DQPSK, they refer to the two

interleaver matrices, although the interleaver output is the decimal equivalent o f the two binary numbers so

in the implementation o f the mapper, the values come from only one matrix.

Page 125

Chapter 5 - Modelling Environment HomePlug
Components

(1)

B PSK , DBPSK ,
R O BO

Q

+ 1 - -

(0)
► I

D Q PSK

Q

(01)

(00)(11)

(10)

-M

Figure 5.19 - Modulation Constellations

OFDM
S ym bol (N-1)

C onste lla tion
O u tp u ts

0
0
0
0
0

0
0
0

0
0
0
0
0

0
0
0

Figure 5.20 - Mapper Operation

The inputs and outputs o f the mapper are given in Table 5.20.

OFDM
S ym bo l (N)

Variable Name Type Direction Description
output complex * Output Mapped output
input UINT8 * Input Input data stream (binary)
ton em ask UINT8 * Input System wide Tone Mask
tonemap UINT8 * Input Link-specific Tone Map
mod modi Input Modulation scheme
num syms int Input Number o f symbols in frame
phase float * In/Out Reference Phase (gets updated)

Table 5.20 - M apper Inputs and Outputs

The algorithm o f the function is given below

1. Create the map to convert from the “binary” to the initial phase

2. Create the Pseudo Random array that is used when carriers are blocked from the

tone map (p n g e n)

3. For each symbol

Page 126

Chapter 5 - Modelling Environment HomePlug
Components

a. If the carrier is not blocked via the tone m ask

i. If the carrier is blocked via the tone map and the modulation is

DQPSK or DBPSK then u se the corresponding value in the P su ed o

Random array to generate the phase, otherwise u se the value in the

input array to generate the phase (using the map generated in step

1)

b. Else

i. This frequency is blocked, so se t the p hase to 0

c. Add the reference phase

d. Update the reference p hase array if the data is payload or the last symbol of

the Frame Control

e. Calculate the real and imaginary com ponents from the p hase information (ie

convert from a polar representation to a Cartesian representation)

The output o f the mapper is the real and imaginary components which represent the data

to be transmitted on each sub carrier. This is passed to the next stage, which is the IFFT

Block.

5.3.4.2 Inverse Fast Fourier Transform (i f f t _ b lo c k)

The IFFT takes its input from the mapper, and generates the signal that will be

transmitted on the channel. The function takes the data, and places it in the correct

frequency “bins”, before creating the “negative frequencies”. This is shown in Figure

5.21. By creating the negative frequencies (which have the same real part, but inverse

imaginary part) the output o f the IFFT is purely real.

Negative
Frequency

Mapper
Output

IFFT input - 256 “Bins”

Figure 5.21 - IFFT Operation

The inputs and outputs o f the function are given in Table 5.21.

Page 127

Chapter 5 — Modelling Environment HomePlug
Components

Variable Name Type Direction Description
output float * Output Output data stream (waveform to tranmsit)
signal complex * Input The input data (from mapper)
tonemask UINT8 * Input The system-wide Tone Mask
sym int Input The number o f symbols in “signal”

Table 5.21 - IFFT Inputs and Outputs

The algorithm o f the function is given below

1. For each symbol

a. Clear the IFFT Input array

b. Copy the input symbol to the correct frequency bins (23 to 107)

c. Create the negative frequency

d. Perform the IFFT (i f f t)

e. Copy the real IFFT com ponent to the output array

The function i f f t is an implementation o f the Inverse Fast Fourier Transform

function.

5.3.4.3 Cyclic Prefix (c y c l i c)

After the data has been converted to the time domain, a cyclic prefix is added. This

appends the last 172 samples o f the symbol to the beginning o f it, so that the 256

samples per symbol out o f the IFFT become 428 samples per symbol. Figure 5.22

shows this diagrammatically.

I FFT Out put
L___ (num_s amps) ___
" I. Prefi x Size T

i (pfx_size) !------------------------
i
i

___________________ i___________________

Prefix Copied
From End of Input

Figure 5.22 - Cyclic Prefix

The inputs and outputs o f the function are given in Table 5.22.

Variable Name Type Direction Description
output float * Output Cyclically extended version of data
data float * Input Input data (output from IFFT)
pfx size int Input The size o f the prefix to add
num samp int Input The number o f samples in each symbol
num sym int Input The number o f symbols

Table 5.22 - Cyclic Prefix Inputs and Outputs

Page 128

Chapter 5 - Modelling Environment HomePlug
Components

The algorithm o f the function is given below

1. For each symbol

a. Copy the prefix from the last sam ples to the front

b. Copy the rest of the symbol to the output

5.3.4.4 Pulse Shaper

The final stage o f the OFDM Encoder is the Pulse Shaper. This applies a raised cosine

shape to each symbol, as shown in Figure 5.23.

S am ple Multiplication
Factor

Time Dom ain S am ple

0 7 4 1 9 427

Figure 5.23 - Pulse Shaper

The inputs and outputs o f the function are given in Table 5.23.

Variable Name Type Direction Description
data float * In/Out Symbols to transmit on the channel
num syms int Input The number of symbols in the data
num samp int Input The number o f samples in each symbol
N int Input The number o f samples at the start and end o f each

symbol to shape
Table 5.23 - Cyclic Prefix Inputs and Outputs

The algorithm o f the function is given below

1. For each symbol

a. For the first “N” sam ples

i. Shape the sam ple using the raised cosine function

b. For the last “N” sam ples

i. Shape the sam ple using the raised cosine function

Page 129

Chapter 5 — Modelling Environment HomePlug
Components

5.3 .5 PHY D e c o d e r

The PHY Decoder is the inverse o f the encoder. It takes the data from the channel

(which will have been altered by the characteristics o f the channel) and recreates the

binary of the frame that was transmitted. This could involve correcting any errors that

have occurred during transmission. The decoder is in fact made up o f two separate

functions

1. Frame Control Decoder (f c _ d e c)

2. Payload Decoder (p l_ d e c)

Figure 5.24 gives the structure chart that shows the functions that make up the decoder

functions. Fig 6.25 shows the data flow through the blocks. Note that they use the same

O FD M decoder.

Cyclic i

Figure 5.24 - PH Y Decoder Structure Chart

(to MAC)

(to MAC)

FRAME
CONTROL

FEC
DECODER

Figure 5.25 - PH Y Decoder Data Flow

The reason there are two functions (as opposed to the one o f the encoder) is because the

payload decoder needs information from the Start Frame Control (the Tone Map Index)

to get the number o f carriers, modulation and code rate used to encode the data. This

Page 130

Chapter 5 - M odelling Environment HomePlug
Components

information is part of the MAC functionality so the functions are split to allow the PHY

to request this from the MAC (via the message protocol described previously). There are

similarities between the two functions as they both use the same OFDM Decoder,

however the Frame Control Decoder has a Frame Control FEC Decoder and the

Payload Decoder a Payload FEC Decoder (which are the inverse of the FEC’s in the

encoder). The Frame Control decoder also has the channel estimation function in it,

which determines the filter coefficients that are part o f the OFDM decoder, and remove

many of the channel characteristics from the received signal (this is an advantage of

OFDM). The inputs and outputs o f the Frame Control Decoder and Payload Decoder

are given in Tables 5.24 and 5.25 respectively.

Variable Name Type Direction Description
dec fc UINT8 * Output The decoded version o f the Frame Control
fc float * Input The received Frame Control (from the channel)
pream float * Input The received Preamble
tonemask UINT8 * Input The system-wide Tone Mask
phase float * In/Out The reference phase (gets updated)
coeff complex * Output The channel filter coefficients

Table 5.24 - Frame Control Decoder Inputs and Outputs

Variable Name Type Direction Description
dec pi UINT8 * Output The decoded version o f the Payload
Pi float * Input The received Payload (from the channel)
sfc UINT8 * Input The Start Frame Control
tonemask UINT8 * Input The system-wide Tone Mask
tonemap tm data Input The Tone Map for the transmission
phase float * Input The reference phase
coeff complex * Input The channel filter coefficients

Table 5.25 - Payload Decoder Inputs and Outputs

The Frame Control Decoder algorithm is

1. U se the preamble to determine the channel filter coefficients

2. Calculate the number of carriers from the Tone Mask

3. D ecode the frame control through the OFDM decoder (o f d m _ d e c o d e)

4. D ecode the bits from the OFDM decoder through the Frame Control FEC Decoder

(f c _ d e c o d e)

5. Return the type of Frame Control (d e c _ f c)

The Payload Decoder algorithm is

1. Calculate the number of carriers (from the Tone Mask and Tone Map)

2. Get the number of 20 and 40 symbol PHY blocks (d e c o d e _ f 1)

3. P a ss the received m essa g e through the ODFM decoder (o f d m _ d e c o d e)

Page 131

Chapter 5 — Modelling Environment HomePlug
Components

4. P a ss the output from the OFDM decoder through the Payload FEC D ecoder

(d a t a _ d e c o d e)

5. Return the length of the payload

5.3.5.1 Channel Estimation (chan__est)

The first stage o f the decoding process is channel estimation. This uses the received

preamble to estimate the conditions o f the channel and from this the filter coefficients

which are used on the actual data (Frame Control and Payload). This negates much of

the changes in amplitude and phase introduced by the channel. The inputs and outputs

are given in Table 5.26.

Variable Name Type Direction Description
cor complex * Output The channel filter factors
rx pream float * Input The received preamble
phase float * Input The reference phase
tonemask UINT8 * Input The system-wide usable carrier list

Table 5.26 - Channel Estimator Inputs and Outputs

The channel estimation algorithm is

1. R egenerate the preamble (gives the “golden reference”)

a. For each carrier

i. Copy the reference p hase for the carrier

ii. S et the mapper input to “1” (SYNCP)

b. P a ss the SYNCP through the mapper

c. For each carrier

i. S et the mapper input to “0 ” (SYNCM)

d. P a ss the SYNCM through the mapper

2. P a ss the received preamble through the FFT (f f t b l o c k) - this g ives the received

SYNCP and SYNCM sym bols (rxSYNC)

3. Calculate the correction factors

a. Clear the correction factor array

b. For each full preamble symbol

i. If the symbol is SYNCP u se the SYNCP symbol from 1, and if the

symbol is SYNCM u se the SYNCM symbol.

ii. Calculate the inverse (Inv) real (SYNC.real / ((SYNC.real *

SYNC.real) + (SYNC.imag * SYNC.imag)))

iii. Calculate the inverse (Inv) imaginary (SYNC.imag / ((SYNC.real *

SYNC.real) + (SYNC.imag * SYNC.imag)))

Page 132

Chapter 5 - Modelling Environment HomePlug
Components

iv. Calculate the real correction factor and add to current total

(rxSYNC.re * Inv.re) - (rxSYNC.im * Inv.im)

v. Calculate the imaginary correction factor and add to current total

(rxSYNC.im * Inv.re) - (rxSYNC.re * Inv.im)

c. Calculate the actual correction factors - for each carrier

i. Caclulate the average real and imaginary parts

ii. Calculate the inverse - g ives the filter coefficients

iii. Store the results

Page 133

Chapter 5 - Modelling Environment HomePlug
Components

5.3.6 OFDM D e c o d e r (ofdm_ decode)

Once the channel filter coefficients have been calculated, the data (either Frame Control

or Payload) is passed through the OFDM decoder. This is the inverse of the encoder,

and consists o f four stages which are given below, and shown in Figure 5.26.

1. Remove Cyclic Prefix (d e _ c y c l)

2. FFT (f f t b l o c k)

3. Channel Filter (c h a n _ f i 1 1)

4. De-Mapper (dem ap)

(to MAC)

(to MAC)

DE
MAPPERFFT

CYCLIC
PREFIX

REMOVER

CHANNEL
FILTER

Figure 5.26 - OFDM Decoder

The inputs and outputs o f the OFDM decoder are given in Table 5.27.

Variable Name Type Direction Description
output UINT8 * Output The decoded output binary data stream
symbols float * Input The received data stream
tonemask UINT8 * Input System wide Tone Mask
tonemap UINT8 * Input Usable carrier list
modulation modi Input Modulation used to encode data
phase float * In/Out Reference phase
num sym int Input Number o f symbols in message (symbols)
num car int Input Number o f usable carriers
dir char * Input The directory to store the intermediate results

Table 5.27 - OFDM Decoder Inputs and Outputs

The algorithm used in the function is

1. While there are sym bols left

a. Determine the s ize of the block (40, 20 or 4 sym bols)

b. Copy the sam ples that m ake up the block

Page 134

Chapter 5 - Modelling Environment HomePlug
Components

c. Calculate the number of sym bols left (sym bols - block size) and the number

of bits in the output (block size * number of carriers)

d. R em ove the cyclic prefix (d e _ c y c l)

e. S ave if requested

f. P a ss the data through the FFT (f f t b l o c k)

g. S ave if requested

h. Filter the data from the FFT with the channel filter (c h a n f i l t)

i. S ave if requested

j. P a ss the filtered data through the dem apper

k. S ave if requested

I. Copy decoded bits to the output

2. Return the length of the output

Note that the “Save if Requested” steps are again the same algorithm as that described

previously.

5.3.6.1 Remove Cyclic Prefix (de__cycl)

The first block in the OFDM decoder is the Cyclic Prefix remover. This removes the

prefix added previously, and it also uses an offset to select data from the prefix that

might have been altered during transmission (from inter-symbol interference for

example). This is shown in Figure 5.27.
Inpu t

(num_»amp + pfc_gize)

FFT Input
(num_swnps)

Figure 5.27 - Cyclic Prefix Remover

The inputs and outputs for the function are given in Table 5.28.

Variable Name Type Direction Description
output float * Output The Output data stream
data in float * Input The Input data stream
num sym int Input The number o f symbols
num samp int Input The number o f samples in each (output) symbol

Page 135

Chapter 5 - Modelling Environment HomePlug
Components

pfx size int Input The size o f the prefix that was added
offset int Input The number o f samples to take from the prefix

Table 5.28 - Cyclic Prefix Remover Inputs and Outputs

The algorithm used in the function is

1. For each symbol

a. For each sam ple

i. If the sam ple is in the “offset” section, place at the end of the output

ii. If the sam ple is in the “main" section, place at the start of the output

5.3.6.2 Fast Fourier Transform (f f t b lo c k)

The FFT Block takes the 256 samples per symbol that is the output from the cyclic

prefix removal stage and performs a Fast Fourier Transform on them. This gives the

phase information that is used to convert the data back into binary. The function only

returns the phase data o f the 84 carriers that are used by HomePlug.

The inputs and outputs for the function are given in Table 5.29.

Variable Name Type Direction Description
output complex * Output The decoded output stream (contains HomePlug

frequencies)
timedom float * Input The input data stream
sym int Input Number o f symbols in the input

Table 5.29 - FFT Block Inputs and Outputs

The algorithm used in the function is

1. For each symbol

a. Create the FFT input signal (copy the next sym bols worth of sam ples to the

input)

b. Calculate the FFT of the symbol (f f t)

c. Copy the data from the 84 sub-carriers used by HomePlug to the output

The FFT function used is the same as is used in the IFFT o f the encoder.

5.3.6.3 Channel Filter (c h a n _ f i l t)

The channel filter is a simple 1-tap filter that operates on each o f the sub-carriers o f the

output from the FFT. The coefficients are those calculated by the channel estimation

Page 136

Chapter 5 — Modelling Environment HomePlug
Components

function and the filter function itself is an implementation of the circuit shown in Figure

5.28.

Input
Sym bol

Samp

[0]

Samp

in

Samp

[2]

Samp

pi

Samp
(83)

-I

S

-I

O u tp u t (filtered)
Sym bol

CoefftO]

Coeff[1]

CoeffI2]

Coeff[3]

C oeff[83]

Samp

Samp

[1]

Samp

|2]

Samp

PI

Samp
[83]

Figure 5.28 — Channel Filter Circuit

Note that the symbols and multipliers are complex.

The inputs and outputs for the function are given in Table 5.30.

Variable Name Type Direction Description
fft out complex * In/Out Input data stream (from FFT) to be filtered
chan coef complex * Input Channel filter coefficients
num sym int Input Number o f symbols
num car int Input Number o f carriers

Table 5.30 - Channel Filter Inputs and Outputs

The algorithm used in the function is

1. For each symbol

a. For each sub-carrier (the 84 of HomePlug)

i. Get the correct input com plex com ponents

ii. Get the filter coefficient for the sub-carrier

iii. Multiply the input with the filter coefficient (complex)

iv. Copy the results to the output

5.3.6.4 De-M apper (demap)

The final stage in the OFDM decoder is the de-mapper. The block performs the inverse

of the mapper and converts the phase information back to a binary representation. It

Page 137

Chapter 5 - Modelling Environment HomePlug
Components

does this by removing the reference phase (in the same way as it was added in the

encoding process) and then determining what the most likely input was given the phase.

Figure 5.29 shows the phase ranges and how these are mapped back to binary.

BPSK, DBPSK,
ROBO DQPSK

Q
+ 1 - -

-1 - -

-M

Q
(01)

(11) (00)

Figure 5.29 - De-Mapping Operation

The inputs and outputs for the function are given in Table 5.31.

Variable Name Type Direction Description
output UINT8 * Output Output binary data stream
data in complex * Input Input complex data stream
tonemap UINT8 * Input Tone Map - Link specific usable carriers
tonemask UNIT8 * Input Tone Mask - System wide usable carriers
mod modi Input Modulation scheme used
ref float * In/Out Reference phase (is updated)
num sym int Input Number of symbols

Table 5.31 - De-Mapper Inputs and Outputs

The algorithm used in the function is

1. For each symbol

a. For each sub-carrier

i. Convert the input real and imaginary parts to polar form (gives the

phase)

ii. R em ove the reference phase

iii. Update the reference p hase (if the m essa g e is payload or the last

symbol of Frame Control)

iv. Convert the p hase to binary

a. BPSK, DBPSK, ROBO: If the p hase is within ±5% of n from

On, 2 n or -2n then the binary value is 0

b. BPSK, DBPSK, ROBO: If the p hase is within ±5% of n from

n or -n then the binary value is 1

c. DQPSK: If the p hase is within ±5% of n from On, 2n or -2n

then the binary value is 00

Page 138

Chapter 5 - Modelling Environment HomePlug
Components

d. DQPSK: If the p hase is within ±5% of n from n or -n then

the binary value is 11

e. DQPSK: If the p hase is within ±5% of n from n/2 or -3n/2

then the binary value is 01

f. DQPSK: If the p hase is within ±5% of n from 3n/2 or -n/2
then the binary value is 10

v. Copy the binary value to the output, if the carrier is not blocked.

Page 139

Chapter 5 — Modelling Environment HomePlug
Components

5 .3 .7 F r a m e C o n t r o l D e c o d e r (f c _ d e c)

The Frame Control Decoder takes the bit stream from the OFDM decoder (which will

be spread over the 4 Frame Control OFDM Symbols) and recreates the 25 bits o f the

Frame Control for the MAC. It consists o f three functions (which are the inverse of

operations o f the functions in the encoder), which are given below and shown in Figure

5.30.

1. Bit Generator (f c _ b i t g e n)

2. De-Interleaver (f c _ d e i n t e r)

3. Product Decoder (f c _ d e p r o d)

BIT
GENERATOR

FRAME
CONTROL DE
INTERLEAVER

PRODUCT
DECODER

Figure 5.30 - Frame Control FEC Decoder Block Diagram

The inputs and outputs for the function are given in Table 5.32.

Variable Name Type Direction Description
output UINT8 * Output The decoded 25 Frame Control Bits
data UINT8 * Input The input data stream from the OFDM Decoder
num car int Input The number of carriers

Table 5.32 - Frame Control Decoder Inputs and Outputs

The algorithm used in the function is simple, as it just passes the data through each stage.

1. P a ss the data through the bit generator (f c _ b i t g e n)

2. P a ss the 100 bits from the bit generator through the de-interleaver (f c _ d e i n t e r)

3. P a ss the de-interleaved data through the product decoder (f c _ d e p r o d)

Page 140

Chapter 5 - Modelling Environment HomePlug
Components

5.3.7.1 Bit Generator (b i t _ g e n)

The bit generator takes the data from the OFDM decoder, which is spread over 4

OFDM symbols, and recreates the 100 bits for the de-interleaver. It uses a simple

averaging scheme to determine the input value.

The inputs and outputs for the function are given in Table 5.33.

Variable Name Type Direction Description
output UINT8 * Output The 100 “bits” output
input UINT8 * Input The input data stream
num car int Input The number of carriers

Table 5.33 - B it Generator Inputs and Outputs

The algorithm used in the function is

1. Clear the arrays used in the function

2. For each of the 4 OFDM sym bols

a. For each of the 84 carriers

i. Calculate the input bit position

ii. Calculate the output bit position

iii. Add the value at the input position to the value at the output position,

and increment the number of valu es in the output

3. For each of the 100 “bits”

a. If the average value (output/output count) is greater than the threshold

i. The output is 1

b. Else

i. The output is 0

5.3.7.2 Frame Control De-Interleaver (f c _ d e i n t e r)

The de-interleaver uses the same algorithm as the interleaver to place the bits back in

their original positions ready for the product decoder stage. The only difference is the

indexes used are swapped. The interleaver has the line

o u t p u t [o l d l x] = d a t a [n e w l x] ;

Where as the de-interleaver has the line

o u t p u t [n e w l x] = d a t a [o l d l x] ;

The inputs and outputs for the function are given in Table 5.34.

Page 141

C hapter 5 - M odelling Environm ent H om ePlug
Components

Variable Name Type Direction Description
output U IN T8 * Output T he output data s tream
data U IN T 8 * Input T he input da ta stream

Table 5.34 - De-Interleaver Inputs and Outputs

5.3.7.3 Fram e Control Product D ecoder (f c d e p r o d)

The Product D ecoder takes the 100 bits from the de-interleaver and returns the 25 bits

o f the input array. It will also correct errors in the input bit stream by using a hamming-

based correction function which will correct single bit errors. The function first corrects

the columns and then the rows, as shown in Figure 5.31.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

7

8

9

10

D ata

Parity

Figure 5.31 - Product Decoder Operation

The inputs and outputs for the function are given in Table 5.35.

Variable Name Type Direction Description
output U IN T 8 * Output T h e 25 Fram e C ontro l bits output
data U IN T8 * Input T he input data s tream

Table 5.35 - Product Decoder Inputs and Outputs

The algorithm used in the function is

1. Correct the columns. For each column in the input array

a. Copy the 10 bits in the column to the hamming correction function input

b. Use the hamming correction function to correct the errors (de_ham)

c. Copy the decoded data to the intermediate array

2. Correct the rows. For each row in the intermediate array

a. Copy the 10 bits in the row to the hamming correction function input

b. Use the hamming correction function to correct the errors (de_ham)

Page 142

Chapter 5 - Modelling Environment HomePlug
Components

c. Copy the decoded data to the output array

3. Copy the 25 bits of Frame Control Data to the output

The function uses the d e _ h a m function to correct single bit errors in each 10-bit

column and row. The algorithm used is

1. Calculate the “local” parity based on the 5 “data” bits of the input (using the sam e

parity calculator a s the encoder)

2. Calculate the syndrom e (local parity x-or’d with input parity), and convert it to a

decimal representation.

3. If the syndrome is non-zero (implies there is an error)

a. Determine the error position from the syndrom e value (via a look-up table)

b. Correct the error

Page 143

Chapter 5 — Modelling Environment HomePlug
Components

5 .3 .8 P a y l o a d D e c o d e r (pa y l o a d _ d e c)

The Payload Decoder re-creates the payload portion o f the transmitted data and corrects

any errors that might have occurred, via the Viterbi and Reed-Solomon Decoders. The

function consists o f five stages, which are given below and shown in Figure 5.32.

1. De-Interleaver (de i n t e r)

2. De-Puncture (d e p u n c t)

3. Viterbi Decoder (v i t e r b i)

4. Reed-Solomon Decoder (r s _ d e c)

5. De-Scrambler (d e s c r a m b l e)

VITERBI
DECODERDE-PUNCTURE

Figure 5.32 - Payload FEC Decoder Block Diagram

The inputs and outputs for the function are given in Table 5.36.

Variable Name Type Direction Description
dec rx UINT8 * Output Decoded version o f rx data
rx data UINT8 * Input Received data stream
mod modi Input Modulation used
mode punct Input Puncturing mode
length int Input Length o f input data stream
num car int Input Number o f carriers
num 40 int Input Number o f 40 Symbol PHY blocks
num 20 int Input Number o f 20 Symbol PHY blocks
dir char * Input Results directory

Table 5.36 - Payload Decoder Inputs and Outputs

Page 144

Chapter 5 - Modelling Environment HomePlug
Components

The algorithm (as with the encoder) isn’t as simple as the Frame Control as the functions

are designed to operate on PHY blocks, rather than the whole data stream. The

algorithm is given below.

1. Calculate the number of bits in a 20- and 40-sym bol PHY block, plus the s ize and

number of RS blocks (using the b l o c k _ b i t s function)

2. Determine the number of R eed-Solom on parity sym bols for the modulation sch em e

(16 for DxPSK, 8 for ROBO)

3. Calculate the number of bits into the de-interleaver (number of carriers x block size)

4. Calculate the number of bits out of the de-interleaver (sam e a s the number of bits out

of the convolutional encoder in the encoding process)

5. If the cod e rate is three-quarters, update the number of bits out of the de-interleaver

6. For each 40-Sym bol PHY block

a. Copy the number of bits required for the de-interleaver from the input stream

b. S ave if requested

c. De-interleave the PHY block (d e i n t e r)

d. S ave if requested

e. If the cod e rate is half

i. D ecode the de-interleaved data using the Viterbi decoder (v i t e r b i)

ii. S ave if requested

f. e lse

i. “Insert” the missing punctured bits into the de-interleaved data

(d e p u n c t)

ii. S ave if requested

iii. D ecode the de-punctured data using the Viterbi decoder (v i t e r b i)

iv. S ave if requested

g. If there is only one R eed-Solom on block

i. D ecode the Viterbi output data using the R eed-Solom on decoder

(r s _ d e c)

ii. Copy the decoded data (minus the parity data) to the de-scrambler

input

h. e lse

i. Calculate the length of the output from the R eed-Solom on d ecod e

s tage (length of Viterbi output - (number of RS blocks x number of

parity sym bols x 8)

ii. For each R eed-Solom on block

1. Calculate the number of bits into the decoder

2. Copy the bits from the Viterbi decoded data to the decoder

input

Page 145

Chapter 5 - Modelling Environment HomePlug
Components

3. D ecode the data using the R eed-Solom on Decoder

(r s _ d e c)

4. Copy the Reed-Solom on output to the de-scrambler input

i. S ave if requested

j. De-scram ble the data (d e s c r a m b l e)

k. S ave if requested

I. Copy the fully decoded block to the function output

7. If there is a 20-Sym bol PHY block

a. Copy the number of bits required for the de-interleaver from the input stream

b. S ave if requested

c. De-interleave the PHY block (d e i n t e r)

d. S ave if requested

e. If the cod e rate is half

i. D ecode the de-interleaved data using the Viterbi decoder (v i t e r b i)

ii. S ave if requested

f. e lse

i. “Insert” the m issing punctured bits into the de-interleaved data

(d e p u n c t)

ii. S ave if requested

iii. D ecode the de-punctured data using the Viterbi decoder (v i t e r b i)

iv. S ave if requested

g. If there is only one R eed-Solom on block

i. D ecode the Viterbi output data using the R eed-Solom on decoder

(r s _ d e c)

ii. Copy the decoded data (minus the parity data) to the de-scrambler

input

h. e lse

i. Calculate the length of the output from the R eed-Solom on d ecod e

stage (length of Viterbi output - (number of RS blocks x number of

parity sym bols x 8)

ii. For each R eed-Solom on block

1. Calculate the number of bits into the decoder

2. Copy the bits from the Viterbi decoded data to the decoder

input

3. D ecode the data using the R eed-Solom on Decoder

(r s _ d e c)

4. Copy the R eed-Solom on output to the de-scrambler input

i. S ave if requested

j. De-scram ble the data (d e s c r a m b l e)

k. S ave if requested

Page 146

Chapter 5 - Modelling Environment HomePlug
Components

I. Copy the fully decoded block to the function output

8. Return the length (in bits) of the decoded data

Note that the “Save if requested” steps use the same algorithm as the encoder to

determine where to save the results from the steps in the algorithm.

5.3.8.1 Payload De-Interleaver (d e i n t e r)

The de-interleaver inverts the effect o f the interleaver and ensures the logically adjacent

bits are adjacent again for the rest o f the decoding process. It also uses a simple average

scheme with the ROBO data (where each bit is transmitted 4 times) to determine what

the correct input bit was.

The inputs and outputs for the function are given in Table 5.37.

Variable Name Type Direction Description
data UINT8 * In/Out The data stream to de-interleave
mod modi Input The modulation scheme
len int Input The length o f the data
num car int Input The number o f usable carriers
block size int Inptu The size o f the block (20 or 40 symbols)

Table 5 .3 7 - Payload De-Interleaver Inputs and Outputs

The algorithm used in the function is given below.

1. S et the parameters for the de-interleaver depending on the modulation and calculate

the output length

a. ROBO - number of rows is the number of carriers, number of colum ns is 10,

number of sym bols is 4 and the output length is the input length/4

b. DBPSK - number of rows is twice the number of carriers, number of colum ns

is half the block size, number of sym bols is 1 and the output length is the

input length

c. DQPSK - number of rows is twice the number of carriers, number of colum ns

is half the block size, number of sym bols is 1 and the output length is half the

input length

2. For each symbol (there is only more than one with ROBO modulation)

a. Calculate the starting row

b. For each column (as determined in step 1)

i. For each row (as determine in step 1)

1. Calculate the row index ((current row + starting row) mod

(number of rows))

Page 147

Chapter 5 — Modelling Environment HomePlug
Components

2. If this is the first (or only) symbol, copy the current input data

to the correct location in the interleaver matrix ([row

index][current column])

3. If this is the last sym bol (in ROBO), add the current input

data to the correct location in the interleaver matrix and

check if the average value is above the threshold

(determ ines if the binary value is 1 or 0)

4. If this is any other ROBO symbol, add the current input data

to the correct location in the interleaver matrix.

3. Read the data out of the interleaver matrix and create the data for the rest of the

d ecod e process. For each row

a. S et the initial row index (current row)

b. For each column

i. If the modulation is DQPSK

1. Copy the two bits from the interleaver matrix to the output

(current output position and current position + length)

ii. If the modulation is DBPSK or ROBO

1. Copy the bit from the interleaver matrix to the current output

position in the output

iii. Increment the current output position

iv. Decrem ent 8 from the row index, and wrap round to the end if this is

le ss than zero

5.3.8.2 De-Puncture (d e p u n c t)

The de-puncture block inserts a dummy value into the positions that were removed from

the transmitted data. This makes the three-quarter rate back to half rate and in a form

suitable for decoding via the Viterbi decoder. The operation is shown in Figure 5.33.

R E C E IV E D DATA Xo Y0 Y, x2 x3 y 3 y 4 Xs Xo

\ \ / 7

Xo -1 x2 x3 -1 Xs X« -1 X ,

Y0 Y, -1 Y3 Y4 -1 Y , y 7 -1

P U N C T U R E D
BIT

\ 7
D E -P U N C T U R E D DATA Xo Y0 -1 Y, X2 -1 x3 Y3 -1 y 4 Xo -1

Figure 5.33 - De-Puncture Operation

Page 148

Chapter 5 - Modelling Environment HomePlug
Components

The inputs and outputs for the function are given in Table 5.38.

Variable Name Type Direction Description
output UINT8 * Output The de-punctured output data stream
input UINT8 * Inptu The input data stream
mode punct Input The puncturing mode (half or three-quarter rate)
len in int Input The length o f the input data

Table 5.38 - De-Puncturer Inputs and Outputs

The algorithm used in the function is given below.

1. De-puncture the data depending on code rate

a. Half rate - se t return value to 0 (don’t need to puncture)

b. Three-quarter rate

i. For each input bit

1. If the position is on e that w as punctured, insert “-1 ”

2. Copy the input bit to the ouput

ii. S et the return value to the length of the output

c. Any other rate se t the return value to -1

2. Return the return value.

5.3.8.3 Viterbi Decoder (v i t e r b i)

The Viterbi decoder is an implementation o f the Viterbi Algorithm used to decode

convolutional codes [78]. The Viterbi algorithm is a maximum likelihood decoding

algorithm, in that it will determine the most likely path that was taken to encode the data.

In this implementation it uses a hard decision process (rather than the potentially more

accurate soft decision).

The inputs and outputs for the function are given in Table 5.39.

Variable Name Type Direction Description
op data UINT8 * Output The output data stream
input UINT8 * Input The input data stream
genl UINT8 Input First generator polynomial (in decimal)
gen 2 UINT8 Input Second generator polynomial (in decimal)
K int Input “K” value o f encoder (number o f storage elements)
tb depth int Input Trace back depth (multiplication factor)
num data int Input Amount o f data in the input

Table 5.39 - Viterbi Decoder Inputs and Outputs

The algorithm used in the function is given below.

1. Calculate the actual trace back depth (“K” x “tb_depth”)

2. Initialise the tables. For each state of the encoder

Page 149

Chapter 5 — Modelling Environment HomePlug
Components

a. If this is state 0, se t the trellis for this state to 0 (ensures traceback works first

time through)

b. Initialise the error metric table for this state (current error = 0, next error =

OxFF)

c. Set the input table to “-1 ” (unused)

d. For each possible input

i. Calculate the output for the X generator for this state

ii. Calculate the output for the Y generator for this state

iii. Store the output in the output table (at [state][input])

iv. Calculate the next state based on the current state and input, and

sort in the next state table (at [state][input])

v. Store the input which cau sed the transition from state to next state in

the input table (at [state][next_state[state][input]])

3. Create the hamming distance table (fixed values)

4. D ecode the input stream. For each pair of input valu es (X and Y)

a. Combine the pair into a single value. This is done in such a way that the

punctured data (which is “-1” in the input stream) will act in the sam e way a s

the non-punctured data and will give a positive index into the hamming

distance table

b. Determine the step size. If the trellis isn’t full, then only certain sta tes need

considered

c. For each state in the trellis (increment by the step s ize from b)

i. For each input value

1. Get the next state and output from the tables

2. Calculate the hamming distance between the actual input

and the output

3. Update the error metric (current error + hamming distance)

4. If the error metric is le ss than the next state error metric,

update the next state error metric and set the trellis transition

to the current state

d. Update the error metric table (set current to next, next to current and se t each

value in the next error to OxFF)

e. If the trace back depth has been reached (ie the trellis is full)

i. Find the state with the sm allest error (in the error metric table)

ii. Set the trellis read pointer equal to the trellis write pointer

iii. Trace back through the trellis. For each stage in the trellis

1. Store the state that got us here (in the route table)

2. Update the state from the trellis (find the path that g o e s to

the previous stage)

3. Decrem ent the trellis read pointer

Page 150

Chapter 5 - Modelling Environment HomePlug
Components

iv. Add the encoder input which would ca u se the transition from route[0]

to route[1] to the output data stream (this information com es from the

input table)

v. Increment the trellis write pointer, looping round if needed

5. Flush the remaining sta tes from the route table. For each entry in the table

i. Add the encoder input which would ca u se the transition from the

current route to the next route to the output data stream (this

information com es from the input table)

6. Return the length of the output, minus the tail bits

5.3.8.4 Reed-Solomon Decoder (r s _ d e c)

The Reed-Solomon Decoder is an implementation o f the theory given in [78]. The

decoder consists o f five sub-functions, given below and shown in Figure 5.34.

1. Syndrome Calculator (s y n _ c a l e)

2. Berlekamp-Massey Function (b e r l m a s)

3. Chien Search (c h i e n)

4. Omega Function Generator (o m eg a_ g en)

5. Error Magnitude Calculator (e r r o r _ m a g)

OMEGA (ERROR
MAGNTTUDE)

Figure 5.34 - Reed Solomon Decoder Block Diagram

The inputs and outputs for the function are given in Table 5.40.

Variable Name Type Direction Description
msg UINT8 * In/Out Received message (in binary). At end o f function

will contain the corrected version
length int Input The length o f the data (in bits)
modulation modi Input The Modulation scheme used

Table 5.40 - Reed-Solomon Decoder Inputs and Outputs

Page 151

Chapter 5 - Modelling Environment HomePlug
Components

The algorithm for the top-level function is given below

1. Set the number of parity sym bols based on the modulation (8 in ROBO, 16 in DxPSK)

2. Create the conversion arrays (f i e l d g e n)

3. Convert the binary input to R eed-Solom on sym bols in Power representation (8 bits

per symbol, using the array from step 2)

4. Calculate the syndrom es (s y n _ c a l c)

5. If any syndrom es are non-zero

a. U se the Berlekam p-M assey function to find the Error Locator Polynomial,

lambda (b e r l m a s)

b. Find the roots of lambda and their positions (c h e i n)

c. If there w ere more than 0 roots then correct them

i. Shift the syndrom es by one

ii. Calculate the error magnitude polynomial (o m e g a _ g e n)

iii. Calculate the error m agnitudes (e r r o r _ m a g)

6. Correct the errors (if detected). For each error root

a. Calculate the actual position of the data in the input array

b. Add (using R eed-Solom on add) the input in the position to the error

magnitude value for this root

7. Convert the decoded m essa g e back to binary

The algorithm used in the syndrome calculator is based on the following equation, and is

given below

1. Clear the syndrom e array

2. For each R eed-Solom on Symbol in the input

a. For each parity symbol

i. Calculate the value of the alpha power

ii. Calculate the partial summation (current input symbol + alpha power)

iii. Add the partial summation to the syndrome

3. Check how many non-zero syndrom es there are. For each syndrome

a. If it is not zero, increment the non-zero count

4. Return the non-zero count

The Berlekamp-Massey function implements the algorithm given in [78]

The Chien Search searches the entire Reed-Solomon field to determine the roots o f the

ELP. The algorithm is

1. For each possible value in the R eed-Solom on field (i)

Page 152

Chapter 5 - Modelling Environment HomePlug
Components

a. Calculate the value of lambda at i

b. If the answ er is zero

i. Copy the value into the root array

ii. Determine the postion (field s ize - i)

iii. Increment the number of roots

2. Return the number of roots

The o m e g a _ g e n function creates the error magnitude polynomial, from which the

amount that should be added to the input to correct it can be determined. The algorithm

is given below.

1. For each syndrome, i

a. R eset the summation variable

b. Calcualte the coefficient for location i

c. Store the variable in om ega

The final function “solves” the error magnitude polynomial and gives the actual value

used to correct the error. The algorithm is given below.

1. For each error

a. Calculate the value of the inverse of alpha

b. Evaluate the numerator

c. Evaluate the denominator

d. Calculate the error magnitude (numerator/denominator)

5.3.8.5 Descrambler (d e sc r a z n b le)

The de-scrambler is exactly the same as the scrambler. It exploits the fact that doing the

xor again (with the same value from the psudo-random sequence) will give you the

original value. After this stage the output data should be the same as the input (unless

there were too many errors to correct) and is ready to be passed back to the MAC.

The inputs and outputs o f the function are given in Table 5.41.

Variable Name Type Direction Description
data UINT8 * In/Out The data stream to be scrambled
length int Input The length o f the data (in bits)

Table 5.41 - Scrambler Function Inputs and Outputs

The algorithm o f the function is

1. Initialise the pseudo random seq u en ce to all o n es

Page 153

Chapter 5 — Modelling Environment HomePlug
Components

2. For each bit in the data

a. Calculate the exclusive-or value (x7 © x4)

b. Shift the seq u en ce to the left (ie x7 = x6, etc)

c. Store the exclusive-or value in x1

d. S et the output value equal to the input value exclusive-or’d with the input

value

Page 154

Chapter 5 - M odelling Environment HomePlug
Components

5.4 C h a n n e l M o d e l

The channel model is used to mimic the effects o f the physical channel that the data

signals travel down. In this version o f the networking model this is the power line. The

characteristics o f the power line for data communication are described in Section 3.4.

These effects are modelled using a filter. There are two aspects to the channel model:

• Generation o f the filter coefficients

• Modelling the data transmission

The generation o f the coefficients is done before the model starts. This in effect sets the

layout for the model. This is the protocol specific part and determines how the data is

altered as it is transmitted. The filter coefficient generator is a very simple one. The

reason for this is that the work required to generate a full channel model is beyond the

scope o f this research, and so a slightly more simplified approach was taken. This uses

the physical characteristics o f the power line cables to determine the characteristic

impedance and propagation constants o f a length o f cable. From this the impulse and

frequency responses o f a specified network can be calculated.

The actual channel model used within the network system uses these pre-calculated filter

coefficients to alter the data as it would in a real system. There are two sets o f filters for

every host to destination pair; a common transmit filter and a destination specific receive

filter.

The transmit filter is used to model any effect that the Analogue Front End (AFE) and

the connection o f the HomePlug device onto the network might have on the signal (i.e. it

will model those aspects that are common to all destinations). The receive filter is used

to model the effect o f the data signal travelling down a particular path to a destination.

This is shown in Figure 5.35.

Page 155

Chapter 5 - Modelling Environment HomePlug
Components

T ra n sm it C h a n n a l Receive Channal (1)

Receive Channel (2)

Receive Channel (3)

AFE

AFE

AFE

AFE

Modem

Modem

Modem

Modem

Figure 5.35 - Channel M odel

When the transmission is underway, the controller can update the coefficients at the end

o f each OFDM symbol. This allows the model to be as dynamic as the channel would

be in real life and model such things as new appliances being plugged in, changes to the

topology (such as extension cables being plugged in), etc. This is possible because each

receiving node acknowledges the symbol and the next symbol is not transmitted until the

last node has acknowledged the current symbol.

Figure 5.36 shows the message passing between the transmitting node and the channel

and receiving node (1) as well as the reloading o f the channel filter coefficients during

transmission (2).

Transmitting ReceivingSystem

Figure 5.36 - Channel M odel Message Passing

Page 156

Chapter 5 — Modelling Environment HomePlug
Components

The channel components have a simplified message handling routine (compared to the

Node componets) as they don’t have to respond to the complex message sequences that

the SoC, MAC and PHY components do. The algorithm for the transmitting and

receiving channels are given below.

Transmitter

1. While Running

a. Wait for M essage

b. P rocess M essage

i. STOP: S e t th e s to p flag

ii. NEWDATA: If th e d a ta is a fram e (i.e. n o t P R S) filter u sing th e cu rre n t filter

coeffic ien ts, copy it to th e o u tp u t buffer a n d th e n s e n d a NEW DATA e v e n t to e a c h

re c e iv e c h an n e l. If th e d a ta is a Priority R eso lu tion sym bol, d e te rm in e if th e

transm itting s ta tio n h a s s e n t a “P R S 1 ” or a “PR SO ” an d w ait until all th e n o d e s h a v e

s e n t o n e . If any n o d e h a s s e n t a PR S 1 sym bol s e n d th is o th e rw ise s e n d a PRSO.

iii. LOAD: S to re th e filter coeffic ien ts

iv. START: C le a r th e filter m em ory s ta g e s .

Receiver

1. While Running

a. Wait for M essage

b. P rocess M essage

i. STOP: S e t th e s to p flag

ii. NEWDATA: Filter th e d a ta using th e cu rre n t filter coeffic ien ts, copy it to th e ou tp u t

buffer a n d th e n s e n d a NEW DATA e v e n t to th e receiv ing PHY

iii. LOAD: S to re th e filter coeffic ien ts

iv. START: C le a r th e filter m em ory s ta g e s .

Page 157

Chapter 5 — Modelling Environment HomePlug
Components

5.5 Su m m a r y

In this chapter the functions that were developed to model the way in which the

HomePlug model modifies the data stream was presented. The MAC and PHY

functions for both encoding and decoding the data were given, and these are fully

orthogonal. I f data is passed through the system, assuming that there are not too many

errors introduced, then the data at the output o f the decoder will be identical to the data

at the input o f the encoder.

Page 158

Chapter 6 — Results

Chapter 6 - Results
Provides the results o f using the model developed to explore some simple use cases.

It also shows how the model can be used to explore alternative algorithms or

implementations.

6.1 In t r o d u c t io n

In the previous chapters the network/hardware model that was developed was described.

In this chapter the model is used to run some simple tests to prove the concept o f the

model and also to give a degree o f validation. The validation is done by comparing the

model results with the theoretical results presented in [34]. As the model is designed to

allow hardware exploration, the final test looks at the effect on latency that different

buffer sizes have.

The simulations run are

1. Typical home environment use case

2. Throughput verses number o f nodes

3. Latency verses buffer size

Details o f each test are given in the appropriate sections, along with the results. The

chapter closes with a summary o f the findings.

The channel model, as developed, doesn’t properly model the channel (this is an area o f

future work) and so for the simulations run here the “N O _CH A N ” option was used.

However different modulation schemes, number o f carriers, etc., were simulated using

pre-set Tone Maps. These allowed modelling (to an extent) o f various conditions. A

Perl script was developed which would create “good”, “average” and “bad” channel

conditions. These had the characteristics given in Table 6.1

Channel Type Number of Carriers Modulation Code Rate
Good 45-76 70% DQPSK

25% DBPSK
5% ROBO

80% % Rate
20% 'A Rate

Average 25-50 70% DQPSK
25% DBPSK

5% ROBO

80% 3/4 Rate
20% '/2 Rate

Page 159

Chapter 6 - Results

Channel Type Number of Carriers Modulation Code Rate
Bad 10-35 70% DQPSK

25% DBPSK
5% ROBO

80% 3/4 Rate
20% lA Rate

Table 6.1 - Channel Characteristics

Although these aren’t actual channels, they do allow exploration o f behaviour under

different conditions.

6.2 So ft w a r e Su it e

The software developed for the model described in the previous chapters is extensive,

running to around 50,000 lines o f C. It will operate one any Linux/G NU machine. The

primary development platforms were a native Linux PC and a cygwin environment

running on a Windows PC.

The model would easily port to other machine types, such as Solaris, as long as a working

C compiler was available and the pthreads library present.

Page 160

Chapter 6 - Results

6.3 T y pic a l U se Ca se

This test shows the model running a typical scenario o f a home network. It involves 5

nodes, representing various devices throughout the home, such as a server, video display,

Network Attached Storage (NAS), PC’s, etc. The test setup is shown in Figure 6.1, with

Table 6.2 describing what data is being transmitted.

S oC S oC

MACMACN od* 1 Node 2

PHYPHY

\ 7

Figure 6.1 - Typical Home Network Scenario

Source Destination Traffic Type Data Rate Priority
Router PCI VoIP 5 kbps High
Router PC2 Net Traffic 200 kbps Low
Media Server Display Video Stream 1 Mbps Medium
Media Server PCI Audio Stream 128 kbps Medium
PC2 NAS Data 500 kbps Low

Table 6 .2 - Network Traffic

The scenario was run for the three channel types, with the results given in Table 6.3. An

example output from the program is given in Figure 6.2, although as the simulator is

text/command-line based, this isn’t very exciting!

Node MAC Results SoC Results
Throughput

(bps)
Bytes

Received1
Avg.

Latency
(ms)

Throughput
(bps)

Bytes
Received

Avg.
Latency

(ms)
1

Router
Good
Avg
Poor

NA 0 NA NA 0 NA

2
Media
Server

Good
Avg
Poor

NA 0 NA NA 0 NA

1 N ote this doesn’t consider the response frames.

Page 161

Chapter 6 — Results

Node MAC Results SoC Results
Throughput

(bps)
Bytes

Received1
Avg.

Latency
(ms)

Throughput
(bps)

Bytes
Received

Avg.
Latency

(ms)
3

PC 1
Good 12568 39300 1.2 12040 37650 4.7
Avg 12479 39300 1.8 11934 37650 6.3
Poor 12310 39300 2.5 11845 37650 9.75

4
PC 2

Good 363240 171666 1.57 329592 155764 5
Avg 341765 171666 2.03 307588 155764 6.29
Poor 334157 171666 2.76 300741 155764 8.94

5
Display

Good 1153008 111852 1.36 1060008 102831 4.22
Avg 1152018 111852 1.86 1036816 102831 5.76
Poor 1047651 111852 2.5 987885 102831 7.75

6
NAS

Good 574208 113764 1.84 524856 103987 3.61
Avg 532100 113764 3.1 478890 103987 9.61
Poor 452310 113764 6 407079 103987 18.6

Table 6.3 - Home Network Scenario Results

NODE 0 Results

HOC Bytes Received
HOC Thrtfu t
MAC Thruput
HOC Average Frame Latency
HOC Failed HSDU's

= 0
- nan bytes per second
= 0 b its per second
= nan me

SoC Bytes Received = 0
SoC Thruput = nan bytes per second
SoC Thruput = 0 b its per second
SoC Average Latency - nan ne
Nunber o f Messages transmitted = 164
Number o f messages recieved = 0
Nunber o f fa ile d messages = A

NODE 3 Results

MAC Bytes Received
MAC Thruput
MAC Thrtpmt
MAC toerage Frame Latency
MAC Failed NSDU's

SoC Bytes Received
SoC Thruput
SoC Thruput
SoC Average Latency
Nunber o f messages transmitted
NmlMr o f messages recieved
Nmber o f fa ile d messages

* 171666
= 45405.51 bytes per second
z 363240 b its per second
= 1.572577 ms
= 0
* 155764
- 41199.351562 bytes per second
= 329592 b its per second
= 5.027520 ms
= 0
* 105

NODE 1 Results

MAC Bytes Received
MAC Thruput
MAC Thruput
MAC Average Frame Latency
MAC Failed HSDU's

= 0
= nan bytes per second
= 0 b its per second
= nan ms = 0

NODE 4 Results

MAC Bytes Received
MAC Thruput
MAC Thruput
MAC Average Frame Latency
MAC Failed HSDU's

= 111852
= 144126.62 bytes per second
= 1153008 b its per second
= 1.365521 ms = 0

SoC Bytes Received = 0
SoC Thruput = nan bytes per second
SoC ThnsJut = 0 b its per second
SoC Average Latency = nan ms
Nunber o f messages transmitted - 69
Nunber o f messages recieved = 0
Nunber of fa ile d messages = 0

SoC Bytes Received = 102831
SoC Thruput = 132501,203125 bytes per second
SoC Thruput = 1060008 b its per second
SoC Average Latency - 4.222887 ms
Nunber o f messages transmitted = 0
Nunber of messages recieved = 69
Nunber o f fa ile d messages = 0

NODE 2 Results

MAC Bytes Received
MAC Thriput
MAC Thni>ut
MAC Average Frame Latency
MAC Failed HSDU's

* 39300
= 1571.70 bytes per second
z 12568 b its per second
z 1 .2 0 1 2 0 0 ms
z 6

NODE 5 Results

MAC Bytes Received
MAC Thruput
MAC Thruput
MAC Average Frame Latenoy
MAC Failed MSDU's

z 113764
z 71776.72 bytes per second
z 574208 b its per second
z 1.844957 ms
z 0

SoC Bytes Received z 37650 SoC jy te * Received » 103987
SoC Thruput = 1505.708374 bytes per seeonSoC Thruput z 65607.804688 bytes per second
SoC Thruput z 12040 b its per second SoC Thruput z 524856 b its per second
SoC Average Latency z 4.723488 ms SoC Average Latency z 3.616139 ms
N*ber o f messages transmitted = 35 Nunber o f messages transmitted z 0
*» b e r o f messages recieved z 25 Number o f messages recieved = 69

of fa ile d messages z 0 Number o f fa ile d messages a 0

Figure 6 .2 - Home Network Scenario Simulation Output

This test shows the ease with which a simulation can be run. It took approximately 5

minutes to set up (creating the command file and tone maps), and each simulation run

took about 10s.

Page 162

Chapter 6 — Results

6.4 T h r o u g h p u t V e r se s N u m b e r O f N o d e s

This test is designed to provide some validation o f the model by comparing the results

with the theoretical results presented in [34]. The test involves running the system at

saturation and increasing the number o f nodes. For each run, the average throughput is

measured. The theory states that as the number o f nodes increase, the average

throughput will decrease.

The test setup is similar to that o f the previous simulation, but multiple runs were carried

out, each one increasing the number o f nodes by one. The setup is shown in Figure 6.3.

SoC

Nodol MAC

PHY

z \

\ 7

SoC

Node 2 MAC

PHY

\ 7

SoC

Node n MAC

PHY

ZT

\ 7

Figure 6.3 - Throughput Simulation Setup

To keep the test simple, a good channel was used throughout, and each node just sent

traffic to the next node in line (i.e. Node 1 sent to Node 2, Node 2 sent to Node 3, etc.).

The results o f this test are summarised in Table 6.4, and shown graphically in Figure 6.4

Number of
Nodes

Average Throughput Number of
Nodes

Average Throughput
MAC SoC MAC SoC

2 6.89 6.2 11 4.96 4.51
3 6.62 6.02 12 4.82 4.43
4 6.43 5.92 13 4.76 4.29
5 6.2 5.66 14 4.63 4.17
6 5.89 5.35 15 4.5 4.09
7 5.62 5.11 16 4.47 4.05
8 5.43 4.93 17 4.43 3.99
9 5.25 4.88 18 4.36 3.96
10 5.01 4.55 19 4.32 3.93

Table 6 .4 - Throughput Simulation Results

Page 163

Chapter 6 — Results

A verage T h ru p u t v. N um ber o f N odes

8

7

6

£ 5
-Q
CO
<
O

4

2

1

0
18 200 2 14 164 6 8 10 12

N u m b e r o f N o d e s

| — A verage Throughput MAC Average Throughput S oC]

Figure 6 .4 - Throughput Simulation Graph

As can be seen in Figure 6.4, as the number o f nodes increase, the throughput decreases,

broadly following the results presented in [34]. The discrepancies in the results follow

from the fact that [34] assumes all transmissions are DQPSK with 3A Rate encoding,

whereas the model allows all modulation and code rates, along with differing numbers of

channels.

Page 164

Chapter 6 - Results

6.5 L a t e n c y V e r s e s B u f f e r S iz e

The final test case ran highlights one o f the uses o f a model such as the one presented,

namely hardware exploration. In this case it is the buffer size that is being explored as

this has a direct relation to the amount o f RAM needed, and consequently the price of

any chip developed. Equally the model could be used to explore different hardware

architectures, such as logarithmic multipliers [91].

In this test the number o f nodes is kept constant at 4, but the buffer size (or more

accurately the number o f buffers) is increased. In the test all the traffic is sent to Node 1,

with the setup used shown in Figure 6.5

SoC S oC

MAC MACN od* 2N ode 1

PHY PHY

Z \

zz zz
S oCS oC

MACMACN ode 3 N ode 4

PHY PHY

Figure 6 .5 - Latency Simulation Setup

The traffic sent is given in Table 6.5, with all the traffic being the same priority

Source Destination Rate
2 1 1 Mbps
3 1 1 Mbps
4 1 1 Mbps

Table 6.5 - Latency Simulation Traffic

Page 165

Chapter 6 - Results

The number o f receive buffers is varied from 1 to 4, and the average latency is measured.

The results are shown in Table 6.6.

Number of Buffers Average Latency (ms)
1 4.31
2 2.22
3 1.2
4 1.19

Table 6 .6 - Latency Simulation Results

This test has shown how the model can be used to explore various hardware options.

For example in the above scenario, if low latency was required the designers could make

a decision based on the results gathered from running the test. NB The results for 3 and

4 buffers are similar as there is only 3 data sources.

Page 166

Chapter 6 — Results

6 .6 S u m m a r y

In this chapter the model was used to run various simple scenarios, aimed at verifying the

model and exploring some of the uses such a model might have. The tests ran included:

1. Typical Use Case

2. Saturation Throughput Simulation

3. Hardware Exploration

By running these tests not only was the basic concept o f the model verified, but one of

the primary uses o f the model was explored.

This final test is likely the most useful application o f this model in an industrial use.

Early decisions on the amount o f RAM needed or the accuracy (or what ever criteria is

relevant) o f different implementations can have many benefits. These include helping to

determine how costly a given implementation might be, which is an important factor to

consider in the competitively priced consumer electronics market.

Page 167

Chapter 7 - Conclusions

Chapter 7 - Conclusions
Concludes the work presented previously, by giving a summary o f the problem area

and then the model that was developed. It finishes with a discussion o f future work

that could be carried out.

7.1 I n t r o d u c t i o n

This chapter concludes the work, and provides a summary o f the research that has been

carried out and the reasons behind it. It also introduces areas o f further work that could

be carried out based on the hardware/networking model developed.

The chapter is structured as follows:

1. A re-statement o f the original problem, and why it is a problem.

2. The solution developed to solve the problem.

3. Future work.

Page 168

Chapter 7 - Conclusions

7.2 T h e P r o b le m

In this section the problem that the work solves is re-iterated, along with why it is a

problem. The problem that was solved here was how to model two aspects o f the next

generation o f home network, namely the network itself and the hardware it is

“implemented” on. This is important to do for a variety o f reasons.

First o f all consumer electronics have an increasingly small time-to-market. This has a

massive impact on any products developed as the general rule o f thumb has been that

the company that gets a product to the market first wins the lion’s share o f the market.

Examples o f this are Apple with their iPod, or Sony with the Playstation. From this, any

tool or solution which helps a company get their product to market quicker will be

beneficial. It is in this area that modelling is important as it gives the company many

advantages in reducing the time-to-market. This can include reducing the time it takes

for the design engineers to understand the product by getting a better understanding o f

the technical issues, and reducing the time it takes to explore alternative solutions well

before a final solution is committed to.

Consumer electronics are also very cost-sensitive, and having a realistic model before the

hardware is designed can ensure that the engineers have a better level o f confidence in

the final hardware. This is necessary to reduce the change o f having to re-spin the silicon

for an ASIC for example, as these can cost $1 million or more a time with today’s

technology. This is also tied into the time-to-market issue, as the time required to

produced the initial silicon, detect any bugs, solve the bugs and re-produce the silicon is

quite large, and will delay the company getting a product onto the market quickly.

A second reason that producing a model o f the hardware and network is important is it

allows engineers to explore how all the components within the system will interact. As

the components are very likely to be System-On-Chip (SoC) devices, and therefore have

limited processing capacity, knowing in advance where the bottlenecks within the system

are likely to be will mean that solutions to the problem can be found quickly, for example

by increasing the memory or the speed of the system. It could also work in the opposite

way and highlight areas that might be over-specified and mean the company could make

savings (in terms o f area or power for example) in the final product.

Page 169

Chapter 7 - Conclusions

A third reason for creating a model o f this nature is to explore how it will interact with

other networks in the vicinity. This is not direcdy relevant for the HomePlug network

developed here, but would be when exploring how an 802.11 network and a Bluetooth

network would interact for example, as both use the same frequency range to transmit.

This is an important issue for home networks especially, as they are likely to be an

amalgamation o f multiple networking technologies, although the predominant (at least in

the “no new wires” area) is wireless, and this is likely to remain the case.

A final reason for creating this type o f network/hardware model is to enable researchers

to explore new network protocols, based on the findings/simulations o f current

protocols. This becomes important when the different traffic patterns for a home

network are considered for example. There is likely to be much more streaming media

(video, audio, voice) on a home network than an office data network for example, and

the protocols running on home networks need to be robust enough to offer a sufficient

Quality-of-Service for this type o f traffic.

These areas, when considered together, pose a new and interesting area to explore.

Traditionally network and hardware models were considered in isolation, and the

research in these two areas has been pretty much in isolation. As the two areas merge

they then have to be considered together — one has as big an impact on over all

functionality as the other. The days o f networks consisting solely of large, general

purpose computers/servers is past, and with the advent o f System-on-Chip technology is

a trend that is likely to continue, especially within the home.

Page 170

Chapter 7 - Conclusions

7.3 T h e S o l u t i o n

In this section the solution that was developed for the problem is described. The

solution takes the form o f a discrete event simulation environm ent for a System-on-Chip

based H om ePlug home network. The general structure o f the model developed is shown

again in Figure 7.1.

C ontro lle r

S o CS oC

MACMAC MACN o d e 1 N o d e 2 N o d e n

PHY PHY

C h a n n e l

D a ta Flow

(E C on tro l Flow

Figure 7.1 - Model Structure

The model developed consists o f a controller (1) and muldple network nodes (2). The

nodes com municate with each other via a com m on channel (4), by following the

I lom ePlug protocol (which is a Carrier Sense, Multiple Access with Collision Avoidance

scheme similar to 802.11). Internally the nodes consist o f what have been termed “node

threads” (3) which communicate with each other, and the system controller, via a discrete

event system.

Each node thread will block until it receives an event and will then determine w hether it

should process it or not (this choice is needed to accom m odate events which arrive in

the w rong order). This system allows the node-threads to run independently, and only

stop when they need to communicate with one another. This would allow the model to

run on a multiprocessor system for example. O ne problem that was found with the

Page 171

Chapter 7 - Conclusions

method however was the need to ensure the event/message passing was done correcdy,

as if not then the entire model would block waiting on an event that never arrived.

The model developed allows the nodes to interact as they would in a real system, firstly

with each other using the HomePlug protocol and secondly internally, in this case using

an AMBA (Advanced Microcontroller Bus Architecture) AHB/APB (Advanced High-

Speed Bus/Advanced Peripheral Bus) model, although in this case it doesn’t completely

follow the AMBA specification.

The model allows the exploration o f various simulation runs with the aim o f proving the

various points raised in the previous section, and in previous chapters. Examples o f the

model running were given in the previous chapter and these also show another feature o f

the model, namely the exploration o f alternative algorithms.

The model meets many of the original requirements laid out in Chapter 4, section 4.2.

These are repeated here, along with a summary o f why and how well the model meets

them, in Table 7.1.

Ease o f Use In terms o f the data manipulation aspects, the model is

easy to use as it is just a C implementation o f the

algorithms used to modify the data. The interaction

between the node threads is quite complex however,

and in a future system this would benefit from some

simplification.

Event Based The model was designed from the outset to be event

based, and the implementation makes extensive use o f

events to control every aspect o f the model.

Simulation Based This was also used as a basis o f the implementation o f

the model, and the final solution uses a simulation

approach (as opposed to an analytical or emulation

approach)

Multiple Nodes Again the model was designed from the outset to allow

multiple nodes. As the nodes all follow the HomePlug

channel access mechanism, there is no limit on the

Page 172

Chapter 7 - Conclusions

number o f nodes that can run within the model,

beyond the limits o f the system the model is running

on.

Multiple Levels The model was designed to model more than one layer

in a network protocol stack, and this it does, although

the focus is on the lower layers. This focus was

intentional for the initial model developed here, and

one future area o f work would be to extend this to the

other layers o f the protocol stack.

Data Metrics The model provides basic metrics on average

Throughput and frame latency. There is sufficient

information in the received frames to calculate other

metrics if needed.

Table 7.1 - M odelling System Mandatory Requirements

Neither o f the non-mandatory requirements (Multiple Protocols and Usable with

Hardware Simulators) was implemented, however these were deemed to be “nice to

have” features. Even without them the model developed still solves many o f the issues

and points highlighted in Chapter 2 and the previous section o f this chapter.

From the points above it can be seen that the model developed does do what it was

intended to do. That is to model a network and the hardware running it and allow

engineers to explore alternative implementations. There are, however, areas which could

be expanded upon, and these are described in section 7.5.

Page 173

Chapter 7 - Conclusions

7.4 E v a l u a t i o n o f W o r k

The model developed has an important role to play in the development o f System-on-

Chip based networking components. As it stands it is a proof o f the concept and ideas

that have been presented and highlighted in previous chapters. Some o f the areas which

could be looked at to progress the model from a proof o f concept to a useful tool are

presented in the next section.

As was shown, the model can be used to explore different hardware implementations, in

this case the size o f buffers within the design. As mentioned a decision on this early on

in the design cycle is beneficial, especially if cost is an issue. This means the designers

can have an early feel o f the amount o f memory their system needs to meet the criteria

that they have set (which will depend on the final application).

As the model is a tool, it is useful to see how it might fit in with any existing

development flow. Generally SoC based solutions are designed using a flow similar to

the one in Figure 7.2.

Hardware Design
And Implementation

Software Design
And Implementation

Figure 7 .2 - SoC Design Flow

This, however, only shows one aspect of the system, this is how the device works in

isolation, and if incorrect assumptions are made o f its processing power then the device

will not perform as expected. If the model presented here were used it could be used to

determine if the overall requirements o f the network can be met. For example, will the

Page 174

Chapter 7 - Conclusions

solution have enough processing power to process streaming video frames? This is an

important factor that is often overlooked, and the model presented here would help to

address this.

Page 175

Chapter 7 — Conclusions

7.5 F u t u r e W o r k

In this section some possible areas o f future work for the model are highlighted.

Although the model that was developed meets most o f the original requirements, there

are areas it would be interesting and beneficial to explore further.

An obvious first area o f future work would be to expand the model for multiple network

protocols. As mentioned, home networks are likely to include many different

technologies, and exploring how these interact would be o f great benefit. It would also

allow the engineers to design the bridge between the networks and determine what the

processing/memory requirements would be for this. It would also allow for an

exploration o f the issues o f protocols that use a similar (or indeed the same) channel to

transmit on, such as Bluetooth and 802.11. As the HomePlug protocol is very similar to

802.11, this would be an idea first candidate for developing the model to run with

different protocols.

Following on from the point above, another area o f future work would be to extend the

number o f network protocol levels that are implemented. Currently it is a limited Link-

Layer (via the SoC), the Media Access Control (MAC) and Physical (PHY) layers that are

modelled. However if the protocol stack modelled by the SoC was extended to include

the Network, Transport and Protocol layers for example, a fuller picture o f the network

could be gained, and things like Universal Plug-n-Play (UPnP) could be modelled. UPnP

is a higher level protocol that is based around XML and allows disparate devices to

communicate with each other. It is being proposed as a possible solution to creating a

true plug and play home network where devices from many different vendors can easily

communicate with each other. By extending the model to include these aspects, product

engineers would be able to understand more fully how the final product will operate, and

ensure that their product will interact correctly with others using the same protocol.

The future work points raised above are fairly large extensions to the original model.

Some simpler things that could be done are to develop a graphical front-end to the

modelling system and to improve the channel model.

Page 176

Chapter 7 - Conclusions

A graphical front end is almost a mandatory extension to the model as nearly every tool

developed today has one. In terms o f the network model, this would allow the user to

very quickly describe the network that is being modelled (i.e. the topology o f the

network). It would also show graphically the passage o f frames within the system, and

allow the model to be paused to explore (or change) the network.

Another area of future work would be to develop a better power-line channel model.

The one used in the system currendy is based on physical characteristics o f the wire, and

is taken from various sources and it doesn’t provide any attenuation information or a

noise model.. It would be very beneficial to develop a fully working model, possibly

implementing it in SimuLink, and linking it into the model. However, this is an entire

research topic in its own right.

A final area o f work which would be useful to build on is integrating the model with

standard hardware simulators. This would allow the model to be used to verify the

correct operation o f any hardware developed. This point was identified as being a

primary use o f models, and so the extension o f this model to provide this function would

add to its usefulness.

There are many areas that could be explored based on the work presented here. All are

interesting and beneficial as the home networking market grows over the coming years,

and the products that operate on them become more diverse and pervasive.

Page 177

Chapter 7 - Conclusions

7.6 S u m m a r y

In this chapter a review of the work has been carried out, detailing the problem that was

originally identified, why it is a problem, and the requirements o f a solution to it. The

problem was how to model the hardware and networking components o f a home

networking system. Once the problem was introduced again, the solution that was

developed was summarised, and an indication o f the original requirements that it met

were given.

The final section focused on potential areas of future work, and highlighted some of the

more important areas. These included modelling multiple protocols, modelling higher

networking layers/protocols, improving the channel model, adding a graphical interface

and incorporating the model into a hardware simulator. I f these areas are addressed then

the model would cover all the initial requirements (both those deemed mandatory, which

are solved with the current model, and those deemed non-mandatory).

The work presented here introduces a new way o f looking at modelling hardware and

networks, and one which will become increasingly important over the next ten years or

so as the next generation of home networks take off. This is largely due to the

completely different way in which these networks will operate, as no longer will they be

“traditional” networks consisting o f PCs connected together via Ethernet, but instead

they will be a myriad o f devices (such as display screens, input devices, home appliances)

all communicating via whatever medium is best suited to their application. It is this

change in focus that requires better and more complete models if a full understanding of

the area is to be obtained.

Page 178

References

Chapter 8 - References
[1] “The Communications Market 2004 — Telecoms”, Ofcom Report, August 2004

[2] “Consumer Products Interact with HAVi”, R. Wendorf, et. al, EETimes, 14

June 2001

[3] “Home Networks Challenge Vendors”, B Cole, EETimes, 11 Oct 1999

[4] “Gateways Bridge Gap Between Hom e”, M. Macaluso, EETime, 11 Oct 1999

[5] “Home Networking Market Feasibility Study”, Jim Mellon, Tality Internal

Report, 25th September 2001

[6] Home Phoneline Networking Alliance, h ttp ://www.hpna.org

[7] HomePlug Consortium, http://www.homeplug.org

[8] “Overview o f Other PLC Technologies”, Duncan McLaren, Tality Internal

Report, 5th September 2001

[9] Universal Plug-n-Play Forum, http://www.upnp.org

[10] HAVi, http://www.havi.org

[11] “A Dynamic Network Scenario Emulation Tool”, D. Herrcher, K. Rothermel,

Computer Communications and Networks, Oct 2002, p 262-267

[12] “Physical- and Link-Layer Modelling o f Packet-Radio Network Performance”,

P. McKenney, P. Bausbacher, Military Communications Conference, O ct 1990,

p596-602

[13] “Physical- and Link-Layer Modelling o f Packet-Radio Network Performance”,

P. McKenney, P. Bausbacher, IEEE Journal on Selected Areas in

Communications, Jan 1991, p59-64

[14] “Performance o f Reliable Transport Protocol over IEEE 802.11 Wireless

LAN: Analysis and Enhancement”, H. Wu, Y. Peng, K. Long, S. Cheng, J. Ma,

21st IE E E Computer and Communications Societies Conference, June 2002,

p599-607

[15] “Performance Analysis o f the Data Link Layer in the IEC/ISA Fieldbus by

Simulation Model”, S.H. Hong, S.G. Lee, Proceedings o f the 1996 Conference

on Emerging Technologies and Factory Automation, N ov 1996, p593-601

[16] “Comparing Multicast Protocols in Mobile Ad hoc Networks”, R. Durst, K.

Scott, M. Zukoski, C. Raghavedra, IE E E Proceedings o f 2001 Areospace

Conference, Mar 2001, p3/051-3/1063

Page 179

http://www.hpna.org
http://www.homeplug.org
http://www.upnp.org
http://www.havi.org

References

[17] “Modeling and Evaluation o f Bluetooth MAC Protocol”, C. Corderio, D.

Sadok, D. Agrawal, 10th Inti Conf on Computer Communications and

Networks, Oct 2001, p518-522

[18] “Modelling and Simulation o f ATM /BISDN Enterprise Networks”, H. Akhtar,

MILLCOM Internaltional Conference, Oct 1994, p87-91

[19] “An Accurate and Effective Physical Layer Simulator Micro- and Pico-Cellular

Radio Systems and Networks”, CA. Santillan, S. Safavi-Naeini, IE E E 2002

Symposium on Antennas and Propagation, June 2002, p 660-663

[20] “The Design and Analysis o f the AFATDS Communication Networks using

Simulation”, D. Thuente, C. Brown, T. Borchelt, E. Hill, Proc. o f the 1996

Tactical Communications Conference, Apr 1996, p267-279

[21] “Towards a Hybrid Network Model for Wireless Packet Data Networks”, H-Y.

Hsieh, R. Sivakumar, Proc 7th Inti Symposium on Computers and

Communications, July 2002, p264-271

[22] “Simulation o f Multipath Arrival Times for Wireless Indoor Networks”, X. Li,

P. Flikkema, Proceedings o f the IE E E Southeaston ’96, Apr 1996, p492-495

[23] “Indoor Channel Modeling at 60GHz for Wireless LAN Applications”, N.

Moraitis, P. Constantinou, 13th Inti Symposium on Personal, Indoor and

Mobile Radio Communications, Sep 2002, p i203-1207

[24] “Simulated Performance o f the HiperLAN/2 Physical Layer with Real and

Statistical Channels”, Doufexi, A.; Butler, M.; Armour, S.; Karlsson, P.; Nix, A.;

Ball, D.; 2nd Inti Conference on 3G Mobile Communication Technologies, Mar

2001, p407-411

[25] “Modeling Heterogeneous Sources on Multiple Time Scales”, E. Saulnier, K.

Vastola, Proc IEEE 15th Conference o f the IEEE Computer Societies, Mar

1996, p505-512

[26] “Simulation Software for Communications Networks: The State o f the Art”, A.

Law, M McComas, IEEE Communications Magazine, Vol 32, Issue 3, Mar

1994, p44-50

[27] “Advances in Network Simulation”, L. Breslau, D. Estrin, K. Fall, S Floyd, J.

Heidemann, et. al, IE E E Computer, Vol 33, Issue 5, May 2000, p 59-67

[28] O pN ET Home page: http://w w w .opnet.com /

[29] “Generic Approach to LAN Modelling”, P. Kavi, V. Frost, K. Shanmugan,

Proc 1991 Winter Simulation Conference, p716-724

Page 180

http://www.opnet.com/

References

[30] “MAC throughput analysis o f HomePlug 1.0”, M.H Jung, et. Al.

IE E E Communications Letters, Volume 9, Issue 2, Feb. 2005, p i 84 - 186

[31] “Improving HomePlug Powerline Communications with LDPC Coded

OFDM ”, C. Hsu, et al., 28th Annual Ind. Telecommunications Energy

Confernce, Sept 2006, p i -7

[32] “Power lines as high speed data transmission channels: Modelling the physical

limits”, K. Dostert et al. IE E E 5th International Symposium on Spread

Spectrum Techniques and Applications, vol. 2, sep 1998, pp. 585—589

[33] “A Powerline Communication Network Infrastructure for the Smart Home”,

Yu-Ju Lin et al., IEEE Wireless Communications, Vol 9, Issue 6, Dec 2002,

p l0 4 - l l l

[34] “Performance Analysis o f HomePlug 1.0 MAC with CSMA/CA”, Min Young

Chung et al., IEEE Journal on Selected Areas in Communications, Vol 24,

Issue 7, July 2006, pl411-1420

[35] “Contention Window based Parameter Selection to Improve Powerline MAC

Efficiency for Large Number of Users”, K. Tripathi et al., 2006 Inti. Symp. On

Power Line Communications, March 2006, p i 89-193

[36] “Improving the Data Transmission Throughput over the Home Electrical

Wiring”, M.E.M. Campista et al., IEEE Conference on Local Computer

Networks, Nov 2005, p318-327

[37] “Efficient Framing and ARQ for High-Speed PLC systems”, S. Katar et al.,

2005 Inti Symp on Power Line Communications, April 2005, p27-31

[38] “Periodic Contention-Free Multiple Access for Broadband Multimedia

Powerline Communication Networks”, Yu-Ju Lin et al., 2005 Inti Symp on

Power Line Communications, April 2005, pl21-125

[39] “HomeMAC: QoS-based MAC Protocol for the Home Network”, Woo-Joo

Hwang, et al., 2002 Intl. Symp on Computers and Communications, July 2002,

p407-414

[40] “Turbo-coding and Bit-loading Algorithms for a HomePlug-like DMT PLC

System”, S. Morosi, et al., 2006 Inti. Symp. O n Power Line Communications,

March 2006, p227-231

[41] “Rapid Prototyping o f Hardware Systems via Model Reuse”, L. Chaount, S.

Garin, A. Vachoux, D. Mlynek, 8th Inti Workshop on Rapid System

Prototyping, June 1997, p!50-156

Page 181

References

[42] “Hardware Simulation with Software Modelling for Enhanced Architecture

Performance Analysis”, B. Kadrovach et. al., Proc 1998 National Areospace

Conference, July 1998, p454-461

[43] “A Comparative Study o f Modeling at Different Levels o f Abstraction in

System on Chip Designs: A Case Study”, S. Jayadevappa et. al., Proc IEEE

Computer Society Annual Symposium on VLSI, Feb 2004, p42-58

[44] “SystemC and the Future o f Design Languages: Opportunities for Users and

Research”, G Martin, Proc 16th Symposium on Integrated Circuits and System

Design, Sept 2003, p61-62

[45] “The Modelling o f Embedded Systems Using HASoC”, P. Green, M. Edwards,

Proc 2002 Design, Automation and Test in Europe Conference, Mar 2002,

p752-759

[46]

[47] “Modelling and Simulation with Hardware Description Languages” , J.

Armstrong, 10th Annual IEEE Inti ASIC Conference, Sept 1997, p329-334

[48] “A Comparative Study o f Modeling at Different Levels o f Abstraction in

System on Chip Designs: A Case Study” , S. Jayadevappa et. al., Proc IEEE

Computer Society Annual Symposium on VLSI, Feb 2004, p42-58

[49] “Using the C Language to Reduce the Design Cycle o f an MPEG-2 Video IC:

A Case Study”, C. Shi, H. Shenghua, Y. Lien, 2nd Inti Conference on ASIC, Oct

1996, p364-367

[50] “Synthesis o f Hardware Models in C with Pointers and Complex Data

Structures”, L. Semeria, K. Sato, G. De Micheli, IEEE Transaction on VLSI

Systems, Vol 9, N o 6, Dec 2001, p743-756

[51] “System Level Design Using C + + ”, D. Verkest, J, Kunkel, F. Schirrmeister,

Proc Design Automation and Test in Europe Conference, Mar 2000, p75-81

[52] “C++ Based System Design o f a 72 M b/s OFDM Transceiver for Wireless

LAN”, D. Verkest, W. Eberle, P. Schaumont, et. al, IE E E Conference on

Custom Integrated Circuits, May 2001, p433-439

[53] “Design o f a JBIG Encoder with SpecC Methodology”, J. Peng, IEEE Inti

Symposium on Circuts and Systems, May 2001, p5.4.1-5.4.6

[54] “Design o f Real-Time Emulators o f Electromechanical Systems”, S. Saoud, D.

Gajski, Inti Conference on Power System Technology, Oct 2002, p828-833

Page 182

References

[55] “The Standard SpecC Language”, M. Fujita, H. Nakamura, 14th Ind Symposium

on System Synthesis, 2001, p81-86

[56] “Image Processing Algorithms on Reconfigurable Architecture using

HandelC”, V. Muthukumar, D. V. Rao, Euromicro Symposium on Digital

System Design, Sept 2004, p218-226

[57] “Modelling Digital Systems Using VHDL”, P. Ashenden, IEEE Potentials, Vol

17, Issue 2, May 1998, p27-30

[58] “C-Based SoC Design Flow and EDA Tools: An ASIC and System Vendor

Perspective”, K. Wakabayashi, IEEE Transactions on Computer-Aided Design

o f ICs and Systems, Vol 19, N o 12, Dec 2000, pl507-1522

[59] SystemVerilog Homepage, http://www.systemverilog.org

[60] “Hardware Architecture Modelling using an Object-Oriented M ethod”, F.

Mallet, et. al., Proc 24th Euromicro Conference, Aug 1998, pl47-153

[61] “C ++ Based System Design o f a 72 M b/s OFDM Transceiver for Wireless

LAN”, D. Verkest, et al., 2001 IEE Conference on Custom Integrated Circuits,

May 2001, p433-439

[62] “System Level Design Using C + + ”, D. Verkest, et al., Proceedings 2000

Design Automation and Test in Europe Conference, March 2000, p74-81

[63] SystemC Homepage, http://www.systemc.org

[64] “Object-Oriented High Level Synthesis Based on SystemC”, E. Grimpe, F.

Oppenheimer, 8th Inti Conference on Electronics, Circuits and Systems, Sept

2001, p529-534

[65] “Formal Verification o f a Bus Structure Modelled in SystemC”, A. Habibi, et.

al, 2nd Annual IEEE Northeast Workshop on Circuits and Systems, June 2004,

p61-64

[66] “High-Level System Modelling and Architecture Exploration with SystemC on

a Network SoC: Case Study”, H.O. Jang et. al., Proc 2004 Design, Automation

and Test in Europe Conference, Feb 2004, p538-543

[67] “Native ISS-SystemC Integration for the Co-Simulation o f Multi-Processor

SoC”, F. Fummi, et. al, Proc. 2004 Design, Automation and Test in Europe,

Feb 2004, P564-569

[68] SpecC Homepage, http://www.specc.org

Page 183

http://www.systemverilog.org
http://www.systemc.org
http://www.specc.org

References

[69] “Teaching System-Level Design using SpecC and SystemC”, R. Walstrom, et.

al., IEEE Ind Conference on Microelectronic Systems Education, June 2005,

p95-96

[70] “The Standard SpecC Language”, M. Fujita, H. Nakamura, 14th Inti Symposium

on System Synthesis, 2001, p81-86

[71] “High Level Synthesis o f Timed Asynchronous Circuits”, T. Yondea et. al.,

Proc 11th IEEE Inti Symposium on Asynchronous Circuits and Systems, Mar

2005, pl78-189

[72] “System-Level HW /SW Co-Simulation Framework for Multiprocessor and

Multithread SoC”, M. Chung, et. al., 2005 Inti Symposium on VLSI Design,

Apr 2005, pl77-180

[73] “Design o f Real-Time Emulators o f Electromechanical Systems”, S. Saoud, D.

Gajski,

[74] “Formal Models for Embedded System Design”, M. Sgroi, L. Lavagno, A.

Sangiovanni-Vincentelli, IEEE Design and Test o f Computers, Vol 17, Issue 2,

June 2000, p i 4-27

[75] “Towards a New Standard for System-Level Design”, S. Liao, Proc 8th Ind

W orkshop on Hardware/Software Codesign, 2000, p2-6

[76] “Hierarchical Modelling in the Simulation o f Electronic Circuits”, R.

Zlatanovici, et. al., Proc 1998 Ind Semiconductor Conference, Oct 1998, p497-

500

[77] “Software Architecture o f Universal Hardware Modeller”, N. Kelly, H. Stump,

Proc o f the Design Automation Conference, Europe, Mar 1990, p573-577

[78] HomePlug Powerline Alliance, HomePlug 1.0.1 Specification, 2001

[79] “Powerline Telecommunications (PLT); Coexistence o f Access and In-House

Powerline Systems”, ETSI Standard TS 101 867, 2000

[80] “Table o f Frequency Allocation”, FCC Standard, 2001

[81] “Power Line Communications: state o f the art and future trends”, N. Pavidou

et. al., IE E E Communications Magazine, Apr 2003

[82] “Narrowband, Low Data Rate Communications on the Low-Voltage Mains in

the CENELEC Frequencies — Part I: Noise and Attenuation”, D. Cooper et.

al., 2002

[83] “A Multi-path Model for the Powerline Channel”, M. Zimmerman et. al., IEEE

Trans on Communications, Apr 2002

Page 184

References

[84] “A Multi-Path Signal Propogation Model for the Power Line Channel in the

High Frequency Range”, M. Zimmerman et. al., Proc 3rd Ind. Symp. on Power-

Line Communications and its Applications, Mar 1999

[85] “A Transmission Line Model for High-Frequency Power Line Communication

Channel” , H. Meng et. al., 2002

[86] “An Analysis o f the Broadband Noise Scenarios in Powerline Networks”, M.

Zimmerman et. al., Proc 4th Ind. Symp. on Power-Line Communications and

its Applications, Apr 2000

[87] “Modelling and Evaluation o f the Indoor Power Line Transmission Medium”,

F.J. Canete et. al., IE E E Communications Magazine, Apr 2003

[88] “Characterisation and Modelling o f In-Building Power Lines for High-Speed

Data Transmission”, L.T. Tang et. al., IE E E Transactions on Power Delivery,

Jan 2003

[89] “A Universal High Speed Poweline Channel Estimation System”, M. Gotz et.

al., Proc. Inti. Zurich Seminar on Broadband Communications, 2002

[90] “Pthreads Programming”, Bradford Nichols, Dick Buttiar & Jacqueline Proulx

Farell, O ’Reilly Publishing, p 38-40

[91] “Improved Mitchell-based Logarithmic Multiplier for Low-Power DSP

Applications”, Duncan McLaren, Proc. IEEE Intl. System-on-Chip

Conference, Sept. 2003, p53-56

[92] “How to draw Nassi-Shneiderman Diagrams”,

http://www.sm artdraw.com /tutorials/software-nassi/nassi.htm

[93] “Error Control Coding — From Theory to Practice”, Peter Sweeney, John Wiley

& Sons Ltd. Publishing

http://www.smartdraw.com/tutorials/software-nassi/nassi.htm

