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A bstract

Modern cosmological observations clearly reveal that the universe contains a 

hierarchy of clustering. However, recent surveys show a transition to homogeneity 

on large scales. The exact scale at which this transition occurs is still a topic of 

much debate. There has been much work done in trying to characterise the galaxy 

distribution using multifractals. However, for a number of years the size, depth 

and accuracy of galaxy surveys was regarded as insufficient to give a definitive 

answer. One of the main problems which arises in a multifractal analysis is how 

to deal with observational selection effects: i.e. ‘masks’ in the survey region and a 

geometric boundary to the survey itself.

fn this thesis 1 will introduce a volume boundary correction which is rather 

similar to the approach developed by Pan and Coles in 2001, but which improves 

on their angular boundary correction in two important respects: firstly, our volume 

correction ‘throws away’ fewer galaxies close the boundary of a given data set and 

secondly it is computationally more efficient.

After application of our volume correction, 1 will then show how the underlying 

generalised dimensions of a given point set can be computed. I will apply this 

procedure to calculate the generalised fractal dimensions of both simulated fractal 

point sets and mock galaxy surveys which mimic the properties of the recent IRAS 

PSCz catalogue.
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Chapter 1

Introduction

This thesis is devoted to a study of the large scale structure (LSS) of the universe 

and as such belongs in the field of Cosmology. Cosmology is the study of structure 

and evolution in the universe. The main constituents of LSS are individual galaxies 

and clusters of galaxies up to Gigaparsec (Gpc) scales.

1.1 C osm ology through  th e  ages

The ancient Greeks were undoubtedly the leaders in astronomical understanding 

of their time. Around the 4th century BC a general consensus emerged, from the 

combined ideas of many philosophers, including Plato and Aristotle, which put 

our spherical Earth at the centre of the universe. They speculated that the Sun, 

Moon and planets were carried around the Earth on concentric spheres, arranged: 

Moon, Sun, Venus, Mercury, Mars, Jupiter, Saturn and the fixed stars beyond. 

Aristotle was to later elaborate on this geocentric model by trying to explain the 

lunar cycle.
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CHAPTER 1. INTRODUCTION

An updated geocentric theory of the heavens was put together by the as­

tronomer Claudius Ptolemy from many works in Greek astronomy. His Ptolemaic 

model was penned in the 2nd century AD and stood as the standard theory for 

more than a millennium. Ptolemy made extensive use of epicycles to explain many 

aspects of planetary motion. In particular, his epicyclic explanation of retrograde 

motion in the planets helped elevate this theory to the forefront of astronomical 

thinking. This picture of our universe stood solid until the 16th century when 

Nicolaus Copernicus changed forever our view of the cosmos.

Copernicus, the famous Polish astronomer, showed that a model, with the sun 

at its centre, could explain the motion of the planets in a very simple way, with no 

need for complicated orbits and epicycles. However this Heliocentric model was 

not new at all: its origins dated back many centuries BC to the workings of an 

Indian philosopher, Yajnavalkya. He had the vision to see that the sun, being the 

most important of the heavenly bodies, should be at the centre of our universe. 

However he lacked any real observational or scientific evidence. This Heliocentric 

idea was also present in ancient Greece, held strong by the Pythagoreans. The 

first to propose this was Aristarchus of Samos (c. 270 BC) and later Archimedes, 

the Greek scientist, was swayed by this line of thinking.

1.2 T he C osm ological P rin cip le

Despite the greater simplicity involved with the Heliocentric system, it would 

not come to dominate the astronomical community. This was, at least in part, 

not for scientific reason but religious prejudices. Many religions held the false 

belief that the Earth was somehow special and therefore must be the centre of our 

observable universe. The Roman Catholic Church had a strong hold on science and 

particularly astronomy (due to its close connection to the heavens). Any theories

11



CHAPTER 1. INTRODUCTION

which did not conform to the teachings of the Bible were deemed ‘heretical’ and 

were hidden away from public knowledge. Despite this dogma, Copernicus in the 

16th century managed to garner much support for the Heliocentric model, mainly 

due to his scientific writings, De Revolutionibus (1543) and Galileo’s supporting 

observations. Galileo later opposed the Catholic Church by his strong support for 

the Copernican ideas. While on trial for heresy he famously said of the Earth, 

“Eppur si muove” - and yet it moves1.

So why are we dwelling in the past here? The reason is this; Copernicus and 

Galileo did not see themselves at the centre of the solar system. They had displaced 

everyone from a special location in space and this trend would not stop with the 

Earth. It would later lead to the whole solar system being placed in the outer rim 

of our Milky way galaxy. Then, in the early 20th century our galaxy became one 

of many. Now we are but a mere speck of dust in a vast, ever expanding universe, 

a fact that was first realised by the American astronomer Edwin Hubble in the 

1920’s.

Edwin H ubble

Edwin Hubble studied the systematic variations of the red-shift in the ‘spiral neb­

ulae’, as they were known. The redshift 2  is defined as,

where Ao and Ae are the observed and emitted wavelengths of light, respectively. 

Hubble used this technique to investigate populations of similar objects, usually 

galaxies of a particular morphological type, and examined the relationship between 

the red-shifts and their relative brightnesses. W hat he found is now known as

1 Galileo probably never spoke these exact words, however they stand as a symbol of his 
support for scientific truth.
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CHAPTER 1. INTRODUCTION

Hubble’s Law: the red-shift in the spectra of the objects grow as the objects 

became more distant. The farther away an object, the faster it is receding from 

us. This, Hubble concluded, is because the universe itself is expanding -  a fact that 

(as we will see in the next Chapter) was consistent with the theoretical predictions 

of Einstein’s General Theory of Relativity

In fact Hubble found this connection to be a linear relation between recessional 

velocity and distance. The usual Hubble law is written as,

v =  HqD, (1.2)

where v is the recessional velocity due to redshift, typically expressed in km/s. H0 

is Hubble’s constant and corresponds to the value of H  (often termed the Hubble 

parameter which is a value that is time dependent) in the Friedmann equations 

(c/. eq.2.13) taken at the time of observation denoted by the subscript 0 . This 

value is the same throughout the universe for a given conformal time. D is the 

proper distance that the light had travelled from the galaxy in the rest frame of 

the observer, measured in megaparsecs (Mpc).

For relatively nearby galaxies (i.e. z 1), the velocity v can be estimated 

from the galaxy’s redshift z using the formula v =  zc where c is the speed of light. 

For more distant galaxies, the relationship between recession velocity and distance 

becomes more complicated and requires general relativity (see Ch.2).

In using Hubble’s law to determine distances, only the velocity due to the 

expansion of the universe should be used. Since gravitationally interacting galaxies 

move relative to each other independent of the expansion of the universe, these 

relative velocities, called peculiar velocities, need to be accounted when applying 

Hubble’s law. So more generally the Hubble law is,

Vrec H0L> T Vpgc. (1.3)

13



CHAPTER 1. INTRODUCTION

In this case, vpec is the radial component of the peculiar motion of the object. As 

an example the local group of galaxies has a vpec & 600 km s-1  in the direction 

of the constellation Hydra.

It is straightforward to show that the observation of Hubble’s Law is consistent 

with what we would expect in a universe which is homogeneous (i.e. looks the 

same everywhere) and isotropic (i.e. looks the same in all directions). A number 

of modern cosmological observations support the properties of homogeneity and 

isotropy, including the distribution of galaxies on large scales (which will be the 

main topic of this thesis) and the smoothness of the cosmic background radiation. 

Together, assumptions of homogeneity and isotropy are known as the Cosmological 

Principle (CP).

1.3 Our v iew  o f th e  U niverse

If one is to understand anything about the large scale structure of the universe, 

it is generally advisable to know where the galaxies that make up that structure 

are. Mapping and understanding the spatial galaxy distribution is a prerequisite 

for constructing a viable model of structure formation in the universe. This effort 

reached its first step with the Abell, Zwicky h  Lick catalogues, which eventually 

documented the angular positions of around a million galaxies. The second step 

then, was to expand the 2-D galaxy information by including the distances. This 

is distance to the galaxies via redshift surveys.

A bell, Zwicky & Lick

Prior to the 80’s, knowledge of the large scale structure of the universe was lim­

ited to only the angular distributions of galaxies, and a very uniform microwave

14



CHAPTER 1. INTRODUCTION

Figure 1.1: Lick galaxy survey, adapted from Peebles (1993)

background. In the late 50’s, G. Abell (1958) collected several thousand angular 

positions of galaxies from the Palom ar Sky Survey. This catalogue did not con­

tain any inform ation concerning the distance to the galaxies -  it was essentially 

a projection of the true  galaxy d istribu tion  onto a sphere. Then in the 60’s Fritz 

Zwicky and collaborators visually scanned thousands of photographic p lates from 

the same survey, obtaining positions of over 30,000 galaxies in the northern  sky 

(Zwickyef al. 1968). After th a t, in the early 80’s, Schechtm an accum ulated a ca t­

alogue of 1 million galaxies in the  northern  sky from the Lick astrographic survey, 

see figure 1.1.

The Cam bridge APM  survey followed in the early 90's cataloguing abou t 2 

million galaxies in the  Southern G alactic Cap. M addox et, al. 1990. See figure 1.2

15
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Figure 1.2: The APM  galaxy survey. M addox e£ al. 1990.

Redshift Surveys

Redshift m easurem ents involve determ ining the spectrum  of the  object to  be m ea­

sured. Once th a t is known, recognisable spectral lines can be found, and their 

deviation from their norm al positions used to find the o b jec t’s redshift. The H ub­

ble Law then allows one to  tu rn  th a t redshift into a radial distance from our 

galaxy.

W hen redshifts were first being m easured, it would typically take a few hours 

on a large telescope to collect enough photons to obtain the required spectrum . 

Once telescopes w ith enough light gathering power became available and spectro ­

scopic detectors became sophisticated enough to allow m any redshifts to be taken 

sim ultaneously in a reasonable am ount of tim e, astronom ers s ta rted  using these 

instrum ents to make m aps of the 3 dimensional locations of galaxies and galaxy 

clusters.

Figure 1.3 is a representation of some of the m easured 3 dimensional galaxy 

positions in redshift space. The radial coordinate in this plot is the m easured 

redshift (essentially indicating the distance from us) and the angular coordinates

16
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2 d F  C c la x y  R e d s h if t  S u rv e y

Figure 1.3: ‘2dF galaxy redshift survey.

represent the angular position of the objects in the sky. Thus the 3-D m apping of 

the  universe began:

• In the late  70’s red-shift surveys finally becam e a reality w ith the very suc­

cessful CfA (Center for Astrophysics) survey (Huchra et al. 1983). They 

m anaged to  record 1100 spectroscopic red-shifts.

• In the early 90’s the PSCz red-shift survey (Saunders et al. '2000) m apped 

15,000 spiral galaxies from ~  83% of the sky. This still s tands as the  largest 

survey in term s of sky coverage.

• From 1998 to 2003, the Two Degree Field Galaxy Redshift Survey, using 

the Anglo-A ustralian telescope, accum ulated 220,000 galaxy red-shifts. See 

Colless et al. 1999. This survey is illustrated  in figure 1.3.

•  The Sloan Digital Sky Survey (SDSS) is an ongoing a ttem p t to  collect 1 mil­

lion galaxy red-shifts. The current release, DR5, contains 674,749 galaxies. 

See Percival et al. 2006 (DR5) and A bazajian et al. 2005 (D R 4).
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CHAPTER 1. INTRODUCTION

1.3.1 Problem s w ith  this view

The information directly available to us on the observed spatial distribution of 

galaxies is systematically biased compared to the true galaxy distribution.

Angular positions are trivial, but precise distance estimates are more difficult 

to obtain. More serious, however, is the problem that the sampling rate of ob­

servable galaxies depends strongly on redshift. If one considers the universe to 

be homogeneously distributed with matter, then we would expect the number of 

objects, in some observed solid angle of the sky, to grow as r 3. However this is not 

what we actually observe, instead we see distributions like figure (5.5), where the 

reference curve initially has the form of r 3 but soon drops off. This effect is due 

the diminished flux of faraway objects and our inability to collect enough photons 

from them to make valid observations. This ‘selection effect’ can be visualised in 

figure (1.3), as the fall off in the apparent number density of sampled galaxies at 

larger redshift. This is accounted for by weighting each observed object with the 

inverse of the selection function, 0 (r), this increases the contribution of counted 

objects. The functional form of the selection function is,

In the above expression r*, a, (3 and Tq are set parameters and r is the proper 

distance to the observed galaxy.

Apart from the red-shifts, distances can also be estimated from the flux, Fv, 

received from a source. To accurately use this method, the intrinsic luminosity, 

Lv, of the source must be well known and that it radiates in a particular fashion, 

i.e. beamed or uniform. Considering the source to radiate uniformly, the distance 

d can be calculated from,

(1.4)

( 1.5)
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The main problem with this distance estimator is that the vacuum of space is not 

so empty. It is filled with dust particles and gas, collectively termed the Interstellar 

Medium (ISM). The ISM can cause extinction of light (diminished flux) and leads 

to eq.(1.5) giving the wrong answer. The extinction of light is maximal at low 

galactic latitudes due to the dust content of our own galaxy. In fact at its worst 

this effect can completely block out the light coming from distant sources.

In figure 5.4, the masked regions (black) are shown for the PSCz survey. The 

majority of it is due to the extinction of light through the galaxy. The sweeping 

arcs (north and south) are due to cryogenic problems in the satellite near the end 

of the survey period, it was not completed. In figure 4.1, some masked regions for 

the 2dF survey are shown. These masks are placed over the survey because local 

object may be blocking the view in a particular direction.

19



Chapter 2

The Universe at Large

Of the four fundamental forces of nature, the universe on large scales is governed 

by a single force: Gravity. In the proceeding section we will employ the use of 

Einstein’s General Relativity to construct the main equations of cosmological evo­

lution. From there we will relax our use of complicated tensor algebra and work in 

a Newtonian approximation to study the departures from the homogeneous Fried­

mann equations, due to the growth under gravity of tiny density inhomogeneities 

in the Universe. This is the ‘first order’ Universe.

2.1 G eneral R ela tiv ity

In 1915 Einstein developed the theory of General Relativity to explain gravity as 

a consequence of the fundamental connection between the geometry and matter 

content of space-time. This can be summed up in the neat phrase ‘Space-time tells 

matter how to move and matter tells space-time how to curve’. More specifically, 

Einstein developed a set of equations which balanced the curvature of space-time 

and the matter it contained. It is this curvature which generates the force of gravity

20



CHAPTER 2. THE UNIVERSE AT LARGE

and determines how matter moves within it. Generally, this can be written as,

scope of this thesis (for further details see Misner et al. 1973 and Weinberg 1972 

for a more physical description). In eq.(2.1), Gik is the Einstein tensor, and 

R  are the Ricci tensor and scalar respectively, gik is the space-time metric and A 

is the Cosmological Constant. Although its inclusion in eq.(2 .1 ) was described by 

Einstein to be his “Greatest blunder”, it is nowadays a very crucial parameter in 

cosmology. We will describe in more detail each of the above parameters as we go 

along.

In our study of cosmology we need a theory of gravity, which we have, and 

a metric to describe the space-time. A metric is a function that measures the 

distance between events in space-time. Assuming that the CP is true, the form of 

this metric must conserve the CP as described in §1 .2 ; i.e. it must be homogeneous 

and isotropic. To construct the metric with the CP in mind, we slice up the 4-D 

space-time along x° = const, hypersurfaces, i.e. constant time.

To impose isotropy it is easier to tackle this problem in spherical coordinates 

since there is no preferred direction. For homogeneity we insist that the Ricci 

scalar is constant at all points on the hypersphere. And since we are dealing with 

a universe which is expanding it would be to our advantage to use a coordinate 

system which reflects this property. So we will work in a comoving system and 

therefore preserve the positions of galaxies relative to one another. Under the 

above assumptions it can then be shown (e.g. Carroll S.M, 2004) that the metric 

takes the following form,

87vGTik Gik Rik 2 9ikR A.gik. (2 .1)

To explain the ideas and physical motivation of the above equation is beyond the

ds2 =  —dt2 +  a2(t) — + r2(d02 + sin2 9d(j)2) . 
1 — krz

(2 .2 )
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CHAPTER 2. THE UNIVERSE A T  LARGE

This is known as the Roberson-Walker metric (hereafter RWM). In the above 

expression a(t) is the cosmic scale factor, k is a constant which determines the 

spatial curvature and we are working in units where c =  1 . k may take any real 

value but by suitable re-scaling of our coordinates it is only necessary to consider 

3 possibilities.

• k =  0, corresponds to zero curvature and thus a flat universe. Initially 
parallel trajectories remain parallel.

• k =  +1, has positive curvature and the universe is closed. Its geometry is 
like the surface of a sphere. Initially parallel trajectories will converge.

• k = — 1, has negative curvature and leads to an open universe. Its geometry 
can be represented by the surface of a saddle. Initially parallel trajectories 
will diverge.

The RWM in component notation is,

9af3

(-1 0 0 0 \
0  a2(t) /( l  — kr2) 0  0

0  0 a2(t)r2 0

^ 0  0 0  a2(t)r2 sin2 $J

(2.3)

With the above information about the metric we can go about obtaining the 

non-vanishing components of the Christoffel Symbols, TjJ . The components are 

calculated via,

(2.4)

where a  is a summation index and a comma denotes partial derivative. Now it 

is merely a case of turning the handle to derive the essential non-zero elements of
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CHAPTER 2. THE UNIVERSE A T  LARGE

the Christoffel Symbols for the metric given by eq.(2 .2 ),

t,o ad j,i kr
1 11 i  2 1 11 ~1 — kr2 1 — kr2

r ^2 =  aar2 r §3 =  aar2 sin2 9

Y\2 =  r(Ax2 -  1) T\3 = r(kr2 -  1) sin2 9 (2-5)

r 23 =  — sin 0 cos 9 =  cot 9

p i    p 2    p 3    ® p 2    p 3    ^
1 01 — 1 02 — 1 03 ~  „ 1 12 ~  1 13 — „a r

From the above set of equations we can now determine the nonzero components 

of the Ricci tensor, R ap.This is constructed by contraction of the Riemann tensor,
dA

Ra(S — -RqA/3- (2-6)

Summation is implied on the index A according to the Einstein summation conven­

tion. The components of the Ricci tensor are therefore related to the Christoffel 

symbols, above by,

Rafi =  +  r pa(3iP -  r ^ .  (2.7)

In the above expression summation is implied over r  and p. As an example this 

leads to, for the tt component:
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The rest of the nonzero components are:

<2(2 T 2cR T 2k 
=  1 _  kr2 ’

Ree =  r2(aa +  2 a2 +  2k),

R h  =  r2(aa + 2 a2 + 2k) sin2

The Ricci scalar, R, is then obtained via the contraction of R ap i.e,

R = ga§R ag.

(2.9)

( 2 . 10)

Therefore,

R — guR tt +  grrRrr +  g66 Ree +  g^R q  
2

6
a \ a k
— I H 1— 2a a"2

(2 . 11)

Now looking back at equation (2 .1), we can compute everything on the RHS of this 

equation. To evaluate the LHS we must define our energy-momentum tensor, T^. 

This tensor describes the matter and energy content of the universe. A perfect 

fluid approximation is completely defined by two quantities: the rest frame energy 

density p and the isotropic rest frame pressure p.

Tik =

(p 0 0 ° \
0 p 0 0

0 0 p 0

^ 0 0 0 p)

(2. 12)

Now using eq.(2 .1 2 ) with eq.(2 .1) and assuming that A =  0 , we can obtain two 

different equations. From the tt  component we get,

H 4
8irG k 

~  a? (2.13)
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and from the other components we obtain

<7,\ 47tG , . .
a )  = 3~ ' (2' 14)

These expressions are known as the Friedmann equations. H  is the Hubble pa­

rameter and is defined as,

H  = ~. (2.15)
a

Apart from the global expansion, we can now investigate other aspects of the RWM 

universe. The density parameter, ft is defined as,

^  87t G p . .
3Jpp= 7c’ ( ^

with pc being the critical density required to produce a flat universe. Combining 

the above equation with (2.13) gives,

o 87tG _ k o k
H 2 = —  pSl  2.17

3 a1 a1

and rearranging this gives,

The special case of ft =  1 implies that k =  0, and since A; is a fixed constant it 

must be concluded that ft = 1 for all time.

2.2 S tructure Form ation

There are two crucial observations that any model of structure formation has to 

explain: the quadrupole anisotropy of CMB, as measured by WMAP, is one part 

in 105 (Hinshaw et al. 2003) suggesting that the amplitude of the fluctuations 

was very small at the epoch of recombination; while redshift surveys of the Local
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universe show highly inhomogeneous matter distributions over galactic and cluster 

scales. The gravitational instability is believed to be the physical mechanism which 

amplifies the small primeval fluctuations into the structure that we observe today.

We now have the main ingredients for analysing the evolution of structure, at 

least within a linear approximation, these are contained within equations (2.13)- 

(2.15). Combining the Friedmann equations and rearranging gives us the continu­

ity equation,

p = - 3  H{p + p), (2.19)

which shows the conservation of energy as the universe expands. To proceed we 

will also make the assumption that the matter content of the universe is well 

described by an ideal gas equation of state, i.e.,

p = wp. (2 .2 0 )

In standard cosmology we assume that the majority of the m atter is in the form 

of cold dark matter (CDM), which has the equation of state, w =  0. So the pres­

sure component is assumed to be negligible which greatly simplifies the following 

calculations.

In eq.(2.2) the effect of the curvature is small for distances much less than 

the Hubble radius cHq 1 =  3000h_1Mpc (a variety of observations clearly favour 

fltot ~  1 and ~  0.7 therefore |&| < H 2). Hence, the RWM is well approximated 

by ds2 =  cdt2 — a2(t)(dx2 +  dy2 + dz2) (similar to the flat Minkowski metric 

of special relativity but with a time varying rescaling.), where (x ,y ,z )  denote 

the comoving Cartesian coordinates. Assuming a conformal Newtonian gauge1 

(cf. Ma & Bertschinger 1995) the Einstein field equations applied to the first-order

1Also known as the longitudinal gauge. This transform is very useful when considering scalar 
perturbations.
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perturbations 0 of such a metric yield the Poisson equation of Newtonian gravity:

V 2(/> =  4tt a2G6p, (2 .2 1 )

where Sp =  p(x, t) — p(t) indicates the fluctuation of the mass density about the 

mean density p{t) and (j) is interpreted as the Newtonian potential. Note that 

eq.(2 .2 1 ) does not assume that 5p is small.

2.2.1 The Eulerian Formalism

The Eulerian Formalism considers the large scale universe as a continually expand­

ing fluid, whereby momentum, energy and mass conservations are encapsulated 

within the equations below:

a i  +  V • [(1 +  <5)v] - 0  (2.22)

av + (v • V) v +  av =  — V0 — p- 1Vp, (2.23)

V 2(f) =  4tta2GSp, (2.24)

Equations (2.22)-(2.24) are the equations of motion of a non-relativistic perfect 

fluid in comoving coordinates. Eq.(2.22) is the continuity equation (expressing 

mass continuity) and eq. (2.23) is the Euler equation (conservation of the linear 

momentum). In this system of differential equations the over-density field, <J(x, t), 

appears rather than the usual density field,

p(x,t) =  p (t)[l-M (x ,t)],
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with p being the spatially averaged mean density and the peculiar velocity, v(x, t), 

is defined as
dr a . .

v =    r. (2.25
dt a v '

Over-dots indicate partial time derivatives. The pressure p is related to the den­

sity p through equation (2.20). For adiabatic perturbations there are no spatial

variations in the equation of state, therefore Vp =  wV p =  wpVS.

The Linear regime of A diabatic perturbations

Linearising our system of equation, we obtain

aS + V • v «  0 , (2.26)

av +  av «  —V0 — cfVS, (2.27)

V2</> =  4n Ga25p. (2.28)

Where cs represents the adiabatic sound speed, cj =  (dp/dp)s =  w, and the 

subscript S  indicates constant entropy throughout the space (V S  = 0 ).

A general vector field may be decomposed into a (potential) longitudinal and 

a (rotational) transversal part:

v(x, t) =  V|| +  vj_, V x V|| =  V • v_l =  0, (2.29)

From the curl of eq. (2.27) it follows that

d d
— (aV x v) =  ^ ( a V  x v i )  =  0 . (2.30)

This implies that rotational modes are not coupled to density perturbations and 

decay as a~l . Combining the time derivative of the linearised continuity with the
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divergence of the linearised Euler (c/. eq. 2.27) we yield the equation of motion for 

the longitudinal density perturbations

i  + 2-6  = ( - i  2 V2<5 + 4vG6p. 
a \ a /

(2.31)

Since the coefficients are spatially homogeneous (independent of x) this equa­

tion may be solved by expanding J(x, t) in plane waves, <J(x,i) =  Sk(t)etk'x , 

X = 2ira(t)/k, where A is the proper wavelength. After some straightforward 

calculations, it is easy to show that the dynamical behaviour of JkW obeys the 

following differential equation:

For wavenumbers larger than kj  pressure dominates the right hand term and 

perturbations do not grow, merely oscillate. For k < kj  self-gravity dominates so 

that gravitational instability can take place. Exact solutions to eq. (2.32) exist for 

a variety of cases (see, for instance, Peebles 1980). Since the dynamical behaviour 

of 5k(t) is governed by a second order differential equation, in general, there is one 

monotonically growing solution and one monotonically decaying solution. In the 

limit k <C k j  the effects of the pressure p are negligible and thus all modes grow 

at the same rate. In this regime, the general solution to eq. (2.31) is given

where D+(t) and D_(t) are the growing and decaying modes, respectively, while

4  +  2 - 4  =  - c 2 (k2 -  kj)  4
a

(2.32)

where we have defined the comoving Jeans wavenumber k j  by

(2.33)

Two qualitative behaviours of the solutions can be easily discerned from eq. (2.32).

6(t,x)  =  A(x)D+(t) + B(x)D_(t) «  A(x)D+(t) (2.34)
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;4(x) and £ (x ) are time independent functions (Heath 1977). The decaying so­

lution is a perturbation with initial over-density and peculiar velocity arranged 

so its initial velocity quickly becomes negligible (Peebles 1980). Thus for most of 

the history of the universe the growing solution quickly comes to dominate. In 

an Einstein-de Sitter universe D+(t) oc a and D_(t) oc a -3/2. For a dust universe 

with Q < 1 , the growing mode D+ is

=  S s m M s i n h ,  - , )  _  2
+ (cosh 77 — r]Y

77 indicates conformal time 77 =  (—k)1/2 f l dt'/a(t').

Given a solution for the density perturbation field $(x, t), the velocity, gravi­

tational potential and gravity field follow. For the longitudinal modes v =  vy =  

—V(f)v/a. The gravity field is g =  —V</>/a. Thus, from the system of differential 

equations, eq’s. (2.26)—(2.28), for k «C kj, we obtain

^ a*H f{Pv
f  <5(x') ,, , , 3 QH  1 3 ClH

j V ^ \ d X ' * = 2 j ^  g = 2 T V' (2 '36)47T

Where /  is defined by

f i n  A  = dlo%D + = V + W  (0 r?)
"  dloga H(t )D+(tY  ̂ }

The behaviour of f(Q, z) at the present epoch (2 = 0 ) is very well described by 

/  «  Q0-6 in the case of universes with negligible space curvature or rather small 

cosmological constant (Peebles 1980).
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F igure  2.1: ACDM simulation, described briefly in § 5.2 (see W arren et. al. 2006 for 
details).

2.3 TV-body S im u la tio n s

So far we have only been concerned with the linear regime. To tackle the  non­

linear regime we m ust leave our analytical tools behind and instead buy a very 

big com puter to  run TV-body sim ulations. This is exactly w hat people have been 

doing since Sverre A arseth wrote the first astrophysical A^-body codes (A arseth, 

1978)2.

In the early days of th is field, cosmological sim ulations could only handle

roughly 1,000 particles (G oth & Turner, 1979). But with the exponential increase

in com puting power it was not long until very large A -body sim ulation were being

2Aarseth helped greatly in the early days of A-body simulations by making his codes readily 
available and easily adaptable.
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carried out. By the mid-80’s there were 30,000 particles being used (Efstathiou, 

1985), this rose steeply to 106 in the 90’s (Bertschinger k  Gelb, 1991) and now 

the most recent effort by the “Virgo Consortium” has seen the first billion particle 

cosmological simulation (Evrard et al  2002).

Over the last two decades cosmological TV-body simulations have played a cru­

cial role in the study of the formation and evolution of cosmic structure. Primarily 

they have been used to match theory with observations. However, simulations like 

the recent “millennium run” (Springel et al 2005) use only dark matter particles 

which form the gravitational potentials for structure growth. Therefore, there is 

a crucial step to go from dark matter particles to dark matter halos and finally 

individual galaxies. The basic technique for doing so is discussed in §5.3.1. One 

would hope that in this process we are not masking some underlying physics.

The impressive progress achieved in the observational front with the completion 

of very large surveys such as 2 dF and SDSS poses a clear challenge to the numerical 

work in cosmology: the precision of the predictions provided by the current N-  

body experiments have to be of the order of a few percent.

V-body simulations, however, do not include all relevant physics like magnetic 

fields and gas dynamics. They also have resolution issues, which must play a roll 

on small scales. So while modern simulations, like that of Warren et al. (2006) in 

figure 2 .1 , are undoubtedly very useful tools, they must be used with care.
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Chapter 3

Quantifying The Large Scale 

Structure

The issue of quantifying structure is not confined to cosmology, it is a complex 

m atter which stretches across many areas of science. Patterns are there to be iden­

tified and exploited in order to find subtle connections and correlations between 

observables. This method of analysis can be seen in fields as diverse as studying 

the stock market and modelling biological systems. A wide variety of different 

statistical tools have been employed to quantify structure, but in studies of the 

large-scale distribution of galaxies perhaps the most common has been the 2-point 

correlation function

3.1 T he Tw o P oin t C orrelation Function: £

The two point correlation function (hereafter 2PCF), £(r), is defined as the ex­

cess probability, with respect to a Poisson distribution, of finding two galaxies in
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volumes dV\ and d\ 2 separated by a distance r. The joint probability is then,

where n is the average density of the sample. This is however not a straight forward 

working definition since we know that density is varying through the space. Con­

sequently it is not straightforward to identify how large a volume of space must be 

sampled in order to reliably measure the average density of the galaxy population. 

Equally importantly, even if such a ‘fair sample’ volume can be identified, the num­

ber count of observable galaxies within that volume will not generally be a reliable 

estimate of the ‘true’ number of galaxies in the volume because of observational 

selection effects - i.e. a radial selection function and angular masked regions. Also, 

measuring accurately the distance of galaxies in a survey is not straightforward: 

redshifts are distorted by peculiar motions and redshift-independent distance in­

dicators (e.g. using some form of ‘standard candle’ assumption) are rather noisy.

For this work we proceed to measure the mean density n  as the number of 

galaxies inside the survey, each weighted by the selection function, 0 (r»); in practice 

we perform a Monte Carlo over the sample space (see Strauss Sz Willick, 1995 and 

references therein). We can also write the conditional probability, dPc, of finding 

a galaxy in a volume dVi, at a distance r from another galaxy,

From this equation it is straightforward to see the properties of the function £(r). 

For £(r) =  0, we recover a uniformly random point set, such that the probability 

of finding a galaxy in volume dV  is simply proportional to dV. The case of excess 

clustering is £(r) > 0, where we have more galaxies than in the Poisson case. Then 

there is also the case where £(r) < 0. This case corresponds to anti-clustering, and 

could be relevant e.g. to some models of galaxy formation where the formation of

dP1 ,2 = n2\l + i{r)\dVldV2, (3.1)

dPc = n\ 1 +  £(r)]dVi. (3.2)
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a galaxy may inhibit the formation of other galaxies in its vicinity.

In general the observed £(r) is well described by a power law scaling with 

distance and it is standard practice in the literature to write the 2PCF as,

f(r) =  ( ^ ) 7 . (3.3)

Here ro is a characteristic scale length usually evaluated when £ =  1. This de­

scription is however an over simplification as the physics of structure formation is 

richer in complexity than a simple power law.

One great advantage of using this estimator, is that the Fourier Transform of 

£(r) gives the Power Spectra, V(k),  of density anisotropies (see §3.1.4). It is also 

a statistic which is very easy to visualise and very easy to compute. From £(r) it 

is also possible to determine the correlation dimension, D2, of the discrete point 

distribution. D2 is calculated via,

^  =  3 + 1 r 7 T '  (3'4>d[log(r)]

For a homogeneous distribution in 3-D we would expect D2 —► 3. However, at 

scales around ro, 7  ~  1.77 (Davis-Peebles, 1983), corresponding to a dimensional 

value, D2 ~  1.23. We will soon see where expression (3.4) comes from when we 

discuss generalised dimensions in §3.4.

3.1.1 ^-Correlation Estim ators

There are a few different ways to measure £(r), in the literature but the basic 

computational structure is more or less the same. The main differences between 

estimators are usually the way in which they deal with ‘edge effects’ and the ‘shot 

noise’. We are obviously looking for correlations between galaxies so we begin by
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centering on a galaxy, and proceed to count the number of galaxies within spherical 

shells of different radii around the central object. This procedure is repeated by 

centering on all, or a randomly chosen subset of all, the galaxies in the catalogue 

to obtain a statistical average. The number of galaxies counted in each cell is then 

normalised by a Poisson term which is related to the mean density. This estimator 

is written as,
. / \ dPc DD

= = (3-5>

=  y '  Q ( h  ~  r i\ ~  r ) 'e (r  + d r -  |tj -  n |)
4 "  n(r ) .dV (r )4 (n )4 (r j )  ’ [ 1

where DD  are data-data pairs, DR  are data-random pairs and N  is the number 

of galaxies, <j> is the selection function and

Q(x) =  <
0 , x < 0 ,

(3.7)
1 , x > 0 ,

The problem with eq.(3.6) lies within the mean density term. To obtain n, the 

most accurate method should be to sum over all the galaxies while weighting each 

by the inverse of the selection function. This is calculated as follows,

In the last equation, V  is the volume and the sum is over all galaxies. To reduce 

the variance associated with £(r), the average can be taken,

(£(r )> =  ^ £ & ( r )- (3.9)
j

The angled brackets represent a statistical average, which usually invokes the use 

of the cosmological ergodic theorem (see §3.1.2). The result of applying eq.(3.6) to 

a mock galaxy catalogue can be seen in figure 3.1. The red line is a straight line
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Figure 3.1: The 2PC F m easured using (3.6) and applied to  the  PSCz mock galaxy 
catalogue. The gradient gives 7  «  1.6 and therefore D-2 ~  1.4 on scales up to  
30M pc
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fit to the data, giving 7  «  1 .6 .

So far we have used DD  and D R , however R R  pairs are also useful in calculat­

ing the 2PCF. Other estimators like the minimum variance estimator, by Landy 

& Szalay (1993), use the R R  pairs to help correct for boundary effects. Their 

estimator takes the form,

=  M ( M - 1 ) DD _  (M -  1) DR  
^  ’ N ( N  - I )  R R  N  R R  *■ ' '

where the M  is the number of random points. There are many more estimators 

for the 2 PCF. Kerscher, Szapudi, k, Szalay (2000) show that equation (3.10) is 

strongly preferred over other methods.

3.1.2 Ergodicity

A short note on the Ergodic Principle:

The observed universe is unique. This implies that averages have to be spatial 

ones. Such averages will be equal to those obtained if instead we were to average 

over an ensemble of universes if the Cosmic Ergodic Theorem holds. Ergodicity 

in the cosmological context means that ensemble averaging and spatial averaging 

are equivalent. Note that, in contrast with the common practice in statistical 

mechanics, the cosmological Ergodic Hypothesis refers to the spatial distribution 

of a random field at a fixed time rather than to the time evolution of the system. 

Thus, for instance, the ensemble average of the random field $(x) at a point x, 

(S(x)), is simply the expectation value of the random variable <5(x).
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3.1.3 G aussianity

Let us introduce some of the statistics used by cosmologists to characterise the 

spatial distribution of matter. We define r.m.s. as fluctuations of a continuous 

density field 6(x) as

= (<KX)2)> (3-11)

and the correlation function by

£(*"12) =  ^<5(xi)£(x2) y  (3.12)

(Note that for a homogeneous and isotropic random process £ only depends on 

the distance between the two points 7*12 =  |xi — x 2|.) The correlation function is 

a measure of the spatial correlation of the field <5(x).

A random field is said to be Gaussian if all TV-point multivariate probabil­

ity distribution functions are multivariate Gaussian distributions defined by their 

mean vector (S(xi)) (which the ergodicity implies to be identically zero) and their 

covariance matrix My =  £(x*,Xj). Gaussianity is a very popular assumption for 

two reasons. The first one is that the calculations are “easy” to perform. The 

second reason is that the CMB seems to support a Gaussian initial density field, 

Komatsu et al. 2003.

3.1.4 Power spectrum

If we expand the S(x) field in plane waves as

<5(x) =  ^ 3  I  e ^ S kd3k, (3.13)
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we see that its Fourier transform (5k is given by

4  =  y  J  e_ik'x(5(x)d3a;, (3.14)

where Vu may be thought of a “fair sample” of the universe. The power spectrum

of the density field <5(x) is defined as the expectation of the two-point function in

Fourier space, as follows:

( 4 A 2 )  =  P(ki)SD(ki -  k2) (3.15)

where So is the well-known Dirac delta function. This implies that even if 4  is not 

a Gaussian distribution, the random variable <5(x), being an infinite sum of inde­

pendent random variables, will still be Gaussian by the Central Limit Theorem for 

some well-behaved power spectra. We can see that the Dirac function in eq. (3.15) 

is required because of the translational invariance, ((5(xi)(5(x2)) =  £(lx i — x2|). 

Similarly, we can also see that isotropy implies that P(k)  depends only the mag­

nitude of the wave-vector k.

3.1.5 W indow Functions

For some calculations it may be necessary to apply a cutoff at high spatial frequen­

cies, this is due to non-linearities on small scales. The smoothed field <5(x) that 

may be obtained by convolution of the “raw” field with some weighting function 

W  (called window function) having a characteristic scale rw is given by

<5(x) =  f  — x.,rw)d3x ' , (3.16)
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has r.m.s. crj fluctuations given by

= M x)|2) = J ^ y J \ W ( k ) \ 2P(k)d3k. (3.17)

Where W(k) is the representation in Fourier space of W(y, % ). The window 

function has the following properties: W(x' — x ,r ^ )  =  const. ~  rj^3 if |x — x '| <C 

Twi W ( x '—x, rw)  =  0 if |x - x ;| > % ,  satisfying the relation f  W ( x '—x, rw)dy  =

1. One of the most common window functions is the “top ha f  (TH) window 

function which is defined by the relation

WTh (\x  ~  x 'l jr rn )  =  . 3 ----- -), (3.18)
4 irrLn rTH

where H  denotes the Heaviside step function (H(y) =  0 if y < 0, and H(y) =  1 

if y > 0). Another commonly used window function is the Gaussian kernel:

W'c ( |x - x ' | ; r 0 ) =  ^ p 7j e x p ( - J ^ l - ) .  (3.19)

3.2 H igher Order C orrelations

It is a natural question then to ask whether there are higher order correlations 

than the simple 2PCF, generally defined as, The answer is most definitely

YES. A Gaussian random field would in principle be completely defined by the

2PCF (the initial density field is thought to have this property), however due to 

non-linear structure formation we now have local non-gaussianity which means we 

must look to higher order moments to accurately quantify the galaxy distribution.

These higher order correlations are defined as, £ „ (ri,...., rn), where n is the 

order of the correlation function. As an example the 3 point correlation function 

is defined as the joint probability of there being a galaxy in volume elements dVi
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F igure 3.2: The distances ri r2 and r3 separated the three galaxies. The triangular 
configuration can be fixed at the outset or it could be included as a variable at the cost 
of much more com putation.

and dV2 given that these elements have displacements ri and r2 from the galaxy 

which is being investigated. This is illustrated in fig.(3.2). The joint probability 

can be written as,

dP  =  n3[ 1 +  £(ra) +  £(r&) + f  (rc) +  C(ra, n>, rc)]dVidV2dVz, (3.20)

where ra,rb and rc are the sides of the triangle. Assuming homogeneity and 

isotropy means leads to £ being a symmetric function of the three lengths. Equa­

tion (3.20) is the full three-point correlation function, and £ is known as the reduced 

part.

The conditional probability of finding two objects to complete the triangular 

configuration given that we are centring on a galaxy is,

dP =  n 2[l +  i ( ra) +  f  (r6) +  £(rc) +  C(ra, rb, rc)]dV2dV3. (3.21)

Then the conditional probability of finding a galaxy to complete the triangle, given
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that we have a pair of galaxies with separation ra, is,

dP = n -------------------------------  dV3, (3.22)

I r  extending to N-point correlation functions the computational load is in­

creased exponentially. This limits our ability to determine accurately N  > 4, 

however there may be a way to avoid this problem by making some approxima­

tions.

Given that £(r) can be represented by a power law,

£(r) =  B r“7, 7  ~  1.77, (3.23)

the 3PCF is then found to be well described by a combination of £’s (Peebles, 

1980), i.e.,

C{ra,rb, rc) =  Q[£(ra)£(r6) + £(r6)£(rc) +  £(ra)£(rc)], (3.24)

with Q ~  1.0 ±  0 .2  (Meiksin, Szapudi & Szalay, 1992).

3.3 M in im al Spanning Trees

One draw back with the 2PCF, as we have defined it in eq.(3.1), is that it is 

insensitive to filamentary structure. This is due to it being a function only of dis­

tance and not direction; thus all angular information is lost through the averaging. 

The Universe does appear to contain filaments, walls and other such features, but 

whether these are real or due to chance alignments has of course been a topic of 

debate over recent decades.
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F igure 3.3: On the left hand panel we see a distribution of points. As we apply the  
m ethod from 1-5 the Minimal Spanning Tree is constructed on the right hand panel.

To quantify this kind of structure Barrow, Bhavsar and Sonoda (1985) intro­

duced a method from Graph Theory, called Minimal Spanning Trees (MST). The 

procedure to implement this is as follows:

1 A galaxy A is chosen as a starting point within a 3-D galaxy distribu­
tion.

2 The nearest galaxy to A is labelled B and a straight line is drawn to 
connect the two. This line is known as a path.

3 The closest galaxy to the set of previous galaxies (in this case A and 
B) is added to the set and is connected to the closest galaxy in the set. 
This produces a branching behaviour, and this step is repeated.

4 After some time we are left with many paths and circuits (closed 
paths). If there are no circuits the graph is open and this is known as 
a tree.

5 To then transform this abstract visualisation into a numerical repre­
sentation of structure we can do a few things, e.g.:

i Calculate the number of lines in angular bins of dO w.r.t an 
adjoining line.

ii Calculate the number of lines in distance bins, dr. Obtaining 
dN vs dr.
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This m ethod connects all galaxies in some fashion. But we know th a t not all 

galaxies are physically connected, as a galaxy in one cluster has little  to  do with 

ano ther galaxy in a d istan t cluster.

To account for this, we adjust the previous m ethod by only joining a galaxy to 

a pre-existing tree if its distance to  the closest m em ber is less th an  some threshold 

distance. This technique is known as separating and was in troduced by Clark & 

Miller (1966). This m ethod was recently applied to the SDSS DR1 by Doroshkevich 

et al.(2004). They found th a t groups and clusters are more likely to  be found close 

to  walls ra ther than  filam entary structure .

3.4 T h e  F ra c ta l  U n iv e rse

Fractal pa tte rn s  can be thought of as the place where chaos and order m eet. This 

is because self-similarity (fractality) seems to be an eventual by-product of chaotic 

system s. Fractal pictures are usually associated with “Ju lia” and “M andelbrot” 

sets nam ed after the French m athem aticians.

F igure  3.4: Left.: The Julia set. Right: The M andelbrot set. In both the  Ju lia  & 
the M andelbrot sets the self-similarity is clearly apparent i.e. successive enlargem ents of 
areas will show sim ilar patterns to  the picture as a. whole.

Fractals belong to a branch of m athem atics known as Fractal Geometry. Unlike 

the usual definition of Geometry, where regular shapes and p a tte rn s  are studied,
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fractals can be highly irregular and the dimensions which are explored are not 

confined to integer values like D = 2 for surfaces and D = 3 for volumes. The 

term fractal was originally coined by Mandelbrot himself, who is widely considered 

the father of fractal studies. In fig.(3.4) the Mandelbrot and Julia sets are shown. 

These are classical examples of fractal patterns, we can easily see that zooming 

in on certain areas will yield patterns which are reproductions of the whole pic­

ture. It is this self-similarity in fractal patterns which make them scale-invariant 

objects. Multifractals on the other hand are not scale invariant, since their spatial 

dimension can vary with scale length. In these terms monofractals can be thought 

of as a special case of a more general multifractal.

Fractals were merged with the physical sciences through their intimate connec­

tion to nonlinear physics and chaotic dynamics. In configuration space we may 

have chaotic motion for an unstable system, however, in phase space dynamics 

may be more ordered and the system may evolve towards an attractor. This is 

rather like a chaotic analogy to an equilibrium state. Phase space trajectories 

are, however, by no means an easy-to-use tool for analysing structures since, in 

cosmology, we only have access to spatial coordinates1. Nevertheless, this kind of 

ordered phase space gives rise to a self similar pattern in real space. This is, more 

specifically, a fractal pattern.

Now it is known that on large scales, the main ingredient to structure formation 

is the force of gravity. However the 1 /r potential for gravity leads to highly 

nonlinear motions and also to cross talking between different spatial scales. So 

it is not so great a jump to consider the galaxy distribution as a fractal of some 

kind. In fact this line of analysis is not a new one. The distribution of galaxies 

in the universe has already been shown to be well described using a multifractal 

framework, see e.g. Jones et al. 1988.

1This is not entirely true as we do have limited velocity information as well.

46



CHAPTER 3. QUANTIFYING THE LARGE SCALE STRUCTURE

3.4.1 M ultifractal Formalism

In this analysis we will adopt the procedure layed out in Henschel et al  (1983) 

to determine the Renyi (Generalised) dimensions of a point set embedded in a 

three-dimensional Euclidean space. The probability of a galaxy, j ,  being within a 

sphere of radius r centred on galaxy i is,

( V r i i ( r )

P i ( r )  =  “ a T  ’

x N (3.25)

=  _ r j i _ r )-
i

Here n;(r) is the number of galaxies within radius r, N  is the total number of 

galaxies and

{ 1, x  < 0,
(3.26)

0, x > 0,

Equation (3.25) can then be related to the partition sum via Grassberger and 

Procaccia’s (1983) correlation algorithm,

1 M
z (<Lr ) =  * r T{q). (3.27)

i=  1

In this case M  is the number of counting spheres and q defines the generalised 

dimension we are investigating. r(q) is the scaling exponent, which is then related 

to the infinite set of dimensions through,

A , =  ^ r ,  <J^ l .  (3.28)q — 1

Clearly the special case of q = 1, the information dimension, cannot be determined 

using the above expression but can be found approximately in the limit q —> 1 . 

This is an important dimension to calculate as it gives equal weighting to voids 

and clusters. Voids are enhanced for q < 1 and clusters are enhanced for q > 1,
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F igure  3.5: Applying the m ultifractal analysis to  ACDM halo catalogue, we obtain the 
usual D q curve. A linear x 2 fit t °  the  partition sum, Z( q , r ) ,  over the two distance scales 
produces each point in the plots above. The catalogue has approxim ately 1.5 million 
halo positions.

so q =  1 is in th is sense the m ost unbiased dimension in the set. To determ ine D\ 

more accurately we m ust calculate,

where S (r )  is the  partition entropy of the point set.

In §3.1 the  2PC F was related  to  the correlation dimension, D 2, through a dif­

ferential operation. However, in M ultifractal term s the correlation dim ension is 

only one of an infinite num ber of generalised dimensions which we can use to  char­

acterise the d istribu tion . O ther im portan t dimensions include, D\ - information  

dimension, D0 - Capacity dimension, and D q as q —> =toc. M ultifractal d istribu ­

tions are usually defined by a Dq curve which generally decreases w ith q (see figure 

3.5). M onofractals on the o ther hand produce a flat Dq curve.

The m ethodology we have constructed  is used to calculate the D q curve for 

the  ACDM TV-body sim ulations. The two plots in figure 3.5 show D q curves for 

different d istance scales. A m inim um  \ 2 approach was applied to the partition  

sum, Z (q ,r )  as illustrated  in figure 3.6(a).

(3.29)
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The x 2 minimisation was performed on a straight line model fit to the data at 

two different distance scales; 10 < R\  < 40 Mpc and 50 < R 2 < 100 Mpc. Both Ri  

and i?2 were chosen as they appeared to have constant gradient in these regions. At 

small scales the data seems to be supporting a multifractal distribution, whereas 

on large scales the universe appears to reach homogeneity on scales considerably 

smaller than the size of the box.

3.4.2 Other Estim ators

The partition sum can also be calculated using a counts-in-cells approach (Man­

delbrot, 1982). Define a new measure fi of a discrete point set as,

M i =  # - .  (3-30)Wtot

which is just the fraction of all galaxies N tot contained within cell i. Also if the 

relation JT  fa = 1 is satisfied, then it must follow that the cells cover the entire 

space (of topological dimension, d) and that the cubes have volume r d. We can 

now construct a new measure,

N(r)

M(q,r) = ^ 2 fJ t l ra = N(q,r) .ra + 0
i—1

0 , a > r(g),
(3.31)

0 0 , a < r(q),

with N(r)  being the number of occupied cells and N(q, r) is the number of occupied 

cells, weighted by q. The measure is dominated, for large positive values of q when 

the cells are more populated, and for large negative q when the cells are sparsely 

occupied. This is a very important property of multifractal analysis, since under- 

dense and over-dense regions are probed by different values of q.

In the limit a —> r(g), it follows that M  will be finite and nonzero. Then we
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3.5
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F igure 3.6: Results of the mock P S C z  catalogue from a ACDM model. Left:  The 
partition sum Z 2 varying w ith distance. This is very closely related to  the 2PC F. The 
direct derivative of th is plot can determ ine the correlation dim ension varying with scale. 
[Figures from Pan & Coles, 2001]

can see from eq.(3.31) that,

N(i

N(q,r)  =  oc r r (<1)

i=  1
(3 .32)

and
t \ !■ lnN(q,r)

T(q) =  lim
r >̂0 ln ( l / r )

(3.33)

3.4.3 The f ( a )  Curve

Grassberger et al (1988) show that we can rewrite the usual fractal measure as,

Pi -  rai (3.34)

The distribution of the scaling indices on characterise the dimensionality of the 

survey. This is evaluated using the cr-spectrum,

n(a)da  ~  Â | l n r |1/2r a_^̂ a^ Q:, (3.35)
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where n(a)da  is the number of times that a takes values in the range (a, a  +  da ). 

For a homogeneous fractal distribution the f ( a ) curve reduces to a single point: 

cuo =  f ( a o) =  -Do- In any case the statistical properties of a distribution are equally 

described by either the generalised dimensions, Dq or by the f ( a )  curve since they 

are a Legendre pair, as shown below. The only main drawback, as we will soon 

see, is that the latter strategy requires an extra differentiation of the data.

We can show this by considering the integral version of equation (3.27),

Z(q,r)  =  Pi(r)q 1 =  ^  J n ( a ) r {q l)ad a ,
i— 1

=  J  \ \nr \l/2raq- f (a)da. (3.36)

A solution to the above expression can be found using the Laplace integral ap­

proximation (Martinez et al. 1990), giving,

) { _ £ _ }  . (3.37)

The conditions of this theorem defining the function a(q) are,

d f ( a ' )  I | , , o |
—f o T lo =“<»>’ (3'38)

and
d2f ( a )

da

Using Z(q,r)  =  const x rT̂  and (3.37) we get,

< 0. (3.39)

r(q) = a ( q ) q - f ( a ), (3.40)
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and using (3.38) with (3.39) leads to,

»(») -  |  (Ml)

Equations (3.40) and (3.41) relate the variable pairs, (<?, r)  and (<a,/ ) :  a Legendre 

transform. So we can see that the distribution is equivalently characterised using 

either method. However, in practical terms the Generalised Dimension approach 

may prove to be more accurate, since the f ( a)  curves require a further differentia­

tion of the data. i.e. f ( a)  curves (fig.3.7) are related to the derivative of the Dq s 

(fig.3.5), through eq.(3.41)

In figure 3.7, two realisations of a multiplicative random fractal are shown with 

their corresponding f (a)  curves. The method for constructing these distributions 

is discussed in Jones et al. (1988).
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Figure 3.7: Two fractal d istributions with their corresponding f ( a )  curves below. 
left: A m onofractal d istribu tion  produces a single point in the  f ( a ) — a  plane. 
right: A genuine m ultifractal point set produces a curve in the  f ( a )  — a  plane. 
[Figures from Jones et al. 1988]
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Chapter 4

Boundary Corrections

As we touched on in §1.3.1, the analysis of redshift surveys is prone to many 

problems, some subtle and some not so subtle. The presence of large ‘holes’ in a 

survey -  regions where no galaxies have been observed -  is clearly an example of 

a serious problem which needs to be appropriately corrected for.

To analyse real (or indeed mock) galaxy surveys we must, therefore, deal with 

the practical issue of incomplete sky coverage. This can arise firstly because of the 

geometry of the survey, which is usually a thin beam or a fan. Figure 4.1 illustrates 

the latter case for the recent example of the 2dF galaxy redshift survey (2dFGRS, 

Colless et al. 1999). The figure shows the projected distribution of galaxies on the 

plane of the sky, from which we see that the coverage of the survey is not all-sky 

-  i.e. we do not sample galaxies over 47r steradians. Also, we notice that there are 

small patches and strips within the geometrical area of the survey which were not 

sampled.

Secondly, incomplete sky coverage can be caused by the extinction of light 

through parts of our own galaxy, or regions being obscured by local objects. Hence, 

for example, even redshift surveys such as the IRAS PSCz (Saunders et al. 2000) 

which set out to be all-sky are missing galaxies within a ‘mask’ close to the plane

54



CHAPTER 4. BO U ND A RY CORRECTIONS

22hrs

24hrs
2 3h rs

19.000 19.700

F igure  4.1: The 2dFGRS southern region shown in projection. The colour scale gives 
the varying m agnitude limit from plate to plate, white denotes regions which lie outside 
the survey. [Figure from the website: 2dF w w w .m so.anu.edu.au/2dFG RS]

of the Milky Way galaxy.

Thirdly, of course, as we already discussed in §1.3.1, redshift surveys are af­

fected by radial incompleteness, which we describe in term s of a selection function, 

caused by the flux limit, below which distance galaxies are too faint to  be observed. 

We can see the influence of this flux limit in Figure 4.1, which shows the variation 

in m agnitude limit from plate to plate in the 2dFGRS.

So, in summary, inform ation about the  ‘tru e ’ population of galaxies is hidden 

or d istorted  by the effect of a flux limit, by the presence of masked regions and by 

the  boundary  of the  survey itself.

There has been a num ber of m ethods created to account for the problem s m en­

tioned above. In the  following sections a few of these m ethods will be reviewed 

and in §4.6 a new correction technique is introduced, whose benefits include com­

putational and sta tistical efficiency.
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4.1 D eflation  M eth od

As we consider placing spherical shells of increasing radius around a galaxy, even 

allowing for our ‘weighting’ of the number count of galaxies in each sphere by the 

radial selection function of the survey, it is clear that we will eventually reach 

the edge of the survey (which of course we can think of as the distance beyond 

which the selection function is equal to zero). Therefore, unless some form of edge 

correction is applied, further increases in the shell radius will result in an estimate 

of the density for shells that are systematically underpopulated relative to the 

mean density of the underlying galaxy population, because of the volume of each 

shell that lies outside the survey. This effect is illustrated in the upper panel of 

Figure 4.2. For the outer (shaded) shell in this diagram, the estimated density 

will be systematically lower than the true density since the shell includes a region 

that lies entirely outside the survey volume and so, by definition, will contain no 

galaxies.

The deflation method is, perhaps, the simplest and crudest form of boundary 

correction. It simply restricts the sum in equation (3.25) to include only those 

counting spheres which lie completely within the survey region. However, this 

drastically reduces the distance out to which the density estimator can reliably 

probe, leading effectively to a ‘cosmic variance’1 problem at larger radii.

The maximum scale, R surv which is probed using the deflation method is de­

fined as (Hatton, 1999),
P   d sin 9Surv /. i \
ftsurv z : : 7 51 +  sin esurv

where 6surv is the opening angle of the survey and d the volume limit.

As an example, the Stromlo-APM redshift survey (Loveday et al  1992) had an

1 Cosmic variance is the cosmologist’s definition of sample variance. If the scales being sampled 
are comparable in size to the survey, then only a few independent measurements can be taken, 
i.e. only a few values available for averaging.
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a)

b)

F igure 4.2: Panel (a) illustrates the state of concentric shells around a galaxy in the  
survey. As the radius of the shell increases, eventually density is measured for shells that 
are partially external to  the survey, such as the shaded shell above. The lower panel 
(b) dem onstrates the maximum distance to  which th is survey can be probed: the radius 
of the largest sphere which can totally  be contained within the survey. [Figure from 
H atton, 1999]
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opening angle, 6surv =  22.6° and a volume limit, d ~  110h xMpc, this leads to a 

maximum sampling radius of only, R SUrv =  30.5h !Mpc.

4 .2  C apacity  C orrection

The capacity correction can be thought of as the next step up from the deflation 

method. Here we allow all counting spheres while using equation (3.25), even those 

which cross the boundary or contain masks. The missing volume is accounted for 

by re-weighting the contribution of the (incomplete) counting sphere, essentially 

equivalent to filling it with a distribution of mock galaxies. The main problem is 

in deciding which distribution should be used to fill the void. Borgani et al (1994) 

chose to weight each cell by a factor fi(r) which is determined by the missing 

volume.

This at first glance may seem to be a valid choice. On the other hand the 

weighting factor should be, more correctly, proportional to some measure of the 

average density in the counting sphere. This highlights the potential problem with 

the capacity correction: even though it can, in principle, be applied to considerably 

larger counting spheres than the deflation correction, its form is fundamentally 

flawed since it is assuming an answer to the question being posed -  i.e. that 

N  ~  r 3, which is a statement of exactly the homogeneity that we are trying to 

test.

In practise the capacity correction is applied using the expression,

missing (4.2)

(4 .3)
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R2R1

F igu re 4.3: A  counting sphere centred on galaxy O with radius r. Regions R1 &; R2 are 
inside and outside the survey respectively.

to obtain the corrected number of objects within radius r from a given particle. 

The RHS of eq.(4.2) contains two main terms: the reduced number count, n*, and 

a term accounting for galaxies which are missing. This is done by calculating the 

missing volume of the survey and filling it with a density corresponding to the 

average density of the survey.

To determine the missing volume of the sphere one can place random points 

within it, or equivalently one can shoot off vectors in random directions from the 

central point in the sphere, and count how many of these lie within the survey. This 

approach is known as a Monte Carlo technique. The expression for the missing 

volume, therefore, requires us to determine two numbers:

1. the number M  of random vectors emanating from the central galaxy which 

fall outside the survey

2. the total number M tot of random vectors emanating from the central galaxy.

Of course choosing to fill the missing portion of the counting cell with any 

presupposed density should be considered bad science. What we would ultimately
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R2

R4

Boundary
edge

F igu re 4.4: This is a counting cell within the survey, it has a masked region (R l)  and 
a missing portion due to the intersection w ith the boundary (R3). The slices AOB and 
COD encompass both of these missing parts.

like to do is fill the missing regions with the right amount of particles. To do this we 

need information which is hidden from us, behind the mask, but the Cosmological 

Principle may come to our rescue.

4.3  A ngular C orrection

In 2002 Pan & Coles, used the the assumption of isotropy2 to infer properties 

of unknown regions, masks and boundaries, from the well known survey space. 

Essentially they proposed that you can average over the part of the sphere which 

is observed and use this average to fill in for the missing regions. Of course this has 

to be done in an angular fashion, since £(r) is assumed not to depend on direction.

Assuming that the universe is statistically the same in all directions, they

concluded that the number of galaxies in a given solid angle should be comparable

to the number of galaxies in the same solid angle but in a different direction. The

2The Isotropy of the universe is a cornerstone of modern cosmology so in this case it is not a 
bad assumption to make.
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average density of galaxies per steradian can then be defined. In order to achieve

this, they introduce the weighting factor fi(r)  which has values 0 < < 1. The

value of the weight determines how much of the counting sphere is missing from 

the survey, and therefore needs to be accounted for. Then the corrected number 

of galaxies in a cell is computed from,

where 0 is the selection function for a flux limited sample. The weighting factor 

appears in the above expression to increase the number count accordingly, just as 

the selection function does.

To implement the angular correction one would start as usual and centre on 

a galaxy within the survey. At a given radius the counting sphere may contain a 

part of a masked region (indicated by region R l in fig.4.4) or the survey boundary 

(R3 in fig.4 .4 ). If this were to occur, the solid angles which contains these features 

are cut out (slice AOB COD in fig.4.4) and replaced by an average over the rest 

of the cell. As an example, for figure 4 .4  the weighting factor in this 2-D analogy 

is /o =  1 — (0i + 02)/27r. For computational purposes, the method to calculate 

equation (4 .4) is as follows:

1 From the set of all galaxies, choose a galaxy as the centre of a counting 
sphere of radius R  and determine its position relative to the mask and 
boundary.

2 ‘Shoot off’ random vectors (r, 0, (j)) from the centre, where:

• r is sampled uniformly E (0 , R). R  - sphere radius.
• (f) is sampled uniformly E (0, 27r).

• 0 =  sin~l (U), U is sampled uniformly from E (—1,1).

3 Determine which vectors lie outside the survey region. Any vector 
which does so, save its components.

(4.4)
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4 Using the scalar product expressed in terms of vector components, 
calculate the angle between each pair of vectors which lie inside the 
survey. This allows us to define a reference direction, and a maximum 
angle, 9max between vectors which lie inside the survey. (9max is the 
opening angle of the cone which points in the reference direction).

5 Now begin counting those galaxies in the counting sphere which make 
an angle, 9 > 9max relative to our reference direction.

6 The weighting factor, /»(r), is then simply related to 9max-

This is essentially the algorithm developed by Pan & Coles (2002) which they 

tested on simulated catalogues and applied to analyse the fractal clustering of the 

IRAS PSCz survey.

The angular correction, although in principle a very successful method to cor­

rect for boundary effects, is very slow and inefficient. Moreover, and worse still, it 

throws away potentially useful data. We can see this from Figure 4.4, where the 

galaxies in regions R2 and R4 are excluded by the angular correction.

In the next section we consider a method which has the potential to improve 

further upon the angular correction.

4 .4  V olum e C orrection

The basic idea of our new, volume, correction can be illustrated in figure 4.3. 

Here the counting sphere has exceeded the geometrical boundary of the survey. 

The number of galaxies counted in the sphere of radius r is depleted which leads 

to Pi(r) being reduced through equation (3.25). As we have seen, to solve this 

problem we could either add galaxies to the missing region, as is the case with the 

capacity correction, or or equivalently we could somehow modify our definition of 

the volume itself (hence the name for our new correction!). Of course you may
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notice that eq.(3.25) does not contain any explicit reference to the volume, but we 

can cast this equation as,

Pt(r) =  M ^ M  (45 )
Ntot

V ?(rf Nm ' 1

with V  being the true volume of the sphere and V* being what we can term 

the reduced volume. We have also introduced the reduced density, p*(r), as an 

intermediary step which need not be calculated, and related this with a reduced 

volume and number count, n*. On its own this method can be visualised in figure 

(4.3), as assigning to the missing region (R2) the same density as that of region 

(Rl). This would be wrong if density varies with distance, so that pm ^  pR2. To 

overcome this problem we assume only that the density does not vary with 6 or </> 

i.e. the universe is isotropic and hence equation (4.6) will hold for fixed r. So to 

apply this method to a galaxy survey we must count in spherical shells, correcting 

our estimate of the density in each shell as we go along, and then integrate up 

the shells at the end. This method is illustrated in figure (4.5). The shells are 

individually corrected and summed according to,

r = 0

where on{r) =  this is the enhancement factor of the i th shell at radius r and 

has value > 1.

The main advantage of this method is that makes the maximum use of the data. 

Specifically, if the boundary edge cuts across a counting sphere at a particular 

radius, the method still makes full use of galaxies at smaller radii from the centre 

of the counting sphere, even if they lie in the solid angle subtended by the boundary 

edge.
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F igure  4.5: A counting shell centred on galaxy O with radius r. Region R1 is inside the 
survey, R‘2 & R3 are outside the survey. The missing parts of the shell (R ‘2 & R3) are 
replaced by the average over the rest of the shell.

The deflation m ethod and the angular correction, of Pan & Coles, on the o ther 

hand throw  away a lot of potentially  useful da ta , which lim its the counting sphere 

radius w ithin which the density may be reliably estim ated.

4.5 P r a c t i c a l  C o m p u t in g  Issues

One significant drawback faced when im plem enting the angular correction is th a t 

it m ust fill the counting spheres with random  vectors to determ ine the missing 

regions. To obtain the required resolution m eans placing m any random  vectors 

a t the centre of the sphere. For a cell w ith R  «  100/i-1 Mpc we have found 

th a t th is requires the generation of ~  100 . 000  random  points.This is not a triv ia l 

com putational task given th a t the vectors m ust be com puted and angles stored a t 

every step.

To see where th is comes from consider figure 4.6. Here a sim ulation has been 

set up to mimic what happens when com puting the angular correction. A counting
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9max c o n v e r g a n c e  plot 

for varying sam p lin g  den sity

CO
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F igure  4.6: The convergence of 9max for increasing vector density. The graph seems to 
converge a t a random vector density of ~  0.25Mpc~3.

sphere is placed close to the  survey boundary and 9max is calculated for varying 

num bers of random  vectors. From the plot we can see the convergence of the 

opening angle a t an approxim ate vector density of pvec ~  0 . 25/i3 M pc 3. Taking 

th is value we can make a back of the envelope calculation of the  required num ber 

of random  vectors to  accurately constrain 6max at, a typical scale of 100 /?- 1Mpc. 

T he num ber of vectors required is then,

N( r )  = PveC.V ( r )
4ir o

N ( r ) =  pvec- - ^ - r

y v ( r - i o o )  «  100.000

To make the com parison w ith the new volume correction, the same calculation is 

perform ed. In this case however we are calculating the num ber of vectors required
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to populate a spherical shell with thickness dr =  IMpc, as a typical value.

V  (r ) «  47tr2dr

N (r) =  47t pr2dr

N (r  =  100) «  30,000

The volume correction is definitely more computationally efficient, especially when 

you consider that the missing volume must be calculated for every galaxy and at 

every distance iteration. One should also bear in mind however that these codes 

could be used on much bigger surveys, SDSS is now pushing 1 million galaxies.

4.6  Error A nalysis

Error estimation in fractal analysis has been largely swept under the carpet by 

many in this field. One of the reasons for this is the computational costs of using, 

e.g., a set of mock galaxy catalogues to estimate error estimates via a Monte 

Carlo approach. Nevertheless, we can obtain an approximate expression for the 

error on an estimate of the galaxy number density via some remarkably simple 

mathematics.

We follow Grassberger and Procaccia’s (1983) suggestion and use the partition 

function Z(q, r),
M

Z(q ,r) = lim lim ~  (4 '8)r — > 0  N —>00 *

to estimate the generalised dimensions of a set of N  galaxies. Here is the 

probability,

P i  = J j ,  (4-9)

of a cell, centred on the ith galaxy, having an occupation number m. r is the cell

66



CHAPTER 4 . BOUNDARY CORRECTIONS

size while r(q) is a scaling exponent.

M
(4.10)

i=  1

By construction the mean of the partition function is positive as there are always 

cells with galaxies within. However, there is a subtlety when handling astronomical 

data: in expression (4.8) we assume that any set contains an infinite number of 

elements and the size of the cells vanish. Redshift surveys, however, contain a 

finite number of objects in a finite volume. This will lead to configurations where 

none of the cells have galaxies other than the central one when lim r —► 0.

We can then construct the second moment of the distribution and rearrange 

as below,

Where (• ■ ■) represents an ensemble average. Applying the Cosmological Ergodic 

Theorem to the above equation leads to sums over the cells. Thus, for q = q' the

(Z(q)Z(q>)) = Y . P C ) (4.11)

(4.12)

(4.13)

(4.14)

M  r\ M M
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N

:e56 
N

0.1 0 2 03- 0 3 -01 0

F igure 4.7: This is a log-log plot of the partition function varying with distance. The 
larger error bars are estim ated from the prescription discussed in § 4.6, whereas the  
smaller errors are obtained from averaging the results of 100 Levy Flight fractal sim ula­
tions. This fractal has 1,000,000 particles w ith D 2 =  1.2 and is contained in a 400M pc3 
box. left: The points in th is plot have not been averaged, right: Points have been  
averaged over 100 distributions.

(Z(q)Z(q')) can be cast as

(Z(q)Z(q)) =  y + cross terms (4.16)
i

=  {Z(2q — 1)) + cross terms (4-17)

=  ^) +  cross terms (4.18)
i

< 2 E<(p.2)(,_1)>- (4-19)
i

We can then estimate the standard deviation directly from,

<7,2 ~  2.2(2? -  1) -  Z(q)2 (4.20)

We show a comparison between our error estimation, from eq.(4.20), and an error 

estimation from 100 simulated Levy Flight fractals (see figure 4.7).

The left hand plot, of figure (4.7), shows the partition function calculated as 

a function of distance. To each point is attached a larger error bar estimated 

from the prescription discussed in §4.6 and a smaller error bar obtained via an
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average over the 100 simulations. We can see from the plot that the gradient of Z  

is constant and the points are all very close to the fitted straight line. The fit was 

obtained by minimising the x 2 function. The right hand plot shows similar points 

but now the partition function calculated at each distance is also averaged over 

the 100 simulations, with error bars computed as before. The excellent agreement 

in the fitted slopes of the left and right hand plots indicates that the partition 

function is an unbiased estimator.
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Analysis &; Results

We will begin in the proceeding section by applying the different corrections to 

a toy fractal model. This model can be used to compare and contrast the dif­

fering methods. Then the volume correction will be used to analyse in detail the 

distribution of particles produced from an A-body simulation.

5.1 T he L evy F light

An initial test for the different corrections is to analyse a simple fractal distribution, 

the Levy Flight. This fractal is very easy to construct and has an analytical 

determined dimension (see Meakin 1998).

The Levy flight fractal is finding its way into many areas of physics due to its 

close connection to Brownian Random Motion. For example it has been used to 

explain Interstellar scintillation (Boldyrev & Gwinn 2003) and even modelling the 

financial market (Chowdhury & Stauffer 1999)

The Levy Flight is constructed as follows:
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1 A point A is chosen at random, maybe the origin, in Cartesian space.

2 A displacement is given to A by a vector ($,</>,1?) to give a second point
B. The angular direction is uniformly sampled and the Probability of 
R  exceeding a value r is given by,

3 This procedure is repeated many times to ‘fill’ the 3-D space, which 
was restricted to a cubic box of side 400 Mpc.

In expression (5.1), D is the fractal dimension and tq is a characteristic scale 

length, both of which we can adjusted to produce different features. The resulting 

distribution is not so dissimilar to a true galaxy survey (c/. figure 5.1). ro can be 

related to the average inter-cluster separation.

5.1.1 M ultifractal A nalysis

A multifractal analysis, as described in § 3.4.1, is performed on a Levy Flight 

distribution of particles (c/. fig 5.1). The boundary is corrected by considering 

each of the different methods from Ch.4. This setup should give a fair comparison 

of the different correction methods.

Since the correlation dimension is known analytically, the multifractal analy­

sis will be restricted to the D2 dimension. Now from the partition sum Z(2,r), 

equation (3.28) will provide the D2 value through differentiation. This differenti­

ation was performed directly on the data by applying a linear fit to every three 

consecutive data points. The errors, as described in § 4.6, were considered when 

minimising the x 2 function.

The results of this procedure are plotted in figure 5.2. There are a few points 

to note in this plot. Firstly, the Levy Flight is highly anisotropic, which is a cause

r /r 0 > 1 
r / r 0 < 1 ’

(5.1)
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x [Mpc]

F ig u re  5.1: This is a 2-D view of a 3-D Levy Flight distribution of particles, with 
param eters: ro — 0.2, D = 1.2

for concern when applying a s ta tis tic  which does not consider angular inform ation. 

A lthough th is may be a problem, following the suggestion of M artm ez et al. (1990), 

the  correct result from the sim ulation seems to be confined to  the range between 

the average nearest neighbour separation and the mean inter-particle  spacing. In 

figure 5.2 it can be easily seen th a t the  volume correction lies closer to the  analytical 

answer of D2 =  1.2 , th an  either the  capacity or angular corrections.

Secondly, the  volume correction is more or less always closer to the true  value, 

even as the m ethods begin to  over estim ate on larger scales. This over estim ation
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F igure  5.2: D 2  evaluated for a Levy Flight distribution of particles. The volume (red), 
capacity (blue) and angular (black) corrections are used to  correct for the boundary 
of the simulation. The error bars are from our prescription as described in §4.6. The 
solid blue line corresponds to the analytically determ ined D 2 value and the two vertical 
dashed lines represent the average nearest neighbour separation and the  mean inter- 
particle spacing respectively.

by all the  m ethods is due to  the anisotropic nature  of the Levy Flight d istribu tion .

Thirdly, the large errors and visual noisiness of the angular correction are not 

present in either the capacity or volume corrections. This, 1 can only conclude, is 

due to the  angular m ethod throw ing away data , leading to  low num ber sta tistics, 

i.e. intrinsic noise.

5.2 A C D M  S im u la t io n

In th is section we will analyse the d istribu tion  of dark  m atte r halos from a ACDM 

sim ulation. Since there are no galaxies in th is analysis, it is only the underlying 

dark m atte r  d istribution which is being probed. This sim ulation was perform ed

73



CHAPTER 5. ANALYSIS & RESULTS

by Warren et al. (2006), see reference for a detailed description. For this work we 

are using a 384/?,-1 Mpc box with a flat geometry and cosmological parameters,

p = (QM, n, h, <j8) =  (0.3,0.04,1,0.7,0.9). (5.2)

Initial conditions were derived from the transfer functions as calculated by CMB- 

FAST (Seljak & Zaldarriaga, 1996). The final catalogue has approximately 1.5 

million halo positions.

5.2.1 M ultifractal A nalysis

The multifractal analysis as presented in §3.4.1, must be applied over a range of 

different distance scales. In figure (3.5) the results of this analysis are shown over 

two different ranges; 10 < R\ < 40/i_1Mpc and 50 < R 2 < 100h_1Mpc. These 

scales were chosen almost arbitrarily1. The left hand plot of fig.(3.5) shows a clear 

sign of multifractality on small scales whereas the right hand plot appears to signal 

a transition to homogeneity. However, since the partition function (like figure 3.6

(a)) is generally smooth, we can expect a smooth transition to homogeneity.

Instead of applying this analysis in certain ranges, the plots in figure 3.5 could 

be extended by adding another axis: distance. This would give us a DqtR Surface.

The D q R̂ Surface

Figure 5.3 shows the result of extending the multifractal analysis to include varying 

scales. The high peak and dip on low scales (< 10h-1Mpc) corresponds to a 

multifractal distribution. The surface then levels off to a constant value of three
1The only reason was that the partition sum, Z(q,  R) ,  seemed to have a constant gradient in 

these regions.
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advocating a transition  to  homogeneity a t a scale of «  30h !Mpc. A nother

interesting feature is th a t homogeneity is not reached at the  same scale for all q.

F ig u re  5.3: This is a 3-d surface fit of D q(r). The data  used is the halo positions from 
a ACDM cosmology. Described in Warren et al. ‘2006.

5.3 P S C z  M o c k  C a ta lo g u e

In the previous section the whole halo catalogue was used, thus the analysis is only 

relevant for the  underlying dark m atte r d istribution. In th is section the galaxies 

are under investigation. The galaxy mock catalogue is ex tracted  from the VV-body 

sim ulation (cf. § 5.3.1).
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5.3.1 M aking M ock Catalogues

Mock PSOz catalogues have been extracted from the iV-body simulations per­

formed by Cole et al. (1997). They used the AP3M code of Couchman (1991) 

loaded with 1923 particles in a box of comoving size of 345.6 /i-1Mpc. The particle 

mass is 1.62xl012 Further details can be found in Cole et al. (1997).

For the analysis performed in § 5 we have considered two different cosmolo­

gies (c/. Table 5.3.1): a flat model Qm =  0.3 and cosmological constant term, 

Qac2/3H q =  0.7 and a critical density universe (fi^f =  1.0) with power spectrum 

shape parameter, T =  0.25. The relevant details of the two cosmological models 

explored are summarised in the table below.

Model ULm f̂ A r 08

LCDM 0.3 0.7 0.25 1.13
SCDMG 1.0 0.0 0.25 0.55

Table 5.1: Cosmological Models.

Ten different mock catalogues, which we will refer to as LCDMOi, SCDMGOz, 

i = 0,..., 9, have been extracted from each of the above models.

Although in this work we have not created an TV-body code or extracted the 

mock catalogues from it, it is still worth discussing the procedure for doing so.

• A population of particles with properties similar to those of the Local Group 

(LG) is identified. A LG-like observer is defined by implementing two ob- 

servationally based constraints: the peculiar velocity of the point must be 

vlg =  625±25km s_1, and the particle must be located in a region for which
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the fractional overdensity 6 averaged in a radius of 5 h xMpc is in the range 

- 0.2 <  6 <  1 .0 .

• A sphere of 120 h~lMpc radius is drawn around the LG-like observer and the 

whole frame is rotated so that the motion of the observer is in the direction 

(I =  276°, b =  30°), the direction of the LG peculiar velocity with respect to 

the CMB frame (e.g. Wilkinson 1988).

• A friends-of-friends algorithm is implemented to find galaxy clusters, (see 

Frenk et al. 1988 for details)

• The number density of particles in the simulation is ~  0.039 h3Mpc-3 while 

the number density given by the PSCz selection function exceeds this density 

closer than some critical distance. Thus, the simulations are volume-limited 

for distances less than 10.9/i_1Mpc, where the PSCz number density (Saun­

ders et al 1999) matches the 7V-body one. For distances greater than this 

the simulated surveys follow the PSCz number density.

• A Monte Carlo rejection was used to choose particles according to the PSCz se­

lection function (Saunders et al. 2000):

The optimal parameters are listed in Table 5.3.1. For r < 10.9/i-1Mpc 

the mock catalogues are volume-limited and thus <f>(r) = 1. A random flux 

consistent with the PSCz selection function is then attributed at each selected 

galaxy.

• Despite the large sky coverage, PSCz is not a full-sky catalogue. Unsurveyed 

regions are present both at high and low galactic latitudes that need to be 

accounted for to properly reproduce the existing observational biases. All
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a (3 To r*
[/i_1Mpc] [/i-1Mpc]

0.53 1.90 10.90 86.40

T able 5.2: Selection Function Parameters for Eq. (5.3)

the galaxies which fall within masked regions have been rejected leaving the 

final sky coverage to be «  84% complete.

The final mock catalogue contains the positions of the galaxies in redshift- 

space and their “observed” flux. The galaxy redshifts are assigned by adding the 

line-of-sight component of the peculiar velocity to the recession velocity.

5.3.2 M ultifractal A nalysis

Figure 5.3 shows the DQ)r surface for the halo positions in an ideal and complete 

(400 /i_1Mpc)3 box. It has a standard ACDM cosmology with no galaxies, so only 

the underlying dark matter distribution was investigated. Overall, it is a very 

smooth surface, which tends towards homogeneity at scales > 30h_1Mpc. A clear 

peak, at low g, and dip, at high q corresponds to multifractality for R  «  10/i_1Mpc.

The same DqtR surface analysis is repeated, this time for the Mock galaxy 

catalogues mentioned above. The main difference is, now there are a lot less 

particles to analyse, ~  15,000. However, given that we have 10 mock realisations 

to average over, the noise should not be much worse. Figure 5.6 shows the averaged 

DqiR surfaces of the ACDM and the SCDMG cosmologies.
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LCDM

SCDMG

F igure  5.4: Sky distribution of galaxies in the PSCz  and in two ,/V-body mock-
catalogues. From the top to  the bottom  we illustrate mocks drawn from the LCDM 
and SCDMG cosmologies, respectively. The Aitoff projection is in Galactic coordinates.
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Figure 5.5: Histogram of the radial number count, d N , in the PSCz survey. The 
solid line represents the expected number in each bin after the inclusion of the selection 
function,</>. i.e. d N  = 47m</>(r)r2d r .
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D surface for ACDM  cosm ology

distance R (Mpc)m om ent, q

D  s u r fa c e  for  S C D M G  c o s m o lo g y

moment, q

F igure  5.6: D q surfaces for two different cosmologies. The white reference line corre­
sponds to  the correlation dimension, D 2 , which is usually obtained from the derivative 
of the ‘2PCF. Top : A ACDM cosmology. Bottom: An SCDMG cosmology. The two 
white reference curves are very similar on small scales in th a t they give the usual value 
of D 2 ~  ‘2. On larger scales, however, it is evident th a t the surface can in principle 
differentiate between different cosmological models.
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D q,R Surface - ACDM

There are some points we should note regarding the Dq R surfaces of figure 5.6. The 

ACDM cosmology yields a plot quite similar to that of figure 5.3, this should not 

be too surprising given that they have the same cosmological parameters. There 

is however clearly a few features on small scale where the two differ. In fig.(5.6) 

at ~  10/i-1Mpc there is a multifractal feature peaking at Dq=:_Q «  3.5. A little 

further out at ~  20/i_1Mpc there is a second multifractal signature with a much 

higher peak Dq=_Q «  6.5. Recalling that figure 5.6 is an average taken over 10 

realisations, it is interesting that the two multifractal features on small scales have 

not merged into one i.e. they are probably not statistical anomalies. It would be 

premature to suggest that these distinct features have any physical significance2 

but there is definitely room here for further study.

On scales larger than 30/i_1Mpc the surface flattens to homogeneity, Dq —> 3. 

The white reference line shows the correlation dimension, D2, varying with scale. 

This is related to the derivative of the 2PCF. Visually this shows that all the 

information which the 2PCF can provide is but a very small part of the Dq>R 

surface.

D q,R Surface - SCDM G

In the lower panel of figure 5.6, the Dq%R surface is plotted for the SCDMG cos­

mology. It clearly shows on small scales a similar multifractal peak to that of the 

ACDM model. However, there seems to be only one very sharp distinct peak at 

~  20A-1Mpc and for q =  6, Dq=Q «  11. Casting our mind back to §3.4.1, this is 

telling us that on scales ~  20/ir1Mpc void under-dense regions are more clustered.

2This same point has been made by Bernard Jones in many of his papers, most recently in 
the review article (Jones et al. ,2005).
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Looking beyond the first peak it can be seen that the surface does not flatten off 

like the ACDM model. In fact on scales beyond 30h_1Mpc there is no transition 

to homogeneity in this universe, on scales up to the size of the simulation it is 

entirely multifractal.

It is evident, therefore, that on large scale the Dq R surface can in principle 

discriminate between different cosmological models.
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Summary

We have shown that our volume correction recovers the true fractal dimension, 

when tested with the extreme case of an anisotropic Levy Flight. The increase in 

accuracy over Pan &; Coles angular correction estimator is marginal, however the 

computational load required is much less. This fact will become increasingly more 

important as red-shift surveys are now pushing 1,000,000+ galaxies.

We present the Dq>R surface as a possible unique descriptor of a discrete point 

distribution. Whether this is strictly true or not does not differ from the fact that 

there is much more information contained in our multifractal analysis than can 

be extracted from the usual 2PCF. In fact to go from a 2PCF to our multifractal 

measure, is of no significant computational cost.

The 2PCF in our formalism, is represented by the integral along the q = 2 line 

in figures (5.6) & (5.3). It is clearly apparent that q = 2 is confined to a rather 

boring and flat part of the surface and generally for q > 1 the surface is very 

smooth and Dq tends towards a constant value without any interesting features.

There has been a lot of interest, since the dawn of cosmological simulations, to 

apply statistics to the resulting distributions so that a comparison can be made
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with real surveys. Much of this effort has involved the 2PCF (also Minimal Span­

ning Trees and other geometrically motivated descriptors). However it must be 

made clear that the trade off between statistical robustness and visual interpreta­

tion is of prime importance when quantifying structure. Neither should be favoured 

too heavily.

As we have presented here, our Dq̂ R surface gives varying weights to under 

dense (void) regions and over dense (clustered) regions, this obviously has a signif­

icant advantage over calculating higher order correlations. The major task now, 

regarding the DqtR surface, is to make full use of it and to extracted as much 

information as is statistically possible.

Our methodology as presented in §3.4.1 also has the possibility to contribute 

to parameter estimation. Especially in the area of Baryon Acoustic Oscillations 

(BAO). BAO’s are difficult to measure accurately due to the low amplitude on 

scale above lOOMpc. To help increase the power in this range, clusters, instead 

of individual galaxies, could be used as they show a higher clustering amplitude. 

This technique has some drawbacks The biggest problem it faces is in accurately 

determining what is a cluster. Another technique for measuring BAO’s would be 

to use the D q̂ r surface as we introduced in §5.2.1. Since this method treats dense 

and under-dense regions differently, it suggests that the usual 2PCF (or Z (2,r)) 

may not be the best suited to observing and measuring BAO’s. In future work we 

hope to explore the use of the Dq>n surface as a cosmological tool.
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