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Abstract 1

Abstract

With the creation of the laser in the 1960s, optics research gained a whole new 

type of coherent, well-behaved light with which to experiment. Later, similar 

matter was created; first in the form of super-fluids and then Bose-Einstein 

condensates (BECs).

A BEC as a whole behaves in many ways analogous to a monochromatic 

laser beam; the ultra-cold atoms in a BEC are the matter equivalent of 

photons in the laser beam. Researchers have built the BEC analogs of a 

number of optical components, including lenses and beam splitters. The work 

described in this thesis was inspired by the aim to investigate theoretically 

BEC analogs of effects known from laser physics and by developing a BEC 

analog of Fourier holography.

After introductions into lasers and BECs (chapter 1) and numerical meth­

ods for solving the differential equations governing the behaviour of both light 

and BECs (chapter 2), this thesis comes in two parts.

The first part is concerned with the BEC analogs of the formation of 

transverse laser modes (chapter 3) and an interferometer for sorting optical 

vortices (chapter 5), and a non-destructive method of Fourier-transforming 

a BEC (chapter 4).

The second part is about optical holography and optical tweezers. It
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starts with a review of hologram-design algorithms (chapter 6). Originally in­

spired by optical Fourier holography, discussions about BEC Fourier hologra­

phy counter-inspired a new algorithm for optical Fourier holography, namely 

a Gerchberg-Saxton algorithm for 3-dimensional light shaping (chapter 7). 

My work on the improvement of hologram-calculation software for optical 

tweezers is described in chapter 8.
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Introduction

1.1 Layout o f th is work

This work can be split into two separate sections: optical analogies within 

Bose-Einstein condensates (BECs), and light shaping.

As will be shown, laser light and BECs are very similar in their behaviour 

despite their very different origins. This similarity has inspired many optical 

elements to be adapted for use in BECs (for example, lenses1, axicons2 and 

beam splitters3). This has led us to investigate these similarities in further 

detail by simulating more complex optical systems, firstly in the form of a 

resonator capable of generating higher-order modes (chapter 3) and then an 

interferometer to decompose a light beam into its orbital angular momentum 

components (chapter 5). The process of forming higher-order modes gives 

rise to the idea of generalised BEC shaping where imprinting a pre-calculated 

phase pattern results in the BEC evolving into a desired structure. Much 

work has already been done to investigate ways of manipulating a BEC into a 

non-standard form; however, much of this has been limited to specific simple 

patterns4 or highly-periodic patterns5,6. We wished to adapt the field of 

optical holography and beam shaping in order to discover if such schemes 

would be viable.
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In order to expand the available options, there is a need to Fourier trans­

form a BEC as Fourier holography offers many advantages over other meth­

ods. Observation of the behaviour of modes within a standard BEC trap gave 

rise to the surprising result of Fourier transforming by waiting. In harmonic 

traps, some BECs perform Fourier transforms periodically. With this ability, 

a holographic system for shaping a BEC was feasible and a suitable optical 

system which could be converted was sought.

The search for methods of shaping light uncovered many possible sys­

tems and many algorithms (chapter 6) to calculate the required holograms. 

The intriguing possibility of shaping light into approximations to arbitrary 

3-dimensional shapes was explored in simulation and then performed exper­

imentally (chapter 7).

The expertise acquired during this time led me to become involved in the 

optimization of algorithms for use in real-time optical tweezers (chapter 8) 

and later the development of a novel user interface for manipulating optical 

traps intuitively in real-time

1.2 B ose-E instein  condensates

Bose-Einstein condensates (BECs) have become a hot topic since their ex­

perimental realisation in 19957,8 and over 5000 papers have been published in 

the field9. The condensation of bosons into the same state when cooled low 

enough was recognised by Einstein in 1925; however, the condensation tem­

perature of ~  lOOnK was too low for the technology of the time. The use of 

advanced optical and magnetic trapping techniques resulted in the successful
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condensation of Rubidium8 and Sodium7 which lead to Eric Cornell, Carl 

Wieman and Wolfgang Ketterle being awarded the Nobel prize for Physics 

in 2001.

As the atoms or molecules which make up a BEC are cooled, the thermal 

de Broglie wavelength, A =  y/2nh2jkBm T  becomes larger. As the wave­

length becomes comparable to the spacing between the atoms or molecules, 

the behaviour of the ensemble is described by quantum statistics. The den­

sity of the condensate can be described by a single wavefunction having an 

amplitude and a well defined phase. In this way, Bose-Einstein condensates 

are very similar to monochromatic laser light, where the atoms and molecules 

play a similar role to the photons within a laser light beam. As we shall see in 

Chapter 2, the comparison between BECs and laser light can be understood 

in more detail than this qualitative description.

1.3 Lasers and BECs

As mentioned, the behaviour of BECs is very similar to that of light, in 

fact the free evolution (in time) of the Gross-Pitaveskii Equation (equation 

2.8) representing a linear BEC is almost identical to the evolution (in space) 

of the wave equation of a monochromatic light beam. The atoms within a 

BEC act in a similar manner to the photons within a light beam with the 

exception that the atoms can interact with each other. This interaction leads 

to deviation from the laser light similarity and also adds complexity to their 

behaviour.

This has led to the investigation of the extent of the similarity and where
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it breaks down. The addition of any interaction between the atoms auto­

matically breaks the equivalence in the evolutions. However, very ‘light-like’ 

behaviour can be observed with a modest interaction.
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Chapter 2 

Numerical Theory

This chapter describes the background to the numerical simulation tools used 

to model the dynamics of Bose-Einstein condensates (BECs) and monochro­

matic laser light. It also compares the fc-space representation of each system 

and describes their similarity and differences. The required software for sim­

ulating the laser light was previously developed10,11; however, the software 

to simulate BECs had to be created specifically for this work.

My role in this portion of the work was to develop the bespoke software 

required to simulate a BEC in an arbitrary trapping potential. This software 

was based on the description in section 2.1.1 and simulated using a fourth- 

order Runge-Kutta method12,13. This software was first developed in two and 

one dimensions using the software development package LabView14 before 

being developed for full three dimensional simulations using Visual C+-1-15.

2.1 G ross-Pitaveskii Equation

In order to compare optics simulations to the related world of Bose-Einstein 

condensates (BECs), a method of simulating the dynamics of each system 

is required. It has been shown16 that for a weakly interacting BEC at a 

temperature of absolute zero, the Gross-Pitaevskii equation accurately de­
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scribes the behaviour of a BEC. See Ref.13 for a derivation and Ref.17 for a 

more detailed derivation which includes higher order interactions which are 

neglected in the approximation used here.

The free evolution of a non-interacting BEC can be described by the 

Schrodinger equation and a trap can be approximated by including an addi­

tional potential (often harmonic in shape). However non-interacting BECs 

are rare (although Feshbach resonances can be utilised to tune the non- 

linearity to any value, including zero) and the most interesting comparisons 

between optics and BECs will result from interacting condensates. In cold 

alkali atoms (which are considered in this work) the interactions between 

atoms are dominated by s-wave elastic scattering18 and if the spacing be­

tween the atoms is much smaller than the scattering length, the interaction 

can be described by a psuedo-potential which depends on the density of the 

condensate at that point. Using this approximation the dynamics of a BEC 

represented by ^ (r, can be described by the Gross-Pitaevskii equation,

dt
- ^ V 2 + V(r,t)  + NU0\i>(.rM (2 .1)

where m  is the mass of one of the atoms, V (r , i) is an external potential, N  

is the number of atoms and Uq is the strength of the psuedo-potential.

Because of the non-linearity, the normalisation of the wavefunction is an 

important factor as scaling the wavefunction by a  scales the nonlinear term 

by a 2. In this work the wavefunction is normalised as

/ |^(r, i)l dr =  1. (2.2)
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In many cases the only external potential is that of an axisymmetric har­

monic trap, which is used to confine the condensate. This trapping potential 

is described in terms of its oscillation frequency Ui by

V'(f) =  ^m[u2{x2 +  y2) +  u 2zz2\. (2.3)

We can define the trap anisotropy as

u
A =  — . (2.4)

u .

In many cases this potential is representative of experimental trapping con­

figurations and for numerical simplicity we often use a spherically symmetric 

trap with u r =  u z.

2.1.1 Dimensionless Formulation

In order to minimise the number of parameters in the simulations and to 

keep calculated quantities close to unity to avoid numerical rounding errors, 

we choose the following dimensionless formulation of the Gross-Pitaveskii 

equation13,19:

r  =  ( —- — r  m  (2.5)

(2 .6)

This gives us a trapping potential of

V0(r) = \ ( x 2 + y 2 + \ z 2) .  (2.7)

By substituting the scale factors (Equation 2.5 and Equation 2.6) we can 

obtain the dimensionless, time-dependent Gross-Pitaveskii equation

-  V2 +  V (r, t) +  g\4>(r, t)\2] ̂ ( r , t) (2.8)
dt
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and normalise the wavefunction as

J  |V>(r,i)|2dr =  1. (2.9)

It can now be seen that the strength of the non-linearity is solely dependent 

on the parameter g, which in two dimensions is given by

d is the thickness of the BEC in the third dimension (the z direction), which 

needs to be very small for the BEC to behave 2-dimensionally. This is usually 

ensured by tight z confinement by a harmonic trap that satisfies the condition 

p < Hujz, where /i is the chemical potential. Two-dimensional condensates

negligible dynamics in the axial direction.

2.2 P lane wave decom position

When comparing Bose-Einstein condensates to optical systems, a numerical 

method of propagating a monochromatic laser beam is required. The chosen 

method was based on the plane wave decomposition21 of a numerical rep­

resentation of a field. Using this method each plane wave component can 

be propagated separately and efficiently and then superposed to give the re­

sulting field. As can be seen, this method requires the principle of linear 

superposition and thus can only be used to draw comparisons with a linear 

(g = 0) condensate. This method also does not include any form of trapping 

potential, and so direct comparisons between results from this method and 

BECs can only be drawn in the linear untrapped case. Despite this small

(2.10)

have been observed in traps with a high axial anisotropy20 which results in
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set of possible comparisons, direct comparison between the two simulations 

has provided valuable insight into the similarities between the two forms of 

waves.

2.2.1 Plane wave method details

Given a grid of discrete points in a spatial plane x,y representing a com­

plex light field, its momentum distribution can be calculated using a Fourier 

transform21. Each element of the Fourier transform, ^ ( k x,ky), represents a 

plane wave component with the transverse momentum given by kx and ky 

and the amplitude and phase of the element gives the weighting and phase 

offset of that plane wave component.

As a plane wave propagates, its phase advances in proportion to the 

distance and inversely with the wavelength along the axis of propagation. 

Thus the phase of each component should advance by Azkz where A z  is 

the distance propagated and kz = y j (27t/A)2 — k% — k% is the wave-vector 

component along the beam axis (not in the direction of the plane wave).

2.3 Num erical D etails

When performing the simulations, the field is represented on a discrete grid of 

equidistant complex numbers. The number of points in this grid, N , is simply 

N  = NxNyNz where TV* is the number of points in that direction, while the 

represented size of the grid is denoted Ri with the subscript denoting which 

axis. The grid in each direction varies from —R i/2 to R i /2 with each point 

being separated by Ri/(Ni — 1); this gives rise to no grid element lying at
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the origin provided Ni is even.

The ki space grid then varies between —TrNi/Ri and 7r(Â  — 1 )/Ri, with

the individual elements of the k space grid in the i direction, k^j being given

= (2.U)

where j  is between 0 and Ni — 1.

2.3.1 k  space differences

The wavevector component in the direction of propagation (which determines 

the phase shift that component gains on propagation) is calculated as

kz = s J V - i k l  + kT), (2.12)

where k = 2tt/ \ .

This differs from the BEC evolution (with time) in which the phase shift 

of the momentum space component is proportional to the energy of that 

component, which (in two dimensions) is

Ek = - { k l  + kl). (2.13)

It can be seen that the BEC evolves with a parabolic Et while light 

propagates with a hemispherical kz. If k >> max(/cx) and k max(ky), kz for 

light approximates a parabola within the represented k space. When directly 

comparing light simulations to free propagation of BECs, the curvature of kz 

needs to be the same. This can be achieved by using A =  2ir (for the same 

represented size, Ri). In most BEC simulations considered here, the size of 

the dimensionless represented box, Ri, is of the order of 10. This combined
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with the limitation of A =  27r, leads to the represented light beam being of 

a similar size to its wavelength. The behaviour of such a small beam can be 

quite different to the everyday idea of light (for example, deviation of the 

focus of a light beam when tightly focused22).

2.4 Sum m ary

It can be seen that the descriptions detailing the dynamics of a light beam 

can in some situations be almost identical to that of a BEC. In this way, 

the study of BECs is an extension and generalisation of light. However the 

everyday behaviour of light is not to be used as the standard. The situations 

when light is most similar to BECs, is restricted to the case where the width 

of the light beam is only a few wavelengths across. Such extremes can lead 

to unusual behaviour in light.
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Chapter 3 

Transverse laser modes in 

Bose-Einstein condensates

This chapter describes the initial simulations performed to compare Bose- 

Einstein condensates (BECs) to laser light by mimicking a laser resonator for 

BECs. A large portion of this chapter is taken from the previously published 

paper23. Section 3.1 describes the motivation behind such a project, leading 

into the background of laser cavities in Section 3.2 and a discussion of the 

eigenmodes of such systems in Section 3.5. The original portion of this work 

begins in Section 3.3 where the analogy of a laser cavity is conceived and the 

creation of Hermite-Gaussian-like modes are seen in Section 3.6. In order to 

demonstrate that the formed modes are similar to Hermite-Gaussian modes 

in more than just shape, we simulate the conversion of our Hermite-Gaussian- 

like modes into Laguerre Gaussian modes in Sections 3.7 using the familiar 

cylindrical lens mode converter24,25.

My role within this project was to design and implement the bespoke 

software required for the simulations and to analyse and present the results. 

I was also involved in guiding the research through discussions with the co­

authors in which I played a key part. I was also responsible for drafting of 

the paper linked to this research and was involved in every stage including
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submission and final publication.

3.1 Introduction

When considering how to shape a laser beam, often the process which creates 

the beam is overlooked and more complicated methods of beam shaping are 

employed. The majority of laser light is generated in a resonant feedback 

cavity. The design of such a cavity is often chosen to produce a particular 

longitudinal mode (a certain frequency, collection of frequencies or shape 

of pulse). The design of the cavity also affects the transverse shape of the 

emerging beam. This is often overlooked since the output of most ordinary 

laser cavities is Gaussian in cross-section, which for many applications is the 

desired profile.

As we have seen, BECs can in many ways be seen as the matter-wave 

equivalents to laser light, and so perhaps the best place to begin an inves­

tigation into their similarities would be the cavity which helps create this 

similarity. By simulating the equivalent of the individual elements which 

make up a cavity for a BEC, any similarities in the transverse mode should 

be noticeable. In the non-interacting case (the most similar to optics) the 

behaviour should be almost identical; however, the interesting cases occur 

when the atomic interactions are increased and the behaviour deviates from 

the linear optical case.
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3.2 Laser Cavities

When considering creating laser light, it is difficult not to consider an optical 

cavity. In order to increase the output power of lasers, the light emerging 

from the gain medium is often reflected back into the medium using a mirror 

on both sides of the medium. This results in the light passing through the 

gain medium many times in an attempt to maximise the stimulated emission. 

Because of the coherent nature of the light within the cavity, longitudinal 

modes can form when the reflected light interferes with the un-reflected light; 

these longitudinal modes, and therefore the arrangement of the mirrors, is 

an important design characteristic of most lasers. The mirrors also play an 

important role in the transverse mode of a laser beam; the size, shape and 

imperfections of each mirror can introduce local loss to the transverse profile 

of the beam, which after several round trips can have a large influence on 

the profile throughout the cavity and on transmission from the system.

Figure 3.1a sketches one round trip of a light pulse (or alternatively a 

“slice” of a continuous-wave (cw) light beam) through a standard laser cavity. 

As can be seen, after one round trip, the light is back in the same plane in 

which it started and travelling in the same direction due to the two facing 

mirrors. By using curved mirrors, the light is focused upon reflection which 

minimises the diffraction losses due to light leaving the cavity.

When considering the intensity structure of the light as it propagates 

through the cavity, it is often helpful to decompose the structure into a su­

perposition of the eigenmodes of the cavity. Such modes are unchanged after 

a complete round trip (except for uniform phase and or intensity modifica­

tions) and often the output of a laser can be described by a handful of such



Chapter 3. Transverse laser modes in Bose-Einstein condensates 30

b

Figure 3.

«-------------- d --------------

[ f
nirror light

^ j  pul se

A «I * +
1

lens

: Laser resonator ( a )  and its unfolded lens-series equivalent ( b ) .  

A light beam passing through the lens-series equivalent is peri­

odically being focused, just like light in the resonator is being 

focused every time it is reflected off one of the resonator’s mir­

rors. A series of “lens pulses” -  light pulses which exhibit a 

specific intensity profile and have a frequency far from absorp­

tion resonances of the condensate -  can repeatedly focus a BEC 

in a similar way. For laser modes to form, localised absorption 

needs to occur in the resonator; this is not shown here.

]
urror

len s len s



Chapter 3. Transverse laser modes in Bose-Einstein condensates 31

eigenmodes. By introducing loss to specific undesired modes (for example 

by introducing a small aperture to suppress large modes), it is possible to 

change the dominant mode of the laser.

In order to simulate the transverse cavity dynamics, a cavity is repre­

sented in its unfolded form (figure 3.1b), where the two curved mirrors be­

come a chain of pairs of lenses, separated by the length of the cavity. If the 

focal length of the lenses corresponds to the focal length of the mirrors and 

their separations are the same, the eigenmodes of the cavity will correspond 

to the eigenmodes of an infinitely long chain of lens pairs. This also holds 

for cases where local loss is introduced, assuming the loss is represented cor­

rectly in the unfolded cavity. In the majority of cases, the eigenmodes are 

formed within the first few round trips of the cavity and thus only propa­

gation through the first few sets of lens pairs needs to be calculated to find 

the eignemode. This allows easy calculation of the beam resulting from N  

round trips, by passing the beam through 2N  lenses at a fixed separation. 

Localised loss then becomes 2N  apertures periodically placed through the 

system.

3.3 B ose-E instein  C ondensate Cavities

As has already been discussed, Bose-Einstein Condensates are in many ways 

the matter-wave equivalent of laser light and as such should behave in a 

similar manner if placed inside a cavity. In particular it should be possible 

to excite higher-order modes of the cavity. In order to create an analo­

gous system as well as to keep simulation times reasonable, we consider a
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2-dimensional “pancake” BEC (formed experimentally when the trapping in 

the z direction is much stronger than in the x, y directions, forcing the BEC

where m  is the mass of each atom, u  is the trap frequency and g is the 

nonlinear coefficient, which is given by

d is the thickness of the BEC in the third dimension (the z direction), which 

needs to be very small for the BEC to behave 2-dimensionally. This is usually 

ensured by tight z confinement by a harmonic trap that satisfies the condition 

p < hujz, where p is the chemical potential. Note that g depends not only 

on m  and a, the s-wave scattering length, but also on the number of atoms, 

N,  in the BEC. As the number of particles is contained in the parameter g , 

the density is normalised according to

During the investigation into BEC modes, the issue of a BEC’s reaction to 

focusing was raised. In order to focus a BEC into a small spot after time 

Tf,  a simple optics analogy would require that a quadratic phase should be 

imprinted on the BEC of the form

into a thin pseudo-2-dimensional state). The time evolution can be described 

by the 2D time-independent Gross-Pitaevskii equation

=  - ^ V 2 +  iro c A 2 +g|V>(r,t)|2 ip(r,t), (3.1)

(3.2)

(3.3)

3.4 BEC focusing

ip'(r, t = 0) =  f/-'(r i 1 =  0) exp(ir2/2T/). (3.4)
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Figure 3.2: Focusing of a BEC by a lens pulse. A BEC in the ground state 

was focused using a light pulse of focal time / ,  which phase-shifts 

the BEC locally by r 2/ (2/). The graph shows the actual focusing 

time, tf,  which is the time it takes the BEC to become phase-flat 

after interaction with the lens pulse, as a function of / .  Analogy 

with ray optics suggests that the BEC comes to a focus after a 

time t f  =  / ;  however, to our surprise we find that this is only 

the case for small values of / .  In the range 0 < g < 100, over 

which our simulations were performed, these results are virtually 

independent of g.
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From geometric optics, the BEC should then come to a focus, and become 

phase flat, at t = Tf .  As figure 3.2 shows the time after which a pancake con­

densate comes to a focus for both harmonically trapped and untrapped cases 

is only Tf  for small values. For the untrapped case (the most similar to optics) 

this is a recognised optical effect which is only significant if Xfopt / ^ o  > 1 (A 

is the optical wavelength, / opt is the focal length as expected from geometri­

cal optics, and uq is the width of the beam at the focus), which is rarely the 

case in optics22. However in our BEC simulations this effect was significant 

when Tf  > 1 , which is often the case. For the harmonically trapped case, 

the trapping potential acts to focus the BEC which becomes the dominant 

focussing effect at longer local times. When the BEC is not trapped and is 

free to expand, the phase shift acts against the expansion. When Tp < 1 

the phase shift is strong enough to trap the condensate and it focuses in a 

similar way to the trapped condensate. However if Tp > 1 , the expansion 

of the condensate is dominant. As Tp  increases, the strength of the focusing 

pulse becomes less and the condensate requires less time to become phase 

flat.

Further investigation of BEC dynamics revealed that in 2 dimensions this 

effect does not depend on the non-linearity. When a condensate is held in 

an harmonic trap and a focusing lens pulse is applied, the time to focus no 

longer has a maximum; however at longer focal times (very weak focusing 

pulses), the natural focusing of the trap becomes the dominant contribution 

and the condensate comes to a focus after half a breathing-mode period (see 

Section 4.4.2 for details of the breathing modes of a BEC).
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3.5 E igenm ode selection in laser resonators

One round trip is much more complicated than just some changes in prop­

agation direction26: as the mirrors are curved, each mirror reflection also 

focuses the light. In addition, localised loss occurs in one or several planes, 

for example through apertures or specks of dust on mirrors, and while trav­

elling between the mirrors the light beam diffracts. Some light beams -  the 

resonator’s eigenmodes -  are unchanged (apart from a uniform change in 

intensity or phase) after one round trip through a resonator. In the case of 

geometrically stable resonators, which we consider here, the eigenmodes can 

be divided into families (like the HG modes and the LG modes), whereby 

each family forms a complete orthogonal set, i.e. every light beam can, for 

example, be described as a superposition of HG modes. As already men­

tioned, the HG and LG modes can take on very recognisable shapes and 

have interesting features like high-charge vortices (see figure 3.3).

Experimentally, a pure resonator eigenmode is created in a laser by mak­

ing the round-trip loss of all other eigenmodes higher than that of the desired 

eigenmode. This can be done, for example, by inserting absorbing cross-wires 

into the resonator at positions where the desired eigenmode is darker than 

the competing eigenmodes. For example, an absorbing wire in the central 

horizontal dark line of the HG2 ,i mode shown in figure 3.3 would not signif­

icantly increase that eigenmode’s round-trip loss, but it would increase that 

of the HG2)0 mode. The fraction of the power in the undesired eigenmodes 

then falls off exponentially with round trip number, after a few round trips 

leaving only the pure lowest-loss eigenmode.
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HG2 o HG21

Figure 3.3: Hermite-Gaussian (HG) modes and possible configurations of 

aperture and absorbing wires which may produce them. The 

vertical wire (red) discriminates against non m = 2 modes, how­

ever this does not restrict the n index. The addition of an aper­

ture (dotted lines), or another wire allows individual modes to 

be selected.

3.6 C reation  o f H erm ite-G a u ssia n  M o d es

One family of eigenmodes is the Hermite-Gaussian (HG) modes which dis­

play Cartesian symmetry and are described by two indices which represent 

the number of nodes in the field. HG modes form an orthogonal set and so 

any light beam can be described by a superposition of HG modes. There are 

several ways to preferentially select one HG mode. As the number of nodal 

lines increases, the extent of the field increases and by introducing a rect­

angular aperture, the higher-order modes will have much higher losses than 

lower-order modes. To select between lower modes, an absorbing wire could 

be placed along the nodal line of the desired mode, which then introduces 

losses to modes with displaced nodal lines. HG modes have a 7r phase change 

across the nodal lines and by introducing such phase jumps externally, the 

mode with matching phase profile will have a lower round trip loss. Often
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these methods need to be combined to select the desired mode (for example 

there are an infinite number of modes with nodal lines at any given point, 

but an aperture slightly larger than the desired mode will increase losses of 

the higher-order modes).

3.6.1 Round trip losses

In the linear optical case the round-trip loss decreases with each round trip 

until the eigenmode of the cavity has been selected at which point the round 

trip loss becomes negligible. In the non-linear BEC case, during each round 

trip atoms are lost and the self-interaction potential is reduced. This results 

in the condensate ’seeing’ a different potential with each round trip and 

no stationary eigenmode can form until the self-interaction becomes zero 

(g =  0). For high non-linearities, oscillations in the pattern formed within the 

cavity were observed which are due to this effect of a changing self-interaction 

pattern. Figure 3.4 shows an example of the fraction of the condensate left 

after several round trips and the density pattern at the centre of the cavity 

at each round trip.

3.6.2 Simulation Results

By restricting the condensate to a box region with a thin absorbing line, 

the resulting modes resemble the optical Hermite-Gaussian modes of a laser 

resonator (figure 3.5). For a non-linear condensate the interaction of the 

atoms results in the pattern deforming (figure 3.6). In the case of repulsive 

interactions (positive g values) the distribution of atoms becomes wider and 

more diffuse, as shown in figure 3.7. It can also be seen that as the larger
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Figure 3.4: BEC after p round trips of a light-pulse resonator (the value of 

p for each frame is shown in the top-left corner), starting with 

the harmonic trap ground state {p = 0), calculated for g = 100. 

The pulses of focal time /  =  0.5 are separated by L = 0.2 (in 

dimensionless time units); the density patterns shown here are 

calculated a time L/2  after the actual pulse. The curve at the 

bottom shows the fraction of the initial number of particles, N0, 

that remains in the BEC after p periods of the light-pulse res­

onator. To demonstrate the loss, the density is not normalised 

in the frames in this figure; the full scale of grays represents in 

the frames for p = 0 to 4 densities between 0 and 0.2, in the 

remaining frames between 0 and 0.05.
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n=6, m- 0 n=6, m=4 n -6, m- 6

Figure 3.5: Density patterns of some eigenmodes of the standard light-pulse 

resonator with a non-linearity of g = 30. By varying the cross­

hair position, different patterns -  characterised here by their 

number of nodal lines in the horizontal and vertical direction, 

n and m, respectively -  emerge, which strongly (but not exactly) 

resemble optical Hermite-Gaussian modes. These pictures show 

the BEC half-way between two lens pulses. A possible position of 

the cross-hair (white dashed lines) is shown in the two rightmost 

frames. The pictures show only the central 6.25 x 6.25 units of 

the modelled area.
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parts of the condensate (in figure 3.6, the two outermost parts) expand, the 

repulsion between the atoms result in the smaller lobes to be distorted from 

the rectangular symmetry. In the HG2 ,o case this results in the centre lobe 

being ’pinched’ and bulging outwards, for example. These two effects cause 

the resulting modes to become less Hermite-Gaussian in nature.

Figure 3.5 shows some of the stable patterns that emerge for a modest 

non-linearity (g = 30, typically corresponding to approximately 103 atoms 

of 87Rb in a 20ir Hz trap) by varying the localised absorption pattern -  a 

100% absorptive cross-hair of 1 pixel width placed in crossing node lines (see 

figure 3.5). Like all other pictures in this section (unless otherwise stated), 

this figure shows only the central 6.25 x 6.25 units of the modelled area for 

clarity, and the grey values represent linear densities, ranging from 0 (black) 

to 0.2 (white). The patterns look very similar to Hermite-Gaussian modes, 

more so for small values of the non-linear parameter g , less so for large values 

(figure 3.6). In all cases, the eigenmodes have the tell-tale 7r phase difference 

between adjacent peaks, just like the optical HG modes.

The expansion of the higher non-linear condensates can be seen in Figure 

3.7 which shows the cross-sectional line through y =  0. The distribution 

along the y-direction varies from a Gaussian in the linear case to a flatter, 

more diffuse distribution in the non-linear case. From the y = 0 cross section, 

which cuts through all three lobes, the right-most node where the absorbing 

cross-wire lies is always a node of the resulting mode. However the second 

node on the left is further from the center in the linear case. This implies 

that the beam-waist size of the Hermite-Gaussian mode is larger in the linear 

case and has been shifted (as evident from the distribution close to x =  0).
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g= 0 g=50 g=90

Figure 3.6: Density (top) and corresponding phase patterns (below) for var­

ious values of the non-linear coefficient, g. In all cases, the 

shape of the absorption region is a narrow vertical straight line 

at x = 0.5 which corresponds to the null on the right of the cen­

tre lobe. Calculated using a resonator of length, L = 0.2, and a 

lens-pulse focal time of /  =  0.5.
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Figure 3.7: Cross-sectional profile through y= 0 of a HG2,0 mode for non­

linear coefficient values, g = 0,50, 70 and 90. Absorption is per­

formed along x = 0.5 which can be seen as the null.

This behaviour is consistent with non-linear modes having a larger physical 

extent for a given beam waist and therefore require a smaller beam waist to 

fit inside the same absorbing boundary.

When trying to form odd-numbered modes, the resulting phase pattern 

is anti-symmetric with a ir phase dislocation across the origin. This results 

in problems in the simulations where the resonator is symmetrical. The 

resulting simulations would show an even-numbered mode forming in which 

the loss per round trip would converge. However after typically another 

few hundred iterations, the pattern would re-distribute itself and form the 

required odd-numbered mode with a lower round-trip loss. Figure 3.8 shows
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the round trip loss during one such example. This behaviour is believed to 

arise from the build-up of random numerical errors in the simulation which 

seed the asymmetry. In order to improve the convergence of odd-numbered 

modes, additional random noise was added to the system after each round 

trip, which, as predicted, reduced the formation of a mis-matched even- 

numbered mode.

All the results shown so far were calculated for our standard resonator 

with a time between pulses -  corresponding to the resonator length -  of 

L = 0.2, and a lens-pulse focal time of /  =  0.5. Figure 3.9 shows n  =  1, 

m =  0 eigenmodes from different light-pulse resonators. In the optical anal­

ogy, altering resonator parameters while keeping the resonator geometrically 

stable (that is, satisfying L < 4 /) results in eigenmodes of a different size; 

the analogous effect in BEC light-pulse resonators can be seen in figure 3.9.

3.7 Conversion into Laguerre-Gaussian-like 

m odes

To examine the similarities between the eigenmodes of light-pulse resonators 

and optical HG modes beyond the level of appearance, we investigate here 

the analogy of a conversion of optical HG modes, which have a rectangu­

lar symmetry, into circularly symmetric Laguerre-Gaussian (LG) modes (see 

section 5.2.2 for more details of Laguerre-Gaussian modes) under cylindrical 

focusing25. This conversion is due to a fairly subtle effect: the Gouy phase 

shift, which occurs when HG or LG modes pass through a focus. Like HG 

modes, LG modes are structurally stable. They are interesting because they
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Figure 3.8: Percentage Round trip loss for HG4,0 (red) and HG5,0 (black) 

showing the temporary convergence of the odd numbered modes. 

Within the HG5,0 resonator a HG6,0 mode forms, but due to 

the mismatch between the mode and the resonator, experiences 

high loss. Once random numerical errors build up (aided by 

the re-normalisation of the wave-function), the symmetry of the 

system is broken and the HG5,0 mode can form. Because of 

the symmetry breaking requirement, the convergence time of a 

resonator for odd-numbered modes is much longer than a similar 

resonator for even-numbered modes
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f=0.5,L=0.5 f=l, L=0.5 f=0.5, L=0.75

Figure 3.9: Density patterns for the output of different configurations of res­

onator, calculated for g = 0. /  represents the focal time of the 

lens pulse, L the time between subsequent pulses (both in dimen- 

sionless units). For the particular choice of loss-pulse shape, the 

loss per period of the light-pulse resonator for these eigenmodes 

is, from top left to bottom right, 1.8%, 1.3%, 5.9%, 4.4%, 10.2%, 

and 9.7%.
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can contain higher-charge vortices at their center.

In the optical case, the cylindrical focusing that converts HG modes into 

LG modes is usually performed with a pair of cylindrical lenses. By analogy, 

we use here a pair of cylindrical-lens pulses, i.e. far off-resonant laser pulses 

with an intensity profile that varies quadratically in one direction and which 

is constant in the perpendicular direction. Figure 3.10 shows some results 

that were calculated for g = 0 and g =  50. The density patterns show strong 

signs of the ring structure characteristic of LG modes (jp bright rings and 

a central bright spot if I =  0, p + 1 bright rings if I ^  0), although this 

ring structure is not perfect; instead, most of the density is contained in 

a distorted ring, and instead of containing a charge-/ vortex at the center, 

the wave function contains I vortices of charge 1. The resulting BEC is 

also not structurally stable. The conversion is therefore not perfect, but the 

emergence of vortices with a combined charge of I and (to a lesser degree) 

the conversion of the intensity structure into a distorted ring are indications 

that it is happening at least in part. In other simulations (not shown) we 

confirmed that this is also the case for different choices of g (including g = 0), 

and that, in the appropriate cases, the shape of the BEC also shows signs of 

the multiple concentric rings characteristic of LG modes with a radial mode 

index p > 0.

In the optical case, the focal lengths of the cylindrical lenses and their 

positions need to be carefully matched to the parameters of the incoming HG 

mode to achieve good conversion into a LG mode. We tried to similarly op­

timise the parameters of the cylindrical-lens pulses. However, the similarity 

to a pure LG mode of the resulting density was always limited, which is not
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1=1, p=0, g=50 1=2, p=0, g=50 1=4, p=0, g=50

Figure 3.10: Modelled density (1st and 3rd picture row) and phase (2nd and 

4th picture row; grey-level representation) immediately after a 

BEC initially in an eigenmode with n horizontal and m vertical 

nodal lines has interacted with a pair of cylindrical-lens pulses. 

From top left to bottom right, the parameters of the initial 

eigenmode and lens pair (/: focal time of each lens; s: separa­

tion between lenses; both were optimised in each case to give 

visually the best ring structure) are as follows: n = 1, m = 0, 

/  0.46, 5 =  0.35; n =  2, m = 2, /  =  0.25, s =  0.18; n = 6,

m = 4, /  =  0.25, s =  0.18; n =  1, m  =  0, /  =  0.23, s =  0.35; 

n = 2, m = 0, /  =  0.23, s = 0.3; n = 4, m = 0, /  =  0.1,

5 =  0 .11.
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surprising as the BEC was initially not in a pure HG mode and as the evo­

lution of the BEC is different from that of light. Finally, optimisation of the 

pulse parameters was not made easier by the complications in the focusing 

characteristics of a BEC mentioned earlier (figure 3.2).
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Chapter 4 

Fourier Transforming a 

Bose-Einstein Condensate

This chapter describes the numerical simulations regarding a Fourier trans­

form within Bose-Einstein condensates (BECs). The first section describes 

the Fourier transform and some simple Fourier components which can aid in 

understanding the behavior of the Fourier transform. Section 4.3 describes 

a generalisation of the Fourier transform which can be adopted when dis­

cussing BECs in a harmonic trap, while Section 4.4 describes the various 

setups which may result in a Fourier transform in a linear system and Sec­

tion 4.5 presents some of the results of the simulations for both linear and 

non-linear condensates.

My role in this work was to develop the bespoke software, to carry out 

the simulations, prepare and then analyse the data as well as helping define 

the direction of the work. I was also involved in the discussions which led to 

the work and in the writing and drafting of the paper which describes much 

of this work27. I have been lucky enough to present this work on several 

occasions during my PhD.
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4.1 Introduction

When trying to shape a light beam into a desired pattern, loss of light is 

almost always an important consideration. For example, trying to create a 

small point of light from a large-diameter beam by passing it through an 

intensity mask with a pin hole will certainly give rise to a small spot of light 

behind the pin hole, but will also result in large portions of the light being 

lost due to absorption around the pin hole. One solution to this problem 

would be to focus the large beam using a converging lens and place the focus 

of the beam at the target plane. Such a system would transfer the majority 

of the light into the small spot, unlike the aperture case. This idea of using 

a lens to focus the light to a small spot forms the basis of the optical Fourier 

transform, and if the elements are arranged as shown in Figure 4.1, this 

results in the back focal plane corresponding to the Fourier transform of the 

front focal plane.

The higher power efficiency available with Fourier based shaping methods 

has resulted in a large literature dedicated to shaping a laser beam in the 

Fourier plane of an optical element and the calculation of the properties of 

that element to produce the required patterns. With the proven success 

and the wealth of knowledge available on Fourier holography, adapting it to 

BECs would bridge the gap and allow the BEC community to draw from the 

established holography techniques.

The first problem in trying to recreate Fourier holography is the ability 

to Fourier transform a BEC non-destructively. Many early BEC experiments 

have in effect Fourier transformed a BEC by turning off the trapping fields, 

allowing the condensate to expand, and finally imaging the condensate to gain
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information about its momentum distribution, that is the modulus squared 

of its Fourier transform. This is analogous to propagating a laser beam into 

the far field, but as the light beam is (in principle) infinitely large in the far 

field, this is destructive and irrecoverable. For the same reasons switching off 

the trap of a BEC is also irrecoverable. By considering first the analogy of 

lens-based Fourier transforms and analogies with trapped BECs, we propose 

a method of Fourier transforming a BEC and investigate how the ability to 

Fourier transform a condensate changes as the atoms within the condensate 

begin to interact with each other.

4.2 The Fourier Transform

The Fourier transform has become a useful tool in many areas of research. 

Perhaps it is best known for its use in the time-frequency domain, where 

Fourier-transforming a time-varying signal results in the frequency distribu­

tion of that signal. In many applications where knowledge of a periodic signal 

is required, the Fourier transform forms a indispensable part of the analysis.

The Fourier transform also has an important role in optics: the Fourier 

transform of the field of a light beam gives the momentum-distribution and its 

structure represents the beam when propagated to infinity (the far field). The 

transform can be performed experimentally using a 2 /  optical lens setup (see 

Figure 4.1), which can utilise some of the practical properties of the Fourier 

transform within an experiment without having to propagate the beam for 

large distances.
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Image Plane Fourier Plane

/ • /

Figure 4.1: Optical 2 / system to Fourier transform the field in a plane of 

a light beam. The initial plane is located the focal length /  in 

front of a lens, which causes the field in the plane /  behind the 

lens is the Fourier transform of the initial plane.

4.2.1 Simple exam ples

The Fourier transform is a linear operation, as such in many applications it 

is easier to decompose a field into easier to manipulate components, Fourier 

transform those and then recombine the results. Here we look at the behavior 

of uniform (and infinite) plane waves and delta functions under a Fourier 

transform. As shown in figure 4.2, we consider plane waves to be uniform 

in amplitude and have an infinite extent. Plane waves do not change under 

propagation. As plane waves they have a uniform phase-gradient across the 

beam. Because of the uniform phase-gradient, the entire wave has the same 

transverse momentum and when considering the momentum distribution of 

the beam, there is only one component present. This gives rise to a sharp 

peak in Fourier space whose position is proportional to the sine of the angle 

at which the beam is travelling.
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The nature of the Fourier transform means that the reverse also holds 

and the Fourier transform of an offset delta function is a plane wave with a 

uniform phase-gradient.

4.2.2 Gaussian transforms

Gaussian functions are a special case within Fourier theory: they are one of a 

handful of functions which do not change structure after Fourier transform­

ing. The width of the resulting Gaussian is inversely proportional to that of 

the initial Gaussian and -  in a similar manner to the plane-wave case -  a 

uniform phase-gradient results in an offset of the resulting Gaussian. This 

nature of Gaussian functions makes them a useful set of functions to exam­

ine the behavior of the Fourier transform. In the limit of a infinitely narrow 

Gaussian, its Fourier transform is an infinitely wide Gaussian and we return 

to the previous examples of delta functions and plane waves.

4.3 Fractional Fourier Transform

One interesting property of Fourier Transforms is related to multiple appli­

cations of the transform. When the Fourier transform is applied twice to a 

function f (x),  although the structure of the function is the same, the axis 

is inverted, so the result is f ( —x). This can be regarded as a rotation by 

7r. In order to retrieve the original function another two Fourier transforms 

are required (introducing a further rotation by 7r). This allows us to under­

stand the Fourier transform as a rotation of 7r/2 in a space with x and k 

axes28; however this rotation is not limited to integer multiples of 7r/2. Gen-
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Figure 4.2: Examples of Fourier transforming a plane wave. In all examples 

the wave has a uniform amplitude and a uniform phase gradient. 

The phase of the wave at any point is represented by the colour. 

Top : A plane wave traveling perpendicular to the plane of in­

terest Fourier-transforms to a centreed delta function. Middle : 

If the plane wave is traveling at some angle toward the right, the 

delta function in the Fourier transform is displaced to the right. 

Bottom : The offset of the delta function is proportional to the 

angle at which the wave is traveling, and can also be negative.
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eralisation to arbitrary rotation angles mr/2 leads to the fractional Fourier 

transform28,

F a{f){k) = \ - ---1Cot(a ) eicot(a)fcV2 f  g-icscfaVx+icotfaJxVSy^)^
V 27r 7 - o c

By substituting a  =  1 the original Fourier transform is obtained, it has 

also been shown29 that in the limit of a —>0, fF(f) —> / .

A fractional Fourier transform does not simply correspond to the planes 

in the fractional positions between a Fourier lens and its focal plane. Figure

4.3 shows different methods of interpreting the fractional Fourier transform in 

optical systems. It can be seen that in order to generate a fractional Fourier 

transform with lenses, the system must consist of a series of lenses30. For 

example, to generate a a  =  0.5 transform, two lenses must be equally spaced 

between the two planes and their power can be calculated by knowing that 

the combined focal length of the lens system has to be the distance between 

the initial plane and the a = 0.5 fractional Fourier plane.

4.4 Fourier Transforms in B ose-E instein  

C ondensates

4.4.1 Fourier Transforming with lens pulses

As was shown in Chapter 3, a BEC can be made to focus by applying a far off- 

resonant light pulse with a quadratically varying intensity, and although the 

relationship between the strength of the quadratic intensity of the pulse and
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Figure 4.3: Optical systems to produce the Fractional Fourier transform of 

a light field u(x,y).  In the most straightforward case, in order 

to obtain a fractional Fourier transform of order a, the origi­

nal Fourier transform set-up is split into 1/a  identical sections 

each containing a lens and propagation. The field half-way be­

tween the first and second lens is then the fractional transform of 

u(x, y). If a  is a rational number, it is possible to construct such a 

system. The third system is that of a quadratically graded-index 

fiber, the refractive index across the fiber is that of a thin lens. 

Within such a system, the fractional Fourier transform order is 

the fractional distance covered between an image and Fourier 

plane.
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the time to focus is not as straightforward as the optical case, the focusing 

behaves in the same manner.

When attempting to Fourier transform a BEC, the obvious first step is 

to map the optical case directly onto the BEC. In an experimental situation 

within optics, a beam is Fourier transformed using a familiar 2 /  optical set­

up which is laid out as shown in Figure 4.1. The lens is placed its focal 

length, / ,  behind the plane of interest and then at a distance /  behind the 

lens, the complex field corresponds to the Fourier transform of the original 

plane. Such set-ups are often used for beam analysis where the inclination of 

the wavefront gives rise to a lateral shift of the pattern in the Fourier plane31 

and is also used in filtering momentum components from the beam.

The response of a BEC to a focusing laser pulse (as seen in Chapter 3) 

gives rise to added complications. In such a system, the time after which a 

condensate comes to a focus does not vary linearly with the focusing power of 

the imprinted phase and can excite additional dynamics within the conden­

sate and complicate the system. These additional dymanics have a negative 

effect on the efficiency of the system, so another method of Fourier trans­

forming was sought.

4.4.2 Fourier Transforming by waiting

When seeking alternative methods for Fourier transforming the condensate, 

the additonal dynamics associated with the harmonic trap became a focus 

of attention. By delving into the behavior of a trapped condensate, the 

similarities between the nature of these dynamics and the dynamics of light 

propagation in quadratic graded-index fibres became apparent.
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Dynamics of a trapped BEC

Most BEC traps are harmonic, at least locally. The corresponding shape of 

the ground state depends on the interactions. For a weakly interacting case 

it takes the form of a Gaussian, whereas if the chemical potential gp is larger 

than the ground-state energy of the harmonic trap, Huj, the density takes 

a parabolic shape, often referred to as the Thomas-Fermi solution. If the 

ground state is perturbed, interesting non-stationary modes can form32,33,34.

If a trapped BEC is initially in the shape of the ground state but displaced 

sideways from the trap centre it will keep its shape and size, but its centre of 

mass will oscillate about the trap centre with the trap period, T  (the inverse 

of the trap frequency). Such a mode is called a dipole mode. If the width 

of the probability density is initially narrower than that of the ground state, 

the BEC expands and then contracts again -  a so-called breathing mode. 

This oscillation happens over half a trap period for a weakly interacting gas, 

but the oscillation time changes with increasing interaction strength.

We consider here the dynamics of states of a non-interacting condensate 

that start off much wider than the ground state and which are positioned 

off-centre in the trap. Figure 4.4 shows the simulated dynamics of such 

states in a 1-dimensional (ID) BEC. The dynamics of the states contain the 

characteristics of both the dipole mode and breathing mode, so we call them 

breathing dipole modes.

Breathing dipole modes can be seen as approximations to Fourier com­

ponents. An analytical solution of the ID Gross-Pitaevskii equation with
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0 T/4 T/2 T 0 T/4 T/2

Figure 4.4: Dynamics of 1-dimensional breathing dipole modes -  approxi­

mations to a BEC’s Fourier components. The graphs show a 

grayscale representation of the density distribution along the x 

axis as a function of time, £, calculated using equation (4.3). At 

t = 0, the wave function is a Gaussian of width 4 (in units of the 

dipole-mode width) with a transverse wave number kx =  3 (left) 

and kx = 5 (right). The time evolution of the probability density 

is plotted over one trap period, T. At t =  T /4, the width or the 

BEC has shrunk to one quarter of the dipole-mode width (gen­

erally it is inversely proportional to the width at t = 0) and its 

position is proportional to the transverse wave number at t = 0, 

kx. Every further quarter of a trap period corresponds to an 

additional Fourier transform.
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starting conditions (at t =  0)

<̂7,kx{x, 0) = exp ( “ ^ 2  + lkx^ j  ’ (4l2)

which is a centred Gaussian of width o with a linear phase gradient propor­

tional to the transverse wave number kx, gives for time t

, \  - 1 /2l sin t \

(  x2 cott 4- ia2(x2 +  kl — 2kxx c s c t ) \  oN
eXP( ----------------2i +  2u2 cot-t------------ - ) ’ (43)

where length and time are respectively in units of y jh /m u  and 1/u  of the 

harmonic oscillator. In these units, the trap period is T  = 2n. For time 

t = T /4  this simplifies to

■>P<r,kx (s, T/4) = A  exp ( -  ^  ^ (4.4)

(where A = and r  =  1 / cr), which is a flat-phased Gaussian whose re­

position is proportional to kx, the phase gradient at time t = 0. If the width 

of the Gaussian at t = 0, a, is large, i.e. a 1, the width of the Gaussian at 

t = T /4 , r , becomes small, i.e. r « l .  This time evolution is approximately a 

Fourier transform, in which a uniform, inclined (with transverse wave number 

kx), plane wave transforms into a 8 function at a displacement proportional 

to kx. In fact, in the limit a —► oo the breathing dipole mode behaves exactly 

like a Fourier component. This is the key observation which enables Fourier 

transforming by waiting in a trap.

Another quarter of a trap period later, at t = T/2, ip is back to a Gaussian 

peak of the original width a and with a uniform phase gradient across it that
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is equal and opposite to that of the wave function at t = 0:

<̂r,kx{x ,T /2) =  i e x p ^ - ^  +  i(-fcx)a^ . (4.5)

The time evolution between t = T /4  and t = T/2  corresponds to another 

Fourier transform. As a Fourier transform is equivalent to an inverse Fourier 

transform combined with a flipping of the original distribution, two successive 

Fourier transforms, and therefore time evolution through T/2, correspond to 

a flipping of the original distribution.

So the time evolution through T /4  of breathing dipole modes corresponds 

to the Fourier transform of individual Fourier components. For the time 

evolution through T/4 of arbitrary superpositions of breathing dipole modes 

to correspond to a Fourier transform, the individual Fourier components have 

to keep their relative phase at the trap centre (x = 0), which they do.

4.5 Sim ulation R esults

To demonstrate the Fourier-transform property of a BEC’s time evolution, 

we have numerically simulated13 the time evolution of 2-dimensional (2D) 

and 3-dimensional (3D) non-interacting (g = 0) BECs in isotropic harmonic 

traps by integration of the Gross-Pitaveskii equation. (The dynamics for 

anisotropic traps are considerably more complex and beyond the scope of this 

work.) We started with an initial wave function that is the (discrete) inverse 

Fourier transform of distinctive shapes: in the 2D case a photo frequently 

used in image processing, in the 3D case a shape that looks like a circle from 

one direction and like a square from another. Time evolution through T/4
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should then return the BEC into its original shape. Figure 4.5 clearly shows 

that this is the case in our simulation.

In order to further explore the nature of the time evolution of the BEC 

in terms of its Fourier transform, various 2-dimensional condensates were 

studied. The first investigations were performed using the discrete inverse 

Fourier transform of a easily identified pattern as the initial condition. Such 

simulations allowed ready identification of the wanted state and also made 

it easy to identify how well the pattern resembled the original. To quantify 

the efficiency of this Fourier transform, the fraction of the field which is in 

the desired state, /  was defined as

/( i )  =  ^ ^ r(^ (°))V (t) (4.6)

where ip(t) is the wavefucntion at time t and T  (*0(0)) is the Fourier transform 

of the initial condensate.

Figure 4.7 shows how the fraction of the condensate in the final wanted 

state changes on propagation through T/2. It can clearly be seen that the 

fraction peaks around T /4 and in the non-interacting case the fraction is 

near unity, however, it quickly falls from that value for higher values of g. A 

slight shift is visible as the non-linearity is increased from g = 0, although 

by g = 150 additional structures have formed and moved the peak from this 

pattern. From the insets showing the state at the peak, it is quite clear that 

the condensate no longer resembles the wanted state: in fact the g = 100 and 

g =  150 cases seem to have an almost inverse relation to the wanted state.

Because of the non-linearity, the behavior of the condensate is very pattern- 

dependent, and considering the discrete Fourier transform of a photograph 

is a very unnatural initial condensate, this rapid drop in efficiency with in-
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evolution
through

T/4

Figure 4.5: Simulated Fourier transform of non-interacting (g = 0) trapped 

‘2-dimensional (top) and 3-dimensional (bottom) BECs by wait­

ing a quarter of the trap period, that is T/4. In both cases we set 

the initial wave function (centre; log plot over four orders of mag­

nitude) to the (discrete) inverse Fourier transform of distinctive 

shapes (left) -  a well-known photo in the 2D case and a shape 

that looks circular from one direction and square from another in 

the 3D case -  and simulated their time evolution over T/4, using 

a split-step technique13. In the 2D case, the simulations were 

run on a grid of 96 x 96, representing a square of side length 34.7 

dimensionless units. Density is represented as brightness (black 

represents zero density, white maximum density). In the 3D case, 

simulations were run on a 64 x 64 x 64 grid, representing a cube 

of side length 35 dimensionless units. Density is represented as 

white opacity in front of a black background; the graphs were 

created using the Volpack rendering software35,36.
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creasing non-linearity is not unexpected. Figure 4.8 shows how this fraction 

changes as the non-linearity is changed for a series of different condensates. 

It is quite clear that in the cases of unnatural condensates (where the den­

sity is in the pattern of a photograph), the efficiency falls away very quickly. 

However the fall-off is much reduced in the cases of Laguerre-Gaussian states, 

which are given by

tf(r, 4>) oc (r/r0)me -(r/ro)2/2eim*, (4.7)

where (r, <j>) are circular coordinates around the trap centre, r0 determines the 

size of the density doughnut, and m  is the topological charge of the vortex. 

Single-charge (m = 1) vortices are an eigenmode of many trap geometries 

and, once formed, can remain stable for the lifetime of the condensate37.

As discussed previously, the breathing mode period of a condensate is 

dependent on the non-linearity which breaks the link in the breathing mode 

and dipole mode periods, to further complicate the dynamics. Figure 4.6 

shows the position of the peak in efficiency as the non-linearity is changed. 

Once again it is easy to see the difference between the Laguerre-Gaussian 

and the unnatural states, emphasising the dependence on the chosen initial 

state.

These results show that waiting for T/4 does not always Fourier-transform 

the wave function of an interacting BEC perfectly, and that the detailed 

behavior depends on the wave function. General trends that can be seen in 

our limited-size sample are that f (t )  has a maximum near T/4, that tpeâ (g) 

is longer than T /4 for g > 0, and that in Figure 4.8, / peak generally falls off 

as \g\ increases. However, our sample clearly does not represent all possible 

behaviors. Had we, for example, chosen the initial state to be stationary, then
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Figure 4.6: Time after which most of the BEC is in the Fourier-transformed 

state for various wave functions (insets) as a function of the in­

teraction strength g. Only the data points for which more than 

20% of the BEC are in the Fourier-transformed state are shown. 

Insets show a grayscale representation of the central 20 x 20 di­

mensionless units of the density of the state P  for each curve, 

and a colour representation (the colour range red —> green —► 

blue represents phases between 0 to 2ir) of the phase, unless the 

phase is uniform.

* :f: f
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Figure 4.7: Time evolution of a BEC in a harmonic trap in terms of the 

Fourier transform of the initial wave function. The initial wave 

function (t =  0) was set to the inverse Fourier transform of wave 

function P  with a distinctive density distribution. The graph 

shows the fraction, / ,  of the wave function ip(t) in the state P, 

calculated according to equation (4.6). The figure was calculated 

for various interaction strengths (g = 0,50,100 and 150). In the 

interaction-free case (g = 0), close to 100% of the BEC is in 

the Fourier-transformed state, i.e. P, at T/4.  Insets show the 

density of the wave function corresponding to the peaks of the 

different curves, where for g = 0, 50,100 and 150 respectively 

97.5%, 39.8%, 19.3% and 16.3% of atoms are in the state P. The 

central squares of side length 20 dimensionless units are shown. 

Like those for figures 4.6 and 4.8, the simulations for this figure 

were performed on a 128 x 128 grid representing a square of side 

length 40.1 dimensionless units.
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Figure 4.8: Maximum fraction in the state P  of a BEC’s wave function during 

simulated time evolution through T/2, starting with the Fourier 

transform of P, as a function of p, for various choices of P.  The 

insets show a grayscale representation of the central 20 x 20 di­

mensionless units of the density of the state P  for each curve, and 

a colour representation of the phase (unless the phase is uniform).
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the graph of f ( t ) would be a flat line and therefore not have a maximum 

near T/4. The detailed behavior also depends on the size of the states: 

for example, if the soliton states are stretched they are no longer solitons 

and their behavior will be different. Again, we chose the size of our states 

arbitrarily.

4.6 Fourier filtering

As an example for an application of the Fourier transform we consider here a 

Fourier-filtering technique borrowed from optics which allows arbitrary shap­

ing of both a wave function’s amplitude and phase when only the amplitude 

can be shaped directly. (There are also optical techniques for shaping phase 

and amplitude when only the phase can be shaped directly38, which, by anal­

ogy, would also work for BECs and make direct use of the various techniques 

for “phase imprinting”39,40.)

If a wave function with a uniform phase and arbitrary density distribution 

can be created, then part of it can be turned into an arbitrary state as 

follows. The state

ipi = exp (ikxx) +  exp (—ikxx) +  r (4.8)

is a superposition of the state xpa, the inverse Fourier transform of travel­

ling in the positive x  direction (with additional wave number kx), its complex 

conjugate travelling in the negative x direction, and a real number r. As the 

sum of a complex number and its complex conjugate is a real number, this 

wave function is real everywhere, and if r is chosen to be sufficiently large it 

is also positive everywhere.
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Figure 4.9: Shaping of a BEC in the Fourier domain. In this example the 

phase and density of part of a pancake BEC was shaped into a 

vortex at t = T/4  after only the density of the BEC was manip­

ulated a quarter of a trap period earlier (t = 0). The state at 

t = 0 was calculated according to equation (4.8). At t = T/4,  

about 85% of the remaining BEC is in the central peak, the 

rest is distributed equally between the doughnut-shaped vortices 

with circulation +1 and —1 on either side (about 7.5% each). A 

colour representation of the phase in the areas around both vor­

tices, marked by red squares, is shown above the squares. The 

simulations for this figure were performed on a 256 x 256 grid 

representing an area of 28 x 28 dimensionless units.
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The state xpi can therefore be created from a BEC ground state, which has 

uniform phase, by manipulating the density of the BEC to be |Vh|2> provided 

this does not influence the phase distribution. This can be achieved by 

adding to the harmonic trap a light-induced dipole trap, whose shape can 

be engineered using holograms. A quarter of a trap period later, after the 

light-induced dipole trap has been removed but with the harmonic trap still 

present, the three terms in equation (4.8) have -  as a whole and individually 

-  Fourier transformed and separated spatially (provided kx was chosen to be 

sufficiently large). The parts of the BEC that correspond to the last two 

terms can be filtered out using the same technique for removing parts of a 

BEC by using a shaped resonant laser beam to selectively transfer atoms into 

an untrapped state. The remaining part is the desired state positioned 

off-centre in the trap. Figure 4.9 shows an example in a 2D BEC in which 

vortices are created from a trap ground state by manipulating the density of 

the ground state and waiting for a quarter of a trap period.

This is an example of the more general idea of shaping only part of a 

BEC into a fully specified state and accepting that there is a remainder 

which might have to be removed from the trap in order not to interfere with 

the desired part at a later stage.
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Chapter 5 

Vortex sorter for Bose-Einstein  

condensates

This chapter describes the equivalent of an optical system which was devel­

oped to decompose a light beam into its orbital angular momentum compo­

nents41. The optical system is based on interfering the un-rotated half of a 

split light beam with its rotated part. Section 5.1 describes the motivation 

for decomposing a light beam or BEC into its orbital angular momentum 

components. Section 5.2 describes some background to vortices and their 

behavior. Section 5.3 describes the optical setup of the vortex sorter and 

section 5.4 described the equivalent setup for BECs. Section 5.5 discusses 

several methods of performing the required rotation of a BEC.

My role within this project was to develop the bespoke software required 

for the simulations and to analyse and present the results. I was also involved 

in guiding the research through discussions with the co-authors in which I 

played a key part. I was also involved in the preparation of the paper which 

was published describing this work.
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5.1 Introduction

One of the central characteristics of a superfluid such as a Bose-Einstein con­

densate (BEC) is the presence of quantized vortices. Vortices have been gen­

erated experimentally42,43 by stirring the BEC, very similar to the rotating- 

bucket experiment in Helium44. The detection of vortices in BECs is typ­

ically made by a direct observation of the vortex core or by interference 

experiments45. In present experiments the orbital angular momentum of the 

condensate is known in principle, because the initial rotation frequency which 

stirs the cloud is known. However the distribution of the orbital angular mo­

mentum is not known. In this chapter we show how to split a condensate 

into its orbital angular momentum components.

Vortices have attracted considerable interest both experimentally and the­

oretically, mainly because of their inherent many-body character and the con­

nection with fluid dynamics. In addition, optical vortices in single photons 

have recently been used to carry information -  and in particular quantum 

information46. Optical vortices, special cases of light with orbital angular 

momentum, can carry huge amounts of information as there is in principle 

no limit to the quantized angular momentum acting as the information car­

rier. Light is an excellent carrier of information over large distances as the 

photons travel very fast and do not easily interact with each other.

For the same reason, photons are not very well suited for storing the infor­

mation for longer times. This is where cold atoms, particularly BECs, would 

be better suited as a medium for storing information, especially quantum 

information. The instability of vortex states within BECs in harmonic traps 

is a potential problem, but it might be overcome with ideas such as the use
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of pinning potentials47,48.

Transferring angular momentum to atoms would constitute a way to store 

information49. If such a storage device is to work with atoms we need a way 

to manipulate atomic states, and in particular vortex states, in an efficient 

and useful way. It is therefore important to know the mechanisms behind the 

vortex dynamics and more importantly how to manipulate the vortex states 

in order to be able to make any kind of readouts from the trapped quantum 

gas. This chapter discusses theoretically the application to BECs of ideas 

borrowed from optical vortex sorting41.

5.2 Vortices

Vortices form one of the standard states used when investigating the be­

haviour of our simulated systems. Vortex-research is an area of intense in­

terest in both optics50 and Bose-Einstein Condensates51 with many aspects 

of their behaviour being studied.

5.2.1 Vortex Phase

The defining element of a vortex is its phase structure. Canonical vortices 

can be described as having a wavefunction of the form

(f>) =  A(r) exp(im<f)) (5.1)

where A(r) is the real amplitude of the wavefunction and m  is a non-zero 

integer. This gives rise to the phase having a linear dependence on the
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azimuthal position and hence the momentum density flux

u =  V arg ip (5.2)

having a single rotational component. It can be seen that if we integrate 

the phase around any closed loop, o  where the phase is well-defined, and 

assuming the wavefunction is continuous in space we have

L
(V arg^)d  r = 27rm, (5.3)

where m  is an integer. This quantised nature of orbital angular momentum 

implies that in order to get any rotation within a system, vortices must be 

involved, and hence a system without vortices can not rotate.

5.2.2 Laguerre-Gaussian modes

One of the most useful descriptions of vortices comes in the form of the 

Laguerre-Gaussian modes used in optics. They describe a family of struc­

turally stable modes which are azimuthally symmetric and many of the modes 

contain vortices. They are a useful tool in optics as they are a complete, or­

thogonal set of modes and as such any arbitrary light beam can be described 

as a superpostion of Laguerre-Gaussian beams.

A Laguerre-Gaussian mode with its beam waist at z = 0 can be described

by

LĜ r' *’z) = ^ )  ( 3 f ) ( J J ) ) exp ( ^ ) )
 i % \

2(z2 +  4 ) J exP ( - iTÔ )exP ( - ifcz)

x exp ( i(2p +  |to| +  1) arctan(— )) (5.4)
'  zr /
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Figure 5.1: Top: An example of a wavefunction with three vortices (the phase 

is represented by the colour at each point using the sequence 

red —> green —> blue —» red to represent 0 —► 27t), one with 

clockwise rotation (m = 1), the other two with anti-clockwise 

rotation (m = —1). Also shown is a closed loop surrounding all 

three vortices. The figure on the bottom shows the phase along 

the loop as it passes through a series of points. As we move 

around the loop (anti-clockwise) we loose 27r in phase as would 

be expected from adding up the charges of the vortices enclosed 

within the loop.
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where m  and p are the azimuthal and radial mode numbers respectively, zR 

is the Rayleigh range of the beam, u(z)  is the 1/e radius of the beam and 

Llp is the associated Laguerre polynomial. With the exception of chapter 3, 

only the set of modes with p = 0 is considered here.

5.2.3 Optical Vortices

Despite their seemingly strange behaviour, vortices are a very common oc­

currence, in fact the interference of 3 plane waves produces an abundance 

of vortices52. Their presence in speckle patterns has meant that many re­

searchers have invested much time in finding ways to remove them. One of 

the most common ways of generating optical vortices is by using phase holo­

grams of spiral phase plate (an optical element whose thickness varies linearly 

with azimuthal angle). Very pure vortex modes can also be generated using 

specially designed laser cavities53, holographic shaping or by transforming 

Hermite-Gaussian modes using cylindrical lens converters (see section 3.7 for 

more details).

5.2.4 BEC Vortices

Vortices are of great interest to the BEC community, with many experi­

ments utilising many different methods to generate them. Their higher en­

ergy means that for most systems extra external energy must be provided 

to create a vortex. In many situations any created vortices will remain sta­

ble over long periods; however they can easily annihilate or drift outside the 

condensate.



Chapter 5. Vortex sorter for Bose-Einstein condensates 77

One feature of vortices in BECs which is more prominent than in optics 

is the instability of higher charge vortices. High-charge vortices (|m| > 1) 

in a harmonic trap are unstable and will quickly decay. The conservation of 

orbital angular momentum rules out a higher charge vortex simply decaying 

into a lower charge one. Instead the higher charge vortex will split into \m\ 

single charge vortices which will often then rotate around either each other 

or the centre of the trap. This behaviour makes maintaining higher order 

vortices much more difficult and non-standard methods have be proposed to 

try and stabilise them54.

5.3 Vortex sorter

If a vortex (in light or in a BEC) of charge m = 1 is rotated through 180° 

about its centre, it changes phase by n (and, in the simplest case, is un­

changed in any other respect). If, on the other hand, a vortex of charge 

m = 2 is rotated through 180°, its phase is unchanged. The two cases dis­

cussed above are in fact representative for all vortices with odd and even 

charges, respectively. This effect has been used in an optical two-arm inter­

ferometer which rotates the beams in the two arms with respect to each other 

to route vortices according to their charge into one of the interferometer’s 

two exit ports41. Figure 5.2 shows a representation of such an interferometer. 

When the arms are re-combined, even-charge vortex components interfere 

constructively in one interferometer port and therefore exit the interferom­

eter through it, while odd-charge vortex components interfere destructively 

in that port and therefore exit the interferometer through another port (in
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Figure 5.2: Schematic of the optical vortex sorter41 which can decompose an 

input light beam into its vortex components. The optical system 

uses a Dove prism in each arm of the interferometer to introduce 

a rotation.
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which even-charge vortices interfere destructively). The vortices exiting from 

the two ports can be sorted further in similar interferometers, but with dif­

ferent relative rotation angles41. For example, vortices with even charges 

(m =  0, ±2, ±4,...) can be sorted into those whose charges are respectively 

integer and half-integer multiples of 4 (m mod 4 =  0 or m  mod 4 =  2, re­

spectively). In some cases, uniform phase offsets in one arm are required55.

5.4 B ose-E instein  condensate vortex sorter

To simulate a BEC equivalent of the optical vortex sorter, suitable compo­

nents have to be found. Bragg pulses offer the possibility to coherently split 

and recombine a BEC in the same manner as the beam splitter cubes used 

in the optical system.

The rotation of the BEC was modelled as two mirroring processes per­

formed using cylindrical lens pulses which focus the condensate along one 

axis. Section 5.5 discusses other possibilities for rotating a condensate.

5.4.1 Bragg pulse splitting

The requirement of splitting the condensate into two spatially separate con­

densates can be achieved in a number of ways, including using a potential 

which produces multiple traps56 or removing atoms from the trapped state 

and placing them into another trap. However recombining the condensate 

in the manner of a beam splitter is more difficult. One aspect of a beam 

splitter, which is often overlooked, is the two exit ports. Ignoring absolute 

phase and intensity scaling, the beam in one exit port is the sum of the two
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Figure 5.3: Schematic of a vortex-sorting Bragg-pulse interferometer. A sta­

tionary input BEC is first split by a 7r/2 Bragg pulse (left; the 

horizontal axis is time). The two resulting BECs are in different 

momentum states and move apart. A 7r Bragg pulse swaps the 

momentum states, so that the two BECs move together again. 

We refer to the two different trajectories in this space-time dia­

gram as two ‘arms’ of the interferometer. The BECs in the two 

arms are flipped vertically and horizontally, respectively, which 

corresponds to a relative rotation through 180°. A second n/2 

Bragg pulse mixes the two BECs such that even and odd vor­

tex components have different momentum states -  they exit the 

interferometer through different ‘ports’.
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input beams, while that in the other port is their difference. (See equation 

5.5 for a full formula.)

Bragg pulses have been used to create Mach-Zehnder interferometers sim­

ilar to the vortex sorter system and have achieved almost 100% contrast57. 

A Bragg pulse is created by interfering two counter-propagating light beams 

with slightly different frequencies. This creates a “moving standing wave” 

which moves with a speed of one standing-wave frequency times the frequency 

difference. The interaction between the light and the atoms within the con­

densate acts to transfer photons from one of the interfering light beams to 

the other. Because the two light beams are of different frequencies, some 

atoms gain momentum in the direction of propagation while others lose mo­

mentum. The rate at which atoms are transferred between the stationary 

and the moving state is dependent on the populations of each state and, if 

the light beams are left on, results in the population oscillating between the 

two states.

The pulse length can therefore be chosen to transfer a given fraction of the 

population into the desired state. In this implementation two pulse lengths 

are used. These are described as 7r/2 and 7r pulses. A ir/2 pulse acts in a 

similar way to a beam splitter cube and transfers the atoms according to

* i  =  +*2)

%  =  - h ( * i  -  *!,), (5.5)

where and are the stationary and moving states respectively. The 

7r pulse swaps the populations of the two states and is used as a means of 

bringing the previously stationary state towards the previously moving state



Chapter 5. Vortex sorter for Bose-Einstein condensates 82

to bring the two condensates together.

5.4.2 BEC setup

We model a 2-dimensional BEC that is split into two identical BECs, which 

are then rotated with respect to each other through 180°, and finally su­

perposed. The wave function of the original BEC, \k, is split according to

=  %  =  A*; (s-e)
the detailed physical splitting mechanism is not modelled. The two BECs 

are rotated with respect to each other through mirroring the two BECs with 

respect to the x  and y axis, respectively. As explained in Section 5.5, this 

can be achieved through imprinting specific phases onto the BECs at specific 

times. In combination with the time evolution between the phase-imprinting 

events, this results in wave functions and ty'2. We simulate this time evolu­

tion according to the time-dependent Gross-Pitaevskii equation 2.8. Finally, 

again without modelling the detailed mechanism, the two wave functions 

and ^ 2  are superposed according to the equations

* even = - h ( « i  +  * ') , * odd = -1 (3 -;  _ * ' ) .  (5.7)

This model can represent various interferometers, all of which are ide­

alised in some respects. For example, a Bragg-pulse interferometer with ro­

tation in the arms (Fig. 5.3), is idealised as follows. Firstly, the Bragg pulses 

are assumed to be perfect, that is acting according to equations (5.6) and 

(5.7). The 7r pulses, which are also required in the Bragg-pulse-interferometer 

scheme, and which swap the BECs between the two states, are also assumed
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to be perfect (which is consistent with experiments in which fringe visibili­

ties close to 1 were achieved in Bragg-pulse interferometers57). Secondly, the 

interaction between the BECs in the different arms is neglected. Unfortu­

nately no experimentally realisable situation is exactly represented by this, 

but some are represented better than others. A Bragg-pulse direction that 

separates the planes of the two BECs, for example, should lead to less inter­

action between the BECs than a Bragg-pulse direction that moves the two 

planes across each other; however, applying the light pulses for rotation to 

the two arms separately is potentially difficult in this geometry. Thirdly, the 

arm length is just that required for rotation; we made no allowance for any 

additional time it might take for the BECs to separate sufficiently such that 

they can be rotated independently and subsequently recombined. However, 

in analogy to optical imaging, light pulses23 might be able to return the BEC 

into an earlier state, thereby effectively shortening the arms. Other interfer­

ometer types that approximate our idealised model include for example those 

that split a BEC into two by putting different parts into different internal 

states45 and manipulate the parts independently through phase imprinting 

with light pulses with different detunings.

Fig. 5.4 shows examples of sorting a BEC into its ‘even’ and ‘odd’ vor­

tex components. In all our simulations the initial wavefunctions were 2D 

Laguerre-Gaussian (LG) functions of the form (see section 5.2.2 for full equa­

tion)

^(p,<f,)cxpme-f’V2eim4’, (5.8)

with the exception of the last example in Fig. 5.4, which used a superposition 

of two such functions. LG functions are commonly used in optics (see, for
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Figure 5.4: Simulated vortex sorting in an idealised interferometer. The 

columns show the probability density and phase (inset at reduced 

size) of the input BEC (left) and the BEC in the ‘even’ (centre) 

and ‘odd’ (right) output ports. The top three cases show sorting 

of pure vortices in m = 1, m = 2, and m = 3 states. The sort­

ing can be seen to be not perfect: a small fraction can be seen 

to come out of the ‘wrong’ output port. The fourth case shows 

sorting of a superposition of vortices with charges m = 1 and 

m = 2, which is split into its vortex components. This figure was 

calculated for g = 0.
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example, equation (3) in Ref. 24 with p = 0 and z = 0). All the simulations in 

this chapter were performed over an area of 14 x 14 (in units of y /h /m aco) on 

a 256 x 256 grid of wave function amplitudes. Fig. 5.5 shows the fraction of 

the original BEC that exits the interferometer in the correct port -  a measure 

of the quality of the sorting -  as a function of the non-linear coefficient g. It 

can be seen that the scheme works better for small values of g. It can also be 

seen that the efficiency of the system at g = 0  is not 1 (most noticeable in the 

higher charge vortices). This is due to the imperfect nature of the rotation 

(discussed in more detail in Section 5.5) and the instability of higher charge 

vortices58. Higher charge vortices are inherently unstable within BECs and 

will decay into multiple single charge vortices upon propagation (which can 

be seen in Figure 5.5).

5.5 R otation  o f BEC s

Several methods exist for setting a BEC into rotation, using for example 

Bragg pulses59,60, a careful arrangement of laser beams61,62, or an external 

magnetic field63. These methods were mainly aimed at rotating the BEC 

above a certain frequency to create vortex states. However the vortex sorter 

requires a method which can rotate the BEC through a given angle without 

otherwise affecting its state. Some of the methods for inducing rotational 

motion could be adapted for this purpose if the behaviour of the rotation is 

understood. However, instead we describe here a method based on an optical 

analogy25.

This method is based on the fact that mirroring in one axis (or plane in
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Figure 5.5: Fraction of the BEC in the correct port as a function of the non­

linear coefficient, g, and for different values of the topological 

charge. Inset are the density cross-sections in the even (left) 

and odd (right) ports corresponding to some of the data points 

(m =  1, g =  500 and m = 4, g = 250 and 750).
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3 dimensions), followed by mirroring in another axis, which is rotated with 

respect to the first axis by an angle a, is equivalent to a rotation through 

an angle 2a: about the intersection between the two axes. In analogy to 

mirroring of a light beam, which can be achieved with a pair of identical 

cylindrical lenses parallel to the mirror axis, each of focal length / ,  which are 

separated by 2 /  (such a configuration is called a 7r mode converter25), a BEC 

can be mirrored by a pair of correctly separated cylindrical-lens pulses. These 

are far off-resonant light pulses which are similar to the lens pulses used in 

chapter 3 (see section 3.4 for details). These pulses have a transverse intensity 

distribution that is proportional to the thickness of the corresponding optical 

cylindrical lenses, that is the intensity falls off quadratically in one direction 

and is constant in the other. The effect of each cylindrical-lens pulse is 

a phase change proportional to the local intensity39,64: the cylindrical-lens 

pulses act like phase holograms of cylindrical lenses23. The phase change 

due to each lens pulse is r2/(4tf),  where r is the distance from the axis of 

the cylindrical-lens pulse and t f  is its focal time (the equivalent of the focal 

length in optical lenses). The chosen focal time for the simulations presented 

here was t f  = 0.03 (in units of I/cj), which is one of the smallest focal times 

that satisfies the Nyquist criterion, and a time of td = 0.06 between the lens 

pulses. Fig. 5.6 illustrates modelled examples of rotation of BECs through 

180°.

This scheme does not work perfectly, not even in optics: a light beam 

(and, by analogy, a BEC with g = 0) is mirrored perfectly only in the limit 

of cylindrical lenses with infinitely short focal lengths25. Obviously, this is 

not possible, and the result is imperfect mirroring that leads to asymmetry
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Figure 5.6: Rotating a BEC through 180° with a series of cylindrical-lens 

pulses. The intensity the pulses falls of quadratically and are 

shown at the top. The pictures show examples of simulated BECs 

before interaction with the light pulses (left), after interaction 

with the first pair of pulses (centre), and after interaction with 

the second pair (right), a: pure vortex with m  =  1, g = 500. 

The rotation can be seen more clearly in b, which starts off with 

a superposition of m = 1 and m = 2 vortices (g =  0): after in­

teraction with all pulses the probability density is indeed rotated 

through 180°. In both cases, the focal time of each cylindrical- 

lens pulse was t f  = 0.03 (in units of 1/a;); the pulses passed the 

BECs at times t = 0, 0.06, 0.06 (the two middle pulses were 

merged into one), and 0.12, respectively.
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and vortex splitting. Another problem when using cylindrical-lens pulses 

to mirror BECs with g ^  0  is that the BEC can intermittently become 

focussed into a line, which greatly amplifies the non-linear effects, which in 

turn usually lowers the quality of the mirroring.

In the context of the vortex-sorting interferometer, it is only a differential 

rotation between the BECs in the two arms of the Bragg-pulse interferometer 

that is required. A better way of achieving such differential rotation is to 

apply the first two of the four rotation pulses shown in Fig. 5.6 to the BEC 

in one arm, and the other two to the BEC in the other arm; both BECs axe 

mirrored, but with respect to different axes. As demonstrated above, this 

leads to good results for g > 50 for small values of |m|. Fig. 5.7 shows a 

detailed example of BECs that have been differentially rotated using twice 

mirroring in one arm on the one hand and mirroring in both arms on the other 

hand, and the resulting interference in an interferometer. The example shows 

a case in which the latter method works significantly better for g =  500.

5.5.1 Summary

In this chapter we have investigated the sorting of vortices in BECs using 

an interferometric technique. Our technique requires the BEC to be rotated, 

which we achieve with spatially inhomogeneous imprinted phases. If the non- 

linearity is strong, the efficiency of the rotation and therefore the efficiency of 

the sorting process is decreased, but with existing experimental techniques, 

such as exciting Feshbach resonances65, it should be possible to ‘tune’ the 

non-linear coefficient g to a value suitable for reliable vortex sorting.

The techniques presented here are based on methods used in conventional
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Figure 5.7: Simulation of a BEC vortex with topological charge m = 1 in 

Bragg-pulse interferometers that (a) rotate the BEC in one arm 

through 180° and ( b )  flip the BEC in each arm, but about axes 

that are 90° rotated with respect to each other. From left to right, 

the four columns show the BECs in the first (A) and second (B) 

arm after rotation/flipping has taken place, and in the even and 

odd output ports. The figure is calculated for g = 500. Note that 

in both cases a sizable fraction of the BEC wrongly ends up in 

the even port (32.4% and 10.1%, respectively), but this fraction 

is much smaller in the interferometer that flips the BEC in both 

arms (compare Fig. 5.5).
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optics. When these methods are transferred to BECs, complications arise, 

but also some intriguing new possibilities. In particular non-linearity -  the 

origin of most complications -  is important whenever information is not only 

to be stored, but also to be processed in computations.
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Shaping light
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Chapter 6 

Hologram Design

This chapter describes several algorithms which can be used to generate 

holograms to shape a light beam. The need for such algorithms is discussed 

and the various schemes which can be used to shape a light beam.

The motivation for this investigation was based on adapting holography 

to Bose-Einstein condensates (BECs). This required an algorithm which 

would be capable of accurately incorporating the physical restrictions of a 

BEC. The investigation into the differing forms of holographic algorithms led 

me to become involved in the development of software for use in holographic 

optical tweezers. The optical tweezers require a light beam to be shaped into 

multiple spots and the spots to be manipulated in real time.

6.1 Introduction

Because the field in a single plane of monochromatic light can be used to 

describe the field in any other plane, controlling the field in one plane can give 

rise to a desired pattern in another plane. This gives rise to the possibility 

of creating a desired pattern of light in a plane which could not be modified 

directly by modifying the light in a more convenient plane. For any given 

target field, the corresponding field in an earlier plane can be calculated21.
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If that field can be fully controlled, the problem is solved. However, full 

control over the field is rarely possible. When only a subset of modifications 

is possible, more complex algorithms have to be used.

6.1.1 Holography with restrictions

When trying to holographically shape a laser beam, it is important to take 

into consideration any physical restrictions present in the system before cal­

culating the hologram. Because most hologram calculation algorithms find a 

hologram that produces an approximation to the target pattern, it is impor­

tant that the shortcomings of the system are implemented in the algorithm 

to ensure the resulting hologram is the best compromise between the target 

pattern and the physical constraints.

The most common restrictions include using holograms which can only 

modulate the phase or the intensity of the light, the finite resolution of the 

hologram, the numerical aperture of the imaging system and the initial con­

ditions. Many algorithms can incorporate these restrictions; however, some 

may then not converge to a stable solution, and with some it is not possible 

to implement all the restrictions which will alter the choice of algorithm.

6.1.2 Intensity holography

One of the simplest methods to shape a light beam into an arbitrary pattern 

is to place a mask with the desired pattern into the beam (and image that 

plane into the plane of interest). Acceptable results can often be obtained 

by creating a mask which can be partially transmitting. This system is 

restrictive in that the target image must be producible on a mask and the
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Figure 6.1: Schematic diagram of two optical setups to shape a uniform in­

tensity laser beam into a single off axis spot. In the case of an 

intensity mask (left), a large portion of the beam is blocked by 

an aperture. This aperture is then imaged into the target plane 

to obtain a single spot. This can also be achieved by modifying 

the phase of the incoming beam (right). In this case a phase 

wedge is used, which changes the direction of propagation of the 

beam. Fourier transforming the plane of the wedge, a single off 

axis spot is created. The phase wedge method has the advantage 

that all the light from the original beam is present in the spot.

mask by its nature absorbs the light, which can result in unacceptable power 

loss.

6.1.3 Phase holography

It is also possible to consider holograms which only modulate the phase of 

a beam. This leads to almost lossless holography as the phase modulation 

does not alter the amplitude of the beam. Figure 6.1 schematically compares 

intensity mask shaping and phase holography. For our purposes, it is not 

the phase structure, but the pattern of the intensity in the target plane that
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is of interest. In order to create an intensity structure from a phase-only 

hologram, the light has be be propagated from the plane of the hologram.

6.1.4 Fourier phase holography

When considering where the hologram should be placed relative to the plane 

to be shaped, it is often desirable to be able to create patterns which are 

most dissimilar to the initial unmodified beam. It can be seen that the plane 

immediately in front of the hologram, regardless of the phase imprinted, will 

be very similar to the unmodified beam and as you move further from the 

hologram plane, the possibility for structure change becomes greater. By this 

process, the most dissimilar plane will be at infinity, i.e. the far field. The 

far field can be imaged into the back focal plane of a lens. If the hologram is 

placed in the front focal plane, the fields in the two planes are then Fourier 

transform pairs.

Phase holography can be achieved by locally altering the optical path 

length seen by the beam in proportion to the phase pattern. Modern liquid 

crystal technology has allowed the use of interactive holograms in the form 

of spatial light modulators (SLMs), in which the pattern can be changed at 

video frame rates. This has seen a rediscovery of many phase-holography 

techniques in a wide range of applications66.

Due to the imperfect nature of the hologram devices, the diffraction effi­

ciency is rarely 100%. This results in a fraction of the light having a wrong 

phase shift. The resulting phase shift is an integer multiple of the original 

pattern which creates multiple diffraction orders, and so the beam leaving 

the hologram is a superposition of these orders. Unfortunately all these or-
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Figure 6.2: Representation of the resulting patterns of an imperfect holo­

gram. If the phase modulation is most exactly matched to the 

wavelength of light, i.e. imprinting a 7r phase shift results in a 

0.97T shift on the light, the power transferred into the desired 

pattern is lower and this power is moved into other diffractive 

orders. If the pattern is used ’as calculated’, the center of all 

the orders are coincident which can result in degradation of the 

pattern. Showm on the left is the desired triangular pattern of 

spots. The centre image demonstrates the overlapping of the 

different orders. If an additional ’shift’ grating is applied, the 

diffractive orders have a transverse momentum proportional to 

the order number as shown on the right. If the momentum is 

large enough, the first order which contains the wanted pattern 

can be isolated from the other orders, which can be filtered out 

with a spatial filter.
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ders normally travel along the same beam path and thus overlap. Figure 6.2 

shows the superposition of the wanted intensity pattern (designated the first 

or + 1  order) with the unmodulated beam (zeroth order), and several other 

unwanted orders. In order to seperate these beams, an additional grating is 

often applied. This results in each diffracted order having a different angu­

lar direction, making it easier to separate them and filter out the unwanted 

beams as can be seen in the right of Figure 6.2.

6.2 Superposition approxim ation algorithm

If the pattern required is relatively simple, for example a series of discrete 

spots, the hologram to generate the pattern can be created by combining the 

holograms which produce the separate elements67,68. The hologram for each 

spot can be calculated as the sum of a linear phase wedge in the x-direction, 

a similar wedge in the ^-direction, and the phase hologram of a lens. The two 

wedges result in the beam being shifted in proportion to the sine of the angle 

of the wedge; the lens can be seen to shift the Fourier plane corresponding 

to the field without the lens hologram and thus shifting the position of the 

spot in the ^-direction.

In order to calculate the hologram for multiple spots, each of the holo­

grams must be converted into a field by applying the hologram to a uniform 

field. These fields can then be added which results in the field in the holo­

gram plane which will produce the spots in the target plane. However, as 

we concentrate on phase holography here and therefore the amplitude of the 

field cannot be changed, the amplitude of the superposition is ignored and
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the phase of the calculated field becomes the hologram. This method has 

the advantage that it is very fast due to the individual holograms being easy 

to calculate and the non-iterative nature of the algorithm.

This method does not produce perfect results as the amplitude informa­

tion is discarded and no prior information about the actual amplitude of the 

initial beam is used. Another shortcoming of this method is that the relation­

ship between each element is static, and the pattern can often be improved if 

the phase between the spots can be altered iteratively. The first iteration of 

the Gerchberg-Saxton algorithm (see Section 6.4) calculates the same result, 

which it then refines further. Often it is possible to use this algorithm to seed 

one of the other more complicated iterative algorithms with an approximate 

answer which can be refined, thus combining its speed which the generality 

of more complex algorithms.

6.3 A dditional phase structure

An interesting adaptation of the superposition approximation algorithm is 

the post-addition of the resulting hologram with an extra phase feature, for 

example, a phase vortex as shown in figure 6.3. This results in the final 

pattern in the Fourier plane being transformed by the Fourier transform of 

the additional phase feature. This is very useful if all the target structures 

have a common Fourier phase structure. For example, if all the spots are 

at the same y position, the holograms to offset the spots in the x direction 

can be calculated and combined (with complex addition) and then finally 

added to the y offset hologram. This method can speed up the calculations,



Chapter 6. Hologram Design 100

II!!!+
Figure 6.3: Example of including additional phase structures to obtain an 

array of vortices. If the wanted pattern all have the same phase 

in the hologram plane, the pattern can be created by calculating 

the hologram to create single spots in the desired locations and 

adding the phase of a single element of the pattern. This results 

in each of the spots obtaining the phase pattern. The hologram 

to produce the array of five spots (shown in the leftmost inset) 

is added to the phase of a vortex (middle inset) to produce a 

hologram which creates five vortices in the Fourier plane.
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however it is limited to cases where the spots have something in common. 

The Curtis-Koss-Grier algorithm (see Section 6.5.2) uses a similar method 

to allow the shaping of individual spots into different structures.

6.4 G erchberg-Saxton algorithm

The Gerchberg-Saxton (GS) algorithm69 is an iterative method originally 

developed for recovering the phase of an electron or light beam from its in­

tensity distributions in two transverse planes. It can also be applied to shape 

a light beam, specifically to calculate the phase pattern which light in one 

plane would require to form an approximation to any desired intensity pat­

tern in a second plane. As the phase pattern required in the first plane can 

be imprinted onto the light beam with a phase hologram, this allows two- 

dimensional (2D) holographic light shaping. If the requirements in the two 

planes cannot be met simultaneously within what is allowed by the laws of 

diffraction, the GS algorithm finds a useful compromise to reconcile these 

conflicting requirements70. For numerical simplicity, the second plane is usu­

ally chosen to be the far field of the first plane; mathematically, the fields in 

the two planes are then Fourier transforms of each other. Here we restrict 

ourselves to this case.

We write the intensity distribution of the unshaped light beam in the first 

plane -  the hologram plane -  as In and the target intensity distribution in 

the Fourier plane as It - Both / H and / T are functions of x  and y, which are 

stored in the computer as 2D arrays of real-valued numbers. The light fields 

in the two planes are represented by 2D arrays of complex numbers, in
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Solutions which fulfil 
restriction 1

Solutions which fulfil 
restriction 2

Perfect Solution No perfect solution, 
single global minimum

Optimum

LocalLocal minimum

No perfect solution, with local minima

Figure 6.4: Diagram illustrating the projection onto convex sets algorithm.

Within the phase space of all possible solutions, the sets of so­

lutions which fulfil the various restrictions are subsets of that 

space. If as is shown in the top left figure, the two sets overlap, 

there are perfect solutions which are common. However in many 

cases these sets do not overlap and the goal of the algorithm is to 

find the optimal solution which is given by the shortest distance 

between the two sets. During an iteration, the algorithm forces 

the solution onto one of the sets. This places the next solution 

onto the set at the closest point to the original. As the algorithm 

progresses, it alternatively projects the solution onto each set of 

solutions until the error no longer decreases. Because the projec­

tion find the closest point in the other set, the error can never 

increase. If the subset of solutions is not convex (bottom), the 

algorithm, depending on its initial conditions, may converge to a 

local minimum and not find the optimal solution.
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Target
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Figure 6.5: Representation of an iteration of the Gerchberg-Saxton algo­

rithm. The algorithm begins in the plane of the hologram (top- 

left) where the illuminating amplitude is combined with the phase 

of the previous iteration and then is Fourier transformed into the 

target plane. The resulting phase of the Fourier transform is com­

bined with the amplitude of the desired field and inverse-Fourier 

transformed into the hologram plane where the next iteration 

begins.
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the hologram plane and in the Fourier plane; the subscript n indicates 

the iteration number. The initial phase distribution in the hologram plane, 

<£>o» is set to any arbitrary distribution, often uniform, i.e.

Vo = 0. (6.1)

One iteration of the algorithm, which calculates an improved phase distribu­

tion in the hologram plane, (p„, from the previously calculated phase distri­

bution, then progresses as follows:

=  \ fh iexv{ iVn- i )  ■ (6-2)

ifil = a rg (F F T (««)) (6.3)

“n =  \/^ 6 X p  ( i f l )  (6.4)

¥>« =  arg (FFT-1 (u j))  (6.5)

Equation (6.2) calculates the initial field in the hologram plane, from which 

equation (6.3) then calculates the phase distribution in the target plane, 

(fin- It uses a Fast Fourier transform (FFT), or more generally any discrete 

Fourier transform. Equation (6.4) combines this phase distribution in the 

target plane with the target intensity, It , giving the field wj, from which 

equation (6.5) then calculates the corresponding phase distribution in the 

hologram plane, (p%. Over a number of iterations, the actual intensity in 

the target plane, In = |FFT(uJJ)|2, converges to an almost diffraction-limited 

approximation of the desired intensity there, It ; v?n the corresponding 

phase-hologram pattern needed to produce this field in the target plane.
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6.5 M odified G erchberg-Saxton algorithm

The Gerchberg-Saxton algorithm as presented above is a very powerful and 

general algorithm. It is one example of the class of algorithms termed pro­

jection onto convex sets. These algorithms assume that the sets of answers 

which fulfil the restrictions are convex, however if these sets are not convex 

(as in the Gerchberg-Saxton case) the algorithms may not find the globally 

optimum solution as shown in figure 6.4.

However by further modifying how the restrictions are applied, the effect 

of local minima can be suppressed and thus better results can be obtained. 

The main method of improvement is to incorporate a priori knowledge into 

the algorithm to help eliminate local minima in the cost function which cor­

respond to sub-optimal solutions and which the algorithm might find instead 

of the optimal solution.

6.5.1 Adaptive Additive algorithm

The adaptive additive algorithm can be seen as a generalised Gerchberg- 

Saxton algorithm which uses both the phase and amplitude of the field in 

the wanted space. Instead of replacing the amplitude, as the Gerchberg- 

Saxton algorithm does, the adaptive additive algorithm mixes the wanted 

pattern with the result of the Fourier transform, and Equation 6.4 becomes

ul  = (oLy/h: +  (1 -  a)|FFT(u®)|) exp (iy£) (6.6)

where a  is the chosen mixing parameter. It can easily be seen that for a = 1 

the algorithm becomes the original Gerchberg-Saxton algorithm.
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6.5.2 Curtis-Koss-Grier algorithm

The Curtis-Koss-Grier algorithm71 is another modification of the Gerchberg- 

Saxton algorithm. The first change to the Gerchberg-Saxton algorithm is in 

the mixing of the wanted amplitude with the result of the Fourier transform, 

in a similar manner to the adaptive additive algorithm and Equation 6.4 

becomes

where a  is the chosen mixing parameter. It can easily be seen that for a  =  0 

the algorithm becomes the original Gerchberg-Saxton algorithm.

The second modification is a generalised Fourier transform which includes 

an additional spot-specific kernel term (and its associated inverse transform) 

which allows additional phase modifications to be applied to each spot. This 

method is similar in to the convolution method but is applied to each spot 

separately.

The generalised Fourier transform allows the structure of each spot to be 

altered independently while the mixing which takes place allows the algo­

rithm to converge quickly.

6.5.3 3D Gerchberg-Saxton

The fields in the two planes in the GS algorithm can also be seen as a field in 

a real-space plane (x, y) and its fc-space (kx, ky) representation. This allowed 

Shabtay72 to adapt the GS algorithm to 3D: instead of dealing with fields 

in two planes, the algorithm deals with fields in two volumes. One field is a 

3D real-space representation of the part of the beam that is to be shaped,

e x p (i^ )  (6.7)
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projection
of phase

real-space A-space phase-hologram
representation representation pattern

Figure 6.G: Schematic representation of a monochromatic light beam in real 

space (left) and k space (right). In k space, a monochromatic 

light beam is restricted to the surface of a hemisphere of radius 

k0 = 27T/A. A projection of the phase on this hemisphere into 

a plane (see section 7.3.1) provides a phase-hologram pattern 

suitable for beam shaping.

the other is its 3D A-space representation, which needs to be consistent with 

the beam’s wavenumber spectrum. The two fields are 3D Fourier-transform 

pairs (Figure 6.6). Chapter 7 uses this to demonstrate the algorithm's ability 

to calculate holograms to shape 3D light fields. Note that the 2D Gerchberg- 

Saxton algorithm usually shapes light in the Fourier plane, while the real- 

space plane contains restrictions such as the intensity profile of the unshaped 

beam, whereas the 3D GS algorithm shapes light in the real-space volume 

while the Fourier volume contains the physical constraints.

As discussed in the introduction, the field in a single plane completely 

describes a monochromatic light beam. This is reflected by the fact that the
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k-space representation of such a beam is confined to a surface. In monochro­

matic light of wavelength A, the wave-vector component in the direction of 

propagation, kz, is related to the values of kx and ky through the equation

=  (6-8)

where ko = This forms a sphere of radius ko in 3D k space -  an Ewald

sphere72. A single laser light beam has a direction of propagation in the 

positive z direction only, hence the wave vectors are limited to the half of 

the sphere with kz > 0 (figure 6.6).

6.6 D irect Binary Search

One of the most general methods for calculating holograms is the direct bi­

nary search73 (also known as random binary search) which is a brute-force 

method for calculating a hologram which will produce an approximation to 

the wanted field in another plane. If it is known how each pixel of the holo­

gram affects the field in the plane of interest, it is possible to alter each pixel 

randomly and to determine if that change resulted in a better approxima­

tion to the wanted pattern or not. Based on this result, the change to the 

hologram can be kept or disregarded. If only the good changes are kept, the 

pattern converges to an approximation to the wanted pattern.

This method has the advantage that the calculation of the error can be 

chosen depending on the desire of the user. This allows, for example, more 

important areas of the wanted pattern to be weighted higher than others 

and for phase information to be included. This added flexibility comes at 

the cost of speed. Since every iteration only affects one pixel, which may not



Chapter 6. Hologram Design 109

actually change, it takes many iterations before the error reduces significantly. 

Because of these issues, a direct binary search is often combined with a faster 

but less flexible algorithm which first calculates a rough approximation to the 

desired pattern and then the direct binary search tries to improve it further.

6.7 Sim ulated A nnealing

Unfortunately the direct binary search suffers from local-minima problems 

even if the algorithm is allowed to run infinitely long. The result is the best 

that can be achieved when compared to all the possibilities which differ by 

a single pixel, but it is not necessarily the optimum result. One method 

for trying to overcome this problem is simulated annealing74, which keeps 

some changes which increase the error in the hope of avoiding local minima. 

Simulated annealing takes its inspiration from the behaviour of atoms when 

crystallising during annealing. During annealing the temperature is slowly 

lowered, such that at any time the system can be considered in thermal 

equilibrium. As the temperature is lowered, the thermal energy available 

to each atom is reduced, thus restricting some of the possible transitions 

between potential wells. However, by reducing the temperature at the correct 

rate, atoms can still move to occupy lower potential states before the thermal 

energy is reduced. By analogy, any system can use a similar method to try to 

avoid local minima. In place of the temperature an allowable error variable 

can be used, which is slowly lowered throughout the calculation. This allows 

some errors to be incorporated into the solution with smaller and smaller 

errors being allowed as the calculation progresses until at the equivalent of
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T  = 0, the algorithm performs as the standard underlying algorithm.

By incorporating simulated annealing, the convergence rate of the algo­

rithm will reduce. It also adds the additional complication of the cooling 

rate parameter, which has to be optimised for each application individually.

6.8 Sum m ary

In order to shape a beam, a hologram capable to approximating the desired 

pattern has to be calculated. The imperfect nature of applying holograms 

results in the resulting structure deviating from the desired pattern. In many 

cases this can be improved at the cost of computational power. Iterative 

algorithms can be used to find closer approximations by adapting the pattern 

to accommodate the physical restrictions present in the system.

When choosing an algorithm to calculate a hologram pattern, there is 

generally a compromise between speed of execution and efficiency. The use 

of the system will often limit the choice of algorithm, for example the super­

position approximation algorithm can only be used to calculate arrangements 

of discrete spots, while (with 2006 technology) the iterative algorithms can 

not calculate high-resolution holograms at a real-time frame-rate.
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Chapter 7 

Three-dimensional light 

shaping

When trying to compare Bose-Einstein condensates and light, the question 

of dimensionality often arose. Monochromatic laser light travelling in the 

positive z direction say, is in many ways two dimensional: knowledge of such 

a beam in one plane allows the entire beam to be reconstructed. A three- 

dimensional representation therefore does not add any information, while 

Bose-Einstein condensates are three-dimensional and cannot occur in a ideal 

two-dimensional system75. These restrictions have resulted in most of the 

comparisons being done in two dimensions and assuming the BEC is tightly 

confined in one dimension, leading to a flat ‘pancake’ condensate. How­

ever the discussions on 3D light gave rise to interesting ideas about the na­

ture of monochromatic light fields in 3D and the ability to shape a beam 

into arbitrary 3D patterns. The outcome of these discussions was the al­

gorithm outlined in Section 6.5.3. Unfortunately, this same algorithm was 

independantly discovered72 as a method of establishing what 3D intensity 

shapes monochromatic light beams can take. We have extented this into 

a hologram-calculation algorithm, which we demonstrated numerically and 

experimentally.
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This chapter also describes some of the details which must be considered 

when trying to implement the 3D Gerchberg-Saxton algorithm which may 

be ignored when considering purely the algorithm. Section 7.1 gives a brief 

introduction to the 3D nature of monochromatic light fields before discussing 

the details of our implementation of the algorithm in Section 7.2. Finally the 

experimental setup is described and the experimental results are presented 

in Section 7.3.2.

My role in this work was to design and implement the bespoke software 

to implement the algorithm. I was involved in the discussions on the nature 

of light in 3 dimensions and how best to represent that in a simulation. I 

carried out the experimental side of the project single-handedly, including 

the setting up of the experiment and all result taking. I was heavily involved 

in writing and drafting the paper of this work76 and was lucky enough to 

present it at several conferences.

7.1 Introduction

Any monochromatic light beam propagating in free space is a three-dimensional 

(3D) field and its intensity distribution forms 3D patterns. At the same time, 

the field cross-section in any one transverse plane completely determines the 

field everywhere else. This dependency of the entire beam on its cross-section 

in a single plane forms the basis of beam propagation methods (for example 

Ref.21), but it also restricts the possible 3D shapes a monochromatic light 

beam’s intensity can take.

Chapter 6 discusses many methods of shaping a monochromatic light
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beam in 2D, and shaping light beams into non-trivial but restricted 3D 

shapes. Other methods of creating non-trivial 3D patterns of light have been 

created by utilising phenomena such as the Talbot effect77 or spiral-type 

beams78. It is also possible to shape a light beam into 3D configurations of 

bright spots68, whereby the spots can be shaped individually71; these tech­

niques are important in the field of holographic optical tweezers. 3D beam 

shaping into arbitrary shapes has been demonstrated using computationally 

intensive direct search methods173, but continues to be a challenge.

The recent algorithm by Shabtay72 finds beams whose shape is an approx­

imation within physical limits to any arbitrary 3D target shape. We apply 

this algorithm to calculate examples of light beams shaped in 3D. Prom the 

beams’ Fourier-space representations we calculate phase-only hologram pat­

terns that allow us to create the beams experimentally.

As discussed previously, the field in a single plane completely describes a 

monochromatic light beam. This is reflected by the fact that the fc-space rep­

resentation of such a beam is confined to a surface. In monochromatic light 

of wavelength A, the wave-vector component in the direction of propagation, 

kz, is related to the values of kx and ky through the equation

ky + kl, (7.1)

where ko = 2'k/X. This forms a sphere of radius ko in 3D k space -  an 

Ewald sphere72. We consider here light moving in the positive z direction 

only, hence the wave vectors are limited to the half of the sphere with kz > 0

1 Direct search methods allow shaping not only of the light intensity, to which we are 

restricted here, but also of the phase. They are therefore more versatile than the technique 

we discuss here.



Chapter 7. Three-dimensional light shaping 114

(figure 6.6). As shown previously, using this 3D /c-spave representation of 

the light beam within a Gerchberg-Saxton algorithm allows the algorithm to 

find an approximation to the wanted 3D intensity structure.

Figure 7.1 shows examples of light shaped using this program. The algo­

rithm can clearly produce intensity distributions in which the target shapes 

can be recognized. The resulting shapes are not exactly the desired shapes, 

reflecting the limitations due to the k-space restrictions (discussed in more 

detail in Section 7.2) and the algorithm.

7.2 D etails o f our im plem entation of the 3D  

G erchberg-Saxton algorithm

In this section we explore some of the details of the implementation of the 

algorithm. We use the error79

to quantify the similarity between the target intensity distribution, It (x , y, z), 

and the intensity distribution the algorithm produces after n iterations, 

In(x,y,z).

7.2.1 Thickness of A>space sphere

A purely monochromatic beam restricts the allowed /c-space elements to a 

spherical surface. In our numerical simulations 3D k space is discretised, 

and it is not immediately obvious how to represent the spherical surface that 

corresponds to a monochromatic light beam in this discrete space.
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Bordeaux bottle

bottle

Figure 7.1: Examples of 3D light intensities shaped by the 3D Gerchberg- 

Saxton algorithm. High intensities are shown dark. Each light 

beam is shown from two directions; the propagation direction of 

the beam is indicated by a red arrow (the three smaller views 

look into the beam). In the case of the Bordeaux-bottle beam, 

two corresponding views of the target intensity distribution are 

also shown. The beams were calculated for a &:-space cone angle 

a = 90° (see figure 7.4).
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Figure 7.2: Example of the representation of a monochromatic light beam 

in discrete k space. The plot shows the powers in all discrete-A;- 

space elements with 0.9A;o < kr < 1.1/co (where k0 = 2'k/X) as a 

function of the radial wave number, kr, calculated for a tightly 

focussed monochromatic Gaussian light beam. The discrete k- 

space representation was found by numerically calculating the 

light beam on a 64 x 64 x 64 grid representing a cube of side 

length 25A (where A is the wavelength of the light), which was 

then 3D-Fourier-transformed. Whereas in continuous k space all 

the power would be at kr = ko, in discrete k space the power is 

distributed within a few A:-space-element widths of ko. Because 

the edges of the represented cube act like hard-edged slit aper­

tures in the x , y and z directions, the Axspace distribution is that 

of continuous k-space, convolved with sine2 functions in the kx, 

ky and kz directions (it is, of course, also discrete).
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In an effort to understand this better we investigate here one aspect as­

sociated with the discrete nature of a light beam whose 3D light field and 

fc-space distribution are represented on cubic grids of points. Figure 7.2 shows 

the radial cross section of the discrete-fc-space representation of a simulated 

monochromatic light beam. This /c-space representation was calculated by 

taking the three-dimensional discrete Fourier transform of the beam’s spa­

tial representation over a discrete 3D volume. The spatial representation was 

calculated using a standard beam-propagation algorithm2, starting with the 

field cross-section of a Gaussian beam close to the beam waist and propagat­

ing it into 63 further, equally-spaced, planes. In addition to a peak centred 

at k0 = 27t/A, the radial profile of the resulting discrete-fc-space-hemisphere 

distributions has other distinct features. We believe these additional features 

to be due to the beam being represented only in a cube and the represented 

beam therefore having a top-hat profile in the x, y and z directions, which 

in turn leads to the fc-space distribution being widened, more precisely being 

convolved with a sine function in the kx, ky and kz directions.

In our simulations we use perhaps the simplest form of the fc-space hemi­

sphere: for each represented pair of kx and ky values, the power in the discrete 

kz value closest to (A;2 — A;2 — A;2)1/2 is set to one, that of all the other kz values 

to zero. Such a A;-space hemisphere is exactly one element thick in the kz 

direction; the radial power profile would be a top hat of width 1 element. 

This is clearly different from the arguably ‘natural’ representation shown in

2Instead of using the quadratic approximation used in ref.21, we use the exact relation­

ship, equation (6.8), to calculate kz from kx and ky . We also use an absorbing boundary80 

(which is later removed) to avoid effects due to the periodic boundary conditions implicit 

in the discrete-Fourier-transform-based beam-propagation algorithm.
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figure 7.2, but it works well enough to produce good experimental results (see 

below) and simplifies the extraction of phase-hologram patterns (see section 

7.3.1).

It is worth discussing very briefly the case of thicker hemispheres. Fig­

ure 7.3 shows results from the 3D GS algorithm with a /c-space hemisphere 

with a Gaussian radial power profile of variable width. It can be seen that 

an increase in the thickness of the hemisphere leads to lower errors. The 

reason for this is that a thicker k-space hemisphere implies more non-zero 

k-space elements whose phase the algorithm can alter. Physically, a k-space 

hemisphere of non-zero thickness corresponds to polychromatic light3; the 

represented field is a snapshot of the light field at one particular instant. 

The time evolution of the instantaneous field in coherent polychromatic light 

can be controlled by an extended GS algorithm that incorporates a time di­

mension added to the real-space representation of the field and a frequency 

dimension added to the A;-space representation. This can be seen as an ex­

tension of the shaping of the time-resolved field of short pulses, which has 

previously been demonstrated experimentally81.

7.2.2 Influence of numerical aperture

Any experimenter realising 3D light shaping at some point has to make an 

implicit or explicit choice about the range of directions of the plane-wave 

components that superpose in the target volume. This is a choice of the 

numerical aperture (NA) of the system and it depends on the solid angle

3Note that the fc-space components with kr ^  ko are not evanescent waves as they 

correspond to purely real values of kz .
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Figure 7.3: Effect of the thickness of the £;-space hemisphere. The points

show the error, e, corresponding to light beams shaped with the 

3D GS algorithm using Axspace hemispheres of various Gaussian 

half-thicknesses, r. More precisely, the power in each fc-space 

element with kz > 0 is set according to its distance from the 

origin according to the equation p(k) = exp(—(k — A:0)2/(2 r2)), 

where k0 = 2ir/\ is the radius of the hemisphere; the power of 

Axspace elements with kz < 0 is set to zero. The light beams 

corresponding to some of the points are also shown, each from 

two different perspectives; the propagation direction (red arrow) 

is always in the vertical direction. Also shown are the target 

shape (top inset on the right) and the light beam resulting from 

a single-element top-hat radial profile (lower inset on the right), 

which has an error comparable to a r  =  0.0041, which for the 

grid size used (128 x 128 x 128) corresponds to a Gaussian full 

width of approximately 1 element.
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spanned by the directions of light rays reaching the target volume. Usually 

the light-ray directions form a cone of angle a  (figure 7.4a), which in the 

simplest case is determined by the size of the aperture of the last optical 

component and the distance between that component and the space where 

the beam is to be shaped. As each k-space point corresponds to parallel light 

rays with a specific direction, which is given by the gradient of the phase, 

such a cone of light-ray directions restricts non-zero k-space values to the 

section of the fc-space hemisphere that lies within an angle a / 2 of the kz axis 

(figure 7.4b).

Figure 7.4c demonstrates the effect of varying the angular size of the 

A;-space-sphere segment on the resulting intensity distributions. It can be 

seen that a larger cone angle allows the possibility of generating a 3D light 

intensity that resembles the target intensity more closely. The reason for this 

is that the larger range of values of kx, ky and kz in such a beam widens the 

range of structure sizes that can be present in the beam.

7.2.3 Simulation parameters and procedure

Our particular implementation of the 3D GS algorithm, running on a dual­

processor 2.5 GHz Pentium Xeon desktop computer, takes several days to 

converge using a resolution of 256 x 256 x 256. For this reason we initially 

test the generation of new shapes using a lower resolution of 64 x 64 x 64. 

In addition to each iteration taking less time at this lower resolution, the 

algorithm requires fewer iterations to converge.
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Figure 7.4: Geometry of the cone of light-ray directions and its effect on 

3D light shaping. The cone of light angles is determined by the 

geometry of the setup, in the simplest case the aperture radius 

of the last lens in the system and its distance from the position 

where the light is to be shaped (a). The cone angle, a, is also 

the angle of the /c-space-sphere segment (b). The larger the cone 

angle, the smaller the error e between the desired and calculated 

intensity structure (c). The errors in c were calculated for the 

example of a shell-shaped target intensity, shown in the box in 

the top right corner. Also shown are the calculated intensity 

structures corresponding to some of the data points.
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7.3 Experim ent

We have created examples of light beams with a shaped 3D intensity structure 

experimentally, specifically some of the beams shown in figure 7.1. The 

experimental setup is outlined in figure 7.5a. It creates the shaped beam 

around the Fourier plane of a phase hologram, which was calculated from 

the /c-space representation of the beam found by the 3D GS algorithm (see 

section 7.3.1).

Our hologram patterns were calculated for beams whose A;-space repre­

sentations have a relatively large cone angle of a  =  90°. With our phase 

hologram, which has a height of approximately 20mm, this cone angle could 

be realised by using a Fourier lens with a very short focal length of approxi­

mately 10mm; this would create the shaped beam in a volume of approximate 

size 0.1mm x 0.1mm x 0.1mm. However, in our experiment we use a Fourier 

lens with a much longer focal length of / i  =  600mm, which corresponds to a 

significantly smaller cone angle of a & 2°. Our setup can be seen as a combi­

nation of a /  =  10mm Fourier lens that shapes the intensity in a cubic target 

volume of side length «  0.1mm, and two more lenses that image this target 

volume: a lens with /  =  —10mm in the same plane as the 10mm Fourier 

lens, and the 600mm Fourier lens we actually use. Because of the imaging 

characteristics of this lens pair, the image of the original target volume gets 

stretched to a size of approximately 6mm x 6mm x 500mm.

In our experiment, an expanded beam from a HeNe laser was reflected 

off a computer-controlled phase hologram in the form of a phase-only spatial 

light modulator (SLM)82. To deal with imperfections in the SLM, a blazed 

diffraction grating was added to the phase-hologram pattern. This resulted
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Figure 7.5: (a )  Schematic of the experimental set-up. A collimated HeNe-

laser beam illuminates a phase-only spatial light modulator 

(SLM)82 before passing through a Fourier lens (L\). The SLM 

displays a phase pattern that shapes the light beam in a volume 

around the SLM’s Fourier plane. An additional blazed phase 

grating displayed on the SLM directs the shaped beam into the 

grating’s -f-lst diffraction order; the other orders -  caused by im­

perfections in the SLM’s phase response -  are filtered out by a 

Fourier-plane aperture. The volume in which the light beam is 

shaped is shown in blue. A CCD, with the help of imaging lenses 

L2 and L3, records the intensity in a number of planes across 

this volume. In our experiment / i  =  600mm, f 2 = 1350mm and 

fs = 200mm. ( b )  Geometry of the correspondence between po­

sition on the SLM and on the A;-space hemisphere. Each point 

light source P  in the front focal plane of the Fourier lens L\ gives 

rise to a uniform plane wave whose k  vector is parallel to the line 

from P  to C, the centre of L\.
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in the desired beam travelling in the direction of the additional grating’s 

first diffraction order; imperfections in the phase response of the SLM led to 

additional diffraction orders, which were filtered out by the aperture in the 

hologram’s Fourier plane. We used a lens pair to image a plane at a variable 

distance 2  behind the aperture onto a CCD. The transverse magnification 

was slightly less than one. Intensity cross-sections corresponding to different 

planes taken across the shaped volume were later combined into volume data, 

which were visualized with bespoke 3D-viewer software based on the VolPack 

volume rendering library35,36.

7.3.1 Calculation of the phase-hologram pattern

The 3D GS algorithm finds phase values for the different points of a monochro­

matic beam’s A;-space hemisphere. Points on the k-space sphere correspond 

to infinite uniform plane waves; the direction of the k vector is the direc­

tion of the phase-front normal. Experimentally, a finite uniform plane wave 

can be created from a point light source in the front focal plane of a lens, 

whereby the position of the point light source determines the direction of the 

phase-front normal. Each point in a phase hologram that is placed in the 

front focal plane of a lens therefore corresponds to a point on the &-space 

hemisphere and controls its phase.

Figure 7.5b shows the geometry of the correspondence between points 

on the SLM and on the fc-space hemisphere. In order to calculate the exact 

position of the point on the SLM that controls a given point on the fc-space 

hemisphere, the point on the hemisphere should be projected through the 

centre of the lens into the SLM plane. However, we find that a simpler parallel
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Figure 7.6: Illustration of the three methods proposed to extract the holo­

gram from the &-space hemisphere, collinear projection (left) cal­

culates the hologram by projecting each element of the A;-space 

sphere onto the hologram based on its xy position. Outwards 

radial projection (middle) calculates the position of each k-space 

sphere element by projecting a line from the centre of the sphere 

through the centre of the element onto the hologram. If the holo­

gram has a high number of pixels, this method can result in the 

hologram having empty pixels. Inwards radial projection (right) 

overcomes this by calculating the corresponding element of the 

A;-space sphere for each pixel of the hologram by a similar method 

to the outwards radial projection.
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projection as indicated in figure 7.6, which gives a phase-hologram pattern 

that is flipped and distorted, works very well. The distortions are small for 

points representing plane waves travelling at small angles with respect to 

the z direction, as is the case in our experiment. We calculate the phase- 

hologram pattern as the phase of the sum over all k-space elements with the 

same values of kx and ky. In the limit of an infinitely thin k-space hemisphere, 

this parallel projection is equivalent to calculating the phase cross-section of 

the 2D Fourier transform of the shaped beam in the Fourier plane (i.e. at 

z =  0).

7.3.2 Results

Figure 7.7 shows some of our experimental results. The experimental pat­

terns do not exactly match those calculated by the 3D GS algorithm. We 

believe this is mostly due to residual astigmatism in the optical system, im­

perfections in the SLM and imperfect alignment of the intensity data from 

different planes to 3D volume data. In any case, the results clearly demon­

strate that the experiment works.

7.4 Sum m ary

We have used an algorithm first described in reference72 to calculate phys­

ically realisable light beams with a shaped intensity distribution. We have 

extended this algorithm to generate phase holograms to shape light beams 

into the given intensity distribution. The theoretical effects of various param­

eters of the algorithm were investigated. We used this algorithm to create
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Figure 7.7: Experimental results. Left: three different projections of the ex­

perimentally recorded 3D intensity distribution of one period of 

braided bright lines (purple =  brightest, white =  darkest). Like 

in figure 7.1, red arrows indicate the propagation direction of 

the light beam. The intensity was collected over a volume of 

size ~  10mm in the transverse directions and ~  590mm in the 

longitudinal direction. The top row shows four (out of 60) ex­

perimentally recorded intensity cross-sections, which were later 

combined in the computer into volume data. Centre: two pro­

jections of the 3D intensity distribution over a volume of approx­

imate size 10mm x 10mm x 510mm of an experimentally gen­

erated light beam in the shape of a tree, together with modelled 

results (boxed). Right: two projections of the shoulder region of 

a bottle-shaped beam (different from the one shown in figure 7.1) 

over a volume of approximate size 10mm x 10mm x 320mm.
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examples of such light beams in an experiment using a phase hologram cal­

culated from the beam’s Fourier-space representation.
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Chapter 8 

Optical Tweezer Interfaces

This chapter describes some of the computational problems involved with 

implementing a holographic optical tweezers system. The main thrust of 

this work is in developing methods to manipulate optical traps in a simple 

and intuitive manner. Section 8.1 gives an introduction to optical tweezers 

and the forces involved. Section 8.2 describes some of the cases where a 

single optical trap cannot be used to effectively manipulate a particle and 

proposes methods to trap in these situations. In order to give a response 

time sufficient for interactive use, the calculation of the holograms which are 

required to create the traps has to be fast. Section 8.3 describes some of the 

optimisations which were implemented in order to speed up the calculation.

The second part of this chapter goes on to describe methods of interacting 

with the optical tweezers through various controls. In section 8.5 I describe a 

simple user interface which allows users to pick up microscopic objects using 

optical traps controlled by the user’s hands. The details of the required 

experimental equipment and the software are mentioned and some results 

obtained from using the interface are presented.

My role in this work was in optimising the existing hologram calculation 

algorithms in order to allow real-time interaction. This got me involved 

in joystick ‘claw’ experiment83 where the optimised software was used to
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calculate the holograms to allow a joystick to manipulate four optical traps. 

The extension of this work was in creating a user interface which could use 

the user’s hands to manipulate the optical traps. I developed this interface 

and performed its integration into several optical tweezers systems. Using 

the interface I was able to obtain a series of results of manipulating objects 

which are difficult to manipulate with conventional optical tweezers.

Optical tweezers manipulate microscopic object using light. Since their early 

development in the 70s by Ashkin and others84,85,86, optical tweezers have 

become an invaluable tool in manipulating and probing microscopic systems.

and creating motors88 and pumps89,90 to in-vitro fertilization91, detecting 

malaria92 and even stretching DNA93.

8.1.1 The forces involved

When light reflects from a surface, the momentum of the light changes direc­

tion. To ensure the conservation of momentum, the reflecting object must 

gain momentum, so-called radiation pressure. This combined with the mo­

mentum gained when light scatters off the object is called the scattering force. 

The scattering force due to incident light of intensity Iq and wavelength A on 

an object of radius r which is smaller than the wavelength of the light, has 

been calculated as66

8.1 O ptical Tweezers

Optical tweezers have been used for everything from arranging 3D lattices87

70 1287r5r 6 /fV2 - l \ 2
(8 .1)
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where N  is the ratio of the refractive index of the particle to the index n of 

the medium.

One of the simplest system to hold a particle using light is to balance this 

radiation pressure with gravity and hold the particle in suspension, so-called 

optical levitation85. It was discovered during this experiment that another 

effect must be influencing the particle. When the weakly focussed laser beam 

was turned on, the particles would move towards the brightest part of the 

beam. If radiation pressure was the only effect, the force due to the brightest 

part of the beam would be higher and the particle would be repelled from 

that area.

By considering the particle as being a transparent object rather than a 

perfect mirror, it is possible for the light to be refracted through the particle 

if its refractive index is different from that of the surrounding medium. Fig­

ure 8.1 illustrates this effect and shows the forces for several cases. It can be 

seen that if the surface through which the light exits the object is not parallel 

to the entry surface, there is a net change of momentum of the light which 

must be balanced by the particle. The resulting force is called the gradient 

force and is given by66

^  = <«>
By creating a tightly focussed light beam, the intensity gradient can become 

very high and in such a case, a particle of high refractive index immersed 

in a lower-refractive-index material will feel a force towards the small high- 

intensity spot and may be trapped there. If the trapping force is high enough, 

moving the light beam will move the particle. In this way it is possible to 

trap and arrange particles into 3D structures87 which can be manipulated94.
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Figure 8.1: Representation of the gradient forces present upon a dielectric 

particle immersed in a medium of lower refractive index. Left 

shows the stable case where there is no force upon the particle as 

the light does not refract. Centre shows the case when the stable 

case is disturbed and the particle is off the axis of the light beam. 

There is a net force on the particle towards the right as the light 

is refracted and gains momentum to the left. If several rays are 

considered as the right case shows, the net force on the particle 

is towards the highest intensity.

t>-<r
momentum gained 
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8.2 Indirect M anipulation

8.2.1 Difflcult-to-trap objects

Conventional tweezers require that the gradient force (Equation 8.2), which 

acts in the direction of the greater light intensity, is much larger than the 

scattering force (Equation 8.1), which always points in the direction of light 

propagation.

There are many situations where the gradient force is not the dominant 

force. For example, if a material absorbs light at the wavelength used, or if 

the focussing power of the trapping lens is not high enough and hence the 

gradient of the intensity is too low. If the beam is propagating upwards, it 

is possible for scattering to balance gravity; such optical levitation can be 

observed experimentally85 and the particle can be held in place by the light.

One of the proposed applications of optical tweezers is in the creation 

of micro-machines95 where the nanometre-scale resolution of the manipula­

tions can orientate and combine components. Unfortunately these proposed 

micro-machines can have metallic components which do not trap effectively. 

Because light does not transmit through metallic objects, there can be no 

refraction and hence no gradient force.

There has been success in moving and orientating metallic particles util­

ising plasmon resonances96. However, the frequency of the light has to be 

chosen carefully to ensure that it is resonant, and this frequency depends 

on the shape and structure of the individual particles. This can be useful 

in selecting particular particles with a determined geometry and can thus 

ensure consistency in the selection processes, but is limited when trapping
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objects of slightly different shape or size.

8.2.2 Scattering methods

It is possible to use only the scattering force to manipulate an object. This 

involves creating a small dark patch of light surrounded by a ring of high 

intensity which pushes the object away from the high intensity and holds it 

within the dark region. This ring can be created using beams with annular 

intensity rings97,98 and have no intensity along the beam axis or by scanning 

of a beam focus to create a time-averaged ring of light99.

8.2.3 Indirect Manipulation

It is also possible to use trappable objects to interact with untrappable ob­

jects through contact. For example by trapping silica beads in dynamic traps, 

these beads can be brought into contact with an untrappable object and can 

manipulate it. Surrounding an object with silica beads can therefore con­

strain the object to a small volume. Simultaneous movement of the beads 

results in the object moving with the beads.

8.3 Real T im e hologram  calculation

To allow interactive manipulation of optical traps, the calculation of the 

hologram required must be performed in real time. This limits the available 

algorithms (for a summary of algorithms see Chapter 6) which can be used 

effectively. Due to their relatively long iteration times (tenths of seconds to
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seconds), iterative algorithms (Gerchberg-Saxton, direct binary search) be­

come too slow to provide real-time interaction for high-resolution holograms. 

The algorithm chosen to calculate the holograms was the superposition ap­

proximation (see Section 6.2). However this algorithm if implemented as 

described100 results in suboptimal performance. By optimising the calcula­

tion, much higher resolution holograms can be calculated in real-time.

8.3.1 Superposition approximation algorithm  

optimisations

The superposition approximation algorithm (see section 6.2) has been used 

extensively in optical trapping, first demonstrated by Reicherter et al.67 for 

spots in one plane and later by Liesener et al.68 in three dimensions.

The main optimisation steps were 1. removing redundant calculations;

2. increasing the speed of the algebra; and 3. calculating only the phase. The 

details of each of these steps are outlined below along with their improve­

ments to the speed of the algorithm.

Removing redundant calculations

A hologram of a phase gradient in the x direction results in the focus of the 

laser beam in the Fourier plane of the hologram to be shifted in proportion 

to the phase gradient. By combining a shift in the x  direction with a similar 

gradient in the y direction, the focus can be shifted to any position within 

the Fourier plane. It is also possible to shift the position of the focus in the 

axial direction by adding the phase hologram of a lens to the x- and y-shih 

holograms. This method requires calculating three holograms for each spot
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and combining them to produce the single hologram for the spot. However, 

an off-centre spot can also be calculated using a single off-centre lens which 

results in only a single hologram being needed (either an off-centre lens if the 

spot is out of the Fourier plane, or a x ,y  shift if the spot is in the Fourier 

plane). This method provides an improvement despite the added complexity 

of the calculation due to the large time taken to add large arrays of numbers 

together.

Increasing the speed of the algebra

Calculation Double Precision Single Precision

Lens Hologram 5010 4276 (85.3%)

Combined xyz  Hologram 45734 40921 (89.5%)

Adding two 256x256 arrays 13296 1765 (13.3%)

Multiplying two 256x256 arrays 12921 1843 (14.3%)

Table 8.1: Comparison of the time in milliseconds to perform various

hologram-related calculations. The number in brackets is the per­

centage of the double precision (64 bit) calculation time. Each 

of these calculations were performed 10000 times (on a dual­

processor 2.5GHz desktop PC with 1GB RAM) to ensure the cal­

culation of processing time is negligible and each set was repeated 

3 times and averaged.

With the speed of modern computers, many calculations are performed 

with high precision to reduce the impact of numerical rounding errors. How­

ever this additional accuracy comes at the cost of increased memory usage
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and reduced processing speed. When performing calculations on floating­

point numbers, modern desktop-computer processors perform the calcula­

tions using 80 bits of information and then truncate this to the accuracy 

desired (64 bits for double-precision number, 32 bits for single-precision num­

bers), so although little improvement in calculation speed can be achieved 

by using a lower accuracy, the gains in memory usage and transporting the 

data within the computer can give a noticeable effect when large arrays of 

numbers are used. These effects can be seen in Table 8.1. It is important to 

note that, as mentioned, there is only a small effect in using 32 bit floating 

point numbers in place of the previously used 64 bit numbers during many 

calculations; however when the large arrays of numbers are manipulated, an 

approximately 6 fold improvement can be obtained.

The speed of data transport within the computer, combined with the 

limitation of the spatial light modulator (SLM) to only allow 256 levels of 

modulation, led to storing the data in 8-bit format for as much of the pro­

cessing as possible.

By calculating the components of the hologram and performing all the 

manipulations using unsigned-8 bit integer numbers, significant gains can be 

made at the expense of rounding errors. However, because the superposition 

requires the addition of fields, the 8-bit hologram data have to be converted 

to floating-point numbers to facilitate the complex addition and then back 

into 8-bit data. Once the individual hologram calculation and preparation 

for displaying is 8 bit, the conversion to complex numbers and the complex 

addition becomes the bottleneck in the hologram algorithm.
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Phase-only calculation

When calculating a phase-only hologram for multiple spots using the super­

position algorithm, the amplitude of the superposition is discarded by the 

algorithm and only the phase is used. This gives rise to the possibility of 

increasing the processing speed by not calculating the amplitude information.

Figure 8.2 describes an optimisationoptimisation which allows the phase 

of the sum of two equal-magnitude vectors to be calculated without any 

trigonometry. Figure 8.3 shows the timing for the different methods of ex­

tracting the phase of a superposition of fields with uniform amplitude. The 

process of adding two phases using complex addition can be described as

1. real parta =  1 • cos0a

2. imaginary parta =  1 • sin 9a

3. real part*, =  1 • cos

4. imaginary part*, =  1 • sin 9b

5. real part =  real parta+  real partj,

6. imaginary part =  imaginary parta+  imaginary part*,

7. phase =  arctan(imaginary part /  real part)

where 9a and 9b are the two phases to be added. By looking at the expanded 

procedure for adding two complex numbers, the complexity of the computa­

tion is much larger than might be expected. The five trigonometric functions 

are computationally intensive and because they operate on floating point
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numbers, the time taken to perform this addition becomes the bottleneck in 

the algorithm.

Complex Addition Phase-Add Optimisation

Pros Cons Pros Cons

Very General 

Any number of 

phases 

Scales linearly 

with N

Slow 

5 trigonometric 

functions

Very Fast 

No trigonometry

Uniform amplitude 

Only add 2 phases 

at once 

Only add 2N 

phases equally

Table 8.2: The relative pros and cons of the two methods of calculating the 

phase of a superposition of uniform amplitude fields.

Phase-only addition

In order to reduce the computational load of the complex addition, I inves­

tigated other methods of calculating the phase from the complex addition 

complex numbers with the same modulus. Figure 8.2 shows a representation 

of the addition of two complex numbers which is in terms of their Argand 

vectors and the basis of the phase-add optimisation which is used in the 

hologram calculation.

The phase-add method utilises the fact that the resultant phase of a com­

plex addition is the average of the two phases if the amplitude of the numbers 

are equal (with an additional phase shift in some cases). This reduces the 

computational load for a single element calculation to between one and three
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Average, Resultant 
#

Average

Phases < 180° apart Phases > 180° apart 
Additional 180° shift required

Resultant

Figure 8.2: Argand-diagram representation of the vector addition of two 

complex numbers with equal amplitudes. Left: When the two 

phases are within n of each other, the phase of the resulting vec­

tor can be calculated as the average of the phases of the two 

inputs. Right: When the difference between the two phases is 

greater than 7r, the average becomes 7r out of phase with the 

result. This requires the phase-add method to include a compar­

ison to allow the additional phase shift, if the difference of the 

two phases is greater than 7r.
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Figure 8.3: Graph showing the time to calculate a single 512 x 512 element 

hologram from the addition of multiple holograms. The timing 

for the previous implementation is designated by squares and the 

phase add optimisation is designated by diamonds.
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additions, a single divide (or numerical bit-shift) and two comparisons. In 

terms of computational load, the calculation of the resulting phase using the 

phase add method does not require any computationally intensive trigono­

metric functions (unlike calculation using complex addition which requires 

five trigonometric operations) and avoids the unnecessary calculation of un­

wanted amplitude information.

Limitations of the Phase-Add optim isation

Table 8.2 summarises the limitations of the phase-add optimisation which 

are discussed in more detail below.

Because the optimisation only works for two equal amplitude fields, this 

places some restrictions on the relative weighting of the component fields. 

Figure 8.4 shows the required arrangement of phase additions and the distri­

bution of the resulting power. In the simplest case of two hologram patterns 

being added, only one phase addition is required for each pixel and the power 

is evenly distributed between the two patterns. If three phases are to be 

added, two phase additions per pixel are required, firstly between the first 

two phases and then between the resultant phase and the third phase. This 

results in the third phase being given the same power as the sum of the first 

two giving rise to a power distribution of \  respectively. For four phases, 

three phase additions are required and in their optimum configuration, the 

first and second phases are added and the third and fourth phases are added 

before the result of each addition being added to give the resultant phase. 

This gives a uniform power distribution between all the patterns.

It can be seen that in order to achieve uniform power distribution between
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Figure 8.4: Representation of the methods of adding multiple holograms us­

ing the phase-add optimisation. The limitation that the inputs 

to each addition are equally weighted can only be achieved if 

there are 2A holograms (for integer values of N).  If the number 

of holograms is not 2 V, the sequence in which the additions are 

performed determines the distribution of the power (insets).
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all the component patterns, there have to be 2N patterns. This places a 

large restriction on the possible configurations of patterns. If a non-uniform 

distribution of power is required, the distribution is determined by the exact 

order of the additions and can lead to unexpected results. For example 

adding a new fourth spot on the same position as the third spot results in 

the power distribution remaining the same.

In order to maximise the uniformity in power between the component 

powers, the additions have to be performed in a tree structure. This results in 

a non-linear dependence on the number of patterns, and hence the additional 

speed improvements for each addition can be negated by the larger number 

of additions required.

To maintain the uniformity of the patterns with any number of compo­

nent holograms, the program has several dedicated optimised calculations for 

patterns made up of 2, 4, 8, 16 and 32 patterns; all other combinations are 

performed using the slow but general complex addition. It could also be pos­

sible to optimise the addition to the nearest power of 2 and then use complex 

addition to add the other patterns. The main drawback of such a system 

is the time taken to transform the integer data (0...255) to the equivalent 

floating point numbers (—7r...7r). This, combined with the added complexity 

of the required comparisons, was judged to be too much for the small gains 

and was left un-implemented.
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8.4 H um an-Tw eezers Interaction

As the development of optical tweezers makes the system usable and useful 

outwith a physics lab, the requirement of reliable and easy-to-use systems 

becomes more important. One of the key factors in the ease of use of such a 

system is the user interface as this is the part of the system which receives the 

most use. The two most common ways of communicating the desired trap 

positions to the computer are entering the trap positions using the keyboard 

and dragging representations of the traps around using the mouse. Both of 

these methods are easy to implement but can only manipulate one object 

(either a trap, or group of traps) at one time and only one and two degrees 

of freedom respectively.

8.4.1 Joystick Control

Several recent optical-tweezers interfaces use a joystick to manipulate the 

traps. This also limits manipulation to one object at a time. However, with 

some designs of joystick there are many degrees of freedom which can be 

manipulated simultaneously, and often more than a dozen buttons. This 

allows many separate manipulations of an object to be performed at once.

One such interface83 uses a joystick to manipulate a pattern of four traps 

in a square pattern. Figure 8.5 illustrates the degrees of freedom used by the 

interface and the associated manipulation. By using many of the joystick 

inputs, all the foreseen manipulations are controllable using the joystick and 

once the experiment is underway, the user does not need to take his or her 

hand from the joystick.
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Figure 8.5: Representation of the degrees of freedom used by the joystick 

interface and the manipulation used by each. The xy position 

of the joystick represents the velocity of the centre of the four 

traps, the twist of the joystick relative to the base gives rise to 

a rotation of the square pattern with the speed of rotation being 

proportional to the angle of twist. Two buttons on the top of 

the joystick controls the size of the square in the xy  plane and 

another fouor buttons on the base control the 2  height and the 

height difference between the sets of spots 6z.
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The main disadvantage of the joystick is that it can only manipulate a 

single fixed pattern and all the manipulations have to be pre-programmed 

into the software. If, for example, transforming the square pattern into a 

rhombus is a useful transform in one application, the user would have to 

pre-plan such a transform and implement it in software before beginning the 

experiment. To get around such difficulties, other methods of interacting 

with the optical tweezers were required.

8.5 Sim ple hand-based interface

In order to create an easy-to-use and intuitive interface for holographic optical 

tweezers, more independent degrees of freedom are required. One method101 

uses a virtual-reality glove to control a trap based on the position in 3D space 

of the user’s fingers, and although this provides higher degrees of freedom, 

the virtual-reality hardware is expensive and requires specialist knowledge 

to implement the software. A single glove is also inherently limited to five 

independent objects, which can be extended by additional gloves thereby 

quickly becoming very expensive and more complex to implement.

A simpler system based on imaging the user’s fingertips should provide the 

same degrees of freedom without the high cost, complex hardware interaction 

and limitation to 5 objects.

8.5.1 Imaging the user’s hands

The webcam used for imaging is fixed above the bench and pointed down at 

the bench. The small aperture ensures the depth of field is sufficient so that
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the volume in which the user’s hands move is in focus. The bench below 

the camera is covered with black cloth to remove any detail of the bench top 

which might interfere with the image processing. By using black gloves the 

hands of the user can become indistinguishable from the background and by 

attaching map pins with bright heads to the glove’s fingers, the finger tips 

have high contrast against the background.

This results in the image containing several bright discs against a dark 

background which makes the image processing straightforward. By using 

only one camera, obscuring the map pins can become an issue and the image 

processing can not maintain the positioning of the associated trap.

By placing a webcam close to the volume where the user’s hands will be, 

the imaged hands will appear large in the captured image and the apparent 

size will be dependent on the distance from the camera. If they are close 

enough, this size difference will be measurable.

8.5.2 Image processing

Figure 8.6 shows the image processing steps required to translate the image 

into trap positions. The first step is to convert the colour image into a 1-bit 

black-and-white image which is done with a user-customisable threshold to 

allow for changing light levels. This image is then searched for circular pat­

terns which will include the pin heads. In order to treat correctly discs that 

are (partially) obscured, the circle finding algorithm tries to identify partial 

and overlapping circles; this can wrongly identify (discretisation) artefacts 

as circles. In order to limit the influence of artefacts, the resulting circles are 

filtered further to eliminate very small and very large circles; this removes
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Figure 8.6: Flow diagram of the image processing required to transform the 

live image to map pin-positions and then into trap positions.
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single-pixel noise and many large unwanted objects, such as the user’s arms.

The resulting circles are then treated as corresponding to pin-head posi­

tions. The radius of each of the circles is used as a measure of the pin head’s 

z (height) position and the location of the centre of the circle is used as the 

x and y (transverse) position. These positions are compared with the trap 

positions of all the known optical traps and the nearest map pins and traps 

are identified. If the distance between the pin head and the optical trap is 

smaller than a pre-defined distance called the “trap snap” distance, the pin 

head’s position is assumed to be the trap’s desired new position. In order to 

improve the ease of use, the distance between the trap and the pin head can 

be calculated as the distance in 3D, the xy  distance or the z distance; this 

facilitates matching a pin head to a trap.

8.5.3 Trap movement

To ensure that the position of the trap does not jump too far in one iteration, 

there is a user customisable “maximum trap movement” parameter which 

allows the user to limit the distance the trap can move in a single iteration. 

If the pin head has moved from the trap position further than is allowed 

by this parameter, the trap is moved by the maximum distance over several 

iterations towards the current pin head position. The software does not 

maintain a history of previous positions of the pin heads. The trap will 

always move towards the current position, thus tracing a path quickly does 

not mean the trap will follow that path. This functionality was chosen to 

eliminate spurious movement causing the traps to trace an unwanted pattern. 

Careful use of the “maximum trap movement” parameter allows the optical
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traps to keep hold of the trapped particles by ensuring the traps move within 

an upper speed limit.

8.5.4 Layout of the interface

To ensure the visual feedback element of the interface is utilised, the main 

display of the interface is composed of the live image from the optical tweezers 

with information overlaid. Figure 8.7 shows the interface in use; the inset 

shows the information overlaid onto the live image.

A small section of the interface contains the live image of the user’s hands 

with the position of the traps overlaid to aid tracking. This area of the in­

terface can be switched between the live image of the user’s hands, the un­

cropped image of the tweezers and the various one-off configuration options.

The final element of the interface is the 2  positioning. On the bottom left 

of the main image, the yz  position of the traps and the map pins are plotted 

in red and white respectively. This allows quick and easy identification of 

the height of the traps relative to the map pin positions.

8.5.5 Uses of the interface

Because of the nature of the interface, it is most suited to applications where 

real-time, interactive manipulation of the traps is required. One of the most 

important elements of the interface is the simultaneous independent manipu­

lation of multiple traps, which is ideally suited to collecting multiple particles 

and bringing them together. The interactive nature allows the user to com­

pensate for the small movements or re-orientations of the trapped objects in
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Figure 8.7: Screen capture of the visual interface of the hand-based interface.

The main image which consists of a cropped section of the live 

microscope image of the optical tweezers with data relating to the 

trap and pin-head locations overlaid. The image in the bottom 

shows a live image of the user’s hands and the graph in the middle 

left is a yz plot of the trap (red) and map-pin positions (white), 

showing the relative heights.
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an intuitive manner which gives rise to the possibility of building macro-scale 

objects by assembling the components by hand.

The multiple traps can be used to either trap multiple objects or to hold 

extended, anisotropic objects in a given orientation. If a single trap is used 

to hold such anisotropic particles, they will align themselves with the single 

trap to minimise their energy. If the object is extended, the orientation 

may play an important role in the experiment and by using multiple traps, 

greater control of the orientation can be gained. By using the interactive 

interface, no prior knowledge of the arrangement of traps is needed, which 

can be adjusted to any changes.

8.5.6 Examples of applications of the interface

To demonstrate the potential of such an interface, several difficult-to-manipulate 

objects were manipulated using the user’s hands. The first example is using 

three traps to directly manipulate a single red blood cell. In this demonstra­

tion, the ability to compensate for small movements by the blood cell allows 

the orientation of it to be controlled.

The second example uses silica beads to indirectly trap and manipulate 

a metallic particle. The metallic particle will scatter away from light and so 

cannot be trapped directly. By using the hand interface to manipulate four 

silica beads, it is possible -  in fact, relatively easy -  to surround a metallic 

particle and move it.
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Re-orientation of the blood cell 
in a plane

Full 3D control of traps

Figure 8.8: Selected frames from a movie showing the manipulation of a sin­

gle red blood cell using the hand-based interface. Images of the 

user’s hands (left of each frame) show the position of the map- 

pins used to determine the positions of the user’s fingertips The 

microscope images (right of each frame) show the trapped red 

blood cell moving with the traps. The red circles indicate the 

positions of the map-pins overlaid onto the microscope image. 

The top two frames demonstrate the ability of the system to re­

orientate the red blood cell using multiple traps. The bottom 

two frames demonstrate this can be done in 3D space.
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M anipulating a single red blood cell

As mentioned, one of the possibilities of manipulating multiple traps is the 

ability to control an extended object in a more controlled way than if only one 

trap was used. To demonstrate this, a single red blood cell was manipulated 

using two traps, each controlled by a fingertip. The large size of the blood cell 

(~  15pm) and its anisotropic structure made it a useful test. Sample images 

taken during a series of manipulations is shown in figure 8.8. In the lower 

images of figure 8.8 show the red blood cell being re-orentated in a higher 

z plane, which can be seen by the larger apparent size of the pin-heads and 

the out-of-focus red blood cell.

In a single trap, the cell will try to minimise its energy by placing as 

much of itself in the beam as possible. In extreme cases, the cell will fold 

itself up to increase the overlap between the cell and the beam102. If the cell 

maintains its form it will tend to centre itself and align its long axis with 

the beam axis (the orientation of the short axis is outwith the control of the 

experiment).

By using two closely separated traps, the centre of the cell is then held 

between the two traps and the direction of the short axis is along the line of 

the traps. The long axis is again along the direction of the beam. Thus by 

manipulating the centre of mass of the traps, the position of the cell can be 

altered, and by altering the relative positions of the traps, the orientation of 

the cell can be changed.

By introducing a third trap, it should be possible to alter the direction 

of the long axis of the cell and fully manipulate the orientation of the cell. 

Unfortunately in our experiment the trapping spot in the axial direction was
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too extended to allow such manipulations. However slight tilting can be 

achieved, showing the system, with further improvements, may be able to 

perform such manipulations.

Indirect manipulation of a m etal particle using multiple silica 

beads

When a metallic particle is near a focussed light beam, the scattering force 

of light reflecting from the surface is large and pushes the particle away from 

the high intensity. Because of this, conventional optical traps cannot hold 

metallic particles and other methods are required (as discussed in section 

8.2). By using the hand interface, several silica beads (which can be trapped 

effectively) can be brought into contact with a metal particle and used to 

manipulate it.

Figure 8.9 shows an example of such indirect manipualtion.The user posi­

tions his hands to orientate the silica beads into a square around the metallic 

particle before moving the beads into contact with the metallic particle and 

moving it across the screen.

8.6 Sum m ary

By careful design and implementation of holographic algorithms, real-time 

interactive interfaces can be realised and frame rates of upwards of 10 frames 

per second can be achieved on desktop PCs. When manipulating many 

particles it is useful to have many degrees of freedom; however, intuitively 

using those degrees of freedom requires a well-designed interface.
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Figure 8.9: Selected frames from a movie showing the manipulation of a hard- 

to-trap metal particle. Images of the user’s hands (left of each 

frame) show the position of the map-pins used to determine the 

user’s fingertip position; microscope images (right of each frame) 

show the trapped silica beads (the white discs with dark border) 

which can be used to manipulate the metal particle, which can 

also be seen (dark irregular shape). The ability to quickly and 

intuitively alter the arrangement of the traps can be seen as the 

beads are brought into contact with the metal particle.
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An intuitive interface can be based on the position of a user’s fingertips 

to control the position of optical traps. Such an interface can be created 

using a single camera which images high-contrast objects attached to the 

tips of the user’s fingers. Analysis of the images can give information on 

the 3-dimensional position of the fingertips which can be used to position 

optical traps using holographic optical tweezers. This interface can be used 

to interactively and intuitively manipulate multiple particles. These can in 

turn be used to manipulate objects which can not be trapped effectively using 

conventional optical tweezers.
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Chapter 9 

Conclusions

9.1 B ose-E instein  condensates

The analogies which can be drawn between laser light and BECs are both 

wide ranging and powerful. An array of diverse optical systems can be imple­

mented in BECs ranging from lenses and resonators to prisms and interfer­

ometers. Many of the systems perform well even with modest non-linearites, 

and some generalisations can be drawn. Better understanding of such analo­

gies will allow rapid development of a range of BEC systems based on their 

optical counterpart.

Chapters 3 and 5 investigated the similarities by modeling examples of 

optical systems in BECs. Chapter 3 demonstrated that modes similar to 

Hermite-Gaussian modes can be created in a BEC which is confined in a 

resonator. The similarity to a Hermite-Gaussian mode decreased as the non- 

linearity of the condensate was increased. However notable characteristics of 

the Hermite-Gaussian modes were still maintained in the non-linear system. 

Most notably the extended nodal strucure of the resulting mode.

Chapter 5 simulated a BEC in a more complex optical system, a vortex 

sorter. The aim of such a system is to decompose a the input field into a two 

sub-sets of the possible orbital angular momentum (OAM) states. Such a
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sorting process could be repeated indefinitely operating on different sub-sets 

until the required level of sorting has been achieved. In the idealised sorter 

which was modeled, the fidelity of a non-linear BEC was again higher than 

might be expected. The possibility of more accurate rotation of a non-linear 

condensate could further improve the sorting efficiency.

Chapter 4 investigates the ability to Fourier transform a BEC. This would 

allow the use of optical Fourier holography techniques to be applied to BECs 

which would allow straightforward, almost arbitrary state preparation. It was 

discovered that, similar to graded-index fibres, the propagation of a linear 

BEC in a harmonic trap will Fourier transform the BEC by waiting for a 

quarter of a trap period.

9.2 Light Shaping

Chapter 7 investigated a method of shaping a monochromatic light beam 

into an arbitrary 3D intensity pattern. The method was based on the same 

assumptions as those made by Shabtay72 which was built-on and generalised 

to allow for hologram generation. The method was tested by experimentally 

shaping a light field using a very simple setup, showing its potential strengths.

With optical tweezers becoming more widespread as a tool, some of the 

problems facing their development become problems of optimisation. In 

many cases the components of research tweezers systems are comprised of 

commercially available, and well understood, components. Equally the basic 

calculations required to produce holographic optical tweezers are well un­

derstood. Nevertheless there are large and important gains to be made by
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optimising each component. Once the trapping strength is sufficient to hold 

extended objects and the calculations can be performed in real-time, the 

potential of optical tweezers can be more fully realised.

It was this goal which lead to creating a fingertip based tweezers interface 

described in chapter 8, which can be used to manipulate particles and cells 

using the user’s fingers as guides for the position of the optical traps. Such 

a system could find many widespread uses in applications which require an 

intuitive and user-friendly means of manipulating optical traps in real-time.
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Chapter 10 

Outlook

Much of this work has been laying the foundations for further research. Con­

siderable time has been spent in designing and developing the bespoke soft­

ware and exploring initial questions. Understanding the similarities of BECs 

and laser light allows many light-based phenomena to be applied to BECs 

quickly and offers an alternative interpretation of BEC behaviour.

Specifically, the ability to Fourier transform a BEC leads to the possibility 

of using well established Fourier holography techniques to be adapted in order 

to shape a BEC. There are several major considerations in such a system, 

including the experimental system for imparting the hologram and insuring 

the algorithm incorporates any short-comings in that system. The possibility 

of shaping a non-linear condensate is also of great interest, as this is where the 

analogy with laser light no longer holds. However, the computational load 

of calculating such a hologram, the strong dependence on the non-linearity 

and the ability to match the non-linearity between the model and experiment 

may limit the usefulness of such a system.

Research into creating an algorithm to calculate the optimum hologram 

to shape a BEC into a desired state is ongoing and is being combined with 

research into methods of applying a hologram to a BEC which could result 

in Fourier holography being used for state preparation.
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Appendix A  

Software U ser’s Guide

A .l  Introduction

Welcome to the user guide for the Optics group’s BEC client-server software. 

This guide describes the basic principles of the software and how to effectively 

use it. It does not cover details of the underlying software or how to develop 

new plug-ins or additional software

A. 1.1 Who should use this guide

This guide is intended for people who will be using the software to enter 

simulations to be run either by their own computer, or by a dedicated cluster. 

It is also suited to a new developer who wishes to gain an overview of the 

user-end of the software and the flow of information before beginning the 

Developer Guide.

A. 1.2 The software

The software can be broadly split into two parts: the client and the server. 

The client part of the software calculates the simulation based on information 

given to it by the server. The server on the other hand cannot perform
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calculations and only stores to settings for a simulation and maintains the 

list of simulations to run.

When entering a new simulation to run, it will be through the server 

interface which will enter the simulation into the list of things to run. When­

ever a client then connects, the server picks the most appropriate simulation 

and gives it to the client.

A .2 Inform ation flow

When you enter a new simulation to run, the details of that simulation have 

to be passed around between the client and the server in order for it to be 

calculated. The client periodically checks the server if any new details have 

been entered, and if so, downloads them to be run. The client also request 

any additional files which are required to run the simulation. Once the client 

has finished, it informs the server and sends information about the simulation 

back to the server.

A .2.1 Why client-server

A client-server model allows the task of controlling the simulations and run­

ning the simulations to be separated. This means that you can create a list 

of several jobs (or several hundred) while a simulation is also running and 

the new jobs will be processed in turn. By separating the two tasks, also 

results in better stability. If one of the simulations crashes the software, the 

list of tasks still to be done is maintained and can be continued. However the 

two main benefits of client-server is that the client and server do not need
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to be on the same computer (or in the same country) and that there doesn’t 

need to be a one-to-one ratio of clients and servers running. In-fact it is best 

configured if there is a single server and many clients running simultaneously.

A .2.2 Entering details to the server

If you wish to enter the details of a new simulation, it must be done via the 

server software. The server maintains a list of all the possible simulation 

steps as well as all the available options which can be set for each of those 

steps.

Once the simulation steps and the options for each step have been chosen, 

the simulation is entered into the list of simulations to be run by the clients. 

Every-time a client connects, the server checks this list and picks the most 

appropriate simulation and gives its details to the client before removing it 

from the list.

A .2.3 Between the client and sever

When the client requests a new simulation, the server chooses the most ap­

propriate one and sends the details to the client. The client then checks 

to ensure that it can perform the simulation and requests and required files 

from the server. Once the client has finished the simulation, it reports back 

to the server and sends any logged information which the user might want 

to see.
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Figure A.l: a. Login dialog when trying to access any of the BEC pages, b.

Login page (login.php) which can be used to login to the server.
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A .3 Logging In

When you first visit the server, you will be required to log in. This is to ensure 

only authorised users can see or edit jobs and to keep track of who created 

which simulations. The login will be of one of the forms shown in Figure 

A.l, both require the same username and password. Once you’re logged in, 

you should be able to see all the simulations which you have access to on the 

server1 as well as the ability to create new simulations and edit old ones.

Logging in from multiple locations is permitted, however you shuold not 

share your details with anyone else. If someone else wishes to use the system, 

contact the administrator to create a new user account for them.

A .4 W orking w ith  jobs

When you define a new simulation to the server, it stores all the relevant

details as a “job”. This job contains the details of the simulation including

all the steps and the options for each one. When the client connects to the

server, the server sends the job to the client which stores it as a JobDef file

(often named “JobDef.xml” in the directory associated with the job). This

file is a standard XML file which can be edited or created by hand if the

server is not required.

To help organise the list of jobs, it is possible to store them in a heirarchy.

To do this each one can contain any number of “child jobs” and thus act in

xIt has been observed that if you have trouble accessing information after logging in 

using the password box shown in Figure A. la  you may need to goto the login option to 

enable you to see it.



Appendix A. Software User’s Guide 169

a similar way to the folders on a computer drive. A job which has child jobs 

still acts as a normal, as their behavior is independent of the location in the 

hierarchy. A job can be referenced either by its JobID (a unique reference 

number) or by its name. When referencing a job by its name, each level in 

the hierarchy is separated by a back slash character “\ ” .

A.4.1 Viewing jobs

To view the list of jobs currently stored on the computer, click on “list jobs” 

in the heading of any of the server pages2. You should be presented with a 

list similar to that shown in Figure A.2. The list contains several pieces of 

important information:

1. the name of the job - this name is relative to its parent job and so will 

not have any \  characters,

2. the number of child jobs - in brackets is the number of child jobs the 

job has. The first number is the number of children directly under the 

listed job while the second number is the total number of jobs (not 

including the listed one) in the hierarchy under this job,

3. commands related to the job - if you have permission to, it is possible 

to copy or edit the job or create a new child job under the current one 

directly from this page,

4. priority - the priority of a job is used when the server decides which

2 “List Jobs” links to listjobs.php by default. If no link is present, try entering the URL 

directly.
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Figure A.2: Screen captures of the list of the list of available jobs and their 

status.
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job should be processed first. The higher the priority the sooner it will 

be processed,

5. status - The status of the job. It is also possible to change this status 

from the listing page using the commands listed,

6. the time it was added to the list - when the user entered all the details 

of the job,

7. the time when a client finished computing it (if already processed) - if it 

has been processed already, this records the time when it was finished.

When you click on the name of a job, you will be taken to the details of 

that job which are listed on a page similar to that shown in Figure A.4. The 

important details are:

1. the job name - the full name of the job which includes its parents,

2. the job creator - who originally created the job,

3. priority - the priority of the job. A job with a higher priority will in 

general be sent to a client before a lower one,

4. status - the current status of the job and options to change the status,

5. description - the description of the job which was entered when it was 

created,

6. comments - comments about the job. These can be entered at any time 

by anyone who can view the job. This allows for additional information 

to be added without disrupting the original specifications. Comments 

can not be removed or edited,
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7. simulation setup - the list of steps which the simulation must take,

8. parameters - the settings for each of the steps,

9. edit button - if the job is in an editable state (see section A.4.3) you 

can change the settings and update them,

10. add components - if the job is in an editable state, it is possible to 

insert new components at any point,

11. child jobs - a list of any child jobs presented in a similar way to the 

main list jobs.

A .4.2 Creating jobs

Creating a new job is a simple six step process which uses the “add job 

wizard” to help guide you through the process of creating a new job. This 

process is illustrated in Figure A.3

1. Select the parent job (or no parent if appropriate3),

2. Click either Add new job or Child - this brings up the new first screen

of the new job wizard,

3. Enter the name, description, priority and how many steps you’d like to 

add (zero is an acceptable value and is often used to create a “folder” 

job to organise child jobs,

3If no parent is required, navigate to list page and use the add job option in the page 

banner.
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Figure A.3: Screen captures of the new job wizard which helps you create 

a new job. The wizard has three main steps: Main details of 

the job, the required components of the job and the parameters 

of each of those components. Once the wizard is completed the 

resulting job is displayed.
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4. In the component selection page, select the steps which the simulation 

requires (in the order they should be evaluated) from the list of available 

steps,

5. The final page of the wizard requests the values for every parameter 

of each of the steps. If the required value is not the default, change it 

here. All these values can be changed later,

6. Once all the details have been entered you should be taken to the new 

job’s page where the details can be edited if required and the job can 

be added to the list of jobs to be processed.

It is important to remember that jobs are not added to the list of jobs 

to  be executed im m ediately4 (see section A.4.4 for details).

If there is an existing job which is closely related to the job you wish to 

create, you can copy the existing job and then edit the details which need 

to be updates. For the majority of jobs, you can create a copy either at 

the same hierarchical level, or as a child of the original job. Whichever way 

you choose to copy the job, it is possible to move it to anywhere within the 

hierarchy (see section A.4.3 for details). If you are able to copy an existing 

job, the “Copy” or “Copy as Child” options will be presented in either the 

list view of the available jobs, or in the job details page of the original job. 

N ote. Editing a previously copied job has no effect on the copied ver­

sion. The copied version is copied as a snapshot of the original at the 

moment of copy and no relationship between the two are maintained.

4They are set to “Stopped” by default to allow last-minute edits and a final check of 

the details.
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A.4.3 Editing jobs

If you wish to change the details of a job, you need to go to the details page 

for that job and ensure the job status is stopped (Otherwise you can 

only change the priority and add comments). When the job is stopped, the 

details page should look similar to Figure A.4.

Editing the name

The large text edit box at the top of the page should contain the full name 

of the job including any parent jobs separated by backslash (\) characters. If 

you wish to change the name of the job without affecting its position in the 

hierarchy, edit only the part of the name after the last backslash and click 

the button to update the name.

It is also possible to move the job around in the hierarchy using the 

rename option. By changing the full name of the job, that job can be moved. 

Listed below are several examples to show how to effectively rename a job.

Rename a job without moving

\Parentl\Parent2\Job —► \Parentl\Parent2\N ew _N am e or 

\Parentl\Parent2\Job —► N ew JV am e

Move a job to becom e a child of its grandparent

\Parentl\Parent2\Job —> \P aren tl\Job  or 

\Parentl\Parent2\Job —* ...\Job

Move a job to becom e one of the main jobs

\Parentl\Parent2\Job —► \Job
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Test and Debug » Jobs for Screenshots » Long Job
Added by Graeme 
Status StLas JMal

Pnonty [ ll| «] 55 [ |*«l]

Comments

Add your comments here

I Add |
Description

Component Setup

Settings^ 1) Delete Insert Gauscian(2) Delete RK4 S. Step(?) Delete
Resolution 7 <54 Width 2 14142135623730950488 Delta T 2 5

Width 7 12 Offset 2 0 Step Sue 2 5E-4

Non-Lmear Coeff 7 0 Overwrite 2 YES Imaginary Time ? NO

Flush Output 2 No ReNotmahse 7 YES Trap Multiplier 7 1

GausnanShape 2 Solid Sphere Monitor Normalisation Error 2 YES

Monitor Location of Max 7 NO

Monitor STD DEV 7 NO

Monitor Rand Foints 7 0

Monitor Filename 7 momtorresults txt

Threads 2 1

FFTWFlags 7 FFTW_ESTIMATE

Save MCV File 2 NO

MCV Filename 2 output.mcv

MCV Max 2 1

MCV Min 2 0

MCV Calculate Max 2 Every Frame

CV Image Every Steps ? 1

MCV Compression Level 2 O-Uncompressed

Test and Debug » Jobs for Screenshots »
Long Job [ Change Name 1

Pnonty [ ■•! ] 55 [ | •*•]

S 3
Description

Component Setup

| Edit Parameter* 1 
Settings! 1) Delete 

Resolution ? 64

Width 2 12

Non-Lmear Coeff ? 0 

Flush Output 2 No w

Insert GautsiaiU-) Delete 
Width ? 1 4142135623730950488

Of&et 2 0

Overwrite 2 VES «*

ReNormahse 2 YES v

Gaussian Shape 7 Solid Sphere w

RK4 S. Stept?) Delete 

Delta T  7 5

Step Sue 2 5E-4

Imaginary Time 7 NO

Trap Multiplier 2

Monitor Normalisation Error 2 YES 

Monitor Location of Max 7 

Monitor STD DEV 2 

Monitor Rand Points ?

Monitor Filename 7 

Threads ?

FFTWFlags 2 

Save MCV File 2 

MCV Filename 2 

MCV Max 2 

MCV Mm 7 

MCV Calculate Max 7 

CV Image Every Steps ?

MCV Compression Level 2

NO v 

NO v

FFTW_E STIMATE 

NO v  

oulputmcv

components after Comp or

Figure A.4: Comparison of the view of a job which is ready to be processed 

(top) and so the job can not be edited and a stopped job (bot­

tom) which can be edited.
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Move a job into another position in the hierarchy

\Parentl\Parent2\Job —> \P aren tl\N ew JP aren t\Jo b  or 

\Parentl\Parent2\Job —> ..\N ew _Parent\Job  or

When moving the job around within the hierarchy, the parents which 

you move the job into don’t have to already exist, empty jobs are created to 

ensure the hierarchy ends up being of the form of the new name5.

Editing the setup

It is possible to alter the steps which the simulation is going to take by 

deleting any of the steps by clicking on the delete option next to that step. 

Deleting a step is permanent and irrecoverable and inserting the same step in 

the same place does not restore any non-default settings which were entered.

You can also add a new step into any position within the simulation by 

using the insert options at the bottom of the page6.

Unfortunately steps currently can not be moved around within the simu­

lation without deleting and re-inserting either that step, or the steps around 

it.
5This also means that if a parent is misspelt when moving a job, many additional empty 

parent jobs can be created. Care must be taken to ensure that the name of existing jobs 

are entered correctly.
6The built-in step settings should not be present more than once within a simulation. 

If it is, only the instance closest to the beginning is used for the entire simulation.
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Changing the parameters

When a job is in a stopped state, all the available parameters become editable 

(either text boxes or drop down menus depending on the parameter). When 

changing the parameters, it is important to enter the type of data the server 

is expecting, i.e. not entering the word “high” into a parameter which is 

expecting a number. There are three types of data which can be entered 

using a text box:

String any text, is generally used for descriptions and filenames. If used for 

a filename, care needs to be taken that characters which can not be 

used in files are avoided ( ‘*’, *?’, ’\ ’, ‘/ ’, *:’)

Float any number. Numbers can be entered in scientific notation (IE-6 is 

allowed)

Int integer numbers.

There is also an extension to the numeric types (threeintpoint and threep- 

ointt) which are used to describe three numbers in one parameter (used for 

defining three-dimensional parameters). There are three possible methods of 

defining a threeintpoint or threepoint number:

“12” If only one number is present, all three numbers are assumed to be the 

same and equal to the entered number.

“12,6” If two numbers are present, separated by a comma, the first two 

numbers (often x and y) are assumed to be the same and equal to the 

first number entered while the third number of the threeintpoint or 

threepoint is assumed to be the second number entered.
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“12,6,3” If three numbers have been entered, they are used as the three 

numbers of the threeintpoint or threepoint.

To check which type is expected for any of the parameters, click on the 

question mark next to the parameter which will pop-up a small window 

explaining the details of the parameter including its type and description.

A .4.4 S tarting  jobs

When a new job is created it is not added to the list of jobs to be processed 

automatically; it is placed into a state named stopped.

S ta tes of a job

S topped Default for a new job. Allows all the details to be edited 

and changed before starting

R eady The job is in the list of jobs to be processed. Changes (apart 

from priority changes and comments) are locked-out.

P aused  The job is ready to be processed, but is temporarily removed 

from the list of to be processed.

S ta rte d  The job is being processed by a client computer.

F inished The job has been processed by a computer and the results 

have been reported.

To add a job to the list of jobs to be processed, the state of the job has to 

be changed to “R eady” . This can be done by clicking on “S ta r t” which 

is next to the status indicator for the job (this can be found either on the
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details page for the job, or in the listing of the jobs parent). If the current 

state isn’t Stopped, the “Start” option is not available, see below for the 

required tasks to start the job:

Stopped : Click Start

Paused : Click Resume

Started : Click Force Restart —► Start

Finished : Click Restart —► Start

It is important to note that the job will not start processing immediately, 

a free client needs to request a new job and so it is not unusual for a job to 

remain at “Ready” for a time.

A .4.5 Stopping jobs

A job status of “Stopped” means the job will not be downloaded by a client 

and all the parameters of the job can be edited. Stopping a job results in it 

being removed for the list of jobs to be run. Stopping a currently running 

job does not stop the client running that job. The server does not inform 

the client that it has been stopped and the client will continue running the 

job until it is finished.

All jobs can be stopped at any time by clicking “Stop” next to the status 

of a job.
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Displays a list o f  the available components and their details.

ShortName FileName Long Name Description

Compare To 
File

FF Intensity 
Hofogra

FFT Blur

p_comparetofile.dll

p_int_hobgram.dll

p_fftblur.dll

Compare BEC 
Wavefunction to 
Wavefunction file

Fourier Filtering
Intensity
Hologram

Fourier Gaussian Blurs the BEC using
Blur Founerblum ng

No. O f 
Parameters

Compares the current BEC 
wavefunction to a 
previously stored 
wavefunction.
It is possible to compare 
the complex wavefunction, 
probability density pattern 
or phase.
The Com parison is a sum 
o f  the differences over the 
range o f  the wavefunction.

Calculates an intensity 
hologram which would 
produce the current 
wavefunction after a 
Founer transform

Figure A.5: Screen capture showing a section of the list of available com­

ponents and a description detailing their function. This can be 

accessed from almost every page by clicking on “List DLLs”.



Appendix A. Software User’s Guide 182

A. 5 C om ponents

Each individual step which can be taken in a simulation is performed by a 

“component” . To make using components easier, the server maintains a list 

of the components and the parameters which they require.

A list of the currently installed components can be found by selecting 

“List DLLs”7 from the links at the bottom of each page. This should result 

in a page similar to the one shown in Figure A.5. If you are unsure of the 

function of a particular component, this page can be useful in identifying 

the function of a component as the description listed here often gives useful 

detail as the what the component does.

A .5.1 Parameters

As mentioned, each component has parameters which it requires for success­

ful operation. These can range from simple yes/no questions through numeric 

parameters and filenames to mathematical functions. Unfortunately because 

the server cannot know exactly what the DLL requires in its parameters it 

is limited to only a handful of datatypes:

s trin g  A number of ASCII text characters. This should only be used to 

represent alphanumeric characters. If binary data is required, it should 

be stored in a file and uploaded.

float A floating point number. This can be represented as a decimal number 

or in scientific notation (for example, -IE-15 is a valid float number). 

If a non numeric entry is detected, the server returns an error

7This links to listdlls.php and if no link is present, they URL can be entered manually.
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int An integer number. If a non integer number or non numeric entry is 

detected, the server returns an error

file A user defined file. This requires the user to upload a file from their own 

computer which is stored on the server and given to the client when 

required. If a file is not uploaded, no error is given. Check with the 

documentation of any specific component as to the file requirements 

and consequences.

threepoint Three floating point numbers. The threepoint datatype is used 

to represent three numbers in one parameter (often x,y and z data). 

There are three ways to enter a threepoint: a single number (e.g. 

“12.5”) which results in all three numbers being equal to the num­

ber given, two numbers separated by a comma (e.g. ”12.6, 6.3”) which 

results in the first two numbers of the threepoint being equal to the first 

given number and the last threepoint beign equal to the second num­

ber, and finally three numbers speerated by commas, which results in 

each of the threepoint numbers being equal to the three given numbers.

threeintpoint Three integer numbers. This has the same behavior as the 

threepoint datatype, except each of the numbers must be an integer.

A .5.2 Adding new components

If you have a component which is not represented by the server, you can add 

the details to the list of available components. To begin the add component 

wizard click on “Add DLL” link at the bottom of any page.
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W arning. It is very important to ensure the datatypes and pa­

rameter names you enter here are correct and can lead to undefined 

behavior and loss of data if they are incorrectly represented. If you 

are unsure get help from the developer of the component.

The first step in adding a new component is to give it a name and de­

scription to help identify it and give other users an idea of what it should 

be used for. All components are visible and usable by other users, so please 

ensure that the name and description are meaningful and if the component 

is very specific or in testing please mention that.

Once the name and description have been entered, find the DLL file which 

is associated with the component and upload it to the server8. You will also 

need to enter the number of parameters required by the component.

In the next page enter the details of the individual parameters of the 

component. The order in which you enter them here defines the order in 

which they will be displayed to the user. If there are many parameters, try 

to group them together in terms of function and place the most important 

or relevant to the top.

It is often useful to select good default values to reduce the number of 

edits the user will have to perform. Remember to ensure the default value 

is of the correct form. Defaults are required for all the datatypes except the 

“file” datatype.

After you have entered all the details, click ” check parameters” to verify 

all the details entered are correct and then click ” add parameters” which will

8 Check with the adm inistrator if DLL syncing is enabled on the server to find out if 

this step is required
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update the component to include the parameters. The component can now 

be used in a simulation.

A .6 Client software

The client software is the software which performs the calculations of a sim­

ulation. The client software can be seen as a set of two units: the DLL 

files which perform the individual steps of a simulation and a shell program 

which coordinates the individual DLLs and communicates with the server to 

get new jobs.

A. 6.1 Installing

Once you have obtained the software package, it can be installed by unziping 

the package and copying the folder to its desired location. No other installa­

tion sets are required. The other method of using the client software is to use 

a centralised version shared across a network. Check with the administrator 

if such a setup is enabled as it has several advantages over local installation 

onto a computer.

Once the software is installed (or you have access to a shared installation) 

ask an administrator to ensure the settings are correct.

A .6.2 Running

To run the application, double click on its icon. If no custom options are 

detected, it will use its built-in defaults. Once it has started, you should see
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all of the windows9. The client does not automatically start processing any 

jobs on startup (see section A.6.5).

A .6.3 Options

Selecting “Parameters” from the “File” menu brings up the options dialog as 

shown in Figure A.6. The first seven of these options are the various URLs 

which are used to communicate with the server and retrieve jobs and files. 

These should only be changed if you are sure of the new values. Below the 

URL options is the username and password the client should use to connect 

to the server. By default this is a “Machine” user. If however you would like 

the client to use your own username or a client specific username, enter the 

details here.

The directory options allow you to change where the client looks for the

DLLs associated with each component and where it should store any results.

Altering the DLL location can allow you to alter the DLLs and run specific

jobs using the altered versions without affecting the other clients using the

common DLL pool.

The final options relate the program as a whole. The process thread

priority allows you to alter the priority of the processing parts of the program.

This allows the processing of jobs not to affect other processes by only using

spare computing time (if set to “Idle”). By increasing the priority, the client

program can be made to run at the expense of other programs10.

9The windows may appear on top of each other and to see them all you may have to 

move them.
10This is not recommended as the computer can become unresponsive if the client uses 

too much computing time.
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E n te r  P a s s w o r d  to  u n lo ck  o p tio n s U nlock OK

s e r v e r  P r o p e r t ie s

N ew  jo b  URL h t t p : / / o p t  1 /b e c / s h o w jo b . p h p ? a c tio n = h ig h e s t& a s X M L = 1 & a u to S ta r t=

J o b  b y  ID  URL h t t p : / / o p t  1 /b e c / s h o w jo b . p h p ? id = % s& a sX M L = 1 & a u to S ta r t=  1

F in ish e d  jo b  URL h t t p :/ / o p t  1 / b e c / s h o w jo b  ,p h p ? a c t io n = f in is h e d & id = % d

G e t File URL h t t p : / / o p t  1 / b e c / g e t f  ile . p h p ? id = % s

G e t DLL URL h t t p : / / o p t  1 / b e c / g e t f  ile . p h p ? d ll= % s

U p lo a d  Log URL h t t p : / / o p t  1 / b e c / a d d lo g . p h p ? id = % d 8 d o g = % s

S h o w  J o b  URL 

U s e rn a m e

h t t p : I f  o p t  1 / b e c / s h o w jo b . p h p ? id = % d  

P a s s w o r d

M ach ine j  * * * * * * * * *

DLL D ire c to ry U :\M y BEC W o rk \P ro g ra m s \P ro c e s s  C lien t v l  .0\DLLs

J o b  D ire c to ry U :\B E C -Jo b s

C a n c e l

P ro g ra m  O p tio n s

P r o c e s s  t h r e a d  p rio r ity

Id le  S ' A u to m atica lly  d o w n lo a d  n e w  jo b

Figure A.6: The options window which allows you to alter the parameters 

which the client uses. Many of the parameters are the URLs 

which are used to communicate with the server and any changes 

to these can lead to unexpected results. Other options include 

the locations of the DLLs and the storage location of any results 

as well as the priority the system should run at on the local 

computer.

http://opt
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The “automatically download new job” option enables the client to try 

and download a new job once its finished with any current job. enabling this 

option results in the client running unattended and will continue to process 

jobs until there are no new jobs available on the server.

A .6.4 Windows

The client software is made up of 4 windows:

Main W indow The main window contains a representation of the current 

simualtion which includes all the steps and paramters and gives the 

user an indication of the progress of the simulation.

Job Queue The job queue window holds the list of jobs which are to be 

run by this client. This may include specified jobs from a server, jobs 

from a local file as well as the most appropriate job from the server.

Component Log The component log keeps track of reports from the indi­

vidual components and any errors which they may have.

Application Log The application log tracks events and errors given by the 

main application.

Main W indow

The main window shows a representation of the current (and previously run) 

jobs. The main portion of the window is made up of a list of the jobs which 

have been run and the currently running job. Each of these jobs can be 

expanded by clicking on the plus symbol next to their name which reveals
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Process Client v1.0

-  ^  BEC Focussing  

-  §  R es  =  64 , 2D

-  C* Focus p o w er =  0 .5  

+ 1. S e ttin g s

+ 2. I n se r t  G aussian

+ 3 . P h a se  Im print

-  §  6^RK4 5. S tep  

D elta T =  7

S te p  Size =  5E-4

Im aginary  Time =  NO

Trap Multiplier =  1

M onitor Norm alisation Error =  YES

M onitor Location of Max =  NO

M onitor STD DEV =  NO

M onitor R and Poin ts =  2

M onitor Filenam e =  m o n ito rre su lts .tx t

T h read s  =  1

FFTW Flags =  FFTW_ESTIMATE 

S a v e  MCV File =  YES 

MCV Filenam e =  64  fo cu s  = 0 .5 .mcv 

MCV Max =  1 

MCV Min =  0

MCV C alcu late  Max =  Every  Fram e 

CV Im age  Every  S te p s  =  200 

MCV C om pression  Level =  9-Maximum

P ro cess  Client v l .0  P ro c ess in g ... P rocessing  6 . RK4 S. S tep

Figure A.7: The main window of the client user interface. A large portion 

of the window is a list of the jobs which the client is processing. 

This list can be expanded to show the steps of the job and each 

of the steps can be expanded to show the parameters for that 

step.
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the individual steps used by the job. Each of these can also be expanded to 

show the individual parameters for that step. As the steps are performed, 

the symbol next to the step changes to show they are being processed and 

once they are completed, the symbol changes once again to reflect this.

Along the bottom of the main window shows the current status of the 

job which includes a progress bar to indicate the progress of the current 

component.

Job Queue W indow

The Job Queue window contains a list of the URLs of jobs which the client 

should process. This list can also include local files11 and keeps track of jobs 

which the client has processed since it began running. The controls in this 

window allow you to manipulate this list by adding new jobs, removing jobs 

and manipulating the order in which they are processed.

When the client has finished processing a job, it scans through the list 

from top to bottom to find the next job which is waiting to be processed. 

By manipulating the order of the list you can specify which jobs should be 

processed first. Because this list is only checked when the job is finished, 

moving a waiting job to a position above the currently running job has no 

effect on the current job. Equally, rearranging the previously processed jobs 

alters nothing about those jobs.
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Job Queue Q

< Job
Add Server Job 

Add XML File

Add Custom,.,

Remove Selected

Move Up 

Move Down

Figure A.8: The job queue window which contains the list of jobs which are 

to be processed and those which have already been processed. 

The symbols next to the URL for the job illustrates the current 

status of the job (from top to bottom : warning - a non-fatal error 

occurred while processing the job, error - a fatal error occurred 

which stopped the simulation from continuing, completed - the 

job finished processing successfully, current processing, waiting)

Queue

J http: //opt 1 /bec/showjob. php?id= 105&asXML=l &. 
X ) http: //opt 1 /bec/showjob. php?action=highest&asJ 
^  http: //opt 1 /bec/showjob. php?action=highest&asJ 
Q  http: //opt 1 /bec/showjob. php?action=highest&asJ 
0  http: //opt 1 /bec/showjob. php?id=102&asXML=1 &

< mi
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Component Log

Job | C om ponen t | M essag e Time
..... ... T ....

^ F o c u s  p o w er =  0 .5 1. S e ttin g s Initalizing co m p o n en t " I .  Settings" Fri O ct 20  11 0 9 :2 7  2006

V F o c u s  p ow er =  0 .5 2 . In se r t  G aussian Initalizing co m p o n en t "2. I n s e r t . .. Fri O ct 2 0  11 0 9 :2 7  2006

.p F o c u s  p o w er =  0 .5 2 . In se r t  G aussian S ta rtin g  Processing Fri O ct 20  11 0 9 :2 7  2006

Focus p o w er =  0 .5 2 , In se r t  G aussian Finished p ro cessin g  successfu lly Fri O ct 20  11 0 9 :2 7  2006

Focus p o w er =  0 .5 2. In se r t  G aussian P ro cess  com pleted  in 0 . 17s Fri O ct 20  11 0 9 :2 7  2006

J p F o c u s  p o w er =  0 .5 3 . P h a se  Im print Initalizing co m p o n en t "3. P h a se  I . .. Fri O ct 20  11 0 9 :2 7  2006

I / 1 Focus p o w er =  0 .5 3 . P h a se  Im print S ta rtin g  Processing Fri O ct 20  11 0 9 :2 8  2006

V F o c u s  p o w er =  0 .5 3 . P h a se  Im print Finished p ro cessin g  successfu lly Fri O ct 20  11 0 9 :2 8  2006

•p F o cu s  p o w er =  0 .5 3 . P h a se  Im print P ro c ess  com pleted  in 0 .1 7 s Fri O ct 20  11 0 9 :2 8  2006

J p F o c u s  p o w er =  0 .5 6 . RK4 S. S te p Initalizing co m p o n en t "6. RK4 S. . .. Fri O ct 20  11 0 9 :2 8  2006

■V Focus p o w er =  0 .5 6 . RK4 S. S te p S ta rtin g  Processing Fri O ct 20  11 0 9 :2 8  2006

Figure A.9: The component log keeps track of events related to the indi­

vidual components within a simulation, including start and end 

times, errors, warnings and results returned from the component.
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Component Log

The component log (shown in Figure A.9) keeps a log of all the component 

related events, including initalisation, starting and finishing processing as 

well as any component specific events raised during processing. If a compo­

nent does not behave as expected, the component log can give useful insight 

into the progression of a component. The component log also keeps track of 

the processing time of each component which allows you to profile a given 

component.

Application Log

The application log (shown in Figure A. 10) records all the non-component 

related events. This can include the application starting up, communications 

with the server, failures out-with components. If the client is not able to 

collect a new job or if it fails before processing anything, the application log 

can give insight into the behavior of the application before it failed.

A .6.5 Running jobs

Running jobs on the client software involves adding a job which you’d like 

to be run into the job queue. This queue can be seen in the job queue 

window (Window —> Job Queue) which can be seen in Figure A.8. The 

queue contains the list of jobs which have been run since the software was 

started, the currently running job and any jobs to be ran in the future. The 

symbol next to the job describes the status of it and can change from waiting 

11Local files are designated with a file:// prefix.
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Application Log j_

iip Working Directory : U:\My BEC Work\Programs\Process Client vl.0\Debug 
ip  DLL Directory : U:\My BEC Work\Programs\Process Client vl.0\DLLs 

J p  Job Directory : U:\BEC-Jobs 
ip  Starting Processing Thread 
ip  Process Thread priority now set to -15
.ip Starting queued job 'http://opt 1/bec/showjob. php?action=highest&asXML=l& 
ip  Connecting to server 
i p  Server Return Value : 200 
.ip Creating Directories
ip  Current Job Directory : U:\BEC-Jobs\BEC Focussing\Res =  64, 2D\Focus powei 

XML Data Saved to U:\BEC-Jobs\BEC Focussing\Res = 64, 2D\Focus power = C 
$p  Loaded Job : Found 4 components
ip  BEC Settings: Res (64,64,64), Width (1.20e+001,1.20e4-001,l,20e+001), g=
ip  Wavefunction memory allocated
ip  All required files found
jp  Finished Processing 1. Settings
ip  Loaded Library (Insert 3D Gaussian)
.ip  Process Insert 3D Gaussian completed in 0 .17s 
G  Finished Processing 2. Insert Gaussian 
ip  Loaded Library (Phase Imprint)
.ip  Process Phase Imprint completed in 0.17s 
ip  Finished Processing 3. Phase Imprint 
ip  Loaded Library (RK4 Single Step Size Propagator)

< >

Figure A. 10: The application log keeps track of events within the client 

which are not linked to components (for example, communica­

tion with the server, loading of user settings, initalisation of the 

client).

http://opt
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to processing to a representation of the result of the processing. To the left 

of the list there are a number of buttons which allow you to edit the queue. 

The most useful of these is the Add Server Job and Add XML File.

The other available buttons control the items within the list to order 

them appropriately. The list is run from the top to the bottom and jobs to 

be run can be arranged above jobs which have already completed12.

From a web-server

To add a job which is stored on the server, click the Add Server Job button 

which brings up an additional dialog which allows you to choose either the 

numeric ID of the specific job you wish to run13, or an option to get the most 

appropriate job. If you know the JobID of a specific job you’d like to rim, 

uncheck the get highest priority option and enter the JobID in the text box. 

Otherwise click OK and let the server choose which job should be processed 

next. When you select to get the highest priority job the server enters a 

loop to retrieve jobs periodically. This ensures that if there are multiple jobs 

which need to be processed, the client will work through them. This behavior 

can be changed through the preferences (see section A.6.3).

From a locally stored job

If you have created an XML file to describe the job you wish to run, you can

import this directly using the Add XML File. It is also possible to re-run

12By placing a waiting job above the currently processing job does not alter the status of 

the currently running job, which will complete its processing before begining the waiting 

job.
13Is available from the server details page of the job of interest
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a simulation by adding the JobDef.xml file associated with the simulation 

directly into the job queue, bypassing the server altogether.

A .6.6 Results

When a component is saving files, it places them into the directory assocaited 

with the job. This directory is located in the Jobs Directory which can be 

specified by an administrator (see the user preferences to find out where this 

file is stored14) and the directory structure is similar to the hierarchy of the 

jobs stored on the server. In the folder of each job, the JobDef.xml file which 

holds the details of the job is stored (which allows you to rerun the job at 

any time using the locally stored copy) along with any required files which 

have been downloaded from the server.

When a component saves a file, by default this file should be stored in 

the same directory. By placing this directory on a centralised network drive, 

all the clients can access the same directory and you can access the resulting 

files from anywhere within the network. For maximum compatibility, the 

shared network drive should be mapped to a drive name (as opposed to a 

UNC name)15.

A .6.7 Running unattended

The client has been designed to run unattended once it has the highest 

priority job in the queue (see above). If the highest priority job has been 

run and the queue has been completed, the client will poll the server for new

14 alternatively click GoTo —> Directory.
15If you are not sure about doing this ask an administrator to help.
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jobs periodically. If the server has no new jobs, the client will wait longer 

each time upto a maximum wait time of half an hour in order to reduce load 

on the server. Once a job has been collected, the wait timer is reset to 15 

seconds and the process repeats itself.
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