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Abstract

This study is an investigation o f  the forces developed by a jo in ted  oscillating 

structure resembling a mechanical eel. The structure consists o f  rigid segments that 

oscillate from  side to side to facilitate self-propulsion; this study aims to develop a 

simple numerical method that can be used fo r  the engineering design o f  such a 

structure. The project was undertaken as a natural firs t step towards the design and 

construction o f  autonomous underwater vehicles (A UV) based on this concept.

Published literature on fishlike propulsion and its mechanical implementation is 

investigated before a brief examination o f  the flow  fie ld  surrounding such a structure 

is presented. Simple numerical methods, which try to predict the forces from  this type 

o f  structure are then evaluated before the numerical implementation o f  some o f  them 

are presented.

To evaluate the various numeric methods a physical structure was built and tested in 

a towing tank. The design o f  this structure is presented along with the physical 

measurements from  it. The structure had two moving segments and a head segment. 

The structure was tested in three different scenarios:

• The two segments moving as one with no forw ard  speed

• The two segments moving independently without forw ard speed

• The two segments moving independently with forw ard  speed

As all the numerical methods depend on quasi-empirical force coefficients, their

solutions cannot be directly compared to the measured values. The force  

measurements were therefore used to compute these force coefficients. The 

consistency o f  these force coefficients can then be seen as a validation o f  the 

numerical method. The method that was found to predict the forces best was the 

Morison Equation with Keulegan-Carpenter number dependent force coefficients 

(Graham 1980).

With the best-fit force coefficients, the Morison Equation was found to be able to 

predict the thrust from  the scenario when the two segments moved together to within 

15 % o f  the measured value. However, in the second scenario with the two segments 

moving independently, the generated thrust was substantially over-predicted, in some
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cases by nearly 200 %. The self-propulsion speed was however only over-predicted 

by about 30 % in the worst cases and in most cases by significantly less.

The Morison Equation with Keulegan-Carpenter number dependent force  

coefficients can therefore be seen to predict the average forces acting on a single 

segment oscillating structure well. It can also be seen to predict the self-propulsion 

speed o f  a two segment oscillating structure quite well and can thus be used fo r  

design purposes. This study however shows that the time history o f  the forces  

developed by such a structure is not well predicted  by the Morison Equation and  

neither is the thrust developed in the bollard-pull condition fo r  a two-segment 

structure.
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1 Introduction

In this study, fishlike propulsion is investigated from an engineer’s perspective. As 

such, some parts o f it will be exploring the propulsive methods o f  live fish, as in 

numerous previous studies. In the current study, however the understanding o f  fish 

propulsion is only sought as a means to an end. The real goal o f  this study is to 

facilitate the construction and operation o f man-made under sea vehicles that utilize 

fishlike propulsion.

If fishlike propulsion is ever to become a common form o f under sea propulsion for 

manufactured vehicles it has to have one or more benefits compared to existing 

solutions. These benefits could be better manoeuvrability, higher transport 

efficiency, greater impact resistance due to the lack o f  a propeller, or other 

advantages. Two applications in particular seem to be well suited to this novel form 

o f  propulsion: mine hunting in the surf zone and scientific expeditions into the kelp 

forests. A miniature submarine built like an eel should be as capable o f venturing 

into these two areas as its natural counterpart.

In order to be able to design and optimize an eel-like vehicle the forces developed by 

fishlike propulsion have to be understood. To understand the forces developed by 

fishlike propulsion this study starts by investigating the kinematics o f a fishlike 

propulsion device. Various motion patterns that the device might undertake are 

investigated to give an understanding o f the types o f  hydrodynamic forces that are 

involved. In the next chapter, various hydrodynamic methods that can be used to 

determine these forces are presented. The mathematical implementation o f these 

various hydrodynamic methods is then presented in chapter 4. To evaluate the 

different methods a physical model o f a mechanical eel was built. This device, which 

will be denoted the McEel for the remainder o f  this thesis is presented in chapter 5. 

The remainder o f this thesis is devoted to the comparisons o f  the various 

hydrodynamic models with the measured data from the McEel.

It is however important to emphasize that the project undertaken is not as 

straightforward as comparing a calculated solution with a measured result. This is 

because most o f the hydrodynamic models rely on one or more quasi-empirical 

hydrodynamic force coefficients. The data from the measured tests were therefore to 

some extent used by the numeric predictions. Numerous tests were therefore 

performed to check the consistency o f  the hydrodynamic coefficients and thus the
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validity o f the various models. This was done to evaluate whether any o f  these 

methods could be used to predict the forces from un-tested motion patterns.

It is also important to emphasize that the overriding aim o f  this thesis is not to make 

a mechanical swimmer that replicates nature as closely as possible but rather to make 

one that it is possible to analyze and more importantly one that is practical to 

implement.

1.1 Fish swimming and mechanical replication

For many years, the seemingly effortless swimming o f  fish and other marine animals 

has intrigued laymen and scientists alike and it has been the subject o f  several 

scientific studies. C. M. Breder (1926) classified the various methods for aquatic 

propulsion. The fastest and most normal mode for fish to propel themselves is 

through transverse flexing o f the trunk and tail portions o f the body setting up a 

backward travelling wave. Breder described this type o f locomotion as being either 

ostracii-, carangi- or anguilli-form locomotion depending on how big a portion o f  a 

wavelength was present in the body. The two extremes are the ostraciiform 

locomotion characterized by a near simultaneous contraction o f  all the muscles on 

alternating sides o f the spinal cord and anguilliform locomotion characterized by the 

presence o f  more than half a wavelength along the length o f  the fish. The 

carangiform locomotion is the mode between the two and this is the mode o f  

locomotion o f  faster fish like tuna, mackerel and marlin.

Figure 1-1: Anguilliform locomotion (left) and carangiiform locomotion (right) (Gray 1936)

Later researchers, e.g. Videler (1993), have shown this classification to be an over 

simplification but the terms are widely accepted and will for that reason be used in
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this text. From an engineering point o f view it might be o f more interest whether a 

high aspect ratio foil like the one found on many fast fish is needed or not. This 

feature is often referred to as a “lunate” tail as it often curves backwards like a new 

moon. In such a perspective, the fish that employ such a device might be said to be 

carangiform swimmers whilst the ones that use a larger part o f  the body for 

propulsion might be called anguilliform swimmers. In this context, the ostraciiform 

swimmers will be the ones that use a rigid single flapper for their propulsion.

To verify his theories about fish locomotion Breder (1926) built two mechanical 

prototypes, one replicating ostraciiform locomotion and the other anguilliform 

locomotion. The ostraciiform model in particular is discussed in some detail as its 

propulsion contradicted some earlier theories. The propulsive effectiveness is not 

quantified for either model although the ostraciiform model is said to have: “moved 

forward with a sure and steady gait”.

The first scientist to give an accurate description o f fish kinematics was Sir James 

Gray. Gray (1936) reported that dolphins swim seven times faster than their muscle 

mass should allow them. This became known as Gray’s paradox. The assumptions 

were that dolphins and porpoise, like other mammals, can generate one horsepower 

per 100 lb. o f muscle tissue and that the drag o f  an actively swimming animal was 

equivalent to a towed, straight model o f the same geometry. It is interesting to note 

that in the initial paper Gray more than indicated that the latter assumption was 

probably not true. His findings are however still referred to. Gray also stated that 

discovering whether aquatic animals were efficient swimmers was “o f considerable 

interest” since it “would indicate whether the mechanism o f swimming is or is not 

substantially more efficient than those, at present available for the propulsion o f  a 

torpedo or airship.”

To investigate this paradox Gray enlisted one o f  his students, and Lighthill (1960) 

produced what has since been regarded as the standard analytical model for 

anguilliform locomotion. With the small amplitude elongated body theory, he 

explained how thrust is generated from added momentum experienced by an 

undulating body. The theory shows that the mean thrust can be calculated from the 

displacement and angle o f the tip o f the tail only. He also predicted that for 

maximum efficiency the speed o f the backward travelling wave should be 5/4 o f  the 

desired forward speed.
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One o f the first and few naval architects to relate the principles o f  fish propulsion to 

ship propulsion was R. W. L. Gawn. He summarized (Gawn 1949) the knowledge o f  

fish propulsion that he found applicable to naval architects. In his paper he states, “It 

is clearly o f importance to ship designers to ascertain the explanation o f fish 

locomotion.” Gawn kept on studying fishlike locomotion but never seems to have 

found an economic use for his findings.

More recently, the biologist John J. Videler has been at the centre o f  fish propulsion 

research. In the book “Fish Swimming” (Videler 1993) he summarizes current 

knowledge o f the field. He also explains the application o f  Lighthill’s theory in a 

lucid manner after having spent a substantial amount o f effort comprehending it.

Professor Akiro Azuma has written a similar book called “The Biokinetics o f  Flying 

and Swimming” which approaches the same subject from the engineer’s perspective 

(Azuma 1992). In the book, he terms carangiform and ostraciiform locomotion to be 

swimming by fanning and anguilliform locomotion to be swimming by snaking. 

These terms might be more descriptive for the non-biologist. The book is however 

highly technical in nature and describes how most fish are subject to both inertial and 

viscous effects. According to Professor Azuma, all but one model for fish propulsion 

fails to consider both o f these forces and as such, the work o f  Lighthill and others is 

only valid in a certain range o f Reynolds number.

The one model for fishlike propulsion that does consider both resistive and reactive 

forces according to Professor Azuma is the one undertaken by William J. Vlymen 

(1974). This paper develops a method for calculating the energy spent by larval 

anchovy in their swimming. The method considers both perpendicular and tangential 

drag forces but when it comes to added mass effects, it only deals with perpendicular 

forces. This is because the specie in question is considered hydrodynamically 

equivalent to a spherical head with a long flat plate behind it. The tangential drag 

force thus stems from skin friction whilst there is no added mass in the tangential 

direction as the sections o f the body that are involved with thrust generation have no 

cross sectional area.

The naval architect who has been most central to the exploitation o f  fishlike 

propulsion in recent years is Professor Michael S. Triantafyllou o f  Massachusetts 

Institute o f Technology. In the early 1990s, he and his associates started 

experimenting with flapping foils and discovered that they had a high propulsive

Claus Christian Apneseth 2006
4



Mechanical Eel PhD Thesis 2006-27-01

efficiency o f more than 87% (Triantafyllou 1996). They also discovered the 

importance o f the Strouhal number to the efficiency o f fishlike propulsion. In terms 

o f  the propulsive mechanism, Professor Triantafyllou placed great emphasis on the 

reverse von Karman vortex street that forms behind a swimming fish. Triantafyllou 

was however also interested in the possible drag reducing secrets o f  fish, and in order 

to make accurate measurements o f a fish he had his student David S. Barrett make 

the mechanical fish known as the Robotuna (Barrett 1996).

The first Robotuna had eight rigid, jointed vertebrae at its core. The outer skin o f the 

vehicle was flexible though, just like on most o f the later mechanical swimmers 

constructed at M.I.T. The swimming mechanism was operated by electrical motors 

attached to the carriage that supplied their power via a wire and pulley system 

through a mast. The Robotuna generated most o f its thrust with a high aspect ratio 

tail and can safely be classified as a carangiform locomotion device. The Robotuna 

was a success in that it reached high efficiencies and provided new insight into fish 

propulsion. It does not appear to have been a commercial success however. Professor 

Triantafyllou took out a patent on a manned underwater vehicle for Special Forces 

operations in cooperation with the US Navy (Triantafyllou 1999) but it is unknown 

how many, if  any, were ever built.

In recent years, there has also been an interest in fishlike propulsion from the robotic 

community. 0rjan Ekeberg (1993) has published a study o f  what is essentially a 

robotic analysis o f lamprey swimming. The hydrodynamic model that he employs is 

a rudimentary one though. In the paper, he states that inertial forces dominate at 

higher speeds. This seems a bit odd, as inertial forces are independent o f the forward 

speed whilst the drag forces should increase with it. He ends up using only drag 

forces for what he claims to be a high Reynolds number scenario though. To simplify 

his hydrodynamic model further he states that the size o f the tangential drag forces 

“does not influence the resulting swimming very much.” He therefore neglects these 

forces as well and ends up with an equation that is essentially the drag part o f the 

Morison Equation.

Mclsaac and Ostrowski (2003) have also studied fish like propulsion extensively. 

Working with the University o f Pennsylvania and funded in part by the Office o f  

Naval Research in the USA they have built two eel like robots called Reel I and Reel

II. Both o f  these robots were free swimming and capable also o f  propelling
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themselves on firm ground. The hydrodynamic model employed to predict the 

motions o f  these robots was essentially the one developed by Ekeberg in which only 

perpendicular drag forces are considered in the propulsion.
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2 The kinematics of an eel

2.1 Introduction

In order to determine a suitable hydrodynamic model for the analysis o f  a mechanical 

eel it is important to establish first the eel’s kinematics. In particular, it is important 

to evaluate what kind o f flow regime it (or its natural counterpart) encounters. In this 

chapter, it will be assumed that the water surrounding the eel can be considered 

stationary in earth fixed coordinates. As the eel starts to move, either by oscillating 

or by moving forward, this is no longer strictly true. The real flow is in other words 

approximated to the flow without the perturbations caused by the eel. This 

approximation is similar to the one normally used by the Morison Equation and 

seems suitable to give an overview rather than a detailed description o f  the flow  

around the eel.

Some clarifications o f basic assumptions might be required before the kinematics o f  

the eel is explained. In nature, an eel swimming in a straight line at low to moderate 

speed will have minimal head movement in the lateral plane (Gillis 1998). This is 

modelled in the physical tests by the McEel having its first segment rigidly fixed to a 

sting leading up to the towing tank carriage. The kinematics o f  this segment is 

therefore no different from any other underwater body moving in a straight line with 

a constant speed. This segment will therefore be excluded from the following 

kinematical description.

The exact kinematics o f a segmented eel will depend on numerous variables. These 

are:

•  The number o f segments

•  Amplitude and frequency o f oscillations in the various joints

•  Phase angle between the joints

•  Physical size o f the various segments

•  Relative motion between the head o f the eel and the water surrounding it

This description o f eel kinematics will therefore be limited to what is in essence a 

description o f the kinematics o f the physical McEel. Many o f the issues discussed 

will however be valid also for other types o f eel-like vehicles.
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The specific size and configuration o f  the physical McEel will be discussed in detail 

later. The main features are however as follows:

• It has a 410 mm long head and two 200 mm long moving segments.

• The joints are controlled independently.

• The maximum oscillation in each joint is 45 degrees relative to the segment 

in front o f  it.

With this introduction o f  the McEel particulars, the concept o f  segment lengths has 

also been introduced. In nature, an eel will swim with a backward travelling wave o f  

nearly linearly increasing amplitude towards the tail (Gillis 1998).

Figure 2-1: A jo in ted  structure replicating the motions o f  a real eel.

Figure 2-1 shows how 4 rigid segments, drawn with a thick red line try to replicate 

the mathematical function o f  the real eel, shown here in blue, at an arbitrary point in 

time. As the amplitude o f  oscillation increases towards the tail, the mechanical eel 

will be required to make more rapid angular changes in this region. A mechanical eel 

with shortening segments towards the tail would therefore be better at replicating the 

idealized function mentioned in section 1.1. As the McEel is not trying to replicate 

every aspect o f  eel propulsion, the simpler solution o f  having the two moveable 

segments o f  the same length was chosen.

To differentiate between the various swimming patterns employed by the McEel a 

simple notation system was developed in which each one was given a three number 

designation. All angles are in degrees and the system is as follows:
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I I
t

Figure 2-2: The notation system o f  the swimming patterns

In addition to the three-numbered designation, there are two other variables in the 

motion pattern o f the McEel that need to be introduced; namely the forward speed 

and the frequency o f  oscillation. The forward speed will be measured in m/s and the 

frequency o f oscillation will be measured in Hz. In theory, one could imagine a 

swimming pattern in which the fundamental frequencies o f the various joints would 

not be equal but such a pattern would deviate from what is seen in nature (Gillis 

1998) and all tests discussed in this thesis therefore have a uniform excitation 

frequency throughout. A scenario in which the angular movements in the joints 

consist o f  more than one frequency is far more plausible. Closer inspections o f the 

angular motion in the various joints (see Appendix A) show that the over all 

mathematical function o f  the eel, with a sinusoid o f linearly increasing amplitude, is 

best replicated if the backmost joints make a more rectangular motion than that o f  

one pure sinusoid.

It has however been an aim to limit the number o f  variables in the experimental 

section o f  this thesis, as it is not aimed to be an exhaustive study. For this reason and 

the reason stated for having the segments the same length the angular motion o f  the 

joints will be assumed to consist o f just one sinusoid.

2.2 The simplest case

In examining the kinematics o f the eel, it is natural to start with the simplest case. A 

30-30-0 run with zero forward speed and a frequency, f, o f  0.15 Hz is therefore the 

example o f the simplest motions that will be examined in some detail. This
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swimming style is an example o f  ostraciiform locomotion. As this is a motion, in 

which the two joints move in unison it will be referred to as a single flapper scenario 

in this text.

Starting with this pattern, the flow regime encountered by the eel can be investigated. 

Under the assumptions stated the relative velocity and acceleration between the fluid 

and the eel could be computed. It is however important to emphasise that there is no 

immediate correlation between these velocity and acceleration vectors and the 

corresponding drag and inertia forces. To convert the following velocity and 

acceleration vectors to forces they have to be multiplied by various other factors such 

as the density o f  the fluid, the projected area, the volume and the appropriate 

hydrodynamic force coefficients.

The velocity and acceleration vectors are o f  interest on their own however as they 

give an indication as to which flow regime the mechanical eel operates in. To show 

the magnitude and direction o f  these vectors four time steps are depicted in Figure 

2-3 to Figure 2-6. For each time step, part A depicts the velocity vectors and part B 

depicts the acceleration vectors:

m, m/s

Figure 2-3: Time step 1, t =  0
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The four time steps constitute half a cycle. As the motions are harmonic, the second 

half o f the cycle would be a mirror image o f those shown above. The three rectangles 

along the eel represent its nodal points. The leftmost rectangle is therefore the front 

joint, the middle one is the middle joint and the rightmost one represents the tip o f  

the tail. The scale o f these graphs are such that vectors o f  1 m/s and 1 m/s would be 

drawn as the same length as a 1 m long object.

As the blue lines in part A o f  the figures depict the relative velocity between the eel 

and the stationary fluid; it can be seen that this is always perpendicular to the eel 

itself except in Figure 2-5 when the eel is at its extreme angle at which point the 

velocity vectors are zero. In the simple swimming pattern, the flow field can 

therefore be considered one o f pure cross flow as far as the velocity is concerned.

The red lines in part B o f  the figures depict the relative acceleration between the 

nodal points o f the eel and the stationary fluid. As can be seen the acceleration 

vectors are at varying angles to the segments. When the eel is at its extreme angles as 

in Figure 2-5, the acceleration is at its maximum magnitude. At this point, the 

direction is perpendicular to the segments. At no other time step is this so.

As the eel passes through zero degrees in Figure 2-3, the acceleration vectors are 

tangential to the eel itself. As far as the acceleration is concerned, even this simple 

swimming pattern therefore deviates from a pure cross flow. Furthermore, it can be 

seen that the tangential component o f  the acceleration vector always points to the 

left. This is an important point as it means that a hydrodynamic model that treats eel 

like propulsion as one o f  pure cross flow may over-predict the mean forward thrust 

o f this swimming pattern if  the eel in question has non-zero cross sectional area. The 

reason for this being that such a model will neglect any added mass effects in the 

longitudinal direction o f  the eel and as this added mass only accelerates towards the 

left, it will in effect be a varying but negative force holding the eel back.

Another important point is that the acceleration vector and the velocity vector are o f  

similar order o f numeric magnitude. As explained in section 1.1 several 

hydrodynamic models o f  fish like propulsion neglects either inertial or drag forces. 

One must be very careful in making the connection between the relative size o f the 

velocity and acceleration vectors and the relative size o f the drag and inertial forces 

computed from them. Both the drag and inertial forces rely on several other variables 

such as volume and projected area as well as hydrodynamic force coefficients. It is
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however interesting to note the relative size o f  the velocity and acceleration vectors 

as this relationship will clearly be an input to the decision o f  which hydrodynamic 

model to use.

2.3 A more complex scenario

As mentioned before a swimming eel will set up a backward travelling wave with 

increasing amplitude (Gillis 1998). A mechanical eel with rigid jointed segments o f  

equal length would replicate this by having increasing amplitude oscillations in the 

joints and negative phase angle towards the tail. Using positive phase angles would 

mean that the wave would propagate forward and this would be equivalent to putting 

the eel in reverse gear. The third number in the swimming pattern designation 

therefore signifies the negative phase angle.

A swimming pattern that is closer to the real eel swimming style would be 30-40-60. 

This scenario will also be examined in some detail, as it might be hard to visualize. 

The excitation frequency, f, is still 0.15 Hz and the forward speed will remain zero to 

allow comparisons with the simpler scenario. For each time step, the velocity vectors 

are still depicted in part A o f  each figure while the acceleration vectors are depicted 

in part B:
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F igure 2-7: Time step l , t =  0
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Again, four time steps constituting half  a cycle are depicted.

In this scenario only the front segment experiences pure cross flow as far as the 

velocity is concerned. This is as expected as the motion o f  the front segment has not 

changed from the simpler swimming pattern.

Neither the acceleration vectors nor the velocity vectors o f  the backmost segment are 

perpendicular to the segment in this scenario. A complete hydrodynamic solution for 

predicting the forces generated by an eel like structure undergoing this type o f  

motions therefore has to compute both drag and inertia forces in both the 

perpendicular and tangential directions.

As the exact path that the backmost segment follows in this scenario can be hard to 

visualize it is shown in detail:

0 2
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Figure 2 -11: The path o f  the tail segm ent

In part A o f  this figure, the corresponding four time steps to the ones shown above 

are depicted. The dashed black line shows the tail segment at time step l whilst the 

solid black line is at time step 2. The dashed-dotted line is at time step 3 whilst the 

dotted line is at time step 4. The corresponding line styles in part B o f  the figure 

show time step 5, 6, 7 and 8 completing the cycle. The green lines in both parts o f  the 

figure show the paths that the endpoints o f  the segment follow.

As can be seen the tip o f  the tail no longer follows an arc. The path it follows is 

closer to a curved figure o f  eight. As the tail end o f  the tail segment moves outwards 

from its mean position it moves along the rightmost path o f  the figure eight and when 

it is moving back towards the centreline again it follows the leftmost path. This is
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similar to what is seen in nature (Gillis 1996). It is thus confirmed that this pattern o f  

motions is closer to those undertaken by anguilliform swimmers.

2.4 A scenario with forward speed

The two previous scenarios have been with zero forward speed. In naval architecture, 

this is equivalent to a bollard-pull test. Any free-swimming eel will however start 

from rest and it will therefore need to generate thrust in this state in order to reach a 

positive forward velocity. The bollard pull condition can therefore be said to be more 

elemental than the forward speed condition in addition to being mathematically less 

complex. For a complete solution o f eel-like propulsion though, the forward speed 

scenario has to be investigated.

As noted earlier, various robotics researchers have chosen to neglect the inertia 

forces when analyzing the steady state swimming o f  their eels. This is based on the 

assumption that these forces are negligible in the Reynolds number regime in which 

the eels operate. The Reynolds number quoted in the paper by Mclsaac and 

Ostrowski (2003) is 10000. As the McEel has two moving segments o f  200 mm each 

and a 410 mm long head section this Reynolds number corresponds to an advance 

speed, U, o f 0.0125 m/s. Raising this speed to a more realistic 0.1 m/s would yield a 

Reynolds number o f 80000 which is still within the range o f 400<Re<400000 in 

which the paper claims their assumptions o f negligible inertia to be valid.

Some o f the numeric models described later in this thesis rely on the Keulegan- 

Carpenter number and for this reason it may be o f interest to see which Kc number 

this scenario equates to. In order to compute the Kc number a span or height is 

needed. As will be described in section 5.5 the height o f  the McEel was 0.2 m 

throughout most o f its length. If this is assumed as a height also for this numeric 

example the Keulegan-Carpenter number for this scenario would range from zero at 

the front end to 6.33 at the tip o f the tail.

Again, four time steps are depicted in Figure 2-12 to Figure 2-15. For each time step, 

the velocity vectors are still depicted in part A o f  each figure while the acceleration 

vectors are depicted in part B:
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Figure 2-15: Time step 4, t = 3T/8

Not surprisingly, this moderate advance speed does not alter the numeric size o f  the 

velocity and acceleration vectors profoundly. In the first two time steps, the velocity 

vectors are numerically bigger than the acceleration vectors whilst in the last two 

time steps they are more similar in size. It is however important to emphasize that the 

velocity used by Ekeberg ( l 993) is the normal velocity. This normal velocity is 

numerically not o f  a different order o f  magnitude than that o f  the equivalent normal 

acceleration at any time step. How the normal acceleration and normal velocity relate 

to drag- and inertial-forces is evidently dependent on what hydrodynamic model one 

uses but these graphs should indicate that the inertial forces are not necessarily 

without importance.

It is important to emphasize that these graphs were drawn for a low excitation 

frequency, f, o f  0.15 Hz and a moderate speed, U, o f  O.l m/s. It would be o f  interest 

to compute the advance velocity o f  the wave o f  the eel in comparison to the eel it 

self. It is however not obvious how this could be done. In order to compute any 

velocity a distance and a time is needed and it is not evident what the wavelength for 

30-40-60 swimming pattern is. As there is a 60-degree phase difference between the 

two joints it is tempting to say that they together make up 2/6 o f  a wavelength but the 

distance between them in the x-direction varies with time. The two angles are:

d/nm = - S m ( 2 j t f  t

2 71 f 71
9m, = — sin \ 2 x f t - -

Equation 2-1
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In these equations, t, is the time variable. The mean longitudinal position o f the tip o f  

the tail can be computed:

Equation 2-2

In this equation T is the period o f oscillation and L is the length o f  each segment. It is 

not easy to solve Equation 2-2 analytically but a numerical solution is 

straightforward. In the numeric example given the mean position o f the tip o f the tail 

o f the McEel is 0.363 m or 1.8L behind the front joint. If this were assumed as 2/6 o f  

the wavelength, it would mean that the advance speed o f the wave is 0.16 m/s. This 

velocity could be non-dimensionalised by multiplying it with the period o f  

oscillation, T, and dividing it by the length o f  the oscillating portion o f  the eel. The 

non-dimensional advance speed o f the wave would then be 2.67.

The eel therefore moves forward at about 60% o f  the speed at which the oscillations 

move backwards. This fictitious scenario therefore seems plausible, as a mechanical 

swimmer would be assumed at least initially to be less efficient than the optimal one 

and thus have a bigger gap between these two velocities than the 5/4 mentioned by 

Lighthill (1960) and indeed the inverse ratio o f  0.8 measured in live eels by Gillis 

(1998).

The advance velocity o f the McEel in this example is reasonably close to what is 

seen in nature but the amplitude o f oscillation is not. In his study o f  American eels, 

(Anguilli Rostrata) Gillis (1998) found that the tip o f  the tail made transverse 

oscillations o f 8% o f  the over-all length o f the eels. Somewhat surprisingly, this was 

the case more or less irrespective o f the swimming speed. It is therefore important to 

emphasise that the oscillations depicted in this chapter bear more resemblance to 

those performed by the McEel than those performed by live fish. This is because the 

less than perfect mechanical drive system o f the McEel dictated substantial excitation 

angles in order to produce even, fluid motions.

When the excitation frequency increases compared to the velocity o f the eel the 

acceleration vectors increases relative to the velocity vectors. This is because the 

acceleration vectors are independent o f the advance velocity and depend rather on 

the frequency and amplitude o f oscillation. This is an important point as it shows that 

it is not necessarily the Reynolds number that decides whether the inertial forces are
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negligible or not. The deciding factor is the relative size o f  the advance velocity o f  

the eel in comparison to its excitation frequency and amplitude.

Claus Christian Apneseth 2006
20



Mechanical Eel PhD Thesis 2006-27-01

3 Hydrodynamic models of fish-like motion

3.1 Introduction

Fishlike propulsion is seen by many as a flow problem. Only if  the flow around the 

live or mechanical fish can be fully understood can the pressures be integrated and 

the total thrust computed. In chapter 2, it was shown how the velocity and 

acceleration vectors between an eel and a fluid that was stationary in earth 

coordinates behaves. In reality, the fluid surrounding the eel will not be stationary 

and this complicates the problem somewhat. One way to obtain a complete solution 

o f this problem would be to integrate a solution to the Navier-Stokes equations 

around the eel. This could be achieved using CFD (Computational Fluid Dynamics). 

As the eel changes shape with time, finding a CFD solution to this problem would be 

difficult. In his masters thesis John Riis (2001) used CFD to gain an understanding o f  

some o f the scale effects involved in fishlike propulsion. Predicting the true forces 

developed by a live or a mechanical fish was outside the scope o f his thesis. 

Biologists have, however, undertaken a two dimensional CFD analysis o f  self- 

propelled anguilliform swimming (Carling et al. 1998) but no other validation 

against measured data is given other than that the numeric model swam at 0.77 times 

the velocity o f the backward travelling wave.

Solving this problem using CFD would not be ideal for various reasons. The first one 

is that the solution can only be validated against one real life scenario, that o f  the 

McEel. It would also require substantial resources both in terms o f  man-hours and 

computational power and would thus be unsuitable as an engineering design tool.

In order to find a solution applicable to several fishlike propulsion devices it was 

decided to look for the simplest numeric method that could predict the forces 

developed by the McEel to a level o f accuracy appropriate to preliminary design.

As seen in the previous chapter a mechanical eel-like structure is essentially one or 

more cylinders subjected to a varying flow field in terms o f  both velocity and 

acceleration. Such a structure will be subject to various forces. These forces can be 

grouped into non-hydrodynamic inertial forces and hydrodynamic forces. The former 

will naturally be computed by applying Newton’s laws o f motion but it is not 

obvious how the latter ones should be resolved. The forces on a rigid moving 

underwater body is a challenging problem in itself. When the geometry o f this body
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changes continuously to facilitate self-propulsion, there is a need for some 

simplifications in order to solve the problem. In the current study, a number o f  

simplifications are adopted in order to examine the feasibility o f predicting the forces 

with sufficient accuracy for preliminary design using a simplified model. The various 

simplifications will be introduced when and where they are employed.

Historically hydrodynamic forces have often been split into drag and inertia related 

forces. Although the complex forces developed by a flow field around a body will 

not always align themselves with either relative acceleration or relative velocity, 

such a distinction is useful as it allows the comparison between different 

hydrodynamic models. The distinction between tangential and perpendicular forces 

gives itself from the geometry o f real eels, which are long and slender bodies (Gillis 

1998). A complete hydrodynamic solution to the problem o f the eel should therefore 

deal with at least four hydrodynamic force components:

• Perpendicular drag

• Tangential drag

• Perpendicular inertia

• Tangential inertia

In addition to these four forces, there are numerous others o f  varying importance. 

Amongst these are lifting forces and forces due to vortex shedding. All o f  these 

forces are at least initially ignored as they are assumed to be o f  limited importance.

There are several hydrodynamic models for computing the four mentioned forces. 

The most notable o f these methods are the before mentioned elongated body method 

developed by Lighthill (1960) for tangential and near tangential flow and the 

Morison Equation (Morison et al. 1950) for perpendicular and near perpendicular 

flow.

3.2 Two dimensional and three dimensional methods

One o f the criteria used to assess hydrodynamic methods is whether they are two- or 

three-dimensional. In real life, most flow phenomena are three-dimensional but it is 

often useful to perform the analysis o f  slender bodies for one cross section o f the
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body and then integrate the solution over the length o f  the body. Both the Morison 

Equation and the Elongated Body Method normally does this.

Figure 3-1: The basis for the M orison Equation

In case o f  the Morison Equation the flow phenom enon that it originally aimed to 

model is a wave flow past a vertical pile, and the total force is found by integrating 

the force per unit length over the length o f  the pile. The flow is thus three- 

dimensional and it is modelled as such. The force calculation is however two- 

dimensional. It therefore does not seem appropriate to label the original Morison 

Equation as either two-dimensional or three-dimensional. An exception is when the 

Morison Equation is verified in a U-tube, when both the flow and the force 

calculation is 2D.

The elongated body method was initially designed to calculate the propulsive force 

o f  anguilliform swimmers and as such, it aims to model a three-dimensional flow 

phenomenon.

Figure 3-2: The basis for the elongated body method

To ease the computation, Lighthill assumed the fish to be stationary in a flow with 

velocity U. The method will be described in detail in section 3.3; however, one o f  the
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assumptions behind the method is that the flow can be considered to be two- 

dimensional. In its original format the elongated body method is therefore 2D.

3.3 Elongated Body method and its expansion

Many regard the elongated body method as the standard analytical model for fishlike 

propulsion. This method explains how thrust is generated from added momentum 

acting on an undulating body as in Figure 3-2.

The method is based on slender body theory. The flow around the body is therefore 

assumed to be comprised o f the steady flow around a similar stretched straight body 

and the flow due to the transverse velocity o f  components o f  the body. The theory 

describes how these transverse velocities will lead to an increased momentum in the 

fluid and thus propulsion for the swimmer. The thrust is predicted from an added 

mass concept and therefore only the tangential inertia forces are predicted. All other 

forces are assumed to be either negligible or to cancel out over a full cycle. The mean 

thrust is calculated from the perpendicular velocity, the span and the angle o f the tip 

of the tail.

The Elongated Body method makes three key assumptions that cannot be fulfilled for 

a mechanical eel. These assumptions are:

• That the cross sectional area varies gradually in the longitudinal direction

• That the transverse velocity o f the fish is small compared to its advance 

velocity

• That the slope that the fish makes with the x-axis is small

In order to correctly compute the flow component which is caused by the flow  

around the stretched straight fish the Elongated Body method requires the cross 

sectional area o f  the fish to vary gradually in the longitudinal direction. This 

requirement could be hard to satisfy for a mechanical eel particularly near the front 

end.

The Elongated Body method was intended to compute the energy used by fish 

swimming at a steady speed. A mechanical eel will however have to start from zero 

speed at which point the transverse velocity o f its tail will be infinitely large
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compared to its advance velocity. The mechanical eel may have trouble satisfying the 

second assumption even once it has reached a constant speed. This is because the 

relationship between the transverse velocity o f the tail and the advance velocity o f  

the eel says something about the efficiency o f the swimming pattern. A real fish may 

be propelled quickly through the water simply by making small and slow oscillations 

with its tail but it is far from certain that a mechanical replica will be as efficient.

This latter point leads on to a potential desire for the mechanical eel to make large 

amplitude oscillations in order to generate enough thrust. If this were the case then 

the slope that the body makes with the x-axis would no longer be small and the third 

assumption could no longer be satisfied. Even if the oscillations and therefore the 

slope was small though it would be mathematically difficult if  not intractable to use 

the Elongated Body method for a mechanical eel. This is because the slope o f  a 

jointed structure is not defined in the joints.

As only the movements o f  the tail are needed for the application o f  the method the 

problems associated with the joints were ignored and computed results from the 

Elongated Body method was compared to measured results from the McEel. It soon 

became evident however that the method was not particularly well suited to compute 

the forces from a mechanical eel neither in theory nor in practice.

As chapter 2 demonstrated, the segments o f a mechanical eel will encounter a flow  

field o f both velocity and acceleration at varying angles. Therefore, neither the 

elongated body method nor the Morison Equation is designed to calculate the forces 

on such a structure.

Quiggin and Carson (1994) tried to take the Elongated Body Theory and expand it to 

the general case to get an expression for the flow around a cylinder at any angle. In 

their paper, they have taken Lighthill’s added momentum concept and applied it to a 

randomly oriented cylinder in a random flow.
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Figure 3-3: The two coordinate systems employed by Quiggin and Carson

They employ two coordinate systems in the analysis as shown in Figure 3-3. The 

global coordinate system is moving with the fluid and the local coordinate system is 

body fixed. A central concept in the derivation o f  this method is that the added mass 

for this element is a matrix o f  the form:

Ca =
Ca 0 0

0 Ca 0

0 0 0

Equation 3-1

The cylinder in Figure 3-3 is considered part o f  a long flexible element and this 

means that both Equation 3-1 seems reasonable and that they avoid the problem with 

the slope in the joints. The cylinder would therefore have an added mass in the two 

transverse directions but not in the longitudinal one. For the McEel though this latter 

point is not necessarily the case. As the end segment o f  the eel has a substantial cross 

sectional area it would be expected to have an added mass coefficient also in the 

longitudinal direction.

In its original format the inertia per unit length o f  a cylinder subjected to a random 

flow is given as:

G = capV (normal component of (af - av))

+©b x (capV (normal component of (v f - v b))) 

+capV (normal component of (v f - v b)xcob)

+vt d (capV (normal component of (v f - v b))) jd s  

+capV(normal component o f(d vf/d p )v b)
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Equation 3-2

In Equation 3-2, V is volume o f the cylinder whilst the subscript f  is for the fluid and 

subscript b is for the body. This equation may appear to be a substantially more 

complex than the inertia taken from the more familiar Morison Equation. As the 

constants can be factorized out and the fluid can be assumed stationary Equation 3-2 

reduces to:

G = -c ,p V (a i  + © x v 1+ l ( v x 0 ) + v t 3v±/d £ )

Equation 3-3

In this expression ax is the normal component o f  the acceleration vector o f the body 

whilst v is the velocity vector with subscript _L being its normal- and subscript t 

being its tangential-component. The symbol _L in front o f the third term indicates 

that it is only the normal component o f the vector cross product that is o f interest 

while co is angular velocity vector o f the segment in question. The last term in the 

equation contains the normal velocity differentiated with respect to the segment 

length. This segment length is referred to as s in the original equation but as it is a 

local coordinate, it is referred to as £ in Equation 3-3. In total, the inertia forces thus 

contain three extra terms in comparison with the more familiar Morison Equation.

Although the hydrodynamic method o f  Quiggin and Carson (1994) aims primarily at 

calculating the inertia forces o f flexible risers etc. the paper, does also present a 

method for the calculation o f  the drag forces. This work is based on previous 

research and the drag force is divided into a normal and a tangential component:

K  = j P \ vr \ 2  D (C d sin 2  <p + nCn sin <p)
i i2

i*; = -J-/? vr | Z)(;rC,cos^)

Equation 3-4

In Equation 3-4, v, is the relative velocity between the body and the fluid or in the 

case o f  the eel the velocity o f the body. The cp is the angle between the flow and the 

body or the angle o f incidence. The equations give the force per unit length o f  a 

round cylinder o f diameter D and would thus have to be modified to allow for the 

different wetted surface area o f  the eel. Cd is the drag coefficient for the calculation
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o f the pressure term whilst Cn is the coefficient o f perpendicular skin friction. In the 

tangential direction, the drag is assumed to be entirely due to skin friction 

represented by Ct, the coefficient o f tangential drag.

The method proposed by Quiggin and Carson thus allows the calculation o f all the 

four hydrodynamic forces presented at the beginning o f this chapter. No comparisons 

with measured data are offered though and as far as this author is aware this method 

for computing the hydrodynamic forces has not been used outside the OrcaFlex 

software package.

3.4 The Morison Equation and its expansion

The Morison Equation (Morison et al. 1950) deals specifically with flow  

perpendicular to the element in question. It was originally developed to estimate the 

forces exerted by surface waves on piles. The method calculates the forces 

perpendicular to the cylinder (or element) only (see Figure 3-1).

Both the horizontal velocity and the horizontal acceleration are utilized in the 

calculation as both perpendicular drag and perpendicular inertia forces are accounted 

for. The forces that the pile is subjected to are calculated for an infinitely thin disk 

before they are integrated over the length o f the pile.

When the Morison Equation (Morison et al. 1950) was first published, it was 

admitted that its results were only preliminary. It was published due to there being a 

pressing need to calculate these types o f forces. It has however found wide use since 

then. The original equation reads:

dF = CM
7tD 2 \

^ ± C D^ u >  
5t D 2

dz

Equation 3-5

This gives the force per unit length on the infinitely thin disk. D is the diameter o f  

the pile whilst u is the velocity o f the flow normal to the pile. The sign o f  the second 

term in the equation cannot be decided outright as the velocity term is squared. A 

further ambiguity is the coefficient o f mass. Initially the Morison Equation was not 

intended to calculate forces in situations where both the fluid and the body were 

moving and having one term for both mass and added mass was reasonable. These 

days the Morison Equation is used more widely and the coefficient o f  added mass is
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often employed. Furthermore, the initial equation applied to circular cylinders whilst 

today it is used for different cross sectional shapes. One therefore has to be careful 

when it comes to the coefficient o f added mass. One common practice is to define it 

as the ratio o f volume o f water that would have to move in unison with the segments 

for the computed force to be the same as the one measured. An infinitely thin plate 

moving through the water would however have a finite volume o f  water moving with 

it and the coefficient o f mass would then be infinite. In some respects, it is therefore 

more convenient to define it as the volume o f  water moving with the segment with 

respect to the volume o f  a cylinder o f the same diameter as the span or height o f  the 

segment. This distance will be denoted D.

The Morison Equation would then read:

term by multiplying the velocity by its absolute value rather than squaring it. It has to 

be emphasized though that the acceleration and velocity mentioned in the Morison 

Equation are still those normal to the element or cylinder to which the forces apply.

Borgman (Borgman 1958) published a paper expanding upon the Morison Equation 

that stated that for a wave hitting a vertical pile: “The actual velocity and 

acceleration vectors are not necessarily horizontal and indeed achieve this condition 

only at the wave crest and at the trough.” For the particle velocity, this is true but one 

must assume that Borgman was aware that the particle acceleration is 90° out o f  

phase with this. Borgman’s paper did however help introduce the idea that the 

acceleration and velocity vectors could be resolved in a perpendicular and a 

tangential component and that the first o f  these could be used in the Morison 

Equation. The Morison Equation has since found wide use even in cases o f  not 

strictly perpendicular flow.

The Morison Equation can thus be used to calculate the perpendicular drag and 

inertia forces experienced by a cylinder subjected to a randomly oriented flow. It is 

however most commonly used on perpendicular or near perpendicular flow where its

„ du 1 I | „
C  1- — p  CnD  \u\ u dl

° dt 2 D 11

Equation 3-6

As can be seen the normal practices is to get around the sign change on the second
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simplifications are less important. The equation has also found wide use in cases o f  

oscillatory flow as the next chapter will demonstrate and there are numerous 

published experimental comparisons between the estimated data o f  the Morison 

Equation and physical measurements.

Just like the Elongated Body method, the Morison Equation was devised for a 

continuous body. The problem with the slope o f the body in the joints o f  the 

mechanical eel is therefore still there. Unlike the Elongated Body method though, the 

Morison Equation is a strictly empirical method and in terms o f  the latter, these 

difficulties are therefore more akin to the lack o f inclusion o f  end effects.

3.5 Morison’s equation in oscillatory flow

One o f  the assumptions o f the Morison equation is that a quasi-steady drag 

generating wake has time to build up behind the body in question. This will not 

necessarily be true if  the motions o f the body are small and fast in comparison to the 

size o f the body itself. This was described by Keulegan and Carpenter (1958). They 

showed that the force could still be calculated using the Morison equation provided 

that the coefficients o f drag (Cd) and added mass (Ca) were taken to be functions o f  

what they termed the “period parameter”, but which is now known as the Keulegan- 

Carpenter number. This non-dimensional number is defined as:

U T 
K c = ^ ~  

c D

Equation 3-7

Here the Uo would be the amplitude o f  the velocity o f  the eel in comparison to the 

fluid, T the period o f oscillation whilst D would be the height o f  the eel. In the rather 

theoretical paper, they reported that there did not seem to be a correlation between 

the two coefficients and the Reynolds number. The paper does however stress that 

even allowing the coefficients to vary with Kc number does not ensure that the time 

history o f the measured force throughout a cycle is modelled correctly. Only the 

amplitude o f the measured force can be correctly predicted. The time varying 

difference between the computed and measured forces, they denote AR. This elusive 

time dependent discrepancy has been described by other researchers such as
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Sarpkaya (1986) although no simple and reliable method appears to have been found 

to compute it.

For their measurements, Keulegan and Carpenter used a rectangular tank with 

standing waves in it and as such, the flow was 3D.

For pure sinusoidal harmonic motion, it is possible to give the Kc number in this 

format:

_ 2jtAq_ ^  K
o T D

Equation 3-8

For the eel, these two definitions o f the Kc number are not identical. The eel will 

only be in a purely sinusoidal motion when the two segments move in unison. With 

the introduction of a phase angle between the two, the motion o f  the back segment 

will be that o f a sinusoid and one or more harmonics added to it. There is likely to be 

little practical difference between the two methods for calculating the Kc number but 

for consistency the method described in Equation 3-7 will however be used 

throughout.

A number o f researchers have investigated the variations in Cd and Ca (or Cm) with 

Keulegan-Carpenter number, Reynolds number, beta number (defined as p = Rn/Kc), 

inclination angle, form and roughness. A good summary o f many o f these 

experiments is presented by Sundar (1998). The mentioned paper also present results 

for a circular inclined cylinder. Interestingly enough their method for employing the 

Morison equation at any angle is remarkably similar to the one represented later in 

this thesis but their data shows almost as much scatter for the various tests as for the 

various inclinations. Their tests were however performed in a wave tank, and as 

such, the flow will be three-dimensional.

Turgut Sarpkaya has also presented various results concerning the coefficients o f  

drag and added mass. In 1986, he presented a paper (Sarpkaya 1986) that looked at 

the variation o f  the coefficients o f drag, mass and his own total force coefficient Cf 

with various Kc and p numbers. The total force coefficient he defines:

( • 71* Cm \- C d 2 +
8 2 K
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Equation 3-9

The K in Equation 3-9 is the Keulegan-Carpenter number. In the presentation o f  his 

data, the variation in the total force coefficient follows theory much better than does 

the values o f the drag and mass coefficients. His data was all generated in a U-tube 

though and as such, his tests are all 2D. In his book (Sarpkaya and Isaacson 1981) 

though he offers a warning about the use o f the Morison equation: “Morison’s 

equation yields no information about the transverse force and seems to be adapted 

best to a range o f Kc numbers smaller than about 8 or larger than about 25, where 

complex problems associated with the motion o f  a few vortices are not as much 

pronounced” (Page 123).

One o f  the few tests performed with a cylinder oscillating with a motion comprised 

o f more than one sinusoid was done by Maull and Milliner (1979). They looked at 

the forces experienced by a cylinder as it was subjected to a sinusoidal wave and its 

harmonics. They found that Cd changed with a change in the relative importance o f  

the harmonics. They also found that the force in the transverse direction or the lift 

could display non-harmonic nature at certain Kc numbers. Again the paper does not 

explain exactly how the measurements where made and it is therefore not obvious if  

the flow in question is 2D or 3D.

Graham (Graham 1980) has done much work on trying to predict Cd and Ca as a 

function o f Kc. He seems to have found good agreement between a theoretical value 

of:

CD = const. K c ~1/3

Equation 3-10

and measured data for a flat plate as long as Kc<10. He also mentions previous
1 /?research, which suggests Kc' might be more appropriate but suggests that the 

difference between these two values o f  exponent would be relatively small. Using 

discrete vortex method and integrating over one full flow cycle, he ends up with the 

expression:

Q  — ( 2 > - 2 X ) l ( 2 X - \ )

c  — c  4- r y
~  mo  "t" ^ i V C
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Equation 3-11

In Equation 3-11, X is dependent on the internal angle o f  the vortex shedding edge 

and would have the value o f  two for a flat plate or the fins o f an eel. A and B are 

constants which, using the discrete vortex method, Graham has calculated to be 11.8 

and 0.25 for a flat plate. He then estimates them to be 8.0 and 0.2 based on 

measurements for the same object. Cmo is the coefficient o f  mass for attached flow. 

Again, his tests were performed in a U-tube. Consequently, they are 2D.

In (Bearman et al. 1985) it is explained how the work o f Stokes, Keulegan and 

Carpenter all ties in with the Morison equation. It is important to emphasize that 

although the Morison equation with its two terms representing the force upon a 

cylinder in a moving fluid is a representation o f  the measurable force signal, it is not 

a representation o f what actually happens. This is explained well in this paper when 

the three components o f  the force acting on the body are presented. One component 

o f the force is the inertial force due to accelerations o f the outer flow. The second is 

the viscous force on the body surface, which again leads to the third component, the 

separation o f the boundary layers leading to vortex shedding. Although it is not 

always clear which o f these three components aligns with acceleration and which 

aligns with velocity squared the paper does go some way in justifying the Morison’s 

equation separation into these two components. Either way the widespread use o f  the 

Morison’s equation can be seen as an indication o f  the successfulness in doing so. 

This paper also presents tests performed in a U-tube only.

It is also stated in the same paper that sharp edged bodies, unlike their blunt 

counterparts, do not have a flow regime in which the flow stays attached. From this, 

it might be concluded that C m o in Equation 3-11 should be zero for the eel. In the 

same paper it is also found a better agreement between measured and theoretical data 

for the coefficient o f  total force Cf(r.m.s.) than for the coefficients o f  mass, Cm and 

drag, Cd even though the definition o f C f seems to be slightly different from the one 

used by Sarpkaya. The paper finishes by stating that when the Kc number is larger 

than about 3 the drag coefficients for all sharp-edged bodies tends to be proportional 

to Kc'1/3.

Prislin and others (Prislin et al. 1998) approached the problem o f Cd and Ca 

predictions from the very practical desire to predict the behaviour o f  a truss spar. In 

their analysis, they question the validity o f some o f  Graham’s conclusions about Cd
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being dependent on Kc and not Reynolds number as he kept the period o f oscillation 

almost constant and thus locked the two in a linear relationship. The conclusion from 

their tests was that added mass does not vary with Reynolds number and Cd varies 

only insignificantly with Reynolds number above 105. They did however find a 

variation in Ca with Kc number for 0.1<Kc<1.0, and in this range, they found that:

Ca = 0.642 Kc 0 0705

Equation 3-12

Although this is a much narrower range than Graham’s reported data there is a 

definite discrepancy between these two findings. This could well be due to the fact 

that this paper extends the Morison Equation. Instead o f calculating the forces on a 

thin disk, the paper considers the heave plate as one element and no integration is 

thus performed. As such, the calculation method as well as the tests performed is 3D.

Prislin’s paper is also interesting in that it uses the Morison Equation to determine 

the vertical loads on a floating cylinder subjected to surface waves. A floating, 

vertical cylinder encountering a train o f surface waves will be subjected to both 

vertical and horizontal excitation forces very much like the McEel. The vertical 

forces on the floating cylinder one would assume would stem from added mass and 

drag effects on its bottom plate as well as skin friction terms. It is therefore 

interesting to note that some researchers seem to be willing to resort to the use o f  the 

Morison Equation for this vertical plate. This is particularly interesting, as the 

motions o f this plate resemble the longitudinal accelerations experienced by the tail 

o f  the eel.

Asked in private correspondence how the vertical forces o f  a cylindrical buoy can be 

calculated Professor Nigel Barltrop (2004) explained that the added mass effects are 

taken account o f by assuming that a volume o f  water similar to a semi-sphere with 

the same diameter as the cylinder will move in unison with the body. The drag- 

effects are resolved by adding a skin friction term.
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3.6 Discussion

In the beginning o f chapter 3, it was explained how the hydrodynamic forces 

encountered by the McEel can be split into a minimum o f  four components. It has 

also been shown how the normal way o f calculating the perpendicular drag and 

inertia o f the force is using the Morison Equation. Various methods o f  employing 

this equation have been explained and some o f  the shortcomings o f  it in relation to 

fishlike propulsion have been pointed out.

The one o f  the methods that the offshore industry uses to calculate tangential forces 

to complement the Morison Equation have also been introduced (Barltrop 2004). 

One potential mathematical solution to the problem o f fishlike propulsion would thus 

be to use the Morison Equation for the perpendicular forces and an added mass 

coefficient and skin friction for the tangential forces.

The other possibility is a solution based on the Elongated Body method. Initially this 

method only considers the tangential inertia force. The expansion o f  the method 

introduced by Quiggin and Carson (1994) would however allow the calculation o f  all 

the four components o f the hydrodynamic forces.

As such, two distinctly different methods for computing the forces generated by the 

McEel exist. Various criteria can be used to determine the most suitable method for 

computing the hydrodynamic forces experienced by the eel. Amongst these criteria 

are:

• The reliance on coefficients and where they stem from

• Consistency

• Empirical validation

This last point is by far the most important as both methods are designed to render 

the right result rather than model this complex flow phenomena. The Morison 

Equation and its additions would thus seem to be the first choice as it has been 

empirically validated. The normal scenario with a vertical pile hit by waves is 

however quite different from the scenario o f the eel. Only in the case o f  a floating 

buoy does it calculate both tangential and perpendicular forces. Even then, the 

element considered is straight, unlike the eel, which has joints at varying angles to 

the general flow direction. Consequently, the empirical validation o f  the Morison 

type approach does not necessarily validate the method for the force prediction o f
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mechanical eels. Any empirical validation o f either method for fishlike propulsion 

therefore has to be based on the empirical data within this study, which is too scant to 

render a conclusive answer.

The method suggested by Quiggin and Carson can in some ways be said to be more 

consistent in its attempt to compute the forces experienced by the eel than the more 

conventional Morison based approach. For a floating cylindrical buoy being 

subjected to surface waves, it may seem a fair approximation to calculate the 

tangential and perpendicular forces differently. The same cannot necessarily be said 

for a mechanical eel. The segments are shorter and experience flows o f  varying angle 

both in terms o f acceleration and in terms o f  velocity. A uniform method for both 

tangential and normal forces like the one offered by Quiggin and Carson thus seems 

more consistent.

Whenever numeric predictions are to be compared with a limited set o f  

measurements great caution must be shown with any method relying on too many 

empirical or quasi-empirical coefficients. There is always a danger that the total force 

predictions may come to resemble a curve fitting exercise more than a scientific 

comparison.

The method based on the Morison Equation utilises one coefficient for the 

perpendicular inertia, one for the perpendicular drag, one for the tangential inertia 

and one for the tangential skin friction. One might assume that at least this last 

coefficient might be found from published literature but again the eel is very 

different from other underwater bodies and this assumption is not necessarily valid. 

In section 2.3, it was for instance shown how sections o f a stationary eel could still 

experience tangential velocities. Furthermore, there is anecdotal evidence that live 

and mechanical fish experience drag reduction whilst swimming (Gray 1936, Barrett 

1996). The coefficient o f  tangential skin friction could therefore not necessarily be 

taken from published data.

The method suggested by Quiggin and Carson utilises just one coefficient for inertial 

forces but two for perpendicular drag and one for tangential drag. The two methods 

thus use the same number o f coefficients. They suggest values for the three 

coefficients involved in the drag calculation but although these suggested values are 

based on previous calculations for fish and other underwater flexible bodies it is
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uncertain how applicable they are to the computation o f forces experienced by a 

jointed structure.

It is to this author not obvious which o f  these two approaches that is best suited to 

predict the forces generated by the eel. Neither is the empirical data in this thesis 

extensive enough to give a conclusive answer. Both methods are therefore employed 

and the result presented as being at least an indication o f  the merits o f  doing it either 

way.
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4 Mathematical implementation

4.1 Introduction

The challenge o f any mathematical modelling or representation is that it has to be 

complete enough to give meaningful results without being so complex as to be 

impossible to solve. In this chapter, the implementation o f a mathematical modelling 

o f a jointed eel-like structure is developed starting from a very basic model. The 

overall goal is to estimate the thrust developed by such a device in a range o f  

swimming patterns, and hence calculate key design parameters such as speed, power, 

torque and efficiency. However, the simplest models ignoring hydrodynamic effects 

were also used for estimating the torque required in each joint in order to size the 

motors. The moment computed from the more advanced models were used to 

calculate the power required by the eel.

Some numerical models, which were examined but in the end proved o f little 

relevance, are presented Appendix B.

4.2 Notation

Before the different mathematical models are presented it is useful to introduce the 

notation used, as this is common to all o f  them. A global and a local coordinate 

system will be used. By global in this context is understood a system, which is global 

for the eel itself though moving with it as the eel swims forward. A local coordinate 

system will be assigned to each straight segment. This local coordinate system will 

be presented when it is needed for the more advanced models.

The global system has its origin in the first joint and the eel is assumed to be 

swimming from right to left in this system. The origin is where the head segment is 

connected to the first moveable segment. As the eel only flexes in one plane the 

global coordinate system will be defined in terms o f two orthogonal coordinates. The 

origin is therefore denoted (Xi, Yi). An increasing number from this point can now  

identify the nodal points as well as the segments such that the node point (Xi, Yi) 

corresponds to the leftmost endpoint o f the i-th segment.
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(Xn, Yn)

(Xi+1, Yi+1)

(Xi, Yi)

(Xi, Yi)

Figure 4-1: The global coordinate system  o f  an n segm ent eel.

The angles that each segment makes with the global system and the length o f  each 

segment can then be denoted as 0i and Li respectively, where i denotes the segment 

number.

The velocity o f  the nodal points in the x- and y-direction are denoted X  and Y . 

Similarly the acceleration o f  each nodal point is denoted X  and Y . The motion o f  

the entire system is now defined.

4.3 Inertial force, lumped mass model

The simplest model for calculation o f  forces and moments on a jointed eel is a 

lumped mass model. This model ignores all hydrodynamic forces and assumes that 

all mass is lumped in the centre o f  each segment. The error o f  the first approximation 

will reduce towards zero as the segment lengths tend to zero.

The position o f  any nodal point can now  be given in terms o f  the nodal point to its 

left and the angle o f  the segment to its left:
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X, = X ,_,+Z M cos<?M 

%=?,-, + Z,_,sin0M

Equation 4-1

These displacements can in turn be differentiated with respect to time to give both 

velocity and acceleration o f the nodal points. The velocities are:

x ,  =  X ^ - e ^ L ^ s m e ^

Y, =Y , - 1  +0<-iLt-,cos0,_,

Equation 4-2

Similarly the accelerations o f the endpoints would be:

x ,  =X,-1 co s3-i sin^-1

Y, =Y,_, -  8 , - 1  L,-i sin + S^L,^ cos

Equation 4-3

There is no drag when calculating the inertia forces. Only the accelerations are 

therefore o f interest. The acceleration o f each element will be the average o f  the 

acceleration o f its endpoints, as the elements are assumed rigid. The forces on the i- 

th element are therefore:

FXJ =  y  [2 ^ ,- ,  - 4 - , 2A-, c o s * m  -Sm Z,_, sin0,.,]

Fu = i [ 2 f M - 4 - , 2A-, sine,., +e;_,A., cose,.,]

Equation 4-4

Note that these forces are those generated by the movement o f  the segments. Their 

numbering therefore corresponds to that o f the segments NOT that o f  the endpoints. 

Lower case m refers to the mass o f the segment.

A simpler form o f  these equations would o f course be:
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F x j  =  m ,

Fr . , = m ,

' x - ’ .v(+1

;+l

Equation 4-5

This is not surprising. The force developed by moving a segment with its mass 

concentrated at its midpoint is equal to the mass o f the segment multiplied by half the 

sum o f  the accelerations o f  its endpoints.

By adding up the forces, acting on each element the instantaneous thrust can be 

calculated.

n
Thrustjnst = ^  Fx j

i=1

Equation 4-6

The average o f the instantaneous thrust over one full cycle should then be the thrust 

in standard naval architecture terms. This average thrust would however obviously 

be zero for this simple model.

Once the forces have been determined, the moment in the backmost joint can be 

computed:

M „ = F r ^ c o s ( . 0 „ ) - F x ^ s m ( 0 n)

Equation 4-7

Capital M denotes the moment in the joint. Note that with this notation n corresponds 

to the last joint  in an n-segment eel. The last nodal point, which would be the tip o f  

the tail, would be n+1.

Since the mass is assumed at midpoint the lever arm is half-length multiplied by 

cosine and sine o f  the angle that the element makes with the coordinate system for 

the forces in the Y- and X- direction. The negative sign stems from the fact that the 

moment from a positive force along the X-axis yields a clockwise moment.
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It must be emphasized that this moment is the only one that can be calculated on its 

own. To work out the moments in the other joints one must start with this and work 

towards the head. The expression for the moment in the i-th node is:

M , =  Fr j Y  cos( 3  ) ~ Fx j  y  sin(6>) +  M m  

+ Fr,MLi C0 S{ 9 t ) ~ Fxj+\L< sin(0f)

Equation 4-8

A free-body diagram may help to explain where all the terms in Equation 4-8 come 

from:

Figure 4-2: The moments in each joint

The first two terms in Equation 4-8 can be recognized from the calculation o f  the 

moment in the last joint. In addition to this, the moment in all the other joints are 

dependent on the moment in the joint to the right o f them but also on the forces 

exerted on the element to its right times the length o f itself.

This lumped mass model can thus be used to predict the moments required to move 

an n-segment eel. In this most basic form, it does not incorporate any hydrodynamic 

forces. When a mechanical eel moves under water there will clearly be 

hydrodynamic forces generated. To account for this in the simplest possible way an 

added mass o f fluid assumed to move in unison with the elements can be employed. 

This is clearly not correct, as the eel would be streamlined in one direction and not 

the other. Simply multiplying the true mass o f  the elements with some (1+Ca) factor 

should however better the approximation o f the forces and moments involved. It is 

important to emphasise that this crude approximation is different from the added 

inertia employed by the Morison Equation as the Morison Equation only deals with 

the perpendicular accelerations for its added mass term.

Claus Christian Apneseth 2006



Mechanical Eel PhD Thesis 2006-27-01

It must also be emphasised that the lumped mass approximation is a reasonable one 

for the numerical solution o f a flexible problem. For such a scenario, the segment 

length can easily be reduced to a level where the solution converges towards the 

correct answer. In this particular case, however the segment length is fixed, as the 

physical model itself is discretised.

4.4 Inertial force, distributed mass model

The total mass o f each o f the segments o f  the eel clearly will not be located in its 

centre. A natural improvement on the model would therefore be to distribute the 

mass evenly along the length o f the segments. For a real mechanical eel the mass 

probably would not be truly evenly distributed either but it can reasonably be 

assumed to give a better approximation.

To facilitate the distribution o f mass a local coordinate system for each o f  the 

segments is required:

Figure 4-3: The local coordinate system

The two end-points are the nodal points o f  the segment. The coordinate £ runs along 

the segment starting from its leftmost nodal point.

The calculation o f the motions o f the nodal points themselves are unaffected by the 

switch to a distributed mass system and it is only the forces and moments that will 

differ. The forces on an infinitely short element o f  the i-th segment would be:
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m. (
dF y -  —

TF \
X  + (+1 ^  i

dFY = H  
v L,

Y  +

A
Y„ -  Y

4

4

d 4

d 4
i 7

Equation 4-9

These forces are in the global axis system. Integrating these forces along the length 

o f each segment will give the total force for the i-th segment:

Fx., = \d F x =m , - X , + - X . /+!

Frj = \d F r = m, -1 i: -  I f 7+1

Equation 4-10

This result should not be surprising. When the mass o f  each segment is evenly 

distributed, the force o f each segment in the x- and y-direction is the same as it is for 

the lumped mass case. All these elemental forces though do have different lever arms 

and the moment in the joints should therefore not be the same:

dMY =

m . .
i X t +

A V

(
m ,

t  +I

A
I

Y -  Yx 7+1 1 i £

£sin  Gt d%

£cos#j d%

Equation 4-11

It is important to emphasize that these elemental moments are those due to the forces 

in the X- and Y-direction. The negative sign in the moment due to the force in the X- 

direction is due to the fact that a positive force would generate a clockwise moment.

The moment in the backmost joint can now be calculated:
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M n = ^ (d M y  +  dM x)
o

( f  1 .. 1 ..

VVO 3
( 1 - 1  ̂  ̂c o s ^ - l - X „ + - X M+1 sin<9„

Equation 4-12

As is the case for the lumped mass model the moments have to be resolved from the 

tail end. The moment in the i-th joint would be:

( f
M. =

1 \
- Y  + - Y .6 . 3 cos 6 ' - I x . + i z 1 + 1

\
sin 6 , m;L  + M,i+i

y

+ F r,,+1A cos(^() -  F X M L t sin(<5»)

Equation 4-13

The distributed mass model is closer to the real scenario than the lumped mass model 

but it still does not take into account the hydrodynamic forces. In essence it solves 

the problem o f  a mechanical eel swinging from side to side in a vacuum. As such it 

can be useful for verification purposes based on measurements in air, in which fluid 

forces can be assumed to be negligible in comparison to the real inertial forces.

4.5 Lumped mass Morison Equation

The Morison Equation deals with two sets o f  hydrodynamic forces, one in phase with 

normal acceleration, and the other in phase with normal velocity. The force 

calculated previously, the one due to the real inertia o f the segment is also present. It 

cannot easily be combined with the hydrodynamic inertia force as it is in line with 

the acceleration, be it normal to the segment or in any other direction. A solution 

involving the Morison Equation should therefore contain three different forces. In the 

simplest version, consistent with the lumped mass approximation for the inertial 

forces, it can be assumed that the velocities may be calculated at the segment 

midpoints.

Claus Christian Apneseth 2006
45



Mechanical Eel PhD Thesis 2006-27-01

The velocities and accelerations used for the Morison forces can now be calculated. 

The eel is assumed to be swimming through a stationary fluid. In the case when the 

forward speed o f the eel is zero the velocities and accelerations needed for the 

Morison equation will be those that the centre o f  each segment makes with the global 

coordinate system. When the eel starts to swim forward this can be accounted for by 

giving (Xi, Yi) a forward velocity component. In local coordinates the velocity and 

acceleration with respect to the global coordinate system are:

v, = ^ ( '7 ,+ ’7,+i)

Equation 4-14

The lower case ij is the local transverse coordinate o f  the endpoints o f  each segment. 

The hydrodynamic forces on the eel can now be estimated:

P c a,  ( i j ,  + i i , „ )  +  ^ P  C D . D ,  |(7,. + t j M)| ( f t ,  +  i jM) L,

Equation 4-15

It has to be emphasized that the coefficients o f inertia and drag would not necessarily 

be uniform through out the eel and they are thus denoted Ca,. and Cdj respectively.

Giving the hydrodynamic forces in local coordinates is not very useful. The local 

coordinate systems would be different for each segment and the forces can therefore 

not be added up. Instead, the calculation is performed using the global coordinate 

system. For this purpose, a unit normal vector is defined as:

N i =
- sin 6 t 

cos 6

Equation 4-16
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This would be with the normal unit vector for the i-th segment pointing upwards. The 

result o f  the calculation would be the unchanged if  the normal unit vector chosen 

pointed downwards.

The normal velocity o f the midpoint o f  this i-th segment can now be calculated:

_  1
•N .~ 2 : ? + t i  .

1

Equation 4-17

In this expression, the scalar product o f the velocity o f the midpoint o f each segment 

and the normal vector gives the magnitude o f the velocity along the normal vector. 

This magnitude is then multiplied with the normal unity vector to render the normal 

velocity vector.

Similarly, the normal acceleration o f the midpoint can be found:

A ± j = -i , .  2
X , + X M

y, + ym
N N

Equation 4-18

Written out in the X- and Y-directions these expressions would read:

t = \ [ ( X , ■+ ̂ X - s i n ^  + t f  + t ,X c o s0 ,)](c o s0 ()

,, + X M)(-sm0, )  + (Y, + i;+1) (c o s 3 ) ] ( - s in 0 ()

Y ± = \ [ ( X ,  + X,+1)(-s in ^ ) + (^ + t I)(cosf,)](cos(?()

Equation 4-19

It has to be emphasized that the velocities and accelerations in Equation 4-19 are the 

components o f the velocities and accelerations o f  the mid point o f  the segment in 

question that is normal to the segment itself. They thus differ from the other 

velocities and accelerations written with capital letters both in the fact that they refer
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to the mid point rather than to the nodal points, and that they are resolved along the 

normal vector. This latter point is distinguished by the _L symbol in their subscript.

As these expressions are for the normal component o f the motions, they can be 

substituted directly into the Morison Equation. The hydrodynamic inertia forces 

according to a lumped mass Morison model would then be:

c atpL, [(X, + X M) ( - sin0,) + $  + X « » B,) ] ( - sin9t)

Fu  -  Ca. pL, [ (1 , + X M X - sin 0,) + (% + )(cos 6,)] (cos 9,)

Equation 4-20

In calculating the hydrodynamic drag forces, it is beneficial to start by calculating the 

absolute value o f the normal velocity vector:

v , , i  =
[-L J

-L >■

Equation 4-21

As the normal velocity vector o f the midpoint can be defined in its X- and Y- 

components, the magnitude o f  it can be found in the usual manner. The drag force 

can now be calculated:

Equation 4-22

To find the total force for each segment in the x- and y-direction the three forces 

simply have to be added together. This will be the addition o f  Equation 4-5, Equation 

4-22 and Equation 4-20:
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, x , i  ~  F x , i  +  F x , i  +  ^ x , i

F 1,7,1 ~  F yti +  Fy t +  Fy t

Equation 4-23

To find the overall forces on the eel the forces for each segment has to be added up:

FX = ± F W
i=1

Fr = t . F u j
i=1

Equation 4-24

To find the moments in the two joints the forces on each segment from Equation 

4-23 must be multiplied with the correct lever:

M n = F z .  y,n y  cos(6»„ ) - F x x „ ^  sin(<9„)

Equation 4-25

This again is the moment in the n-th joint. The moment in the i-th joint can be 

expressed as:

M > = FL'YiI^ cos(0i) - F S'X'I ^ s i n (0,) + M m  

+ F z j , m L, c o s (0 t ) ~  F ^ ^ L ,  sin(<9,)

Equation 4-26

These last two equations are quite similar to Equation 4-7 and Equation 4-8. This is 

to be expected, as it is only the method o f calculation o f the forces that varies 

between the two equations.
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4.6 The distributed Morison model

The previous model assumed that all points along each segment move at uniform 

velocity and acceleration. This is clearly not true and since the drag-force is 

dependent on the square o f the velocity, it leads to both an incorrect force and 

moment being calculated. To better these estimates the correct velocities and 

accelerations for each part o f each segment should be used. It can be argued that this 

is consistent with the assumptions o f the distributed mass model in section 4.4.

This can be done using either analytical or numeric integration. Although the 

analytical solution would produce the most accurate result, it has certain important 

limitations. Firstly, it is not as flexible when it comes to altering the physical set up 

o f the eel and it is not as suitable for computer calculation. The numeric solution 

should also render a highly accurate result if  each segment is sufficiently subdivided. 

The numeric solution has therefore been chosen for the calculation o f the distributed 

Morison model.

Each segment therefore has to be separated into k parts.

Figure 4-4: The parts o f  each segment

The parts o f each segment are termed elements. Each element would be assumed 

moving in unison and it is therefore the position, velocity and acceleration o f  the 

mid-point o f  each element that is o f interest. These points along each segment are

denoted in lower case. This means that (*;,,■ »}>;,/) is the midpoint o f  the j-th element 

o f  the i-th segment. The positions o f these midpoints in global coordinates are:
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v  x ^ - x ,  .s X iA- X ,
x.  = X , + — - ------ -  + { ] - \ ) — - ------ '-

JJ ' 2k J k

Y -  Y Y -  Y
y, :  = Y. +-!=!-------!. + (y_l )_M L

JJ ‘ 2k k

Equation 4-27

The position o f the midpoint o f the elements is given by the coordinate o f the 

segment’s leftmost endpoint and half the displacement o f  one element and the 

displacement o f one element multiplied by its element number minus one. As this 

expression is differentiable finding the velocities and accelerations o f  the midpoints 

is trivial:

x = X . + ̂ + ( j  - 1)-*=! L
JJ ' 2k J k

Y -  Y  Y  -  Y
y  =Yt + -i=! L + 0 ’~ l ) —  L

y’' ' 2k k

Equation 4-28

Similarly the accelerations:

X,  , - X ,  . .  .. X,  , - X ,
x , . = X , + ^ ----- L + 0 ' - l ) —! --------

,J ’ 2k J k

Y  -  Y  Y -  Yy  =  Y, + - ^  L +  ( y _ i ) _ h l  L
JJ ‘ 2k k

Equation 4-29

Before the computation o f  the hydrodynamic forces is attempted it is important to 

emphasize that the real inertia forces o f  the eel itself can still be computed using 

Equation 4-10. It is however beneficial to recalculate these forces for each o f  the 

elements rather than use the result calculated for the segment as a whole. This will be 

done when computing the total force on each element in Equation 4-35.

In order to calculate the hydrodynamic forces the normal vector o f  Equation 4-16 is 

used. The normal velocity o f the midpoint o f  each element will be:
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x u
— J , '

•N i N

1

Equation 4-30

The vector is given in lower case to differentiate it from the normal velocities o f  the 

midpoints o f the segments. Note that the angle is constant throughout the segment 

and the normal unity vector therefore is the same for all elements o f  each segment.

Similarly, the normal acceleration o f the elements midpoints can be found:

x n
= j<> • Ni N

- h i .

Equation 4-31

Written out in the x- and y-directions these expressions would read:

j j  =  [ * «  ( ~ sin 9>) + y u  (cos ) ]  ( - sin  9 I) 

y±  j j =[*w sin 9 <)+ y u  (cos 9i)] (°os 9<)
* 1  J J  = [*/,/ ( -  sin 9,) + y ,j  (cos 9i)] ( -  sin 9I) 

y± JJ = (— sin <5/) + (cos )] (cos <9,)

Equation 4-32

As these expressions again are for the normal part o f the motions, they can be 

substituted directly into the Morison Equation.

The hydrodynamic inertia forces o f  each element along the segment according to a 

discretely distributed Morison model would then be:

7tD  ^ J
f i j j  = Ca„ p  - J  [*/.; ( -  sin 9.) + y u  (cos 9I) ]  (-Sin<9f)

7T D   ̂ T
f y J J  ~  ~ Y ~ C ajJ P J [*;,/(-sin ) + y u (cos ̂ )] (cos 6,)

Equation 4-33
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Similarly, the drag force for each element can be calculated with the help o f Equation 

4-21:

Equation 4-34

Again, these forces are given in lower case, as they are for a single element o f  a 

single segment only. Asides from that this equation is very similar to Equation 4-22, 

as would be expected.

The overall forces acting on this individual element can now be computed:

in 
.. = — x.  + f- . . + /'• ..

m
f  .. =  — y .. .. +  / •  . .^ s j , i  J y,j,i

Equation 4-35

The real mass is assumed uniformly distributed throughout the segment and the real 

inertia forces are therefore computed from the real mass divided by the number o f  

elements multiplied by the acceleration. This acceleration would be taken from 

Equation 4-29.

The instantaneous thrust can now be calculated:

n k 

i=i j =i

Equation 4-36

Again, this instantaneous thrust would have to be averaged over a whole cycle to 

give the more conventional figure for thrust.

The moment in the backmost joint can be found by multiplying the forces o f each 

element with their corresponding lever arm:
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k

[tj* -  X« ) ~ k,J.n {yj, -  Y. ))

Equation 4-37

This moment is again required to calculate all the other moments, as they are 

dependent on the moment to the right o f them.

M >= I  ( f w  - * • ) -  A , . ,  [ y u  - * . ) ) + M . .
■ / + i

7=1

k  k

+ Z  ) L i cos( 3 )  “ Z  1 ) A  sinW  >
7=1 7=1

Equation 4-38

This moment in the i-th joint consists o f  the moment the segment generates itself, the 

moment in the joint to its right and the moment from the resultant forces in the joint 

to its right.

4.7 Comparisons

A comparison of the predicted moment in the first joint for the McEel as well as the 

over all predicted thrust for the 30-40-60 scenario is presented here. This not 

intended as an exhaustive comparison but rather as an indication o f  how the 

predictions from the different numerical methods vary for a device like the McEel. 

The eel is therefore assumed to have two moving segments and the values used for 

this comparison are:

Ca 1.0
Cd 1.2
mass (per seg.) 2 kg
Length (of seg.) 0.2 m
Breadth (of seg.) 0.1 m
Depth 0.2 m
centroid 0.1 m

Table 4.7-1: The basis for the comparison
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The predicted moment in the front jo in t is presented in Figure 4-5.

Moment in front joint —  L.mass

- .D.mass

—  L.Morison

- ■ D.Morison

0.2 0.4

-10

-20
time (s)

Figure 4-5: Com parison o f  the predicted m om ent in the front jo in t

In this graph, the moment in the front joint required to oscillate the McEel in a 30- 

40-60 pattern at I Hz at zero forward speed is predicted using the four different 

theoretical models. As can be seen the methods including hydrodynamic forces are 

substantially larger than the ones limited to solid inertia effects. This is not surprising 

as the tested eel has a substantial projected area compared to its mass. It can also be 

seen that the effect o f  computing distributed forces as opposed to lumped ones has a 

limited impact in this case.

The similarly predicted over-all longitudinal forces would be:

—  L.mass

- ■ D.mass
T o t a l  l o n g i t u d i n a l  f o r c e

—  L. Morison

- D.Morison

0.6

z  -10 -

-30

time (s)

Figure 4-6: Com parison o f  the predicted longitudinal force
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In this graph, the two predicted forces containing only real inertia effects are 

identical, as one would expect. The two forces including hydrodynamic effects are 

also virtually identical. This could reasonably be expected with an eel with such 

short segments.

It should also be emphasised that the models with only real inertia forces predict zero 

mean forward thrust as one would expect. The models based on the Morison 

Equation do however predict a mean forward thrust. This is reassuring and can be 

seen as an indication that the Morison Equation can be used as the basis for 

computing fishlike propulsion.

It is therefore o f  interest to see which o f  the three force com ponents it is that 

generates the forward thrust:

Longitudinal force components
10 n

CL)OI—
o

-20

-25
—  Fx total

- - Fxreal mass

- ■ Fx added mass

—  Fxdrag

-30

-35
time (s)

Figure 4-7: The com ponents o f  the longitudinal force

In Figure 4-7, it can be seen that the total forward force resembles the force coming 

from the added mass forces. The real mass inertia effects and the drag forces seem to 

modify the force signal from added mass effects rather than alter it completely.

A comparison o f  the mean values o f  the various com ponents does however reveal 

some important points:

Component Mean force (N)
Real mass 0.0
Added mass -11.6
Drag -2.9
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Total -14.5

Table 4.7-2: The time dependent average o f  the force components

Although the drag force has a small amplitude its mean is substantial. This example 

therefore indicates that both inertia- and drag-effects need to be taken account o f  

when the mean forward thrust o f a fishlike propulsion device is to be calculated.
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5 M odel design

5.1 Introduction

The only way to establish which if any o f  the numeric models are up to the task o f  

predicting the forces on an eel-like structure is to compare their predictions with 

measured data. Measuring the forces on an eel-like structure is however far from a 

trivial endeavour. To begin with, a real eel, like the A U V  that tries to imitate it, is a 

free-swimming body. Therefore, the forces between the body and the water cannot 

be easily measured. In addition, it would be very complex to make a truly 

autonomous vehicle. Even just keeping the eel at a constant depth below the surface 

cannot be achieved without some sort o f  control system. In addition, scientific 

accuracy on any measurement o f  a mechanical fish can be better achieved if one is 

certain that it swims in a straight line. These factors quickly led to the decision o f  

attaching the mechanical eel to the end o f  a sting and towing it in a towing tank.

Figure 5-1: A jointed structure on a sting

5.2 The first plan

In order to be able to optimize the motions o f  the eel each jo in t  has to be able to 

operate independently. Initially the plan was to achieve this by having one motor in 

each segment and a wire and worm wheel system to pull the jo in t from side to side. 

To make it all w aterproof the plan was to lead the wires through flexible rubber 

hoses making a watertight connection from one carriage to the next.
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Figure 5-2: The first plan for the McEel

The main challenges o f  this proposal were the trouble o f waterproofing it and the 

size o f the motors. As the motors were meant to go inside the segments this would 

have meant that the each segment would have had to be roughly 250*250*600 mm. 

This would then have lead to a big moment being required in the joints and the 

possibility that the motors would run out o f torque. The obvious solution o f  coupling 

the motors to gearboxes was beyond the budget constraints.

5.3 The first build -  M kl

For these reasons, it was decided to put the motors outside the model and have a wire 

drive system running through the sting to change the angle o f  the joints. Having the 

wire system turning the first joint was straightforward, as the wire could simply be 

attached to a pulley wheel that was attached to the moving segment. The difficult bit 

was however to transfer a turning moment to the second joint. It seems that the 

Robotuna avoided this problem by not having the segments truly independent 

(Barrett 1996). This makes sense as the intention was trying to duplicate a
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carangiform swimmer, which makes only half  a wavelength undulations. For the 

current study, it was desired to be able to emulate all sw im m ing styles.

The solution to the problem was found by having a double pulley free to rotate 

around the axis making up the first joint. This pulley then had the drive wire coming 

from the sting to rotate it and these rotations would then be transferred to the drive 

pulley at the second jo in t by a new wire. The global angle o f  the second segment 

would then be independent o f  the global angle o f  the first segment. Only the position 

o f  the second segment would change with an angular change in the first joint. This 

system is similar to the one that was previously used in dentis t’s drills. This system is 

depicted below:

Seg. 2

Head

Figure 5-3: The system o f  freewheels which allowed the join ts to operate independently.

In Figure 5-3, the bottom pulley with the red line around it is fastened to the first 

segment and is used to control its rotation. The double pulley above it is the 

freewheel and the blue lines are thus used to control the tail segment.

In conjunction with the building and testing o f  M k l the general test set up also had to 

be decided and it was soon evident that testing the forces involved in the propulsion 

o f  a mechanical eel is more complex task than one might first envisage. One o f  the 

main obstacles is the undesirable interaction between the sting and the model. To 

minimize this interaction the sting has to be slender but to avoid excessive bending 

the sting has to be bulky. Furthermore, the longer the sting gets the longer the drive
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wires or drive shafts would have to be which would lead to a less precise drive 

system. However if  the sting is too short the model will experience free surface 

effects. It therefore became apparent that a suitable sting would have to be found 

before the rest o f  the drive system could be designed.

In his book “Fluid - Dynamic Drag” Sighard Hoemer (1958) suggests that the free 

surface effects are negligible for submarines at a depth to centreline o f more than 5 

times their diameter. Although the submariners might be more concerned about 

being spotted than undesirable flow effects in their own right this figure was used as 

a first estimate. This would have made the sting for M kl 585 mm from the waterline 

and down to the top o f the model. In order to verify this value a simple experiment 

was conducted in the Denny Tank in which a 130*130*200 mm box with 65 mm 

pyramidal fairings front and back was towed through the water below a 20*50 mm 

steel bar with wedge shaped fairings 30 mm long. The model was towed at various 

speeds with wool tufts attached so that the flow around it could be visualised. It 

turned out that a submersion o f  the centre o f the box o f  400 mm was more than 

sufficient for there to be no visible interaction between the surface and the box even 

when the box was towed at 2 m/s.

After deciding the size o f the sting, the way o f  measuring the forces on the eel had to 

be decided. The intention was to have the eel swim in such a way that it used the 

minimal amount o f energy to overcome its resistance. The self-propulsion speed o f  

the eel had to be determined in order to calculate the transport efficiency. The initial 

aim was to do this with strain gauges measuring the bending in the sting. The 

challenge was however to decouple the forces acting on the model from the forces 

acting on the sting. Various designs were proposed ranging from an elongation o f  the 

sting inside the model to having two strain gauges at different vertical positions on 

the dry part o f the sting. This problem was solved by utilising a waterproof load cell 

inside the eel.
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Figure 5-4: The M kl top- and side-elevation

Figure 5-4 A) shows the side elevation whilst Figure 5-4 B) shows the top elevation 

o f  this system. The drawing shows the aluminium skeleton and the working 

components o f  the design. The intention was to get the model working first and then 

fair it o ff with foam panels and weights to make it neutrally buoyant and ready to 

swim. This eel was at no time intended to be watertight.

As indicated, the motors were attached to a steel plate, fastened to the carriage. The 

wires ran around a worm wheel and then over a direction changing pulley and down 

through the sting. Once inside the fish the wires were again run around a direction- 

changing pulley before one o f them ran around the drive pulley for the first joint and 

the other ran around the afore mentioned double pulley wheel.

Each joint o f the model was required to be able to swing up to 45 degrees from side 

to side. This amplitude o f  oscillation is larger than what is observed in nature (Gillis 

1998) and it was chosen to allow experiments with novel swimming styles.

The pulley wheels which drove the joints where approximately 50 mm in diameter. 

The worm wheel at the motor end was 25 mm in diameter. This meant that the motor 

made maximum undulations o f 90 degrees. Although this was less than ideal

Claus Christian Apneseth 2006
62



Mechanical Eel PhD Thesis 2006-27-01

conditions for a servomotor (Printed Motors GR12M4CH9T729) with a maximum 

rotational speed o f 3000 rpm the model was built.

Immediately during testing though it became apparent that the system was not 

behaving as desired as the eel moved in a jerky and uneven manner. After a lengthy 

debate and several calculations it was postulated that the reason for the faulty 

movements was a lack o f  torque in the motors. The motors were rated at 1.33 Nm  

maximum and as seen in section 4.7, this figure would not necessarily be enough 

even with the 2:1 gearing.

5.4 The second build -  Mk2

To remedy the lack o f torque it was decided to make a gearbox at the top end o f  the 

sting. Due to a lack o f funds, this had to be designed and made in-house. The 

gearbox was therefore made o f a pulley and timing belt arrangement. Calculations 

indicated that the rotations o f  the motor could be geared by 16 times without losing 

the ability to undulate at 2 Hz. As it was decided that it was desirable to be able to 

make undulations up to this frequency the gearbox was designed as two stages o f  1:4.

Motor
fl>■*->w
q.
ao

ac
(0

0)HI

LoadctU
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Figure 5-5: The M k2 side- and top-elevation

As can be seen from the drawing the Mk2 was very similar to Mk l .  The only 

changes were the addition o f  the gearbox and an increase in the diameter o f  the 

wires. In the Mk l ,  the wires were 1 mm diameter stainless steel wire, whilst this was 

changed to 2.3 mm for Mk2.

Gearbox

Motor

Sting

Figure 5-6: The M k2 as built

Because o f  the previous failure, only one gearbox was initially built.
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Figure 5-7: The gearbox o f  Mk2.

Although the Mk2 worked better than the Mk l ,  its motions were still uneven. This 

was not anticipated and for a while, the old wave-maker motors at the core o f  both 

M kl and Mk2 were suspected o f  being faulty. A closer inspection o f  the wire drive 

however came up with some startling results. The overall length o f  the primary wire 

drive was close to 2 m. The full undulating motion the wire was set to control was 50 

mm * 7t /  4 =39.3 mm. The wire stretching about 4%  could therefore accomplish a 

full swing from one side to the other. The torque o f  the motor was therefore being 

challenged not so much by the forces o f  the undulations o f  the model as by those 

involved in overcoming the friction due to the pre-tensioning.

An Mk3 in which the second stage o f  the gearbox was moved inside the eel was 

suggested but rejected because enough time had now been wasted on trying to get a 

wire drive system to work.

5.5 Mk3 - the final solution.

To get rid o f  the problem o f  the stretching o f  the wires a system with drive shafts 

running through the sting was selected. Initially this idea had been rejected due to 

fear that the sting might bend and that the shafts themselves might start to vibrate. 

The first problem was overcome by making the sting substantially bigger than first
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planned. The sting for M kl and Mk2 was 50 mm long and 20 mm wide whilst the 

sting for Mk3 is 102 mm (4”) long and 51 mm (2”) wide. This extra bulkiness was 

also required to house the two drive shafts. This construction meant that the sting had 

to be firmly attached to the eel. It was therefore impossible to decouple the drag o f  

the sting from that o f the eel and all force measurements are consequently for the 

over all system o f the eel and its sting.

The problem of the shaft instability was overcome partly by their sheer size (12 mm 

diameter) and partly by the fact that the gearing on the top end slows them down.

Sideview
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Figure 5-8: The Mk3 top- and side-elevation

As can be seen from this drawing the idea o f having a free-running double pulley to 

transmit the forces to the backmost joint was retained. The timing belts needed to be 

individually tightened. For this purpose, three idle wheels were added. Asides from 

that this design is quite similar to the M kl and Mk2.

Due to caution and budgetary constraints, Mk3 was first made with only one 

segment. This was deemed a complex enough model to validate the general design.
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Figure 5-9: Mk3 as built with one joint.

This set up was tested and found to be a major improvement from the two previous 

designs. The joint, and later the two joints, could now be m oved in a smooth and 

controlled manner as desired.
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Potentiometer 

Suggested position 
of potentiometer

Ballbearing

Figure 5-10: Mk3 -  the gearbox

In Figure 5-10, it can be seen how the drive shaft is kept in place by a bearing at the 

top end. The full weight o f  the shaft rests on this bearing.

A potentiometer was used to infer the angular position o f  each o f  the joints. The two 

potentiometers in the picture are due to an initial uncertainty about its ideal position. 

This dispute was quickly resolved and the potentiometers were mounted on the 

motor shaft. This increases the sensitivity o f  the system at the expense o f  adding one 

more flexible belt between the real angle o f  the jo in t and the position at which it is 

measured.
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N y la t ro n N y lo n  b lo c k

N y la t ro n

Figure 5-11: The jo in t o f  the Mk3

At the low er end, the shafts run through a ny lon  block. This is lubricated by w ate r 

w hen  the m odel is operating. The jo in t  i tself  rests on tw o pieces o f  N y la tro n  G SM ™ , 

w hich  also lubricates in water. These  black N y la tron  w ashers  can  be seen on the top 

and bottom  o f  the tail segm ent to the left in F igure 5-11.

As can be seen from F igure 5-8 the idea o f  hav ing  a load cell inside the eel w as 

abandoned  w ith  the M k3. As the sting and the eel w as  n o w  one unit, the forces 

experienced  by it had  to be m easured  for the system  as one. A  s ix -com ponen t  load 

cell was therefore m oun ted  at the top o f  the w ho le  apparatus  l inking this to the 

tow ing  tank carriage.
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Figure 5-12: The top plate with the load cell

Figure 5-12 shows the top plate o f  the model with the top o f  the sting in the middle. 

The two motors are mounted on either side and the load cell is the metal cylinder 

mounted above the timing belts. The cross beams on top o f  the load cell would then 

be clamped to the towing tank carriage.

The Mk3 was slightly modified at a later stage, which will be explained in detail in 

chapter 6.3. The working parts o f  the model were un-changed though and this model 

generated all subsequent test data for the McEel.
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Figure 5-13: Block diagram o f the signal routing from the McEel

Figure 5-13 shows schematically the setup adopted during testing. To the left o f  the 

drawing three computers are indicated. The lower one was used to generate the drive 

signal. This was transformed in a D/A converter before being transmitted to the 

power amplifier. The tacho signal coming from the servomotors was then employed 

by the power amplifiers together with the signals coming from the potentiometers 

mounted on the motors to ensure that the motors behaved as required:

Figure 5-14: Block diagram o f the control system
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As can be seen in Figure 5-14, only one potentiometer is used to control the angle in 

the joint and measure the angle o f the same joint. This may be an unusual design but 

it was calibrated against manual measurements and it seemed to work.

The measured values o f transverse and longitudinal force, carriage speed and the 

angular orientation o f  the segments were initially sent through a 12-bit A/D converter 

and into the program Chart running on the middle PC in Figure 5-13. In the later 

tests, a 16-bit A/D converter was used in conjunction with the program VI Logger. In 

both cases the data files were then taken to the top computer for data analysis using 

the MatLab software suite.

One weakness with this set up is that the system measures the angular orientation o f  

the motor to infer the angular orientation o f the two segments below the water. This 

is a set up dictated by financial constraints and although it was easy to verify that, it 

worked statically, it was harder to verify that elongation o f the belts or other 

mechanical errors did not lead to dynamic errors in the angular measurements. To 

quantify these errors the McEel was set to oscillate in the dry condition. Assuming 

then that the real force signal created by the M cEel’s motions in air could be 

predicted this could then be compared to what was measured. A phase correction 

could then be added to the angles measured by the potentiometers in such a way that 

the error between the computed signal and the measured one in the longitudinal and 

transverse direction was minimised:
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Figure 5-15: The measured angle correction

Part A) o f  Figure 5 -15 show how the r.m.s errors in the longitudinal and transverse 

direction change as various corrections to the measured angle are applied. Part B) 

and part C) show three signals for each o f  the two directions. The black dotted 

signals in both graphs depict the computed signal with no correction o f  the measured 

angle. As can be seen this overlaps the blue lines, which depict the computed signals 

with the best correction to the measured angle. The green lines, which differ from the 

other two, depict the measured signals.

The run, depicted in Figure 5-15, is a 40-40-0 run with an overall excitation 

frequency o f  0.3 Hz. In this example, the ideal dynamic phase angle correction is -1 

degree, which explains why the signals without any correction virtually overlap the 

signals with the ideal correction. The ideal correction is the one in which the sum o f  

the r.m.s. errors in the longitudinal and transverse directions is at a minimum. For all 

o f  the runs that were tested this angle correction was negative, meaning that the 

motions o f  the physical McEel seemed to be trailing the measured angle. This 

correction angle seemed to grow bigger as the frequency o f  the overall excitations 

increased as well as when the amplitude o f  the overall excitations decreased. For 

none o f  the runs tested was however this correction angle greater in magnitude than
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3.6 degrees. Although the forces experienced by the physical McEel would be 

greater when submerged in water this was seen as justification for measuring the 

angle o f the joints at the motor end as opposed to in the joints themselves.
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6 Experiment programme

6.1 Introduction

In this chapter it will be shown how the raw data used later on in this thesis was 

obtained. As none o f the persons involved had any previous experience with the 

testing o f an eel-like structure several errors were made along the way and numerous 

important lessons were learned.

At the end o f  this chapter it will also be shown what conclusions could be drawn 

from the initial data itself. The full set o f test data is presented along with its analysis 

in chapters 8 and 9.

In comparing the numeric model with physical tests, two potential un-knowns are 

compared to each other. Any disagreement between the two might be caused by 

inaccuracies in the physical tests, or by a faulty numeric method or indeed by one or 

several errors in both o f them. It was therefore considered vitally important to build 

up confidence by testing the simplest scenarios first in which the results can be 

predicted with a high degree o f accuracy. For this reason, the tests were done in four 

stages.

Initially the McEel was tested in air. This was done to ensure that the mechanical 

drive system and the data acquisition system both behaved as they should. These 

tests were used for verification purposes and only the one in Figure 5-15 is presented 

in this text.

Once consistent results had been obtained in air, the test program advanced to zero 

forward speed runs with the two segments moving in unison, the so-called single 

flapper bollard-pull tests. These were the most basic hydrodynamic tests and they 

will be presented both in section 6 .8.1  and chapter 8 as several important lessons 

were learned from them.

The next set o f tests was the bollard-pull runs with a phase angle between the joints. 

These runs were a logical step from the single flapper tests towards the forward 

speed runs but they were also used to answer several questions regarding the phase 

angle. Among these were: does the thrust vary with phase angle and is the Morison 

Equation equally suited for different phase angles?
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The last set o f tests was the forward speed ones. These tests were central to this 

project and they will be examined both in sections 6.8.2 and 9.3.

All the tests presented in the main text o f this thesis date from March 2005. Many 

tests had been performed before this date but except for the ones performed in air, 

these tests were used to build up experience and gain confidence rather than to gather 

data. Consequently, none o f these previous tests is reported in this thesis.

For all physical measurements and numerical processes, it is important to evaluate 

the accuracy attained. For this study, this is described in Appendix C and Appendix 

D.

6.2 Towing tank and blockage

Once a McEel model had been built that could perform the desired motions the 

difficult process o f getting meaningful results from it commenced. Initially it was 

tested in the Denny tank. All the initial tests in air were performed there with 

satisfactory results. The bollard pull tests that were performed in this tank did 

however contain a high level o f electrical noise and once the towing tank carriage 

was started up to perform tests with forward speed the level o f  electrical noise 

rendered the resulting data useless. A considerable amount o f  time was spent on 

trying to verify where the noise was coming from as well as trying to get rid o f  it. In 

the end it was however decided that the tests should be conducted at the Acre Road 

Hydrodynamics Laboratory.

The Acre Road tank is 70 meters long and has a cross section as depicted in Figure 

6 - 1 .
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Figure 6-1: The towing tank blockage effect

The tank has a maximum water depth o f  2.4 meters but it was not full at the time o f  

the final testing. The cross sectional area o f  the sting and the eel in a stretched 

straight position is 0.02 m “ which is about 0.02 % o f  the cross sectional area o f  the 

tank. No blockage effects are therefore considered when the eel is in this position. 

Once the eel starts to oscillate, it will at times represent a much larger area to the 

oncoming flow. However, the combined cross sectional area o f  the sting and the eel 

swung out to its most extreme position never exceeds 0.5 %  o f  the area o f  the tank 

and therefore no blockage effect is considered for any o f  the tests.

6.3 Model modifications

This section explains the modifications that were done to the McEel after its initial 

testing. These modifications were done to address two main concerns that had 

become apparent during the initial testing in the Denny Tank. These concerns were:

• The forces that were generated were quite small

• No good methods for quantifying the end effects at the tail were available

The fact that the McEel was generating small forces was not a problem in its own 

right but it was made so by the fact that the LM C-6524-1000N load cell had to be
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used. This particular load cell had to be used as it was the only suitable multiple-axis 

load cell available. As the name implies this load cell is rated up to 1000 N. The fear 

was therefore that the measurements would become inaccurate if  the loads that were 

measured were too small.

The difficulty with measuring the small forces led to the idea o f attaching fins to the 

McEel. The fins were to run along the top and bottom o f the McEel from the back 

end o f the sting and to the tip o f the tail. Two sets o f  fins were produced, one 

protruding 50 mm from the central body and one set protruding 25 mm from the 

body. In the end only the 50 mm fins were employed though as this turned out to 

generate forces that were still within the limits o f the physical set up.

As none o f the numeric models described in chapter 4 take account o f  end effects and 

as one o f the reasons for trying to model the M cEel’s swimming style on 

anguilliform locomotion was the desire to avoid the large foil tail it was decided to 

taper the tail o f  the McEel. The final version o f the McEel, the one that was tested, 

therefore looked like this:
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Figure 6-2: The modified Mk3 with fins and a tapered tail.

The tapering o f  the tail started 120 mm behind the tail jo in t whilst the tapering o f  the 

fins started 140 mm behind the same joint. The sting had triangular fairings front and 

back making it a total o f  297 mm in the longitudinal direction. The areas where water 

could flow through the model are marked with blue diagonal hatching on the side 

elevation o f  Figure 6-2. These holes were an unfortunate result o f  the construction 

and the effect o f  them had to be estimated through a relatively crude test.

6.4 The effect of the holes

The holes were positioned at each joint and were needed for the belts to be able to 

operate. The undesired side effect was that water could flow through the eel as well.
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The addition o f  the fins minimised the importance o f  this phenom ena but did not 

remove it. In order to try to establish the effects o f  the holes the one in the last joint 

was sealed with adhesive tape for two single flapper tests. The forces measured for 

the test o f  30-degree amplitude and 0.3 Hz excitation frequency are displayed below:

E f f e c t  o f  h o l e  - Y d i r e c t i o n
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Figure 6-3: The effect o f the hole on the force in the transverse direction 

E f f e c t  o f  h o l e  - X d i r e c t i o n
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Figure 6-4: The effect o f  the hole on the force in the longitudinal direction

As can be seen in Figure 6-3 and Figure 6-4 the two tests show perhaps surprisingly 

good agreement throughout most o f  the cycle. The two points at which the two 

disagree in the Y-direction is as the flow is about to turn at the extremities o f  the 

pendulum motion. As the angular velocity o f  the eel increases, the hole loses its 

importance for the transverse force. In the longitudinal direction, the two graphs also 

differ as the velocity o f  the pendulum is at a maximum and in general, the hole seems 

to make more o f  a difference in this direction. The mean forward force was 19 % less 

with the hole present than with it taped over.
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Ideally, the holes should not be there, and Figure 6-3 shows that they do make a 

difference at certain points o f  the cycle but there was no obvious way o f  getting rid 

o f  them within the constraints o f  the budget.

6.5 The resistance of the sting and the resistance of the eel

Once the McEel starts to move forward it is subject to numerous forces and one has 

to be careful to ensure that the ones that are measured are the ones o f  interest:

Figure 6-5: The forces present when swimming

In Figure 6-5, the forces experienced by the McEel are presented. The reason why 

the resistance o f  the eel is denoted the “true resistance o f  eel” is that various other 

researchers have assumed that the resistance o f  an actively swim m ing eel is the same 

as the stretched straight resistance o f  the same animal (Barrett 1996, Gray 1936 see 

chapter 1.1 for more). In the tests presented in this thesis, the net forces in the 

longitudinal direction are measured by the load cell and the forces due to swimming 

are sought to be predicted by the Morison Equation and other methods. There are 

thus two un-known forces namely the resistance o f  the sting and the true resistance 

o f  the McEel.

In addition to the forces presented in Figure 6-5 there will be interaction effects 

between the sting and the eel. These effects are unfortunate as they are very hard to
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quantify with any level o f  accuracy. The area where the sting attaches to the eel is 

less than 1% o f  the total wetted surface area o f  the entire eel. It is how ever important 

to emphasise that this area is calculated twice. The following figure may help explain 

this:

Figure 6-6: The error o f  the wetted surface area

In Figure 6-6, it is shown how the resistance o f  sting is subtracted from the resistance 

o f  the eel in the stretched straight position to find the stretched straight resistance o f  

the eel on its own. The resistance o f  the eel and the sting will however not include 

the wetted surface area indicated in red, which would be there if  the eel were on its 

own. Additionally the same red area is measured for the sting on its own whilst it 

would not be there when the eel is attached to it. The error involved with this area is 

thus included twice.

If  the resistance o f  the eel and the sting had been computed based on wetted surface 

area this area could have been subtracted. As the resistance estimates are purely
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empirical there is however no easy way o f  doing this and the error introduced by this 

area and other interaction effects have to be accepted.

It was thought that the resistance o f  the sting would be straightforward to quantify. 

An exact replica o f  the sting was therefore built and attached to the same load cell 

that was used for the McEel. This dum m y sting was then towed at various speeds to 

generate a resistance curve. Unfortunately, the forces generated by the sting were 

small and the electrical noise present on the carriage was considerable even at the 

Acre Road site. The resistance curve for the sting therefore took more time to 

construct and became less accurate than anticipated:

R e s i s t a n c e  o f  s t i n g
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Figure 6-7: The resistance o f the sting

In Figure 6-7 the estimated resistance o f  the sting on its own is presented as a dashed 

blue line together with the data points on which the estimate is based. The 

accompanying red dashed line is the resistance o f  the sting and the eel when the eel 

is in its stretched straight position. The solid blue line is the 1957 ITTC line for the 

sting and is presented as reference. The sting did not produce substantial waves 

below 0.5 m/s and it is therefore surprising to find that its measured resistance varies 

considerably from the ITTC line even below this speed. A picture o f  the waves 

generated by the dum m y sting at 0.5 m/s may help to explain this:

♦ Sting
Estim ated resistance

* Eel + sting
 Sting (ITTC)
 Poly. (Eel + sting)
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Direction of travel

Bow wave

Waves from edge

Figure 6-8: The wave profile o f  the sting at 0.5 m/s

As can be seen in Figure 6-8 the sharp edges on the sting generated substantial waves 

and one can therefore only assume that the under water turbulence caused by the 

same edge is equally important. The fairing that was chosen for the sting was thus 

not ideal.

Any A U V  or similar craft based on the McEel concept has to overcome the true 

resistance it generates. In the case o f  this thesis this force has to be estimated to allow 

any comparison between the predicted thrust generated by the eel and the total force 

as measured by the load cell.

Estimating the true resistance o f  any swimming body is difficult and this probably 

explains why other researchers have assumed this to be the same as the stretched 

straight resistance (Barrett 1996, Gray 1936). It is however important to emphasize 

that employing this simplification can lead to some startling results. In his PhD thesis 

Barrett employs a thrust power ratio to quantify the efficiency o f  the Robotuna. This 

ratio is defined as:

T h r u s t P o w e r R a t i o  =  ^ - ° g + - ^ ) U s ,e d
T o t a l P o w e r l n

Equation 6-1
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In this equation Drag is the drag o f the stretched straight fish, Fsled is the force

measured between the towing tank carriage and the fish, Usled is the velocity o f the

towing tank carriage and TotalPowerln is the power delivered through the tendons 

pulling the fish from side to side. This thrust power ratio o f  the Robotuna was 

estimated to be more than 100 % in some cases (Barrett 1996) indicating that the true 

resistance o f an actively swimming apparatus can be smaller than its stretched 

straight resistance.

The separation o f forces into thrust and drag is essentially an artificial one when it 

comes to the eel. It is difficult to determine where one begins and the other one ends. 

The stretched straight resistance o f the eel is however, an appropriate bench mark for 

the true swimming resistance which is useful for comparison purposes. For this 

reason the true resistance o f  the McEel will be estimated as the difference between 

the dashed red and the dashed blue lines in Figure 6-7.

6.6 Procedure and observations

When the McEel was ready to be tested a considerable effort was spent on ensuring 

that it was straight, level and at the right immersion depth. The top plate o f  the 

dummy sting varied in dimensions from the top plate o f  the McEel as the latter had 

to accommodate motors and running gear. The McEel was therefore seated on 

several aluminum beams to get it to the right height.

The first tests that were performed on the McEel were bollard pull tests. In these tests 

the towing tank carriage was positioned at the end o f the tank next to the beach with 

the McEel swimming away from it. It was assumed that any waves, if  generated by 

the McEel, would propagate backwards and thus be dampened by the beach.

In the forward speed tests the model was towed from the beach end o f the tank 

towards the wave maker. Once the towing tank carriage had reached a constant speed 

the McEel was set in motion. The forces in the longitudinal and transverse direction 

were monitored and a mean value for overall longitudinal thrust could be measured. 

The same test was the repeated for various speeds.

It turned out that the McEel generated substantial waves during the higher (>0.4 Hz) 

frequency runs. These waves propagated in all directions and they seemed to come
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form the vibrations o f  the sting rather than from the motions o f  the McEel itself. 

During the forward speed runs these waves would progress down the tank faster than 

the speed with which the model was towed. This meant that the McEel was in effect 

generating waves which propagated forward. This was both worrying in that it 

indicated a loss in efficiency and puzzling in that initially it could not be worked out 

were these forward moving waves came from. A closer examination o f  the two 

directions in which the sting could vibrate helped explain the phenomena:

►
i r

Figure 6-9: The waves generated by sting vibrations

As can be seen the cross sectional shape o f  the sting leads it to act as a wave maker 

when it is oscillated in the transverse direction. This direction is also the less stiff o f  

the two and the one in which the amplitude o f  the generated forces is the biggest. It is 

also important to emphasize that this wave generation could affect the mean forward 

thrust measurements. This problem arises once the eel starts moving forward at 

which point the drag term on the sting will no longer average out.

The waves propagating from the sting were thus an unfortunate result o f  the test 

setup. As no simple solution could be found to get rid o f  these waves and as it was 

not clear that they had a measurable impact on the tests no action was taken to 

alleviate this problem.

The transverse vibrations o f  the sting were particularly noticeable during the testing 

o f  the 30-40-30 pattern at 0.8 Hz and 0.1 m/s. During this test vortex shedding was 

clearly visible from the aft end o f  the sting.
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Vortex shedding from the McEel itself was also evident at the higher frequency tests 

(<0.3 Hz). These vortices were visible on the surface but did not seem to break the 

surface and thus cause waves even at the highest frequency (1 Hz).

At the particular frequency o f  0.4 Hz the floor o f the carriage vibrated with the 

motion o f the eel. Examination o f decaying oscillations o f the McEel indicated that 

its natural frequency was in the region o f 4-8 Hz depending on the direction o f  

interest and forward speed o f the carriage.

6.7 The effect of noise on average measurements

The mean forward thrust produced by the McEel was one o f the values that were o f  

particular interest during testing. In all the tests presented in this thesis this figure is 

computed directly from the raw data.

All the tests presented in this text are performed with a uniform excitation frequency 

for the two joints. At the beginning o f each test the McEel was slowly swung out to 

the starting position where the angle in the front joint was at its maximum. This was 

done to minimize the jerk experienced as the motions started and thus the noise 

generated. To further reduce the importance o f any transients the time history o f the 

forces for each test was visually inspected and an area o f near constant oscillations 

was selected for analysis.

Even so a fair amount o f  mechanical noise in the form o f  vibrations was present in 

all the tests (see Figure 7-1) and extracting the mean value o f the forward force 

requires a high level o f  accuracy. The force signal that the McEel generated was 

generally characterized by large amplitude oscillations and small mean values. An 

exact number o f  periods therefore had to be analyzed to get the right result. The 

signal from the front joint was therefore analyzed and the zero upward crossings 

were identified. There was virtually no noise in the angular measurements and the 

upward crossings are generally more exact than for instance the extreme points. Due 

to the large variations in the forward force signal an exact integer number o f  

oscillations o f  the McEel were required. However even if  this exact integer was 

found the mean measurements could still be affected by the non-integer number o f
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noise wavelengths. For this reason it may be o f  interest to see how the mean thrust 

varied depending on which complete cycle it was based on.

M e a n  t h r u s t  c a l c u l a t e d  p e r  c y c l e

- 0.2

-0.4

- 0.6

0 5 10 15 20 25
Cycle number

Figure 6-10: The mean thrust for 30-30-0, 0.6 Hz

In Figure 6-10 it can be seen how the mean force varies from cycle to cycle. This 

variation seems randomly distributed around some mean value and it is tempting to 

classify it as noise. The test depicted in Figure 6-10 is the 30-30-0 performed at 0.55 

Flz and as such it is one o f  the higher frequency ones. These tests all showed a 

similar picture to the one depicted in Figure 6-10. Some o f  the lower frequency runs 

also converged:
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M e a n  t h r u s t  c a l c u l a t e d  p e r  c y c l e
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Figure 6 -11: The mean thrust for 30-30-10, 0.2 Hz

Figure 6-11 shows one o f  the runs with the lowest frequency, and thus lowest mean 

thrust. This mean thrust still seems to vary by only a small amount around some 

mean value. However, some low frequency runs did not seem to converge at all:

M e a n  t h r u s t  c a l c u l a t e d  p e r  c y c l e
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Figure 6-12: The mean thrust for 30-30-0, 0.2 Hz
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Figure 6-12 depicts the 30-30-0 scenario at 0.2 Hz in the bollard pull condition. The 

value for the mean forward thrust varies considerably depending on which 

oscillations its measurement is based on. Furthermore, it does not seem as if the 

variation is leveling of. This prompted a re-test o f  the same condition but with a 

much higher number o f  oscillations:

Mean thrust calculated per cycle
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Figure 6-13: The 30-30-0, 0.2 Hz with m any cycles

In Figure 6-13, it can be seen that the measured mean thrust does not reach a steady 

mean value even when more than 90 oscillations are compared. As the period o f  

oscillation in this test is 5 seconds it took a considerable time to generate this data 

and it was not considered feasible to measure this many oscillations for each run. 

Especially during the forward speed ones in which the length o f  the tank would 

become an issue.

This result therefore caused a considerable amount o f  uncertainty. For a while, the 

drift was thought to be due to thermal effects in the data acquisition system but as the 

equipment had been given ample time to heat up, this was quickly ruled out. It was 

also considered that the McEel could be setting up a current in the tank. This would 

have been good news for the eel as a propulsive device but highly unlikely 

considering the minute forces measured and the substantial size o f  the tank.
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When considering this drift in the mean thrust measurements there are some 

important facts to consider:

• Both the instantaneous and mean forces that are being measured are small 

and they are at the lower end o f what the data acquisitioning system is 

capable o f  measuring.

• The tests depicted in Figure 6-12 and Figure 6-13 are both 0.2 Hz tests, the 

lowest frequency that was tested with the correspondingly lowest mean thrust 

generated.

The question therefore becomes is there an excitation frequency above which the 

mean thrust start to converge towards a reliable value. This frequency, below which 

the mean force measurements were hard to obtain, seemed to vary between the tests. 

In case o f the single flapper, the lowest frequency run that converges is the one at 0.3 

Hz. Some o f the other tests converged at a lower frequency as Figure 6-11 indicates.

In the end, it was therefore decided to perform all tests with 30 oscillations and a 

graph like the ones in Figure 6-10 to Figure 6-13 were closely examined for each test 

run to ensure that the effect o f the noise was limited.

6 .8  Initial results

In this section the preliminary results will be presented. This was before any 

frequency domain filtering or comparison with numerical methods had been done. 

Further results from the tests that became apparent only once the filtering and 

comparison had been done will be presented in the next chapters as this data might 

be considered more open to dispute.

The different tests done for this thesis can be divided in three. Eleven single flapper 

bollard pull runs were done before any o f the other tests were performed. After 

confidence had been gained with this set o f motions the bollard pull runs with a 

phase angle between the joints were commenced. Only after most o f  these runs had 

been completed did the forward speed runs begin as these were seen as the most 

complicated ones. In total 54 bollard pull runs with a phase angle were performed. 

These tests were done with oscillations o f 30 or 40 degrees in the joints as earlier 

trials had shown smaller oscillations to be too jerky to render meaningful results. A
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total o f 53 tests were done with forward speed. These tests were done with 8 

different motion patterns at various speeds.

6.8.1 Bollard pull (zero forward speed)

Ten different frequencies were performed o f the 30-30-0 motion pattern to ensure 

that the generated thrust varied smoothly with excitation frequency. Results are 

shown in Figure 6-14. Note that negative thrust indicates forward force.

30-30-0 bollard pull

0
- 0.2 

-0 .4  

-0 .6  H 

- 0.8 

-1 

- 1.2  -  

-1 .4  - 

- 1.6

0.1 0.3 0.4  0.5  0.6 0.7

30-30 -0  
Poly. (30 -30 -0 )

Frequency (Hz)

Figure 6-14: The variation in mean thrust with frequency for the single flapper

A similar set o f  tests were performed for the 30-40-60 motion pattern and for this 

pattern as well the bollard pull seemed to vary with a quadratic relationship o f  the 

excitation frequency. It might be less apparent from Figure 6-14 that the thrust for 

0.2 Hz was tested twice. This was done partly to ensure repeatability and partially to 

investigate how low frequency noise components affected the lower frequency runs 

as discussed in section 6.7. The fact that the two data points appear as one in Figure 

6-14 is a good indication o f  the limited influence o f the noise on the average 

measurements.

An important input parameter to the design o f an AUV based on the McEel concept 

is how many joints it requires. As a free swimming McEel would need to minimize 

the moment around its vertical axis it would probably need to make oscillations o f  at 

least one full wavelength. This means that the number o f joints would be dictated by
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the ideal phase angle between them. The larger the ideal phase angle between the 

jo in ts  the fewer joints would be required to make at least a full wavelength and the 

less complex the vehicle would be.
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Figure 6-15: The thrust as a function o f  phase angle

Figure 6-15 shows how the mean thrust in the bollard pull condition varies as a 

function o f  the phase angle between the two joints for various excitation frequencies 

and motion patterns. Although the variations in thrust are mostly small, a phase angle 

o f  30-40 degrees seems to produce the largest thrust for all o f  them. If  this were the 

case also for eel-like structures with more than two joints, it would mean that a free- 

swimming mechanical eel would need 9-12 joints to produce m axim um  thrust in the 

bollard pull condition.

6.8.2 Forward speed

All the eight swimming patterns that were tested in forward speed had first been 

tested in the bollard pull condition. A value for the thrust with a forward speed o f  0 

m/s had thus been obtained. For each swimming pattern, 4-10 different forward 

speeds were then tested. The increasing speeds were selected to include some data 

for when the eel was held back by the towing tank carriage as well as some data for 

when the carriage was towing the eel.

30-30-X 0.4 Hz 
30-30-X 0.5 Hz 
30-30-X 0.6 Hz 
30-40-X 0.4 Hz 
30-40-X 0.5 Hz 
30-40-X 0.6 Hz
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Thrust vs speed (30-30-60 0.6 Hz)
3 i

-2 -  

-3 -

Speed (m/s)

Figure 6-16: The measured thrust for various speeds for 30-30-60 0.6 Hz

In Figure 6-16, the measured thrust is plotted for various speeds. The linear 

approximation is plotted as a dashed line. The fact that the linear approximation is so 

close to the measured values is important, as the self-propulsion speed is one o f  the 

quantities o f interest and as this is unlikely to coincide with a measured speed.

When examining the raw data from the forward speed runs with the McEel it is 

however important to remember that the self-propulsion speed is not the speed at 

which the mean total forward force is zero. This is due to the resistance o f the sting 

and is depicted in Figure 6-5. A comparison o f the different zero force speeds is 

however still o f  interest as it gives an indication as to which swimming style is the 

most efficient.

A plot like the one in Figure 6-16 was produced for each o f  the eight swimming 

scenarios and all the linear approximations fitted the data points well. The worst fit 

was for the lowest frequency tested. This was the 30-40-60 tested at 0.4 Hz:

♦ Measured 

 Linear (Measured)
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Thrust vs speed (30-40-60 0.4 Hz)
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Figure 6-17: The measured thrust for various speeds for 30-40-60 0.4 Hz

Figure 6-17 shows the largest deviation from the linear approximation and has a 

Pearson product moment correlation coefficient squared o f 0.984. The Pearson 

product moment correlation coefficient between an array x and array y is defined as:

R 2 =
' Z ( x - x ) ( y - y )

\ l E ( x ~x )  Z ( y - y ) 1

Equation 6-2

As the measured data correlated quite well with their linear approximations, a 

comparison between the various computed zero forward force speeds could be 

shown. These speeds will be the ones where the linear approximation crosses the X- 

axis. The speeds at which the mean forward force was found to be zero are shown in 

Table 6.8-1:

Motion Frequency (Hz) U (m/s) when Fx=0

30-40-30 0.6 0.24

30-40-60 0.6 0.25

30-30-60 0.6 0.24

30-30-30 0.6 0.23

30-40-60 0.8 0.38

30-40-30 0.8 0.33
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30-40-60 0.4 0.16

30-40-60 1.0 0.53

Table 6.8-1: The speeds at which the total mean forward force is zero

It is important to remember that each o f the zero forward force speeds are computed 

on the basis o f 5-10 test runs. Although there are differences between the different 

swimming styles, the zero total forward force speeds seems to be dependent 

primarily on over all excitation frequency.
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7 Signal conditioning

7.1 Introduction

As mentioned in chapter 6  the raw data collected for the McEel contain a lot o f  noise. 

This noise seemed to be o f both electrical and mechanical origin. Numerous attempts 

were made at minimizing these sources but in the end it had to be accepted that the 

poor signal to noise ratio was the best that could be obtained with the equipment 

available. Filtering and filter design therefore became an important part o f this study.

This chapter therefore aims to explain the choices that were made regarding the 

filtering o f the raw data. Amongst these choices were the decision to use a frequency 

domain filter, how many harmonics to allow through this filter, the decision to use a 

second pre-filter and the decisions regarding the implementation o f  this process o f  

signal conditioning.

7.2 Frequency domain filtering

Initially it was attempted to filter the time dependent force signals with a higher 

order Butterworth filter. However, it soon became apparent that this would be 

impossible as the forces could be oscillating with a frequency as high as 4 Hz in 

extreme cases and the noise started around 3 Hz. Filtering in the time domain would 

thus be unable to discriminate between the noise and the signal. A plot o f the 

frequencies present in the longitudinal force in an air test demonstrates this:
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Figure 7-1: The signal to noise ratio for 40-40-0 0.3 Hz in air

Figure 7-1 is the frequency spectrum for the 40-40-0 0.3 Hz test in air. The blue 

stems with the upward triangles represent the measured signal whilst the green stems 

with the downward triangles represent the force calculated by the use o f  N ew ton’s 

laws o f  motion.

The sampling frequency in Figure 7-1 is 83 Hz as it was in the earlier tests. This 

frequency was chosen as it is o f  sufficient size to give accuracy in the time domain 

without being so large as to render the data files unwieldy. This frequency is also a 

prime number and this should limit any interference from the mains frequency or 

other known noise. The tests performed in air as well as the earlier tests were 

sampled at this frequency. As fast Fourier analysis became an ever more integral part 

o f  this study though a higher sampling frequency and thus higher resolution was 

desired. In practical terms, a new data collection system allowing the use o f  a USB 

memory stick for data transfer rather than 3.5” floppy disks made the resultant bigger 

data files less o f  an issue. All the hydrodynamic tests presented in this study were 

therefore sampled at 213 Hz. This num ber was considered big enough to limit the 

effect o f  it not being a prime number.

Two conclusions can be drawn from Figure 7-1: there is a need for heavy filtering 

but the risk o f  aliasing is negligible as the data that is o f  interest is located far below
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the Nyquist frequency. It was therefore decided to filter the forces in the frequency 

domain by the use o f fast Fourier analysis.

7.3 Choice of harmonics to be included

As with all kinds o f filtering, the outmost care has to be shown when employing 

frequency domain filtering so that the filter does not filter out something that is 

actually part o f the signal. This is doubly true when filtering in the frequency domain 

as the whole process pre-supposes that the exact frequencies o f  interest are known a 

priori. In terms o f the eel though it is fair to assume that the over-all force in the 

transverse direction will oscillate either at the same frequency as the over all 

excitations o f the eel or at higher harmonics o f this frequency. This is because an eel 

swinging towards the left should develop an equal but opposite transverse force to an 

eel swinging to the right. The opposite is true in the longitudinal direction. An eel 

swinging to the right should develop the same force in the X-direction as one 

swinging to the left. The force signal in the X-direction should therefore consist o f  

oscillations at twice the frequency o f the over-all excitations and higher harmonics o f  

this frequency. In addition, the signal in the X-direction should contain a component 

at 0 Hz if  the eel actually swims.

The question therefore becomes how many harmonics should be allowed to pass 

through the frequency domain filter. In answering this, it may be helpful to 

remember the physical set up o f the McEel experiments:

 ►

Figure 7-2: Determining how many harmonics to include
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In Figure 7-2, it is shown how the over all excitations o f the total system relate to the 

measured forces in the longitudinal direction. Shown here is a scenario with just one 

segment or with the two segments moving in unison. The angle in the joint would be:

Q = As \n(2nf1 )

Equation 7-1

In this equation A would be the amplitude o f oscillation,/the frequency o f oscillation 

and / the time. From Equation 4-3 the acceleration in the longitudinal direction o f  

any point along the segment can then be found:

x  = AlAn2/ 2 (sin (2  n f  /)  sin (A sin ( 2 n f  / ) ) - > !  cos2 (2  n f  / )  cos (A  sin ( 2 n f  / ) ) )

Equation 7-2

In this equation / is the length from the joint to the point on the segment that is o f  

interest. This equation is for the acceleration o f  a point along the single segment in 

the longitudinal direction and as such, it dictates which harmonics should be present 

in the force signal when the McEel oscillates without a phase difference between the 

joints in air. Equation 7-2 consists o f many elements and it is not immediately 

obvious how many harmonics would be present in the resulting force signal. Closer 

inspection using fast Fourier transformation reveals that the resultant force can be 

represented with only two frequencies.

If the McEel was tested in air with a phase angle between the two joints, the resultant 

force in the longitudinal direction should still contain only two frequencies. Once 

submerged, this can no longer be easily ascertained. The shape o f  the curve o f  the 

time history o f the hydrodynamic forces that the McEel will develop is one o f  the 

fundamental questions that this thesis aims to answer and before good measurements 

are obtained it can not be decided how many harmonics should be present in the 

measured signal. This is presents a dilemma, as until it can be decided how many 

harmonics should be present in the measured signal good measurements cannot be 

obtained. If the Morison Equation is assumed to represent the true forces generated 

by the McEel’s motions it can be shown that the longitudinal force should contain 

two harmonics and a signal at 0 Hz. Under the same assumptions, the transverse 

force should contain three harmonics.
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As Figure 7-1 indicates, the measured signal in both directions, both in air and in 

water, did display several harmonics as well as 0 Hz values. In air, the general 

acceptance o f Newton’s laws o f motion allows a decision to be made about which 

part o f  the signal to include whilst in water this is not the case. The higher harmonics 

can just as well be due to some hydrodynamic phenomena as noises in the test rig 

and the 0 Hz signal in the transverse direction can be due to the McEel being less 

than perfectly symmetrical. Unfortunately, the higher harmonics are not always 

smaller than the lower ones. There is thus a real danger that limiting the analysis to 

lower harmonics and the 0 Hz signal will exclude certain hydrodynamic effects. On 

the other hand, the poor signal to noise ratio dictates frequency domain filtering and 

as the third harmonic proved dubious even in air, it was decided to include just the 

first two harmonics and the 0 Hz signal for both directions for all tests in this thesis.

This means that if  the McEel was tested at 0.3 Hz, it is assumed that the measured 

force in the transverse direction could at the most contain three signals at 0, 0.3 and 

0.9 Hz. In the same test, the longitudinal force could at the most contain signals at 0, 

0.6 and 1.2 Hz. A zero Hz signal in the transverse direction would equate to the 

McEel swimming sideways. It was allowed to pass through the filter, as anything 

bigger than a miniscule value in this signal would act as a warning.

7.4 The addition o f a pre-filter

During testing the LMC-6524-1000N load cell was connected to a set o f  DSA-100 

bridge amplifiers (for data sheets see Appendix E). Figure 7-3 shows how the 

measured signals were routed through the data acquisition system.
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P o t e n t i o m e t e r s
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Figure 7-3: Block diagram o f  the routing o f  the measured data

These bridge amplifiers are fitted with filters with various settings. As the measured 

signal contained a lot o f  high frequency noise it was decided to eliminate some o f  

this with the filters in the bridge amplifiers. As Figure 7-3 indicates this presents a 

new problem as angular position signals from the potentiometers did not pass 

through the bridge amplifier. The phase and amplitude shift through the filters 

therefore had to be quantified and either subtracted from the filtered signal or added 

to the signal from the potentiometers. In the literature accompanying the D SA -100  

the filters are described as second order “vessel” filters. It was assumed that this was 

a typing or translating error and that the filters were Bessel filters. The filters were 

set for a cut o ff frequency o f  10 Hz. The comparison with a second order theoretical 

Bessel filter with this cut o ff frequency is therefore presented in Figure 7-4 and 

Figure 7-5.
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Figure 7-4: The magnitude response o f  the bridge amplifiers

The theoretical Bessel filter is indicated with a solid blue line.

Phase(f)

-10

-20
 ideal

X  m easu red  x 

O m easu red  y

-30

-40
o>
-o -50
a>inre -60

-70

-80

-90

•100

-110
F r e q u e n c y  ( Hz )

Figure 7-5: The phase response o f  the bridge amplifiers
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As can be seen from these graphs the filter for the X-direction had a fairly similar 

response to the one for the Y-direction. They both varied considerably from the 

theoretical value though. In fact they were similar to a second order Bessel filter with 

a cut o ff frequency closer to 8 Hz.

Once the characteristics o f the filters had been established it had to be decided 

whether the angular measurements should be modified in a similar way or whether 

these effects should be subtracted from the force measurements. In the end it was 

decided to do the latter as it was decided that this would relate the experiments better 

to real effects like the resistance o f the eel and the sting.

7.5 Filter implementation

It was always intended to do as much of the analysis on the raw data as possible and 

only use the filtered data for comparisons with computed results. The original data 

processing model is shown in Figure 7-6

Figure 7-6: Block diagram illustrating the initial process o f  analysis

This figure shows how the raw data was processed whilst the old data acquisition 

system was still being used. Figure 7-6 is a representation o f  how this was done 

using the transverse forces to evaluate the force coefficients. This latter point will be 

discussed in section 8.5.
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This method o f  processing the raw data would have meant that both the mean 

forward thrust and the computed force coefficients would have been un-affected by 

the frequency domain filtering. With the addition o f  the pre-filter, the phase and 

magnitude shift introduced by this filter meant that this no longer could be achieved. 

A modified model is illustrated in Figure 7-7.

^Yraw

Ca & Cd

Fxraw = thrust

Comparison

+ real 
inertia 
effects

- real inertia 
effects

Phase and 
magnitude 

shift
FFt filtering

Numeric process

Least squares fit

Figure 7-7: Block diagram illustrating the final process o f  analysis

In this figure, the force signals that are denoted as Fyraw and Fxraw are the ones 

coming from the pre-filter. Although this new method o f  signal processing adds 

several processes and thus several potential sources o f  error compared to the one 

described in Figure 7-6 it does also offer one major advantage. Without the pre-filter, 

the raw data measured bore little resemblance to the frequency-filtered data. Visual 

checks for obvious errors like sign convention were therefore impossible. The new 

“ raw data”, as shown in Figure 7-8, does however indicate that no such errors exist.
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Figure 7-8: The phase and am plitude change caused by the filters in the transverse direction

In this graph, three force plots are shown relating to the transverse force for the 30- 

40-60 bollard pull condition with an excitation frequency o f  l Hz. The blue line is 

the raw data from the pre-filter. The green line is the frequency-filtered version o f  

this signal. The slightly bigger and slightly earlier red line indicates the signal once 

the effects o f  the pre-filter have been removed.

The similar graph for the longitudinal direction, shown in Figure 7-9 is noisier.
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Figure 7-9: The phase and amplitude change caused by the filters in the longitudinal direction

As the generated forces in the longitudinal direction are o f  smaller amplitude, the 

noise is more distorting. The frequency-filtered signals still resemble the signal 

coming from the pre-filter though. The term noise is therefore used to describe both 

mechanical vibrations and electrical noise.

Once the process for filtering the signals had been established the measured forces 

could be compared to the computed forces. This will be shown in chapter 8 and 9.
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8 The single flapper bollard pull tests

8.1 Introduction

As described in section 2.2 the scenarios in which the two segments move in unison 

are referred to as single flapper scenarios. Only eleven o f  these tests were performed 

as they had been found to match the theories well during preliminary tests in 2003 

and 2004. All the single flapper tests reported in this text are o f  the 30-30-0 variety. 

This was done to ensure that any variation in force was smooth with increasing 

frequency.

These were the most basic hydrodynamic tests and as such, they were used to gain 

confidence in the experimental method as well as answer some o f  the fundamental 

questions. The questions that these tests were specifically used to answer was:

• How important is the tangential added mass force?

• To which force(s) should the least squares fit be applied and how should it be 

applied?

• Is the measured data best replicated with constant or varying force 

coefficients (see section 3.5)?

Before these questions can be answered, the application o f the Morison Equation to a 

single flapper has to be examined. The physical aspects o f  the McEel that only 

became important during testing also have to be explored.

8.2 The Morison Equation for a single flapper

The Morison equation deals with cross flow and although it is often used for non­

perpendicular flow there seems to be no general agreement about the exact angle at 

which its predictions become inaccurate. The decision to start testing the McEel as a 

single flapper was therefore influenced by the notion that such a set up would render 

a pure cross flow. The limitations o f  the Morison Equation were therefore believed to 

be less important in this scenario than in others and it was considered as a natural 

first step towards a simple numeric method for a free-swimming eel.
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It was thus hoped that the flow encountered in the single flapper, zero forward speed 

scenario would align itself with the normal vector from Equation 4-16. As seen in 

section 2.2 this was not the case. In mathematical terms, this would have meant that:

Vi -  const.Ni

Equation 8-1

Equally:

Aj -  const.Nt

Equation 8-2

These two equations would have to hold true for all points along the single flapper at 

any time for this to be a pure cross flow problem. For the velocity vector, this is not a 

problem as:

V; = / ( - 0 s in # ,# c o s# )

Equation 8-3

This expression comes from Equation 4-2. / is the length along the eel from the 

pivot point and although the angular velocity is a function o f time, it can be factored 

out o f  the expression satisfying Equation 8-1 at any given time. The similar 

expression for the acceleration vector would be:

A; = / (-9  sin 6  - 6 1 cos 0 ,0  cos 6  - 6 2 sin 9 )

Equation 8-4

It is clear from the equation that even a single flapper with zero forward speed does 

not encounter pure cross flow as far as the inertia forces are concerned. It is however 

important to emphasise that the only way o f getting closer to a perpendicular flow  

would be to have non-harmonic over-all excitations o f  the eel.

The idea o f testing single sections o f the McEel in a pure cross flow was considered 

for a while. This would have been more consistent with the theory behind the 

Morison Equation and would have provided coefficients for the McEel that would 

have been comparable to published data. In the end, it was still decided to start the
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testing with the zero forward speed single flapper though as initial tests proved this 

to be a flow regime sufficiently close to a pure cross flow for the Morison Equation 

to work.

8.3 Physical data of the McEel model

Most o f the physical data relating to the McEel has already been quantified, as they 

were easily measurable. There were however some quantities that could only be 

estimated. This section therefore explains how the real mass o f  each segment was 

measured and how this relates to the water ballast o f  each o f  the segments.

To enable an accurate prediction o f the real mass effects o f  the McEel it was 

disassembled and the masses o f the two moving segments were accurately weighed. 

The centre o f gravity was then found by balancing each segment on a metal edge:

Real mass Centroid
Segment (kg) (m)

Mid 2.177 0.082

Tail 1.775 0.054

Table 8.3-1: The mass and centre o f  gravity o f  each segment

In Table 8.3-1, the centroids are measured from the front joint o f  the segment in 

question. Included in the real mass are the pulley wheels including the free wheel in 

the mid segment as depicted in Figure 5-8 but not the masses o f  the timing belts as 

this was considered negligible. One additional question considered was whether the 

rotational inertia o f  the pulley wheel would have to be included in addition to its 

translational inertia. Looking back to Figure 5-3 again and remembering that it is the 

force measured by the load cell located above the motors that is o f  interest, it is 

apparent that no such rotational effects should be included. To justify this, Figure 8-1 

is presented:
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Figure 8-1: The effect o f the pulley wheel on the force measurem ents

In this figure, the pulley wheel is depicted in blue at the tail end o f  the segment. The 

angular motions o f  the segment are denoted A and the rotational motion o f  the free 

wheel is denoted B. From this figure, it should be evident that independent on how 

the motions o f  A are, any motions in B will contribute or counteract the motions in A 

depending on which way the two bodies rotate. It should however also be evident 

that the forces generated by the rotational motions B should not contribute to global 

translational forces in point C as long as the free wheel is symmetric. The rotations 

o f  the free wheel are thus o f  importance when calculating the power that goes into 

the system o f  the McEel but are irrelevant when the overall forces in the global X- 

and Y-direction are to be computed.

The central piece o f  each o f  the M cE el’s segments was made up o f  two pieces o f  

channel sections making a 102*102 mm (4” *4”) square cross section. Unfortunately, 

there were substantial void spaces inside this box that filled up with water and acted 

as ballast tanks as the eel was submerged. At the same time, the timing belts that 

were moving the McEel needed these void spaces. The real inertia forces o f  the 

entire system had to be subtracted from the measured forces before the 

hydrodynamic forces from the numeric model could be compared to the measured 

ones. The mass and centre o f  gravity o f  this ballast water therefore had to be 

estimated:

Ballast Centroid
Segment (kg) (m)

Mid 0.734 0.09

Tail 0.490 0.07

Table 8.3-2: The m ass and centre o f  gravity o f  the ballast water 
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As can be seen the mass o f  this ballast water was about a third o f  the real mass o f  

each o f  the two moving segments (see Table 8.3-1). Ideally, the McEel should have 

been filled up with some sort o f  solid material to avoid having to estimate this ballast 

water. No practical solution to this problem was found within the budgetary 

constraints though.

8.4 The tangential added mass force

Although the single flapper tests contained tangential acceleration vectors, they 

contained no tangential velocity vectors. These tests were thus perfectly suited to 

evaluate the importance o f  the tangential added mass forces. To examine the 

importance o f  the tangential added mass forces a typical plot o f  the time history o f  a 

single flapper test is depicted below:

F x

0.5

O -0.5 u_

M easured  
C alculated  
A ngle of M cEel

-2.5
70 70.5 71 71.5 72 72.5 73 73.5 74 74.5 75

Time (s)

Figure 8-2: A typical force plot, longitudinal direction
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Figure 8-3: A typical force plot, transverse direction

This is the test with a 0.3 Hz over all excitation frequency and 30 degrees amplitude 

in both joints. The red dashed line represents the angle o f  the first jo in t to give some 

indication as to where in the cycle the thrust is produced. It is important to emphasize 

though that this angle is drawn to an independent scale to fit the same graph better. 

The data for the computed solution are as follows:

Mean Fx

Ca Cd Computed (N) Measured (N)

0.37 4.45 -0.4 -0.3

Table 8.4-1: The values from Figure 8-2 and Figure 8-3

These force coefficients were typical values as will be shown in section 8.5.

Figure 8-3 is mainly presented for reference purposes but Figure 8-2 shows several 

important points. In it can be seen how the time histories differ in several aspects. 

The amplitudes o f  the oscillating force and the predicted force are not that different 

but the shape o f  the signal is. It would be tempting to postulate that this is due to the 

tangential inertia forces not being included but Figure 8-2 does not support this. As 

can be seen the two signals are the most similar when the eel passes through zero
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degrees and they differ the most when the eel is at its extreme angle. This would 

indicate that the tangential added mass effects are negligible. The idea o f  including a 

tangential added mass effect using a tangential added mass coefficient was therefore 

abandoned. It would be tempting though, to suggest that what the Morison Equation 

lacks in its attempt to predict this flow phenomenon is a term dealing with vortex 

shedding. This is also supported by the observation o f  surface vortices during this 

experiment.

8.5 The calculation of the Morison Equation coefficients

As mentioned in chapter 1 the nature o f study presented in this thesis is more 

complicated than the comparison o f a measured result with a predicted one. This is 

because the numeric methods all depend on various force coefficients that are not 

known in advance. The plan was therefore to measure the forces from the physical 

tests and calculate force coefficients from this set o f  data. The obvious question 

therefore becomes why bother to construct a numeric method to compute forces that 

have already been measured? The answer to this is that through this thesis it is hoped 

that force coefficients, which will be applicable also to other, untested motions or 

indeed other eel-like propulsion devices, can be found. It is thus o f  interest to see 

how the force coefficients vary from test to test. Consequently, it is necessary to 

establish a suitable procedure for evaluating these force coefficients. Two issues 

have to be resolved to do this. It has to be decided whether longitudinal, transverse or 

both sets o f forces should be used, and it has to be decided if  the force coefficients 

should be fitted for all the tests together or whether an average value o f  coefficients 

obtained from separate tests should be used.

8.5.1 Selection of forces for least squares fit

The forces generated by the eel are measured in both the longitudinal and transverse 

direction as described in chapter 5.5. For each test, there are therefore in essence two 

sets o f  results. The eel will be at varying angles to the global coordinate system at 

different times throughout its cycle and this will be reflected in the measured force in 

the global X- and Y-direction. The coefficients o f  drag and added mass should
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however be the same whether they contribute to a force in the global X- or the global 

Y-direction. If not the concepts behind them would be faulty. Inherent in these tests 

there is thus a possibility to use the calculated force coefficients from one direction 

to verify the measured force in the other. Three alternatives thus exist:

• Computing the coefficients from the transverse force and verifying it against 

the longitudinal force

• Computing the coefficients from the longitudinal force and verifying it 

against the transverse force

• Computing the coefficients on the basis o f both the longitudinal and 

transverse force measurements and verifying it against both o f  them

As the overall thrust o f the eel is the one o f  primary concern it might be tempting to

use the X-direction to calculate the coefficients as one would assume that this would 

lead to a higher level o f accuracy in the X-direction. At the same time though the 

forces in the Y-direction are bigger and thus contribute more to the moment required 

in the joints and is therefore more important for the estimation o f power required to 

move the eel. The force in the Y-direction is also substantially larger than the force 

in the X-direction and minor errors in measurement are thus less important. Closer 

inspection o f  initial tests also showed that the force predictions were more accurate 

in the Y-direction in air. The argument about greater overall forces in this direction 

also holds true in air but the deviation could also be due to different stiffness o f the 

test rig in the two directions and other challenges associated with the test set up.

When attempting to minimise the error between a measured and a computed force 

signal by adjusting the force coefficients it is common to use the method o f least 

squares fit. If the Morison equation is assumed the hydrodynamic force in either 

direction can be expressed as:

f  = AC„+BCD

Equation 8-5
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In this expression A and B can be seen as constants for determining the force 

coefficients o f the Morison Equation. The square o f the error between the measured 

force (fm) and this computed force can now be expressed as:

e1 = ( f m - f ( A , B ) f

Equation 8-6

To find the minimal error this expression can be differentiated, leading to:

d e 2
—  = 2 Afm -  2A C, -  2 ABCD = 0
SCa
d e 2

 = 2Bfin- 2ABC, -  2B 1CD = 0
dCD

U

~A2 AB ~ca- Afm

_AB B2 _ Bfm_

Equation 8-7

This expression is easily solvable and it should give the right result even with a noisy 

signal, as the noise will be randomly distributed. This is o f  course only strictly true if  

the signal is infinitely long. For this reason, Ca and Cd were evaluated over the entire 

length o f the test data. It is important to emphasize that although this was shown for 

the normal Morison equation it would be equally true if  Ca and Cd were dependent 

on Kc. The Ca and Cd in the formulae would then simply represent the constant 

coefficient o f these two force coefficients.

This method o f  least squares fit assigns the same significance to data points for 

which the measured value is close to zero as it does to data points with a larger 

absolute value. From an engineering point o f view, this might not be ideal, as the 

percentage error is the one o f interest. Sarpkaya (Sarpkaya and Isacson 1981) has 

therefore suggested this form o f error function:

e2= > 2(/m -/G 4,5))2

Equation 8-8
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This method is not ideal for a noisy signal though as it gives higher importance to 

data points that might only have a high absolute value due to noise. One way o f  

getting around this problem would be to filter the signal first. The problem involved 

with all filtering though is that one has to be certain what part o f  the measured signal 

is meant to be there and what part is just noise. Despite these challenges Sarpkaya’s 

method for minimizing the error was tried but was found to yield a higher r.m.s. error 

between the measured and calculated signals and the original least squares fit method 

was therefore preferred when trying to extract the hydrodynamic force coefficients.

If the forces in both the longitudinal and transverse direction were to be used for the 

evaluation o f the hydrodynamic force coefficients Equation 8 -6  would become:

Y , e 2 = k { j x m - j x ( A ,B ) f  + ( j y m - J y ( C ,D ) ) 2

Equation 8-9

This is an expression o f a combined error in both the X- and Y-direction. The 

magnitude o f the forces in the two directions are however very different and if errors 

in both o f them are to be assigned the same importance a constant k needs to be 

employed. This k therefore represents the amplitude o f  oscillations in the measured 

Y-force divided by the amplitude o f oscillations in the measured X-force all squared. 

If no such constant were included in Equation 8-9 the coefficients would be 

computed based on the forces in the transverse direction only as these forces are so 

much larger. To find the minimal error Equation 8-9 can also be differentiated, 

leading to:

s i '

sc.
e £ e 2

dC,

= 2Akficm -  2A2kCa -  2ABkCD + ICfym — 2C 2Ca — 2CDCd = 0

= IBkfxm -  2ABkCa -  2B2kCD + 2 Dfym -  2CDC„ -  2D 2Cd = 0

' A 2k + C 2 ABk + CD ~ca~ Akfxm + Cjym

_ABk + CD B2k + D 2 _ Cd _ Bkfxm + Dfym

Equation 8-10
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This matrix expression is more complex in its components but can be solved just as 

easily as the one in Equation 8-7.

8.5.2 Fitting o f multiple data sets

Now  that the direction to be used for the least squares fit has been discussed the issue 

o f  whether to compute the force coefficients as an average or in one process can be 

examined. The two methods can be described as follows:

• Use the least squares fit on the individual runs and thus calculate force 

coefficients for each o f them. Obtain the average value (in some appropriate 

sense) o f these separate force coefficients and then use this value when 

computing the numeric force signals.

• Combine all the runs into one long time series and compute the least squares 

fit for this data finding the coefficients directly.

Both o f these methods have advantages and disadvantages. The main advantage o f  

the method using average values o f coefficients fitted separately for each run is that 

this method is less computational intensive as the computations are split up. This 

method is also more flexible in that new measurements can be added to the existing 

ones without having to recalculate the least squares fit. The method in which one 

least squares fit is computed for the entire data set should however produce a better 

over-all fit. As mentioned in section 7.2, all hydrodynamic tests in this study were 

measured with a sampling rate o f 213 Hz. For the bollard pull tests the physical 

McEel was set to perform 30 oscillations for all but one test run (the one exception 

was performed to verify that 30 oscillations was adequate, see section 6.7). The 

lower frequency runs thus contain more data points than the higher frequency ones. 

In the computation o f one least squares fit for all the runs higher significance will 

therefore be assigned to these low frequency runs, which could skew the result. This 

problem could be addressed by a weighting technique.

Claus Christian Apneseth 2006
118



Mechanical Eel PhD Thesis 2006-27-01

8.5.3 The force coefficients matrix

There is thus a 2 by 3 matrix o f ways to compute the force coefficients. The single 

flapper bollard pull tests are well suited to determine which one o f  these options 

produce the best result as section 8.4 showed that there are only two force 

coefficients that need to be determined.

However, various criteria can be used in determining which computational method 

produces the best overall solution. The first one is the r.m.s. error in both x- and y- 

direction. The aim o f  this study is to predict the forces on a jointed oscillating 

structure. The time histories o f the generated forces in both directions should 

therefore ideally be exact and the r.m.s. errors in both directions should be zero. The 

magnitude o f these errors is therefore an indication as to how well the various 

methods can do this. The r.m.s errors can therefore be computed using the final 

(fitted) values o f Ca and Cd.

The second criterion is the prediction o f average thrust compared to the measured 

value. This can in some regards be seen as the most important criterion, as the initial 

desire was to predict the swimming speed o f the mechanical eel.

The values for the added mass coefficient fitted for the various directions are 

presented in Table 8.5-1.

Direction

Method X Y Both

Average 0.28 0.88 0.38

All in one 0.27 0.87 0.37

Table 8.5-1: The values for the added mass coefficient fitted for different directions

Similarly, the values for the drag coefficient fitted for the various directions are 

presented in Table 8.5-2.

Direction

Method X Y Both
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Average 4.37 4.19 4.28

All in one 4.59 4.30 4.45

Table 8.5-2: The values for the drag coefficient fitted for different directions

Table 8.5-1 show just how important the choice o f  method can be. The fact that 

simply applying different computational techniques to the same set o f  empirical data 

will yield different answers is an indication o f the complexity o f  the problem. It is 

however important to emphasise that the fitting o f  the force coefficients is done 

under the assumption that the hydrodynamic forces can be predicted using the 

Morison Equation. It is however, a well-known fact that this formula omits several 

forces (see section 3.5).

Using the computed values o f Cd and Ca the time histories o f the longitudinal and 

transverse forces could be computed. These time histories could then be compared to 

the measured forces. This was done by calculating the r.m.s. difference between the 

measured and the computed signals. As the transverse forces were much larger in 

amplitude than the longitudinal ones this r.m.s error was divided by the r.m.s. o f the 

measured signal so that the two directions could be compared to each other. These 

r.m.s. errors as proportions o f the r.m.s. o f the measured signals are presented in 

Table 8.5-3 and Table 8.5-4.

Direction

Method X Y Both

Average 0.37 0.67 0.39

All in one 0.38 0.66 0.38

Table 8.5-3: The RMS error as proportion o f  RMS o f measured signal in the longitudinal direction

Direction

Method X Y Both

Average 0.37 0.26 0.34

All in one 0.38 0.26 0.35

Table 8.5-4: The RMS error as proportion o f RMS o f  measured signal in the transverse direction
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As can be expected the method calculating the coefficients using the transverse force 

produce a better fit in the transverse direction and vice versa. The method using both 

directions to estimate the coefficients also ends up between the two, as one would 

expect. The fact that the methods based on the longitudinal force seems to make 

equally good predictions in both directions is peculiar. No reason for this was found 

and it was considered a coincidence.

All the errors presented in Table 8.5-3 and Table 8.5-4 are large and this indicates 

that the Morison Equation is not particularly well suited to predict the instantaneous 

forces generated by the McEel. It is however important to emphasise that for initial 

design purposes the mean thrust is far more important than the instantaneous values.

When the mean predicted thrust was to be compared, the average force coefficients 

were used for the method based on the longitudinal force whilst the unified values 

were used for the force coefficients based on the other two. This was done as these 

three methods yielded the best predictions.

Thrust prediction 30-30-0
0.0

-0.5

C - 2 . 0
03
CD
^  -2.5

Measured

- -X-direction

—  Y-direction 

Both-3.0

-3.5
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Frequency (Hz)

Figure 8-4: The mean thrust predictions for 30-30-0 for various frequencies

Figure 8-4 shows the measured and predicted mean thrust for the eleven 30-30-0 

tests. Several key points can be deducted from this graph. Firstly the two methods 

employing only forces in one direction either consistently over-predict the mean 

thrust (for fitting based on Y-direction forces) or consistently under predict it (for 

fitting based on X-direction forces). This graph, Table 8.5-3 and Table 8.5-4 indicate 

that the forces in both directions should be taken into account when determining the
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coefficients. When this approach is taken the accuracy o f  the fit to the mean thrust is 

far superior to the accuracy o f fit o f  the instantaneous forces.

Furthermore, the expected trend that the mean thrust produced increases with the 

excitation frequency when the amplitude o f the oscillations is kept constant is 

demonstrated for both measurements and predictions. This last point is only to be 

expected for these low frequencies but it is reassuring to see intuition confirmed by 

measured data.

In Table 8.5-3 and Table 8.5-4, it was shown how time histories based on the 

measured force in the transverse direction was marginally better in the Y-direction 

though substantially worse in the X-direction than those based on both sets o f forces 

were. This coupled with the superior mean thrust predictions based on the two forces 

means that this method is preferred to the one based on transverse forces only. If one 

method had predicted the forces well in one direction and the other had predicted 

them well in the other this might not had been as obvious. Making an estimation o f  

the power that goes into the system, both according to the numeric model and 

according to the measured forces is therefore an important comparison

The mean thrust generated by the eel is the output o f this system. For design 

purposes it is however equally important to know the input, or power requirement o f  

the system. Measuring the required power was not easy however as it was hard to 

quantify the mechanical losses with the available equipment. The overall forces in 

both directions were however known but the force distribution along the length o f  the 

eel was not. The moment in the joints could therefore not be computed outright. If 

however it was assumed that the force distribution from the Morison Equation was 

correct, even though the total force was not, then the moments in the joints and 

therefore the power requirement could be computed. This power is therefore based 

on measured forces but on computed distributions o f  force and as such, it will be 

denoted inferred power. This method o f  estimating the power input is less than ideal 

but the best one available. The power estimates will however mainly be used as a 

comparison between the different numeric models and the errors involved should be 

o f similar order for all o f  them.
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Figure 8-5: The power requirement, mean and standard deviation

Figure 8-5 depicts how the mean and the standard deviation o f  the power 

requirement vary with frequency. Power required to rotate the join ts  is defined as 

negative. This may go against the common convention but as a force moving the eel 

forward is defined as negative, it seems reasonable to follow the same convention. 

The close correlation between the measured and the computed values may be 

surprising. It indicates that the substantial errors in the time histories o f  the forces as 

predicted by the Morison Equation is o f  limited importance when it comes to 

computing the power requirements for the single flapper.

8 .6  Keulegan-Carpenter dependent force coefficients

In section 8.5, it was shown how the force coefficients for the Morison Equation are 

best determined from test data from the McEel. A two by three matrix o f  possibilities 

was presented and it was shown that use o f  data for force in both directions and the 

adoption o f  a unified time series o f  all the runs produced the best result. When the 

constant parts o f  the Keulegan-Carpenter number varying force coefficients are to be 

determined, the same matrix o f  possibilities exists. The same method for determining 

which o f  these six possibilities render the best result was also used for this numeric 

method (Graham 1980). The conclusion was the same as in the case o f  the standard 

Morison Equation.
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In addition, Graham mentions that although the drag coefficient theoretically should 

vary as a function o f the Kc number raised to -1/3, empirical data suggests that 

raising it to -1/2 produces a better fit. Both o f these values were therefore tested and 

as Graham suggests the variation between the two is negligible. It was therefore 

decided to use the -1/3 value suggested by Graham. The Morison Equation could 

thus be compared with its counterpart with Keulegan-Carpenter number varying 

coefficients.

In terms of the time-varying error between the measured and predicted forces, the 

methods produced the same accuracy. This can be seen in Table 8.6-1 where the ratio 

o f the r.m.s. error to the r.m.s. o f the measured signal is presented for the two 

methods.

Method:

Morison 

Kc dependent

Table 8.6-1: The ratio o f  error to measured signal for the two methods

It may be surprising to see that the predictions from the standard Morison Equation 

are as good as those computed using Graham’s method (Graham 1980). The 

Keulegan-Carpenter number varies from just over zero at the front joint to just over 

1 0 0  at the tail in these trials and one might expect it to have a significant impact on 

the result. One limitation o f these trials is however that only the over-all force 

experienced by the structure is measured. The original Morison Equation might thus 

give a good approximation o f the total force even if  Graham’s method is better at 

predicting the forces as they occur along the length o f  the eel. It is not within the 

scope o f this study to verify whether this is really the case.

It may be hard to visualize the time dependent error that the numbers in Table 8.6-1 

represents. Figure 8-2 and Figure 8-3 are however typical time histories and as such 

may be used as reference.

The two methods also produce similar results for the predicted mean forward thrust 

o f the single flapper. This is depicted in Figure 8 -6 .

Fx RMS Fy RMS

0.38

0.38

0.35

0.35
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Figure 8-6: The m ean force predictions from the two methods

In Figure 8-6, it can be seen that the method using Kc-num ber dependent coefficients 

predicts the low frequency runs better whilst the normal Morison Equation is better 

for the high frequency runs. The average error in the mean forward force prediction 

is 11% for both methods.

Figure 8-6 was produced with the following force coefficients (or constant part o f  

them):

added mass 

drag

Table 8.6-2: The force coefficients used

The values for the constant part o f  the drag coefficient and the constant part o f  the 

added mass coefficient in G raham ’s method are below both the theoretical values o f  

11.8 and 0.25 and the experimental values o f  8.0 and 0.2 presented in the paper 

(Graham 1980). It is however important to remember that G raham ’s values were for

Kc No Kc

0.14

7.47

0.37

4.45
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a flat plate. As the physical McEel does have a cross sectional area, one would 

expect its force coefficients to differ from those o f a flat plate.

8.7 Discussion

Mathematically the flow encountered by a single flapper is not a pure cross flow. The 

measured data however shows that predictions made by the Morison Equation with 

the appropriate force coefficients are quite close to the actual forces measured. 

Furthermore, it has been shown that the discrepancies between the Morison Equation 

and measured data cannot be due to the tangential acceleration o f this flow.

The main source o f error is therefore likely to be the vortices being shed from the eel 

as it reaches its extreme angle. This vortex shedding is not a phenomenon that is 

particular to the eel but rather one that occurs in many scenarios to which the 

Morison Equation is applied. The errors caused by this event are thus not necessarily 

any larger than those encountered in other calculations relying on the Morison 

Equation.

The inaccuracies due to end effects are a problem that is greater with the eel than 

many other structures. As the eel has two moving segments, each 200 mm long with 

the cross sectional height o f 200 mm, it has a low aspect ratio. The tapering o f its tail 

should limit some o f these effects.

As shown by the reviewed literature the Morison equation itself is in reality an over 

simplification o f the advanced forces developed by a cross flow and as such it will 

never give the exact answer. For many applications, though the answer supplied by 

the equation is accurate enough for its purpose. The question is whether it can be 

considered accurate enough for calculating the forces acting on a single flapper and 

equally important how it should be applied and whether it should be used in its 

original form or with Cd and Ca dependent on Kc number.

When it comes to the question o f how the Morison Equation should be applied to get 

the right force coefficients it has been shown that the inclusion o f  both longitudinal 

and transverse forces yields a better prediction. Even if  that had not been the case, it 

could be argued that the force coefficients should not be computed in any other way. 

Choosing to base the computation o f the force coefficients entirely on the transverse
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force or on the longitudinal force would be essentially an arbitrary decision. Using 

both directions on the other hand uses all the available data.

The argument as to whether to use the average values o f  the force coefficients or 

whether to compute them in one go is not as straightforward. The case can be argued 

either way. Luckily, the computed force coefficients based on the same force 

measurements are typically within 5% o f each other depending on whether an 

average value or a unified time series is used. The latter approach will therefore be 

used in this thesis unless stated otherwise as it is the more convenient o f the two 

methods.

In the tests presented in this chapter, the version o f the Morison Equation with 

Keulegan-Carpenter number dependent force coefficients produced results o f  no 

better quality than the ones produced by the original equation. The decision about 

which method to use therefore has to be based on other criteria. It could for instance 

be argued that the original version does not take any account o f  potential scale 

effects. If for instance an eel was built at half the height o f  the one currently tested 

then the Kc number could change and the hydrodynamic coefficients with it. For the 

original Morison equation, new hydrodynamic coefficients would have to be 

measured. Only tests with a similar eel at a different scale can however answer 

whether the method using Keulegan-Carpenter dependent force coefficients correctly 

adjusts for scale effects. The choice o f  which method to use was therefore based on 

convenience and as all the programming had already been done for the method with 

varying force coefficients this method will be used for the remainder o f  this thesis 

unless stated otherwise.
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9 The double flapper

9.1 Introduction

With the addition o f  a phase-difference between the motions in the two joints, there 

are far more potential swimming patterns which could be tested. Whilst the single 

flapper tests had shown that the Morison Equation could predict the measured forces 

reasonably well, early double flapper tests indicated that this was not so for these 

tests. It was therefore o f interest to see at which exact phase angle the Morison 

Equation broke down. In total 54 zero speed double flapper runs and 53 double 

flapper runs with forward speed were tested. The zero speed runs will be presented in 

section 9.2 whilst the ones with forward speed will be presented in section 9.3.

9.2 The double flapper bollard pull

9.2.1 Introduction

The zero speed double flapper runs are different from the single flapper tests in that 

segments o f the McEel experience tangential velocities and in that, there will be a 

discontinuity in the middle o f the moving part o f  the McEel’s body. Initially, it was 

still attempted to analyse these tests using the same method as was found suitable for 

the single flapper tests. This was done partly because the tangential velocities were 

small (see section 2.3) and partly because the segments o f the McEel were designed 

to create a much smaller drag in the tangential than in the perpendicular direction. 

Various attempts were made to include tangential drag forces and these will be 

presented.

The single flapper tests showed that the standard Morison Equation and the method 

with Keulegan-Carpenter number varying coefficients produced results o f similar 

quality. It was also shown that these coefficients or the constant parts o f them were 

best calculated in one operation for all the runs. It is not obvious that this would still 

be the case for the tests with phase angle. To examine whether this was so, some o f  

the double flapper trials were analysed using the other methods presented in the 

matrix in section 8.5. The results were found to be the same as for the single flapper
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tests and consequently the standard Morison Equation is therefore not examined in 

detail.

9.2.2 The double flapper analysed with Cd and Ca

When the bollard pull runs with a phase angle were analysed using Graham’s 

(Graham 1980) form o f the Morison Equation the value obtained for the constant part 

of the added mass coefficient was similar to those obtained for the single flapper 

runs. The constant part o f the drag coefficient was however found to be smaller than 

that found for the earlier runs.

added mass: 
drag:

Table 9.2-1: The values for the constant part o f  the added mass and drag coefficients

Similarly, the average r.m.s. error in the transverse direction was the same as it had 

been for the single flapper runs whilst for the longitudinal direction it was much 

worse:

Fx r.m.s.
Fy r.m.s.

Table 9.2-2: The ratio o f  error to the r.m.s. o f  the measured signal

Again, it may be hard to visualise these errors and for this reason, a typical time 

history is shown:

Single fl. Double fl.
0.38
0.35

0.47

0.35

Single fl. Double fl.
0.14
7.47

0.13
5.87
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Figure 9-1: A typical time history o f the transverse force
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Figure 9-2: A typical time history o f the longitudinal force

Figure 9-1 and Figure 9-2 depict the time history o f  the forces generated in the 30- 

30-50 scenario at 0.5 Hz and the errors seen are typical in both magnitude and shape.
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Looking at Figure 9-2 it seems that the large r.m.s. error in the longitudinal direction 

is due neither to a shift in the mean value nor to a large phase shift between the two 

signals. There is a substantial difference in the amplitudes o f  the two signals but it 

still seems as if the r.m.s. error is caused primarily by an incorrect shape o f  the force 

curve. The measured force oscillates with sharp lower halves and blunter upper 

halves whilst the computed force did the opposite as seen in Figure 9-2. This again 

led to an inaccurate mean thrust being calculated. The plot o f  the mean thrust 

generated by the 30-40-60 scenario gives a good indication o f  this:

30-40-60 Bollard pull

z
-4—'
CO

-C
I-

♦ Measured 

 Morison with Kc

-10 J
0.2 0.6 0.80 0.4 1

Frequency (Hz)

Figure 9-3: The mean thrust for a double flapper

Figure 9-3 can be compared with Figure 8-6 and it immediately becomes obvious 

that the Morison Equation is much better at predicting the forces from a single 

flapper.

It is however important to emphasise that the values in Table 9.2-1 are the values for 

the entire set o f  double flapper bollard pull runs. When the force coefficients were 

computed for individual runs, some interesting observations could be made. In the 

case o f  the single flapper runs the Kc-independent part o f  the drag coefficient seemed 

to increase with increasing excitation frequency. This effect was however measured 

in the range o f  excitation frequencies that was tested. In case o f  the double flapper 

tests, this effect seemed still to be present but it was overshadowed by the much
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larger variations with phase angle. As the phase angle went up the constant part o f  

the drag coefficient went down from around seven with no phase angle to about four 

with a 60-degree phase angle. This helps to explain why the value for all the double 

flapper tests in Table 9.2-1 is so different from the one for the single flapper tests 

presented in Table 8.6-2.

For a while, it was thought that this variation in the constant part o f  the drag 

coefficient could help explain the poor force predictions in the longitudinal direction. 

It was therefore attempted to fit the force coefficients to individual runs. The only 

effect o f  this however, was to shift the total r.m.s. error from being mainly in the X- 

direction to being evenly spread in both directions. It was therefore clear that the 

Morison Equation on its own is not capable o f  describing the force generated from 

the McEel when there is a phase angle between the joints.

As the transverse force is bigger than the longitudinal force, and as it has a longer 

lever arm than the longitudinal one the inaccuracies in the predicted X-force does not 

mean that the power requirement cannot be predicted as shown in Figure 9-4.
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Figure 9-4: The power input, mean and standard deviation, with phase angle

Figure 9-4 is similar to Figure 8-5 and shows how the predicted power differs from 

the one inferred from the measured forces. The predictions vary more from the 

measured ones than those shown in Figure 8-5 but the lines still follow the trends o f

the measured points.
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9.2.3 Tangential drag

The most obvious hydrodynamic difference between the single flapper tests and the 

tests with a phase angle between the two joints is the tangential velocity vector. 

Numerous attempts were therefore made at trying to include a tangential drag 

coefficient. The easiest way o f doing this would have been to add a tangential drag 

term to the Morison Equation. This term would then be computed using a tangential 

drag coefficient. This coefficient could then be evaluated by computing a least square 

fit for all the three force coefficients. Unfortunately, the Morison Equation does not 

predict the time history o f  the forces caused by perpendicular velocities and 

accelerations particularly well. In addition, the tangential drag force should be quite 

small as the segments o f the McEel are streamlined in the longitudinal direction. 

Computing a least square fit for the three force coefficient therefore resulted in trying 

to correct errors in the first two by an addition o f a third one rather than computing a 

sensible value for the tangential drag. This was seen by the tangential drag 

coefficient taking on widely varying values ranging from negative numbers to very 

high positive values.

The fact that the least squares fit does not seem to be the right method to compute the 

tangential drag coefficient does not necessarily mean that one should not be included. 

Nor could it be guaranteed that the tangential velocities would only generate drag 

forces. The added momentum method as proposed by Quiggin and Carson (1994) 

was therefore examined in more detail.

As explained in section 3.3 the method suggested by Quiggin and Carson requires 

two more coefficients than does the Morison Equation. These two coefficients are 

Cn, the coefficient o f  perpendicular skin friction and Ct, the coefficient o f tangential 

drag (assumed to be entirely due to skin friction, see Quiggin and Carson 1994). 

Both o f these coefficients represent small forces and are therefore not suited to be 

computed using the least squares fit. Values for both o f  these coefficients are 

however given in the original paper (Quiggin and Carson 1994). Although the exact 

value o f these coefficients would probably be different for the McEel, the errors in 

using the suggested values should be small.

Values for Ca and Cd could then be calculated using a least squares fit for all the 

bollard pull runs with a phase angle. The values for the four force coefficients would 

then be:
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added mass: 0.13

drag: 3.43

skin friction: 0.001

tangential drag: 0.0025

Table 9.2-3: The force coefficients used for the added mom entum  method

As can be seen in Table 9.2-3, both the coefficient for added mass and the drag 

coefficient are smaller than they were found to be using the normal Morison 

Equation for the single flapper (see Table 8.6-2).

Using these force coefficients, the mean forward thrust can be computed. This thrust, 

based on the added momentum method is in general closer to the measured values 

than the thrust computed using the Morison Equation:

30-40-60 Bollard pull

z
m3

-C
I-

♦ Measured

 Morison with Kc

 Added momentum

-10
0.8 10.2 0.4 0.60

Frequency (Hz)

Figure 9-5: The mean thrust predictions compared

As can be seen in this example with the 30-40-60 scenario the added momentum 

method produces a better estimate o f  the mean thrust. This is however not the same 

as saying that the force estimates from the added m omentum method are better than 

the ones generated by the Morison Equation:

Fx RMS Fy RMS
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added momentum 0.54 0.44

Morison (Kc) 0.47 0.35

Table 9.2-4: The ratio o f  error to r.m.s. o f  signal

As can be seen from Table 9.2-4, the predictions for the mean thrust may be better 

using the added momentum method but the time histories o f  the generated forces are 

actually worse.

9.2.4 The effect of phase angle on reliability of predictions

Chapter 8 showed that the Morison Equation could predict the forces generated by 

the McEel fairly well in the single flapper scenario. This section has shown that the 

predictions become inaccurate with the introduction o f  a phase angle between the 

two joints. It is thus o f  interest to examine at which particular phase angle the 

predictions break down. The different errors can therefore be examined in detail. The 

variation in the ratio o f  error in the transverse force over the r.m.s. o f  the measured 

signal is depicted in Figure 9-6.
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Figure 9-6: The relative transverse error as a function o f  phase angle

In Figure 9-6, the average value for all the runs with the same phase angle is plotted 

against phase angle. A linear trend line is added and it can be seen that the average 

error is actually slightly decreasing with phase angle.

Claus Christian Apneseth 2006
135



Mechanical Eel PhD Thesis 2006-27-01

The variation in the ratio o f  error in the longitudinal force over the r.m.s. o f  the 

measured signal is depicted in Figure 9-7.
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Figure 9-7: The relative transverse error as a function o f  phase angle

As can be seen the r.m.s. error in the longitudinal direction increases with increasing 

phase angle. This increasing error in the prediction o f  the instantaneous force is 

reflected in an increasing error in the mean forward thrust prediction.
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Figure 9-8: The error in the mean thrust as a function o f  phase angle

Figure 9-8 shows how the mean error in the mean forward thrust prediction increases 

substantially as the phase angle goes up.

From the errors presented, no exact phase angle at which the analysis breaks down 

can be found. The force history in the transverse direction is equally good for all 

phase angles tested whilst the longitudinal force history gets progressively worse
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with increasing phase angles. This latter fact seems to be related to the rapidly 

deteriorating mean forward thrust predictions. Looking back at Figure 6-15 it can be 

seen that the variations in mean thrust are small with an increasing phase angle. This 

is not picked up by the Morison Equation. The predicted thrust therefore increases 

with an increasing phase angle whilst this is only the case to a limited degree and 

only up to 30-40-degree phase angle for the measured force.

9.2.5 Discussion

Kinematically, the double flapper differs from the single one in that it generates 

tangential velocity vectors. In so doing, the double flapper encounters a flow field 

which is truly non-perpendicular. In principle this flow field is therefore similar to 

the one encountered by real fish. It is therefore worrying that neither the Morison 

Equation nor the Morison Equation with a tangential drag term nor the method based 

on added momentum can predict the forces generated.

One possible explanation for this is disadvantageous flow phenomena occurring in 

the joints. All numeric methods employed in this thesis analyse the McEel in 

segments, disregarding the discontinuities o f the body. This should work well as long 

as the two segments swing as one. When a phase angle is introduced between the two 

the tail segment may be set to make bigger propulsive effort but this could be offset 

by turbulence forming around the joint. The measured force therefore increases only 

slightly with an increasing phase angle. At higher frequencies though the McEel will 

start to act as a continuous body, the predictions improve, and a larger variation in 

thrust should be measured. This corresponds to the observations made but only flow  

visualisation can verify whether it is the case.

9.3 Runs with forward speed

9.3.1 Introduction

The introduction o f forward speed is a fundamental requirement in the understanding 

o f fishlike propulsion. It is however one that adds substantial complexity to the
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problem. Most o f this is to do with the difficulties o f  being able to measure the 

quantities o f interest. This was explained in section 6.5. In some respects, fishlike 

propulsion can be compared to yacht propulsion. As the fish starts to move the thrust 

generated by its movements decreases just as the thrust o f  a sail decreases as the 

yacht speeds up. In addition to this, both the yacht and the fish experience increased 

resistance from the fluids through which they move.

As explained in section 6 .8 , 53 different forward speed runs were performed. There 

were only eight different motion scenarios that were tested however. Each scenario 

had to be tested at various speeds to ascertain the self-propulsion speed.

The resistance o f the eel will be investigated in detail, as an understanding o f  it is a 

pre-requisite to the understanding o f  the runs with forward speed. The time history o f  

the forces generated by the eel in the forward speed mode will then be investigated. 

The last part o f this chapter will look at the mean values o f  the forward speed runs 

and thus the attempts at predicting the self-propulsion speed o f  the McEel.

9.3.2 The resistance

When it comes to comparing the measured forces with the ones computed by the 

Morison Equation, the resistance o f the sting and the stretched straight resistance o f  

the eel should be subtracted to the measured force in the X-direction (see 6.5). This is 

because the Morison Equation does not attempt to estimate neither the stretched 

straight resistance o f the eel, nor the resistance o f the sting. When it comes to 

estimating the self-propulsion speed o f the McEel, the resistance o f  interest is the 

stretched straight resistance o f the eel only as argued in section 6.5.

The resistance o f the eel and sting combined was found empirically well fitted by a 

cubic polynomial as in Equation 9-1.

R = alU + a2U 2+ a 3U 3

Equation 9-1

The corresponding coefficients are

Coefficient Value
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a1 2.3
a2 -3.0
a3 8.3

Table 9.3-1: The coefficients for the resistance o f both the eel and the sting

This estimate o f the combined resistance o f the sting and the eel is based on nine 

selected speed runs ranging from 0.2 m/s to 0.7 m/s as seen in Figure 6-7. The runs 

that were performed at speeds below 0.2 m/s were deemed inaccurate. The Pearson 

product moment correlation coefficient squared between the nine data points and the 

computed resistance was 0.998.

The resistance o f the eel on its own was estimated by subtracting the best estimate o f  

the resistance o f the sting, as presented in section 6.5 from the combined resistance 

as computed by Equation 9-1. This resistance was to fit polynomial from Equation 

9-1 with the coefficients

Coefficient Value
a1 1.3
a2 -0.4
a3 3.2

Table 9.3-2: The coefficients for the resistance o f  the eel

For reference, see Figure 6-7.

9.3.3 The time histories of the generated forces

When comparing the time histories o f the forces generated by the McEel with those 

computed by the Morison Equation the resistance o f both the eel and the sting were 

subtracted from the measured forces. This was done to ensure a fair comparison.

All the forward speed runs that were tested had a phase angle between the two joints. 

This was done partly as the runs with a phase angle had been found to generate larger 

thrusts in the bollard-pull condition and partly because it was believed to be closer to 

actual fishlike propulsion.

The Kc-independent part o f the force coefficients were evaluated in one operation for 

all the runs with forward speed:

Single fl. Double fl. Forw.Speed
added mass: 0.14 0.13 0.15

drag: 7.47 5.87 7.20
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Table 9.3-3: The constant part o f  the force coefficients

As all the forward speed tests are double flapper tests with various forward speeds it 

may be surprising to see that the value for the constant part o f  the drag coefficient 

lies between the one computed for a single flapper and the one computed for the 

double flapper bollard pull. This could be a result o f  less turbulence around the joints 

but again only flow visualisation tools can answer this.

The accuracy o f  the time histories o f  the generated forces is not improved with 

forward speed:

Single fl. Double fl. Double sp.
Fx r.m.s. 0.38 0.47 0.51
Fy r.m.s. 0.35 0.35 0.37

Table 9.3-4: The ratio o f  error to the r.m.s. o f the force signals

Again, these errors may be hard to visualise and for this reason, a typical time history 

is depicted in detail:

Fy
• m easu red  

■■ • ca lcu la ted

Z
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"O3
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2
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Figure 9-9: A typical tim e history in the transverse direction
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Figure 9-10: A typical tim e history in the longitudinal direction

Figure 9-9 and Figure 9-10 depict the 30-40-60 scenario at 0.8 Hz excitation 

frequency and with a carriage speed o f  0.5 m/s. The r.m.s. errors for these two graphs 

are 0.38 and 0.52 respectively and it is typical o f  the forward speed runs.

As can be seen in these graphs the Morison Equation is not suited to predict the time 

histories o f  the generated forces by the McEel. The general pattern from the bollard 

pull tests with a phase angle can still be observed:

• The prediction is much better in the transverse than in the longitudinal 

direction.

• The longitudinal force has sharp negative peaks and blunt positive ones 

whilst the Morison Equation predicts the opposite.

• This leads the Morison Equation to over-predict the forward thrust o f  the 

McEel when there is a phase angle between the joints, irrespective o f  the 

forward speed.
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9.3.4 The M cEel at self-propulsion speed

When the self-propulsion speed o f  the McEel was sought, the resistance o f  the eel 

itself also had to be included in the calculation. As seen in section 9.3.2 the 

resistance o f  the eel itself was a third degree polynomial. The measured force o f  the 

swimming eel with the sting was shown in section 6.8 to follow a straight line. The 

mean force o f  the swimming eel without the sting should therefore be a third degree 

polynomial. As the variation in resistance o f  the eel was limited though the final 

curve was considered close enough to a straight line:

4
3 
2

£  1
¥  0  
J  - 1 o 
•“  -2 

-3 
-4 
-5

0

Thrust vs speed (30-40-30 0.6 Hz)

0 . 1 &

♦
■ 4

0.3 0.4 0.5

Speed (m/s)

♦  Measured 

▲ Computed

 Linear (Measured)

 Linear (Computed)

Figure 9-11: A typical plot o f  thrust against speed

In this graph, a typical scenario is shown. The blue diamonds indicate the measured 

mean forward thrust without the resistance o f  the sting. The green triangles show the 

corresponding values computed by the Morison Equation. A straight line is fitted for 

both sets o f  data. The worst Pearson product moment correlation coefficient squared 

for the eight scenarios was 0.989 and a straight-line curve fit thus seems reasonable.

The computed and measured self-propulsion speeds are shown in Table 9.3-5.

Motion Frequency (Hz) Measured (m/s) Computed (m/s) Error

30-40-60 0.4 0.19 0.22 19%

30-30-30 0.6 0.26 0.31 19%

30-30-60 0.6 0.27 0.34 29%

30-40-30 0.6 0.26 0.31 17%

30-40-60 0.6 0.28 0.34 21%

30-40-30 0.8 0.35 0.41 18%
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30-40-60 0.8 0.40 0.47 16%

30-40-60 1.0 0.58 0.58 2%

Table 9.3-5: The self-propulsion speeds based on m easurem ents com pared with com puted values

As none o f  the eight swimming scenarios was actually tested at the self-propulsion 

speeds given in Table 9.3-5 any computation o f  the required power at this speed will 

have to be based on interpolation. This is considered appropriate since the power 

computed from the measured forces as well as the power computed based on the 

forces from the Morison Equation both varied smoothly with carriage speed as seen 

in Figure 9-12.

Power v s  sp e e d  (30-30-60 0.6 Hz)

4 -

♦ Mean power 

+ c.Mean power 

■ Std 

x  c.Std

X X X X X

I  0  

£  0 0.1 0.2 0.3 0.4 0.5

-4
, +  +  +

+

-8
Speed (m/s)

Figure 9-12: The pow er required vs. carriage speed

In this, graph the mean and standard deviation o f  the power required by the 

oscillations o f  the eel is plotted against carriage speed. As the power varies smoothly 

with carriage speed, the computed values can be compared to the measured ones at 

the self-propulsion speed.
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Motion
Frequency

(Hz)
Speed
(m/s)

Inferred 
mean 

power (W)

Computed 
mean 

power (W) Error

Inferred
stdev
(W)

Computed 
stdev. (W) Error

30-40-60 0.4 0.2 -1.6 -1.4 14% 0.9 0.8 10%

30-30-30 0.6 0.3 -7.7 -6.5 16% 5.7 5.2 10%

30-30-60 0.6 0.3 -5.7 -4.3 23% 3.1 3.5 15%

30-40-30 0.6 0.3 -9.4 -7.8 17% 6.6 6.1 7%

30-40-60 0.6 0.3 -5.5 -4.6 16% 3.3 2.9 12%

30-40-30 0.8 0.3 -21.8 -18.2 16% 15.6 14.2 9%

30-40-60 0.8 0.4 -13.0 -10.5 19% 7.2 6.6 9%

30-40-60 1.0 0.6 -23.5 -19.3 18% 13.7 12.0 12%

Table 9.3-6: The computed power compared with the inferred power at self-propulsion speed

In this table, power is given in W, speed is given in m/s and frequency is given in Hz. 

Again, it is important to remember that these figures are based on computed force 

distributions so they should be read with caution. It is however interesting to see that 

at self-propulsion speed the Morison Equation seems to under-estimate the mean 

power requirement by about 2 0 %.

9.3.5 Discussion

In this section, various force and power estimates computed from the Morison 

Equation have been compared with measured data. It has been shown that the 

Morison Equation is not well suited to compute the time history o f the forces 

generated by the McEel in the longitudinal direction. This is not surprising as the 

Morison Equation is unable to predict accurately the time history o f the force 

generated by a wave hitting a vertical pile (Keulegan and Carpenter 1958). Even so, 

the equation has found widespread use in that particular field as it is simple to use 

and can generate a prediction that is accurate enough for design purposes.

Only eight different swimming patterns have been investigated, in this section. The 

empirical data is thus limited, but even so, some conclusions about swimming styles 

and the suitability o f the Morison Equation as a design tool will be drawn.
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In Table 9.3-5. the self-propulsion speeds o f  the various swim m ing styles are shown. 

It is clear that excitation frequency is a key parameter in determining self-propulsion 

speed.
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Figure 9-13: The self-propulsion speed against excitation frequency

Figure 9-13 A) shows the measured self-propulsion speeds whilst part B) o f  the same 

figure shows the computed self-propulsion speeds. In the measured plot, the four
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patterns with an excitation frequency o f 0.6 Hz are at similar self-propulsion speeds 

whilst the two patterns done at 0.8 Hz differ more widely. However, the 30-40-60 

swimming style seems to attain the highest self-propulsion speed at both frequencies.

The measured graph shows a similar picture except that the self-propulsion speed o f  

the 30-30-60 scenario seems to be over-predicted by the Morison Equation. In fact, 

the Morison Equation predicts that the 30-30-60 swimming pattern and the 30-40-60 

swimming pattern should have the same self-propulsion speed at 0.6 Hz excitation 

frequency. Except from this, the Morison Equation correctly predicts the ranking o f  

the self-propulsion speeds.

For most applications, both the attained speed and the power required are o f interest. 

A good measure for this is transport efficiency defined as:

U  A

Equation 9-2

In order to compute this, a displacement is needed. However, as it is only the 

transport efficiency relative to the other swimming styles that is o f  interest here they 

can all be normalised. All the patterns are therefore compared to the 0.4 Hz case.
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Figure 9-14: The relative transport efficiency o f the various swim m ing styles

Figure 9-14 A) depicts the transport efficiency based on measured values whilst 

Figure 9-14 B) depicts the computed values. As expected the transport efficiency 

drops with an increasing speed for both the measured and computed values.
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In the first part o f the figure, it can be seen that the 30-40-60 swimming style attains 

the highest transport efficiency as well as the highest self-propulsion speed. This may 

be surprising as a smaller phase angle produced the highest thrusts in the bollard pull 

condition (see Figure 6-15).

In Figure 9-14 B) it can be seen that the over prediction o f the 30-30-60 0.6 Hz self­

propulsion speed leads to a corresponding over prediction o f  the transport efficiency. 

Other than that, the Morison Equation correctly predicts the ranking o f the relative 

transport efficiencies.

No apparent reason was found for the discrepancy between the self-propulsion speed 

from the Morison Equation and the measured one for the 30-30-60 scenario. One 

possible explanation is that the difference is caused by one o f  the force components 

not included in the Morison Equation, such as vortex shedding or lifting forces. 

Further tests would however be needed to verify this.

The question is therefore whether the estimates provided by the Morison Equation 

are accurate enough to be useful in the design o f  a mechanical eel in forward motion. 

In this section, it has been shown that the predicted self-propulsion speed is likely to 

be up to 30 % higher than the attained speed and that the power required to oscillate 

the eel is likely to be up to 25 % higher than that computed by the Morison Equation. 

However, the discrepancies are relatively consistent and it has been shown that the 

ranking between the various swimming patterns can generally be well predicted by 

the Morison Equation. Consequently, the Morison Equation seems reasonably well 

suited as a preliminary design tool for a mechanical eel.
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Conclusions

• The computation o f the hydrodynamic forces generated by fishlike motion is a 

challenging problem, mainly due to the fact that the geometry o f  the body 

changes throughout the cycle. Computation o f the forces from a mechanical 

fishlike propulsion device with jointed segments is even more difficult because o f  

the discontinuities along its length.

• It has been shown that segments o f a mechanical eel encounter a flow field with 

both perpendicular and tangential velocity and acceleration vectors. The simple 

numerical methods that have been commonly used for computing the net 

longitudinal and transverse hydrodynamic forces arising from fishlike propulsion 

are mostly based on either drag or inertia forces related to perpendicular 

components o f velocity or acceleration.

• For this reason, an investigation has been made into how well a numerical 

method based on the Morison Equation can predict the longitudinal and 

transverse hydrodynamic forces. This approach allows the calculation o f both 

drag and inertia forces but requires values for two force coefficients. Methods 

were developed with both Keulegan-Carpenter dependent and independent force 

coefficients.

• A physical model o f a mechanical eel has been designed, built and tested in a 

towing tank. The eel was attached to a load cell beneath the towing tank carriage. 

The data from the model has been used firstly to determine force coefficients and 

secondly to compare predictions with measured data.

• A set o f tests have been performed to examine how well predictions based on a 

single set o f force coefficients can match the measured data and thus enable the 

numerical method to make predictions about untested swimming patterns.

• The physical model was tested as a single flapper without forward speed and as a 

double flapper both with and without forward speed. When it was tested without 

forward speed, the mean forward force generated was found to increase like a 

smooth second-degree polynomial with increasing excitation frequency. In the 

forward speed scenario, the eel performed a set swimming pattern for numerous 

runs with increasing towing speed. The range o f speeds was chosen such that for 

the first ones the eel was towing the carriage whilst in the latter ones the carriage

Claus Christian Apneseth 2006



Mechanical Eel PhD Thesis 2006-27-01

was towing the eel. The mean forward force was found to vary linearly with 

speed in the speed range o f interest.

•  The least squares fit method was used to fit the force coefficients based on 

measured data. It was found that fitting the force coefficients for both the 

transverse and longitudinal forces resulted in the best mean forward force 

predictions. Allowing the coefficients to vary with Keulegan-Carpenter number 

was found to yield results o f  a same quality as the method with constant force 

coefficients.

• In the longitudinal direction, it was found that the predicted time-history o f  the 

force did not match the measured results particularly well. In the single flapper 

bollard-pull runs, the r.m.s. error was 38 % o f the r.m.s. o f the measured signal 

on average. When the eel was tested with a phase angle, this error increased to 47 

% when stationary and 51 % in the forward speed runs.

• The forces in the transverse direction the predicted time histories fitted the 

measured data much better. The average r.m.s. error for the runs without forward 

speed was 35 % of the r.m.s. o f the measured signals, both for the tests with and 

without a phase angle. For the forward speed runs, the same average error was 

only marginally worse at 37 %.

• In general, the mean forward thrust predictions were found to be much more 

accurate than the time history predictions even though the force coefficients were 

fitted for the time histories and not the mean values. In the single flapper 

scenario, the Morison Equation was found to be able to predict the mean forward 

thrust with an average error o f 11 %. In the scenario with a double flapper 

without forward speed, this error increased dramatically to 57 %. However, when 

the eel was tested with forward speed, the predicted self-propulsion speed 

matched the measured data with an average error o f  18 %.

• The mechanical eel that has been tested in this study consisted o f  just two 

moving segments. In the future, it would be interesting to see if  the lessons 

learned from this study hold true for an eel with more segments. The eel was also 

rigidly attached to a sting and as such, any rotational moment was taken up by 

the sting. It would also be interesting to see if  the lessons learned about 

swimming patterns would hold true for a free-swimming eel. In order to increase 

the understanding o f the hydrodynamic forces generated by a mechanical eel it
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would be beneficial to have access to some flow visualisation technique. 

Particularly at the discontinuities in the joints, this would be good as it could help 

explain why the force predictions deteriorate so markedly with the addition o f a 

phase angle between the joints.
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Appendix A The angles in the joints

A .l Introduction

In nature the exact motion o f various anguilliform swimmers vary considerably 

(Gillis 1996). In engineering terms, it does however seem fair to approximate all 

anguilliform locomotion to a straight head section and a tail section with a backward 

travelling wave with increasing amplitude. This tail section will normally contain 

just over a full wavelength and the amplitude at the tip o f  the tail will be round about 

1/ 10 th o f the over-all length o f the animal.

A.2 Emulating nature

If a mechanical eel were to emulate anguilliform locomotion with rigid sections, 

oscillating angles o f increasing amplitudes would be required in the joints. The exact 

nature o f these angles could be investigated by defining the curve that the rigid 

segments were to replicate:

y  = j^ s \n (k x  -  cot)

Equation A -l

In this equation y is the distance from the centreline, x is the longitudinal coordinate 

from the front end o f the tail section. The k is the wave number and co is the radial 

frequency of the oscillations.

If the length o f  each o f the rigid segments is denoted L, then the front segment would 

start at (0,0) and end in (L cos 0,L sin 0). The angle 0 is then the angle that this front 

segment makes with the global coordinate system. This angle can be found for any 

time t by solving the following equation:

x  
— s\n{kx -  cot) = L sin 0

U

L” » sin(*L cos 6 - c o t )  = L sin 6

It

1 
— s \n (k L c o s6 -c o t )  = tan#
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Equation A-2

Analytically this equation is hard to solve but numerically it is straightforward. In a 

similar way, all the angles required in the various joints can be found. A numeric 

example can therefore be examined to see how the angles vary with time.

In the numeric example, the tail section is made up o f  eight rigid sections o f  0.2 m 

length. The wavelength is 1.44 m and the frequency o f  oscillation is 1 Hz. The time 

history o f  the angle in all the joints can now be given:

The angles in the joints
0.6

front joint
2.joint
3.joint
4. joint
5.joint
6.joint
7. joint 
tail joint

0.4

0.2

TJ

- 0.2

-0.4

0.5 1 1.50
time (s)

Figure A .2-1: The angles in the various jo ints

In Figure A.2-1, it can be seen how all the joints seem to be making sinusoids with 

increasing amplitudes. Moreover, a closer comparison o f  the angle in front jo in t with 

a pure sinusoid reveals how similar they are:
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F r o n t  j o i n t

m easured (RMS=9.5925e-005, f=1) 
fitted: A.hat=0.099754 I theta.hat=49.9392

0.08

0.06

0.04

AP 0.02

ro -0 .02

-0.04

-0.06

-0.08

-0.1
150

time step
100 200 250 300

Figure A .2-2: The required angle in the front jo in t com pared to a sinusoid

In this figure, the nearest true sinusoid is plotted with black dots on top o f  the 

required angle, which is plotted as a solid red line. A similar comparison between the 

angle required in the tail joint and the nearest true sinusoid is different:

T a i l  j o i n t
0 6

m easured (RMS=0.016944, fi=1)
• ■ fitted: A.hat=0.58183 | theta.hat=85.1249

0.4

0.2

a;CT>cro
-0.2

-0.4

0 50 150100 200 250 300

time step

Figure A.2-3: The required angle in the tail jo in t com pared to a sinusoid
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Although the required angle is still quite similar to the sinusoid, it does appear to be 

slightly more like a square wave.

It is important to emphasise that the given numeric example is just one type o f  

anguilliform locomotion. Other types may therefore require other angles in the joints. 

The example given does however demonstrate that an anguilliform locomotion style 

which aims to emulate nature may require non-sinusoidal motions in the joints.
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Appendix B Other numeric models

B.l Introduction

In chapter 4, it was shown how the lumped mass model, the distributed mass model, 

the lumped Morrison model and the distributed Morison model would be 

implemented. In this appendix, it will be shown how various attempts at including 

tangential hydrodynamic forces would have been included. As it turned out all these 

attempts were in the end discarded for various reasons and as such, their 

mathematical implementation does not merit a place in the main text.

B.2 Tangential forces the traditional way

The pure inertia forces calculated in chapter 4.3 and 4.4 are both tangential and 

perpendicular to the eel. The hydrodynamic forces on the other hand have so far only 

been calculated perpendicularly to the eel. In chapter 2, it was shown how the 

segments o f a mechanical eel experience both acceleration and velocity in both 

tangential and perpendicular directions. Unless it can be asserted that the tangential 

forces are negligible one must therefore assume that they also need to be evaluated.

The tangential-velocity and -acceleration can be calculated in the same way as their 

normal equivalents were calculated. The tangential unity vector would be:

COS 0, 
sin <9,

Equation B -l

This would be the tangential unity vector pointing backward along the eel. Using this 

vector the tangential velocity o f each element o f  each segment o f  the eel can be 

calculated:

V T ,j , i  =

jJ

y » .
• T
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Equation B-2

Written out in the x- and y-directions this expression would read:

xT j . = . cos 6t + y j . sin 0t J cos 6t

y T,i,i = [*,v cos + y j j  sin 9, ]  sin 0i

Equation B-3

The tangential drag force can be calculated using a relevant skin friction coefficient

In this equation represents the wetted surface area o f  the j-th element o f the i-th

segment. The skin friction coefficient is assumed uniform throughout the eel. This 

may be an unjustified simplification. No data is available on its variation though and 

a uniform value would appear to be a suitable first approximation.

Like the vertical forces developed by a floating cylinder subjected to surface waves 

the added mass forces experienced by the eel in the tangential direction will be 

assumed to apply only to the end o f the tail. This assumption seems reasonable for a 

straight cylinder. For an eel with substantial angular changes along its length, it is 

more dubious. The segments o f the eel are however considered to be overlapping and 

it would thus seem a fair assumption that most if  not all o f  the added mass that 

applies tangentially to the eel follows the acceleration o f  the tip o f  tail.

The tangential acceleration o f the tip o f the tail would be:

Cds:

Equation B-4

Equation B-5

Written out in the X- and Y-directions this expression would read:
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X-T,N+1 ~ [^N+l C0S @N + YN+1 sin @N J C0S Qfr 

^T,N+1 = [^N+l C0S + Y n +\ Sln @N ] Ŝn

Equation B-6

A suitable volume o f water and a suitable coefficient o f  tangentially added mass are 

also needed to complete the calculation o f the tangential inertia force. These two 

quantities are interdependent, as the definition o f  the volume will affect the 

magnitude o f the coefficient. A definition similar to the one employed by Prislin et 

al. (1998) has been chosen:

D 3
^xT = P ^it X T,N+1 

D 3 
FyT ~ P ~  Cit Yt,n+]

Equation B-7

The overall forces acting on the individual element can now be computed:

f y  ■ =  —  X ■ ■ +  f .  ■ ■ +  f -  +  f . T  •
J Z , x j ,i j , i  J x j , i  J  x j yi J x T tj j

f y  =  —  y  + f . + f . + f . T
J L yy j , i  It * y -*!'1 y->J>1

Equation B-8

This is Equation 4-35 with the addition o f  the tangential drag forces taken from 

Equation B-7.

The instantaneous thrust can now be calculated:

n k
Thrusttnsl ^XT

/ = 1  j = 1

The moment in the backmost joint would similarly be:
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M „ = F 9t { X ^ - X „ ) - F , T (Y„+I- Y n)

+ t  (*!,* - X » ) -  (yj ,» -  Y» ) )
7=1

Equation B-10

In this equation, the total force acting on the individual elements o f  the tail segment 

is computed according to Equation B -8 . The tangential added mass forces appear 

only in the calculation o f the moment in the backmost joint, as the backmost segment 

is the only segment directly affected by these forces. The moment in the i-th joint is 

therefore:

M> = (*,, - X , ) -  (yu  - X , ) ) + M m
j =1

k k

+Z  ( i ) Li cos(3 > ) Li sinW )
j= 1 7=1

Equation B - l l

B.3 Forces based on added momentum method

Calculation o f  the hydrodynamic inertia forces based on added momentum is 

different from the calculation o f the tangential forces in the normal way in that both 

tangential and perpendicular forces are calculated in one process. This solution does 

not rely on the calculation o f the perpendicular forces from section 4.6 although 

some o f the input variables will be the same.

As the added momentum method on its own, only computes inertia forces they will 

be computed before the expansion o f perpendicular and tangential drag forces is 

added. The calculation o f the hydrodynamic inertia forces is based on Equation 3-3. 

This is an expression o f vectors and as it involves cross multiplication with the 

angular velocity vector, it has to be computed in all three dimensions. The normal 

acceleration vector, the first term in the expression would thus be:
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Equation B-12

In this equation, the accelerations in the X- and Y-directions would be the ones 

calculated in Equation 4-32. As the eel is assumed to be moving in just one plane, 

relative to its head the acceleration in the Z-direction is zero.

Similarly the angular velocity vector would be:

CO; =

0

0

0,

Equation B-13

As the entire segment rotates as one, there would be just one angular velocity vector 

for all the elements o f each segment.

The normal velocity vector would be:

J . i

A  J , i  

0

Equation B-14

Again, the velocities in the X- and Y-directions would be taken from Equation 4-32. 

The second term in Equation 3-3 can now be computed:

-3 x L  , l,i

o

Equation B-15

The third term in Equation 3-3 is slightly more complicated to compute, as it is the 

normal component o f the cross multiplication that is needed. Again, this can be
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found using the normal vector defined in Equation 4-16. This vector would however 

have to be defined in all three dimensions and thus becomes:

N
-sin#, 
cos#, 

0

Equation B-16

The third term of Equation 3-3 would then read:

- l vi f xtOi = ( -y ,  ,4 sin 0, -  x, ,4 cos 0,)
-sin#,
cos#,

0

Equation B-17

In this expression, the velocities o f  the element would be computed by Equation 4-28 

as they are the true velocities rather than a component o f them.

The fourth and last term in Equation 3-3 contains the derivative o f  the normal 

velocity with respect to the segment length. As each segment is a non-flexible 

continuous body, this derivative will be the same for all its elements. The last term o f  

Equation 3-3 also contains the tangential velocity. This has already been calculated 

in Equation B-2 but then only in two dimensions. As the eel moves only in the X- 

and Y-direction and as the tangential velocity is not involved in a cross 

multiplication the expressions from Equation B-3 will suffice:

v T,ijdVi i / d Z

Equation B-18

The total inertia force in the X- and Y-direction from Equation 3-3 can now be 

computed by the addition o f the X- and Y-components o f  Equation B-12, Equation 

B-15, Equation B-17 and Equation B-18 and multiplying the sum with the constants 

as described in the equation. Not surprisingly, this expression has a zero component 

in the Z-direction.
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The calculation o f the drag forces proposed by Quiggin and Carson rely on the angle 

o f  incidence, denoted here as (p. This is the angle between the velocity o f the flow  

and the element in question.

j.i

y »
- a

Equation B-19

In this equation, the symbol Z  signifies the angle o f the velocity vector. 

The rest o f Equation 3-4 is equally straight forward:

f i j , i  + y j / ) ( AP' j Cds in2 Vjj + s w , j C n s m < p u )

f T j , < = \ p { x J  + y J ) { s w i j Ctcos (Pj,l )

Equation B-20

Again sw, . is the wetted surface area o f  the element in question whilst APt . is its 

projected area.

The problem with this equation is that it is given in local coordinates. To convert it to 

global coordinates an orientation matrix may be used:

" W cos0 ; -sinGj

_ f ™ _
sinG; cosG;

Equation B-21

The total force on this element will then be:

TYl

f  Ljc. .+G .. + / .  ..Jh,X,J,l j , i  x,j,i J X,J,l

TYl

f  .. = _ i - y . . + G  ..J 7L,y,j,i ^  sj,t y,j,i Jy,j,i
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Equation B-22

In this equation, the inertia force G would be calculated according to Equation 3-3. 

The total instantaneous thrust for the eel would be found in the normal manner:

n k

Thrustim, = X  Z
i = 1 7 = 1

Equation B-23

Similarly, the calculation o f the moment in the backmost joint would follow  

Equation 4-37 whilst the calculation o f the moment in the i-th joint would follow  

Equation 4-38.

Claus Christian Apneseth 2006
167



Mechanical Eel PhD Thesis 2006-27-01

Appendix C Uncertainty in physical measurements

C .l Introduction

Since model tests form a major part o f  this thesis, it is important to evaluate the 

uncertainty associated with them. This evaluation was inspired by the ITTC 

recommended procedure 7.5-02-02-02 and the book “Experimentation and 

uncertainty analysis for engineers” by Coleman and Steele.

The overall uncertainty is dependent on two main factors, the level o f  accuracy in the 

physical measurements and the level o f  accuracy in the data processing. The latter is 

a result of the substantial post-processing and the uncertainty introduced by this will 

be examined in Appendix D.

The measured data in this thesis were as follows:

Figure C .l-1 the sources o f  errors in the measured data

C.2 The accuracy of the force measurements
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All force measurements in this thesis were measured using a LM C-6524-1000N 6- 

component load cell made by O gawa Seiki. This cell can measure forces up to 1 kN 

and it was feared that its accuracy in the range o f  interest was not sufficient. The load 

cell was therefore calibrated with several, certified weights to ensure both accuracy 

and linearity. The weights used were certified to M l and thus accurate to ± 50 mg per 

kg or 0.005 %. The initial calibration was done on 18. February 2005 and a second 

calibration was performed after the eel had been tested on 21. March 2005. The 

ITTC Recommended Procedures 7.6-02-09 inspired these calibrations; following 

these recommendations, the load cell and its bridge amplifier (DSA-100 from O gawa 

Seiki) were given at least half an hour to heat up before testing.

The load cell was mounted horizontally with the dum m y sting attached to it. The 

weights were then placed on a point on the sting where the water line would intersect 

it during tank testing. This was done to ensure that the mom ent generated would be 

o f  a similar order as the one experienced during testing:

Load cell

Figure C.2-1 load cell calibration

On the first day o f  load cell calibration the temperature in the testing area was 16 

degrees centigrade.

The X- and Y-coordinates o f  the load cell were defined by the m anufacturer (see E . l)  

and the load cell was first tested in its Y-direction:

Claus Christian Apneseth 2006
169



Mechanical Eel PhD Thesis 2006-27-01

Mass
(kg)

Weight
(N)

Measured
(N) Error

0.1 0.981 0.980 -0.08%

0.2 1.962 1.955 -0.35%

0.3 2.943 2.933 -0.34%

0.4 3.924 3.906 -0.47%

0.5 4.905 4.880 -0.52%

1.0 9.810 9.783 -0.27%

2.0 19.620 19.571 -0.25%

3.0 29.430 29.373 -0.19%

4.0 39.240 39.175 -0.17%

5.0 49.050 48.969 -0.17%

10.0 98.100 97.985 -0.12%

Mean = -0.27%

Table C -l

In this table, the masses are in kg and the forces are in N. A similar table for the X- 

direction was produced:

Mass
(kg)

Weight
(N)

Measured
(N) Error

0.1 0.981 0.989 0.82%

0.2 1.962 1.973 0.57%

0.3 2.943 2.957 0.47%

0.4 3.924 3.941 0.44%

0.5 4.905 4.921 0.32%

0.6 5.886 5.908 0.37%

0.7 6.867 6.887 0.30%

0.8 7.848 7.867 0.25%

0.9 8.829 8.861 0.37%

1.0 9.810 9.843 0.34%
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2.0 19.620 19.659 0.20%

3.0 29.430 29.503 0.25%

4.0 39.240 39.316 0.19%

5.0 49.050 49.156 0.22%

Mean = 0.36%

Table C-2

As the forces generated by the Eel in the X-direction are smaller than the ones 

generated in the Y-direction smaller weights were used for this set o f tests. Since the 

load cell appeared to be more accurate in the Y-direction it was decided to turn it 

around 90 degrees compared to the model (for the coordinate system o f  the model 

see Figure 4-1). All longitudinal forces experienced by the eel and the dummy sting 

were therefore measured with the Y-direction o f the load cell. When comparing the 

results from the second day o f testing with those from the first it is important to 

remember that the load cell had been turned at this point and consequently the Y- 

direction results from the first day should be compared to the X-direction results 

from the second day and so on.

During the testing o f the dummy sting and the McEel itself, several issues regarding 

the pre-filtering o f the measured signals had arisen (see section 7.4). It was therefore 

decided to re-check the calibration for the load cell with the different pre-filter 

settings. The temperature in the test area was 18 degrees centigrade during this 

second day o f testing. Looking firstly at the X-direction o f the eel (Y-direction o f  the 

load cell):

mass Weight 10 Hz Error 100 Hz Error Pass Error

1.0 9.810 9.682 -1.31% 9.696 -1.17% 9.689 -1.23%

2.0 19.620 19.367 -1.29% 19.374 -1.25% 19.366 -1.29%

3.0 29.430 29.053 -1.28% 29.059 -1.26% 29.052 -1.28%

4.0 39.240 38.733 -1.29% 38.746 -1.26% 38.731 -1.30%

5.0 49.050 48.417 -1.29% 48.429 -1.27% 48.411 -1.30%

10.0 98.100 96.839 -1.29% 96.872 -1.25% 96.835 -1.29%

Mean = -1.29% -1.24%  -1.28%
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Table C-3

In this table the errors in measurement for the three different filter settings o f 10 Hz, 

100 Hz and pass band are compared. As can be seen the error seems un-affected by 

the filter setting. It can also be noted that the errors are substantially bigger than they 

were before the testing in the tank began. The errors seem consistent and it seems as 

if  the slope o f the load against voltage curve has changed.

The same three points can be seen in the measurements in the new Y-direction:

mass Weight 10 Hz Error 100 Hz Error Pass Error

1.0 9.810 9.945 1.38% 9.939 1.32% 9.928 1.20%

2.0 19.620 19.901 1.43% 19.872 1.28%

3.0 29.430 29.845 1.41% 29.808 1.29% 29.825 1.34%

4.0 39.240 39.823 1.49% 39.747 1.29% 39.739 1.27%

5.0 49.050 49.772 1.47% 49.683 1.29% 49.679 1.28%

10.0 98.100 99.558 1.49% 99.414 1.34% 99.404 1.33%

Mean = 1.44% 1.30% 1.29%

Table C-4

It is not certain why the slope o f the load against voltage curve has changed. The 

slight difference in temperature does not explain such a large shift and it is tempting 

to regard it as a random error with a long period.

In their book, Coleman and Steele (1999) suggest that any experimental quantity 

should be reported with at least four values. These values are the measured value, the 

corresponding systematic and random errors and the confidence level. The force 

measurements reported in chapter 6  rely solely on the accuracy o f the load cell and 

its data collection system. The three missing quantities should therefore be evaluated. 

This is harder than might be anticipated.

As the Y-direction o f the load cell always measure less than the actual load and the 

X-direction always measures more than the actual load it is tempting to call this 

systematic rather than random uncertainty. It could however be that the time 

variations in the random uncertainty o f the load cell are o f such a long period that 

they appear to be systematic. Without further tests, there is no way o f  knowing which
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one o f these it is. The worst o f  the errors in the load cell measurements must 

therefore be considered the total uncertainty o f the load cell.

As the load cell was tested on two occasions and with numerous different weights, 

one might expect to be able to compute a confidence level for the reported 

uncertainty. There are however numerous questions about which measurements to 

include in this computation. On the second day o f testing it was shown how the pre­

filter settings were o f little importance when measuring the forces from the weights. 

The question then arises as to whether all the measurements from this second day o f  

testing should be included or whether the computation should be limited to those 

from the 10 Hz setting as this value was used during experiments? Should the level 

o f confidence be based on measurements from both days o f  testing? It seems that if  a 

confidence level was to be reported reliably, load cell calibrations would have had to 

have been a much more frequent exercise during this study.

The errors reported in Table C-3 and Table C-4 should therefore be seen as an 

indication of the uncertainty o f  the force measurements reported in this thesis. As 

these measurements were performed with the load cell, the bridge amplifier and the 

data acquisition system all in their normal configuration, the errors given can be seen 

as the over all error for the force measurements.

C.3 The accuracy of the speed measurements

The speed measurements came from the towing tank carriage and went directly into 

the data acquisition system. The accuracy o f the speed measurements had been 

measured just a few weeks previous as part o f the commissioning o f a new speed 

control system. The speeds measured for this thesis are therefore assumed to be 

accurate to within 0 .0 1  %.

C.4 The accuracy of the angular measurements

During the initial set up o f the McEel great care was taken to ensure the accuracy o f  

the angular measurements. This was in part because they formed a part o f  the control

Claus Christian Apneseth 2006



Mechanical Eel PhD Thesis 2006-27-01

system as seen in Figure 5-14. During this process it became apparent that the 

majority o f the inaccuracy in the angular positioning, as well as the angular 

measuring stemmed from mechanical inaccuracies. The timing belts that controlled 

the position o f the eel were high quality low stretch belts but each joint could still be 

moved 1.5-2 degrees to either side with the motors jammed in one position.

The inaccuracy o f the potentiometers and the data acquisition system are therefore o f  

limited importance when it comes to ascertaining the overall inaccuracy o f  the 

angular measurements. What could be important however is the dynamic inaccuracy 

caused by stretching o f the belts. This inaccuracy was evaluated in Figure 5-15.
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Appendix D Uncertainty in data processing

Once the data had been collected by the data acquisition system it was filtered and 

compared to the theoretical model. The only source o f  error in the data processing for 

the measured data is the fast Fourier filtering. When it comes to the calculated data 

there are however more sources. As the more advanced numeric methods were 

solved numerically rather than analytically the number o f  elements, which each 

segment was subdivided into is o f importance. Similarly, numeric derivation was 

used and the number o f  time steps per cycle is therefore important.

D .l Fourier analysis

Before the uncertainty introduced by the Fourier filtering o f the two force signals can 

be quantified, the assumptions behind the process need to be stated:

■ The force signal and the noise are independent o f  each other.

■ Although the noise is spread over a wide frequency range, there is limited or 

no noise in the exact frequencies o f  the signal.

Great care was taken to try to eliminate the noise that was overlapping the force 

signals. For this reason it seems reasonable to assume that the noise was o f a 

mechanical rather than electrical nature as it would have be possible to eliminate the 

majority o f  the latter. The measured noise therefore implies that the system was 

undergoing excitations at frequencies other than the ones generated by the motion o f  

the eel. These vibrations could also be observed during testing. These motions were 

however small in comparison to the overall motions o f  the eel and it therefore seems 

fair to assume that they would not greatly influence the forces generated by the eels 

prescribed motion.

The second assumption is more questionable as the frequencies o f  the noise were in 

some cases very close to those frequencies that were o f interest. This can be seen in 

Figure 7-1. When examining this figure it is however important to remember that 

only the 0 Hz  value and the two first harmonics are included in the analysis. The 

second assumption therefore seems reasonable.
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The uncertainty introduced by the Fourier filtering can now be evaluated by the 

analysis o f  an artificial test file with known components. For this purpose, a force 

signal was constructed o f  these parts:

Longitudinal Transverse

Frequency Amplitude Frequency Amplitude

1. component 0 6.0 0 0

2. component 2.0 10.0 1.0 50.0

3. component 4.0 2.0 3.0 10.0

Table D-l

This force signal is designed to resemble one generated by the McEel when 

oscillating at 1.0 Hz.

This force signal was then polluted with 20 random noise components in each 

direction. These noise components had mean amplitude o f  20 N in the longitudinal 

direction and 40 N in the transverse direction. In both directions the noise was 

randomly distributed around 8 Hz with a standard deviation o f  2.5 Hz. The force 

signals were then filtered using a fast Fourier transform function. This process was 

repeated 300 times to ensure consistency. The filtered and unfiltered force signals 

typically looked like this:

200

150
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50

O

-50

-100

I.1■150

-200 0 0.2 0.4 0 80.6 1 1 . 2 1.4 1 . 6 1 . 8 2
Time (s)

Figure D .l- l  the constructed force signal before and after filtering. Y-direction.
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Figure D I -2 the constructed force signal before and after filtering. X-direction.

These force plots can be compared with the ones in Figure 7-8 and Figure 7-9.

The computed values for the various frequency components varied substantially 

during the 300 tests. A plot o f  the three frequency components in the transverse 

direction shows this:

Size of harmonics (Fx)

300

0  Com puted 
Original

150

0 Hz component

300

2 Hz component

o 50 100 150 200 250 300

4 Hz component

Figure D .l-3  the magnitude o f the frequency components
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In this plot, it can be seen that the estimates from the Fourier analysis is very good in 

most o f  the 300 trials but produces a few bad ones. As all the tests presented in this 

thesis have been analysed numerous times it seems reasonable to exclude these 

erroneous results using Chauvenet’s criterion (Coleman and Steele 1999). After 

excluding these frequency components, the computed values become:

Longitudinal Transverse
Frequency Mean Std Frequency Mean Std

1. component 0 6.005 0.040 0 0.016 0.080
2. component 2 10.010 0.107 1 50.018 0.163
3. component 4 2.047 0.362 3 10.007 0.230

Table D-2

Once consistency is ensured, fast Fourier Filtering is a very accurate process and the 

plots o f  the filtered and original signals shown in Figure D .l -4  and Figure D .l-5  

show just how well this filter worked, compared to a Butterworth filter.

Fy

Original 
FFt filtered 
Butterworth

LL

-10

-20

-30

0.2 0.4 0.6

Time (s)

Figure D .l-4  the original and reconstituted signal, Y-direction.
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Fx
6

4

2

Z

0o 0
o

LL

■2

-4
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FFt filtered 
Butterworth

Time (s)

Figure D .l-5  the original and reconstituted force signal, X -direction

D.2 Segmentation

As explained previously all tests within this thesis are with a two segment eel. Most 

o f  the hydrodynamic models described are however non-linear and as a consequence 

there is a need for further segmentation o f  each o f  the segments. As described in 

section 4.4 these parts o f  the segments will be denoted as elements.
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Moment in front joint

15 N = 30

10

5

0

0.6 0.80.4

■5

1 0

15

time (s)

Figure D.2-1 the importance o f  segmentation

This graph shows the moment in the first joint computed using the added momentum 

method. The moment depicted is for the 30-40-60, 1 Hz scenario in the bollard pull 

condition.

As can be seen there is a noticeable difference between the graphs computed using 

two elements and ten elements per segment. The graphs using 10 and 30 elements are 

however over-lapping. As 30 elements per segment is within the computational 

resources available all distributed numeric, models in this thesis were segmented to 

this level. It is assumed that the error involved with using 30 elements per segment as 

opposed to an infinite number o f  elements is negligible.

D.3 Numeric derivation

To simplify the computational process all o f  the numeric methods in this thesis have 

been calculated using at least some form o f  numeric differentiation. For this reason, 

the number o f  time steps per cycle is clearly o f  importance. In the evaluation o f  the 

num ber o f  time steps required the method relying most heavily on numerical
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differentiation, the moment predictions from the added m omentum method will 

therefore be examined:

15 Moment in front joint

—  100 TS

- -50TS 

25 TS

10

5

0

0.4 0.6 0.8

•5

10

-15

tim e (s)

Figure D.3-1 the importance o f the tim e steps

In this figure, the moment in the forward jo in t is calculated with 100, 50 and 25 time 

steps. The calculated moments are still based on the 30-40-60 1 Hz bollard pull 

scenario. The maximum variation between the calculated m oments is 0.2 Nm. The 

maximum difference between the moments calculated using 100 time-steps and the 

one using 50 time-steps is 0.05 Nm or 0.4 %. Fifty time steps should thus be 

sufficient but as 100 time steps was within the computational capabilities, all 

numeric models used this level o f  differentiation.

D.4 Total uncertainty in numerically derived quantities

The numerically derived quantities reported in this thesis are the force coefficients 

and the mean and time dependent computed forces. The final uncertainty o f  these 

qualities will depend on both the uncertainty in the measured values and the 

uncertainty in the numeric processes.
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In order to verify the computational procedure various artificial data files were 

created for the different numeric methods. Pre-defmed force coefficients were used 

to create these and the various programs ability to re-create them can be seen as an 

indication o f the uncertainty in this numeric process.

No Kc Kc Added momentum
Given Error Given Error Given Error

added mass 0.60 0.83% 0.10 4.80% 0.60 0.63%
pressure drag 4.00 1.25% 8.50 0.59% 4.00 1.33%

Table D-3

To make the generated files realistic random noise was included in them and for this 

reason the error in the force coefficients varied. The errors given are the worst ones.

Table D-3 indicates that the numeric processes are capable o f determining the true 

force coefficients to a high level o f accuracy. The biggest percentage error is for the 

constant part o f the added mass coefficient in the method with Kc dependent force 

coefficients. Although a bigger percentage error than one might have wanted, this 

error is the smallest one in real terms.

In order to quantify the potential errors in the force coefficients caused by erroneous 

force measurements the same data file was analysed three times. The first time it was 

analysed in its original form. The second and third time the measured forces were 

multiplied by 1.01 and 0.99 respectively to emulate a 1 % error in force 

measurements.

No error + 1 % -1  %
added mass 0.08 0.08 0.08

pressure drag 6.30 6.39 6.27

Table D-4

In this table, it can be seen how an error in force measurements o f  one percent results 

in an error in force coefficients o f up to 1.5 %.

In addition to the uncertainties in the force measurements and the uncertainties in the 

numeric method, there are other uncertainties that affect the total uncertainty o f the 

force coefficients. These include uncertainties in the dimensions o f  the eel and 

uncertainties in other physical measurements. It does however seem reasonable to 

assume these inaccuracies to be negligible. The total uncertainty in the force 

coefficients can then be computed:
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U. UMF' U. + UMFr_ U
V m  J

 F_I F  )

Equation D -l

This equation is taken from Coleman and Steele (1999). U is the uncertainty with the 

subscript c meaning the force coefficient, m meaning the numeric method and F 

meaning the force measurements. Since relative uncertainties are the ones o f  interest, 

all uncertainties are divided by the quantity to which they refer. The UMF is the 

Uncertainty Magnification Factor and in the case o f  the force measurements, this 

factor was found in Table D-4 to be 1.5. It is harder to estimate this quantity for the 

numeric method. It does however seem reasonable to assume that it would take the 

same value as for the force measurements as both o f them refer to the effect an 

erroneous force has on the computed force coefficient. The total relative uncertainty 

in the force coefficients is then just over 6 %.

The errors in the time dependent and mean force measurements also depend upon the 

uncertainty in the numeric method and the uncertainty in the force measurements. 

The only difference is that the UMF would be one. The relative uncertainty o f  the 

measured forces is then just under 5 %.
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A ppendix E Datasheets
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Figure E.l-1 datasheet tor the load cell as supplied by the m anufacturer
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E.2 Bridge amplifier
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Figure E .2 -1 datasheet for the bridge am plifier as supplied by the m anufacturer
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E.3 Potentiometers

____________________ Model 533, 534, 535
Vishay Spectral

v  7/8” (22mm) Precision
Wirewound Potentiometer

Not*: The cokx of this product is changing to btue. during 
the internal period you may recieve either black or blue

ADDITIONAL FEATURES
• Special Resistance Tolerances to 1%
• Rear Shaft Extensions and Support Bearing
• Non Turn Lug
• Dual Gang Configuration and Concentric Shafts
• High Torque and Center Tap
• Special Markings and Front Shaft Extensions
• Servo Unit available and Slipping Clutch

ELECTRICAL SPECIFICATIONS
P A R A M E TER M O D E L 533 M O D E L 534 M O D E L 535

R esis tance Range 
S tanda rd Values 5 0 U to 2 0 K u 100U  to  10OKU 5 0 U W 5 0 K O

C apab ility  Rango 5 u  to  6 0 k  l ; 10U  to  200k  L.' 5 U  to tO O Ku

Standard Tol .  5% •  5% . .

L inearity (Independent) .  0  25% 0 20% t  0 2 5 %

N oise 10 0 U E N R tO O U E N R tO O U E N R

R ota tion (E lectrica l 6  M echan ica l) 1060 ' » 10% 36 00  *  10% 16 0 0 ' .  10"

Pow er R ating ( #  7 0 X ) 1.0 w atts 2 .0  w atts 1 5  w atts

insu la tion  R es is tance 10 00 M U  m in im um  500VOC

D ielectric S treng th 1 OOOVcmk m in im u m  6 0 H i

A o sok ite  M in im um  R esistance Not to exce ed iinean ty  x to ta l resis tance or m  
w h ich eve r is grea te r

Tempco 2 0 p p m  C  (s tan da rd  va lues, w ire o n ly l

End Voltage 0 25%  o f to ta l ap p lie d  vo lta ge  m axim um

Phasing C C W  en d  poetts • sec tio n  2  ph ase d to section 1 w ith in  I 2*

T«0S________ _________  __  .................. C en te r ta p  on ly

MARKING
U n it
id e n t if ic a t io n

M anufactu re r s  nam e and m odel num oer 
resis tance va lue  and to io rance kneanty 

spec ifica tion  da te  code and te rm ina l 

identifica tion

RESISTANCE VALUES
O h m s
533: 50R. 100R. 200R  5 0 0 f l.1 K .2 K .5 K  10K 20K

534: 100R. 200R 500R  IK . 2K. 5K. 10K 20K 50K. 100K

535: 50R 100R 200R  500R IK  2K. 5K 10K 20K 50K

ORDERING INFORMATION
The M odels  53 3  (3  tu rn ). 534 (10  tu rn) and 535 (5  tu rn) can be ord e red  by sta ting

534 1 2 XXX

M O D EL M O U NTING N U M BER  O F S E C T IO N S R ESISTAN C E EIA  C O D E

1 B ushing 1 . S ing le  section
2  Servo 2. D ual section

D ocum ent N um oer: 57065 For techn ica l qu estions con tact s 'u ti& v is tta r  c o n  w w w  vishay com
R evision 09 -Jan-OX 1

Figure E.3-1 datasheet for potentiom eters page 1

Claus Christian Apneseth 2006
186



Mechanical Eel PhD Thesis 2006-27-01

Model 533, 534, 535
Vishay Spectral

SINGLE SECTION
i in m illim e te rs

0 750 (19 .05) • 0.815 ^

8 312(7 02) . 0  015

oooao »n

7/8" (22mm) Precision 
Wirewound Potentiometer

_ a a i2  (20.82) » 0031 

0.030 MAX ,'0 76.

S R
▼

O OSD (22 22) .0 0 1 5
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0 «  M *7» .M ). 0 0OO)

:*== 1
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ft 0 S3S IIS4S) UA.

$»-cw
©-AAAA/—®

M o u n tin g  h a rd w a re . w a sh e r a n d  p a n a l n u t. n ic k e l p la te d

MECHANICAL SPECIFICATIONS
PARA M E TER

Bearing  Type Bush ing  S leeve bearing  Servo Ball

Torque (m axim um s) sta rting 534 533.535
Section 1 0  5  02 • in (36gm  - cm *) 0  7 02 - in (SOgm • cm s)

Section  2 0 9  02 • In (65gm  - cm s) 1 1 02 • in  (79gm  - cm s)

Torque im a xim om s): running 534 533 535

Section 1 0  4 o z  • m (28  SOgm - cm s) 0 .6  02 • in (43  2 0 gm  ■ cm s)

Section 2 0  7 02 • in (50  40 gm  • cm s l O B 02 - m (64 8g m  - cm s)

W eight (m a n m u m s l
Section 1 0  7 5  02 <21 26gm )

Section 2 1 25 02 (35  4 4 g n j

S top Strength 75 02 ■ m (sta tic ) (5  4K gm  ■ cm )

Gangm g 2 sections m axim um

ENVIRONMENTAL SPECIFICATIONS
Vibra tion 15g th ru  2000H 2

Shock 50g

R ota tiona l L ife  (S ha ft R evo lution)

533

534

534 (S ervo )

535

300.000 

1.000.000 

> 1.000.000 

500 000

Load U«e 300 H ours

Temperature Range - 55*C  to  *  1 2 S X

POWER RATING CHART

I ’
Z«
i z
i
a

I .

. . . . ----

S34

-

\
\

V > s
V

\ \
\

L
to  eo ao too i n  m o

AMO IE NT T fM P fB A T U R * IN f C l

w w w  vishay com
2

For techn ica l qu estions con tact s 'e r^ v is h a v  com D ocum ent N um oer 57065 
R evis ion 0 9 -Jan Os

Figure E.3-2 datasheet for the potentiom eters page 2
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VISHAY Model 533, 534, 535
7/8" (22mm) Precision 

Wirewound Potentiometer
Vishay Spectral

RESISTANCE ELEMENT DATA
RESISTANCE VALUE il * RESOLUTION % OHMS PER TURN MAX CURRENT AT 70-C MAX VOLTAGE ACROSS CO*.

AMBENT <mA) (V)

533 504 535 533 534 535 533 534 535 533 534 535 533 534 535

50 _ 50 0 1 *9 _ 0.120 0.0746 _ 00603 141.0 . 173.0 707 _ 666

TOO 100 100 0111 0060 0.075 01114 0-0603 00746 1000 1410 1220 1O0 1*1 122

200 200 200 0.097 0  037 0.061 01954 00746 01220 707 100.0 86.6 1*1 200 174

500 500 500 0069 0  031 0 049 0 3424 01520 02459 *4 7 6 3 2 54 7 224 316 274

IK IK IK 0063 0 02S 0  041 06331 0 2 *5 9 0.4113 31 6 4 * 7 387 31 6 4 * 7 367

2K PK 2K 0 0*1 0021 0.031 08206 0 4 H 3 0 6331 224 316 27 4 4 * 7 63 2 548

5K 5K 5K 0 0 *4 0016 0 034 32330 06206 17230 1*1 200 174 70.7 1000 866

10K •OK 10K 0 0 3 * 0017 0 330 34510 1 7230 30160 100 1*1 124 100C 141 0 1220

20K 20K 20K 0031 00 15 0 020 61790 30160 39910 707 10O 866 141 0 200 0 1710

- 50K 50K - 0 009 0.015 - *6690 7*560 - 63 2 54 7 - 3160 2 7 *0

100K 0.007 7*56 0 4.47 4470

Oocum«»« N o m M r 57065 F w  lechnica) c u e s tn n v  con tact a fe f& y isS a «  corn m u  vishay com
R evision 09 -J a r -04 3

Figure E.3-3 datasheet for the potentiom eters page 3
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