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Abstract

This thesis is concerned with the Monte Carlo simulation of device parameter variation 

associated with the discrete nature and random variation of ionized impurity atoms within 

ultra-small conventional n-MOS devices. In particular, the Monte Carlo method is applied 

to accurately resolve electron interactions with individual ionized impurity atoms and in 

so doing capture the variation in impurity scattering associated with randomly configured 

dopant distributions. To date, variation in transport due to position dependent variation in 

Coulomb scattering has not received any attention although is is expected to increase the 

inherent device parameter variation.

A detailed methodology for the accurate treatment of Coulomb scattering within the 

Ensemble Monte Carlo framework is presented and verified. Improvement over existing 

methodologies is presented with a short-range force model that significantly reduces er­

rors in conservation of energy during short-range attractive interactions compared with 

models proposed in similar work. Details of the simulated reproduction of bulk mobility 

are thoroughly presented to validate the method, while to date such detail is not to be 

found anywhere in the literature.

A charge assignment method is developed to be applied to traditional ’continuously’ 

doped regions in order to allow a consistent description of doping charge when combined 

with ’atomistic’ doping assigned via the Cloud-In-Cell scheme. The charge assignment 

method also represents the only consistent description of electron charge assigned via CIC 

and the continuous doping charge.

Trapping of a single electron in a series of scaled ^-channel MOSFETs was studied 

with the ab initio Coulomb scattering method and is consistently seen to increase the 

Random Telegraph Signal, associated with the trapping and de-trapping of such charges, 

when compared with Drift-Diffusion simulations. It is seen that the electrostatic influence



* of the trapped charge is most prominent at low applied gate voltages where it accounts 

for nearly 70 — 80% of the total current reduction when including transport variation in 

devices with channel lengths of 3 0 — 10nm. At high gate voltages, transport variation is 

the dominant factor with the electrostatic impact accounting for only 40 — 60% of the total 

variation in the same devices.
I

Extending this treatment to an ensemble of atomistic devices, it is seen that the inclu­

sion of transport variations significantly increases the distribution in device parameters 

and that the transport variation is significantly dependent upon the specific dopant distri­

bution. Within an ensemble of 50 ’atomistic’ devices, it was seen from Drift-Diffusion 

simulation that the average current showed a 3.0% increase over the continuously doped 

device, while Monte Carlo simulations resulted in a decrease in average current of 1.5 %. 

The standard deviation of the current distribution from Drift-Diffusion simulations was 

2.4% while, significantly, Monte Carlo simulations returned a value of 6.7%. This has 

implications for the published data obtained from Drift-Diffusion simulations which will 

underestimate the variation.
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Chapter 1

Introduction

Following the forecast of the International Technology Roadmap for Semiconductors 

(ITRS) [1], silicon devices with channel lengths o i l  nm are expected to be in mass pro­

duction by the year 2018. Currently, conventional Si MOSFETs in the 90nm technology 

node with channel lengths around 50nm are commercially available in home PCs [2], 

while the demonstration of research devices corresponding to the next generation technol­

ogy nodes has been continually reported [3-11]. Fabricated 30nm physical gate length 

conventional silicon MOSFETs were reported in 2000 [3] showing good performance 

in terms of off current, subthreshold slope and drive current. Experimental results of a 

high performance 35 nm physical gate length conventional silicon MOSFET were later 

presented in 2001 [4] and showed improved drive current compared to [3]. A 20nm phys­

ical gate length MOSFET, which is a scaled version of the 30nm device reported in [3], 

was published in [5] showing “healthy IV characteristics”. Reports on 16nm, 15 nm and 

14nm physical gate length conventional silicon MOSFETs, [6 - 8 ] quickly followed. The 

successful fabrication and characterisation of the smallest conventional silicon MOSFET 

with a 4 nm physical gate length [9] was reported in 2003. These ultra small devices show 

proper operation although some of them need further optimisation in order to meet the
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CHAPTER 1. INTRODUCTION

requirements of the the 2004 edition of the ITRS [1]. The 2004 edition of the roadmap, 

however, predicts that conventional MOSFETs will be replaced after the 65 nm technol­

ogy node with MOSFET architectures that have improved drive current and electrostatic 

integrity, such as thin body SOI and double gate transistors. Such novel devices are likely 

to remain in production until the end of the roadmap, in some cases in competition with 

conventional MOSFETs. These novel device structures with ultra small gate lengths have 

been successfully demonstrated with the publication of measured results from a 1 0 nm 

silicon finFET [10] and a 6nm  gate length ultra-thin silicon channel SOI device [11]. 

The successful demonstration of the above devices verify that aggressively scaled sili­

con devices can be fabricated, and with refined fabrication process may well meet the 

requirements of the ITRS.

However, the fabrication process of all semiconductor devices inherently introduces 

random deviations in the ideal device structure from one device to another. Even small 

atomic scale variations can significantly effect the characteristics of ultra small devices, 

leading to a large statistical distribution in device parameters over a fabricated ensem­

ble. The corresponding large mismatch in device parameters adversely effects circuit 

operation [12,13]. This poses a significant limitation on continued device scaling and 

future gigascale integration (109 or more devices on a single chip) [14]. This means that, 

although the successful demonstration of one device may be attainable, the mass pro­

duction of such devices with a small enough statistical parameter distribution in order to 

allow their successful integration may not be possible. It is therefore necessary to be able 

to accurately predict the statistical distribution of parameters associated with random vari­

ations in future ultra small devices in order to assess the impact upon the next generation 

of circuits and systems [15-17].

Within conventional silicon MOSFETs, the three most important sources of intrin­

sic parameter variations are Oxide Thickness Fluctuations (OTF), Line Edge Roughness

2



CHAPTER 1. INTRODUCTION

(LER) and Random Dopants (RD). OTF refers to the random variation in the gate in­

sulator thickness incurred during its growth or deposition process. The resulting rough 

interface between the semiconductor and the insulator locally effects the gate capaci­

tance and alters the surface potential. This in turn alters the inversion layer charge for a 

given gate bias and leads to variation in threshold voltage Vt. Variation in the semicon­

ductor/insulator interface will also induce local variations in surface roughness scattering 

through the variations in electrostatic potential which is expected to add to the device pa­

rameter variation. LER is caused by the random variations in gate edge lithography due 

to the molecular non uniformity of the resist material and imparts a spatially varying pn 

junction at either end of the channel [18,19]. Variation in the position of the edge of these 

junctions along the channel width leads to a variable channel length and can significantly 

effect Vt, Ion and I0f f  more strongly than OTF in most cases [20,21]. However, the most 

influential factor introducing intrinsic parameter fluctuations within the current technol­

ogy node is the variation in electrostatic potential associated with the random number and 

position of discrete impurity atoms. The simulation study of the random dopant induced 

intrinsic parameter fluctuations is the focus of this thesis.

1.1 Random Dopants

The ultra small MOSFETs that have been reported [3-9] require extremely high doping 

concentrations in the channel in order to attain good electrostatic integrity. Following 

the scaling rules set out in the ITRS [1], devices with channel lengths less than 10nm 

require channel doping in the order of 1019 cm- 3  and above. Even at such large doping 

concentrations, the small volume of the channel in future minimum-geometry transistors 

results in only tens of dopant atoms within the active region. The statistical nature of 

the ion implantation and diffusion leads to variation in both the number and position
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of the dopant atoms within the channel of the individual transistors. The variation in 

numbers closely follows a Poisson distribution with the number of dopants from device 

to device fluctuating about the expectation number N  with a standard deviation of y/N. 

Variation in the number of dopants within the channel alters the inversion charge density 

from device to device at a given applied gate bias and consequently alters Vt. Threshold 

voltage variation due to fluctuations in doping charge density was first recognised and 

considered as a potentially limiting factor in device scaling in 1972 [22,23].

Additionally, the random position of each dopant atom results in a unique charge 

configuration. The loss or inclusion of a single dopant atom within the channel can sig­

nificantly alter the electrostatics and the characteristics of a devices with so few dopants. 

Within the channel, the potential energy landscape associated with electrons in an ultra 

small w-channel MOSFET is dominated by local peaks corresponding to the acceptors 

and lower ’valleys’ in-between. Electrons readily flow through the valleys where the elec­

trostatic barrier is lower, forming current percolation paths. The availability of such paths 

depends largely upon the 3D dopant configuration.

Predicting the magnitude of random dopant induced device parameter variation in ul­

tra small devices is essential in order to assess the ability to reliably integrate such devices 

in circuits. Simulation of statistical samples of microscopically different devices provides 

a means of predicting the distribution of device characteristics. Simulation also offers 

an effective means by which individual sources of intrinsic parameter fluctuations can 

be studied independently in order to assess their relative importance. In studying ran­

dom dopant induced effects, simulation of semiconductor devices in which the individual 

dopant atoms are resolved becomes a requisite tool. Extensive work on simulating statis­

tical sets of randomly configured devices in order to characterise the statistical variation 

in device characteristics has been mainly performed using 3D Drift Diffusion (DD) simu­

lations [20,21,24-26]. Such simulations are limited by the validity of the local transport
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approximation inherent to the DD approach and can only capture the impact of a unique 

arrangement of dopants through the electrostatic influence upon the inversion layer carrier 

density. It is expected that variations in number and position of random dopants, acting 

as Coulomb scattering centres, will readily effect transport throughout the channel as a 

result of variations in position dependent scattering. This effect is unobservable in DD 

simulations and, as a result, much of the published results on random dopant induced 

device parameter variation only reveal part of the full inherent variation. In order to as­

sess the full scale of device parameter variation, simulation techniques must also properly 

include a fundamental description of charge transport that can capture the position de­

pendent scattering associated with a random arrangement of charges in the channel. The 

Monte Carlo (MC) method is such a technique that, with a careful modification to the 

way the Coulomb scattering is treated, can be used to investigate the full impact of ran­

dom dopants on device parameter variations, including both electrostatic and transport 

effects.

1.2 This Work

Within this work, the simulation of transport variations associated with the random con­

figuration of discrete ionized impurity atoms, and the corresponding increase in the sim­

ulated intrinsic parameter variations in nano-scale conventional silicon «-MOSFETs, are 

studied in detail. An ab initio Ensemble Monte Carlo (EMC) simulation tool is devel­

oped that can accurately account for the variations in the ionized impurity scattering of 

electrons through their real-space trajectories in the electric field associated with an ar­

bitrary arrangement of dopant atoms. Care is taken to ensure an accurate description of 

electron-impurity scattering and also electron-electron scattering via the same real-space 

trajectory approach. Methodology has been developed which allows such an ab initio
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approach to scattering to be included within traditional EMC simulation. The developed 

simulation tool has been used to study the transport contribution to random dopant in­

duced device parameter variations in nano scale MOSFETs. Through careful comparison 

with DD simulation, the electrostatic influence of random discrete charges is separated 

from the additional effect of transport variation, and the relative importance of the two ef­

fects in different operating regimes is highlighted. It is shown that the inclusion of trans­

port variation does indeed increase the random dopant induced device parameter variation 

compared to DD simulation.

This work is laid out as follows:

In chapter 2, the random dopant effects are discussed and the related experimental 

and simulation research on random dopant induced intrinsic parameter fluctuations is re­

viewed. A brief summary of the other major sources of intrinsic parameter fluctuation that 

effect device performance is also introduced. These additional sources of fluctuation may 

readily be incorporated within the developed MC simulation tool to further this work.

The standard Monte Carlo method is introduced in chapter 3, where details of the 

models adopted within this work are described. The calibration to bulk Si transport prop­

erties and the validation of the models in the low-field regime used in this work is reported. 

The description of the 3D device simulator is also given with further verification through 

the simulation of an example N-I-N diode.

In chapter 4, the 3D device simulator is extended to include an ab initio description 

of Coulomb scattering from dopants and carriers. The implementation of this approach is 

discussed, paying particular attention to the accurate integration scheme for the equations 

of motion of electrons. The validity of the developed approach is shown through the 

reproduction of the experimentally measured concentration dependence of the low field 

electron mobility in bulk silicon.

Having developed a suitable means of incorporating ab initio scattering from random
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discrete charges, in chapter 5 the results of simulations designed to investigate the mobil­

ity variations associated with random arrangements of ionized dopants within MOSFETs 

are presented. Initially, investigation of the impact of a single trapped charge on the trans­

port is highlighted in comparison to DD simulation. Next the on current variation in a set 

of randomly doped devices is considered. The thesis conclusions are drawn in chapter 6  

where suggestions for future work are also made.
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Chapter 2 

Intrinsic Fluctuations and Device 

Parameter Variations

2.1 Introduction

In the past, the main source of parameter fluctuations in CMOS devices were due to 

variations in the process parameters leading to slowly varying differences in doping pro­

files, layer thickness and device dimensions from wafer to wafer or across a single wafer. 

Tighter control of the processing conditions were able to reduce such “extrinsic” pa­

rameter fluctuations. With the reduction of the CMOS devices to decananometer and 

nanometre dimensions in the present and future generation technology nodes, “intrinsic” 

parameter variations due to the discreteness of matter and charge becomes increasingly 

important and start to dominate the device parameter variation. Intrinsic parameter vari­

ations become especially problematic in the design of ultra small devices where micro­

scopic differences in the structure of otherwise macroscopically identical devices lead to 

an increasing statistical distribution in device parameters, such threshold voltage V j  and 

off current IQf f ,  over a fabricated ensemble. The spread in device parameters, or mis-
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Oxide

Figure 2.1: (Top) Ideal device description with un iform  charge distribution and well d e ­
fined edges. (Bottom ) Realistic ultra small device with m icroscopic  variation in d iscrete 
charges and lithography.

match betw een devices, is detrimental to the successful integration o f  such devices in 

both ana logue and digital circuits and represents  a limit to fu ture  scaling trends. D evel­

oping  device designs and architectures that are resistant to intrinsic param eter variation 

is then a prim ary concern. It is therfore im portan t to be able to accurate ly  predict the 

m agnitude o f the intrinsic device param eter variation fo r  d ifferent device designs in order 

to help limit device m ism atch  and achieve optimal circuit perfo rm ance  and reliability in 

the future generation techno logy  nodes.

Figure 2.1 illustrates the differences betw een  an ideal m acroscop ic  device typically  

considered  in practical device sim ulation and the co rresponding  structure o f  a real m i­

croscopically  discrete device. In the ideal case, the doping  and the corresponding  charge
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density is represented by a continuum distribution. However, and as will be discussed 

in more detail, in ultra small devices the number of individual ionized impurity atoms is 

small and the effect of variation in their number and position is observable from device to 

device. The lithography defining the gate edges has inherent line edge roughness (LER) 

which becomes comparable to the device dimensions and introduces random variation in 

the transistor geometry. Finally, the interface roughness on the scale of one or two atomic 

layers introduces random variations in the gate dielectric thickness.

Therefore the simulation of ideal devices with straight boundaries and continuous 

doping is simplistic and will not reveal anything of the extent of the intrinsic parameter 

variation. Simulation of an ensemble of microscopically different devices in terms of 

discrete doping distribution, interface and LER patterns must be carried out in order to 

statistically characterise the corresponding intrinsic parameter fluctuations.

The magnitude of the effects associated with discrete random dopants (RD), line edge 

roughness (LER) and oxide thickness fluctuations (OTF) depends upon the device struc­

ture. For this work, conventional silicon «-MOSFETs are considered as they are the main 

focus of the semiconductor industry’s scaling targets at present and in the near future. In 

section 2.2, random dopant induced device parameter variations in MOSFETs are intro­

duced and the estimation of the intrinsic parameter variation using Drift Diffusion (DD) 

simulation is discussed. Both the limitations of the DD approach to account for transport 

variations associated with random dopants and the role of Monte Carlo (MC) simulation 

to properly incorporate this important effect are discussed. Subsequent to this, LER and 

OTF as sources of intrinsic parameter fluctuations are discussed in section 2.3 before ad­

ditional sources of fluctuation that will become important in future devices are considered 

in section 2.4.
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Year of Production 2005 2007 2010 2013 2016 2018

Printed Gate Length (nm) 45 35 25 18 13 10

Physical Gate Length (nm) 32 25 18 13 9 7

Equiv. Oxide Thickness (nm) 1.1 0.9 0.7 0.6 0.5 0.5

Max Doping Vt =  0.4V (cm~3) 2 .5x  1018 J.OxlO18 9.0x  1018 1.8x  1019 3 .0x  1019 N/A

Approx Number of Dopants 56 50 35 27 17 N/A

Random variation in dopants (%) 13 14 17 19 24 N/A

Table 2.1: MOSFET dimensions taken from the ITRS 2004 update edition [1]. Doping 
concentrations until 2016 are taken from 2002 update edition [27] before the emphasis on 
SOI devices. Expected number of dopants within the channel depletion region considering 
a square channel is also tabulated.

2.2 Random Dopants

Currently, the 2004 edition of the International Technology Roadmap for Semiconductors 

(ITRS) [1] sets the scaling trends for semiconductor devices until the year 2018. Table

2.1 lists the target ITRS channel lengths for the next generation MOSFETs until the end 

of the roadmap. The corresponding large channel doping concentrations required to scale 

conventional MOSFETs to such dimensions are also tabulated. Despite the high doping 

concentrations, there are only expected to be tens of dopants within the active region of 

the transistors. Due to the random nature of the ion implantation and diffusion process, 

the limited number of dopants leads to significant statistical variation in their number, as 

well as position, between different devices.

The limitation on device scaling imposed by the random discrete dopant distributions 

was proposed in the early seventies [22,23,28]. From the basic MOSFET theory, the 

threshold voltage Vj  of a long channel MOSFET can be written as

VT = Vfb +  2 ips +  ^ i q N a ^ a  ( 2  1}
L  ox

where Vfb is the flat-band voltage, 4 ) 5  the difference between the Fermi level and intrinsic
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Fermi level, £5 / the permittivity of silicon, Cox the oxide capacitance and Na the nominal 

substrate doping concentration. The square root term equals the total depletion charge, 

variation in which leads in first order to variation in V t-

When considering purely random positions for the dopant atoms, the statistical dis­

tribution of the number of dopant atoms from device to device is assumed to follow a 

Poisson distribution since the location of individual impurity atoms are considered inde­

pendent [23,29]. Therefore, for an expected number of dopants N  within any volume, 

the actual number will statistically fluctuate about the mean with a standard deviation of 

y/N. For ultra small devices with few dopant atoms, this represents a significant percent­

age variation in the number of dopants and the depletion charge. This is also tabulated in 

table 2.1 where variations on the order of 10 to 25 percent are seen. In turn this results 

in significant variation in Vj- Excessive variation in Vt and drive current Ion limits the 

operation of analogue circuits while in ultra small devices, the magnitude of the device 

variation can be large enough to lead to malfunctions in digital electronics [30-33]. Such 

mismatch between devices is therefore crucial to predict in order to be able to foresee its 

impact on the device, circuit and system design.

2.2.1 Experimental Observations

Experimental observation of device variation and mismatch has been reported [29,34-38], 

prompting studies of the variation in Vt and Ion on the subsequent degradation in circuit 

performance. At the time, this was addressed using mainly analytical models matched 

to the experimentally observed variations [34]. Analytical models assumed forms for the 

statistical variation of multiple mechanisms, such as oxide thickness, oxide trapped charge 

and line edge roughness. The statistical influence of random dopants were explicitly 

included as a source of Vt variation in [29], while in [34] a more general variation in

12



CHAPTER 2. INTRINSIC FLUCTUATIONS AND DEVICE PARAMETER
VARIATIONS

channel mobility was considered.

The direct experimental evidence of threshold voltage fluctuations associated with 

variation in random dopant numbers was first reported in 1993 [39-41]. The authors have 

studied a sample of over 8,000 MOSFET devices on a single chip, showing that the Vt 

variation was independent of the location of the device on the chip and therefore occurred 

randomly within devices. Moreover they have demonstrated that the distribution in Vt 

follows a Gaussian distribution with a well defined standard deviation in threshold volt­

age oVt . The distribution in experimentally observed dopant numbers between devices 

was also observed to follow a Gaussian distribution. Line Edge Roughness and Oxide 

Thickness Fluctuations were considered minimal in the fabricated devices and ignored, 

and it was concluded that the random variation in dopant numbers were primarily respon­

sible for the variation in Vt . Subsequent to this, careful measurement of the devices at 

differing drain and substrate voltages revealed that the dopant configuration within the 

channel volume, as well as the actual number of dopants, were important factors in alter­

ing V t  [42].

2.2.2 Modelling Approaches

Given the importance of random dopant induced intrinsic parameter variations, models to 

predict the magnitude of the standard deviation in threshold voltage oVt have been devel­

oped. One simple approach [23,28] includes the subdivision of the channel into an array 

of square MOS capacitors with length equal to the gate depletion width at the threshold 

voltage of the device. Variation in the total depletion charge within each MOS capac­

itor was assumed to follow a Poisson distribution and was considered to be uniformly 

distributed throughout. The probability that a series of such capacitors were inverted at 

a given gate bias to form a conducting path from source to drain was determined. This
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Figure 2.2: Simple model to account for the variation in substrate doping density within 
the channel of a MOSFET [23]. A conducting path from source to drain (top to bottom) 
formed by the alignment of a series of inverted MOS capacitors is highlighted.

is illustrated in figure 2.2 where the most likely conducting path is shaded. This very 

basic model was the first attempt to quantify the variation in threshold voltage and since 

then more complex analytical models have been developed [29,36,43—46]. Among the 

additional factors taken into account in these models is the variations in dopant distribu­

tion as a function of depth within the channel which was initially neglected but plays an 

important role [46].

Numerical device simulations are limited by the accuracy and the validity of the simu­

lation approach but provide in general a far more accurate means of determining the mag­

nitude of the random dopant induced intrinsic parameter variation through the simulation 

of an ensemble of microscopically different devices. They automatically capture complex 

effects associated with the real space variations. Although the numerical device simula­

tion represents the most accurate way to investigate intrinsic variations in novel devices, 

it can be computationally very exhaustive. Despite the three dimensional nature of the
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effects associated with random discrete dopants, initially two dimensional drift-diffusion 

(DD) simulations were used to study random dopant induced MOSFET parameter fluc­

tuations [46-48]. Variation in the doping concentration was randomly assigned to the 

simulation mesh following a Poisson distribution of dopants with a mean concentration 

equal to the continuous doping concentration in the device. Through such simulations it 

became clear that the random dopant induced variation in the doping density results not 

only in Vt variations, but also in mean values of the threshold voltage different from the 

values obtained from the continuous doping simulations. This was attributed to the vari­

ation in surface potential resulting in early percolation of current through the channel. It 

was also found that the variation in doping close to the interface dominates the intrinsic 

parameter variations [47]. Physically, the random number and position of dopants alter 

the potential distribution throughout the channel, locally altering the barrier height. Val­

leys within the potential energy profile allow parts of the channel to turn on earlier than 

others, forming current percolation paths and lowering the average value of Vy. While 

2D and 3D simulations show comparable results for o V t ,  with 3D simulations giving a 

slightly smaller standard deviations [47], the threshold voltage shift could only be accu­

rately modelled in 3D due to the 3D nature of the current percolation paths [46].

Following this, 3D ’atomistic’ simulations incorporating individual random discrete 

dopants were performed [49]. In contrast to merely varying the charge density at the dis­

cretization grid nodes, individual dopant atoms were incorporated and the corresponding 

charge density assigned to the discretization mesh. The number of dopants was selected 

from a Poisson distribution, with mean equal to the expected number of dopants as given 

by the integral of the doping concentration over the doping volume, and positioned at ran­

dom. This was extended via a rejection technique to accurately position dopant atoms at 

silicon lattice sites giving, on average, the required doping concentration [50]. Recently, 

dopant distributions coming from 3D atomistic process simulation [51,52] have been used
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Figure 2.3: A tom istic  dopan t distribution resulting from  3D  process sim ulation  and e lec­
tron equi-concentra tion  con tour from  subsequen t DD sim ulation [5 3 1.

to im port the exact dopan t positions fo r  subsequen t atom istic  device s im ula tions [53—55 [. 

T h is  represents  the m ost accurate m ethod  o f im p lem enting  the statistical fluctuations in 

dopan t num ber and position prior to device sim ulation. F igure 2.3 show s the d istribution 

o f  individual donor and accep to r positions, resulting  from  discre te  dopan t Kinetic M onte  

C arlo  process simulation , and an electron equ i-concentra tion  con tou r  from  subsequen t 

D D  sim ulation  [53].

Three  dim ensional s im ulations using the D D  approach  have since becom e the m ost 

co m m o n  and efficient m ethod  to study random  dopan t effects and have been applied  to a 

variety o f device structures [2 4 ,2 5 ,5 0 ,5 6 ,5 7 ) .  W ithin this m odel,  p roblem s arise w hen 

resolving the individual d iscrete dopan t potential on fine d iscre tization m eshes associa ted  

with ultra small devices. T he  resolution o f  the s ingular C o u lo m b  potential associa ted  with
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a point charge of an ionized impurity atom leads to unphysical charge carrier localisation 

within the DD solution. The implementation of correction schemes in order to avoid 

this artifical localisation effect has recently been reported and has allowed drift diffusion 

simulations of ultra small devices to be carried out [54,58-60]. In addition, quantum 

mechanical effects are often included through the density gradient (DG) formalism [61] 

within DD simulations to account for the carrier confinement in the inversion layer when 

simulating small devices [62,63].

2.2.3 Single Charge Trapping

Related to the discrete random dopant induced parameter variation is the variation in the 

MOSFET current induced by the trapping/de-trapping of single charge carriers in defect 

states within the channel. For example, trapped electrons in w-channel MOSFETs alter the 

potential landscape within the channel resulting in a local reduction of the charge carrier 

density and a corresponding reduction in the current [64]. Unlike random dopants, this is 

a dynamic process, albeit on timescales much longer than the switching time of devices, 

that results in the random telegraph signal (RTS) in the device current. The magnitude of 

the current reduction associated with a single trapped charge has been studied in a similar 

manner to random dopants using three dimensional DD simulation [65,66].

Combined with random dopant simulations, where current conduction through per­

colation paths dominates at low gate voltages, the effect of a single trapped charge can 

be significant [25]. Trapping of a single charge within a percolation path presents a bar­

rier to current flow and can cause significant RTS noise. Experimentally observed RTS 

amplitudes of greater than 60% have been reported in decananometer devices [67] while 

simulation studies that fail to properly account for the 3D discrete nature of the doping 

charge underestimate the magnitude of the variation [6 8 ]. Accurate simulation of discrete
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dopants and trapped charges is therefore important in order to estimate the magnitude of 

noise in device operation as a source of dynamic device variation.

2.2.4 Limitation of Drift Diffusion Simulation

As stated already, much of the statistical work on random dopant induced device pa­

rameter variation has been carried out using the drift-diffusion approximation. This is a 

local transport model which can self consistently solve for the carrier concentration and 

current continuity for a given background charge distribution and externally applied bi­

ases [69]. In doing so, values for the macroscopic diffusion constant and mobility are 

used which correspond to steady-state bulk values. Empirical mobility models fitting ex­

perimentally observed concentration dependent and field dependent mobility can also be 

used to increase the validity of the model [70]. However, the mobility values used within 

the solution are associated only with the local field and doping concentration and as a 

result DD simulation is incapable of capturing non-equilibrium transport [71]. The model 

holds where fields are slowly varying such that equilibrium conditions are well approx­

imated. However, the field associated with a discrete impurity is rapidly changing and 

does not fit this description. Similarly, the local variation in doping concentration asso­

ciated with the resolution of discrete dopants on a finely discretized mesh can introduce 

unphysical local variation in the mobility. These make the direct use of concentration and 

field dependent mobilities in atomistic DD simulations unsuitable. In order to circumvent 

the above problems, the field and doping concentration dependence of the mobility ob­

tained from continuous doping simulation is used directly in the atomistic simulation at 

equivalent bias conditions [24]. In this manner, the discrete charges effect the DD simula­

tion through the local increase or reduction in carrier concentration associated with local 

variations in electrostatic potential due to the discrete charges. This in turn effects the
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current.

In addition to the electrostatic modulation of the carrier concentration, the discrete 

charges act as Coulomb scattering centres. Variation in charge transport due to variation 

in Coulomb scattering from a non self averaging array of discrete impurities is expected 

to have a significant contribution to the current reduction in transistors with only a few 

dopants. Similarly, variation in transport associated with a trapped charge is expected 

to contribute to the reduction in current flow, however it is still unclear as to whether 

the mobility or the local carrier density modulation is of primary importance [72-74]. 

The mobility models employed within DD cannot capture transport variations due to lo­

calised Coulomb scattering centres. As a result, the magnitude of the intrinsic parameter 

variation is underestimated by DD simulations since the intrinsic transport variations are 

neglected. The magnitude of the effect of transport variations between devices due to 

varying Coulomb scattering is thus an important question which this work addresses.

2.2.5 Monte Carlo Simulation

Including transport variations requires a non-equilibrium transport model that can account 

for scattering from an arbitrary arrangement of scattering centres in three dimensions. The 

Monte Carlo device simulation approach is suitable for studying transport in the presence 

of random discrete dopants provided that modifications are made to treat Coulomb scat­

tering from discrete charges through the real space trajectories of the carriers. Previously, 

electron-electron scattering [75] and electron-ion scattering [76] have been treated for an 

arbitrary arrangement of scattering centres through the inclusion of a molecular dynamics 

force evaluation within the traditional Monte Carlo simulation. However these simula­

tions were of bulk material and relied upon periodic boundary conditions imposed on the 

simulation domain. Methods have been developed to incorporate the molecular dynam­
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ics approach in Monte Carlo device simulation in order to study random dopant induced 

variation and electron-electron interactions in MOSFETs [77-81]. Some statistical study 

of simulations of between 15 and 30 randomly configured devices using this ab initio 

method again concluded that variation in dopant position, as well as number, is an im­

portant factor affecting the device parameter variation, with impurities closer to the oxide 

interface playing a more dominant role [78,81]. The ab initio method of including ionized 

impurity scattering is itself left for discussion in chapter 4 and is of primary importance 

in this work.

2.2.6 Random Dopants in Non-Conventional Si Devices

Simulation of discrete random dopant effects has so far been focused on parameter vari­

ations in conventional MOSFETs. In the most recent editions of the ITRS [1], it has 

been postulated that the conventional MOSFET device will be replaced by fully depleted 

thin body SOI MOSFETs somewhere beyond 2007 and later on with multiple gate device 

architectures. Such devices have little or no channel doping and, as a result, unwanted 

discrete impurities or trapped charges within the channel may significantly affect the de­

vice operation [6 6 ]. The random position of the highly concentrated source and drain 

dopants, however, will alter the effective position of the pn  junction leading to significant 

effective channel length variation in ultra short channel devices [82]. Therefore random 

dopant induced parameter variation, being one of the most important limiting factors in 

current devices, will remain relevant until the end of the ITRS. The accurate modelling 

of random dopant induced variation therefore remains very important until the end of the 

roadmap and beyond.
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2.3 Line Edge Roughness and Oxide Thickness Fluctua­

tions

In addition to the random discrete dopant distribution which introduces variation in the 

device characteristics, the fabrication processes introduce variations in the gate dimen­

sions and in the gate insulator thickness. Variation in the lithography defining the gate 

edge alters the physical channel length while variation in the gate insulator thickness di­

rectly effects the local gate capacitance and hence local surface charge density. These 

effects in turn contribute to the variation of the threshold voltage and the current-voltage 

characteristics in an ensemble of nominally identical devices. Both LER and OTF are the 

main sources of intrinsic parameter variation commonly studied in addition to random 

dopants.

2.3.1 Line Edge Roughness

For a particular generation of lithography, the resolution of the lithographic process is pri­

marily limited by the mask and the resist material, and not the lithographic tools [83,84]. 

Local variation in the density of the resist material through the formation of polymer ag­

gregates was originally observed for a variety of different resist materials [85]. Aggregates 

form from the entanglement of the polymer chains and range in size between 10 — 30 nm 

in diameter depending upon material and light or electron beam exposure [83]. The aggre­

gate size alters the response of the resist to the development process, with large aggregates 

dissolving less rapidly. This results in variation in the developed resist features that cor­

relates with the distribution of such aggregates. This variation is then directly transferred 

to variation in the underlying material [83-85]. Experimentally observed variation in the 

surface of an exposed resist material and the subsequent roughness in a patterned line is
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100 nm 100 nm

Figure 2.4: (left) The surface o f  an exposed resist show ing  the aggregates  that lead to 
the loss in edge resolution o f  a pattern, and (right) the subsequen t LER  produced in the 
lithography o f  a line. Taken from  |8 4 |

shown in figure 2 .4 |8 4 | .

Crucially  within the M O S F E T  structure, the resolution o f  the gate sidewall profile and 

o f  the source and drain im planta tion  regions are limited by LER. Variation in lithography 

is transferred  to variation in the source/channel and dra in/channel junctions  fo llow ing  

the ion im planta tion and diffusion processes. Independent L E R  variations in the source 

and drain profiles results in Line Width R oughness  (LW R) 11 9 1 w hich corresponds to 

variation in the effective channel length. This  effect will be significant in short channel 

devices w here  variation in channel length represents  a significant percentage variation 

com pared  to the nominal channel length.

M uch w ork  has been done to statistically describe L E R  variation [18]. Typically  LER 

is described by an RM S am plitude A and a correlation length A, with  reported values 

ranging  broadly  between 3A =  5 — 6 nm and A =  20  — 3 0 nm [20]. T h e  autocorrelation  

function  o f  the experim entally  observed  rough line edge fits a G aussian  or Exponential 

au tocorrelation  function equally  well. Noise in the LER  m easu rem en ts  m akes it hard
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to distinguish which is a better fit, though the Gaussian form is more commonly used, 

resulting in less high frequency variation. This description has allowed the introduction 

of statistically accurate LER into statistical 3D DD device simulation [20].

Using continuous doping within the DD approximation, the effects of LER on Vt 

and I0f f  variation at low applied drain voltages are well represented, as in this regime 

the device is dominated by the device electrostatics. Monte Carlo simulation will better 

capture the non-equilibrium transport that occurs at high applied drain voltages where 

DD underestimates current. Simulations combining random dopants and LER (see figure 

2.5) have been carried out to investigate the simultaneous effect of the two sources of 

fluctuation on the device parameter variation and show that, to a good degree, the two 

effects are statistically independent [20]. However, this treatment again avoids variation 

in scattering associated with the random discrete impurities. The effect of scattering from 

random dopants, particularly associated with low energy carriers entering the channel 

from the source, may be significant and again requires a generalised treatment of impurity 

scattering within the non-equilibrium Monte Carlo model.

2.3.2 Oxide Thickness Fluctuations

The formation of the gate, which currently involves oxidation and poly silicon deposi­

tion, typically introduces interface roughness on the order of 1 - 2  atomic layers at both the 

gate/insulator and semiconductor/insulator interfaces, figure 2.6 [8 6 ]. The correspond­

ing oxide thickness fluctuations (OTF) alters the gate capacitance throughout the channel 

which in turn alters the surface potential profile from device to device. In future ultra 

small MOSFET devices, oxide thicknesses of less than 1 nm are required and variation by 

a single atomic layer introduces a significant percentage thickness variation. Like LER, 

OTF is statistically described by a Gaussian or Exponential autocorrelation function with
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Figure 2.5: E lectrostatic potential resulting from  D D  sim ulation incorporating  L E R  (left) 
and both LER  and random  dopants  (right). T he  sam e LER  construc tion  is used in each. 
Variation in channel w idth and local variations in potential assoc ia ted  with individual 
dopants  are seen |2 0 | .

RM S am plitude  A and correlation  length A 18 7 ,8 8 1. O T F  has then been studied in a s im i­

lar fashion to LER  in 3D  D D  device s im ulation  18 9 , 9 0 1. S im ulations o f  O T F  fluctuations 

including  random  dopants  show that the tw o act as statistically independen t sources o f  

intrinsic param eter variation.

Within the fram ew ork  o f D D  sim ulation, the varying oxide th ickness  electrostatically  

alters the surface potential and the local carrier density  w ithin  the channel. S im ilar  to 

the effects o f  random  dopants ,  curren t percolation paths are fo rm ed  w here  the potential 

variation due to the oxide th ickness  varia tions lowers the potential energy barrier to form  

a conducting  path from  source to drain. This  results in variation in the th reshold  voltage 

as well as in a lowering o f  the m ean threshold  voltage s im ilar to the descrip tion in section
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Figure 2.6: Im age o f gate /insu la to r/sem iconducto r interfaces. Variation in both interfaces 
is seen and results in a varying th ickness  o f  the in term ediate  oxide 1861.

2 .2 .2 .

However, local variation in the interface roughness  pattern and the corresponding  o x ­

ide th ickness variation also effects variation in the surface roughness  limited m obility  

w hich  plays a crucial role in transport within the channel [ 8 7 1. T h e  varying electric field 

associa ted  with the non-uniform  surface potential acts to scatters carriers. D ifferences 

in the oxide interface pattern lead to variation in position dependen t  carrier scattering 

w hich  is unaccounted  fo r w ithin the D D  approach. It is expected  that the variations in 

the interface roughness, in com binations with the additional variation due to scattering 

from  surface potential fluctuations associa ted  with the random  oxide th ickness pattern, 

will increase the intrinsic device param eter variation in the sam e w ay as C o u lo m b  scatter-
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Metal Gate
Remote surface roughness

0  a m p l i tu d e  o f  ro u g h n es s  
A : c o r r e la t io n  length

fh,Kh-K: th ic k n e ss  o f  high-K A
Phase-separation

crystallisation
i: K for c ry s ta l l ised  gra in  

K>: K for a m o rp h o u s  reg ion

th ic k n e ss  o f  in terfacial 
layer

t  high-K
High-K

Sour
Interfacial Laye

Drain
Channel

Surface roughness

Figure 2.7: Illustration o f the fluctuation problem s faced w hen m oving  to high-K m aterials 
in the gate stack. Surface roughness  at the gate /insu la tor and insu la to r/sem iconducto r 
interface, as well as variation in the com position  o f  the d ielectric m aterial,  effect surface 
potential.

ing associa ted  with random  dopants. To include this in s im ulations requires an ab initio 

trea tm ent o f  the interface roughness  scattering s im ilar to the ab initio random  dopan t sca t­

tering and can be suitable handled by 3D M onte C arlo  s im ulation  incorporating rough sur­

faces 191 ]. It is im portant within such s im ulations that the quan tum  m echanical confine­

m ent o f  carriers within the inversion layer is properly  treated in o rder  to self  consistently  

cap ture  the electron density  and subsequen t scattering from  the varying potential.

are required (see table 2.1). T he reduction o f  the gate oxide th ickness  to increase the gate 

capacitance is limited by the requirem ents  o f  m in im is ing  gate tunnell ing  current and by

2.4 Additional Sources of Fluctuation

For the ultra small devices at the end o f  the roadm ap, ox ide th icknesses  o f  around 0.5 nm
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the physical size of the silicon lattice. Moving towards gate insulator materials with a 

higher dielectric constant, high-K materials, allows the gate capacitance to be maintained 

using much thicker insulators and at the same time controlling gate tunnelling. The high- 

k  materials may introduce additional sources of fluctuation that may become important 

sources of intrinsic parameter variation in ways that are only beginning to be addressed. 

An overview of the potential sources of random parameter variations associated with high- 

k  materials is shown in figure 2.7. Variation in the composition of the high-K material 

associated with crystalline grains with a different dielectric constant compared with the 

amorphous high-K material will further the surface potential fluctuations, increasing the 

parameter variations due to variations in charge density and transport. As before, a full 

treatment of these effects would require a proper 3D treatment of transport variations.

2.5 Conclusions

The most common sources of intrinsic device parameter variation, including discrete ran­

dom dopants, line edge roughness and oxide thickness fluctuations, have been introduced. 

Accurate modelling of the magnitude of the effects associated with these fluctuation 

sources require full 3D simulations which have to date been carried out predominantly 

using the drift-diffusion approach. However, it has been noted that variations in transport 

due to the fluctuating potential landscape within randomly configured devices, associated 

with both random dopants and oxide thickness fluctuations, is expected to contribute to the 

intrinsic parameter variations. These effects are unobservable within the drift-diffusion 

approach and requires a proper treatment of non-local transport to reveal their impact on 

the statistical device parameter distributions. Further to this, additional sources of fluctua­

tions inherent to high-K materials, essential for future scaling of conventional MOSFETs, 

are expected to increase the surface potential variations, thus increasing transport associ­
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ated variations.

Monte Carlo simulation is capable of capturing non-equilibrium transport and, includ­

ing the impact of the 3D potential landscape on the real space carrier trajectories, should 

automatically account for such transport variations. Within the following chapters, the 

Monte Carlo method is discussed and a description of the incorporation of scattering 

from random discrete dopants is given. The developed simulator is then used to compare 

the results of device parameter variation including transport effects, with that of DD sim­

ulations which only capture the electrostatic influence of the different sources of intrinsic 

parameter variations.
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Chapter 3

Monte Carlo Device Simulation

3.1 Introduction

Compared with drift-diffusion (DD), the Monte Carlo (MC) method [92-96] provides 

the most accurate means by which the classical influence of individual random discrete 

dopants on device operation can be examined. Such simulations should be three dimen­

sional to be able to capture the impact of random numbers and, importantly, positions of 

dopants within the device. The MC method is a general mathematical tool for the numeri­

cal solution of a variety of problems not unique to semiconductor charge transport. In this 

chapter the application of the MC method to semiconductor charge transport is discussed, 

detailing the approximations used and their validity within the framework of the proposed 

work.

The classical description of charge transport in semiconductor materials is given by 

the solution of the semi-classical Boltmann transport equation (BTE). The BTE is in­

troduced in section 3.2. The solution of this equation could be achieved through the 

direct simulation of charge carrier trajectories, influenced deterministically by local elec­

tric fields and stochastically by random scattering processes. Throughout this work we

29



CHAPTER 3. MONTE CARLO DEVICE SIMULATION

only consider electrons as majority charge carriers and consequently electron dynamics 

are briefly discussed through the semi-classical equations of motion. The relatively sim­

ple MC method applied in this work is described in section 3.3 in comparison with more 

advanced MC simulators. In section 3.4, the calibration and verification of the model 

through simulation of bulk silicon properties and comparison with both experimental data 

and more rigorous MC solutions is discussed. The important steps in moving from a sim­

ple bulk solution to a 3D self-consistent device simulation are discussed in section 3.5, 

followed by an example simulation of a 3D test structure.

The Boltzmann transport equation (BTE) describes the evolution in time of the single 

particle distribution function, g (r, v, t), which gives the probability of finding a particle 

with velocity between v and \  + d \  in the volume r to r  + dr  at time t. If known, the 

distribution function allows averages over a volume in the position-velocity phase space 

to be calculated as

which are interpreted as an ensemble average. Knowing the distribution function thus 

enables the determination of, among other things, charge and current densities which are 

of primary importance in device simulation.

3.2 Boltzmann Transport Equation

3.2.1 Single Particle Distribution Function

(3.1)
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3.2.2 Classical BTE

The BTE is given by

dg(r, v,Q
dt

F
+  v ' VrgH Vvg —m

d g \

)  Coll
(3.2)

We state it here, but a complete derivation may be found in [97]. The equation relates 

the time rate of change of the distribution function to both the number of particles with

on the left hand side comprise the drift terms, arising form the initial conditions and the 

motion in the electric field F. The term on the right hand side is the collisional term and 

constitutes all possible mechanisms, other than the electric field, that alter the velocity. 

Equation 3.2 is a classical equation violating the uncertainty principle by treating carriers 

as point charges with simultaneously well defined position and velocity.

3.2.3 Semi-Classical Equations of Motion

It is evident that, through the drift terms, the distribution function depends on the carrier 

dynamics. However, the dynamics of classical electrons in a semiconductor material is 

a many body problem and, for all intents and purposes, impossible to solve directly. In 

the independent electron approximation, electron-electron interactions are ignored and in­

stead only the interaction between an electron and the crystal lattice is considered. Quan­

tum mechanical solutions of the electron wavefunction that considers only the periodic 

potential of an infinite perfect lattice exist in the form of Bloch waves. These constitute a 

plane wave multiplied by a function with the periodicity of the lattice [98].

velocity v flowing out of volume element dr  at position r, and the number of particles 

with acceleration ^  flowing out of a similar volume dx  in velocity space. The terms

'ip/zk (r) = elkrun k (r) (3.3)
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where

Kiik(r) = u nk (r +  R) (3.4)

R being a lattice vector. These functions quantize the allowed values of the electron wave- 

vector, k, and associate with each an energy, e (k), which together define the dispersion 

relation, or band structure. The subscript n identifies different solutions of 8 (k), defining

index shall be dropped, assuming only one band. The dynamics of a single electron can 

now be described semi-classically by the equations of motion [99]

is the Hamiltonian, including the electrostatic potential V (r).

At this point it becomes convenient to introduce the electron effective mass which is 

a useful concept in the analytical description of electron dynamics and makes analogous 

the familiar free electron dynamics. Associated with the electron wavevector k is the 

electron’s crystal momentum P. These are related through the de Broglie relationship 

which can in turn be presented as the product of a mass-like term m* and the velocity v

m* differs from the free electron mass me and is termed the effective mass. In general 

m* is not constant but a function of the wavevector, thus its value varies along the band

alternate bands, and is termed the band index. For the rest of this consideration the band

(3.5)

(3.6)

where

H (r, k) =  s(k) + eV  (r) (3.7)

P =  hk = m*v (3.8)
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structure. An applied force F results in a change in the electron’s crystal momentum hk  

according to Newton’s laws. Considering the components of the acceleration, Newton’s 

law may be written as [75]

=  dvj =  d  1 de =  ^  1 d2e d (hkj)
Ul d t  d t  h  dki h2 dkidk ; d t

J J

or

«  = (3' 10)

Where is the inverse effective mass, written in general as a second rank tensor

1 d2e
m *  J  i j  h 2 d k i d k  j  ^ ^

This can be seen to be the velocity, as given by equation 3.5, divided by the momentum, 

given by equation 3.8, analogous to the free electron case. The effective mass is thus 

defined entirely by the band structure, which is discussed in section 3.3.1, and contains 

no new information.

3.2.4 Semi-Classical BTE

The distribution function can now be written in terms of r, k and t by substituting equa­

tions 3.5 and 3.6 into 3.2, resulting in the semi-classical BTE

+ 5VHOO-Vr ! - i v ^ < r , , ) - V B -  ,3.,2)

The above equation includes a general spatially and temporally varying potential V (r, t) 

as would be required in a device simulation and/or transient problem, along with a general 

dispersion relation, s (k), dependent upon the semiconductor material. This interpretation
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of electron dynamics is again classical, assuming simultaneously knowing the position 

and velocity. The collisional term on the right hand side expresses the rate of change of 

the distribution function due to all available scattering processes. The scattering can either 

reduce the value of the distribution function at (r, k, t) by instantaneously changing the k- 

vector from k to k' (Out-Scattering) or oppositely can increase the value by changing k' to 

k (In-Scattering). In this approach, the quantum mechanical nature of the real problem is 

only taken into account in two ways. First through the use of the band structure to describe 

the interaction of an electron with the crystal lattice, and second in the evaluation of 

scattering rates through perturbation theory using Fermi’s Golden Rule. These scattering 

rates, discussed in section 3.3.2, are also dependent upon the band structure. Thus, this a 

semi-classical treatment.

Equation 3.12 assumes no sources or sinks of particles which would otherwise effect 

the distribution function. If included, this would be accounted for by a term similar to the 

collisional term. Such terms represent the cumulative influence of all possible scattering, 

generation and recombination mechanisms. In Monte Carlo simulations, generation and 

recombination are typically not included as they occur on comparatively much larger 

timescales than that of the scattering mechanisms and play very little role in MOSFETs 

which are majority carrier devices [100]. The solution of equation 3.12 via the Monte 

Carlo method is described in the next section.

3.3 Monte Carlo Solution of the BTE

As previously stated, Monte Carlo is a general mathematical tool and even applied to 

charge transport in semiconductors the method can take different forms. As applied here, 

the MC method is conceptually a very simple iterative process that directly simulates the 

physical motion of carriers. The distribution function is evaluated by the repeated propa-
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Figure 3.1: Basic flow diagram of Monte Carlo program suitable for simulation of bulk 
material

gation and self-consistent scattering of carriers, representing the drift and collision terms 

in the BTE, until the solution converges. This is in contrast to purely numerical algorithms 

with a less direct analogue to the physical system that are designed to discretise and solve 

the transport equation directly, though both methods are fundamentally linked [96], or 

statistically weighted methods that distort the real physical process to better resolve rare 

events [1 0 1 ].

In the practical implementation of the MC approach, the carriers are propagated in 

the local field according to the semi-classical equations of motion, 3.5 and 3.6, over a 

randomly generated free-flight time. At the end of the free-flight, carriers are scattered by

35



CHAPTER 3. MONTE CARLO DEVICE SIMULATION

a randomly selected scattering mechanism into a new state and a new period of free flight 

follows. By gathering statistics on the state of each electron as the simulation progresses, 

we obtain an estimate of the distribution function. The final solution is obtained when 

averaging over a sufficiently large number of iterations gives convergence to within a 

desired accuracy. The basic flow diagram of the MC simulator is shown in figure 3.1. 

Self consistency, if required, is obtained through additionally solving Poisson’s equation 

before each propagation time step, the new field is then determined and used for the 

subsequent propagation step.

For steady-state, homogeneous problems, it is sufficient to simulate the propagation 

of only one electron for a long time and apply the ergodic principle to treat the time aver­

age as an ensemble average. In cases where transient behaviour is under investigation or 

where the problem is non-homogeneous, an ensemble of carriers must be used to obtain 

the average directly in the Ensemble Monte Carlo (EMC) method. For the purpose of this 

work the latter choice is necessary since, even in simulations of a simple bulk semicon­

ductor sample, the investigation of random discrete dopants results in an inhomogeneous 

simulation domain. Self consistency may then be incorporated into EMC simulations to 

recover the dynamic transient response of a system, or the steady-state solution alone 

may be efficiently achieved using a ’frozen field’ solution in an appropriate steady-state 

potential. The simulation of bulk semiconductor properties in absence of discrete doping 

represents a simple homogeneous problem where self consistency is not necessary. Af­

ter discussing the choice of fundamental models that are employed within the simulator 

throughout this work, such bulk simulation serves to provide a suitably simple method of 

calibration and verification of the simulator.
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Figure 3.2: Silicon band structure calculated from non-local pseudopotential method 
(solid line) and local- pseudopotential method (dashed line) [103]

3.3.1 Band Structure

In order to propagate electrons and calculate scattering rates, a description of the band 

structure, e (k), is required. Results from the theoretical calculations of the band structure 

of silicon are presented in figure 3.2. It can be seen that in general the band structure is 

very complicated. A simplification of the problem can be made by noting that in silicon 

the majority of electrons involved in transport at low fields reside near the conduction 

band minima, located at six equivalent valleys situated 0.85 x ^ 2  from the the T point 

along the A symmetry line, near the X  points in the Brillouin Zone (BZ), where a is 

the lattice constant [75,102]. About this point the band may, to first approximation, be 

represented by a parabolic dispersion relation
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(3.13)

This is analogous to the free electron energy corresponding to a scalar effective mass, m*. 

If during a simulation, electron energies exceed the range where this approximation holds, 

the range of applicability may be extended by the introduction of a fitting parameter, a , 

in the Kane-model [104]

where the energy is explicitly given by

Whereas in the parabolic approximation the mass-like term, expressed solely by the scalar 

effective mass, is a constant, in the non-parabolic approximation it is an energy dependent 

quantity equal to the parabolic case only at the band minima. The fact that in general 

the effective mass is a second rank tensor (section 3.2.3) highlights a short-falling of 

both these analytical models. In equations 3.13 and 3.14, the energy is dependent on the 

magnitude of the wave vector alone and thus gives rise to spherical equi-energy surfaces 

in k-space. In the actual band structure of silicon, the equi-energy surfaces around the 

band minima are ellipsoidal in k-space [105], introducing anisotropy into the electron 

dynamics which is seen in experiment [106]. This can be taken into account using an 

analytical approximation with y expressed as

where the effective mass is separated into longitudinal and transverse components with 

respect to the axes of the equi-energy ellipsoid, assumed here to be aligned along the

s ( k ) ( l + a e ( k ) ) = y  =  — (3.14)

(3.16)
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x-direction in k-space. Combinations of equations 3.13 - 3.16 give either spherical or 

ellipsoidal variants of the parabolic or non-parabolic band minima. Such approximations 

are increasingly less valid at high energies, and if accuracy in this regime is required then 

more detailed full band calculations may be employed [107-109].

Band structures are important not only for determining the dynamics of carriers but 

also for accurately calculating the scattering rates mainly through the influence of the 

density of states, an important, band dependent, property. Although full band solutions 

give a more realistic account of the band structure at higher energies, analytic approxima­

tions are easier and faster to employ and describe the dynamics of the majority of carriers 

well. Even within full band simulations, analytic approximations may be employed at 

the band minimum to avoid interpolation errors caused by resolving the band structure 

too coarsely [108,109]. For these reasons, analytic bands are still widely employed in 

practical device simulations while full-band simulations are used when studying effects 

sensitive to the high energy electron distribution. For the purposes of this work, the ac­

curate details of the high energy electron distribution are unimportant compared with the 

transport behaviour of the majority of electrons. For this reason the analytical spherical, 

non-parabolic band approximation is employed. This reproduces the conduction band 

accurately to about 200meV [110] and roughly approximates the density of states up to 

2eV  [111]. The disparity between the longitudinal and transverse effective masses is 

taken into account by using an averaged effective mass combining the longitudinal and 

transverse masses [75]

m* =  (m im f) J (3.17)

This does not reproduce the experimentally observed anisotropic transport but gives a suf­

ficiently accurate average description. With this approximation the semi-classical equa-
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Figure 3.3: Diagram of the analytic band structure showing the three conduction band 
minima considered. Parabolic energy bands are shown as dashed lines for the X and L 
minima for comparison to the non-parabolic bands used. The separation in energy from 
the top of the valence band is also shown.

tion of motion are written as

§  =  - i v ' v  ( 3 J 8 )dt a

dt m* (1 + 2 a e  (k)) 

and the energy-dependent mass-like term in the velocity, m* (1  + 2 a e  (k)), is present in 

equation 3.19 for a  /  0.

Multiple conduction band valleys are represented by individual non-parabolic ’bands’ 

separated in energy as depicted in figure 3.3. The effect of the non-parabolicity factor
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a  in lowering the energy is shown for the X  and L valleys in the same figure. The T 

valley is assumed parabolic and spherically symmetric. As previously stated, in silicon at 

moderate fields nearly all carriers reside in the X  valley. The higher L and T valleys could 

be included for completeness to allow inter-valley transitions, but they play little role in 

this work.

3.3.2 Scattering Mechanisms and Rates

Having established the treatment of the electron dynamics governing the drift terms of the 

BTE, we now turn our attention to the collision term that balances the equation. As previ­

ously stated, this term comprises all mechanisms, other than the electric field, responsible 

for transferring a carrier from state k  to a new state k '. Such collisions are elastic if 

e (k )  =  e (k ; ) and can only serve to randomize the ensemble momentum. Ionized impu­

rity scattering is an example of an elastic collision and such mechanisms alone can not 

relax the energy of carriers. In order that carriers could be able to equilibrate with the 

crystal lattice, they must gain or lose energy. By the emission or absorption of phonons of 

energy ep = h(x)p, carriers change their momentum and decrease or increase their energy. 

The rate at which carriers suffer a collision depends upon the specific mechanisms at work 

and the carrier energy. This rate must be established in order to both determine the pe­

riod of ballistic motion between collisions and the scattering mechanism responsible for 

terminating it.

Phonon scattering is one of the most important mechanisms in bulk materials and 

dominates transport properties at higher energies. Impurity scattering is another impor­

tant mechanism and dominates at high doping concentrations and at low energy. Addi­

tional scattering mechanisms that may be considered are electron-electron and electron- 

plasmon interactions. These interactions, between either a pair of electrons or between
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an electron and the surrounding ensemble, redistribute momentum and energy and are 

important mechanisms in shaping the high energy electron distribution. In devices, the 

presence of heterojunctions or other boundaries imposes further scattering. In particu­

lar surface roughness scattering from the gate insulator interface in a FET channel limits 

mobility by re-distributing carrier momentum upon impact. For the purposes of the work 

carried out here, only the dominant phonon scattering mechanisms are considered. This 

is justified by the aim to reproduce the dynamics of the majority of electrons without nec­

essarily simulating the high energy tail. A method for treating ionized impurity scattering 

through the real space trajectories of the carriers will be introduced later, avoiding the use 

of scattering rates. In all cases, the scattering mechanisms are considered weak enough to 

be treated by means of first order perturbation theory as described in [75]. The scattering 

mechanisms included in this work are described next.

3.3.2.1 Acoustic phonons

Phonons arise from the collective oscillations of the atoms in the crystal lattice that distort 

the periodic crystal potential and alter the electron dynamics. They are directly associated 

with the quantized vibrational modes, and the corresponding wavevector, set up within 

the crystal lattice, and are characterised by their energy as a function of that wavevector. 

An illustration of the simplified phonon dispersion relation considered within this work 

is shown in figure 3.4. The acoustic phonon branch specifically refers to the collective 

oscillations of neighbouring atoms in the same direction. The effect that the displacement 

of each atom has on the deviation of the periodic potential from its equilibrium value 

is characterised by the acoustic deformation potential, Eac. The value of this constant 

governs the strength of the acoustic phonon interaction with the electrons and is usually 

used as a calibration parameter. Rigorous calculations of the scattering rate also require 

the evaluation of the overlap integral which weights the probability of scattering between
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Figure 3.4: Illustration of the simple phonon dispersion approximation used within this 
work (reproduced from [112]). Only one acoustic and one optical branch is considered, 
neglecting transverse and longitudinal modes.

specific states. Here, following the discussion in [75], the overlap integral is assumed a 

constant and incorporated in the deformation potential. Scattering from acoustic phonons 

is treated as an inelastic, anisotropic process with the phonon dispersion curve as given 

in [108].

3.3.2.2 Optical phonons

Optical phonons differ from acoustic phonons in that neighbouring atoms oscillate in op­

posite directions. The scattering from an optical phonon mechanism is treated in a manner 

similar to the acoustic case but, for simplicity, the phonon dispersion curve for each mech­

anism is approximated as a constant. This approximation is based on the assumption that
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Phonon Mechanism 0gi eg2 0g3 0/1 0/2 6/3
Phonon Energy (meV) 12.06 18.53 62.04 18.96 47.40 59.03

Phonon Temperature (K) 140 215 720 220 550 685

Table 3.2: Phonon energies and associated phonon temperature for the considered optical 
phonons in silicon

each optical mechanism only involves a small range in phonon wave vectors. Justifica­

tion of a constant energy for each phonon mechanism is then seen in the small variation 

of phonon frequency with wavelength in the optical branch (see figure 3.4). Scattering 

from optical phonons is isotropic and an important process for exchanging energy. We 

consider both intra-valley and inter-valley transitions due to optical phonons, of which the 

inter-valley scattering is further classified into transitions between equivalent valleys ly­

ing parallel (g-type) and perpendicular if-type) to each other. Three such phonons for each 

process, g-type and f-type, are accounted for, with energies characterised by the phonon’s 

energy, eop, or equivalent temperature, Qop. The equivalent temperature is related to the 

phonon energy by zop =  fm op = ktQ0p and is listed for each phonon in table 3.2 [109]. 

The strength of each interaction is governed by a coupling constant in which the overlap 

integral is again assumed constant and incorporated. As in the case of acoustic phonons, 

the coupling constants need to be calibrated.

3.3.2.3 Ionised Impurity Scattering

Although a treatment of ionized impurity scattering directly from the unique arrangement 

of impurity atoms will be developed, removing the need to describe the interaction via a 

scattering rate, in some simulations we will make use of the scattering rate description. 

Detailed discussion of the impurity scattering rate models and why the use of impurity 

scattering rates is unsuitable for simulation of nano-scale devices are deferred until Chap-
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Figure 3.5: Calcu la ted  scattering rate in silicon at 300K

ter 4.

3.3.2.4 Total scattering rate

T h e  total scattering rate is obtained sum m ing  the individual scattering rates, assum ing  

the m echan ism s are independent. A series o f  cum ulative  scattering rates, T/, fo r the X-  

valley in silicon at 300K  are shown in figure 3.5. T \ is the energy dependen t  scattering 

rate for  the acoustic  absorp tion  process alone, w hile  Ti  additionally  includes the acoustic 

em ission  rate. T^ fu r ther includes all g-type m echan ism s and show s the onset o f  the g 3 

phonon em ission  m echan ism  at around 0 .05eV. T h e  total energy dependen t  scattering 

rate including all phonon m echan ism s and ionized im purity  scattering is shown as T 4  and 

finally Tq m arks the energy independen t m ax im um  scattering rate over the energy range
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shown. The total scattering rate T (e), represented as T4 in figure 3.5, defines the mean 

free flight time according to

and is used to determine the individual electron free flight times.

In the MC simulation cycle, each electron is subject to a randomly generated period of 

free flight where it is allowed to propagate in the local electric field following the semi- 

classical equations of motion, equations 3.5 and 3.6. The free flight is terminated by a 

scattering event, which is randomly selected from the available mechanisms consistent 

with their individual probabilities at a given electron energy, before a new free flight time 

is generated. Generation of free flight times must therefore satisfy the correct probability 

distribution as related to the total scattering rate.

The definition of the scattering rate is such that the probability P of an electron being 

scattered during time At is given by [105]

where T (k (r))(equivalent to T  (e)) is the energy dependent scattering rate at time t. Hence 

the probability that an electron has not undergone a collision since time t =  0  is given by

and consequently, the probability that an electron is subject to a scattering event a time t

3.3.3 Free Flight

PAt = T ( k ( t ) ) A t (3.21)

(3.22)
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after its last collision is

The free flight times should be selected from this distribution. Unfortunately, a direct 

mapping of a uniform random deviate onto this distribution is complicated by the initial 

value and time dependence of T (k (f)), specific to each electron’s energy propagation (see 

figure 3.5). This problem is greatly simplified by the inclusion of a ficticious scattering 

mechanism, termed self-scattering, that does not alter the state of the electron but the 

inclusion of which increases the total scattering rate to a value independent of k [113]. 

The total scattering rate, including self-scattering, becomes energy independent, allowing 

equation 3.23 to be re-written as

P(t) dt — Toexp(—Tot)dt (3.24)

The energy independent scattering rate To is taken to be the maximum scattering rate 

evaluated over the energy range and scattering mechanisms considered, as is illustrated in 

figure 3.5. Using this formulation, a uniform random deviate, r, can be generated in the 

range 0  <  r < 1 and used to generate free flight times via the following expression

t f f  = - \ n ( r ) / T Q (3.25)

This is the most common way of selecting free-flight times and the method adopted here­

after. It has the benefit of being very easy to implement but results in the treatment of 

many ficticious self-scattering events at low energies. Efficiently identifying the scatter­

ing mechanism responsible for terminating a free flight helps minimise this overhead. An­

other method using a small, fixed, flight time and successively determining the probability

47



CHAPTER 3. MONTE CARLO DEVICE SIMULATION

r0

r4

r3

r2

n

Self-Scatter

r T n

Figure 3.6: Selection of a scattering mechanism is made through comparison of a ran­
dom fraction of the total rate with the cumulative sum of the individual rates. Here four 
scattering mechanisms along with the ficticious self-scattering are depicted.

of scattering after this time has been used and may provide an efficient alternative [108].

3.3.4 Selection of Scattering Event

Once a carrier has reached the end of its free-flight a scattering mechanism must be cho­

sen from the mechanisms available, including self-scattering, according to their relative 

probabilities as a function of carrier energy. This is determined by comparing the product 

of a random number r, in the range 0  <  r <  1 , and the energy independent scattering rate 

To with the successive sums of the individual mechanism rates, T*. The ith mechanism is 

chosen when the condition

| r „ ( e ) < r r 0< ^ r „ ( £) (3.26)
n— 1 n =  1

is met.
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In order to avoid the computationally expensive repeated calculation of scattering 

rates, an efficient procedure following from the discussion of fast self-scattering in [114] 

is adopted. Here efficiency is achieved by tabulating the cumulative scattering rates of 

successive mechanisms over the energy range [0 , Emax] for each band. should be 

large enough to encompass the range of expected energies during the simulation if excess 

computation of scattering rates is to be avoided. The energy range is divided into inter­

vals, AE, at which the scattering rates are calculated. This division should be sufficiently 

fine in order to resolve the energy dependence of the scattering rates. A value of 1 meV is 

used throughout this work. With this table constructed, a mechanism is selected by again 

generating a random number, r, in the range 0  <  r < 1 and multiplying it by the energy 

independent scattering rate, To. Selection is then made in the same way as 3.26, except 

comparison is made with stored values in a given energy interval. This is illustrated in 

figure 3.6.

3.3.5 Statistics Gathering

At intervals during the simulation, the state of the carrier/carriers must be sampled in order 

to gather statistics for evaluating the distribution function. In the simple one electron MC 

simulations, an ensemble average is inferred from the time average of the carrier state. 

This time average is evaluated by sampling the carriers position and momentum at the 

end of each free flight, prior to the scattering event [115]. These values are weighted by 

the free flight time, summed and divided by the total simulated time. Following this, the 

time average of a quantity A is defined as

(3.27)
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Figure 3.7: The state of carriers in an ensemble are sampled at regular intervals in time to 
produce synchronised averages. This is independent of the scattering events, marked by 
crosses, unlike the one electron case.

where N f  is the number of free flights during the time T  and Ay is the value of the quantity 

of interest at the end of the free flight of duration tf.

In EMC simulations the ensemble average of a quantity may be obtained directly 

from the simulated ensemble of carriers. This allows time averaged ensemble averages, 

or ensemble averaged time averages to be combined in various ways. To achieve this, the 

simulated time is divided into a series of short sub-histories of length At. All particles 

are propagated in time to the end of each sub history where the ensemble averages are 

calculated. This is termed the synchronous-ensemble and is illustrated in figure 3.7. Over 

the time interval At, time averages may be calculated by equation 3.27 and the ensemble 

average may then be obtained thereafter. This makes the best use of available information. 

Alternatively, the ensemble average may be approximated at the end of At by taking an 

average of instantaneous values. This is efficient to implement when performing self- 

consistent simulations (see section 3.5) where carriers are necessarily brought to the same
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point in time to re-evaluate the electrostatic potential. For both cases a final average is 

taken over all averages separated by At to yield the time averaged approximation to the 

distribution function. In doing so an initial transient period is neglected and only the 

steady state simulation period is used to obtain the distribution function.

The last method is adopted here. While this may not make full use of the available 

information, the time step At used is much shorter than the mean free flight time and as 

such most time steps reflect a short period of ballistic motion. This approximates well 

the evaluation based on equation 3.27 which was predominantly used with larger time 

steps [116].

3.4 Bulk Transport in silicon

The discussions of band structure, semi-classical equations of motion, scattering rates and 

extracting results encompasses everything needed to analyse bulk properties of semicon­

ductors in a homogeneous field. However, reliable simulations first require calibration 

of the phonon mechanisms to ensure the reproduction of experimentally observable re­

sults before meaningful predictions may be obtained. In bulk simulation, the steady-state 

distribution function can be obtained from either the one particle MC or EMC methods. 

Since the EMC approach must be adopted in the simulation of discrete dopants, it has been 

adopted from the beginning and is also used here during the calibration. Agreement of 

simulated bulk transport results with experiment provide validation of the approximations 

and parameters used. Bulk simulation is also used here to highlight the typical results 

obtainable with the EMC method.
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T ( * ) 11 110 160 245 300

E (kV cm~l ) 0.0292 0.0580 0.1197 0.2571 0.4704

VToF (icm2V~ls~ l ) 20084 10115 4920 2355 1282

V-Ohm (cmzV~ls~l ) 20540 11121 5431 2205 1423

Table 3.4: Experimental drift mobilities in silicon measured by time of flight technique 
for varying temperatures and electric fields [109]

3.4.1 Calibration

The acoustic phonon deformation potential, along with coupling constants for all optical 

phonon modes considered, need to be calibrated to reproduce experimentally observed 

properties. This was achieved through comparison with data for low-field electron mo­

bilities in bulk Silicon. Experimental and theoretically calculated values of low-field mo­

bility as functions of both temperature and field, taken from [109], are tabulated in table 

3.4.

Initially, simulations were performed using a lattice temperature of 77K such that 

the optical phonon interactions are frozen out due to their low occupation. Under these 

conditions the acoustic deformation potential was adjusted to provide agreement with the 

tabulated mobility. Then, by increasing the lattice temperature and applied electric field, 

further mechanisms were successively introduced which best permitted the independent 

adjustment of each coupling constant to maintain agreement with mobility. The optical 

phonon energies and associated temperature, shown in table 3.2, indicates the temperature 

at which each phonon mechanism starts becoming statistically important compared to 

lower temperatures. This was used in conjunction with the simulated lattice temperature 

to decide which mechanisms required adjusting. The calibrated acoustic deformation 

potential and optical phonon coupling constants, along with other parameters relevant to 

the simulation, are given at the end of this chapter in tables 3.6 and 3.8.
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Figure 3.8: E nsem ble  M onte C arlo  (M C ) S im ulated  bulk velocity  field curves  in silicon 
at 77K  and 300K  com pared  with experim ental values (Canali)  1106]

3.4.2 Bulk Velocity-Field Characteristics

In an un-doped  bulk silicon sam ple the scattering is dom inated  by the phonon  processes 

and the ionized impurity  scattering can be neglected. T herefo re  verification o f  the phonon 

calibration can be provided through the com parison  o f  s im ulation  results w ith  ex p e r im en ­

tal bulk velocity-field characteristics. In figure 3.8, s im ulation results are co m p ared  with 

experim ental data  for  silicon at tem pera tu res  o f  7 7 K  and 300K  [ 106]. E xperim enta l  data 

clearly show s the an isotropic  behav iour o f  transport  associa ted  with the ellipsoidal val­

ley around the six equivalent band m inim a. As previously m entioned  (section  3.3.1) this 

an isotropy is ignored in the spherical band  approx im ation  used here and  is unobservable
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in our sim ulation  results. Inspection o f  the experim ental velocity-field curve in figure 3.8 

show s that the effect o f  an isotropy is small at low fields, and low energy, at 300K . All 

fu ture  s im ula tions are carried out at 300K  and at low field w here  possible. S ince our in­

tention is not to accurate ly  model the high energy distribution, the analytic spherical band 

model is still a good approxim ation . A s  the an isotropy can not be reproduced  with the 

adop ted  m odel, the phonon  m echan ism s are calibrated  to reproduce an average result that 

lies betw een  the results fo r  the [ 100] and 11111 directions.
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3.4.3 Bulk Energy-Field Curve

Further validation of the simulation methodology is obtained by comparison of the av­

erage electron energy, as a function of electric field, with results obtained by full band 

simulation [108]. This is shown in figure 3.9, again for an un-doped sample, where the 

trend is reproduced well. The analytical band used here results in a slightly higher av­

erage energy at low fields and a lower energy at high fields compared with the full band 

simulation, a result consistent with that reported in [108].

3.4.4 Bulk Concentration Dependent Mobility

Including ionized impurity scattering in the simulation allows the doping concentration 

dependence of the mobility to be approximated. Figure 3.10 shows the simulated low-field 

concentration dependent mobility as a function of donor concentration compared with 

experimental values [117]. The simulated mobilities were obtained using the Brooks- 

Herring model of impurity scattering with an applied field of 1 kV cm ~ l . The simulations 

reproduce the mobility well at low concentrations, where phonon interactions dominate, 

and the trend of mobility reduction at higher doping concentrations. The Brooks-Herring 

model, however, overestimates the mobility at high doping levels where the scattering 

process and electron dynamics become very complicated.

3.4.5 Transient Response

One of the most significant advantages of the Ensemble Monte Carlo approach over the 

faster Drift Diffusion (DD) approach in device simulation is the ability to simulate tran­

sient responses and non-local, non-equilibrium transport phenomena. This advantage is 

best seen in the MC ability to reproduce the electron velocity overshoot response to sud­

den application of a large electric field. This effect is increasingly more important in
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Figure 3.10: S im ulated  dependence  o f e lectron m obility  upon dop ing  concentra tion  from  
bulk E M C  sim ulation using Brooks-H erring  scattering rate. S im ulation  results are c o m ­
pared to experim entally  observed  values [117]

short channel devices w here  substantial p ropagation through the channel m ay occu r  in 

overshoot regime. Such overshoot is unobservable  in D D  sim ula tions w here m obility  is 

locally related to the electric field. M ore com plica ted  energy transport  m odels  have som e 

success in m odelling  the overshoot via phenom enologica l  param eters  and can ex tend  the 

range o f  sim ulation  validity, but the m ost accura te  reproduction o f  the non-equilib rium  

transport phenom ena  is achieved by using the E M C  solution. T h e  ensem ble  averaged 

velocity  response to the abrupt sw itching at t =  0 o f  a series o f  un iform  applied electric 

fields is shown in figure 3.11. Electrons are initialized with random  velocities resulting  in
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Figure 3.11: S im ulated  velocity overshoo t response  to a series o f  applied  electric fields. 
A t high applied  fields the M onte C arlo  sim ulation recovers a period o f  transport where 
e lectrons m ove faster then the steady state velocity, a process unobservable  in Drift D if­
fusion  simulation.

zero  ensem ble  average velocity before the field is ’sw itched  o n ’. A t high field, electrons 

quickly  gain energy, but loss o f  energy through phonon em ission  is delayed. This  results 

in the initial peak in velocity w hich m ay be above the satura tion velocity  for silicon o f 

around 1 x 107cms~l. A t low field, e lectrons gain energy sufficiently slowly and the 

phonon m echan ism s are able to control the velocity  response up to the equilib rium  value.
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3.5 Device Simulation

Simulation of semiconductor devices follows from the bulk case with two important mod­

ifications. First, the electric field can no longer be considered constant. Instead the po­

sition dependent electric field resulting from the device structure, mobile charge density 

and applied biases must be calculated by solving the Poisson equation with appropriate 

boundary conditions and used during the electron dynamics phase. Second, the finite size 

of the device means that physical boundaries, representing reflective edges and absorbing 

metallic contacts, must also be accounted for in the carrier dynamics. Both modifications 

require the introduction of a simulation mesh upon which the device structure is mapped 

and Poisson’s equation is discretized and solved. A number of possible solutions exist 

for the mesh construction, particle representation and force interpolation which can affect 

the accuracy and validity of simulations. The choices made here are outlined within the 

following section.

3.5.1 Solution Domain and Mesh Design

All simulated devices are mapped onto a rectangular simulation domain and discretized 

using a uniform 3D rectilinear mesh with Nx, Ny, Nz mesh points along the x, y, z axes 

respectively. The number of mesh points together with the device dimensions determines 

the cell widths, Hx, Hy, Hz. Material parameters are stored on the mesh point Px^ z assum­

ing a constant material between nodes over the range

[(Px,Py,Pz),(Px+uPy+uPz+i)) (3.28)

This is in slight contrast to an alternative choice of mesh [99,118] where the advocated 

mesh assigns material parameters to mesh nodes Px^ z assuming uniform material over
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the range

(3.29)

T hese  different schem es are illustrated for clarity in figure 3.12. T h e  descrip tion chosen 

here m akes the trea tm ent o f  physical boundaries  som ew hat easier as they are naturally 

aligned a long  m esh lines. T h is  choice o f  m esh is also  consisten t with the discretization o f 

P o is so n ’s equation w hich  assum es a constan t dielectr ic  material betw een  each node.

T he  m esh  spacing defines the sm allest size over w hich m esh ass igned  quantities  m ay 

be resolved. For stability and accuracy it is im portan t that this spac ing  is suitably chosen 

to be able to resolve the electrostatic potential th roughout the device, and hence e lec ­

tric field, in w hich particles are propagated. T he  largest spac ing  is norm ally  limited by 

the pre-estim ated sm allest value o f  the Debye length within the sim ulation , the ch a rac­

teristic length over w hich  variations in potential decay  in a neutral plasma. C om peting
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with this requirement is the need for efficient solutions of Poisson’s equation that limits 

the smallest size that is practical to use. Further to this, it has been argued that using a 

fine mesh begins to resolve individual charge interactions, thus automatically including 

a component of ionized impurity or carrier-carrier scattering, resulting in ’double count­

ing’ of Coulomb scattering when including the corresponding scattering mechanisms in a 

stochastic process [108]. In the case of the ab initio treatment of ionized impurity scatter­

ing that shall be discussed further, both these restrictions upon the mesh can be relaxed in 

favour of a partially mesh-less force evaluation method, accompanied by the removal of 

corresponding ionized impurity scattering mechanisms and rates.

3.5.2 Charge Assignment

The Poisson equation is solved on the discretization mesh using an efficient Multigrid 

solver for given values of the charge density at each mesh point [119]. In order to approx­

imate the charge density from the continuous particle positions, some form of interpola­

tion to the mesh points must be used. Among such interpolation schemes are the Nearest 

Grid Point (NGP), Cloud In Cell (CIC) and Triangular Shaped Cloud (TSC), which are 

discussed in detail in [118]. An alternative scheme, the Nearest Element Centre (NEC), 

is reported in [120]. The method used herein is that of CIC which assigns charge over 

the surrounding mesh points weighted by the particle separation from these mesh points. 

This scheme has advantages in reducing fluctuations in the calculated electrostatic po­

tential, and in removing the translational invariance within a cell that is a major problem 

of the lower order NGP scheme. Further smoothing and benefit could be obtained using 

the TSC scheme, however it is computationally more expensive than CIC and results in 

individual particles being represented on the mesh with a larger size compared to CIC. 

The NEC method assigns charge equally to the surrounding nodes, smoothing the charge
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distribution but leading to invariance within a cell.

As all simulations in this work utilize a uniform mesh, the CIC assignment provides 

the best compromise between speed and accuracy. In this case, the charge density at any 

mesh point, p ^ ,z, is obtained as the sum of contributions from all Ne electrons in the 

simulation at that time, given by

point. Equations similar to 3.31 apply for the y  and z directions. In this case, assignment 

of charge density applies to the eight nodes surrounding a single particle with a linear 

weighting depending upon distance.

3.5.3 Force Evaluation and Interpolation

With the electrostatic potential V x ,y ,z  calculated at each mesh point, the components of the 

electric field, £ , at each mesh point are approximated using the following relations

2 q i W ( x i - x ) W ( y i - y ) W ( z i - z ) (3.30)

where the weighting factors, W, are given by

otherwise
(3.31)

with Xi representing the x-position of the ith electron and x  the x-position of the mesh

(3.32)

(3.33)

(3.34)
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The subscripts X , Y, Z  denote the Cartesian components of the field at mesh point P x ,y ,z-  

The field at any point in the mesh is found by tri-linearly interpolating the field values 

at the surrounding nodes. This finite difference approximation and interpolation results 

in a continuous field throughout the mesh and results in zero self-force [118]. Self force 

is a problem in mesh based simulations and arises due to the finite size of the particle 

as represented in the mesh based solution of Poisson’s equation. Evaluation of the mesh 

force and interpolation to the particle’s position can result in a force contribution from 

the particle itself, un-physically accelerating it. Using a uniform mesh along with a force 

interpolation that is consistent with the charge assignment removes the problematic self­

force [118].

For this choice of field calculation, significant errors may be introduced at the mesh 

points defining heterojunctions where there is a large change in the dielectric constant of 

the material. This may be avoided by calculating the field parallel to the edges of each 

mesh cell, obtained from the potential difference across the individual cell of constant 

material. If calculated this way, the components of the force are no longer continuous 

along the corresponding mesh directions. Such a system, however, suffers from self­

forces that result in particles oscillating within mesh cells [118]. An alternative scheme 

of field calculation that attempts to account for the problem of a discontinuous dielectric 

by averaging the displacement field across the boundary is described in [108] and may 

prove a better choice for self-consistent device simulation.

For devices considered herein, only the semiconductor/insulator interface in a MOS- 

FET poses this problem. In this case, the field at the nodes defining this interface is 

determined from the dielectric alone. As the dielectric is charge neutral in all simula­

tions, the electric field in the dielectric is constant and provides an accurate estimate of 

the magnitude of the field at the interface.
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3.5.4 Field Adjusting Time Step

The solution of the Poisson equation is time consuming and therefore, during a self con­

sistent simulation, it is desirable to solve it only as often as necessary. However, the time 

between successive solutions, the so called field adjusting time step, needs to be short 

enough so that the field can be considered constant during the particle propagation. This 

time is generally limited by the largest expected plasma frequency in the simulation, given 

by equation 3.35

where n is the maximum electron concentration expected and is normally taken as equal 

to the the maximum doping concentration found within the device. The field adjusting 

time step is normally chosen to adequately sample this frequency [121,122]. In the ab 

initio treatment of ionized impurity scattering discussed later, it is found that the major 

consideration limiting the time step is the accuracy to which the equations of motion for 

electrons are integrated. This imposes more severe restrictions on the time step compared 

to restrictions associated with the plasma frequency. For all device simulations the field 

adjusting time step is chosen as 1 0 - 16s.

3.5.5 Boundary Conditions

The solution of Poisson’s equation requires the application of adequate boundary condi­

tions. Dirichlet boundary conditions, fixing the value of the potential at specific mesh 

points, are used to represent the applied potential at device contacts. The remaining 

boundaries apply the Neumann boundary condition, forcing the gradient of the poten­

tial to be zero perpendicular to the edge of the simulation domain. These are reflected in 

the electron dynamics as contact regions and specularly reflective boundaries respectively.

Treatment of contacts within MC simulation remains a troublesome affair due to the
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lack of understanding of the physical processes involved at the contact/semiconductor in­

terface. In the simulation process, the contact is treated as closely as possible as an ideal 

ohmic contact. This idealized scenario defines a small region adjacent to the Dirichlet 

boundary throughout which charge neutrality is maintained. The contacts are defined 

in highly doped regions to ensure that little potential is dropped across them allowing a 

diffusive supply of carriers in and out of the region. Maintaining the region as charge 

neutral requires the removal of electrons that cross the contact out of the simulation do­

main and the injection of electrons through this contact if too few are present. An excess 

of electrons is allowed to disperse naturally through the contact, either being removed 

or propagating into the active region of the device. Injection of electrons, if required, is 

performed after the removal of electrons at the end of each propagation time step. The 

initial k-vector of each injected electron is formed from a component perpendicular to the 

contact plane which is selected from a velocity-weighted Maxwellian distribution, and 

two components parallel to the contact plane both selected from a Gaussian distribution. 

This has been shown to produce better agreement with the behaviour of an ideal Ohmic 

contact as compared with the use of three Gaussian components [123,124]. The initial 

position of the injected carriers is chosen to best satisfy charge neutrality at every point in 

the contact. In 3D simulation this can be a very hard to realise owing to the low number 

of particles per mesh cell. This is reflected in a rapidly varying potential dominated by 

individual charges, and ultimately means that special care must be taken regarding the 

initial position of newly injected electrons.

The requirement for charge neutrality determines the overall number of electrons in 

the contact region. In device simulation this involves balancing the electron charge with 

the charge of acceptors, donors and holes and in doing this we assume no intrinsic elec­

tron contribution. This is a valid assumption since the intrinsic concentration of electrons 

is orders of magnitude less that than that required to balance the net doping charge. To
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accurately position the electrons, the net charge density associated with each mesh cell 

describing the contact is evaluated as an average of the density at the mesh points sur­

rounding the cell. Summing over all such cells within the contact results in a total net 

charge for the contact which is then multiplied by a random number between 0  and 1 . 

This results in a target value for the net charge, in a process analogous to the selection of 

a scattering mechanism using the total scattering rate. Repeating the summation process 

and stopping when the target value is met selects the appropriate cell. Thus a cell into 

which the next electron is injected can be randomly selected with a probability weighted 

by the charge distribution at that time. An electron is then placed randomly within the 

chosen cell and the charge density updated to account for its presence. This process is 

repeated until all electrons required have been positioned. This procedure proves to be 

a very simple and effective way of ensuring that electrons are accurately distributed in 

space, helping maintain a stable Ohmic contact.

3.5.6 Current Calculation

For the purposes of this work we employ a simple method for estimating terminal cur­

rents. This consists of counting the net number of particles crossing the contact and 

performing a 5 point based numerical differentiation to obtain an average of the time rate 

of change. This is a very simple method but suffers from statistical noise in simulations 

with few particles, demanding longer simulations to improve current estimations. The 

Ramo-Shockley method for determining currents is more sophisticated and results in a 

more accurate evaluation of current [125]. Should additional accuracy be demanded, the 

implementation of the Ramo-Shockley current evaluation may be included.
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137.5nm

Figure 3.13: D iagram m atic  representa tion  o f the N-I-N device, show ing  the d im ensions 
in 3D and the doping  concentra tions throughout.

3.6 Example: Self Consistent N-I-N Diode

A s an exam ple , the sim ulation  o f  a large N — I — N  diode using the developed 3D  E M C  

simulator, w here  ionized impurity  scattering is treated via the B rooks-H erring  scatter­

ing rate model (see C hap ter  4) is presented. T he device structure is illustrated in figure 

3.13 19 9 1. T h e  device m easures  5 5 0 nm x \ 31.5nm x 137.5/im in th e x ,  y  and z directions 

respectively, and the discretization consists o f  129 x 33 x 33 m esh points. T he  external 

regions are doped  at a concentration  o f  2 x 1 0 17 c m - 3 , while the central,  low er doped , re­

gion has a concentration  o f  1 x lO 1'̂  cm - 3 . P o is so n ’s equation is solved every 1 x 1 0 ~ 16s 

and  the s im ulation consists  o f  7 0 ,0 0 0  such t im e steps (s im ulating  1 ps). All averages 

are calcu la ted  after an initial transient period o f  2 0 ,0 0 0  time steps ( 2 ps) w hich is large 

enough  not to affect the final results. T he  t im e step adopted  is sm aller  than required  to 

sam ple the p lasm a frequency  at these doping  levels [ 1211, but is used to be consis ten t with 

later s im ulations where num erical accuracy  is required. T he s im ulation  used an ensem ble
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of 40,000 particles.

3.6.1 Electrostatic potential and electron concentration

The simulated time averaged potential is shown as the full 3D plot in figure 4.28 and a ID 

averaged profile from the same data in figure 3.15. The corresponding electron concen­

tration is also shown using similar 3D and ID plots in figures 3.16 and 3.17 respectively. 

The results reproduce the expected behaviour when compared with previous simulation 

studies [99,126], clearly showing the depletion regions at the N  — I  junctions, with most 

of the depletion region occurring at the reverse biased drain end. Good maintenance of 

charge neutrality in the contacts is also achieved.

3.6.2 Electron energy and velocity

The 3D and ID plots of the average electron energy are shown in figures 3.18 and 3.19 

respectively. Similarly plots of the velocity distributions are shown in figures 3.20 and 

3.21. The energy steadily rises in the intrinsic region, starting from the thermal source 

energy and reaching a maximum of nearly 170 meV before rapidly thermalizing in the 

drain. On the other hand, the velocity quickly rises and reaches the saturation velocity, 

1 x 1 0 7 cms  1 before returning to a constant lower value in the drain.

The 3D results suffer from higher spatial noise compared to ID or 2D simulations 

because of the low ratio of simulated particles to mesh cells. It becomes impractical to 

simulate enough particles to smooth the statistics. In this example there is 1 particle for 

every 3 mesh cells. This simple device geometry allows simulation in 1 dimension and 

therefore allows averaging over the y and z directions to produce the ID profiles which 

have far less noise. In more complicated device geometries however, this will not be 

possible and is recognised as a limiting factor for efficient simulation.
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Figure 3.14: 3D  distribution and profile o f  the time averaged electrostatic  potential,  in 
Volts, from  E M C  sim ulation
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Figure 3.15: ID profile of the electrostatic potential shown in figure 4.28 having averaged
over the y and z directions. The boundaries between the N I N regions are marked by the
dashed lines. 68
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Figure 3.16: 3D  distribution and profile o f  the time averaged  electron concentration  cm 3
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Figure 3.17: ID profile of the electron concentration shown in figure 3.16 having averaged
over the y and z directions. The boundaries between the N I N regions are marked by the
dashed lines.
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Figure 3.18: 3D  sim ulated  d istribution o f  average electron energy in meV
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Figure 3.19: ID  profile of the electron energy distribution as shown in figure 3.18 having
averaged over the y and z directions. The boundaries between the N I N regions are
marked by the dashed lines.
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Figure 3.20: 3D  sim ulated electron velocity  d istribution th roughou t the device. Units are
in x 107cm5_1

o
*  0.6

oo
13 0.4 
>

0.2

0.0
100 200 300

P osit ion  [nm]
400 500

Figure 3.21: 1D profile of the electron velocity distribution as shown in figure 3.20 having
averaged over the y and z directions. The boundaries between the N I N regions are
marked by the dashed lines. 71
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3.7 Conclusion

We have presented the basic models used in this 3D EMC simulator with discussion re­

garding their validity and propriety related to the problems addressed throughout this 

work. Validation of the phonon calibration through comparison of experimental bulk 

velocity-held curves, and a comparison with more sophisticated full band simulations 

given through bulk energy-held curves was presented. The main additions necessary to 

carry out device simulation were then discussed along with the nature of the discretization 

mesh, held calculation and held interpolation employed. Finally, an example simulation 

of an N-I-N diode with the 3D simulator was presented. The results are consistent and 

support the credibility of the developed simulator. In the next chapter the ab initio ionized 

impurity scattering method and application is verified before progressing to investigate the 

effects of discrete dopants in technologically important devices.
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Band Independent Parameters Symbol Value
Transverse Sound Velocity 

Longitudinal Sound Velocity 
Mass Density 

Static Dielectric Constant 
Lattice Constant 

Acoustic Deformation Potential

Ut
Ul
P
8

a
■—ac

4.70 kms~l 
9.18kms~l 
2.30 gcmT3 

11.9 
5.43 A 

4.80eV
X-Valley Parameters Symbol Value

Bandgap Es 1.12^V
Nonparabolicity a 0.43 eV~l

Transverse Effective Mass 0.191 me
Longitudinal Effective Mass m* 0.903 me

Optical Coupling Constants
g l  process (D,K)gl 0.450 x 10l0eVm ~l
g2 process (D,K)g 2 0.267 x 101 0^Vm_1

g3 process (D,K)g3 10.75 x 1010£V m_1

f l  process (D,K)fl 0.100 x 10l0eVm ~l
f2 process (D,K)f l 1.950 x 10l0eVm ~l
f3 process ( W ) f 3 1.950 x 1010 eVm~l

Optical Phonon Energies
g l  process h($g\ 1.206 x 1 0 “2eV
g2 process h(tig2 1.853 x 10“2eV
g3 process h(x)g3 6.204 x 10_2eV
f l  process h(x)f\ 1.896 x \0~2eV
f2 process h(x)/2 4.740 x \0~2eV
f3 process hu>f3 5.903 x 10~2eV

Inter-valley Optical Coupling Constants
X - L C*>'K)x _l 2.34 x 10 l0eVm ~l
X - T lPtK)x _ r 5.48 x 10l0eVm~l

Inter-valley Optical Phonon Energies
X - L h(£>X-L 3.716 x 10_2^V
X - T heox-r 2.189 x 10-2 eV

Table 3.6: Band independent parameters and calibrated values for the minimum lying X- 
valley used in the EMC simulation. These values govern the transport processes effecting 
the majority of electrons in silicon and are used consistently throughout this work.
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L-Valley Parameters Symbol Value
Bandgap Eg 2.169eT

Nonparabolicity a 030eV ~ l
Transverse Effective Mass rr% 0.126 me

Longitudinal Effective Mass m* 1.634me
Inter-valley Optical Coupling Constants

L - X (D,K)l_x 2.340 x 10l0eVm~l
L - L Cd ,k ) l _l 2.630 x 10l0eVm~l
L - r (D,K)l _ r 5.010 x \Q>lQeVm~l

Inter-valley Optical Phonon Energies
L - X X134*2 3.716 x 10~2eV
L - L 1-J3■U2 3.887 x \Q-2eV
L - T hcx)L-r 2.090 x 10"2eV

T -Valley Parameters Symbol Value
Bandgap Eg 3.495 eV

Nonparabolicity a O.OOeV" 1

Transverse Effective Mass rr% 0.229me
Longitudinal Effective Mass m] 1.987 me

Inter-valley Optical Coupling Constants
T - X iP.K) r _x 5.480 x I0l° eVm~l
r - L (d ,k )t_l 5.010 x 1010tfVm- 1

r - r (D,K) r_ r 2.990 x 10l0eVm~l
Inter-valley Optical Phonon Energies

r - x tuar-x 2.189 x lO~2eV
T - L tuor-L 2.090 x 10- 2  eV
r - r (-H1U34C 2.568 x 10"2eV

Table 3.8: Parameters for the L and T  valleys. Though present within the simulation, little 
transport occurs in these valleys due to the large separation in energy from the A-valley. 
These values are provided for completeness.
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Chapter 4 

Ionized Impurity Scattering

4.1 Introduction

In the previous chapter, the bulk Monte Carlo (MC) method was presented. The adopted 

scattering models and their parameters were verified via comparison of experimental bulk 

silicon transport properties with simulation results. Discussion of the subsequent exten­

sion to 3D MC simulation was given and the developed 3D simulation code was verified 

through simulation of a simple N-I-N diode. In all above simulations, the ionized impu­

rity scattering was introduced in a traditional way as a scattering mechanism dependent 

on the local, continuous, doping concentration and the local electron concentration. This 

method assumes the doping to be self averaging and treats scattering as an instantaneous 

two-body interaction. It can not accurately incorporate the effect of continuous many 

body scattering from a limited number of randomly positioned scattering centres within a 

small volume. In ultra-small MOSFETs, with channel lengths on the order of a few tens 

of nanometres, the discrete nature of the doping plays an important role and variation in 

both the position and the number of dopants within the channel leads to variation in de­

vice characteristics and parameters, such as threshold voltage V j [41,42]. This adversely
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effects the operation of circuits comprised of such unmatched devices. Predicting the 

magnitude of device parameter variation is therefore important in determining the func­

tionality of circuits and systems containing an ensemble of fabricated devices. Simula­

tions employing ionized impurity scattering rates can not resolve random dopant induced 

transport variations and an alternative method is therefore required.

In this chapter, such a suitable ab initio approach for introducing ionized impurity 

scattering is discussed and incorporated within the already developed 3D EMC device 

simulation tool. A review of the various approximations of ionized impurity scattering 

rates precedes the description of the ab initio model in section 4.2. Accurate integration 

of the equations of motion is particularly important with respect to properly resolving 

ab initio Coulomb scattering from point charges and is discussed in section 4.3 and val­

idated in section 4.4. The model itself is discussed in detail in section 4.5. Finally, the 

whole method is validated via the ab initio reproduction of the low field bulk concentra­

tion dependent mobility in section 4.6, and via comparison of results obtained from the 

simulation of an ’atomistic’ N-I-N diode with the ’continuous’ diode simulated in chapter 

3 in section 4.7.

4.2 Ionized Impurity Scattering Rates

The scattering rates for the mechanisms described in chapter 3 are all constructed from 

l 5' order perturbation theory following the Bom approximation. This is based upon the 

assumptions that a scattering event is attributable to a small perturbation in the periodic 

crystal potential, that such an event occurs over a short enough time as to be considered 

instantaneous, and that individual events are infrequent in time and so can be treated in­

dependently. Within this framework, neglecting external fields, scattering instantaneously 

results in the transition of an electron from one time independent Bloch state to another.
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Figure 4.1: Definition of the impact parameter b and the scattering angle 0 in the Ruther­
ford model of scattering. Electrons propagate in a hyperbolic orbit in the field of a single 
point charge, here taken to be positive.

For the phonon mechanisms considered, the Bom approximation is a good one. How­

ever, the interaction with a pure Coulomb potential, which is the perturbation potential 

for ionized impurity scattering, is infinite in range and results in an infinite interaction 

cross section. This implies a scattering event that must be considered extended in time. 

Additionally at high doping concentrations, significant scattering from multiple impuri­

ties means that treating interactions independently is also inaccurate. Though there exist 

solutions to the scattering rate due to an isolated ionized impurity in the form of phase- 

shift analysis, which is not limited by the Bom approximation [127], the simplest and 

most common forms of ionized impurity scattering models applied in MC simulations 

are, however, based upon this approximation.

Although the ionized impurity scattering rate is calculated quantum mechanically, a 

classical description clarifies the choice of scattering potential and the scattering outcome.
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Let us consider one electron in the electrostatic potential of a singly ionized impurity 

atom, approximated at a distance by the Coulomb potential. The impact parameter b can 

be defined as the perpendicular distance from the scattering centre to the line asymptotic to 

the initial, or final, trajectory with the ion. This is illustrated in figure 4.1. A larger impact 

parameter results in a smaller angle of deflection due to the reduced interaction between 

the charges. In the Rutherford theory of Coulomb scattering, the angle of deflection 0 is 

determined completely by the impact parameter through the relation

where e (k) is the incident electron energy, e the electronic charge, eo the permittivity 

of free space and er the relative permittivity of the surrounding medium. The infinite 

collisional cross section favours small angle deflections, hence small momentum transfer 

collisions, due to the greater probability of interactions with a large impact parameter. In 

this way a reconciliation with the Bom approximation is customarily made by approxi­

mating the interaction with the impurity ion potential as being comprised of two regimes. 

The first is a weak long-range interaction leaving the electron state unaltered, and the 

second is a strong, infrequent, short-range two-body interaction which scatters the elec­

tron into a new state [128]. This interpretation removes the problematic infinite scattering 

cross-section by neglecting small angle deflections, and is consistent with the Bom ap­

proximation in that the interaction can be approximated as an instantaneous two-body 

interaction, so long as the scattering potential falls off rapidly at large distances and the 

electron energy is large [129]. Suitable representations for the short range interaction po­

tential then need to be used within the perturbation theory. The representations commonly 

used in MC simulation lead to the Brooks-Herring, Conwell-Weisskopf and Third Body 

Exclusion ionized impurity scattering models which are discussed next.

0  =  2 arctan
8jtsreo6e (k)

(4.1)
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4.2.1 Brooks-Herring Model

The Brooks-Herring (BH) model relies on the fact that the electrostatic potential asso­

ciated with a bare Coulomb charge will be screened by surrounding mobile charges, if 

present, to limit the range of the interaction. Screening partly arises from the polariza­

tion of the local material and is accounted for through the associated dielectric constant. 

This only acts to reduce the magnitude of the bare Coulomb potential without effecting 

the range of the interaction. More important is the screening by mobile charges. In the 

simplest case this is treated as static screening and results in an exponential decay of the 

potential over a characteristic screening length X, such that the potential is given by

where p is the inverse screening length, simply related to X by

The characteristic screening length in its most basic form is assumed to be the Debye 

length

where n is the local electron density, Tei is the local electron temperature and the re­

maining symbols have their usual meaning. The screened Coulomb potential is plot­

ted alongside the bare Coulomb potential in figure 4.2, for an electron concentration of 

1 x 1 0 1 8cm~3.

This choice of screening length does not account for degeneracy and at higher carrier

(4.3)

(4.4)
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Figure 4.2: C om parison  o f  the screened C o u lo m b  potential used in the BH model of 
impurity scattering to that o f  the unscreened  C o u lo m b  potential. Screening by m obile 
charges causes the potential to drop off  faster and  reduces the range o f  the interaction.

concentra tions  the m ore general form  for (3 should  be used, where

P2 = ikBTei F \/2 Cn)

Here Ft is the Ferm i-D irac  integral o f  order i, given by

fiCn)= f
JO 1 + e x p ( x  — r\)

dx

(4.5)

(4.6)
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and r| is the reduced Fermi energy, given by

Ec — E f
T1 =  - j - z r 1  (4.7)

K B *  e l

where Ec and E f  are the conduction band energy and Fermi energy respectively. The 

degeneracy according to equation 4.5 increases the screening length, and must be included 

in order to satisfactorily describe mobility at high doping concentrations [130].

Additionally, the assumption of static screening is only valid in cases where the screen­

ing charges can respond faster than the perturbation in the potential as a charge to be 

scattered passes through the scattering centre. This response time is characterised by the 

dielectric relaxation time and is proportional to the mobile charge density. At low temper­

atures, 80K and below, the dynamic screening is important but in general can be neglected 

at room temperatures [131].

Using the screened potential, the scattering rate for a single impurity centre can be 

determined within the Bom approximation. To obtain the total scattering rate from multi­

ple impurities this rate is simply multiplied by the concentration of the scattering centres. 

This is a major drawback of the BH model in that it can not take into account simultaneous 

scattering from multiple impurities. In this way the scattering is unrealistically treated at 

high concentrations where scattering from multiple impurity ions often occurs [132].

4.2.2 Conwell-Weisskopf Model

Opposite to the BH approach, the Conwell-Weisskopf (CW) model neglects screening but 

limits the range of the interaction by the proximity of the neighbouring ionized impurities. 

As an electron moves further away from one impurity, it approaches another. The CW 

approach assumes that an electron only interacts with one scattering centre at a time - the 

closest one. For a given concentration A/ of ionized impurities, the average separation
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is Nj 3, assuming the ionized impurities are uniformly distributed in the centre of a cube 

of length Nj 3. An electron therefore only interacts with the Coulomb potential of an 

impurity up to separations of ^Nj 3 before it is considered to be participating in another 

two-body interaction. Consequently, the interaction potential is then given by

V  =  - r —  0 <  r  <  \ n , 5 (4.8)
4Jier ~  2  1

This potential is plotted alongside the screened potential of the BH model for a doping 

concentration of 1 x 101 8cm- 3  in figure 4.3. This limits the impact parameter to bmax =
_ i

\N j 3, consequently defining a minimum angle of deflection. In this way the infinite 

collisional cross section is removed, though somewhat artificially.

The CW potential better represents scattering in highly doped regions where the sep­

aration between ionized impurities is small and where a two body interaction between an 

electron and an alternate impurity ion is likely to dominate for large impact parameters. 

Similarly to the BH model, having obtained the scattering rate for a single impurity within 

the CW approximation, the total scattering rate is found by multiplying by the local im­

purity concentration. This again suffers from neglecting possible scattering from multiple 

centres. Additionally, screening from mobile charges is also disregarded but should be 

included to properly account for the scattering potential in regions of high mobile charge 

concentration within a device.

4.2.3 Third Body Exclusion Model

The merits of the BH and CW approaches are unified in the statistical screening, or third 

body exclusion (TBE), model. In this case the impurity potential is taken as the screened 

Coulomb potential of the BH model. This is connected to the CW model by incorporating 

the probability that no other scattering centre exists that is closer to the electron than
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Figure 4.3: C om parison  o f  the interaction potential used in the C onw ell W eisskopf model 
with that o f  the Screened  C o u lo m b  potential as plotted in fig 4.2. A t a doping  co n cen ­
tration o f  1 x 1018 cm-3 the average separation  betw een  dopan ts  is 10nm, therefore the 
range o f  interaction o f a s ingle dopan t is 5 nm.

the scattering centre currently  under consideration  1133]. T h e  probability  that no other 

scattering centre exists with an im pact param eter in the range b and b + db is given by

p = 1 —InNjabdb  (4.9)

w here Nj is the concentra tion  o f  im purity  ions with average separation  a , w here a is given
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Equation 4.10 is an approximation to the mean separation of impurities based upon the 

probability of finding within a spherical volume of radius b centred about one impurity, 

a secondary impurity with an impact parameter less than b [128]. This differs from the 

average separation used in the CW model, bmax = \N j  assuming a uniform distribution 

of impurities associated each with a cubic volume. The difference between the models is 

however less than 10%. If P( b)  is the probability that no other scattering centre exists 

with impact parameter less than b and, consequently, P  (b +  db) the probability that none 

exist with impact parameter less than b-\-db, then

P{ b  +  d b ) = P { b ) p  (4.11)

and it follows that

P  (b) =  exp (—jtNiab2) (4.1 2 )

This probability excludes the presence of a closer secondary scattering centre as the im­

pact parameter increases. As such it incorporates screening with the probability of a 

nearest neighbour scattering centre. In the limit of low concentration of scattering cen­

tres, this result reproduces the BH result, while at high concentrations it reproduces the 

CW result. As such it merely extends the range of the two body interaction approximation 

and does not account for scattering from multiple scattering centres.

4.2.4 Limitation of scattering rates

The scattering rates previously described are all based upon a two-body interaction with 

varying approximations determining the range of the interaction and the form of the scat­

tering potential. This isolated two body process is extended to describe the total rate of 

such two-body scattering events for a distribution of ionized impurities by simply mul­
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tiplying the result by the local concentration of impurities. This neglects the cumulative 

influence of all impurities other than the nearest one. However, local inhomogeneities and 

clustering in the doping distribution over small volumes often violates such assumptions. 

At high doping concentrations, simultaneously scattering from multiple ionized impuri­

ties then becomes a significant unaccounted effect in the described models. Additionally, 

the actual deterministic scattering resulting from a distribution of exactly located ion­

ized impurities within a device is here approximated by a stochastic process based upon 

the average impurity concentration. In this way scattering rates are unable to reproduce 

transport variation in devices due to variation in dopant positions.

In order to fully evaluate the impact of random dopants, the position dependent ion­

ized impurity scattering must be treated in a deterministic way. This requires a full 3D 

MC device simulation in order to capture both the electrostatic and transport effects of 

unique 3D dopant configurations from device to device. This is achieved through an ab 

initio approach in which the traditional scattering rates are removed, and instead ionized 

impurity scattering is treated through the real space trajectories of carriers in the potential 

landscape associated with the unique arrangement of charges.

Within this model, scattering from multiple impurities is automatically accounted 

for in the classical picture of an electron orbit. The dynamic screening is also auto­

matically taken into account, removing the necessity of making prior assumptions about 

the distribution function as used in deriving the screening length for use in scattering 

rates [75]. The ab initio Coulomb scattering method as applied to electron-dopant interac­

tions can similarly be applied to electron-electron interactions, automatically accounting 

for electron-electron scattering within simulations [77].

Since results from the ab initio Coulomb scattering approach rely upon the real space 

trajectories of electrons, the integration of the equations of motion must be able to resolve 

the interactions with sufficient accuracy. This is addressed next.
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4.3 Integrating the Equations of Motion

The phase space coordinates, r  and k, of each electron are repeatedly advanced through 

discrete intervals in time, At, for the duration of the simulation. The time step should be 

long enough for efficient simulation but small enough as to maintain accuracy and stability 

of the numerical integration of the carrier trajectories. Stability is normally enforced in 

self-consistent simulations by ensuring that the maximum plasma frequency expected in 

a simulation is adequately sampled (see chapter 3). Within the ab initio EMC we must 

also ensure that the time step is small enough and the integration routine accurate enough 

to properly resolve the particle trajectories in the high electric fields, and large rate of 

change of fields, associated with the sharply resolved Coulomb potential close to the 

discrete charges.

Accurately integrating the equations of motion for an ensemble of interacting parti­

cles has been a problem studied in plasma and gravitational simulations for many years, 

though in many cases short range interaction are deliberately omitted in cases when only 

the long range interactions play significant roles [134]. A variety of numerical methods 

and corresponding routines were tested in this work, ranging from very basic to high 

order. Their suitability and accuracy was tested in simple cases representative of the 

requirements during device simulation. These include reflection from a boundary perpen­

dicular to a large electric field and propagation in the field of a fixed point charge. A basic 

description of various numerical integration methods is given in the following sections, 

detailing their limitations within the simulation framework.

4.3.1 Euler Integration

Introducing the notation adopted here, the position and wave vector of an electron at 

time t are written as r, and k, respectively. These coordinates determine the force F (1 7)
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and velocity v(k*) at time t respectively, used for propagating the coordinates to time

t +  At. The simplest form of integration is the Euler method described by the following

relationships

rt+At = rt + \ ( k t)A  t (4.13)

k/+A/ =  k t +  F  (r,) At (4.14)

This method uses a single evaluation of the net force and the velocity at time t in order to 

advance them to t +  At , but is only accurate to order At. This requires too small a time 

step for achieving a reasonable accuracy when other methods can tolerate larger time steps 

and achieve the same accuracy.

4.3.2 Runge-Kutta Schemes

Better accuracy in integrating the equations of motion can be achieved by using higher 

order methods. Two such commonly used higher order schemes are the 2nd and 4th order 

Runge-Kutta methods [135]. The 2nd order scheme may be written as

k,+A, = k( +  F (r') At (4.15)

r,+A/ =  r, +  v(k')Af (4.16)

with

r/ =  r, +  v(k() y  (4.17)

k' =  k ,+ F (r ,) y  (4.18)

This method is also referred to as the midpoint method because the time derivatives are 

evaluated not only at the beginning, but half way through the time interval. Higher order 

Runge-Kutta methods are very common in numerical integration and extend this process
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to take weighted averages of multiple time derivatives estimated between t and t +  At.

However, in the case of 3D self consistent EMC simulations, the evaluation of the 

force at any point other than 17 can lead to unphysical results. This is as a result of too 

few, or even a single, particle per mesh cell moving in their own mesh resolved potential.

Evaluation of the field at a point other than the current position of the carrier within the

solution of the Poisson equation leads to a mesh dependent force that accelerates particles. 

Effectively electrons un-physically ’feel’ a force imparted by a copy of themselves. The 

addition of more simulated particles smoothes the potential and reduces this error. In the 

ab initio approach, the accurate treatment of electron-electron scattering demands that one 

particle represents one electron. In such situations we are unable to choose and increase 

the number of particles used in the simulations. For these reasons, integration schemes 

are limited to those that sample the field once per solution of Poisson’s equation at the 

position of the carriers corresponding to the solution.

4.3.3 Classical Dynamics

One integration scheme that relies on single force evaluation is the familiar form of New­

ton’s equations of motion

rt+& =  IV + v (k() Af + 2~ A *2 (4-19)

k;+A/ =  k( +  F (r,) A/ (4.20)

This approach includes the impact of acceleration during the propagation step on the 

final position and has been used in similar molecular dynamics EMC routines to study 

electron-electron interactions in bulk semiconductors [75]. It, however, assumes that the 

mass is constant during propagation which within the semiclassical equations of motion
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is in general not true, especially at high fields.

For the analytic band model employed, the dispersion relation around the minima is 

defined by the non-parabolicity factor a . In this approximation the term representing 

mass, defined by the ratio of crystal momentum to velocity, is given by

m = m*( l+ 2 a e ( k ) )  (4.21)

where m* is the effective mass at the band minimum and s (k) the dispersion relation 

(section 3.3.1 ). For a non parabolic band with a  >  0, the mass increases with energy. 

In large fields, such as the field perpendicular to the gate in the channel of a MOSFET 

in accumulation, the change in energy, and hence effective mass, during one time step is 

large. Overlooking this is at best inaccurate, but in the worst case can lead to a loss of 

energy conservation over a closed path. As an example, over the course of reflection from 

the insulator interface in the channel of a MOSFET, the mass is underestimated during the 

acceleration in the field towards the boundary and, after subsequent reflection, overesti­

mated following the same path back. This leads to violation of the energy conservation in 

the channel through inaccurate evaluation of the position and subsequent unphysical loss 

of carrier energy. This failure is due to the lack of time symmetry in the propagation and 

therefore any integration scheme used must also resolve this problem

4.3.4 Leap-Frog

The most commonly used particle propagation routine in EMC simulations, due to both its 

simplicity and accuracy, is the leap-frog method [134]. This method is applied to plasma 

simulations, molecular dynamics simulations and gravitational simulations all with great 

success. It utilises only one force evaluation and is time centred. The discretized time cen­

tred equations of motion remove the problem associated with reflection from the interface
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and loss of energy discussed above. Position and wave vector coordinates are stored at

staggered intervals in time, separated by Af/2. Each is propagated forward in time using

the following simple relations

k , + A f /2  =  k / —a? /2  +  F ( 17) Ar (4.22)

rt+At =  r, +  v (k,+A,/2) A t (4.23)

Leap-frog integration has the drawback that the coordinates are not synchronised. This is 

not necessarily a problem if only the particle trajectory is required or, in the case of MC 

simulation, if the difference in the wave vector k , + A // 2 over half a time step is not enough 

to significantly effect the scattering rate at the point r t+^ .  The technique is commonly 

used in collisionless systems where the propagation iterates indefinitely. This is not the 

case in semiconductor simulation where the process is broken by scattering events and 

interactions with boundaries in a device simulation. In this case it becomes simpler to 

consider the wave vector and position at the same point in time and propagate to a collision 

event, this is achieved in the Velocity-Verlet algorithm [136].

4.3.5 Velocity-Verlet

The Velocity-Verlet algorithm for propagation can be reduced to the leap-frog algorithm. 

Whereas the leap-frog algorithm propagates both the position and momentum in one step, 

storing results at staggered time intervals, the Velocity-Verlet algorithm propagates the 

position in one step while the momentum in two steps, such that the results are syn­

chronous. Propagation of position and momentum follows a three step process. First the 

momentum at time t is advanced by Af/2 using the field at time t. Propagation of posi­

tion then follows identically with leap-frog, using the velocity value at time t +  Af/2, and
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ft(rt) F(^t+At)
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t t+At/2 t+At

Figure 4.4: Velocity-Verlet algorithm propagates momentum for (1) half the time step 
before (2) a single propagation of position using the velocity at t +  A^/2 and finally (3) 
updates the momentum using the field at t +  At.

finally the momentum is updated to the same point in time as the position by using the 

electric field evaluated at the new position. This process is illustrated in figure 4.4 and is 

expressed by the following relationships

*t+to/ 2 =  k< +  F  (r <) V  (4 2 4 )

rt+iu =  r, +  v (k,+4,/2) to  (4.25)

At
kj+Ar =  k /+ A //2  +  F  (r f+Ar) ~2 (4.26)

Like the leap-frog algorithm, Velocity-Verlet is time centred, utilises only one force evalu­

ation per solution of Poisson’s equation but, beneficially, its coordinates are synchronised.

Scattering events and interactions with physical boundaries break the propagation cy­

cle. Since information regarding the new field can not be obtained until the result of the

scattering event is obtained, propagation to the scattering event during a time step can
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Figure 4.5: During scattering, propagation proceeds to the scattering event, time t +  Atcou, 
before the new position can be found and the momentum updated. This breaks the time 
symmetry of the propagation routine.

only make use of the initial field. The loss of time centreing in this case is unimportant 

as we do not require to propagate back and recover the state before scattering, though 

some error will be introduced by this deviation from the propagation cycle. The error 

in the values after propagation resulting from the departure from the iterative process to 

accommodate scattering and physical boundaries should be minimal for small time steps. 

The effect of scattering events on the time integration cycle is shown in figure 4.5.

Extension to this scheme can be made with the Beeman algorithm [136]. This in 

turn uses weighted values of the field from the previous time step, as well as the current 

field and the field at the subsequent time step. This should give better accuracy in energy 

conservation but requires the storing of multiple electric field values for each electron 

and is cumbersome to incorporate with carrier scattering. Should greater accuracy be 

necessary, this integration scheme may be considered.

2D EMC simulations allow larger numbers of particles per cell and yields a smoother
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potential, justifying the use of higher order Runge-Kutta schemes. However the Velocity- 

Verlet algorithm best satisfies the requirements for propagation in the self consistent 3D 

ab initio EMC simulations. It is second order accurate and time centred while only re­

quiring one field evaluation per solution of Poisson’s equation. It remains to verify the 

use of this approach provides enough accuracy.

4.4 Validation of Propagation

Inaccurate integration of the equations of motion leads to physically inaccurate simula­

tions and undermines the confidence in the results. Whereas collisionless simulations, 

like typical plasma simulations, require the accurate calculation of particle trajectories 

throughout the whole simulation, MC simulation of semiconductor transport only requires 

accurate trajectories between successive collisions. This makes the task of integrating the 

equations of motion somewhat easier. However, the large rate of change in the electric 

field associated with discrete charges within the ab initio EMC method introduces addi­

tional constraints as compared with the traditional MC method. It is therefore important 

to test and trust the integration method.

The integration methods previously discussed are applied to a series of simple test 

cases addressing common problems within the ab initio EMC simulation. These are used 

to highlight the aforementioned shortfallings of the discussed methods. The results ver­

ify that a lack of time centreing in the propagation combined with an energy dependent 

mass results in loss of energy upon reflection, validating the choice of the Velocity-Verlet 

method. It is also shown that, while lower order methods poorly conserve energy and 

angular momentum in an orbit, the Velocity-Verlet approach is comparable in accuracy to 

higher order Runge-Kutta schemes when tested in an analytical Coulomb field. Scattering 

in an analytical Coulomb field is then considered for the Velocity-Verlet algorithm alone
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Figure 4.6: Total energy as a function  o f  time fo r  the s im ulated reflection off a sm ooth sur­
face  in a large electric field using different integration schem es and a non-parabolic  band. 
O nly  the R unge-K utta  schem es and Velocity-Verlet m aintain  conservation  o f  energy.

as this is o f  prim ary im portance to fur ther simulation.

4.4.1 Reflection at surface

In order to accurate ly  conserve energy if a reflection occurs during  the integration time 

step At, e lec trons m ust be propagated  from  the start t im e t to the m o m en t they hit the 

boundary. T h e  m om en tum  is then reflected normal to the boundary  and  propagation co n ­

tinues to time t +  At. T h is  is in contrast to the sim plistic m ethod  w here  propagation for 

the full t im e results in a final position beyond the boundary, fo llow ed  by the reflection o f
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the particle’s coordinates about the boundary.

The method is applied without loss of generality to a ID test case considering an 

electron driven in a constant field towards a purely reflective boundary. Such a test is 

representative of the dynamics under the gate in later MOSFET simulations where surface 

roughness scattering is not included. The total energy as a function of time for different 

integration methods using a non-parabolic band are plotted in figure 4.6. As stated before, 

for non-parabolic bands energy conservation is only ensured with a properly time-centred 

integration routine. The lack of time centring results in a rapid loss of energy in the 

Newtonian dynamics scheme, which treats parabolic bands exactly, while the Velocity- 

Verlet and Runge-Kutta schemes perform well. In both parabolic and non-parabolic cases, 

the Euler scheme is too inaccurate and results in an unphysical gain in energy.

4.4.2 Propagation in an orbit

Accuracy in treating the interactions of point charges is paramount to valid simulation 

in this work. The propagation routines discussed and tested in the previous sections are 

again employed to propagate an electron in an elliptical orbit about a positive point charge 

assuming a parabolic band. An elliptical orbit is chosen, being more problematic than 

propagation in a circular orbit. The eccentricity of the orbit is 0.5 while the separation 

at closest approach is 2 nm. An analytical Coulomb field is used in order to eliminate 

interpolation errors from a mesh based solution and to allow a direct comparison of the 

techniques. The total energy throughout the propagation for the four different integration 

schemes is shown in figure 4.7. The simpler Euler and Newtonian dynamics schemes are 

unable to accurately treat the rapidly varying field close to the point charge resulting in 

a significant gain in energy during the closest approach of each orbit. This, however, is 

not a significant problem in either the Velocity-Verlet or 4th order Runge-Kutta schemes
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Figure 4.7: Total energy during  propagation in an elliptical orbit using various in tegra­
tion schem es. Again  Euler and N ew tonian  dynam ics  schem es perform  poorly. Both the 
Velocity-Verlet and 4th o rder R unge-K utta  maintain  conservation o f  energy.

which both preserve the total energy well.

4.4.3 Coulomb scattering

Follow ing the classical picture o f  e lectron scattering illustrated in figure 4.1, the repro­

duction o f  the scattering angle dependence  (equation 4 .1) upon im pact param eter  via s im ­

ulation using the Velocity-Verlet in tegration schem e is investigated. R eproduction  o f  the 

scattering angle dependence  is essential if ionized im purity  scattering is to be accurate ly  

captured within ab initio E M C  sim ulation. Both electron scattering from  a fixed singly
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Figure 4.8: Simulated trajectories of electrons in the field of a central negative point 
charge. Electrons are injected with parallel velocities from the left and the dashed line 
marks the extent of the simulation domain.

negative or positive ion are considered, representing the interactions with an acceptor or 

donor respectively in later device simulation.

Electrons are initialized over a range of impact parameters at the edge of a circular 

simulation domain with parallel velocities determined by the incident total energy. The 

boundary of the simulation domain is sufficiently far form the centrally located point 

charge such that the initial and final velocities approximate the asymptotic velocities ’be­

fore’ and ’after’ the collision. The radius of the simulation domain is 5 ]im while the 

range in impact parameters considered is 200nm as shown in figure 4.8. Each electron
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Figure 4.9: Variation o f  sim ulated  scattering angle versus im pact param eter com pared  
with the Rutherford  result. Results fo r  both a positive and negative central charge are 
shown for tw o incident electron energies of 40  m eV  and 500  meV.

is propagated  in time steps o f  0.1 f s  in the analytic  C o u lo m b  potential associa ted  with 

the point charge until it leaves the s im ulation  dom ain , w hereupon  the corresponding  a n ­

gle o f  deflection and percentage change in kinetic energy is determ ined . T he s im ulated  

scattering angle dependence  upon im pact param eter  fo r  both a positive and a negative ion 

and  considering  incident e lectron energies o f AOmeV and 500meV  are com pared  with the 

Rutherford  fo rm ula  (equation 4.1) in figure 4.9.

Equation 4.1 relating the scattering angle to the im pact param eter  and incident e lec ­

tron energy is independent o f  the sign o f the charge on the ion. W ithin the simulation ,
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differences due to inaccurate integration become apparent. At large impact parameters 

for both incident energies, the simulated scattering from positive and negative ions agree 

with equation 4.1 due to the slowly varying fields and resultant accuracy in the integration 

of the electron’s equations of motion. At low incident energy, the agreement is maintained 

over the entire range of impact parameters for the negative charge due to the repulsive na­

ture of the interaction limiting the propagation in the rapidly varying field close to the 

scattering centre. At small impact parameters, the attractive nature of the positive ion 

results in propagation through the rapidly varying field near the ion, leading to inaccurate 

integration of position and energy. The simulated scattering angle for the case of the pos­

itive charge and low incident energy is not shown for impact parameters below 1 nm as 

the error in propagation becomes too significant. This error is reduced at higher incident 

energies due to the reduced propagation time in the high field region. For the negative ion, 

higher incident energy allows for penetration into the rapidly varying field and inaccurate 

integration is then observed.

Figure 4.10 shows the corresponding percentage change in kinetic energy after the 

collision as a function of impact parameter. Significant gains in energy are seen at small 

impact parameters for the positive ion at low incident energy, consistent with the inaccu­

rate integration of position. Energy is conserved to a better degree during the interaction 

with the negative ion. At higher incident electron energy, conservation of energy is better 

reproduced for both ion types. Thus, it may be expected that within an ab initio atom­

istic simulation, electron-electron and electron-acceptor interactions will be treated with 

sufficient accuracy while the energy gain during electron-donor interactions must be min­

imised.
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Figure 4.10: M agnitude o f  the percentage change  in kinetic energy upon leaving the s im ­
ulation dom ain . Results show n here include both positive and negative central charges 
and  incident electron energies o f  4 0 m e V  and 500  meV. Significant error in the final k i­
netic energy is seen for a positive charge at low incident electron energy while that o f  the 
negative charge rem ains in good agreem ent.

4.5 ab initio Ionized Impurity Scattering

T he m ethod  described here fo r  in troducing ab initio ionized im purity  scattering in m esh 

based particle s im ulations fo llow s H ockney  and E astw ood  [ 1181 w ho  were am o n g  the 

first to introduce the technique [ 137, 138|. It is designed  fo r  the efficient sim ulation o f 

a large system  of charged partic les w here both long range and short range in teractions 

m ust be resolved. It com bines  the d irect force evaluation o f  the Particle-Particle (PP) 

technique, com m on  to m olecu lar  dynam ics  and the sim ulation o f  small system s o f  parti­
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cles, with the force interpolation of the Particle-Mesh (PM) technique, used to efficiently 

describe the long range interactions of a large ensemble of particles. The PP technique de­

termines forces directly between pairs of particles through an analytical expression, thus 

accurately resolving the interaction. However, for large systems the direct evaluation of 

forces is computationally prohibitive. Problems also arise with the handling of materials 

with varying dielectric constants and devices with complex boundaries. Where it is suffi­

cient to only consider long range interactions, significant improvement in efficiency, and 

the ability to simulate much larger ensembles, is achieved using the PM technique. In this 

case the field is obtained from the numerical solution of the Poisson equation using mesh 

based discretization. The field calculated at the mesh points is then interpolated to the 

current particle positions within the mesh. The drawback of the PM approach is the poor 

representation of the short range interactions. The Particle-Particle-Particle-Mesh (P3 M) 

method combines the strengths of both techniques, using the mesh interpolated field to ef­

ficiently obtain long range interactions supplemented with a direct force evaluation over 

only the neighbouring particles to account for short range interactions.

Within this model, the net force on electron i may be given as

where F mesh (r,) is the mesh force interpolated at the electron position rz, and Fsr (r,- — iy) 

is the short range correction for the force acting on electron i due to a neighbouring charge 

j ,  where the sum is over all such neighbouring charges. The mesh interpolated force was

(4.27)

discussed previously in chapter 3, the remainder of this discussion is focused on the short 

range force correction.
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4.5.1 Short Range Correction, F sr

Using the CIC charge assignment scheme, the mesh based solution of the electrostatic po­

tential associated with a point charge significantly underestimates the true Coulomb force 

within separations of approximately two mesh spacings [118]. For separations greater 

than this, the mesh interpolated forces are accurate to less than one percent compared 

with the analytical Coulomb force. Therefore, in order to achieve a good agreement with 

the exact Coulomb force, a force correction has to be applied for electrons separated from 

surrounding point charges by less than two mesh spacings. The short range radius rsr 

defines a sphere centred about a particle and contains all the neighbouring charges for 

which the mesh force alone inadequately describes the force, and for which short range 

corrections must be applied. This radius will be dependent upon the form of the short 

range interaction and will be discussed later.

In general, the force contribution from the mesh associated with two charges separated 

by less than rsr is not zero. This results in an overlap of the long-range mesh and short- 

range analytic force regimes. It is therefore necessary to define the short range correction 

as the difference between the analytic short range interaction F* (r; — iy), and the mesh 

resolved force in order to avoid double counting of forces. The short range correction is 

then expressed as

Fsr (r, — rj ) = F *  (r,- -  r;) -  Fref  (r,- -  rj) (4.28)

where F ref  (r,- — i*y) is the reference force and equals the mesh resolved force for two 

charges separated on the mesh.

4.5.2 Reference Force, F ref

Although equation 4.28 defines the short range force through the difference of two terms 

which are solely functions of charge separation, in the case of the reference force this is
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not accurate. The Poisson equation is solved on a Cartesian grid and the force extracted 

from the mesh based solution has the corresponding symmetry. For a given charge sep­

aration, the mesh force varies for different orientations of the charges with respect to the 

mesh. Similarly, dependent upon the charge assignment and force interpolation scheme 

employed, the mesh force differs with the position of the charges relative to the mesh 

due to the charges being spread over the mesh cells. The implied translational invariance 

and symmetry of the reference force in equation 4.28 is instead a ’best fit’ approxima­

tion in one dimension. Accurately determining the reference force would require the 

mesh based solution of Poisson’s equation to be known for all possible positions and ori­

entations of a pair of charges within the volume defined by the short range radius and 

represents a significant increase in complexity of the problem. This issue has been some­

what addressed by tabulating the components of the mesh resolved force at steps of two 

angstroms throughout the volume associated with the short range force correction [139]. 

This introduces a very large memory overhead but allows the mesh force to be accurately 

described in three dimensions, yielding a more accurate force correction for different 

charge pair orientations and separations. However, the mesh force is based upon the solu­

tion of a point charge in a single position relative to the mesh. As such it still neglects the 

translational variation in the mesh force. Alternatively, an analytical interpolation scheme 

was proposed in order to describe the symmetry of the reference force within a cell and 

was reported with apparent success [140,141]. However, this again makes assumptions 

about the position of one of the charges and also inadequately describes the translational 

variation within a cell.

The use of higher order charge assignment and force interpolation schemes can, through 

further smoothing and increasing of the short range radius, reduce the magnitude of the 

mesh force at short range. By minimising the short range mesh contribution at close 

separations, where the anisotropy is most significant, a more favourable description by
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the reference force as solely a function of separation can be achieved. This in turn in­

creases the accuracy of equation 4.28. In particular, TSC charge assignment and force 

interpolation, in conjunction with a four point finite difference scheme for evaluating the 

field at each mesh point, results in a force correction accurate to within one percent over 

both force regimes. Indeed, this is the method recommended and employed by Hockney 

and Eastwood where it was apparent that CIC charge assignment and force interpolation 

represented too great an error in both the magnitude and direction of the field within the 

short range region [118]. Unfortunately, higher order charge assignment and interpola­

tion represents further computational overheads and, more importantly, larger finite sized 

particles which cause problems at abrupt heterojunctions, interfaces and simulation do­

main boundaries. For these reasons we accept the limitations and inaccuracies of using 

equation 4.28 with CIC charge assignment.

A suitable approximation of the reference force is then required for use in equation 

4.28. An analytical approximation when using CIC charge assignment is given in [118] 

as

?mesh / y \  _  1 <

4jte '

35k- (224| -  224|3 +  70 |4 +  48 |5 -  21^6) 0 < £ < 1

35U- (12| " 2 -  224 +  896| -  840£2 +  224|3 +  70 |4 -  48^5 + 1 \6) rf  < % < 2

^  i  > 2

(4.29)

where

'% =  —  (4.30)
rrs

This analytical form has reportedly been used with success in describing low field bulk 

concentration dependent mobilities in silicon, and it is also argued that it has an advantage 

in being simply extendable for application within a non-uniform mesh [79].

For all simulations presented here, the reference force is obtained via the alternative
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method described by Gross [77]. In this approach the reference force is evaluated directly 

from the mesh based solution of a single charge, where the mesh used has the same 

dimensions as that used in the subsequent device simulation. The point charge is placed 

in the middle of a cell where the solution has the highest degree of symmetry. This 

symmetry attempts to minimise errors in treating the mesh force as spherically symmetric. 

The mesh force is then interpolated through the centre of the cell, parallel to a principal 

axis, and tabulated in steps of half an angstrom. This is similar to the previously described 

3D approach [139] in that the actual mesh force is used to tabulate the force correction 

term. However this method only tabulates the correction in ID and as such requires far 

less memory overhead for storing the tabulated values. This method is therefore very 

simple and efficient to implement but can not be applied to a non-uniform mesh. Since all 

simulations presented here are performed on a uniform mesh, this is not a concern.

4.5.3 Analytic Short Range Force, F *

Figure 4.11 shows the mesh interpolated field for the solution of a single point charge 

placed in the middle of the mesh cell in comparison with the corresponding true Coulomb 

field. The mesh spacing is 5 nm. Agreement is good at long range, with the error in the 

mesh force increasing at close separation. Also plotted is the mesh force with the short 

range correction. The comparison is made for three different orientations defined by the 

charge and distinct points of symmetry of the cubic mesh cell. This is to highlight the 

variation in respect of the adopted spherically symmetric mesh force. The first direction, 

labelled ID in figure 4.11, is parallel to the x-axis and is identical to the approach used in 

determining the reference force, thus exactly reproduces the short range field. The second 

direction, labelled 2D, is a line in the xy plane making an angle of 45 degrees with the first, 

while the direction labelled 3D passes through the comer node towards the charge. The
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Figure 4.1 1: C om parison  o f  the m esh in terpolated and analytical fields. A greem en t is 
seen at long range while  the m esh underestim ates  the analytical field at c lose separations. 
T h e  mesh corrected  field, also show n, is seen to agree with the analytical field at close 
separations while the transition betw een  the regim es is m arked  by position dependen t 
variation.

later reproduction o f  bulk m obilities  via ab initio s im ulation  justifies the error introduced 

by this s im ple approach  in the transitional region betw een  the long range m esh regime 

and the analytical short range regime.

In the earlier reproduction o f  C o u lo m b  scattering, significant unphysical gains in en ­

ergy were seen in propagating  a charge in the rapidly varying field associa ted  with an 

attractive C ou lom b potential. T h is  erro r needs to be m in im ised  and such m inim isation  is 

achieved by defining an alternative short range interaction. T hree m odels  were initially 

tested by G ross  [77] and  are plotted in figure 4.12. Each model fo llow s the C o u lo m b
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Figure 4.12: Potential and electric field profiles fo r  three proposed short range interaction 
m odels to m in im ise  errors in propagation  [77]. A lso  shown is a fourth  analytical model 
adopted here.

force up to a separation o f  2nm, w hich  is approxim ate ly  the ground state radius o f  the 

hydrogenic  model d onor in silicon. Below this radius one o f the fo llow ing  three app rox ­

im ations is used; (i) a constan t field equal to the field at 2 nm, (ii) a constan t field equal 

to  zero, or (iii) a field linearly decreasing  to zero from  the value at 2nm. O f  the three a p ­

proxim ations, the linearly decreasing  field was reported  to give the best results in device 

s imulation. A n alternative analytical fo rm  is used here, proposed  in [ 11 8 1
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Figure 4.13: Scattering angle dependence  upon im pact param eter using three short range 
field m odels  |7 7 ]. Scattering  fo llow s the C o u lo m b  case but rapidly drops at sm aller im pact 
param eters.

with the co r responding  potential given by

V ( r )* =      (4 .32)
4jt80£r ( r 2 +  \ r l ) 2

T his  m atches  the C o u lo m b  law at large separations, reaches a m ax im u m  value at the cu t­

off  radius rc and approaches  zero as the separation  r approaches zero. T h e  approxim ation  

is qualitatively sim ilar  to the model adopted in [77] and is plotted fo r  com parison  in figure 

4 .12  w here rc is taken  equal to 0 . 5 nm. T he choice o f  an analytical model covering  the
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Figure 4.14: C om parison  o f  scattering angle versus im pact param eter fo r  the modified 
potential with variety o f  cut-off radii at an incident electron energy o f  4 0 meV. T he  in­
teraction with a negative ion again fo llow s the Rutherford  result while  larger cut-off  radii 
favour m ove forw ard  scattering.

entire range o f  the short range interaction is preferential to the three abrupt short range 

m odels  since both the field and the derivative o f the field are con tinuous  and lead to better 

conservation  o f  energy during  propagation.

Lim iting the short range interaction in o rder to better conserve energy will l imit the 

ability o f  a point charge to act as a true C o u lo m b  scattering centre. To assess the trade-off  

betw een  energy conservation and scattering angle dependence ,  the sim ulation  o f  C o u lo m b  

scattering o f  electrons in section 4.4.3 is repeated  using the fou r  short range force m odels
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Figure 4.15: Percentage change in kinetic energy after the collis ion fo r  the three short- 
range field m odels  tested by Gross. O f  the three m odels, the linearly decreasing  field 
show s m arginally  better energy conservation with a m ax im u m  error in the kinetic energy 
o f  less than 1 percent.

d iscussed  above. Figure 4.13 shows the scattering angle dependence  at an incident energy 

o f  4 0 meV resulting from  the three m odels  in [77]. In all cases, scattering from  the nega­

tive ion rem ains accurate  since modification o f  the C o u lo m b  law is m ade sufficiently near 

the ion that electrons d o n ’t see it at this energy. For the positive ion, the scattering angle is 

m aintained fo r  im pact param eters  dow n to 9nm  w here it rapidly falls due to the reduced 

interaction close to the ion. T h is  results in a m ax im um  scattering angle of nearly 120 

degrees fo r  any interaction. Figure 4 .1 4  show s s im ilar results using the m odified force 

o f equation 4.31 fo r  values o f  the cu t-off radius rc equal to 2 . 0 nm, 0 .5nm, 0.1 nm and
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0.0nm. Again negative ions are accurately treated, even for the largest cut-off, while the 

maximum scattering angle due to a positive ion is reduced for larger cut-off radii.

The percentage change in energy is shown for the three models in [77] in figure 4.15. 

Energy is poorly conserved, though there is some improvement with respect to the pure 

Coulomb potential (see figure 4.10). The linear short range model shows the best conser­

vation of energy, in accordance with the claim made in [77], with a typical gain in energy 

greater than 0.1%. The resulting percentage change in energy using the analytical model 

with cut-off radii equal to 2 .0nm, 0.5 nm, 0.1 nm and 0 .0nm are shown in figure 4.16. The 

model provides energy conservation orders of magnitude better than the alternative short 

range models for cut-off radii equal to 0.5 nm and below.

Using a cut-off radius of 0.5 nm within the short range model described by equation 

4.31 results in a force and potential profile similar to the model adopted in [77] up to 

2 nm. The field then exceeds the field corresponding to the other approaches, reaching 

a maximum before falling to zero. As the smoother form of the analytical short range 

model shows significant improvement in energy conservation and a similar scattering an­

gle dependence compared with other models, the model was adopted in the rest of this 

work. The imposed limiting of the point charge interaction is not completely without 

physical basis since an ionised impurity is not a point charge. Interaction with the re­

maining valence and inner shell electrons will reduce the pure Coulomb potential at short 

distances from the nucleus. However the empirical model adopted pragmatically captures 

the main effects of scattering without attempting to accurately reproduce the real impurity 

potentials.

I l l
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Im pact P aram eter  [nml

Figure 4.16: M agnitude o f  the percentage change in kinetic energy over the collision fo r a 
positive central charge using the m odified potential with a range o f  cut-off  radii. Im proved  
conservation  o f  energy is seen fo r  larger cut-off  radii.

4.5.4 Short Range Radius, rsr

T h e  m esh field accurate ly  resolves the analytical C o u lo m b  field at separations beyond two 

m esh  spacings. However, the use o f  the analytic short range force  model in the previous 

section results in a deviation from  the C o u lo m b  field at short range. For the s im ulation 

o f  ultra-small devices w ith  a finely resolved m esh  in this work, it is not guaran teed  that 

the adopted short range force will agree  with the m esh  force  at d istances larger than  two 

m esh  spacings. T he short range radius rsr over w hich corrections are perform ed has been 

re-defined to be the m in im um  distance at which the fo rm  o f  the short range interaction
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k y

Figure 4.17: T he  force correction  is evaluated fo r  those elec trons separated by <  rsr. 
Separations are determ ined  only for those e lectrons stored in ad jacen t cha in ing  m esh  cells, 
limiting the required nu m b er  o f com parisons.

agrees  with the point charge potential on the s im ulation mesh. A value o f  15nm is used 

fo r  rsr in s im ulations using m esh spacings sm aller  than 7 . 5 nm, o therw ise  rsr is equal to 

tw ice  the cell width. T h is  guaran tees  that the correction  m atches  on any mesh.

4.5.5 Application of Force Correction

In order to avoid ca lculating  the separation betw een  every pair o f  particles within the 

sim ulation  dom ain  to determ ine  w hether or not they fall w ithin rsr, a t im e consum ing  pro­

cess deliberately avoided by utilising the m esh force, particles are referenced to a second, 

coarse, m esh  term ed the chaining mesh. T he cha in ing  m esh is a uniform  m esh with cell
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width equal to rsr. A linked list sorts the particles within each chaining cell following 

the discussion given in Hockney and Eastwood [118]. The calculation of the distance 

between neighbouring particles is now limited to those in the surrounding chaining cells 

as illustrated in figure 4.17. The number of comparisons required then increases with the 

short range radius and the particle concentration at any point, but is significantly less than 

in the brute force alternative.

Incorporating the short range force correction recovers the full charge interaction that 

the mesh alone can not resolve. Care must be taken to ensure that the correction of the 

mesh resolved charge interaction within a simulation is physically accurate. Incorpora­

tion of the full electron-electron interaction within a continuously doped simulation leads 

to the dominance of the inter-electron forces and results in an extention of the depletion 

regions and an increase in the potential drop across them. Within an atomistic simula­

tion, both electron-electron and electron-ion interactions must be resolved consistently to 

account for charge screening. Inclusion of the full electron-donor interaction without the 

electron-electron interaction affects the electron screening of the donors and a results in an 

un-physically high electron concentration localised at donor sites. Therefore, within self 

consistent atomistic simulations both the electron-electron and electron-ion interactions 

should be included together. Within continuous doping simulations, the electron-electron 

short range force correction should not be used.

4.6 ab initio Simulation of Doping Concentration Depen­

dent Mobility in Silicon

Having determined both a form for the short range charge interaction that maximises scat­

tering while minimising errors in energy conservation and a method for applying the short

114



CHAPTER 4. IONIZED IMPURITY SCATTERING

Tiv,»*v
N < * 0  N* * *

Z

9  1

etc
<v*

Figure 4.18: Schem atic  3D  atom istic sim ulation  structure for recovery o f  bulk mobility. 
T he  central doped  region, length Xbuik-> *s the concentra tion  under investigation and is 
situated between tw o m ore heavily doped  contact regions, length Xctc.

range force correction, it is im portant now to validate the m odel, dem onstra ting  that it can 

accurate ly  describe ionized impurity  scattering. T herefo re  in this section, s im ulations are 

perform ed to recover the well know n bulk concentra tion  dependen t  electron m obility  in 

silicon over a range o f  dop ing  concentrations.

4.6.1 Bulk Simulation Structure

T h e  evaluation o f  the doping  concentra tion  dependence  o f  the bulk m obility  has been 

a ttained by the sim ulation  o f a s im ple resistor structure. Each s im ula ted  resistor has a 

high dop ing  concentration  in the con tac t  regions, relative to the central region in which 

the m obility  is evaluated, in order to closely m aintain  ideal O hm ic  contact behaviour.
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X {nm) Y, Z {nm) Xctc {nm) Xbuik {nm) Note (cm~3) Nbuik (cm~3) AV {V)

14080 3520 880 12320 1 x 1 0 15 1 x 1 0 14 1.2320

6400 1600 400 5600 1 x 1 0 16 1 x 1 0 15 0.5600

2944 736 184 2576 1 x 1 0 17 1 x 1 0 16 0.2576

1408 352 8 8 1232

00OHX oX 0.1232

640 160 40 560 5 x 1018
00OX 0.0560

Table 4.1: Dimensions and doping concentrations of the different regions within the re­
sistor devices and the applied potential difference.

A potential difference is applied across the device which drops across the central region 

resulting in a low electric field of around 1 kV cm ~l . Devices with varying doping concen­

trations in the central part of the resistor are all simulated on a uniform mesh consisting of 

129 x 33 x 33 mesh points, with physical dimensions such that there are approximately 

10,000 donors within each contact region and 15,000 donors within the central region. 

The general device structure is illustrated in figure 4.18 while specific dimensions and 

doping concentrations are presented in table 4.1.

Self consistent EMC simulations were performed in which the short range force cor­

rections for both the electron-electron and electron-donor interactions were included. The 

time step for integration and successive solutions of Poisson’s equation was set at 0.1 f s  to 

accurately resolve the short range charge interactions. Simulations were performed over 

a simulated time of 6 ps , allowing 2 ps  for the decay of initial transients, at a temperature 

of 300K.

For each device, the average electric field within the central region was obtained from 

the time averaged mesh potential throughout the region and was used in combination with 

the average electron velocity in the region to estimate the mobility. The large numbers 

of donors within the region approximate the self averaging donor distribution in bulk 

material and so the obtained mobility value is reported as the bulk mobility value.
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Figure 4.19: Potential th roughout s im ula ted  structure fo r the extraction o f  bulk m obility  
for donor concentra tions  1 0 1:1 cm - 3 , 1016cra- 3 , 1017cm - 3 , and 1 0 18cm -3  from  top to 
bottom  respectively 117
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Figure 4.20: Potential profile norm alised  a long  the x-axis fo r  each device. A linear profile 
in the central region is seen for each device with m ore variation apparent in smaller, h igher 
doped  devices.

4.6.2 Bulk mobility results

Electrostatic Potential and Electron Concentration Figure 4 .19  shows the 3D  steady- 

state potential th roughout the resistor structures corresponding  to the sim ulation  o f  bulk 

m obilit ies at donor concentra tions  o f  No =  1 x 1015cm - 3 , 1 x 1016cm - 3 , 1 x 1 017cm~3 

and  1 x 1018cra- 3 . T he position o f  the individual donors  are m arked  and are clearly seen 

to correspond to the local variations in the potential w hich  are better resolved fo r  the 

sim ula tions at h igher doping  concen tra tions  due to the use o f the finer mesh.

The steady state averaged potential d istributions along the resistor length are shown
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Figure 4.21: A tom istic  donor profile and electron concentra tion  a long the norm alised  
x-axis  for each device.

fo r  the sam e devices in figure 4 .20, w here  the device lengths have been norm alised  to 

fit the sam e graph. Similarly, the averaged  e lectron concentra tion  distributions a long the 

resistor are shown in com parison  with the averaged  donor concentra tion  d istribution in 

figure 4.21 fo r  the same set o f  devices, again with the length o f  each device norm alised. 

G o o d  m ain tenence o f the contacts  is noted in all cases  and the electron concentration  is 

seen to c losely follow the donor concentration. T h is  is in turn reflected in the flat potential 

in the contact regions and the linear drop, with variations due to atomicity, in the central 

region.
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Figure 4.22: Electric field profile w ith in  the listed sim ulated  devices. In all cases the 
average field is close to 1 k Vc m~]. Legend is sam e as in figure 4 .20
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Figure 4.23: Average electron velocity  profile within each device, norm alised  a long  the 
x-axis
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v ( x l 0 7cms *) E (kVcm~l) pi (cm2V 1 s

0.1424 1.007 1414

0.1160 1 .0 0 2 1157

0.0790 0.982 804

0.0339 1.104 307

Table 4.3: Average electric field and electron velocity throughout the central device re­
gion. Mobility as calculated from these values is tabulated and is also plotted in figure 
4.24

Electric Field and Electron Velocity The average electric field, obtained from the av­

erage electrostatic potential throughout the device, is shown for each of the simulated 

devices in figure 4.22. The average value of the field in the central region, listed in ta­

ble 4.3, is close to 1 kV cm ~l in all cases. Variation in the field is seen at higher doping 

concentrations due to the discrete charges being more accurately resolved in the mesh 

force.

The corresponding average electron velocity throughout the devices is shown in figure 

4.23 and the average value throughout the central region is also given in table 4.3. Given 

the average electron velocity and the average field in the central region, the bulk mobility 

can be approximated by the ratio of the two.

Bulk Mobility Figure 4.24 shows the simulated bulk mobility from ab initio simula­

tion compared to experimental values. Also shown is the mobility values obtained from 

impurity scattering rates as reported in chapter 3 and simulation results from ab initio 

simulation presented in [55,77]. Excellent agreement is seen over the simulated range 

in doping concentration, better than compared with the results reported in [77]. It is also 

interesting to note that the ab initio approach better describes ionized impurity scattering
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Figure 4.24: Reproduction  o f low field concentra tion  dependen t  bulk electron m obility  in 
silicon at 300K  from  3D  ab initio s im ulation. C om parison  with experim ental data, BH 
scattering rate and s im ulated  m obility  data  from  |55] and [77] is also shown.
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Figure 4.25: Representation o f  total energy, kinetic energy and potential energy plotted 
against position for an interaction with an ionised impurity. Energy is conserved  th ro u g h ­
out, but kinetic energy increases in the vicinity o f the attractive potential.

com pared  with the B rooks-H erring  approach.

Ensemble Average Energy Published results o f  ab initio s im ula ted  bulk m obility  have 

to date only shown the calculated  m obility  values with no supporting  evidence d em o n ­

strating accuracy  in the propagation. Since unphysical heating can arise from  poor in­

tegration o f  the equations o f  m otion in the im purity  potential, this can be m islead ing  as 

the ensem ble  average velocity  m ay agree with the bulk velocity  but the distribution in 

velocities over the ensem ble  m ay be un-physically  large. H owever, a m easure  o f the 

conservation o f  energy during  the s im ulation  is hard to obtain. F igure 4.25 show s the 

conservation o f  total energy during  the in teraction with an attractive potential. A n e lec­

tron initially has kinetic energy E/dn and after the interaction has identical energy Ekout, 

but the kinetic energy during  the interaction increases as the electron loses potential
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Figure 4.26: Electron kinetic energy distribution th roughout structure s im ula ting  bulk 
mobility  fo r  Np = 1 x 1018c m - 3 . Local increases in kinetic energy are observed  around 
the m arked donor positions. Energy m easured  in eV

energy before returning to its original value. T h e  total energy is a lw ays conserved. T he  

energy in the M C  sim ulation  refers to the electron kinetic energy and  as such it varies du r­

ing im purity  scattering. T he  calculated  steady-sta te ensem ble  average electron energy is 

the average kinetic energy over the ensem ble  averaged  over time, and thus is expected  to 

increase with donor concentra tion  due to m ore frequen t scattering and increases in kinetic 

energy. T h is  increase in average energy with dop ing  concentra tion  is not direct evidence 

o f  artificial heating  through inaccurate  propagation.

The electron tem perature  corresponding  to the s im ulation  o f  the low est donor c o n cen ­

tration o f  No =  1 x lO 1-̂ cm - 3 , is 303K. T h is  is ju s t  1% above the lattice tem peratu re  o f 

300K  and is attributed to the energy gained by the applied  field. T h e  highest d istribution 

tem peratu re  corresponds to the sim ulation at the highest donor concen tra tion  and is 342K. 

T h a t  this is not due w holly  to som e unphysical energy  gain can be seen by looking at the
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Figure 4.27: Representation  o f total energy, kinetic energy and potential energy plotted 
against position for an interaction with an ionised impurity. Increased kinetic energy 
m akes m ore probable the em ission o f  a phonon o f  energy Ephonon an d loss o f  energy.

average electron kinetic energy distribution in real space. T h is  is show n for the device 

used to sim ulate  the doping  concentra tion  Nq — 1 x  1018 cm~ 3 in figure 4.26. T he  lo ­

cal increase in kinetic energy su rround ing  the location o f  individual im purity  a tom s can 

clearly be seen. This  is an indication that energy is accurate ly  conserved  within the s im ­

ulation, while the increased tem perature  o f  the energy distribution is associa ted  with the 

t im e sam pling  o f  electrons encounte ring  m ore  frequen t short range interactions.

M easurem ents  o f  the total energy o f  the e lectrons is com plica ted  by phonon em is­

sion and absorption w hich does not conserve the e lec tro n ’s total energy. In this regard it 

is in teresting to note that the probability  fo r  phonon em ission  is h igher with increasing 

electron kinetic energy and thus the probability  fo r  phonon em ission  is relatively high 

during  the ionised im purity  scattering process. T h is  is illustrated in figure 4.27. Electrons 

m ay em it phonons, reducing  their total energy by am oun t AE phonon, and this can provide
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a means of trapping electrons around impurities if sufficient energy is lost. This should 

however remain a rare event since the impurity interaction time is relatively short.

4.7 Atomistic N-I-N Diode

In Chapter 3 the functionality of the developed 3D Self Consistent EMC simulator us­

ing traditional continuous doping was demonstrated through the simulation of an N-I-N 

diode. In order to further validate the application of the ab initio approach to impurity 

scattering within an atomistic simulation, the same N-I-N diode is simulated here with 

the modification that the continuous doping is replaced by a randomly generated distribu­

tion of singly ionized donor atoms.

The device contains 1,139 donors randomly placed within the simulation domain ac­

cording to the doping concentration. This represents significantly fewer donors than pre­

viously simulated and variation from the bulk properties may be expected, but similarities 

between the continuous and atomistic doping results should remain due to the large size 

of the device and the dominance of phonon scattering.

4.7.1 ’atomistic’ electrostatic potential and electron concentration

Figure 4.28 shows the 3D distribution of the electrostatic potential obtained from the 

simulation of the atomistic N-I-N diode (cf. figure 4.28). The individual donors are 

marked and can again be seen to coincide with local increases in potential while the slowly 

varying potential profile is similar to the continuous device. The agreement between the 

slowly varying average potential within the atomistic device and the continuous potential 

is illustrated in figure 4.29. A slight difference in the depletion regions in the atomistic 

case is associated with variation in the non uniform doping distribution compared to the 

continuous case.
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Figure 4.28: 3D  potential profile th roughout ’a to m is t ic ’ N-I-N  d iode as sim ulated  in ch ap ­
ter 3. Resolved local increase in potential is seen around the m arked  donors. Potential 
m easured in Volts

T he electron concentra tion  illustrated in figure 4 .30  closely fo llow s the dop ing  c o n ­

centration  within the highly doped  regions. In the sam e figure, the e lectron concentra tion  

distribution from  the a tom istic  s im ulation  is also  com pared  with that obta ined  from  the 

continuous simulation. It can be seen that the m ean  o f  the electron concentra tion  profile 

obtained from  the a tom istic  sim ulation  closely fo llow s the e lectron concentra tion  from  

the con tinuous simulation. This  builds fur ther confidence in the e lectron dynam ics  within 

the atom istic simulation. Som e deviation  is observed  betw een  4 0 0 nm and 4 5 0 nm and 

is associa ted  with local reduction in d onor density  com pared  with the con tinuous case at 

that point.
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Figure 4.29: G ood  agreem ent betw een electrostatic  potentials resulting  from  the atom istic  
and con tinuous s im ulations are observed and reflect the validity o f  the method.

4.7.2 ’atomistic’ electron energy and velocity

Both distributions o f  the average electron energy and  velocity  a long  the length o f the 

a tom istic  device, plotted in figures 4.31 and 4 .32  respectively, are consis ten t with the 

con tinuous simulation. Small d iscrepancies  observed  in the atom istic  energy profile m ay 

be attributable to noise given the limited num ber o f  electrons contribu ting  to the statistics. 

However, the noticeable peak in energy around 2 5 0 nm is assoc ia ted  with a close grouping  

o f  tw o donors  within the intrinsic region w hich is in turn seen as a peak in the velocity 

at the sam e location. T h e  tw o donors  responsible  are h ighlighted  in figure 4 .33 which
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Figure 4.30: A tom istic  (a tom ) electron concentra tion  com pared  with the atom istic  donor 
concentration  and electron concentra tion  from  the con tinuous (cont) s imulation. T h e  e lec ­
tron concentra tion  fo llows the doping  with a m ean close to the con tinuous  concentration.

show s the donor locations in the device along the x-axis. T h is  variation in energy and 

velocity adds to the random  dopant effects already observed  in the potential variation in 

the depletion  regions.

4.8 Conclusion

Within this chapter, the limitation o f  ionized im purity  scattering rates and the continuous 

descrip tion o f  doping  in the sim ulation  o f  ultra-small devices w as d iscussed. A n ab ini­

tio m ethod that recovers the scattering from  a random  arrangem en t o f  discrete charges,
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Figure 4.31: Electron energy profile a long the device fo r both a tom istic  and continuous 
sim ulations. G ood  agreem en t is seen, with  variation observed  in the atom istic  simulation.
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Figure 4.32: Electron velocity profile along the device for both atom istic  and con tinuous 
simulations. A gain  good ag reem en t is seen, with h igher velocity  in the atom istic  region.

F igure 4.33: D onor positions as v iew ed a long the y-axis. x  runs from  left to right as 
indicated on the scale. T he  tw o closely spaced donors  responsib le  for the local increase 
in the energy and velocity profiles (figs. 4.31 and 4 .32  ) are h ighlighted.
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both fixed and mobile, was carefully developed. The integration method used was eval­

uated under simple test conditions to ensure energy conservation and the reproduction 

of Coulomb scattering. In order to achieve energy conservation within the limitations 

of the chosen integration approach, it was necessary to limit the short range Coulomb 

interaction. Various form of short range interactions were evaluated in respect of both 

energy conservation and the ability to recover Coulomb scattering. All of them limit the 

magnitude of large angle scattering, which is justifiable only due to the small probability 

of such large angle scattering. The application of the short-range correction to the mesh 

force in order to accurately describe interactions was then discussed and the approach 

was validated through the reproduction of the low field bulk electron concentration de­

pendent mobility in silicon. The validation was extended to the atomistic simulation and 

comparison of the N-I-N device simulated using continuous doping in Chapter 3.
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Chapter 5

Mobility Variations

5.1 Introduction

A method capable of deterministically and accurately representing the scattering of elec­

trons from a random charge configuration in EMC simulations has so far been discussed. 

Within the model, Coulomb scattering is incorporated through the trajectories of self con­

sistently propagated electrons in the field associated with the unique charge arrangement. 

Verification of the model was presented in the last chapter by the reproduction of the dop­

ing concentration dependence of the low field bulk mobility of electrons in silicon and 

by comparing an atomistic simulation of an N-I-N diode to a previous continuous sim­

ulation. The ab initio bulk mobility simulations were performed using a large enough 

number of donors in order to approximate a self averaging ensemble in a regime custom­

arily described using ionized impurity scattering rates. In the simulation of ultra-small 

next generation MOSFETs, there will be only a few tens of dopant atoms present on aver­

age in the active region of the device. This represents a system that is not self averaging, 

prohibiting the use of bulk impurity scattering rates and introducing transport variations 

from device to device. Therefore, in this chapter the ab initio method is applied to the
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study of the impact of the doping atomicity in small devices.

Ab initio implementations of Coulomb scattering in transport EMC simulations have 

recently been reported and used to study a variety of topics. The effect of the long and 

short range Coulomb interactions upon the thermalization of electrons within the channel 

have been reported for a short channel MOSFET [80]. The inclusion of the short-range 

Coulomb interaction led to a significant reduction in electron velocity at the end of the 

channel due to the electrostatic interaction with the dense, thermal electrons within the 

drain. Simulation with the ab initio Coulomb scattering approach has also been employed 

in studying current and threshold voltage variations associated with random dopants in a 

small set of MOSFETs [81]. The work also shows the correlation between threshold 

voltage shift and dopant position close to the semiconductor/insulator interface. This 

highlights the extent of the statistical simulations carried out using this method. An al­

ternative technique based upon treating the long range Coulomb interaction through the 

mesh resolved force and replacing the short-range force correction with an effective scat­

tering rate has been used to reproduce bulk concentration dependent mobility for elec­

trons [142], and to study current variations in small MOSFETs in a deterministic, illus­

trative way [143,144].

Despite the above references, there has been no ab initio simulations of large sta­

tistical sets of devices, like those routinely performed within the Drift-Diffusion (DD) 

approximation [24,56,57], characterising the magnitude of random dopant induced de­

vice parameter variations. The lack of statistical data results from the prohibitively long 

simulation times as compared with other methods, allowing only for simulation of the 

illustrative examples.

Computational efficiency still remains an important factor in the competitive device 

design processes and to this end DD simulations are commonly used. The implementation 

of simple corrections in order to account for basic, yet important, quantum mechanical ef­
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fects are often included within DD simulations in an attempt to extend the range of validity 

when simulating small devices [61-63] and atomicity [59,60]. The question regarding the 

accuracy of atomistic simulations using DD as compared with the more accurate transport 

models provided by MC simulation has, however, remained unanswered.

In this chapter, the developed MC simulation methodology with ab initio Coulomb 

scattering is used to study mobility variations due to discrete charges in small volume de­

vices in comparison with DD simulations that only capture associated electrostatic vari­

ations. Such mobility variations, if significant, are expected to play an important role in 

intrinsic parameter variations since there still remains a strong correlation between the 

mobility and drive current in nano-scale devices [145]. At the beginning of this chapter in 

section 5.2, a new charge assignment scheme for continuous doping is proposed in order 

to consistently represent combinations of both continuous and atomistic doping within 

the same simulation domain. The impact of a single trapped charge in a MOSFET is in­

vestigated in section 5.3. Finally a statistical set of devices with fully atomistically doped 

channels is simulated in section 5.4.

5.2 Continuous-CIoud-In-Cell Charge Assignment

In the structures simulated in this chapter it is necessary to combine both continuous and 

atomistic doping. Indeed, combining the two doping descriptions within the same sim­

ulation may be advantageous in general. In such combination however, care needs to 

be taken to ensure the mesh assigned doping charge is consistently treated. Otherwise a 

discrepancy arises in combining the charge assigned to represent the continuously doped 

mesh cells and the Cloud-In-Cell approach used to represent the individual dopant atoms. 

This discrepancy results from the different manner in which the two doping types are at­

tributed to the mesh nodes in the discretization of the Poisson equation. The same incon-
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Figure 5.1: A ss ignm ent o f  charge from  the uniform  region bound by the m esh cell to the 
associa ted  node is essentially  the N G P  charge ass ignm en t schem e, w hen considering  the 
node centred  mesh.

sistency also  applies  to the assigned electron charge within a con tinuously  doped  region 

and is therefore im portant within traditional M C  sim ulations. Inconsistencies in the m esh 

ass ignm ent lead to unw anted  variation in charge density and therefore  in electrostatic 

potential. Such artefacts are detrim ental to accura te  and physically  m eaningful s im u la ­

tions and should  be rem oved. T herefore , in the s im ulation  o f  small dev ices/vo lum es on 

fine m eshes, it is necessary  to use a consis ten t charge ass ignm en t schem e for all d iscrete 

charges and continuous charge densities. Such a t rea tm ent is dependen t  upon the choice 

o f  m esh descrip tion  and is d iscussed  next for  the tw o choices  d iscussed  in chap te r  2.

5.2.1 Node Centred Mesh

Traditionally , the contribution o f  charge from  the con tinuous dop ing  ass igned to any m esh  

point is given by the am o u n t o f  charge contained  within the cell vo lum e associa ted  with
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Charge Assignment Net Charge 
Distribution

Figure 5.2: T hough  the positons o f  electrons with respect to the fixed background charge 
m ay satisfy charge neatrality, the difference in the charge ass ignm en t to the m esh  guar­
antees that neutrality can not occur at the edge o f doping  regions. T h u s  irrepressable 
fluctuations within the electrostatic potential occur.

that m esh point. T h is  is sim ply  determ ined  as the product o f the specified charge density  

and cell volume. For the first choice of m esh described  in chap te r  3 and advocated  by 

H ockney  and Eastw ood, m esh  points are centred within the cell. Cell boundaries  are 

parallel to m esh  lines but situated half  way betw een  the m esh  points. In this case this 

con tinuous charge ass ignm ent can be regarded as equivalent to the N earest-G rid-Poin t 

(N G P) schem e applied to the total charge within the cell vo lum e as illustrated fo r  a 2D 

m esh  in figure 5.1. T h is  schem e conflicts with the C loud-In-C ell (CIC) schem e used to 

assign the charge associa ted  with both electrons and discrete donors ,  and this conflict is 

in turn responsible  for  the ex tended  electron charge at abrupt hetero junctions, previously 

m entioned  as a potential p roblem  of the C IC  schem e (chapter 3).

T he problem  arises because, w ithin schem es o f  h igher o rder than NGP, charge assoc i­
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ated with a particle is assigned over surrounding mesh points, hence neighbouring cells, 

while continuous doping charge is assigned to just one cell. As a result of this conflict, 

illustrated in figure 5.2, electron charge assigned via the CIC scheme can never accu­

rately balance donor charge at the edge of a continuously doped region. This may lead to 

significant unwanted artefacts within the mesh based potential.

Similarly, though more importantly in this case, the same confliction results in a poor 

description of the donor charge density when the doping changes from a continuous 

medium to discrete charges. At the boundary between continuous and discrete doping, 

CIC assignment from the discrete charges overlaps with the charge assigned from the 

continuous medium, which ends abruptly due to the NGP-like assignment. As illustrated 

in figure 5.3, this results at the boundary between the two regions in an overestimation of 

the charge density in the continuous medium, followed by an underestimation in the dis­

crete medium. These unwanted artefacts are mesh dependent leading to larger fluctuations 

in the potential associated with smaller mesh spacings.

It is therefore desirable to modify the charge assignment in the continuous charge 

medium in order to reproduce the CIC scheme. Such modification should simply result in 

smoothing of the continuous charge over an extra mesh point and can be achieved by using 

a smoothing kernel which is propagated over the initial, NGP assigned, charge regions. 

The application of the smoothing kernel re-apportions to a central mesh point the contri­

bution of charge within surrounding cells that would otherwise have been assigned to it 

using the CIC scheme. The elements of the smoothing kernel are then simply the fraction 

of continuous charge contained within the central mesh cell, and those cells surrounding 

it, that need to be re-apportioned to the central mesh point.

The elements of the smoothing kernel can be determined by considering that the con­

tinuous charge consists of a regular array of uniform sub-charges with charge equal to 

Q d x d y d z /V , where Q is the continuous charge within the whole cell and Jjc, dy , dz are
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Figure 5.3: C harge assigned from  the discrete dopants  overlaps with that assigned to 
represent the continuous doping. O verlap  from  the con tinuous dop ing  to the discrete 
doping  does not occur and leads to over/under es tim ation o f  the dopan t  charge density.

d im ensions o f each sub-division within the cell. Each sub-charge is then assigned not via 

the N G P  schem e but via the CIC schem e as illustrated in figure 5.4. Within this schem e, 

charge ass igned  to any m esh  point fo llow s from  the presence o f a sub-charge within one 

m esh spacing o f the point in all directions. T h e  e lem ents  o f  the sm ooth ing  kernel are 

ob tained by taking the integral o f  the C IC  ass ignm en t function, applied  now to a regular 

array of infinitesimal sub-charges, over the areas associa ted  with each contributing cell 

given by
O rxi py\ rzi
-  (1 - \ x \ ) d x  (1 -  |y |) dy I  ( l - | z | ) d z  (5.1)
v Jx o Jyo Jzo

w here  xo, zo» - i a r e  th ex ,  y  and z limits o f  the contributing cell in the C IC  ass ign ­

m ent region with respect to the central m esh point. In a 3D  m esh  there are tw enty  seven
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Figure 5.4: C ontinuously  doped  charge th roughou t the m esh cell is assigned via the CIC 
manner, consistently  with the d iscrete charge.

contributing regions to consider that, due to the sym m etry  o f  the ass ignm en t schem e, re ­

duce to fou r  d is t inguishable regions h ighligh ted  in figure 5.5. T h e  corresponding  limits 

are tabulated in table 5.1. Region 1 is assoc ia ted  with the central m esh  cell itself, where 

integration in this region is perform ed over one eighth o f  the total cell volume. O f  the 

ne ighbouring  cells, there are 3 d is t ingu ishab le  types. Six cells that are directly ad jacent 

to the central cell and share a com m on  cubic  face define region 2. T h e  integration over 

region 2 is over a quarte r  o f  the total vo lum e associa ted  with these neighbouring  cells. 

Region 3 consists  the e ight ne ighbouring  cells sharing a co m m o n  edge and the integration 

over this region covers half  the total vo lum e assoc ia ted  with these cells. Finally, region 4  

is the volum e associa ted  with the eight neighbouring  cells sharing a co m m o n  corner  and 

the integration is carried out over this entire region. C arry ing  out the integration defined 

by equation 5.1 over these regions, and m ultip ly ing  by the fraction  o f  the total contributing 

volum e they represent, y ields the e lem en ts  o f  the sm ooth ing  kernel w hich are com pactly
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Figure 5.5: Unique regions over which integration around a node, tabulated in table 5.1, 
is performed.

written for arbitrary dimensions N  as

pjc,y,z — ^  /  ( 0  /  U) f  ( k ) P x + i , y + j z + k  (5.2)
V /  i , j , k = - 1,0,1

where

(4, a = ± 1
5  (5.3)

1 , a =  0

and the number of such functions /  (a) should equal the number of dimensions. Appli­

cation of this smoothing kernel to an NGP assigned continuously doped region is termed 

the Continuous-Cloud-In-Cell (CCIC) charge assignment process. In 3D the kernel is 

a 3 x 3 x 3 matrix that is applied to a central mesh point and the 26 surrounding mesh 

points. At the edge of the discretisation mesh, where surrounding points are absent, the 

smoothing kernel is passed over reflections of the mesh points about the boundaries in
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Region *o xi yo yi Zo Zl
1 0  5 0 i 0 I
2 2  1 0 i 0 i
3 2  1 2  1 0 i
4 2  1 2  1 2  1

Table 5.1: Unique regions and limits of integration associated with cells contributing to 
the assigned charge at a node. Regions refer to those illustrated in figure 5.5

order to ensure conservation of charge. As this charge assignment is consistent with the 

CIC assignment from a point charge, application of this smoothing guarantees an accu­

rate transition between all doping regimes and ensures that the electron charge density 

can balance the donor charge density at any heterojunction.

5.2.2 Node Aligned Mesh

For the mesh used in this work, the mesh boundaries are aligned along lines connecting 

mesh points rather than lines half way between mesh points. Any cell is now defined 

within these boundaries and this changes the description of the material on the mesh. Un­

like the previous case, where assigning the continuous doping charge to a grid node could 

be thought of as assignment by the NGP scheme, the charge within a cell is now assigned 

entirely to the lowest integer grid point in each dimension that bounds the cell. This is il­

lustrated in figure 5.6 (cf. figure 5.1). Thus, although the cell boundaries include multiple 

mesh points, the properties of the cell are still associated with just one in this context. CIC 

assignment of a point charge still implies assignment to the neighbouring cells in each di­

rection. Thus the problem of assigning charge over an abrupt heterojunction within the 

continuous doping regime is still present.

Similarly to the previous case, the junction between a continuous doping region and
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Figure 5.6: A ss ignm en t o f  con tinuous  charge within the cell is entirely to the lowest 
integer node in all d im ensions  within the cell. T h is  differs from  figure 5.1

an atom istic  doping  region requires attention. C o m bin ing  a con tinuously  doped region 

with the C IC  schem e fo r  atom istic  doping  ass ignm en t results in tw o types o f boundary 

artefacts being im posed due to the lack o f sym m etry  in the con tinuous  charge assignm ent 

as is illustrated in figure 5.7. If the continuous region precedes the a tom istic  region on the 

mesh, the charge density  is under-represented  at the m esh point defining the boundary. 

Alternatively, if the con tinuous region proceeds an atom istically  doped  region, the charge 

density  at the boundary  is overestim ated.

By properly  accounting  fo r  the ass ignm en t o f  the continuous charge in the sam e m an ­

ner as before (see figure 5.8) such problem s are avoided. As the cell descrip tion is d if­

ferent, the bounds o f integration over  the regions o f contributing charge in equation 5.1 

have to be modified. From  the m esh  construction  and the sym m etry  o f  the C IC  ass ign­

ment, each o f  the eight cell that in 3D borders a co m m o n  mesh point contributes the sam e 

fractional am oun t o f  the charge to that m esh point. T herefore , instead o f  fou r  unique co n ­
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underestimated overestimated
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Figure 5.7: Charge is under represented  at the transition from  con tinuous  to atom istic 
doping  due to the d ifference in the charge ass ignm en t schemes.

tributing regions as is the case for the previous m esh, there is only one. T h e  new region o f 

integration, illustrated in figure 5.8, is over an entire cell ad jacen t to the m esh with inte­

gration limits given in table  5.2. A pp ly ing  these limits yields a s im ple sm ooth ing  function 

that similarly  reproduces the C IC  assignm ent.

A gain  N  is the num ber o f  d im ensions  and  the subscrip ts  labelling the d im ensions  coincide 

accordingly. In contrast to equation 5.2, used fo r  the node centred  m esh  descrip tion , in 

3D  equation 5 .4  represents  a 2 x  2 x  2 matrix o f  identical e lem ents  that is applied  only 

over the principal and the preceeding  m esh points. A t the edge o f  the discretisa tion m esh 

the kernel is passed over copies o f  the available nodes abou t the edge to ensure charge

144



CHAPTER 5. MOBILITY VARIATIONS

“  “  -T

© 1

I

-  -  4

Figure 5.8: C ontinuous  charge within a cell is evenly distributed am o n g  the surrounding  
nodes (cf. figure 5.4). T h e  fraction o f  charge ass igned  to the central m esh point from  each 
surrounding  cell is determ ined  by integrating over 1 unique region.

Region *0 X\ To y i zo Z\
1 0 1 0 1 0  1

Table 5.2: L im its  o f integration over the unique region fo r  the evaluation o f  the fraction 
o f charge conta ined  within a cell to be associa ted  with a m esh point in order to replicate 
C IC  assignm ent.

conservation. This  form  o f  the C C IC  sm ooth ing  evenly distributes the charge contained 

within a cell to the surrounding  nodes (see figure 5.8) and is specific to the choice  of 

m esh and material property identification adopted within this work. It has been applied 

consistently  th roughout the next simulations.

5.2.3 Application of CCIC Charge Assignment

T h e  effect o f  applying the C C IC  sm ooth ing  on the doping  configuration  illustrated in 

figure 5.7, the transition betw een continuous to a tom istic  and back to con tinuous dop-
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Figure 5.9: T he  donor concentra tion  profile using a m ixture o f  con tinuous  and atom istic 
doping, with and w ithout apply ing  the C C IC  charge ass ignm ent function  to the continuous 
donor charge.

ing, is now shown. A uniform  m esh  with m esh spacing Hx =  Hy — Hz — 5nm  was 

constructed consisting  o f  129 x 65 x 65 mesh points. For x  <  2 0 0 nm and x  >  4 4 0 nm 

the volum e was doped  with a con tinuous  donor concentra tion  equal to 1 x 1 0 18cm - 3 . 

For 2 0 0 nm <  x  <  4 4 0 nm the doping  was considered  as a tom istic  at the sam e concen tra­

tion. T he  doping  concentration  profile for this s tructure is show n in figure 5.9 with and 

w ithout the application o f  the C C IC  ass ignm en t to the con tinuous  donor charge. W ith­

out the sm ooth ing , the transition from  con tinuous to atom istic  doping  results in a s ig­

nificantly undervalued d onor charge concentra tion , while the subsequen t transition from  

atom istic  to continuous show s significant overestim ation. T he  underestim ated  concentra-
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Figure 5.10: Sam e donor configuration as in figure 5.9 but ass igned to a m ore coarse mesh. 
T h e  same inconsistency is seen at the transition from  con tinuous  to atomistic doping. 
A pplication  o f the C C IC  function again rem oves this.

t i o n i s 5 x  10 17cm -3 while the overestim ated  concentra tion  is 1.5 x 1 0 18c m - 3 , represen t­

ing ± 5 0 %  o f  the required value. T h is  is as expected  from  the d ifference in the ass ignm ent 

schem es at the two boundaries,  and upon apply ing  the C C IC  ass ignm en t the transitions 

betw een the regions are accurate ly  accounted  for.

F igure 5 .10  shows the sam e donor configuration, but this t im e on a m esh tw ice  as 

coarse with 65 x 33 x 33 m esh  points and a resulting  uniform  m esh  spacing o f  10nm. 

T h e  sam e consistent error o f  ± 5 0 % ,  is seen at the transition betw een  the con tinuous and 

atom istic  doping  regions, in troduced by the ass ignm ent o f  the charge conta ined  within 

each cell. However, this variation in charge density  results in a less significant variation in
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the potential and field in this region due to the larger mesh spacing. In this way the artefact 

in the charge assignment introduces mesh dependent variations in potential. Again, the 

application of the CCIC assignment function results in an accurate transition between the 

two regimes.

In conclusion, the proposed smoothing of the continuously assigned doping charge 

density maintains consistency in the assigned charge densities associated with either 

dopant atoms or electrons and continuous charges regions. A smoothing kernel has been 

evaluated which transforms the NGP assigned continuous charge density to match the CIC 

assignment scheme used in the case of discrete charges. The result of the new Continuous- 

Cloud-In-Cell charge assignment improves the doping charge density description in tran­

sition from continuous to atomistic doping and removes mesh based artefacts in the po­

tential associated with inconsistently assigned charges.

5.3 Single Trapped Charge

In this section, the developed 3D MC simulator featuring ab initio Coulomb scattering is 

used to evaluate the impact of transport variation associated with scattering from a trapped 

charge on the magnitude of the corresponding drain current reduction for a series of well 

scaled ^-channel MOSFETs. By comparison with Drift Diffusion (DD) simulations that 

only capture the electrostatic effects associated with the trapped charge, the contribution 

to the current reduction due to scattering is demonstrated. Simulations are performed at 

low drain bias for MOSFETs with channel lengths of 30nm, 20nm and 10nm. Compared 

to DD, MC simulation shows significant additional reduction in drain current. The reduc­

tion in current due to scattering increases with the gate voltage towards strong inversion 

conditions.
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02014

Figure 5.11: DD solution o f the potential th roughout the s im ple 3 0 nm M OSFET. T he 
location o f  the trapped charge is clearly d iscernable as the region o f  low er potential in the 
centre  o f  the channel.

5.3.1 Introduction

M ass production M O S F E T s will reach nanom ete r  (sub-lOwrz) d im ensions  near the end 

o f  the International R oadm ap  for Sem iconducto rs  (ITRS) 11 ]. T rapp ing  o f  a single carrier 

charge in defect  states near the Si/gate d ielectric interface and the related local m o d u la ­

tion in carrier density and /o r m obility  [73 ,74] will have a profound effect on the drain 

and  gate curren t in such devices |6 4 | .  C orresponding  R andom  Telegraph  Signals (RTS) 

with am plitudes  as large as 6 0 %  have been a lready observed  experim entally  [67]. This 

problem  will be exacerbated  by the h igher defect  density  in high-K materials, w hich  are 

expected  to replace S i0 2  in the gate stack som ew here  betw een  the 6 5 nm and the 4 5 nm 

technology  nodes [ 1461. C urren t fluctuations on such a scale will becom e a serious issue, 

no t only as a source o f excessive low frequency  (LF) noise in ana logue and m ixed-m ode
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L (nm) T0x (nm) N  (cm 3)

30 1.00 5 x  1018

20 0.75 1 x 1019

10 0.50 3 x 1019

Table 5.3: Length scales and parameters of the simple MOSFET structure used within 
this simulation.

circuits [147,148], but also in dynamic and SRAM memories [149] and other digital ap­

plications. Depending on the device geometry, a single or few discrete charges trapped in 

hot carrier or radiation created defect states will be sufficient to cause significant perfor­

mance degradation in decananometer and nanometer scale MOSFETs [150,151].

Until now the 3D simulation studies of the effects associated with trapping of a single 

charge in the channel of decanano MOSFETs, and the corresponding RTS amplitudes, 

were carried out under the DD approximation [65]. Such simulations only capture the 

electrostatic creation of an inversion layer exclusion region around the trapped charge 

which reduces the overall current flowing through the device. It is still debatable in the 

literature as to whether the electrostatic reduction in the carrier density or increased scat­

tering in the channel dominates the reduction in current in response to the charge trapping 

and in determining the magnitude of the RTS amplitudes [72-74].

The developed MC simulator, explicitly including Coulomb scattering through the 

real space trajectories of carriers, is here applied to study the transport effects associated 

with scattering from the trapped electron. The MC simulation incorporates the same 

electrostatic effects as DD but, importantly, the additional Coulomb scattering from the 

trapped charge is also incorporated. By comparing the MC and DD simulations, it is 

possible to isolate the specific contribution of the additional Coulomb scattering within 

the current reduction.
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Figure 5.12: C au ghey-T hom as  m obility  model fit to the bulk M C result ob tained using the 
B rooks-H erring  scattering rate. T h is  serves to allow com parison  o f  D D  and M C results.

5.3.2 Simulation methodology

In order to study the im pact o f  scattering on the curren t reduction associa ted  with charge 

trapping, three rc-channel M O S F E T s with square channels  m easur ing  30nm, 2 0 nm and 

10nm have been sim ulated using both 3D D D  sim ulations and M C  sim ulations featuring 

ab initio C o u lo m b  scattering. Each device has a s im ple structure and is well scaled to 

achieve good electrostatic integrity. T he  basic device param eters  are given in table 5.3. 

A single negative charge is p laced in the centre  o f  the channel at the Si/SiOo interface 

and represents  a trapped electron. In this position the electrostatic im pact on the current 

flow within the channel at low drain voltage is m ost p ronounced  |6 5 | .  C on tinuous  d o p ­

ing is o therw ise em ployed  within the channel and in the source/dra in  regions. O nly  the
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Coulomb scattering from the trapped electron is ab initio included in the Monte Carlo 

simulations, otherwise conventional ionised impurity scattering rates are used throughout 

the device to represent the scattering associated with the continuous doping. Within the 

DD simulations, analytical concentration and lateral-field dependent mobility models are 

used. The parameters of these models are chosen to best fit the concentration and field 

dependent mobilities obtained through bulk MC simulation, rather than fitting to experi­

mentally observed values. In this way DD and MC simulations can be fairly compared. 

Comparison of the analytical mobility models with bulk MC results for concentration 

dependent and field dependent mobility are shown in figures 5.12 and 5.13 respectively. 

No perpendicular-field dependence of the mobility is used in the DD simulations as this 

implies the action of surface roughness scattering which is not included within the MC 

model.

The simulations are carried out at a low drain bias of 50mV for all devices in order 

to minimize non-equilibrium transport and maintain a fair comparison between DD and 

MC results. In this case there is little difference in the resulting self-consistent potential 

and electron concentration between the two simulation techniques. That this is the case 

is seen by comparing the electron concentration resulting from DD and self consistent 

MC simulation in figures 5.14 and 5.15. Therefore, in order to reduce simulation times, 

MC simulations are performed in the frozen-field approximation where the field used is 

obtained from a prior self-consistent DD solution. In all simulations, Poisson’s equation 

is solved on a uniform mesh with a mesh spacing of 0.5 nm. Since the MC simulations are 

not self-consistent, the Coulomb potential of the individual carriers remains unresolved 

and the carrier-carrier interactions are excluded. The frozen-field approximation is further 

validated by comparing results obtained using self-consistent DD and frozen-field MC 

simulations. The gate voltage dependence of the drain current for the 30 nm MOSFET 

obtained from both methods is plotted in figure 5.16. The agreement over the range of gate
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Figure 5.13: Fit o f  the velocity-field curve to bulk M C sim ulation, a llow ing com parison  
between D D  and M C results.

voltages is good with M C  sim ula tions giving consistently  h igher current, overestim ating  

D D by around 2 0 % . C om parisons  fo r  the 2 0 nm and \0nm  device show sim ilar ag reem en t 

at high gate voltages but larger d isagreem ent at low gate voltages. T h is  is re lated to 

s ignificant ca rrier heating in these very short devices, even at 50mV  drain voltage, which 

cannot be cap tured in the D D  sim ulations. F rom  these results it is argued that the frozen- 

field approx im ation  deliver sufficient accuracy to allow a fa ir  com parison  betw een the DD 

and the M C  sim ulations, particularly  at high gate voltage.

To conduc t the study, the drain curren t is estim ated  over a range o f  gate voltages 

for each device, with and w ithout a single trapped  electron present in the centre  o f  the 

channel. T he drain curren t is estim ated  using both self-consis ten t D D  sim ula tions and 

frozen-field M C  sim ula tions using the correspond ing  D D  potential solution. For the two
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Figure 5.14: Electron concentration  obta ined  from  Drift D iffusion (top) and self-
consistent M onte Carlo sim ulation  (bottom ) within the source, channel and drain o f  the 
30nm  device show ing good agreem ent.
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Figure 5.15: Electron concentra tion  profile from  D D  and self consis ten t M C  sim ulation 
using the sam e data presented  in figure 5.14. G ood  ag reem en t validates the frozen  field 
approxim ation.
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Figure 5.16: C urrent characteristics  fo r  the 3 0 nm device as de term ined  from  D D  and 
frozen field M C simulation. T he  results are com parab le , with M C typicaly giving a larger 
current, again validating the frozen field approach  taken.

sim ulation techniques, the percentage reduction in current upon including the trapped 

charge is then evaluated and plotted as a function  o f  the gate voltage. C om parison  and 

interpretation is perform ed on these results.

5.3.3 Results

5.3.3.1 Percentage C urren t Reduction in 30nm MOSFET

T he self-consistent D D  solutions precede the frozen-field M C  sim ulations. As previously 

stated, the D D  sim ulations only accoun t for the electrostatic reduction in the local carrier 

density around the trapped charge. T he  potential f rom  a typical D D  solution is show n in
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Figure 5.17: Percentage reduction in curren t upon in troducing a t rapped  charge in the 
centre o f  the 30nm  M O S F E T  for a series o f  applied  gate voltages. Results are show n for 
both M C and DD sim ulation. A lso  plotted is the contribution o f  scattering to the total 
reduction from  M C

figure 5.11 at the start o f  this section and  clearly shows the potential-well in the centre 

o f  the channel. This s im ply increases the resistance o f the channel by the exclusion o f  a 

circu lar  part o f  the inversion layer a round the trapped electron w hich  leads to the current 

reduction |65]. T he percentage reduction in curren t as a function  o f  the applied gate bias 

upon in troducing the trapped  charge is plotted in figure 5.17.

A t low gate voltages, in the subthreshold  regim e, the inversion layer density is low 

and canno t efficiently screen the trapped  charge. This  results in a large charge exc lu ­

sion region and a correspondingly  large reduction  in current. A t h igher gate voltages, 

in the strong inversion regim e, the increased  screening  from  the high density o f  carriers
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in the inversion layer reduces the radius of the exclusion region surrounding the trapped 

charge. Consequently there is a decrease in the percentage current reduction. The effect 

of screening is therefore to dramatically reduce the RTS amplitude which, for example, in 

the 30 nm MOSFET drops from 15 % in the subthreshold region to less than 1 % in strong 

inversion.

The frozen-field MC simulations follow the DD simulations using, for each device and 

each bias point, the potential obtained from the DD simulations. Unfortunately the MC 

approach is very inefficient in the subthreshold regime where the channel carrier density 

is very low, requiring excessively large simulation times in order to accumulate sufficient 

statistics to allow an accurate estimation of the current. Therefore, the MC simulations are 

restricted to the range in gate voltages from 0.4 V to 1.0 V. Within the MC simulations, 

similarly to the DD simulations, the inclusion of the trapped electron results in a reduction 

of the drain current as also plotted in figure 5.17.

5.3.3.2 Separation of Electrostatic & Coulomb Scattering Effects

The same qualitative dependence on gate voltage is observed, with lower percentage re­

duction in current at higher gate voltages due to greater screening of the trapped charge. 

However, the percentage reduction is consistently larger compared with the DD results. 

Assuming the electrostatic dependence is the same in both simulations, the difference be­

tween the MC and DD results is due to additional scattering from the screened Coulomb 

potential of the trapped electron. The difference can be expressed as a percentage of the 

total current reduction estimated from MC and can be used to evaluate the importance of 

scattering over electrostatic charge exclusion. This percentage scattering contribution is 

also plotted in figure 5.17. At Vq =  0.4 V, it is seen that the contribution from scattering 

accounts for 30% of the total current reduction. Here, where screening is weak, the elec­

trostatic exclusion of carriers within the channel is the dominant mechanism in reducing
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the current. As the gate voltage rises to Vq — 1.0 V, and the screening rises with carrier 

density within the channel, the percentage contribution from scattering rises to around 

43 %, highlighting the increased importance of Coulomb scattering. Thus, while the elec­

trostatic influence of the trapped charge determines the response of the current reduction 

to the applied gate bias, additional scattering increases the current reduction at all biases. 

The electrostatic influence is dominant in the near threshold regime, and arguably into 

the sub-threshold, while at high gate voltages, corresponding to strong inversion, scatter­

ing from the screened Coulomb potential becomes increasingly dominant and cannot be 

ignored.

It is unclear as to why the scattering contribution levels off around 43 % at the highest 

gate voltage. It should be made clear that the statistical error in the current estimation is 

of the order of 1 —2% and lies within the symbols plotted in figure 5.16. However, the 

simplification of the frozen-field approximation can not be ignored in the presence of no 

plausible physical explanation.

The component of current density from source to drain at the interface resulting from 

MC simulation is shown for the cases of Vq =  0.4V and Vq =  1.0 V in figures 5.18 and 

5.19 respectively, both with and without a trapped charge. In both cases, the trapped 

charge reduces the current density in the vicinity of the charge with a symmetry reflecting 

the symmetry of the screened charge potential. The current density resulting from DD 

simulation is shown for the same gate biases but only including a trapped charge in figure 

5.20. The same dependence is seen in these cases, with a larger region of low current 

density around the charge associated with the larger screening length at low gate voltages.

The current density profile from MC simulation along a line from source to drain 

through the position of the trapped charge is shown, both with and without the trapped 

charge present for all gate voltages, in figure 5.21. The pn  junctions marking the source 

/channel/ drain boundaries are marked by vertical dashed lines. The local reduction in
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-0.02142 0 .0014  0 .0243  0.0471 0 .0700  0 .0929  0 .1157

Figure 5.18: x-component of the average electron current density at the interface both
omitting (top) and including (bottom) the trapped charge. Vq =  0 .4  V, source to drain is
from left to right, c.f. Figures 5.19 and 5.20. Current density in Apim~2.
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Figure 5.19: ^-component of the average electron current density at the interface both
omitting (top) and including (bottom) the trapped charge. Vc = 1.0 V\ source to drain is
from left to right, c.f. Figures 5.18 and 5.20.Current density in Apim~2.
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Figure 5.20: x-component of the average electron current density at the interface from DD
simulation including the trapped charge. Vq = 0 .4  V (top), Vq =  1.0 V (bottom), source to
drain is from left to right, c.f. Figures 5.18 and 5.19. Current density in ApmT1.
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Figure 5.21: Current density  profiles along a line perpend icu lar f rom  source to drain 
th rough the position o f  the trapped charge, both om itting  (solid  lines) and includ­
ing (dashed lines) a trapped  charge, c.f. figures 5.18 and 5.19. Results plotted fo r  
Vg =  0.4, 0.6 , 0.8 , & 1.0 V.

current density  is clearly seen and drops to zero at the position o f  the trapped charge in all 

cases. W ha t can also be m ade out now is a lack o f  sym m etry  abou t  this point; the curren t 

density  drops sharply on the source side while  it rises m ore slowly on the drain side. This  

is due to a lack o f sym m etry  in the electron concentra tion  and is a result not reproduced  

within DD. T he  electron density  profile from  D D  and M C  sim ula tions a long  the sam e 

line for Vq  =  0 .4  V (w here  the screening length is greatest) is plotted in figure 5.22. It can 

be seen that the electron concentra tion  from  D D  is sym m etric  abou t  the trapped charge, 

while  that from  M C  sim ulation reveals a build up o f  electrons on the source side and
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a depletion on the drain side. It should be noted that the electron concentration from 

MC simulation is lower than that of DD within the channel due to the differing charge 

assignment schemes employed. The CIC assignment of the electrons in MC spreads the 

charge and within the channel does not accurately represent the exponential variation in 

electron concentration inherent to the DD solution.

This effect on the electron concentration is due to the Coulomb scattering. The re­

pulsive nature of the interaction accelerates electrons away from the trapped electron, but 

the lateral field from source to drain ensures that more electrons are driven towards the 

trapped charge from the source side than from the drain side. The deceleration of elec­

trons on the source side result in the accumulation, while those electrons scattered past 

the trapped charge are additionally accelerated towards the drain.
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Figure 5.22: Electron density  profiles a long a line perpend icu lar  f rom  source to drain 
th rough the position o f  the trapped charge, both om itting  (solid lines) and including 
(dashed lines) a trapped charge. Vq = 0 . 4 V.

5.3.3.3 Percentage C urren t Reduction in 20nm and lOnm M OSFETs

T h e  sim ulation results fo r  the 2 0 nm and  10nm M O S F E T s  are presented  in figures 5.23 

and 5 .24  respectively and show qualitatively s im ilar trends to that o f  the 3 0 nm device (fig­

ure 5.17). In successively sm aller  devices, the percentage reduction in current is p rogres­

sively h igher while the contribution from  scattering to the total reduction also increases. 

T h e  sam e dependence  o f  the electrostatic and scattering contribu tions as a function  o f  the 

applied  gate voltage is still m aintained, with scattering accoun ting  fo r the m ajority  o f  the 

curren t reduction at high gate voltages while  the electrostatics  dom inate  at low gate volt­

ages. It is w orth  noting that in the case o f the 10nm M O S F E T  the overall drive current
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Figure 5.23: Percentage reduction in current upon in troducing a trapped charge in the 
centre o f  the 20nm  M O S F E T  fo r  a series o f applied  gate voltages. Results are shown for 
both M C  and DD simulation , show ing increased reduction from  M C  sim ulation  and over 
the 3 0 nm device 5.17.

reduction associa ted  with the trapping  o f  a single electron is betw een 8 %  to 14%  at the 

expected  supply  voltages o f  0 .6  V to 0.8 V fo r  the corresponding  techno logy  node.

5.3.4 Conclusion

RTS am plitudes  resulting from  the trapping o f  a s ingle electron in the centre o f  the channel 

o f  nano-scale  rc-MOSFETs were s im ulated  using both se lf-consistent D D  and frozen-field 

M onte  C arlo  simulations. In the case o f  con tinuous doping  w ithou t considering  a trapped 

charge, the sim ulation  approaches give com parab le  results w hen  a low drain bias is ap ­

plied. A series o f  scaled devices with channel length o f  3 0 nm, 2 0 nm and 10nm were
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Figure 5.24: Percentage reduction in current upon in troducing a trapped  charge in the 
centre o f  the lOnm M O S F E T  fo r  a series o f  applied  gate voltages. Results are shown 
for both M C  and DD  sim ulation. Larger reductions in curren t are seen as com pared  with 
figures 5 .17 and 5.23 fo r  the 3 0 nm and 2 0 nm devices respectively.

studied over a range o f  applied  gate voltages at a fixed drain bias o f  5 0 mV. C om pared  

with DD sim ulation , M C  results in a larger reduction in curren t as a result o f  additional 

C ou lom b scattering associa ted  with the trapped charge, an effect unaccounted  for in DD. 

This highlights  the im portance o f  correctly  incorporating  scattering variation, and co n se ­

quently  m obility  variation, in nano  device simulation.

T he  contribution o f  scattering to the total reduction in curren t f rom  M C  sim ulations 

increases from  around 20 — 3 0 %  near threshold, to 40  — 6 0 %  in s trong inversion. This 

indicates that the electrostatic influence o f the trapped  charge is prim arily  responsible  

for the reduction in curren t at low gate bias, while additional scattering becom es equally
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Figure 5.25: Taken from  [ 1521, this show s the reduction in curren t due to a t rapped  charge 
p laced at varying positions a long the sem iconduc to r/insu la to r interface. T h e  results, o b ­
tained from  D D  sim ulation, show only the electrostaic influence w hich is sym m etr ic  about 
the m ax im um  im pact in the very centre  o f  the channel.

im portan t o r  m ore so at high gate bias. T he  s im ula tions indicate that the overall reduction 

in drive curren t as a result o f  only one electron trapping can reach m ore than  10%  in a 

1 0nm x  \0nm  w-MOSFET.

In all s im ulations perform ed, the trapped charge was located in the centre  o f  the ch an ­

nel where, at low drain voltage, it has the greatest influence 115 2 J. E lectrosta tically  in DD 

s im ula tions this is certainly true, as show n in figure 5.25, because  at low drain voltage the 

m ax im u m  o f  the potential barrier for  electrons betw een  the source and drain, w hich  deter­

m ines  the m agnitude o f  the drain current, is in the m iddle o f  the channel. A  charge trapped
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in the centre has the most profound effect on the barrier and therefore the strongest influ­

ence on the current. The impact of the trapped charge is also least screened from electrons 

within the source and drain. Results shown within this section then represent the electro­

static impact at it’s peak. However, Coulomb scattering need not necessarily follow the 

same trend, particularly at high drain voltage. Coulomb scattering is far more effective 

at low energies, and MC simulation has shown that a scattering centre placed nearer the 

source/channel junction has a greater effect on current reduction than one placed nearer 

the drain [153]. This is due to the lower energy of the carriers injected into the channel 

compared to those accelerated further down the channel. Therefore the relative contribu­

tions of the electrostatic and transport effects reported above is not the same for different 

positions of the trapped charge and at different bias conditions. It should be expected that 

Coulomb scattering will be more of a dominating factor when the trapped charge is lo­

cated near the source. Here scattering is most important while the electrostatic influence 

could be reduced due to the screening from the heavily doped source region. Moving 

towards the drain, particularly at high drain voltage, it is unclear as to whether or not 

Coulomb scattering will remain the dominant factor reducing the current as the ability to 

scatter is also reduced.

5.4 Atomistic MOSFET

In the previous section, the importance of accounting for variation in transport due to 

Coulomb scattering from an individual discrete charge was highlighted. It was shown 

that MC simulations result in a significant increase in current variation in the presence of 

a discrete charge compared to DD simulation results. While in the previous simulations 

the scattering from the trapped charge was treated directly, the ionized impurity scatter­

ing from the otherwise uniformly doped channel was treated through the Brooks-Herring
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scattering rate. Naturally, in such small devices, the ionized impurity scattering result­

ing from the discreteness of the doping charge should be similarly treated in an ab initio 

manner.

The statistical analysis of device parameter variations has previously been performed 

using the DD approach, which is still the most computationally efficient method to study 

a large ensemble of devices. Therefore it will be very interesting to compare intrinsic 

parameter variations for a fully atomistic device for an ensemble of devices obtained 

from DD simulations and MC simulations incorporating ab initio Coulomb scattering. It 

is expected that the proper accounting of the position dependent Coulomb scattering, and 

hence mobility variation, compared with the simple mobility models employed within 

the DD simulation will lead to larger device parameter variations. The magnitude of 

this difference and consequently the limitations of the DD simulation used for statistical 

analysis of random dopant induced parameter variations is the subject of the next section

5.4.1 Introduction

Previous simulation studies of random dopant fluctuation effects, similar to the studies 

of effects associated with trapped charges, have been predominantly performed using 3D 

Drift-Diffusion (DD) simulators [46,54,55,65]. Again, such simulations only capture 

the electrostatic effects associated with random discrete dopant distributions in providing 

an estimate for the variations in the threshold voltage and the drive current. However, the 

DD simulations cannot capture the complex effects associated with the variation in carrier 

transport, from device to device, associated with the different numbers and configuration 

of ionized dopants within the channel that act as Coulomb scattering centres in a non self­

averaging manner. Therefore the published results for the variation in the drive current 

obtained from DD simulation most probably underestimate the real magnitude of the
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intrinsic parameter variations.

Although ab initio Coulomb scattering from ionized impurities through the real space 

carrier trajectories has previously been included in 3D ensemble Monte Carlo simula­

tions [77,79,139,142], little statistical analysis has been performed with such simulators. 

In particular, no results have been published comparing the impact of the variation of 

numbers and position of Coulomb scattering centres in the channel on the current fluctua­

tions, with their electrostatic impact on the current percolation paths within the device. In 

this section, using a methodology similar to the methodology used in the previous section, 

a careful comparison between DD and MC simulations of MOSFETs with different dis­

crete dopant configurations is presented. The relative importance of the electrostatic and 

scattering effects when studying random dopant induced intrinsic parameter variations is 

investigated and highlighted.

5.4.2 Simulation Methodology

The variation in current associated with a random distribution of dopant atoms within 

the active region of the 30nm x 30nm n-MOSFET simulated previously was studied in 

comparison with simulation of a uniformly doped device of the same design. An ensem­

ble of 50 microscopically different but macroscopically identical devices were randomly 

generated and simulated using the DD simulator. These devices have continuously doped 

source and drain regions while the channel region is described atomistically. In the DD 

simulations, as before, field dependent and concentration dependent mobility models are 

employed, though in the atomistic DD simulations the mobility values are taken from 

values stored at each mesh node as a result of simulation of the continuous device. In all 

simulations, the gate bias is set at 1.0 V while the source to drain bias is 50mV, low in 

order to minimize non-equilibrium transport effects and allow fair comparison between
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Figure 5.26: H istogram  of the d ra in -curren t for each o f  the 50  random ly  configured d e ­
vices as calculated  from  D D  and M C  sim ulation . M C  yields larger curents  but reproduces 
the trend o f  DD  simulation.

the tw o sim ulation m ethods. M C  sim ula tion  is then perform ed in the frozen-field ap p rox ­

imation. T he  M C  and D D  sim ulation  o f  the a tom istic  devices, in com parison  with their 

respective results for  the con tinuous device , allow the variation in curren t to be determ ined  

for each atom istic device and com parison  betw een  D D  and M C  results to be made.

5.4.3 Results

5.4.3.1 C urrent distribution

T he drain currents  for  the 50 random ly  generated  devices obta ined  from  both drift d if­

fusion and M onte C arlo  sim ulation  are show n in figure 5.26. T h e  error in the esti-
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mation of the current from Monte Carlo is plotted along with the currents and is typ­

ically less than ±0.5% . For all devices, the Monte Carlo simulations result in larger 

currents when compared with the equivalent drift diffusion result, and the mean current 

over the 50 devices is an additional 15% over the mean from drift diffusion. Respec­

tively, the values for the mean drain currents from drift diffusion and Monte Carlo are 

<  Id  d d  > — 2.67 x 10~4 A pw T l and <  Id  m c  >=  3.08 x 10~4 A pw T l and are plotted as 

the white and black dashed lines as marked in figure 5.26. As well as plotting the mean 

atomistic current, the drain current from DD and MC simulations of the uniformly doped 

device are also plotted as the solid black and white lines, as marked, and are equal to 

Id  d d  uniform ~  2.59 x 10 A pan and Id  m c  uniform ~  3.13 x 10 A]im  for DD and 

MC respectively. From this it can be seen that the atomistic DD simulations result in an 

average current greater than the uniform case, while MC simulation shows a reduction in 

the average current. Despite this difference, the trend in the increase and decrease of the 

current between devices is largely reproduced between both simulation models. This is 

clearly seen in the plot of Id  from DD Vs. Id from MC for all 50 devices, which is shown 

in figure 5.27. The currents are correlated, with a calculated correlation coefficient of 

0.80, while the spread highlights the transport variations imposed by the random dopants 

and captured within MC simulation over and above the electrostatic effect responsible for 

the current variation in DD.

5.4.3.2 Percentage Change in Current

Figure 5.28 shows the distribution in the percentage change in current from the uniform 

device for both DD and MC. From the DD results it can be seen that, as previously seen 

in figure 5.26 and agreeing with the well known result [47], the atomistic description 

increases the average current due to the presence of current percolation paths. This is a 

purely electrostatic effect. However, this trend is again clearly not seen to be reproduced
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Figure 5.27: Scatter plot o f  drain current ca lculated  from  D D  against  that calculated  from  
M C. T he correlation coefficient fo r  this d istribution is calculated  as 0.80. Shown again is 
the average current and curren t from  uniform sim ulation  for both s im ulation  techniques.

in the M C simulations. 26  o f  the 50  devices show reduced curren t in the M C  sim ulations 

w hile  only 5 show reductions in DD. A nd while the reductions in curren t f rom  D D  are 

relatively small,  the reductions in M C  are seen to be com parab le  with the largest increase 

in current seen in MC. T he  percentage variation in curren t f rom  D D  is plotted aga inst that 

f rom  M C in figure 5.29. A gain , the correlation betw een  the results is apparent.

A t this point it m ay be necessary  to question the size o f  the statistical sample. The 

difference betw een  the curren t from  uniform  D D  sim ulation  and the average a tom istic  DD 

curren t is «  + 3 . 0 %  while the sam e difference from  M C  sim ulation  is «  —1.5% . This  

is a small difference, but the distribution o f  currents  from  D D  clearly favour an increase
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Figure 5.28: H istogram  o f  the percentage change in current for  each o f  the 50 random ly  
configured devices. M C sim ula tions show a large num ber o f  devices with a significant 
reduction in current, contrary  to DD.

while those from  M C  are evenly d istributed abou t  the uniform  device. From  the limited 

set o f  data it is inappropria te to c laim  that M C  sim ulation  results in an average reduction 

in current s ince ju s t  a few devices w ith  increased current m ay change  this. W hat is clear 

however, is that the m agnitude o f  the curren t variation is larger than com pared  to DD. T he 

standard deviation in the curren t ca lcu lated  from  D D  is 6 .4  x  10~6 w hich is 2 .4 % ,

while the standard deviation from  M C  is 2.1 x  10~5A^ni~] w hich  is 6 .7 % .

5.4.3.3 Drift Diffusion Vs. Monte Carlo

From  figure 5.27 we take 3 devices w ith  the sam e curren t from  D D  sim ulation but with 

a spread in values for the curren t estim ated  by M C. T hese  are devices  29, 30 and 38.
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Figure 5.29: Scatter plot o f  the percentage change  in current ca lcu lated  from  D D  against 
that calculated  from  MC. M C  sim ula tions show sim ilar spread o f values abou t  0, contrary 
to DD.

T h e  currents fo r  each o f  these devices is tabulated  in table  5.4. In order to  explain the 

differences in current, the curren t density  at the interface o f  each device  from  D D  is 

com pared  to that o f  M C and to each other.

Device 30: Figures 5 .30 and 5.31 show  the co m p o n en t  o f  the curren t density  from

source to drain (left to right) at the in terface from  D D  sim ula tion  and the co rrespond­

ing frozen field M C sim ulation  respectively. G ood  qualitative ag reem en t is seen betw een 

the two distributions, with  the regions o f  low est curren t density  localised about the in­

dividual accep to r atoms. T here  are 3 accep to rs  near the interface in the channel at the 

top  o f the figure, and a fu r ther 2 accep to rs  buried near the interface in the m iddle  o f  the
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Device 30 29 38
Id (DD) x lO - 4Aptm~l 2.723 2.719 2.719

M d / Id (DD) [%] 5.01 4.88 4.88
Id (MC) x lO -^AptrrT1 3.43 3.14 2.92

A Id / I d  (MC) [%] 9.59 1.92 -6.71

Table 5.4: Devices 29,30 and 38 have similar values for Id from DD simulation, but those 
from MC simulation show large variation.

figure that clearly contribute to affect the current. The relatively low number of dopants 

in this device, and their close grouping, creates a large un-doped area in which the current 

density remains comparatively high in the MC simulation. Within DD the current density 

similarly peaks around the acceptors but rapidly falls off and does not show the same high 

level in the un-doped regions. This results in the large percentage increase in the current 

seen in MC simulation.
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i . i_
0.000 0.214 0.428 0.642 0.856 1.070 1.284

Figure 5.30: C o m ponen t  o f  current density  a long  source to drain (left to right) at the 
Si/SiOo interface from  drift diffusion sim ulation  o f  device 30. C urren t density  in A\xm~2.

-0.034 0.150 0.334 0.518 0.702 0.885 1.069

Figure 5.31: Component of current density along source to drain (left to right) at the
Si/SiCb interface from Monte Carlo simulation of device 30. Current density in A\im~2.
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Device 29: Comparing MC simulations, device 30 has lower current than device 29.

The current density component from source to drain resulting from DD and MC is shown 

for device 29 in figures 5.32 and 5.33 respectively. Within this device there are far more 

acceptor atoms evident within the channel, though the majority are not at the interface and 

hence their effects are somewhat lessened. Within DD, the increased number of acceptors 

is compensated for by their position deeper in the channel resulting in little change in 

the current, while within MC simulation the acceptors are distributed so to remove the 

kind of large un-doped regions that resulted in the large current seen in device 30. This 

is responsible for the reduced current found in MC. Again, the current in the regions 

between acceptors remains relatively large in the MC simulation while it falls off in DD.
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0.603 1.006

Figure 5.32: C o m ponen t  o f  current density  a long source to drain (left to right) at the 
Si/SiOo interface from  Drift Diffusion s im ula tion  o f  device 29. C urren t density  in A

-0.033 0.126 0.285 0.444 0.603 0.762 0.921

Figure 5.33: Component of current density along source to drain (left to right) at the
Si/SiCH interface from Monte Carlo simulation of device 29. Current density in A\im~2.
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Device 38: Device 38 has the lowest current of the three from MC. Figures 5.34 and 

5.35 show the current density from DD and MC for this device. Compared to device 29 

there are fewer acceptors influencing the current within the channel, but there are four 

present at the interface and distributed across the width of the channel. Two acceptors 

are also seen at the interface in the source region. In this case the positioning of the 

dopants, rather than the number, primarily effect the current in MC. The lines of dopants 

across the width of the channel efficiently impede current flow and are responsible for the 

reduced current. Comparing with device 30, there are similar numbers of acceptors at the 

interface which act to reduce the inversion carrier charge density, hence similar currents 

are observed from DD
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0.000 0.22S 0.449 0.674 0.899 1.123 1.348

Figure 5.34: C o m p o n en t  o f  curren t density  a long source to drain (left to right) at the 
S i/S i02  interface from  Drift Diffusion s im ulation o f  device 38. C urren t density in Apim .

-0.026 0.148 0.322 0.497 0.671 0.846 1.020

Figure 5.35: Component of current density along source to drain (left to right) at the
Si/Si02 interface from Monte Carlo simulation of device 38. Current density in
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5.4.3.4 Self-consistent Monte Carlo simulation

The largest current in both DD and MC is associated with device 41. In order to estimate 

the validity of the frozen field approximation in the atomistic devices, a self-consistent 

Monte Carlo simulation of device 41 was performed. The simulation was performed 

under the same conditions as the frozen field simulations. A total of 80,000 particles were 

used to sample the initial electron concentration from DD and but were only simulated 

for 1 0 0 , 0 0 0  time steps of length 1 x 1 0 “ 16s.

From frozen field simulation the drain current was estimated as

ID =  (3.50 ±  0.02) x 10 

Self consistent simulation gave an estimated current of

ID =  (5.51 ±  0.02) x  10

a 57 % increase over the frozen field estimation. The current density at the interface from 

both frozen field and self-consistent MC simulations are shown in figures 5.36 and 5.37 

respectively, and show a qualitative agreement. The self consistent simulation shows 

higher current density, consistent with the increased drain current, and is found to be 

linked with increased electron density within the channel. This is as a direct result of the 

self consistency better maintaining the electron concentration within the extended source 

region and subsequent injection into the channel. The frozen field accurately maintains the 

concentration within the contact at the point of injection itself, but through diffusion alone 

can not as effectively maintain the concentration injected into the channel. This may likely 

be a systematic error in the frozen field simulations since the source regions are identical. 

But while the currents from frozen field are likely to be underestimated compared to self
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consistent simulation, the variation in current may be consistently reproduced. However, 

that this is the case would require self consistent simulation of the entire ensemble of 

devices for comparison.

As well as comparing the current density, comparison of the potential from DD, shown 

in figure 5.38, and the time averaged self consistent potential from MC, figure 5.39, again 

shows qualitative similarities. This further lends credence to the validity of the frozen 

field MC simulations

183



CHAPTER 5. MOBILITY VARIATIONS

1 1 1 1 !
-0.038 0.136 0.310 0.484 0.658 0.831 1.005

Figure 5.36: C o m p o n en t  o f  current density  in A\im~2 a long source to drain (left to right) 
at the S i/S i02  interface from  frozen field M onte C arlo  s im ulation o f  device 41.

-0.031 0.232 0.496 0.759 1.022 1.286 1.549

Figure 5.37: Component of current density in Anm  2 along source to drain (left to right)
at the Si/SiC>2 interface from self consistent Monte Carlo simulation of device 41.
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0.4445  0.5691 0 6938  0 8184  0  9431 1 0 6 7 7  1 1924

Figure 5.38: Potential profile from  D D  solution o f  device 41 taken at the interface. Po­
tential in Volts

0.4471 0 .5703  0 .6935  0 .8167  0 .9399 1.0630 1.1862

Figure 5.39: Potential profile f rom  self consis ten t M C  solution o f  device 41 taken at the 
interface, potential in Volts, c.f. F igure 5.38 above
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5.4.4 Conclusion

The inclusion of position dependent ionized impurity scattering within MC simulation 

of an ensemble of 30 nm n-MOSFETs shows increased current variation compared with 

the simulation of the same ensemble performed using DD. The DD results show an av­

erage increase in current of 3.0% with a standard deviation of 2.4%. Such simulations 

only consider the electrostatic influence associated with unique charge configurations. 

By comparison, MC simulation results in an average current decrease of 1.5 % with an in­

creased standard deviation of 6.7 %. The trend in current variation between devices within 

the ensemble from DD are reproduced within the MC results, but the position dependent 

impurity scattering from the unique arrangements of dopants reduces the correlation. The 

comparison of the current variation obtained by both methods gives a correlation coeffi­

cient of 0.80. Although the electrostatic impact of a particular configuration of donors 

may be similar, differences in the position dependent scattering between such configu­

rations may have larger effects. By effecting both the mobility and the electron concen­

tration throughout the channel, the ionized impurity scattering plays an important role in 

determining the magnitude of the random dopant induced device parameter variations.

It is noted that the MC simulations reported for the ensemble of devices are performed 

in the frozen-field approximation to allow for efficient simulation. A low drain bias of 

50mV was necessary to best facilitate this approximation. Variation at higher drain bias, 

particularly in the operating regime, would be a far more important study but requires 

self-consistent simulation. Under the low bias conditions reported here, it is reasonable to 

expect that self consistent simulation should also yield differences in the current variation 

through, in part, the variation in the steady state electron concentration, since the electron 

concentration is otherwise representative of the initial DD solution which is insensitive to 

the position dependent scattering. Such self consistent simulations are easily performed
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with the developed code, though simulating a statistical set of devices is at present pro­

hibitively time consuming. They would better describe the dynamic screening of dopants 

by mobile charges under the actions of position dependent scattering, which will in turn 

alter the scattering potentials.

One such self consistent atomistic simulation was performed for comparison and 

shows qualitative agreement with the frozen field current density and potential distribu­

tions. The simulation however gave a larger current, but on it’s own says nothing about 

the magnitude of the current variation expected. Results presented here highlight the in­

crease in statistical parameter variation from transport variation and the requirement for a 

proper accounting of ionized impurity scattering in nano scale devices.

5.5 Summary

This chapter addressed the effects of transport variations associated with discrete charges 

and charge configurations. Within simple 30 nm, 20 nm and 10 nm MOSFET structures 

the effect of transport variation induced by a single trapped charge was separated from 

the accompanying electrostatic influence. It was found that additional scattering from 

the trapped charge increases the current reduction and the corresponding RTS amplitudes 

over the entire range of applied gate voltages and device sizes. Increased scattering from 

the trapped charge was a dominant effect at high gate voltage, where electrostatic effects 

are suppressed, while at low gate voltages the electrostatic charge exclusion around the 

charge is the dominant current reduction mechanism. The additional scattering from the 

trapped charge was found to be more important in smaller devices, where the scattering 

potential necessarily occupies a larger fraction of the channel.

An ensemble of the same 30nm device structure, but with atomistic channel doping, 

was simulated to compare current variations with and without the inclusion of transport

187



CHAPTER 5. MOBILITY VARIATIONS

variation through position dependent Coulomb scattering. It was found that the proper 

accounting of the Coulomb scattering associated with the unique arrangement of dopants 

within each device again plays a strong role in determining the current variation by both 

influencing the mobility and the electron concentration throughout the channel. Larger 

variations were observed in the MC simulations compared with the DD simulations.

This highlights the importance of properly accounting for the propagation through a 

random arrangements of scattering centres within nano-scale device simulation. It sug­

gests that previous studies of RTS amplitudes, Vt fluctuations and current fluctuations 

associated with random dopants, typically performed using DD simulations, underesti­

mate the true magnitude of the statistical variation. A rigorous self-consistent ab initio 

Monte Carlo simulation is a more accurate tool for studying intrinsic parameter fluctua­

tions by properly accounting for the screening from a random arrangement of scattering 

centres and is required for studies of variation at high drain bias.
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Conclusion

A Monte Carlo simulator was developed that can accurately incorporate Coulomb scat­

tering of carriers from a random configuration of ionized impurities, and the Coulomb 

interaction mediated carrier-carrier scattering, through the real space trajectories of the 

carriers themselves. This “ab initio” scattering model was thoroughly validated, also 

carefully checking the carrier distribution and temperature, with respect to bulk mobility 

simulation. Monte Carlo simulations featuring ab initio Coulomb scattering were then 

used to capture the effect of transport variation on the magnitude of the random dopant 

induced device parameter variation. In comparison with Drift-Diffusion simulations that 

only capture the electrostatic variation in charge density, important conclusions about the 

relative importance of variations in Coulomb scattering were inferred. The proper ab ini­

tio inclusion of the variation in carrier scattering increases the magnitude of the intrinsic 

parameter variation and suggests that Monte Carlo simulation is required for a thorough 

evaluation of such effects.

For clarity, the details of the Monte Carlo simulator are discussed in section 6.1. Eval­

uation of the ab initio scattering method is given in section 6.2 before conclusions related 

to the application to device variation are presented in section 6.3. The natural extension
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of this work is finally discussed in section 6.4.

6.1 The Monte Carlo Simulator

A complete description of the MC simulator was given in chapter 3. An analytical spher­

ical, non-parabolic band model is employed since accurately resolving the high energy 

electron distribution is unimportant within this work. The considered phonon scattering 

mechanisms were described and the calibration of the corresponding scattering rates with 

respect to bulk simulation of field dependent velocity and energy was given. Surface 

roughness scattering, which is important for realistic MOSFET simulations, is not in­

cluded in this work, neither is impact ionization which should become important at high 

fields. The extension of the bulk MC simulator to 3D device simulation was described, 

detailing the choice of the discretization, charge assignment and force interpolation. All 

simulations are performed on a uniform rectilinear mesh and charge is assigned via the 

Cloud-In-Cell scheme. The field at each mesh node is evaluated via a finite difference 

scheme and the force tri-linearly interpolated to a point within the mesh. The resultant 

full 3D simulator was verified with the simulation of a simple N-I-N diode using the 

traditional Brooks-Herring ionized impurity scattering rate.

6.2 ab initio Coulomb Scattering

The development of an ab initio treatment of Coulomb scattering which replaces the ion­

ized impurity and electron-electron scattering rates in “atomistic” MC simulations was 

described in Chapter 4. The accurate integration of the electron’s equations of motion 

was highlighted as paramount to accurate simulation of ab initio Coulomb scattering. 

Consideration was given as to the ability of the numerical integration approaches to con­
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serve energy during the close range interaction of the carriers with a point charge and over 

reflection from a surface, both of which are important within ab initio device simulation. 

The constraints on the numerical integration scheme include (/) only one force evaluation 

per solution of Poisson’s equation to avoid self-forces, (ii) time centred approach in order 

to approximate a variable mass during propagation in a high field and (iii) synchronisation 

of the momentum and position components in order to allow for scattering and reflection 

events. Such requirements were satisfied by the Velocity-Verlet algorithm which has been 

common to Plasma physics simulation for many years.

However, the above approach to the integration of the equations of motion is still not 

accurate enough to ensure the accuracy and energy conservation in the infinite potential 

well of a point charge representing a donor atom within the simulation, particularly at 

small impact parameters. This prompted a modification of the short-range charge inter­

action to limit the field and to improve energy conservation. Limiting the field, however, 

limits the ability of a point charge to act as a scattering centre and could affect the accuracy 

of the ab initio approach. A variety of short-range interaction models were investigated, 

comparing both the energy conservation and the proper reproduction of the classical scat­

tering angle dependence upon impact parameter. Study of the impact of the short-range 

approximations has not been performed elsewhere. It was found that an analytical short 

range interaction model in which the Coulomb force reaches a maximum value at a cho­

sen cut-off radius before dropping to zero at zero separation, delivers a vast improvement 

in energy conservation compared to the simpler models adopted in literature while pro­

viding a similar scattering angle dependence. This novel model was then adopted for the 

rest of the work.

The application of the short-range force correction in full scale 3D simulations was 

further described. The corresponding ab initio approach was verified through the repro­

duction of the concentration dependence of the low field electron bulk mobility in silicon

191



CHAPTER 6. CONCLUSION

through full scale 3D device simulation. Very good agreement with experimental mobil­

ity values up to concentrations of 1 x 1018 cm-3 was achieved. Information regarding all 

aspects of the simulation was given in support of the accuracy of such a claim. Some ar­

tificial carrier heating was observed at the highest doping concentrations but is attributed 

to the sampling of the electron energies during more frequent short range interactions, 

rather than inaccurate integration of the equations of motion. Comparison of the simu­

lation of the continuous N-I-N diode in Chapter 3 and the simulation of an atomistically 

doped copy of the same device showed excellent agreement, further validating the “atom­

istic” simulation approach. The influence of the random discrete dopants was clearly seen 

producing variation within the depletion regions, and non-uniform energy and velocity 

distributions within the intrinsic region, as compared with the continuous simulation.

6.3 Transport Variation

The ab initio approach of introducing Coulomb scattering in the MC simulations was then 

applied to investigate the transport variations associated with the random number and po­

sition of dopant atoms within a device. This necessitated the development of a charge 

assignment scheme in the continuously doped region which reproduces the effect of CIC 

charge assignment in the random dopant region. Such a scheme guarantees consistency 

in simulation regions where the doping description changes from continuous to atomistic. 

It is generally applicable within continuous device simulation and provides a better bal­

ance between the electron concentration and the doping concentration where in the MC 

simulations the electrons are assigned via the CIC scheme.

Initially, the effect on the transport of a single trapped charge within an otherwise con­

tinuously doped MOSFET was investigated. The MC simulations for devices with square 

channels of length 30nm, 20nm and 10nm were compared to DD simulation. As stated
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previously, the DD simulations only capture the electrostatic effects while MC including 

ab initio scattering properly captures additional transport variations. The simulations are 

carried out at low drain bias to allow fair comparison of DD and MC results by minimis­

ing non equilibrium transport. The DD mobility models are calibrated to match bulk MC 

simulation results. MC simulation is performed in the frozen field approximation where 

the steady-state potential and initial electron concentration are imported from a DD solu­

tion. This is justifiable at the low drain bias and significantly speeds up the simulation. 

Comparison of the MC and DD results provides information on the relative importance 

of the electrostatic and transport effects. In all devices, over a range of gate voltages, an 

increase in the current reduction is observed upon introducing a trapped charge within 

MC simulation. The additional effect associated with the transport variation due to scat­

tering from the trapped charge is most significant at high gate voltages. This implies that 

at low gate voltages the electrostatic impact of the trapped charge in reducing the number 

of carriers within the channel is most significant, while at high gate voltages additional 

scattering from the trapped charge dominates the reduction in curren t. The same trend 

was reproduced in successively smaller devices, but in each case the percentage current 

reduction, and therefore the contribution from additional scattering, increased.

Following the illustrative example of a single trapped charge, an ensemble of 50 30nm 

gate length MOSFETs with fully atomistic doped channels was simulated under the same 

low drain bias in the frozen field approximation. The comparison of the results from DD 

and MC simulation show a significant increase in the on current variation associated with 

additional transport variation. The correlation of the results from DD and MC simulation 

again implies the importance of the donor positions within the channel. In particular, three 

devices were highlighted in which the percentage variation in current associated with the 

atomistic nature of the channel doping were comparable in the DD results, but show large 

differences in the MC simulation.
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6.4 Future Work

The ab initio approach to Coulomb scattering described in this work has had success 

in describing random dopant effects and implies the possible benefit of adopting similar 

ab initio approaches to other scattering mechanisms. In particular, surface roughness 

scattering has so far been omitted entirely from this work but may be directly incorporated 

through the real space scattering from a randomly generated rough interface surface. It 

remains to be seen to what extent such an approach is capable of reproducing the universal 

mobility curve in silicon, but such a model could readily be incorporated into the existing 

3D ab initio EMC simulator to study transport variations associated with the random 

pattern of the interface in individual transistors. Similarly, the effects of variation in the 

high-K gate stack on the surface potential will introduce position dependent scattering and 

transport variation which could be addressed in a similar manner.

Fully self consistent EMC simulations of random dopant effects in MOSFET devices 

need to be performed to evaluate the impact of scattering at high drain voltage. In such 

an operating condition, the Coulomb scattering is expected to play a less significant role 

in the high field region near the drain which may somewhat reduce the variations at high 

drain bias conditions. Such self consistent simulations are at present very time consum­

ing and may require the use of non-uniform meshing to improve efficiency. Similarly, 

the investigation of more sophisticated integration routines with better energy conserving 

properties may allow the limitation on the field adjusting time step to be relaxed, reduc­

ing the number of simulation time steps required per simulation and reducing the overall 

simulation time.
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