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Abstract

It is a well known fact in the automotive industry that critical and costly delays 

in the development cycle of powertrain1 controllers are unavoidable due to the 

complex nature of the systems-on-chip used in them. The primary goal of this 

portfolio is to show the development of new methodologies for the fast and 

efficient implementation of next generation powertrain applications and the 

associated automotive qualified systems-on-chip. A general guideline for rapid 

automotive applications development, promoting the integration o f state-of-the-art 

tools and techniques necessary, is presented. The methods developed in this 

portfolio demonstrate a new and better approach to co-design of automotive 

systems that also raises the level of design abstraction.

An integrated business plan for the development of a camless engine 

controller platform is presented. The plan provides details for the marketing plan, 

management and financial data.

A comprehensive real-time system level development methodology for the 

implementation of an electromagnetic actuator based camless internal combustion 

engine is developed. The proposed development platform enables developers to 

complete complex software and hardware development before moving to silicon, 

significandy shortening the development cycle and improving confidence in the 

design.

A novel high performance internal combustion engine knock processing 

strategy using the next generation automotive system-on-chip, particularly 

highlighting the capabilities of the first-of-its-kind single-instruction-multiple-data 

micro-architecture is presented. A patent application has been filed for the 

methodology and the details of the invention are also presented.

Enhancements required for the performance optimisation of several resource 

properties such as memory accesses, energy consumption and execution time of 

embedded powertrain applications running on the developed system-on-chip and its 

next generation of devices is proposed. The approach used allows the replacement 

of various software segments by hardware units to speed up processing.

Powertrain: A name applied to the group o f  components used to transmit engine power to the driving 

wheels. It can consist o f engine, clutch, transmission, universal joints, drive shaft, differential gear, and axle 

shafts.
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Preface

This portfolio presents work undertaken by the author while working in the 

32-bit Embedded Controller Division of Motorola SPS, presently known as 

Freescale Semiconductors. A writing style has been chosen that is fairly explanatory 

and, it is hoped, easy to read. The aim throughout has been to take a reader, who 

may not be an expert in the field of automotive systems-on-a-chip and their 

applications, through the work carried out in such a manner that at the end he or 

she may have gained a good understanding of what has been done and glimpsed the 

future possibilities of this exciting area. The author is convinced o f both the 

usefulness and practicality of the basic idea of advanced single instruction multiple 

data system-on-chip and their applications with tighdy coupled digital signal 

processing functionality: it is hoped that some of this enthusiasm for the work has 

been captured in the contents of this portfolio and imparted to its readers.
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1 Introduction

1.1 Systems-on-Chip in Modern Cars

The automobile has proven to be the ultimate “vehicle” for integrating new 

electronic technologies. Its average consumption level, variety o f semiconductors 

and growth rate, from 10% in 1998 and projected to be 40% in 2009 according to 

leading global automotive manufacturers continues to be impressive [1, 2, 3, 4, 5, 6, 

7, 8, 9, 10]. Today’s premier vehicles use over 70 microcontrollers [1, 2, 6, 11]. In 

fact, the term “system-on-chip” (SoC) is often used to describe this class of 

powerful microcontrollers. In the automotive world, the transition from 4, 8 and 

16-bit micro controller units (MCUs) to powerful 32 and 64-bit SoCs is not without 

some important considerations. It often means learning a new central processing 

unit (CPU) architecture, investing in new development tools, and importantly 

porting existing software. While there is a significant investment, there is also 

significant payback in the long term, if correct decisions are made.

Traditionally, advancements in microprocessor speed have been gained by 

increasing clock speed, which is a measurement of how fast a microprocessor can 

execute instructions [12]. However, recent design efforts have focused upon 

increasing the number of instructions that can be executed simultaneously [12, 13, 

14, 15, 16]. When more instructions can be executed at the same time, an SoC’s 

speed increases without requiring an increase in clock speed [12]. To increase speed 

without increasing the clock speed, various single instruction multiple data (SIMD) 

technologies are being designed to allow SoCs apply a single computation to many 

pieces of data at the same time [13, 16]. Additionally, modern embedded SoC based 

automotive systems are used in complex powertrain control, antilock braking 

systems and airbag systems. These applications require the manipulation of large 

pieces of data and particularly perform complex calculations.

More limited applications such as near obstacle detection, integral cellular 

phones, advanced body computers, telematics and vehicle mobile Internet access 

products taking vehicular SoCs to a new level. High performance SoCs is providing 

a growing list o f feature differentiators for many vehicles - cars, trucks and all the 

emerging classifications in between.
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Figure 1.1: Performance Dem anding SoC Controlled M odules in a Modern Car

Where,

CVT - Continuous Variable Transmission

D FI - Digital Fuel Injection

EACC - Electric Air Conditioning Control

EAPS - Electric Power Assisted Steering

Many vehicle applications use several semiconductor technologies to meet the 

performance and cost targets o f the system. Figure 1.1 illustrates some of the 

existing and next generation processor bandwidth intensive embedded automotive 

applications.

Increasingly sophisticated automotive and transportation infrastructure 

requirements are defining navigation, collision avoidance, automatic toll collection, 

night vision and even auto-pilot type systems for future automobiles. The proof-of- 

concept-technologies in many of these systems continue to trace their roots to 

military or aerospace [ 17, 18, 19, 20].

Digital
Knock

Processing
Break-by-Wire

CVT Active
Suspension
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New technologies will most likely be required to attract broad consumer 

acceptance. Computing technology adapted for automotive applications is 

providing the initial Internet connectivity for vehicles.

With the SoC technology poised to radically change the automotive electronic 

industry landscape, it is essential to understand the future SoC trends and the 

performance requirements of the applications to be run on them. As a result, 

research was conducted on various architectural elements of the next generation 

embedded automotive PowerPC SoC and its applications incorporating a mix of 

hardware and software. The proposed approach responds to the requirements for 

new design and development technology, driven by the automotive market demand 

for high performance and particularly cost-effective SoCs.

13
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1.2 Portfolio Structure and Original Contributions

The key aspects of the research undertaken are as follows:

■ To set-up a viable business plan for the next generation automotive qualified 

advanced single-instruction-multiple-data (SIMD) PowerPC SoCs with tightly 

coupled digital signal processing (DSP) functionality

" To assist the rapid development of processor bandwidth intensive embedded 

automotive applications and their SoCs

■ To evaluate and solidify various core architectural enhancements as per 

performance requirements of such applications

■ Introduction and implementation of first-of-its-kind single-instruction-multiple- 

data (SIMD) based real-time embedded automotive algorithms

■ To facilitate the simulation and prototyping of heterogeneous automotive 

systems, by supporting specification, the co-existence and interaction of different 

models of computation, mixed-mode system simulation, design and generation of 

automatic code from a block diagram description of the applications and its 

algorithms.

■ To promote the reuse of intellectual property (IP)

These aspects are encapsulated in the themed portfolio. In particular, 

embedded automotive applications are developed; demonstrating the capabilities of 

the next generation embedded SIMD PowerPC SoC. This section of the executive 

summary insets the historical background to the current slow transformation from 

legacy microcontrollers to advanced SoCs and the motivating forces behind it.

Portfolio I, Integrated business Plan for the SoC Development of Camless Engine 

Platform, discusses the business plan put forward to raise necessary funds from the 

Motorola Semiconductor Products Sector (SPS) funding body for the design and 

development of the distributed SoC controller platform for the control of 

electromagnetic actuator driven camless engines. This portfolio lays emphasis on 

the overall industrial and commercial relevance of the industrial EngD research 

undertaken.

14
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Portfolio II, System Level Design of a Controller Plaform for a Camless, Electromagnetic 

A.ctuator Driven Car Engine, discusses the design o f a patent-pending rapid 

development methodology of a controller platform and the associated algorithm, for 

an electromagnetic actuator driven camless engine, based on the developed 

PowerPC SoC. This portfolio also reviews the current state of camless engines. 

This work was presented at a number of international automotive conferences and 

permission has been granted for the publication of the attached journal paper.

Portfolio III, Fast Internal Combustion Engine Knock Processing Using an A.utomotive 

PowerPC System-on-Chip, introduces a patent-pending, journal published, novel high 

performance knock detection strategy using the next generation automotive 

PowerPC SoC, particularly highlighting the capabilities of the SIMD micro 

architecture implemented. The developed SIMD knock processing algorithm is 

based on autonomous on-chip modules and a custom designed auxiliary signal 

processing extension tightly coupled to the main SoC core. The author has also 

presented various software development techniques with an advanced software 

circular buffer implementation for processing the streaming knock sensor data.

The SoC Book Chapter, Embedded Non-Neumann On-Chip PoiverPC SoC Cache, 

introduces the design and efficient use of the on-chip first-of-its-kind Von- 

Neumann cache of the automotive SoC. This document also introduces various 

cache control hardware instructions developed, particularly, addressing the optimal 

handling of time-critical segments of applications.

N ext Generation Powertrain SoC Performance Requirements, is a discussion of author 

evaluated key SoC architectural enhancements and additions required in the natural 

successor to the abovementioned single-issue SoC, based on a number of next 

generation powertrain applications. This investigation was done by profiling author 

and automotive customer developed applications. This document also discusses the 

model based control approach taken with the development o f some of the profiled 

applications.

15
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The document, Architectural Modelling Environment for the PowerPC SoC, discusses 

the various fully-functional and cycle-accurate SoC core specific simulation modules 

developed by the author for pre-silicon evaluation. This simulation platform is 

primarily used for performance analysis of applications which in turn solidifies the 

pre-silicon SoC core requirements to be implemented in real-time. Particularly 

architectural trade-offs at the processor, cache, and memory interface level of 

system design, also known as core-complex for embedded SoC designs is 

investigated.

Figure 1.2 overleaf shows a synopsis of the above themed portfolio plan.

16
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2 Industrial Context

2.1 SoCs in Embedded Automotive Applications

The automobile as a self-contained microcosm is undergoing radical changes 

due to the advancements in automotive SoC technology. The relative part of 

electronics in the automobile is increasing dramatically whilst the future of new 

electronic systems based around SoCs is extremely promising. Beginning with 

electronic controlled ignition in the early sixties [23], past two decades have 

witnessed a tremendous change in vehicle electronics [21, 22, 23, 24, 25, 26]. New 

applications such as mobile multimedia, control-by-wire systems, advanced safety 

interiors, and collision avoidance highlights a portion o f the significantly more 

electronic content in the automobile of the future. SoCs are now essential to 

control the movements of the automobile, of the chemical and electrical processes 

taking place in it, to entertain the passengers, to establish connectivity with the rest 

of the world, and importantly to ensure safety. O f particular importance is the 

development of automotive SoC technologies necessary to offer timely, reliable, and 

cost effective products to the consumer.

2.1.1 Automotive Powertrain Controllers

Automotive powertrain controllers generally satisfy diverse and often 

conflicting requirements [27, 28, 29, 30, 31]. Such robust controllers in and around 

the engine room require high reliability, advanced performance, high voltage (>35V) 

and high temperature (>125 °C) characteristics [32, 33, 34, 35, 36, 37, 38]. Dense 

integration of complex sub-controllers is also key to providing expanded functions 

without increasing the size of the overall controller or the number of devices on it. 

By adopting high performance SoCs, such expanded functions can be provided in 

smaller and more lightweight packages with high reliability [39, 40].

18
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In high performance engines, the number of application to be controlled and 

the associated control actions have been increasing in order to achieve better 

driveability, higher power, lower fuel consumption and particularly lower emissions. 

Therefore, in addition to being adaptive and self-diagnostic, the powertrain control 

systems have to control many applications such as,

■ Fuel Injection

■ Ignition Timing

■ Idle Speed

■ Exhaust Gas Recirculation (EGR)

■ Knock Control

■ Electronic Controlled Transmission (ECT)

■ Camless Engine Control (CEC)

Additionally, such application need to interact with safety critical applications 

such as antilock braking and traction control, necessitating the need to for the 

integration of time and event driven high performance fault-tolerant 

communications protocols such as CAN [23], the time triggered protocol (TTP) [41] 

and FlexRay [11].

2.1.2 Development of Powertrain Controllers

Development of powertrain controllers describes techniques, tools, roles, 

deliverables, standards and activities [21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33, 34, 35, 

36]. With the advent of the new low-cost complex automotive qualified high 

performance SoCs, there are unique challenges and trade-offs for development 

engineers and associated tool vendors [42, 43, 44, 45, 46, 81, 89, 90, 88].

Ever increasing performance needs of advanced powertrain applications have 

led the development o f sophisticated embedded development tool chains, SoCs 

with complex cores, various types of on-chip memories and autonomous 

peripherals, particularly supporting single cycle on-chip instruction and data buses 

[81, 86, 87, 88, 89, 90]. Designers of such SoCs strive to provide the visibilities 

needed by logic analysers, processor emulation and calibration systems, while not 

compromising performance and cost saving.

19
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It is evident that there is less support for the development of powertrain 

controllers based on advanced SoCs introducing critical and cosdy delays in the 

development cycle [22, 23, 24, 25, 26, 47]. Additionally, based on industrial trend, it 

can simply be stated that powertrain SoCs would soon be based on superscalar2 or 

multiple-issue cores, magnifying the complexities already present with the 

application development process [81, 86, 87, 88, 89, 90]. Thus it is vital to establish 

a strategy early enough in the development process to avoid costly business 

disruptions.

As with other industries, a new powertrain controller concept originates in 

research and development and once this new concept is proven, it makes its way 

into the appropriate automotive platform.

A systematic approach, outlined in Figure 2.1 is generally used to translate the 

concept into an embedded powertrain controller [22, 23, 24, 25, 26, 47]. A number 

of steps in the illustrated development process require a model o f the powertrain 

system for which the controller is being developed.

Powertrain Controller Powertrain Controller
Requirements Sign-Off

Requirements Analysis In Vehicle
and Cascade to Controller

Subsystems Calibration

Model Based Model Based
Controller Subsystem Controller
Design and Validation Calibration

Structured Software and
Software Hardware Integration
Design and Testing

Code Total Software
Implementation Integration

Software Design 
Verification

Figure 2.1: Powertrain Controller Software V Development Cycle

2 A microprocessor architecture that contains more than one execution unit or pipeline, 
allowing the processor to execute more than one instruction per clock cycle.
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Figure 2.1 also demonstrates the complexity and expansiveness of the overall 

powertrain controller development process, and how different skills and 

organisations are involved. As shown above, once the sub-systems are solidified, 

they are then qualified and calibrated to verify conformance with the initial 

requirements.

21
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3 EngD Research Contribution

3.1 Integrated Business Plan

This portfolio encapsulates a comprehensive business plan developed by the 

author for the camless engine controller platform business based on the PowerPC 

SoC. The overall plan enclosed is divided into four distinct sections:

1. The offer, summarising the funds required and the benefits

2. Marketing plan

3. Financial plan

4. Organisational plan

This plan was used for the allocation of required resources, handle unforeseen 

complications, and make good business decisions. Specifically, organised 

information about the company and proposal as to how the repayment of the 

invested money is to be made is highlighted. Additionally, it informs sales 

personnel, suppliers, and others about all the project operations and goals.

O f particular importance to the overall plan is the principle agreement with 

BMW Group and various other OEMs and Tier Is to supply 138 million valve 

control SoCs over a 10 year period starting in 2006. This provides the venture with 

a reliable income stream through highly reputed premier automotive engine 

technologist and manufacturers.

During the process, the biggest challenge faced was the understanding of the 

technology and business risks, in order to establish methodologies to manage those 

risks and rewards, and to develop the business models to fairly allocate those risks 

and rewards to the appropriate business players.

Figure 3.1 overleaf shows the overall financial summary of the camless engine 

controller business.
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Figure 3.1: Camless Project -  Financial Summary
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3.2 An Overview of the SoC Developed

The SoC developed, as per the outcome of the business plan highlighted in 

section 3.1, is the first member of a family of next generation powertrain SoCs 

based on the PowerPC Book E architecture, containing many new features coupled 

with high performance complementary metal oxide semiconductor (CMOS) 

technology to provide substantial reduction of cost per feature and significant 

performance improvement over the legacy devices, particularly the presently used 

MPC565 [81]. This SoC is targeted toward middle to high-end powertrain 

applications, such as camless engine controller platforms and digital knock 

processing.

The host processor core of the SoC complies with the PowerPC Book E 

architecture. It is 100% user mode compatible with the classic PowerPC instruction 

set including the floating point library. The Book E architecture has enhancements 

that improve the PowerPC architecture’s fit in embedded applications. This core 

also has additional instructions, including DSP instructions, supported by the signal 

processing extension (SPE), beyond the classic PowerPC instruction set.

The SoC has two levels of memory hierarchy. The fastest accesses are to the 

32kB unified, aka von Neumann cache. The next level in the hierarchy contains the 

64kB on-chip static random access memory (SRAM) and the 2 MB internal flash 

memory. Both the SRAM and the flash memory can hold instructions and data. 

The External Bus Interface has been designed to support most of the standard 

embedded memories widely available.

The complex I /O  timer functions of SoC are performed by two Enhanced 

Time Processor Unit engines (eTPU). Each eTPU micro-engine controls 32 

hardware channels. The eTPU consists of 24-bit timers, double action hardware 

channels, variable number of parameters per channel, angle clock hardware, and 

additional control and arithmetic instructions. The eTPU can be programmed using 

a high-level programming language.

The less complex timer functions required are performed by the Modular 

Timer System (eMIOS/MTS). The eMIOS’ 24 hardware channels are capable of 

single action, double action, Pulse Width Modulation (PWM) and modulus counter 

operation. Off-chip communication is performed by a suite o f serial protocols 

including controller area networks (CAN), enhanced serial peripheral interface (SPI) 

and serial communication interfaces (SCI).
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Additionally the SoC has an on-chip 40-channel Enhanced Queued dual 

Analogue-to-Digital Converter (eQADC). The System Integration Unit (SIU) 

performs several chip-wide configuration functions. Pad configuration and 

General-Purpose Input and O utput (GPIO) are controlled from the SIU. External 

interrupts and reset control are also found in the SIU. The Internal Multiplexer 

sub-block (IMUX) provides multiplexing o f eQADC trigger sources, daisy chaining 

the DSPIs and external interrupt signal multiplexing.
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Figure 3.2: An Overview of the SIMD SoC Developed
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3.3 An Architectural Modelling Environment for the PowerPC 

SoC

Over the years, core architectural simulation models have migrated to either 

fully functional models or to cycle accurate models [42, 43, 44, 45, 48]. Fully 

functional models are characterised by modelling system features without regard to 

hardware timing. Functional models are typically preferred by software developers 

since they tend to be the highest performance models available for developing 

application code. The drawback is that they offer very little information for 

performance evaluation. On the other hand, cycle accurate models provide very 

precise behaviour in regards to timing but tend to be relatively slow in performance 

due to the extreme detailed nature of the model [48, 81, 88]. The area of 

performance evaluation is in a middle ground; requiring the simulation performance 

of a functional model but needing the information provided by a cycle accurate 

model. Ideally, performance evaluation studies would like to simulate proposed 

system architectures over a wide range of benchmarks to determine system level 

performance, then adjust the system architecture and re-evaluate the performance.

The Architectural Modelling Environment (AME) targets the middle ground 

simulation requirements of performance evaluation by recognising that typical 

benchmark code does not require a fully functional model to run and that only a 

vital few key architectural elements determine a systems throughput [45, 48, 88, 12]. 

Typical benchmark code does not target a specific architecture which allows the 

benchmark to run across many different system implementations. Therefore, every 

nook and cranny o f a fully functional simulation model is never used due to the 

generalised nature of benchmarks. Development time devoted to functional 

features which are never used by a benchmark is thus wasted effort in regards to 

performance evaluation. Similarly, most of the development time associated with 

creating a very precise, cycle accurate model is lost since a system’s throughput is 

generally controlled by a very few architectural elements or bottlenecks.

While AME allows both fully functional and cycle accurate models to be 

developed, the intent o f AME is to target the specific requirements o f performance 

evaluation. The current area of study that AME is being used for is in architectural 

trade-off studies at the processor, cache, and memory interface level of system 

design or what is being called the core-complex for embedded SoC designs.
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As shown in Figure 3.3 overleaf, in order to efficiently performance profile an 

application using the AME, the modules around it require the designer to work in 

two fields; on the one hand, the development of the software part including 

compiler, assembler, linker, and simulator and, on the other hand, the development 

o f the target architecture itself. The AME produces the characteristics of the core 

architecture specific application binary performance and, thus, may answer 

questions concerning the instruction set, the performance o f an algorithm, and the 

required size of memory and registers. The required silicon area or power 

consumption can only be determined in conjunction with a synthesisable hardware 

description language (HDL) model.

Core architectural analysis using the AME provides a unique opportunity to 

develop system metric estimation methodologies for power, area and performance 

in conjunction with low-level RT-synthesisable HDL for soft cores, netlist for firm 

cores and layout for hard cores. As an example, consider a UART (universal 

asynchronous receiver/transmitter) core implemented in synthesisable HDL, having 

its buffer size as a parameter. By performing gate-level simulation of UARTs with 

different buffer sizes, one can obtain area and toggle switch information for 

different parameter settings; likewise, after simulation o f a core-based design at 

system-level, one can use low-level toggle data to accumulate total toggle counts and 

estimate power consumption of the design for a given technology.
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3.4 Electromagnetic Actuator Driven Camless Engines

3.4.1 Introduction

Conventional internal combustion engines use mechanically driven camshafts 

to actuate intake and exhaust valves. Like a very simple software program that 

contains only one set of instructions, such mechanical cams always open and close 

the valves at the same precise moment in each cylinder's constantly repeated cycle of 

fuel-air intake, compression, combustion, and exhaust [49]. They do so regardless 

o f whether the engine is idling or spinning at maximum rpm. While this system is 

convenient and reliable, the fixed timing of the valve events with respect to the 

piston motion is typically selected as a compromise among fuel economy, emissions, 

maximum torque output, valvetrain noise, vibration and harshness [49, 50].

The growing need to improve fuel economy and particularly reduce emissions 

led to the introduction of an alternative valvetrain technology, namely a camless 

valvetrain [51]. Camless engines, employing electrohydraulic, electromagnetic or 

hydromechanical control of the valves, offer the next step in engine flexibility. Such 

engines allow independent control of valve timing and lift without mechanical 

linkage to the crankshaft [50, 51]. Various studies have shown that a camless 

valvetrain can alleviate many otherwise necessary engine design tradeoffs by 

supplying extra degrees of freedom to the overall powertrain system [50].

Automotive engines equipped with electromagnetic camless valvetrains have 

been studied for over thirty years but production worthy vehicles with engines of 

this type are still not available due to difficulties in ensuring adequate and reliable 

electromagnetic valve performance [1, 7, 50, 52, 53]. For an electromagnetic 

camless valvetrain (EMCV), the actuator noise caused by high contact velocities of 

the moving parts has been identified as a key problem [50, 52, 53].

Critical to the successful implementation o f such a camless engine is the 

electromagnetic valve control strategy, its real-time software and hardware, 

satisfying performance and cost targets of the overall platform in a timely manner.
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3.4.2 Construction and Operation of the Electromechanical Actuator
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N eutral Position 

Valve O pen

Figure 3.4: The Electromechanical Actuator

Figure 3.4 illustrates the actuator at open, neutral and closed positions. There 

are two magnets, two springs and an armature in the actuator. The two magnets are 

coil wound on ferromagnetic material. The coils are driven by currents generated by 

an electronic system, driven by a pulse-width modulated voltage. The activated coil 

generates a magnetic field applying a force on the armature. The two springs are 

adjusted such that both are always compressed for any position o f the armature. 

The actuator uses the spring force to accelerate the masses, then uses the 

electromagnetic force to attract and dwell the valve. W hen there is no current on 

coils, the spring-mass system stays at the neutral position. Voltage applied on the 

upper coil closes the valve generating a holding current, which depends on the 

spring force and the pressure difference between the cylinder and the 

exhaust/intake manifold. Because o f the symmetry, analysis is done only on the 

valve-opening event.
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3.4.3 Design and Implementation of the Actuator Controller Platform

The PowerPC SoC based actuator control system is required to ensure 

accurate valve closing and opening events (timing). The engine management system 

deploys the timing strategy on the drivers torque demand and other vehicle variables 

[51, 52, 53]. One o f the key objectives o f the controller platform is to reduce the 

armature-coil and valve-cylinder contact velocities, the so called soft-landing, which in 

turn reduce noise and com ponent wear [50, 51, 52, 53, 54]. Modern engine 

manufacturers design camshafts to achieve a low 0.04 m /s  contact velocity at low 

engine speeds and in conventionally driven engines, this velocity increase linearly 

with engine speed [1, 3, 6, 9, 54, 55].

The electromechanical actuator operating in the harsh engine room  is a highly 

nonlinear drive system but it is greatly welcome in high-speed and high accuracy 

applications such as camless engine control [50, 51, 52]. One o f the most 

commonly used controller techniques for such actuator position control is the linear 

P I /P ID 3 controller. For set point regulation, PID  controller provides satisfactory 

performance. However under time-varying trajectory reference such as the one in 

the camless engine, the performance o f the PID  controller degrades due to its 

linearity characteristic [56).

In order to achieve better tracking o f the desired valve position, an iterative 

learning controller (ILC) is implemented as it is a proven technique for improving 

the transient response o f systems following the same trajectory m otion or operation 

over and over [57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67].

  ---------
MemoryMemory Memory

Figure 3.5: Configuration of the Actuator Iterative Learning Controller

PID  - Proportional, Integral, Derivative - A three m ode control action where the 
controller has time proportioning, integral (auto reset) and derivative rate action.

T
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The basic idea of the ILC implemented is illustrated in Figure 3.5. All the 

signals shown are assumed to be defined on a finite interval. The subscript k  

indicates the number of full armature travel cycles. During the k lh cycle, the input 

armature position uk(t) is applied to the system, producing the outputyk(t). These 

signals are stored in the memory units until the trial is over, at which time they are 

processed by the ILC algorithm. Based on the error (ek(t) — yd(t) — Jk(t)) that is 

observed between the actual output and the desired output, the ILC algorithm 

computes a modified input signal Uk+i(t) upon full armature travel that will be stored 

in memory until the next time the system operates, at which time this new input 

signal is applied to the system. This new input produces smaller error than the 

previous input.

The overall controller is modelled and implemented using Madab®, Simulink® 

and Stateflow®. MathWorks’ Real-Time Workshop is then used to generate 

executable stand-alone C code of the algorithm modelled in Simulink [68]. The 

resulting code is then hand optimised before generating the binary executable for 

the PowerPC SoC.

Primarily, the approach taken enables the use of the actuator controller:

1. As an embedded model within a control algorithm or observer

2. As a real-time engine model for hardware-in-the-loop testing

3. As a system model for evaluating engine sensor and actuator models

4. As a subsystem in a powertrain or vehicle dynamics model
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3.4.4 The Camless Engine Actuator Controller Platform

Figure 3.6 illustrates the real-time system level development platform 

implemented for the evaluation o f the electromechanical valvetrain. First o f all, the 

maximum supply voltage is limited to 42-Volts to simulate the available voltage on a 

future vehicle. Two power amplifiers driven by the power supply drive the 

magnetic coils o f the actuator. The SoC designed controls the voltage across the 

coil through a custom designed I /O  board. A laser sensor is used to measure the 

actual valve position with a 5pm resolution. Coil current is also monitored for 

diagnostic purposes.
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Figure 3.6: Experimental Set-up of the Actuator Controller Platform

This central controller SoC shown above receives its drive cycle information 

from the existing engine control unit (ECU). The local valve controller SoC is used 

for the execution o f control algorithms and to drive the power stages. O ther inputs 

to this controller include position o f the actuators. Data transfer to actuator occurs 

at 25ps (40kFlz) intervals.
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3.4.5 Results and Concluding Remarks

An electromechanical camless valvetrain controller platform is realised based 

on the PowerPC SoC developed. Simulations and real-time measurements confirm 

the functional ability o f the electromechanical actuator to vary valve timing, lift, 

velocity and event duration, as well as to perform  cylinder deactivation in a four- 

valve multi-cylinder engine.
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Figure 3.7: Valve Position Control Results based on the ILC (k e [1,13, 24])
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Figure 3.8: Torque Production with Mechanical Cam and Camless Engine

As shown in Figure 3.7, employing an ILC reduces the valve contact velocity 

as the armature cycles are increased. Measured results from [69] in Figure 3.8 

confirms that the torque produced by the four cylinder engine, driven by an 

electromechanically driven valvetrain is 13% better than that o f a classic dual 

overhead camshaft (DOHC) arrangement.
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3.5 Embedded Von-Neumann On-Chip SoC Cache

A high performance, 32-kilobyte, 8-way set-associative, unified, aka von 

Neumann (instruction and data) cache with a 32-byte line si2e has been developed 

for the SoC. The enclosed SoC cache book chapter examines the new cache control 

instructions and provides the user with sample routines to invalidate the cache and 

relocate object code in memory using the cache. Most applications only use these 

cache control instructions during power-on initialisation and when necessary to 

flush cache contents to system memory. However, in time-critical code segments 

these instructions can often improve throughput via preloading of required cache 

contents and by reducing unnecessary transfers between external memory and the 

unified cache.

Measured results using author and customer developed powertrain 

applications confirm the developed cache improves system performance by 

providing low-latency data to the SoC core’s instruction and data pipelines, which 

decouples processor performance from system memory performance. The cache is 

virtually indexed and physically tagged.

Due to areal overhead, the cache developed does not consist of dedicated 

hardware for enforcing coherency, and a software technique to accomplish this task 

is also proposed in the document.

This book chapter also discusses a technique as to how the cache can be used 

as local memory with minimal reconfiguration overhead using software. 

Particularly, inability to reuse data and under utilisation of cache capacity are 

responsible for poor cache performance on various commonly used automotive 

applications is highlighted.
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3.6 Fast Internal Combustion Engine Knock Processing

3.6.1 Introduction

Knock in internal combustion engines (ICE) refer to the premature self or auto 

ignition of the air-fuel mixture in the engine when the unburnt mixture’s 

temperature and pressure have exceeded a critical point. Frequent occurrence of 

this knock phenomenon causes permanent damage to the ICE and should be 

avoided. However, in order to obtain maximum power, modern engines are run at 

their borderline limit of incipient knock using closed-loop control of spark timing 

based on knock sensor feedback [49, 70, 71, 72].

The developed knock processing strategy is based on autonomous on-chip 

modules and an auxiliary signal processing extension to the main SoC core. Real

time software development techniques with an advanced software circular buffer 

implementation for processing the streaming knock sensor data have been 

developed. Various SIMD software optimisation techniques are employed to 

reduce the real-time knock algorithmic execution time. Real-time and simulation 

results are presented for the detection of knock on a four cylinder internal 

combustion engine, but, the approach is widely applicable.

3.6.2 Impact of Knock and its Real-Time Processing

Impact of knocking in an engine depends on its intensity and duration [72]. 

Trace knock has no significant effect on engine performance or durability. Heavy 

knock can lead to extensive engine damage [49, 70, 71]. The engine can be damaged 

by knock in different ways: piston ring sticking; breakage of the piston rings and 

lands; failure o f the cylinder head gasket; cylinder head erosion; piston crown and 

top land erosion; piston melting and holing. Knocking is one important factor 

limiting the efficiency of an engine and is therefore o f great importance to the 

engine manufacturers [49, 70, 71, 72, 73].
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N orm al C om bustion

Figure 3.9: Cylinder Pressure versus Crank Angle (CA)
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In severe cases, the piston may still be moving upwards to compress the air- 

fuel mixture. As such, it cannot move away to ease the build up o f pressure wave. 

This results in severe stress on the engine and should be prevented as permanent 

engine damage can occur [49]. Figure 3.9 shows three plots o f cylinder pressure 

against crank angle o f a single cylinder engine with ignidon timing three degrees 

apart between each trace.

There are several different approaches to detect the presence o f knock in 

engines, see e.g. [73, 74, 75, 76, 77, 78, 79, 80]. One o f the classic techniques 

presently used in production engines is based on application specific integrated 

circuits (ASIC) with limited programmability, such as the ProSAK™  knock control 

ASIC [81] and The HIP9011 ASIC [82],

Due to the high cost o f direct knock sensors, m ost o f the current knock 

detection systems are based on structural vibration signals obtained using an 

accelerometer [78].
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3.6.3 Modelling the Pre-Silicon Knock Processing Platform

Functional and behavioural modelling o f the overall knock processing strategy 

was carried out using the AME, Matlab, Simulink and Stateflow simuladon 

platforms [68, 83], which was inidally used as the primary dem onstrator to 

customers before the development of the SoC based real-time environment. A top- 

down, modular design approach was taken with the overall implementation. The 

knock simulation platform is divided into hierarchical subsystems, making it more 

generic by separating engine and knock control system specific parameters.
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Figure 3.10: Pre-Silicon Knock Functional and Behavioural Simulation Platform

AME based linear and non-linear regressed perform ance analysis tables o f the 

developed SIMD knock signal processing kernels are also incorporated in order to 

simulate different knock signal acquisition windows as shown in Figure 3.9. As a 

result, performance optimisation o f the entire system, eliminating laborious 

programming and delivering substantial time was achieved.
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3.6.4 SoC Based Hardware Knock Evaluation Platform

The following figure shows the fully populated printed circuit board (PCB), 

partly designed by the author, used for the real-time evaluation o f the overall knock 

processing strategy developed. It employs an MC33394 Power Supply IC [81] and 

connectivity to other basic optional communication protocols available on the SoC 

as shown in Figure 3.2.

Figure 3.11: Photograph of fully populated knock hardware evaluation board

Where possible, components mounted on the PCB are automotive qualified to 

allow system evaluation over the full automotive temperature range (-40 °C to 125

°C).
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3.6.5 Knock Processing Methodology -  Data and Algorithmic Flow

Figure 3.12 illustrates the developed knock sensor data and the algorithmic 

flow. User programmed eQADC commands are contained in the on-chip memory 

in a user defined data structure. The eQADC command data is moved from the 

command queue to the command FIFO  buffer by either the host CPU or by the 

enhanced Direct Memory Access (eDMA) controller. Once the command FIFO  is 

triggered and is transferred into the ADCs on chip, the ADC executes the 

command, and the result, i.e. a pair o f time stamp and data is moved through the 

result FIFO  by the eDMA or the host CPU in to the circular buffer in the on chip 

memory.
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Figure 3.12: Data and Algorithmic Flow of the Developed SIMD Knock Kernel

The data in the circular buffer is then processed and presented by the knock 

task management software threads to the key SIMD knock signal energy extraction 

elements. The streaming data is then subjected to various SIMD signal processing 

elements in order to extract the signal o f interest [84, 85].
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Streaming knock processing constitutes a significant part of current day 

average microprocessor workloads. To address this, a SoC combining SIMD DSP 

functionality with a classic microprocessor core has been developed. Peripherals on 

this SoC designed use fast register and memory based communication and 

synchronisation mechanisms to deliver high performance. Memory based 

communication and synchronization is realised using the eDMA module. 

Parallelism in this application is exploited using a combination o f orthogonal parallel 

processing techniques, namely instruction and data level parallelism (ILP and DLP).

It has been shown that using a common architecture for both RISC and DSP 

instructions, in combination with autonomous on-chip peripherals, allows complex 

systems to be built around a single SoC platform, where previously two or more 

different processors would have been used together [78, 79, 80]. Based on the 

overall development strategy, it is also evident that real SIMD computers need to 

have a mixture of single instruction single data (SISD) and SIMD instructions. 

Importance of SISD elements in the micro-core to perform operations such as 

branches and address calculations that do not need parallel operation is also 

highlighted. It is also worth nothing that for efficient dynamic power management 

and flexibility, unused individual execution units of the SoC are disabled during 

algorithmic execution.

Thorough experimental analysis of the developed knock control platform 

confirms that SIMD works best in dealing with arrays of streaming data. 

Additionally, in the proposed architecture, sustained MAC instructions are executed 

in a single CPU cycle. In contrast, in a typical fixed-point microprocessor used in an 

engine control environment, a multiply and an add typically executes in 15 to 20 

CPU cycles [81, 86, 87, 88, 89, 90].

The SIMD unit implemented also significantly increases execution speed by 

performing multiple operations in parallel. For instance, in the same instruction 

cycle that a MAC operation is performed, a parallel data move is carried out. SIMD 

enhancements in the SoC supplement the computational speed of present 

generation real-time processors used and make them ideal for high-performance 

real-time applications.
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As shown in Figure 3.13, computational bandwidth is what separates the 

SIMD based core from the classic CPU — the ability to process an abundance of 

data, consistently, in an uninterrupted stream.

Measured performance results shown in Figure 3.13 confirms that the efficient 

coding and optimisation techniques used for the SIMD implementation o f the 

knock kernel have improved performance by a minimum o f xl.8.
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3.7 Next Generation Powertrain SoCs and Their Applications

3.7.1 Introduction

Ever increasing performance and increased on-chip memory requirements 

from various automotive powertrain applications radically increase the demand on 

powertrain controller overhead and the bandwidth required to run such applications 

[1, 2, 3, 4, 5, 6, 7, 8, 9,10, 21, 22, 23, 24, 25, 26].

Powertrain applications not only take cost, performance and issues o f real

time deterministic operation into account when choosing an SoC, but also lay 

emphasis on devices with sufficient flexibility and scalability to cope with complex, 

and modern development methodologies being employed. This document 

summarises the studies and benchmarking evaluations of customer and author 

developed application requirements for the natural successor to the developed SoC 

core.

In general, powertrain applications are driven by two main goals:

■ Reduced fuel consumption

■ Reduced emissions

These goals are to be achieved at the same or even higher engine power and, 

o f course, at the same system cost level [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 21, 22, 23, 24, 25, 

26].

Analysis done on the present customer applications and general trends 

confirm that new software development techniques presently being employed in 

powertrain applications increases the code size and requires higher processor 

bandwidth. Rapidly growing performance requirements are being primarily driven 

by applications developed with auto code generation using embedded real-time 

targets [1, 4, 6, 24, 25, 26], enhanced DSP functionality, model fitting to 

automatically generate calibration tables [24, 25], frequent use o f specialist math 

functions, especially in areas like model based development [1, 4, 6, 22, 24, 26], 

along with ever increasing quality, reliability and safety.
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3.7.2 Methodology and Challenges Faced

It is a very well known fact that implementing various number crunching and 

signal processing algorithms on a general-purpose powertrain CPU core can be very 

challenging [81, 87, 90]. Issues such as numeric formats and precision, type 

conversion, cache behaviour, dynamic instruction scheduling, and data-dependent 

instruction execution times pose hazards for high throughput powertrain 

applications, especially those running with tight real-time constraints [50, 51, 54, 55, 

58, 70, 74, 81, 84, 85, 90,]. An appraisal of such application requirements is done by 

profiling the critical computational blocks within them using the real-time hardware 

evaluation board and the AME.

This report summarises the performance requirements o f the natural successor 

core to the one already developed and appraises on the benchmarked and analysed 

wide range of author and customer developed real-time powertrain applications. 

Both automotive OEM and Tier I [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 22, 23, 24, 25, 26] 

application signatures profiled include:

" Table manipulation mechanisms that allows powertrain calibrations system to its 

most robust operating conditions

■ Use of torque-spark curve to model port fuel injection (PFI)

■ Fixed and floating point FIR filtering

■ Fixed and floating point HR filtering

■ Various adaptive filters

■ Fixed and floating point FFT including fast vector magnitude calculation

■ Vector dot product

■ Advanced motor control for x-by-wire

■ Linear regression and radial basis function techniques
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3.7.3 Suggestions and Conclusions

Based on the analysis done, it is evident that the applications evaluated require 

various enhancements to present SoC core in order to meet performance targets. 

Granular profiling of the applications signatures confirm that the features listed in 

the report are required to performance accelerate fixed and single precision floating point 

number crunching algorithms including DSP functionality without sacrificing a 

clean, intuitive programming model. The following summarises the minimum 

"standard" features required by the natural successor powertrain SoC platform:

■ < —70% of code density of present SoC to meet customer requirements and to 

particularly beat competition

■ Zero-overhead looping mechanism supporting a minimum of 4K iterations

■ Hardware cache coherency mechanism

■ An enhanced branch target address and instruction cache (BTAC/BTIC) unit 

supporting speculative execution and branch prediction.

■ Reasonably low capacity, on chip tighdy coupled SRAM memory, aka scratch pad 

memory is required to place and manipulate frequently used data. This memory 

will be used to create circular buffers as developed in the SIMD based streaming 

knock processing methodology.

■ Multiple hardware single precision floating point multiply accumulate 

(SPFPMAC) operations per cycle

■ Modulo addressing mode supporting circular buffer management

■ Misaligned load store support in SIMD

■ Fast hardware math functions, particularly single precision squareroot

■ Enhanced memory management unit (MMU) granularity

■ 100% binary compatibility with the existing core

■ Faster bit reversing hardware for FFT 

" Wider issue mechanism

■ Most of all it would be ideal to have a super compiler to vectorise and exploit full 

potential of SIMD

■ Multithreading and Multiprocessing — If the required performance can be met 

with wider issue, this would obviously be the successor to present core
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3.8 Portfolio Conclusions and Future Direction

The themed portfolio has examined and proposed strategies for the rapid and 

efficient development of high-performance automotive powertrain SoCs and their 

applications. It has been shown how to employ the first-of-its-kind SIMD based 

SoC micro-architecture to design and develop applications consisting of complex 

algorithmic control structures and strategies depending on the desired performance, 

flexibility and particularly cost. The portfolio developed two main novel 

implementation strategies to support camless engine control and advanced knock 

processing based on the SIMD SoC. Various next generation SoC core elements 

required have also been proposed based on thorough profiling of advanced 

powertrain applications, allowing SoC designers to make hardware and software 

trade-offs without having to enter the detail design process.

3.8.1 Summary of Industrial Research Undertaken

Business Plan for the SoC Development of Camless Engine Control

Automotive powertrain controllers are undergoing a drastic transition, from 

the traditional RISC based microcontrollers to technologically advanced SoCs with 

increased DSP functionality tightly coupled to the micro-architecture in order to 

support advanced applications requirements. As the SoCs being introduced are 

challenged to continue this evolution, the business model established by the author 

implements the necessary changes to remain a competitive, and to execute the 

proposed strategies in a manner that ensures continued and improved support and 

profitability. All efforts required by the proposed business are closely managed to 

ensure technological advances are not sacrificed and responsibilities are not 

compromised.

The SoC developed uses heterogeneous computational fabrics to meet 

conflicting requirements with respect to cost, performance and flexibility related to 

the camless engine controller market. Two variants of the SoC, targeting two types 

of camless engine controller platform have already been introduced to the market. 

Seven patents are initially incorporated. In year three, $26 million in sales with 

approximately $11 million gross profit is projected. It is expected that the gross 

profit after year six would be approximately $81 million.

46



Portfolio I

The camless market segments are clearly defined and all are subject to a high 

growth trend. Close collaboration with engine technologist in the field has 

improved upon the overall marketing strategy significantly. A new, particularly low- 

cost and innovative design has been created to answer the needs of the ubiquitous 

low-end camless market. This market should begin at $61 million but could expand 

to several hundred million as soon as the technology is fully accepted. The SoC 

business becomes mature in year four with gross margins of approximately 50% 

producing $47 million in gross earnings.

The keys to success for the camless engine controller SoC business are as 

follows:

■ Initial capitalisation obtained

■ SoC for the high-end camless engine controllers have been introduced

■ All patent applications filed

■ The ability to generate early revenue from the low-end market is established

■ Top-notch team is in place for successful market roll-out

" Successful implementation of sales and marketing plan to the leading automotive 

markets in Asia, Europe and the U.S

■ Increased product development with technological breakthroughs and continued 

market share gains to produce a $47 million revenue by year five
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An Architectural Modelling Environment for the PowerPC SoC

The diversity of powertrain applications coupled with the radically decreasing 

time to market is creating the need for new tools to support rapid SoC design at a 

level of abstraction above the register-transfer level. The architectural modelling 

environment developed consists of a library of author developed reusable 

performance models that correspond to the core architectural elements of the 

powertrain SoC roadmap plus a facility to rapidly assemble these elements into a 

complete performance model for a new SoC design. The environment helps the 

successful introduction of advanced powertrain SoCs facilitating the trade-offs 

between hardware and software elements of all applications targeted.

All application binaries are profiled and their performance metrics on the SoC 

are collected during simulation by the author. On the AME, the user can always 

trade simulation performance against depth o f profiling by selecting only the 

relevant parameters, for example the wait states and branching mechanisms. Tight 

integration of bus and software analysis with the core complex lets the tracing of the 

segment of application currently executed and what bus transactions are initiated.

These powerful profiling capabilities introduced in the AME enables the 

determination of exact SoC core complex requirements. The complex UNIX based 

APIs encapsulated allows complete control over the SIMD micro-architecture 

efficiently.
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Development of a Camless Engine Controller Platform

Based on the extensive research and development undertaken by the author 

and engine technology trends, it is evident that camless technology is the future for 

internal combustion engines. It has been shown by the author that electronic 

control of engine valves independently using electromagnetic actuation yields 

benefits such as improving torque production and driveability, increasing fuel 

economy, reducing weight and decreasing emissions. For example, first-of-its-kind, 

Honda’s mechanical cam based limited “variable valve timing and electronic lift 

control” (VTEC) module first came out in 1991 and was used in the NSX model

[3]. This VTEC module is still being incorporated in various Honda engines due to 

its successful demonstration of the increased engine torque production with lower 

emissions.

A low cost, automotive qualified SoC based distributed camless engine 

controller platform, meeting all performance requirements has been developed. The 

complexity problem of inter SoC communications has also been addressed using 

FlexRay [11] in order to cope with high data traffic that cannot be supported by 

existing communications protocols such as CAN [23]. An electromechanical valve 

actuator model was developed and experiments were used to identify unknown 

model parameters and functions and to validate the model predictions.

Actuators are programmed to do the same task repeatedly which enables the 

observation of the control error in successive iterations. An ILC has been 

developed by the author in order to compensate for and, hence, remove this 

repetitive error. It has been shown that using such an ILC algorithm, allows the 

valve motion to approximately converge to a desired trajectory achieving a landing 

velocity of 0.065m/s in twenty four cycles, potentially eliminating undesired valve 

landing transients, the so called soft-landing.

Overall, the principal emphasis was laid on the modelling, analysis, and SoC 

hardware linkable real-time simulation for the camless engine controller platform. 

Such a hardware-in-the-loop environment deployed enables the cost-effective 

evaluation of new SoC technologies and control strategies. Use o f such a camless 

engine controller development platform promises shorter development time and 

concomitant reduction of system cost.
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Fast Internal Combustion Engine Knock Processing

It has been shown that frequent occurrence of the knock phenomenon in an 

internal combustion engine causes permanent damage. However, in order to obtain 

maximum power, modern engines are run at their borderline limit of incipient 

knock using closed-loop control of spark timing based on knock sensor feedback.

Streaming knock processing constitutes a significant part of current day 

average powertrain microprocessor workloads. To address this, an automotive SoC 

combining tighdy coupled DSP functionality with SIMD has been developed. 

Peripherals on this SoC designed use fast register and memory based 

communication and synchronisation mechanisms to deliver high performance. 

Memory based communication and synchronisation is realised using the eDMA 

module.

A novel high performance knock detection strategy based on this SoC has 

been developed by the author encapsulating the optimal use of relevant autonomous 

on-chip modules.

In the developed SoC micro-architecture, it has been experimentally shown by 

the author that SIMD works best in dealing with arrays o f streaming data. Hence, 

to have the opportunity for massive parallelism in SIMD there must be massive 

amounts of data, or data parallelism. It was shown that the performance of the 

SIMD based knock processing kernel is higher than 80% compared to that of hand 

optimised classic RISC/non-SIMD based approach.

The C /C + +  interface introduce by the author to access the SIMD elements of 

the SoC micro-architecture eliminates the issues associated with writing code at the 

assembly level: register allocation, scheduling, stack management and conformance 

to the underlying application binary interface (ABI). It has been shown that the 

intrinsic interface developed enables the embedded compiler to optimise the 

instruction scheduling.

Overall, for the automotive powertrain environment, the change from 

standard scalar 32-bit to SIMD vector 64-bit register based cores has been 

established, allowing the implementation of advanced algorithms with minimal 

processing time.

50



Embedded Von-Neumann On-Chip PowerPC SoC Cache

It has been shown by the author that the performance of the unified cache 

module incorporated on the SoC is critical to alleviate the increasing gap between 

the SoC core and on-chip memory speed. The first-of-its-kind cache implemented 

on the SoC improves overall system performance by providing low-latency data to 

the core instruction and data pipelines. However, it was confirmed that poor reuse 

of data, conflicts between various references and underutilisation o f cache capacity 

lead to poor cache performance for various commonly used applications.

Software techniques have been introduced by the author to explicitly 

accomplish cache coherency as the cache does not have dedicated hardware 

enforcing coherency. In conjunction with the compiler, with no changes to existing 

instruction set, it has been shown by the author that cache can be used as local 

memory with minimal overhead. Data pre-fetching, blocking, and data copying 

techniques have been also been introduced to improve overall cache performance.

It was established by the author that the best general approach to making good 

use of the cache module is to keep the performance critical elements of applications 

as small as possible so that it can completely be loaded onto the cache module. 

Particularly, linked lists intensive applications are bad for the cache due to the widely 

spread out memory accesses.

Hardware configurable, load and lock mechanism has also been implemented 

on the cache in order to guarantee the availability of instruction and data. This 

feature is particularly useful for critical interrupt handler routines in order to provide 

fast and guaranteed interrupt performance.

Next Generation Powertrain SoC Performance Requirements

It has been established by the author that performance evaluation of the 

developed powertrain SIMD SoC core is more complex than the classic RISC 

machines. The overall performance of powertrain applications profiled by the 

author depends on a number of performance metrics such as the average instruction 

length, cache configuration, branching mechanisms and the number of memory 

references per instruction. The analysis conducted by the author is used for the 

solidification of future powertrain SoC core architecture and their embedded 

compilers.
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Future Work

1. The first step is to establish a stronger and particularly a realistic vision for 

the SoC business targeting the low-end engine market for both camless engine 

controllers and knock processing platforms.

2. Though it may be impossible, it would first and foremost be useful to 

identify all disturbances generated by the engine as a whole. In theory, the 

ILC algorithm implemented fulfils the stability conditions finding the 

optimal input that gives zero error for the actuator, but, it is not clear as to 

what would happen due to disturbances from the engine as a whole. Ideally 

a controller needs to be modelled compensating for gas forces acting on the 

valve due to the combustion in the cylinder and any valve lash that may be 

present to compensate for the thermal expansion between the valve stem 

and the armature. Clearly more research needs to be done to resolve this. It 

is also necessary to investigate the possibilities o f implementing a controller 

to converge with lower number of iterations. Additionally, further analysis 

is required to determine the wear levels of the electromagnetic actuator 

driven engines as with conventional camshaft driven engines.

3. All SIMD code has been implemented manually giving direct control over 

the performance of the SIMD execution. Although this is the best way to 

obtain highest performance, from the user's point of view and as an ultimate 

research goal, it would be ideal to have an advanced embedded compiler 

that could vectorise legacy scalar 32-bit code efficiently in order to realise 

the full benefits of the underlying SIMD architecture. It is evident that all 

leading embedded automotive application compilers used in all development 

work done is far from this goal. Clearly this needs to be addressed in order 

to substantially reduce development time.

4. Although design automation tools for system development used were very 

helpful for developing complex and time critical embedded systems and 

applications, there is still plenty of room to augment these tools with more 

specific support for subsystem interfacing, improved synthesis capabilities, 

inclusion of more generic libraries preferably including fault models and 

support for additional analysis capabilities, especially with regard to inherent 

robustness. I personally consider an open tool architecture to be critical for 

achieving these goals. It should either provide a mechanism for linking 

control code with ease, as in Stateflow, or tool boxes as in Matlab.
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5. The magnetisation curves, in principle, contain all the information that is 

needed to operate the electromagnetic actuator. With constant 

advancements in automotive qualified SoCs with increasing DSP 

functionality such as the one developed, investigations on suitable control 

strategies need to be developed for sensorless control providing 

opportunities for greater flexibility, higher productivity and particularly 

lower total life cycle costs.

6. Development of cost effective technology to integrate the robust power 

circuits needed to power actuators and intelligent control circuits on the 

same SoC.

7. Most of the pre-silicon performance analysis was done using AME, 

primarily supporting functional and behavioural simulation of the core 

complex. However, in order to further reduce development time, a 

complete SoC simulation platform needs to be developed supporting the 

entire target hardware including external I /O  and on-chip peripherals.

8. My personal experience confirms that there is room for improvement with 

early SoC integration. Generally, such SoCs are either over-designed or fail 

to fulfil the performance specification initially guaranteed. Especially the 

performance related to the software elements, for example, CPU load, 

impact of the RTOS or software response time - can hardly be analysed 

without the availability of a robust cycle accurate simulation model. 

Furthermore, the software performance is heavily affected by the 

communication and memory architecture, so an isolated consideration of a 

single SoC may hide potential bottlenecks due to bus use and memory 

access latency. Therefore, such issues have to be addressed as early in the 

design flow as possible to prevent late and costiy changes o f the architecture 

specification.

9. In the powertrain application domain, further real-time evaluations 

particularly run-time on-chip analysis of memory access patterns needs to be 

done. Such heuristics could facilitate the determination of application 

domain specific optimal caching strategy including the attainment of a faster 

coherent cache.
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10. And last but not least, great emphasis needs to be laid on the transitioning 

to 42-volts from the current 14-volt automotive bus which is clearly 

insufficient to run future applications like camless engine controllers. It is a 

well known fact that increased power, greater comfort and greater safety 

features can easily be realised with a 42-volt bus, necessitating the immediate 

standardisation of the 42-volt bus in unison with research work. It is 

evident that much work has been done and much remains to do.
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1. Executive  S ummary

The purpose of this business plan is to raise US $6 million from the Motorola Semiconductor 
Products Sector (SPS) funding body with the approval of Motorola SP S Project Development and 
Steering Group. The 32-bit Embedded Controller Division in the Advanced Vehicular System  
Dynamics (AVSD) division of Motorola SPS is dedicated to developing an innovative Electronic 
Variable Valvetrain Controller (EW C) System-on-a-Chip (SoC) platform for the advance 
Electromechanical Actuator (EMA) controlled next generation cam less engines.

1.1. T he Camless  E ngine Market Analysis  Description

Present valvetrain lift and timing control market is highly competitive and is driven by many major 
car engine manufacturers. One of the key players, The BMW Group, who is not only the main 
licensee of existing various camless valvetrain control techniques, but also the patent holder of 
the most recent electric motor driven Valvetronic IP, which dispenses the need for employing a 
throttle butterfly. It is envisaged that by 2008, 46% of the cars would have EW C  based control 
methodologies. With an extremely positive market outlook, research and development 
technology, EW C customers are focusing on employing electromagnetic actuators as the primary 
valve driver. As emission regulations are being tightened with the emphasis of enhancing 
performance, Motorola SPS is required to develop more advanced system level solutions in order 
to meet these requirements.

1.2. T he Product

Electronic Variable Valvetrain Control System-on-a-Chip (EVVC-SoC) -  A Technically Patented 
Infinitely Flexible Camless Engine Controller SoC based on the next generation PowerPC™ eSys 
Single Instruction Multiple Data (SIMD) Platform. This SoC along with the electromagnetic 
actuator replaces the classic mechanically fixed camshaft with breakthrough technology 
facilitating a sleek and attractive profile.

1.3. Majo r  Benefits of the EW C SoC

Unlike the traditional fixed profile mechanical cam, with EW C, any engine valve can be opened 
at any time to any lift position and held for any duration, optimising engine performance. 
Motorola is in the process of developing a new SoC family, namely MPC5500, which will ideally 
suit the controller requirements of an electromagnetic valvetrain. To facilitate this, SoC team has 
developed strong working relationships with various actuator technologists including OEMs and 
Tier I automotive clients and plan to further this area by continuing to vertically-integrate the 
business.

Primary business and technical benefits of the EW C to Motorola and automotive customers are 
as follows:

Deeper market penetration of the new PowerPC SIMD core devices
■ Enhanced SIMD based PowerPC SoC permits the control of the EMA to infinitely variable 

valve lift and timing
" Development of a true system s solution not only for EW C but also the general market
■ Reduction in emission levels
■ Cylinder deactivatation for dynamic power delivery control
■ Supports hard and soft IP for generic high precision actuator market
■ Dynamic valvetrain timing and lift control
■ Dynamic variation of air-fuel mixture
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- Low pumping losses
> Effective braking and thrust operation
■ Independent valve and cylinder deactivation 

Improved cold-start and warm-up operation
■ Adaptive cylinder range
> Multi stroke operation
■ Reduction of idle speed
■ Simplified cranking procedure
- Optimised internal residual gas recirculation
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1.4. O v e r v ie w  of the  EWC SoC P la tfo r m
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Figure 1: EVVC SoC Overview

M o t o r o l a  C o n f id e n t ia l  P r o p e r t y P a g e  10 o f  59



tVVL, OUt̂  BUSINESS r LAN r U H I h U L I U  II

1.5. T he B M W  G r o u p , O th er  O E M s an d  T ie r  I C o n tr a c ts

Motorola has an in principle agreement and NDA with The BMW Group and various other OEMs 
and Tier Is to supply 138 million E W C  SoCs over a 10 year period starting in 2005. This 
provides the venture with a reliable income stream through highly reputed premier automotive 
manufacturers through whom the establishment of this new SoC platform will be solidified for the 
next generation of camless engines.

1.6. T he  O ffer

The 32-bit E W C  SoC Embedded Controller Team seeks PSG approval and US $6 million from 
the internal Motorola project funding body. For this investment, initially forecast returns are as 
follows:

■ 10 times the original investment by year 6
■ An Internal Rate of Return (IRR) of 57% over 10 years.

The funds are required in two slots:
■ Initially US $1.7 million to finance the fully functional prototype platform including production 

worthy software
■ Subsequently US $4.3 million to fund various SoC design and system level software

development groups and to purchase factory equipment and materials supplies for production
of the E W C  SoC

1.7. F in a n c ia l  S u m m ar y

—• — Total Cost in US M$ —• — Annual Sales in US M$ —• — P B T in U S M $

$350.00
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Figure 2: E W C  SoC Project Financial Summary
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1.8. EW C SoC - A Lucrative So C B usiness  M odel for  M o to ro la  SPS

Motorola Semiconductor Products Sector (SPS) stands at the threshold of its next great 
technological and market leap: the advent of the EW C SoC which will allow Motorola SPS to 
integrate the functions of multiple chips into a single chip, ushering in a new generation of chips 
with superior system-level integration, device performance and cost efficiency. SoC chips will 
comprise both newly designed functionality and pre-designed blocks of intellectual property (IP). 
The re-use and re-integration of existing designs will reduce design effort, leverage chip capacity 
and performance.

From the automotive OEMs perspective, the EW C SoC will deliver what Motorola SPS has 
always delivered: better, faster and cheaper products. From Motorola S P S ’ perspective, the 
EW C SoC represents the continued need to manage complexity in design, integration, 
verification and test. To achieve this level of cooperation, The 32-bit Embedded Controller 
Division in Motorola SPS has developed a business and legal model to support the re-use and 
integration of designs originating from multiple sources into a single SoC addressing the next 
generation automotive market.

The biggest challenge is to understand the technology and business risks, to establish 
methodologies to manage those risks and rewards, and to develop the business models to fairly 
allocate those risks and rewards to the appropriate business players. Motorola S P S ’ legal system  
is capable of providing answers to all of the questions posed by the EW C  SoC business model. 
Legal and contractual models exist for IP protection, licensing, indemnification, value sharing and 
dispute resolution sufficient to address this new market.

The hallmark of this unique EW C SoC market will be the shift in roles between the key 32-bit 
Embedded Controller Division’s  players and their effort to establish successful business, legal and 
technological inter-relationships. Each player com es to the SoC market with a unique set of 
value-added propositions, needs and objectives.

1.9. T he FUTURE

The 32-bit Embedded Controller team’s EW C SoC product offering will be positioned as cost- 
effective and specifically reliable in a hostile automotive environment so  that current and future 
controller functional needs of the radical electromagnetic cam less internal combustion engines 
can be fulfilled. Along with the presently proposed SoC architecture, suitability of two other 
enhanced PowerPC architectures are being investigated to address the changing SoC market 
during the course of the project.
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2.1. Funds  Required

A total investment of US $6 million is sought from the internal project funding body of Motorola 
that has experience in the SoC design, development and marketing industries. This funding 
required will be split and invested in two parts:

The first of US $1.7 million will be made once the BMW Group contract is finalised. This is due to 
be completed by January 2002. This money will be used to finance the initial prototype 
development based on a single cylinder 7 series engine.

The second portion of the US $6 million will be required by January 2003. This money will be 
used to finance the SoC module level integration, SoC testing, assembly, critical raw material 
supplies as well as to provide a working capital.

2.2. B enefits  to  Motorola ’s Funding  Body

For the US $6 million investment, the financial projections forecast an Internal Rate of Return of 
57% over ten years, providing Motorola SPS with a PBT of 12 times the original investment at the 
end of calendar year 2010. If the Board unanimously decides, dividends may be distributed; 
however, this business plan does not contemplate any dividend payments, only capital gains.
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3. T he Product  -  E W C  SoC Platform

The 32-bit Embedded EW C SoC has two innovative initial product strategies offered to the SoC 
customers. The two strategies are; Single-Issue (executes one instruction per system  clock), and 
the Dual-Issue (executes two instructions per system clock cycle) SoC. Research and 
development is currently being undertaken on subsequent SoC products. Book E based  
PowerPC is a breakthrough technology and is the only patented SoC architecture in the world that 
makes distributed electromagnetic valvetrain based cam less engines feasible.

At present the Single-Issue SoC is being offered to the customers. The state-of-the-art Single 
Instruction Multiple Data (SIMD) core on this SoC variant has a combination of many innovative, 
user friendly features not included on parts presently offered by the competitors or the legacy 
Motorola’s PowerPC products.

3.1. T he  EW C SoC

The EW C SoC is the first member of a family of next generation powertrain microcontrollers 
based on the PowerPC Book-E architecture. This family of parts contains many new features 
coupled with high performance CMOS technology to provide substantial reduction of cost per 
feature and significant performance improvement over the legacy PowerPC platforms. In addition 
to the new features introduced, the SoC core complies with the previous PowerPC standards 
Book E architecture. It is 100% user mode compatible (with floating point library) with the classic 
PowerPC instruction set. The enhanced version of the Book E architecture incorporated in the 
SoC has enhancements that improve the PowerPC architecture’s  fit in a multitude of embedded 
applications. The new set of instructions, including the SIMD DSP, offers the generation of 
optimal time and code optimised instruction sequence for a given embedded application. The 
SoC has two levels of memory hierarchy. The fastest a ccesses  are to the 32-kilobyte unified (aka 
Von Neumann) cache. The next level in the hierarchy contains the 64-kilobyte on-chip Level 2 
(L2) Static Random A ccess Memory (SRAM) and the 2-Mbytes of on chip flash memory. Both the 
L2 SRAM and the flash memory can hold instructions and data. The External Bus Interface has 
been designed to support most of the standard memories used with the legacy PowerPC product 
family.

The complex Input/Output (I/O) timer functions of the SoC are performed by two enhanced Time 
Processor Unit (eTPU) engines. Each eTPU engine controls 32 hardware channels. The eTPU 
can be programmed using a high-level programming language unlike the traditional Time 
Processor Units (TPU). The less complex timer functions of the SoC are performed by the 
enhanced Modular Timer System (eMTS). Off-chip communication is performed by a suite of 
serial protocols including Controller Area Networks (CAN), enhanced Serial Peripheral Interface 
(eSPI) and Serial Communications Interface (SCI). The SoC has an on-chip 40-channel 
Enhanced Queued dual Analogue-to-Digital Converter (eQADC). The System Integration Unit 
(SIU) performs several chip-wide configuration functions. Pad configuration and General-Purpose 
Input and Output (GPIO) are controlled from the SIU. External interrupts and reset control are 
also found in the SIU.

3.2. EW C  SoC Overview

S ee  Figure 1
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3.3. Competing  So Cs

Our primary competitors in the EW C SoC program are Infineon Technologies AG and Texas 
Instruments (Tl). Overall, our solution has better performance and benefits with the SIMD unit. 
However, since our wafer technology is slightly behind Tl, our die size is somewhat higher. 
Consequently we have tremendous price pressure to remain competitive and still be profitable.

With Tl’s  strong background in the DSP derivatives it is successfully leveraging these in mid to 
long-term automotive applications. Tl’s  flash memory technology is recognized as similar to that 
of Motorola’s in quality and reliability.

However, Motorola will differentiate itself from its competitors through offering lower priced, higher 
performance valvetrain controller SoCs. By gaining wider knowledge of the cam less engine 
technology, the EW C SoC team exposes itself to a larger segm ent of the growing market. This 
tightly focussed approach also makes it easier for Motorola to establish and retain a position as  
an industry leader on the EW C SoC market.

Therefore, in summary, the financial strength that will be achieved with the EW C expansion will 
give Motorola SPS the capacity to establish a larger, more diversified customer base, which will 
generate increased sales revenue. This is an exponential growth opportunity for the company.
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4. Over view  of  the  O rganisation

4.1. Registered  Name

32-bit Embedded Controller Division. Motorola Semiconductor Products Sector Limited.

4.2. Co m m encem ent  of O perations

The 32-bit EW C SoC team will start executing the project in January 2003 (upon PSG approval 
and final sign-off of NDA).

4.3. H istory  of the  Establishm ent  of the  S oC Platform  for  the  Cam less  Engine

This venture initially grew out of a traditionally strong relationship with The BMW Group. The 
engineering management and next generation car strategy team of BMWs plan to introduce the 
cam less engine into its 5 and 7 series models drove the need for the invention of such an 
advanced SoC platform and subsequent arrangements with the complete development plan was 
established. Since the introduction of the legacy 32-bit Embedded microprocessors and SoCs, 
Motorola have been successfully marketing the PowerPC based platforms to BMW powertrain in 
Germany. This venture has been extremely successful. As a result, BMW approached Motorola 
to assist them with the development strategy to take their radical cam less engine into their well 
established global automotive market. BMW senior management saw in the 32-bit Embedded 
Controller Division, the necessary skills and drive that would ensure the su ccess of execution and 
on-time delivery of the EW C project. The BMW Group are in the business of marketing premier, 
cost-effective and reliable cars, so there is a perfect fit between this globally renowned company 
and the skills and products of Motorola SPS Ltd. Currently, negotiations are being done with 
various other high-end premier car OEMs and Tier I automotive module manufacturers worldwide 
to enhance the target market of this innovative SoC.

4.4. M ission  Statem ent

The EW C SoC team designs, develops and markets advanced engine controller platforms. They 
are sold to small, medium and large-sized automotive companies for a range of specialist 
applications. These SoC platforms are distinguished from competition by their sophisticated 
interfaces, scalability, reliability and ea se  of programmability and are extensively patented. Sales 
are made directly and through major distributors and OEMs in the home and overseas market 
segm ents. The team challenges benchmarks in the SoC sector. W e find ways to "do what the 
others don't".

4.5. V ision  Statem ent

The SoC team will be operating from various Motorola branches around the world. It will have 
annualised PBT of US$ 62.6 million and be profitable in four calendar years. It will employ 41 
people mainly engaged in management, R and D, design, marketing, support and administration. 
The team will offer 6 variants of the core SoC and provide added-value services to a large 
customer base throughout the automotive market segm ents worldwide. Motorola SPS' product 
offerings will be technically advanced and offer many clear-cut advantages and improvements 
over competitors' possible offerings. Motorola SPS will continue to expand through acquisitions in 
related technology and market segments.
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4.6. O rganisational O bjectives

■ Supply the fully qualified EW C SoC platform to customers by October 2005.
■ Achieve recurring profits of US$ 40 million or greater by year five.
■ Research and establish enhanced Book E based SoC platforms by year two, ready to market

by year seven.

4.7. O rganisational Values

■ Full commitment to The BMW Group and other future customers with appropriate levels of 
NRE and exclusivity

■ Collaborative approach to new powertrain SoC platforms for the future

4.8. EW C SoC Management T eam

The Management team is comprised of Ross McOuat, Robin Paling and Stephen Lynas. The 
Management team is complemented by two advisors: Franz Fink (SPS Automotive General 
Manager) and Bill Pfaff (DIS Technical Officer). The Management team is highly motivated, 
experienced and well qualified. The team is strongly positioned to take advantage of this 
opportunity and a brief description of the team profile is as follows:

■ Proven business start-up skills, with bottom line responsibility
■ Experience in business start up finance, marketing, operations and legal aspects
■ Personality profiles that reflect the synergies of cohesive group dynamics
■ Stephen Lynas has significant skills and experience in marketing and strategy.
■ Franz Fink successfully established the revolutionising 32-bit Embedded Controller SoC

Platform group in East Kilbride.

4.9. Major M ilestones Achieved to  Date

■ Identification of unsatisfied market need for EW C SoC platforms
■ Generation of NDA, accurate pricing matrices with NRE for BMW with exclusive rights
■ Submission of various patents
■ In principle agreement with BMW and other OEMs to supply 138 million SoC platforms over 9 

years
■ Successful customer trials of SoC based behavioural and functional software suites using 

automotive applications
■ Competitor analysis undertaken to establish uniqueness of the EW C  SoC
■ Development of detailed Integrated Business Plan (IBP)

4.10. Board Structure

The EW C SoC Team, in addition to the capital introduced to the venture by the internal Motorola 
SPS funding body, also has a wealth of experience in dealing with and/or contacts in large 
organisations that are active in the SoC application market.

An independent non-executive chairperson will be appointed. This person will be able to 
introduce the Management team to major car OEMs and will have developed a reputation for 
integrity in all business dealings. The EW C SoC Team will be represented on the Board by two 
members. Initially, these will be Ross McOuat and Robin Paling.
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5. Strategic  A nalysis

5.1. External Environment - Macro  Environm ent Analysis

5.1.1. T echnological Developments

Technological developments in the SoC industry have focused on single core, legacy 
Microprocessor Units (MPUs) ignoring the back-to-back requirement of embedding Digital Signal 
Processing (DSP) elements on the sam e die to implement advanced vehicle powertrain 
applications. The EMVT SoC proposed eliminates the need for requiring two independent 
platforms (MPU + DSP) to implement such algorithms. The SoC also addresses this issue by 
offering a single development unit on the sam e Silicon so  that the performance, cost and space  
benefits can be optimised.

5.1.2. ASIC Based  Platforms

ASICs are ideal for applications that are well-defined and not expected to change during the 
customer's duration of ownership of the product. The recent history of automotive applications, 
however, is characterised by rapid improvement in the state-of-the-art, creating significant risk of 
early obsolescence for any ASIC based accelerator, even if microcoded. Moreover, it is a well 
known fact that the most efficient implementation of the heterogeneous elem ents required to meet 
modern application demands is usually an ASIC; however, developing an ASIC is expensive, 
time-consuming, and inherently risky.

Even though ASIC vendors seem  to be under attack from all sides, they will survive the current 
assault. A customer simply can't acquire a silicon solution with the lowest possible cost and still 
have the highest possible performance without pursuing an ASIC design. What has changed is 
that the volumes needed to justify an ASIC have grown to where low- and now medium-volume 
applications are almost forced to use FPGAs or application-specific standard product (ASSP) 
solutions.

5.1.3. FPGA Based  Platforms

Although, FPGAs are the ultra-flexible alternative to the above-mentioned ASICs, but FPGA 
efficiency is severely compromised by the very thing that makes FPGAs flexible -  configurable 
logic elements and interconnections that are generic.

5.1.4. W hy  SoC Based  Design Methodology?

SoC based design approach combines the flexibility of FPGA with the efficiency of an ASIC. This 
approach is not unlike toggling a set of different options when buying a new PC -  working within a 
general system architecture framework, one can choose various processor grades, speeds, 
peripherals, etc. Thus, using an SoC based design approach, a system s architect could create a 
platform that incorporates reconfigurable, fixed-function, and programmable elements; each chip 
could be configured for different functionalities.
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5.1.5. Economic  T rends

The ASIC and the FPGA markets face several economic and technological factors that call into 
question its ability to survive and prosper. Even after recovering from the dramatic decline in 
market revenues that started at the end of 1999, this market must com e to terms with many 
issues that confront it in the near term.

On the economic front, the rising cost of mask sets and very large nonrecurring engineering 
(NRE) charges may force smaller customers and start-up companies to rethink their product 
strategies and possibly delay their designs from entering the production stage. This may also 
push these companies toward using field-programmable gate arrays (FPGAs) as a production 
technology. In addition, the well-identified flow of ideas and innovative solutions derived from 
smaller companies in the semiconductor industry can be impeded by these high start-up costs.

However, in the SoC domain, the availability of optimal and specifically cost-effective Electronic 
Design Automation (EDA) tools substantially reduces the design cycles and therefore reduces the 
time-to-market of SoC based solutions. Designers find them selves in the enviable position of 
seeing product life cycles and windows of market opportunity expand while design-cycle times 
decrease. At present, EDA tool vendors are addressing the design-cycle problem with even  
better and more comprehensive tools that provide more control to designers over their work. 
However, it is understood that the rapid increase in potential gate counts due to smaller process 
geometries offsets any boost in designer productivity that com es from using better tools.

Moreover, emphasis is laid on the greater use and reuse of legacy semiconductor intellectual 
property (SIP) blocks in SoC platforms. The result is that designers can pick the SIP best suited 
for their design and capitalise on the expertise of others. The SIP industry has its own set of 
issues, such as the interoperability between SIP blocks in a design, quality control, and the 
portability between silicon vendors.
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5.2. Market Analysis Description of Key Customer -  The BMW Group

The BMW Group continued its steady route to growth in 2001: the number of BMW, Rover, Land 
Rover, MG and Mini brand vehicles delivered - total: 795,700 units - was the highest annual unit 
sale within the last four years. This includes the best figures for both the BMW Group and the 
BMW brand. (Note: After the handover of the Rover brand, the sales of Rover vehicles are also 
included). The most recent growth in 2001 marks a nine percent increase over 2000. This 
su ccess is primarily driven by the su ccesses enjoyed by the BMW 3 series Valvetronic models, 
which is also a variable valve timing mechanism with limited dynamic valvetrain control flexibility. 
Chairman of the Board of BMW AG, commented: "This development m eans that we can forecast 
a level of sales of over 1,000,000 BMW cars for the whole of 2002 - assuming that there are no 
major distortions of any of the important individual markets".

The generally positive situation is the result of the marketing su ccess  of the entire model range. In 
detail: The EMVT intended 5 and the 7 series are continuing to develop very successfully; the 
most recent 5 and 7 series models are showing high rates of growth.

The above figures show that high-end BMW car market is an exponentially growing market with 
continued expansion forecast; the growth is primarily based around the em ergence of advanced 
engine technology with better fuel efficiency, greater power delivery with low emission levels. 
Therefore, the EMVT technology plays a major role in achieving this objective.

In addition to the BMW group’s  future advanced engine roadmap, the trend towards the inclusion 
of EW C system s in mid-to-high-end cars is extremely significant and promising. Such 
opportunities have enables us to develop a complete system s solution including flash MCU, 
SmartMOS and simulation platforms. SoC performance required by these engine technologists 
also facilitates the acceleration of our technology development in order to remain competitive. 
This not only gives us the opportunity to have greater market share, but also, a strong position in 
advanced, high performance system s level integration. Moreover, these techniques will help the 
customer to reduce development time and allow fast prototyping with ease . This market 
opportunity is estimated to be worth approximately $1.2 Billion over the next 10 years.
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5.3. C o m p e tit iv e  E n v ir o n m e n t  A na lysis

Please see Figure 3, §5.4 for more details on the key competitor analysis.

Intensity of Competitor Rivalry

■ Targeting an under-serviced technology sector of the market
■ Resistance from established competitors Low Risk
■ Unique combination of products catering to such niche automotive

applications needs
■ Not price competitive in engine applications segment

Risk of Potential Entrants

■ Three of the largest premier car manufacturers in the world secured as 
a strategic partner

■ Intellectual Property (IP) Protection

Low Risk

Power of Buyers

■ Existing relationship with BMW Groups’ rivals
■ Low-end automotive buyers

Medium Risk

Third Party and Supplier Bargaining Power

■ Extensive industry networks via key board member
■ Less critical software and IP cores are generic and can be outsourced
■ Identification of multiple suppliers for third party module
■ Expertise in-house to design and develop complex modules

Low Risk

Threat of Substitute Products

■ No alternatives offering combination of SoC features
■ Early mover Low-Medium
■ Low cost of production Risk
■ Higher reliability
■ East of use
■ Established product support

Table 1: Competitive Environment Analysis

5.3.1. Im p lic a t io n s  o f  A n a lys is

Due to the market segment targeted and the nature of the industry, it is possible to earn above 
normal profits in this part of the automotive industry.
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5.4. C o m p e t it o r  A n a ly s is

In the current SoC marketplace it is sometimes said that understanding competitors is more 
important than understanding customers. The following Radar chart summarises the overall 
market position of two key competitors, Infineon Technologies AG and Texas Instruments with 
respect to Motorola SPS, in terms of technology, product, financial backing, customer exclusivity, 
distribution channels, after sales service, position in life cycle, cost structure and selling force. 
This analysis is used for the evaluation and monitoring of the competitors to establish a strong 
understanding of the competitor SoC market. Please see Appendix J - for more details. This 
analysis confirms that Motorola SPS is in a stronger position in the E W C  SoC market segment.

—o— Motorola SPS —•— Texas Instruments — Infineon Technology 

Technology

Selling force Product

Financial backingCost structure

Customer exclusivityPosition in life cycle

distribution channelsAftersales service*

Figure 3: Dimensional Analysis of Key Competitors

5.5. C u s to m e r  P r o file

5.5.1. T he  BMW G r o up

The BMW Group concentrates on selected premium segments in the automobile market. This 
means that it is the only multi-brand automobile manufacturer in the world that is not active in the 
mass market, i.e. the volume segments of the automobile market. The aim of the premium brand 
strategy is to achieve higher revenues per vehicle, on the basis of a high-value product substance 
and an unmistakeable brand profile. Presently, the BMW Group pursues this premium brand 
strategy with the BMW and MINI brands and since January 2003, with Rolls-Royce. This means 
that it will cover the premium segments from the small car to the absolute luxury category.

The premium brand is thus creating the preconditions for further profitable growth for the BMW 
Group. The Company expects that in the next ten years, the premium segments of the 
automobile market will grow worldwide by around 50%. In contrast, the mass volume segments 
will increase by "just" 25% or so during the same period. The BMW Group is aiming to achieve 
profitable growth through its advanced technological improvements and in that order of priority - 
"profitable" followed by "growth".
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5.5.2. V o lvo  Cars

Volvo is a premium automotive brand with unique appeal and a world-class reputation for safety, 
quality, durability, and environmental responsibility. In an agreement reached in 1999, Volvo sold 
its worldwide passenger vehicle business, Volvo Cars, to the Ford Motor Company of Dearborn, 
Michigan.

Invoiced sales of Volvo cars in 2000 amounted to 686,400 units, an increase by 5% compared to 
1999. Sales trends were positive, particularly in Europe and North America. Demand for the 
EMVT intended Volvo S40 and V40 exceeded expectations and production w as stepped up in 
order to meet the inflow of orders. Particularly, these models were met with swift and positive 
reception in North America.

According to one of Volvo Cars’ senior marketing executives, strong positive sa les trends in 
Europe, which began in late 1997, have now secured a strong foothold on a number of key 
markets.

In 1999, In the UK, Volvo's third largest market, the number of Volvo cars registered increased by 
21% to 40,700 units in 1999, whereof more than half consisted of the Volvo S40 and V40. In 
Germany, where the total market was largely unchanged, 37,000 Volvo cars were registered. 
The 15% improvement in Italy, to 25,300 units, was wholly attributable to the Volvo S40 and V40. 
Registrations also increased in Spain to 10,400 (9,300), in Switzerland to 7,000 (6,000), and in 
Finland to 6,800 (6,400). Such trends are also true in the United States. Therefore, in 
conclusion, these figures confirm the promising EMVT target platforms’ saleability and global 
acceptance.

5.5.3. Com pact  Dynamics

Compact Dynamics is an internationally renowned Tier II development company specialising in 
Mechatronic development for vehicle manufacturers and suppliers in the field of innovative 
electric drives, including prototype construction. This company not only solves technical system  
problems, but also develops custom components such as motors, power electronics and control 
system s for the automotive powertrain market. Most of Compact Dynamics’ products are 
designed with optimised power density, increased power to weight ratio, lower energy 
consumption and reliability. Control concepts, topologies and structural engineering offered by 
Compact Dynamics integrates well with the EMVT platform offered to the Tier I automotive 
industry.

The profile of the above customer group includes the following criteria:
■ Significant market share
■ Able to offer corporate support and distribution
■ Solutions for emission reduction

In addition to the above customers, the SoC team will target various other well-established 
automotive segm ents to capitalise on the current euphoria of SoC based development platforms.
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5.6. In t e r n a l  E n v ir o n m e n t  A na lysis

See Appendix A for summary of Bell Mason Diagnostic. Major strengths and weaknesses that 
were identified during the Diagnostic process appear in the SWOT analysis in Appendix C.

5.7. P r o je c t  S tr a te g y

The following illustration explains the strategy in place for the project. Each strategic element is 
internally linked although the below chart emphasises on the individuality of key strategic 
elements for clarity.

Technology Strategy Project Risks

Promote eSys Derivative 
Promote hip8 Technology 
SPE for Signal Processing 
System Simulation 
FlexRay

EWC Customers

i ’ t; F-'j: t • i : :■: *: ■ i ' i ' i

► Resourcing for Success
► FlexRay Availability
► Strong Competition
► Competitor Pre-emption
► Technology Roadmap
► Design Methodology
► Cycle Time Concerns

On-time delivery of SoC for BMW 
Build strong partnership so that 
Motorola’s solution will be chosen 
for future intelligent camless engine 
controllers

► Accelerate Silicon technology 
(NVM) to be more competitive

► Win greater than 50% of EWC 
SoC business

► Provide a full system solution to 
BMW including system level 
simulation, software and 
hardware development

w

£
Figure 4: Project Strategy
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6. Key  S trategic Is s u e s

6.1. S ustainable  Competitive  Advantage

The EMVT SoC will "succeed" because of the following:

■ A strategic alliance with two of the world's largest premier automotive OEMs providing it with 
credibility and recognition to establish the business in its formative stages.

■ Unique, reliable and innovative development platforms
■ Strong team of committed people

6.2. Basis  for  G rowth

The basis for growing the venture is reflected in the following two strategies:

Priority 1: continue research and development of new and innovative SoC architectures to meet 
the current and future needs of advanced automotive manufacturers.

Priority 2: Enter new geographic markets (Japan, China, Canada, South America and Mexico).
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7. The Marketing P lan

7.1. M a r k e tin g  O b jectives

■ Establish a strong presence in the European and US market
■ Use the BMW and Volvo association as a conduit for entry into the US market, market 

penetration, worldwide distribution and an opportunity to gauge market acceptance of the 
EMVT platform at a reduced business and financial risk.

■ Utilise acquired market knowledge and presence to establish customers out with initial 
collaborators through other automotive project affiliations and through the efforts of Motorola 
SPS’ own Field Applications Engineers (FAE) and sales force.

■ Establish significant high-margin sales.

7.2. S a l e s  Fo r ec a s ts

Based on the BMW and various other OEM inputs, market research undertaken and strategies
developed, the following sales forecasts were developed:

■ BMW Group □ Other OEMs

Calendar Year

Figure 5: SoC Sales Forecast

The highlighted drop in BMW Group’s sales in 2012 is due to the increased production of hybrid 
and fuel cell powered hydrogen cars.
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7.3. Sales Assumptions

Assumptions underlying the development of the sales forecasts are as follows:

7.3.1. Y ear 2005

■ 100% of EMVT SoC production is sold to the BMW Group in accordance with the amount 
specified in the contract. This is a cautious market strategy to establish market acceptance 
and increase market knowledge.

■ $120,000 will be spent on developing the relationship with the BMW Group, training the BMW 
Groups’ in-house application development team, producing application notes, quick start-up 
guides and seeking out the key system s architects and decision-makers in the cam less engine 
segment.

7.3.2. Y ear 2006

■ BMW Group and other OEM contracts continue with increased supply to 900,000 SoC  
platforms.

■ 500,000 SoC platforms will be sold to new customers som e of whom may be reached through 
BMW Group affiliations and som e as a result of our extensive marketing effort.

■ $600,000 will be spent on engine expositions, trade shows, advertising, presence and 
developing trade show materials, a worldwide selling campaign, webinars and direct customer 
meetings.

7.3.3. Y ear 2007

■ BMW Group and other OEMs contract continues

■ Based on current knowledge, further contracts with engine technologists will be formed

■ 200,000 SoCs will be sold to customers out with BMW, Volvo and Compact Dynamics. This 
will require the strengthening of further strategic alliances.

■ $300,000 will be spent continuing the marketing effort commenced in 2006.

7.3.4. Y ears 2008 TO 2014

■ BMW Group and other OEMs contract continues

■ Customers out with BMW Group now represent the majority of our business with demand 
reaching the pinnacle in Year 2014 as the benefits of our technology are recognised in the 
growing market.

■ $250,000 will be spent in each year continuing the search for further customers and 
developing the relationships with current customers.
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7.4. M a r k e tin g  S t r a te g ie s

The key to the marketing strategy is to identify influential individuals and groups in the automotive 
engine development segments of the OEMs, Tier I and potentially Tier II organisations with 
decision-making authority. These individuals can be approached through existing contacts 
formed in the past, trade shows, FAE visits and business meetings. The marketing approach will 
demonstrate the benefits of the EMVT SoC platform.

Emphasis will be laid on the use of the powerful system level software development platform 
eliminate the bugs and bottlenecks found late in the design cycle. Benefits of the completely new 
development methodology will also be highlighted to avoid the product missing a critical market 
window. In addition the following will also be promoted:

■ Ease of transition to hardware using our full system-level modelling tool
■ Application code optimisation early on to achieve maximum system performance
■ Deeper visibility both in software and hardware to catch and fix costly bugs in the early stages

of the development cycle, eliminating wasted weeks or months
■ Demonstration of already deployed applications using the development tools which 

significantly improve the design process

7.4.1. P r o d u c ts

The EMVT SoC will be positioned as a cost-effective, reliable and user-friendly solution to the 
current and future needs of advanced engine manufacturing industry. EMVT SoC and its 
successors will be the pinnacle in camless engine controller technology, able to rival the most 
established competitor products through its superior performance and technology benefits, 
supported by a committed training and customer support force. This will enable the previously 
cautious engine technologists to introduce the EMVT based camless engine at no risk.

7.4.2. E W T  S oC  P ricing

The EMVT SoC will be priced competitively as follows. Note that the following pricing is based on 
The BMW Group sales and is dependent on the sales volumes and various internal pricing 
strategies.
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Figure 6: E W T  SoC Pricing

This pricing strategy will be high enough to convince customers that they are purchasing an 
effective high-quality product. Primary research indicates that the target market is not price 
sensitive. The sales price will return an estimated 40% gross margin on sales.
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7.4.3 . D is tr ib u tio n

Product distribution will be facilitated by utilising the internal and external established automotive 
distribution channels. Such distribution channels will typically have worldwide coverage. This 
strategy will ensure a presence in the market that increases awareness and builds demand.

7.4.4 . P r o m o tio n

EMVT SoC’s entry into the US market will be supported by a campaign to establish its profile in 
the camless engine industry. This will include the following:
■ Seek out the decision-makers in the engine development segments of Tier I automotive 

manufacturers
■ Business meetings
■ Undertake a campaign of corporate level selling
■ Advertise in industry journals, on the Internet, and on our website
■ Attend/sponsor exhibitions and trade shows
■ Continual PR: press write-ups; personal interviews; testimonials; product trials

8. P roduction P lan

The initial production plant for the SoC will be located at the Phoenix semiconductor 
manufacturing unit in the US.

8.1. P r o d u c tio n  Po lic y

■ Motorola SPS will outsource production aspects where possible
■ Third party components and ready-to-use IPs delivered on a "just-in-time" basis.
■ Quality checks are in place throughout the manufacturing process

8.2. P la n t  Lo c a tio n  and  La y o u t

■ Based on previous manufacturing experience, the five primary divisions (R and D, Design, 
Systems, Product Testing and Verification) will be housed together.

■ Systems approach to assembly
■ Scaleable factory design

8.3. Pr o d u c tio n  C apac ity

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Production 
Capacity 
in Million 

Units

0.50 3.0 5.0 5.0 15.0 20.0 25.0 30.0 35.0 35.0

Table 2: E W C  SoC Production Capacity

8.4. P r o d u c tio n  S ch ed uling

The SoC manufacturing process is supported by sophisticated production management software. 
It consists of a fully relational database which keeps track of inventory and invoicing and it 
produces detailed job cards for each day's operations.
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8.5. S u p plies  a n d  In v e n to r y

To ensure a consistently high quality product, the Motorola SPS supplies and inventory system 
employed enables management to instantly access:

■ All parts and materials on hand
■ Raw materials required to meet orders placed
■ Suppliers database with lead times, credit terms, price and contact details
■ Under and over stock warnings
■ Payment due date and credit position
■ Quality control is a standard procedure at the completion of every task.

In addition, checkpoints within the production process have been put in place to guarantee 
standards

9. O rganisational P lan

9.1. O r g a n is a tio n  S tr u c tu r e  C ha rt  -  T he C o r e  T eam  a n d  Pr o d u c t  D e l iv e r y

The design activity is planned to start in Q2-2002 with specification definition completed by Q4- 
2002. Both Austin and India Design Centres (AIDC) will be used to design and develop the SoC
platform with Build 1 due to be completed by March 2004. Tape out for the first derivative is
scheduled for August 2004 with first samples by January 2005 and fully qualified by August 2005.

Software design and development will commence in Q3-2002 with first deliverables being the 
initial Low Level Drivers (LLD) and Flash Download Tool (FDT). The Organisational Structure 
charts appearing below show how the organisation's staffing needs change over the next eight 
years.

2005 2006 2007 2008 2009 2010 2011 2012

Calendar Year

Figure 7: E W C  SoC -  Staffing Needs
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9.2. O r g a n is a t io n a l  B u d g e t

Totai project development costs are split between the SoC Dual Core (MCU+DSP), Third Party IP 
and System Level Software although the higher costs reside with the SoC Core as it requires 
significant design, software development, system level simulation, integration, test and 
verification.

Due to the critical nature of the SoC development program and based on customer meetings 
conducted so far, regular design reviews will be required during the lifetime of the program. 
Initially, in 2003, these will be every 2Yi months alternating between customer and Motorola SPS 
in East Kilbride. Occasional Reviews will also be needed with the internal Motorola SPS’ SoC 
Creation, Product Fulfilment and Program Management teams in Phoenix, US. It is envisaged 
that in 2003 and 2004 design reviews every quarter will suffice. Specific line volume independent 
budget items appear below:
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Figure 8: EW C  SoC -  Organisational Budget
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9.3. Project O rganisation and Key Functional Areas

The EW C SoC program core team consists of representatives from the key functional areas 
within the 32-bit Embedded Controller Division, Field Sales and Design. Extended team 
members will be brought in to support the program as needed. The table below summarises the 
inter-departmental organisation with functional areas.

Finance MCU and DSP
FlexRay

Communications

Marketing and Field 
Sales

Core
Team
Leader

eS ys Tool Support

Wafer Fabrication
Manufacturing and 

Packaging
System and Simulation

Table 3: Project Organisation and Key Functional Areas
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10. F in a n c ia l  P lan

10.1. U n d e r ly in g  A s s u m ptio n s

■ BMW Group will purchase all SoCs in year 2005 under a contract allowing price fluctuations in
line with materials and labour costs

■ Sales invoices to be paid when units dispatched from factory
■ Creditors paid 7 days end of month
■ Each month's production is sold in the following month
■ Factory operations will be set up in Phoenix
■ Pay as you go has been assumed for income taxes

10.2. F in a n c ia l  H ig h l ig h t s  (B est  C ase  S c e n a r io )

■ Cash positive in each year of operation from the year of positive PAT
■ $3.1 million committed to R&D
■ EMVT SoC cash surplus reinvested into next generation SoC

10.3. F in a n c ia l  A n a ly s is

A summary of most likely annual PBT, Net Cash Flow and Total Cost are shown below:

- • — Total Cost in US M$ - o - Net Cash Flow PBT in US M$
$300.00

$250.00

$200.00

w
(/) $150.003
C
o
=  $100.00 
s

$50.00

$0.00
2012 2013 20142009 2010 20112004 2005 2006 2007

Calendar Year-$50.00

Figure 9: EW C  SoC -  Financial Analysis
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10.4. S ensitivity  Analysis

The first scenario to consider is that the initial EMVT SoC contract with the BMW group does not 
materialise, the Motorola Project Financing Team, the investor, will not be required to provide any 
funds. Should BMW Groups’ requirements not meet expectations then production of the EMVT 
SoC could be scaled back. Of course this would impede the EMVT SoC controller development 
team’s ability to look into the subsequent SoC platform. For example, if the SoC production was 
reduced to 100,000 units per month and there was no other external funding than that 
contemplated in the offer, The 32-bit Embedded Controller Division would not be able to fund the 
second production facility until 2007. The majority of cash expenditure is related to production 
and sales volumes and allowances have been made in the customer contract for raw material and 
labour cost increases to be reflected in the selling price of the SoC platform. It is envisaged that 
similar type arrangements will be put in place for the subsequent SoC platforms.

The following sensitivity analysis compares best case, most likely ca se  and worst ca ses  of the 
business. All cases assum e no additional degradation of ASP’s  over time other than the 
price/volume breaks proposed in the RFQ. In addition a 3% annual increase in labour costs has 
been included.

I  Total Revenue ($M) M2 ($M) NPV ($M) IRR (%) Break-Even Point (Y r*

1 $350 $140 $4.44 57% 2010 1

Table 4: Best Case Financial Sensitivity Analysis

1 Total Revenue ($M) M2 ($M) NPV ($M) IRR (%) Break-Even Point (Yr]l

I $231 $92 $1.73 36% 2010 |

Table 5: Most Likely Case Financi.al Sensitivity Analysis

Total Revenue ($M) M2 ($M) NPV ($M) IRR (%) Break-Even Point (Yr]|

$221 $88 -$5.21 5% 2011 1

Table 6: Worst Case Financial Sensitivity Analysis
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10.5. C ritical R isks and Problems

Please s e e  Appendix B - for more details

Risk Dimension Perceived Risk

Development Zero

Marketing Low to Moderate

Financial Low to Moderate

Quality Low

Valuation Low

Financing Low

Exit Low

Table 7: Critical Risks and Problems
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A p p en d ix  A - internal E nvironm ent A n a ly s is

Bell Mason Dimension A nalysis

Technology, Engineering 
and R and D

The venture has secured its IP. There is a commitment to 
innovation and technology in all areas. Production is driven by 
technology and R and D initiatives. In addition, budgets are also 
in place.

Product

The EMVT SoC has well-defined, reliable and unique features 
and functions. Future products (Dual Issue EMVT SoC, ECU 
SoC, and other advanced development platforms) are in early 
stages of development.

Manufacturing

Motorola SPS has well defined divisions and processes to 
produce its products at the cost, quality, and schedules required 
by customers. Raw materials and finished goods are managed 
in an optimal fashion according to just-in-time principles.

Business plan and vision

The venture's 7-year business plan is workable, realistic and 
particularly spells out the first year of operation in detail. The 
plan identifies the corporate vision and mission, product strategy, 
market segmentation and competitive market position.

Marketing

A strategic and tactical marketing plan, together with a 
competent team and organisation to implement it, is in place. The 
inclusion of an Operations Manager and venture partners who 
have a wealth of experience in, and affiliation with, the European 
and American automotive industry will strengthen this plan.

Sales A fully experienced and committed sales group is in place.

Operations, Systems and 
Marketing Managers

These managers have proven experience in the semiconductor 
segment of the automotive industry. In addition, they also have 
experience with leading automotive specific semiconductor 
organisations with annual turnovers in excess of US$1 billion. 
The 32-bit Embedded Controller Division within Motorola SPS 
under the these managers has experienced fast growth over the 
last eight years due to strong leadership, intelligence, energy and 
ethical business practices.

Team

The top-level team is composed of high-quality individuals who 
have measurable experience and expertise in a variety of areas. 
They are capable of filling several positions within their teams 
and adopt a 'can-do' attitude. The management team has not 
worked together for very long as a unit, but have considerable 
experience in working within a team environment.

Board of Directors Still to be finalised.
Cash The venture is dependent on an injection of funds to establish.

Financeability
The venture is attractive to multiple investors as it is 'real 
business' opportunity.

Control
Corporate governance issues have been addressed at all levels 
of the organisation.

Table 8: Internal Environment Analysis
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Appendix B - Critical Risks and Problems

Development Risk- Zero
Currently a ssessed  as zero due to the positive customer feedback on existing working prototypes 
based on the legacy PowerPC platforms.

Manufacturing Risk- Low/Moderate
The two main issues that need to be addressed in manufacturing are the price of the major 
commodity, Silicon Wafer, and the quality and supply of third party IPs. As this venture will be 
primarily located in the heart of "Semiconductor" country in the US, costs will be kept to a 
minimum due to the lower transport costs. Strong relationships will be developed with all 
suppliers to ensure favourable trading terms. Quality control checks have been introduced at all 
stages of semiconductor production. To ensure only the best supplies are sourced, two or three 
suppliers will be sought in the early stages of the venture. This is a 'fast growth' venture and the 
supply of skilled labour to meet demand is paramount.

Financing Risk- Low/Moderate
As no traditional funds are required, this venture is not susceptible to fluctuating interest rates. 
However, the internal project financing body requires confidence in the expected (or promised) 
returns and such is guaranteed at all stages of the venture. In addition, the venture is self-funding 
and it is not envisaged that further injections of venture capital will be required in the future.

Marketing Risk- Low/Moderate
The initial marketing risk is minimised because of the BMW alliance. However, as the SoC is new  
to the EMVT cam less engine market, the broader market needs to be educated in the features 
and benefits of the SoC. This will involve time and effort but will be assisted greatly with BMWs 
involvement.

Management Risk- Low/Moderate
This project falls under "a new and unique product or products" category and BMW Group have 
committed to assist in sponsoring the team and providing their corporate clout to arranging the 
required documents. Although there is a strong team in place, there is always a risk of human 
relationships souring over time. The team are familiar with all facets of the project and are 
confident that, should one member be replaced, the skills required to fill that void can be found 
within the team. This would be a short term solution and a professional person would be recruited 
to permanently replace the team member who may decide to take up his/her position. In addition, 
all management team members have had bottom line responsibility and have successful track 
records in developing profitable business ventures.

Valuation Risk- Low
The risk that the investor pays too much for the venture is offset as

• Investor funds are in segments, and
• The BMW Group contract will be in place and provides a base from which to work.

Exit Risk- Low/Moderate
Given the technological advancements, forecast sales, the solid returns and specifically the sale  
strategy in place, the exit risk for the investor is a ssessed  to be very low.
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A p p en d ix  C - SW OT A n a ly sis

Strengths Capitalise on Strengths

■ Alliance with The BMW Group and other 
premier car OEMs

■ Quality products
■ Successfully tested prototype
■ Well established reputation with customers
■ Skilled and committed team
■ Global recognition based on legacy 

products
■ High margins on the SoC platform
■ Outsourcing
■ Low set up costs

■ Market entry and to gain market knowledge
■ Favourable consumer perception
■ Europe seen as test market ground for US
■ Second to none product quality
■ Offers investor opportunity to balance 

portfolio
■ Management has skills and experience in a 

variety of legacy product application areas
■ Ability to negotiate on bulk purchases
■ Reduces capital costs
■ Reduces investor's risk and exposure

W eak n esses Address W eak n esses

■ Reliance on one client initially
■ Exposure to fluctuating wafer costs
■ Management team has not worked 

together for long period
■ Board not yet finalised
■ Sales team’s lack of knowledge on SoC 

platforms
■ Limited European experience

■ Committed to expansion
■ High margins provide flexibility
■ Independent consultant appointed and 

Corporate Governance structures in place
■ Positions to be offered to internal venture 

partners
■ Professional internal sales team recruited 

with assistance of venture partners who will 
have affinity with, and experience in the 
next generation engine manufacturing 
industry

■ Addressed by introductions through 
venture partners and independent 
Chairman

Opportunities Maximise Opportunities

■ Expanding automotive market
■ Capitalise on low end automotive 

manufacturers
■ Increasing awareness of camless engines
■ Scope for innovation in existing market

■ Build consumer preference for camless 
engine based cars

■ Target diverse range of automotive 
companies

■ Education of EMVT based camless 
engines as option to specialist more 
expensive electro hydraulic camless 
options

■ Commitment to relentless innovation 
ensures market benchmarks challenged
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Threats Minimise Threats
Imitation products
Window of opportunity may be limited 
High number of competitors 
Adverse reaction to more electronics

IP protection
Venture turn-key and ready to be actioned 
Guaranteed demand through BMW Group 
contract
Backing of one of the well-established 
premier and largest automotive OEM, The 
BMW Group

Table 9: SWOT Analysis
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Appendix D - SoC Development Cycle

Figure 10: EVVC SoC Development Cycle

The graphic above illustrates the SoC development cycle executed by the team. This version 
encapsulates the core elements that are widely recognised in the semiconductor industry.

The cycle begins with an impetus: the discovery of a new technology, with or without clarity in 
advance as to how it might be commercialised -  a great market opportunity identified through 
some form of market research, an obvious need to retire an existing product that has been 
eclipsed by the competition, etc.

M o t o r o l a  C o n f id e n t ia l  P r o p e r t y P a g e  4 0  o f  59



L_ V V O  O U O  D U O I N t Z d D  r L A IN PORTFO LIO  II

Appendix E - A Non-Technical Overview of Engine Valvetrain History

After multi-valve technology became standard in engine design, varying the valve timing and the 
lift becomes the next step to enhance engine output, no matter power or torque. As mentioned 
previously, valves activate the breathing of engine. The timing of breathing, that is, the timing of 
air intake and exhaust is controlled by the shape and phase angle of cams. To optimise the 
breathing, engine requires different valve timing at different speeds.

When the rev increases, the duration of intake and exhaust stroke decreases so that fresh air 
becomes not fast enough to enter the combustion chamber, while the exhaust becomes not fast 
enough to leave the combustion chamber. Therefore, the best solution is to open the inlet valves 
earlier and close the exhaust valves later. In other words, the Overlapping between intake period 
and exhaust period should be increased as rev increases.
Variable Valvetrain Timing (VVT)

Without VV technology, engineers used to choose the best compromise timing. For example, a 
van may adopt less overlapping for the benefits of low speed output. A racing engine may adopt 
considerable overlapping for high-speed power. An ordinary sedan may adopt valve timing 
optimise for mid-rev so that both the low speed drivability and high-speed output will not be 
sacrificed too much. No matter which one, the result is just optimised for a particular speed. With 
Variable Valve Timing, power and torque can be optimised across a wide rpm band.
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Figure 11: Graphical Illustration of Normal Valve Timing

Therefore, the most noticeable differences achieved using classic variable valvetrain timing 
mechanisms are; the engine can rev higher, thus raises peak power. For example, Nissan's 2- 
litre Neo VVL engine outputs 25% more peak power than its non-VVT version. Low-speed torque 
increases, thus improves drivability. For example, Fiat Barchetta's 1.8 VVT engine provides 90% 
peak torque between 2,000 and 6,000 rpm. Moreover, it is important to note that all these 
benefits come without any drawback.
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Variable Valvetrain Lift (W L)

In som e designs, valve lift can also be varied according to engine speed. At high speed, higher 
lift quickens air intake and exhaust, thus further optimise the breathing. Of course, at lower speed  
such lift will generate counter effects like deteriorating the mixing process of fuel and air, thus 
decrease output or even leads to misfire. Therefore the lift should be variable according to engine 
speed.

Types of W T  and W L  Mechanisms 

Cam-Changing W T

Honda pioneered W T  in the late 80s by launching its famous VTEC [22] system  (Valve Timing 
Electronic Control). First appeared in Civic, CRX and NS-X, then becam e standard in most 
models.

This employs two sets of cams having different shapes to enable different timing and lift. One set 
operates during normal speed, say, below 4,500 rpm. Another substitutes at higher speed. 
Obviously, such layout does not allow continuous change of timing, therefore the engine performs 
modestly below 4,500 rpm but above that it will suddenly transform into an enhanced version.

As low-speed torque gains too little (remembering, the cam s of a normal engine usually serves 
across 0-6,000 rpm, while the "slow cams" of VTEC engine still need to serve across 0-4,500 
rpm), drivability will not be too impressive. In short, cam-changing system is best suited to sports 
cars.

Honda has already improved its 2-stage VTEC into 3 stages for som e models. Of course, the 
more stages it has, the more refined it becomes. It still offers less broad spread of torque as  
other continuously variable systems. However, cam-changing system  remains to be the most 
powerful W T, since no other system can vary the Lift of valve as it does.

Advantages and Disadvantages of Using Cam Changing W T

Advantage: Powerful at top end.
Disadvantage: 2 or 3 stages only, non-continuous; no much improvement to torque; complex; 
power-to-weight ration compromise.

OEMs Employing Cam Changing W T

- Honda VTEC 
> Mitsubishi MIVEC 
■ Nissan Neo W L.

Cam-Phasing W T

Cam-phasing W T  is the simplest, cheapest and most commonly used mechanism at this 
moment. However, its performance gain is also the least, very fair indeed. Basically, it varies the 
valve timing by shifting the phase angle of camshafts. For example, at high speed, the inlet 
camshaft will be rotated in advance by 30° so to enable earlier intake. This movement is 
controlled by engine management system according to need, and actuated by hydraulic valve 
gears.

Note that cam-phasing W T  cannot vary the duration of valve opening. It only allows earlier or 
later valve opening. Earlier open results in earlier close, of course. It also cannot vary the valve

Motorola  Confidential Property Page 42 of 59



lift, unlike cam-changing W T. However, cam-phasing W T  is the simplest and cheapest form of 
W T  because each camshaft needs only one hydraulic phasing actuator, unlike other system s 
that employ individual mechanism for every cylinder.

Continuous or Discrete Cam Phasing

Simpler cam-phasing W T  systems have just 2 or 3 fixed shift angle settings to choose from, such 
as either 0° or 30°. Better system s have continuous variable shifting, say, any arbitrary value 
between 0° and 30°, depends on rpm. Obviously this provide the most suitable valve timing at 
any speed, thus greatly enhance engine flexibility. Moreover, the transition is so  smooth and is 
hardly noticeable.
Cam Phasing at intake and Exhaust Camshafts

Some designs, such as BMW's Double Vanos system, has cam-phasing W T  at both intake and 
exhaust camshafts which enables more overlapping, hence higher efficiency. This explain why 
BMW M3 3.2 (100hp/litre) is more efficient than its predecessor, M3 3.0 (95hp/litre) whose W T  is 
bounded at the inlet valves. In the E46 3-series, the Double Vanos shifts the intake and exhaust 
camshafts within a maximum range of 40° and 25° respectively.
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BMW's Vanos: A Cam Phasing VVT Mechanism

Figure 12: BMW’s VANOS

As shown in the figure, the end of camshaft incorporates a gear thread. The thread is coupled by 
a cap, which can move towards and away from the camshaft. Because the gear thread is not in 
parallel to the axis of camshaft, phase angle will shift forward if the cap is pushed towards the 
camshaft. Similarly, pulling the cap away from the camshaft results in shifting the phase angle 
backward. The hydraulic pressure determines this push or pull.

There are 2 chambers right beside the cap and they are filled with liquid (these chambers are 
coloured green and yellow respectively in the picture). A thin piston separates these 2 chambers, 
the former attaches rigidly to the cap. Liquid enter the chambers via electromagnetic valves, 
which controls the hydraulic pressure acting on which chambers. For instance, if the engine 
management system signals the valve at the green chamber open, then hydraulic pressure acts 
on the thin piston and push the latter, accompany with the cap, towards the camshaft, thus shift 
the phase angle forward. Continuous variation in timing is easily implemented by positioning the 
cap at a suitable distance according to engine speed.

Advantages and D isadvantages of Using Cam Phasing VVT

Advantages: Cheap and simple, continuous W T  improves torque delivery across the whole rev 
range.
Disadvantages: Lack of variable lift and variable valve opening duration, thus less top end power 
than cam-changing W T .

OEMs Employing Cam Phasing VVT

Audi 2.0-litre - continuous inlet, 2-stage exhaust and 2-stage discrete
BMW Double Vanos -  continuous inlet and exhaust
Ferrari 360 Modena - 2-stage discrete exhaust
Fiat (Alfa) SUPER FIRE - 2-stage discrete inlet
Ford Puma 1.7 Zetec SE - 2-stage discrete inlet
Ford Falcon XR6's VCT - 2-stage discrete inlet
Jaguar AJ-V6 and updated AJ-V8 -  continuous inlet
Lamborghini Diablo V12 since SV - 2-stage discrete inlet
Mazda MX-5's S-VT - continuous inlet
Mercedes V6 and V8 - 2-stage inlet (?)
Nissan QR four-pot and V8 - continuous inlet, electromagnetic continuous inlet 
Porsche Variocam - 3-stage discrete inlet 
PSA / Renault 3.0 V6 - 2-stage inlet 
Subaru AVCS - 2-stage inlet (?)
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■ Toyota W T-i - mostly continuous inlet but som e also exhaust
■ Volvo 4 / 5 / 6-cylinder modular engines - continuous inlet
■ Volkswagen VR6 -  continuous inlet

Cam-Changing and Cam-Phasing W T

Combining cam-changing and cam-phasing W T  mechanisms could satisfy the requirement of 
both top-end power and flexibility throughout the whole rev range, but, a s  the name suggests, it is 
inevitably more complex. At present, only Toyota and Porsche have such designs. However, It is 
hoped that in the future more and more sports cars will adopt this kind of W T .

Toyota’s W TL-i: A W T  and W L  Mechanism

Toyota’s  WTL-i is, by far, the most sophisticated W T  design yet. Its powerful functions include:

■ Continuous cam-phasing variable valve timing
■ 2-stage variable valve lift plus valve-opening duration 

Applied to both intake and exhaust valves

The system could be seen as a combination of the existing W T-i and Honda’s  VTEC, although 
the mechanism for the variable lift is different from Honda. Like W T-i, the variable valve timing is 
implemented by shifting the phase angle of the whole camshaft forward or reverse by means of a 
hydraulic actuator attached to the end of the camshaft.
The timing is calculated by the engine management system with engine speed, acceleration, 
going up hill or down hill etc. Moreover, the variation is continuous across a wide range of up to 
60°, therefore the variable timing alone is perhaps the most perfect design up to now. What 
makes the WTL-i superior to the ordinary WT-i is the "L", which stands for Lift (valve lift) as 
everybody knows.

In general, with WTL-I, the variable valve-opening duration is a 2-stage design, unlike Rover 
W C ’s  continuous design, which is explained in the following section. However, WTL-i offers 
variable lift, which lifts its high-speed power output substantially. Compare with Honda VTEC and 
similar designs for Mitsubishi and Nissan, Toyota’s system has continuously variable valve timing, 
which helps it to achieve, far better low to medium speed flexibility. Therefore it is undoubtedly 
the best dynamic valvetrain control mechanism today. However, it is also more complex and 
more expensive to build.
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Porsche’s Variocam Plus: A Cam-Phasing and Cam-Changing Mechanism

Figure 13: Porsche’s Variocam Plus

The Variocam was first introduced to the 968 in 1991. It used timing chain to vary the phase angle 
of camshaft, thus provided 3-stage variable valve timing. 996 Carrera and Boxster also use the 
same system. This design is unique and patented, but it is actually inferior to the hydraulic 
actuator favoured by other carmakers, especially it doesn’t allow as much variation to phase 
angle. Therefore, the Variocam Plus used in the new 911 Turbo finally uses the popular hydraulic 
actuator instead of chain. However, the most influential changes of the Plus is the addition of 
variable valve lift. It is implemented by using variable hydraulic tappets. As shown in the figure, 
three cam lobes serve each valve - the centre one has obviously less lift (3 mm only) and shorter 
duration for valve opening. In other words, it is the "slow" cam. The outer two cam lobes are 
exactly the same, with fast timing and high lift (10 mm). Selection of cam lobes is made by the 
variable tappet, which actually consists of an inner tappet and an outer (ring-shape) tappet. They 
could by locked together by a hydraulic-operated pin passing through them. In this way, the "fast" 
cam lobes actuate the valve, providing high lift and long duration opening. If the tappets are not 
locked together, the “slow” cam lobe via the inner tappet will actuate the valve. The outer tappet 
will move independent of the valve lifter. As seen, the variable lift mechanism is unusually simple 
and space saving. The variable tappets are just marginally heavier than ordinary tappets and 
engage nearly no more space. Nevertheless, at the moment the Variocam Plus is just offered for 
the intake valves.

A dvantages and D isadvantages of Using W T and W L  M echanism s Together

Advantage: Continuous VVT improves torque delivery across the whole rev range, Variable lift 
and duration lift high rev power.

Disadvantage: More complex and expensive

OEMs Employing Cam Changing W T

Porsche 911 Turbo
Toyota 1.8-litre 190hp for Celica GT-S and hot Corolla 

■ 911 Carrera 3.6

Rover's unique W C  System

Rover introduced its own system called W C  (Variable Valve Control) in MGF in 1995. Many 
experts regard it as the best W T  considering its all-round ability - unlike cam-changing W T , it 
provides continuously variable timing, thus improving low to medium rev torque delivery; and 
unlike cam-phasing W T , it can lengthen the duration of valves opening (and continuously), thus 
boost power.
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Basically, W C  employs an eccentric rotating disc to drive the inlet valves of every two cylinder. 
Since eccentric shape creates non-linear rotation, valves opening period can be varied.

W C  has one draw back: since every individual mechanism serves 2 adjacent cylinders, a V6 
engine needs 4 such mechanisms, and that's not cheap. V8 also needs 4 such mechanism. V12 
is impossible to be fitted, since there is insufficient space to fit the eccentric disc and drive gears 
between cylinders.

Advantages and Disadvantages of Using the W C  Mechanism

Advantage: Continuously variable timing and duration of opening achieve both drivability and 
high-speed power.

Disadvantage: Not ultimately as powerful as cam-changing W T , because of the lack of variable 
lift; Expensive for V6 and V8; impossible for V12.

OEMs Employing Rover’s W T

■ Rover 1.8 W C  engine serving MGF
■ Caterham
■ Lotus Elise 111S
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Graphical Explanation of Mechanical Valvetrain Control Mechanisms
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Appendix F - Generic EW C Distributed System Design -  The Motorola Approach

In general, the following device architecture proves to be the most efficient and cost effective 
solution for a V4 engine. However, the module specifications within the device need to be 
finalised based on the electromagnetic control algorithm of the engine OEM.

Power
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Power
Stage

...

Crank angle sync pulse

1 '
X MHz X kB
Elf Core RAM

Intake V1

X kB Flash Memory Local V a lve  
Controller

 —    ----------------------
X TPU Channels 
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Power Power
Stage Stage
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Figure 17: Distributed Valvetrain Control Using the E W C  SoC
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EW C with FlexRay

In general, as the required data rates between the local valve controller (LVC) and the power 
driver stage on the actuator is greater than existing industrial protocol (e.g. SPI) rates, it is hoped 
that the EW C industry will vote in favour of the FlexRay protocol which can support up to 
10Mbaud gross. Initial system proposal to one of our EW C customers, namely BMW, is 
implemented using FlexRay and the proposed system for a V4 engine consists of 29 FlexRay 
controllers. Therefore, it can be concluded that implementing EW C clusters with FlexRay will 
most certainly introduce an exponential growth opportunity for the FlexRay IP.

Technical Challenges and Inhibiting Factors in EW C  Introduction

EW C mechanism, one of the most attractive panaceas to many valvetrain control issues has 
som e hurdles to overcome. As an overview of som e of the concepts mentioned above, the 
following are perceived:

■ Fail-safe mechanism without the need of mechanical backup
■ Soft landing of valves over complete engine RPM range
■ Analysis of thermal stresses of actuators, sensors and control electronics at the cylinder
■ Extra costs incurred with employing a 42V system. Such as the additional 42V battery,

DC/DC converter bridge between the networks and added high voltage protection. DC/DC 
converter cost in the range of $80 to $100, while a 42V battery is expected to cost in the 
orders of $20 to $40 depending on kW capability

- Change in the Powertrain production technique. Assembly of valve, actuator, sensor and 
electronics in one module and then the attachment to the engine block accurately and 
securely

■ Potential increase in height and thus more demanding placement options under the bonnet
■ Electronics cost of the MOSFETS for the individual valve actuator
■ Processing power at high temperature to keep full control of each valve
■ Integration with existing powertrain control modules
■ Increased wiring loads

Meeting power budget of around 100W per control of valve
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Appendix G - Design and Systems Approach Summary 

Support S ystem s Developm ent Summary 

Developm ent Tools

In order to fully support the E W C  program we are required to provide a range of development 
tools comprising the following:

Software and Hardware Tool Description

Elf (E500)

Compiler

ETPU

Compiler

Simulator Simulator

Debugger Debugger

ACE

Compiler
Hardware

Evaluation Board

Simulator Nexus HTI

Debugger

System

IDE

Software

SysGen Debugger

OSEK Profiler

LLDs Functional Simulator

Table 10: Development Tools -  Software and Hardware

Module Description Supplier

Elf (E500) Metrowerks and Motorola ASP

ETPU Bytecraft, Ashware and Metrowerks

ACE TBD

System Metrowerks and Motorola GSG

Software Unis and Metrowerks

Hardware Metrowerks

Table 11: Module Tool Suppliers

The Elf compiler and debugger is supplied by Metrowerks and the Elf simulator is supplied by 
Motorola ASP. Incorporated into the compiler suite would be a number of modifications 
requested by the customer and documented separately by the tool developer. These will be 
evaluated by both the systems groups within Motorola and the tool supplier and will be 
incorporated within their next standard software revision so that BMW will not require a 
proprietary version of the compiler suite.

The most significant of these will be the addition of the SIMD unit. An Alpha version of the new 
RTA tools suite will be available by Q202.

Motorola will supply all the licenses. Early notification of updates/new releases, with a possibility 
to upgrade will be as per appropriate modular tool supplier.
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Use of SteamRoller for the Evaluation of SIMD Capabilities

High-level meeting with NCSG in November 2001 confirmed that there would possibly be a delay 
with the tapeout of the SteamRoller IP. In addition, it was also decided that BMW and Volvo 
would be provide with an Alpha version of the eSys development platform, based around the 
SteamRoller architecture, by early Q302.

Third Party Integration Assessment Summary

All software development tools are supplied from third party vendors. The customer expects 
Motorola to assum e full responsibility for the provision of all development tools required for the 
duration of the project. Motorola will work with the selected third parties in order to ensure that 
customer requirements are met and will assum e responsibility for addressing and resolving any 
development tools issues that arise during the customer’s  project development phase.

In addition to the low and high-level software development platforms, it is envisaged that FlexRay 
IP will be used to support BMW’s LVC cluster with data transfer rate of up to 7.5Mbaud. This will 
primarily be done in the Munich and Shaumberg offices. The FlexRay group within Motorola has 
provided all the high-end tools necessary to develop a complete multi-processor platform based 
around the elf core (please refer to elf core diagrams for further explanations).

Role of External Provider in Solution Development

All supplied tools will be, as far as possible, the vendor’s  standard products. The supply, 
installation and technical support will be provided by the responsible third party, although 
Motorola will, if required, act as the first point of contact for any development or simulation tools 
issues. Where BMW have requirements not accommodated by the vendors’ standard products, 
attempts will be made, where possible, to include modifications to the standard products to meet 
those requirements. The provision of proprietary development tools is to be avoided where 
possible.

Recommended Partner(s):

The following third parties will be used to provide development and simulation tools:
■ Metrowerks -  Various module compilers, simulators and debuggers
■ Bytecraft -  ETPU compiler
■ Unis -  SysGen software
■ Ashware -  ETPU simulator

Software Deliverables

■ Description of the Test Environment
■ User description for each function and functional specification
■ Traceability Matrix between the Requirements and Tests
■ Software R elease Guide (SRG), including installation instructions
■ Quality Assurance Plan
■ LLD Object files
■ Tool executable files
■ Project Schedule
• Delivery of LLDs and Tools to Teves: Alpha version -  Q302
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Appendix H - Legal and Standards Assessment

A development contract framework agreement needs to be finalised by both parties, i.e. Motorola 
and BMW. The agreement will cover development objectives, scope of development activities, 
delivery schedule and pricing. Exclusivity, Intellectual Property and Liability will also be included 
in the document.

Appendix I - Technology Transfer and Intellectual Property (TT and IP)

Please s e e  attached (available at request) Memorandum of Understanding (MoU) and Non- 
Disclosure Agreement (NDA) for information on TT and IP.
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Appendix J - Competitor Analysis

List of Companies 
(-* )  and Competitive 

Elements (1)

Motorola
SPS

Infineon
Technology

Texas
Instruments

STM Inc. NEC

Technology 5 3 3 5 3

Product 5 4 3 4 3

Financial backing 3 5 5 4 4

Customer exclusivity 4 5 5 5 4

Distribution channels 5 4 5 4 5

After sales service 4 5 4 4 4

Position in life cycle 5 3 2 1 3

Cost structure 5 3 2 2 3

Selling force 4 4 4 2 4

Totals 40 36 33 31 33

Legend: 5 = excellent; 1 = poor

Table 12: Competitor Analysis
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Appendix K - EWC -  SoC Project Staffing Needs

Organisational Member
Calendar Year

2005 2006 2007 2008 2009 2010 2011 2012

Operations Manger 1 1 1 1 1 1 1 1

Systems Manager 1 1 1 1 1 1 1 1

Admin Staff 2 2 2 2 2 2 2 2

R and D Staff 12 9 7 7 7 8 9 12

Design Staff 85 20 20 20 20 20 20 15

Technical Marketing 5 5 5 3 3 3 3 3

Sales Staff 6 7 7 7 7 7 6 6

Finance Staff 10 7 7 2 2 2 2 2

Quality 5 5 5 5 5 5 5 5

Packaging 6 6 6 6 6 6 6 6

Wafer Fab 12 12 10 10 10 8 8 8

FAEs 14 12 12 12 12 12 12 12

Third Party Tools Support 5 5 5 5 5 5 5 5

Software Support 8 8 8 8 8 8 8 8

Hardware Support 9 9 9 9 9 9 9 9

Total 181 109 105 98 98 97 97 95

Table 13: EW C SoC -  Staffing Needs
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Appendix L - EWC -  SoC Project Volume independent Organisational Budget

Budget in k$ (Base Cost) -  Volume Independent

T o ta lO rg a n isa tio n a l E lem en t
o
o
CM 20

05 <0
o
o
CM 20

07 00
o
o
CM

o>©
o
CM

o
o
CM

Systems Engineering 80 60 18 2.7 2.7 2.7 2.7 168.8

Design Engineering 500 375 112.5 16.9 16.9 16.9 16.9 1,055

R and D Staff 300 300 300 300 300 300 300 2,100

Administration 20 15 4.5 0.7 0.7 0.7 0.7 42.2

Product Engineering 50 37.5 11.3 1.7 1.7 1.7 1.7 105.5

Software Engineering 200 150 45 6.8 6.8 6.8 6.8 422

Process Engineers 30 22.5 6.8 1 1 1 1 63.3

Device Technicians 35 26.3 7.9 1.2 1.2 1.2 1.2 73.9

Process Technicians 30 22.5 6.8 1 1 1 1 63.3

Modelling and Simulation 150 112.5 33.8 5.1 5.1 5.1 5.1 316.5

Characterisation 75 56.3 16.9 2.5 2.5 2.5 2.5 158.3

Test Engineer 110 82.5 24.8 3.7 3.7 3.7 3.7 232.1

Marketing 50 50 50 50 50 50 50 350

Sales 100 100 100 100 100 100 100 700

Materials and Planning 30 22.5 6.8 1 1 1 1 63.3

Documentation 25 25 25 25 25 25 25 175

3rd Party / Contractor 100 75 22.5 3.4 3.4 3.4 3.4 211

Reliability 40 30 9 1.4 1.4 1.4 1.4 84.4

Manufacturing Base Cost 750 562.5 168.8 25.3 25.3 25.3 25.3 1,582.5

Packaging 200 150 45 6.8 6.8 6.8 6.8 422

Mask Preparation 1,000 750 0 0 0 0 0 1,750

Layout 80 60 18 2.7 2.7 2.7 2.7 168.8

Program / Project Leader 70 52.5 15.8 2.4 2.4 2.4 2.4 147.7

Travel 125 93.8 28.1 4.2 4.2 4.2 4.2 263.8

! Other 200 150 45 6.8 6.8 6.8 6.8 422

T o ta l 4,350 3,381.3 1,121.9 572 572 572 572 11,141.3

T ab le  14: EW C SoC -  Organisational Budget
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Appendix M - BMW SoC Variants and Sample Proposal (Submitted to BMW -  
Highly Confidential)

The proposed solution for BMW’s SoC has five variants. Please see attached BMW proposal 
(available at request) for more details. Summary of the five variants are mentioned below:

SoC Variants:

■ eSys derivative @200 MHz with MIOS, no EBI
■ eSys derivative @200 MHz with ETPU, no EBI
■ eSys derivative @200 MHz with MIOS and EBI
■ eSys derivative @200 MHz with ETPU and EBI
■ Full eSys (e.g. Cobra or Coral) @ 200MHz, 7-stage pipeline with ETPU (48 channels) and 

MIOS

Along with the device offers, BMW expects Motorola to include the following tasks/items:

■ Components/System Cycle accurate Simulation Support.
■ Low-level driver software & tools support (as official products)
■ Full FlexRay support
■ Flash download
■ Parity 
- CRC
■ Parameter exchange
■ Stack depth analyser
■ Documentation, verification & qualification of all software related items
■ Compiler, assembler, linker & debugger requirements
■ Initial elf based device, namely SteamRoller for silicon evaluation
■ Design Support for proprietary custom blocks

The schedules for the SoC variants are shown in the table below: Please note that only one of 
the options mentioned in table will be pursed.

Description Tape Out Sam ples Qualification Production

Option I Q2-2004 Q3-2004 Q4-2004 Q 1-2005

Option II Q2-2004 Q3-2004 Q4-2004 Q 1-2005

Option III Q2-2004 Q3-2004 Q4-2004 Q1-2005

Option IV Q2-2004 Q3-2004 Q4-2004 Q 1-2005

Option V Q2-2004 Q3-2004 Q4-2004 Q 1-2005

Table 15: BMW Schedules for the E W C  SoC
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Technology Assessment and Approach for BMW

In order to achieve the eSys derivative price target set by BMW and therefore have the 
opportunity to participate in the EW C project, die size is absolutely essential to minimise die size. 
Our existing wafer fabrication technology does not allow us to achieve a small enough die size to 
be sufficiently competitive. However, initial size estimations show that the preferred die sizes are 
achievable using the hip8 technology.

On the other hand, our FlexRay IP is chosen as the communications protocol between the LVC 
and local controller clusters. In addition, the new embedded NVM roadmap is critical to the 
su ccess of the EW C program.
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Abstract

This portfolio presents a comprehensive real-time system level rapid 

development methodology and a controller platform to evaluate the operation of 

high performance electromagnetic actuator driven camless internal combustion 

engines (ICE). This development platform is based on the next generation 

automotive qualified single-instruction-multiple-data (SIMD) PowerPC1 system-on- 

chip (SoC) with tighdy coupled digital signal processing (DSP) functionality.

Camless engine configurations are multivariable and nonlinear, thus imposing 

challenging control problems associated with control authority, long sensor delays, 

and strongly coupled subsystems [1]. A complete study o f the impact of modular 

controller architecture on the camless engine dynamic response is also investigated.

The implemented methodology demonstrates the advantages of a systematic 

approach to developing advanced technology powertrain control systems. The 

proposed development platform enables developers to complete complex software 

and hardware development before moving to silicon, significantly shortening the 

development cycle and improving confidence in the design.

1 PowerPC is a Family of microprocessors produced by an industry group including 
Motorola, IBM, and Apple.
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1 Introduction

This portfolio describes the development, implementation and testing of 

advanced real-time control strategies using the next generation PowerPC based SoC 

for the control of electromagnetic actuator (EMA) driven valvetrains of camless 

internal combustion engines. This section examines the present status and identifies 

some of the shortcomings of such actuators and their controller structures. 

Through reference to previous work the need for standardised rapid development 

methodologies to control the actuator platform is made apparent.

Conventional internal combustion engines use mechanically driven camshafts 

to actuate intake and exhaust valves. Like a very simple software program that 

contains only one set of instructions, such mechanical cams always open and close 

the valves at the same precise moment in each cylinder's constantly repeated cycle of 

fuel-air intake, compression, combustion, and exhaust [2]. They do so regardless of 

whether the engine is idling or spinning at maximum rpm. While this system is 

convenient and reliable, the fixed timing of the valve events with respect to the 

piston motion is typically selected as a compromise among fuel economy, emissions, 

maximum torque output, valvetrain noise, vibration and harshness [2, 3].

The growing need to improve fuel economy and particularly reduce emissions 

led to the introduction of an alternative valvetrain technology, namely a camless 

valvetrain [1]. Camless engines, employing electrohydraulic, electromagnetic or 

hydromechanical valvetrains, offer the next step in engine flexibility. Such engines 

allow independent control of valve timing and lift without mechanical linkage to the 

crankshaft [1, 3]. Various studies have shown that a camless valvetrain can alleviate 

many otherwise necessary engine design tradeoffs by supplying extra degrees of 

freedom to the overall powertrain system [1].

Automotive engines equipped with electromagnetic camless valvetrains have 

been studied for over thirty years but production worthy vehicles with engines of 

this type are still not available due to difficulties in ensuring adequate and reliable 

electromagnetic valve performance [3, 4, 5, 6, 7]. For an electromagnetic camless 

valvetrain (EMCV), the actuator noise caused by high contact velocities of the 

moving parts has been identified as a key problem [3, 6, 7].
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1.1 Background

Various studies have shown that optimisation of the inlet and exhaust valve 

timing of an automotive internal combustion engine results in high fuel efficiency, 

low emissions and improved torque performance [1, 2, 3, 6, 7, 17, 18]. Because of 

the potential benefits many automotive engine manufacturers and research 

laboratories are developing mechanisms that can provide the valve event variability 

[4, 5]. A promising mechanism is the EMA as shown in Figure 1.1. This EMA 

relies on two electromagnets that catch and hold an armature that moves with a 

damped oscillation between two extreme positions under the forcing of two springs. 

The control signal to the electromechanical actuator is the voltage applied to either 

one of the coils of the two electromagnets. Therefore, for reliable operation, the 

primary objective is of the controller platform is to ensure accurate valve opening 

and closing with small contact velocity of all the moving parts.

Conventional internal combustion engines use mechanically driven camshafts 

to actuate intake and exhaust valves. While this system is convenient and reliable, 

the fixed timing of the valve events with respect to the piston motion is typically 

selected as a compromise among fuel economy, emissions, maximum torque output, 

valvetrain noise, vibration and harshness (NVH) [3].

Specifically it has been shown that controlling the intake valve events can 

eliminate the need for throttled operation in gasoline engines [8], thereby improving 

fuel economy [3]. Other benefits of camless engines include, higher maximum 

torque output, which is optimised for different driving conditions, cylinder de

activation, and elimination of external exhaust gas recirculation (EGR), etc. [6].

While variable valve timing (W T ) can be obtained using a wide spectrum of 

different technologies [1, 6], the highest degree of flexibility and the fastest YVT 

capability is achieved in truly camless engines with either electro-hydraulic [6] or 

electromechanical actuators [1]. These camless actuator technologies are under 

intensive development by several engine manufacturers with the electromechanical 

technology currently considered by many to be in a relatively more developed stage 

[4, 5, 9, 10, 11, 12, 13, 14, 15, 16]. The issues that have to be addressed in the 

actuator design include cost, reliability, packaging, power consumption, noise and 

vibrations. The valve landing noise has been identified as the main problem with 

the electromechanical actuator technology. It may, in fact, preclude the usage of 

such systems, if satisfactory solutions are not found [6].

6
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1.1.1 Construction and Operation of the Electromechanical Actuator

Figure 1.1 illustrates the actuator at open, neutral and closed positions. There 

are two magnets, two springs and an armature in the actuator. The two magnets are 

coil wound on ferromagnetic material. The coils are driven by currents generated by 

an electronic system, driven by a pulse-width modulated voltage. The activated coil 

generates a magnetic field applying a force on the armature.

A ctuator Spring

A ctuator Spring Bolt

U pper M agnet

A rm ature

Lower Magnet

Valve Spring Bolt

Valve Spring

Cylinder Head

Valve Closed

—'N eutral Position

Valve O pen  _

Figure 1.1: The Elctromechanical Actuator

The two springs are adjusted such that both are always compressed for any 

position of the armature. The actuator uses the spring force to accelerate the 

masses, then uses the electromagnetic force to attract and dwell the valve. W hen 

there is no current on coils, the spring-mass system stays at the neutral position. 

Voltage applied on the upper coil closes the valve generating a holding current, 

which depends on the spring force and the pressure difference between the cylinder 

and the exhaust/intake manifold. Because o f the symmetry, analysis is done only on 

the valve-opening event.

7
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The driving current of the EMA and the corresponding valve profile is shown 

in Figure 1.2 [7]. If the valve is scheduled to open at to, the voltage applied to the 

upper coil should be regulated to zero at, to - Tm; the time xm is necessary for the 

discharge of the magnetic field. Then a voltage with high duty cycle, dc, is applied to 

the lower coil at ti. A magnetic field is generated that attracts the armature to 

contact the lower coil and maintains the maximum valve lift. The current generated 

by this high voltage, dc, is denoted as the catching current. Once the contact is 

ensured and quasi-static conditions of the mechanical subsystem are reached, the 

voltage applied to the lower coil can be reduced. The time that the lower duty cycle 

voltage, dh, is applied to the lower coil is denoted by the t2. Controlling t2 varies the 

power consumption of the electrical subsystem. When the valve is closing, the 

operation is similar with the voltage applied on the lower coil regulated to zero at t3. 

In Figure 1.2, the time intervals are defined as follows: n  = ti - to and 12 = tz - to.

Valve Lift ............ Lower Coil Current   Upper Coil Current

Valve Closed

Valve Starts Moving

Valve Opening

0.06.0
Catching Current

2.54.5 Valve Closing<
+jc<uu«-i3U

Holding Current

7.5
Valve Open

10.00.0

Time

Figure 1.2: The Driving Current of the EMA and the

Corresponding Valve Profile

To summarise, the actuator consists of electrical, magnetic and mechanical 

subsystems, which are interconnected with each other as shown in Figure 1.1. 

Because of the symmetry, analysis is done only on the valve-opening event.

8
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1.1.2 Electromechanical Actuator -  Soft Landing

Prior work confirms that high contact velocities o f the moving parts of the 

actuator cause the noise in electromechanical actuator [17]. The noise can be 

reduced if the contact velocities are reduced, i.e. the so-called soft-landing is achieved. 

In a conventional valvetrain the fixed valve profiles are carefully optimised to reduce 

the noise and the optimal solution is mechanically embedded into the precision 

valvetrain design during manufacturing of the camshaft lobes. In a camless 

valvetrain, it is the responsibility of the electronic controller platform to ensure that 

adequate actuator performance at varying engine operating conditions is achieved.
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2 Actuator Controller

2.1 Overview of System Level Development Methodology

In order to considerably reduce the development time, decision was made to 

use the Real-Time Workshop Embedded Coder (RTWEC) [30] to generate, test, 

and deploy production worthy C code for use in the PowerPC based VVT 

embedded platform pardcularly enabling the integration o f various legacy code 

signatures. Therefore, it was necessary to establish thorough understanding o f the 

RTWEC to provide the setting up o f the real time actuator electromagnetic 

controller framework as shown in Figure 2.1.

Result

Actuator
Modelling

M easured A ctuator 
D ata

A pplication 
Code G eneration

SoC Based Rapid 
Prototyping

SoC in the L oop  
Testing

D ata Modelling 
and Analysis 
(Regression)

Plant and 
Controller 
Simulation

A ctuator 
C ontroller Design 

and Analysis

Figure 2.1: Camless Engine Controller Development Platform
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2.2 Actuator Controller Design, Development and Analysis

The PowerPC SoC based actuator control system is required to ensure 

accurate valve closing and opening events (timing). The engine management system 

deploys the timing strategy on the drivers torque demand and other vehicle variables 

[1, 6, 7]. One o f the key objectives o f the controller platform is to reduce the 

armature-coil and valve-cylinder contact velocities, the so called soft-landing, which in 

turn reduce noise and component wear [1, 3, 6, 7, 17]. Modern engine 

manufacturers design camshafts to achieve a low 0.04 m /s  contact velocity at low 

engine speeds and in conventionally driven engines, this velocity increase linearly 

with engine speed [4, 10, 13, 15, 17, 18].

In order to achieve better tracking o f the desired valve position, an iterative 

learning controller (ILC) is implemented as it is a proven technique for improving 

the transient response o f systems following the same trajectory m otion or operation 

over and over [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29].

System

MemoryMemory M emory

<-----------------------------------

Figure 2.2: Configuration of the Actuator Iterative Learning Controller

The basic idea o f the ILC implemented is illustrated in Figure 2.2. All the 

signals shown are assumed to be defined on a finite interval. The subscript k  

indicates the num ber o f full armature travel cycles. During the k tb cycle, the input 

armature position u k ( t )  is applied to the system, producing the output J k ( t ) .  These 

signals are stored in the memory units until the trial is over, at which time they are 

processed by the ILC algorithm. Based on the error (e k ( t)  — j d ( t )  — J k ( t ) )  that is 

observed between the actual output and the desired output, the ILC algorithm 

computes a modified input signal U k+ i(t)  upon full armature travel that will be stored 

in memory until the next time the system operates, at which time this new input 

signal is applied to the system. This new input produces smaller error than the 

previous input.

uk + 1

T

11
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The overall controller is modelled and implemented using Matlab®, Simulink® 

and Stateflow®. MathWorks’ Real-Time Workshop is then used to generate 

executable stand-alone C code of the algorithm modelled in Simulink [30]. The 

resulting code is then hand optimised before generating the binary executable for 

the PowerPC SoC.

12
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3 Simulation and Modelling for Control

3.1 Modelling the Actuator

The model of the actuator consists of a mechanical, electrical and a magnetic 

subsystem. Refer Table 1 for an explanation of symbols and parameters used for 

the development of the model.

Symbol Unit Explanation

(YJ.Y m desired armature position

V ms'1 armature velocity

Vu/l V voltage upper /  lower coil

lu/l A current upper /  lower coil

^u/l NmA flux upper /  lower coil

Fu/l N magnetic force

p
x flow N force due to gas airflow

m kg mass of moving part of actuator

G kgs'1 friction coefficient

D kgs'2 Spring constant

2h m thickness of armature disc

R Q resistance or a coil

Notations

S(t) continuous time signal

S[n] discrete time signal

S° signal at equilibrium point

C
OIIST,CO -S° deviation between signal and equilibrium point

s[n, k] discrete signal of the k* cycle

v Vector

M Matrix

Table 1: Signals, Parameters and Notations

13
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The mechanical subsystem is modelled as a spring-mass-damper system 

including the external magnetic forces Fu o f the upper and F/ of the lower 

electromagnet. A force balance yields [7];

m d V p _ =_ D Y { t)_ G v {t) + Fi{t) + Fii{t) (1)
at

The two coils are modelled by an electrical subsystem, consisting of a 

resistance/reluctance-circuit. The coil reluctances are inversely proportional to the 

armature gaps Y-Yi-b or Yu-Y-h, respectively. The coil currents Ii/u(t) are modelled 

with a non-linear function/i of the armature gap and the flux, yielding;

K/(0=B/K4>/,y-iW) + ̂ 2  (2)at
and

d<f> (t\
K ( 0 = m ( ® « , Y „ - Y - i ) + — p 2  (3)

dt
as the two equations for the lower and upper coil, respectively. The 

mechanical and electrical subsystems are linked by the magnetic force equations of 

the two electromagnets,

F i = - f ^ i , Y - Y t - h )  (4)

and

^ L a ^ u X - Y - h )  (5)

To summarise, the actuator has two inputs, upper voltage Vu(t) and lower 

voltage Vi(t), respectively. The actuator output is the armature position Y(t). The 

four elements of the state vector are position Y(t), velocity V(t), lower flux &i(t) and 

the upper flux Ou(t). Thus, the state space description of the model is given by;

f -
p ,

dt m m m m

d<t>" = - m ® « , Y „ - Y - h )  + V u (8)
dt

^ j h = - i f c ( * / , y / - y - A ) + K / (9)

14
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3.2 Design of the Iterative Learning Controller

The input and the output sequences of the closed loop system are jd\p\ and 

y[n f respectively. To formulate an ILC in a compact way, it makes sense to describe 

this mapping by defining the operator;

r:5RN ^ < R N ^ j = r ( 7 , )  (io)

jd\.njb\

j i

and

j A njb + N -* l

(11)

y= (12)

j[n f i + N ]

Where njb is the indice of the first sample after switching on the feedback 

controller. N is the number of values later involved in the ILC. As mentioned 

above, the lower case notation of a signal stands for its deviation from the 

equilibrium point.
*The purpose of the ILC is to find some vector y d with the property 

Jd ~ r (  Jd)  • order to solve this problem, the cyclic opening and closing of the 

valve is exploited. Let the cycles be numbered with k. In the first cycle, the input 

vector jv[l] = J d- ls applied to the system. This vector and the corresponding output 

vector j [ l ]  are used to generate an improved input vector yd\2\ for the next cycle, 

and so forth. Thus, a linear formulation of the ILC algorithm reads as [31].

j A k + 'i] = sj A k ] + E ( y d ['l] - A k ]) (13)

Where the matrices S and E  weight the previous inputyd[k\ and the previous 

error e[k\ — J^[l] — j[A|, respectively. They have to be chosen in a way that the 

sequence (y ^ ]}  converges

y d = lim y d[k]
k—

(14)

15
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3.2.1 Design of the Learning Controller

The learning controller is designed using the linearised model of the plant 

previously developed. The convolution matrix,

P =

m 0 0 0 0 "

h[ 2] h[ 1] 0 0 0

m h[ 2] £[1] 0 0

h [ N - 1] h [ N -  2] . h[ 1] 0

h[N] b [ N - 1]

<N1 . h[ 2] h[l\_

(15)

The entries of matrix P are the elements of the impulse response sequence 

{/>[n]} of the linearised, discretised closed loop system, therefore T(jd) ~ Pyd holds

true close to the equilibrium point [31]. To derive the ILC used in this paper, the

singular value decomposition (SVD) is applied to the convoludon-matrix P;

P = L A R t  (16)

Where R  and L  are orthonormal matrices, A is a diagonal matrix with the 

elements,

o 0> o i >0 V / e [ l ,N - l ]  (17)

The largest singular value ao is the L 2-norm of P. The learning algorithm is 

determined by setting [31],

S = I  (18)

and

e =— r l t
<?o

(19)

This learning algorithm is now analysed with the help of the discrete, linearised 

model. Using in equation (13) the linear model equationy  — Pjd yields,

j/(/[^ + l] = 6>J/fe] + E ( j li[ l] -P )/[^ ])  (20)

With equations (16), (18) and (19), equation (20) can be written in the form,

'  1 ^
R 1] = I  A

CJt
RT [*]+— ■l t j A i] (21)

0 J

16
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T TLet V[k]=R y d[k\ and f l  = L y d[ 1], therefore, equation (21) reads as,

(
V \k  +  Y\ = I  A

<y,0 J

1
V[k]+ jU

<7n
(22)

or rewritten as N separate equations,

V [k  +  1\ = I - — A
<Ji

(23)
o y

The above choice of E  and L yields a decoupled learning algorithm. Thus, to 

determine the convergence of the learning controller the convergence properties of 

N  scalar equations can be studied instead of a matrix equation. Solving the 

recursive equation (23) yields,

ViW  = f  " V , [ 0 ] + 1 (1 Ui) //,. V / e [ 0 , N - l ]
<T,

(24)

With <7i = — The equation converges to V°° =-^-L for 
CTn <J:

1 — (J: < 1.

This is always true due to the SVD property oo > Oi > 0. The convergence 

speed is determined by 1 — CTi ..

17
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3.3 Modelling the Camless Engine Dynamics

The use o f graphical dynamic system simulation software is becoming more 

popular as engineers strive to reduce the time to develop new control systems [32]. 

Dynamic system simulation software is an im portant tool for developing advanced 

reliable and high quality products. Thus, the skill o f real-time complex systems 

modelling is the inherent goal o f many m odern mechatronic systems.

Intake and Exhaust 
Valve Dynamics Controller

Compression

Vehicle
Dynamics

□

Throttle Angle'

RPM to  Pulse CS

m ass(k + 1)

Intake Trigger

Engine Speed in rads/sec Mass [K.+ 1]

In rake Tngger

Hi rot tie Angle
Engine Speed in RPM

E ngine Torque

Figure 3.1: Snapshot of the Internal Combustion Engine Modelled

M athW orks’ tools were chosen for model developm ent because o f the wide 

exposure o f this software platform and support available to both academia and 

industry [30]. This model was initially used to evaluate the benefits o f employing 

the electromechanical actuator controller algorithm developed. In addition, the 

model is used to simulate a sequential-fuel-injected, spark ignition engine and 

includes air and fuel dynamics in the intake manifold as well as the process delays 

inherent in a four-stroke cycle engine [32]. Primarily, this engine model is used as 

follows:

1. As an embedded model within a control algorithm or observer

2. As a real-time engine model for hardware-in-the-loop (HIL) testing

3. As a system model for evaluating engine sensor and actuator models

4. As a subsystem in a powertrain or vehicle dynamics model

Modular programming techniques [30, 32] were introduced to reduce the 

model complexity by dividing the engine and the actuator into hierarchical 

subsystems as shown in Figure 3.2 and Figure 3.3.
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Figure 3.2: Mechanical Subsystem of Actuator
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Figure 3.3: Non-Linear Events in Actuator Opening

Figure 3.2 and Figure 3.3 illustrate Simulink models o f the mechanical 

elements and the opening events associated with the electromagnetic engine valve 

through the use of the first principle equations o f the system used in [7, 33] and 

section 3.1. The system consisting o f the armature, engine valve, actuator spring, 

and valve spring are modelled with a linear time-invariant differential equation, 

where the coefficients are found through direct m easurement and fitted to an initial 

condition response o f the actual electromagnetic system. There is also a coulomb 

friction present, which is accounted for in the models [33].
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These models take into account the saturation of the flux of the magnets in 

the actuator using a curve-fitting algorithm. Model parameters are experimentally- 

found via a series of static and dynamic tests and the validation of the model is done 

by comparing the simulation of the valve with actual dynamic tests of the valve 

opening and closing as explained in [33].

The mechanical model of the actuator is identified as two separate parts. The 

parameters of the moving parts of the system are measured, when applicable or 

identified using the properties of a second order prototype. The parameters, which 

are used to model the force generated by the magnets, are measured or derived from 

measurements done [33].

2 0
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4 Real-Time Camless Engine Actuator
Controller Platform

Figure 4.1 illustrates the real-time system level development platform 

implemented for the evaluation o f the electromechanical valvetrain. First o f all, the 

maximum supply voltage is limited to 42-Volts to simulate the available voltage on a 

future vehicle. Two power amplifiers driven by the power supply drive the 

magnedc coils of the actuator. The SoC designed controls the voltage across the 

coil through a custom designed I /O  board. A laser sensor is used to measure the 

actual valve position with a 5pm resolution. Coil current is also m onitored for 

diagnostic purposes.

Engine Control 
Unit (ECU) -  V4

Power
Amplifier

Central Controller 
SoC per Cylinder

Laser
SensorCurrent

Sensor

Current
Sensor

Local Valve 
Controller 
Interface

Local Valve Controller SoC

1 Iigh-Specd 
FlexRay Bus

i

Figure 4.1: Experimental Set-up of the Actuator Controller Platform

This central controller SoC shown above receives its drive cycle information 

from the existing engine control unit (ECU). The local valve controller SoC is used 

for the execution of control algorithms and to drive the power stages. O ther inputs 

to this controller include position o f the actuators. Data transfer to actuator occurs 

at 25ps (40kJTz) intervals.
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5 Findings and Conclusions

An electromechanical camless valvetrain controller platform is realised based 

on a PowerPC SoC. Simulations and real-time measurements confirm the 

functional ability of the electromechanical actuator to vary valve timing, lift, velocity 

and event duration, as well as to perform  cylinder deactivation in a four-valve multi

cylinder engine.
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:S -4.75C/5oa-
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Figure 5.1: Valve Position Control Results based on the ILC (k e [1, 13, 24])
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64000 1600 3200 4800 8000
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Figure 5.2: Torque Production with Mechanical Cam and Camless Engine

Figure 5.1 and Figure 5.2 show experimentally measured results obtained 

using the actuator controller with the learning algorithm and a comparison between 

engine torques obtained with a dual overhead camshaft (DOHC) engine and an 

electromechanical camless valvetrain (EMCV) arrangement using the setup from

[34].
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As shown in Figure 5.1, employing an ILC reduces the valve contact velocity 

as the armature cycles are increased. Figure 5.2 confirms that the torque produced 

by the four cylinder engine, driven by an electromechanically driven valvetrain is 

13% better than that of a classic dual overhead camshaft (DOHC) arrangement.

Throttle-free load control; whether with electromechanical, electro-hydraulic 

or hydro-mechanical valvetrains, offers modern internal combustion engines a fuel 

consumption benefit o f 10 per cent or greater [1, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 

16]. Based on the present trends toward the employment o f the variable valve 

timing methodology, it is evident that BMW’s Valvetronic system is the next step in 

the foreseeable future [4].

Modular development tools used for application development in conjunction 

with the PowerPC SoC provide exact emulation of complex systems such as the 

camless engine controller platform, leading to substantially reduced development 

and validation time and lower costs. The design parameters, control variables in 

system terminology, provide additional degrees o f freedom to optimise the 

performance of the engine over its wide range o f operation.

On the valve motion control level, the seating control has been identified to 

be crucial for the application of electromagnetic camless valve (EMCV) actuators. 

Initial open-loop analysis reveals that an EMCV actuator becomes unstable as the 

engine valve gets closed to its seating position. Therefore, closed-loop control is 

required to achieve EMA soft-landing. A linear plant model was constructed. In 

conjunction with the engine and actuator manufacturers, stem identification tests 

were conducted to find the model parameters. A repetitive learning controller was 

designed to enhance the control performance through cycle-to-cycle iterations.
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Abstract

This portfolio discusses a novel high performance internal combustion engine 

knock} processing and detection methodology using a next generation automotive 

single-instruction-multiple-date System-on-Chip. The approach taken is based on 

autonomous on-chip modules and an auxiliary signal processing extension to the 

main System-on—Chip core. Real-time software development techniques with an 

advanced software circular buffer implementation for processing the streaming 

knock sensor data have been developed.

Various single instruction multiple data software optimisation techniques are 

employed to reduce the real-time knock algorithmic execution time. Real-time and 

simulation results are presented for the detection o f knock on a four cylinder 

internal combustion engine, but, the approach is widely applicable.

The efficient single-instruction-multiple-data and classic high level language C 

based coding and optimisation techniques used for the algorithmic implementation 

have been shown to improve computational performance and as a result utilises 

minimum combustion event timing.

1 Knock is the name given to the noise which is transmitted through the engine structure 
when essentially spontaneous ignition of a portion of the end-gas — the fuel, air and residual 
gas mixture, ahead of the propagating flame occurs.
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1 Introduction

This portfolio describes the development; implementation and testing of an 

advanced internal combustion engine knock processing methodology based on an 

automotive qualified single-instruction-multiple-data (SIMD) system-on-chip (SoC).

This section of the portfolio introduces the knock phenomenon, its existing 

control methodologies and examines and identifies some of its shortcomings. 

Through reference to previous and existing real-time knock processing strategies, 

the need for fast and particularly flexible method to process knock is made 

apparent. Finally the overall structure of the proposed SoC based knock processing 

is and original contributions of the portfolio is outlined.

1.1 Background

It is difficult to overstate the importance of internal combustion engine knock 

as it is a direct constraint on engine performance [1]. Knock in internal combustion 

engines (ICE) refers to the premature self or auto ignition o f the air-fuel mixture in 

the engine when the unburnt mixture’s temperature and pressure have exceeded a 

critical point.

Knock constraints engine efficiency, since by effectively limiting the 

temperature and pressure of the end-gas, it limits the engine compression ratio. The 

occurrence and severity of knock depend on the knock resistance o f the fuel and on 

the antiknock characteristics of the engine. Frequent occurrence of this knock 

phenomenon causes permanent damage to the ICE and should be avoided. 

However, in order to obtain maximum power, modern engines are run at their 

borderline limit of incipient knock using closed-loop control o f spark timing based 

on knock sensor feedback [1], [2], [3].
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1.2 Internal Combustion Engine Knock

In a four stroke engine, during normal drive cycles, the air-fuel mixture in the 

cylinder is compressed by the engine's piston to a high pressure. A timely spark 

generated by the m ounted sparkplug then ignites the fuel near sparking point, which 

then creates a flame front. As shown in Figure 1.1, this flame front propagates 

throughout the air-fuel mixture and this mixture is burnt in a highly controlled 

manner, which gradually increases the cylinder pressure to push the piston 

downwards. As the piston moves away, the pressure eases. Engine knock occurs 

when the air-fuel mixture ignites before the flame front can reach it [1]. This 

uncontrolled ignition o f the air-fuel mixture causes it to burn in an irregular and 

explosive manner. As shown in Figure 1.1, this rapidly expanding mixture exerts a 

sudden pressure wave, which produces a sizeable force on the surroundings o f the 

combustion chamber fl], [2], [3].

Flame
Front

Ignition by Spontaneous Flam e-front Collision
Spark Plug Ignition and V ibration

Figure 1.1: Engine Knocking and its Causes

In severe cases, the piston may still be moving upwards to compress the air- 

fuel mixture. As such, it cannot move away to ease the build up o f pressure wave. 

This results in severe stress on the engine and should be prevented as permanent 

engine damage can occur. Figure 1.2 overleaf shows three plots o f cylinder pressure 

against crank angle o f a single cylinder engine with ignition timing three degrees 

apart between each trace [1]. ICE knock usually occurs under wide-open-throttle 

(WOT) operating conditions.

6
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K nock W indow

Strong K nock

Slight K nock

N orm al C om bustion

-20 TC 20 40 60 O,CA
Figure 1.2: Cylinder Pressure versus Crank Angle (CA)

As shown in Figure 1.2, if the normal combustion cycle is advanced by some 

three degrees, a slight knock occurs which indicates the engine has reached its limit. 

Further timing increase produces severe knock. A com m on reason for engine 

knock is using poor quality gasoline with too low an octane rating, which has the 

tendency to ignite prematurely [1J.

Normally, all internal combustion engines are designed to run with a minimum 

octane rating gasoline. Another source o f combustion knock is insufficient cooling 

of the engine. W hen the temperature in the engine gets too high, it can trigger fuel 

to suddenly self-ignite. Even with good cooling o f the engine, a poorly designed 

engine may have "hot spots" that do not get cooled properly. This could be due to 

recirculation zones, crevices or failure to properly exhaust burnt gases. Yet another 

possibility is the use o f a turbocharger on an engine that is not designed and 

recommended by the engine manufacturer. Since turbochargers compress air at the 

engine inlet, pressures in the engine get much higher than the engine was originally 

designed for. Like high temperatures, an overly high pressure (above 14:1 for 

gasoline) also triggers the fuel to prematurely self-ignite.

7



1.3 History of Knock Processing Methodologies

There are several different approaches to detect the presence of knock in 

engines, see e.g. [5], [9] — [15]. One of the classic techniques presently used in 

production engines is based on application specific integrated circuits (ASIC) with 

limited programmability, such as the ProSAK™ knock control ASIC [16] and The 

HIP9011 ASIC [17].

Due to the high cost of direct knock sensors, most of the current knock 

detection systems are based on structural vibration signals obtained using an 

accelerometer [13].

This signal is then processed by aforementioned ASICs that include the 

functionalities, analogue filtering, rectification and integration. The final integrated 

value obtained is then compared to a heuristically determined threshold to 

determine the presence o f engine knock [5]. Several laboratory based methods [5],

[9], [11], [13] -  [15] have also been proposed for the extraction of the energy in the 

resonance frequencies generated by combustion knock, however such methods are 

not useful for engine manufacturers as they are not cost effective and particularly 

computationally demanding in production engines. Additionally, there is very little 

information available on the real-time implementation of such detection methods.
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1.4 Impact of Knocking

Impact o f knocking in an engine depends on its intensity and duration. Trace 

knock has no significant effect on engine performance or durability. Heavy knock 

can lead to extensive engine damage. The engine can be damaged by knock in 

different ways: piston ring sticking; breakage o f the piston rings and lands; failure of 

the cylinder head gasket; cylinder head erosion; piston crown and top land erosion; 

piston melting and holing. Knocking is one im portant factor limiting the efficiency 

o f an engine and is therefore o f great importance to the engine manufacturers [1],

[2], [3], [4].

Figure 1.3: Piston Dam age due to Long-term Engine Knock

Generally knocking exerts a great deal o f downward force on the pistons as 

they are being forced upward by the mechanical action o f the connecting rods. 

When this occurs, the resulting concussion, shock waves and heat can be severe 

resulting with broken or melted spark plug tips and as shown in Figure 1.3, other 

internal engine components, particularly the pistons can be damaged. Left 

unresolved, engine damage is almost certain to occur, with the spark plug usually 

suffering the first signs o f damage.

9
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2 Developed Knock Processing 

Methodology

The fundamental role of the SoC based knock processing platform is to 

extract a feature characteristic of knock that allows discrimination between normal 

engine noise and spontaneously ignited knocking noise. Knock detection is 

complicated by the variation in the amplitude and frequency o f the knock sensor’s 

output as functions of time or crankshaft angle, level of non-knock related engine 

noise, knock sensor mounting and importantly its intensity.

2.1 An Overview of the Knock Processing SoC

The SoC developed is the first member of a family of next generation 

powertrain SoCs based on the PowerPC Book E architecture, containing many new 

features coupled with high performance complementary metal oxide semiconductor 

(CMOS) technology to provide substantial reduction o f cost per feature and 

significant performance improvement over the legacy devices, particularly the 

presently used MPC565 [79]. This SoC is targeted toward middle to high-end 

powertrain applications, such as camless engine controller platforms and digital 

knock processing.

The host processor core of the SoC complies with the PowerPC Book E 

architecture. It is 100% user mode compatible with the classic PowerPC instruction 

set including the floating point library. The Book E architecture has enhancements 

that improve the PowerPC architecture’s fit in embedded applications. This core 

also has additional instructions, including DSP instructions, supported by the signal 

processing extension (SPE), beyond the classic PowerPC instruction set.

The SoC has two levels of memory hierarchy. The fastest accesses are to the 

32kB unified, aka von Neumann cache. The next level in the hierarchy contains the 

64kB on-chip static random access memory (SRAM) and the 2 MB internal flash 

memory. Both the SRAM and the flash memory can hold instructions and data. 

The External Bus Interface has been designed to support most of the standard 

embedded memories widely available.

10
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Figure 2.1: Overview of the Knock Processing SoC

The complex I /O  timer functions o f SoC are perform ed by two Enhanced 

Time Processor Unit engines (eTPU). Each eTPU micro-engine controls 32 

hardware channels. The eTPU consists o f 24-bit timers, double action hardware 

channels, variable num ber o f parameters per channel, angle clock hardware, and 

additional control and arithmetic instructions. The eTPU can be programmed using 

a high-level programming language.
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The less complex timer functions required are performed by the Modular 

Timer System (eMIOS/MTS). The eMIOS’ 24 hardware channels are capable of 

single action, double action, Pulse Width Modulation (PWM) and modulus counter 

operation. Off-chip communication is performed by a suite o f serial protocols 

including controller area networks (CAN), enhanced serial peripheral interface (SPI) 

and serial communication interfaces (SCI).

Additionally the SoC has an on-chip 40-channel Enhanced Queued dual 

Analogue-to-Digital Converter (eQADC). The System Integration Unit (SIU) 

performs several chip-wide configuration functions. Pad configuration and 

General-Purpose Input and Output (GPIO) are controlled from the SIU. External 

interrupts and reset control are also found in the SIU. The Internal Multiplexer 

sub-block (IMUX) provides multiplexing of eQADC trigger sources, daisy chaining 

the DSPIs and external interrupt signal multiplexing.

2.2 Knock Sensors

Knock sensors can be partitioned into the categories o f direct and remote 

measurement devices. Direct sensors measure the pressure inside the combustion 

chamber necessitating each cylinder to encompass a dedicated sensor and such 

sensors operating in harsh conditions tend to be expensive, whereas the remote 

tuned or broadband measurement sensors use the vibrations transmitted through 

the structure of the ICE [13]. Typically, the resonant point o f the tuned sensor is 

centred on the fundamental knocking frequency, which is between 5 kHz and 7 

kHz, whereas the bandwidth of broadband sensors tend to be between 1 kHz and 

25 kHz and this tends to be the most cost effective since a single sensor could cover 

a range of resonance frequencies [13].

The basis for the implemented knock processing methodology is based on 

broadband sensors. However, with minor modifications, the proposed 

methodology can be used with data obtained using pressure and acoustic 

information.

12
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Optimal location of accelerometers is heuristically chosen so that the sensor is 

not in a “dead” area and the transmitted quality of the signal has the highest SNR. 

The interface circuitry shown in Fig. 5 provides impedance matching for the knock 

sensors and a highpass filter attenuating frequencies below 1 kHz. An on-chip 

digital multiplexer, selects the appropriate knock input o f the active cylinder. In our 

evaluation, the sensor was placed in the threaded screw hole on the frame rib 

intersection of the upper part of the engine as prescribed by the manufacturer.

The developed knock kernel was validated using the structural vibration signal 

obtained using a piezoelectric accelerometer generated by a four cylinder engine 

(V4). This signal was acquired at a sampling rate of 50 kHz using a broadband 

knock sensor with a 25 kHz flat frequency response. In order to avoid engine 

damage, only 20% of knocking cycles were introduced at 4000 RPM in the engine in 

a strictly controlled manner. Figure 2.2 and Figure 2.3 show an example set of the 

knock sensor signals, highlighting the fundamental knock frequency of the engine 

used and their power spectral densities respectively.

2.3 Resonance Frequencies in a Knocking Engine

The resonant frequencies excited by the presence of knock depend on the 

geometry of the combustion chamber and the speed of sound in the cylinder charge 

PL PL PL [4]- These resonant frequencies are typically estimated by assuming an 

acoustic model for the combustion chamber. For a homogeneous gas filled, 

acoustically hard walled ideal cylinder, the resonance frequencies are given by the 

following Draper’s equation [4].

Coŷ 'Vm,n ^
nB

Where f m>n is resonant frequency, rjm,n is a non-dimensional mode number, c0 is 

the phase velocity constant, T  is the combustion mixture temperature, B is the 

cylinder bore diameter and the integer subscriptions m and n denote radial and 

circumferential mode numbers. Generally, the axial mode is neglected as knock 

generally occurs when the piston is just past the top dead centre (TDC) position and 

at this instance; axial dimension is negligible compared to the radial dimension.

14
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Figure 2.4 illustrates the knock sensor data and the algorithmic flow. User 

programmed eQADC commands are contained in the on-chip memory in a user 

defined data structure. The eQADC command data is moved from the command 

queue to the command FIFO  buffer by either the host CPU or by the enhanced 

Direct Memory Access (eDMA) controller. Once the command FIFO  is triggered 

and is transferred into the ADCs on chip, the ADC executes the command, and the 

result, i.e. a pair o f time stamp t[n] and data x[n] is moved through the result FIFO  

by the eDMA or the host CPU in to the on chip circular buffer.

On-Chip Hardware

Command
FIFO

Push
Register

On Chip 
Memory

Interface
Circuitry

Knock
Sensors eDMA

Circular 
Buffer

MUX ResultChannel
Number

Control FIFO Register

Sampled Knock Data and 
Timestamp

Figure 2.4: Data and Algorithmic Flow of the Developed SIMD Knock Kernel

The data in the circular buffer is then processed and presented by the knock 

task management software threads to the key SIMD knock signal energy extraction 

elements. The streaming data is then bandpass SIMD FIR filtered to extract the 

signal o f interest. This bandpassed signal is then squared, integrated and compared 

to determine the presence o f knock.

SIMD Hardware and Software
Knock Task  

Management 
Software

Bandpassed 
Signal Energy

Dual Point Bandpass 
SIMD FIR

Square FIR 
Outputs

Dual Point Backward 
Difference Integrator
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2.5 Minimum Length Bandpass Filter Design and Analysis

Computationally efficient and minimum length banks of FIR filters were 

designed to extract the frequencies of interest from the specified range of 

frequencies. The input, x(n) and the output y(n) signals to the FIR filter are related 

by the convolution sum [6].
N - 1

j /[»] = z  h \k\x\n  — k \ (2)
k=0

Where h[k\, k — 0, 1, 2 ... N-1, are the impulse response coefficients of the 

filter and N is the filter length, that is the number o f filter coefficients.

To achieve highest computational efficiency and to reduce design and 

evaluation time, accurate estimation of the minimal FIR bandpass filter length 

required for the algorithm was estimated using the following empirical relationship

[7], [8]. The parameters used to specify the bandpass filter are, Sp, 8S — passband and 

stopband ripples, A F  — transition bandwidth normalised to sampling frequency, bi 

= 0.01201, b2 = 0.09664, b3 = -0.51325, b4 = 0.00203, b5 -  -0.57054 and b6 = - 

0.44314.

N  = ,,<?,)AF + 1 (3)
AF p

Where

C j 8 f ,8,) = log10<y, ^ ( lo g ,„ ^ ) 2 +h\o%w 5p +b}

+ K ( logio 5P j +  h logio 5P+K

g{St P s) = -  14.61og10̂ - 1 6 . 9  (5)

FIR coefficients were calculated using windowing, equi-ripple and least square 

error minimization techniques. The least-squares error minimization scheme 

produced the desired frequency response and the coefficients obtained were used 

for the real-time implementation of the bandpass filter.
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2.6 Dual-Point Backward Difference Integrator

The square of the bandpassed FIR output is subjected to a backward 

difference integrator. For a single point integrator, the output j[k] is given by,

j[k]  = j [ k - l ]  + Tsx[k\  (6)

Where is the previous integrator output, Ts is the sampling interval and

x[k] is the square of the filter output. Computation o f present integrator output

requires a single or scalar data point and the previous integrator output. However,

the SIMD bandpass FIR block developed computes two back-to-back filtered 

output points simultaneously, which are then squared in parallel. In order to exploit 

the concurrent availability of two such data points and to reduce the computational 

burden involved with conversion of vector data points into scalar format for the 

single point integrator, a two point backward difference integrator was developed 

and this is given by,

y[k] = y [ k - 2 ]  + Tt {x[k] + x [ k - l ] )  (7)

This integrator saves ~15% of the computational bandwidth compared to that 

of a single point integrator.
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3 Pre-Silicon Knock Simulation Platform

Functional and behavioural modelling o f the overall knock processing strategy 

was carried out using the architectural modelling environm ent (AME), Madab, 

Simulink and Stateflow simulation platforms, which was initially used as the primary 

dem onstrator to customers before the development o f the SoC based real-time 

environment. Figure 3.1 illustrates the overall pre-silicon Simulink® and Stateflow® 

based knock processing simulation platform developed by the author for both 

functional and behavioural verification. This simulation platform encapsulates both 

algorithmic and supervisory logic models o f various data path elements as show in 

Figure 2.4 and the real-time knock processing threads as illustrated in Figure 4.4. 

The knock simulation platform is divided into hierarchical subsystems, making it 

more generic by separating engine and knock control system specific parameters.
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Figure 3.1: Pre-Silicon Knock Functional and Behavioural Simulation Platform

In Figure 3.1, AME based linear and non-linear regressed performance 

analysis tables o f the developed SIMD knock signal processing kernels are also 

incorporated in order to simulate different knock signal acquisition windows as 

shown in Figure 1.2. As a result, performance optimisation o f the entire system, 

eliminating laborious programming and delivering substantial time was achieved.
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4 Knock Hardware and Software

4.1 Hardware Knock Evaluation Platform

A high level overview and a block diagram o f the embedded SoC knock 

evaluation platform is shows in Fig. 2. It employs an MC33394 Power Supply IC

[16] and connectivity to other basic optional communication protocols available on 

the SoC.
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Figure 4.1: Overview of Hardware Knock Evaluation Platform

The SoC platform has two levels of memory hierarchy. The fastest accesses 

are to the 32 kB unified cache. The next level in the hierarchy contains the 64 kB 

on-chip SRAM and 2 MB of internal flash memory. Both the on-chip SRAM and 

the flash memory can hold instructions and data.

The complex I /O  timer functions o f the SoC are perform ed by two enhanced 

Time Processor Units (eTPU). Off-chip communication is perform ed by a suite o f 

serial protocols including Controller Area Networks (CAN), enhanced Serial 

Peripheral Interfaces (SPI) and Serial Communications Interfaces (SCI). The SoC 

has an on-chip 40-channel enhanced Queued dual Analogue-to-Digital Converter 

(eQADC).
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The SoC core embedded on the evaluation board complies with the classic 

PowerPC Book E architecture. It is 100% user mode compatible (with floating 

point library) with the classic PowerPC instruction set [16]. The SoC core consists 

o f a register file with 32 64-bit registers. In addition to the vector instructions used 

for the development of the algorithm, the PowerPC 32-bit instructions used operate 

on the lower (least significant) 32 bits o f the 64-bit register. The vector instructions 

defined view the 64-bit registers as vectors o f two 32-bit elements, and some o f the 

instructions also read or write 16-bit elements. These instructions are used to 

perform scalar operations in the algorithm developed.

Figure 4.2: Fully Populated Real-time Knock Evaluation PCB

Figure 4.2 shows the fully populated printed circuit board (PCB) used for the 

real-time evaluation of the overall knock processing strategy developed. Where 

possible, components mounted on the PCB are automotive qualified to allow 

system evaluation over the full automotive temperature range (-40 °C to 125 °C).
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4.2 Software Platform

4.2.1 SIMD Software

Key software elements of the knock processing strategy was developed based 

around the SIMD functionality supported by the SoC as SIMD works best with 

arrays of streaming data. This SIMD code was written using the developed high- 

level programming model which can be used in conjunction with the classic C and 

C++ languages. This programming model eliminates the issues associated with 

writing code at the assembly level: register allocation, scheduling, stack management 

and conformance to the underlying application binary interface (ABI). These SIMD 

instructions are supported by the SPE tighdy coupled to the core of the SoC as 

shown in Figure 2.1.

The SIMD programming model introduced consists of a set of fundamental 

data types supporting parallel loading and storing of appropriate data into the 64-bit 

( ev64 ) vector registers as shown in Table 4.1.

SIMD 64-bit 

Data Type
Interpretation of Contents Values

__ev64_ul6__ 4 unsigned 16-bit integers 0 to 65535

__ev64_sl6__ 4 signed 16-bit integers -32768 to 32767

__ev64_u32__ 2 unsigned 32-bit integers 0 to 232 -  1

__ev64_s32__ 2 signed 32-bit integers -231 to 231-  1

__ev64_u64__ 1 unsigned 64-bit integer 0 to 264 -  1

__ev64_s64__ 1 signed 64-bit integer -263 to 263 -  1

__ev64_fs__ 2 floats
IEEE-754 single

precision values

__ev64_opaque__ any of the above -----

Table 4.1: SIMD Fundamental Data Types
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4.2.2 Executing the Developed Knock Kernel

Figure 4.3 illustrates a 180° part of a 720° ignition cycle. As shown in this 

figure, the knock kernel is run once per cylinder combustion event, per engine cycle. 

The actions illustrated in Figure 4.3 are then repeated for each o f the other three 

cylinders of the V4 for a total engine cycle of 720°. Normally, the start of the knock 

window and the ignition pre-schedule time are both hard coded. Whereas the end 

of the knock window, the ignition scheduling, and the start and end of the ignition 

pulse are calculated during the operation of the engine. For example, the end of the 

knock window is determined by what the speed of the engine is at the start of the 

window.
Run

0°   90° Ignition Code   180°
1 1 1 1

1

Enable, store 
and process 

streaming knock 
window data.
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Figure 4.3: Key Events in an Ignition Cycle of a Cylinder

4.2.3 Advanced Streaming Software Circular Buffer

The software circular buffer scheme implemented to hold the streaming knock 

data involves the allocation of memory space on the on-chip SRAM of the SoC with 

sufficient space left over for most of the fast executable portions of the operating 

system (OS) and other active applications to reside. This buffer mechanism solves 

many of the problems associated with streaming high-throughput data acquisition 

on a multi-threaded /  multi-tasking operating system. An eDMA channel is used to 

create the required circular buffer in the on-chip SRAM.

The 32-bit data word per knock window sample stored in the advanced 

circular buffer (ACB) consists of a 16-bit timestamp and its 16-bit data sample. The 

eDMA channel runs continuously without software intervention.
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The ACB shown in Figure 4.4 is used for the transfer o f data between two 

processes, the continuous uninterrupted streaming eDMA transfers and the knock 

software thread processing, explained in section 4.2.4. The producer process, 

namely the eDMA transfer, places items into the ACB and the consumer process, 

namely the knock software threads remove them for the algorithmic processing. 

The variable capacity o f the ACB accommodates timing differences between the 

producer and the consumer processes.
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200kS /s
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lm s •K lim s
time

lm s Task lm s  Task lm s  Task
Run T hread I Run T hread II R un T hread  III

(Process Block 1) (Process Block 2) (Process Block 3)

Figure 4.4: Advanced Software Circular Buffer and Knock Thread Processing

In the implemented strategy, the software ACB executes faster than other 

queues that hold a variable amount o f data since a fixed size block o f memory is 

allocated just once from memory management and then reused. This circular buffer 

can be visualised as a linear buffer with indices that wrap, modulo the buffer size, 

when the end o f the buffer is reached.

For the knock detection strategy, the ACB suited the overall implementation 

due to the decoupling requirement o f the independent processes with different 

speeds. For example, a faster eDMA process can "burst" data into the buffer and 

continue with its processing. A slower thread, i.e., the consum er o f that data can 

then read it at its own rate without synchronising and slowing the producer. In this 

type o f application, the average rate, over time, o f both processes must be the same 

to avoid an over or under flow condition o f the ACB and this is referred to as the 

synchronous mode o f operation.
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In addition, sequencing is critical unless an appropriate method is used with 

the producer process executing first. To prevent unintentional incrementing of the 

tail pointer, the pointer is incremented only after the application has finished reading 

the data in the buffer and has indicated that the buffer space is relinquished for the 

write operation.

4.2.4 Knock Processing Threads

The time available for processing the developed knock kernel consists of a 

scheduling mechanism which contains tasks requiring system resources that should 

meet all logical and temporal constraints. As the knock algorithmic task is of 

predictable behaviour, i.e., periodic in nature, static scheduling is used in order to 

reliably meet all timing constraints. This is of fundamental importance when 

defining an allocation for hard deadline tasks in such a real-time environment. The 

knock kernel is portioned into two segments - one containing three threads, which 

are activated by a lms periodic task and the other containing all the background 

processing. As shown in Figure 4.4, the execution of these threads is primarily 

dependent on the position of the circular buffer write pointer and the status of the 

knock window. Figure 4.4 and Figure 4.5 illustrate a typical scenario for thread level 

processing using the four frames of the segmented ACB. In order to keep the data 

frame boundaries at fixed buffer locations and to make optimal use of the 

algorithm, the overall circular buffer size should be a multiple of the frame size. As 

shown in Figure 4.5;

■ Thread I: The millisecond task initially enters this thread to begin knock 

processing. This thread is processed only if the knock window is in the open phase 

and only after a corresponding eDMA data transfer crossing a 256 data frame 

boundary.

■ Thread II: This thread only processes data packets consisting of 256 data 

points and is executed only when the knock window is in the open phase.

■ Thread III: This concluding thread is responsible for completing the knock 

widow data processing. The knock window should be in the closed phase for this 

thread to be invoked and executed.
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If a multi-channel eDMA transfer is required, then the frame size should also 

be a multiple of the number of channels used. Doing so keeps the pointer 

arithmetic from becoming unnecessarily complex, which also keeps the core 

processing cycles to a minimum. Knock window open and closed data points are 

obtained by subtracting timestamp of the two events from the time obtained using 

the pre-fixed buffer boundary contents.
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4.2.5 Implementation of the Dual Point SIMD FIR

Key bandwidth consuming function of the knock kernel is the dual point 

SIMD FIR. The FIR filter is implementable as a sequence of operations "multiply- 

and-accumulate", often called MAC. As shown in equation (2), in order to run an 

N* order FIR filter it is necessary to have, at any instant, the current input sample 

together with the sequence of the N  preceding samples. These N samples 

constitute the memory of the filter. In practical implementations, it is customary to 

allocate the memory in contiguous cells of the data memory or, in any case, in 

locations that can be easily accessed sequentially. At every sampling instant, the 

state must be updated in such a way that the data point x[k] becomes x[k — 1], and 

this seems to imply a shift of N data words in the filter memory. Indeed, instead of 

moving data, for computational efficiency, it is convenient to move the indexes that 

access the data as shown in the ACB in Figure 4.4.

/* include library with signal processing extensions */ 
iinclude <spe.h>

void fir(int N, short *x, short *y, short *h)
{

int i,j; /* loop counters */

/* FIR o/p, load 2x32-bit input data into 64-bit reg */ 
 ev64_opaque  yO, z;

/* Taps below indicates the total filter taps */ 
for (i = Taps-1; i < (N + Taps-1); i += 2)
{

/* clear accumulator */
 ev_set_acc_u64(long(0)) ;

for (j = 0; j < Taps; j++)
{

z =  ev_create_s32((int)x[i-j] , (int)x[i-j+1]);

/* Vector Multiply Half Words, Odd, Signed, 
Saturate, Integer and Accumulate into Words */ 
yO =  ev_mhossiaaw(tap[j],z);

}

/* extract 2*32-bit outputs from accumulator */
y [i] =  ev_get_upper_u3 2 (yO);
y[i+1]=  ev_get_lower_u32(yO);

}
>

Table 4.2: Unoptimised Dual Point SIMD FIR Code
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lha rl2,0(r3 0) ;load half-word algebraic
lha rll,2 (r30) ;load half-word algebraic
evlddx rlO,rO,r9 ;vector load double word
evmergelo r31,rl2,rll ;vector merge low
evmhossiaaw rll,rlO,r31 ;vector multiply and accumulate
evmergelohi r31,rll,rll ;vector merge
cmpi 0,0,r31,0 ;compare immediate
be 4,0,.loop ;branch conditional
neg r31,r31 ;negate

Table 4.3: Unoptimised Dual Point SIMD FIR Assembly Code
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As shown in Table 4.2 and 'fable 4.3, while SIMD extensions are capable of 

performing multiple computations in the same cycle, it is essential to provide data to 

the SIMD computation units in a timely fashion in order to make efficient use of 

the sub-word parallelism. Providing data in a timely fashion requires supporting 

instructions for address generation, address transformation (data reorganisation 

such as packing, unpacking, and permute), processing multiple nested loop 

branches, and loads/stores.

Table 4.2, Table 4.3 and Figure 4.6 illustrate the SIMD implementation o f the 

bandpass FIR. The SIMD instruction, a.k.a., intrinsic, used for the implementation 

o f the SIMD FIR inner loop utilises a dedicated fast hardware multiply accumulate 

(MAC) unit incorporated in the SPE, which allows back-to-back execution of 

dependent MAC instructions.

0 15;16 3132 4748 63

rA 

rB

Interm ediate P roduct 

A ccum ulator

rD  and A ccum ulator

Figure 4.7: SIMD Dual Point Vector MAC

Figure 4.7 illustrates this hardware MAC instruction, evmhossiaaw rD, rA, rB 

(vector multiply half words, odd, signed, saturate, integer and accumulate into 

words). In this instruction, the least significant 16 bits o f rA and rB are multiplied 

for both elements o f the vector and the result is shifted left one bit and added to the 

accumulator and the result is possibly saturated to 32 bits in case o f overflow.

The final result is placed both in the accumulator and also in rD  so that the 

result o f this instruction can be used by accessing rD. As shown in Fig. 10, The 64- 

bit architectural accumulator register, rD, holds the results o f the MAC operation.
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The accumulator is partially visible to the programmer in that its results do not 

have to be explicitiy read to use them. Instead, for computational efficiency, they are 

always copied into a 64-bit destination GPR specified as part o f the instruction. 

The accumulator however has to be explicitiy cleared when starting a new MAC 

loop. Based upon the type of intrinsic used, an accumulator can hold either a single 

64-bit value or a vector of two 32-bit elements.
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5 Findings and Conclusions

Table 5.1 and Table 5.2 overleaf show the measured cylinder combustion 

event bandwidth required to process the knock kernel using the evaluation platform 

described in section 4. In both tables, performance was evaluated by running the 

SoC at 132MH2 at a sampling rate o f 200kSamples/sec.

For example, in Table 5.1, at 500rpm, a 15° knock window task requires 372 

(22+284+66) ps to process the knock kernel, which is 0.62% o f the overall 

cylindrical combustion event bandwidth o f the V4. The results obtained are based 

on a single-band bandpass filter applied to the primary knocking resonance 

frequency component. The measured integrator output shown in Figure 5.1 

consists of both the noise and the appropriate resonance com ponents in the band 

o f interest. The normalised time in this figure shows the time recjuircd to produce 

the appropriate integrator output, a.k.a., knock index.

Final. Saturated 
Integrator Output

Normalised Time
0 o Percentage Knocking Cycles

Figure 5.1: Dual Point SIMD Integrator Output

The knock free index, in other words, the pure background engine noise in the 

absence of knock is adaptively averaged and updated over time and this serves as 

the acceptable no knock threshold o f the appropriate cylinder firing cycle [13]. As 

shown in [10], signal-to-noise-ratio o f the overall process can be improved by 

selectively switching a multiband bandpass filter at higher engine speeds to extract 

all present knock resonance frequencies. Such a multiband filter can be designed 

using constrained least squares FIR filter design technique [18], [19].
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RPM

Thread Level Execution Timing in |us % Combustion 

Event Time 

Used for 

Thread 

Processing

15° Knock Window 

Threads

40° Knock W indow 

Threads

I II III I II III 15°
oO

500 22 284 66 58 843 77 0.62 1.63

2000 72

NA

12 28 191 32 0.63 1.67

2500 60 16 36 97 68 0.63 1.68

4000 28 21 25 97 6 0.64 1.71

6000 11 22 33
NA

51 0.66 1.69

8000 16 10 63 1 0.68 1.71

Tabic 5.1: Bandwidth Required to Process SIMD Knock Kernel

RPM

Thread Level Execution Timing in |us % Combustion 

Event Time 

Used for 

Thread 

Processing

15° Knock Window 

Threads

40° Knock W indow 

Threads

I II III I II III 15°

oO

500 53 711 164 145 2000 192 1.55 4.11

2000 179

NA

55 68 474 78 1.55 4.13

2500 149 38 90 238 169 1.56 4.14

4000 68 50 60 238 14 1.57 4.16

6000 27 53 82
NA

127 1.60 4.18

8000 38 22 156 0 1.61 4.17

Table 5.2: Bandwidth Required to Process non-SIMD Knock Kernel

32



rortjotio 1 v

It has been shown that using a common architecture for both RISC and DSP 

instructions, in combination with autonomous on-chip peripherals, allows complex 

systems to be built around a single SoC platform, where previously two or more 

different processors would have been used together [13], [15]. Based on the results 

obtained, it is also evident that real SIMD computers need to have a mixture of 

single instruction single data (SISD) and SIMD instructions. Importance of SISD 

elements in the micro-core to perform operations such as branches and address 

calculations that do not need parallel operation is also highlighted. It is also worth 

nothing that for efficient dynamic power management and flexibility, unused 

individual execution units of the SoC are disabled during algorithmic execution.

Experimental analysis confirms that SIMD works best in dealing with arrays of 

streaming data. Additionally, in the proposed architecture, sustained MAC 

instructions are executed in a single CPU cycle. In contrast, in a typical fixed-point 

microprocessor, a multiply and an add typically executes in 15 to 20 CPU cycles

[16].

The SIMD unit implemented also significantly increases execution speed by 

performing multiple operations in parallel. For instance, in the same instruction 

cycle that a MAC operation is performed, a parallel data move is carried out. SIMD 

enhancements in the SoC supplement the computational speed of present 

generation real-time processors used and make them ideal for high-performance 

real-time applications.

As shown in Table 5.3 and Figure 5.2, computational bandwidth is what 

separates the SIMD based core from the classic CPU — the ability to process an 

abundance of data, consistently, in an uninterrupted stream. Measured results in 

Table 5.3 confirms that the efficient coding and optimisation techniques used for 

the SIMD implementation of the knock kernel have improved performance by a 

minimum of xl.8. This figure is obtained by comparing the overall normalised 

knock task processing time, i.e., sum of time taken to run all three knock threads, 

shown in Fig. 8, with and without SIMD.
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Vehicle SIMD Enabled Core SIMD Disabled Core Legacy RCPU

RPM 15° Knock 40° Knock 15° Knock 40° Knock 15° Knock 40° Knock
Range Window Window W indow W indow W indow Window

500 0.93% 2.45% 2.32% 6.17% 8.96% 23.82%

2000 0.94% 2.50% 2.33% 6.20% 8.98% 23.88%

2500 0.95% 2.52% 2.34% 6.21% 8.98% 23.85%

4000 0.96% 2.56% 2.35% 6.24% 9.06% 23.96%

6000 0.99% 2.54% 2.39% 6.28% 9.07% 23.99%

8000 1.02% 2.56% 2.42% 6.25% 9.12% 24.12%

Table 5.3: Processor Core Bandwidth Comparison of Knock Kernel

L e g a c y  RISCiSoC

S qC
w ith o u t

SIMD

Engine RPMKnock Window (Degrees)

Figure 5.2: Knock Kernel Processing Time with and without SIMD
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Streaming knock processing constitutes a significant part of current day 

average microprocessor workloads. To address this, a SoC combining SIMD DSP 

functionality with a classic microprocessor core has been developed. Autonomous 

peripherals on this SoC designed use fast register and memory based 

communication and synchronisation mechanisms to deliver high performance. 

Memory based communication and synchronisation is realised using the eDMA 

module. Parallelism in this application is exploited using a combination of 

orthogonal parallel processing techniques, namely instruction and data level 

parallelism (ILP and DLP).

A novel high performance knock detection strategy on an automotive SoC has 

been presented and the efficient use of various intelligent autonomous modules on 

the Motorola’s next generation automotive qualified SoC combining ILP and DLP 

in the form of SIMD parallelism are described. The change from standard scalar 

32-bit to SIMD vector based cores has been established, which allows the 

implementation of advanced algorithms with minimal processing time.
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1. A bstract

The PowerPC™ instruction set provides opcodes that allow programmers to explicitly move 
items in or out of the processor’s unified cache. This application note examines these 
cache control instructions and provides the user with sample routines to invalidate the 
cache and relocate object code in memory using the cache. Most applications only use 
these cache control instructions during power-on initialisation and when necessary to flush 
cache contents to system memory. However, in time-critical code segments these 
instructions can often improve throughput via preloading of required cache contents and by 
reducing unnecessary transfers between external memory and the unified cache.
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2. Introduction

In order to maintain a high level of performance processor families with the ZEN Z650N3 
core require access to instructions and data at the clock rate. In most circumstances, 
external memory cannot provide this level of data throughput and on-chip memory cannot 
fulfil all the system’s memory requirements. An effective solution is to exploit the locality of 
instruction and data accesses present in most programs and retain frequently accessed 
items in an on-chip cache memory. Typically, caches greatly increase performance while 
minimally affecting system and program design. However, there are methods of accessing 
memory that can cause on-chip caches and external memory to become incoherent, 
resulting in data errors and possible system failure.

3. Z650n3 Cache Specific Terminologies

3.1. Cache Hit
A cache hit refers to an occurrence when the CPU asks for information from the cache, and 
gets it.

3.2. Cache Miss
A cache miss is an occurrence when the CPU asks for information from the cache, and 
does not get it. From this, we can derive the hit rate, or the average percentage of times 
that the processor will get a cache hit.

3.3. Hit Ratio I Hit Rate
The hit ratio is a metric that quantifies the fraction of processor accesses satisfied by the 
cache compared to the total number of accesses. Usually the hit ratio is determined 
individually for the instruction and data caches.

3.4. Write Policies
The cache's write policy determines how it handles writes to memory locations that are 
currently being held in cache. The two policy types are:

3.4.1. Write-Back Policy
When the system writes to a memory location that is currently held in cache, it only writes 
the new information to the appropriate cache line. When the cache line is eventually 
needed for some other memory address, the changed data is "written back" to system 
memory. This type of cache provides better performance than a write-through cache, 
because it saves on (time-consuming) write cycles to memory.

3.4.2. Write-Through Policy
When the system writes to a memory location that is currently held in cache, it writes the 
new information both to the appropriate cache line and the memory location itself at the 
same time. This type of caching provides worse performance than write-back, but is 
simpler to implement and has the advantage of internal consistency, because the cache is 
never out-of-sync with the memory the way it is with a write-back cache. Both write-back 
and write-through caches are used extensively, with write-back designs more prevalent in 
newer and more modern machines.

3.4.3. Valid, Invalid, Dirty (and Valid) and Locked Cache Lines
Valid cache lines contain valid data, which is consistent with main memory. Dirty cache 
lines also contain valid data, but it is not consistent with main memory. Invalid cache lines 
contain invalid data and are ignored during look-ups. A locked cache is not available for 
replacement

Motorola / Freescale Confidential Property Page 4 of 18



3.5. Coherency
A memory system is coherent when the value read from a memory address is always the 
value last written to that address.

Motorola / Freescale Confidential Property Page 5 of 18



4. Cache Mapping S trategies

4.1. Direct Mapped Cache
Each memory location is mapped to a single cache line, which could be shared with many 
others memory locations; only one of the many addresses that share this line can use it at a 
given time. This is the simplest technique both in concept and in implementation. Using 
this cache means the circuitry to check for hits is fast and easy to design, but the hit ratio is 
relatively poor compared to the other designs because of its inflexibility.

Cache Memory
J. Une Une Une Une J>T n n*1 n*2 n+3 f

Memory Location k-10

I

T"
Memory Location k

I
Main Memory

Figure 1: Direct Mapped Cache

4.2. Fully Associative Cache
Any memory location can be cached in any cache line. This is the most complex technique 
and requires sophisticated search algorithms when checking for a hit. It can lead to the 
whole cache being slowed down because of this, but it offers the best theoretical hit ratio 
since there are so many options for caching any memory address.

Cache Memory
Line n 
(End)

Memory Location 0 
(Start)

Main Memory

Memory Location k 
(End)

Figure 2: Fully Associative Cache
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4.3. N-Way Set-Associative Cache
“N” is typically 2, 4, 8 etc. This technique is a compromise between the two previous 
designs. In this case, the cache is broken into sets of “N” lines each, and any memory 
address can be cached in any of those “N” lines. This improves hit ratios over the direct 
mapped cache, but without incurring a severe search penalty (since “N” is kept small). The 
2-way, 4-way or 8-way set associative cache is common in modern processor L1 caches.

Physical
Address

Virtual
Address

2 6  2 7  31

Tag Data / Tag Referance Index

CM

o> StatusTag DWO DW1 DW2 DW3

Tag Status DWO DW1 DW2 DW3

Status DWO DW1 DW2 DW3

Data
Multiplexor

Instruction
Select

Hit 7

Hit 2

Logical OR HitHit 1

MO.
Comparator

Figure 3: 8-Way, 32kB Set-Associative Cache Lookup Flow

Figure 3 illustrates the general flow of cache operation for the 32kB Cache. To determine if 
the address is already allocated in the cache,

1. The cache set index, virtual address bits A[20:26] are used to select one cache set. A 
set is defined as the grouping of eight lines (one from each way), corresponding to the 
same index into the cache array.

2. The higher order physical address bits A[0:19] are used as a tag reference or used to 
update the cache line tag field.

3. The eight tags from the selected cache set are compared with the tag reference. If any 
one of the tags matches the tag reference and the tag status is valid, a cache hit occurs. 
Please note that each tag is unique.

4. Virtual address bits A[27:28] are used to select one of the four doublewords in each line. 
A cache hit indicates that the selected doubleword in that cache line contain valid data (for 
a read access), or can be written with new data depending on the status of the access 
control bit necessary for a write access.
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5. Cache Structure of Zen Z650N3

The L1 Cache described in this document incorporates the following features:
■ 32 kB Unified Cache design (support for 16K and 8K options)
■ Virtually indexed, Physically tagged
■ 32-byte line size (4 doublewords)
■ 64-bit data, 32-bit address
■ Pseudo Round-Robin (PRR) replacement algorithm
■ 8-entry store buffer
■ 1 entry push (copyback) buffer
■ 1 entry linefill buffer
■ Hit under fill/copyback
■ Parity protection

Processor
Core

Control Logic

-  Tag
-  Array

-  Data
-  Array

Data Path

Address Path

MMU Bus Interface Module

Address / Data Control

Figure 4: Overview ZEN Z650N3 Unified Cache

The Zen Z650N3 processor supports a 32 kB, 8-way set-associative, unified (instruction 
and data) cache with a 32 Byte line size. This cache can also be configured as 16 kB, 4- 
way or 8 kB, 4-way set-associative units. The cache is virtually indexed and physically 
tagged.

The Zen Z650N3 does not provide hardware support for cache coherency in a multi-master 
environment. Therefore, software must explicitly accomplish this task, explained in section
7.
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6. 32 kB Unified Cache Organisation

The Zen cache is organised as eight ways of 128 sets with each line containing 32 Bytes 
(four doublewords) of storage. The following figure illustrates the cache organisation as 
well as the terminologies used, along with the cache line format.

WayO Way 1 Way 2 Way 7
SetO
Set 1

■ ■ ■

•
■ m ■

Set 126 Line
Set 127

Cache Line Format
| Tag [0:19] l HI D [1] V [1] Doubleword 0 Doubleword 1 Doubleword 2  Doubleword 3 |

Figure 5: Cache Organisation and Line Format

Where,

Tag - 20-bit physical address corresponding to the data contained in this line 

L - Lock bit
0 = The line has not been locked.
1 = The line has been locked and is not available for replacement.

D - Dirty bit
0 = The data contained in this entry has not been modified.
1 = The data contained in this entry has been modified and is not consistent with physical 
memory.

V- Valid bit
0 = This bit signifies that the cache line is invalid and a tag match should not occur
1 = This bit signifies that the cache line is valid
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7. Cache Coherency

A memory system is coherent when the value read from a memory address is always the 
value last written to that address. Systems that perform all reads and writes directly to a 
common memory and those with caches that utilise specialised hardware techniques to 
enforce coherency are always coherent. Since the Zen Z650N3 processor features cache 
without dedicated hardware for enforcing coherency, situations may occur where software 
must explicitly accomplish this task. Prior to examining techniques for enforcing coherency, 
several situations that can cause a loss of coherency are examined below:

7.1. How is Coherency Lost?
When an area of memory exists in a cache, any access to that region by another device or 
cache has the potential to result in a loss of coherency. One of the most common 
examples is an external controller, such as a DMA channel, directly accessing a cacheable 
area of system memory. Following figure depicts such a system. Because the external 
controller directly reads from and writes to system memory, it neither obtains modified nor 
updates data present in the cache. Directly reading locations in system memory also 
present in a cache frequently yields incorrect data. This occurs because modified cache 
lines in a write-back cache do not update external memory until normal cache activity or an 
explicit cache control instruction displaces them from the cache.

In contrast, when the processor alters data in a cache that supports write-through 
operations that change is also written to external memory at the same time. In particular, 
when an external device changes a memory location also present in the cache, the cache is 
not updated. Additionally, write-through operations may cause significantly higher amounts 
of traffic to the memory system, thus decreasing overall system performance.

Memory
Interface

System
Memory

DMA

Unified
Cache

Zen 
Execution Unit

Figure 6: Maintaining Coherency with Shared Access

In the Zen Z650N3 processor, cache coherency is supported through software operations 
to invalidate, flush dirty lines to memory or invalidate dirty lines. The cache may operate in 
either write-through or write-back modes, and in conjunction with an MMU, may designate 
certain accesses as write-through or copy-back. Cache misses will force the copy-back 
and store buffers to empty prior to performing the access. No other hardware coherency 
support is provided.
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8. Cache Operation

8.1. Cache Enable I Disable
The cache is enabled or disabled by using the Cache Enable bit, L1CSR0[CE]. 
L1CSR0[CE] is cleared on power-on reset or normal reset, disabling the cache. When the 
cache is disabled (L1CSR0[CE] = 0), the Cache Tag status bits are ignored, and the cache 
is not accessed for normal loads, stores, or instruction fetches. All normal accesses are 
propagated to the system bus as single-beat (non-burst) transactions.

Altering the CE bit must be preceded by an isync and msync to prevent the cache from 
being disabled or enabled in the middle of a data or instruction access. In other words, if 
the cache is to be changed from enabled to disabled, copy-back of dirty lines must be 
forced to ensure coherency. It is also worth noting that global flushing of cache is advisable 
before it is disabled to prevent coherency problems when it is re-enabled. All cache 
operations are affected by disabling the cache.

8.2. Cache Line Fills
Cache line fills are requested when a load miss occurs. Cache line fills load a four- 
doubleword linefill buffer, and actual updates to the cache array are delayed until and a free 
cycle is available to perform the cache update. The line fill buffer is burst loaded. In 
addition, the cache supports hit under fill to improve performance.

8.3. Cache Line Replacement Using the Pseudo Round Robin Algorithm
On a cache read miss, the cache controller uses a pseudo-round-robin replacement 
algorithm to determine which cache line would be selected to be replaced. There is a 
single replacement counter for the entire cache. Lines selected for replacement that are 
dirty (modified) must be copied back to main memory.

The replacement algorithm acts as follows: On a miss, if the replacement pointer is pointing 
to a way, which is not enabled for replacement by the type of the miss access (the selected 
line or way is locked), it is incremented until an available way is selected (if any). After a 
cache line is successfully filled without error, the replacement pointer increments to point to 
the next cache way. If no way is available for the replacement, the access is treated as a 
single beat access and no cache linefill occurs.

8.4. Cache Management Instructions
The Zen Z650N3 provides a number of instructions for managing the unified cache and 
potentially improving code performance. These cache control instructions can be used 
during power-on initialisation and when necessary to flush cache contents to system 
memory. In time-critical code segments these instructions can often improve throughput via 
preloading of required cache contents and by reducing unnecessary transfers between 
slower system memories.

Following are brief descriptions and the typical usage of common Zen cache control 
instructions. Since these instructions may vary by processor, more complete descriptions, 
syntax, architectural notes and exceptions for these and additional instructions are included 
in the User’s Manual for the appropriate processor or core.

■ icbi - Instruction Cache Block Invalidate (maps this instruction to a dcbf)
■ dcbf - Data Cache Block Flush
■ dcbi - Data Cache Block Invalidate
■ dcbst - Data Cache Block Store
■ dcbz - Data Cache Block set to Zero
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9. Cache Control

Control of the cache Is provided by bits in the L1 Cache Control and Status register 
(L1CSR0). Control bits are provided to enable/disable the cache and to invalidate it of all 
entries. In addition, availability of each way of the cache may be selectively controlled for 
use by instruction accesses and data accesses. This way control provides cache way 
locking capability, as well as controlling way availability on a cache line replacement.

9.1. L1 Cache Control and Status Register 0 (L1CSR0)
The L1CSR0 is a 32-bit register. The L1CSR0 register is accessed using a “move from 
special purpose register” (mfspr) or “move to special purpose register” (mtspr) instruction. 
The correct sequence necessary to change the value of LSCSRO is as follows:

The msync instruction provides a synchronization function. This instruction waits for all 
preceding instructions and data memory accesses to complete before the msync instruction 
completes. Subsequent instructions in the instruction stream are not initiated until after the 
msync instruction ensures these functions have been performed. The isync instruction 
waits for all previous instructions to complete and then discards any fetched instructions, 
causing subsequent instructions to be fetched (or refetched) from memory and to execute 
in the context (privilege, translation, and protection) established by the previous 
instructions.

msync 
(memory synchronise)

__________ V __________

isync 
(instruction synchronise)

\ 7

mtspr L1CSR0

Figure 7: Sequence of Instructions Necessary to Change LSCSRO Value

9.2. L1 Cache Configuration Register 0 (L1CFG0)
L1CFG0 is a 32-bit read-only register. L1CFG0 provides information about the 
configuration of the Zen Z650N3 L1 Cache design. The contents of the L1CFG0 register 
can be read using an mfspr instruction. The L1CFG0 register is shown below: The SPR 
number for L1CFG0 is 515 in decimal.
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Table 1: SPR -  515: Read-only
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The L1CFG0 bits are described below:

Bits Name Description

0:1 CARCH Cache Architecture 
01 -  The cache architecture is unified

2 CWPA Cache Way Partitioning Available
1 -  The cache supports partitioning of way availability for I/D access

3 CFAHA Cache Flush All by Hardware Available 
0 -  The cache does not support flush all in hardware

4 CFISWA Cache Flush / Invalidate by Set and Way Available (via L1FINV0) 
1 -  The cache supports flushing / invalidation by set and way

5:6 — Reserved 
Read as 0

7:8 CBSIZE Cache Block Size
00 -  The cache implements a block size of 32 bytes

9:10 CREPL Cache Replacement Policy
10 -  The cache implements a pseudo-round-robin replacement policy

11 CLA Cache Locking APU Available 
1 -  The cache implements the line locking APU

12 CPA Cache Parity Available 
0 -  The cache does not implement parity

13:20 CNWAY
Number of ways in the Unified Cache 
0x03 -  The cache is 4-way set-associative 
0x07 -  The cache is 8-way set-associative

21:31 CSIZE

Cache Size
0x008 -  The size of the cache is 8kB 
0x010 -  The size of the cache is 16kB 
0x020 -  The size of the cache is 32kB

Table 2: Bit Fields of the L1CFG0

10. Cache Line Locking I Unlocking

Zen supports the Motorola Book E Cache Line Locking, which defines user-mode 
instructions to perform cache line locking or unlocking. Three of the instructions are for 
data cache locking control (dcblc, dcbtls, dcbtstls) and the remaining instructions are for 
instruction cache locking control (icblc, icbtls).

For the Zen Z650n3 unified cache, the instruction and data versions of these instructions 
operate similarly.

■ dcblc - data cache block lock clear
■ dcbtls - data cache block touch and lock set
■ dcbtstls - data cache block touch for store and lock set
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The data storage interrupt (DSI) handler decides whether or not to lock a given cache line 
based upon available cache resources. In general, a DSI occurs if no higher priority 
exception exists and one of the following exception conditions exists:

■ Read or Write Access Control exception condition
■ Byte Ordering exception condition
■ Cache Locking exception condition

A Byte Ordering exception condition occurs for any misaligned access across a page 
boundary to pages with mismatched E (endianness) bits. Cache locking exception 
conditions occur for any attempt to execute a dcbtls, dcbtstls, dcblc, icbtls or 
icblc in user mode with MSR[UCLE (User Cache Lock Enable)] = 0, in which the 
execution of the cache locking instructions in user mode is disabled.

If the locking instruction is a set lock instruction, and if the handler decides to lock the line, 
the following 4 steps are done by the DSI:

1. Add the line address to its list of locked lines.
2. Execute the appropriate set lock instruction to lock the cache line.
3. Modify save/restore register 0 to point to the instruction immediately after the locking 

instruction that caused the DSI.
4. Execute an rfi (return from exception).

11. Cache Initialisation

Operating as local memory, the unified cache module provides the processor with access to 
recently referenced instructions and data. The cache should be explicitly invalidated after a 
hardware reset; reset does not invalidate the cache lines. Following initial power-up, the 
cache contents will be undefined. The L, D and V bits may be set on some lines, 
necessitating the invalidation of the cache by software before being enabled. Therefore, if 
the unified cache is to be enabled, it is necessary to explicitly invalidate the unified cache 
module by software. A generic PowerPC assembly routine to invalidate the unified cache is 
given in section 14.2.

12. Push and Store Buffers

The push buffer reduces latency for requested new data on a cache miss by temporarily 
holding displaced dirty data while the new data is fetched from memory. The push buffer 
contains 32 Bytes of storage (one displaced cache line or 4 doublewords).

On the other hand, the store buffer contains a FIFO that can defer pending write misses or 
writes marked as write-through in order to maximize performance. The store buffer can 
buffer 32 Bytes.

In the disabled push buffer case, dirty line replacement is performed by first generating a 
burst write transaction, copying out the entire dirty line, starting with the doubleword in the 
dirty line corresponding to the missed address. The store buffer may be disabled for debug 
purposes.
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13. Programming the Unified Cache

13.1. Relocation of an Executable Object Code Using the Cache
Moving executable objects from one memory location to another with caching enabled 
requires cache control instructions. The following assembly routines forces coherency with 
such an operation:

addi rl,rl,-4

; rl = source address (word aligned) 
; r2 = target address (word aligned) 
; r3 = number of words to move
; allows use of lwzu and stwu

addi r2, r2 , -4
mtctr r3 ; load count register with the value of r3
loop: lwzu r4,4(rl) ; read source
stwu r4,4 (r2) ; write target
dcbf 0,r2 ; remove target from unified cache
bdnz loop ; repeat until done
msync ; ensure dcbst is completed

Figure 8: Routine to Relocate an Executable Object Using the Cache

This example moves one word and then flushes the corresponding address and then 
invalidates it in the unified cache. By using this sequence of operations, the cache remains 
coherent during the relocation process. However, if the application does not attempt to 
execute code in the target range until after moving the entire block, improved performance 
results from flushing the data cache and invalidating the instruction cache outside of the 
loop.

13.2. Flushing the Unified Cache
The size and placement of a shared memory area along with the size of the cache 
determines the best method for removing the region from the cache. Flushing the region by 
address is most efficient when the shared area is smaller than the data cache. An 
assembly routine to flush a specific region of the cache is as follows:

; rl = start of region
; r2 = end of region

loop: dcbf 0, rl ; flush line at address rl
addi rl, rl, dine size in bytes> ; point to next line
cmpw rl, r2 ; finished?
ble loop ; if not, continue until done

Figure 9: Routine to Flush the Cache

13.3. Invalidating the Unified Cache
The cache may be invalidated through the Cache Invalidate (CINV) control bit located in the 
L1CSR0 register. This function is available even when the cache is disabled. Reset does 
not invalidate the cache automatically. Software must use the CINV control for invalidation 
after a reset. Proper use of this bit is to determine that it is clear and then set it with a pair of 
mfspr and mtspr operations. During the process of performing the invalidation, the 
cache does not respond to accesses, and remains busy.
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14. Using the Cache a s  Local Memory

Inability to reuse data and under utilisation of cache capacity are responsible for poor cache 
performance on various commonly used automotive applications. Data pre-fetching, 
blocking and data copying have been used to address these problems. These techniques, 
though effective, are directed towards solving one aspect of the overall problem. This 
section of the document proposes a comprehensive solution to these problems by 
employing the on-chip cache as an explicitly managed local memory using software. The 
cache can be statically or dynamically configured to act as a local memory block or a 
conventional cache; reconfiguration overhead is small. Therefore, if a time critical task is to 
be run from cache, it is necessary to acquire an exclusive lock to the cache line or way, 
which is done using the debt is instruction. This lock can then be cleared using the 
instruction dcblc.

14.1. Steps Needed for Emulation of the Cache as Local RAM
Instantiation of the cache block to be used as local memory should be done when the 
system comes out of a reset. The following steps explain how this can be done on a Zen 
based platform:

1. Read and clear error type bits in the L1CSRO.

2. Ensure the code that initialises the cache is executing from cache-inhibited memory, and 
interrupts are disabled. This guarantees that the sequence of cache operations execute as 
desired.

3. Set up the MMU to assign a dummy memory region with read and write permissions. 
The memory region should be the same start address and range as the data storage 
section defined by the linker for the data variables the user wishes to store in cache "local 
memory". It should be unimplemented memory to avoid conflicts with data references. 
Please see appendix A for sample of linker command file.

Setting up the MMU to assign a dummy memory region with read and write permissions 
can be done as follows:

The TLBCAM (Translation Lookaside Buffer -  Content Addressable Memory) array must be 
first written to by writing the necessary information into MAS0-MAS3 (MMU Assist Registers 
- SPR 624-627) using mtspr and then executing the tlbwe instruction. To write an entry into 
the TLB, the TLBSEL field in MASO must be set to *01 \  and the ESELCAM (Entry Select for 
TLBCAM) bits in MASO must be set to point to the desired entry. When the tlbwe 
instruction is executed, the TLB entry information stored in MAS1-MAS3 will be written into 
the selected TLB entry. Please note that X used in the table needs to be set by the user 
based on the requirements.

mtspr $50XX00XX, MASO ;MMU Read/Write and Replacement Control 
mtspr $4000XX00, MAS1 /Descriptor Context and Configuration Control 
mtspr $XXXXX002, MAS2 ;EPN(Effective Page Number) and Page Attributes
mtspr $XXXXXXXF, MAS3 ;RPN (Real Page Number) and Access Control 
tlbwe RT, RA, WS /Specifies a word in the TLB entry being accessed

Figure 10: Setting Up the MMU for a TLB Write Operation
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4. Execute dcbz r a , rb

add rl, 0, DATA CACHE RAM START ;load start address (Appendix A) to GPR1
dcbz 0, rl

dcbz establishes a cache line without accessing main memory. Since there are no memory 
bus cycles, the address range defined in the MMU in 2 above can be unimplemented 
memory. However, the instruction is treated as a store by the MMU, the address range 
must have user or supervisor write permissions (depending on which mode the code is 
executing in).

5. Execute debt Is  CT, r a , rb.

add rl, 0,  DATA_CACHE_RAM_START /load start address (Appendix A) to GPR1
dcbtls 0, 0, rl

Because the previous instruction established the <ea> in the cache, the dcbtls hits in the 
cache, and therefore does not fetch the value from memory. So no memory bus cycles 
occur thus avoiding a bus error to our unimplemented memory. Note that in this case, the 
instruction is treated as a load by the MMU, so the address range must have user or 
supervisor read permissions (depending on which mode the code is executing in).

6. Increment address by a cache until the whole memory region is covered.

add rl, 0,  DATA_CACHE_RAM_START /load start address (Appendix A) to GPR1
add r2, 0,  DATA_CACHE_RAM_END /load end address (Appendix A) to GPR2
loop:
addi rl,rl,32 /point to next line. The number of bytes per line = 32 
cmpw rl,r2 /is memory region covered?
ble loop /if not, continue until done

7. Continue with the rest of the initialisation code.

15. Conclusion

The Zen unified cache module greatly improves system performance. Although most 
programs do not directly manipulate the cache, cache control instructions provide 
programmers with the means to control the content of the L1 on-chip cache. This level of 
control is required in applications with devices that share memory with the processor or 
when a program relocates executable object from one memory area to another. By utilising 
cache control instructions these memory areas become cacheable and overall system 
performance increases.
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Appendix A
/ *   * /

* S a m p l e  L i n k e r  C om m an d  F i l e  t o  S e t - u p  D e d i c a t e d  M e m o r y  S e g m e n t  t o  H a n d l e  D a t a  t o  b e  c a c h e d
* P l e a s e  r e a d  d i a b  4 . 3  l i n k e r  f i l e  d o c u m e n t a t i o n  f o r  m o r e  i n f o r m a t i o n .
* A u t h o r :  M o h a m e d  A n a s

/ *     * /

MEMORY

{
r a m :  o r g  = 0 x 1 0 0 0 0 ,  l e n  = 0 x 6 4 0 0
r o m :  o r g  = 0 x 1 4 0 0 0 ,  l e n  = OxAOOO
s t a c k :  o r g  = O x lEO O O , l e n  = 0 x 2 0 0 0

/* initialise data cache memory segment of 32kB to be used as local RAM on Copperhead. */ 
datacache: org = 0x20000, len - 0x8000

SE CT IO N S

{

GROUP : {
• t e x t  (TEXT) : {

M . t e x t )  M . r o d a t a )  M . i n i t )  M . f i n i )  * ( . e i n i )  
. = ( . + 1 5 )  & - 1 5 ;

}
. s d a t a 2  (TEXT) : {}

} > r o m

GROUP : {
. d a t a  (DATA) LOAD(ADDR( . s d a t a 2 ) + S I Z E O F ( . s d a t a 2 ) )  : {}
. s d a t a  (DATA) LOAD(ADDR( . s d a t a 2 ) + S I Z E O F ( . s d a t a 2 ) + S I Z E O F ( . d a t a ) ) : {}
. s b s s  (B S S )  : { }
• b s s  (B SS )  : {}

} > r a m

GROUP : {
/ *  Note that the .bss section and .sbss sections (if present) never occupy any space in
the linked object file because they will be initialised by the system at execution time.

.csbss (BSS) * {}

.cbss (BSS) * {}
} >datacache

D A T A C A C H E R A M S T A R T  * ADDR(.csbss);
D ATAC A CH ER AM  END -  ADDR( . c s b s s ) + S IZ E O F ( . c b s s ) ;

_HEAP_START = ADDR( . b s s ) + S I Z E O F ( . b s s )  ;
_ S P _ I N I T  = A D D R ( s t a c k ) + S I Z E O F ( s t a c k ) ;
~HEAP_END = A D D R ( r a m ) + S I Z E O F ( r a m ) ;
~SP END = ADDR( s t a c k )  ;

_DATA_ROM = ADDR( . s d a t a 2 ) + S I Z E O F ( . s d a t a 2 ) 
_DATA_RAM = ADDR( . d a t a ) ;
~DATA_END = ADDR( . s d a t a ) + S I Z E O F ( . s d a t a ) ;
_BSS_START = A D D R ( . s b s s ) ;
BSS END = ADDR( . b s s ) + S I Z E O F ( . b s s ) ;
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1 Introduction
Ever increasing performance and increased memory requirements from various automotive 
powertrain applications radically increases the demand on powertrain ECU overhead and the 
bandwidth required to run such applications.

Powertrain applications not only take cost, performance and issues of real-time deterministic 
operation into account when choosing an SoC, but also lay emphasis on devices with 
sufficient flexibility and scalability to cope with complex, and modem development 
methodologies being employed. This document summarise customer requirements from the 
field along with feedback and research done so far, meeting all the demand required by 
various bandwidth intensive future powertrain applications with minimal cost.

In general, powertrain applications are driven by two main goals:

■ Reduced fuel consumption
■ Reduced emissions

These goals are to be achieved at the same or even higher engine power and, of course, at the 
same system cost level.

Our present customers and present trend confirm that new software development techniques 
presently being employed in powertrain applications increases the code size and requires 
higher computing power. Rapidly growing performance requirements are being primarily 
driven by applications developed with auto code generation using embedded real-time targets, 
inclusion of DSP functionality, model fitting to automatically generate calibration tables 
(Denso), frequent use of specialist math functions, especially in areas like model based 
development, excellent quality and reliability performance with increased safety 
requirements.

It is a very well known fact that implementing various number crunching and signal 
processing algorithms on a general-purpose CPU core can be very challenging. Issues such as 
numeric formats and precision, type conversion, cache behaviour, dynamic instruction 
scheduling, and data-dependent instruction execution times pose hazards for number 
crunching intensive applications, especially those working on applications with real-time 
constraints. These issues need to be address in the next generation core complex.

This document outlines the key requirements for next generation powertrain ECUs. This is 
done by profiling some key applications and particularly the critical computational blocks 
required for the execution of such applications. Emphasis is laid on model based control

Some of the critical computational blocks in the powertrain application code signatures are as 
follows:

■ Table manipulation mechanisms that allows powertrain calibrations system to its most 
robust operating conditions

■ Use of torque-spark curve to model port fuel injection (PFI)
■ Fixed and floating point FIR filtering
■ Fixed and floating point IIR filtering
■ Various adaptive filters
■ Fixed and floating point FFT including fast vector magnitude calculation
■ Vector dot product
■ Advanced motor control for x-by-wire
■ Linear regression and radial basis function techniques
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2 Brief Introduction to Some Key Powertrain Applications

Applications briefly described in this section details the specific functional modules used and 
required. Further details are available at request.

2.1 Motorola’s SIMD Streaming Knock (MOSK) Processing

Figure 1 shows the measured performance of SIMD and scalar C based knock kernel I 
developed. See Table 1 for more details on specific functional performance requirements.

M PC56x_ 
@  56MHz

I S oC  
W ithout SIMD 

132M Hz

S oC  
With SIMD 
@ ,132M Hz

Engine RPMKnock Window (Degrees)

Figure 1: Measured MOSK Knock Kernel Performance

2.2 BMW’s Knock Processing

During the Copperhead knock demonstration tour in Europe, BMW indicated that they use a 
77th order filter (still to be confirmed if it is floating or fixed point, although it is likely to be 
fixed point based on some literature) in their knock detection strategy. Based on the 
performance figures obtained from the AME for z650n3 with the instruction and the data 
cached, the SPE knock kernel developed internally requires < 2.6% of the combustion event 
timing bandwidth for a 40° knock window.

Therefore, for a 77th order fixed-point filter, using the SPE, the bandwidth utilisation would 
be < 10% with a 40° knock window. As per customer information, bandwidth o f < 10% is 
still required for their kernel with higher order filters, possibly up to orders 133 and an 
increased knock window of 70°. BMW have also indicated that a floating point SPFPM AC 
with performance similar to that of present fixed point MAC would be a definite requirement 
for the next generation.

2.3 Delphi’s Knock Processing

This is a collection of powertrain algorithms, predominantly encapsulating DSP components.
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2.4 BMW Electromechanical Valvetrain Control (EMVT)

This is a collection of valve control algorithms which fits in the 32kB unified cache. This can 
be used to test the raw performance of the core itself without memory domain delays.

2.5 Denso Powertrain Control

This is a collection of automatically generated code from Simulink for powertrain control.

2.6 GM Knock Processing

Based on discussions with GM, their next generation knock detection strategy would have a 
bank of FIR filters in parallel (possibly four) with centre frequencies of 8, 16, 24 and 32kHz. 
GM also prefers to utilise <10% of the combustion event timing for knock algorithmic 
execution. Initial indication is that they would be using knock windows of up to 50° and 
filters of order > 40 per filter. In addition, they are also investigating the possibilities of 
implementing knock with FFT.

2.7 Amroth (Mix of DCX Applications)

AME Profiled information already available in the repository. Fixed point customer code of 
size ~600kB.

2.8 PCOPS
This is a collection of representative application signatures which fits in the 32kB unified 
cache. This can be used to test the raw performance of the core itself without memory 
domain delays.

2.9 BMARK02

Reasonably sized (~95kB) complex customer algorithm.

2.10 ARWEN
This suite consists of integer DSP code.

2.11 Bosch’s Central Chassis Controller

FAE is working on getting some indicative information on code signatures. However, this is 
expected to be very similar to standard chassis control code.

2.12 Visteon’s Powertrain Development - Nimloth

Some similarities with to that of Denso’s powertrain control code. Mixture of fixed and 
single precision floating point code.

2.13 Toyota’s Powertrain Controller (MBC)

Same as Denso requirements.

2.14 Miscellaneous Applications

Advanced high performance motor control, including industrial applications and robotics, is 
especially considered to be a viable target for enhanced z6 cores. Brushless motors are 
gradually replacing commutation motors as they are smaller, less expensive and do not 
require as much maintenance. Moreover, brushless motors are much lower EMI than 
commutation motors. The math functions required for the precision control of motors are 
more applicable to the DSP functionalities embedded than the conventional microcontroller 
tasks.
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3 Model Based Control (MBC) -  An Introducton
Based on overall customer feedback, particularly Denso and Visteon, development throughout 
the powertrain supply chain is becoming bolder because fractional improvements no longer 
keep pace with legal requirements or with the desires of an increasingly well-informed auto 
enthusiast.

Vehicle manufacturers have long since shelved the idea of the five-year development cycle in 
favour of two or three. Several of the manufacturers in the Far East talk loudly about the 18 
month development cycle, and in more hushed tones about cutting that back even further.

Denso and Visteon, as two of the largest tier one suppliers, have to bear the burden of its 
customers’ ambition. These two tier ones are particularly well noted for its range of 
powertrain control products. Powertrain products, and in particular their calibration, is one of 
the areas where time has become most critical. The calibration effort rapidly increases as the 
number of control parameters increases. For previous engine designs, the number of 
parameters was small, whereas in the latest engines additional input factors such as injection 
timing, exhaust gas re-circulation rate (EGR), variable cam timing (VCT) and 
electromechanical camless valvetrain (EMCVT) take the number of parameters up to seven or 
eight.

The calibration process relies on the acquisition of data from the prototype engine on the test 
bed, but because the number of data points increases exponentially as new input parameters 
are added, the classical full factorial method of producing a calibration grid is no longer a 
feasible solution. Using this method it would take years to calibrate a prototype engine -  and 
that time is simply not available. At best it would require a significant increase in the 
calibration effort at a time when a movement in the opposite direction is required in order to 
reduce costs and time to market.

Instead, prominently, Denso, Visteon and a few OEMs have been using The MathWorks’ 
Model-Based Calibration Toolbox (MBCT) for the past few years. This new strategy, 
originally developed by Denso, calibrates the next generation engines by employing various 
piecewise mathematical models, with the understanding on what is going on in the engine 
followed by calibrating it using the model. This is all done using the MBCT.

The general concept of model-based design involves a front-loading of calibration efforts by 
using plant models and a HIL (hardware in the loop) system. As much simulation as possible 
is performed ahead of time -  before expensive physical prototypes are built. Additionally, 
Denso has introduced automatic map (or look-up table) generation techniques by using the 
MBCT: in effect automatically generating the required calibrations.

Using these MBCT tools, DENSO selects experiments to run on the engines. Data is acquired 
from the engine on the test bed (using an automated operation and measuring system) and a 
model is built from it. The look-up tables that form the maps can then be filled using the 
models. Traditionally, simple linear interpolation is performed on the data points; with this 
new process more sophisticated models used, which generate more accurate calibrations.

If a model is not used, the airflow-manifold pressure relationship is measured at a number of 
points in each of the other variable directions, i.e. at a large grid of points. This is very 
expensive, because of the sheer amount of data that has to be collected. A huge number of 
tables are required for expressing the behaviour and it takes a long time to measure the huge 
data sets for the multiple tables. In addition, a large amount of costly storage space is required 
on the ECU.
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The alternative is to build a model of manifold pressure from a smaller set of data points and 
then to use that model to understand its behaviour at all the other input points. This reduces 
the data acquisition effort (the number of data points measured) which reduces cost and time 
to market. The model can be validated by taking more measurements from the engine and 
seeing how well the model predicts the data at those points. By modelling the relationship, the 
inherent error that comes from measuring the data is removed. The accuracy of the model 
depends on the number of data points collected and whether it is flexible enough to pick up all 
the trends in the data without being adversely affected by noise (error).

Rather than just selecting any set of data points to be measured, a set of points is chosen that 
will provide the most useful information from which to build an accurate model. Using 
MBCT, the model built can then be viewed and evaluated in a number of visual and statistical 
ways, so that its accuracy can be assessed or a detailed analysis or investigation of its 
robustness can be carried out. It is then validated with data from the engine. Finally the model 
can be used to develop an ECU strategy.

Optimal design where the placement of prior knowledge on the shape of the response 
expected in order to see and then come up with the optimal points to collect data is, in some 
ways the ideal design to use. In this case Denso are looking at a new type of engine and did 
not know the shape of the response that they were expecting to see -  so they have decided to 
go for the space filling design which reduces the number of points that need to be collected, 
losing the exponential dependence on the number of variables.

Traditionally on the test bed the calibrator would move around the control parameters and 
have a look at the data. You can only get so much of the picture if you are moving just one or 
two control parameters at a time. If you have three or more input parameters and are trying to 
find where the response is maximum, it is easier to build a model and work out 
mathematically where the maximum is rather than manually move test bed controls to find 
that response.
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Figure 2: Overall Performance Required 

4 D E N S O ’s P erform ance R equirem ent P rofiling

MBC based code signatures generated by Denso were analysed and profiled to obtain the 
following results. All linked binaries o f the code signatures used fit in the cache and, in 
addition to the standard BTAC mode enabled, following z6 configuration was used for AME 
profiling.

/ /  C o n f i g u r a t i o n  R e s o u r c e s
C o n f i g  = z e n : : z 6  / /  C o n f i g u r a t i o n  k e y w o r d  a n d  n a m e
/ / --------------------------  M e m o r y  D e f i n i t i o n s ----------------------------------
M e m A c c e s s C o s t  = 2  / /  M e m o r y  A c c e s s  T i m e  i n  c l o c k  t i c k s
M e m B u s W i d t h  = 8  / /  M e m o r y  d a t a  p a t h  w i d t h  i n  b y t e s
/ /  ------------------------------------------Z e n  M o d e l  P a r a m e t e r s -------------------------------------------
Z e n U n i t  = On
Z e n A r c h T y p e  = I p 7
Z e n B u s A r c h  = U n i f i e d
Z e n C p u I F S c h S i z e  = 8 
Z e n C p u B d t S c h S i z e  = 8 
Z e n C p u W r i t e B a c k L i m i t  = 2 
Z e n C p u D B u s W i d t h  = 8 
Z e n C p u D B u s P i p e l i n e D e p t h  = 1 
Z e n C p u I B u f f S l o t s  = 6 
Z e n C p u I B u f f I s s u e  = 1

/ /
/ /

Z e n  u n i t  -  o n ,  o f f
Z e n  A r c h i t e c t u r e  -  I s s , I s s B t , I p 5 , I p 7

/ /  U n i f i e d ,  H a r v a r d  ( U n i f i e d  s e t s  i u = d u )
/ /  I n s t r u c t i o n  f e t c h  s c h e d u l i n g  s i z e  i n  b y t e s  
/ /  B l o c k - d a t a - t r a n s f e r  s c h e d u l i n g  s i z e  i n  b y t e s  
/ /  N u m b e r  o f  r e s u l t s  t h a t  c a n  b e  w r i t t e n  p e r  c y c l e
/ /  D a t a - s i d e  b u s  w i d t h  i n  b y t e s
/ /  D a t a  B u s  P i p e l i n e  D e p t h
/ /  N u m b e r  o f  i n s t r u c t i o n  p r e f e t c h  b u f f e r  s l o t s
/ /  N u m b e r  o f  i n s t r u c t i o n s  p e r  c l o c k  t o  i s s u e

Z e n C p u I B u f f C o f D e c S l o t M a p  = 0 x 0  / /  C o f  p r e - d e c o d e  O x O = O f f , . . . , 0 x 7 = s l o t 2 _ l _ 0
Z e n C p u I B u f f C c L o o k A h e a d  = O f f  
Z e n S t a t s  = On
Z e n P o r A s s e r t i o n  = 3 
Z e n C p u I B u f f I n s t 2 F o l d  = n o n e

/ /  C o n d i t i o n - C o d e  l o o k - a h e a d  f o r  B c c  
/ /  S t a t i s t i c  c o u n t e r s
/ /  N u m b e r  o f  c l o c k s  f o r  p o w e r - u p  r e s e t  t o  a s s e r t  
/ /  I n s t r u c t i o n  t o  f o l d

Application
Signature

Compilers with 
Highest Speed 
Optimisation 

Criterion Enabled

Platform I (/is) Platform II (/is)

z650n3
132MHz

Dual Issue z650n3

200MHz 266MHz

I
Target 80 50 50

GHS v4.0.1 385.10 223.00 167.67
MW v l . 5  55xx 384.67 231.22 173.85

II
Target 20 10 10

GHS v4.0.1 15.61 8.86 6.66
MW v l . 5  55xx 19.78 11.78 8.85

III
T arget 300 200 200

GHS v4.0.1 744.40 406.01 305.27
MW v l . 5  55xx 657.23 378.58 284.64

Table 2: Performance Details of Denso’s Benchmark
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For all three targets, although the link binaries generated are cache friendly, various compiler 
optimisation criteria had to be enabled in the speed optimised mode to achieve the highest 
performance. Excerpts of critical segments of code signatures is shown below:

/ *  S c a l i n g  l o o p  -  s i n g l e  p r e c i s i o n  f l o a t i n g  p o i n t * /  
f o r ( i L  = 0 ;  i L  < ANALYSYS_LEVELS; i L + + )
{

/ *  T i m e - s h i f t  l o o p  * /
f o r ( i T  = 0 ;  i T  < TARGET_DATA_NUM; i T + + )
{

/ *  C o n v o l u t i o n  u n i t  * /  
t i r p  = 0 . 0 ;  
t m p 2  = 0 . 0 ;
f o r ( i K  = 0 ;  i K  < K E R N E L _ S IZ E ;  iK + + )
{

t m p  += t m p 2 ;
t r r p 2  = K e r n e l  [ i K ]  * I n D a t a [ i T  + i K ]  ;

}
t m p  +=  t m p 2 ;

/ *  P a t t e r n  M a t c h i n g  * /
s u m  +=  t m p  * P a t t e r n M a p [ i T ] [ i L ]  ;

}
}
R e s u l t _ D a t a  = s u m ;

}

Table 3: Denso Time Shift and Convolution Unit

float A0._001, A0_002, A0_003, A0_004, A0_005, A0_006, A0._0 0 7 ;
float A0._008, A0_009, A0_010, A0_011, A0_012, A0_013, A0._014 ;
float A0._015, A0_016, A0_017, A0_018, A0_019, A0_020, A0._021 ;
float A0._022, A0_023, A0_024, A0_025, A0_026, A0_027, A0._028;

float Al._001, Al_002, Al_003, Al_004, Al_005, Al_006, Al._0 0 7 ;
float Al._008, Al_009, Al_010, Al_011, Al_012, Al_013, Al._014 ;
float Al._015, Al_016, Al_017, Al_018, Al_019, Al_020, Al._0 21 ;
float Al._022, Al_023, Al_024, Al_025, Al_026, Al_027, Al._02 8;

a0 =
A0_001 - A0_002*A + A0_003*V + A0_004*E + A0_005*nn - A0_006*na - 
A0_007*ns - A0_008*nv - A0_009*ne + A0_010*aa - A0_011*av + 
A0_012*ae - A0_013*ss - A0_014*sv - A0_015*w + A0_016*ve - 
A0_017*N*na - A0_018*N*ns - A0_019*N*nv + A0_020*N*aa -
A0_021*N*as - A0_022*N*av + A0_023*N*ss + A0_024*N*sv -
A0_025*N*w + A0_026*N*ve + A0_027*A*aa - A0_028*A*as ;

al =
Al_001*A*ss - Al_002*A*sv - Al_003*A*se + Al_004*A*ve +
Al_005*A*ee + Al_006*S*ss - Al_007*S*sv + Al_008*S*se +
Al_009*S*ve + Al_010*V*ve - Al_011*E*ee - Al_012*nn*nn + 
Al_013*nn*ns + Al_014*nn*ne - Al_015*nn*aa - Al_016*nn*ss -
Al_017*nn*sv - Al_018*nn*se - Al_019*nn*ve - Al_020*nn*ee -
Al_021*na*as - Al_022*na*av - Al_023*na*ae + Al_024*na*ss -
Al_025*na*w + Al_026*na*ee + Al_027*ns*ss - Al_028*ns*se ;

a2
A2_001*ns*w - A2_002*ns*ee + A2_003*nv*w + A2_004*nv*ve
A2_005*ne*ee - A2_006*aa*aa + A2_007*aa*av + A2_008*aa*ae
A2_009*aa*ss + A2_010*aa*sv - A2_011*aa*se - A2_012*aa*w
A2_013*as*ss - A2_014*as*sv - A2_015*as*se - A2_016*as*ee
A2_017*av*w - A2_018*av*ve - A2_019*ae*ee + A2_020*ss*ss
A2_021*ss*sv + A2_022*ss*se + A2_023*ss*w + A2_024*ss*ve
A2_025*ss*ee + A2_026*sv*ee + A2_027*se*ee - A2 _ 0 2 8 * w * w
A2_029*w*ve + A2_030*w*ee - A2_031*ee*ee ;

_total = aO + al + a2;

Table 4: Denso Vectoriseable Module
Based on the analysis given in Table 2, it is evident that platforms I and II satisfy the 
requirements of only target II. However, the performance of targets I and II is far from 
satisfactory. It is also blatantly obvious that a single precision floating point MAC and a 
compiler capable of vectorisation would certainly have achieved better performance on the 
modules shown in Table 3 and Table 4. Note that Platform II’s profiling is done with a dual 
issue machine with the rest of the configuration similar to that of z650n3. See conclusion for 
more comments and suggestions. Some additional performance enhancements achieved are 
listed below:
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Metrowerks generated Denso binary for the third application signature improves performance 
by approximately 2.5% by changing the BTAC to a BTIC with 8 entries. No change was 
observed in the performance by varying the number of BTIC entries to be greater than 8.

Metrowerks generated Denso binary for the first application signature improves performance 
by approximately 1.3% by changing the BTAC to a BTIC with 8 entries. In the BTIC mode, 
an improvement of 2% was observed when the entries were increased up to 16. Increasing 
the BTIC entries to 32 yields 10% performance improvement.

Therefore, in summary, for all three Denso signatures, there is a lot of room for performance 
improvement by vectorising the code, which needs to be supported in our tool flow. Better 
scheduling mechanisms also need to be introduced in order to exploit the architectural 
benefits of z6 and its enhanced APUs.

The above analysis on the branching mechanism confirms that there is also a lot of room for 
improvement by varying various characteristics of the branch acceleration unit.
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5 Summary of Analysis and Conclusions
It is evident that aforementioned applications require various enhancements to the 
performance that is already available on the z650n3 core. The features listed in this §5.1 are 
required to primarily performance accelerate fixed and single precision floating point number 
crunching algorithms including DSP and other bandwidth intensive applications without 
sacrificing a clean, intuitive programming model. Development tools issues aside, most 
competitors have built-in features that powertrain engineers have wanted in microcontrollers 
for years.

5.1 Key Features Required

■ < -70% of z6 code density to meet customer requirements and to particularly beat 
competition

■ An enhanced BTAC / BTIC APU supporting speculative execution and branch prediction.
■ Reasonably low capacity, on chip tightly coupled SRAM memory, aka scratch pad 

memory is required to place and manipulate frequently used data. This memory will be 
used to access frequently used data, create circular buffers which are often used for inter
thread communications as developed in the SIMD based streaming knock processing 
methodology.

■ Multiple fast hardware SPFPMAC operations per cycle
■ Modulo addressing mode supporting circular buffer management
■ Misaligned load store support in SIMD
■ Fast hardware math functions, particularly single precision squareroot
■ Enhanced MMU granularity
■ 100% binary compatibility with z6
■ Zero-overhead looping mechanism supporting a minimum of 4K iterations

Most powertrain superscalar architectures including competition consist of three pipelines: 
an integer pipeline, a load/store pipeline and a zero-overhead loop pipeline. As shown in 
Figure 3, the zero-overhead loop hardware keeps track of the looping which combined 
with the other two units, allows execution of up to 3 instructions in parallel.

Data
Memory

Program
Memory

Integer Pipeline 
SIMD Unit

Load/
Store

Loop
Pipeline

W)

Figure 3: Present Superscalar Pipeline Architecture

■ Bit reversing hardware (already implemented on z6)
■ Barrel-shifters (already implemented on z6)
■ Branch predication in order to avoid misprediction (wider issue suits this mechanism)
■ Hardware cache coherency mechanism
■ Most of all it would be nice to have a super compiler to vectorise and exploit full potential 

of SIMD
■ Multithreading and Multiprocessing -  If the required performance can be met with wider 

issue, this would obviously be the successor to z6
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5.2 Unified MCU and DSP Functionality
Based on customer requirements and present MCU based powertrain application trends, the 
developers involved would rather stick with a known entity; that is, the classis MCU. It is 
evident that the DSP and specialist computation intensive tasks required establishes the need 
for an SoC with traditional control tasks in addition to providing enough performance to 
satisfy the signal processing requirements, and it is obvious that the developers would favour 
this solution.

If the two critical issues of price/performance and development tool quality are met, the 
microcontroller with DSP capability would be the first choice for the application, especially 
with the engineers who are already familiar with the development tools and/or the 
microcontroller. Applications being developed presently necessitate higher than z650n3’s 
clock speeds in order to brute-force appropriate tasks while still maintaining real-time 
performance.

Systems that require only basic control to determine which path of data flow the program will 
take are simple and commonly implemented in many digital signal processing systems. All 
that is required is efficient implementation of program control routines (conditional jumps and 
test instructions) and an I/O port for control and detection of external events.

5.3 Why not Dual Core or a Dedicated DSP for Number Crunching?

To many powertrain applications developers, DSP processing in a microcontroller is an 
unfamiliar entity and they prefer the present way forward for adding tightly coupled DSP 
functionality as opposed to having a hybrid. It is evident that dual-core implementation of a 
microcontroller, i.e. e separate DSP on the same die is a less than optimal development 
solution. Dual-core architectures can suffer from the vagaries of inter-processor 
communications and pipeline interlocks. As to development tools, it is difficult using 
conventional debugging techniques to simulate such an architecture, to say nothing of the cost 
of a special in-circuit emulator.

The step we have taken with the z6+ platforms, i.e. the simplicity of merging the 
microcontroller and DSP architectures into a single instruction stream seems the natural way 
forward. By implementing parallel execution units, high clock speeds, and glueless interfaces 
for common memories, deterministic real-time signal processing performance for DSP can 
exist simultaneously with the multilevel interrupt hierarchy and rapid context switching 
required for the controller needs of the system.

5.4 What’s Next?

Barriers with some of the customers depend on configuration of the peripheral set, ability to 
move multiple pieces of data, and quality of the development tools. Today's powertrain 
applications developers requiring both real-time control as well as analogue signal processing 
and are looking for ways to reduce cost and speed development time in a market that 
becoming increasingly competitive. Both technical and personal considerations rule. For a 
microcontroller engineer to consider a DSP or for a DSP engineer to use a microcontroller 
three strict criteria must be met.

■ Price versus performance
■ Peripheral set
■ Development tool quality

The absolute convergence of these two architectures are partly implemented by z6. However, 
market intelligence suggests that most powertrain controllers presently being offered by our 
competitors consist of hardware and instruction set enhancements designed to increase the 
execution speed of computations associated with signal processing tasks as listed in §5.1.
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As in z6, the commonest addition is the single-instruction, multiple-data (SIMD) unit. It is 
estimated that the performance improvement achievable by implementing the Denso’s 
application in SIMD along with addressing alignment issues would be in the region of 1.8x.

Penetration of the embedded-code technology, based on auto coding tools such as Matlab and 
Simulink, Targetlink are being used to develop powertrain Electronic Control Units (ECUs). 
Visteon recently described their progress in advancing efficient automatic code generation for 
production applications. Highlights from the presentation included smaller code size through 
autocoding and the ability to leverage a growing library of reusable models.

Production code generation is a key component for companies using a model-based design 
approach and we need a solid strategy to meet performance requirements needed to support 
the applications being developed using MBT. It is also required to support fast embedded 
library functions or preferably hardware implementation of such functions to remain 
competitive in the powertrain controller market.

It is also evident that, after the z6, superscalar cores would be the natural way forward 
although much emphasis is being laid in the industry for multithreading and multiprocessor 
support.
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Abstract

The Architectural Modelling Environment discussed in this portfolio targets 

the middle ground simulation requirements of performance evaluation by 

recognising that typical application binaries do not require a fully functional model 

to run and that only a vital few key system-on-chip core architectural elements 

determine a systems performance characteristics. Typical benchmark code does not 

target a specific architecture which allows the benchmark to run across many 

different system implementations. Therefore, most detailed cnooks-and-crannies’ of 

a fully functional simulation model are never used due to the generalised nature of 

benchmarks. Development time devoted to functional features which are never 

used by a benchmark is thus wasted effort in regards to performance evaluation. 

Similarly, most of the development time associated with creating a very precise, 

cycle accurate model is lost since a system’s performance is generally controlled by a 

very few core architectural elements or bottlenecks.

Application binaries profiled on the architectural modelling environment 

include but are not limited to performance demanding powertrain applications. 

Optimised assembly libraries and compiler intrinsics are used to create the single- 

instruction-multiple-data binaries. As discussed in the enclosed document “N ext 

Generation Powertrain SoC Performance Requirements”, the applications binaries used 

contain large amounts of available parallelism; however, most o f it is inter-iteration 

parallelism.

In an ideal world, there would be one system-on-chip core simulation model, 

or at least one unified model database, that contains all the information required to 

perform any type of desired simulation.



Portfolio V ll

Table of Contents

Abstract......................................................................................................................................... ii

1 Introduction..................................................................................................................... 5

2 An Overview of the AME...............................................................................................6

2.1 The Realm of Performance Evaluation.........................................................6

2.1.1 A  Generic Performance Evaluation Environm ent.................................................... 7

2.1.2 What Platform D oes AME Run O n............................................................................11

2.1.3 What Compiler is needed to Develop Models for A M E ....................................... 11

2.1.4 AM E Features.................................................................................................................... 11

2.2 Getting Started..............................................................................................13

2.2.1 Building the Simulator......................................................................................................13

2.2.2 Running the Simulator......................................................................................................14

2.3 Simulator Configuration File........................................................................15

3 SoC Core Configuration and Profiling.......................................................................... 16

3.1 Core Configuration Parameters................................................................... 16

3.2 Cache Model Configuration........................................................................ 21

3.2.1 Example Cache Model Configurations........................................................................27

3.3 Memory Model Configuration.....................................................................27

3.3.1 System Memory Model Configuration.........................................................................28

3.3.2 On-Chip ROM Configuration........................................................................................29

3.3.3 On-Chip RAM Configuration........................................................................................30

3.3.4 Flash Memory Configuration..........................................................................................31

3.4 Memory Configuration.................................................................................35

4 Profiling Binaries............................................................................................................ 38

4.1 Simple Compile and Simulate.......................................................................38

4.2 Binding Code Segments to Memory Regions...............................................40

4.3 Automatic Stack and Heap Pointer Initialisation........................................41

5 Conclusions.....................................................................................................................43

6 References.......................................................................................................................44



Portfolio 1/11

List of Figures and Tables

Figure 2.1: Simulation Performance Spectrum .................................................................8

Figure 2.2: Application Binary Characterisation Process Using the A M E................. 10

Figure 4.1: Stack Pointer and Heap Pointer Initialisation............................................ 42

iv



1 Introduction

Over the years, simulation models have migrated to either fully functional 

models or to cycle accurate models [1, 2, 3, 4, 5, 6]. Fully functional models are 

characterised by modelling system features without regard to hardware timing. 

Functional models are typically preferred by software developers since they tend to 

be the highest performance models available for developing application code. The 

drawback is that they offer very little information for performance evaluation. On 

the other hand, cycle accurate models provide very precise behaviour in regards to 

timing but tend to be relatively slow in performance due to the extreme detailed 

nature of the model [6, 7, 8].

The area of performance evaluation is in a middle ground — requiring the 

simulation performance of a functional model but needing the information provided 

by a cycle accurate model. Ideally, performance evaluation studies would like to 

simulate proposed system architectures over a wide range o f benchmarks to 

determine system level performance -  then, adjust the system architecture and re

evaluate the performance.

The Architectural Modelling Environment (AME) developed allows both fully 

functional and cycle accurate models to be developed. The intent o f the AME is to 

target the system-on-chip (SoC) core complex specific requirements for 

performance evaluation. The current area of study that AME is being used for is in 

architectural trade-off studies at the processor, cache, and memory interface level of 

system design — or what is being called the core-complex for embedded, SoC 

designs.
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2 An Overview of the AME

The AME is a third generation modelling environment written in the C, C++, 

UNIX shell scripts and using object oriented programming techniques to build 

hybrid simulation models containing both functional and cycle accurate model 

characteristics.

2.1 The Realm of Performance Evaluation

Simulation models used for performance evaluation provide the ability to 

determine how a system will perform before committing resources to implement 

and verify a particular SoC design. Being able to validate concepts for SoC core 

designs provides an ability to explore various implementations allowing optimisation 

of key architectural elements. Performance evaluation is, therefore, not a point 

solution to a particular design but must provide an environment in which models 

can be built to test design thoughts. Indeed, it is often the case that after a 

successful simulation, there are more questions raised than answered, requiring 

modifications, additions, or extensions to architectural and system simulation 

models to allow validation of new design concepts.

The intent of AME is to tune the simulation models and model development 

process to the unique requirements of performance evaluation while keeping the 

resources devoted to AME model development to a minimum. AME already 

includes a number of models to explore SoC implementations and provides an 

environment to create and develop new models or to extend existing ones. In 

addition, AME is specifically geared toward studies around architectural trade-offs 

at the processor and SoC levels. AME has been used successfully to profile 

dynamic instruction execution, collect statistics on instruction usage and instruction 

sequences, compare various instruction pipeline sequence units, study the 

efficiencies o f bus structures, and to analyse memory configurations.

AME models are typically characterised by being very flexible, providing a 

large number of run-time parameters which change the behaviour o f processor and 

system elements. By varying the run-time parameters, an AME model can then be 

run several times using benchmark code or specific application binary to determine 

performance trade-offs.

6
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2.1.1 A Generic Performance Evaluation Environment

The current trend in simulation models is to provide a functional model and a 

cycle accurate model. Figure 2.1 overleaf shows a typical simulation performance 

spectrum of available simulation models for processors. The functional models are 

typified by the Instruction Set Simulators (ISS) and perform simulations at the 

instruction level with a typical simulation throughput in the megahertz range. Cycle 

accurate, or cycle precise, models perform simulations at the clock cycle granularity 

and tend to have a throughput in the low kilohertz range. AME models are built to 

work in the simulation gap between these two extremes. In addition, AME 

simulation performance is regulated by the amount o f detail enabled in an AME 

model. If only an ISS level of detail is required, then an AME simulator will achieve 

the same level of performance as an ISS. As more and more details are enabled in 

an AME model, the slower the performance will be for an AME simulator. The 

important concept is that for an AME simulator, this sliding level o f performance is 

dynamic and can be adjusted by the user at run-time by adjusting the amount of 

detailed information which is enabled. To achieve a high degree of flexibility and 

reuse, typical AME models do not provide a detailed description of a specific 

hardware implementation. Instead, AME models are an abstraction of hardware 

concepts which allows parameter assignments at run time to configure the model 

environment to measure performance of various implementations over a series of 

simulations.

The intent of AME is not to model every detailed aspect o f the design but 

only key design concepts tuned to running application binaries. As such, typical 

AME models do not have the design details required for verification but do provide 

performance feedback in regards to architectural trade-offs around key system 

design constraints.

7
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Architectural features selected for AME are modelled as accurately as possible 

and with as little detail as possible — but not too simple. Architectural elements 

which are selected for modelling are based on the requirements o f the application 

binaries selected for performance evaluation.

Performance 
Clocks per Second

Real-Time

1 MHz

AME

20 kHz

Cycle
Precise

Verilog /  \  k H z
VIIDL 

Simulation ^QQ J^2

ISS AME Cycle RTL Gate
Precise Level

Details of Simulation Platform 

Figure 2.1: Simulation Performance1 Spectrum

Since there tends to be a complex interaction between architectural features, it 

is not enough to only model one aspect of the design. An example of an AME 

simulation may include, running a 7-stage instruction pipeline with instruction pre

fetch buffering using 9-1-1-1 flash memory in both a Harvard and Unified bus 

configuration.

1 Performance typical of Sun Workstation — 266 MHz Sparc Ultra-30
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As shown in Figure 2.2 overleaf, in order to efficiently performance profile an 

application using the AME, the modules around it require the designer to work in 

two fields; on the one hand, the development of the software part including 

compiler, assembler, linker, and simulator and, on the other hand, the development 

of the target architecture itself. The AME produces the characteristics of the core 

architecture specific application binary performance and, thus, may answer 

questions concerning the instruction set, the performance o f an algorithm, and the 

required size of memory and registers. The required silicon area or power 

consumption can only be determined in conjunction with a synthesisable hardware 

description language (HDL) model.
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The current development for AME is being done using the UNIX operating 

system on a Sun Workstation running Sun Solaris (SunOS 5.7). There are currendy 

no plans to port AME to other platforms. However, the predecessor package to 

AME was available on Sun Workstations, HP Workstations running HP-UX 10, and 

PCs running Cygwin 1.1.0, so it may be possible to port AME to other platforms 

with some effort — there will be some porting issues — there always are.

2.1.3 What Compiler is needed to Develop Models for AME

The current AME software is being developed using the Gnu compiler version 

2.95.2. There are currently no plans to use any other compiler. Migrating to 

another compiler will probably require some work, even just upgrading to the latest 

Gnu compiler will probably require some modifications. The AME software 

package is available as either a precompiled binary for the Sun Solaris (SunOS 5.7) 

platform or in source code form.

2.1.4 AME Features

The following is a list of some of the key features of AME.

" Execution driven model supporting

-  Executable and Linking binary Format (ELF)

-  UNIX a. out binary format

-  Verilog memory image format (vmem)

■ Support for modelling multiple clock domains

■ Command line interface easily connects to UNIX scripts to automate the 

process of data collection across simulation runs o f benchmark suites.

11
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Built-in debug monitor supporting

-  Instruction execution control: run, stop, and single-step

-  Software breakpoints, memory modify and display

-  Symbolic entry of address information for breakpoint and memory 

commands

-  Disassembly of memory and dynamic code execution

-  Dynamic loading of debug command set allowing new AME models to 

contain new debug commands.

Profiling, Logging, and Statistical commands supporting

-  Capture of dynamic instruction flow, collection o f instruction usage

-  Details of instruction-to-instruction dependencies.

Support for multiple Instruction Set Architectures (ISA)

Flexible Memory model supporting

-  Memory latency definitions on a per memory block basis

-  Flash memory interfaces, ROM, and RAM definitions

-  Dynamic allocation o f memory based on benchmark executable 

Bus Structures

-  Harvard versus Unified

-  Bus width

-  Bus pipelining 

Instruction Pipelines

-  Pipeline depth

-  Instruction pre-fetch buffering

-  Instruction-to-instruction dependencies

-  Branch look-ahead support 

Cache configurations supporting

-  Harvard versus Unified

-  Cache size, organisation, and associativity

1 2
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2.2 Getting Started

The AME simulator uses object oriented design principles to support cycle 

based models of various processor cores and core-complexes. The simulator is 

capable of supporting an assortment of on-chip and off-chip peripherals and 

memories. This section provides a quick-start reference to build the AME simulator 

and run some example code.

2.2.1 Building the Simulator

The AME Simulator is built using the Gnu compiler (Version 2.95.2). The 

simulator is packaged using the UNIX tape-archive (tar) format and the Gnu 

compress file (gzip) utility. The simulator package comes with source code and a 

precompiled binary executable for the Sun Solaris (SunOS 5.7) platform.

The simulator package is delivered as a compressed archive where the name of 

the archive is of the form ame- {version} .tgz. The {version} tag is used to track 

information between releases of the AME simulator package. All of the files 

contained in the ame-{version}.tgz archive are expanded into a subdirectory called 

ame-{version}. The AME simulator can then be built using the make command. 

The following example expands the ame-3.0.0.tgz simulator files and uses the make 

command to build the AME simulator executable (sim-ame).

[] tar -zxvf ame-3.0.0.tar 
[] cd ame-3.0.0/src 
[ ] make

The AME simulator can be started by invoking the sim-ame executable. If the 

verbose (-v) command line option is used, the AME simulator outputs some header 

information reflecting the AME simulator version. Entering the quit (‘q’) command 

terminates the AME simulator and returns to the unix prompt. The following is an 

example of starting the simulator under the Sun Solaris environment.

[] sim-ame -v
Architectural Modeling Environment - Version 3.0.0 
Compiled on: Wed Jan 16 19:23:13 CST 2002 
with: gcc version 2.95.2 
under: SunOS 5.7 Generic_106541-16 sun4u 
ame> q 
[]

13
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2.2.2 Running the Simulator

The simulator works with a number of command line options or interactively 

through the built-in debugger. A configuration file tells the AME simulator which 

models are to be used in the simulation. Included in the ame-{version}directory are 

a number of example configuration files located in the configsub-directory. As an 

example, the following hello.cprogram will be used which simply prints "Hello, 

World" to standard-out and then terminates.

/ * * * * * * * * * * * * * * * * * * * * * * * * * I

/ *  hello.c program */ 
#include <stdio.h> 
int 
main()
{
printf("Hello, World\n"); 
return 0;
}
/ * * * * * * * * * * * * * * * * * * * * * * * * *  j

The following example compiles the hello.c program for the SoC core 

architecture, loads the compiled hello ELF binary into the AME simulator 

configured, simulates the program, and then terminates the AME simulator. Notice 

that the AME simulator provides the required system interface calls emitted by the 

compiler to support file io operations to standard-out.

[] ppc-elf-gcc -msim hello.c -o hello 
[] sim-ame config/selected_core_config hello 
Hello, World 
program exit(O)
Sim. Loop Time: 0.000 Seconds; Clock Ticks: 2045; CPS 0.000 
[]

Additionally, the AME simulator uses a number o f command line options and 

a simulator configuration file to setup the simulation environment. ' In addition, 

memory configurations may be setup by using a memory configuration file. There 

are also a number of commands which the debugger supports.

14
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2.3 Simulator Configuration File

The simulator avoids hard-coding programmable options by allowing users to 

specify resource options through the use of a simulator configuration file (simcfg). 

The simcfg file must begin with the keyword ‘Config’ for the simulator to recognise 

the file as a configuration file. Configuration parameters are read until either end- 

of-file or the keyword ‘ConfigEnd’ is encountered. Comments are allowed in the 

simcfg file and are denoted by either ‘/ / ’ for line comments or by the block 

comment delimiter pair ‘/* ’ and £* / \  To get a full listing o f the current resource 

options, use the -D command line option. For example:

[] sim-ame -D

Options supplied on the command line take precedence over resource options 

listed in the simcfg file.

15
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3 SoC Core Configuration

3.1 Core Configuration Parameters

The following is a list o f parameters that control the operation o f the SoC core 

simulation model.

■ CoreUnit = [On,Off] // enable or disable core complex

■ CoreArchType = [Iss, Ip5, Ip7] // Core Architecture

The parameter controls the instruction execution unit o f the SoC core model. 

ISS - puts the core into the instruction set simulation mode which is the highest 

performance mode. While in the ISS mode, there is no timing information 

available, as such, the cpu model will execute 1 instruction every time through the 

AME simulator timing loop — this will result in a 1.00 cpi (clocks per instruction). 

Also note that while in the ISS mode, the core execution unit is tied directly to the 

memory unit. As a result, there are no bus transactions generated and, therefore, 

simulation models that rely on bus traffic will not record any events. One o f these 

simulation models is the cache model. Tp5 - enables the 5-stage instruction pipeline 

mode. Ip7 - enables the 7-stage instruction pipeline mode.

■ CoreBusArch = [Unified,Harvard] // Unified, Harvard

The CoreBusArch parameter controls the bus structure o f the cpu. Unified - 

both instruction fetches and data load-store traffic communicate over a single bus 

connection to downstream models such as cache and memory. All bus traffic is 

tagged with du (data unit) to indicate that a single bus is being used. Harvard - 

instruction fetches and data load-store traffic each have their own bus connection to 

downstream models. This allows an instruction fetch and data transaction to occur 

in the same clock cycle. Bus traffic is tagged with iu (instruction unit) for 

instruction fetches, and with du (data unit) for load-store bus transactions.

* SoCCpuIFSchSize = num // Instruction fetch scheduling

The SoCCpuIFSchSize parameter controls the size o f the bus transactions 

being scheduled for instruction prefetch operations. The size o f the bus transaction 

is scheduled using num bytes per bus transaction. If num is less than the width of 

an instruction, then multiple bus transactions will be scheduled to complete the 

fetching o f a whole instruction.

16
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■ SoCCpuBdtSchSize = num // Block-data-transfer scheduling

The SoCCpuBdtSchSize parameter controls the size o f the bus transactions 

scheduled for load and store multiple operations. A num  size o f 4 allows the core 

to transfer one register at a time over the bus. A num size o f 8 allows the cpu to 

schedule the transfer o f 2 registers at a time.

■ SoCCpuWriteBackLimit = num // Number of results that can 
be written per cycle

The SoCCpuWriteBackLimit parameter defines the num ber o f update 

operations that can be performed into the general purpose registers during a single 

clock cycle. Normally, during single instruction execution, only 1 register update 

operation is performed. However, for multiple issue machines (SoCCpuIBufflssue) 

or during folded instruction operations (SoCCpuIBuffInst2Fold) multiple write

back results per clock may be needed to complete the operation. If the number of 

write-back results is greater than the defined limit (num), then the instruction 

pipeline stalls until all the results have been saved.

■ SoCCpuLd2StData = [On,Off] // Ld-data to St-data 
feedforward path

The SoCCpuLd2StData parameter, when enabled (On), allows the SoC cpu to 

schedule a back-to-back load instruction followed by a store instruction where the 

data being loaded is the same data that is being used by the store instruction without 

stalling the instruction pipeline. Otherwise, when disabled (Off), an extra clock is 

required.

■ SoCCpuIBusWidth = num // Instruction bus width in bytes

The SoCCpuIBusWidth parameter defines the bus width o f the instruction 

side bus. The width is specified in bytes (num). W hen a unified bus is specified by 

the SoCBusArch parameter, this parameter (SoCCpuIBusWidth) is not used. 

Instead, the SoCCpuDBusWidth parameter is used to define the bus width for both 

instruction and data transactions.

17
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• SoCCpuDBusWidth = num // Data-side, data bus width in 
bytes

The SoCCpuDBusWidth parameter defines the bus width o f the data side bus. 

The width is specified in bytes (num). When a unified bus is specified by the 

SoCBusArch parameter, then this parameter (SoCCpuDBusWidth) is used to define 

the bus width for both instruction and data transactions.

■ SoCCpuIBusPipelineDepth = num// Instruction Bus Pipeline 
Depth

The SoCCpuIBusPipelineDepth parameter defines the num ber o f outstanding 

bus transactions that can be pipelined on the instruction bus. W hen a unified bus is 

specified by the SoCBusArch parameter, this parameter 

(SoCCpuIBusPipelineDepth) is not used. Instead, the SoCCpuDBusPipelineDepth 

parameter is used to define the bus pipeline depth for both instruction and data 

transactions. A pipeline depth o f 0 indicates that only one bus transaction can be 

outstanding at a time -  a subsequent bus transaction must wait until the data from 

the previous transaction is received. A pipeline depth o f 1 allows a subsequent bus 

transaction to be issued before data has been received from the previous bus 

transaction. Only one bus transaction will be issued per clock..

■ SoCCpuDBusPipelineDepth = num// Data Bus Pipeline Depth

The SoCCpuDBusPipelineDepth parameter defines the num ber o f 

outstanding bus transactions that can be pipelined on the data-side bus. W hen a 

unified bus is specified by the SoCBusArch parameter, then this parameter 

(SoCCpuDBusWidth) is used to define the bus pipeline depth for both instruction 

and data transactions. A pipeline depth of 0 indicates that only one bus transaction 

can be outstanding at a time — a subsequent bus transaction m ust wait until the data 

from the previous transaction is received. A pipeline depth o f 1 allows a subsequent 

bus transaction to be issued before data has been received from the previous bus 

transaction. Only one bus transaction will be issued per clock.
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• SoCCpuIBuffSize = num // Number of instruction prefetch 
buffer slots

The SoCCpuIBuffSize parameter defines the num ber o f instructions (num) 

that can be held in the instruction prefetch buffer. If  the bus parameters are setup 

to fetch multiple instructions per bus transaction, then the SoCCpuIBuffSize 

parameter should be defined to provide enough buffer space to prevent the cpu 

from having to re-fetch instructions that had to be discarded because there was no 

place to save them.

■ SoCCpuIBuffIssue = num // Number of instructions per 
clock to issue

The SoCCpuIBufflssue parameter defines the num ber o f instructions (num) 

that can be issued into the execute phase during a single clock cycle. A single issue 

machine would set SoCCpuIBufflssue to 1, while a dual issue machine would set 

this to 2.

■ SoCCpuIBuffBrDecSlotMap = hexnum// Branch pre-decode 
OxO=Off,...,0x7=slot2_l_0

The SoCCpuIBuffBrDecSlotMap parameter defines which instruction buffer 

slots, defined by the SoCCpuIBuffSize parameter, should pre-decode unconditional 

branch instructions (b, and ba). The hexnum provides a bit map o f the buffer slots 

which should look for unconditional branch instructions. A hexnum value o f 0x0 

disables this option. A hexnum value o f 0x1 defines instruction buffer slot 0 to pre

decode instructions looking for unconditional branches. If  an unconditional branch 

is detected, then the instruction buffer is adjusted to start prefetching at the target 

address of the branch. To adjust the instruction prefetch buffer, all instructions in 

the buffer behind the detected unconditional branch are flushed and prefetching 

resumes at the target o f the branch. A hexnum value o f 0x7 indicates that buffer 

slots 2, 1, and 0 are to pre-decode looking for unconditional branches.
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■ SoCCpuIBuffBcLookAhead = [On,Off] // Condition Register 
look-ahead for Be

The SoCCpuIBuffBcLookAhead parameter, when enabled (On), allows the 

instruction prefetch buffer (defined by the SoCCpuIBuffSize parameter) to use the 

condition register contents during a pre-decode phase to determine whether a 

conditional branch (be) is taken or not. The contents o f the condition register are 

only allowed to be used if there are no pending, or potential pending, updates to the 

condition register. This parameter works in conjunction with the 

SoCCpuIBuffBrDecSlotMap to define the instruction buffer slots which look for 

conditional branch instructions.

■ SoCCpuIBuffInst2Fold = inst // Instruction to fold

The SoCCpuIBuffInst2Fold parameter defines an instruction (inst) which is 

allowed to execute in parallel (folding) with the instruction preceding it in the 

instruction pipeline. The instruction (inst) is only allowed to fold if there are no 

register dependencies between the inst instruction and any outstanding, or potential 

outstanding, write-back results. The SoCCpuIBuffInst2Fold parameter may be 

listed multiple times in a simcfg file to specify more than one instruction to fold.

■ SoCXStats = [On,Off] // Statistic counters

The SoCXStats parameter, when enabled (On), allows the SoC model to 

capture various statistics on instructions and instruction-to-instruction usage. By 

default, the SoCXStats parameter is set to On. Simulation speed may improve by 

disabling (Off) this parameter. The highest level o f simulation performance can be 

achieved by setting the SoCArchType parameter to Iss and the SoCXStats 

parameter to Off.

■ SoCPorAssertion = num // Number of clocks for power-up 
reset to assert

The SoCPorAssertion parameter defines the num ber o f clocks (num) that the 

SoC cpu will remain in reset before starting to execute instructions.

■ SoCIOFunction = targetio_req // 10 Function name - for 
Diab dec printf,etc.

The SoCIOFunction parameter defines the name o f the function which the 

Diab compiler uses for file io operations.
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There are a number o f cache parameters controlling the cache organisation 

and behaviour. Parameters controlling the instruction cache begin with the ICache 

prefix, and parameters controlling the data cache begin with the DCache prefix. If  a 

unified cache is specified, the ICache parameters are not used. Instead, the DCache 

parameters are used for both instruction and data accesses.

■ CacheOrganisation = type // Off, Unified, Instruction, 
Data, Both

The CacheOrganisation parameter specifies the type o f cache or caches to be 

included in the simulation. The type may be Off, Unified, Instruction, Data, or 

Both. O ff - specifies that caching should not be used in the simulation. This is the 

default value if cache configuration parameters are not supplied. Unified - specifies 

that a unified cache should be used. A unified cache caches both instruction and 

data accesses into a single cache unit. The Unified option uses the data cache 

parameter set. Data cache parameters start with the DCache prefix. Instruction - 

specifies that an instruction cache should be used. An instruction cache only caches 

instruction accesses, data accesses are not cached. Data - specifies that a data cache 

should be used. A data cache only caches data accesses, instruction accesses are not 

cached. Both - specifies that an instruction and data cache should be used. The 

Both option allows two caches to be used in a simulation, one cache for instruction 

accesses and the other cache for data accesses. The instruction cache behavior is 

controlled by the parameters with the ICache prefix while the data cache behavior is 

controlled by the parameters with the DCache prefix.

■ CacheDumpStatsClock = N // Display stats after every N 
clocks

The CacheDumpStatsClock specifies that the simulator’s execution statistics 

should be displayed during simulation after every N  clocks. A zero value turns this 

option off. The statistics displayed by this parameter are the same statistics 

displayed by the simulator’s x command. Note that the clock count specified by this 

parameter is not guaranteed to be an exact match with the simulation clock count — 

only a close estimate. The cache model only checks this parameter during events 

that affect the cache, not on every clock event.
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■ ICacheBaseAddr = addr // Cache Base Address for active
range

■ DCacheBaseAddr = addr // Cache Base Address for active
range

■ ICacheEndAddr = addr // Cache End Address for active
range

■ DCacheEndAddr = addr // Cache End Address for active
range

The BaseAddr works in conjunction with the EndA ddr to specify an address 

(addr) range for memory transactions that are cacheable. Transactions outside this 

address range are considered non-cache events and are allowed to pass through the 

cache model. The address range provides a mechanism to excluded memory 

transactions from being cached such as memory mapped control registers or 

semaphore locations for synchronizing multiprocessor events.

■ ICacheSets = num // Number of sets

■ DCacheSets = num // Number of sets

The CacheSets parameter specifies the number (num) o f cache tag sets to be 

used when creating the cache. The CacheSets parameter works in conjunction with 

the CacheTags parameter to define the associativity o f the cache. A direct mapped 

cache (no associativity) would have 1 CacheTag per CacheSet; whereas, a fully 

associative cache would have 1 CacheSet with multiple CacheTags. Note: the

number o f cache sets will be adjusted upward by the cache model to make it a

power o f 2. For example, specifying 3 for CacheSets will be adjusted to 4.

■ ICacheTags = num // Number of tags per set - maximum of
256

■ DCacheTags = num // Number of tags per set - maximum of
256

The CacheTags parameter specifies the num ber o f cache tags per cache set. 

The CacheTags parameter works in conjunction with the CacheSets parameter to 

define the associativity o f the cache (refer to CacheSets).
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■ IC a c h e S u b B lo c k s  = num / /  Num ber o f  s u b - b l o c k s  p e r  t a g  -  

maximum o f  64

■ D C ach eS u b B lo ck s  = num / /  N um ber o f  s u b - b l o c k s  p e r  t a g  -  

maximum o f  64

The CacheSubBlocks specifies the number (num) o f sub-blocks per cache tag. 

The cache model allows multiple sub-blocks to be controlled with a single cache tag. 

It is therefore possible to get a cache tag hit but a miss on a sub-block. The 

CacheSubBlocks parameter works in conjunction with the CacheSubBlockSize, 

CacheFillSize, and CacheSubBlockMissCost parameters to define the size and 

behavior o f sub-blocks. The number o f cache sub-blocks will be adjusted upward 

by the cache model to make it a power o f 2. For example, specifying 3 for 

CacheSubBlocks will be adjusted to 4.

■ IC a c h e S u b B lo c k S iz e  = num / /  N um ber o f  B y te s  p e r  S u b _ b lo c k  

(m ax . 409 6)

■ D C a c h e S u b B lo c k S iz e  = num / /  N um ber o f  B y te s  p e r  S u b _ b lo c k  

(m ax. 4096)

The CacheSubBlockSize parameter specifies the size o f a sub-block - size is 

specified in number (num) o f bytes. Note: the CacheSubBlockSize will be adjusted 

upward by the cache model to make it a power o f 2. For example, specifying 3 for 

CacheSubBlockSize will be adjusted to 4.

■ I C a c h e F i l l S i z e  = num / /  S u b _ b lo c k s  t o  f i l l  on  a  m is s

■ D C a c h e F i l lS iz e  = num / /  S u b _ b lo c k s  t o  f i l l  on  a  m is s

The CacheFillSize parameter specifies the num ber (num) o f sub-blocks to fill 

on a cache miss. N ot all o f the sub-blocks associated with a cache tag have to be

filled on a cache tag miss. It is therefore possible, on a subsequent memory

transaction, to get a cache tag hit with a miss on a sub-block. The FlitCost and 

CacheSubBlockMissCost affect the clock behavior in this latter case.
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■ ICacheTagReplAlgo = type // Tag replacement algorithm: 
Linear, LFSR, LRU

■ DCacheTagReplAlgo = type // Tag replacement algorithm: 
Linear, LFSR, LRU

The CacheTagReplAlgo specifies the type o f tag replacement algorithm. 

W hen there are multiple tags per cache set (associativity) and all o f the tags are filled 

within a set, but there is a current cache miss, then one o f the tags has to be selected 

for replacement. The CacheTagReplAlgo is used to either use a Linear, a least 

recendy used (LRU), or pseudo-random replacement algorithm (LFSR). The linear 

replacement algorithm (Linear) uses one counter for all cache sets (this is opposed 

to one counter for each set). W hen a tag has to be replaced (regardless o f the set 

number), the replacement counter is used to provide the tag num ber and then the 

replacement counter is advanced. The tag num ber is then used to select the tag 

within the set for replacement. The least recendy used (LRU) replacement 

algorithm selects the LRU tag within a set. The algorithm first locates the correct 

set, and then identifies the LRU tag within that set. The pseudo-random 

replacement algorithm uses a linear-feedback-shift-register (LFSR) to generate a 

pseudo-random  tag number. 'This tag number is then used to select the tag within 

the set for replacement.

■ ICacheRdHitCost = num // Number of clocks for a read hit

■ DCacheRdHitCost = num // Number of clocks for a read hit

The CacheRdHitCost parameter specifies the num ber (num) o f clock cycles 

for a read transaction that hits in the cache.

■ DCacheWrHitCost = num // Number of clocks for a write hit

The DCacheW rHitCost parameter specifies the num ber (num) o f clock cycles 

for a write transaction that hits in the data or unified cache. This is the overhead 

cost to perform  the cache tag look-up and does not include costs associated with 

bus traffic to main memory. Any costs associated with bus traffic to main memory 

will be added to the total transaction cost. The effects o f bus traffic to main 

memory on total transaction cost can be eliminated by using the 

CacheZeroM emCost parameter.
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■ ICacheTagMissCost = num // Number of clocks for a tag 
miss

■ DCacheTagMissCost = num // Number of clocks for a tag 
miss

The CacheTagMissCost parameter specifies the num ber (num) o f clock cycles 

for a read or write transaction that misses in the cache. This is the overhead cost to 

perform  the cache tag look-up and does not include costs associated with bus traffic 

to main memory. Any costs associated with bus traffic to main memory will be 

added to the total transaction cost. The effects o f bus traffic to main memory on 

total transaction cost can be eliminated by using the CacheZeroM emCost 

parameter.

■ ICacheSubBlockMissCost = num // Number of clocks for a 
sub_block miss

■ DCacheSubBlockMissCost = num // Number of clocks for a 
sub_block miss

The CacheSubBlockMissCost parameter specifies the num ber (num) o f clock 

cycles o f any additional overhead associated with a sub-block miss. A sub-block 

miss implies that there was a cache tag hit, so the SubBlockMissCost is added into 

the total transaction cost which also includes the cost o f a cache tag hit. In addition, 

any costs associated with bus traffic to main memory will be added to the total 

transaction cost. The effects o f bus traffic to main memory on total transaction 

cost can be eliminated by using the CacheZeroM emCost parameter.

■ ICacheZeroMemCost = [On,Off] // Don't include memory
costs with cache costs

■ DCacheZeroMemCost = [On,Off] // Don't include memory
costs with cache costs

The CacheZeroMemCost parameter specifies whether to include, or not 

include, the cost o f bus traffic to main memory. If CacheZeroM emCost is On, then 

transaction costs associated with main memory are not included. Therefore, the 

total cost o f a transaction is controlled by the costs associated with the cache — 

CacheRdHitCost, DCacheW rHitCost, CacheTagMissCost,

CacheSubBlockMissCost, and DCacheCopyBackOverheadCost.
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■ DCacheCopyBackOverheadCost = num // Number of clocks per 
Modified (M) entry

The DCacheCopyBackOverheadCost parameter specifies the number (num) 

o f clock cycles o f overhead associated with looking at the modified bits to 

determine whether a sub-block has to be copied out to main memory. In this case, 

the total transaction cost is the accumulation o f the CacheTagMissCost, the 

DCacheCopyBackOverheadCost, and the cost o f any bus traffic to main memory. 

However, the effects o f bus traffic to main memory on total transaction cost can be 

eliminated by using the CacheZeroM emCost parameter.

■ DCacheWriteBackPolicy = type // WrThru, Copyback

The DCacheWriteBackPolicy specifies the type o f write-back policy for data 

and unified caches. The write-back policy is either write-through (WrThru) or 

copyback (Copyback). In the write-through mode, write transactions are allowed to 

go through the cache to update main memory. In the copyback mode, write data is 

stored in the cache and only pushed to memory when a cache line, having modified 

data, has to be replaced or flushed.

■ DCacheWriteAllocate = [On,Off] // Write Allocate Policy 
(On or Off)

The DCacheWriteAllocate specifies the write allocate policy. If write-allocate 

is enabled (On), then on write transactions that miss in the cache, the cache line 

must first be filled (allocated) before performing the write. Once the cache line is 

filled, the DCacheWriteBackPolicy determines whether the write transactions is 

allowed to update main memory (or copied-back at a latter time).

■ ICacheFlushClock = N // Flush cache after every N clocks

■ DCacheFlushClock = N // Flush cache after every N clocks

The CacheFlushClock parameter specifies that the cache should be flushed 

after every N clocks - where N is the num ber o f clocks between flush events. A 

zero value turns this option off. The CacheFlushClock parameter provides a 

mechanism for estimating the effects o f task switching on benchmark code without 

having to simulate an entire operating system.
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Following AME configuration code segment creates a “Direct Mapped 

Cache” — a 256-byte direct mapped instruction cache with 4 words (32-bit words) 

per cache line that operates in the first 1 Megabyte of memory. These cache

parameters can be included in a simulation configuration file (simcfg) to define the

cache.
CacheOrganisation = Instruction 
CacheLiterals = Instruction 
ICacheBaseAddr = 0x0 
ICacheEndAddr = OxOOOfffff 
ICacheSets = 64 
ICacheTags = 1 
ICacheSubBlocks = 4 
ICacheSubBlockSize = 4 
ICacheTagReplAlgo = 0 
ICacheFillSize = 4 
ICacheRdHitCost = 1 
ICacheTagMissCost = 2 
ICacheSubBlockMissCost = 0 
ICacheZeroMemCost = Off 
ICacheFlushClock = 0

3.3 Memory Model Configuration

The AME simulator’s memory model handles memory allocation and the 

loading of the target executable file — usually an Executable and Linking Format 

(ELF) binary file. Typically, to keep things as simple as possible, there is only one 

instance of the memory model created in an AME simulation. Having multiple 

instances leads to coherency issues and problems related to locating a specific 

instance of the memory model when looking for data. To avoid these issues, while 

allowing different views or interfaces into the memory model, the concept of a 

memory window was developed. The data still resides in the single instance of the 

memory model but a facade or new front-end into the memory model is created. 

This allows the AME simulator to model on-chip ROM, RAM, and FLASH 

memory blocks while still maintaining central control over the data and memory 

management.
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3.3.1 System Memory Model Configuration

The system memory model defines the system memory (or main memory) 

characteristics. The following configuration parameters are included in the 

simulator configuration (simcfg) file to define the default behavior o f the system 

memory model.

■ MemUnit = [On,Off] // Enable system memory

The MemUnit parameter enables (On) or disables (Off) the memory model. 

Usually, the memory model is always enabled (On).

■ MemPageSize = num // Memory page size for allocating 
memory

The MemPageSize parameter is used by the memory model when allocating 

memory for the simulation. The memory model allocates memory in pages with 

num bytes per page until the requested memory range has been allocated. In 

general, the larger the page size, the more efficient the simulation. Typical page 

sizes range from 64 Kbytes (0x10000) to 1 Mbytes (0x100000). The MemPageSize 

parameter is for tuning the memory model to work more efficiently with the host 

platforms memory management and not for defining the memory mapping o f the 

processor system being simulated.

■ MemBaseAddr = addr // Memory default base address

■ MemEndAddr = addr // Memory default end address

The MemBaseAddr works in conjunction with the M em EndAddr to specify a 

default address (addr) range for the memory model. W hen the simulator starts-up, 

the memory model allocates memory to populate this address range o f the 

processor system being simulated. The default address range defined by 

MemBaseAddr and MemEndAddr are over-ridden by the memory requirements 

defined by an executable file (usually an ELF file) being loaded, or by a memory 

configuration file.

■ MemoryAccessTime = num // Memory Access Time in clock 
ticks

The MemoryAccessTime parameter defines the default memory latency in 

number (num) of clock cycles. This default memory latency is over-ridden when 

using a memory configuration file (refer to “Memory Configuration”).
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■ MemoryBusWidth = num // Memory data path width in bytes

The MemoryBusWidth parameter defines the width o f the bus in number 

(num) o f bytes to the system memory model. This default memory bus width is 

over-ridden when using a memory configuration file (refer to “Memory 

Configuration”)

3.3.2 On-Chip ROM Configuration

The following list provides the configuration parameters which define Read- 

Only-Memory (ROM) memory ranges. Multiple sets o f the OnChipRom 

parameters may be used to define multiple ROM memory regions.

* OnChipRomUnit = [On,Off ] // Enable On-chip rom unit

O ff - specifies that the on-chip rom  unit should not be used in the simulation. 

This is the default value if the OnChipRom Unit configuration parameter is not 

supplied. O n - enables the on-chip rom unit. Write bus transactions are terminated 

with a transfer error signal potentially causing an exception to be taken.

■ OnChipRomBase = addr // On-Chip ROM base address

■ OnChipRomEnd = addr // On-Chip ROM end address

The OnChipRomBase address (addr) works in conjunction with the 

O nChipRom End address (addr) to specify an address range for the on-chip rom. 

Bus transactions in this address range will be directed to the on-chip rom  unit. Bus 

transactions outside this address range are not directed to the on-chip rom  unit.

■ OnChipRomBlkSize = num // On-Chip ROM block size in bytes

The OnChipRomBlkSize parameter provides a mechanism to allow the on- 

chip rom  to be multiply mapped within an address range. (The memory range is 

controlled though the OnChipRomBase and O nChipRom End addresses discussed 

above.) The OnChipRomBlkSize must be set to a power o f 2. For example, if the 

OnChipRomBlkSize is set to 0x1000 (i.e. 4K bytes) then at every 4K boundary the 

same data will be seen. If there is only one block boundary, then the 

OnChipRomBlkSize should be set to the entire OnChipRomBase to 

OnChipRom End address range.

29



Portfolio V II

3.3.3 On-Chip RAM Configuration

The following list provides the configuration parameters which define 

Random-Access-Memory (RAM) memory ranges. Multiple sets o f the OnChipRam 

parameters may be used to define multiple RAM memory regions.

■ OnChipRamUnit = [On,Off] // Enable On-chip ram unit

O ff - specifies that the on-chip ram unit should not be used in the simulation. 

This is the default value if the OnChipRamUnit configuration parameter is not 

supplied. O n - enables the on-chip ram unit. The ram unit supports both read and 

write bus transactions.

■ OnChipRamBase = (addr) // On-Chip RAM base address

• OnChipRamEnd = (addr) // On-Chip RAM end address

The OnChipRamBase address (addr) works in conjunction with the 

OnChipRam End address (addr) to specify an address range for the on-chip ram. 

Bus transactions in this address range will be directed to the on-chip ram unit. Bus 

transactions outside this address range are not directed to the on-chip ram unit.

■ OnChipRamBlkSize = num // On-Chip RAM block size in bytes

The OnChipRamBlkSize parameter provides a mechanism to allow the on- 

chip ram to be multiply mapped within an address range. (T he memory range is 

controlled though the OnChipRamBase and O nChipRam End addresses discussed 

above.) The OnChipRamBlkSize must be set to a power o f 2. For example, if the 

OnChipRamBlkSize is set to 0x1000 (i.e. 4K bytes) then at every 4K boundary the 

same data will be seen. If  there is only one block boundary, then the 

OnChipRamBlkSize should be set to the entire OnChipRamBase to 

OnChipRam End address range.

■ OnChipRamProtect = [On,Off] // Protect On-Chip RAM from 
program loader

The OnChipRamProtect parameter, when enabled (On), prevents the program 

loader from initializing the on-chip ram space. This provides a mechanism to make 

sure that application programs work with on-chip ram where the ram is not 

assumed to be initialised as part o f the executable file loading process, usually and 

ELF binary file.
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3.3.4 Flash Memory Configuration

The following list provides the configuration parameters which define Flash 

memory ranges. Multiple sets o f the Flash parameters may be used to define 

multiple Flash memory regions.

■ FlashMemUnit = mode // Mode: Off,Page,SeqAddr, Seq,
ASeq, ISeq, Burst

The mode o f operation work in conjunction with other flash parameters to 

control the cycle count information for bus transactions directed to the flash 

memory unit. For each mode o f operation, the FlashMemBusWidth and 

FlashMemBusCyclingCost can add additional cycles to bus transaction costs. The 

Seq, ASeq, ISeq, and Burst modes represent specific modes which some processors 

may support. Refer to the processor’s reference manual for more information on 

the use and availability o f these modes.

O ff - specifies that the flash unit should not be used in the simulation. This is 

the default value if the FlashMemUnit parameter is not supplied.

Page - page mode works with other flash parameters to control the cycle cost 

information for bus transactions. In page mode, an initial access requires a cycle 

cost defined by FlashPageAccessCost and establishes a page boundary (defined by 

FlashMemPageSize) for subsequent accesses. Pages are aligned to their natural 

boundaries defined by the FlashMemPageSize parameter (i.e. aligned starting with 

page 0 at address 0x0). If  a subsequent access is made which falls within the same 

page as the previous access, then the cycle cost information is given by 

FlashPageHitCost. If  an access falls outside the current page, a new page is loaded 

and the cycle cost is again defined by FlashPageAccessCost. N ote that the 

FlashMemBusWidth in conjunction with the FlashMemBusCyclingCost can add 

additional cycle costs to the access.

SeqAddr - Sequential Address mode. The SeqAddr mode is from the point o f 

view o f the flash memory — as long as accesses that arrive at the flash unit are 

sequential, the cycle cost is given by FlashPageHitCost. If addresses are not 

sequential, then the cycle cost is given by FlashPageAccessCost. N ote that the 

FlashMemBusWidth in conjunction with the FlashMemBusCyclingCost can add 

additional cycle cost to the access.
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Seq - Sequential mode. The Seq mode, if supported, is controlled by signals 

from the processor. If the Seq mode is signaled by the processor and if the access 

does not cross the page boundary controlled by FlashMemPageSize, then the cycle 

cost is given by FlashPageHitCost; otherwise the cycle cost is given by 

FlashPageAccessCost. Normally, to avoid a sequential access that misses a page 

boundary, the FlashMemPageSize is set to a value that covers the entire address 

range of the flash unit -  if the page boundary is missed, the cycle cost is given by 

FlashPageAccessCost. Note that the FlashMemBusWidth in conjunction with the 

FlashMemBusCyclingCost can add additional cycle cost to the access.

ASeq - Accurate Sequential Access mode. The ASeq mode, if supported, is 

controlled by signals from the processor. If the ASeq mode is signaled by the 

processor and if the access does not cross the page boundary controlled by 

FlashMemPageSize, then the cycle cost is given by FlashPageHitCost; otherwise the 

cycle cost is given by FlashPageAccessCost. Normally, to avoid a sequential access 

that misses a page boundary, the FlashMemPageSize is set to a value that covers the 

entire address range of the flash unit ~  if the page boundary is missed, the cycle cost 

is given by FlashPageAccessCost. Note that the FlashMemBusWidth in

conjunction with the FlashMemBusCyclingCost can add additional cycle costs to the 

access.

ISeq - Instruction Sequential Access mode. The ISeq mode, if supported, is 

controlled by signals from the processor. If the ISeq mode is signaled by the

processor and if the access does not cross the page boundary controlled by

FlashMemPageSize, then the cycle cost is given by FlashPageHitCost; otherwise the 

cycle cost is given by FlashPageAccessCost. Normally, to avoid a sequential access 

that misses a page boundary, the FlashMemPageSize is set to a value that covers the 

entire address range of the flash unit — if the page boundary is missed, the cycle cost 

is given by FlashPageAccessCost. Note that the FlashMemBusWidth in

conjunction with the FlashMemBusCyclingCost can add additional cycle cost to the 

access.
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Burst - Cache Line Burst mode. The Burst mode, if supported, is controlled 

by signals from the cache model. If the Burst mode is signaled by the cache model 

and if the access does not cross the page boundary controlled by 

FlashMemPageSize, then the cycle cost is given by FlashPageHitCost; otherwise the 

cycle cost is given by FlashPageAccessCost. Normally, to avoid a sequential access 

that misses a page boundary, the FlashMemPageSize is set to a value that covers the 

entire address range o f the flash unit — if the page boundary is missed, the cycle cost 

is given by FlashPageAccessCost. Note that the FlashMemBusWidth in 

conjunction with the FlashMemBusCyclingCost can add additional cycle cost to the 

access.

■ FlashMemBase = (addr) // On-Chip flash memory base 
address

■ FlashMemEnd = (addr) // On-Chip flash memory end address

The FlashMemBase address (addr) works in conjunction with the 

FlashMemEnd address (addr) to specify an address range for the on-chip flash 

memory unit. Bus transactions in this address range will be directed to the on-chip 

flash unit. Bus transactions outside this address range are not directed to the on- 

chip flash unit.

• FlashMemBlkSize = num // On-Chip flash memory block size 
in bytes

The FlashMemBlkSize parameter provides a mechanism to allow the on-chip 

flash to be multiply mapped within an address range. (The memory range is 

controlled though the FlashMemBase and FlashM emEnd addresses discussed 

above.) The FlashMemBlkSize is specified in num ber (num) o f bytes and must be 

set to a power o f 2. For example, if the FlashMemBlkSize is set to 0x1000 (i.e. 4K 

bytes) then at every 4K boundary the same data will be seen. If  there is only one 

block boundary, then the FlashMemBlkSize should be set to the entire 

FlashMemBase to FlashMemEnd address range.

■ FlashMemPageSize = num // Number of bytes for flash page 
size

The FlashMemPageSize parameter controls the page size for an access. The 

page size is given in number (num) o f bytes and m ust be a power o f 2. The page 

size works in conjunction with FlashPageAccessCost and FlashPageElitCost to 

control the cycle cost o f bus transactions.
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■ FlashPageAccessCost = num // Number of clocks for initial 
page access

■ FlashPageHitCost = num // Number of clocks for access to 
same page

If an access to the flash memory misses the current page, or misses one o f the 

sequential modes (i.e. SeqAddr, Seq, ASeq, ISeq, or Burst), then the cycle cost is 

given by FlashPageAccessCost; otherwise the cycle cost is given by 

FlashPageHitCost. Note that the FlashMemBusWidth in conjunction with the 

FlashMemBusCyclingCost can add additional cycle costs to the access.

■ FlashlFSize = type // Instruction Fetch Size Off, single, 
multi

Some processors provide a dynamic mode to switch from pre-fetching 

multiple instructions per bus transaction to pre-fetching a single instruction per bus 

transaction. If the flash memory resides on a narrow bus, performance may be 

optimised in some systems by signaling the processor to prefetch instructions using 

the single mode o f operation as opposed to the multi mode. The single option 

provides a signal on every bus transaction from the flash memory that the next bus 

transaction should only be requested as a single access. The multi option signals 

each bus transaction that the next access can be made using multiple instruction 

prefetching. The O ff option is the default mode which does not signal the 

processor.

■ FlashMemBusWidth = num // Number of bytes for flash 
memory bus width

The FlashMemBusWidth specifies the width o f the bus connecting the flash 

memory to the rest o f the system. The bus width is specified in num ber (num) o f 

bytes and is used in conjunction with the FlashMemBusCyclingCost parameter to 

add additional cycle costs to bus transactions.
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■ FlashMemBusCyclingCost = num // Number of clocks to cycle 
flash bus

The FlashMemBusCyclingCost specifies the num ber (num) o f clock cycles 

required to run multiple bus transactions in the event that the requested data size is 

greater than the FlashMemBusWidth parameter. For example, if a 4-byte (32-bit) 

word was requested over a 2-byte (16-bit) flash bus then the flash bus would have to 

be cycled 2 times to get all o f the requested data. The first access cost is supplied by 

the FlashPageAccessCost and FlashPageHitCost parameters while the second access 

cost is supplied by FlashMemBusCyclingCost.

The cycle cost o f the first access is always determined by the 

FlashPageAccessCost and FlashPageHitCost parameters. The

FlashMemBusCyclingCost provides the additional cycle cost, for cycling the bus to 

obtain the requested access width. For a 4-byte access over a 1-byte bus, the first 

access cost is supplied by the FlashPageAccessCost or the FlashPageHitCost. The 

total access cost is the cost o f the first access plus 3 times the 

FlashMemBusCyclingCost. The 1-byte bus has to be cycled an additional 3 times to 

complete a 4-byte access width.

3.4 Memory Configuration

By default, the memory model uses the MemBaseAddr and the M emEndAddr 

parameters in conjunction with the MemoryAccessTime and the MemoryBusWidth 

parameters to defined the memory map (refer to “System Memory Model 

Configuration”) which can be displayed using the simulator’s map command. There 

are two ways to modify the default memory map. One m ethod is to load an 

executable file — usually an ELF binary file. The ELF binary file provides header 

information which specifies the memory segments needed for the program to 

execute. 1’he second method uses a memory configuration file (memcfg) to define 

memory segments along with an optional memory latency and memory attributes 

entry for each specified memory segment.
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The memory configuration information contained in a memcfg file can be 

combined with the simulator configuration (simcfg) file to form a single file. The 

memory configuration information must appear outside the Config-ConfigEnd 

parameter pair (refer to “Simulator Configuration File”). All numbers in a memcfg 

file are in hexadecimal. The first entry specifies the number o f  segments contained 

in the memcfg file.The subsequent lines contain memory segment entries. Each 

memory segment entry specifies the starting address location, the size o f the 

segment in bytes, followed by an optional wait state entry. The wait state entry 

specifies the number o f additional clock cycles required for the memory segment to 

respond to an access. If the wait state entry is not present, the memory object is 

expected to supply its own memory latency information. The following is an 

example o f a memcfg file consisting o f 2 memory segments.

// All values are in hexadecimal 
3 // number of memory segments
// Start Segment size
// Address in bytes [Waits]
/ /     ------------
00000000 400 0
400 cOO 4
1000  200

[attributes]

// 1 clock access 
// 5 clock access 
// use defaults

The Waits entry takes precedence over the default MemoryAccessTime 

parameter associated with the system memory model (refer to “System Memory 

Model Configuration”). If the system memory model to control wait state 

information is required, then the wait state entry is left blank as shown in the last 

entry o f the example. There are additional attributes that can be specified with each 

memory segment declaration. The general format o f the memcfg file is as follows.

Segments Address Size [Waits] [bus8:busl6:bus32:bus64] [if1:if2:if4]

Segments — The first hexadecimal number in the memcfg file represents the 

number o f memory segments being declared.

Address -  The Address entry is the starting address location o f  the memory 

segment being declared. This entry is assumed to be in hexadecimal format.
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Size — The Size entry is the size o f the memory segment being declared. The 

size is specified as a hexadecimal number and represents the number o f bytes in the 

segment.

Waits — The Waits is an optional entry and represents the number wait states 

for memory accesses to the segment being declared. If a wait state entry is made, 

then the MemoryAccessTime parameter associated with the system memory model 

is over-ridden (refer to “System Memory Model Configuration”). The waits entry is 

specified as a hexadecimal number.

bus8:busl6:bus32:bus64 -  This optional attribute entry specifies the bus width 

for the memory segment being declared. This entry defaults to bus32, a 32-bit bus 

width.

ifl:if2:if4 -  Some processor architectures provides dynamic instruction fetch 

sizing allowing the architecture to optimise performance in systems having narrow 

bus widths. The [ifl:if2:if4] entry allows each memory segment being declared the 

ability to dynamically adjust the instruction size being requested by the processor. 

For a memory region being defined and to optimise instruction fetch bus 

transactions, the ifl option specifies that one instruction should be requested, if2 

indicates that two instructions can be requested, and if4 indicates that four 

instructions can be requested. This entry defaults to if4. Note that this entry has no 

affect on processor architectures that do not support this architectural feature. Also 

note that this entry does not prevent a processor from using any instruction fetch 

size that the architecture requires.
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4 Profiling Binaries

The AME simulator provides special interface and start-up features which 

simplifies the process o f preparing application code for simulation. The AME 

simulator uses information provided by the executable file along with simulator 

configuration information to initialise the stack pointer, heap pointer, program 

counter, and registers used to pass the standard argc and argv arguments used by C 

programs. In addition, the AME simulator provides a set o f system calls which 

interface to the host platform’s operating system for file io operations.

4.1 Simple Compile and Simulate

The example hello program shown below is used throughout this portfolio to 

demonstrate techniques for compiling target programs and simulating. The hello 

program simply prints the Hello, World message to the display and terminates.

/* * * * * * * * * * * * * * * * * * *  j
/* hello.c program */
#include <stdio.h> 
int
main()
{
printf("Hello, World\n"); 
return 0;
}
/ * * * * * * * * * * * * * * * * * * *  j

When working with C programs, it is sometimes useful to compile and run 

them natively on the host platform. For example, the hello program can be 

compiled with the Gnu compiler and executed as follows.

[] gcc hello.c -o hello 
[] hello 
Hello, World 
[]
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Ideally, target programs or benchmarks should compile and execute just as 

simply for the AME simulator. For example, using the Gnu compiler for PowerPC 

with the -msim command line option builds the hello program which can be 

simulated on the AME simulator.

[] ppc-elf-gcc -msim hello.c -o hello 
[]

The -msim option on the PowerPC Gnu compiler links the compiled code 

with a library and start-up code supporting the system calls used for simulation. 

This simulation support is part o f the PowerPC Gnu package. A summary o f  

available target options for the PowerPC Gnu compiler can be displayed by using 

the — target-help command line option.

[] ppc-elf-gcc --target-help

Once the hello program has been cross-compiled for SoC, it can be simulated 

as follows.

[] sim-ame SoC hello 
Hello, World 
program exit(O)
Sim. Loop Time: 0.020 Seconds; Clock Ticks: 2045; CPS 102250.000 
[]

The AME simulator executes the program printing the Hello, World message 

and then displays the program exit status — in this case, an exit status o f 0. Before 

terminating, the AME simulator displays some execution statistics. By default, the 

AME simulator runs in the Instruction set simulation (Iss) mode executing one 

instruction per simulated clock cycle. Therefore, there were 2045 instructions 

executed in this example. The CPS number indicates the simulation speed that was 

achieved by showing the number o f simulated clocks per second on the host 

machine. The CPS number will vary depending on how loaded the host machine is 

and on the length o f the program being simulated. For very short programs, like 

the hello program, there may not be enough measured time (0.020 Seconds in this 

case) to get an accurate CPS number.
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4.2 Binding Code Segments to Memory Regions

When compiling code for a specific target system, it is often the case that code 

segments will need to be placed within certain memory address boundaries. For 

example, a target system may have read-only-memory (rom) to store static code and 

data, and random-access-memory (ram) for dynamic variables and stack space. The 

following “Linker Control Script File - map.Ink” provides an example which 

controls the link process to bind code segments to specific memory regions. Any 

exception table code is stored in the vec space starting at address 0x00000, static 

code and data is stored in the rom space starting at address 0x10000, and dynamic 

variables and stack space
/ *  ------------------------------------------------------------------------------------------------------------------------------------------------------------------

* The MEMORY command is used to describe the physical memory available
* to bind the program to memory. There are three areas of memory:
* "vec", "rom", and "ram" as pictured below. On the right is a symbol
* '_end' used to initialise a pointer which the system call brk uses
* to dynamically allocate memory for data segments. This symbol is
* defined at the end of this file.

0x00000000 
" vec" 

0x00010000
I

"rom"

* 0x00040000

’ram’

+ ---------------------------------------------------------------------------------- +
| .vec : Vector Table Code |

+ ---------------------------------------------------------------------------------- +

| .text: crtO code |
| library code |
j program code |
j initialised data |

+ -----------------------------------------------------------------------------------+

| / / / / / /  (unused) / / / / / |
+------------------------------------------------------------ +
| uninitialised dynamic |
I variables I

end

* 0x00041000

stack, grows down in memory 
toward address 0x0

MEMORY
{ vec : org

rom : org
ram : org

}

org = 0x00000, len = 0x10000
org = 0x10000, len = 0x8000
org = 0x40000, len = 0x1000

/* Place code sections into appropriate memory types */ 
SECTIONS
{ .vec : { * ( .gcc_except_table) } > vec 

.rom : { *(.text) *(.data)
M.sdata) *(.sdata2)
*(.rodata)
*(.init) *(.fini) *(.eh_frame) *(.fixup)
*(.got) *(.gotl) *(.got2)
M.ctors) *(.dtors) } > rom
.ram : { M.sbss) *(.sbss2) *(.bss) } > ram

}
/* Assign _end pointer to a free memory region */ 
end = SBSS END ;
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Any exception table code is stored in the vec space starting at address 

0x00000, static code and data is stored in the rom space starting at address 0x10000, 

and dynamic variables and stack space are allocated to the ram space starting at 

address 0x40000. The symbol _end is used by the system call brk to change 

dynamically the amount o f space allocated for the data segment. The _end symbol 

is set to the end o f the uninitialised variable space in the ram memory region.

Note that more complex programs will need both read and write access to the 

initialised data space requiring some added start-up code to first copy the initialised 

data space to ram memory before starting execution. Also note that the program 

will need to be linked with the initialised data space in the ram region to allow 

program references to evaluate correctly. Then, as a post process, moving initialised 

data to the rom memory region. The following command line can be used to 

compile the simple hello program using the linker control script map.Ink. A comma 

separated option list (-Wl,-T,map.lnk,-e,_start) is passed to the linker to provide the 

name o f the linker control script (map.lnk) and the name o f  the entry point (_start).

[] ppc-elf-gcc -msim -Wl,-T,map.Ink,-e,_start hello.c -o hello

4.3 Automatic Stack and Heap Pointer Initialisation

The AME simulator uses the memory model configuration parameters (refer 

to “System Memory Model Configuration”) and information from the AME 

program loader to assign initial values to the stack pointer register and the heap 

pointer. The stack pointer value is loaded into register rl o f  the SoC processor 

while the heap pointer is an internal variable kept by the AME memory model and 

potentially used by system calls for dynamic memory allocation during run-time. A  

program may choose to use these default initialisation values or provide its own 

start-up and memory allocation routines which over-ride these default values. The 

intent o f providing default initialisation values is to simplify the process o f preparing 

benchmark code for simulation — ideally no additional start-up code will be needed.

Figure 4.1 overleaf shows the relationship between the MemBaseAddr and 

MemPageSize memory configuration parameters and the assignment o f the heap 

pointer and stack pointer. After the AME simulator completes the loading o f the 

program, the heap pointer is assigned to the end o f the initialised memory region 

which contains the program code and data.
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When memory allocation is requested by the program, the heap pointer will be 

increased toward higher memory (i.e. away from address 0x0). The stack pointer is 

initialised to the end of the memory page boundary (as defined by the MemPageSize 

parameter). When stack space is required by the program, the stack pointer moves 

toward lower memory (i.e. toward address 0x0).

M em B aseA ddr ►

H eap P o in te r  ►

Stack Pointer

Figure 4.1: Stack Pointer and Heap Pointer Initialisation

If program code has been compiled and bound to specific memory regions, 

then the MemBaseAddr and MemPageSize memory configuration parameters can 

be used to adjust the pointers for heap and stack assignments. For example, in the 

previous section the hello program was bound to memory using a linker control 

script. Since the AME program loader allocates simulation memory based on the 

requirements o f the executable file, the MemBaseAddr and MemPageSize 

parameters can be adjusted as follows to control the automatic assignment o f the 

stack and heap pointers to point to unused sections o f the ram region.

// Example simulation configuration file
Config = SoC
MemPageSize = 0x0800
MemBaseAddr = 0x4080 0
MemEndAddr = 0x40fff
ConfigEnd

M em PageSize
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5 Conclusions

This portfolio introduced the usefulness and infrastructure o f  a modelling and 

profiling environment for the evaluation o f single and dual-issue PowerPC SIMD 

SoCs with tightly coupled signal processing capabilities and a hierarchical memory 

architecture. Using the AME, it was observed that:

SIMD techniques provide a significant speedup for advanced automotive 

powertrain applications with high data throughput. Using the AME, the observed 

average speedups over a 2-way single and dual issue SIMD in order execution 

machine range from 1.0 to to 3.6. For optimised application kernels, such as the 

knock processing platform developed, a factor o f 2.5 improvement was achieved 

with perfect branch prediction.

Application binary characterisation reduces the cost o f  exploring the design 

space, focussing on the experimental system toward the intended workload, and 

curtails simulation and redesign requirements.

In order to realise the true potential o f AME, application binaries need to be 

developed with improved embedded compiler technology supporting SIMD 

architectures even though intrinsics provide some ease o f programming when 

compared to hand-coded assembly, it is still up to the code developer to find the 

data and instruction parallelism.

Identical application binaries profiled on both the real-time SoC platform and 

the AME confirm that the accuracy o f simulated results is better than 95% in the 

features modelled.
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System Level Design of a Controller Platform for a Camless, 
Electromagnetic Actuator Driven Next Generation Car Engine
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Abstract -  Besieged by demands for better fuel economy, more 
power, and less pollution, motor engineers around the world are 
pursuing a radical "camless" design that promises to deliver the 
internal combustion engine's (ICE) biggest efficiency 
improvement in years. For the automobile driver, the camless 
engine might offer many of the advantages of hybrid gasoline- 
electric drive trains recently introduced by Toyota and Honda, 
but at less cost.

Like a very simple software program that contains only one set of 
instructions, the cams always open and close the valves at the 
same precise moment in each cylinder's constantly repeated cycle 
of fuel-air intake, compression, combustion, and exhaust. They 
do so regardless of whether the engine is idling or spinning at 
maximum rpm.

The highest variability is obtainable by a system through which 
each valve is controlled separately. The elctromechanical 
valavetrain enables the optimised timing of the individual valve 
offering a reduction in fuel consumption by about 10 per cent 
and an additional peak torque of 5 percent [1].

We propose a comprehensive real-time System Level 
Development Platform (SLDP) and a Design Methodology (DM) 
to test and validate electromechanical valvetrain controlled 
(EM VC) camless engines with rapid prototyping and
development borne in mind.

Index Terms -  camless engines, system level design (SLD), 
electromechanical actuators (EMA), single instruction multiple 
data (SIMD) units, camless engines, variable valvetrain timing 
(VYT), Processor-in-the-Loop (PIL), rapid prototyping.
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I. In t r o d u c t io n

A utomotive engines equipped with camless valvetrains (so 
called camless engines) have been studied for over thirty 

years but production worthy vehicles with engines of this type 
are still not available due to difficulties in ensuring adequate 
and reliable electromagnetic valve performance. For an 
electromechanical camless valvetrain (EMCV), the actuator

noise caused by high contact velocities of the moving parts 
has been identified as a key problem [2].

With the idea of introducing a real time rapid prototyping 
methodology, in this paper, a system level model to design, 
develop and validate a model for an electromechanical 
camless valve actuator, including the internal combustion 
engine (ICE) is discussed.

Conventional internal combustion engines use mechanically 
driven camshafts to actuate intake and exhaust valves. While 
this system is convenient and reliable, the fixed timing of the 
valve events with respect to the piston motion is typically 
selected as a compromise among fuel economy, emissions, 
maximum torque output, valvetrain noise, vibration and 
harshness (NVH) [2].

The growing need to improve fuel economy and reduce 
emissions led to the introduction of an alternative valvetrain 
technology, namely a camless valvetrain [1]. In the camless 
valvetrain, the valve motion is controlled directly by a valve 
actuator, without mechanical linkage to the crankshaft. As a 
result, the timing of the exhaust and intake valve opening and 
closing can be optimised for each engine operating condition 
[1]. Various studies have shown that a camless valvetrain can 
alleviate many otherwise necessary engine design tradeoffs by 
supplying extra degrees of freedom to the overall powertrain 
system [2].

Specifically it has been shown that controlling the intake valve 
events can eliminate the need for throttled operation in 
gasoline engines [3], thereby reducing pumping losses, and 
improving fuel economy [2], Other benefits of camless 
engines include, higher maximum torque output, which is 
optimised for different driving conditions, cylinder de
activation, and elimination of external exhaust gas 
recirculation (EGR), etc. [4].

While VVT can be obtained using a wide spectrum of 
different technologies (see a review of various VVT 
technologies in [1] and [4], the highest degree of flexibility 
and the fastest W T  capability is achieved in truly camless 
engines with either electro-hydraulic [4] or electromechanical 
actuators [1]. These camless actuator technologies are under 
intensive development by several car OEMs, with the 
electromechanical technology currently considered by many to 
be in a relatively more developed stage. The issues that have 
to be addressed in the actuator design include cost, reliability, 
packaging, power consumption, noise and vibrations. The 
noise has been identified as the main problem with the
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electromechanical actuator technology. It may, in fact, 
preclude the usage of such systems, if satisfactory solutions 
are not found [4].

Research proves that high contact velocities of the moving 
parts of the actuator cause the noise in electromechanical 
actuator [9]. The noise can be reduced if the contact velocities 
are reduced, i.e. the so-called soft-landing is achieved. In a 
conventional valvetrain the fixed valve profiles are carefully 
optimised to reduce the noise and the optimal solution is 
mechanically embedded into the precision valvetrain design 
during manufacturing of the camshaft lobes. In a camless 
valvetrain, it is the responsibility of the electronic controller 
platform to ensure that adequate actuator performance at 
varying engine operating conditions is achieved. To facilitate 
the analysis and rapid prototyping real-time controller 
platform development for an electromechanical camless 
valvetrain (EMCV), an actuator model is developed in this 
document.

This paper is organised as follows: First, the real-time system 
level development platform built for the rapid prototyping of 
the actuator is described. This platform is primarily built 
around Matlab®, Simulink and the Real Time Workshop. 
Unlike in the work done by various OEMs using a variety of 
hardware and software modules [2], consistency is maintained 
by building the development environment around a single 
real-time simulation environment. Then an overview of the 
structure of the controller developed to achieve soft-landing is 
explained in section IV. Section V captures construction and 
the operation of a typical electromechanical actuator currently 
being used by various OEMs in camless engines.

II. E l e m e n t s  o f  THE E l e c t r o m a g n e t ic  A c t u a t o r  R a p id  
P r o t o t y p in g  S y s t e m  L e v e l  D e v e l o p m e n t  P l a t f o r m

In order to considerably reduce the development time, 
decision was made to use the Real-Time Workshop Embedded 
Coder (RTWEC) to generate, test, and deploy production 
worthy C code for use in the PowerPC based VVT embedded 
platform [8]. One of the features required was the integration 
of legacy code. Therefore, it was necessary to establish 
thorough understanding of the RTWEC to provide the setting 
up of the real time actuator electromagnetic controller 
framework shown in Figure 1.

IE. N o m e n c l a t u r e

Signals and Parameters

Symbol Unit Explanation

(Yd),Y m (desired armature position
V _„-ims armature velocity
Vw. V voltage upper /  lower coil
Iu/1 A current upper / lower coil
®u/l NmA' 1 flux upper / lower coil
Fu/i N magnetic force
Fflow N force due to gas airflow
m kg mass o f moving part of actuator
G kgs'1 friction coefficient
D kgs'2 Spring constant
2h m thickness of armature disc
R Q resistance or a coil

Notations

S(t) continuous time signal
S[n] discrete time signal
S° signal at equilibrium point
s[n] = S[n] - S ° deviation between signal and equilibrium point
s[n, k] discrete signal o f the k* cycle
V vector
M matrix

Table 1: Signals, Parameters and Notations

IV. A c t u a t o r  C o n t r o l l e r  D e s i g n , D e v e l o p m e n t  a n d  

A n a l y s i s

The actuator control system is required to ensure accurate 
valve closing and opening events (timing). Variable valve 
timing is used to optimise the engine operation with respect to 
emissions, fuel economy, and driveability [3]. The engine 
management system typically generates these commands 
based on the drivers torque demand and other vehicle 
variables. One of the key objectives of the controller is to 
reduce the armature-coil and valve-cylinder contact velocities, 
which in turn reduce noise and component wear. Modem 
engine manufacturers design camshafts to achieve a low 0.04 
m/s contact velocity [9] at low engine speeds. The contact 
velocity in conventionally driven valves increase linearly with 
engine speed [6].

Result

Simulation

Code
Generation

Measured 
Actuator Data

Actuator
Modelling

MPC555 Based 
Rapid Prototyping

MPC555 in the 
Loop Simulation

MPC555 in the 
Loop Testing

Data Modelling 
and Analysis 
(Regression)

Actuator 
Controller Design 

and Analysis

Figure 1: Electromechanical Camless Engine Controller Development Platform
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In order to achieve the above requirements, a controller that 
achieves tracking of a reference trajectory Yd[n] [7] with the 
desired timing and contact velocity is designed.

Yu[n, l]

Yin, k] e[n, k]

storage 
operation 
after each 

cycle k

updating Y<t 
for next 

cycle k+1

e[n, k]

Iterative
Learning

Algorithm

Plant and 
Feedback 
Controller

Figure 2: The controller structure with the iterative learning 
controller, applied to a ciosed loop system consisting of the 

actuator and an observer based feedback controller

Figure 2 shows the controller structure. The block “Plant and 
Feedback Controller” consists of an observer based feedback 
controller used to stabilise the plant at an equilibrium point 
close to the contact point. In order to improve the transient 
behaviour of the feedback controller, a feedforward controller 
changes the input of the closed loop system Yd[n]. The new 
input is calculated by an Iterative Learning Controller (ILC), 
updating Yd between consecutive cycles (full armature travel) 
k and k+1. This ILC is processing the error between the 
desired position Yd[n,l] and the actual position Y[n, k]. 
Detailed information about the learning controller is given in 
section VII.

V . C o n s t r u c t i o n  a n d  t h e  O p e r a t i o n  o f  t h e  

E l e c t r o m e c h a n i c a l  A c t u a t o r

Figure 3 shows an electromagnetic actuator with a valve at 
three typical positions. There are two magnets (upper and 
lower magnets), two springs (actuator and valve springs) and 
an armature in the actuator. The two magnets are coils wound 
on ferromagnetic material. The coils are driven by currents 
generated by electronics. The electronics are driven by a 
pulse-width modulated voltage and the duty cycle of this 
voltage signal determines the steady-state current value. 
When the coil is activated, a magnetic field is generated and 
consequently the magnetic force is applied on the armature in 
the magnetic field. The two springs are adjusted such that 
both are always compressed for any position of the armature 
in between the two magnets. The armature is subjected to the 
magnetic force and actuator spring force and passes the forces 
to the valve. The actuator uses the spring force to accelerate 
the masses (the actuator spring bolt, the armature, the valve 
and the valve spring bolt), then uses the electromagnetic force 
to attract and dwell the valve and the armature. The 
equilibrium of the spring-mass system is at the middle (neutral) 
position between the two magnets. Therefore, when there is 
no current on coils, the valve will stay in the middle position. 
When the valve is closed there is a voltage applied on the

upper coil, which generates a holding current. The holding 
current depends on the spring force and the pressure difference 
between the cylinder and the exhaust/intake manifold.

Middle Position

Actuator Spring

Actuator Spring Bolt

Upper Magnet

Armature

Lower Magnet

Valve Spring Bolt

Valve Spring

Cylinder Head— 7

Valve Open — * “  *

Valve

Figure 3: Construction of an electromagnetic actuator with 
the valve at neutral, open and closed positions

The driving current of the EMCV actuator and the 
corresponding valve profile is shown in Figure 4. If the valve 
is scheduled to open at to, the voltage applied to the upper coil 
should be regulated to zero at, to - xm; the time Tm is necessary 
for the discharge of the magnetic field. Then a voltage with 
high duty cycle, dc, is applied to the lower coil at q. A 
magnetic field is generated that attracts the armature to contact 
the lower coil and maintains the maximum valve lift. The 
current generated by this high voltage, dc, is denoted as the 
catching current. Once the contact is ensured and quasi-static 
conditions of the mechanical subsystem are reached, the 
voltage applied to the lower coil can be reduced. The time 
that the lower duty cycle voltage, dh, is applied to the lower 
coil is denoted by the t2. Controlling t2 varies the power 
consumption of the electrical subsystem. When the valve is 
closing, the operation is similar with the voltage applied on the 
lower coil regulated to zero at t3. In Figure 4, the time 
intervals are defined as follows: Xi = q - to and x2 = t2 - to-

To summarise, the actuator consists of electrical, magnetic and 
mechanical subsystems, which are interconnected with each 
other as shown in Figure 3. The variables and the subsystems 
used for the control of the EMA are explained in the following 
sections. Because of the symmetry, analysis is done only on 
the valve-opening event.
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Figure 4: The Driving Current of the EMCV Actuator and the
Corresponding Valve Profile

V I. T r a c k in g  U s i n g  I t e r a t iv e  L e a r n in g  C o n t r o l

In order to achieve better tracking of the desired position, the 
cyclic nature of the process is exploited by use of the Iterative 
Learning Controller (ILC) introduced in section IV. The next 
paragraph explains the ILC briefly, followed by a paragraph 
dedicated to the specific learning algorithm used in this paper.

A. Modelling the Actuator
The model of the actuator consists of a mechanical, electrical 
and a magnetic subsystem. For an explanation of symbols and 
parameters, see Table 1. The mechanical subsystem is 
modelled as a spring-mass-damper system including the 
external magnetic forces Fu of the upper and Fj of the lower 
electromagnet. A force balance yields

m ^v(t) _ _ DY(t) _ QV(t) + p (t) + p (t)
dt

(1)

The two coils are modelled by an electrical subsystem, 
consisting of a resistance/reluctance-circuit. The coil 
reluctances are inversely proportional to the armature gaps Y- 
Yrh or Yu-Y-h, respectively. The coil currents Ii/U(t) are 
modelled with a non-linear function of the armature gap and 
the flux, yielding

dO.(t)
V1(t)=R f,(<D ,,Y -Y 1- h )  + 

and

V (t)=R f,(O u,Y  -  Y - h )  +

dt

dOu(t)
dt

(2)

(3)

as the two equations for the lower and upper coil, respectively. 
The mechanical and electrical subsystems are linked by the 
magnetic force equations of the two electromagnets, 
F ^ - f ^ . Y - Y . - h )  (4)
and

F = f„JO  ,Y  - Y - h )  (5)
To summarise, the actuator has two inputs, upper voltage Vu(t) 
and lower voltage Vi(t), respectively. The actuator output is 
the armature position Y(t). The four elements of the state 
vector are position Y(t), velocity V(t), lower flux ®i(t) and the 
upper flux <Du(t). Thus, the state space description of the 
model is given by

f =v
i _ D Y _ G v  + ̂  + i
dt m m m m  
dOa
dt 

dOl
— = - R f I(0 „ Y 1- Y - h )  + Vl 

dt

■ = -Rf,(<&.,Y. - Y - h )  + V

(6)

(7)

(8)

(9)

VII. D e s ig n  o f  t h e  It e r a t iv e  L e a r n i n g  C o n t r o l l e r

The input and the output sequences of the closed loop system 
are Yd[n] and Y[n], respectively. To formulate an ILC in a 
compact way, it makes sense to describe this mapping by 
defining the operator
r : 9 T  H > 9 T a s y = r ( y d) (10)

y jn j

y , =

and

y=

y jn ^  + N - l ]

y K + i ]

( i i )

(12)

_y[nib + N]_
nfb is defined as the indice of the first sample after switching 
on the feedback controller. N is the number of values later 
involved in the ILC. As mentioned above, the lower case 
notation of a signal stands for its deviation from the 
equilibrium point.

The purpose of the ILC is to find some vector yd* with the 
property yd ~ T(yd*). In order to solve this problem, the cyclic 
opening and closing of the valve is exploited. Let the cycles 
be numbered with k. In the first cycle, the input vector yd[l] = 
yd.is applied to the system. This vector and the corresponding 
output vector y[l] are used to generate an improved input 
vector yd[2] for the next cycle, and so forth. Thus, a linear 
formulation of the ILC algorithm reads as [7].
yd[k+l] = Syd[k] + E(yd[l] -  y[k]) (13)
where the matrices S and E weight the previous input yd[k] 
and the previous error e[k] = yd[l] -  y[k], respectively. They 
have to be chosen in a way that the sequence {yd[k]} 
converges
y i= fe? y ,[k ] (14)
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A. Design of the Learning Controller
Similar to the feedback controller, the learning controller is 
designed using the linearised model of the plant calculated in 
the section VI. Define the convolution matrix

P  =

h[l] 0 0 0 0 '

h[2] h[l] 0 0 0

h[3] h[2] h[l] 0 0

h[N -1 ] h[N -  2] h[l] 0

h[N] h[N -1 ] h[N -  2] h[2] h[l]

(15)

v[k + l] =
cl

v.[k ]+ — p. V ie  [0, N -1 ]  
CL

(23)

The above choice of E and S yields a decoupled learning 
algorithm. Thus, to determine the convergence of the learning 
controller the convergence properties of N scalar equations 
can be studied instead of a matrix equation. Solving the 
recursive equation (23) yields

v.[k]=11-G. I v.[0] + - (1 CTi) p, V ie  [0,N -1 ] (24)

The matrix entries are the elements of the impulse response 
sequence {h[n]} of the linearised, discretised closed loop 
system, therefore T(yd) ~  Pyd holds true close to the 
equilibrium point [7]. To derive the ILC used in this paper, 
the singular value decomposition (svd) is applied to the 
convolution-matrix

P -  LAR (16)

where R and L are orthonormal matrices, A is a diagonal 
matrix with the elements

a 0 >c. >0 V ie [ l ,N  -1] (17)

The largest singular value o0 is the Lj-norm of P. The 
learning algorithm is determined by setting [7]

S = I 

and

E = — RLT 
cl

(18)

(19)

The equation converges to v- =jL_ for h _  ̂lei.with a  = — .

This is always true due to the svd property a0 > c-, > 0. The 
convergence speed is determined by i_ CT.

V I E . M o d e l l in g  o f  t h e  C a r  E n g i n e  t o  E v a l u a t e  t h e  
P e r f o r m a n c e  o f  In t e r n a l  C o m b u s t i o n  E n g i n e  w it h  

E l e c t r o m a g n e t ic  A c t u a t o r

PI

Figure 5: Snapshot of the Internal Combustion Engine 
Modelled in Simulink

This learning algorithm is now analysed with the help of the 
discrete, linearised model. Using in equation (13) the linear 
model equation y = Pyd yields

yd[k+l] = Syd[k] + £(yd[l] -  Pyd[k]) (20)

With equations (16), (18) and (19), equation (20) can be 
written in the form

R Tyd[k + l] = I - J - A ] R ' yj[k]+— L'y,[l] (21)

Let v[k]= R T y d [k] and p = LT y d [1], equation 21 reads as

'  1 '  I — —A
1

v[k]+— p 
CL

v[k + l]=  

or rewritten in N separate equations

(22)

The use of graphical dynamic system simulation software is 
becoming more popular as engineers strive to reduce the time 
to develop new control systems [5]. Dynamic system 
simulation software is an important tool for developing 
advanced reliable and high quality products. Thus, the skill of 
real-time complex systems modelling is the inherent goal of 
many modem mechatronic systems.

As mentioned in section I, M a t l a b ® S i m u l in k  modelling tool 
was chosen because of the wide exposure of this software in 
both academia and industry. The ICE model, snapshot of 
which is shown in Figure 5, created was used to evaluate the 
benefits of employing the electromechanical actuator 
controller algorithm developed. In addition, the model is used 
to simulate a sequential-fuel-injected, spark ignition engine 
and includes air and fuel dynamics in the intake manifold as 
well as the process delays inherent in a four-stroke cycle 
engine. Primarily, this engine model is used as follows:
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1. As an embedded model within a control algorithm or 

observer
2. As a real-time engine model for hardware-in-the-loop 

testing
3. As a system model for evaluating engine sensor and 

actuator models
4. As a subsystem in a powertrain or vehicle dynamics model

Modular programming techniques were introduced to reduce 
model complexity by dividing the engine into hierarchical 
subsystems [8].

IX . S i m u l a t i o n s  a n d  C o n c l u d i n g  R e m a r k s

An electromechanical camless valvetrain controller was 
developed for a camless engine. Simulations confirm the 
functional ability of the electromechanical actuator to vary 
valve timing, lift, velocity and event duration, as well as to 
perform selectively variable deactivation in a four-valve multi
cylinder engine.

Figure 6 and Figure 7 show simulations of the actuator 
controller with the learning algorithm and a comparison 
between engine torques obtained with a dual overhead 
camshaft (DOHC) engine and an EMCV arrangement 
respectively.

The contact velocity reduces as k is increased. Low contact 
velocity is associated with low noise and high component 
reliability.

-4.25

 k = 13
-4.5

3  -4.75
k = 24

-5.0
Desired Position

8.0 13.07.0 9.0 10.0 11.0 12.0

Time [ms] j

Figure 6: The position Y(t) tends to the desired position Yd(t) 
(solid) with increasing k. The figure shows k e  [1,13,24]

Throttle-free load control; whether with electromechanical or 
electro-hydraulic valvetrain, offers modem internal 
combustion engines a fuel consumption benefit of 10 per cent. 
Based on the present trends toward the employment of the 
variable valve timing methodology, it is evident that BMW’s 
VALVETRONIC system is the next step in the foreseeable 
future.

This paper also presents a rapid prototyping approach to 
complex internal combustion engine modelling. The use of 
model based control methods designed to meet future 
emission and diagnostic regulations has also increased the 
need for validated engine models.

Torque with VVT EMCV
115

'B 100£

oH

Torque with DOHC

1600 3200 4800 6400 80000
Engine Speed [1/min]

Figure 7: Simulated Torque Generated with the DOHC vs. 
EMCV
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Fast Internal Combustion Engine Knock 
Processing Algorithm Using an Automotive 

PowerPC System-on-a-Chip

Mohamed Anas, R. J. Paling, W. H. Nailon and D. R. S. Cumming

Abstract— T h is paper discusses a novel h igh perform ance  
knock detection  strategy using a next generation  au tom otive  
System -on -a-C hip . The proposed algorithm  is based on  
autonom ous on-chip  m odules and an auxiliary  signal processing  
exten sion  to the m ain System -on-a-C hip  core. R eal-tim e softw are  
developm ent techniques w ith  an advanced  softw are circu lar  
bu ffer  im plem entation  for processing the stream ing knock sensor  
data have been  developed. V arious single instruction  m ultip le  
data so ftw a re  optim isation  techniques are em ployed to reduce the  
real-tim e knock  algorithm ic execution  tim e. R eal-tim e and  
sim ulation  resu lts are presented  for the detection  o f  knock on a 
four cy lin d er internal com bustion engine, but, the approach  is 
w id ely  app licab le . T he efficient coding and optim isation  
techn iques used for the single  instruction  m ultip le data  
im plem entation  o f the a lgorithm  have been show n to im prove  
com putational perform ance and as a result utilises m inim um  
com bustion  event tim ing.

Index Terms— Internal com bustion  engine knock, SoC , sign al 
detection , s ign al analysis, softw are perform ance, real tim e  
system s, F IR  d igita l filters, S IM D , in tegrators

I . In t r o d u c t io n

K nock in internal combustion engines (ICE) refer to the 
premature self or auto ignition of the air-fuel mixture 

in the engine when the unburnt mixture’s temperature and 
pressure have exceeded a critical point. Frequent occurrence 
of this knock phenomenon causes permanent damage to the 
ICE and should be avoided. However, in order to obtain 
maximum power, modern engines are run at their borderline 
limit of incipient knock using closed-loop control of spark 
timing based on knock sensor feedback [1], [2], [3].

In a four stroke engine, during normal drive cycles, the air- 
fuel mixture in the cylinder is compressed by the engine's 
piston to a high pressure. A timely spark generated by the 
mounted sparkplug then ignites the fuel near sparking point,

Manuscript received November 02, 2004. This work was fully supported 
by the 32-bit Embedded Controller Division of Motorola SPS Limited under 
the industrial EngD sponsorship scheme.

Mohamed Anas and Robin Paling are with the 32-bit Embedded Controller 
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Mohamed. Anas @ ieee.org).
W. H. Nailon is with the University of Strathclyde, Glasgow G1 1XQ, U.K.
D. R. S. Cumming is with the University of Glasgow, Glasgow G12 8LT, 
U.K.

which then creates a flame front. As this flame front 
propagates throughout the air-fuel mixture, the remainder of 
the air-fuel mixture is burnt in a highly controlled manner, 
which gradually increases the cylinder pressure to push the 
piston downwards. As the piston moves away, the pressure 
eases. Engine knock occurs when the air-fuel mixture ignites 
before the flame front can reach it [1]. This uncontrolled 
ignition of the air-fuel mixture causes it to burn in an irregular 
and explosive manner. This rapidly expanding mixture exerts 
a sudden pressure wave, which produces a sizeable force on 
the surroundings of the combustion chamber [1], [2], [3].

Knock W indow

Strong Knock

S lig h t K n o c k

Norm al Com bustion

-20 T C 20 40 60
° C A

Fig. 1. Cylinder Pressure versus Crank Angle (CA)

In severe cases, the piston may still be moving upwards to 
compress the air-fuel mixture. As such, it cannot move away 
to ease the build up of pressure wave. This results in severe 
stress on the engine and should be prevented as permanent 
engine damage can occur. Fig. 1 shows three plots of cylinder 
pressure against crank angle of a single cylinder engine with 
ignition timing three degrees apart between each trace flj. 
ICE knock usually occurs under wide-open-throttle (WOT) 
operating conditions. As shown in Fig. 1, if the normal 
combustion cycle is advanced by some three degrees, a slight 
knock occurs which indicates the engine has reached its limit.
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Further timing increase produces severe knock. A common 
reason for engine knock is using poor quality gasoline with too 
low an octane rating, which has the tendency to ignite 
prematurely [1].

Normally, all internal combustion engines are designed to 
run with a minimum octane rating gasoline. Another source of 
combustion knock is insufficient cooling of the engine. When 
the temperature in the engine gets too high, it can trigger fuel 
to suddenly self-ignite. Even with good cooling of the engine, 
a poorly designed engine may have "hot spots" that do not get 
cooled properly. This could be due to recirculation zones, 
crevices or failure to properly exhaust burnt gases. Yet 
another possibility is the use of a turbocharger on an engine 
that is not designed and recommended by the engine 
manufacturer. Since turbochargers compress air at the engine 
inlet, pressures in the engine get much higher than the engine 
was originally designed for. Like high temperatures, an overly 
high pressure (above 14:1 for gasoline) also triggers the fuel to 
prematurely self-ignite.

The rest of the paper is organized as follows. Section II 
provides an overview of the state-of-the-art knock detection 
systems and the impact of knock in ICEs. Section III describes 
the developed Single Instruction Multiple Data (SIMD) 
PowerPC system-on-a-chip (SoC) based hardware platform. 
Section IV introduces the developed knock detection algorithm 
based around the SoC. This section particularly highlights the 
knock sensor, its conditioning circuit and the efficient use of 
the micro-architectural elements. Section V introduces the 
overall software platform including SIMD functionality. We 
present results and discussions with measured data in section 
VI before concluding the paper highlighting the benefits of the 
proposed SIMD SoC micro-architecture.

II. I m p a c t  o f  K n o c k  a n d  it s  R e a l -t im e  P r o c e s s in g

Impact of knocking in an engine depends on its intensity and 
duration. Trace knock has no significant effect on engine 
performance or durability. Heavy knock can lead to extensive 
engine damage. The engine can be damaged by knock in 
different ways: piston ring sticking; breakage of the piston 
rings and lands; failure of the cylinder head gasket; cylinder 
head erosion; piston crown and top land erosion; piston 
melting and holing. Knocking is one important factor limiting 
the efficiency of an engine and is therefore of great importance 
to the engine manufacturers [1], [2], [3], [4].

There are several different approaches to detect the presence 
of knock in engines, see e.g. [5], [9] -  [15]. One of the classic 
techniques presently used in production engines is based on 
application specific integrated circuits (ASIC) with limited 
programmability, such as the ProSAK™ knock control ASIC 
[16] and The HIP9011 ASIC [17].

Due to the high cost of direct knock sensors, most of the 
current knock detection systems are based on structural 
vibration signals obtained using an accelerometer [13].

This signal is then processed by aforementioned ASICs that

include the functionalities, analogue filtering, rectification and 
integration. The final integrated value obtained is then 
compared to a heuristically determined threshold to determine 
the presence of engine knock [5]. Several laboratory based 
methods[5], [9], [11], [13] -  [15] have also been proposed for 
the extraction of the energy in the resonance frequencies 
generated by combustion knock, however such methods are 
not useful for engine manufacturers as they are not cost 
effective and particularly computationally demanding in 
production engines. Additionally, there is very little 
information available on the real-time implementation of such 
detection methods.

III. SoC B a s e d  H a r d w a r e  K n o c k  E v a l u a t io n  P l a t f o r m

A high level overview and a block diagram of the embedded 
SoC knock evaluation platform is shows in Fig. 2. It employs 
an MC33394 Power Supply IC [16] and connectivity to other 
basic optional communication protocols available on the SoC.

The SoC platform has two levels of memory hierarchy. The 
fastest accesses are to the 32 kB unified cache. The next level 
in the hierarchy contains the 64 kB on-chip SRAM and 2 MB 
of internal flash memory. Both the on-chip SRAM and the 
flash memory can hold instructions and data.

The complex I/O timer functions of the SoC are performed 
by two enhanced Time Processor Units (eTPU). Off-chip 
communication is performed by a suite of serial protocols 
including Controller Area Networks (CAN), enhanced Serial 
Peripheral Interfaces (SPI) and Serial Communications 
Interfaces (SCI). The SoC has an on-chip 40-channel 
enhanced Queued dual Analogue-to-Digital Converter 
(eQADC).

The SoC core embedded on the evaluation board complies 
with the classic PowerPC Book E architecture. It is 100% user 
mode compatible (with floating point library) with the classic 
PowerPC instruction set [16]. The SoC core consists of a 
register file with 32 64-bit registers. In addition to the vector 
instructions used for the development of the algorithm, the 
PowerPC 32-bit instructions used operate on the lower (least 
significant) 32 bits of the 64-bit register. The vector 
instructions defined view the 64-bit registers as vectors of two 
32-bit elements, and some of the instructions also read or write 
16-bit elements. These instructions are used to perform scalar 
operations in the algorithm developed.

IV. P r o p o s e d  S o c  B a s e d  K n o c k  P r o c e s s in g  

M e t h o d o l o g y

A. Resonance Frequencies in a Knocking Engine
The resonant frequencies excited by the presence of knock 

depend on the geometry of the combustion chamber and the 
speed of sound in the cylinder charge [1], [2], [3], [4]. These 
resonant frequencies are typically estimated by assuming an 
acoustic model for the combustion chamber.
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Fig. 2. Overview of Hardware Knock Evaluation Platform

For a homogeneous gas filled, acoustically hard walled ideal 
cylinder, the resonance frequencies are given by Draper’s 
equation [4],

,  = C.ylf
7TB

where f m n is resonant frequency, „ is a non-dimensional 
mode number, c0 is the phase velocity constant, T  is the 
combustion mixture temperature, B is the cylinder bore 
diameter and the integer subscriptions m and n denote radial 
and circumferential mode numbers. Generally, the axial mode 
is neglected as knock generally occurs when the piston is just 
past the top dead centre (TDC) position and at this instance; 
axial dimension is negligible compared to the radial 
dimension.

B. Knock Sensors
Knock sensors can be partitioned into the categories of 

direct and remote measurement devices. Direct sensors 
measure the pressure inside the combustion chamber 
necessitating each cylinder to encompass a dedicated sensor 
and such sensors operating in harsh conditions tend to be 
expensive, whereas the remote tuned or broadband 
measurement sensors use the vibrations transmitted through the 
structure of the ICE [13]. Typically, the resonant point of the 
tuned sensor is centred on the fundamental knocking 
frequency, which is between 5 kHz and 7 kHz, whereas the 
bandwidth of broadband sensors tend to be between 1 kHz and 
25 kHz and this tends to be the most cost effective since a 
single sensor could cover a range of resonance frequencies 
[13].

The basis for the implemented knock processing 
methodology is based on broadband sensors. However, with 
minor modifications, the proposed methodology can be used 
with data obtained using pressure and acoustic information.

Optimal location of accelerometers is heuristically chosen 
so that the sensor is not in a “dead” area and the transmitted 
quality of the signal has the highest SNR. The interface 
circuitry shown in Fig. 5 provides impedance matching for the 
knopfy sensors and a highpass filter attenuating frequencies 
below 1 kHz. An on-chip digital multiplexer, selects the 
appropriate knock input of the active cylinder. In our 
evaluation, the sensor was placed in the threaded screw hole 
on the frame rib intersection of the upper part of the engine as 
prescribed by the manufacturer.

The developed knock kernel was validated using the 
structural vibration signal obtained using a piezoelectric 
accelerometer generated by a four cylinder engine (V4). This 
signal was acquired at a sampling rate of 50 kHz using a 
broadband knock sensor with a 25 kHz flat frequency 
response. In order to avoid engine damage, only 20% of 
knocking cycles were introduced at 4000 RPM in the engine in 
a strictly controlled manner. Fig. 3 and Fig. 4 show an 
example set of the accelerometer signals, highlighting the 
fundamental knock frequency of the engine used and their 
power spectral densities respectively.

C. Knock Sensor Data and Algorithmic Flow
Fig. 5 illustrates the knock sensor data and the algorithmic 

flow. User programmed eQADC commands are contained in 
the on-chip memory in a user defined data structure. The 
eQADC command data is moved from the command queue to 
the command FIFO buffer by either the host CPU or by the 
enhanced Direct Memory Access (eDMA) controller. Once 
the command FIFO is triggered and is transferred into the 
ADCs on chip, the ADC executes the command, and the result, 
i.e. a pair of time stamp and data is moved through the result 
FIFO by the eDMA or the host CPU in to the circular buffer in 
the on chip memory.
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As shown in Fig. 5 , each sampled data point x|n] follows its 
time stamp t[n] into the circular buffer.

The data in the circular buffer is then processed and 
presented by the knock task management software threads to 
the key SIMD knock signal energy extraction elements. As 
explained in section V, based on the status of the knock task, 
the stored streaming data is then bandpass SIMD FIR filtered 
to extract the signal of interest. This bandpassed signal is then 
squared, integrated and compared to determine the presence of 
knock.

D. Computationally Efficient Minimum Length Bandpass
Filter Design and Analysis
The FIR was chosen because it can provide linear phase 

over a specified range of frequencies. The input, x(n) and the 
output y(n) signals to the FIR filter are related by the 
convolution sum [6].

y(n) = '£Jh (k)x(n -k)
k =0

where h(k), k = 0, 1, ..., N -l, are the impulse response 
coefficients of the filter and N is the filter length, that is the 
number of filter coefficients.

To achieve highest computational efficiency and to reduce 
design and evaluation time, accurate estimation of the minimal 
FIR bandpass filter length required for the algorithm was 
estimated using the following empirical relationship [7], [8]. 
The parameters used to specify the bandpass filter are, 5p, 5s -  
passband and stopband ripples, AF -  transition bandwidth 
normalised to sampling frequency, b l = 0.01201, b2 = 
0.09664, b3 = -0.51325, b4 = 0.00203, b5 = -0.57054 and b6 
= -0.44314.
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A F
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Fig. 5. Data and Algorithmic Flow of the Proposed Knock Kernel
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8
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* ( £ , $ )  = -14.61ogl -16.9

FIR coefficients were calculated using windowing, equi- 
ripple and least square error minimization techniques. The 
least-squares error minimization scheme produced the desired 
frequency response and the coefficients obtained were used for 
the real-time implementation of the bandpass filter.

E. Dual-Point Backward Difference Integrator
The square of the bandpassed FIR output is subjected to a 
backward difference integrator. For a single point integrator, 
the output y[fc] is given by,

y[k] = y [ k - l ]  + Tx[k]
where y[k-l] is the previous integrator output, Ts is the 
sampling interval and x[k] is the square of the filter output. 
Computation of present integrator output requires a single or 
scalar data point and the previous integrator output. However, 
the SIMD bandpass FIR block developed computes two back- 
to-back filtered output points simultaneously, which are then 
squared in parallel. In order to exploit the concurrent 
availability of two such data points and to reduce the 
computational burden involved with conversion of vector data 
points into scalar format for the single point integrator, a two 
point backward difference integrator was developed and this is 
given by,

y[k] = y[k - 2 ] + T (*[*] + x[k - 1])

This integrator saves ~ 15% of the computational bandwidth 
compared to that of a single point integrator.

V . Im p l e m e n t a t io n  o f  K e y  S o f t w a r e  a n d  H a r d w a r e  

E l e m e n t s  o f  t h e  K n o c k  K e r n e l

A. SIMD Software
Key software elements of the knock processing strategy was 

developed based around the SIMD functionality supported by 
the SoC as SIMD works best with arrays of streaming data. 
This SIMD code was written using the developed high-level 
programming model which can be used in conjunction with the 
classic C and C++ languages. This programming model 
eliminates the issues associated with writing code at the 
assembly level: register allocation, scheduling, stack
management and conformance to the underlying application 
binary interface (ABI). These SIMD instructions are 
supported by the signal processing extension (SPE) tightly 
coupled to the core of the SoC.

The SIMD programming model introduced consists of a set 
of fundamental data types supporting parallel loading and
storing of appropriate data into the 64-bit ( ev64 ) vector
registers as shown in Table 1.

SIMD 64-bit Data 
Type

Interpretation of Contents Values

__ev64_ul6__ 4 unsigned 16-bit integers 0 to 65535
__ev64_sl6__ 4 signed 16-bit integers -32768 to 32767

( ’ __ev64_u32__ 2 unsigned 32-bit integers 0 to 232-l
__ev64_s32__ 2 signed 32-bit integers -231 to 231-1
__ev64_u64__ 1 unsigned 64-bit integer 0 to 2m-1

ev64 s64 1 signed 64-bit integer -263 to 263-l

__ev64_fs__ 2 floats
IEEE-754 single- 
precision values

__ev64_opaque__ any of the above —

Table 1. SIMD Fundamental Data Types

B. Executing the Developed Knock Kernel 
Fig. 6 illustrates a 180° part of a 720° ignition cycle. As 

shown in this figure, the knock kernel is run once per cylinder 
combustion event, per engine cycle. The actions illustrated in 
Fig. 6 are then repeated for each of the other three cylinders of 
the V4 for a total engine cycle of 720°. Normally, the start of 
the knock window and the ignition pre-schedule time are both 
hard coded. Whereas the end of the knock window, the 
ignition scheduling, and the start and end of the ignition pulse 
are calculated during the operation of the engine. For 
example, the end of the knock window is determined by what 
the speed of the engine is at the start of the window.

Run Ignition

0 °  ■ 9 0 °  C o d e  —  180°

 H

(7)
Enable, store 
and process 
streaming 

knock 
window data.

Ignition Ignition Generate 
pre-schedule schedule Ignition Pulse

Fig. 6. Key Events in an Ignition Cycle of a Cylinder

C. Implementation of The Frame Based Advanced Software 
Circular Buffer (ACB) on The On-Chip SRAM Using An 
Enhanced Direct Memory Access Controller (eDMA) 
Channel
The software circular buffer scheme implemented to hold 

the streaming knock data involves the allocation of memory 
space on the on-chip SRAM of the SoC with sufficient space 
left over for most of the fast executable portions of the 
operating system (OS) and other active applications to reside. 
This buffer mechanism solves many of the problems associated 
with streaming high-throughput data acquisition on a multi
threaded / multi-tasking operating system. An eDMA channel 
is used to create the required circular buffer in the on-chip 
SRAM.

The 32-bit data word per knock window sample stored in 
the ACB consists of a 16-bit timestamp and the appropriate 
16-bit knock window sample. The eDMA channel runs 
continuously without software intervention.
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The ACB shown in Fig. 7 is used for the transfer of data 
between two processes, the continuous uninterrupted streaming 
eDMA transfers and the knock software thread processing, 
explained in section D. The producer process, namely the 
eDMA transfer, places items into the ACB and the consumer 
process, namely the knock software threads remove them for 
the algorithmic processing. The variable capacity of the ACB 
accommodates timing differences between the producer and 
the consumer processes.

In the implemented strategy, the software ACB executes 
faster than other queues that hold a variable amount of data 
since a fixed size block of memory is allocated just once from 
memory management and then reused. This circular buffer can 
be visualised as a linear buffer with indices that wrap, modulo 
the buffer size, when the end of the buffer is reached.

For the knock detection strategy, the ACB suited the overall 
implementation due to the decoupling requirement of the 
independent processes with different speeds. For example, a 
faster eDMA process can "burst" data into the buffer and 
continue with its processing. A slower thread, i.e., the 
consumer of that data can then read it at its own rate without 
synchronising and slowing the producer. In this type of 
application, the average rate, over time, of both processes must 
be the same to avoid an over or under flow condition of the 
ACB and this is referred to as the synchronous mode of 
operation.

In addition, sequencing is critical unless an appropriate 
method is used with the producer process executing first. To 
prevent unintentional incrementing of the tail pointer, the 
pointer is incremented only after the application has finished 
reading the data in the buffer and has indicated that the buffer 
space is relinquished for the write operation.

D. Knock Processing Threads
The time available for processing the developed knock 

kernel consists of a scheduling mechanism which contains 
tasks requiring system resources that should meet all logical 
and temporal constraints. As the knock algorithmic task is of 
predictable behaviour, i.e., periodic in nature, static scheduling 
is used in order to reliably meet all timing constraints. This is 
of fundamental importance when defining an allocation for 
hard deadline tasks in such a real-time environment. The 
knock kernel is portioned into two segments - one containing 
three threads, which are activated by a lms periodic task and 
the other containing all the background processing. As shown 
in Fig. 7, the execution of these threads is primarily dependant 
on the position of the circular buffer write pointer and the 
status of the knock window. Fig. 7 and Fig. 8 illustrate a 
typical scenario for thread level processing using the four 
frames of the segmented ACB. In order to keep the data frame 
boundaries at fixed buffer locations and to make optimal use of 
the algorithm, the overall circular buffer size should be a 
multiple of the frame size. As shown in Fig. 8;
■ Thread I: The millisecond task initially enters this thread to 

begin knock processing. As shown in Fig. 8, this thread is 
processed only if the knock window is in the open phase and 
only after a corresponding eDMA data transfer crossing a 
256 data frame boundary.

■ Thread II: As shown is Fig. 7 and Fig. 8, this thread only 
processes data packets consisting of 256 elements and is 
executed only when the knock window is in the open phase.

■ Thread III: This concluding thread is responsible for 
completing the knock widow data processing. The knock 
window should be in the closed phase for this thread to be 
invoked and executed.
If a multi-channel eDMA transfer is required, then the frame
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size should also be a multiple of the number of channels used. 
Doing so keeps the pointer arithmetic from becoming 
unnecessarily complex, which also keeps the core processing 
cycles to a minimum. Knock window open and closed data 
points are obtained by subtracting timestamp of the two events 
from the time obtained using the pre-fixed buffer boundary 
contents.
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Fig. 8. Thread Level Flowchart of Knock Algorithm

E. Implementation o f the SIMD FIR 
Key bandwidth intensive function of the knock kernel is the 

SIMD FIR. The FIR filter is implementable as a sequence of 
operations "multiply-and-accumulate", often called MAC. As 
shown in equation (2), in order to run an Nth order FIR filter 
it is necessary to have, at any instant, the current input sample 
together with the sequence of the N preceding samples. These 
N samples constitute the memory of the filter. In practical 
implementations, it is customary to allocate the memory in 
contiguous cells of the data memory or, in any case, in 
locations that can be easily accessed sequentially. At every 
sampling instant, the state must be updated in such a way that 
the data point x[k] becomes x[k -  1], and this seems to imply a 
shift of N data words in the filter memory.

Indeed, instead of moving data, for computational

efficiency, it is convenient to move the indexes that access the 
data as shown in the ACB in Fig. 8.

Fig. 9 illustrates the SIMD implementation of the bandpass 
FIR. The SIMD instruction, a.k.a., intrinsic, used for the 
implementation of the SIMD FIR inner loop utilises a 
dedicated fast hardware multiply accumulate (MAC) unit 
incorporated in the SPE, which allows back-to-back execution 
of dependent MAC instructions.

 e v 6 4 _ o p a q u e __
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FIR j -  Filler Taps - I

A ccumulator Outpi

Initialise Loop Counter V

Slop

Filter Taps

Is Inner Loop Counter 
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Increment Vector Loop 
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Data for SIMD Operation

MAC Outputs for Squaring

 e v _ g e t_ u p p e r_ u 3 2
 e v _ g e t_ lo w e r_ u 3 2

Fig. 9. Software Implementation of the Dual Point SIMD FIR

Fig. 10 illustrates this hardware MAC instruction, 
evmhossiaaw rD, rA, rB (vector multiply half words, odd, 
signed, saturate, integer and accumulate into words). In this 
instruction, the least significant 16 bits of rA and rB are 
multiplied for both elements of the vector and the result is 
shifted left one bit and added to the accumulator and the result 
is possibly saturated to 32 bits in case of overflow.

The final result is placed both in the accumulator and also in 
rD so that the result of this instruction can be used by 
accessing rD. As shown in Fig. 10, The 64-bit architectural 
accumulator register, rD, holds the results of the MAC 
operation. The accumulator is partially visible to the 
programmer in that its results do not have to be explicitly read 
to use them. Instead, for computational efficiency, they are 
always copied into a 64-bit destination GPR specified as part 
of the instruction. The accumulator however has to be 
explicitly cleared when starting a new MAC loop. Based upon 
the type of intrinsic used, an accumulator can hold either a 
single 64-bit value or a vector of two 32-bit elements.
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V I . M e a s u r e d  R e s u l t s  a n d  D i s c u s s i o n s

Table 2 and Table 3 show the measured cylinder combustion 
event bandwidth required to process the knock threads using 
the evaluation platform described in section III. In both tables, 
performance was evaluated by running the SoC at 132MHz at 
a sampling rate of 200kSamples/sec.

RPM

Thread Level 
Execution Timing in /is

%
Combustion 
Event Time 

Used for 
Thread 

Processing
15° Knock 

Window Threads
40° Knock 

Window Threads

I 11 III I 11 III 15° 40°

500 22 284 66 58 843 77 0.62 1.63

2000 72

NA

12 28 191 32 0.63 1.67

2500 60 16 36 97 68 0.63 1.68

4000 28 21 25 97 6 0.64 1.71

6000 11 22 33
NA

51 0.66 1.69

8000 16 10 63 1 0.68 1.71

Table 2. Bandwidth Required to Process Knock Algorithmic Threads with 
SIMD Code

RPM

Thread Level 
Execution Timing in /is

%
Combustion 
Event Time 

Used for 
Thread 

Processing
15° Knock 

Window Threads
40° Knock 

Window Threads

I II III I n m 15° 40°

500 53 711 164 145 2000 192 1.55 4.11

2000 179

NA

55 68 474 78 1.55 4.13

2500 149 38 90 238 169 1.56 4.14

4000 68 50 60 238 14 1.57 4.16

6000 27 53 82
NA

127 1.60 4.18

8000 38 22 156 0 1.61 4.17

Table 3. Bandwidth Required to Process Knock Algorithmic Threads with 
Standard C and Assembly Code

For example, in Table 2, at 500rpm, a 15° knock window 
task requires 372 (22+284+66) /xs to process the knock kernel, 
which is 0.62% of the overall cylindrical combustion event 
bandwidth of the V4.

The results obtained are based on a single-band bandpass 
filter applied to the primary knocking resonance frequency 
component. The measured integrator output shown in Fig. 11 
consists of both the noise and the appropriate resonance 
components in the band of interest. The normalised time in 
this figure shows the time required to produce the appropriate 
integrator output, a.k.a., knock index.

The knock free index, in other words, the pure background 
engine noise in the absence of knock is adaptively averaged 
and updated over time and this serves as the acceptable no 
knock threshold of the appropriate cylinder firing cycle [13].

As shown in [10], signal-to-noise-ratio of the overall 
process can be improved by selectively switching a multiband 
bandpass filter at higher engine speeds to extract all present 
knock resonance frequencies. Such a multiband filter can be 
designed using constrained least squares FIR filter design 
technique [18], [19],

0
CO
O)0)c
TJ
1

Fig. 11. Dual Point Integrator Output

We have shown that using a common architecture for both 
RISC and DSP instructions, in combination with autonomous 
on-chip peripherals, allows complex systems to be built around 
a single SoC platform, where previously two or more different 
processors would have been used together [13], [15]. Based 
on our results, it is also evident that real SIMD computers need 
to have a mixture of single instruction single data (SISD) and 
SIMD instructions. Importance of SISD elements in the 
micro-core to perform operations such as branches and address 
calculations that do not need parallel operation is also 
highlighted. It is also worth nothing that for efficient dynamic 
power management and flexibility, unused individual 
execution units of the SoC are disabled during algorithmic 
execution.

Our analysis confirms that SIMD works best in dealing with 
arrays of streaming data. Additionally, in the proposed 
architecture, sustained MAC instructions are executed in a 
single CPU cycle. In contrast, in a typical fixed-point 
microprocessor, a multiply and an add typically executes in 15 
to 20 CPU cycles [16].

Final Saturated 
Integrator Output

Normalised Tim e
Percentage Knocking Cycles
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The SIMD unit implemented also significantly increases 
execution speed by performing multiple operations in parallel. 
For instance, in the same instruction cycle that a MAC 
operation is performed, a parallel data move is carried out. 
SIMD enhancements in the SoC supplement the computational 
speed of present generation real-time processors used and 
make them ideal for high-performance real-time applications.

As shown in Fig. 12, computational bandwidth is what 
separates the SIMD based core from the classic CPU -  the 
ability to process an abundance of data, consistently, in an 
uninterrupted stream. Our measured results in Fig. 12 
confirms that the efficient coding and optimisation techniques 
used for the SIMD implementation of the knock kernel have 
improved performance by a minimum of xl.8. This figure is 
obtained by comparing the overall normalised knock task 
processing time, i.e., sum of time taken to run all three knock 
threads, shown in Fig. 8, with and without SIMD.

Without SIMD-

2000
4000 

6000 Engine RPM

Knock Window (Degrees)

Fig. 12. Comparison of Knock Kernel Processing Time with and without 
SIMD.

VII. C o n c l u s io n s

Streaming knock processing constitutes a significant part of 
current day average microprocessor workloads. To address 
this, a SoC combining SIMD DSP functionality with a classic 
microprocessor core has been developed. Peripherals on this 
SoC designed use fast register and memory based 
communication and synchronization mechanisms to deliver 
high performance. Memory based communication and 
synchronization is realised using the eDMA module. 
Parallelism in this application is exploited using a combination 
of orthogonal parallel processing techniques, namely 
instruction and data level parallelism (IFP and DFP).

A novel high performance knock detection strategy on an 
automotive SoC has been presented and the efficient use of 
various intelligent autonomous modules on the Motorola’s 
next generation automotive SoC combining IFP and DFP in 
the form of SIMD parallelism are described. The change from 
standard scalar 32-bit to SIMD vector based cores has been 
established, which allows the implementation of advanced 
algorithms with minimal processing time.
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