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Abstract 

 

DNA replication is an essential process in all eukaryotes initiated from sites 

termed origins of replication. Recent studies in the kinetoplastid species 

Leishmania and Trypanosoma brucei have revealed striking differences in the 

process of DNA replication between the largely syntenic genomes. T. brucei 

replication origins are generally consistent with previous eukaryotic models 

while Leishmania chromosomes appears to contain a single major origin, as is 

observed in bacteria, although how the parasites can complete replication in 

this manner remains unknown. Sites of DNA replication co-localise to strand 

switch regions where transcription initiation and termination also occur. 

However, not every strand switch region contains an origin of replication and 

differences between those containing an origin and those without have not been 

identified. The use of a variety of computational approaches, including machine 

learning, allow the investigation of origins of replication in both Leishmania and 

Trypanosoma brucei at the DNA sequence level and within the structure of the 

surrounding genomic context and further characterization of the different 

classes of strand switch region. 

A significant feature of the Leishmania genome is its ability to adapt in response 

to environmental pressures through copy number variation of genes and 

chromosomes and the formation of episomes, allowing the parasites to evade 

the host immune system and rapidly develop drug resistance through modulation 

of gene expression. Analysis of the sequence and structure of the Leishmania 

mexicana genome in serial passage conditions provides insight into the 

mechanisms underlying genome plasticity and presents a novel hypothesis 

explaining the potential relationship with DNA replication. 
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1.1 Biology of Kinetoplastid genomes 

1.1.1 Trypanosoma brucei and Leishmania spp. 

Leishmania and Trypanosoma are closely related protozoan parasites belonging 

to the order Trypanosomatida and class Kinetoplastea. These organisms are 

characterised by the presence of a kinetoplast, a cellular structure containing 

the cell’s highly unusual mitochondrial DNA (kDNA) (Adl et al., 2012; Liu et al., 

2005). 

The L. major and T. brucei genomes display a high level of synteny, with ~70% of 

genes found in similar genomic context (El-Sayed et al, 2005): an overview of 

this is shown in Figure 1.1. Despite this high level of synteny, the clinical disease 

manifestations, infection and transmission approaches, and strategies for 

immune evasion differ greatly between the two genera (El-Sayed et al., 2005a; 

Figure 1.1 Conservation of genomic material between T. brucei, T. cruzi and L. major. 

A. Gene clusters shared between and unique to T. brucei, T. cruzi and L. major. Adapted from El-
Sayed et al, 2005. Currently requesting permission for reuse. B. Diagram representing the location 
of synteny between T. brucei and L. major. The left panel contains the 11 T. brucei chromosomes 
colour coded in 36 colours which represent the chromosomes of L. major. The right panel shows the 
36 chromosomes of L. major with 11 colours depicting the corresponding T. brucei chromosomes. 
Adapted from El-Sayed et al, 2005. C. Coloured blocks depicting homologous regions across the 
genomes of T. brucei, T. cruzi and L. major. Syntenic regions between T. brucei and B. saltans, a 
non-parasitic kinetoplastid, are also included. Adapted with permission from (Jackson et al., 2015). 
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Jackson et al., 2015). Comparative genomics between these genera has revealed 

very few species-specific genes and the cause of the varying clinical 

manifestations of Leishmania species is currently unclear (Rogers et al., 2011). 

 
1.1.2 Life cycle, vector and transmission of Trypanosoma brucei 

Trypanosomiasis affects poor rural populations in sub-Saharan Africa, Asia and 

South America making development of these areas more difficult. T. brucei 

infects a host via an infected tsetse fly vector. Sleeping sickness disease caused 

by Trypanosoma brucei species affects both humans (human African 

trypanosomiasis (HAT)) and animals and contributes a significant medical and 

economic burden to the developing countries affected. T. brucei brucei infects 

cattle and domestic animals, while T. brucei gambiense and T. brucei 

rhodesiense cause disease in humans in West and East Sub-Saharan Africa, 

respectively (Franco et al., 2014). Animal trypanosomiasis, also known as 

nagana, is also caused by the species Trypanosoma vivax and Trypanosoma 

congolense in Africa. Trypanosoma cruzi causes Chagas disease across large parts 

of the Americas.  

 An overview of the lifecycle of the T. brucei parasite can be found in figure 1.2. 

The non-replicating metacyclic form of the parasite is found in the tsetse fly 

salivary gland and is injected into the bloodstream during a blood meal. The 

cells then differentiate into the slender replicative bloodstream form (BSF) and 

establish an infection in the host. BSF T. brucei differentiates in the host to a 

non-replicative short stumpy form which can be taken up by the tsetse fly during 

a blood meal. In the midgut of the tsetse fly, the short stumpy form then 

differentiates into the replicative procyclic form (PCF). 

BSF Trypanosoma brucei evades the host immune system through antigenic 

variation employed by the periodic switching of variant surface glycoproteins 

(VSGs), which form a dense coat. The VSG genes are organized into arrays in the 

sub-telomeric and telomeric regions of the chromosomes , although VSGs are 

also present among the intermediate chromosomes and mini-chromosomes 

(Glover et al., 2013). Only one VSG is expressed at a time, with all others 

suppressed. The C-terminal domain is conserved while the N-terminal is exposed 
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to the immune system and hypervariable among different VSGs. The basic 

organisation of a VSG includes one or more 70 bp repeats at the 5’ end and 

sequence homology at the 3’ end. The bloodstream expression sites (BESs) are 

located adjacent to the telomeres and include five to ten ESAGs that are co-

transcribed with the active VSG, with all BES to containing ESAG 6 and ESAG7 

(Becker et al., 2004). The expressed VSG is switched into the active BES where it 

is transcribed by RNA pol I. This switching process is known to occur through 

gene duplication and recombination of VSG cassettes and more recently by 

RAD51-independent pathways such as microhomology-mediated end-joining 

(MMEJ) that repairs double strand breaks (DSBs) using 5-25bp of imperfectly 

matched sequence (Glover et al., 2011). The mechanism of VSG switching 

creates diversity within the population, which allows the parasite to maintain 

infection within the host and continue to evade the immune response. 

Maintaining VSG transcriptional control is essential for parasite survival and 

coordination between this process and DNA replication has been suggested by 

studies based on T. brucei ORC1/CDC6 (a factor of the origin recognition 

complex related to Orc1). Following knockdown of ORC1/CDC6, metacyclic VSGS 

are derepressed in PCF cells and BESs are derepressed in BSF cells and PCF cells, 

although to a lesser extent in the insect-stage cells (Benmerzouga et al., 2013; 

Tiengwe et al., 2012). It is becoming clear that antigenic variation and DNA 

replication are linked but there is currently no evidence that DNA replication 

drives antigenic variation and these processes may be linked at a regulatory 

level to achieve optimal efficiency. 
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Figure 1.2. Lifecycle of Trypanosoma brucei. 

An overview of the T. brucei lifecycle between the mammalian host and tsetse fly vector. 
Slender BSF trypanosomes proliferate in the host bloodstream, expressing a VSG coat to 
evade the host immune system. Cells begin to differentiate to stumpy form as parasite 
numbers increase. The non-replicating stumpy form is then taken up by the tsetse fly during a 
bloodmeal. Parasites then differentiate into procyclic form in the fly midgut. These cells no 
longer have a VSG coat but instead express EP and GPEET procyclins. Procyclic form cells 
migrate to the salivary gland and attach as epimastigotes, which then generate non-dividing 
metacyclic cells that acquire the VSG coat and are transmitted to the next mammalian host 
during the tsetse fly bloodmeal. Reproduced with permission from Gull, 2009 [license number: 
4597121021546]. 
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1.1.3 Life cycle, vector and transmission of Leishmania major 

Several Leishmania species cause cutaneous and visceral leishmaniasis in humans 

with varying severity. Leishmaniasis is transmitted to human hosts by 

phlebotomine sand flies in the Old World and Lutzomyia sand flies in the New 

World. The parasite then invades and alters the function of macrophage cells in 

order to avoid the host immune response and the infection results in 

leishmaniasis (El-Sayed et al., 2005b). The pathology of the disease depends on 

the Leishmania species and also appears to be affected by the host immune 

response (Kaye & Scott, 2011). There are roughly 20 species of Leishmania 

responsible for varying species-dependent clinical manifestations of 

leishmaniasis (Alvar et al., 2012). L. major and L. mexicana cause a cutaneous 

form of the disease while L. donovani and L. infantum infect the liver and 

spleen causing a visceral form of leishmaniasis that can be fatal if untreated. A 

muco-cutaneous form of the disease is also caused by L. braziliensis. In some 

areas, treated cases of visceral leishmaniasis infection caused by L. donovani 

can reoccur some time after recovery as a cutaneous form known as post kala-

azar dermal leishmaniasis (PKDL) (Zijlstra, Musa, Khalil, & Hassan, 2003).  

In the host, Leishmania parasites exist in an intracellular amastigote form and as 

motile promastigotes in the sand fly vector. Several forms of promastigote occur 

in the sand fly vector and this stage of the life cycle has been discovered to be 

increasingly complex, in great contrast to the amastigote form in the 

mammalian host (Gossage et al., 2003). An overview of the Leishmania lifecycle, 

where the promastigote stages have been simplified, is shown in figure 1.3. 

Infective metacyclic promastigotes are transmitted to the host during the blood 

meal by the sand fly and phagocytosed by a host phagocyte cell, where the 

parasite then develops into the amastigote form and divides. Infected host 

phagocytes then lyse and release amastigotes, which then infect further 

phagocyte cells. The amastigotes taken up by the fly during a blood meal 

proliferate in the fly midgut and develop into procyclic promastigotes which 

then undergo several morphological changes to become non-dividing metacylic 

promastigotes that can infect a new mammalian host when transmitted during a 

blood meal (Kaye and Scott, 2011).  
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Figure 1.3. The lifecycle of Leishmania.  

Diagram of the general lifecycle of Leishmania parasites. Sandfly vector stage promastigote 
forms have been simplified. Amastigotes are taken up by phagocyte cells in the mammalian 
host where they then proliferate and infect further phagocyte cells. Amastigote parasites 
taken up by the sandfly during a blood meal proliferate in the fly midgut and differentiate into 
procyclic promastigotes and then metacyclic promastigotes which infect a new mammalian 
host. Reproduced with permission from Kaye and Scott., 2011 [license number: 
4597121427977]. 
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1.1.4 Unusual genome organisation and transcription 

Kinetoplastid nuclear genomes are unusual in that virtually all genes are grouped 

into arrays known as directional gene clusters (DGCs) that are transcribed 

polycistronically from a single promoter. DGCs can be divergent, convergent or 

head-to-tail (H-T), depending on the orientation of the genes. The region in 

between the DGCs is termed a strand switch region (SSR), which are also known 

as divergent, convergent or H-T based on the surrounding DGCs. An extreme 

example of this arrangement is chromosome 1 in L. major, a small chromosome 

which contains only two DGCs on opposite strands with a 1.6kb SSR in between 

(Dubessay, 2002). Polycistronic transcription is also observed in bacterial 

genomes, but kinetoplastids are distinct as the genes within a DGC do not 

appear to be grouped by function, and functionally related genes are found in 

different arrays although there are some notable exceptions including the T. 

brucei tubulin gene array on chromosome 1 (Kelly et al, 2012). The resulting 

transcripts are trans-spliced and polyadenylated: the 5’ end of each individual 

transcript is capped with a 39nt splice leader RNA sequence and the 3’ end is 

polyadenylated ready for translation (Liang et al, 2003). Bidirectional RNA pol II 

transcription initiation sites are marked by epigenetic factors, primarily 

modification of histones as well as the presence of histone variants. 

Transcription initiation sites in Leishmania are marked by acetylated H3, and in 

T. brucei display increased levels of acetylated K10 of H4 (H4K10Ac) and 

variants of H3 and H4 (Thomas et al. 2009; Siegel et al, 2005). 

Little is known concerning the termination of RNA Pol II transcription at the end 

of a DGC. However, it is significant to note that investigation of the 

hypermodified base J in Leishmania and T. brucei has found that this base 

localizes to the boundaries of transcription units (Cliffe et al, 2010) and the lack 

of this base causes transcriptional readthrough at termination sites, causing 

improper transcripts and  resulting in death of the parasite (Reynolds et al, 

2014; Van Luenen et al, 2012). Base J may therefore be associated with the 

correct termination of transcription. 

A high level of copy number variation is observed in kinetoplastids as a result of 

polycistronic transcription. A gene with a high copy number will generate a high 

level of mRNA transcripts in contrast to single copy genes. The position of a gene 
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within a transcription unit has also been associated with the level of resulting 

transcripts (Kelly et al, 2012). It was observed that rapidly downregulated genes 

were more often located close to the transcription initiation site while 

upregulated genes tended to be distal to the initiation site. GO-term analysis of 

proximal and distal genes found enrichment of genes associated with translation, 

the cell cycle and the cytoskeleton proximal to initiation sites while genes 

involved in transcription and RNA processing were enriched in distal regions 

(Kelly et al., 2012). This organisation may play a role in the regulation of 

transcription while allowing variation in gene copy number to generate further 

diversity between species. 

1.1.5 Genome plasticity in Leishmania spp. 

Mosaic aneuploidy, where cells can sustain uneven numbers of chromosomes in 

states other than diploid, is a common feature across Leishmania species and 

chromosome number therefore varies between species, strains and cell to cell. 

This means chromosomes in each cell may be present in more than two ploidy 

states, ranging from haploid to tetraploid depending on the chromosome, 

highlighting the level of plasticity in the Leishmania genomes (Rogers et al., 

2011; Sterkers et al, 2012). L. major chromosome 31 is consistently present in a 

state higher than diploid and this is observed across all studied Leishmania 

species. The consequences of abnormal ploidy are detrimental in most 

eukaryotes, due to the effects of gene dosage, however Leishmania are able to 

tolerate these changes, perhaps as a result of the unusual transcriptional control 

in kinetoplastids. Mosaic aneuploidy is used as a mechanism for generating 

genetic diversity and is thought to be involved in the parasite’s ability to quickly 

adapt to environmental changes, such as drug treatment, and evade the host 

immune system (Lachaud et al., 2014; Leprohon et al., 2009; Mukherjee et al., 

2013).  

Copy number variation (CNV) of specific genes can occur as well as whole 

chromosome CNVs that lead to aneuploidy. Homologous direct or inverted 

repeats in the DNA sequence have been associated with amplification of specific 

regions in the genome and the formation of extrachromosomal elements in the 

form of linear or circular episomes (J. M. Ubeda et al., 2014). The involvement 

of MRE11 in the formation of linear amplicons and RAD51 recombinase in the 



 26 
formation of circular amplicons has been demonstrated although the mechanism 

underlying amplicon formation remains unclear (Laffitte et al., 2014) . 

A known source of genomic rearrangement in eukaryotes occurs from errors in 

DNA replication which can lead to collapsed forks and result in DNA double 

strand breaks (DSBs) (Gent et al., 2001). DSBs are predominantly resolved by 

homologous recombination (HR) or non-homologous end joining (NHEJ), although 

few proteins associated with NHEJ have been identified in Leishmania and it is 

not clear if the process occurs in this parasite genome (Genois et al., 2014; 

Symington & Gautier, 2011). MRE11(Meiotic Recombination 11) and RAD50 

proteins are involved in DNA repair and protection of chromosome ends. The 

absence of these proteins in L. infantum leads to a decrease in the rate of DNA 

repair by HR and observed chromosomal translocations are associated with a 

microhomology-mediated end-joining mechanism (MMEJ) that has previously 

been observed in T. brucei (Burton et al., 2007; Glover et al., 2011).  

 

1.2 Initiation of nuclear DNA Replication  

DNA replication is an essential process in all organisms that is required for the 

inheritance of genetic material and organism survival. Strict regulation of the 

cell cycle and coordination of several factors are required to ensure that 

complete and faithful duplication of DNA molecules occurs only once during S 

phase. Initiation of DNA replication involves the recruitment of conserved 

initiation factors, a replicative helicase and DNA polymerase(s) to begin DNA 

synthesis (reviewed by Masai et al., 2010) . 

The region of DNA sequence where replication initiates is termed the origin of 

replication. Origins of replication are not well characterized across eukaryotes; 

with the exception of autonomous replicating sequences (ARS) in budding yeast, 

Saccharomyces cerevisiae and close relatives, there is no known motif or 

consensus sequence for replication origins in eukaryotic genomes (Nicholas P 

Robinson & Bell, 2005). Errors in the replication process can have significant 

consequences that may lead to deleterious effects within the cell and it is 
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therefore important that each full chromosome replicates correctly, most 

commonly from multiple origins. 

1.2.1 DNA origins of replication in bacteria 

A conserved origin sequence has been established in bacterial genomes, a 9 bp 

sequence called the DnaA box that determines specific sites of replication 

initiation (Robinson et al, 2005). Most bacterial genomes are circular and also 

have a single termination region. Bacterial origins of replication are termed oriC 

and contain several DnaA boxes. In E. coli, oriC contains five  DnaA boxes 

(Messer, 2002). The DnaA protein, comprised of 4 functional domains, binds to 

the DnaA boxes in oriC and initiates replication when complexed with ATP 

(Sekimizu et al., 1987). ATP-DnaA then binds additional ATP-DnaA boxes 

composed of the 5’ 6-mer AGATCT which flank the oriC site (Schaper & Messer, 

1995). 

1.2.2 Archaeal origins of replication 

In archaea, replication of the circular chromosomes can occur from a single 

origin or multiple origins (reviewed in  (Ausiannikava & Allers, 2017)). The first 

replication origin in archaea was identified in Pyrococcus, which was shown to 

have a single origin per chromosome (Baldwin et al., 2000). Since then, studies 

in Sulfolobus islandicus and Haloferax volcanii have identified three replication 

origins per chromosome and four in Pyrobaculum calidifontis (Lundgren et al., 

2004; Norais et al., 2007; Pelve et al., 2013). A conserved motif, termed origin 

recognition box (ORB), reminiscent of the DnaA box in bacteria, is associated 

with DNA replication initiation in archaea and is a demonstrated binding site for 

Orc1/Cdc6 proteins. Although the relatively simple genome is evocative of the 

organisation observed in bacteria, the replication machinery is distinct and more 

closely resembles the Orc1 and Cdc6 model associated with eukaryotes providing 

an interesting combination of features associated with DNA replication (Nicholas 

P Robinson & Bell, 2005). Archaeal genomes with multiple origins of replication, 

also contain multiple Orc1/Cdc6 homologs. For example, in Sulfolobus 

solfataricus, there are three origins and three Orc1/Cdc6 homologs, which 

demonstrate different binding affinities at each origin site where as this does 

not appear to be the case in the closely related S. islandicus where two of the 
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origin sites are bound exclusively by a specific Orc1/Cdc6 complex (N. P. 

Robinson & Bell, 2007). Study of distantly related archaeal species demonstrated 

that the presence of multiple origins is likely to have occurred due to horizontal 

gene transfer via integration of extrachromosomal elements (Robinson and Bell., 

2007).  

1.2.3 Origins of DNA replication in eukaryotes 

Based on the study of eukaryotic model organisms, it is known that replication is 

initiated through recruitment and binding of a specific complex of proteins to a 

region of DNA termed the origin at multiple sites on each chromosome (reviewed 

by (Burgers & Kunkel, 2017)). This process is tightly temporally and spatially 

regulated to ensure it only occurs once in each cell every cell cycle. An overview 

of the proteins involved, and complexes formed during eukaryotic replication 

initiation is shown in figure 1.4. All potential origins are recognised by the origin 

recognition complex but only a subset of these are activated in each cell during 

S phase. The first step of activation involves tightly regulated assembly of the 

pre-replication complex and licensing of the origin, and occurs during G1 phase. 

The origin recognition complex (ORC) is composed of six subunits, Orc1-6 (Bell & 

Stillman, 1992), and ORC-like initiation complexes are conserved in all 

eukaryotes although binding and recruitment can vary and no specific binding 

sequence has been identified (Zellner et al, 2007). ORC binds the origin 

sequence forming a ring structure. Cdc6, bound by ATP, binds to this complex, 

stabilising the interaction between ORC and the DNA. Binding of Cdc6 changes 

the complex conformation, allowing the recruitment of a replicative helicase, 

the minichromosome maintenance (MCM) complex, (MCM2-7) which is loaded 

onto the complex by Cdt1, to form the pre-RC (Bochman & Schwacha, 2009). 

The correct formation of the pre-RC (ORC-Cdc6-Cdt1-MCM), signals that the 

origin is licensed and is ready for replication to occur (Sun et al, 2013). 

Activation of licensed origins occurs during S phase and is dependent on the 

levels of two protein kinases, cyclin-dependent kinase (CDK) and Dbf4-

dependent kinase (DDK). Assembly of the pre-initiation complex (pre-IC) involves 

the loading of additional proteins and complexes (general overview in figure 1.4; 

reviewed by Burgers and Kunkel., 2017). Dpb11, Sld2, Sld3, Sld7, Cdc45 and the 

GINS complex are recruited along with Pol ε to form the pre-IC. Helicase 

activation is then achieved by Mcm10 and RPA. Once active, the helicase can 
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unwind the origin DNA, allowing formation of the replication fork and the 

initiation of synthesis. 

Figure 1.4. Initiation of eukaryotic DNA replication. 

General overview of proteins and complexes involved in formation of the pre-
replication complex (pre-RC) and pre-initiation complex (pre-IC). Binding of the ORC 
complex to the DNA is initially stabilised by the binding of ATP-bound Cdc6. This 
causes a conformational change which allows loading of the helicase complex, Mcm2-
7, by Cdt1, forming the pre-RC. Recruitment of additional factors Dpb11, Sld2, Sld3, 
Sld7, Cdc45 and the GINS complex forms the pre-IC which is ready for helicase 
activation. Activation of the helicase is performed by Mcm10 and RPA, allowing 
unwinding of the origin DNA. Reproduced with permission from Burgers and Kunkel, 
2017 [license number: 4597760295630]. 
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Despite the lack of a consensus sequence in most well studied eukaryotic 

genomes, recent studies demonstrate correlation between the presence of G-

rich sequences known as origin G-rich repeated elements (OGREs) and the 

majority of active replication origins (Cayrou et al, 2012; Besnard et al, 2012). 

The presence of OGREs can predict the formation of G-quadruplex (G4) 

structures, which potentially have a role in replication initiation and origin 

activation (Valton et al, 2014). The motif associated with these regions that 

have the potential to form the quadruplex is currently thought to be 

G�3NxG�3NxG�3NxG�3 (Maizels & Gray, 2013). The quadruplex is formed through the 

bonding of four guanine nucleotides into a cyclic hydrogen bond arrangement 

where neighbouring guanines each share a hydrogen bond (Maizels, 2006). 

Enrichment of the G4 motif is observed in telomeres and origin regions and is 

thought to be associated with the regulation of replication as well as 

transcription and translation (Valton et al, 2014). Centromeric regions are known 

to be very early–replicating in many eukaryotic genomes and generally contain 

highly repetitive sequences. In many species, centromeres contain 171bp repeat 

arrays known as alpha satellite DNA (reviewed by (Murphy & Karpen, 1998). 

Repetitive sequences are often associated with the impairment of DNA 

replication as these sequences can cause conformational changes and lead to 

genome instability. 

1.2.4 Origins of replication in Trypanosoma brucei and 

Leishmania spp. 

Recent studies in T. brucei have demonstrated that much of the replication 

machinery is retained in kinetoplastids although divergence is observed between 

the early-acting proteins involved in initiation (Tiengwe et al, 2014). 

Identification of kinetoplastid initiation factors orthologous to the ORC subunits 

and Cdc6 has been difficult, with only one initially determined through homology 

searches, TbORC1/CDC6 (Godoy et al., 2009). It is now possible to perform 

sequence homology studies for these proteins as ORC1-ORC5 and CDC6 contain 

AAA+ domains and are members of the ATPase family (Iyer et al, 2004). Several 

putative orthologs have been identified but only TbORC1/CDC6 contains this 

domain along with TbORC1B (Tiengwe et al, 2014). It has therefore been 

difficult to confirm further orthologous subunits using sequence comparison 

methods. Although it was previously suggested that the initiator role is filled by 
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the single factor TbORC1/CDC6, as this is observed in archaea, additional factors 

of the ORC complex have since been identified (TbORC4, Tb3120 and TbORC1B) 

(De Melo Godoy et al., 2009; Marques et al., 2016). Therefore, conservation of 

some proteins involved in the main replication initiation roles have been 

uncovered in T. brucei although some divergence is observed and the presence 

of additional factors associated with the process of initiation remains unclear 

(Tiengwe et al, 2014).  

ChIP-chip mapping of TbORC1/CDC6 confirmed that this protein is involved in 

DNA replication initiation as binding is observed at transcription unit boundaries, 

within the core T. brucei genome (Tiengwe et al, 2012). Origins were also 

mapped using marker frequency analysis (MFAseq) and co-localise with a fraction 

of the ORC1/CDC6 binding sites, suggesting only some of the sites are activated 

as origins. Further, more limited work, suggested that HU treatment could lead 

to activation of at least one further origin in chromosome 1 (Calderano et al., 

2015). Despite all origins mapping to SSRs, no common sequence has been 

observed in these regions, nor is it clear how the origins are distinct from the 

non-origin SSRs, which also bind ORC1/CDC6. An abundance of TbORC1/CDC6 

binding is also observed in the transcriptionally silent arrays of VSGs located at 

the telomeric and sub-telomeric regions of chromosomes (Tiengwe et al, 2012). 

Active replication origins have not yet been detected in these regions due to 

limitations of the MFAseq mapping technique, and the role of TbORC1/CDC6 

binding remains unknown. It is plausible that the binding of this protein 

indicates currently undefined replication or transcriptional activity in VSG arrays 

(Benmerzouga et al, 2013). The cues responsible for recruitment of 

TbORC1/CDC6 to the origin are currently unclear, though it may be of interest to 

study epigenetic features during the initiation of the replication process as this 

is known to be a common mechanism of regulation in higher eukaryotes. 

The T. brucei nuclear genome is comprised of 11 Mb chromosomes present in a 

diploid state but also contains aneuploid intermediate chromosomes and several 

minichromosomes (Berriman et al., 2005). Multiple early-firing (first half of S 

phase) origins have been mapped on each of the core 11 chromosomes of T. 

brucei through the integration of TbORC1/CDC6 ChIP-seq data and MFAseq 

(Tiengwe et al, 2012). MFAseq predicts origin location based on the ratio of 

reads that align to the genome in different cell cycle stages. This approach 
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identified 42 origins, mapping to the boundaries of transcription units in the SSR 

sections of the chromosome. The spacing between each origin is much higher 

than other eukaryotes, highlighting a low density of origins in the core T. brucei 

genome. No origins are observed in the sub-telomeric VSG arrays despite the 

high abundance of TbORC1/CDC6 binding. It is plausible that origins have not 

been detected in these regions because studies have not yet mapped late-firing 

origins. 

At the outset of this project, origins of replication had not yet been mapped in 

Leishmania and therefore no comparisons of origins between T. brucei and 

Leishmania and could yet be made. However, MFAseq analysis was applied to L. 

major and L. mexicana close to the start of the project, suggesting similarities 

and differences when comparing the two species (Marques et al., 2015). This is 

discussed in further detail in chapter 3.  

1.2.5 Replication and transcription in kinetoplastid genomes 

In both kinetoplastid genomes, the origins of replication map to regions on the 

chromosome where polycistronic gene arrays diverge or converge, called strand 

switch regions (SSRs) (Myler et al., 1999). There is a high level of activity at SSRs 

as initiation and/or termination of transcription is also known to take place at 

SSRs and therefore RNA pol II binding sites are located here. There is also a 

strong G/C bias in the Leishmania genome that may obscure a motif specific to 

origin sequences (Martínez-Calvillo, Vizuet-De-Rueda, Florencio-Martínez, 

Manning-Cela, & Figueroa-Angulo, 2010) . Characterization of origins at the 

sequence level is therefore confounded by the presence of several other 

elements involved in a number of processes, making it difficult to identify the 

origin DNA sequence. 

In T. brucei, the replication initiator protein TbORC1/CDC6 binds to replication 

origins at SSRs, sites also marked by RNA pol II promoters, indicating that sites of 

replication and transcription initiation appear to co-localise. RNAi against 

TbORC1/CDC6 results in an increase in transcript levels at the boundaries of 

gene arrays and also a loss of VSG silencing and therefore increased levels of 

VSG mRNA (Tiengwe et al, 2012; Benmerzouga et al, 2013). These changes may 

suggest a functional role for TbORC1/CDC6 in transcription as well as 
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replication, or at least an overlap between the machineries. Although this 

relationship remains unclear, it provides evidence for the co-ordination of 

replication and transcription in kinetoplastid genomes, which may involve 

interaction of the required machinery. This correlation in both position and 

function of replication and transcriptional initiation may be possible due to the 

post-transcriptional regulation of gene expression. 

There is a high level of constitutive transcriptional activity that traverses most 

of the genome in kinetoplastids and collisions between replication and 

transcription are likely occur more often than in other eukaryotes. This is 

frequently observed in T. brucei although a possible explanation for the 

localization of the replication and transcription initiation sites is to limit these 

events from happening excessively (Tiengwe et al, 2012). 

 

1.3 Aims and Objectives 

The current mapping of DNA origins of replication in kinetoplastid genomes 

indicates that the organisation of replication initiation sites differs between the 

closely related genomes of Trypanosoma brucei and Leishmania major. Due to 

the unusual structure of kinetoplastid genomes and the location of predicted 

origins, there is potential to identify the features that comprise an origin at the 

DNA sequence level. Additionally, the observed differences between these 

species are particularly interesting as genome plasticity, including mosaic 

aneuploidy, is a feature of the Leishmania genome that is not present in 

Trypanosoma brucei.  

The overall goal of this investigation was to further characterise DNA origins of 

replication in kinetoplastid genomes and understand the potential relationship 

between the process of DNA replication and the plasticity observed in 

Leishmania genomes. This was tackled as follows: 
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1.3.1 Objectives and Aims  

Objective 1: Characterise origins of replication in T. brucei and Leishmania at 

the DNA sequence level 

The first objective was to improve the current mapping of origin-containing sites 

by DNAseq-based marker-frequency analysis (MFAseq) and assess the sensitivity 

of this approach to confirm the observation of a single dominant origin per 

chromosome in Leishmania major and L. mexicana. It was also of interest to 

compare the MFAseq results with alternative peak-calling software. This was 

achieved with the following specific aims. 

Aim 1.1 Mapping replication origins in kinetoplastid genomes using MFAseq 

The existing MFAseq pipeline used to predict sites of DNA replication initiation in 

Trypanosoma brucei and Leishmania major and L. mexicana was built in Perl and 

required improvement for speed and simplification. The algorithm was re-

written in Java and used to reproduce the previous MFAseq results in Leishmania 

and T. brucei for comparison. 

Aim 1.2 Assessing the sensitivity of the MFAseq approach in Leishmania 

major 

Several simulations were performed in order to assess the reliability of MFAseq 

output in Leishmania major. These included the modelling of an origin-

containing region and the sampling of its presence in non-origin containing SSRs 

belonging to the same chromosome. The presence of individual dominant origins 

was modelled as well as multiple origins at a lower usage within the population. 

Aim 1.3 Refinement of peak calling 

Sites of DNA replication initiation predicted by MFAseq are currently determined 

by eye and there is currently no statistical method implemented to 

computationally define peaks within this output. A variety of peak calling 

software designed for analysis of ChIP-seq software is available and a selection 
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was chosen, based on the current literature, to attempt to solve this problem. 

To refine the current method of identifying peaks, the ChIP-seq peak calling 

software was applied to the MFAseq input data, the results were compared and 

improvements were evaluated. 

Aim 1.4 Conservation between species 

The current mapping of origins in T. brucei and Leishmania indicates differences 

in the genomic organisation of replication initiation sites. A comparison of the 

similarities and conserved features between the kinetoplastid genomes is 

discussed. Additional analysis of mapped origins in T. brucei is also of interest as 

little is currently known about replication of BESs, which are now assigned as 

contigs in the T. brucei Lister 427 reference genome. Statistical analysis was 

performed to validate the observation of a potential DNA replication origin at 

the BES expressed in this cell line. 

 

Objective 2: Investigate similarities and differences in replication origins across 

kinetoplastid genomes 

As the regions currently predicted to contain an origin in Leishmania are large, 

one of the objectives of this project was to investigate methods of refining the 

SSRs and the coordinates we consider to contain an origin of replication. Due to 

the unusual genome structure shared by kinetoplastids it was possible to focus 

on refining specific regions and compare the origin and non-origin containing 

SSRs at the DNA sequence level. This was achieved with the following specific 

aims. 

Aim 2.1 Identifying DNA sequence features of origin-containing regions 

It was important to identify existing annotated features of SSRs, including 

histone markers, and determine potential sequence features characteristic of 

origins e.g. the G4 motif previously associated with sites of DNA replication 

initiation. Multiple sequence alignment of origin-containing SSRs was performed 

and motif searching was applied to the SSR sequences. Genomic features, 



 36 
including SNP rate, were also compared across different SSR types, in the 

context of origin presence and SSR orientation as well as transcriptional activity, 

which is predicted based on mapping of histone markers.  

Aim 2.2 Refining the SSR coordinates 

To update the SSR coordinates in Leishmania, existing and updated gene models 

were examined using RNA-seq datasets. Use of RNA-seq data allowed the de 

novo prediction of gene models which extends the annotations of 3’ and 5’ UTRs. 

An alternative method, mapping the coverage of existing RNA-seq data, was also 

investigated to establish a read depth cut-off threshold that would denote the 

boundaries of a SSR. 

Aim 2.3 Predicting origins across species 

The applications of machine learning algorithms were investigated in an effort to 

determine DNA sequence features characteristic of a DNA replication origin. A 

support vector machine (SVM) algorithm was applied to the DNA sequence read 

data across SSRs to classify and predict origin-containing regions. Analysis of the 

features used by the algorithm makes it possible to discern sequence features 

that characterise DNA origins of replication. 

Objective 3: Use of genomic techniques to investigate the relationship between 

mosaic aneuploidy and DNA replication in Leishmania 

The final aim was to understand the potential relationship between DNA 

replication and the processes underlying genome plasticity in Leishmania. It is 

reasonable to hypothesise that these processes may be linked, particularly as 

replication may predominantly occur from a single origin on each chromosome in 

Leishmania. This association was investigated with the following specific aims. 

Aim 3.1 Identifying a relationship between plasticity and replication 

To establish whether it was possible to detect a relationship between the 

process of DNA replication and genome plasticity, analysis of genomic changes in 

serially passaged Leishmania mexicana promastigotes at the sequence and 
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structural level was performed. Genomic analyses, including SNP calling and 

investigation of gene and chromosome copy number variation, was carried out. 

Aim 3.2 Plasticity and the cell cycle 

A second dataset, in which replication is impeded, was generated to validate the 

observed relationship between DNA replication from a single dominant origin and 

chromosomal aneuploidy. The addition of hydroxyurea (HU) is expected to 

emphasize any changes in chromosome ploidy which occur during DNA 

replication. 

Aim 3.3 Comparison of DNA replication and aneuploidy in Leishmania 

Based on the results of the previous analyses, it was important to further 

analyse the relationship between chromosome size and ploidy change throughout 

passage as the observed changes in chromosome ploidy may be connected to 

replication from a single origin as the limits of effective replication are reached. 

This relationship and a potential explanation of the link between replication and 

aneuploidy are discussed. 
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2 General Methods 
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2.1 Next-generation sequencing 

Next generation sequencing of all T. brucei and Leishmania DNA libraries was 

performed on Illumina sequencing systems at Glasgow Polyomics. 

2.1.1 DNA sequencing in T. brucei TREU 927 

T. brucei TREU 927 DNA libraries were prepared by Dr Calvin Tiengwe and 

sequenced on an Illumina platform as described in Tiengwe et al., 2012. Reads 

were trimmed and pre-processed using FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and aligned to 

the T. brucei TREU 927 reference genome available at TriTrypDB (genome 

version 26) using Bowtie2 (Langmead & Salzberg, 2012). 

2.1.2 Generation of L. major Friedlin next-generation sequencing 

data 

DNA libraries were prepared and sequenced on an Illumina MiSeq platform as 

described in Marques et al., 2015. This work was carried out by Dr Catarina 

Marques and Craig Lapsley at the Wellcome Centre for Molecular Parasitology. 

The DNA sequence reads were trimmed using FastQC and aligned to the L. major 

reference genome (obtained from TriTrypDB version 26) using Bowtie2. 

2.1.3 DNA sequencing in L. mexicana M379 

2.1.3.1 Serial Passage of L. mexicana M379 promastigotes 

2x106 stationary phase L. mexicana M379 promastigotes were injected into the 

right footpads of Balb/c mice and a lesion was allowed to form. Amastigotes 

were purified from the footpad lesions then inoculated into promastigotes media 

and cultivated as promastigotes to stationary phase. The stationary phase 

culture was split into 3 flasks by diluting 200µL of the original culture into 10 mL 

new media for each flask. After 7 days of growth to stationary phase, the cells 

were passaged by adding 100µL of each culture to 5mL new media. If gDNA was 

extracted, 200µL was added to 10mL of new media. This was continued until 

passage 29. At passage 16, Balb/c mice were inoculated once more with 2x106 

stationary phase L. mexicana M379 promastigotes. Genomic DNA was extracted 
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at passage 0, 5, 10. 16. 20 and 29. This work was performed by Dr Samuel 

Duncan at the Wellcome Centre for Molecular Parasitology. 

DNA library preparation and next generation sequencing was performed by 

Glasgow Polyomics for all samples. Samples from passage 0 to 10 were 

sequenced on the Illumina Miseq platform and samples from passage 16 to 29 

were sequenced using an Illumina NextSeq 500 system. DNA sequence reads 

were trimmed and pre-processed using TrimGalore which incorporates FastQC 

and Cutadapt 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Reads 

were then aligned to the L. mexicana U1103 reference genome (obtained from 

TriTrypDB version 26) using Bowtie2. 

 
2.1.3.2 L. mexicana M379 with HU treatment 

L. mexicana M379 promastigotes were obtained from the lab group of Dr Richard 

Burchmore and set up in cultures of 1x106 cells/ml. This culture underwent 7 

passages, maintained below 1x107 cell/ml by passage every 48 hours, before 

being split into 3 replicates. Each replicate was then split into three once more 

and each culture exposed to 0mM, 0.1mM or 0.2mM hydroxyurea (HU). Cells 

underwent 7 further passages with HU added each time. At each time point 

gDNA was collected along with RNA, cells for DAPI staining and imaging and FACS 

to monitor cell cycle progression. This work was performed by Dr Jennifer-Ann 

Stortz. 

Genomic DNA libraries from the first triplicate passage and passage 7 under HU 

treatment were prepared by Craig Lapsley at the Wellcome Centre for Molecular 

Parasitology and sequenced on the Illumina NextSeq 500 platform by Glasgow 

Polyomics. DNA sequence reads were trimmed and pre-processed using 

TrimGalore and aligned to the L. mexicana U1103 reference genome (obtained 

from TriTrypDB version 26) using Bowtie2. 

2.1.4 Access of RNA sequencing datasets in L. major  

20 L. major promastigote RNA-seq datasets were downloaded from the sequence 

read archive (http://www.ncbi.nlm.nih.gov/sra), full details of the data is 
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provided in Table 2.1. The data was aligned using Hisat2 and the aligned RNA-

seq reads were merged into one file using samtools (Kim et al., 2015; Li et al., 

2009). 

2.2 Java programs 

2.2.1 Writing the MFAseq pipeline 

The Java program takes the raw genome DNA sequence alignment files for 

parasite populations sorted for early S phase and G2 phase cell cycle 

progression. This program is available at 

(https://github.com/CampbellSam/MFAseq). The plotted ratio is calculated by 

the number of reads aligning to the region during early S phase of replication 

and the number of reads aligning during G2 phase, scaled for the total read 

count in each phase. The output is a list of ratios for the for every 2.5kb window 

of each chromosome written to a wiggle file. This can then be uploaded as a 

custom track and viewed on TriTrypDB.org. The original pipeline was rewritten 

in Java utilizing API (application program interface) functionality from picard 

provided by samtools (http://www.htslib.org). A Python script was then adapted 

from this Java program by Dr Nicholas Dickens. 

2.2.2 Assessing the sensitivity of the MFAseq analysis in 

Leishmania 

The Python script calculates the distribution of reads across the real 

chromosome 36 origin and simulates this at a chosen region by allocating reads 

across 10kb regions based on the probability of a read starting within this region. 

A modified alignment file can then be written containing the real and simulated 

origins. To simulate the presence of a second origin that is used by 80% the 

population; the simulated alignment for this region was merged with an 

unmodified alignment file at a ratio of 5:1. This was repeated for 66% (2:1), 50% 

(1:1), 33% (1:2) and 17% (1:5). All of the modified and merged alignment files 

are from early S phase and therefore MFAseq could then be performed against a 

normal unmodified alignment file from G2 phase to observe the ‘fake origin’ 

peak sizes using TriTrypDB.org. Peaks considered an origin are determined by 

eye and there is currently no metric for exclusively determining an origin region, 

only the SSR it falls within. The SSR coordinates are determined from the 
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adjacent gene start/end locations. This script is available at 

(https://github.com/CampbellSam/MFAseq-sensitivity). 
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Table 2.1 Details of L. major Friedlin RNA-seq datasets 
accessed from the sequence read archive. 
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2.2.3 T. brucei VSGs Monte Carlo Simulation  

An in-house Java script was written to perform a monte-carlo simulation against 

MFAseq profiles in BESs compared to random genomic regions 

(https://github.com/CampbellSam/MFAseq-validation). The script requires 

aligned reads from early S and G2 phase cells in 2 samples and a predefined 

comparison region. For this region, the program will calculate a list of ratios 

representing the number of reads aligned in each eS and G2 for the procyclic 

form and again for the blood stream form. These lists are then compared using a 

mann-whitney u test which determines the likelihood that two distributions are 

the same. The resulting p-value (stored as x) represents the likelihood that the 

lists of numbers are the same. The program then chooses a random segment of 

the same length as the comparison region (in testing - 60kb) for a set number of 

iterations (user input, default=1000). The p-value (stored as y) from the random 

segment is then compared to that from the comparison region. If this value is 

less than the test value (y <= x), a counter is incremented and the chromosomal 

location and the value are added to an output file. When the set number of 

iterations are complete, the counter is divided by the number of iterations to 

obtain a final result which is an indication of how often you would observe the 

difference in ratios at the region of interest by chance. 

2.2.4 Motif searching  

2.2.4.1 Motif searching in T. brucei TREU927 

Bias caused by repeated DNA sequences within the T. brucei genome was 

removed using the tool RepeatMasker (http://www.repeatmasker.org). The output 

from this software is a file containing annotated coordinates of repeat regions 

and an alignment file with these regions removed. This version of the genome 

was then searched for sequence motifs using Trawler (Ettwiller et al., 2007). An 

in-house Java script was written to parse the T. brucei genome for the G4 motif 

(G�3NxG�3NxG�3NxG�3) using BioJava and regular expressions text analysis (Yates et 

al., 2012). The returned output from this script is a bed file containing the 

coordinates of the region matching this motif and the sequence that was a ‘hit’. 

The Java code can be found at https://github.com/CampbellSam/motif-search.  
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2.2.4.2 Motif searching in L. major Friedlin 

RepeatMasker was applied to the L. major Friedlin genome to reduce bias 

caused by repeated DNA sequences (http://www.repeatmasker.org). Sequence at 

origin-containing SSRs was then extracted from the masked genome file and used 

as input to Trawler. A Java script was then generated to detect the frequency of 

each base in origin and non-origin sequence using regular expressions. This was 

then extended to double base counts (e.g CC or AA) in a second script. The Java 

program used to perform this analysis can be found at 

https://github.com/CampbellSam/base-counts. 

 

2.3 Refining MFAseq output using peak calling software 

2.3.1 Preparation of input data 

The data used for input to each of the algorithms consisted of reads from early S 

L. major cells as the treated sample containing enrichment and G2 phase cells 

as the control sample with even coverage. As this data is contained in BAM files, 

Pyicos (https://bitbucket.org/regulatorygenomicsupf/pyicoteo) was used to 

convert the data to ELAND format and separate each chromosome into separate 

files which is required for input to FindPeaks. 

2.3.2 Command line ChIP-seq peak-calling software 

FindPeaks, MACS and a spatial clustering approach for the identification of ChIP-

enriched regions (SICER) were used to detect peaks of DNA sequence enrichment 

in our data. SICER has been developed to improve the detection of signals from 

enrichment over a broad region of the genome (Zang et al., 2009). FindPeaks has 

been designed to detect enrichment in short-read sequencing data (Fejes et al., 

2008). A working protocol for MACS is also available (Feng et al., 2012). Each 

piece of ChIP-seq analysis software was run using the command line in a Unix 

environment. An overview of the specific steps involved when using ChIP-seq 

peak-calling workflows is outline in figure 2.1. 
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2.3.3 Visualisation using Circos 

The output from each algorithm was converted to bed format and visualised 

using Circos (Krzywinski et al., 2009). Circos is visualisation software that 

accesses appropriately formatted data from locations specified in a 

configuration file and plots them as circular tracks. Thorough documentation is 

available at http://circos.ca/. 

Figure 2.5. ChIP-seq peak calling workflow. 

Diagram of the subtasks involved in the workflow of a typical ChIP-seq peak calling algorithm. 
Signal profiles are defined for both the ChIP sample and the background control. Peaks are 
then identified based on relative enrichment between the test sample and the background. A 
significance threshold is defined and used to refine the called peaks before filtering to give the 
final list of peaks signifying enriched regions. Figure adapted from (Pepke, Wold, & Mortazavi, 
2009), reproduced with permission (license number: 4499441401470). 
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2.4 Re-annotation of strand switch regions 

2.4.1 Re-annotating SSR coordinates in T. brucei Lister 427 

SSRs containing protein-coding genes were identified using the custom search 

feature available at TriTrypDB and coordinates were updated using the Genome 

Browser tool and the gene annotations available for T. brucei TREU 927 and T. 

brucei Lister 427. 

2.4.2 Generation of de novo gene annotations in L. major  

L. major Friedlin RNA-seq reads were accessed from the sra and aligned into 

transcripts de novo using Trinity 

(https://github.com/trinityrnaseq/trinityrnaseq/wiki) (Grabherr et al., 2013). 

This was performed on an AWS EC2 instance as this process requires a large 

amount of disk space. The resulting transcripts were then used to update 

existing gene models using the PASA pipeline (http://pasapipeline.github.io/) 

(Haas et al., 2003). Updated annotations were viewed against the original 

annotations using IGV (https://www.broadinstitute.org/igv/) and regions of 

interest were identified using Bedtools intersect 

(http://bedtools.readthedocs.io/en/latest/) (Quinlan & Hall, 2010; J. T. 

Robinson et al., 2011).  

2.4.3 Determining an RNA-seq coverage threshold 

RNA-seq coverage data based on overlapping read depth counts was generated 

using HTSeq implemented on the Linux command line (Anders, Pyl, & Huber, 

2015). A Python script to parse the read depth across the whole genome and 

SSRs was generated.  

2.4.4 Analysis of spurious alignments across SSRs 

Analysis of RNA-seq read coverage at SSRs was performed using a Jupyter 

IPython notebook (https://ipython.readthedocs.io/en/stable/). The total read 

count across SSRs containing an origin and those without was calculated and 

visualised as a boxplot using ggplot (http://ggplot.yhathq.com/).  



 48 

2.5 Machine learning 

Before applying the classifier the data must first be (1) kmerised, (2) vectorized 

and (3) transformed. An outline of this process is shown in figure 2.2. (1) The 

reads are split into kmers, which are then considered as the features i.e. the 

kmers belonging to each read are the features of each sample. This provides a 

large sample size compared to using the SSRs alone. (2) The kmers are then 

vectorized. (3) The final step is to transform the data set so that the least 

common features have the highest weighting and highly common features have a 

low weighting. 

Figure 6.2 Outline of machine learning workflow.  

DNA sequence reads are broken down into k-mers of a specified length. The k-mer features 
are then vectorised, transformed and used to perform the classification. This is done in two 
stages, first the k-mer data is used to train the SVM classifier before testing and predicting in 
an uncharacterised dataset.  
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2.5.1 Preparing k-mers from DNA sequence read data 

2.5.1.1 Manual region extraction and exporting prepared k-mers 

The k-mer generation step was initially written in a stand-alone Python script. 

Prior to running the script, DNA sequence reads aligning to the SSRs of the L. 

major Friedlin genome were extracted manually to a small alignment file using 

SAMtools and provided as input to the Python script. Tiled 10-mers were then 

generated for all reads and assigned class labels of ‘origin’ or ‘non-origin’ 

depending on the SSR they originate from. These k-mers were temporarily stored 

as individual lists for each SSR before being exported and saved in file to be used 

as input for the Python script that would perform the classification based on 

statistical learning and SVM implementation. 

2.5.1.2 Optimsation of k-mer generation 

This process was optimised by Dr Nicholas Dickens and the updated version is 

implemented in the current pipeline.The updated k-mer generation step does 

not require prior manual read extraction, only a list of regions of interest in BED 

format. The generated k-mers are no longer hard-saved to output files but 

stored within the Python script and formatted appropriately for input to the 

SVM. 

2.5.2 Support vector machine implementation using Scikit-learn 

The SVM was implemented in Python using Scikit-learn (Chang & Lin, 2013; 

Pedregosa et al., 2011). The Python program was co-written by Dr Nicholas 

Dickens. The resulting script is available at the following repository 

(https://github.com/CampbellSam/Origin-classifier). The following input 

parameters are required to train a SVM: indexed BAM file of aligned reads for 

training sample and 2 bed files containing the coordinates of origin and non-

origin regions in the sample species. The following optional parameters can also 

be specified: output file name, base directory, cpu, random seed value and the 

option print the top 10 features used by the algorithm to perform the 

classification. The trained machine can also be saved and used as input to the 
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script. Running the same script with and specifying –-machineIn will use the 

existing classifier to predict on supplied test data. The following input is 

required to test the algorithm on a new sample: base name of trained machine, 

indexed BAM file of aligned reads for training sample and a bed file of the test 

region coordinates.  

2.5.3 Implementation of Gkm-SVM 

The gapped k-mer SVM classifier, gkm-SVM is available to download at 

http://www.beerlab.org/gkmsvm/. The software requires sequence data in 

fasta format for positive and negative data sets. The sequence for SSRs 

containing origins was provided as positive data and those with no detectable 

origin as negative data. The software follows a general SVM outline and runs in 

three steps: (1) generate the kernel based on input data (2) train the kernel on 

training data (3) test the classifier by predicting on new test data. In the output 

each tested region will have a positive or negative value indicating whether it is 

predicted as origin or non-origin, respectively. 

 

2.6 L. mexicana Serial Passage Analysis 

2.6.1 Similarity of aligned DNA sequence samples 

Deeptools (https://github.com/fidelram/deepTools) was used to assess 

similarity between aligned samples. Specifically, the multiBamSummary 

command which can be used to produce heatmaps and correlation plots as well 

as a PCA. Each of these commands can use either a Pearson or Spearman 

correlation for the analysis. The data shown was produced using a Pearson 

correlation. CummeRbund 

(http://compbio.mit.edu/cummeRbund/manual_2_0.html), a set of tools intended for 

differential expression analysis of RNA-Seq datasets was also applied to 

investigate the average gene coverage across all samples. This requires Cufflinks 

FPKM (fragments per kilobase of transcript per million mapped reads) estimates 

from all samples as input. 
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2.6.2 Analysing the dataset using the PReP pipeline for genomic 

analysis 

Triplicate DNA sequence datasets from L. mexicana M379 in serial passage were 

provided from regular intervals sp0, 10, 16, 20 and 29, with the exception of 

serial passage 0 (sp0, passaged once) which is a single sample. Sample sp0 was 

extracted from a mouse infection and then passaged once to increase sample 

size. At sp16, the replicate samples were used to inoculate three mice and 

allowed to form a lesion over 10 weeks before a sample was extracted from the 

lymph node of each mouse. These samples again underwent a single passage to 

increase available DNA content and sequences were provided from these three 

replicate samples, allowing a comparison of post-mouse samples to be 

performed. The following steps were performed using the in-house Perl pipeline 

PreP (https://bitbucket.org/ndickens/prep).The reads were pre-processed 

including trimming and quality scoring using TrimGalore 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) before 

alignment using Bowtie2 and validation by samtools flagstats. Pre-processing and 

alignment of reads was performed as a batch job on an Amazon web services 

CfnCluster (https://aws.amazon.com/hpc/cfncluster/). Gene CNV data was 

generated across all samples using Cufflinks tools, including CuffQuant and 

CuffDiff (https://github.com/cole-trapnell-lab/cufflinks). While chromosome 

CNV was estimated using in-house scripts.  

2.6.3 Generation of SNP data 

Using the output from PReP, the Bayesian variant caller FreeBayes was used to 

detect SNP and variant data in each sample which was then visualised with 

Circos (http://circos.ca/). 

2.6.3.1 Analysis of SNP rate at SSRs 

Python notebooks using Jupyter (http://jupyter.org/) were used to write 

analysis and visualization of SNP rate across SSRs. In the initial analysis of SNP 

rate at origin vs non-origin SSRs, SNP rate was calculated per kb for each region 

using vcf file output from FreeBayes (https://github.com/ekg/freebayes). When 

comparing average SNP rate across all regions, SSRs were broken down into ten 
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bins and the average SNP rate was generated per kb for each bin to allow 

comparison of all regions accounting for differences in size. 

2.6.4 Investigating correlation between chromosome size and 

chromosome fold change 

In house Python scripts were written to investigate the relationship between 

chromosome length and fold change throughout passage. Python tools were also 

used in this script to perform a linear regression analysis for chromosome 

foldchange between sp0 and sp10 and sp0 and sp16. 

2.6.5 Protein domain search 

Protein domain annotations, based on the Pfam database and functional protein 

classification by InterPro, were accessed from TriTrypDB (version 26) for the L. 

mexicana genome (El-gebali et al., 2019; Mitchell et al., 2019). A Python script 

was written to parse the annotation file and focus on Pfam annotations only. 

Counts for each Pfam ID were generated for the whole genome and individual 

chromosomes and then calculated for the chosen samples. Enrichment analysis 

was then performed by hypergeometric distribution. 

Gene ontology (GO) term enrichment analysis was performed using TopGO, 

implemented in a pre-existing R markdown script written by Dr Kathryn Crouch 

at the Wellcome Centre for Molecular Parasitology (A & J, 2018; Ashburner et 

al., 2000). 

Coordinates of genes containing the enriched amastin domains and GP63-

associated genes were obtained from TriTrypDB as tab-delimited text files and 

their locations in the genome visualised using Circos. 
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2.7 Investigation of sequence features within multi-copy 

genes in L. major 

2.7.1 Calculating a haploid threshold to determine gene copy 

number 

The PReP pipeline was applied to aligned DNA sequence reads from each 

genome: L. mexicana U1103, L. mexicana M379 and L. major Friedlin. This 

provided haploid counts for each set of genes grouped by ortholog group which 

could be plotted to generate a single copy haploid count threshold. This 

visualisation was performed in R using ggplot2 (H, 2016). These plots were 

similar across the three samples and so a consensus of thresholds were chosen: 

0.75, 1.8 and 10 as the minimum, single copy and maximum thresholds 

respectively. A list of gene IDs were generated for each genome using Python 

scripts and the coordinates for these were downloaded from TriTrypDB. Many of 

the Python scripts used in this analysis exist within Jupyter notebooks. After a 

small amount of formatting on these files they could be used as bed format 

input for the machine learning Python script 

(https://github.com/CampbellSam/Origin-classifier).  

2.7.2 Application of machine learning  

The SVM classifier scripts are written in Python and makes use of machine 

learning packages from Scikit-learn as described previously (http://scikit-

learn.org/stable/). A machine with a linear kernel was trained on DNA sequence 

reads aligning to single/multi copy genes in L. Mexicana U1103 or L. major 

Friedlin and each has been tested on the other dataset. In the case of the L. 

mexicana U1103 trained classifier, this was also tested on L. mexicana M379. 

Input data must be pre-processed before input to the SVM by the following 

steps: (1) k-merisation. Reads are broken down into tiled k-mers of 7 nucleotides 

(previously 10) which are then considered as features of the sample data set. 

This step increases the sample size although many specific k-mers will only be 

present once, generating a sparse feature matrix. (2) Vectorisation: each k-mer 

feature is turned into a numerical vector which allows the machine learning 

algorithm to implicitly plot features in high-dimensional space in order to 

perform the classification. (3) Transformation: The entire feature set is 

transformed to give rare k-mers a higher weighting while features that are 
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common will have a low weighting. The classifier can then be trained and tested 

on this data. Accuracy is currently evaluated by testing back on the training data 

and also a new data set to determine the number of correct predictions. 

Selection of significant features used by the classifier is performed within the 

Python script and included as final output. 

 

2.8 Data storage and resources 

2.8.1 Use of AWS S3 bucket storage 

Large datasets including processed DNA sequence reads, intermediate data and 

additional files were deposited in online cloud storage containers. Amazon Web 

Services Simple Storage Service (AWS S3) provides secure cloud storage that is 

easy to upload to, store and retrieve data from using the management console 

user interface on a web browser or through command line tools 

(https://docs.aws.amazon.com/s3).  

2.8.2 Remote virtual machines in the form of AWS EC2 Instances 

Some analyses required a larger volume of disk space and computational power 

and therefore could not be performed locally. In this case, analysis was 

completed on an Amazon Web Services EC2 instance, which provides efficient 

cloud computing resources (https://aws.amazon.com/ec2/). 

2.8.3 Genome sequence retrieval  

Genome sequences in FASTA format were accessed from TriTrypDB, the online 

database resource (http://tritrypdb.org/tritrypdb), for T. brucei TREU 927, T. 

brucei Lister 427, L. major Friedlin and L. mexicana U1103 (Aslett et al., 2010). 

Genome version 36 was used consistently across all analysis. Additional datasets 

including gene and protein functional annotations and histone data tracks in 

varying formats, such as BED and tab-delimited Excel, were also accessed using 

this resource. 
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3 Characterising origins of replication in T. 
brucei and Leishmania spp. 
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3.1 Introduction 

Faithful replication of DNA molecules is a complex and tightly regulated process 

that generally occurs once during each cell cycle and is essential for the 

inheritance of genetic material. The initiation of DNA replication is spatially and 

temporally controlled through a variety of factors to minimise clashes with other 

cellular machineries and minimise the occurrence of errors during duplication. A 

variety of mechanisms involved in the regulation of DNA replication initiation 

have been identified in bacteria, archaea, fission yeast and higher eukaryotes 

(Nicholas P Robinson & Bell, 2005). 

Regions of DNA replication initiation were first mapped across the 11 megabase 

chromosomes in the Trypanosoma brucei genome using chromatin 

immunoprecipitation coupled with microarray hybridisation (ChIP-chip) and high-

throughput sequencing, followed by MFAseq analysis which later included the 

BESs mapped to contigs (Devlin et al., 2016; Tiengwe et al., 2012). A similar 

analysis to the MFAseq approach was applied to yeast around the same time 

(Muller et al., 2014). Marker Frequency Analysis by deep sequencing (MFA-seq), 

is a technique similar to repli-seq used to temporally map replicons in human 

cells (Hansen et al., 2010). Given the success of this MFAseq mapping in T. 

brucei, the same approach was applied to Leishmania at the outset of this PhD, 

revealing a potentially striking difference from T. brucei (Marques et al., 2015). 

Given the novelty of only identifying a single MFAseq peak in each Leishmania 

chromosome, suggesting only a single origin, it was considered important to test, 

as far as possible, the limits and effectiveness of the MFAseq approach. This 

chapter describes a number of tests and modifications of the MFAseq analysis in 

Leishmania. 

The MFAseq pipeline implemented in this analysis compares read depth across 

each chromosome in early S and G2/M phase cells. Cells are sorted by FACS on 

DNA content, with G2/M cells having twice the DNA content. The output 

provides a list of ratios for 2.5 kb regions of each chromosome in the sample 

genome that can be easily visualised. It is expected that there will be an 

enrichment in read coverage in regions of the genome where replication has 

initiated in early S phase cells relative to the non-replicating G2 cells and 

therefore the ratios at these sites will be higher. Sites of replication initiation 
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appear as peaks relative to the background and represent potential origins of 

replication. The coordinates for origins of replication in kinetoplastid genomes 

mapped using this approach are currently based on the annotations of the 

surrounding genes. 

The results from these different studies indicate that the Leishmania genome is 

complex and confounding factors such as the presence of mosaic aneuploidy may 

hinder current interpretation. Attempts to locate DNA origins of replication have 

produced disparate results and there is currently no consensus on an accurate 

model. In this chapter the sensitivity of the MFAseq technique in Leishmania is 

assessed and potential optimisation is discussed. Results from several peak-

calling algorithms applied to optimise this approach are compared and the 

problem of computationally identifying peaks is addressed. Further analysis is 

also employed to confirm unusual observations based on MFAseq data of the 

VSG-containing BESs in T. brucei 

 

3.2 Optimisation of the MFAseq pipeline 

A variation of the MFAseq method previously used to effectively predict the 

location of replication origins in T. brucei, was now applied to L. major and L. 

mexicana (Marques et al., 2015; Tiengwe et al., 2012). In the case of T. brucei, 

the predicted origin regions were verified through integration with ChIP-chip 

data of TbORC1/CDC6, a protein involved in the pre-replication complex 

(Tiengwe et al, 2012), but no such replication factor mapping is available in 

Leishmania. The MFAseq method requires DNA sequence from cells in S and G2 

phases and compares the ratio of aligned reads between the replicating and non-

replicating cells. Peaks in the ratio indicate regions of the chromosome which 

are enriched in S phase relative to G2 phase and are therefore presumed to 

represent a site of replication initiation. Results from this analysis in Leishmania 

led to the identification of a single peak per chromosome (Figure 3.1), 

suggesting a single early-replicating site. To address the reliability of this 

observation and generate comparable results in T. brucei, the MFAseq pipeline 

was optimised to be faster and better suited to this analysis and the sensitivity 

of this approach in Leishmania was assessed.  
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Figure 7.1. MFAseq mapping of replication origins in L. major. 

Replication origins mapped by MFAseq on the 36 chromosomes of the L. major genome. The top 
track shows gene coding sequences with transcriptional direction indicated by colour, right to left in 
red and left to right in blue. The read depth ratio between S phase and G2 phase cells is plotted 
below in blue. Histone H3 acetylation is included at the bottom to indicate transcriptional start sites. 
The final box contains the plotted ratios between late S phase and G2 cells for chromosomes 35 
and 36. This figure has been reproduced with permission from Marques et al, 2015. 
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3.2.1 Re-writing the MFAseq pipeline in Java 

As the MFAseq approach has been shown to be effective in predicting sites of 

replication initiation, the first step of the project was to rebuild the analysis 

pipeline in order to generate a robust and efficient program with simple data 

input and output. The existing pipeline consisted of several Perl and Bash scripts 

that required pre-requisite formatting and intermediate steps that were slow 

and inefficient. This has been re-written into a quicker, more user-friendly Java 

program that can be run from the command line in a single step, requiring less 

prior bioinformatics training for use 

(https://github.com/CampbellSam/MFAseq). The updated MFAseq program 

requires just two indexed BAM files containing aligned reads as input and will 

output MFAseq ratios in wiggle format to the current directory or a specified 

Amazon Web Services bucket. The program counts the total number of reads in 

each sample and then counts the number of reads in segments along each 

chromosome (the default window size is 2.5kb but this can be changed using an 

additional input parameter). The read count of each segment in each sample is 

then used to calculate the ratio of aligned reads to give the MFAseq output. The 

new program was first tested on the T. brucei 927 genome to ask if the 

previously predicted origins were still detected. Following this trial, the new 

program was then applied to the DNA sequence data from L. major and L. 

mexicana, revealing that only one peak is detected for each chromosome, in 

agreement with previous analysis. This new MFAseq approach and resulting data 

is used for the following analyses in Leishmania. 

MFAseq analysis indicates that megabase chromosomes in T. brucei contain 

multiple sites of replication initiation with varying firing times but these regions 

are present in a lower density than expected compared to what is currently 

known in eukaryotes (Tiengwe et al., 2012). Performing the same analysis in 

both L. major and L. mexicana identifies only a single origin per chromosome 

(Marques et al, 2015). The MFAseq peaks in Leishmania are also very broad and 

of consistent amplitude relative to T. brucei. When the same analysis is 

performed with late S phase cells against G2 cells in Leishmania, the observed 
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peaks broaden as replication progresses and there are no late-firing origins 

detectable with this method (Marques et al., 2015). 

Further study of origins has been performed using alternative techniques to map 

these regions in Leishmania. DNA molecular combing allows the analysis of single 

DNA molecules and was used to analyse replication parameters in T. brucei, L. 

major, L. mexicana and L. donovani (Stanojcic et al., 2016). This analysis found 

that most DNA fibres contained more than one active origin, suggesting multiple 

origins per chromosome in Leishmania, -although still at a lower density than 

other well-studied eukaryotes. However, the lack of sufficient mapping data in 

the single molecule DNA combing analysis does not allow the resolution of sites 

of replication initiation with specific chromosomes. 

Attempting to map origins in Leishmania major based on next-generation 

sequencing of purified small leading nascent strands (SNS-seq) also suggests 

multiple sites of replication initiation per chromosome, although at a much 

higher density (Lombraña et al., 2016). A region of high density initiation sites 

on each chromosome approximately correlates with the broad peaks observed by 

MFAseq. Mapping nucleosome occupancy using MNase-seq indicates that DNA 

replication is more likely to initiate at sites of RNA polymerase pausing and 

termination. The data from this high-resolution analysis indicates that the 

temporal and spatial initiation of DNA replication is potentially flexible across 

the chromosome and greatly influenced by transcriptional activity, highlighting 

the extent of the connection between these processes in kinetoplastids. 

 

3.2.2 Simulation of multiple origins 

Given the unexpected detection of only a single MFAseq peak per chromosome in 

Leishmania, the limits of this mapping approach were now tested. Indeed, 

subsequent to our MFAseq analysis, mapping of nuclear DNA replication initiation 

sites in Leishmania by methods other than MFAseq suggests that each 

chromosome contains multiple sites in which replication can initiate. Origin 

prediction by MFAseq is based on DNA sequence from a population of organisms 

and it was therefore important to assess the sensitivity of the approach in order 
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to determine a usage threshold at which active origins can be observed. It is 

then possible to verify the single origin observation in L. major by determining 

the minimum usage frequency within a population where an origin can be 

detected using MFAseq analysis. The scripts written to perform this analysis can 

be found at (https://github.com/CampbellSam/MFAseq-sensitivity). These 

simulations were performed using the raw alignment data for L. major Friedlin 

chromosome 36 (LmjF.36), since this is the largest chromosome and contains at 

least 7 annotated SSRs. The simulated data was initially visualized using the 

Genome Browser resource on the online database TriTrypDB.org. We simulated 

the presence of an additional origin used by 50% of the population at each of the 

remaining 6 SSRs on LmjF.36 that are not predicted by MFAseq to contain an 

origin (figure 3.2A). Although each of the simulated origins was easily detected 

by eye in this instance, when the data was merged it strongly resembled the real 

output and it is therefore possible that if several other origins were used by half 

of the population, we would be unable to detect them. As the entire population 

may not use all origins equally, I then performed 5 simulations beginning at 80% 

of the population using a second origin and decreasing to 66%, 50%, 33% and 17% 

usage, focusing on a single LmjF.36 SSR (figure 3.2B). The simulated origin was 

detectable by eye at 33% but no longer at 17%. Therefore, at <17% this region 

would not have been considered an origin. Plotting the median value for each of 

the simulated peaks against the usage frequency within the population 

generated a linear correlation and indicates that an origin would need to be 

used by at least 25% of the population to be detectable by this method (Figure 

3.2C). 

L. major chromosome 36 was chosen due to its size and the presence of multiple 

SSRs where replication could potentially initiate. Performing further simulation 

analyses with varying sizes of chromosomes and fewer potential SSRs could 

provide more detailed insight into the sensitivity of MFAseq in a plastic genome. 

Application to the whole genome may not be beneficial as it has been difficult to 

define replication origins on the smaller chromosomes and for others, the 

predicted peak encompasses the greater part of the chromosome (Figure 3.1). 

This analysis indicates that we are able to detect an active origin in the 

Leishmania genome using the MFAseq approach if it is constitutively used by 

~25% of the population or higher. This method cannot detect origins that are 
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fired variably at low frequencies across the population. Compared to the 

narrow, defined peaks detected by MFAseq in T. brucei, the peaks in Leishmania 

are comparatively broad and encompass large regions. This may indicate that 

the distribution which we are modelling potentially represents an early firing 

cluster of origins as opposed to a single origin. If this is the case, it would 

correlate with the dense regions of initiation sites observed on each 

chromosome by SNS-seq (Lombrana et al., 2016). However, it should be noted 

that the MFA-seq predicted origins in both parasites colocalise with SSRs, where 

ORC binds in T. brucei. Nonetheless, every relatively broad MFAseq peak 

mapped in Leishmania may also co-localise with recent mapping of potential 

centromeres in L. major by localisation and ChIP-seq analysis of LmKKT1 (Sollelis 

et al., 2017), unlike in T. brucei, where only some of the origins colocalise with 

centromeres. The centromeric regions are predicted to be 2-10kb in length and 

possibly represent a region where sites of DNA replication initiation are 

enriched. No consistently conserved motifs or repetitive sequences 

characteristic of centromeres in eukaryotic genomes have currently been 

identified in Leishmania (Sollelis et al., 2017).  
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Figure 3.2. Assessing MFAseq sensitivity in the genome of Leishmania major.  

A. H3Ac mapping on Lmj.36 in L. major promastigotes shown in green to highlight predicted 
SSRs. MFAseq mapping across simulations of an additional origin of the same usage 
frequency at six alternative SSRs shown in pink. The distribution of reads at the natural origin 
was determined and this read distribution was added to each SSR on Lmj.36.  In red, these 
simulations have been merged and the dark blue track represents the original MFAseq 
mapping. This data was visualised using the Genome Browser toll at TriTrypDB.org. B. 
Visualisation of MFAseq data from Lmj.36 containing a simulated additional origin at varying 
usage frequencies in the population (80%, 67%, 50%, 33% and 17%). C. linear regression of 
median peak amplitude and frequency of usage within the population. 
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3.2.3 Attempt to refine MFAseq peak calling using ChIP-seq peak-

calling software 

The MFAseq peak data cannot give exact coordinates of replication initiation, 

since the data is mapped as broad peaks. Furthermore, the current MFAseq 

annotation of replication origins in Leishmania relies on rough co-localisation of 

origins with SSRs, but these regions have not been well characterised, with their 

boundaries merely based on the surrounding gene annotations. We wanted to 

define a more specific set of coordinates for each peak and, potentially, identify 

additional regions that may have been missed when the previous peaks were 

identified by eye. To achieve this, we asked if the MFAseq peak data could be 

refined using pre-existing software designed for ChIP-seq analysis. Based on 

literature reviews and initial testing using S phase and G2 DNA sequence read 

data from L. major, the peak calling software MACS, SICER and FindPeaks were 

chosen for the analysis. 

ChIP-seq peak calling software is used to identify enrichment between samples, 

traditionally comparing a treated ChIP-seq sample to background data. Each 

program utilises a slightly different method to calculate enrichment and identify 

candidate peaks (see below). However, each is designed for analysis such as 

mapping transcription factor binding sites and identifying chromatin-binding 

factors and histone modifications, and therefore the target fragment size can 

vary widely in length and sequence composition. It is important to choose an 

appropriate algorithm and normalisation method for the data to be analysed as 

results and performance can vary depending on the dataset and chosen 

software. For example, some algorithms are designed to detect narrow peaks 

and would therefore not work well in an analysis trying to detect broad peaks. 

FindPeaks identifies candidate sites on the basis of peak height and overlapping 

fragments, while MACS (model-based analysis of ChIP-seq) models a local 

background distribution to reduce local bias in the genome (Fejes et al., 2008; 

Feng et al., 2012) . SICER (spatial clustering approach for the identification of 

ChIP-enriched regions) (Zang et al., 2009) was designed to identify clusters of 

histone modifications and therefore performs better when the target fragments 

form broad peaks, such as we observe in the MFAseq output from Leishmania. 

SICER partitions the genome into windows and clusters candidate windows into 

islands (Zang et al, 2009). Candidate islands are then assessed for significance 
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based on a calculated threshold. Normally a control sample will be included as 

well as a treated sample where specific proteins have been targeted and cross-

linked to DNA leading to enrichment of certain sequences. 

We supplied aligned reads from Leishmania major Friedlin G2 cells as the 

control, and early S reads as the sample. A step included in each approach is 

correcting for shift as the algorithms expect the target sequence to be present 

on both strands and therefore estimate the distribution of the fragment size to 

suit the bimodial enrichment pattern (Laajala et al., 2009). This step involves 

correcting the distance between the centre of the true binding site and the 

position of observed tags and is specific to ChIP-seq analysis. It was therefore 

considered not to be a necessary step in the case of our data. 

The visualisation tool Circos (Krzywinski et al., 2009) was used to plot the output 

from each algorithm, as shown in figure 3.3. Of the software utilised, FindPeaks 

performed the worst, as MFAseq origin peaks were only called correctly in 8 of 

the 36 L. major chromosomes and no peaks were detected for several 

chromosomes. Almost all peaks defined using FindPeaks were called towards the 

end of chromosomes, with the exception of chromosome 36, indicating a 

potential increased sensitivity to enrichment in these regions. SICER called a 

higher number of peaks than FindPeaks but these only co-localised with our 

current MFAseq origin predictions on 5 chromosomes. This result was 

unexpected, given that SICER is based on detection of broad peaks. 

MACS is a frequently used ChIP-seq algorithm that detects genome-wide binding 

sites by calculating peak enrichment using model based local background 

normalisation (Zhang et al, 2008). This algorithm performed the best in broad 

peak mode, as a single peak window was identified on almost all of the 36 

chromosomes and the output was consistent with the previously generated early 

S and late S MFAseq plots. On 10 of the chromosomes a precise peak was 

mapped although the predicted regions were very large, possibly caused by the 

merging of several small neighbouring windows. Due to this, the predicted peak 

window was almost the same as the chromosome length for a minimum of 5 of 

the smaller chromosomes. We were therefore unable to refine the broad peaks 

mapped by MFAseq using this method as no specific spikes of enrichment were 

detected in any output.  
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This investigation suggests that the pre-existing peak-callers designed for ChIP-

seq analysis may not be appropriate for our data and the corresponding 

enrichment distribution pattern. Initial analysis with USeq, another peak caller 

designed for ChIP-seq data, which uses a control sample to reduce false 

positives, could not detect distinct peaks in our data (Nix et al., 2008). It may 

be of interest to investigate shape-based peak callers, which are available to use 

as command line software and/or packages in R such as PICS and PolyaPeak (Wu, 

2012; Zhang et al., 2011). This approach might improve our current data and 

Figure 3.3. Peak calling profiles from ChIP-seq software  

FindPeaks (orange), SICER (purple) and MACS (green) visualised using Circos. L. major 
chromsomes 1-36 are represented by black segments in the centre of the plot. MFAseq profiles 
for each chromosome are also included from early S (blue) and late S (dark red) samples 
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refine the coordinates of the region defined as a peak down to as small as a few 

kilobases. 

Alternatively, this method could be improved by the implementation of an in-

house peak calling script which would define peaks computationally in a similar 

method to the ChIP-seq software. However, it is difficult to define a peak 

computationally from the MFAseq profile as a significance threshold must be 

pre-defined. We cannot currently determine the ratio level representative of a 

detectable active origin and therefore, addressing this issue is beyond the scope 

of the current project. 

 

3.3 Identifying conserved features of DNA replication 

origins in kinetoplastid genomes 

Although the genomes of T. brucei and L. major are highly syntenic, the 

organisation of currently mapped origins differs between L. major and T. brucei, 

with the observation of a single origin also seen in L. mexicana. In contrast to 

the largely stable diploid genome of T. brucei, the Leishmania genome is highly 

flexible and therefore able to rapidly adapt to external conditions. It is of 

interest to investigate the similarities and conserved features of DNA replication 

origins between these species and assess the possible divergence of the 

mechanisms underlying the DNA replication process in Leishmania. 

A common feature of many of the mapped replication origins in Leishmania and 

T. brucei is the co-localisation of these regions with SSRs. In Leishmania, origin-

containing SSRs are consistently larger than SSRs that do not contain an origin 

(Marques et al., 2015). T. brucei and Leishmania spp. also employ different 

methods of surviving immune attack. This likely has an effect on chromosome 

structure and content, as genes associated with immune evasion will be strongly 

selected for. A VSG coat is expressed by T. brucei parasites to evade the 

immune system and the genome contains several sub-telomeric VSG arrays, 

which are not present in Leishmania. The sequence of BESs, where the VSGs are 

expressed, had not yet been mapped to core genome chromosomes during this 

analysis, making it difficult to investigate replication dynamics at these regions. 



 68 
The following focuses on validation of a potentially early-replicating BES, 

highlighted by MFAseq analysis. 

3.3.1 VSG origin prediction 

MFAseq analysis was performed in bloodstream form (BSF) and procyclic form 

(PCF) of T. brucei strain Lister 427 to investigate replication dynamics and 

antigenic variation (Devlin et al., 2016). The telomeric BESs have been 

sequenced and characterised in T. brucei Lister 427, allowing a comparison of 

these regions in different lifecycle stages but they have not been mapped to 

specific chromosomes and the 14 BESs are mapped across 16 contigs (Hertz-

Fowler et al., 2008). A difference in MFAseq mapping between PCF and BSF is 

only observed for one of the regions, termed BES1 and encoding VSG221, which 

is the actively transcribed BES in the BSF cells (figure 3.4). It was predicted that 

this region is early-replicating in BSF only, while all other BESs are late-

replicating. As these regions are small, between 10 kbp – 50 kbp, it is not 

possible to detect peaks at this resolution. We therefore performed a series of 

simulations using the Monte Carlo method to test if the discrete MFAseq ratios 

for the BES1 region, relative to all other BESs, are different between BSF and 

PCF.  

The simulation analysis was written in Java and initially generates a Mann-

Whitney U test p-value for the BSF and PCF MFAseq ratios for a specified region. 

It then randomly samples regions of the same length from the genome and 

performs the same test (https://github.com/CampbellSam/MFAseq-validation). 

Counting how many times the Mann-Whitney U test p-value from the random 

samples is lower than that for BSF and PCF gives an indication of how often we 

would expect to see this difference occur at random. Repeated simulations gave 

results between 17-28 out of 1000 random samples, giving us an output value of 

0.017-0.028. The resulting p-value of 2.3x10-8 indicates that the BSF and PCF 

ratios are significantly different and from the output of the Monte Carlo 

simulation we can verify that it is unlikely this difference would occur at 

random. Although we can therefore predict that this region is early-replicating, 

this approach does not confirm the presence of an active origin. 
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As the SSR coordinates for T. brucei Lister427 have now been generated, it 

would be possible to extend this analysis by comparing the sequence features of 

the BESs with that of the origin and non-origin containing SSRs. For example, 

PCA may be useful to identify any conserved similarities and determine whether 

the BES1 region contains any resemblance to an origin-containing site. 

 

Figure 3.4. MFAseq mapping of BESs in BSF and PCF. 

MFAseq profiles of the contigs containing BESs in T. brucei Lister427 in BSF (red) and PCF (green) 
during both early (light) and late (dark) S phase. Adapted with permission from Devlin et al, 2016. 
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3.4 Conclusions 

The analysis in this chapter was aimed primarily at determining the 

effectiveness of MFAseq in a genome where mosaic aneuploidy is a feature, 

based on the different results observed between L. major and T. brucei. In 

contrast to the largely stable diploid genome of T. brucei, the Leishmania 

genome can tolerate variations in chromosome copy number and sustain 

aneuploid chromosomes from haploid to more than tetraploid. The presence of 

aneuploidy in Leishmania varies between species, as does the number of 

chromosomes which may have occurred due to fission or fusion events (Rogers et 

al, 2011). The presence of aneuploidy in this genome may obfuscate the flexible 

and dormant replication origins that are used at a much lower frequency in the 

population. This may account for the differences observed between the MFAseq 

profiles of Leishmania and T. brucei. The newly built MFAseq pipeline was used 

to predict origins in L. major and investigating the addition of a simulated origin 

allowed the estimation of a minimum usage frequency within the population for 

an origin to be detectable by eye from this data. From this analysis, we conclude 

that an origin used by >25% of the population would be detectable by the 

current MFAseq method. This approach is still limited as peaks are detected by 

eye and an algorithm to computationally predict origins from the MFAseq ratio 

data has not yet been developed. Use of ChIP-seq peak callers to identify peaks 

from the early S and G2 phase read data did not perform as well as expected. 

However, the predictions made by MACS were close to our current mapped peaks 

and use of this software could be further optimised in regards to our data. It 

may be useful to also assess the performance of peak callers on early S and late 

S phase reads from the T. brucei genome, where ChIP-chip of TbORC1/CDC6 

confirms the binding of the ORC complex at MFAseq predicted origin sites. 

The peaks predicted by MFAseq in Leishmania are broad and span a large region. 

The apex of these broad peaks co-localise with SSRs and current annotations of a 

single dominant replication origin are based on the surrounding gene boundaries 

of the corresponding SSR. It is however possible, that these peaks denote a 

region enriched for replication initiation sites that is spatially conserved and 

used by all cells. The broad peak we observe could therefore represent a cluster 

of replication origins as opposed to a single origin. This suggestion may explain 

the detection of multiple origins on a single chromosome by DNA combing and 
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SNS-seq approaches. Recent predictions of centromeric regions in L. major by 

ChIP-seq assay of LmKKT1, identifies a major peak on each chromosome 

spanning roughly 4kb which co-localises with the peaks mapped by MFAseq 

(Sollelis et al., 2017). Additionally, motif searching analysis highlighted two 

conserved motifs at these regions in 14 of the 36 chromosomes and a high 

density of retroposons was also noted in the majority of predicted centromeric 

regions (Sollelis et al., 2017). 

Although the MFAseq Monte Carlo simulation analysis does not confirm the 

presence of an active origin at an early replicating BES in BSF T. brucei, it does 

indicate that this region is likely to be proximal to a replication origin in the 

subtelomere of a chromosome. This is a reasonable conclusion as this BES 

contains the VSG which is actively expressed in this cell line. Since this analysis 

was performed, a new assembly of the T. brucei 427 Lister genome has been 

generated using PacBio single-molecule real-time (SMRT) sequencing technology 

followed by genome-wide chromosome conformation capture (Hi-C) which 

provides high resolution information about spatial organisation of chromosomes 

(Muller et al., 2018). With the use of this data, the BESs were mapped to 

subtelomeric regions of the megabase chromosomes. This potentially allows 

further investigation of the early replicating BES and the proximity of this site to 

a predicted origin of replication could be determined. 

Recent research highlights the differences in the organisation and characteristics 

of DNA origins of replication between L. major and T. brucei. Identification and 

study of DNA machinery and centromeric proteins in Leishmania would provide 

further insight into the similarities and differences between these species. Due 

to their different survival strategies, it is reasonable to hypothesise that 

features specific to Leishmania may have emerged as they were beneficial to 

the maintenance of a plastic genome and parasite survival and characterisation 

of DNA replication in Leishmania may elucidate the mechanisms underlying 

genome plasticity.  
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4 Investigation of similarities and differences of 

replication origins across kinetoplastid 

genomes 
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4.1 Introduction 

Kinetoplastid genomes are characterized by their unusual structure in which 

genes are organized into polycistronic arrays, each traversed by RNA pol that is 

loaded at a single transcription initiation site for all genes in an array. Putative 

multigene transcripts are then converted to mature mRNAs by trans-splicing and 

linked polyadenylation. Gene expression is therefore regulated post-

transcriptionally and, in order to modulate the expression of individual genes, 

the copy number of a gene is sometimes increased or decreased. Neighbouring 

polycistronic gene arrays are frequently found on different strands and the 

regions in between are termed strand-switch regions (SSRs). Initiation of 

transcription occurs between the first genes bordering divergent SSRs, whereas 

termination is thought to occur at SSRs where the gene arrays converge 

(Nguyenet al,. 2004). SSRs also exist between gene arrays of the same 

orientation and are referred to as head-to-tail (H-T) SSRs. In all of the 

kinetoplastid genomes analysed thus far, all of the predicted origins of 

replication mapped by MFAseq localise to SSRs but not all SSRs contain an active 

origin of replication (Marques et al., 2015; Tiengwe et al., 2012). In the case of 

T. brucei, of the 42 replication origins identified, 19 of the MFAseq peaks co-

localised with divergent SSRs, 3 with convergent SSRs and 20 with H-T SSRs 

(Tiengwe et al., 2012). In L. major, all 36 mapped origins are thought to span 

SSRs, although the origin on chromosome 1 appears at the end of the 

chromosome, at the end of a DGC adjacent to the telomere and therefore the 

replication signal here could be due to telomere-directed replication initiation 

(Marques et al., 2015).  

Several essential processes including transcription initiation and termination, 

also occur at SSRs and putative features relevant to DNA replication initiation (is 

separate from these reactions)could be easily obscured as the relationship 

between replication and transcriptional processes is not well understood 

(Reynolds et al., 2016; Siegel et al., 2005; Thomas et al., 2009). RNA pol II 

binding motifs have not been identified in either T. brucei or L. major and sites 

of transcription initiation have been identified by mapping histone markers. In L. 

major, ChIP-chip was used to map TATA-binding protein, SNAP50 and modified H3 

histones as acetylation of histone H3 has been associated with transcriptional 

activity and is found at transcriptional start sites (TSSs) (Liang et al., 2004; 
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Thomas et al., 2009). The majority of H3ac sites in L. major map to divergent 

SSRs, with some occurring within gene clusters and near chromosome ends, 

indicating that divergent SSRs are a preferred site for transcription initiation 

(Thomas et al., 2009). Previous analysis of a divergent SSR in L. major revealed 

a high AT composition and DNA curvature that also suggested a potential role in 

transcription (Tosato et al., 2001) In the case of T. brucei, four histone markers 

have been identified that denote predicted TSSs. H4K10ac and the histone 

variants H2AZ and H2BV are enriched at TSSs, as is the bromodomain factor BDF3 

(Siegel et al., 2005). Additionally, mapping histone variants also suggests that 

H3V and H4V are enriched at sites of transcriptional termination (Siegel et al., 

2005). Sites of RNA pol II termination in T. brucei are predominantly 

characterised by this observed enrichment of H3V and also an increased amount 

of base J (David Reynolds et al., 2016). The hyper modified base J (b-D-glucosyl-

hydroxymethyluracil) is found in all kinetoplastid flagellates and has also been 

associated with transcriptional termination in Leishmania (Van Luenen et al., 

2012). Although >99% of base J has been mapped to telomeric regions, it has 

also been mapped to convergent SSRs where termination of transcription occurs 

(Genest et al,. 2007). Additionally, loss of base J demonstrates massive 

transcriptional readthrough (Van Luenen et al, 2012). 

Current knowledge indicates that chromatin conformation may restrict the 

locations of transcription and replication initiation sites to a small number of 

regions in the genome, predominantly in between polycistronic gene clusters at 

SSRs. Collisions between replication and transcriptional machinery can be a 

source of genomic instability if not resolved efficiently. Head on collisions 

between these processes can cause an accumulation of RNA-DNA hybrids termed 

R-loops (Pollock et al., 2017). Recent mapping of R-loops in T. brucei highlights 

conserved localisation of R-loops at centromeres and sites of RNA pol II 

initiation, with most R-loops occurring at intergenic regions but also localised at 

sites of transcription initiation (Briggs et al., 2018). No enrichment of R-loops 

was detected at origin-containing SSRs compared to non-origin SSRs and any 

functional interaction between the replication and transcription machineries 

remains unclear (Briggs et al., 2018). 
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As all the MFAseq mapped replication origins co-localise with SSRs, the 

coordinates for the origins are based on those of the corresponding SSR and the 

SSR coordinates are generated from the neighbouring gene annotations, 

encompassing a large region between the polycistron arrays. Characterization of 

origins at the sequence level is therefore confounded by the presence of several 

other elements involved in a number of processes, making it difficult to identify 

the origin DNA sequence which may be associated with several functions. To 

better characterise replication origins, it is necessary to better define the SSRs, 

as these regions are complex and can be very large. Due to the kinetoplastid 

genome structure, many processes occur here and updating the current gene 

models could help to reduce noise and provide an interesting model to study 

eukaryotic origins of replication. In this chapter, the SSRs and DNA origins of 

replication are further characterised in T. brucei and Leishmania and compared 

between these species. 

Traditional sequence comparison methods and motif identification tools have so 

far been unable to determine a consensus sequence at virtually all eukaryotic 

origins highlighting the need for a different approach in solving this problem. 

Consistent with previous eukaryotic studies, with the exception of S. cerevisiae 

and relatives, a consensus sequence has not been identified at kinetoplastid 

replication origins (S.Newlon & F.Theis, 1993). Machine learning algorithms have 

been successfully applied across many diverse disciplines to learn from large 

datasets and used in genomics to determine features specific to different 

categories of data, such as cell types, DNA binding domains and proteins, and to 

make functional predictions in novel data based on these features (Čuklina et 

al., 2016; Ding et al., 2016; Kumar, Gromiha, & Raghava, 2007). The quality of 

data from existing genomics approaches and technologies can also be improved 

through the use of machine learning techniques (DePristo et al., 2011). Support 

vector machines (SVMs) are based on statistical learning theory and use a 

learning algorithm specified by a kernel to predict the optimal features 

representative of different classes of complex data (Vapnik, 1999). A previous 

study of replication origins in Drosophila melanogaster effectively implemented 

a SVM to discriminate between ORC-associated and ORC-free sequences 

(MacAlpine et al., 2010). The application of machine learning in the context of 
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origin and non-origin DNA sequences in Leishmania is also described in this 

chapter. 

 

4.2 Identifying sequence features of DNA replication 

origins in T. brucei and L. major 

4.2.1 Identifying motifs related to replication origins in the T. 
brucei genome 

Initial approaches to characterizing origins of replication at the DNA sequence 

level utilized online resources and software available for motif identification 

although pattern searching in DNA sequence remains a challenge due to the 

presence of confounding factors such as mutations. The aim of using these tools 

was to identify enriched sequences within origin sequences that can be used to 

predict novel origins in unannotated kinetoplastid species. The T. brucei DNA 

genome sequence was masked for repeats and assessed for motifs using the 

software RepeatMasker and Trawler (http://www.repeatmasker.org; Ettwiller et al. 

2007). The output from Trawler showed enrichment of several homopolymers 

within the T. brucei genome (data not shown). Further investigation of this to 

look at the relative bias and tract length of each nucleotide revealed that this 

was not restricted to homopolymer tracts of G, which are involved in the 

formation of G-quadruplex (G4) structures, but observed for all nucleotides.  

The presence of the G4 motif (G�3NxG�3NxG�3NxG�3) has been identified in several 

eukaryotic genomes and is known to be associated with the formation of 

quadruplex structures that are thought to be involved in origin activation and 

replication initiation (Maizels, 2006; Valton et al., 2014). As a result, a script 

was written to perform a basic text search of the G4 motif against the DNA 

sequence of the T. brucei genome. The motif appeared frequently throughout 

the genome and although our analysis did not search for specific regions of 

enrichment, it appears difficult to determine a statistically significant 

correlation between the G4 motif and replication origins in T. brucei. The 

results from this brief analysis are therefore so far inconclusive, and are not 

shown. 
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4.2.2 Identifying motifs related to replication origins in the 

Leishmania genome 

As in the previous analysis of sequence features in the T. brucei genome, 

RepeatMasker was used to mask repetitive sequences in L. major. Applying the 

Trawler software to the DNA sequence of the L. major origins of replication did 

not identify any conserved motifs or significant features. This analysis was run 

with a minimum occurrence of 18 (half the total number of chromosomes). A 

second motif identification tool, MEME, was also applied to the sequence 

predicted to contain DNA replication origins in L. major but, again, this did not 

yield significant results and the enriched sequences identified by both of the 

motif searching software were predominantly homopolymer tracts e.g CCCc or 

AAAaA (Bailey et al., 2009).  

A program was then written in Java to initially compare counts of individual 

bases within origin and non-origin SSRs in L. major 

(https://github.com/CampbellSam/base-counts). This analysis found that the 

GC-/AT-content of the origin and non-origin SSRs is roughly the same. The base 

composition of origin-containing SSRs (A: 21.8%, C: 28.16%, G: 28.47% , T: 

21.57%) was very similar to that of non-origin SSRs (A: 22.86%, C: 27.04%, G: 

27.22%, T: 22.87%) Enrichment of long homopolymer tracts have previously been 

observed in the L. major genome (Zhou, Bizzaro, & Marx, 2004). The original 

script designed to analyse base frequency, was extended to include larger 

tracts, incrementally from 3 bases up to 6,  and found that non-specific 

homopolymer runs tend to appear more often at origin-containing sequences 

than those without, although this requires further statistical analysis as the 

observed differences are small and no strong conclusions can be drawn from the 

current data. It is possible that these sites and other repetitive regions are 

masked in some motif searches which include a repeat-masking step. It is also 

likely that the tracts are not spatially conserved in the large regions predicted to 

contain origins of replication in Leishmania, making it difficult to detect 

conservation.  

Figure 4.1 shows a multiple sequence alignment of the DNA sequence from SSRs 

in L. major that contain mapped origins, demonstrating that there is no 
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conserved sequence similarity across these regions, which is consistent with 

current knowledge of eukaryotic replication origins. 

 

 

 

  

Figure 4.1 Sample extract of multiple sequence alignment highlights lack of conserved 

sequence. 

Multiple sequence alignment between Leishmania major SSRs predicted to contain an origin of 
replication by MFAseq 
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4.3 Defining SSRs in Leishmania & T. brucei  

SSRs have been identified as important sites in the genomes of T. brucei and 

Leishmania and current research suggests that the regulation of essential 

processes is more likely to occur in these regions. The current annotations for 

SSRs could be greatly improved as they are based on the coordinates of the 

surrounding gene boundaries. The coordinates of untranslated regions (UTRs) 

were not available in Leishmania outside of L. major. Gene coordinate 

annotations are based on the CDS and the true gene boundaries are currently not 

known. Due to this lack of reliable annotations plus the variation in the size and 

structure of these regions, the lack of any consensus sequences and the absence 

of epigenetic studies in Leishmania, it has so far been difficult to characterise 

SSRs. 

4.3.1 Updating the SSR coordinates in T. brucei Lister427 

SSR coordinates determined by histone markers and surrounding gene boundaries 

were available for the T. brucei TREU927 genome but previous attempts, by the 

bioinformatics team at the Wellcome Centre for Molecular Parasitology, to 

transfer these to the T. brucei Lister427 genome using orthology had been 

unsuccessful. The annotations were transferred using RATT (Rapid Annotation 

Transfer Tool) (Otto et al., 2011) but several problems occurred due to the 

inversion of some gene arrays in T. brucei Lister 427 relative to T. brucei  TREU 

927. Several predicted SSRs in T. brucei Lister 427 were very large, with one 

region spanning almost 1Mb, and contained gene arrays.  

To begin the process of manually updating the coordinates for these regions, I 

used the online resource TriTrypdb.org to filter the annotations generated for 

the T. brucei Lister 427 genome by RATT and compile a list of those which 

contained protein-coding genes and therefore required investigation. Of the 91 

SSRs annotated, 47 of these contained genes, of which 41 of these were 

predicted to contain protein-coding genes. I used the gene annotations from T. 

brucei TREU 927 to manually correct the start and end of each SSR using the 

orthologous coordinates in T. brucei Lister 427. In most cases this was 

straightforward, as the SSR was clear from the presence and direction of entire 

gene arrays, however I observed 5 cases where several small consecutive SSRs 
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had been merged into one large region, possibly due to subtle genomic 

rearrangements between the two strains. This process yielded a corrected list of 

coordinates for SSRs in T. brucei Lister427. 

4.3.2 Different methods to refine SSR coordinates 

As mentioned previously, the current SSR coordinates are based on the 

boundaries of the surrounding genes and it is likely that these could be improved 

by updating the gene annotations. This would greatly aid the machine learning 

analyses as DNA sequence reads aligning across SSRs comprise the input for 

machine learning, including predicting whether or not an SSR contains an origin 

based on thousands of sequence features. In order to improve the output of this 

algorithm, it is essential to first refine the initial input data. We approached this 

problem in two ways, the first using de novo gene prediction to update the 

existing gene models and UTRs, and in the second by looking at gene expression 

coverage data to determine an expression cut off threshold at regions of low 

signal between gene arrays. 

4.3.2.1 Use of RNA-seq to perform de novo gene annotation in L. 
major 

This analysis sought to update existing gene models by extending the annotated 

coordinates at 5’ and 3’ untranslated regions (UTRs) and potentially map spliced 

leader and polyA sites through the integration of RNA-seq datasets in an effort 

to reduce the length of sequence considered to be a SSR. SRA-tools was used to 

access and download 20 L. major Friedlin RNA-seq datasets available in the 

sequence read archive (http://www.ncbi.nlm.nih.gov/sra) (Table 2.1). The 

reads from all samples were aligned using Hisat2 (Kim et al,. 2015). The 

resulting RNA-seq alignment files were then merged into a single alignment file 

and de novo transcript reconstruction was performed using Trinity. Gene 

structure annotations were then generated using the complementary tool PASA 

(Program to Assemble Spliced Alignments) (Grabherr et al., 2013; Haas et al., 

2003). The updated annotations were viewed against the original gene models 

using Integrative Genomics Viewer (IGV). I used bedtools intersect on both 

datasets to locate updated regions across the genome and found the majority to 

be located in UTRs. Extended UTRs were observed in 7 chromosomes and on 2 of 
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these chromosomes, these modifications were proximal to SSRs containing 

origins which would potentially allow gene coordinates to be updated. A SSR on 

chromosome 14 which does not contain an origin could also be updated. An 

example of the output from this analysis can be viewed in figure 4.2. 

The number of origin-containing SSRs that could be updated by this process was 

only 2 of the total 36 and several optimisations would be required to make this a 

viable approach.  Several issues arose during the analysis of the large merged 

RNA-seq dataset, which hindered progress of this approach. The total size of 

temporary files generated by the software outlined above was extremely large 

(in excess of 300GB) due to the size of the input dataset, and lack of disk space 

meant that, despite repeated attempts, the pipeline could not be run locally. 

The use of a large EC2 instance was therefore required to complete the analysis 

shown, which builds additional costs. This cost may need to be factored in when 

planning to repeat this process. However, it would be necessary to first 

determine the computational power required to run the samples individually and 

the number that could run in parallel on a local machine. 

The output from this analysis was extremely noisy and it is likely that merging 

the datasets together has masked the subtleties of potentially interesting 

updated annotations. Due to this, I think it would be beneficial to repeat the 

same process with each of the datasets individually and merge the final updated 

annotations at the end. If this analysis was repeated it could also be improved 

by the generation of a script to compare the new and original gene annotations. 
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4.3.2.2 Determining a read coverage threshold of RNA-seq data in 

L. major 

As an alternative to above approach, a script to analyse the read depth coverage 

of the RNA-seq data was established with the intention of generating a read 

depth cut-off threshold to determine regions of low gene expression and refine 

the gene coordinates this way. SSRs generally do not contain pol II transcribed, 

protein-coding genes, although small arrays of tRNAs associated with 

transcription initiation or termination, and some rRNA genes, transcribed by RNA 

Figure 4.2. Updated UTRs at SSRs based on de novo gene annotation in L. major 
chromosomes 4 and 14. 

 Visualisation of the current gene annotations and the de novo annotations, assembled using Trinity 
and PASA, was performed using IGV (J. T. Robinson et al., 2011). Both sets of annotations are 
shown here across a SSR in L. major chromosome 14 and chromosome 4. In both chromosome 
panels, the top track shown is the updated gene annotations with the pre-existing annotations shown 
below, each gene is displayed as an individual box with white arrows to indicate direction (both shown 
in dark blue). Individual mapped reads supporting the de novo assembly are shown in grey and 
coverage is represented above in a grey histogram plot. The SSR in each panel is marked by the 
reduced mapping coverage of RNA-seq reads. Coloured highlights in mapped reads provide 
information regarding bases that do not match the reference genome and insertions. Deletions are 
denoted by a gapped read joined by a black bar to show the deletion relative to the reference.. 
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pol III and RNA pol I respectively, are occasionally present within some SSRs. 

Based on this, few RNA-seq reads would be expected to map across SSRs and a 

coverage threshold could be used to refine the coordinates that denote the 

boundaries of SSRs. 

Read coverage data was generated across each chromosome using htseq-count, a 

command line tool made available by HTSeq (Anders et al., 2015). A Python 

script was then generated to calculate average read depth across the 

chromosome and assess relative coverage across SSRs. This analysis requires 

further refinement in assessing a cut-off threshold and is currently incomplete, 

therefore data is not shown. 

4.3.2.3 Spurious alignment of RNA-seq reads at SSRs 

During the analysis of RNA-seq read data across SSRs, a correlation between the 

number of reads with potentially spurious alignments aligning to non-origin SSRs 

was observed relative to origin-containing SSRs in L. major (Figure 4.3). Non-

specific alignments were consistently observed in non-origin SSRs at a higher 

frequency than in origin-containing SSRs. In Leishmania, SSRs containing an 

origin are much larger than those which do not but, despite this observation, we 

detected an increase in spurious RNA-seq reads aligning across non-origin SSRs 

compared with SSRs that contain an origin (Marques et al., 2015). 30 of the 36 

predicted origins in L. major map to sites of transcription initiation and very few 

are at sites of transcription termination where transcription may run-on. This 

may account for the decreased read depth observed across SSRs containing an 

origin of replication. To investigate this further, it would be interesting to 

extend this analysis of RNA-seq read depth at SSRs to T. brucei where SSR length 

does not differ significantly between those containing origins and those without. 
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Figure 4.3. Low number of spurious RNA-seq read alignments in origin-containing 

SSRs in L. major relative to non-origin SSRs. 

Boxplot visualisation of L. major RNA-seq aligned reads across SSRs that are predicted to 
contain a DNA origin of replication mapped by MFAseq (blue) relative to SSRs that are not 
predicted to contain an origin. 
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4.4 Investigation of machine learning and 

characterisation of DNA sequence features at SSRs 

This analysis investigates the application of machine learning algorithms, 

focusing on support vector machines (SVMs) and their implementation in binary 

classification of DNA sequence, as an alternative approach to attempt to identify 

sequence features at kinetoplastid origins of replication. As not all SSRs are 

predicted to contain an origin of replication, it is reasonable to hypothesise that 

there are differences in the sequence features associated with the processes 

occurring at origin-active and inactive SSRs, and it may be possible to use these 

to distinguish SSRs that contain an origin from those without. Support vector 

machines are suited to this problem as the algorithms learn features of different 

classes within a training data set and use this information to accurately predict 

these classes in an uncharacterized set of test data. Using this approach, it may 

therefore be possible to characterise the sequence features associated with 

origins of replication and predict potential origins in less studied, related 

parasite species. 

4.4.1 Generating k-mers from DNA sequence data 

The input required to train the SVM, for this analysis, consists of small sequence 

features of k length, termed k-mers. In L. major Friedlin, DNA sequence reads 

that align across the SSR coordinates were extracted from the full alignment file 

and treated as samples belonging to the origin-containing or non-origin classes. 

This provides a large sample size compared to using the single sequence for each 

SSR form the reference genome alone. Each of the mapped reads was then 

broken up into k-mers to form the training data for the SVM. 

The k-mer generation step was written in Python and performed numerous times 

as improvements were required. The initial attempt used a sliding window across 

each SSR, from size 6bp up to 50% of the read size but the time consumed by 

this process was extensive and generated too much redundancy. An alternative 

approach was therefore adapted to generate tiled k-mers instead, which reduces 

the size of the input dataset but is more efficient. The first set of k-mers 

generated in this manner were 10bp in length, although further investigation of 

varying lengths may improve the training of the SVM. Using a larger k-mer size, 
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the chance of detecting associated spatial features increases but the frequency 

of observing a specific k-mer in each sample diminishes resulting in a sparse 

matrix that predominantly consists of single counts. 

Several issues occur when generating sparse data,, and efficient data storage 

became a key factor in this analysis. In the preliminary stages of this process, k-

mers were stored as lists with origin and non-origin labels and output to several 

files within a hierarchy of directories. This became a time-consuming step that 

was later adapted, avoiding the file output step. The optimisation of the k-mer 

generation step requires a strong knowledge of computer science and 

appropriate methods of efficient data storage and access and was therefore 

beyond the scope of the current project. The process of generating k-mers 

therefore remained a time-consuming step for a significant duration of this 

analysis but was optimised by Dr Nicholas Dickens through storage within the 

pipeline and this step has now been integrated as part of the SVM pipeline 

described below and is no longer an individual pre-requisite script. 

4.4.2 Building the SVM pipeline  

The SVM pipeline was built in Python and the machine learning algorithm is 

implemented through scikit-learn, a Python package of machine learning 

classification and clustering tools (Pedregosa et al., 2011). 

Support vector machines classify data with a large number of features by 

implicitly plotting them as vectors in high-dimensional space. The kernel 

algorithm that performs in high-dimensional space can be changed by the user 

depending on the type of classification problem. Changing the kernel affects the 

decision boundaries that will split the different classes. There are three 

commonly used kernel types: linear, radial basis function (rbf) and polynomial. 

Linear classifiers are efficient when applied to text classification and were used 

in this analysis. In the case of a linear classifier, the decision boundary is a 

hyperplane that linearly separates the two data classes. In our analysis, the two 

classes are SSRs containing an origin and SSRs not known to contain an origin. 

The first step is to vectorise the input k-mers so that the classifier is able to 

implicitly plot them. The weighting of the features is transformed in the dataset 
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so that more common features have a low weighting while rare k-mers have a 

higher weighting, as they are more likely to be indicative of the associated class. 

The classifier is then trained on the prepared data where it learns the groups of 

features that are the best representatives of each class. 

Multiple parameters must be defined when training the classifier and steps were 

implemented to optimise these. The performance of the linear classifier was 

also compared with that of a linear model stochastic gradient descent (SGD) 

classifier with and without optimised parameters. The output from each of these 

is shown in Table 4.1. 

The current SVM pipeline was co-written with Dr Nicholas Dickens and can be 

found at https://github.com/CampbellSam/Origin-classifier.  

 

 

Table 4.1 The accuracy of the original linear kernel compared with two optimised alternatives, a 
linear model SGD and a linear model SGD with optimised parameters. The performance was 
assessed in the available datasets: early S phase L. major Friedlin data set used for training the 
classifier, G2 phase L. major Friedlin, unsorted L. major Friedlin, unsorted L. major wild-type strain 
and a G2 phase sample from L. mexicana. 
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4.4.3 Testing the SVM classifier in Leishmania 

The linear classifier was trained on DNA sequence reads aligning to SSRs in L. 

major Friedlin cells from early S phase labelled origin/non-origin containing 

regions. Testing the classifier back on the training data achieved an accuracy of 

99.98% in L. major. Initial testing of the trained classifier on the training data is 

expected to give a high accuracy and it is important to be careful at this stage 

not to over-fit the classifier to the training data. This could be avoided by 

performing a n-fold cross-validation on the training set although this is a more 

significant problem in multi-class problems and was not currently implemented 

here. 

The trained classifier was then used to predict which SSRs contain origins in 

unclassified test data sets from L. major and L. mexicana, since origins had been 

mapped by MFAseq in the latter (Marques et al., 2015). Results from all of the 

test datasets are included in table 4.2. When testing the classifier on the G2 

data from L. major Friedlin to predict SSRs containing origins, 97.97% accuracy 

was achieved. Although this approach requires further optimisation, this 

preliminary result indicates that there are k-mers within the samples that can be 

used as features to predict replication origins. High accuracy was maintained 

when testing the classifier on a different strain of L. major, indicating that the 

same features are conserved within L. major strains. The classifier was also 

applied to two unsorted samples to identify and account for any bias from a 

larger number of reads aligning to origins during early S phase. It was then 

important to establish whether the classifier could use the features identified 

from the L. major training set to predict origins in L. mexicana. When taking the 

reads as samples, as with the training set and all other test sets, a drop in 

accuracy was observed, although 78.6% of reads aligning to SSRs were still 

correctly classified as origin-containing/non-origin. When removing the read 

level from the analysis and allocating all k-mers only to the SSR they belong to, 

a steep increase in accuracy occurred. The sample size was much smaller as only 

124 SSRs are input for classification; however, 96.77% of these regions were 

classified correctly. When the classifier was applied to L. brazilensis, a distinct 

drop in performance was observed that may highlight an overfitting issue. 
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Table 4.2. SVM performance when predicting the presence of DNA replication origins in 

SSRs in Leishmania  

Output of testing the classifier on each of the data sets when trained on reads aligning to SSRs in 
early S phase L. major Friedlin. The accuracy is the percentage of reads that were correctly 
classified as belonging to origin or non-origin containing SSRs, except in the case of the final data 
set where SSRs were treated as samples instead of the reads. The total number of samples is also 
included. 
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Although we observed a high success rate with this approach, many of the steps 

require refinement and the assessment of accuracy must be greatly improved. 

There are several modifications to the approach which can be made to overcome 

the current issues, most importantly the addition of a cross-validation training 

step to avoid over-fitting and inclusion of a more robust assessment of classifier 

performance (for instance, the use of ROC curves to evaluate accuracy). Better 

understanding of the SSRs, thus providing robust input data would dramatically 

reduce the bias introduced through inclusion of sequence present in SSRs which 

is not involved in DNA replication and therefore improve the significance of 

extracted features. 

4.4.4 Alternative method using gkm-SVM 

The SVM pipeline implemented above samples variation in the genome through 

the use of reads as input data as opposed to raw sequence data. An alternative 

approach is to allow for gaps in the sequence features used in the classification. 

As described previously, increasing the k-mer size increases the identification of 

spatially-associated features but also introduces noise and leads to low k-mer 

counts. The use of gapped k-mers could also improve the identification of 

associated DNA sequence features (Ghandi et al., 2014). 

To assess the different approaches, we applied the gapped k-mer classifier gkm-

SVM, generated by Ghandi et al, to our data (Ghandi et al., 2014). A linear 

kernel was first trained on the sequence data from SSR regions containing origins 

(positive dataset) and those which do not contain origins (negative dataset). The 

trained classifier is then tested on unlabelled sequence data from SSRs where we 

know the correct labels. The classifier predicts whether the sequences from 

each input region belong to origin or non-origin containing SSRs and accuracy is 

determined based on the number of correct predictions. Gkm-SVM was able to 

correctly predict 25 of the 36 origins in L. major. Of the 33 origins mapped to 36 

L. mexicana chromosomes, 23 were predicted correctly by Gkm-SVM. The 

performance of the algorithm appears highly consistent across both samples and 

all non-origin SSRs were classified correctly, indicating a very low false discovery 

rate (FDR). It may be beneficial to apply this classifier to the T. brucei genome 

in future studies to further assess performance and compare this method with 

our own approach. 
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4.4.5 Predicting the presence of DNA replication origins in T. 
brucei 427 BESs 

Before the generation of the Lister 427 SSR coordinates, we were unable to fully 

apply the machine learning approach to the characterisation of origins in T. 

brucei as we only had a single dataset comprised of the regions in 927. However, 

we were able to investigate BES1, the previously investigated region in T. brucei 

Lister427 bloodstream form (BSF),  which appeared ‘origin-like’ in output from 

MFAseq analysis (Devlin et al,. 2016).  

To further validate this observation, we trained a second support vector 

machine learning algorithm on the reads aligning to origin and non-origin 

containing SSRs in T. brucei TREU927. We then used this algorithm to predict the 

presence of active origins in the sequence of the BES contigs in T. brucei 

Lister427. Control regions were added to ensure the data was classified 

correctly: sequence from a region in T. brucei 927 known to contain an origin 

was added to the orthologous site in Lister427 test file as a positive control; the 

negative control was a 7kb SSR from TREU927 which is not predicted to contain a 

replication origin. 

Despite the difference in aligned reads at BES1 between eS and G2, an active 

origin was not predicted for this site, or any of the other expression sites. The 

analysis was repeated with smaller tiled windows across each region, and 

similarly, all of the small regions were predicted as non-origin sequence. These 

data may indicate that any origin in the BES is distinct in sequence from core 

origins. An alternative explanation for the early replicating behaviour observed 

at this expression site is that the actively transcribed BES1 is located proximal to 

an active origin on a megabase chromosome, but this hypothesis could not been 

tested due to lack of linkage of all BES to the core chromosome genome 

annotations and a lack of complete annotation of the subtelomeres. 

4.5 Conclusions 

The analysis presented here firstly investigated sequence features at SSRs in T. 

brucei and L. major. Motif searching analysis highlights the enrichment of 

homopolymer tracts at origins of replication in L. major, while specific searches 
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for the G4 motif in T. brucei revealed its presence in abundance, although no 

current association with replication origins has been made in this genome. 

Although attempts to refine the SSR coordinates proved difficult, the approach 

of utilising RNA-seq data to better define these regions could still be successful.  

The analysis outlined here has several inefficiencies but could be improved 

through the use of smaller datasets and refinement of the comparison between 

the updated and pre-existing gene annotations. Investment of time in the 

generation of de novo gene annotations and a novel script to update the SSRs, 

combined with the secondary approach of investigating read depth cut-off, 

would provide a method to update these coordinates that could be applied 

across the kinetoplastid genomes. 

These results also demonstrate that the application of machine learning is a 

promising approach, as the current SVM algorithm is able to correctly predict 

SSRs containing origins between strains of L. major and also across species, at 

least to L. mexicana. Application of gkm-SVM to our data also showed promising 

results; classification of non-origin SSRs by this software was comparable with 

the results from the in-house sci-kit learn SVM implementation although a high 

false-negative rate was observed when classifying origin-containing SSRs. This 

indicates that although previous methods have failed to identify sequence motifs 

enriched within origins, there is conserved sequence information that can be 

identified between species to predict origins of replication.  
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5 Use of genomic techniques to investigate the 

relationship between mosaic aneuploidy and 

DNA replication in Leishmania 
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5.1 Introduction 

A feature within the Leishmania genome is its ability to tolerate pervasive 

aneuploidy, a property thought to allow the parasite to efficiently adapt to 

changing environmental conditions. The presence of aneuploid chromosomes is 

usually detrimental in other organisms and is frequently associated with disease, 

such as cancer and trisomy 21 in humans (Pfau & Amon, 2012). However, the 

budding yeast Saccharomyces cerevisiae is able to tolerate chromosomal 

aneuploidy and a model system has been established to study the causes and 

consequences of aneuploidy in this model organism (Mulla et al., 2013; Parry & 

Cox, 1970). 

In response to changing environmental pressures, Leishmania parasites undergo 

gene and whole chromosome copy number variation, often to regulate the 

expression of genes that may be drug targets and efficiently develop drug 

resistance (Sterkers et al., 2011; Ubeda et al., 2008). Constitutive mosaic 

aneuploidy has been observed across several Leishmania species and variations 

in chromosome ploidy are observable between species and even between cells in 

a population (Lachaud et al., 2014; Rogers et al., 2011).  

The mechanisms underlying chromosomal amplification and the tolerance of any 

gene dosage effects are not currently understood. However, recent studies have 

highlighted the large number of repeated DNA sequences throughout the 

Leishmania genome and found that these sequences contribute to the 

recombination-driven rearrangement of genetic material and the formation of 

extrachromosomal elements, termed episomes, that can also be sustained within 

the genome (J. M. Ubeda et al., 2014). The relationship between these 

processes and DNA replication is currently unclear, but is of interest to further 

investigate potential links as the process of DNA replication may be unusual and 

occur from a single dominant initiation site on each chromosome, which is not 

the case in the closely related T. brucei. 

To further investigate genome plasticity in Leishmania, DNA sequence data from 

L. mexicana M379 promastigotes in serial passage was analysed using genomic 

techniques. This investigation is also interesting as parasites are often cultured 

for long periods of time in a variety of investigations, including drug resistance 
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studies but it is not well understood how the parasite genome adapts to these 

conditions. This study could therefore also highlight regions that are prone to 

genomic changes in in vitro passage conditions and help to eliminate a bias in 

regions of the genome which are not necessarily correlated with the focus of the 

study, and may be misinterpreted as key areas of investigation in biological 

investigations such as drug resistance studies. 

 

5.2 Genomic changes during serial passage of L. 
mexicana promastigotes 

To investigate the adaptation of the Leishmania genome to culture conditions, 

post-mouse infection DNA sequence data generated from Leishmania mexicana 

M379 promastigotes extracted at regular intervals throughout serial passage was 

analysed. An overview of the experimental set up is shown in Figure 5.1. L. 

mexicana parasites from a mouse footpad lesion were passaged in order to 

generate an adequate amount of DNA and then sequenced. This sample was then 

split into 3 and the rest of the experiment was carried out in triplicate. DNA 

samples were then extracted at passages 5, 10, 16, 20 & 29. At serial passage 16 

(sp16), a sample from each replicate was used to inoculate mice in the footpad 

and allowed to form a lesion. Parasites were then extracted from the lymph 

node of each mouse and passaged before sequencing. These data allow us to 

compare the parasite genomes after a mouse infection and during growth in 

culture, and also ask whether any putative adaptive changes are ‘reset’ after a 

host infection. The parasite culture, passaging and DNA extraction were 

performed by Dr Samuel Duncan, a former PhD student in the research group of 

Dr Jeremy Mottram. 
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Figure 5.1 Overview of L. mexicana serial passage experimental set up. 

Outline of experimental set up and serial passage samples used to provide DNA sequence 

data for analysis at regular intervals (above). Data processing pipeline from raw data to 

aligned reads which were then used for further analysis and visualization including 

chromosome and gene CNV data, variant calls through to filtering and visualisation. (below). 
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5.2.1 Genome analysis using the PReP pipeline 

5.2.1.1 Preparing the read data and alignment similarity 

The DNA sequence data for each sample was pre-processed using TrimGalore and 

aligned to the L. mexicana U1103 genome using Bowtie2 (Langmead & Salzberg, 

2012). The alignments were validated using samtools to ensure high quality data. 

At the time that the wet lab work was performed a change in sequencing 

platform at Glasgow Polyomics sequencing facility took place, between samples 

sp10 and sp16. Samples sp0–sp10 were sequenced using the Illumina miSeq 

platform, while sp16–sp29 were sequenced on an Illumina NextSeq 500 machine. 

As there are differences in these platforms, I have used deepTools 

(https://github.com/fidelram/deepTools) to assess the similarity of the aligned 

DNA sequence samples to ensure the trends we observe (described below) are 

not due to a bias caused by this change in sequencing platform. As we normalize 

our samples before comparison, we should not expect to see any changes in 

ploidy which is explained by different sequencing platform coverage bias. Figure 

5.2 shows the output from several approaches used to assess the similarity of 

each aligned sample. We did not observe distinct clusters of samples from each 

platform when plotting by PCA (figure 5.2A), although a degree of clustering 

occurred between the samples when assessed by Pearson correlation (figure 

5.2B). To ensure any clustering observed in the above approaches was not due to 

a bias caused by sequencing platform, CummeRbund, available as an R package 

as part of the Cufflinks suite, was also used to visualize the effect of different 

sequencing platforms on the estimation of gene coverage 

(http://compbio.mit.edu/cummeRbund/manual_2_0.html). The gene abundance 

estimates, FPKMs (fragments per kilobase of transcript per million mapped 

reads), generated by Cufflinks are used to calculate the chromosome ploidy 

estimates and therefore any variation between samples here would have a 

significant impact on the analysis. However, we did not observe any significant 

inconsistencies when comparing median FPKMs across samples (figure 5.2C).  
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From this analysis, we confirm that any observations made in this analysis are 

not the consequence of bias caused by different sequencing platforms. 

  

Figure 5.2. DNA sequence alignment similarity. 

A. PCA plot representing variability between aligned read files for all L. mexicana serial 

passage samples. B. Pearson correlation of aligned sample similarity represented by 

heatmap. C. Boxplot, generated by the R package CummeRbund, representing gene FPKMs 

across sp0 and the triplicate samples from sp5 to sp19, here labelled as conditions. 

Samples sp0–sp10 were sequenced using the Illumina miSeq platform and samples sp16–

sp29 were sequenced on an Illumina NextSeq 500 machine. 
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5.2.1.2 Estimating gene copy number and chromosome ploidy  

The in-house pipeline (known as PReP) was used to perform genomic sequence 

analysis based on parameters within a specified configuration file. The pipeline 

is written in Perl and, given a configuration file, access to the required input 

files and software directories, uses the information contained in the 

configuration file to appropriately format data and make software calls to 

perform genome alignments, generate gene copy number variation information 

and perform SNP calling. Although the reference genome alignments were 

performed separately, PReP was used to generate gene (CNV) data that was then 

used to generate chromosome ploidy estimates for each sample.  

Gene CNV data was generated using tools from the Cufflinks package, CuffQuant 

and CuffDiff (Trapnell et al., 2010). CuffQuant is used to generate abundance 

estimates for each gene and CuffDiff can be used to perform a series of 

analyses, including direct sample comparisons and time-series analysis. CuffDiff 

results were generated using the whole dataset and normalised copy number 

estimates were obtained for genes in each sample. In-house Python scripts were 

written to generate chromosome ploidy data for each sample and further scripts 

were used to generate CNV and fold change estimates across samples. The 

output from this analysis can be seen as heatmaps in figure 5.3. Chromosomes 16 

and 30 were present in consistently higher copy number while chromosome 23 

exhibited a decrease in copy number in two of the replicates across most 

samples (fig 5.3A). A clear trend emerged when fold change in copy number of 

each chromosome was evaluated over the time of passage relative to sp01 (fig 

5.3B & C). Over several passages, predominantly between sp10 and sp16, small 

chromosomes showed an overall increase in copy number whereas larger 

chromosomes showed an overall slight decrease in copy number. Further support 

of this can be seen by examining the putative ‘fusion’ chromosomes present in 

the L. mexicana genome (L.mx08 and L.mx20) which are much longer in length 

(1.7 Mb and 3.3 Mb) and show a decrease in copies consistent with the observed 

trend. 
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Figure 5.3. Chromosome copy number and relative fold change in L. mexicana serial passage 

A. Raw copy number estimates for L. mexicana chromosomes (x-axis) in each serial passage 

sample (y-axis). Chromosomes are ordered numerically. B. Fold change of chromosome 

copy number in each sample relative to the sp0 sample. A model of approximate origin 

location is included below. Chromosomes are ordered numerically. C. Fold change of 

chromosome copy number in each sample relative to sp0, with chromosomes ordered by 

length. 
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5.2.2 SNP analysis of L. mexicana serial passage samples 

5.2.2.1 SNP rate across passage samples and visualisation with Circos 

FreeBayes variant calling software was applied to each sample to generate SNP 

data (Garrison & Marth, 2012). FreeBayes was chosen to perform SNP calling as it 

is haplotype-based and does not assume a diploid genome. The average SNP rate 

for each chromosome across each sample is shown in figure 5.4A. Variants/100 

kb and variants/1 kb were calculated using a custom script 

(https://github.com/CampbellSam/calculateSNPrate) across every chromosome 

for each sample and visualised using Circos (figure 5.4B). When the SNP rate was 

plotted alongside the MFAseq, a reduction in SNP rate was observed on some 

chromosomes in the region surrounding the SSR which contains the origin of 

replication. Further statistical analysis will be required to verify the potential 

significance of this observation. At the level of SNPs/kb, it will be possible to 

further mine this data for regions with an enriched SNP rate that are prone to 

mutagenesis and also regions with a particularly low SNP rate which may contain 

highly conserved regions. Integration of SNP data with gene CNV and MFAseq 

data could provide insight into the structure of SSRs and the process of DNA 

replication and even highlight potential regions of interest. 

5.2.2.2 Investigation of SNP rate at SSRs  

Due to the predicted association between changes in chromosome ploidy and 

DNA replication, it was of interest to investigate this dataset for other potential 

relationships with origins of replication. To investigate the potential relationship 

between the frequency of SNP occurrence and sites of DNA replication initiation 

in Leishmania, the SNP rate was plotted with distance relative to the origin of 

replication for all chromosomes in triplicate samples from passage 29. As 

predicted replication origins co-localise with SSRs, the centre of each origin-

containing SSR was taken as the location of the origin to maintain consistency, 

despite the fact that this is supposition. An increase in SNP rate is observed 

proximal to origins in all replicate samples, as shown in figure 5.5. This is in 

contrast to the previous observation made by eye from the data showin in figure 

5.4B.  Analysis of SNP rate within origin-containing SSRs compared to non-origin 

SSRs revealed a small but significant increase in SNP rate at the centre of origin-
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containing SSRs. The different types of SSR were also considered (divergent, 

convergent and head-to-tail) in the context of origin presence. There was an 

increased SNP rate at divergent SSRs containing an origin compared to those 

without a predicted origin, although the significance of this in a biological 

context has not yet been recognized. The function of increased sequence 

variability at origin containing SSRs is currently unclear. 

Analysis of large structural variations in these samples to detect any 

chromosomes with enrichment of break end, inversion, deletion or duplication 

events may reveal correlations with the previously observed changes in 

chromosome ploidy.  

5.2.2.3 Generation of chromosome ploidy estimates based on allele 

frequency 

Allele frequencies were calculated based on the SNP data generated using 

FreeBayes, which allowed us to confirm the previously predicted chromosome 

ploidies. This script can be found at 

https://github.com/CampbellSam/calculateAlleleFrequency. These data were 

visualised briefly using ggplot in Python but requires further refinement and is 

therefore not shown. The script used to perform this analysis could be extended 

to also test for loss-of-heterozygosity (LOH) in the L. mexicana dataset. 
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Figure 5.4 Overview of SNP rate per chromosome and SNP rate per kb across serial 

passage samples. 

A. Mean SNPs/kb (y-axis) plotted for all L. mexicana chromosomes, ordered numerically 
(x-axis) for all samples (stacked coloured lines) Mean SNPs/kb included in dark red 
represents an independent L. mexicana U1103 strain provided for comparison (generated 
by Dr Nicholas Dickens). B. Circos visualisation of SNPs/kb across each chromosome in L. 
mexicana samples. From inside brown = sp01, yellow = sp5, orange = sp10, purple = 
sp16, green = sp20, blue = sp29 and the early S MFAseq profile is included in light blue 
with an added gene track highlighting enriched regions. 
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5.2.3 Chromosome copy number variation vs chromosome size 

Based on the previous observation of chromosome fold change during parasite 

growth in serial passage, the correlation between chromosome fold change and 

chromosome length was assessed. DNA read coverage was plotted using Fluff for 

three chromosomes of varying length to ask if any loss of coverage occurred as a 

result of incomplete replication (Georgiou & van Heeringen, 2016). Read depth 

was normalised and plotted for chromosomes 3 (~300kb in length), 20 (~3.3Mb in 

length) and 27 (~1.1MB in length) at passage 0 and passage 16. The shape of the 

overall read distribution was maintained in both the small and large 

chromosomes, although the largest chromosome, chromosome 20 (a ‘fusion’ 

chromosome), exhibited an overall decrease in coverage from sp0 to sp16, while 

Figure 5.5. SNP rate and origins of replication. 

Average SNPs/kb in triplicate samples from sp29 plotted for all chromosomes against distance 
from origin of replication (above). SNP rate plotted against location of DNA origins of replication 
visualisation generated by Dr Nicholas Dickens. Boxplot of SNPs across all SSRs broken into 10 
bins to account for length. SSRs containing an origin are shown in green and non-origin SSRs are 
shown in blue (left). Number of SNPS/kb for SSR types - divergent, convergent and head-to-tail 
(right). Origin/non-origin SSRs shown in green and blue respectively. 
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the smallest chromosome (3) showed a slight overall increase in coverage. 

Chromosome 27 did not display a significant change in read depth. These 

findings are consistent with the previously observed fold change, and rule out 

that copy number variation is due to localised loss or gain of sequence within 

each chromosome.  

Figure 5.6. Changes in whole chromosome coverage and the relationship between relative fold 

change and chromosome size. 

A. Normalised read coverage for chromosomes 3, 27 & 20 between sp0 and sp16. B. 

Chromosome length plotted against fold change shown for every interval of serial passage, 

from the left: sp5, sp10, sp16, sp20 & sp29. Chromosomes are binned by length, increasing in 

500 kb increments. Blue = 0-500 kb, green = 500 kb- 1 Mb, red = 1-1.5 Mb, purple = 1.5 Mb and 

the remaining bin represents > 2 Mb. C. Chromosome fold change plotted against 

chromosome length for all samples relative to sp0. D. Linear regression of the relationship 

between chromosome length and relative fold change for samples at passage 16, r= -

1.18966x10-7. 
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Investigation of the median chromosome fold change relative to chromosome 

size in passage 5 through to 29 revealed that at passage 16, a trend begins to 

emerge where the small chromosomes - up to ~1Mb show a slight fold change 

increase, while the larger chromosomes decrease. This trend continues at 

passage 20 and 29. We predict a chromosome of length 1.1 Mb will exhibit zero 

fold-change, as shown in the linear regression in figure 5.6D. This suggests that 

chromosomes smaller than 1 Mb may be prone to re-replication while those 

larger than 1 Mb may be under replicated. 

5.2.4 Investigation of advantageous genes on small and large 

chromosomes 

Although genes are organised into arrays in kinetoplastid genomes, there is 

currently no evidence that this structure is based on a functional association. 

The previous analysis suggests that the copy number of small and large 

chromosomes is affected differently throughout promastigote growth in culture. 

It is therefore of interest to ask if genes of associated function may be enriched 

on large or small chromosomes. In order to test for the presence of genes with a 

potentially advantageous function, Interpro and Pfam protein domain 

annotations for L. mexicana U1103 were obtained from TriTrypDB version 26 and 

assessed for enrichment in a group of small chromosomes (LmxM.01, LmxM.02, 

LmxM.03, LmxM.04, LmxM.05, LmxM.06 and LmxM.12) and in a group of large 

chromosomes (LmxM.08, LmxM.20, LmxM.30, LmxM.31, LmxM.32, LmxM.33 and 

LmxM.34) relative to the annotations for the whole genome. Hypergeometric 

distribution analysis was performed for each domain annotation ID in each 

sample group to determine if any domains appear to be enriched in the small 

chromosome group or in the large chromosome group. The output from this is 

shown in table 5.1. A domain associated with motility, PF07004, is enriched in 

the small chromosome group (q=3.11x10-19) and contains a PGP motif that is 

repeated in eukaryotic sperm tail proteins. A second domain, PF00501, encoding 

an AMP-binding enzyme is also slightly enriched (q=0.03766) in this group 

suggesting a potential role in metabolic or catalytic activity. Of the 77 amastin 

surface glycoprotein domains (PF07344) annotated in the genome, 55 are found 

in the large chromosome group (q=2.16x10-12) and 15 of these are located on 

LmxM.30. A domain of unknown function, PF09149, is also enriched in the large 

chromosome group (q=9.9x10-8), while a zinc knuckle-zinc binding motif, 



 107 
PF00098, involved in eukaryotic gene regulation is significantly 

underrepresented (q=0.032997). Testing for enrichment on LmxM.30 alone 

highlights two further domains, PF01490 (q=4.53x10-7) and PF00664 (q=0.00348), 

both associated with transmembrane transport. This result may suggest that 

changes in copy number of this chromosome are associated with the regulation 

of genes involved in modulating drug resistance, although follow-up 

experimental study and validation of these observations would be required. 

A similar analysis was performed using GO terms to test further the protein 

domain analysis and assess overlap of significantly enriched functions in each 

approach (Table 5.1). In this analysis, small chromosomes displayed an 

enrichment of FMN- and copper-ion binding proteins, which was not identified 

when utilising Pfam domain annotations. In contrast to this, the functions 

enriched on large chromosomes were highly similar to those from the previous 

approach, with transmembrane transport being the most significant. CRAL/TRIO 

lipid-binding domain containing proteins also appeared as enriched on large 

chromosomes in both approaches and this may be of interest as this structural 

domain was found to be elevated in the stumpy form of T. brucei by Capewell et 

al., 2013 (Capewell et al., 2013).Enriched GO-terms on LmxM.30 were 

associated with membrane transport and multi-drug resistance genes. 

An unresolved concern with this current analysis of enriched Pfam domains is 

that one gene may contain multiple copies of the same domain and this will lead 

to bias in the results. To resolve this issue, the analysis would need to be 

repeated, minimising the unique domain counts to 1 annotation per gene. 

5.2.4.1 Visualisation of amastin surface glycoprotein domain distribution in L. 

mexicana U1103 

Amastin surface glycoproteins are present in large gene arrays in L. major and L. 

mexicana and are involved in immune evasion. This analysis highlights an 

enrichment of these arrays on large chromosomes and therefore it was of 

interest to visualise the distribution of these domains throughout the L. 

mexicana genome to ask if this observation is a result of the previously 

described potential bias in this approach. We wanted to investigate the 

distribution of these genes to see whether they were present in large clusters, 
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evenly distributed across large chromosomes or mainly located on only one or 

two large chromosomes. The regions containing amastin domains were visualised 

using Circos and GP63 domains were also included as these proteins are also 

associated with immune evasion. The visualisation of the distribution of genes 

containing these domains is shown in figure 5.7. From this Circos plot, we can 

see that clusters of amastins are predominantly found on large chromosomes but 

amastin domain containing genes are also present on chromosomes 10, 16 and 24 

which are intermediate in size and not included in either the small or large 

chromosome groups. Chromosome 33 contains a distribution of amastin domain 

containing genes on one half of the chromosome where as a concentrated 

cluster of domains is observed in chromosome 8. The cluster observed on 

chromosome 8 may be due to multiple copies of the domain in a single gene as 

described above in 5.2.4. Based on this analysis, it appears that genes containing 

GP63 and amastin domains are more likely to be found on large chromosomes 

and are dispersed across several chromosomes. 
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Table 5.1. Enriched Pfam and GO term IDs in samples of chromosome subsets in L. 
mexicana M379 identified based on length and level of fold change during serial passage. 
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Figure 5.7. Amastin and GP63 gene distribution visualised using Circos. 

Locations of amastin associated genes are highlighted in blue while GP63 genes are shown in red. 
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5.2.5 Analysis of changes in chromosome ploidy in an additional 

dataset 

The observation of size-dependent changes in chromosome ploidy is based on 

the analysis of a single dataset and it was therefore of value to test the validity 

of this observation in an independent set of data before planning further lab 

experiments. Aspects of this analysis were performed by Jade Bartolo as part of 

a bioinformatics MSc Medical Genetics project. DNA sequence data is available 

for the progenitor sample for the L. mexicana M379 line cultured by the research 

group of Professor Michael Barrett in the Wellcome Centre for Molecular 

Parasitology, and passage of parasites from this sample have been performed by 

Dr Andrew Pountain, a former PhD student in this group. DNA sequence data was 

obtained from a L. mexicana sample that had undergone ~10 passages as a 

control sample in a drug resistance study. Repeating the previous genomic 

analysis using the PReP pipeline allowed a similar comparison of chromosome 

fold change between the progenitor sample, treated as a zero passage sample, 

Figure 5.8. Chromosome copy number and relative fold change in a second independent L. 
mexicana dataset. 

Left: Raw chromosome copy number estimates in a L. mexicana M379 progenitor sample 

(above) and a sample from the same line that has undergone a short passage of roughly 10 

(below). Right: Fold change of chromosome copy number relative to the progenitor sample. 

In both heat maps, chromosomes (x-axis) are ordered by size. 
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and the passage 10 sample. The results from this brief comparison demonstrate 

a similar pattern of size-dependent changes in chromosome ploidy, although to a 

lesser extent with the trend being visible only in the smallest and largest 

chromosomes (figure 5.8). 

 

5.3 Assessing the relationship between DNA replication 

and changes in chromosome ploidy 

To further investigate the potential relationship between changes in 

chromosome ploidy and DNA replication, a second experiment was designed 

involving the addition of hydroxyurea (HU). The introduction of HU depletes the 

dNTP pool and therefore impedes the rate of DNA replication (Bianchis et al., 

1986). Stalled replication forks can also occur ,which can collapse and cause 

DNA breaks. It was hypothesised that inhibition of DNA replication with HU 

would enhance the previously observed changes in chromosome ploidy, allowing 

the changes to be detectable over a shorter period of passaging, if replication 

limitations are the basis for ploidy variation. 

5.3.1 Addition of HU during passage of L. mexicana 
promastigotes 

The culture and passage of L. mexicana M379 promastigotes was performed by 

Dr Jennifer Stortz, a post-doctoral researcher in Dr Richard McCulloch’s group. 

The experimental set up is outlined in figure 5.9. An initial step was identifying 

a concentration of hydroxyurea (HU) that could be used to treat the cells and 

deplete dNTPs to a level which impedes DNA replication but allowed the cells to 

continue growing. Growth curve analysis indicated that concentration above 

0.2mM caused cells to die rapidly. Cells were therefore treated with 0.1 mM or 

0.2 mM HU during each passage, and a third control sample was included with no 

HU treatment. The experiment was carried out in triplicate and samples 

underwent 7 passages in total. DNA was extracted at passage 1 and passage 7. 

FACS data was also generated at passage 1, 6 and 7 for the 0 mM, 0.1mM and 

0.2mM samples (figure 5.10). The FACs analysis highlighted an increase in S 

phase cells in the passage 6 and 7 samples with 0.2mM HU treatment relative to 

the 0 mM control samples (figure 5.10). This is likely due to cells not completing 
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or taking longer to complete DNA replication and therefore spending longer in S 

phase. 

DNA sequence data was prepared as previously outlined in 5.2.1, and genomic 

analysis was performed by running PReP. Visualisation of raw chromosome copy 

number did not reveal any significant changes with HU treatment (figure 5.11A), 

although chromosomes 3, 4, 16 and 31 were consistently triploid in this dataset 

and chromosome 30 was at least tetraploid. When fold change of the passage 7 

samples was visualised relative to the initial passage 1 sample, a size-dependent 

trend in ploidy variation was observed in cells treated with 0.2 mM HU. This 

pattern was stronger still when comparing the chromosome copy number fold 

change in passage 7 0.2 mM HU treated cells relative to the passage 7 0 mM HU 

control sample(figure 5.11B (left)). Although the relative fold change is limited 

to a small scale, plotting the median fold change against chromosome size as in 

the previous analysis, revealed a significant difference between the small and 

Figure 5.9. Overview of L. mexicana serial passage with HU treatment 

experimental set up. 

Outline of experimental set up and triplicate serial passage samples that provide 

DNA sequence data for analysis at passage 1 and passage 7. Within each 

replicate, one sample has been treated with 0.1 mM HU, a second with 0.2 mM HU 

and a third control sample with no HU added. 
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large chromosome groups (figure 5.11B(right)). This observation is consistent in 

that small chromosomes increase in copy number and large chromosomes 

decrease in copy number, this time under a much shorter serial passage 

experiment (7 passages relative to 29). These results support our previous 

observations in that the changes in chromosome copy number fold change are 

associated with the process of DNA replication. 

 
  

Figure 8.10. FACS profiles for triplicate untreated and 0.1mM and 0.2mM HU treated 

samples at passage 0, passage 6 and passage 7.  

Colours represent overlaid replicate samples. Plots of 0mM vs 0.2mM HU treated samples at 
passage 6 and passage 7 are also included in the lower panels (0mM and 0.2mM profiles 
overlaid). 
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Figure 5.11. Chromosome copy number and relative fold change in a L. mexicana short 

passage dataset with HU treatment 

A. Raw chromosome copy number estimates in a L. mexicana M379 dataset of 7 serial 

passages with HU treatment (left). Fold change of chromosome copy number relative to the 

untreated P0r sample (right). In both heat maps, chromosomes (x-axis) are ordered by 

length B. Relative fold change of passage 7 0.2 mM HU treated sample to the passage 7 0 

mM HU sample (left). Chromosomes are ordered by length. Boxplot visualisation of the 

relative changes in chromosome ploidy against chromosome size (right).  
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5.4 Comparison of DNA replication and changes in 

chromosome ploidy 

It is possible that the serial passage of L. mexicana M379 promastigotes 

artificially selects for fast growing cells, and therefore potentially exposes the 

limitations of replication from a single origin. Treating the samples with HU 

enhances this limitation and it is therefore possible to observe the same changes 

in chromosome ploidy over a much short timescale. The decrease in copy 

number observed for large chromosomes correlates with this hypothesis, while 

the possible re-replication of small chromosomes may indicate that Leishmania 

cells are less efficient at detecting if an origin has fired. Leishmania have a 2.9 

hour S phase as measured by (Wheeler et al., 2011), and a replication fork rate 

of 2.4-2.6 kb/minute as measured by (Stanojcic et al., 2016). It is estimated 

that within this S phase, it would be possible to replicate ~870 kbp from a bi-

directional single origin. This is sufficient to replicate many of the chromosomes 

in L. major and L. mexicana (24 out of 36 and 23 out of 34, respectively). 

However, in the case of larger chromosomes that are >1 Mb in length, a single 

origin would not be sufficient to replicate the entire chromosome. For example, 

the longest chromosome in the L. mexicana genome, LmxM.20, which is ~3.3Mb 

in length, would require ~8 hours to complete replication at this rate from a 

single origin. As the doubling time of Leishmania is around 6 hours, the 

replication of this chromosome at the measured rates is unfeasible. A model of 

this is illustrated in figure 5.12.  

Figure 5.12. Model of predicted DNA replication distance from a single dominant origin in L. 
mexicana. 

Predicted replication distance from a single origin is illustrated for chromosome 3 (~300kb), 

chromosome 27 (~1 Mb) and chromosome 20 (~3.3 Mb) in L. mexicana. 
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The above prediction indicates that replication in Leishmania must be initiated 

at multiple sites on each chromosome during S phase to complete replication of 

large chromosomes within the allocated time. However, it is plausible, based on 

this analysis, that the observed changes in chromosome ploidy are the 

consequence of replication from a single dominant origin per chromosome. In 

this case, a secondary mechanism could be present to complete replication of 

large chromosomes, which may be ORC-independent and potentially relies on 

homologous recombination and proteins associated with DNA repair pathways. 

This is a novel hypothesis that proposes an underlying mechanism for the 

relationship between DNA replication and mosaic aneuploidy in Leishmania, 

which is currently not well understood. 

Alternatively, it is possible that across a population of Leishmania cells, several 

minor origins are used at a low frequency to complete replication of each 

chromosome, which cannot be detected due to limitations of the MFAseq 

approach. In T. brucei the major early-firing origin on each chromosome co-

localises with the centromere, therefore the major origin we observe in 

Leishmania could potentially co-localise with the chromosome centromere which 

have recently been predicted through ChIP-seq enrichment analysis of LmKKT1 

(Sollelis et al., 2017; Tiengwe et al., 2012). 

The size-dependent changes in chromosome ploidy assessed in this analysis are 

observed at the level of a whole population of promastigote cells and the 

changes detected at this level are small. More sensitive investigation techniques 

would be required to detect these changes at the level of individual cells and 

provide insight into the proportion of cells undergoing changes in chromosome 

copy number. 

 

5.5 Characterisation of sequence features present in 

multi-copy genes in L. major and L. mexicana 

As previously described, genomic adaptation through variation in gene and whole 

chromosome copy number is well documented in Leishmania (Downing et al., 

2011; Rogers et al., 2011). The mechanisms underlying this process are not yet 
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clear and little is known about any differences that may exist between single 

and multi-copy genes at the DNA sequence level. The above investigation 

focused on understanding the potentially conserved regulatory sequences at 

SSRs, and below the approach of binary sequence classification is extended to 

the classification of multi copy genes. This may allow the identification of 

sequence features enriched within multi copy genes that may have functional 

significance, or allow future prediction of multi copy genes. 

5.5.1 Defining single and multi-copy gene datasets 

The available DNA sequence datasets for the genomes of L. major Friedlin, L. 

mexicana U1103 and L. mexicana M379 were used to investigate characteristic 

sequence features in multi-copy genes compared to single copy genes using a 

SVM approach similar to the one used previously to characterise origins of 

replication in Leishmania. Classes of single and multi copy genes were defined in 

Figure 5.13. Visualisation of estimated gene haploid frequencies. 

A. Gene haploid count frequency plots for L. major, L. mexicana U1103 and M379. Genes are 

grouped by orthomcl ID where a single gene is shown in red, 2 genes in green and 3+ in blue. 

Thresholds are represented by dotted lines at 0.75 and 1.8. B. Number of genes determined as 

multi-copy per kb in each chromosome of L. mexicana U1103 (plot shown in B. generated by Dr 

Nicholas Dickens). 
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the genomes of L. mexicana U1103, L. mexicana M379 and L. major Friedlin 

based on a gene haploid count threshold of 1.8 for single copy genes and a 

minimum and maximum cut-off of 0.75 and 10 respectively (figure 5.13A). This 

analysis allowed the generation of a formatted file containing gene IDs, haploid 

number and labelled as single or multi-copy, providing the labels required to 

train and test the SVM classifier. Additionally, plotting the number of multi copy 

genes per chromosome in L mexicana U1103 reveals that chromosome 16 has the 

highest number of multi copy genes in this genome per kb (figure 5.13B). 

5.5.2 Application of machine learning to characterise multi copy 

genes 

The DNA sequence reads that map to the coordinates of the single and multi-

copy gene lists were again taken as samples and broken up into k-mers, this time 

with a length of 7 bases. A SVM was trained using a linear kernel on the k-mer 

features from L. mexicana U1103 and tested in L. mexicana M379 and L. major 

Friedlin. The classifier had high self-accuracy but this is expected, as a cross 

validation step has not yet been implemented during training. High prediction 

accuracy was maintained when testing in a different strain, L. mexicana M379, 

and across species to L. major Friedlin (Table 5.2). A second classifier was then 

trained on L. major Friedlin k-mer features and tested on L. mexicana U1103 to 

perform the reverse analysis and investigate whether similar sequence features 

were used by the machine in each genome to make the classifications. The 

second classifier also performed well and therefore provides confidence that this 

approach accurately distinguishes single and multi-copy genes based on DNA 

sequence features.  

As part of this initial analysis, feature selection was included to detail the top 10 

k-mer features used by the SVM to classify the single/multi-copy gene regions. 

This step was generated by Dr Nicholas Dickens. The feature lists for the L. 

mexicana U1103 and L. major Friedlin-trained classifiers are shown in table 5.3. 

Visualisation of this data on an individual chromosome was not effective and 

further refinement of this step would be required to reduce noise and ensure 

clarity of the results. 
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Although, there is still much work to be done in improving the machine learning 

approach to ensure accurate results that reflect the datasets, the high classifier 

accuracy obtained during initial attempts to define single and multi copy genes 

indicates the presence of sequence features specific to multi-copy genes. Given 

additional time, it would be important to optimise and repeat this process to 

ensure the appropriate features are being detected and extracted before further 

analysis. Improvement of the general SVM approach and the feature selection 

process would allow correlation between the appearance of relevant sequence 

features with the location of annotated multi-copy genes. Implementation of a 

cross-validation step during training of the classifier would be a priority, as this 

Table 5.2. SVM classifier accuracy in L. major and L.mexicana.  

 

 

Table 5.3. Extracted list of top 10 k-mer features used by the SVM algorithm to perform 

classification 
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can limit potential overfitting of the model to the training data and therefore 

improve overall accuracy. The datasets used in this analysis are relatively small 

and although this is alleviated to some degree by the use of DNA sequence reads 

as samples, it would likely only be possible to perform a 5-fold cross-validation 

before the sample sizes become too small. The consideration of alternative 

kernels may also be beneficial, primarily the non-linear RBF kernel, which is 

frequently used with SVMs. Also, the current assessment of classifier accuracy 

could be improved as the current method is not sufficient. Common accuracy 

detection methods that consider false positive and true positive rate would be 

implemented to improve this method, such as assessing the area under the curve 

(AUC) of the receiver operating curve (AUC-ROC) and potentially the precision-

recall curve (PR-ROC). 

 

5.6 Conclusions 

Exploration of the changes that occur in the sequence and structure of the L. 

mexicana genome in response to serial passage conditions has revealed changes 

in chromosome ploidy that are size-dependent and emphasised by continued 

parasite growth. Little variation is observed at the sequence level over this time 

and further investigation of structural variation throughout passage could 

identify break point regions, particularly on the potentially under-replicated 

large chromosomes, that may be prone to breakage or re-arrangement. The 

observations of genome plasticity in this analysis may be a consequence of DNA 

replication from a single dominant origin and selection of fast-growing cells. In 

this case, replication may be completed by flexible or dormant origins, which we 

have not been able to detect by MFAseq, or by currently unknown recombination 

based methods, which initiates and completes replication independent of origins 

and ORC initiation factors. 

Attempts to detect changes in copy number of small and large chromosomes by 

qPCR were unsuccessful. This is likely due to the small level of fold change 

detectable in the overall population and a more sensitive molecular technique 

would be required to validate these. Addition of HU to cells over a second 

shorter passage produced similar changes in chromosome ploidy, although to a 
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lesser extent. The trend was most pronounced in passage 7 cells treated with 

0.2mM HU, in which replication was most impeded by the depletion of dNTPs. 

FACS analysis indicates an increase of S phase cells in 0.2mM HU treated samples 

at passage 6 and passage 7 relative to untreated cells at the same passage, 

providing further support that the observed changes in chromosome copy 

number are associated with DNA replication. 

The enrichment analysis performed in this study found that small chromosomes 

contained a larger number of genes associated with motility, catalytic and 

metabolic activity and an increase in DNA read coverage was observed across 

these chromosomes during growth. However, this analysis does not show that 

this increased coverage translates to increased gene expression. Large 

chromosomes that displayed an overall decrease in DNA read coverage with 

growth displayed an enrichment of amastin surface glycoprotein genes involved 

in host immune evasion and also multi-drug resistance genes. The presence of 

drug-resistance genes was markedly enriched on chromosome 30, a large 

chromosome which is consistently present in a ploidy state greater than diploid 

across all species of Leishmania characterised thus far. Although RNA was only 

extracted from the shorter passage HU-treated cells and not from the initial 

serial passage samples, RNA-seq analysis would allow correlation between 

changes in gene expression and the observed changes in chromosome ploidy. 

This would allow the potential correlation of expression levels of the 

aforementioned genes of specific function on the chromosomes displaying 

overall changes in ploidy. 

Brief investigation of DNA sequence at genes prone to amplification and copy 

number variation revealed the presence of sequence features specific to multi-

copy genes. Application of machine learning successfully classifies multi-copy 

genes in L. major and L. mexicana, although optimisation of this approach is 

required for further elucidation of the relevant sequence features. 
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6 Concluding Remarks and Future Perspectives 
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The use of whole genome computational methods, still novel to kinetoplastid 

biology, reveal striking differences between the genomes of Leishmania and 

Trypanosoma despite their evolutionary relatedness. Further analysis of 

kinetoplastid genomes using molecular and computational techniques, highlights 

divergence between the L. major and T. brucei genomes and differences in 

essential processes such as DNA replication become apparent. 

The replication origins in L. major have been mapped using MFAseq, and 

subsequent analysis of a second species, L. mexicana, supports the hypothesis of 

DNA replication predominantly occurring from a single origin on each 

chromosome (Marques et al, 2015). This mechanism of replication is also seen in 

bacterial and archaeal genomes (Robinson & Bell, 2005). The mapped origins 

demonstrate significant conservation in location with those mapped in the T. 

brucei genome, although no sequence homology has been observed (Marques et 

al, 2015). The L. mexicana genome is made up of 34 chromosomes compared to 

36 in the L. major genome. This is due to the presence of two putative 

chromosome fusions occurring between chromosomes 8 and 29 and chromosomes 

20 and 36 (Rogers et al, 2011). Origin loss occurs as a consequence of this 

process and the ‘fused’ chromosomes appear to replicate from a single origin. In 

contrast with the T. brucei genome, the origins in Leishmania are used with 

equal efficiency. Having multiple origins is thought to allow redundancy, a 

mechanism that allows the recovery of the bi-directional replication process if a 

problem occurs and replication cannot continue. It is unknown how species of 

Leishmania recover DNA replication in these circumstances, although 

recombination may be a plausible mechanism.  

The MFAseq pipeline could be further improved by the inclusion of a purpose-

built script that would analyse the raw MFAseq ratio data, generate a 

significance threshold and computationally define peak regions in a similar way 

to existing software designed for ChIP-seq analyses. The investigation of 

algorithms designed for analysis of ChIP-seq data found that they are not 

appropriate in application to the MFAseq data. A limitation of the MFAseq 

approach is that it relies on sorting cells in S and G2 phases, meaning any 

unscheduled replication, such as in G1 or M phase, would not be seen. Indeed, it 

is possible that such unscheduled replication may explain the dichotomy 
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between MFAseq replication mapping and the DNA combing and SNSseq 

approaches described later (Lombrana et al., 2016; Stanojcic et al., 2016)  

A support vector machine algorithm was applied to the SSRs in L. major and L. 

mexicana to better characterize origins of replication at the sequence level. 

Although this approach was highly successful in origin/non-origin sequence 

classification, optimization of the approach is required. Working to resolve 

issues such as updating poor reference genome annotations and reduction of 

computational time involved in data pre-processing steps will strongly improve 

the speed and accuracy of the classifier and allow extraction of meaningful 

features that can be used to characterize replication origins and start to 

generate a more robust model of replication initiation, which includes sequence 

level detail. Further optimization of the support vector machine parameters 

would allow classification at a greater accuracy with identified false discovery 

rates and optimized parameter and kernel choices. It would be of interest to 

apply this machine learning approach to the T. brucei genome and further 

investigate the conservation of replication origins between kinetoplastid species 

by also applying the Leishmania trained classifier to T. brucei. To date, origins 

have not been mapped in other kinetoplastid genomes, but if the approach can 

be shown to traverse the evolutionary gap between Leishmania and T. brucei, it 

may be a way to identify origins in further species, without laborious wet lab 

experiments. If the classifier is able to predict origins across species, it would 

likely provide insight into the level of conservation of sequence features 

associated with DNA replication. Alternatively, if the classifier performs well in 

Leishmania but is in fact characterising centromeric sequences as opposed to 

replication origins, then a difference in performance may be observed in T. 

brucei, which contains multiple origins per chromosome, not all of which 

colocalise with centromeres. 

The results described in this analysis indicate that features exist within these 

regions that can be used to accurately separate the two different types of SSR 

(origin-active and inactive) and potentially characterise DNA replication origins 

at the sequence level. A limitation of the machine learning technique is that the 

quality of the predictions made by the algorithm are dependent on the quality of 

the input data and how well defined the region of interest is. This analysis could 

therefore be improved by providing more precise region coordinates to reduce 
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the amount of sequence used to perform the classification. Further investigation 

will provide insight into the sequence and structure of SSRs, the initiation of 

replication at the DNA sequence level, and potentially the relationship between 

replication and transcription in kinetoplastid genomes.  

Integration of several datasets from L. mexicana in serial passage has revealed 

the presence of size-dependent changes in chromosome ploidy that provide 

insight into the potential relationship between genome plasticity and DNA 

replication. The Hi-C approach which was recently applied to T. brucei, is also 

used to identify chromosomal rearrangements in tumour cells and assess copy 

number variation (Harewood et al, 2017; Siegel et al, 2018). Potential further 

experiments in Leishmania could include this type of analysis which would give 

insight into general chromosome organisation and also identify potential 

structural rearrangements that occur during serial passage. In addition to this, 

protocols to assess nucleosome occupancy have been effective in Leishmania, 

such as MNase-seq which could be repeated at a high resolution Lombrana et al, 

2016). This analysis could be extended to techniques such as ATAC-seq, which 

assesses genome-wide chromatin accessibility at a high resolution and can be 

used to infer regions of increased accessibility (Buenrostro et al., 2015). If 

possible, it would also be of interest to repeat the analysis in the sandfly vector 

to ask if the observations are caused by serial passage in culture or reflect true 

in vivo phenomena. Further investigation, both computationally and in the wet 

lab, may increase our understanding of aneuploidy and the relationship with 

replication as we work to understand if it is possible for these single cell 

parasites to replicate each chromosome from a single origin. 
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