
 
 
 
 
 
 
 
 

 

Martinez Corrales, Guillermo (2019) Identification of novel transcription 

factors in the development and function of the Drosophila renal tubule.  

PhD thesis. 

 

 

https://theses.gla.ac.uk/74261/  

 

 

 

Copyright and moral rights for this work are retained by the author  

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge  

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author  

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author  

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 

 
 
 
 

 
 
 
 
 
 
 

Enlighten: Theses  

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 
 

https://theses.gla.ac.uk/74261/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


 
 

 

 

 

Identification of novel transcription factors in the 

development and function of the Drosophila renal 

tubule 

 

 

by 

Guillermo Martínez Corrales 

 

 

 

Submitted for the degree of 

Doctor of Philosophy at the University of Glasgow 

 

 

Institute of Molecular, Cell and Systems Biology  

College of Medical, Veterinary and Life Sciences  

University of Glasgow  

Glasgow  

G12 8QQ 

 

May 2019  



2 
 

Abstract 

The formation and development of an organ is a complex process which involves 

several programmed events, including changes in cell shape and adhesion, 

proliferation, and differentiation. Defects in any of them lead to malformations 

and lethality. Investigating these processes can lead to mechanistic 

understanding of organ development in health and disease conditions. They are 

defined by the expression and combination of specific Transcription Factors 

(TFs). These are active during the development of the Malpighian Tubules (MTs), 

of Drosophila melanogaster, which perform equivalent functions to the human 

kidney. Therefore, research using Drosophila proved very useful for 

understanding processes of cell differentiation, proliferation, and development. 

To investigate which novel TFs could be involved in the development and 

physiology of the Drosophila kidney, an initial genetic screen of candidate TFs 

was performed. This selection criteria included the identification of candidate 

TFs regarding their patterns of expression, previous literature and human 

homologues involved in renal diseases. This resulted in the selection GATAe, a 

member of the GATA family of TFs, as the focus of this project. 

The effects of GATAe downregulation and overexpression were studied in the 

context of the MTs employing diverse genetic manipulation techniques. Silencing 

GATAe in any of the three main cell-types of the MTs occasioned a diverse range 

of phenotypes. 

GATAe in the MT Principal Cells (PCs) is not required for the embryonic 

development of the tubule, but is crucial in to ensure the correct morphology 

and maintenance of the adult tubule from metamorphosis. As a consequence, 

loss of GATAe in PCs results in a reduced lifespan, less tolerance to diverse kinds 

of stress, and liquid retention. Further preliminary ChIP-Sequencing analysis 

using a tagged line of GATAe revealed potential downstream targets of GATAe in 

the PCs, reinforcing its roles in cell-to-cell communication, tissue maintenance 

and stress response in the MTs. 

In Stellate Cells (SCs), GATAe is required for their survival through 

metamorphosis. Therefore, loss of GATAe in SCs induces a sharp reduction in this 
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cell population in the adult stage, and impairing their secretion capabilities. 

Furthermore, GATAe is necessary in the Renal and Nephritic Stem Cells (RNSCs) 

for their migration into the ureters and lower tubules during metamorphosis.  

Overall, the findings reported in this PhD thesis reveal the novel functions of 

GATAe as a potential master regulator in the events of tissue maintenance, cell 

survival and cell migration. Apart from GATAe, additional TFs were identified in 

this project, which could serve as a base for future investigation of their possible 

novel roles in the fly renal system. Altogether, the data showed here provides 

new insights into the molecular pathways involved in the formation and 

maintenance of a functional organ. 

  



4 
 

Table of contents 

 
Abstract  .......................................................................................................................... 2 

Table of contents ..................................................................................................................... 4 

List of Tables  .......................................................................................................................... 9 

List of Figures  ........................................................................................................................ 10 

Acknowledgements ................................................................................................................ 13 

Author’s Declaration .............................................................................................................. 14 

Abbreviations  ........................................................................................................................ 15 

Chapter 1 - Introduction ..................................................................................................... 17 

1.1 Drosophila melanogaster as a model system ................................................................... 18 

1.1.1 Overview ................................................................................................................... 18 

1.1.2 Drosophila genome ................................................................................................... 19 

1.1.3 Drosophila genetic tools ........................................................................................... 20 

1.1.4 Drosophila life cycle .................................................................................................. 24 

1.2 The Drosophila Malpighian tubule .................................................................................... 25 

1.2.1 Overview ................................................................................................................... 25 

1.2.2 Structure and function of the MTs ............................................................................ 26 

1.2.3 Development of the MTs .......................................................................................... 28 

1.2.4 Transcriptomic profile of the adult Malpighian tubules ........................................... 34 

1.3 Transcription Factors ........................................................................................................ 36 

1.3.1 Overview ................................................................................................................... 36 

1.3.2 Transcription factors, development and disease ...................................................... 37 

1.3.3 Conservation of transcription factor binding specificities across evolution ............. 37 

1.3.4 Transcription factors enriched in the Drosophila MTs ............................................. 38 

1.4 The GATA family ................................................................................................................ 39 

1.4.1 Gene family and structure ........................................................................................ 39 

1.4.2 GATA factors in vertebrates ...................................................................................... 40 

1.4.3 GATA factors in Drosophila ....................................................................................... 45 

1.4.4 GATAe ........................................................................................................................ 46 

1.5 Aims of the project............................................................................................................ 51 

Chapter 2 - Materials and Methods .................................................................................... 52 

2.1 Drosophila melanogaster .................................................................................................. 53 

2.1.1 Rearing conditions .................................................................................................... 53 

2.1.2 Fly stocks ................................................................................................................... 53 

2.1.3 Embryo collection ..................................................................................................... 56 

2.1.4 Dissection of Drosophila MTs.................................................................................... 56 



5 
 

2.2 Escherichia coli .................................................................................................................. 56 

2.2.1 Strains, Vectors and Transformation conditions ...................................................... 56 

2.2.2 Isolation of plasmid DNA ........................................................................................... 58 

2.2.3 Verification of plasmid insertion ............................................................................... 58 

2.3 Drosophila S2 Cells ............................................................................................................ 59 

2.3.1 Maintenance ............................................................................................................. 59 

2.3.2 Transient transfection ............................................................................................... 59 

2.4 Molecular biology protocols ............................................................................................. 60 

2.4.1 RNA extraction .......................................................................................................... 60 

2.4.2 cDNA synthesis .......................................................................................................... 60 

2.4.3 Polymerase chain reaction (PCR) .............................................................................. 61 

2.4.4 Restriction enzyme digestion .................................................................................... 62 

2.4.5 Agarose gel electrophoresis of DNA ......................................................................... 63 

2.4.6 Western blotting ....................................................................................................... 63 

2.5 Generation of the antibody against GATAe protein ......................................................... 65 

2.5.1 Antigenic peptide design .......................................................................................... 65 

2.6 Immunofluorescence ........................................................................................................ 65 

2.6.1 Immunofluorescence of larval, pupal and adult tubules .......................................... 65 

2.6.2 Immunofluorescence of Embryos ............................................................................. 66 

2.6.3 Immunofluorescence of S2 cells ............................................................................... 66 

2.6.4 List of primary and secondary antibodies used ........................................................ 67 

2.6.5 Whole fly imaging sample preparation ..................................................................... 69 

2.6.6 Larvae preparation .................................................................................................... 69 

2.7 Imaging .............................................................................................................................. 69 

2.7.1 Confocal Microscopy ................................................................................................. 69 

2.7.2 Optical Tomography Projection Microscopy ............................................................ 70 

2.7.3 Two-photon Microscopy ........................................................................................... 70 

2.8 Chromatin immunoprecipitation sequencing ................................................................... 71 

2.8.1 Sample collection ...................................................................................................... 72 

2.8.2 Nuclei preparation .................................................................................................... 73 

2.8.3 Chromatin immunoprecipitation .............................................................................. 74 

2.8.4 Chromatin elution and reversal crosslink ................................................................. 75 

2.8.5 DNA purification ........................................................................................................ 75 

2.8.6 ChIP-sequencing ........................................................................................................ 75 

2.9 Physiology experiments .................................................................................................... 76 

2.9.1 Lifespan assay ........................................................................................................... 76 

2.9.2 Starvation and desiccation assays............................................................................. 76 

2.9.3 Gravimetric estimations of body water .................................................................... 77 



6 
 

2.9.4 Ramsay secretion assay ............................................................................................ 77 

2.10 Bioinformatics ................................................................................................................... 79 

Chapter 3 - Genetic Screen of novel Transcription Factors involved in Malpighian Tubule 

Development and Morphology ............................................................................................... 80 

3.1 Summary ........................................................................................................................... 81 

3.2 Results ............................................................................................................................... 81 

3.2.1 List of most enriched tubule TFs ............................................................................... 81 

3.2.2 TFs enrichment in adult MTs ..................................................................................... 81 

3.2.3 TFs expression during embryogenesis ...................................................................... 82 

3.2.4 Human TFs orthologues ............................................................................................ 83 

3.2.5 RNA interference lethality screen ............................................................................. 83 

3.2.6 RNA interference and specific gene silencing in the MTs ......................................... 84 

3.3 Discussion .......................................................................................................................... 86 

3.3.1 Other TFs to be investigated ..................................................................................... 88 

Chapter 4 - Analysis of GATAe in the Principal Cells of the MTs ........................................... 90 

4.1 Introduction ...................................................................................................................... 91 

4.2 Morphological characterisation ........................................................................................ 91 

4.2.1 GATAe is expressed in all MT cell types .................................................................... 91 

4.2.2 Reduced levels of GATAe lead to morphological abnormalities of the MTs ............ 95 

4.2.3 GATAe is not essential during the embryonic development of the MTs ................ 101 

4.2.4 GATAe is required during metamorphosis .............................................................. 103 

4.2.5 Adult MTs maintenance requires the function of GATAe ....................................... 105 

4.2.6 Loss of GATAe induces cell proliferation ................................................................. 107 

4.2.7 Reduced levels of GATAe modulate cancer-related gene expression .................... 109 

4.2.8 Knockdown of GATAe in a small number of PCs is enough to induce abnormal tissue 

growth ................................................................................................................................. 111 

4.3 Functional characterisation of GATAe ............................................................................ 112 

4.4 Discussion ........................................................................................................................ 114 

4.4.1 Evolutionarily conserved functions of the GATA family ......................................... 118 

Chapter 5 - Analysis of GATAe in the Stellate and Renal and Nephritic Stem Cells .............. 121 

5.1 Introduction .................................................................................................................... 122 

5.2 GATAe in Stellate Cells .................................................................................................... 122 

5.3 GATAe in the RNSCs ........................................................................................................ 125 

5.4 Discussion ........................................................................................................................ 127 

5.4.1 GATAe and SC population ....................................................................................... 128 

5.4.2 GATAe and RNSC population .................................................................................. 129 

5.5 Proposed model for GATAe function in the MTs ............................................................ 130 

Chapter 6 - Molecular and biochemical tools for GATAe functional characterisation .......... 133 



7 
 

6.1 Introduction .................................................................................................................... 134 

6.2 Predicted 3D structure of GATAe protein ....................................................................... 134 

6.3 Generation of an antibody against GATAe ..................................................................... 136 

6.3.1 Sequence selection ................................................................................................. 136 

6.3.2 Immunocytochemistry and Western-Blot using GATAe antibody. ......................... 137 

6.4 Generation of a gain-of-function line of GATAe ............................................................. 139 

6.4.1 S2 cell analysis ......................................................................................................... 140 

6.4.2 Tissue-specific overexpression in Drosophila ......................................................... 142 

6.5 Chromatin Immunoprecipitation Analysis of GATAe ...................................................... 145 

6.5.1 Chromatin Immunoprecipitation ............................................................................ 145 

6.5.2 Technical ChIP optimisations .................................................................................. 145 

6.5.3 Results ..................................................................................................................... 146 

6.5.4 Immunoprecipitation analysis................................................................................. 146 

6.5.5 Chromatin Immunoprecipitation ............................................................................ 147 

6.6 Discussion and troubleshooting ...................................................................................... 161 

6.6.1 Further experiments to assess GATAe molecular function .................................... 162 

Chapter 7 - Summary and future work .............................................................................. 166 

7.1 Summary ......................................................................................................................... 167 

7.1.1 Genetic screen ........................................................................................................ 167 

7.1.2 GATAe involvement in the MTs .............................................................................. 167 

7.1.3 Molecular and biochemical tools for GATAe functional characterisation .............. 169 

7.1.4 Observation of 3D structures in whole-fly preparations ........................................ 170 

7.2 Future work ..................................................................................................................... 170 

7.2.1 Study of other genes detected in the screening ..................................................... 171 

7.2.2 Further research on GATAe..................................................................................... 171 

7.3 Final conclusion ............................................................................................................... 173 

Appendices  ...................................................................................................................... 174 

Appendix 1 Drosophila media composition ....................................................................... 174 

Appendix 2 Grape juice agar medium preparation............................................................. 175 

Appendix 3 E. coli growth media recipes ........................................................................... 176 

Appendix 4 List of primers used ........................................................................................ 177 

Appendix 5 5X TBE buffer recipe ....................................................................................... 178 

Appendix 6 10X PBS and 10X TBS recipes .......................................................................... 179 

Appendix 7 Solutions 1 and 2 for ECL development ........................................................... 180 

Appendix 8 CUBIC solution preparation ............................................................................ 181 

Appendix 9 Drosophila saline recipe ................................................................................. 182 

Appendix 10 ChIP-Sequencing gene list ............................................................................... 183 



8 
 
Appendix 11 Observation of whole-fly Malpighian tubules using tomography projection 

microscopy  ...................................................................................................................... 186 

7.4 Introduction .................................................................................................................... 187 

7.5 Results ............................................................................................................................. 187 

7.6 Discussion ........................................................................................................................ 191 

Publications  ...................................................................................................................... 193 

References  ...................................................................................................................... 194 

 

  



9 
 

List of Tables 

Table 1.2-1. Transcription factors enriched in the adult MTs. ............................................ 36 

Table 2.1-1. List of Drosophila stocks used in this study including the stock name, 

genotypes, the purpose and the origin of the stocks. ......................................................... 55 

Table 2.2-1. Vectors used in this study. ............................................................................... 57 

Table 2.4-1. Normal PCR thermal cycling conditions. .......................................................... 61 

Table 2.4-2. qPCR thermal cycling conditions. ..................................................................... 62 

Table 2.6-1. List of primary antibodies used in this project. ............................................... 67 

Table 2.6-2. List of secondary antibodies used in this project. ........................................... 68 

Table 2.6-3. List of other staining markers used. ................................................................. 68 

Table 3.2-1. Expression of the shortlisted TF in the embryonic MTs, as revealed by BDGP.

 .............................................................................................................................................. 82 

Table 3.2-2. Drosophila TFs shortlisted and their closest human homologues. .................. 83 

Table 3.2-3. Lethality experiments. ..................................................................................... 84 

Table 6.5-1. Final ChIP DNA concentrations of S2 cells .....................................................150 

Table 6.5-2. ChIP DNA concentrations of adult MTs..........................................................151 

Table 6.5-3. Genes involved in transport called as present in the MTs. ...........................157 

Table 6.5-4. Table of the most tubule-enriched genes from the ChIP-seq analysis. .........161 

Table 7.3-1. Recipe for the Drosophila Standard medium (Fly food). ...............................174 

Table 7.3-2. Primer sequences and their purpose .............................................................178 

Table 7.3-3. Complete gene list detected by the ChIP-Seq. ..............................................185 

  



10 
 

List of Figures 

Figure 1.1.1. Schematic diagram of the GAL4 System. ........................................................ 23 

Figure 1.1.2. Scheme of the GAL80ts system........................................................................ 24 

Figure 1.1.3. Stages in the life cycle of Drosophila melanogaster. ...................................... 25 

Figure 1.2.1. Schematic overview of the function of a PC (left) and a SC (right) of the main 

segment of the tubule. ......................................................................................................... 27 

Figure 1.2.2. Scheme of the embryonic development of the MTs of Drosophila ............... 32 

Figure 1.2.3. Schematic diagram of the adult MTs. ............................................................. 34 

Figure 1.4.1. Cladogram of the different GATA factors in vertebrates and invertebrates. . 40 

Figure 1.4.2. GATAe genomic location and embryonic pattern of expression. ................... 48 

Figure 1.4.3. FlyAtlas2 reveals GATAe expression in L3 and adult stage. ............................ 49 

Figure 2.2.1. Schematic map of the pUAST vector, used for GATAe overexpression.......... 58 

Figure 2.7.1. Schematic diagram of the OPT microscope. ................................................... 70 

Figure 2.7.2. Schematic diagram comparing Two-Photon microscopy vs confocal 

microscopy. .......................................................................................................................... 71 

Figure 2.9.1. The Ramsay Secretion Assay. .......................................................................... 78 

Figure 3.2.1. Low levels of Muc11A in the PCs affect the integrity of the adult initial 

segment. ............................................................................................................................... 86 

Figure 4.2.1. Schematic representation of the genomic map of GATAe-Gal4 lines. ........... 92 

Figure 4.2.2. GATAe>GFP reveals the pattern of expression of GATAe. .............................. 93 

Figure 4.2.3. GATAe>GATAe RNAi pupae are smaller compared to the controls. .............. 94 

Figure 4.2.4. ICC of adult GATAe>GATAe RNAi adult MGs .................................................. 95 

Figure 4.2.5. Length comparison of GATAe knockdown MTs. ............................................. 96 



11 
 
Figure 4.2.6. MTs with reduced levels of GATAe show reduced cell number ..................... 97 

Figure 4.2.7. Reduced levels of GATAe in PCs induces strong morphological defects. ....... 98 

Figure 4.2.8. Activation of Ras signalling in PCs induces morphological defects. .............100 

Figure 4.2.9. Silencing GATAe with CapaR-Gal4 does not affect MG morphology. ..........101 

Figure 4.2.10. GATAe knockdown embryonic MTs display wild-type morphology. ..........102 

Figure 4.2.11. CapaR>GATAe RNAi MTs present morphological deficiencies from during 

metamorphosis. .................................................................................................................103 

Figure 4.2.12. Developmental defects using CapaRts. .......................................................104 

Figure 4.2.13. GATAe is required for adult maintenance of the MTs. ...............................106 

Figure 4.2.14. GATAe knockdown in PCs induces proliferation of RNSCs. ................108 

Figure 4.2.15. Alternative RNSC and proliferation markers. .............................................109 

Figure 4.2.16. Relative mRNA levels of oncogenes and apoptosis-related genes in GATAe 

knockdown MTs .................................................................................................................110 

Figure 4.2.17. GATAe knockdown using UrO>GFP. ............................................................112 

Figure 4.3.1 Reducing GATAe expression in PCs affects water homeostasis and stress 

tolerance. ...........................................................................................................................114 

Figure 5.2.1. GATAe downregulation in the SCs induces loss of the SC population and 

reduced fluid secretion response to kinin stimulation in the adult stage. ........................123 

Figure 5.2.2. SCs show normal localisation in the L3 stage in GATAe knockdown conditions.

 ............................................................................................................................................124 

Figure 5.3.1. RNSC migration to the MTs is impaired upon GATAe knockdown. ..............126 

Figure 5.3.2. Migration defects of RNSCs in GATAe knockdown MTs. ..............................127 

Figure 5.5.1 Proposed model for the function of GATAe in the MTs. ...............................132 

Figure 6.2.1. Predicted 3D structure, sequence, and domains of GATAe protein.............136 



12 
 
Figure 6.3.1. ICC using GATAe antibody. ............................................................................138 

Figure 6.3.2. Western blot analysis of GATAe antibody. ...................................................139 

Figure 6.4.1. Restriction enzyme digest analysis of UAS-GATAe-HA plasmid....................140 

Figure 6.4.2. Nuclear localisation of GATAe-HA in Drosophila S2 cells. ............................141 

Figure 6.4.3. GATAe and putative downstream gene expression in S2 cells transfected with 

UAS-GATAe-HA. ..................................................................................................................142 

Figure 6.4.4. Characterisation of CapaR>UAS-GATAe-HA adult MTs. ...............................143 

Figure 6.4.5. Overexpression of UAS-GATAe-HA using different Gal4 lines. .....................144 

Figure 6.5.1. Western-blot analysis of IP experiments for HA tag. ....................................147 

Figure 6.5.2. Micrococcal nuclease treatments of S2 cells. ...............................................149 

Figure 6.5.3. Enriched known motifs identified 1kb of the surrounding peaks detected. 152 

Figure 6.5.4. De novo motifs enrichment results ...............................................................153 

Figure 6.5.5. Classification of ChIP-Seq hits according to their biological processes. .......155 

Figure 6.5.6. Significant ChIP-Seq detected genes classified according to their molecular 

function. .............................................................................................................................159 

Figure 6.6.1. Immunocytochemistry of recombinant GATAe to PCs .................................163 

Figure 7.5.1. 3D images of whole adult flies using OPT microscopy. ................................188 

Figure 7.5.2. Adult MTs observed using multiphoton fluorescence microscopy. .............190 

Figure 7.5.3. 3D structure of embryos observed using two-photon microscopy. .............190 

  



13 
 

Acknowledgements 

I would like to thank Shireen and Julian for their guidance and for giving me the 

opportunity to be part of their laboratory, and to the RENALTRACT network for 

providing the support and the great scientific environment in which I was lucky to 

participate. 

I would also like to thank the following people from the Dow/Davies lab: Selim, 

for his excellent advice and guidance, and for answering every one of my 

questions, even when they were too many. To Pablo, for his support and expertise, 

not only in the lab! To Tony for his help and great scientific advice. To Lucy for 

her proofreading, and Richard for his help with secretion assays. 

Also, I would like to thank Anir for the good lunchtime walks, bioinformatics advice 

and for literally feeding me with part of his lunches (although in this last case, the 

thanks would not be for him, but Vaishali). Obviously, a big thank you to Suj… 

sorry, Saurav Ghimire, for his friendship during these three years, and his endless 

support. Best of luck, see you at the next conference! 

A big thank you to Seppo Vainio’s Lab, in particular to Veli-Pekka Ronkanien, for 

his help with the OPT. 

Out of the lab, I would like to give a big big thank you to Wenna, for your patience 

and reading all through my thesis. You are the best! 

Last but not least, a big thank you to my family, especially to my parents for all 

their support during these years, without you, I (obviously) would not be here. 

  



14 
 

Author’s Declaration 

 

 

 

The research reported within this thesis is my own work except where otherwise 

stated and has not been submitted for any other degree. All sources of 

information used in the preparation of this thesis are indicated by reference. 

 

 

 

 

 

 

 

Guillermo Martínez Corrales 

  



15 
 

Abbreviations 

 
°C Degrees Celsius 
3D Three-dimensional 
AA Amino acid 
AMG Anterior midgut 
APF After puparium formation 
BDGP Berkeley Drosophila Genome Project 
BDSC Bloomington Drosophila Stock Centre 
BLAST Basic local alignment search tool 
Bp Base pair 
cDNA Complementary DNA 
CDS Coding sequence 
CG Computed gene 
ChIP-Seq Chromatin immunoprecipitation sequencing 
DAPI 4',6-diamidino-2-phenylindole 
DBD DNA binding domain 
ddH2O Double-distilled water 
DGRC Drosophila genomics resource centre 
DMSO Dimethyl sulfoxide 
DNA Deoxyribonucleic acid 
dNTP Deoxyribonucleotide triphosphate 
DSCP Drosophila synthetic core promoter 
DTT Dithiothreitol  
ECL Enhanced chemiluminescence 
ECM Extracellular matrix 
EDTA Ethylenediaminetetraacetic acid 
EGF Epithelial growth factor 
FDR False discovery rate 
FPKM Fragments Per Kilobase of transcript per Million mapped reads 
g Gram 
GAL80.TS GAL80 thermosensitive 
GFP Green fluorescent protein 
h hours 
HA Human influenza hemagglutinin 
HG Hindgut 
HRP Horseradish peroxidase 
ICC Immunocytochemistry 
IGG Immunoglobulin G 
IP Immunoprecipitation 
ISC Intestinal stem cell 
Kb Kilobases 
kDa Kilodaltons 
l Litre 
L1, L2, L3 Larval stage 1, 2 and 3, respectively 
MG Midgut 
Min Minutes 
NGS  Normal goat serum 
OD260 Optical density unit 
OPT Optical Tomography Projection 



16 
 
ORF Open reading frame 
PANTHER Protein ANalysis THrough Evolutionary Relationships 

PBS Phosphate buffered saline 
PBTA PBS + Triton + Sodium azide 
PC Principal cell 
PCR Polymerase chain reaction 
PFA Paraformaldehyde 
PMG Posterior midgut 
qPCR Quantitative PCR 
RB Renal blast 
RNA Ribonucleic acid 
RNAi RNA interference 
RNSC Renal and nephritic stem cell 
rpm Revolutions per minute 
RT Room temperature 
S2  Schneider 2 
SC  Stellate cell 
SEM  Standard error of the mean 
SSII Superscript II 
TBS Tris-buffered saline 
TF Transcription factor 
THG Third harmonic generation 
TRiP Transgenic RNAi Project 
UAS Upstream activation sequence 
V Volts 
WB Western-blot 
WL3 Wandering L3 
μ Micro 

  



17 
 
 

 

 

 

 

 

 Chapter 1 - Introduction 

  



18 
 

1.1 Drosophila melanogaster as a model system 

1.1.1 Overview 

Drosophila melanogaster (commonly called “Fruit Fly”, herein referred to as 

Drosophila) has been used in research for more than a century. Drosophila was 

first kept in captivity and utilised in science by Charles Woodworth in Harvard, 

in the early 1900s, and T.H. Morgan described the first Drosophila mutant (white 

eye) (Morgan, 1910). It has been used in a wide range of research fields, from 

biomedical, genetic and even agricultural approaches, and research with 

Drosophila has contributed to five Nobel prizes (Huang, 2018, Brown, 2017, Van 

Hiel et al., 2010, Ugur et al., 2016). The success of this organism in research is 

due to numerous reasons. 

D. melanogaster’s life cycle takes around 10 days at 25°C (or 7 days at 29°C). 

This means that it grows and reproduces much faster than other models, such as 

mouse or Xenopus (Dow and Romero, 2010). In addition, the cost of maintaining 

a Drosophila strain is no more than USD20/year. Also, its complete genome has 

been sequenced and published (Adams et al., 2000). The Drosophila genome is 

relatively small, and it is comprised of 4 chromosomes. It contains 13,937 coding 

genes, according to the database Ensembl 78, and almost 70% of them have 

human homologs. However, if non-coding RNAs and pseudogenes are included in 

the counting, the Drosophila genome contains up to 29,173 different transcripts 

(Consortium, 2007). The research community has generated mutant lines for 

over 50% of the fly genes, and they also created inducible knockdown lines for 

almost all the Drosophila genes, which makes this animal a versatile model to 

perform genetic studies (Dietzl et al., 2007). The wide range of methods to 

modify gene expression in Drosophila allowed scientists to silence or overexpress 

almost any gene in tissue and time-specific manner to investigate its functions 

(Brand and Perrimon, 1993, Gratz et al., 2015). 

Furthermore, there are numerous databases available related to Drosophila, like 

the online resource FlyBase (Ashburner and Drysdale, 1994). This database 

consists of a complete repository of genetic data of different species of 

Drosophilidae. Regarding D. melanogaster, it includes information on gene 

expression, gene function, genome mapping, gene homologies, disease models, 
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among others. Also, FlyBase is linked with other online databases, e.g. Interpro, 

OrthoDB, or BDGP, includes links to research publications related to the genes of 

interest, and it is continuously updated. These features make FlyBase the most 

powerful online databases of Drosophila data.  

A further key online tool is FlyAtlas, which is a complex transcriptomic study 

that allows the detection of specific expression patterns and enrichment of 

genes in the different tissues of Drosophila (Chintapalli et al., 2007, Leader et 

al., 2018).  

1.1.2 Drosophila genome 

The Drosophila genome is 180 Mb in size. However, only 120 Mb of it is 

euchromatin, located mainly in three of its four chromosomes, as the fourth 

chromosome contains only about 1Mb. The Drosophila genome is highly 

compacted, which, together with its small size, makes this insect a compelling 

model to be subjected to genome studies. However, not all of the Drosophila 

genes have been studied exhaustively and have yet to be investigated and 

characterised. There are still a significant number of them that were found by 

genomic sequencing projects. They were named with the prefix CG (Computed 

Gene) and a number (e.g. CG10278). Once these genes were given a biological 

function, researchers provided them with a name, and their CG number became 

a synonym of the new gene symbol. (e.g. the gene CG10278 was named GATAe 

in 2005, and from then, subsequent studies named it GATAe, but CG10278 still 

appears in the database as a synonym for GATAe). 

Drosophila has been employed in a wide range of research fields, from 

agricultural and pest control (Dow and Davies, 2003), behavioural (Yapici et al., 

2008), or developmental and biomedical studies (Wangler et al., 2015). The 

genetic similarity between the fly and human genomes and the evolutionary 

conservation of the molecular mechanisms of disease make Drosophila an 

amenable model to study human conditions. Numerous human diseases can be 

modelled using Drosophila, such as Alzheimer’s disease (Bouleau and Tricoire, 

2015), Parkinson disease (Feany and Bender, 2000), epilepsy (Parker et al., 

2011), obesity (Trinh and Boulianne, 2013), cardiovascular disease (Bier and 

Bodmer, 2004), fragile X syndrome (Chang et al., 2008) and other diseases. In 
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addition, Drosophila has also been widely used for the investigation of diverse 

kidney diseases by the study if its Malpighian tubules (MTs). The invertebrate 

MTs play equivalent roles to the human kidney and liver and, accordingly, share 

numerous genetic and molecular characteristics (Dow and Romero, 2010). 

Multiple events in the formation of kidney stones have been discovered using 

Drosophila (Hirata et al., 2012, Dow and Romero, 2010), as well as factors 

involved in renal cancers (Liu et al., 2009, Zeng et al., 2010) or polycystic kidney 

disease (Gamberi et al., 2017, Millet-Boureima et al., 2018). Furthermore, 

research in Drosophila has been proved as strongly valuable to study other pest 

insects, making it suitable even to study vector-transmitted diseases, such as 

malaria or dengue spread by mosquitoes (Schneider and Shahabuddin, 2000, 

Mukherjee and Hanley, 2010). 

1.1.3 Drosophila genetic tools 

One of the main advantages of Drosophila as an animal model is the full range of 

options available for genetic manipulation. It provides the possibility to alter 

genetic expression temporally and spatially (Brand and Perrimon, 1993, Caygill 

and Brand, 2016, Mondal et al., 2007). There are several Drosophila stock 

centres, e.g. the Bloomington Drosophila Stock Center (BDSC) or the Vienna 

Drosophila Resource Center (VDRC), among others, that offer numerous mutant 

and other fly lines that can be used in research. Drosophila also has the 

advantage that any homozygous lethal or sterile mutation can be tracked 

through the generations in heterozygosis, by the utilisation of balancer 

chromosomes. These chromosomes are the product of several inversions and 

mutations which block homologous recombination with their complementary 

chromosomes, maintaining them stable, viable and heterozygous through 

generations (Wallace and King, 1951). Numerous types of balancer chromosomes 

are utilised (in the first, second, third or fourth chromosome), and some of them 

have been genetically modified to carry different external phenotypic markers 

which are easily detectable and indicate the presence of these balancers. These 

markers include Green Fluorescent Protein (GFP), LacZ, among others. 

Furthermore, the introduction of the recently discovered genome editing 

technology CRISPR-Cas9 in Drosophila (Gratz et al., 2013, Bassett et al., 2013, 

Du et al., 2018) enhanced the generation of new and more specific mutant 
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Drosophila strains and had become a widely utilised method to modify specific 

gene expression. 

1.1.3.1  Transposable elements (P-elements) 

Mobile transposable elements represent around 10% of the whole Drosophila 

genome and are responsible for multiple mutations, allowing the study of gene 

function (Georgiev, 1984). Mobile transposable elements from the P transposable 

element family (P-elements) are among the most used regarding gene 

engineering, as they are minimal in size (2.9 kb). Their terminal repeated 

sequence encodes for a transposase, which can be modified to introduce or 

excise specific gene sequences, such as a wild-type copy of the white gene, to 

identify and follow the integration of these elements (O'Hare and Rubin, 1983, 

Spradling and Rubin, 1982). Generally, P-elements can be genetically regulated 

by differential splicing, allowing them to be specifically active in the germline, 

whereas in the somatic cells they are naturally inactive. Modified P-elements, 

however, may be adjusted to induce transposition in Drosophila embryos if an 

external transposase is injected together with the desired plasmid. 

There is a wide range of different types of P-elements, and among them, the 

enhancer traps are the most widely characterised. These are modified P-

elements that include a reporter gene (such as LacZ) instead of the classical 

transposase gene. Therefore, enhancer traps are not able to induce transcription 

by themselves, but, if they are introduced in the genome by germline 

transformation (using an external transposase), they can be inserted into the 

genome, and, in consequence, their expression is regulated by the nearest gene. 

Therefore, the natural pattern of expression of a particular gene can be 

examined utilising these P-elements. The first generation of enhancer traps 

generated included the β-Galactosidase reporter, which could be detected by X-

Gal staining (Bier et al., 1989, O'Kane and Gehring, 1987). The BDGP (Berkeley 

Drosophila Genome Project) gene disruption project identified more than 30,000 

different transposons along with their genetic location and nearest genes. The 

data resulting from this project allowed the generation of specific enhancer 

traps associated with approximately 40% of the Drosophila genes and the 

potential ability to perform mutagenesis experiments by gene targeting (Bellen 

et al., 2004). 
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1.1.3.2 UAS/GAL4 system 

Probably the most used and versatile genetic tool in Drosophila is the UAS/GAL4 

system; the second generation of enhancer trapping (Brand and Perrimon, 1993). 

This system, which is originally extracted from the yeast Saccharomyces 

cerevisiae, consists of two independent transgenes. On the one hand, the GAL4 

gene (that encodes a positive regulator of the galactose-inducible genes in S. 

cerevisiae) is inserted either randomly or specifically (depending in the method 

utilised for integration) into the genome. This integration allows the GAL4 gene 

to be expressed under the pattern of any gene of interest, or genomic enhancer. 

On the other hand, the target transgene is attached in a P-element to the 

Drosophila genome, and it possesses GAL4 binding sites or UAS (Upstream 

Activation Sequence) regions. Both GAL4 or UAS constructs are inactive on their 

own (in the case of Drosophila, each of them is present in an independent 

parental strain). However, when both fly strains are crossed, their progeny will 

express both of them (GAL4 and UAS), inducing the GAL4 activator to recognise 

the UAS site and therefore enhance the expression of any sequence attached to 

it (Figure 1.1.1). This downstream sequence can be a gene (to cause an 

overexpression), an RNAi (RNA interference) (to knock down a gene of interest), 

or it can be a marker gene, such as GFP. Both fly strains containing the GAL4 and 

UAS transgenes can be generated and kept independently as separate fly stocks. 

Moreover, many different GAL4 and UAS lines have been created, and they are 

available in the stock centres (Dietzl et al., 2007). This significant collection of 

different modified fly lines actively facilitates the alteration of gene expression 

under almost any desired pattern.  
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Figure 1.1.1. Schematic diagram of the GAL4 System. 
Flies carrying the GAL4 driver transgene (left) are crossed with flies with the UAS-target gene 
sequence (right). When crossed, only the flies carrying both constructs (GAL4 and UAS-target 
genes) will result in targeted gene expression. The constructs on their own (present in both 
parental lines) have no effect on their own in the fly. It is extracted from (Caygill and Brand, 2016). 

1.1.3.3 Tubulin GAL80 Thermo-Sensitive system 

The GAL4 system can be refined timely and spatially, using the GAL80 Thermo-

Sensitive System (TubGAL80ts). The activity of GAL4 can be repressed by 

interaction with the GAL80 protein, also originated from yeast (Nogi et al., 

1984). This protein binds to the C-terminal ends of the GAL4 dimer, making it 

unable to activate transcription. GAL80ts can be expressed ubiquitously driven by 

the tubulin-1α promoter. However, the GAL80ts protein is only active at 18°C 

(permissive temperature). At this temperature, the dimer GAL80 protein binds 

strongly to GAL4 protein and a UAS activation sequence, blocking its expression, 

and therefore preventing the expression of the transgene downstream of the UAS 

sequence. However, at 29°C (restrictive temperature), GAL80 does not block the 

function of GAL4, allowing the GAL4 protein to activate GAL4-dependent target 

gene expression (Figure 1.1.2). Therefore, by combining GAL4 and GAL80 

expression patterns, Temporal And Regional Gene Expression Targeting 

(TARGET,(McGuire et al., 2004)), expression refinement can be drastically 

improved.  
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Figure 1.1.2. Scheme of the GAL80ts system. 
At 18°C (permissive temperature) GAL80 inhibits GAL4 activity, whereas at 29°C (restrictive 
temperature) GAL80ts cannot block GAL4, and transgenes can be expressed. Extracted from 
(Caygill and Brand, 2016).  

1.1.4 Drosophila life cycle 

One of the most significant advantages of Drosophila is its short life cycle, of 

around ten days at 25°C. The length of Drosophila development is temperature 

dependent, which means that at higher temperatures it can develop faster 

(whole life cycle is ~7d at 29°C) and at lower temperatures, it is slower (~15d at 

18°C). Like many invertebrates, Drosophila presents a series of developmental 

phases, starting with the egg stage (around 24h long), three larval stages (Larval 

stage 1 or L1, Larval stage 2 or L3, and Larval stage 3, or L3), a pupal stage, and 

the adult stage. The length of these stages (at 25°C) is summarised in Figure 

1.1.3. Newly emerged adult females take approximately 10h to be sexually 

mature, and during this time they present typical characteristics of unmated 

“virgin” flies, allowing researchers to quickly select them to perform crosses 

with males of the desired genotype.  

Most Drosophila adult organs are developed during larval stages and 

metamorphosis, and at these earlier stages of development, they are called 

imaginal organs (Beira and Paro, 2016). However, other tissues, including all 

larval tissues, are developed and functional during the embryonic stage. This is 

the case of the MTs, which are fully operational by the end of embryogenesis 

(Beyenbach et al., 2010, Denholm, 2013, Denholm and Skaer, 2009). Even though 

this organ is completely developed at the end of embryogenesis, recent research 

has shown that the MTs go through drastic remodeling processes, to assure their 

correct morphology and survival during metamorphosis and adult stage (Zeng et 
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al., 2010, Takashima et al., 2013, Singh and Hou, 2009, Singh et al., 2007, 

Denholm et al., 2013). 

 

Figure 1.1.3. Stages in the life cycle of Drosophila melanogaster. 
The entire life cycle of Drosophila lasts ~10 days at 25°C. Embryonic development is completed in 
the first 24h, after which hatching of first instar larvae (L1) occurs. The larvae eat and grow, and 
moult through three instar larval stages (L1, L2 and L3) before pupariating. During metamorphosis, 
adult structures are formed, which takes ~5 days at 25°C, and after this stage, and adult fly 
hatches. Adult and pupal stage pictures are adapted from (Halberg et al., 2016). 

1.2 The Drosophila Malpighian tubule 

1.2.1 Overview 

In Drosophila, the analogous organs of the vertebrate kidney are the MTs. They 

are present in numerous types of insects and other terrestrial arthropods, such 

as myriapods or arachnids (King and Denholm, 2014). The first description of the 

MTs comes from the 1600s, with the studies and observations of the moth 

Bombyx Mori, performed by the Italian biologist and physician Marcello Malpighi. 

For his studies, he was considered the father of histology and microscopical 

anatomy (Bertoloni Meli, 2011). The number, size, and shape of MTs vary 

significantly between species (e.g. from 2 pairs of tubules in Drosophila to more 

than 200 in the cockroach Periplaneta Americana (Wall et al., 1975)). In 

Drosophila, the MTs are single cell layered epithelial tubes, which emerge from 
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the anterior region of the hindgut (HG), in its boundary with the posterior 

midgut (PMG), (Denholm and Skaer, 2009). As Drosophila has an open circulatory 

system, MTs float freely through the body cavity allow maximum contact with 

hemolymph(Dow and Romero, 2010). Additionally, Drosophila MTs are not the 

only organs able to filtrate hemolymph. An additional type of cells, called 

nephrocytes, have been previously described as the functional and genetical 

homologue of the human podocytes, present in the glomerulus of the human 

kidney, and they have been proposed to have roles in the filtration of 

hemolymph (Weavers et al., 2009). 

1.2.2 Structure and function of the MTs 

Drosophila MTs produce the primary urine which is generated in the distal region 

of the tubule and is modified as it passes through more proximal regions until it 

is excreted from the animal. The MTs also control different ion homeostasis, 

acid/base, and water balance, and also perform functions of detoxification and 

immune response (Davies et al., 2012, Denholm, 2013, Dow et al., 1994). 

The adult MTs are formed by at least three different types of cells, and each of 

them has specific functions and physiological characteristics. The most abundant 

cell type is the Principal Cell (PC, ~120 cells/tubule(Sözen et al., 1997)), which 

mediates the secretion of Na+ and K+ to the tubule lumen, via the vacuolar 

proton pump V-type H+ ATPase, located in the apical brush border of the cell 

(Beyenbach et al., 2010). The other type of cell is the Stellate Cell (SC, ~30 

cells/ tubule(Sözen et al., 1997)). SCs regulate the Cl- and water transport (Dow, 

2012). They possess ion channels that allow the transport of Cl-, and aquaporin 

channels to permit water transport (Kaufmann et al., 2005, Cabrero et al., 

2014). 

Both PCs and SCs possess receptors for different neuropeptide families, which 

modulate MT secretion rates and control ion and water homeostasis. 

Neuroendocrine control of fluid secretion is a complex process, and it is 

achieved by these two differentiated secretory cell types. Diuretic hormones act 

through binding of specific receptors in SCs and PCs and stimulating their 

secretion through specific signalling pathways (Figure 1.2.1). The activation 

cascades and mechanisms of neuropeptides in the MTs have been extensively 
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studied and reviewed elsewhere (Cabrero et al., 2014, Terhzaz et al., 2015a, 

Davies et al., 2014b, Davies et al., 2012, Halberg et al., 2015). A summary of 

transport functions of both PCs and SCs is provided in Figure 1.2.1, including the 

different neuropeptides that stimulate each of those cell-types. 

 

Figure 1.2.1. Schematic overview of the function of a PC (left) and a SC (right) of the main 
segment of the tubule. 
Extracted from (Dow and Romero, 2010). 

Furthermore, an additional cell type in the MTs has been recently described, the 

Renal and Nephritic Stem Cell (RNSC (Singh et al., 2007)). RNSCs migrate from 

the anterior midgut (AMG) during metamorphosis and are mainly confined in the 

region of ureters and lower ureters of the adult MTs (Takashima et al., 2013). 

Previous publications proposed that RNSCs correspond to stem cells in the MTs 

since they express stem cell markers and they can potentially differentiate into 

PCs or SCs following injury (Singh and Hou, 2009, Singh et al., 2007, Li et al., 

2015). Alternatively, it has been suggested that they could act as endocrine cells 

because they also express endocrine markers(Sözen et al., 1997). 

Adult MTs can also be divided by different domains. They are the ureter, lower 

tubule, main segment, transitional segment and initial segment (which, in the 

case of anterior MTs, it is called enlarged initial segment, due to its increased 

size compared to the posterior initial segment (Figure 1.2.3)). The Drosophila 

MT segments have been genetically characterised by specific gene expression 

and function. For instance, Vacuolar H+ ATPase (V-ATPase) expression levels are 

much lower in the initial and translational segments compared to the main 
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segment, indicating that this domain is more active regarding cation pumping 

(Sozen et al., 1997). MTs can also show high asymmetry between posterior and 

anterior tubules. They display morphological differences, as the anterior pair has 

an enlarged initial segment, a region capable of transporting and storing more 

than 90% of the animal’s calcium content (Dube et al., 2000). MTs asymmetry 

can also be studied by observing their differential gene expression. MTs show 

clear transcriptomic differences regarding their orientation along the body 

cavity (anterior vs posterior pairs), their cell type or position in the tubule (PCs 

vs SCs or initial segment vs ureters vs main segment) and their sex (male vs 

female MTs) (Chintapalli et al., 2012). 

1.2.3 Development of the MTs 

1.2.3.1 Overview 

The development of the MTs occurs principally during embryogenesis (Denholm 

and Skaer, 2009, Denholm, 2013). However, the tubule goes through different 

changes during metamorphosis to reach its functional capabilities in the adult 

stage (Wessing and Eichelberg, 1979). The embryonic development of the MTs 

can be divided into various stages: (i) the tubule primordia are specified in a 

subset of cells of the midgut (MG)-HG boundary. (ii) the primordia start budding, 

followed by a set of controlled cell divisions. (iii) the tip cell is specified, cell 

proliferation stops, and the tubule primordia start elongating only by cell 

rearrangement at the same time as a group of cells integrate into the primordia 

from the caudal visceral mesoderm in a process called mesenchymal-to-

epithelial transition. (iv) MTs reach their maturation at the end of 

embryogenesis, which can be observed by the presence of uric acid crystals in 

the lumen of MTs of stage 17 embryos and the first stage of the larva (Beyenbach 

et al., 2010, Denholm, 2013). A summary of the development of the tubule is 

shown in Figure 1.2.2. 

1.2.3.2 Formation of tubule primordia 

The development of the MTs starts at stage 10-11 of embryogenesis, where the 

independent expression of the Transcription Factors (TFs) Krüppel (Kr) and cut 

(ct) is required in a subset of cells of the HG in their boundary with the PMG for 

the tubule cell specification (Blochlinger et al., 1990, Gaul and Weigel, 1990) 
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(Figure 1.2.2A). In double mutants Kr and ct, the MTs fail to differentiate and 

emerge from the HG (Hatton-Ellis et al., 2007). These two factors act in concert 

to specify this region, and their pattern of expression is also dependent on other 

TFs, such as tailless, forkhead and Wingless signalling (Hatton-Ellis et al., 2007, 

Ainsworth et al., 2000). 

1.2.3.3 Tubule primordia eversion 

After the formation of the tubule primordia, the expression of Kr refines into 

four groups of cells, which start to form buds. Of these four everting buds of 

cells, the ventral pair will become the posterior MTs, and the lateral pair, the 

anterior MTs. After this stage, the tubule primordia start to evert from the HG. 

This process is controlled by decapentaplegic (dpp), one of the main components 

of TGF-β signalling, which is highly expressed in the anterior tubule primordia 

compared to the posterior one (Hatton-Ellis et al., 2007). High TGF-β signalling 

in the anterior tubule primordia induces the expression of dorsocross, and 

expression of brinker in the posterior primordia, which will repress signalling. 

Any disruptions in this differential signalling between both pair of tubule 

primordia will induce defects in the eversion of the tubules (Hatton-Ellis et al., 

2007).  

1.2.3.4 Tip cell selection and regulated cell proliferation 

When the tubule primordia are everting, a single pair of cells at the tip of each 

branch arises by a single division of a progenitor cell (Hoch et al., 1994, Skaer, 

1989). Although both of them have the same potential to become tip cells, only 

one adopts this role, and it is identified by competence by lateral inhibition 

through the Notch pathway and start secreting Epidermal Growth Factor (EGF) 

(Kerber et al., 1998, Sudarsan et al., 2002). Signalling from this primordium will 

be received through the EGFR pathway and activation of Spitz and promote cell 

division (Figure 1.2.2B). After three or four cycles of cell division, it ceases, and 

the tubule starts a phase of elongation. At this stage, cell number is fixed, with 

~140 cells in the anterior tubule pair and ~105 cells in the posterior pair 

(Ainsworth et al., 2000). 
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1.2.3.5 Tubule elongation 

By stage 12 of embryogenesis, cell division ceases, and the tubule primordia 

start a robust elongation process (Figure 1.2.2C and D), which will increase their 

length up to 4 times and their number of cells in the tubule circumference drops 

from ~10 cells to 2 cells. This achieved through cell intercalation and convergent 

extension, processes that are regulated by different TFs (ct, trachealess and 

ribbon), to control the expression of different cytoskeletal and polarity genes 

(crumbs (crb), moesin, crossveinless-c or zipper), and induce changes in myosin 

and actin cytoskeleton, required for tubule extension independently of other 

tissues (Kerman et al., 2008, Hatton-Ellis et al., 2007, Jack and Myette, 1999, 

Campbell et al., 2009). During this process, the MTs move in a very fixed and 

stereotypical manner; the posterior pair projects backwards to the HG and will 

finish the elongation being attached to it. The anterior pair elongates through 

the abdominal thoracic region and will end up fastening to the alary muscles 

(Figure 1.2.2D).  

This process is still regulated by TGF-β and EGFR signalling (Saxena et al., 2014), 

the activity of PDGF/VEGF pathway and secretion of type IV collagen, which 

stimulates BMP signalling pathways (Bunt et al., 2010). In addition, a recent 

study showed that Wg signalling is also required for the proper proximo-distal 

orientation of the developing MTs (Beaven and Denholm, 2018).  

Tip cells are crucial for this elongation and migration processes through the body 

cavity. Genetically of physically alterations of these tip cells (inducing a lack of 

tip cells, or two tip cells instead of one in each tubule) induce problems in the 

positioning of the tubule, causing failure of fluid homeostasis and premature 

lethality in the adult stage (Weavers and Skaer, 2013). The kink region of the 

developing tubule is also vital, and the interaction of this region with Dpp 

guidance cues from the visceral MG (Bunt et al., 2010, Weavers and Skaer, 

2013). Previous literature also suggests an implication of the Extracellular Matrix 

(ECM) in the development and elongation of the MTs ((Bunt et al., 2010)). 

Similar to the development of other organs (Jack and Myette, 1999), basal ECM 

proteins may play a role in the guidance of MT elongation. Additionally, the 

apical or luminal ECM may play a role in determining the shape and migration of 

the MTs, in a similar way to other tissues, such as the embryonic trachea (Araújo 
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et al., 2005). However, it has been previously pointed out, this must be a 

temporary process, since the MTs are not show the presence of chitin during 

their development, unlike the trachea or the cuticle (Denholm, 2013). 

1.2.3.6 Stellate Cell migration and integration 

During elongation, cells are recruited from the caudal visceral mesoderm and 

migrate to the developing MTs to become SCs, through mesenchymal-to-

epithelial transition (Figure 1.2.2C). During SC intercalation, cells of the tubule 

primordia maintain their epithelial phenotype and polarity, through the activity 

of crb. SC migration is tightly controlled by the TF hibris (hbs), an 

Immunoglobulin-like protein, homolog of the human NEPHRIN. Mutant flies for 

hbs fail to integrate the SCs into the MTs, resulting in a significant reduction of 

SCs in adult MTs resulting in premature death (Denholm et al., 2003). In 

addition, these MTs show a decrease in fluid secretion in response to SC-specific 

neuropeptides, such as leucokinin (Denholm et al., 2003). Recent studies have 

demonstrated that Ecdysone signalling is also necessary for the correct 

integration and allocation of the SCs in the MTs through the EcR-B2 isoform, and 

blocking Ecdysone signalling in the developing MTs induces strong morphological 

and physiological defects (Gautam et al., 2015, Gautam and Tapadia, 2010).  

1.2.3.7 Tubule maturation 

Towards the end of embryogenesis (~stage 17), the MTs are fully developed and 

functional, shown by the presence of uric acid crystals in the lumen of the MTs 

(Figure 1.2.2E). However, these crystals will not be cleared until the adult 

emergence. By the end of embryonic development, MTs already show a 

pronounced proximo-distal axis (revealed by the presence functional regions 

differentiated along the tubule length), that is vital for the adult MT functions; 
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the distal tubule produces primary urine, and it travels and is modified through 

more proximal areas of the tubule, (Skaer et al., 1990, Beyenbach et al., 2010). 

 

Figure 1.2.2. Scheme of the embryonic development of the MTs of Drosophila 
(A) At stage 11, MTs emerge from the embryonic hindgut into four buds. (B) At stage 12, tubule 
primordia go through a synchronised series of cell proliferation, and cells from the caudal visceral 
mesoderm (yellow) migrate to the tubule. EGF secretion from the tip cell (marked in green) controls 
cell proliferation at stage 12. (C) At stage 13, cell division ends and SCs integrate into the 
developing tubule. (D) From stage 13 to 16, the tubule elongates only by cell intercalation. This 
elongation process is highly stereotypical. (E) By the end of embryogenesis, the tip cells are 
anchored to its final positions (into the alary muscle, AM in the anterior tubules, and to the hindgut 
visceral nerve, HVN, in the case of posterior tubules. Physiological maturation can be observed 
when uric acid crystals are present in the lumen of the posterior pair. Extracted from (Denholm, 
2013) with the permission of Dr Barry Denholm. 

1.2.3.8 Post-embryonic development 

Although the MTs are fully developed by the end of embryogenesis, drastic 

changes occur at later stages of development, including changes of MT size that 

are majorly due to cell size increase and endoreduplication of DNA (Denholm, 

2013). Interestingly, the MTs survive apoptosis and remodelling events during 

metamorphosis compared to other tissues of the digestive tract (Wessing and 
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Eichelberg, 1979). However, the MTs go through different maturation processes 

during the pupal stage. For instance, pupal SCs change their shape dramatically 

from a cuboidal to their typical stellate form (or bar-shape in the initial and 

transitional segments, especially in the anterior tubules). This process is 

regulated by tsh, and downregulation of this gene induces severe reduction in 

the functional capabilities of SCs, and consequently, lethality (Denholm et al., 

2013) Also, the MTs shrink to almost half their size during metamorphosis and 

form a bulb in their initial segments, and elongate again before hatching. As a 

consequence, the adult initial segment becomes reduced in size compared with 

the larval initial segment (Wessing and Eichelberg, 1979). 

1.2.3.9 Renal Stem Cell migration and adult tubule maintenance 

The third main cell population in the MTs, the RNSCs, integrate to the MTs 

during the pupal stage. In the adult stage, this cell population is retained only in 

ureters and lower ureters, and they present different gene expression profiles 

compared to both PCs and SCs (Singh et al., 2007). For example, RNSCs are 

negative for both of main segment markers for differentiated tubule cells such 

as ct or tsh, but express other markers characteristic of stem cells; they show 

strong activity of JAK-STAT signalling, express escargot (esg, a Snail-type TF, 

involved in stem cell maintenance (Singh et al., 2007, Li et al., 2017)), hindsight 

(hnt, another TF involved in stem cell maintenance,(Bohère et al., 2018)), and 

armadillo (arm, homolog of β-catenin in Drosophila (Brunner et al., 1997)). 

Moreover, RNSCs express Notch signalling components, such as delta (dl), and 

components of EGFR/MAPK signalling, which act independently from JAK-STAT 

signalling (Li et al., 2015) to regulate their proliferation. 

RNSCs originate from a subset of cells called adult MG progenitors that migrate 

posteriorly from the PMG and colonise the ureter and lower ureter of the adult 

tubule during metamorphosis. This migration depends on the activity of the 

GTPase Rac1, and cells with loss of Rac1 fail to migrate to the MTs (Takashima 

et al., 2013). Several genes have been identified to control the proliferation and 

survival of RNSCs. The tumour suppressors salvador (sav) and scribble (scrib) 

regulate the proliferation of RNSCs through blocking the activity of Ras 

signalling. Loss of any of these genes induces tumorous growth and uncontrolled 

cell proliferation in the MTs (Zeng et al., 2010). In parallel, Shavenbaby (Svb) 
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physically interacts with the TF Yorkie (Yki, a nuclear effector of the Hippo 

pathway) to ensure the survival of the RNSCs, partially by regulating the 

expression of the inhibitor of apoptosis DIAP1(Bohère et al., 2018). 

 

Figure 1.2.3. Schematic diagram of the adult MTs. 
Schematic structure of the adult posterior (left) and anterior (right) pairs of MTs. It includes critical 
gene expression of the three different types of cells. PCs express ct (Hatton-Ellis et al., 2007), 
CapaR (Terhzaz et al., 2012), and the V-ATPase vha55 (Allan et al., 2005). SCs express tsh and 
tio (Denholm et al., 2013), clc-a and DRIP (Cabrero et al., 2014), and LkR (Terhzaz et al., 1999). 
RNSCs, which are limited to ureters and lower ureters, express several stem cell markers, such as 
esg, arm, (Singh et al., 2007), svb and DIAP1 (Bohère et al., 2018) and sav and scrib (Zeng et al., 
2010). Only the anterior pair shows the presence of SCs with bar shape, called bar-cells. The 
different regions are also indicated, in blue. PMG: Posterior Midgut, AHG: Anterior Hindgut. 

1.2.4 Transcriptomic profile of the adult Malpighian tubules 

Examining the transcriptome profiles of the different organs and tissues of 

Drosophila has been a robust method to investigate the mechanisms underlying 

the developmental and functional processes in Drosophila and other systems by 

reverse genetics. Transcriptomic studies are especially useful when they are 

performed in a tissue-specific manner, which is fundamentally the function of 

the online tool FlyAtlas (Chintapalli et al., 2007). It consists of an extensive 

organ-specific transcriptomic study in Drosophila, allowing the identification of 
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any pattern of expression of virtually any Drosophila gene in both L3 and adult 

stage (in the adult, it also differentiates males and females) and compares its 

enrichment in a specific tissue with the whole fly. The first version of FlyAtlas 

was based on Microarray data. However, the recent release of FlyAtlas2 is based 

on RNA-sequencing data, which allows transcript differentiation, and the data 

for somatic tissues is presented as separated in male and female adult flies. 

Also, FlyAtlas2 includes information of microRNA (miRNA) expression and other 

RNA genes present in the release 6 of the Drosophila reference genome (Leader 

et al., 2018). 

The MTs of Drosophila present a particular transcriptomic profile, which has 

been extensively described (Wang et al., 2004) and can be confirmed using 

FlyAtlas. Genes encoding transporters are significantly enriched in the MTs, such 

as ABC, phosphate, or zinc transporters, potassium channels, chloride channels 

and aquaporins. Second messengers, such as cAMP, cGMP and calcium signalling 

transducers (such as Itp-r83A, or CapaR)are enriched as well in the MTs (Figure 

1.2.1). Also, cytochrome p450 and glutathione transferase genes are enriched in 

the MTs, further confirming their functions in detoxification, similar to the 

human kidney and liver. (Yang et al., 2007). Other genes related to human 

diseases are strongly upregulated in the MTs, such as rosy (Xanthinuria type I) or 

Spat (Hyperoxaluria, type I). Examples of renal diseases discovered in the 

Drosophila MTs include the investigation of mutations of V-ATPase subunits (e.g. 

proximal renal tubular acidosis)(Allan et al., 2005) or the study of polycystic 

kidney disease by the study of the evolutionary conserved RNA-binding protein 

Bicaudal C (BicC) (Gamberi et al., 2017) among other genetic diseases (Wang et 

al., 2004). Altogether, these investigations provide robustness to future studies 

that could be performed with these genes using Drosophila as a model. 

Finally, more than 30 TFs are significantly enriched in the adult MTs (Table 

1.2-1). Some of those genes have been extensively studied in this tissue (such as 

ct, tsh or fkh). However, there are other TFs on this list that have not been 

investigated in the MTs. Identifying the most critical TFs from this list which 

could have a role in the development of the MTs, is one of the principal 

investigations of this PhD thesis. 
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Symbol (Wang et 
al., 2004) 

Current 
symbol 
(2019) 

Signal Enrichment References in 
relation to 

MTs 
CG10278 GATAe 175 ± 7 24.1 ± 11.5 - 

CG5093 Doc3 50 ± 4 19.3 ± 6.2 (Hatton-Ellis et 
al., 2007) 

pnt pnt 63 ± 5 17.5 ± 4.8 (Kerber et al., 
1998) 

CG2779 Muc11A 5771 ± 317 16.8 ± 0.7 - 

Ptx1 Ptx1 183 ± 8 12.7 ± 2.2 - 

Ets21C Ets21C 51 ± 17 9.8 ± 3.1 - 

CG4548 XNP 91 ± 4 8.8 ± 4.3 - 

HLH4C HLH4C 6 ± 1 7.7 ± 6.9 - 

fkh fkh 266 ± 26 7.2 ± 1.1 (Maruyama et al., 
2011, Murakami 

et al., 1999) 

hth hth 162 ± 13 7.2 ± 0.7 (Zohar-Stoopel et 
al., 2014) 

CG4566 Cnc 17 ± 2 7.1 ± 4.2 - 

bowl bowl 71 ± 5 7.1 ± 0.7 - 

CG4037 Not present 5 ± 1 6.7 ± 2.4 - 

tap Tap 5 ± 1 6.0 ± 3.0 - 

CG6913 Fer3 5 ± 2 6.0 ± 5.5 - 

CG3950 CG34417 287 ± 21 5.4 ± 0.9 - 

Awh Awh 21 ± 4 4.8 ± 1.4 - 

CG1162 CG1162 8 ± 1 4.7 ± 2.1 - 

ct ct 145 ± 12 4.6 ± 0.8 (Hatton-Ellis et 
al., 2007, 

Ainsworth et al., 
2000, Jack and 
Myette, 1999) 

CG14202 CG32532 10 ± 1 4.6 ± 1.5  

tsh (ae) Tsh 65 ± 5 4.6 ± 0.8 (Denholm et al., 
2013, Denholm et 

al., 2003) 

CG9952 Ppa 45 ± 11 4.5 ± 0.6 - 

sv sv 16 ± 2 4.3 ± 1.8 - 

fd59A fd59A 11 ± 3 4.3 ± 1.7 - 

CG11914 lmpt 31 ± 4 4.2 ± 1.7 - 

slp2 slp2 4 ± 2 4.1 ± 3.1 - 

Lim3 Lim3 13 ± 3 4.0 ± 1.1 - 

CG6419 Sox21b 18 ± 3 4.0 ± 0.4 - 

Tis11 Tis11 337 ± 17 3.9 ± 0.6 - 

nvy nvy 27 ± 4 3.9 ± 1.1 - 

Table 1.2-1. Transcription factors enriched in the adult MTs.  
TFs are ranked by their enrichment, which results from the comparison with their tubule-specific 
with whole-fly expression levels. Data extracted from (Wang et al., 2004). The current gene 
symbols are also included, according to the Drosophila melanogaster genome release 6.27 (2019). 

1.3 Transcription Factors 

1.3.1 Overview 

TFs are proteins that can modify the expression of downstream genes by binding 

to specific sequences in the DNA, usually at the 5’ end of those genes. The 

primary function of TFs is to ensure the proper spatiotemporal regulation of 

downstream genes (Latchman, 1997, Thomas and Chiang, 2006). TFs can 

influence gene expression either positively or negatively, and there are several 



37 
 
families of TFs, which can be classified by the structure of their DNA binding 

domains (DBD). The study of the TF function and specificity can be performed 

using Drosophila as a compelling model, due to its genetic versatility and 

similarity of its genome with the human genome. The different families of TFs 

can be classified by the structure of their DBD domains. There are more than 15 

types of DBDs and the most studied TF types according to the structure of their 

DBDs have been reviewed in previous studies. (Bürglin and Affolter, 2016, 

Takatsuji, 1998, Lentjes et al., 2016, Sharrocks, 2001, Xie et al., 2016, Vinson et 

al., 1989, Toledo-Ortiz et al., 2003). 

Interestingly, recent research has elucidated other ways to alter gene expression 

with ‘synthetic’ TFs, such as Transcription activator-like effector nucleases, or 

TALENs (Maeder et al., 2013, Perez-Pinera et al., 2013b) or CRISPR-cas9 based 

TFs (Perez-Pinera et al., 2013a). 

1.3.2 Transcription factors, development and disease 

TFs are present in all living organisms, from bacteria to humans. In metazoans, 

TFs are involved in several developmental processes, such as the determination 

of the body pattern (Bejsovec and Wieschaus, 1993), or the development of 

embryonic and imaginal structures (Kuo et al., 1997, Lentjes et al., 2016, 

García-Bellido, 2009). Loss or altered expression of any of these TFs induces 

severe defects in the development, and, in most cases, embryonic lethality. For 

these reasons, understanding the mechanisms which dictate TF specific binding 

to DNA is vital to uncover the molecular and genetic processes of development 

and disease (Lee and Young, 2013). These mechanisms should not be limited to 

study protein interactions with the DNA. Previous research has identified novel 

functions of different non-coding RNAs (such as microRNAs or piwi-interacting 

RNAs) in the regulation of gene expression, conferring protection to multiple 

diseases (Care et al., 2007, Ebert and Sharp, 2012, Aravin et al., 2007). 

1.3.3 Conservation of transcription factor binding specificities 
across evolution 

In the last years, the study of TFs has increased its significance in model 

organisms such as Drosophila, as high-throughput technologies and methods 

identified that despite several hundreds of millions of years of evolution, most of 
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the DNA motifs found in humans and mice are also recognised by Drosophila TFs. 

This surprising discovery indicates that TF evolution and diversification is a 

process that can run relatively slowly, and it can be clearly and easily studied in 

simpler organisms like Drosophila. Therefore, flies have been used as a bed-test 

for further studies investigating the function of different TFs in mice or humans 

(Merika and Orkin, 1993, Nitta et al., 2015). 

1.3.4 Transcription factors enriched in the Drosophila MTs 

Several families of TFs are enriched in the Drosophila MTs (Table 1.2-1) (Wang et 

al., 2004)). Almost half of the TFs in this list have already been characterised in 

the MTs, including ct and tsh, two of the most studied in the embryonic 

development of this tissue (Denholm et al., 2003, Ainsworth et al., 2000). The 

expression of some of these genes in the MTs has been confirmed by using 

enhancer trap reporters that highlight their expression, only a few of them were 

expressed in all regions of the MTs. By contrast, most of these TFs seem to be 

expressed in specific areas or groups of cells (Wang et al., 2004, Denholm et al., 

2003). 

However, the other half of TF genes described in this table have not yet been 

studied for their putative function in the MTs, and some of them have not been 

yet investigated (as they are still known as their CG numbers). However, several 

of their functions have been discovered since the date of which Table 1.2-1 data 

was published. Maybe the clearest example is the first one on the list: CG10278, 

or GATAe, a GATA factor that is crucial for the development of the embryonic 

MG, and the maintenance of this tissue in the adult stage. Loss of GATAe in 

embryos causes the MG (which is an endodermal tissue) to go through an 

ectodermal fate (Okumura et al., 2005). GATAe is also required in the different 

cell types of the adult MG (Dutta et al., 2015, Zhai et al., 2017, Okumura et al., 

2016, Zhai et al., 2018, Dobson et al., 2018). For these reasons, the enrichment 

of GATAe in the MTs is intriguing, as this tissue is ectodermal in origin. 
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1.4 The GATA family  

1.4.1 Gene family and structure 

The GATA family of TFs is present in animals, plants and fungi (Vonk and Ohm, 

2018) and it is involved in a diverse range of processes in all of them (Lentjes et 

al., 2016, Patient and McGhee, 2002). Although they have different functions, 

the principal feature of the TFs of the GATA family is that they possess one 

(predominantly in invertebrates) or two (predominantly in vertebrates) zinc 

finger DBD, with a consensus sequence of Cys-X2-C-X17-Cys-X2-Cys followed by a 

basic region (Lentjes et al., 2016). Phylogeny studies suggest that the second 

Zinc Finger (C-terminal) is present in both vertebrates and invertebrates, 

indicating that one Zinc Finger could have emerged by a genetic duplication 

from the other (He et al., 2007). However, during evolution, GATA factors seem 

to have gone through high divergence regarding their structure and family gene 

number across phyla. Following these observations, it is remarkable to observe 

that there are 6 GATA factors in vertebrates, 11 in C. elegans and 5 in 

Drosophila (Lentjes et al., 2016, Patient and McGhee, 2002). Despite this 

difference in gene number between Drosophila and vertebrates, general 

functions of GATA factors are similar in both vertebrates and invertebrates. 

Several exact potential orthologs between invertebrates and vertebrates have 

been identified, but it is still difficult to assign all the functions of an 

invertebrate GATA factor to a unique vertebrate GATA factor. For instance, 

serpent (srp) and GATAe in flies have been proposed to be homologues to the 

GATA4, 5 and 6 group in humans (see 1.4.2), as both groups are involved in the 

development of the endoderm. Nevertheless, srp is also crucial in 

haematopoiesis, a process that is controlled by GATA1, 2 and 3 in humans (Gillis 

et al., 2008). 

Furthermore, in both vertebrates and invertebrates, GATA factors can also 

interact with each other, and different members of the family can be involved in 

gene compensation, i.e. the loss of a GATA gene can be compensated by another 

GATA gene to perform some of their functions. For example, GATA1 can rescue 

early functions in erythropoiesis in GATA2 mutant Xenopus (Mead et al., 2001), 

which indicates overlapping in their role in erythropoiesis. Another example is 

srp and GATAe which, in Drosophila, are required for the specification and 
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differentiation of the of the embryonic MG. It has been shown that srp 

expression is required for the terminal differentiation of the MG, by activating 

the expression of GATAe to ensure the expression of endoderm-specific 

downstream genes (Okumura et al., 2005). 

 

Figure 1.4.1. Cladogram of the different GATA factors in vertebrates and invertebrates. 
This cladogram includes data from C. elegans, Drosophila, and mouse, but it excludes human 
GATA factors. Drosophila GATAe (dGATAe) is shown in bold. Extracted from (Okumura et al., 
2005). 

1.4.2 GATA factors in vertebrates 

Homo sapiens possesses 6 GATA factors, which can be subdivided into major 

groups: GATA factors 1, 2 and 3 are necessary for the development of 

ectodermal and mesodermal tissues, such as the nervous or the hematopoietic 

system. On the other hand, GATA factors 4, 5 and 6 are highly involved in the 

growth and the differentiation of mesodermal and endodermal tissues, and the 

differentiation of embryonic stem cells, adult epithelia or the cardiovascular 

system (Lentjes et al., 2016, Pihlajoki et al., 2016). Also, they have been 

associated with diverse types of cancer (Zheng and Blobel, 2010). 

1.4.2.1 Developmental functions  

GATA 1, 2 and 3 
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This subgroup of GATA factors has a critical role in the development of blood 

lineages since mutations of any of these TFs in mice are embryonic lethal due to 

hematopoietic deficiencies.  

GATA1 is specifically involved in the production of the erythroid precursor cell 

population, and crucial for the maintenance of adult hematopoietic stem cells 

(Shimizu et al., 2001, Lentjes et al., 2016). GATA1 deficiencies in humans induce 

hematopoietic abnormalities, such as anaemia or leukaemia. GATA1 also 

represses GATA2 in normal erythropoiesis. However, in GATA1 mutants, GATA2 

can partially rescue hematopoietic problems (Ohneda and Yamamoto, 2002, 

Weiss et al., 1994). In addition, GATA1 is involved in testis development, but 

null mutations of GATA1 do not induce a phenotype in the adult testis, possibly 

indicating gene compensation by other factors (Lindeboom et al., 2003). GATA2 

is expressed in hematopoietic progenitor cells, and it is required in 

erythropoiesis. Mutant mice for this gene present a severe reduction in blood 

cells during embryogenesis. Furthermore, GATA2 deficiencies in humans are 

related to blood diseases, such as acute myeloid leukaemia (Rodrigues et al., 

2008, Tsai et al., 1994). GATA2 is also expressed in the developing nervous 

system in mice, in different populations of neurons. Other studies also have 

shown a possible interaction of GATA2 and GATA3 in the development of the 

neural tube (Karunaratne et al., 2002).  

GATA3 is expressed in hematopoietic stem cells and T-lymphocytes during 

development. It regulates hematopoietic stem cell production and 

differentiation, and deficiencies of GATA3 induce low numbers of this type of 

cells (Hosoya et al., 2010). Thus, GATA 1, 2 and 3 present a similar pattern of 

expression in the developing hematopoietic system. Furthermore, ~10% of breast 

cancers present mutations in GATA3, indicating a role of this gene in the 

mammary gland, as a tumour suppressor. In addition, GATA3 has crucial role in 

vertebrate kidney development as reduction of GATA3 in humans is a cause of 

hypoparathyroidism, sensorineural deafness and renal disease (HDR) syndrome 

(Ali et al., 2007, Ferraris et al., 2009), but  is also expressed and required in the 

nephric duct during the development of the human kidney (Chia et al., 2011, 

Grote et al., 2006). In the adult kidney, GATA3 has also been associated with 

renal cell carcinoma. Recent studies demonstrated that high methylation of CpG 
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islands of GATA3 was associated with advanced levels of metastasis in this 

cancer (Peters et al., 2014b). 
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GATA4, 5 and 6 

GATA4 is necessary for appropriate sex differentiation in mammals, for the 

development of the lungs, and acts as a negative regulator for astrocyte 

differentiation in the adult central nervous system (Agnihotri et al., 2009, 

Ackerman et al., 2007, Lourenço et al., 2011). It is also required in the intestinal 

system, needed for the appropriate differentiation of mouse embryonic stem 

cells in the formation of the yolk sac, and to maintain the identity of jejune and 

ilium (Soudais et al., 1995). In addition, GATA4 is required to protect 

cardiomyocytes from drug-induced apoptosis, and directly targets the human 

apoptosis inducer Bcl2 (Kobayashi et al., 2006, Kobayashi et al., 2010, Aries et 

al., 2004). 

GATA5 is expressed in the developing heart, and each of the specific isoforms of 

this gene is involved in a different part in the development of this organ 

(Laforest et al., 2011, Jiang et al., 2013). Null mutations for both isoforms of 

GATA5 induce hypoplastic heart disease. Heterozygous mutations of GATA5 have 

been related to familial atrial fibrillation disease in humans, as well as 

congenital heart disease. It has also been reported as a potential biomarker for 

colorectal cancer (Akiyama et al., 2003, Hellebrekers et al., 2009). GATA5 is 

expressed during urogenital development, and females with loss of GATA5 

present strong defects in their urethra and vagina (Molkentin et al., 2000).  

As well as GATA5, GATA6 is required in the patterning of the developing heart 

and identified as a target of Wnt2. Mutations in GATA6 have been detected in 

congenital heart disease in mice and humans (Kodo et al., 2009, Morrisey et al., 

1996). GATA6 is expressed throughout the intestinal tract and (along with 

GATA4) is required for the homeostasis of the small intestine in mice (Tian et 

al., 2010, Morrisey et al., 1996, Beuling et al., 2011). GATA4 and 6 are 

expressed in the developing liver and required for the expression of Hepatocyte 

Nuclear Factor 4 (HNF4), a gene required for the differentiation of visceral 

mesoderm and liver (Morrisey et al., 1998). Further, GATA6 is overexpressed in 

pancreatic cancer, making it an important marker for the detection of this 

disease (Chia et al., 2014). GATA6 is also expressed in the urogenital tract but 

does not have an overlapping function with GATA5. However, GATA4 and 6 are 

both expressed in a similar pattern in testis and ovaries, and GATA6 has been 
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reported as a marker for ovarian pancreatobiliary and colon cancer (Heikinheimo 

et al., 1997, Belaguli et al., 2010, Kwei et al., 2008). Other studies showed, in 

contrast, that GATA6 expression is reduced in colon carcinomas (Haveri et al., 

2008). 

In conclusion, vertebrate GATA factors are crucial for the development and 

maintenance of most organs and, at least two of them (GATA3 and 5) are 

expressed in the embryonic and adult kidney. Hence, loss of any of these two 

genes can cause defects in the development of the kidney and tumorous growth 

in humans. Potential homologous functions between the vertebrate factors 

GATA3/5 and the Drosophila GATAe could be investigated, as in flies, GATAe is 

the only GATA factor enriched in the developing and adult MTs. 

1.4.2.2 Vertebrate GATA factors and cancer 

Aside from developmental functions, all GATA factors have significant roles in 

diverse human cancers, as they can act both as oncogenes, or as tumour 

suppressors (Zheng and Blobel, 2010).  

Mutations in the hematopoietic gene GATA1 have been associated with 

megakaryoblastic leukaemia (Li et al., 2005, Wechsler et al., 2002). Also, GATA2 

has been associated with the aggressiveness of prostate cancer (Rodriguez-Bravo 

et al., 2017, Wu et al., 2014, Vidal et al., 2015). In addition, epigenetic silencing 

of GATA4 and GATA5, and consequent downregulation of their tumour suppressor 

target genes is commonly found in colorectal and gastric cancers (Akiyama et 

al., 2003) and proposed to act as tumour suppressors in in vitro models of these 

cancers (Hellebrekers et al., 2009). Interestingly, GATA factors also play 

essential roles in human kidney cancers. Both GATA3 and GATA 5 are 

hypermethylated in human renal clear cell carcinomas, (Peters et al., 2014b) 

and low levels of GATA5 mRNA have been associated with this type of renal 

cancer (Peters et al., 2014a), suggesting an indirect tumour suppressor role of 

these two GATA factors.  

Strikingly, human GATA factors can act both as oncogenes or as tumour 

suppressor genes, depending on the context and the type of cancer. For 

example, GATA3 it is a recognised indicator of breast cancer, and it has been 
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shown that expression of GATA3 is sufficient to stop tumour dissemination in this 

type of cancer (Kouros-Mehr et al., 2008). However, GATA3 can also induce 

carcinogenesis in lymphoid precursor cells, and converts double-positive 

thymocytes into a premalignant state (Nawijn et al., 2001, van Hamburg et al., 

2008). GATA6 can also perform opposite functions in tumorigenesis. While it is a 

recognised tumour suppressor of astrocytoma, (the most common type of 

primary brain tumour) (Kamnasaran et al., 2007, Whissell et al., 2014), it has 

been also proposed to act as a potential tumorigenic factor in pancreatic (Kwei 

et al., 2008) and colon (Shureiqi et al., 2007) carcinomas. 

1.4.3 GATA factors in Drosophila 

There are 5 GATA factors in Drosophila: GATAa, or pannier (pnr), GATAb or srp, 

GATAc or grain (grn), GATAd and GATAe. Previous studies in evolution and 

phylogeny of GATA factors suggest that srp, GATAe and pnr emerged from two 

independent events of duplication of the single ancestral bilaterian GATA factor 

from the group 4, 5 and 6 (GATA4,5, and 6), as these three Drosophila factors 

are clustered in tandem in a short genomic region of 70kb (Gillis et al., 2008, 

Okumura et al., 2005). 

1.4.3.1 pannier 

pnr functions have been extensively studied in Drosophila. It was first discovered 

for its involvement in the bristle patterning, regulating the expression of 

achaete and scute, and interacting with u-shaped (Haenlin et al., 1997). pnr is 

essential for the development of the heart and shown to interact with Tinman 

(Lovato et al., 2015). Other studies have shown that pnr is required for the 

development of the ectoderm (Raftery and Sutherland, 2003). 

1.4.3.2 serpent 

srp has been extensively studied in the developing MG of Drosophila. It is 

required for the endodermal fate of this tissue as srp mutant embryos fail to 

differentiate the terminal regions of the blastoderm into the endoderm and 

differentiate into ectodermal hindgut instead (Murakami et al., 2005). Srp is 

expressed in early stages in the embryonic MG until stage 11, activating the 

expression of GATAe, which will be required for the terminal differentiation of 
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this tissue (Okumura et al., 2005). Srp also interacts with u-shaped to determine 

blood cell formation (Waltzer et al., 2002), hematopoiesis (Fossett et al., 2003, 

Spahn et al., 2014) and it is sufficient to promote fat cell differentiation, (Hayes 

et al., 2001, Sam et al., 1996). Finally, recent studies show that srp participates 

in the control of the circadian clocks together with other TFs such as clock and 

cycle (Meireles-Filho et al., 2014). 

1.4.3.3 grain 

grn is involved in several processes in fly development. It is necessary for the 

formation of the posterior spiracles and adult legs by controlling cell 

rearrangement (Brown and Hombria, 2000). grn is necessary for the axon 

guidance of the dorsal motoneurons, by cooperating with even skipped and 

regulating unc-5 (Zarin et al., 2012), and induces the expression of fasciclin 2 

and neuroglian, which encode for cell adhesion proteins to guide these 

motoneurons (Zarin et al., 2014). It has also been proposed that grn and GATAe 

together control immune gene expression in the MG, as their patterns of 

expression overlap in these regions (Senger et al., 2006). Recent studies showed 

that grn expression in the developing embryonic MG is regulated by srp (de 

Madrid and Casanova, 2018). 

1.4.3.4 GATAd 

GATAd is possibly the least studied of all GATA factors in Drosophila. According 

to the BDGP in situ database, GATAd mRNA is expressed maternally and then 

ubiquitously in the embryo, and FlyAtlas data suggests that it is enriched in the 

brain (in both larval and adult stage), in the thoracicoabdominal ganglion, and 

the ovary in the adult stage. This pattern of expression suggests that GATAd 

could have a function in the development or physiology of these tissues, but this 

remains to be explored. 

1.4.4 GATAe 

GATAe has been extensively studied in the last decade for its functions in the 

MG. Investigation of possible novel roles of GATAe in the MTs has been one of 

the core aims of this PhD project for two main reasons: (i) it is highly enriched in 

the MTs in all developmental and adult stages (Okumura et al., 2005) (Figure 
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1.4.2C and Figure 1.4.3). (ii), although GATAe has been extensively studied in 

other tissues in Drosophila (see below), little is known about its functions in the 

MTs despite its abundant expression in this tissue. In addition, its possible 

homologies with the vertebrate GATA3 and 5 TFs, involved in the development 

and maintenance of the human kidney make GATAe an exciting gene to study in 

the fly kidney (see 1.4.2). 

1.4.4.1 Structure and expression pattern 

The function of GATAe was first characterised in Drosophila by researchers of 

Takashi Okamura’s Laboratory, in a search for novel GATA factor genes in the 

Drosophila genome. They successfully cloned two genes that contained GATA 

factor motifs, GATAd and GATAe. GATAe is genetically located in the third 

chromosome at 89A13-B4, and it is clustered in a genomic region together with 

pnr and srp (Okumura et al., 2005, Gillis et al., 2008). 

GATAe encodes three different transcripts: the transcript A (the most enriched 

in the MTs) is 3086 bp, which translates for a protein of 746 amino acids with 

two typical GATA zinc finger DBDs, according to (Okumura et al., 2005). One of 

them is in the C-terminal domain, and it is a classical GATA DBD (C-X2-C-X17-C-X2-

C). The other zinc finger, located in the N-terminal domain (C-X2-C-X12-C-X2-C), 

is shorter. Both zinc finger domains are followed by flanking basic regions, that 

constitute the whole DBD (Okumura et al., 2005). GATAe also encodes for two 

other transcripts, B and C, composed of 2983 and 2879 bp respectively, and both 

translate for an identical protein of 731 aa (Figure 1.4.2A). 

GATAe has been typically described as an endodermal-specific gene (Okumura et 

al., 2005, Okumura et al., 2016). Its closest homologues in other animals are elt-

2 in C. elegans and GATA 4, 5 and 6 in mice/humans (Figure 1.4.1). In Drosophila 

embryos, GATAe is mostly enriched in the developing MG, where it is vital for 

this tissue’s identity and development, but it is also strongly expressed in the 

embryonic MTs, a tissue of ectodermal origin (Okumura et al., 2005). 
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Figure 1.4.2. GATAe genomic location and embryonic pattern of expression.  
All three GATAe isoforms are composed of six exons. The isoforms B (red) and C (green) are 
identical, with 731 amino acids, whereas the isoform A (blue) is slightly bigger, with 746 amino 
acids. (B) The predicted amino acid sequence of the isoform A of GATAe with zinc finger domains 
is marked in red, adapted from (Okumura et al., 2005). (C) In situ hybridisation of GATAe mRNA in 
the embryo at three different stages. In early stages (9-11) GATAe expression is limited to the MG, 
and MT primordia, whereas in later stages (15) GATAe is expressed across the MG, the 
proventriculus and the MTs (preparations in C have been extracted from BDGP database). 

Interestingly, GATAe maintains a similar pattern of expression throughout all 

developmental stages, being enriched in the MG and MTs of L3 and adult flies, 

with some expression in the adult male HG (Figure 1.4.3A). Among all three 

transcripts of GATAe, only the transcript A is strongly expressed in the larval and 

adult MG and MTs, with low expression in the adult hindgut. Also, transcript B is 

expressed at weak levels in the larval and adult MG and MTs. Strangely, 

transcript C does not seem to be enriched in any Drosophila organ (Figure 

1.4.3B). Studies on GATAe have mainly been focused on its implication in the 

developing MG (Murakami et al., 2005, Okumura et al., 2005, Okumura et al., 

2007), maintenance of adult MG and intestinal stem cells (ISCs) (Zhai et al., 

2017, Okumura et al., 2016, Takashima et al., 2013, Dutta et al., 2015), as a 

mediator for dietary restriction-induced mediator of lifespan (Dobson et al., 

2018)and its role in the immune response of the larval MG (Senger et al., 2006). 
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Figure 1.4.3. FlyAtlas2 reveals GATAe expression in L3 and adult stage. 
GATAe is enriched in the MG and MTs (A). It is enriched up to 7.7 and 7.9 times in adult male and 
female MTs, respectively, and also enriched 2.1 times in larval MTs. It shows an 11-fold, 10-fold 
and 4.4-fold in the adult male, adult female and larval MGs, respectively. Differential expression of 
the isoforms can also be observed in FlyAtlas 2 (B), and the isoform A is more enriched than the 
isoform B on C in both the MG and the MTs (Tu). Data extracted from 
http://flyatlas.gla.ac.uk/FlyAtlas2/index.html?search=gene&gene=GATAe&idtype=symbol#mobileT
argetG. 

1.4.4.2 GATAe in embryonic development 

In the embryonic MG, GATAe is required for the expression of endodermal 

terminal differentiation genes. Another GATA factor, srp, is expressed in the 

endoderm from stage 7-8 and ceases its expression at stage 11 of embryogenesis 

(Rehorn et al., 1996). srp activates the expression of GATAe in the developing 

MG from stage 7. GATAe is necessary to induce downstream gene expression to 

ensure correct development of the MG. GATAe loss in this period will cause that 

the MG acquires an ectodermal identity by expression of brachyenteron, an 

ectodermal gene that in normal conditions, it repressed by GATAe (Okumura et 

al., 2005, Murakami et al., 2005). In addition, recent publications demonstrated 

that GATAe expression in the embryonic MG does not depend on grn (de Madrid 

and Casanova, 2018). 

http://flyatlas.gla.ac.uk/FlyAtlas2/index.html?search=gene&gene=GATAe&idtype=symbol#mobileTargetG
http://flyatlas.gla.ac.uk/FlyAtlas2/index.html?search=gene&gene=GATAe&idtype=symbol#mobileTargetG
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Furthermore, GATAe is expressed in the embryonic MT primordia from stage 10, 

independently from srp. In this tissue, GATAe expression is regulated by Kr 

(Okumura et al., 2005). However, the possible functions of GATAe in the 

embryonic MTs have not been yet uncovered. 

1.4.4.3 GATAe in the larval and adult stages 

GATAe has also been shown to be involved in the production of the immune 

response in the larval MG, as microarray experiments demonstrated that this 

gene regulates diptericin and metchikowin (two antimicrobial peptide genes). In 

addition, they suggested that GATAe induces an immune response in a Toll 

signaling-independent manner (Senger et al., 2006). 

GATAe is present in all the regions and cell types of the adult MG (Dutta et al., 

2015, Okumura et al., 2016). It is crucial for the maintenance and proliferation 

of ISCs as GATAe loss in this cell population resulted in a reduction of epithelial 

renewal in the adult MG (Okumura et al., 2016, Dutta et al., 2015). Also, it is 

necessary for the differentiation of enterocytes and enteroendocrine cells, 

acting both dependently and independently from Notch signalling. Other 

publications have also shown that GATAe actively controls the differentiation of 

enteroblasts into enterocytes, acting downstream of JAK/STAT signalling and 

Sox21a (Zhai et al., 2017). Furthermore, recent data showed that GATAe is 

required to repress the epithelial shedding of enterocytes in the adult MG upon 

bacterial infection (Zhai et al., 2018). 

As showed in Figure 1.4.3 and Figure 1.4.2, GATAe is strongly upregulated in the 

MTs in all development stages of Drosophila. However, whether it has a function 

in the development of this tissue or not is yet to be studied.  
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1.5 Aims of the project 

Given the importance of TFs in the development and physiology of an organ, it is 

crucial to identify and study any possible novel roles that they could perform, 

especially in relation to human development and disease. The Drosophila MTs 

proved to be an excellent model to select and investigate possible phenotypes 

associated with loss of TF expression. 

There are numerous TFs highly enriched in this tissue, and the potential novel 

functions of many of them have not been yet investigated. On the basis of these 

findings, four different major points of this PhD thesis have been proposed. They 

were: 

• To perform a genetic screen to shortlist potential TF candidates that have 

novel roles in the development of the MTs. 

• To choose the most interesting TFs to investigate and perform a detailed 

study of their possible novel functions in the MTs. 

• To generate new methods and tools to identify the molecular mechanisms 

by which the selected TFs function. 

• In parallel, to incorporate new ways of MT observation in the whole-fly. 

The data and findings of these investigations will form the rest of this thesis and 

will provide novel insights into the development and homeostasis of the MTs of 

Drosophila. Thus, these results may also provide valuable information for the 

subsequent study of GATA factors in both invertebrate and vertebrate kidney. 
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2.1 Drosophila melanogaster 

2.1.1 Rearing conditions 

Drosophila were maintained in food vials with standard Drosophila medium (see 

Appendix 1) in ventilated capped tubes. The stocks were maintained at 22°C, 

55% atmospheric humidity and a 12:12 h light: dark cycle and adult flies were 

transferred to new tubes every two weeks. To obtain a progeny of a specific 

genotype, a minimum of 20 flies were transferred to a tube in a proportion of 3 

virgin females per 1 male, and they were kept at higher temperatures (29°C for 

the crosses using RNAi constructs, and 26°C for other crosses). Adult progeny 

was collected just after emerging (0 to 1 day-old). All the experiments were 

performed with 5 to 7 days old flies unless specified otherwise. 

2.1.2 Fly stocks 

Genotype, purpose and origin of the fly lines used are summarised in Table 

2.1-1. 

Name/ID Genotype Purpose Source/References 

Canton-S W+;+/+;+/+ Wildtype strain used to outcross all the 
lines. Used for controls 

Bloomington 
Drosophila Stock 

Center 

Bun RNAi y-v-

;+/+;P{TRiP.JF0295
4}attP2 

UAS line encoding for an RNAi for bun 
mRNA, used for the screening 

Bloomington 
Drosophila Stock 
Center, BL28322 

Cnc RNAi y-v-

;+/+;P{TRiP.JF0200
6}attP2 

UAS line encoding for an RNAi for cnc 
mRNA, used for the screening 

Bloomington 
Drosophila Stock 
Center BL25984 

Sv RNAi y-v-

;+/+;P{TRiP.JF0258
2}attP2 

UAS line encoding for an RNAi for sv 
mRNA, used for the screening 

Bloomington 
Drosophila Stock 
Center BL27269 

Ptx1 RNAi y-v-

;+/+;P{TRiP.HMJ22
073}attP40 

UAS line encoding for an RNAi for ptx1 
mRNA, used for the screening 

Bloomington 
Drosophila Stock 
Center BL58124 

Corto 
RNAi 

y-sc*v-

;+/+;P{TRiP.GL003
82}attP2 

UAS line encoding for an RNAi for corto 
mRNA, used for the screening 

Bloomington 
Drosophila Stock 
Center BL35456 

HNF4 
RNAi 

y-v-

;+/+;P{TRiP.JF0253
9}attP2 

UAS line encoding for an RNAi for HNF4 
mRNA, used for the screening 

Bloomington 
Drosophila Stock 
Center BL29375 
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STAT92e 
RNAi 

y-v-

;+/+;P{TRiP.JF0126
5}attP2 

UAS line encoding for an RNAi for 
STAT92e mRNA, used for the screening 

Bloomington 
Drosophila Stock 
Center BL31317 

Ada2B 
RNAi 

y-sc*v-

;+/+;P{TRiP.GL002
43}attP2 

UAS line encoding for an RNAi for 
Ada2B mRNA 

Bloomington 
Drosophila Stock 
Center BL35334 

Smox 
RNAi 

y-v-

;+/+;P{TRiP.GL014
76}attP2 

UAS line encoding for an RNAi for smox 
mRNA, used for the screening 

Bloomington 
Drosophila Stock 
Center BL42318 

Hth RNAi y-sc*v-

;+/+;P{TRiP.HMS01
112}attP2 

UAS line encoding for an RNAi for hth 
mRNA, used for the screening 

Bloomington 
Drosophila Stock 
Center BL34637 

TM3/TM6 +/+;+/+TM3Sb/TM6
,Tb,Hu 

chromosome III balancer line  

CapaR-
Gal4 

w-;+/+;w*,CapaR-
Gal4 

Gal4 under CapaR expression mainly 
expressed in the PCs. 

In-house line (Terhzaz 
et al., 2012) 

CapaR-
Gal4:UAS
GFP 

w-

;/CapaRGal4;UAS.C
D8.GFP 

Gal4 under CapaR expression, with 
cytoplasmatic GFP expression, used to 
trach CapaR expression and for OPT 
experiments. 

In-house line (Terhzaz 
et al., 2012) 

CtB-Gal4 P{ct-GAL4.CtB} Gal4 under Cut expression, mainly 
expressed in the PCs, from the very 
early embryonic stages 

Dr Barry Denholm 
(Saxena et al., 2014) 

ClC-a-
Gal4 

w-;+/+;w*,ClC-a-
Gal4 

Gal4 under Clc-a expression mainly 
expressed in the SCs, weaker 
expression in bar cells 

Bloomington 
Drosophila Stock 

Center 

CapaRts CapaR-
Gal4;TubulinGal80.
TS 

CapaRGal4 line thermosensitive, used 
for controlled time expression 
experiments 

In-house line  

c42-Gal4 w*; 
P{w[+mW.hs]GFPBl
o=GawB}c42 

Gal4 expressed in the PCs Drosophila 
Bloomington Stock 
Center, BL30835  

UrO>GFP w-

;UAS.CD8.GFP;UrO
Gal4 

Gal4 under Urate Oxidase expression 
expressed in a subset of PCs of the 
main segment. 

In-house line (Terhzaz 
et al., 2010) 

GATAe 
RNAi  

w1118; 
P{GD4152}v10420;+
/+ 

UAS line encoding for an RNAi for 
GATAe mRNA, all isoforms, used for 
the main experiments with GATAe 

Vienna Drosophila 
Resource Center 

v10420(Takashima et 
al., 2013) 

GATAe 
RNAi (2) 

y-sc*v-;+/+; 
P{TRiP.HMS01087}a
ttP2 

UAS RNAi line for GATAe mRNA, 
isoform A, used to confirm the 
phenotypes found with GATAe 
knockdown. 

Bloomington 
Drosophila Stock 

Center (Okumura et 
al., 2016) BL33478 

GATAe- w*; 
P{ry+t7.2=neoFRT}82
B 

Null mutant line for GATAe Prof. Takashi Adachi-
Yamada (Okumura et 

al., 2016). 
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TI{w+mC=TI}GATAe1 
/ TM3, Sb1 Ser1 

Esg>GFPts w*;esgGal4.UAS.GF
P/Cyo;tubGal80ts/
TM6β 

Gal4 under escargot expression, in the 
RNSCs, thermosensitive, used for 
controlled time expression 
experiments 

Dr Julia Cordero (Tian 
et al., 2017) 

UAS-
GATAe-
HA 

y(Consortium) 
w[67c23]; 
P{y[+t7.7] pUAST-
CFLAGHA-BD-PHI 
UAS.GATAe-HA, 
w+=CaryP}attP2 

UAS line expressing GATAe isoform A 
with an HA tag in the C-terminal, used 
for overexpression and ChIP-seq 
experiments 

Guillermo Martinez 
Corrales. generated in 

this study. 

GATAe.TR
iP/TM3 

y1 sc* v1; P{TRiP.HMS

01253}attP2/TM3, Sb
1 

UAS line encoding for an RNAi for 
GATAe mRNA, all isoforms, used to 
confirm the phenotypes found with 

GATAe knockdown 

Bloomington 
Drosophila Stock 
Center (BL34907) 

Actin-
Gal4/Cyo

GFP 

y1w-
;P{act5cGAL4}25FO
1/CyO-GFP, y+;+;+ 

Gal4 under Actin expression, 
expressed ubiquitously, balanced with 

GFP. Also used for balancing other 
lines with Cyo/GFP 

No longer in 
Bloomington but kept 

in-house. 

TM3/UAS.
GFP 

w*; Sb1 / TM3, 
P{w+mC=ActGFP}JM

R2, Ser1 

 

GFP balancer in the chromosome III. Bloomington 
Drosophila Stock 
Center BL4354 

Sco 

 

w-

;Sco/Cyo;TM6/M
KRS 

Double balancer in the Chromosomes 
II and III 

Bloomington 
Drosophila Stock 

Center. 

RasN17 
P{UAS-

Ras85D.N17}TL1, 
w1118 

UAS line expressing a dominant 
negative (DN) form of Ras85D 

Bloomington 
Drosophila Stock 

Center BL4846, (Lee 
et al., 1996) 

RasV12 
w1118; +/+;P{UAS-
Ras85D.V12}TL1 

UAS line expressing a constitutively 
activated form of Ras85D 

Bloomington 
Drosophila Stock 

Center BL4847, (Wu et 
al., 2010). 

GATAe-
Gal4 

[VT04235
7] 

 Gal4 controlled by GATAe regulatory 
sequences. 

Vienna Drosophila 
Resource Center 

v209818 (Zhai et al., 
2018). 

GATAe-
Gal4 

[VT04235
8] 

 Gal4 controlled by GATAe regulatory 
sequences. 

Vienna Drosophila 
Resource Center 

v205732 (Zhai et al., 
2018). 

Table 2.1-1. List of Drosophila stocks used in this study including the stock name, genotypes, 
the purpose and the origin of the stocks. 

 

http://flybase.org/reports/FBal0018607
http://flybase.org/reports/FBal0017656
http://flybase.org/reports/FBti0144881
http://flybase.org/reports/FBti0144881
http://flybase.org/reports/FBba0000047
http://flybase.org/reports/FBal0015145
http://flybase.org/reports/FBal0015145
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2.1.3 Embryo collection 

Approximately 50 females and 15 males were pooled in an inverted plastic 

beaker, which has both ends open. One of the ends is covered with a fine-mesh 

to allow air to flow. Flies were allowed to lay eggs on a plastic 55mm Petri dish 

containing grape juice agar medium (see Appendix 2) with a dab of yeast paste 

(dried yeast dissolved in double-distilled water, ddH20). Flies were allowed to 

lay overnight at 29°C for Gal4/UAS experiments, or 22°C for other experiments 

on the plate unless specified otherwise, and the plate was removed the 

following morning for embryo collection. Embryos were detached from the egg-

laying plate using a paintbrush and a stream of distilled water for subsequent 

fixation and collected in a fine-mesh basket. 

2.1.4 Dissection of Drosophila MTs 

7-day old adult female flies were anaesthetised on ice and used for tissue 

dissection (except for flies kept at 29°C, which were 5-day old flies). MTs were 

dissected in ice-cold Drosophila Schneider’s Medium (Invitrogen), and 

transferred to Poly-D-lysine treated microscope slides (Thermo Fisher Scientific), 

containing 100µl of PBS (Phosphate buffered saline, pH 7.4: 137 mM NaCl, 2.7 

mM, KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4) for subsequent immunocytochemistry 

(ICC) experiments (section 2.6). Otherwise, dissected tubules were transferred 

every 10min to an Eppendorf tube containing the appropriate solution for 

Western-Blot, RNA extraction, etc. Third instar larvae (L3) and pupae, were 

placed in aluminium foil on ice before dissection, to avoid movement of the L3 

specimens. 

2.2 Escherichia coli 

2.2.1 Strains, Vectors and Transformation conditions 

The plasmids (Table 2.2-1) were transformed into DH5α® subcloning efficiency 

competent cells (Invitrogen) by adding 100ng of the plasmid to 100μl of cells and 

incubated on ice for 30 min. Cells were then heat shocked at 42°C for 45 secs 

with no shaking. Then they were left on ice for 2 minutes before adding 250μl of 

room temperature (RT) S.O.C medium® (Invitrogen, Appendix 3), and incubated 

at 37°C for 1h, shaking. Then, 100μl of the transformation were spread onto L-



57 
 
agar (see Appendix 3) plates containing 75µg/ml carbenicillin, and kept 

overnight at 37°C. The positive colonies, carbenicillin resistant, were selected. 

Vector Purpose and origin 

pUAST-CFLAGHA-BD-PHI GATAe isoform A driven 
by a UAS promoter and with a Flag-HA tag C-
terminal fusion.  

Used for generation of an HA-tagged form of 
GATAe, E. coli expression experiments, 
Drosophila S2 cells transformation and 
Drosophila embryo microinjection (Clone ID 
UFO01424, Drosophila Genomics Resource 
Center). 

pUC vector Negative control for E. coli expression 
experiments (NEB). 

Table 2.2-1. Vectors used in this study. 
 

A gain-of-function line for GATAe has been generated in this project, from a 

plasmid obtained as a bacterial slant from the Drosophila Genomics Resource 

Centre (DGRC, clone UFO01424). The resulting protein is tagged with Human 

influenza hemagglutinin (HA) in the C-terminal (UAS-GATAe-HA, Figure 2.2.1). 

Plasmid DNA was isolated as described in 2.2.2. The UAS-GATAe-HA plasmid 

contained both ampicillin/carbenicillin and chloramphenicol resistance genes. 

The antibiotic carbenicillin was used in this study for plasmid selection. The 

stock solution was made by preparing a stock solution of 7.5mg/ml of 

carbenicillin in ethanol absolute, stored at -20°C. Then it was diluted in 1/100 in 

the agar broth before preparing the plates. The growing colonies, carbenicillin 

resistant were selected and resuspended in 10µl of ddH20. 
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Figure 2.2.1. Schematic map of the pUAST vector, used for GATAe overexpression. 
It includes a FLAG-HA-tag sequence in the C terminal of the gene sequence. 

2.2.2 Isolation of plasmid DNA  

The carbenicillin resistant colonies were resuspended in 10µl of ddH20, added to 

5ml of LB and incubated overnight at 37°C shaking. Plasmid DNA was extracted 

using the QIAprep Spin MiniPrep Kit (Qiagen), following manufacturer’s 

instructions, and eluted in 30µl of elution buffer. DNA was quantified using a 

NanovuePlus® Spectrophotometer. 

2.2.3 Verification of plasmid insertion 

PCR experiments were performed to check the GATAe positive colonies using 

primers against GATAe ORF sequence (Table 7.3-2). The purified plasmid DNA 

was cut using the specific restriction enzymes KpnI, NheI and BamHI and run in a 

1% agarose gel to verify the size and number of fragments. Finally, the isolated 

DNA was sent for sequencing to confirm GATAe sequence integrity, using primers 

against GATAe sequence. Sequencing was performed by GATC Biotech, UK. and 

subsequently analysed using Mac Vector Software. Bacteria containing the proper 

GATAe plasmid were stored in glycerol stocks (2% w/v peptone, 40% v/v glycerol 
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solution in H2O) at -80°C. To recover the frozen stock, a small amount was 

scraped with a pipette tip, and inserted into a tube containing 5ml of LB with 

the appropriate antibiotic to grow at 37°C overnight. Confirmation of gene 

expression and protein localisation was performed by co-transfection of UAS-

GATAe-HA plasmid and metallothionein-induced promoter pMT-Gal4 (Santos et 

al., 2007). UAS-GATAe-HA plasmid was sent for microinjection in Drosophila 

embryos using the Gene® microinjection services. Five different lines were 

obtained and were studied for morphological and functional phenotypes. 

2.3 Drosophila S2 Cells 

2.3.1 Maintenance 

Drosophila Schneider 2 (S2) cells (Invitrogen) were kept as described in the 

manufacturer’s instructions. All procedures were performed in sterile 

conditions, in a BioMAT2 safety cabinet. Cells were maintained in Complete 

Serum Medium (CSM), composed of 10% of Heat Inactivated Fetal Bovine Serum 

(FBS, Sigma) in Drosophila Schneider’s Medium (GIBCO™). Cells were kept in 

Corning® 75cm2 Cell Culture Flasks, at 28°C in a Cell Culture Heated Incubator 

(PHCbi). Cells were passaged every three days (when they reached a 

concentration of 107 cells/ml) by diluting 2ml of cells in 13ml of fresh CSM in a 

new flask. 

2.3.2 Transient transfection 

S2 cells were transferred to 6-well plates for transient transfection when they 

reached a concentration of 1x106 cells/ml. 3ml of cells were co-transfected with 

both pMT-Gal4 and UAS-GATAe-HA plasmids using an Effectene® Transfection 

Reagent following manufacturer’s instructions. Cells were then kept at 28°C 

overnight, and copper sulphate (CuSO4) was added at a final concentration of 

500μM. Cells were then incubated for two days to allow protein expression. Cells 

were resuspended in the medium and transferred to a 15ml capped tube and 

centrifuged at 1500g for 2min at RT to be harvested. The cells were then washed 

twice with PBS, and kept at -80°C. 
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2.4 Molecular biology protocols 

2.4.1 RNA extraction 

2.4.1.1 Adult tubules 

For RNA extraction of tubules, a total of 50 adult female flies were dissected in 

Schneider’s Drosophila Medium (GIBCO™) on ice and immediately transferred to 

a 1.5mL Eppendorf tube containing 250µl of RLT buffer + 1% β-mercaptoethanol. 

Samples were subjected to short bursts of sonication using a Microson™ 

Ultrasonic Cell Disruptor. Following this, RNA was extracted using a Qiagen® 

RNeasy kit, following manufacturer’s instructions. RNA was eluted with 30µl of 

nuclease-free ddH20 and quantified using a NanovuePlus® Spectrophotometer. 

2.4.1.2 Whole fly 

For RNA extraction of whole flies, a total of 5 adult female flies were 

anaesthetised on ice, immediately transferred to a 1.5mL Eppendorf tube 

containing 350µl of QIAZOL (Qiagen) and homogenised with a clean plastic rod. 

70µl of chloroform was added, and the solution was vortexed for 30sec and let 

stand for 3min. Samples were centrifuged at 13000 revolutions per minute (rpm) 

at 4°C for 5min in an AccuSpin™ Micro R Ultra Centrifuge. After removing the 

organic phase, the samples were spun again at 13000 rpm, 4°C for 5min and the 

aqueous part was placed in a new clean tube. Then, 1.5 volumes of 100% ethanol 

were added to the samples and RNA was extracted using a Qiagen® RNeasy kit, 

following the manufacturer’s instructions. RNA was eluted with 30µl of nuclease-

free ddH20 and quantified using a NanovuePlus® Spectrophotometer. 

2.4.2 cDNA synthesis 

Complementary DNA (cDNA) was synthesised from 500ng of RNA using 

SuperScript II reverse transcriptase (SSII, SuperScript® II, 200 units/μl, 

Invitrogen), following manufacturer’s instructions. 1µl of OligoDT12-18(500μg/ml), 

1 µl of dNTP mix (10mM), 4 µl of 5X First Strand Buffer, 2 µl of DTT (0.1M) and 1 

µl of RNase Out inhibitor (40 units/μl, Invitrogen) were combined with 500ng of 

total RNA and the mix made up with nuclease-free ddH20 to obtain a volume of 

19 µl. The mix was briefly centrifuged and incubated for 5min at 65°C using a 
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PCR block. Samples were chilled on ice for 1min, and 1 µl of SSII was added, 

following quick centrifugation. Samples were incubated at 42°C for 1h and 70°C 

for 15min. cDNA was stored at -20°C. To control for any genomic amplification, 

a control tube for each sample was prepared without SSII. cDNA was quantified 

using a NanovuePlus® Spectrophotometer.  

2.4.3 Polymerase chain reaction (PCR) 

2.4.3.1 Standard PCR 

PCR was performed using DreamTaq® Green PCR MasterMix (Thermo Fisher). The 

PCR master mix contained 10µl of PCR MasterMix (DreamTaq DNA Polymerase, 

DreamTaq buffer, 4mM MgCl2 and 0.4mM of each dNTP), 1μl of each forward and 

reverse primer, 6µl of nuclease-free dd H20 and 2µl of cDNA, and the thermal 

cycling conditions are summarised in Table 2.4-1. PCR products were analysed 

using agarose gel electrophoresis described in (2.4.5). In order to test the 

efficiency of the primers (of both PCR and qPCR), gradient PCR with DreamTaq 

enzyme was performed, and the optimal annealing temperature was established 

for each primer pair. 

Step Number of Cycles Temperature (°C) Time 

Initial denaturation 
1 95 2min 

Denaturation 

35 

95 30sec 

Annealing 
55-60 (Tm -5) 30sec 

Extension 
72 1min/kb 

Final extension 1 72 5min 

Table 2.4-1. Normal PCR thermal cycling conditions. 
 

2.4.3.2 qPCR 

Quantitative PCR (qPCR) was used to determine the expression of a gene of 

interest. In dye-based qPCR, fluorescent labelling allows the quantification of 

the amplified DNA molecules by employing the use of a dsDNA binding dye. 

During each cycle, the fluorescence is measured. The fluorescence signal 

increases proportionally to the amount of replicated DNA, and hence the DNA is 
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quantified in “real time”. The disadvantages to dye-based qPCR are that only 

one target can be examined at a time and that the dye will bind to any ds-DNA 

present in the sample. Each qPCR reaction was composed by 10µl of Agilent 2X 

Brilliant III SYBR® Green QRT-PCR Master Mix (Agilent Technologies), 1µl of each 

forward and reverse primers, 6 μl of nuclease-free ddH20, and 2µl of cDNA. The 

solution was gently mixed and briefly centrifuged before running the protocol, 

summarised in Table 2.4-2. The melting curve was analysed, and if any of the 

curves produced more than one peak, primers were discarded. Data were 

analysed using StepOne™ v2.1 Software and plotted in a graph using GraphPad 

Prism® 5 Software. Statistical significance was assessed using the 1-way ANOVA 

test. Relative quantification was calculated comparing the ratio of DNA 

concentration of the gene of interest with the ratio of DNA concentration of the 

housekeeping gene rpl32, using the CT method (Schmittgen and Livak, 2008). All 

primer sequences used in this study can be found in Appendix 4. 

Step Number of Cycles Temperature Time 

Initial denaturation 1 95°C 10min 

Denaturation 

40 

95°C 15sec 

Annealing, 55-60 (Tm -5) 30sec 

Extension and 
fluorescence reading 

80°C 10sec 

 

Melting curve stage 

1 95°C 15sec 

1 60°C 1min 

1 95°C 15sec 

Table 2.4-2. qPCR thermal cycling conditions. 
 

2.4.4 Restriction enzyme digestion 

Restriction enzyme digestions were performed to verify the size of the plasmid 

and digested fragments. Restriction enzyme sequences in the UAS-GATAe-HA 

plasmid were identified using the online software PeptideCutter (Gasteiger et 

al., 2005). All digests were performed using New England Biolabs (NEB) enzymes 

and recommended buffers for each enzyme or combination of enzymes, using 
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manufacturer’s instructions. To confirm if the DNA fragments were of a correct 

size, digestions were run on a 1% agarose gel.  

2.4.5 Agarose gel electrophoresis of DNA 

Different DNA sizes were separated in a 1% agarose gel (containing 0.1µl/ml of 

ethidium bromide), dissolved in 0.5X TBE buffer (see Appendix 5). Before loading 

into the gel, 5X GelPilot® Loading Dye was added in a ratio of 1/5 to each DNA 

sample, except the PCR products obtained using DreamTaq® Green PCR 

MasterMix. DNA was visualised under ultraviolet light, and the size of DNA 

fragments was compared to a 100bp or 1kb DNA ladder (Invitrogen). 

2.4.6 Western blotting 

2.4.6.1 Preparation of the samples 

50 adult female flies (100 pairs of tubules) were dissected in ice-cold 

Schneider’s Drosophila Medium (GIBCO™) for each sample and immediately 

transferred to a 1.5mL Eppendorf tube containing 50µl of ice-cold RIPA buffer 

(Thermo Scientific) complemented with 1X proteinase inhibitor cocktail (Sigma) 

and kept on ice. The lysate was then sonicated on ice and stored at -80°C until 

further use. 

2.4.6.2 Bradford protein assay 

Bradford assays were performed on a 96 well plate (Corning Inc.). Standards 

from 0-5 μg (0 μg, 0.5 μg, 1 μg, 2 μg, 3 μg, 4 μg, 5 μg) were generated in 

triplicate using Bovine Serum Albumin (BSA, New England Biolabs), in a volume 

of 50μl ddH20. 1μl of each sample was diluted into 49μl of ddH20 in triplicate. 

Each well contained either the protein samples or the standard samples, 200μl of 

a well-mixed 1/5 dilution of Bio-Rad protein assay dye reagent concentrate (Bio-

Rad) in ddH20. Absorbance at 590 nm was measured using a Mithras LB 940 plate 

reader (Berthold technologies); Microsoft Excel software was used to generate a 

standard curve and calculate the concentration for each sample. 
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2.4.6.3 Running Gel electrophoresis 

A total of 20µg of lysate was diluted in ice-cold RIPA buffer, up to a volume of 

20µl, and 5μl of NuPAGE® LDS 4X Sample Buffer (Invitrogen). 2.5% (v/v) of β-

Mercaptoethanol was added to each sample and then heated at 70°C for 10 min 

to reduce the sample. Electrophoresis was performed in a NuPAGE™ 4-12% Bis-

Tris Gel (Invitrogen), using an XCell SureLock™ Electrophoresis System 

(Invitrogen), and gels were run at 200V for 1h on ice in 1X NuPAGE™ MES SDS 

Running Buffer (Life Technologies). 

2.4.6.4 Transfer Blotting 

Immobilon®-P Transfer Membrane was activated by incubation 2min in 100% 

methanol and washed with ddH20. Protein transfer was performed using an XCell 

SureLock™ Electrophoresis System, in Transfer Buffer (5% methanol, 5% NuPAGE™ 

Transfer Buffer (Life Technologies), in ddH20) at 100V for 1h on ice. 

2.4.6.5 Ponceau Staining 

Ponceau staining method was used to visualise the protein present in the 

membrane. The membrane was washed with TBST (TBS 1X + 0.2%Tween, see 

Appendix 6). It was incubated with Ponceau solution (1% Ponceau S, 3% TCA in 

ddH20) for 5min, and washed twice with 10% glacial acetic acid for 5 min each 

wash. 

2.4.6.6 Antibody Incubation 

The membrane was washed three times with TBST for 10 min each and was 

incubated with TBST + 5% Skimmed Milk blocking solution for 30 min. Primary 

antibody or combination of antibodies was added at the required concentrations 

(Table 2.6-1) at 4°C overnight. The membrane was then washed three times 

with TBST and once with TBST + 5% Skimmed Milk blocking solution, following 

incubation of the HRP-conjugated secondary antibody (Table 2.6-2) for 1h at RT 

and in the dark. Finally, the membrane was extensively washed with TBS for 1h 

and prepared for ECL detection. 
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2.4.6.7 Membrane ECL Detection 

Chemiluminescence detection was performed using the ECL® Western Blotting 

analysis system (Amersham Pharmacia) following the manufacturer’s 

instructions. Equal volumes of solution 1 and solution 2 (see Appendix 7 for the 

recipes) were mixed and added to the membrane in a sheet of plastic wrap and 

incubated for 2min. The membrane was dried with paper and wrapped in plastic 

cling film, added to a cassette, and exposed to a Medical X-ray Blue/MXBE ECR 

Film (Carestream), and developed in an X-OMAT film processor. 

2.5 Generation of the antibody against GATAe protein 

2.5.1 Antigenic peptide design  

The optimal immunogenic sequence from the GATAe protein sequence was 

identified using the online software AbDesigner (Pisitkun et al., 2011) as 

SPYSQQSTPQSQSPH. A cysteine amino acid was added to the C-terminal of the 

sequence to increase the sequence immunogenicity. Then, the peptide was sent 

to Genosphere Biotechnologies to be injected in rabbits. The resulting 

lyophilised powder obtained from the rabbit serum was resuspended in ddH2O 

and peptide-purified using a HiTrap NHS-Activated HP affinity column (GE 

Healthcare Life Sciences), following the manufacturer’s instructions. The 

specificity of the antibody was tested using immunocytochemistry and Western 

Blot techniques. 

2.6 Immunofluorescence 

2.6.1 Immunofluorescence of larval, pupal and adult tubules 

All samples were dissected in ice-cold PBS and transferred to Poly-lysine treated 

microscope slides and fixed in 4% paraformaldehyde (PFA) for 20min at RT, 

except for the ones stained with DCAD antibody, which were fixed during 10min. 

Samples were washed 3 times with PBTA (1xPBS, 0.5% Triton-X100, 0.2% Sodium 

Azide), 20min each, and incubated for 2h with PBTA-NGS blocking solution 

(PBTA,10% Normal Goat Serum, Sigma-Aldrich) at RT. Samples were incubated at 

4°C overnight in PBTA-NGS blocking solution with the appropriate primary 

combination of antibodies (Table 2.6-1). Tissues were then washed 5 times with 
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PBTA, 20min each, and blocked with PBTA-NGS for 2h at RT. Samples were then 

incubated with the appropriate secondary antibodies in PBTA-NGS for 2h at RT, 

in the dark (Table 2.6-2). Tissues were washed 3 times with PBTA and once more 

with 1xPBS, for 20min each, at RT and in the dark. When needed, samples were 

incubated with Phalloidin (3.6µl of stock Phalloidin solution in 500µl of PBS) for 

30min in the dark, followed by 3 washes with PBS, 20min each at RT, in the 

dark. They were then incubated for 2minutes with DAPI and mounted with 

Vectashield® (VectorLabs) antifade mounting medium for fluorescence. 

2.6.2 Immunofluorescence of Embryos 

Embryos were collected from 10 to 16h after egg laying, dechorionated with 

100% bleach for exactly 2 min, washed with ddH2O and then fixed in 4% 

PFA/heptane for 20 min at RT, except for the ones stained with DCAD antibody, 

which were fixed during 10 min in rotation and at RT. Vitelline membranes were 

removed by washing 3 times with 100% methanol (Thermo Fisher). Embryos were 

washed 3 times with PBTA, for 20min each, and were incubated with PBT-NGS 

blocking solution. Embryos were incubated at 4°C overnight in PBT-NGS with the 

appropriate primary antibodies (Table 2.6-1). Embryos were washed 5 times with 

PBTA, 20 min each, and blocked with PBT-NGS for 2h. They were incubated with 

the appropriate secondary antibodies (Table 2.6-2) in PBT-NGS for 2h at RT, in 

the dark. They were washed 3 times with PBTA and once more with 1xPBS, for 

20 min each, at RT and in the dark. The embryos were mounted in Vectashield® 

in microscope slides. 

2.6.3 Immunofluorescence of S2 cells 

Co-transfected S2 cells were collected from the flasks at a concentration of 5 x 

107 cells/ml and resuspended in a 15ml tube. 100µl of cells were taken and then 

allowed to settle in poly-lysine treated microscope slides for 10min at RT. Once 

the cells attached to the slides, S2 cells were fixed in 4% PFA for 10 min at RT. 

The number and length of washes of the samples were the same as the 

performed with embryos (see 2.6.2). After the last wash with 1xPBS, S2 cells 

were incubated for 2 minutes with DAPI and mounted with Vectashield® 

(VectorLabs).  
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2.6.4 List of primary and secondary antibodies used 

Antibody Host species 
and Dilution 

Purpose Source and 
reference 

Anti-ct Mouse, 1/100 Monoclonal, against Cut protein, 
present in the nuclei of PCs 

Developmental 
Studies 

Hybridoma Bank 
(2B10) 

Anti-ClC-a Rabbit, 1/100 Polyclonal, against ClC-a protein, 
present in the basal membrane of SCs 

(Cabrero et al., 
2014) 

Anti-Dlg Mouse, 1/500 Monoclonal, against Discs Large 
protein, present in the basolateral 

membrane 

Developmental 
Studies 

Hybridoma Bank 
(4F3) 

Anti-Dl Mouse, 1/50 Monoclonal, against Delta protein, 
Stem Cell marker, a component of 

Notch Signalling 

Developmental 
Studies 

Hybridoma Bank 
(C594.9B) 

Anti-arm Mouse, 1/100 Monoclonal, against Armadillo 
protein, in the membranes of RNSCs 

Developmental 
Studies 

Hybridoma Bank 
(N27A1) 

Anti-GFP Rabbit, 1/1000 Polyclonal, against Green Fluorescent 
Protein 

Life 
Technologies #A-

11122 

Anti-PH3 Rabbit, 1/1000 Polyclonal, against Phospho-histone 3, 
dividing cells marker 

Thermo Fisher 
Scientific 

Anti-DCAD Rat, 1/200 Monoclonal, against the extracellular 
domain of De-cadherin, adherens 
junctions and marker of RNSCs 

Developmental 
Studies 

Hybridoma Bank 
(DCAD2) 

Anti-HA Rat, 1/100 
(1/2000 in 

Western Blot) 

Monoclonal, against peptide sequence 
(YPYDVPDYA), derived from the 
influenza hemagglutinin protein 

Thermo Fisher 
(3F10) 

Anti-Hnt Mouse, 1/20  Monoclonal, against Hindsight protein, 
marker for RNSCs 

Developmental 
Studies 

Hybridoma Bank 
(1G9) 

Table 2.6-1. List of primary antibodies used in this project. 
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Antibody Host species 
and 

Concentration 

Purpose Source 
and 

reference 

Anti-mouse-IgG-488 Goat, 1/1000 Polyclonal, against mouse IgG, 
conjugated to AlexaFluor 488 

Life 
Technologies 

Anti-mouse-IgG-546 Goat, 1/1000 Polyclonal, against mouse IgG, 
conjugated to AlexaFluor 546 

Life 
Technologies 

Anti-mouse-IgG-633 Goat, 1/1000 Polyclonal, against mouse IgG, 
conjugated to AlexaFluor 633 

Life 
Technologies 

Anti-rabbit-IgG-488 Goat, 1/1000 Polyclonal, against rabbit IgG, 
conjugated to AlexaFluor 488 

Life 
Technologies 

Anti-rabbit-IgG-546 Goat, 1/1000 Polyclonal, against rabbit IgG, 
conjugated to AlexaFluor 546 

Life 
Technologies 

Anti-rat-IgG-488 Goat, 1/1000 Polyclonal, against rat IgG, conjugated 
to AlexaFluor 488 

Life 
Technologies 

Anti-rat-IgG-H&L 
(HRP) 

Goat, 1/2000 
(Western Blot) 

Polyclonal, against rat IgG, conjugated 
to Horse Radish Peroxidase (HRP), used 

for Western Blot 

Abcam 
(ab97057) 

 

Table 2.6-2. List of secondary antibodies used in this project. 
 

Marker Concentration Purpose Source 

DAPI 1/10000 4',6-Diamidino-2-Phenylindole, 
Dihydrochloride, stains nuclei 

 

Sigma Aldrich 

Phalloidin-
TRITC 

7.2µl/ml of PBS TRITC- (tetramethylrhodamine B 
isothiocyanate) conjugated Phalloidin (F-

Actin specific fungal toxin).  

100 

Sigma Aldrich 

Table 2.6-3. List of other staining markers used. 
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2.6.5 Whole fly imaging sample preparation 

2.6.5.1 Adult fly preparation 

CapaR Gal4>UAS-GFP (CapaR>GFP) were used for experiments in which the MTs 

were observed in whole-fly preparations. Adult flies were kept at 29°C for 10 

days to obtain a maximum GFP signal in the MTs. Flies’ legs, wings and heads 

were removed, and bodies were fixed with 8% PFA for 24h. The abdominal 

cuticle was carefully removed manually without disturbing the internal organs’ 

organisation, and sample was incubated with CUBIC clearing solution (see 

Appendix 8) for 24-48h (until the specimen became transparent) in the dark, in 

rotation and at RT. Once the sample became transparent, it was glued in a 

pipette tip, allowing complete 3D rotation, for posterior scanning using OPT 

(Figure 2.7.1). 

2.6.6 Larvae preparation 

CapaR>GFP wandering L3 specimens were selected by their GFP expression and 

collected from the tube. They were incubated with 8% PFA for 24h and carefully 

pierced several times to allow the fixative agent to reach all the internal organs. 

Samples were incubated with CUBIC clearing solution for 24-48h (until the 

sample is transparent) and mounted in a 55mm petri dish containing a drop of 1% 

warm agarose. Once the agarose solidified, samples were scanned using a two-

photon microscope (Figure 2.7.2). 

2.6.6.1 Embryo preparation 

Embryos were collected, fixed and immunostained with Ct antibody (Table 

2.6-1) as described in 2.6.2 to stain their MTs. They were mounted in a 55mm 

petri dish containing a drop of 1% warm agarose. Once the agarose solidified, the 

embryos were scanned using a multiphoton microscope (Figure 2.7.2). 

2.7 Imaging 

2.7.1 Confocal Microscopy 

Immunostained S2 cells and Malpighian tubules were examined using a Zeiss LSM 

880 Axio Observer microscope (Zeiss, UK) using 10x, 20x and 63x (oil immersion) 
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and processed with Zeiss Blue software and Adobe Illustrator CS6. DAPI was 

excited at 405 nm wavelength and emitted at ~420 nm. AlexaFluor-488-

conjugated secondary antibodies were excited at 488 nm and emitted at ~520 

nm. TRITC-conjugated phalloidin and the Alexa Fluor 546-conjugated secondary 

antibodies were excited with 543 nm line and emitted at ~575 nm. For multiple 

fluorescence imaging, each of the fluorophores was sequentially scanned to 

excite each fluorophore individually to avoid cross-reaction between channels. 

Scanned images were imported to Zeiss Blue Software® for processing, and final 

figures were produced using Adobe Illustrator CS6® Software. 

2.7.2 Optical Tomography Projection Microscopy 

For Optical Tomography Projection Microscopy (OPT), a Bioptonics 3001 device 

was used. It has a resolution of 1024x1024 (3.1µm), and samples were analysed 

using bright field and GFP (425/40nm exciter and 475nm LP emitter) to visualise 

the GFP fluorescence localised to the Malpighian tubules. Data obtained from 

the scanner was further processed with the 3D analysis software and posteriorly 

processed/analysed with Imaris 7.4® Software, obtaining a clear 3D image of the 

sample, which was exported as a movie (.AVI). 

 

Figure 2.7.1. Schematic diagram of the OPT microscope. 
(A) Picture of the Biotonics 3001 device, used for OPT microscopy. Picture from 
https://www.kcl.ac.uk/dentistry/research/divisions/craniofac/researchgroups/sharpelab/optical-
projection-tomography.aspx (B) Schematic diagram of a sample 3D scanning of a specimen (in this 
study, a whole Drosophila adult fly). Pictures are taken on the rotating sample and then processed 
to obtain a 3D image of the whole sample. Taken from (Fei et al., 2012).  

2.7.3 Two-photon Microscopy 

For two-photon excitation microscopy, a two-photon Nikon A1R+MP microscope 

was used. This technology allows imaging of living and fixed samples up to 1mm 
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depth, to see the internal organs. Two-photon microscopes do not possess a 

pinhole, unlike the confocal microscopes. The concept of this technology is that 

two photons with lower energy (typically infrared wavelength, 700nm) than that 

required for a single photon, can excite a fluorophore similarly. Since the 

excitation only occurs when both photons coincide, photobleaching and 

background noise are strongly reduced compared to other systems. A schematic 

diagram of two-photon microscopy is shown in Figure 2.7.2. The samples were 

excited with 820nm-1300nm lasers and fixed 1040nm dual output femtosecond 

lasers, which allowed the observation of GFP+ structures. The objectives CFI75 

Apochromat 25X W MP1300 (NA 1.10, WD 2.0 mm, water immersion), without a 

cover slide, and CFI PLAN FLUOR 20X MI (NA 0.75, WD 0.33-0.35mm, Water-

Glycerin-Oil), with cover slide, were used. Samples were posteriorly analysed 

with NIS-Elements C-ER Software and Imaris 7.4® Software. 3D images were 

finally exported as pictures (.TIFF) or as a movie (.AVI). 

 

Figure 2.7.2. Schematic diagram comparing Two-Photon microscopy vs confocal 
microscopy.  
Comparison between two-photon (right) and confocal microscopy (left). In comparison to confocal 
microscopy, Two-Photon microscopes do not have a pinhole, allowing all the excitation that comes 
from the sample to be collected. At the same time, because only when two photons excite one 
point at the same time, there is going to be excitation, the background and detection are improved, 
adapted from (Piston, 2005). 

2.8 Chromatin immunoprecipitation sequencing 

All Chromatin Immunoprecipitation (ChiP) experiments were performed using a 

SimpleChIP® Plus Enzymatic ChromatinIP Kit (Cell Signaling Technologies, 
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#9005). All reagents, unless specified otherwise, were obtained from this kit. 

The ChIP protocol provided in the kit was adapted as described below, and the 

original protocol from Cell Signalling Technologies can be found in 

https://www.cellsignal.co.uk/products/chip-kits-reagents/plus-enzymatic-

chromatin-ip-kit-magnetic-beads/9005. 

2.8.1 Sample collection 

2.8.1.1 S2 cells collection 

GATAe expressing S2 cells were maintained and co-transfected as described in 

2.3. Initially, a total of 1x107 cells were used for each experiment. However, the 

number of cells was modified as showed in section 6.5.5. Cells were resuspended 

in 2ml of PBS with 1% Protease Inhibitor Cocktail (PIC) and fixed with 1% 

formaldehyde for 10 min at RT on a rotating wheel. This reaction was stopped by 

adding 200μl of 10X Glycine and mixing for 5 min at RT. Fixed cells were 

centrifuged at 500 x g for 5 min at 4°C, and pellets were resuspended in 2ml of 

PBS+PIC, three times. Cells were centrifuged at 2000 x g for 5 min at 4°C, and 

the supernatant was carefully removed. Supernatants were stored at -80°C until 

further use. 

2.8.1.2 Whole fly collection 

Total weight of 50 mg (different quantities of flies are commented in the 

discussion- include page no.) of adult CapaR>GATAe-HA flies for each ChIP were 

briefly anesthetised in CO2 and transferred to a 2ml Eppendorf tube containing 

1.8ml of PBS+PIC. They were homogenised using a Bead Ruptor 24 Elite, for 3 

pulses of 30 sec, at a speed of 6.45 m/s. Between each pulse, samples were kept 

for 1min on ice to avoid overheating. Homogenates were fixed with 1.5% 

formaldehyde for 20 min at RT, with rotation. After stopping the reaction with 

1X glycine and performing the same number of washes and centrifugations as 

with S2 cells (see 2.8.1.1), samples were then sonicated (5 pulses of 10 sec 

each) on ice using a Microson™ Ultrasonic Cell Disruptor to get a single-cell 

suspension. Tissue was now ready for nuclei preparation or stored at -80°C until 

further use. 
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2.8.1.3 Malpighian tubule collection 

A total of 1000 5-to-7day-old adult CapaR>GATAe-HA flies (2000 pairs of tubules) 

were dissected in batches of around ~200 flies, collected in 1ml of PBS+PIC and 

were fixated independently. Fixation, glycine treatment, washes, 

centrifugations and sonication steps were the same as in the whole fly 

preparations (2.8.1.2). Tissue was now ready for nuclei preparation or stored at 

-80°C until further use. 

2.8.2 Nuclei preparation 

S2 Cells/whole fly tissue/tubules samples were resuspended in 1ml ice-cold 1X 

buffer A + PIC + 0.5mM DTT, and incubated on ice for 10 min, with tube 

inversion every 3 min. Homogenates were centrifuged at 2000 x g for 5 min at 

4°C, and the pellets were resuspended with 1ml ice-cold buffer B + 0.5mM DTT. 

After centrifugation at 2000 x g for 5 min at 4°C, pellets were resuspended in 

100μl of buffer B + 0.5mM DTT.  

2.8.2.1 DNA fragmentation 

To fragment the DNA in the optimal length required for ChIP experiments (150-

500 bp fragments), samples were incubated with 0.5μl of Micrococcal nuclease 

(#10011) at 37°C for 20 min, mixing them by inverting the tube every 3 min. This 

reaction was stopped by adding 10 μl of 0.5M EDTA (final concentration of 

50mM) and incubating on ice for 3 min. Nuclei were pelleted by centrifugation at 

16.000 x g for 1min at 4°C. The nuclear pellet was resuspended in 100μl of 1X 

ChIP buffer + PIC and incubated for 10min on ice, inverting the tube every 2 

minutes. Samples were briefly sonicated again depending on the type of sample 

(typically 3 bursts of 20 seconds each, on ice, but this parameter have been 

modified as commented in 6.6). Lysates were clarified by centrifuging at 10.000 

x g for 10min at 4°C. Pellets were stored at -20°C and supernatant (crosslinked 

chromatin) was kept at -80°C until further use. At the same time, 25μl of the 

chromatin was extracted from this sample to analyse size and concentration of 

the DNA fragments (see below). 
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2.8.2.2 Analysis of the size and concentration of chromatin 

125μl of nuclease-free water, 6μl of 5M NaCl (0.2M final concentration) and 2μl 

of RNase A (10mg/ml) were added to the 25μl of chromatin from 2.8.2.1. 

Samples were briefly vortexed and incubated at 37°C for 30 min, with mixing by 

inversion every 5min. Samples were incubated with 2μl of Proteinase K at 65°C 

for 2h, with constant agitation. DNA was then purified as indicated in X, using 

50μl of DNA elution buffer. A 10μl aliquot was run in a 1% agarose gel to observe 

fragment size, ideally ranging from 150 to 900 bp. DNA concentration of the 

chromatin sample was determined by diluting DNA in 1/50 (2μl of extracted DNA 

+ 98μl of nuclease-free water) and reading the OD260. DNA concentration is OD260 

x 2500 x 2 (μg/ml). 

2.8.3 Chromatin immunoprecipitation 

As described in the original protocol, ideally 5 to 10μg of digested, cross-linked 

chromatin must be used for each immunoprecipitation. However, in this study, 

all the chromatin sample was used in each immunoprecipitation to maximise the 

amount of DNA recovered. 75μl of chromatin of each IP were thawed on ice and 

diluted 1:4 in 1X ChIP buffer + PIC. 10μl of the diluted sample was removed and 

stored at -20°C (herein referred as 2% input sample). The diluted chromatin was 

transferred to a 1.5ml Eppendorf tube and as incubated 10μl of α-HA antibody 

ChIP-grade (Abcam, #ab9110) overnight at 4°C. The next day, the ChIP-grade 

Protein G magnetic beads were resuspended by vortexing and 50μl of beads were 

immediately added to the diluted chromatin + HA-antibody and incubated for 4h 

at 4°C in constant rotation. Magnetic beads were pelleted using a magnetic rack 

(Cell Signalling Technologies) for 1min. Beads were washed with 1ml low salt 

buffer (stock was prepared with 300μl of 10X ChIP buffer + 2.7ml of nuclease-

free water for each IP), and the beads were incubated at 4°C for 5min in 

rotation. Magnetic beads were pelleted in the magnetic rack for 1 minute and 

were washed twice more with low salt buffer. After this, magnetic beads were 

washed with high salt buffer (100μl of 10X ChIP buffer+ 900μl of nuclease-free 

ddH2O + 70μl of NaCl 5M for each IP) at 4°C for 5min with rotation. Magnetic 

beads were then pelleted in the magnetic rack and supernatant was carefully 

removed/discarded. 
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2.8.4 Chromatin elution and reversal crosslink 

The 2% input sample was thawed on ice, and 150μl of 1X ChIP elution buffer 

(75μl of 2X ChIP elution buffer + 75μl of nuclease-free water) was added to each 

immunoprecipitation and each 2% input sample. Chromatin was then eluted by 

incubation at 65°C for 30 min with continuous rotation. The supernatant from 

the beads (which contained the eluted chromatin) was carefully transferred to a 

new tube, and 6μl of NaCl (0.2M final concentration) and 2μl of Proteinase K 

(20mg/ml) were added to each sample (including 2% input samples) and 

incubated 2h to overnight to reversal crosslink.  

2.8.5 DNA purification 

750μl of DNA binding buffer was added to each sample (this includes each IP and 

each 2% input sample). 450μl of each sample was transferred to a spin column 

and centrifuged at 17.000 x g for 30sec. The eluent was removed from the 

collection tube, and the remaining 450μl was transferred to the column and 

centrifuged again. After removing the eluant, 750μl of DNA wash buffer was 

added to each column, which was centrifuged again at 17.000 x g for 30 sec. The 

eluent was then discarded, and the column was centrifuged at 17.000 x g for 

1min. 50μl of DNA elution buffer was added to each column and incubated for 

3min at RT. Columns were centrifuged at 17.000 x g for 1 min, and flow-through 

was passed again through the column to maximise elution of DNA. The 

concentration of purified DNA was quantified using a Qubit 2 Fluorometric 

quantitation system (Thermo Fisher) and finally stored at -20°C until used. 

2.8.6 ChIP-sequencing 

All the procedures described in this section were performed by Glasgow 

Polyomics (University of Glasgow). DNA libraries were prepared using the NEB 

Next Ultra II DNA Library Prep Kit (New England BioLabs Inc.) according to the 

manufacturer’s protocol, which included fragments end repair, adaptor ligation, 

size selection and PCR amplification. The libraries were prepared from 1ng of 

ChIP DNA with 12 cycles of PCR. Subsequently, the samples were sequenced 

using an Illumina NextSeq 500 sequencer producing single-end 75 bp long reads, 

and 20M reads on average. Peak detection, quality trimming and filtering of 

ChIP-seq reads were performed using sickle and Cutadapt version 1.5 and 
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mapping of the pre-processed reads to the Drosophila melanogaster genome 

(BDGP6.92). Only the uniquely aligned reads were used for further analysis. The 

TF binding site enrichment was determined using SICER version 1.1. Window and 

gap sizes were set at 50 bp and 200 bp, respectively. An FDR cut-off 0.01 was 

used, and redundant reads were eliminated from analysis. Annotation of ChIP-

enriched peaks and identification of enriched motifs was done using HOMER. The 

transcript database required for chromosome coordinate information was 

created using the transcriptome annotation 101 files in GFF format (TAIR10). 

2.9 Physiology experiments 

2.9.1 Lifespan assay 

For lifespan assays, adult female flies were kept in standard Drosophila medium 

in groups of 30, transferred every 2 days to fresh vials. During this time, live 

flies were counted daily until no living flies remained. Knockdown conditions 

(CapaR>GATAe RNAi) were compared with both parental controls (CapaR/+ and 

GATAe RNAi/+).  

2.9.2 Starvation and desiccation assays 

Starvation and desiccation assays were performed to assess the tolerance of the 

flies to stress from different genotypes and adapted from (Terhzaz et al., 

2015a). For starvation assays, adult female flies were anaesthetised briefly with 

CO2 and kept in groups of 20 in tubes containing 1% aqueous agarose. Vials were 

kept at all times in an incubator at 22°C, 55% humidity with a 12:12 light: dark 

period. During this time live flies were counted every 4h until no living flies 

could be observed. For desiccation assays, adult female flies were kept in empty 

tubes and counted every 2h until no living flies could be observed. For all 

survival assays (lifespan, starvation and desiccation assays), survival data has 

been expressed as % survival ± SEM, and all the assays were done in triplicate. 

Survival data were assessed for significance by the Log-Rank Test using GraphPad 

Prism 7.0 Software. In all survival assays, mortality was determined by the 

inability of the flies to resume an upright position after the vial was shaken. 



77 
 

2.9.3  Gravimetric estimations of body water  

To measure fly wet body weight, individual adult female flies were 

anaesthetised on ice and weighed on an AND GR-202 precision balance 

(analytical weighing to within 0.0001 g). Flies were kept at −80°C for 20 min and 

subsequently were dried at 60°C for 24h. Dry flies were weighed after reaching 

RT. The weight of total body water was calculated by subtracting dry weight 

from wet weight. Water loss over 24h was calculated for each genotype by 

subtracting water content at 24h from that at 0h. Experiments were run in 

triplicate with at least 30 flies of each genotype. Data were then processed 

using GraphPad Prism 7.0 Software and significance was assessed by 1-way 

ANOVA analysis (Bonferroni Multiple Comparison test) being significant a P-value 

<0.05. 

2.9.4 Ramsay secretion assay 

The Ramsay secretion assay experiments were performed to assess the secretion 

rates of MTs from flies with different genotypes (Dow et al., 1994, Davies et al., 

2019). Petri dishes were prepared by filling them with paraffin wax and 

depressions were prepared for the secreted medium drops, then, plates were 

filled with mineral oil. Secreted medium drops contained 50% Drosophila 

Schneider’s Medium and 50% of Drosophila Saline, stained pink using amaranth 

dye (see Appendix 9). 9μl of the medium was pipetted in each well Intact MTs of 

adult female flies were dissected in Drosophila Schneider’s Medium. The MTs 

were placed in the drops, and one of their ends was wrapped around the pin as 

shown in Figure 2.9.1. Once the MTs were placed and secreting, the drops were 

removed from the ureters. The drops secreted by the MT ureters were collected 

using a fine glass rod exactly every 10min and measured using the microscope 

graticule. After 30min (3 drop readings), 1μl of diuretic hormone Kinin 

(Cambridge Peptides, Birmingham, UK) was added, to the medium drop at a final 

concentration of 10-7M, and readings were taken for 30 more min every 10min 

interval. Data were analysed in a Microsoft Excel worksheet (Microsoft Office 

Package) and posteriorly was processed using GraphPad 7.0 Software. Statistical 

significance was assessed comparing the relative secretion increase (% Delta) 

between the samples, (P<0.05) and plotted as mean ± standard error of the mean 

(SEM). 
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Figure 2.9.1. The Ramsay Secretion Assay.  
(A) Illustration of dissection of an adult fly, intact tubules were dissected and carefully placed in the 
assay plate, with one end immersed in the fluid drop, and the other end surrounding the pin. (B) An 
experimental assay plate. (C) Magnification of one tubule assay system indicating the essential 
parts. Adapted from(Davies et al., 2019).  
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2.10 Bioinformatics 

The online databases FlyBase ((Ashburner and Drysdale, 1994)) and FlyAtlas 

((Leader et al., 2018, Chintapalli et al., 2007)) were extensively utilised to 

investigate all candidate genes identified in this project. Identification of 

putative homologies of genes was performed using the online database Basic 

Local Alignment Search Tool (BLAST, https://blast.ncbi.nlm.nih.gov/Blast.cgi 

(Boratyn et al., 2013)), by introducing each Drosophila gene sequence and 

searching for its closest homolog in H. sapiens. For motif identification in the 

GATAe sequence, multiple online platforms were employed. Those were: 

MOTIFSCAN (https://myhits.isb-sib.ch/cgi-bin/motif_scan, (Pagni et al., 2007)), 

MOTIF (GenomeNet, Japan, https://www.genome.jp/tools/motif/, (Kanehisa et 

al., 2002)), and ScanProsite (https://prosite.expasy.org/scanprosite, (De Castro 

et al., 2006)). The SWISS modelling tool (Waterhouse et al., 2018)was used for 

generating the 3D structure of the GATAe protein. Gene annotation and gene 

ontology (GO) analysis of genes were performed using the PANTHER database 

(Protein ANalysis THrough Evolutionary Relationships, http://pantherdb.org (Mi 

et al., 2016, Mi et al., 2013)) and GoTermMapper (https://go.princeton.edu/cgi-

bin/GOTermMapper, (Boyle et al., 2004)). Genes with GO terms were classified 

based on their biological processes and molecular function(s).  

https://myhits.isb-sib.ch/cgi-bin/motif_scan
https://www.genome.jp/tools/motif/
https://prosite.expasy.org/scanprosite
http://pantherdb.org/
https://go.princeton.edu/cgi-bin/GOTermMapper
https://go.princeton.edu/cgi-bin/GOTermMapper
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3.1 Summary 

This chapter is focused on a genetic screen to identify potential TFs involved in 

MT function. This screen was based on published data describing enriched TF 

expression levels in the MTs (Wang et al., 2004). As a summary, all TFs in Table 

1.2-1 were assessed according to the following selection process: (i) 

confirmation that those TFs are indeed significantly enriched in the adult and 

larval MTs, by using the FlyAtlas and FlyAtlas 2 databases. (ii) Identification of 

those TFs also expressed in the MTs during embryogenesis and which may have a 

developmental role. (iii) Review of scientific literature for previous studies 

involving TFs in the MTs and other tissues. (iv) Presence of human TF 

orthologues, especially in relation to kidney disease. (v) Analysis of loss-of-

function via RNAi-based system and morphological phenotyping. As a result of 

these criteria and data resulting from these analyses, the TF GATAe (CG10278 in 

Table 1.2-1) was selected as a focus for this research. However, several other 

TFs have also been identified as potentially interesting to study in the MTs. 

3.2 Results 

3.2.1 List of most enriched tubule TFs 

Among the initial list of more than 30 TFs of Table 1.2-1 (Wang et al., 2004) a 

relatively small number have been extensively studied and have been shown to 

be crucial for the MT development. These include ct (Hatton-Ellis et al., 2007), 

tsh (Laugier et al., 2005, Denholm et al., 2013), fkh (Maruyama et al., 2011), 

and pnt (Kerber et al., 1998). As a result, they have not been considered for 

further investigation, as this project was to focus on novel functions of TFs. 

3.2.2 TFs enrichment in adult MTs 

Specific expression of TFs in the adult MTs was confirmed, by interrogating the 

publicly available resources for gene expression, FlyAtlas 

(http://flyatlas.org/atlas.cgi) and the newly generated FlyAtlas 2 

(http://flyatlas.gla.ac.uk/FlyAtlas2/index.html, see 1.2.4). Among them, only 

the TFs that were most enriched in both datasets were considered for further 

research. Interestingly, one of the most enriched genes in this list (CG2779, 

Table 1.2-1), does not correspond to a TF but encodes for Mucin 11A (Muc11A) a 

http://flyatlas.gla.ac.uk/FlyAtlas2/index.html
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protein from the mucin family. Muc11A is involved in the formation of the 

extracellular matrix and exhibits chitin-binding domains (Syed et al., 2008). 

Curiously, previous research showed that proteins involved in the formation of 

the extracellular matrix and chitin-related proteins are required for the correct 

morphology of the MTs (Jack and Myette, 1999). These data suggest that Muc11A 

could have a potential role as well in the development of the MTs. Among all the 

TFs present in the initial list, a total of 12 were shortlisted as they were highly 

enriched in the adult MTs but poorly studied to date, in this tissue. These genes 

were: GATAe, bowl, hth, STAT92e, HNF4, ptx1, cnc, smox, hr39, bun, corto and 

sv. 

3.2.3 TFs expression during embryogenesis 

In order to study the specific expression of TFs enriched in the embryonic MTs, 

different resources were analysed, including the online database BDGP (see 

1.1.3). Among the shortlisted TFs, those that are highly expressed in the 

embryonic MTs, and therefore with potentially important functions in MT 

development, were considered for further research (Table 3.2-1). 

Gene Expression in embryonic MTs 

GATAe Expressed in all stages 

Bowl Not expressed 

hth Tip cell (Zohar‐Stoopel et al., 2014) 

STAT92e Ubiquitous 

HNF4 Not expressed 

Ptx1 Expressed in MT primordia and tip cell 

Cnc Not expressed 

Smox Faint ubiquitous 

Hr39 Not expressed 

Corto Not expressed 

bun Not expressed 

sv Not expressed 

Table 3.2-1. Expression of the shortlisted TF in the embryonic MTs, as revealed by BDGP.  
 

According to BDGP in-situ data, the TFs HNF4 and sv are not expressed in the 

embryonic MTs, but they have been listed due to their importance in the human 

kidney. On the one hand, the Drosophila HNF4 closest homologue in humans is 

HNF4α, which is involved in the development of the kidney (Martovetsky et al., 

2013). On the other hand, sv is the homolog of pax2, a well-studied human gene 

also involved in the development of the kidney (Dressler and Douglass, 1992, 
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Rothenpieler and Dressler, 1993). The homology details can be found in the 

following section. 

3.2.4 Human TFs orthologues 

In this step of the selection process, previous studies and online resources such 

as Basic Local Alignment Search Tool (BLAST, 

https://blast.ncbi.nlm.nih.gov/Blast.cgi) were curated and analysed to identify 

human homologues of the selected Drosophila TFs and their possible expression 

in the human kidney. The complete Drosophila coding sequence (CDS) of each of 

the selected genes was examined to find the closest human homolog using 

BLAST, (summarised in Table 3.2-2). From this, the most interesting TF to be 

investigated is GATAe, which shares high homology with the human GATA factors 

4, 5 and 6 (Murakami et al., 2005). 

D. melanogaster H. sapiens Conserved domains % Identity of 
conserved 

domain 

GATAe (isoform A) GATA-4/5/6 GATA Zinc Finger 52% 

bowl OST2 FOG Zinc Finger 75% 

hth Meis1 and Meis2 Meis_domain, Homeobox domain 56% 

STAT92e STAT5b STAT_bind, STAT_CCD 41% 

Hnf4 HNF4A HNF4A DBD 67% 

Ptx1 PITX2 Homeobox domain 49% 

Cnc NFE2 bZIP_CNC,  
MDN1 super family 

 

45% 

Smox SMAD3 SMAD2/3 domain, R-SMAD 62% 

Hr39 Nuclear receptor 
Group 5 

Lrh-1_like DBD 

 
29% 

corto No conserved domains 
detected 

- - 

bunched TSC22D1 TSC22 domain 71% 

sv Pax2 PAX domain 85% 

Table 3.2-2. Drosophila TFs shortlisted and their closest human homologues. 
The percentage is displayed according to their similarities in their protein sequences, according to 
protein-BLAST. Also, the evolutionary conserved domains (comparing Drosophila melanogaster 
and Homo sapiens) are included, employing the conserved domains annotation system of BLAST 
(Marchler-Bauer et al., 2016). 

3.2.5 RNA interference lethality screen 

To further select which of the 12 TFs from Table 3.2-2 was the most appropriate 

to be studied in detail, transgenic RNAi lines for each of the 12 TF genes (and 

Muc11A, not included in Table 3.2-3) were obtained from BDSC,(Table 2.1-1) and 

were individually crossed with the ubiquitous driver Actin-Gal4, to identify 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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possible lethality phenotypes. All crosses were performed at two different 

temperatures; At 29°C, in which the GAL4/UAS binary system (Duffy, 2002) is 

optimal with high RNAi expression, and at 25°C, in which the RNAi expression is 

weaker. 

RNAi line Lethality at 25ºC Lethality at 29ºC 

GATAe Pupal lethal Pupal lethal 

Bowl Not lethal, no detectable defects in 
MTs 

Not lethal, no detectable defects in 
MTs 

Hth Pupal lethal Pupal lethal 

STAT92e Not lethal, no detectable defects in 
MTs. 

Not lethal, no detectable defects in 
MTs 

HNF4 Pupal lethal Pupal lethal 

Ptx1 Not lethal, no apparent defects Not lethal 

cnc Not lethal, no visible defects in 
tubule 

Not lethal, not visible defects in 
tubule 

Smox Lethal before L3 Lethal before L3 

Hr39 Lethal before L3 Lethal before L3 

Corto Not lethal Not lethal 

Bun Not lethal, no apparent defects in 
the tubule. 

Lethal 

Sv Lethal before the adult stage Lethal before the adult stage 

Table 3.2-3. Lethality experiments. 
This table includes information about the phenotypes observed when each TF genes was silenced 
ubiquitously using Actin-Gal4. 

3.2.6 RNA interference and specific gene silencing in the MTs 

The TFs that induced lethality phenotypes showed in Table 3.2-3 were 

subsequently crossed with CapaR-Gal4 and ctB-Gal4, two drivers expressed 

explicitly in the PCs of the MTs (Terhzaz et al., 2012, Sudarsan et al., 2002). 

These experiments were performed to identify possible morphological defects 

observed in renal tubules and provided the final evidence supporting the choice 

of TF for investigation. RNAi lines for GATAe, HNF4, smox, hr39, and sv genes, 

which induced premature lethality before the adult stage using Actin-Gal4, were 

crossed with CapaR-Gal4 and ctB-Gal4 (Table 3.2-3). Interestingly, at 29°C, only 

loss of smox produced a lethal phenotype during pupal stage using both MT 

specific Gal4 lines. Also, no evident morphological phenotypes were found in the 

adult MTs dissected from the other MT-specific knockdown crosses (HNF4, sv, 

and hr39). However, flies with low levels of GATAe using three independent PC-

specific Gal4 drivers (CapaR-Gal4, CtB-Gal4 or c42-Gal4) developed strong 
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morphological defects in the MTs (as shown in the following chapters), 

suggesting a crucial role of this gene in the morphology of this tissue. Based on 

these data and since GATAe has not been studied in the MTs of Drosophila 

although it is one of the most enriched TFs in this tissue (Table 1.2-1), it was 

selected for further investigation for its novel roles in the MTs. 

Furthermore, as mentioned previously in this section, the gene Muc11A also 

appears in the initial list of TFs (Table 1.2-1), even though it is not a TF (Syed et 

al., 2008). This enrichment in the MTs (Figure 3.2.1A), suggests that Muc11A 

could have a potential role in the development of this organ. Silencing Muc11A 

in the PCs of MTs using ctB-Gal4 from stage 9 of embryogenesis resulted in 

robust morphological abnormalities in the initial segments of adult MTs (Figure 

3.2.1B). However, due to time limitations, and that this project was focused on 

the role of TFs in the renal tubule, it was not possible to study in further detail 

the role of Muc11A in the MTs. 

In conclusion, among the shortlisted TF genes, GATAe was finally selected to be 

studied as a novel gene involved in the development of the MTs. Therefore, the 

involvement of GATAe in the development and physiology of the MTs was 

investigated and results shown in the following chapters of this thesis. 
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Figure 3.2.1. Low levels of Muc11A in the PCs affect the integrity of the adult initial segment. 
(A) FlyAtlas 2 data show the pattern of expression of Muc11A. It is expressed almost exclusively in 
the larval and adult MTs. (B) Initial segments of control (Muc11A RNAi) and Muc11A knockdown 
(ctB>Muc11A RNAi) adult MTs, stained with Dlg (yellow), Phalloidin (red) and DAPI (blue). 
Compared to the controls, ctB>Muc11A RNAi MTs exhibit clear morphological abnormalities in their 
initial segments. Scale bars are 100µm. 

3.3 Discussion 

Here, a selection process for the assortment of the most appropriate TF to be 

functionally characterised in MT development was described. This selection 

process concluded that GATAe would be investigated in further detail. It should 

be noted, however, that some selection criteria could have been improved, as 

explained below. 
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First, the absence of gene expression or enrichment of a TF in the embryonic 

MTs does not necessarily mean that it is not required in this tissue in later 

stages. For instance, it has been shown that TFs like, shavenbaby (svb) and hnt 

are expressed the RNSCs during the adult stageand svb maintains this cell 

population (Bohère et al., 2018, Singh et al., 2007). However, neither of them is 

present in the initial list of TFs, they are not particularly enriched in the adult 

MTs according to FlyAtlas. This suggests that there might be other TFs playing 

significant roles in the MTs, that are either expressed in low levels or at a 

specific developmental stage. In addition, the data shown in the BDGP database 

could be occasionally confusing, as in situ hybridisation may not detect very low 

expression of transcript levels and, therefore, not detect possible gene 

expression in the MTs. For instance, corto, a TF that interacts with several 

Polycomb Group proteins, and has a chromatin structure modulator (Salvaing et 

al., 2003), is profoundly expressed in the adult SCs (Wang et al., 2004). 

However, it is not detected in the embryonic MTs according to BDGP, and it is 

not especially enriched in the adult MTs according to FlyAtlas or FlyAtlas2. 

Despite this, it would be interesting to investigate if silencing corto specifically 

in the SCs could potentially affect the function of this cell population. 

Additionally, the lethality experiments showed in 3.2.6 could present limitations 

too, as they were performed using RNAi TRiP lines from BDSC. Ideally, these 

experiments could have also been carried out using different RNAi lines for each 

gene and then mRNA expression confirmed by qPCR in order to measure the 

percentage in downregulation of gene expression induced by the RNAi. 

Accordingly, if the RNAi line utilised did not drive efficient knockdown, it is 

possible to fail to notice specific phenotypes. Furthermore, lethality 

experiments are not always entirely reliable, since the complete loss of a 

particular gene may not induce any morphological phenotype, nor affect fly 

viability. For example, ptx1, a TF highly enriched in the embryonic MTs, would 

suggest that this gene could play a role in the development of this tissue. 

However, ptx1 null mutant flies do not exhibit detectable morphological defects 

and survive to the adult stage (Vorbrüggen et al., 1997). Still, this gene is 

required in other tissues in later stages, such as the ISCs in the adult MG (Dutta 

et al., 2015). Despite the possible troubleshooting of this selection process, the 

final choice to study GATAe is accurate, as shown in the following chapters. 
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3.3.1 Other TFs to be investigated 

Even though the next chapters of this thesis are dedicated to the functional 

characterisation of GATAe, there are several TFs revealed in this study that 

could be potential candidates for investigation, as they could have novel 

functions in the MTs, e.g. Ptx1. As mentioned previously, ptx1 is enriched in the 

MTs in all developmental stages. However, its function in this tissue has not yet 

been thoroughly studied. Another candidate is HNF4, which in Drosophila has 

been characterised for its involvement in lipid mobilisation and insulin signalling 

response (Palu and Thummel, 2016). In humans, its closest homologue, HNF4A, is 

expressed in the metanephric tubules of the developing kidney (Duncan et al., 

1994, Taraviras et al., 1994). Investigating the function of HNF4 in Drosophila 

MTs could uncover possible homologous functions of this gene between flies and 

humans.  

Also, other TFs in the initial list (Table 1.2-1) have been previously examined in 

at least one cell type in the MTs. These include STAT92e which is expressed in 

the RNSCs and plays a crucial function in the self-renewal of this cell population 

(Singh et al., 2007), or hth, which has been well characterised in the 

development of the embryonic MTs (Zohar‐Stoopel et al., 2014). However, hth is 

also strongly enriched in larval and adult stages in the MTs, suggesting additional 

roles in later developmental stages. 

3.3.1.1 Mucin 11A 

Finally, the possible role of the protein of the mucin family, Muc11A, in the 

morphology of the MTs has also been presented here. Although it has not been 

possible (due to time limitations) to study the role of mucins in the renal tubule, 

studying this family of proteins would be interesting for several reasons. First, 

there are 7 different mucin genes significantly enriched in the MTs in the L3 

stage, including Muc11A (Syed et al., 2008). In addition, mucins are present in 

most organisms in the animal kingdom, including humans. In humans, mucins are 

expressed in various tissues, especially in mucus-producing organs, and are 

involved in morphogenetic events such as the development of the lungs 

(Jonckheere et al., 2011), or the intestine (Chang et al., 1994, Bartman et al., 

1998), among others. More recent studies have highlighted the importance of 
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mucins in the progression of different tumours and identified them as potential 

therapeutic targets for these diseases (Dhanisha et al., 2018, Danese et al., 

2018). 

Interestingly, a significant proportion of human mucins are directly or indirectly 

regulated by GATA factors, (Ellis et al., 2013, Jonckheere et al., 2011, Ren et 

al., 2004). As a big part of this thesis focused almost exclusively on a Drosophila 

GATA factor (GATAe), it would be compelling to investigate if this relation 

between GATA factors and mucins also occurs in Drosophila. Thus, these and 

previous data suggest a role of mucins in the development of the Drosophila 

MTs, and future work should be done to investigate the precise requirement of 

these proteins. 

In conclusion, the research performed in this chapter of this thesis opens a new 

window for the study of potentially novel functions of genes in the development 

of the MTs, and further research should be performed in this direction to 

determine if those genes have indeed a role in this tissue.  
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4.1 Introduction 

This section is focused on the involvement of GATAe in the primary and most 

abundant cell type in the MTs: The PCs. Reduced levels of GATAe in the PCs do 

not produce any detectable defect in the developing (embryonic) MTs. However, 

the results presented in this chapter demonstrate that GATAe performs a vital 

role in the MTs during metamorphosis and is required for maintenance of MTs in 

the adult. Silencing GATAe using any PC-specific driver induces strong 

morphological defects in the adult MTs, including a reduction in total cell 

number,but an abnormal increase of potential RNSCs. In consequence, this 

results in an impairment in water homeostasis, reduced tolerance to desiccation 

and starvation stress, and a shorter lifespan. 

4.2 Morphological characterisation 

4.2.1 GATAe is expressed in all MT cell types 

As mentioned in the introduction, adult MTs are composed at least by three cell-

types: PCs, SCs and RNSCs. In order to investigate which cell types GATAe is 

expressed, two previously generated GATAe-Gal4 lines were employed in this 

study (see Table 2.1-1) (Zhai et al., 2018, Kvon et al., 2014). They contain ~2kb 

fragments (2267bp for VT042357 and 2104bp for VT042358, that correspond to of 

putative enhancer regions of GATAe (Figure 4.2.1) cloned into the pBPGUw 

vector, which include a basal synthetic core promoter (DSCP, it contains the 

TATA, Inr and DPE sequence motifs) followed by a GAL4 driver (Pfeiffer et al., 

2010, Kvon et al., 2014). Upon combining them with cytosolic GFP, both GATAe-

Gal4 lines resulted in the same pattern of expression in the MTs, described 

below. Therefore, herein they will be referred to as GATAe-Gal4, or 

GATAe>GFP, when in conjunction with GFP.  
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Figure 4.2.1. Schematic representation of the genomic map of GATAe-Gal4 lines. 
This schematic genomic map represents the genomic location in the chromosome 3R (chr3R) and 
shows the regions used to generate both GATAe-Gal4 lines. The region VT042357 (corresponding 
to the VDRC line #209818) is 5220bp upstream of the first exon of GATAe (red box). It also 
partially overlaps with the last exon of srp (green box). The construct VT042358 (corresponding to 
the other VDRC line, #205732) is 3677bp upstream of the first exon of GATAe. However, it does 
not overlap with srp. 

ICC of GATAe>GFP MTs revealed that at wandering L3 stage (WL3), GATAe is 

expressed in all PCs, but it is not present in SCs (Figure 4.2.2A). In contrast, in 

the adult stage, GATAe is expressed in PCs (Figure 4.2.2B and C), RNSCs (Figure 

4.2.2C) and SCs (Figure 4.2.2B). These data also confirmed the pattern of 

expression of GATAe in the adult MG (data not shown), which has been 

previously reported (Zhai et al., 2018). Also, when GATAe-Gal4 was crossed with 

an RNAi line for GATAe (both independent GATAe RNAi lines from VDRC and 

BDSC) at 29°C, it induced 100% lethality shortly after embryogenesis, in 

accordance to previous reports(Okumura et al., 2005, Okumura et al., 2016). 

Further qPCR experiments indicated that GATAe>GATAe RNAi embryos exhibited 

slight but significantly lower (around 60%) expression levels of GATAe mRNA 

compared to the controls (Figure 4.2.2D). These results confirm the FlyAtlas 

data and indicate that GATAe is present in all three cell types of the MTs in the 

adult stage, and at least in PCs in earlier stages. 
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Figure 4.2.2. GATAe>GFP reveals the pattern of expression of GATAe. 
Immunocytochemistry experiments of GATAe>GFP indicate the pattern of expression of GATAe. 
(A) Wandering L3 and adult (B) stained with ct (red), GFP (green) and DAPI (blue). GATAe is 
limited to the PCs of the MTs, but not the SCs in WL3 (white arrow in A). However, in the adult 
stage GATAe is expressed in both PCs (yellow arrow in B) and SCs (white arrow in B). (C) Adult 
GATAe>GFP MTs stained with DCAD (red), GFP (green), and DAPI (blue). It shows that GATAe is 
also expressed in RNSCs (white arrow) and PCs of the ureters (yellow arrow). Confocal sensitivity 
detectors were adapted to obtain a clear image of the GFP in the ureter. However, there is still 
significant GFP signal in the main segment of this tubule, although even if in this picture is not 
shown. (D) qPCR experiments show that GATAe>GATAe RNAi embryos exhibit reduced levels of 
GATAe mRNA expression compared to the controls. The bar with * indicates significant difference 
(p=0.0481, Student t-test, two-tailed). Scale bars are 50μm. 

Surprisingly, when GATAe>GATAe RNAi embryos were allowed to develop ar 26° 

(where the activity of the GAL4/UAS system is lower as compared to 29°C), they 

survived until later stages but died during metamorphosis. In addition, 

GATAe>GATAe RNAi pupae exhibited robustly smaller sized compared to the 

controls (Figure 4.2.3). However, further experimentation needs to be done to 

verify the cause of this reduction in size of GATAe>GATAe RNAi pupae. 
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Figure 4.2.3. GATAe>GATAe RNAi pupae are smaller compared to the controls. 
Compared to the controls (top), GATAe>GATAe RNAi pupae, raised at 26°C (bottom) show a 
reduced size. In addition, GATAe>GATAe RNAi die at this stage and never reach adulthood. Both 
images are on the same scale. 

Furthermore, GATAe>GATAe RNAi flies were also raised at 18°C. Under these 

conditions, GATAe>GATAe RNAi flies overcame the lethality effects observed at 

higher temperatures, resulting in the presence of adult flies. However, 

GATAe>GATAe RNAi adult flies died in approximately 7 days after eclosion. Adult 

MGs and MTs were immunostained and observed at 3 days after eclosion. As 

expected, adult MGs of GATAe>GATAe RNAi flies were extremely short compared 

to the controls, presented a high presence of trachea, and exhibited extremely 

altered morphology (Figure 4.2.4B). GATAe>GATAe RNAi MTs also displayed 

morphological defects, similar to the phenotypes obtained driving GATAe with 

PC-specific drivers (Figure 4.2.4D, and see next section). 

These strong phenotypes correlate with the requirements of GATAe not only in 

the adult MG (Zhai et al., 2018, Zhai et al., 2017, Okumura et al., 2016), but 

also in the embryonic development of this tissue (Okumura et al., 2005). 
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Figure 4.2.4. ICC of adult GATAe>GATAe RNAi adult MGs 
Control (A) and GATAe>GATAe RNAi (B) MGs 3 day-old adult female flies stained with DAPI. 
Arrowheads indicate the ureters. (C) Adult GATAe/+ (left) and GATAe>GATAe RNAi (right) MTs 
stained for Dlg (red), Clc-a (green) and DAPI (blue). Scale bars are in A and B, and 500μm and 
50μm in C. 

4.2.2 Reduced levels of GATAe lead to morphological 
abnormalities of the MTs 

Adult GATAe knockdown MTs (CapaR>GATAe RNAi) exhibited severe 

morphological deficiencies. First, the length of the tubules is strongly affected, 

as they are almost four times shorter compared with the controls (775μm in 

CapaR>GATAe RNAi vs 2994μm and 2714μm in the controls, Figure 4.2.5A). Also, 

their diameter is abnormally increased. Second, CapaR>GATAe RNAi MTs display 

inappropriate organisation of the different cell types that compose the tubule 

(Figure 4.2.5A and Figure 4.2.7F-J). This strong phenotype in GATAe knockdown 

tubule has been confirmed using two alternative RNAi lines (BL33748, and 

V10418), and two additional PC-specific Gal4 lines (ctB-Gal4, c42-Gal4) which 

phenocopied the morphological defects observed in Figure 4.2.7, (Figure 4.2.5, 

data not shown). 
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Figure 4.2.5. Length comparison of GATAe knockdown MTs. 
(A, Left). Control and a CapaR>GATAe RNAi anterior MT, stained with the nuclear marker DAPI 
(Cyan). The length of each tubule is highlighted with a yellow line, and ureters are marked with a 
white arrow. (Right) Quantifications of MT length of controls and CapaR>GATAe RNAi adult MTs. 
Means are: CapaR>GATAe RNAi = 777.5 μm ± 70.25 SEM, n=17, GATAe RNAi/+ 2994 μm ± 
253.8, n=10, CapaR/+ 2714 μm ± 189.2 SEM, n=10. P<0.05, Student T-test, two-tailed. (B) Adult 
tubule main segments stained with ClC-a (green, stellate cell marker) and DAPI (blue), using an 
alternative RNAi line (BL33748). The SC shape appears abnormal compared to controls (top 
panel), and the morphological defects are similar to the other RNAi lines. This RNAi has been 
driven with two PC-specific Gal4 lines: CtB-Gal4 (A-C) and CapaR-Gal4 (D-F). Scale bars are 
100µm in A and 50µm in B. 

Cell number quantifications were performed in order to investigate if GATAe 

knockdown in the PCs induced a reduction of total cell number. Due to the 

altered morphology of both CapaR>GATAe RNAi and ctB>GATAe RNAi (BL33748) 

MTs, it has been difficult to differentiate between SCs and PCs. In consequence, 
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all the cells present in these MTs have been included in these quantifications 

(presumably SCs and PCs). Cells which were morphologically similar to RNSCs 

(described in 4.2.6 and (Singh et al., 2007)) were not included in cell counts. 

Cell number quantifications indicated that both CapaR>GATAe RNAi MTs and 

ctB>GATAe RNAi (BL33748) adult MTs exhibited a strongly reduced total number 

of cells compared to all the controls (48 and 65 PCs+SCs in GATAe knockdown 

conditions vs 123, 130 and 128 PCs+SCs in all control conditions, Figure 4.2.6). 

 

Figure 4.2.6. MTs with reduced levels of GATAe show reduced cell number  
Cell number quantifications of both PCs and SCs in different control conditions (GATAe RNAi/+, 
GATAe RNAi (BL33748)/+ and CapaR/+) and PC-specific knockdown conditions (CapaR>GATAe 
RNAi and ctB>GATAe RNAi (BL33748). GATAe downregulation in PCs results in a reduced total 
number of cells using both independent RNAi lines, compared to their respective controls. Both 
anterior and posterior MTs were included in the countings. Means are: GATAe RNAi/+ = 123.9 ± 
6.166 SEM, n=18, GATAe RNAi (BL33748)/+ = 130.7 ± 1.998 SEM, n=26, CapaR/+ = 128.1 ± 
6.189 SEM, n -= 16, CapaR>GATAe RNAi = 48.39 ± 3.591 SEM, n=18, CtB>GATAe RNAi 
(BL33478) = 65.97 ± 3.2, n=23. P>0.05, two-tailed Student T-test. 

Next, ICC experiments were performed in CapaR>GATAe RNAi adult MTs using 

specific cell markers. SCs were stained with ClC-a antibody, which detects 

explicitly SCs (Cabrero et al., 2014), and results show that the SCs have lost 

their characteristic stellate cell shape and appear to show a more ramified 

shape compared to the controls (Figure 4.2.7G’). Moreover, adult MT cell 

organisation was also affected as in wild-types, they are a single-cell layer tissue 

composed of two cells in their circumference (Beyenbach et al., 2010). In 

contrast, CapaR>GATAe RNAi MTs exhibited an alteration in their number and 
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organisation of cells, which indicates defects in cell rearrangement (Figure 

4.2.7D which presents the typical two-cell organisation in the diameter of the 

tubule, and Figure 4.2.7I’ which has more than two cells in its diameter). PC 

membrane organisation was also compromised, as shown with the membrane 

marker Discs large (Dlg), a crucial component of the septate junctions (Woods 

and Bryant, 1991) (Figure 4.2.11A). However, in CapaR>GATAe RNAi MTs, Dlg 

protein is not localised correctly to the cell membrane suggesting that 

CapaR>GATAe RNAi MTs show defects in cell polarity (Figure 4.2.11F). 

Furthermore, phalloidin staining, which marks actin cytoskeleton, also indicates 

that cell shape and polarity is altered in CapaR>GATAe RNAi MTs, as, compared 

to the controls, with visible actin filament defects (Figure 4.2.7H). In summary, 

this data revealed that GATAe expression is crucial in the PCs to ensure 

appropriate morphology of the adult MTs. 

 

Figure 4.2.7. Reduced levels of GATAe in PCs induces strong morphological defects. 
ICC with which antibody of control (A-E’) and GATAe knockdown using CapaR-Gal4 (F-J’). Merged 
images show the overlay of Discs Large (Dlg, staining the septate junctions, white), ClCa (For SCs, 
green), Phalloidin (F-actin, red) and DAPI (Nuclei, Cyan). (A’-J’) Close-up images are showing the 
shape of an SC, in the areas highlighted in white boxes in A-J, respectively. Scale bars are 50µm 
(A-J) and 5µm (A’-J’). 

It has been previously shown that alterations in tumour suppressor genes induce 

similar phenotypes as the ones caused by knocking down GATAe in the PCs (Zeng 

et al., 2010). One of the most striking phenotypes of hyperplasia in the MTs was 
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observed upon activation of Ras signalling in the RNSCs, which transformed 

normal RNSCs into malignant cancer stem cells (Zeng et al., 2010). Therefore, 

Ras signalling was constitutively activated (Wu et al., 2010, Zeng et al., 2010) in 

tubule PCs to investigate if it also induced tumorigenesis. Interestingly, 

CapaR>RasV12 MTs deficiencies show striking morphological similarities to 

CapaR>GATAe RNAi MTs; they also show irregularities in cell organisation 

compared to the controls (Figure 4.2.8). However, CapaR>RasV12 MTs seem to 

exhibit a milder phenotype compared to CapaR>GATAe RNAi MTs, as their length 

does not seem to be as affected as in CapaR>GATAe RNAi MTs. These results 

suggest that GATAe could potentially be related to Ras signalling in the MTs. In 

addition, Ras signalling was silenced in CapaR>GATAe RNAi MTs through the 

induction of an RNAi for Ras85D, to investigate if low levels of Ras signalling 

could counter the morphological phenotypes obtained when GATAe was silenced. 

Additionally, rescue experiments have been performed, by reducing both GATAe 

and Ras signalling in the PCs (combining a GATAe RNAi construct and the 

dominant negative form of Ras85D, RasN17). However, adult CapaR>GATAe RNAi 

RasN17 MTs completely phenocopied the morphological anomalies of 

CapaR>GATAe RNAi MTs (Figure 4.2.8B). These results suggest that the 

phenotype observed upon GATAe downregulation in PCs could be caused by the 

activation of additional pathways as well as Ras signalling. Another interesting 

possibility is that the altered levels of ras85D observed upon GATAe RNAi in the 

PCs (as showed in later sections, see Figure 4.2.16) come from the RNSCs. 

Previous data support this hypothesis, and showed that Ras signalling is 

overexpressed in RNSCs when they have transformed to “cancer” stem cells 

(Zeng et al., 2010). This would potentially explain why silencing Ras signaling in 

PCs does not compensate the morphological defects caused by loss of GATAe. 
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Figure 4.2.8. Activation of Ras signalling in PCs induces morphological defects. 
(A) ICC experiments of CapaR>RasV12 adult MTs, marked with Dlg (red), ClC-a (green), and DAPI 
(blue). They show morphological similarities with CapaR>GATAe RNAi MTs, shown in Figure 4.2.7. 
There is also a high increase of small nuclei cells in the ureters (white arrowhead). (B) Expression 
of a dominant negative form of Ras85D (RasN17) does not rescue the morphological defects caused 
by GATAe knockdown. Scale bars are 200μm in A and 100μm in B. 

CapaR-Gal4 is expressed in additional tissues than the MTs (e.g. gut 

musculature, Terhzaz et al., unpublished). Given that GATAe is expressed in the 

MG during all stages of development and in the adult stage (Okumura et al., 

2005, Okumura et al., 2016), it is possible that the defects observed using this 

line could be a consequence of GATAe downregulation in the MG. To rule out 

this possibility, MGs of CapaR>GATAe RNAi flies were immunostained and 

observed. No detectable differences were detected in CapaR>GATAe RNAi MGs 

when compared to the controls (Figure 4.2.9). Their diameter was as MGs from 

control flies, contrasting with the phenotype previously reported when GATAe 

was lost in the ISCs, which results in a reduction in the diameter of the MG 

(Okumura et al., 2016) (Figure 4.2.9F). Also, the pattern of expression of the 

marker Hindsight (Hnt) was indistinguishable to the controls and similar to other 

reported publications (Baechler et al., 2016) (Figure 4.2.9H). Altogether, these 

results indicate that the deficiencies caused by GATAe knockdown in the PCs do 

not affect MG morphology. 
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Figure 4.2.9. Silencing GATAe with CapaR-Gal4 does not affect MG morphology. 
Maximum projections of adult posterior MGs, including a portion of the hindgut, stained with Arm 
(red) and DAPI (blue) (A-F) or with Hnt and DAPI (G and H). No significant differences in structure 
or diameter can be detected in CapaR>GATAe RNAi MGs. Also, the organisation of Hnt+ cells in 
CapaR>GATAe RNAi MGs are similar to the wild-type. 

4.2.3 GATAe is not essential during the embryonic development 
of the MTs 

Generally, defects in the morphology of the MTs are due to developmental 

programming defects during embryonic development, resulting in non-functional 

MTs and premature lethality (Campbell et al., 2010, Hatton-Ellis et al., 2007). In 

addition, the MT-specific expression of GATAe observed in all embryonic stages 

(Okumura et al., 2005) suggests that GATAe could be involved in MT 

development. It has been demonstrated that CapaR is exclusively expressed in 

the PCs during all larval stages and in the adult and probably during 

embryogenesis (Terhzaz et al., 2012). To confirm that GATAe is not required 

during embryogenesis this, GATAe was silenced using ctB-Gal4, which drives 

gene expression from stage 9 of embryonic development (Sudarsan et al., 2002). 

MTs from both control and ctB>GATAe RNAi embryos were compared at two 

different developmental stages; at stage 14, when the MTs are actively 
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elongating and migrating through the embryo (Figure 4.2.10A and B), and stage 

16, when the embryonic development of the MTs is mostly complete (Figure 

4.2.10A’ and B’). Surprisingly, ctB>GATAe RNAi embryos did not show any 

detectable alterations in size, shape, migration or polarity of their MTs 

compared to the controls and at both the stages of embryogenesis tested (Figure 

4.2.10B and B’). To further confirm these findings, embryonic MTs were also 

analysed using a null GATAe mutant (GATAe-/-). This mutant line was generated 

by a homologous recombination-based gene targeting technique, in which the 

coding region of GATAe was replaced for a copy of the w+ gene (Okumura et al., 

2016). The results obtained using the GATAe-/- line were similar to the 

observations using the RNAi line (Figure 4.2.10C). However, GATAe-/- specimens 

die shortly after embryogenesis, probably due to GATAe critical functions in 

other tissues such as the MG, as reported in previous studies (Okumura et al., 

2016, Okumura et al., 2005). Only a small proportion survive until L1 stage and 

ultimately dies. For this reason, it has been unfortunately impossible to examine 

any morphological phenotype in GATAe-/- adult MTs. Nevertheless, these data 

indicate that although GATAe is expressed in the embryonic MTs, it is not 

essential for primordia polarity, proliferation or migration. However, it is 

necessary in later developmental stages for proper MT differentiation. 

 

Figure 4.2.10. GATAe knockdown embryonic MTs display wild-type morphology.  
(A-B’) MTs in embryos of Stage 14 and 16 show no detectable differences in cell migration or 
polarity between GATAe knockdown and control embryos. Tubules were stained with ct (red) and 
DE-Cadherin (DCAD, green) antibodies. Inserts: optical projections of the circled areas, stained 



103 
 
with ct and DCAD, which labels the adherent junctions. (C) Homozygous null mutant for GATAe 
(GATAe-/GATAe-) embryo shows a normal MT morphology. Scale bars are 50µm. 

4.2.4 GATAe is required during metamorphosis 

CapaR>GATAe RNAi flies were dissected at different larval and pupal stages to 

identify the developmental period during which the morphological phenotype 

occurs. MTs examined at any larval stage (L1, L2 and WL3) show normal 

characteristics compared to control (Figure 4.2.11 A’-D’). However, at 48h after 

puparium formation (APF), MTs displayed strong defects which phenocopied the 

morphological abnormalities showed in the previous section (Figure 4.2.11 E’-

H’). 

 

Figure 4.2.11. CapaR>GATAe RNAi MTs present morphological deficiencies from during 
metamorphosis. 
(A-D’) Comparison of third instar larval stage control (A-D) and knockdown tubules (A’-D’). Merge 
images show an overlay of Dlg (red), ClC-a (green) and DAPI (blue). No differences in morphology 
or polarity were observed. (E-H’) Control (E-H) and 48h after pupa formation GATAe knockdown 
tubules (E’-H’). During the pupal stage, CapaR>GATAe RNAi tubules look disorganised, and the 
cell arrangement is abnormal (G’) Scale bars are 50µm. 

Additionally, to precisely pinpoint the developmental stage from which GATAe is 

critically required, the CapaR-Gal4;TubulinGal80ts driver (temperature sensitive 

CapaR-Gal4, herein referred as CapaRts, see 1.1.3.3), and GATAe RNAi lines were 

crossed. Parental lines were allowed to lay eggs at either 18°C or 29°C and then 

switched between these two temperatures at appropriate stages of the 

development (L1, L2, wandering L3, pupa, or until adult stages). As expected, 

CapaRts>GATAe RNAi adult flies raised at 18°C (where Gal80 inactivates GAL4 

activity) showed wild-type MT morphology while adult flies kept at 29°C during 

all developmental stages (where GAL4 activity is activated) were phenotypically 

identical to CapaR>GATAe RNAi MTs (data not shown). Interestingly, 

CapaRts>GATAe RNAi animals kept at 18°C until wandering L3 stage and then 
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switched at 29°C, manifested morphological defects in their MTs later in the 

adult stage (Figure 4.2.12B). In contrast, CapaRts>GATAe RNAi raised at 29°C 

until wandering L3 stage and then transferred to 18°C did not show any 

detectable tubule phenotype compared to control (Figure 4.2.12A). A schematic 

diagram of the GAL80ts experiments for the crosses performed at different 

temperatures is shown in Figure 4.2.12C. In conclusion, and together with the 

data illustrated in Figure 4.2.11, CapaRts experiments show that GATAe is 

required from the L3 stage onwards, probably during early metamorphosis 

(between 0 and 48h APF). Curiously, during metamorphosis, wildtype MTs shrink 

half of their length and elongate back to their original size just before adult 

eclosion (Wessing and Eichelberg, 1979). Therefore, GATAe could potentially 

play a role in this elongation process. 

 

Figure 4.2.12. Developmental defects using CapaRts. 
(A) A representative MT main segment of adult CapaRts>GATAe RNAi fly that has been raised at 
29°C until wandering L3 stage and then switched to 18°C. The MT appears indistinguishable to 
wild-type. (B) A representative MT main segment of adult CapaRts>GATAe RNAi fly that has been 
raised at 18°C until wandering L3 stage and then switched to 29°C. In this case, the MT shows a 
strong morphological phenotype. Scale bars are 50µm. (C) CapaRts>GATAe RNAi were raised at 
18°C and switched to 29°C to activate GAL4 expression and block GATAe expression in the PCs 
during all stages of development until L3 stage (green arrows). In all these cases, the emerging 
adult flies showed MTs with normal characteristics. In contrast, when these flies were raised at 
29°C and switched to 18°C at the same stages until WL3 (red arrows), the MTs from the emerging 
adult flies exhibited strong morphological defects. L1, L2 and L3 stand for larval stage 1, 2 and 3, 
respectively. WL3 stands for wandering L3. 
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4.2.5 Adult MTs maintenance requires the function of GATAe 

Following the observations that MT function of GATAe is needed exclusively from 

metamorphosis, its possible role in the maintenance of adult morphology and 

homeostasis was investigated. To perform this, CapaRts>GATAe RNAi flies were 

raised at 18°C to allow their MTs to develop under normal conditions. After 

adult eclosion, flies were transferred to 29°C to activate expression of the 

GATAe RNAi construct. Adult flies were aged, and their MTs were collected for 

immunostaining every 7 days for a total period of 28 days. MTs of flies up to 7 

days after RNAi activation showed normal characteristics (regular PC 

organisation and typical “stellate” shaped SCs) compared to the controls (Figure 

4.2.13A). However, MTs started to exhibit morphological defects of cell shape 

and organisation after 14 days, and after 21 days, morphological abnormalities in 

the general tubule shape and cell membranes were noticed (Figure 4.2.13A at 

28D). In addition, these MTs also exhibited an increased presence of cells 

positive for Hindsight (Hnt+), a previously reported marker for RNSCs (Bohère et 

al., 2018, Baechler et al., 2016), indicating an increase of these type of cells 

(Figure 4.2.13B) from 14 days. 

Altogether, these data suggest that GATAe is not only required to maintain the 

morphology of the MTs during the pupal stage, but it is also actively playing a 

role in the adult stage to ensure the integrity of this tissue. 
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Figure 4.2.13. GATAe is required for adult maintenance of the MTs.  
(A) Main segments of adult CapaRts>GATAe RNAi MTs that have been raised at 18°C until 
eclosion and then switched to 29°C, stained with DAPI (blue), Dlg (red) and ClC-a (green). After 7 
days, CapaRts>GATAe RNAi show wild-type characteristics. However, after 14 days they start to 
gradually exhibit critical morphological defects and cell proliferation. (B) Magnifications of main 
segments of 14 days, 21 days and 28 day-olds switched MTs, stained with Hnt (red) and DAPI 
(blue). After 14 days of RNAi induction, there is the presence of Hnt+ cells. A control of a CapaR/+ 
adult main segment 28 days after temperature switching is shown in the right. Scale bars are 
50µm, except for B.14D and B.21D that is 20 µm.  
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4.2.6 Loss of GATAe induces cell proliferation 

CapaR>GATAe RNAi MTs showed a robust increase in the number of small nuclei 

cells (potential RNSCs), in all the different regions of the MTs including the 

ureter and lower tubule (Figure 4.2.14 and Figure 4.2.15 for representative 

examples). Since the degree of proliferation of these cells was variable between 

preparations, cell counting experiments have been performed in representative 

50μm2 of their lower ureter regions. Quantification of cell nuclei showed that 

CapaR>GATAe RNAi MTs showed a significant increase in the number of potential 

RNSCs in the lower ureter when compared to the controls (Figure 4.2.14H). 

Those cells were identified as potential stem cells (RNSCs) since they were 

positive for Armadillo (Arm+), the Drosophila homolog of β-Catenin, which has 

been previously reported as a marker for stem cells, present in both RNSCs and 

ISCs (Ohlstein and Spradling, 2006, Singh et al., 2007). 

In adult MTs, RNSCs are limited only in ureters and lower tubules (Singh et al., 

2007, Sözen et al., 1997). These over proliferating cells present in CapaR>GATAe 

RNAi MTs also express additional RNSCs markers such as DE-Cadherin (DCAD, 

Figure 4.2.14, (Li et al., 2015)). Furthermore, they were Hnt+ (Figure 4.2.15G). 

Finally, a large part of these cells, but not all, were found to be positive for 

Delta (Dl, Figure 4.2.15A), a transmembrane protein from the EGF family, ligand 

of the Notch signalling pathway (Fehon et al., 1990), and again present in both 

ISCs and RNSCs (Li et al., 2015, Ohlstein and Spradling, 2007).  
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Figure 4.2.14. GATAe knockdown in PCs induces proliferation of RNSCs. 
Control (A-C) and CapaR>GATAe RNAi (D-G) adult MTs. CapaR>GATAe RNAi MTs show 
presence of Arm+ (D-F) and Hnt+ (G), not only in the ureters but all along the MTs. B, E and F are 
magnifications of the boxes of A and D, and B is a magnification of a region of the main segment, 
not present in A. White arrows in A indicate intermediate-sized nuclei that are Arm-, DCAD- and 
Hnt-, which could correspond to a cell type previously named Renal blast (Singh et al., 2007) (H) 
Hnt+ (left) and Arm+ (right) cell number quantifications of CapaR>GATAe RNAi and control 50μm2 
regions of lower ureters (representative regions are shown in yellow squares of B and E). Scale 
bars are 50µm for A and D, 20µm for B, C, E, F and G. Lower ureters from CapaR>GATAe RNAi 
exhibit a significant increase of Arm+ and Hnt+ cell number compared to the controls. Data are 
presented as mean ± SEM * P < 0.0001, Student t-test, two-tailed. Means for Hnt+ cells are: 
GATAe RNAi/+ = 9.071 ± 0.62 SEM, n=14, CapaR>GATAe RNAi = 14.4 ± 0.84 SEM, n=15. Means 
for Arm+ are: GATAe RNAi/+ = 5.769 ± 0.56 SEM, n=13, CapaR>GATAe RNAi = 16.64 ± 1.545 
SEM, n=13. *** indicates statistical significance (P<0.001, Student t-test, two-tailed). 

In addition to stem cell markers, the mitosis marker Phospho-histone H3 (PH3) 

(Micchelli and Perrimon, 2006) has been used to determine if these cells were 

over proliferating. In adult MTs, RNSCs are relatively quiescent and rarely divide, 

(it has been suggested that their division rates are around 2 RNSCs per every five 

pairs of MTs, (Zeng et al., 2010, Li et al., 2015)). However, in CapaR>GATAe 

RNAi MTs, several PH3+ can be observed in different regions of the MTs (not only 

in ureters and lower ureters), indicating continuous cell proliferation (Figure 

4.2.15B). Furthermore, numerous cells of intermediate nucleus size (between 

RNSCs and PCs) were detected in CapaR>GATAe RNAi MTs (white arrows in Figure 

4.2.15 G and Figure 4.2.15A). Given their protein expression profile (Hnt-, DCAD) 

they could correspond to the immature mitosis products of RNSCs, already 

described in previous publications (Singh et al., 2007). Altogether, these 
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observations presented indicate that CapaR>GATAe RNAi MTs show an 

overproliferation as well as mislocalisation of RNSCs. 

 

 

Figure 4.2.15. Alternative RNSC and proliferation markers. 
(A) CapaR>GATAe RNAi adult MTs stained for Dl (green) and DAPI (blue). They show presence of 
Dl+ cells, but at lower levels compared to other stem cell markers such as DCAD, Hnt, or Arm. (B) 
CapaR>GATAe RNAi stained with the mitotic marker PH3 (red), DCAD (green) and DAPI (blue). 
There is also occasional presence of PH3+ cells (white arrows), indicating cell proliferation. White 
arrow in A indicate intermediate-sized nuclei that are DCAD- and Dl- probably corresponding to 
Renal blasts (Singh et al., 2007). Scale bars are and 10µm. 

4.2.7 Reduced levels of GATAe modulate cancer-related gene 
expression 

Numerous cancers are initiated by a failure in the control of proliferation and 

differentiation of stem cell populations, including those of the Drosophila MT 

(Reya et al., 2001, Li et al., 2015, Zeng et al., 2010, Parvy et al., 2018). Since 

GATAe downregulation in the PCs induces cell proliferation and abnormal growth 

in the adult MTs, expression levels of different key genes that regulate these 

processes have been measured. Ras Oncogene at 85D (Ras85D) and the tumour 

suppressor warts (wts) (Ren et al., 2010) genes expression have been measured 

to determine the genetic pathways involved in this phenotype; as well as the 

expression of downstream apoptosis-related effectors, e.g., death-associated 

Inhibitor of Apoptosis 1 (DIAP1), buffy, and death executioner bcl2 (debcl) 

(Terhzaz et al., 2010). 

CapaR>GATAe RNAi MTs exhibit a significant upregulation of DIAP1 and Ras85D 

gene expression (2.5 and 3-fold respectively, Figure 2.2-10), with 

downregulation of debcl and wts (0.7 and 0.6-fold respectively); while no 

significant difference in buffy expression levels was observed in GATAe 

knockdown MTs. These MTs also exhibited a strong upregulation of 
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Adenosylhomocysteinase like 1 (Ahcyl1), (~5-fold), a gene involved with 

methionine metabolism and recently identified as necessary for the control of 

the lifespan in Drosophila (Parkhitko et al., 2016). Interestingly, the expression 

of inx7 and intβ did not result in any significant changes in CapaR>GATAe RNAi 

MTs (data not shown), even though these genes play a role downstream of 

GATAe in the developing MG (Okumura et al., 2005). A possible explanation of 

this result is provided in the discussion. 

Altogether, these results indicate that GATAe directly or indirectly regulates the 

expression of several tumour-related and lifespan-related genes, and may, 

therefore, induce RNSC proliferation, and impact on the morphology and 

function of the adult MTs. 

 

Figure 4.2.16. Relative mRNA levels of oncogenes and apoptosis-related genes in GATAe 
knockdown MTs 
CapaR>GATAe RNAi MTs showed significantly increased expression of DIAP1, ras85D and 
Ahcyl1. However, debcl and wts expression was downregulated in CapaR>GATAe RNAi MTs 
compared to the controls. No changes in buffy expression were observed. The bars marked with * 
indicate significant difference (p<0.05, Student t-test, two-tailed). 
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4.2.8 Knockdown of GATAe in a small number of PCs is enough 
to induce abnormal tissue growth 

Mosaic analysis has been widely used in Drosophila to investigate the effects of a 

complete loss of a gene in a specific tissue of an otherwise wild-type animal. A 

widely-used technique for Mosaic analysis is that with a repressible cell marker 

MARCM (Lee and Luo, 1999)) and is a potent tool to investigate, e.g. the RNSCs 

(Singh et al., 2007, Li et al., 2015, Zeng et al., 2010). However, an important 

limitation of this technique is that requires mitotic recombination to trace and 

label the progeny, which cannot be applied to MT PCs, as this already 

differentiated cell population is post-mitotic (Jung et al., 2005). 

As a potential alternative to study clonal genetic alteration in the PCs, the Urate 

Oxidase-Gal4:UAS-CD8-GFP (UrO>GFP) strain has been used in this project. The 

pattern of expression of the native UrO gene is exclusively restricted to all the 

PCs of the main segment (Terhzaz et al., 2010). However, in adult female flies, 

UrO>GFP is only expressed in a subset of PCs of the main segment (GFP+ cells in 

Figure 4.2.17A, A’). This expression profile makes this GAL4 line an ideal way to 

investigate the effects of genetic manipulation in a small group of cells. 

Therefore, UrO>GFP>GATAe RNAi adult female MTs were examined in the search 

for morphological defects. They exhibited critical shape abnormalities and tissue 

growth only in their main segments, almost exclusively in the areas surrounding 

the cells in which GATAe RNAi expression was induced (GFP+ in Figure 4.2.17D). 

However, no evident increase of RNSCs has been observed in these areas, but, in 

some cases, GFP+ cells, or neighbouring cells became binucleated (Figure 

4.2.17E and F), suggesting endoreduplication, a classical phenotype of cancerous 

cells (Shi and King, 2005, Storchova and Pellman, 2004). Altogether, these 

experiments with UrO-Gal4 showed that GATAe could act in an autonomous and 

non-autonomous way (affecting the morphology and behaviour of the same and 

neighbouring cells). 
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Figure 4.2.17. GATAe knockdown using UrO>GFP. 
Control (A and B) and knockdown (C and D) adult female MTs. GATAe is downregulated 
exclusively in the GFP+ cells. B and D are magnifications of the regions boxed in white in A and B, 
respectively. E and F are examples of binuclear cells present in different UrO-GFP>GATAe RNAi 
main segments. Scale bars are 100µm in A and C, 20µm in B and D and 50μm in E and F. 

4.3 Functional characterisation of GATAe 

It has been shown that the MTs regulate water homeostasis, and ionic and acid-

base balance, similar to the human kidney (Beyenbach et al., 2010, Dow, 2012). 

Impairments in MT function in any of these processes severely affects the 

organism survival and resistance to external stresses (Dow and Romero, 2010, 

Dow and Davies, 2003). Therefore, after elucidating that GATAe is crucial for the 

morphology of adult MTs, the impact of silencing GATAe on MT function was 

assessed. 

In the absence of any kind of stress, 7-day-old CapaR>GATAe RNAi flies exhibited 

a bloated abdomen compared to parental control flies (Figure 4.3.1A). 

Interestingly, this phenotype has been previously associated with MT failure, and 

more specifically, an impairment in the regulation of water homeostasis 

(Cabrero et al., 2014, Denholm et al., 2013). Therefore, to identify if this 
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abdominal bloating is a consequence of water retention or either air or fat 

accumulation, flies were subjected to wet-dry weight measurements. Results 

show that wet weights of CapaR>GATAe RNAi flies were significantly higher 

compared to both parental controls. However, dry weights of both CapaR>GATAe 

RNAi and control flies were similar (Figure 4.3.1B). These results indicate that 

CapaR>GATAe RNAi flies accumulated more water compared to control flies, 

presumably due to impairment of tubule function.  

Impaired MT function has been previously reported as a crucial factor for fly 

viability, stress and survival (Terhzaz et al., 2015b, Denholm et al., 2013). 

Furthermore, lifespan assays demonstrated that CapaR>GATAe RNAi flies 

exhibited significantly shorter lifetimes under normal conditions compared to 

parental control flies (Figure 4.3.1C), indicating that impairment in tubule 

function affects not only the MTs, but also the overall fitness of GATAe 

knockdown flies. To assess their tolerance of different kinds of stress, 

CapaR>GATAe RNAi flies were exposed to both starvation (no food) and 

desiccation (no food or water) stresses. Reduced tolerance to these stressors 

have been previously associated with impaired function of the MTs (Terhzaz et 

al., 2015b, Cabrero et al., 2014, Davies et al., 2014b). As expected, 

CapaR>GATAe RNAi resulted in significantly reduced survival under starvation 

(Figure 4.3.1E). Surprisingly, these flies were also more sensitive to desiccation 

stress (Figure 4.3.1D). This result could seem contradictory given that these flies 

also accumulate significantly more water in normal conditions (with no stress 

induced), but this could be a consequence of completely impaired renal 

functions of the MTs, inducing more sensitivity to stress in general. Finally, 

assessing fluid secretion rates in CapaR>GATAe RNAi MTs by the Ramsay 

secretion assay (see 2.9.4, (Dow et al., 1994)) to study their responses to 

neuropeptide stimulation was impossible due to their reduced size. 
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Figure 4.3.1 Reducing GATAe expression in PCs affects water homeostasis and stress 
tolerance. 
(A) CapaR>GATAe RNAi adult flies exhibit bloated abdomens compared to the controls. (B) Wet 
and dry weights measurements. GATAe knockdown flies showed a significant difference compared 
to both parental controls. P<0.0001, n>90). (C-E) CapaR>GATAe RNAi flies exhibit a significant 
decrease of (C) lifespan, (D) desiccation stress and (E) starvation stress. Median survivals are 
(indicated by blue lines): (C), CapaR>GATAe RNAi = 49, CapaR/+ = 89, GATAe RNAi/+ = 84. 
P<0.0001, n>100 flies). (D), CapaR>GATAe RNAi = 27, CapaR/+ = 40, GATAe RNAi/+ = 40. 
P<0.0001, n>100 flies). (E), CapaR>GATAe RNAi = 48, CapaR/+ = 60, GATAe RNAi/+ = 60. 
P<0.0001, n>100 flies).  

To summarise, these results confirm that the impaired morphology induced by 

silencing GATAe in the PCs are associated with severe deficiencies in the 

function of the MTs, consequently affecting the survival under environmental 

stress and the overall lifespan of the animal. 

4.4 Discussion 

Here, the cell-specific involvement of GATAe to maintain the proper morphology 

of the MTs has been studied and elucidated, and it could be confirmed that 

reduced levels of this gene in tubule PCs severely impacts in adult fly survival. 

Surprisingly, GATAe is not required for embryonic development of the MTs but 

plays a key role during metamorphosis and in the maintenance of the adult MTs. 

Most of the research has focused on the development of the MTs during 

embryonic development (Denholm, 2013, Hatton-Ellis et al., 2007, Beyenbach et 
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al., 2010). The MTs remain fairly intact through all the development and even 

survive the steroid-regulated death and rebuilding of the MG during 

metamorphosis (Baehrecke, 2000). Interestingly, Wessing and Eichelberg 

identified significant remodelling of the MTs during the pupal stage (Wessing and 

Eichelberg, 1979). They found that the larval MTs, which at this stage are very 

similar to the adult tubules regarding tubule length and cell organisation, shrink 

approximately half their length during the event of metamorphosis. The MTs 

eventually elongate back to their original length before adult eclosion (Wessing 

and Eichelberg, 1979). However, little is yet known regarding which factors are 

necessary for their maintenance during the pupal stage. The mechanisms 

underlying this process of MTs changes are poorly understood, but one could 

think that renal functions are shut down during pupariation as no feeding takes 

place during this stage, allowing these critical changes in shape. Given that 

GATAe is especially required from this stage, it is likely that it plays a role in 

regulating this process of shrink or subsequent elongation. 

In addition, the experiments performed in this part of the thesis have uncovered 

new roles for GATAe in the PCs, that consequently affect the RNSC population. It 

has been previously demonstrated that RNSCs originate from AMPs and migrate 

from the AMG to the MT ureters during metamorphosis and these migration 

events require the function of the small GTPase Rac1 (Takashima et al., 2013). 

Also, most of the studies of RNSC behaviour and maintenance have been 

performed predominantly in adult stages. Any disruption in gene expression in 

RNSCs leads to tumour formation and strong defects in the function of the 

MTs(Singh et al., 2007, Li et al., 2015, Bohère et al., 2018). Nevertheless, little 

is known about the function of the differentiated cell types of the MTs (PCs or 

SCs) could have to control the RNSC population. The results in this chapter show, 

for the first time, that GATAe is required in the differentiated PCs to maintain 

the correct architecture of the adult MTs. Strikingly, GATAe is also required in 

the PCs to maintain the right localisation and proliferation of the neighbouring 

RNSCs. If GATAe is indeed required for RNSC proliferation control, or if this RNSC 

proliferation is a consequence of GATAe knockdown in the PCs due to an indirect 

effect of tissular damage is a highly exciting line of research that should be 

done. Experimentation measuring DNA damage and modulating the expression of 

DNA repair proteins (e.g. p53) or regulators of cell cycle progression, such as the 
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Mitogen-activated kinase (MAPK) pathway, could explain the origin of these 

phenotypes. 

One crucial point that has been difficult to address in the experiments 

performed in this thesis is the confirmation of an efficient knockdown of GATAe 

expression levels using a GATAe RNAi line. As shown in Figure 4.2.2D, the levels 

of downregulation obtained using the driver GATAe-Gal4 are relatively low (only 

40% knockdown approximately). However, it has been difficult to obtain an 

evident knockdown for GATAe using any other MT-specific Gal4 line.  

There may be several reasons for this. First, all the Gal4 strains used to silence 

GATAe most probably still produce residual expression in neighbouring tissues. 

Several Gal4 lines have been used to confirm GATAe knockdown: CapaR-Gal4 is 

expressed in the PCs, but not in SCs or RNSCs. Therefore, and as mentioned in 

the following chapters, expression of GATAe in SCs or RNSCs could potentially 

mask low levels of GATAe in the PCs (especially in the adult stage, as silencing 

GATAe in the PCs induces overproliferation of RNSCs, as shown in 4.2.6). qPCR 

experiments have also been performed in MGs with reduced levels of GATAe 

(using esg-Gal4), and very slight variation in GATAe expression was observed. In 

this case, GATAe expression in neighbouring cells (Zhai et al., 2018, Dutta et al., 

2015, Okumura et al., 2016, Dobson et al., 2018) could also mask any induced 

expression in target cells. Also, the driver Actin-Gal4 has been employed as an 

attempt to downregulate GATAe ubiquitously. As mentioned before, this 

resulted in premature lethality shortly after embryogenesis. Therefore, RNA was 

extracted from whole L1/L2 specimens for subsequent qPCR. However, this 

approach did not result in a conclusive reduction of GATAe expression levels 

either, suggesting that even when using Actin-Gal4 as a driver, some residual 

expression of GATAe can remain. This could be solved by using a thermo-

sensitive Actin-Gal4 to knockdown GATAe only from the adult stage, and 

perform RT-PCR in isolated MTs. 

Nevertheless, the phenotypes and results presented upon GATAe knockdown in 

this thesis are entirely reliable, for several reasons. First, four independent RNAi 

lines used here (BDSC #33748 and #34907, and VDRC #10420 and #10418) induced 

the same morphological abnormalities when driven in the PCs (Figure 4.2.5), 

with slight differences in survival (e.g. driving the GATAe RNAi line #34907 using 
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either CapaR or ctB-Gal4 resulted in premature lethality before adult eclosion). 

Second, all these RNAi lines have been previously employed to knockdown 

GATAe in other tissues in multiple publications by independent research groups 

(e.g. Okamura et al., 2016 utilised BL33748, V10420 and V10418, Dutta et al., 

2015 made use of BL33748, and both Zhai et al., 2017 and Zhai et al., 2018 

utilised BL34907). Third, all the PC-specific Gal4 lines employed in this chapter 

(see section 2.1.2)also produced similar phenotypes when combined with GATAe 

RNAi. These PC-specific Gal4 lines include CapaR-Gal4 (Terhzaz et al., 2012), 

c42-Gal4 (Broderick et al., 2004), ctB-Gal4 (Saxena et al., 2014) and UrO-Gal4 

(Terhzaz et al., 2010). Also, the phenotypes obtained using the GATAe-Gal4 lines 

(Figure 4.2.4) were similar to the ones using specific PC lines, and phenocopied 

the MG abnormalities reported in previous reports (Okumura et al., 2005, 

Okumura et al., 2016). 

Therefore, all the combination of RNAi and Gal4 lines employed in this thesis 

confirm not only that the phenotypes observed are a consequence of specific 

silencing of GATAe, but also that this downregulation is limited to the MT PCs. 

Altogether, and as commented above, the already differentiated PCs require the 

expression of GATAe to ensure the tubule identity and function in 

metamorphosis and adult stage, and to control RNSC proliferation. Low levels of 

GATAe in the PCs, therefore induce severe defects in morphology, which in 

consequence impact MT function. Thus, these data open a new window in the 

investigation of the development of the MTs and could give rise to the 

identification and study of other factors necessary in this organ during pupal or 

adult stages. 

Two main hypotheses could explain the relationship between PC and RNSC 

populations. In the first scenario, GATAe would be essential for the maintenance 

of the PC population. Therefore, PCs with low levels for GATAe would not 

survive and start showing hallmarks of cancer, which losses the control of RNSC 

proliferation as they try to replenish the PC population. In other words, these 

RNSCs would migrate and proliferate to respond to tissue damage caused by 

GATAe knockdown in the PCs. This first hypothesis presents important 

limitations. In most CapaR>GATAe RNAi MTs observed, there is the presence of 

RNSCs in regions where they usually are not present (e.g. in the main segment), 
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but they very rarely reach the more distal regions such as the initial segment of 

the tubule. A possible explanation of why RNSCs gather and don’t seem to 

differentiate could be that in fact, they go through a cycle of differentiation-

death. GATAe RNAi PCs would go through apoptosis, inducing RNSCs to migrate 

and differentiate into new PCs. However, these already differentiated PCs would 

also start expressing the GATAe RNAi construct and start dying, repeating this 

cycle of RNSC differentiation and posterior PC death. 

Also, this explanation does not provide a clear answer for why RNSCs 

overproliferated under GATAe knockdown conditions, and, more importantly, 

why these RNSCs are not able to differentiate to PCs and end up accumulating in 

almost all regions of the MTs. In addition, this hypothesis does not give an 

explanation as for why RNSCs are not proliferating upon GATAe downregulation 

using UrO-Gal4 in a similar way as they do when using CapaR-Gal4. 

A more plausible explanation is that expression of GATAe in the PCs plays a vital 

role in the control of the RNSC population (see next chapter). Expression of 

GATAe in the PCs would be required for signalling to adjacent cells required to 

block subsequent migration and proliferation of RNSCs, thus regulating critical 

apoptotic and cancer-related genes, directly or indirectly. This second 

hypothesis would also explain why there are no RNSCs present in the areas 

affected by GATAe knockdown using UrO-Gal4 (Figure 4.2.17), as the pattern of 

expression of UrO-Gal4 does not colocalise with the region where RNSCs reside. 

In consequence, and according to this second theory, the RNSC population is not 

affected by the lack of GATAe exclusively in the main segment. 

However, even if this second hypothesis explains the phenotype observed upon 

GATAe downregulation in the PCs, further experimentation needs to be 

performed to precisely identify the nature of the precise role of GATAe in the 

PCs. A proposed model of GATAe roles in the MTs is presented in 5.5.  

4.4.1 Evolutionarily conserved functions of the GATA family 

The findings of this chapter represent a strong link in GATA factor functions 

along evolution and are in line with the immense amount of research that has 

been performed to understand the role of GATA factors in humans, especially in 
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the field of cancer. Indeed, mutations or alterations in the expression of almost 

all GATA factors in humans have been associated with diverse types of cancers. 

The specific roles of GATA factors in cancer can vary strongly depending in their 

cellular context, as the same GATA factor can act both as tumour suppressors or 

oncogenes in different types of cancer (see 1.4.2.2). Therefore, and in 

accordance to the results shown in this thesis (in this chapter and in Chapter 5), 

diverse functions of GATA factors depending on their cellular context seem to be 

evolutionary conserved. 

The gene expression data reported here (especially the altered levels of DIAP1 

and debcl in PC-specific GATAe downregulation) further supports the hypothesis 

of GATAe as a master regulator of proliferation and growth in the MTs. 

Downregulation of wts in CapaR>GATAe RNAi MTs is in line with previous data 

that showed that RNSCs mutant for wts lose their proliferation control and do 

not stop dividing (Zeng et al., 2010). Thus, it is very likely that GATAe 

knockdown in the PCs results in loss of wts in the RNSCs. The altered levels of 

debcl also correlate with the phenotype observed of abnormal proliferation. 

Several research groups have reported interactions between GATA factors and 

members of the bcl-2 family in vertebrates. In mice, GATA1 interacts with bcl-x 

to ensure the survival erythroid cells (Gregory et al., 1999), and GATA4 can also 

bind directly to another member of the bcl family, Bcl2 (Kobayashi et al., 2006, 

Aries et al., 2004, Kobayashi et al., 2010), to induce cell survival due to drug-

induced toxicity in the heart. Therefore, it is very likely that in Drosophila, an 

interaction between GATA factors (GATAe) and bcl-2 members (debcl) also takes 

place to ensure homeostasis of the MTs. Although it has not been precisely 

investigated in this thesis, it is also likely that the differences in expression of 

DIAP1 and debcl (as well as wts, mentioned above), come from the RNSCs. This 

has been supported by previous data, that DIAP1 is expressed in RNSCs (Bohère 

et al., 2018), and that debcl knockdown does not seem to alter survival in PCs in 

response to oxidative damage (Terhzaz et al., 2010).  

It would be compelling to perform further research to identify the exact cell-

type in the MTs responsible of these specific changes of gene expression. This 

would help to identify the pathways that modulate the striking morphological 

defects found in this thesis. 
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To summarise, the overall findings indicate that GATAe controls homeostasis of 

the MTs, and silencing this gene induces critical deficiencies, inducing 

tumorigenic growth and loss of proliferation control. Therefore, it could 

potentially act as a tumour suppressor, in a similar way as its counterparts in 

vertebrates. Thus, these results open a new window to establish and study 

homologies between insect and human GATA factors and provide evidence that 

the mechanisms of tissue homeostasis can be potentially conserved along 

evolution.  
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 Chapter 5 - Analysis of GATAe in the 
Stellate and Renal and Nephritic Stem Cells 
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5.1 Introduction 

The work described in previous chapters has demonstrated that GATAe plays a 

vital role in the PCs of pupal and adult MTs and is required for functional 

physiology of MT and also organismal survival. This chapter focuses on the 

function of GATAe in the other two cell populations of the MTs: SCs and RNSCs. 

The results obtained by silencing GATAe specifically in these cell populations 

showed that although the morphological defects are not as severe as silencing 

GATAe in PCs, GATAe is still required for SC survival, which impacted on the 

neuropeptide-induced MT fluid secretion response. Early migration of RNSCs into 

the ureter is also affected by GATAe silencing, but not their survival during the 

adult stage. 

5.2 GATAe in Stellate Cells 

The driver ClC-a-Gal4 (Cabrero et al., 2014) was used in this study to silence 

GATAe in the SCs specifically. Unlike CapaR>GATAe RNAi MTs, ClC-a>GATAe RNAi 

MTs did not show any defect in the length or the overall structure of the MTs. 

However, ClC-a>GATAe RNAi adult MTs exhibited a significant reduction in SC 

number (Figure 5.2.1C). Moreover, the reduced number of detected SCs were 

mostly confined to the initial segment of the MTs (especially in the anterior MTs, 

in which bar-shaped cells are located), and almost absent in the main segment 

where SCs normally reside (Figure 5.2.1B).  

Next, Ramsay secretion assays were performed on ClC-a>GATAe RNAi MTs to 

investigate physiological function. The Drosophila leucokinin (herein referred as 

kinin) neuropeptide specifically stimulates intracellular [Ca2+] in the SCs, leading 

to the activation of Cl- conductance into tubule lumen and therefore, fluid 

secretion (Terhzaz et al., 1999, O’Donnell et al., 1998, Cabrero et al., 2014). 

Therefore, Drosophila kinin was used to test if the reduced number of SCs affect 

basal or stimulated fluid secretion in ClC-a>GATAe RNAi MTs. 

As expected, fluid secretion assays demonstrated that while basal secretion 

rates did not change significantly compared to control MTs, kinin-stimulated 

secretion rates in ClC-a>GATAe RNAi MTs were significantly lower compared to 
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both controls (Figure 5.2.1D). These results indicate that GATAe is required for 

the maintenance of the SC population in the main segment. 

 

Figure 5.2.1. GATAe downregulation in the SCs induces loss of the SC population and 
reduced fluid secretion response to kinin stimulation in the adult stage. 
(A, B) ICC of adult control (A) and GATAe knockdown in the SCs using ClC-a-Gal4 (B). ClC-
a>GATAe RNAi MTs show reduced number of SCs, which are confined to the initial segments. 
Scale bars are 200μm. (C) SC number in adult female tubules. ClC-a>GATAe RNAi MTs (red) 
show reduced number of SCs compared to the controls (green and blue). Data are presented as 
mean ± SEM * P < 0.05. Means are: ClC-a/+ = 23.86 ± 4.6, n=42, GATAe RNAi/+ = 23.24 ± 3, n= 
25, ClC-a>GATAe RNAi = 11.04 ± 3.8, n=45. (D) Fluid secretion rates (nL/min−1) in control and 
GATAe knockdown Malpighian tubules. Drosophila kinin was added at 30 min (arrow). Response 
to 10−7 M kinin is significantly reduced in GATAe knockdown tubules (red), compared with both 
control conditions (green and blue). Significance is measured with Student-t-test, two-tailed, 
P<0.05. 

During embryogenesis, SCs go through a mesenchymal-to-epithelial transition, 

resulting in their intercalation into the tubule. These transition and integration 

processes require expression of polarity proteins in the embryonic PCs to allow 

proper SC intercalation (Campbell et al., 2010). To test the possibility that 

GATAe could be involved in any of these events, ClC-a>GATAe RNAi MTs were 

observed in the larva. At wandering L3 stage, ClC-a>GATAe RNAi MTs showed a 

considerably higher number of SCs compared to the adults (16.42 ± 2.5 SCs in L3 

stage vs 11.04 ± 3.8 SCs in adult stage), but still significantly lower than L3 

controls (Figure 5.2.2E). However, SCs in wandering L3 MTs were distributed 
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along the main and initial segments in the standard pattern (Cabrero et al., 

2014)(Figure 5.2.2C), suggesting that SCs adequately integrate into the tubule 

during embryogenesis. However, clc-a is only expressed in embryonic SCs after 

they integrate into the tubule (Denholm et al., 2013). Thus, even though GATAe 

is clearly necessary for SC survival during metamorphosis, a role for GATAe in SC 

integration in the MTs during embryogenesis cannot be excluded. 

Remarkably, the ClC-a antibody used here to mark SCs did not stain the SCs of 

the initial regions of adult anterior MTs, corresponding to “bar-shaped” cells 

(Sözen et al., 1997), in both control and knockdown conditions (Figure 5.2.2B 

and D). This suggests that prospective L3 bar cells don’t express ClC-a until the 

adult stage. Therefore, it would indicate that ClC-a>Gal4 would not drive 

expression in all SCs (at least in L3 stage), and, potentially, that the presence of 

ClC-a+ cells in ClC-a>GATAe MTs could be due to the lack of expression of this 

driver in SCs of the initial segment. 

Altogether, the data presented here indicate that GATAe plays a key role in SC 

maintenance and function, but it is not required for SC integration or 

intercalation into the embryonic MTs. 

 

Figure 5.2.2. SCs show normal localisation in the L3 stage in GATAe knockdown conditions. 
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(A, D) ICC of L3 control (A and B) and ClC-a>GATAe RNAi MTs (C and D). ClC-a>GATAe RNAi 
MTs show normal localisation of SCs (white arrows in A and C). B and D are magnifications of the 
white squares in A and C, respectively, showing SCs negative for ClC-a and ct (white arrows), 
which are prospective bar cells. Scale bars are 200μm (A and C) and 50μm (B and D). (E) SC 
quantifications in adult female MTs. GATAe knockdown MTs (red squares) exhibit a small but 
significant reduction in their SC number compared to the controls (green circles and blue triangles). 
Data are presented as mean ± SEM * P < 0.05. Means are: ClC-a/+ = 18.71 ± 3.48, n=24, GATAe 
RNAi/+ = 18.42 ± 3.28, n= 24, ClC-a>GATAe RNAi = 16.42 ± 2.5, n=26. 

5.3 GATAe in the RNSCs 

In addition to the involvement of GATAe in PCs and SCs maintenance, a possible 

role of GATAe in the migration, survival, and maintenance of RNSCs was 

investigated. For this, the esg-GAL4-UAS-GFP driver combined with a Gal80ts 

construct (esg>GFPts), which induces specific temporal GAL4 expression to both 

the ISCs and RNSCs, (Singh et al., 2007, Micchelli and Perrimon, 2006) was used 

in this project. As previously shown using the temperature inducible expression 

Gal80ts system (see 4.2.5), flies were kept at 18°C until different developmental 

stages (wandering L3, 24h APF or adult stage) and then switched to 29°C to 

induce GAL4 expression, thereby silencing GATAe expression. The RNSC 

population of these flies was analysed in the adult stage. 

Interestingly, silencing GATAe expression specifically in the RNSCs in wandering 

L3 stage resulted in an almost complete absence of RNSCs in the adult ureters 

(Figure 5.3.1A’). In contrast, when GATAe expression was downregulated from 

24h APF, the stage at which the RNSCs have already initiated their migration to 

the MTs (Takashima et al., 2013) this resulted in a normal pattern, but reduced 

number of RNSCs in the ureters (Figure 5.3.1B’). 

In addition, as GATAe is crucial for MG ISC/EB maintenance (Okumura et al., 

2016), could it also be necessary for adult RNSC maintenance? To answer this 

question, GATAe expression was silenced in RNSCs in newly emerged flies. At 

this stage, RNSCs have completely migrated to the ureters and lower tubules 

(Singh et al., 2007). After 20 days of GATAe downregulation using 

esg>GFPts>GATAe RNAi, there was no difference in the presence of RNSCs in 

ureters and lower ureters (Figure 5.3.1C and C’). 

Therefore, these findings show that GATAe is potentially required for the early 

migration of the RNSCs, but when they have started to migrate, GATAe either 
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seems not to be required, or other factors can complete the RNSCs migration. 

Also, they show that adult RNSCs do not require GATAe for their survival. 

 

Figure 5.3.1. RNSC migration to the MTs is impaired upon GATAe knockdown. 
GFP staining of adult ureters using esg>GFPts driver. (A, A’) Flies were raised at 18°C until 
wandering L3 stage and then switched to 29°C. Esg>GFPts>GATAe RNAi tubules show no 
presence of RNSCs compared to the controls. only a few exceptions displayed the presence of 
RNSCs, but no more than 40 in any case (higher dots in D). (B, B’) Flies were raised at 18°C until 
24h APF and then switched to 29°C. Esg>GFPts>GATAe RNAi tubules under these conditions 
have normal RNSC population in their ureters. (C, C’) Flies that were raised at 18°C until adult 
eclosion and then switched to 29°C for 20 days present normal localisation of RNSC population in 
esg>GFPts>GATAe RNAi, compared to the controls. Scale bars are 100µm. Arrowheads indicate 
the ureters. (D) Esg+ quantifications of 7-day-old adult ureters (using ImageJ), which have been 
transferred from 18°C to 29°C at the L3 stage. Means are: Esg-GFPts/+ = 297.9 cells ± 20.03 SEM, 
n=8, Esg-GFPts>GATAe RNAi = 6.250 cells ± 4.218 SEM n=12. *** indicate statistical significance 
(P<0.0001, Student-t-test, two-tailed). 
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Furthermore, these findings were confirmed using an alternative esg>GFP line 

(without the Gal80ts construct). The localisation of RNSCs was examined in 

esg>GFP>GATAe RNAi MTs during different developmental stages. In the 

wandering L3 stage, esg+ cells were found in clusters in the MG in both control 

and knockdown conditions (Figure 5.3.2D and H). However, no RNSCs were found 

in esg>GFP>GATAe RNAi ureters at 48h APF (Figure 5.3.2P), which further 

reinforces the results observed using esg>GFPts line. 

 

Figure 5.3.2. Migration defects of RNSCs in GATAe knockdown MTs. 
ICC of L3 (A-H) and 48h APF (I-P), marked with GFP (green, esg+ cells), Arm (red, RNSC 
membranes) and DAPI. Esg>GFP>GATAe RNAi MGs show normal localisation of esg+ cells, which 
are clustered (arrows in D vs H). However, RNSCs do not migrate to the ureter as in 48h APF 
esg>GFP>GATAe RNAi MTs (P), whereas RNSCs in control MTs have already been relocated to 
the ureters (L). Closeup images represent the areas highlighted with a white square in the merged 
MGs. Scale bars are 50μm. 

5.4 Discussion 

In this chapter, the function of GATAe in SCs and RNSCs was investigated. The 

results obtained here show that GATAe function is not only crucial in the PCs, 

but it is also necessary for the survival of SCs and possibly the early migration of 

the RNSCs.  
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5.4.1 GATAe and SC population 

The data showed in this chapter clearly demonstrate that GATAe is required for 

SC maintenance. Intriguingly, the very limited number of SCs that survive in 

GATAe knockdown MTs seem to be retained to the initial segment. This could be 

a consequence of the expression pattern driven by ClC-a-Gal4, which does not 

seem to drive in the bar-shaped SCs in the L3 initial segment, as demonstrated 

by ICC using anti-CLC-a antibody (Figure 5.2.2). This is particularly evident in 

anterior MTs, which have a higher number of SCs upon GATAe knockdown 

compared to posterior MTs, which do not possess an enlarged initial segment. 

Despite this, GATAe knockdown MTs gradually lose most of their SCs during 

metamorphosis. Yet, the localisation of SCs in the larval tubule is not altered 

upon GATAe knockdown, suggesting that that this cell loss might be independent 

from SC mesenchymal-to-epithelial transition that occurs in embryonic MTs. 

Previous research suggested that another GATA factor, srp, is expressed in SCs 

before their integration to the embryonic MTs, but srp function in this event has 

not been clearly elucidated (Artero et al., 2006), although a later study 

identified srp as a master regulator of epithelial-to-mesenchymal transition in 

other tissues (Campbell et al., 2011). It would be compelling to investigate if 

GATAe plays a role during SC integration during embryogenesis. The utilisation of 

GAL4 lines that are expressed in SCs during this process (e.g. c724-Gal4 

(Denholm et al., 2003)), and the GATAe null mutant line would answer this 

question. 

Remarkably, the shape of the limited number of SCs observed in GATAe 

knockdown conditions is not altered when compared to wild-type tubules. This 

observation is in contrast to when the TF tsh is silenced specifically to the SCs. It 

has been shown that tsh is necessary in SCs during pupariation to control their 

transition from a cuboidal to the classic stellate shape in the adult (Denholm et 

al., 2013). These results indicate that GATAe might be acting independently to 

tsh, regulating SC survival rather than their morphology. It would be interesting 

to investigate, in future studies, the mechanisms by which GATAe operates in 

order to maintain the SC population. 

Remarkably, even though the SC population is almost abolished in GATAe 

knockdown MTs, flies do not show an inflated abdomen, as compared to GATAe 
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knockdown in PCs, or in cases where the expression of SC-specific genes (e.g. 

ClC-a or tsh) is disrupted (Denholm et al., 2013, Cabrero et al., 2014). Thus, 

although ClC-a>GATAe RNAi MTs display impaired kinin-stimulated diuresis, they 

are still capable of regulating water homeostasis while having a limited number 

of SCs. This leads to two interesting conclusions. First, that GATAe is not 

essential for the function of the SCs, only for their survival. Second, that the 

defects induced by GATAe knockdown in the SCs do not affect basal fluid 

secretion of SCs, suggesting that the few SCs left are able to functionally 

compensate the loss of the majority of the SC population. 

5.4.2 GATAe and RNSC population 

Results showed here demonstrate that GATAe is essential for the migration of 

RNSCs from the posterior MG to the ureter during metamorphosis. Curiously, 

these data also suggest that GATAe is not necessary for later maintenance of 

adult RNSC population. However, it remains to be elucidated if GATAe could play 

a role in the self-division of RNSCs. Unlike ISCs, which present higher rates of 

division (Micchelli and Perrimon, 2006), RNSCs are relatively quiescent (Zeng et 

al., 2010, Li et al., 2015), and a possible role of GATAe in regulating their 

proliferation rates could be an interesting avenue for future investigation. 

The migration of RNSCs into the MTs has been thoroughly studied (Takashima et 

al., 2013) and discussed in the introduction (see 1.2.3.9). The small GTPase Rac1 

is required for correct RNSC migration, and early disruption of Rac1 protein 

completely abolishes this process. However, inactivation of Rac1 protein activity 

after 48h APF did not result in a migration defect, suggesting that Rac1 is 

required only for the early stages of migration (Takashima et al., 2013). 

However, no other factors that control this migration between organ boundaries, 

to our knowledge, have been reported. Curiously, GATAe knockdown in RNSCs 

resulted in strikingly similar MT phenotypes. Therefore, it could be possible that 

GATAe and Rac1 work in a common pathway (i.e. by interacting directly or 

indirectly) to orchestrate the migration of RNSCs to the pupal ureters. In 

addition, the fact that GATAe is expressed and necessary in the RNSCs could 

indirectly explain why the levels of two downstream genes, inx7 and intβ, are 

not altered when GATAe is silenced in the PCs (as mentioned in 4.2.7). If GATAe 

knockdown in the PCs induces a higher number of RNSCs (as shown in 4.2.6), it 
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would be possible that these cells also express GATAe. In consequence, GATAe in 

these proliferating RNSCs would induce the expression of both inx7 and intβ, 

therefore, masking the low levels of these genes in the PCs, and making any PC 

knockdown undetectable by qPCR. 

Further investigation is needed to identify the precise role of GATAe in RNSC 

migration, and potential factors that mediate the early and late migration of this 

cell population into the MTs. 

5.5 Proposed model for GATAe function in the MTs 

To summarize, GATAe is necessary for all the three main types of cells of the 

MTs, with different functions for each cell type. It may not be surprising that 

GATAe can act differently in distinct cell populations within the same tissue. For 

instance, GATAe is expressed in all regions and cell types of the adult MG 

(Buchon et al., 2013, Dutta et al., 2015). While it is required in the ISCs for their 

self-renewal and to maintain their stemness (Okumura et al., 2016), it also 

determines the differentiation process in the enteroblasts, acting downstream of 

Sox21a (Zhai et al., 2017). Furthermore, GATAe has additional roles in the 

enterocytes by maintaining their morphological identity (Buchon et al., 2013), 

blocking their shedding following bacterial infection (Zhai et al., 2018) and 

modulating the effect of dietary restriction in lifespan (Dobson et al., 2018). 

Therefore, the results shown here are in line with previous studies and illustrate 

evidence of the plasticity of a TF within its specific cellular context. Also, 

human GATA factors can play opposite roles in different conditions as well. For 

instance, GATA3 can act both as a tumour suppressor and as an oncogene (see 

4.4.1, and (Kouros-Mehr et al., 2008, van Hamburg et al., 2008, Nawijn et al., 

2001)). 

A proposed model that summarises the function of GATAe in PCs, SCs and RNSCs 

of the MTs is shown below (Figure 5.5.1). This model includes the hypothesis 

that GATAe is involved in the signalling from the PCs to the RNSCs. It suggests 

that the expression of DIAP1 and debcl are confined to the RNSCs, and it is 

indirectly controlled by the expression of GATAe in the PCs (dotted line in Figure 

5.5.1). 
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The qPCR data shown in this study support this hypothesis, as overexpression of 

GATAe in the PCs does not have opposite effects in gene expression compared to 

GATAe silencing (see 6.4.2). For instance, in CapaR> GATAe-HA MTs there is no 

change in the expression of wts, DIAP1 or Ras85D (as the strong upregulation of 

DIAP1 or inhibition of wts and debcl in CapaR>GATAe RNAi could suggest). In 

addition, RNSC presence or migration does not seem to be affected when GATAe 

is overexpressed in the PCs. A possible explanation is that the cells that express 

DIAP1 and debcl in GATAe knockdown conditions are not the PCs, but the RNSCs 

(expression of DIAP1 and debcl, at the same time, could be the cause of these 

cells not dying). 

Previous publications have demonstrated that DIAP1 is expressed in RNSCs, 

where it plays a vital role to ensure their survival (Bohère et al., 2018). In 

addition, debcl has been previously described as a crucial player for the 

induction of apoptosis (Colussi et al., 2000), and, interestingly, this gene is also 

strongly enriched in the MTs, according to FlyAtlas 2 and (Terhzaz et al., 2010). 

However, it does not seem to be involved in cell death upon oxidative stress in 

the PCs (Terhzaz et al., 2010). Therefore, as debcl is significantly downregulated 

when there is an excessive proliferation of RNSCs (e.g. in CapaR>GATAe RNAi 

MTs), it is likely that this gene is present in the RNSCs in normal conditions, and 

at endogenous levels, it ensures that RNSCs do not overproliferate. The proposed 

model presented in this thesis also indicates that Ras signalling pathway 

operates in the PCs, but also it is possible that it operates in RNSCs. The 

phenotypes observed by constitutively activating Ras pathway in the PCs (with 

RasV12, Figure 4.2.8) are similar to when GATAe is downregulated in the same 

cell type (Figure 4.2.7). This suggests that both pathways are acting cell 

autonomously. However, it has been also showed in this thesis that blocking Ras 

signalling in GATAe knockdown conditions does not rescue the growth 

phenotypes (Figure 4.2.8), suggesting either that Ras signalling is being altered 

in RNSCs or that other factors are acting downstream of GATAe. Finally, Ahcyl1 

is also proposed to act downstream of GATAe. Ahcyl1 has been previously 

associated with lifespan control in already differentiated tissues, such as the fat 

body or the intestine (Parkhitko et al., 2016). However, the role of this gene in 

stem cell populations has not been yet studied, and it would be interesting to 



132 
 
investigate if Ahcyl1 has any implication in the other cell-types (SCs or RNSCs) of 

the MTs. 

To summarise, the overall findings indicate that GATAe controls homeostasis of 

the MTs, and silencing this gene induces critical deficiencies, inducing 

tumorigenic growth and loss of proliferation control. Therefore, it could 

potentially act as a tumour suppressor, in a similar way as its counterparts in 

vertebrates. Thus, these results open a new window to establish and study 

homologies between insect and human GATA factors and provide evidence that 

the mechanisms of tissue homeostasis can be potentially conserved along 

evolution. 

 

Figure 5.5.1 Proposed model for the function of GATAe in the MTs.  
(A) Regulatory interactions of GATAe in the three different cell types of the MTs; PCs (grey), SCs 
(green) and RNSCs (yellow). Bar arrows indicate possible inhibition of gene expression. Dotted 
arrows indicate interaction through unknown pathways. In SCs, GATAe is required for their 
survival. In PCs, it is required for the proper architecture of the MTs possibly through Ras signalling 
and other unknown pathways. GATAe is also necessary in the PCs to ensure the normal 
proliferation of RNSCs through the activity of DIAP1 and debcl. In parallel, GATAe is required in 
RNSCs for their migration to the ureters during metamorphosis. Ras is showed with a question 
mark since it is not fully clear if it’s being modulated directly in PCs, in RNSCs, or in both cell-types. 
(B) In GATAe knockdown conditions in the PCs, the MTs show a phenotype of abnormal growth, 
possibly through Ras signalling and additional pathways, and induce RNSCs to overproliferate. (C) 
Loss of GATAe in SCs is associated with a reduction in this cell population. (D) GATAe is required 
in prospective RNSCs at wandering L3 (WL3) stage for their proper migration to the ureters. Loss 
of GATAe in this stage induces a complete abolition of RNSCs in the adult ureters and lower 
tubule.   
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tools for GATAe functional characterisation 
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6.1 Introduction 

The morphological and physiological implications of cell-specific GATAe function 

in the MTs have been extensively characterised and presented in the last two 

chapters. This chapter describes the techniques and approaches to investigate 

the molecular mechanism(s) of GATAe. 

In order to precisely characterise the expression pattern and tissue localisation 

and possible protein-protein/protein-DNA interactions of GATAe, an antibody 

that recognises the isoform A of GATAe was generated.  

A gain-of-function line for GATAe was also employed in order to examine the 

effects of GATAe overexpression. This transgenic strain contained an HA epitope 

tag in the C-terminal of GATAe coding sequence, which was also used for 

immunoprecipitation (IP) and Chromatin Immunoprecipitation (ChIP) 

experiments. 

6.2 Predicted 3D structure of GATAe protein 

Zinc fingers are one of the most abundant DBDs in eukaryotes (Klug and Rhodes, 

1987). Identifying the number and structure of the zinc fingers of a TF is not only 

useful to study its functions, but it is also utilised to establish evolutionary links 

between proteins of the same family (Krishna et al., 2003). The structure of 

GATAe and the localisation of its potential zinc finger domains have been 

investigated in this project. Several online databases have been used to obtain a 

putative 3D structure of GATAe protein and predict its zinc finger domains. 

SWISS modelling analysis demonstrated a single zinc finger isoform A of GATAe 

(Figure 6.2.1A). In addition, all online databases employed in this project (see 

2.10), using any of the isoforms of GATAe as a template (both the transcript or 

the resulting amino acid sequence) also resulted in only one canonical zinc finger 

domain (Figure 6.2.1B). The zinc finger domain detected with these methods is 

the most conserved region between GATAe and Drosophila or human GATA 

factors (Okumura et al., 2005, Lowry and Atchley, 2000). 

These results contrast with the first publication about GATAe, as it indicated 

that GATAe possesses two zinc finger DBDs, (Okumura et al., 2005). According to 



135 
 
Okamura et al., the N-terminal zinc finger domain of GATAe (which has not been 

found here) is not a typical one, as it is five aa shorter compared to the C-

terminal zinc finger of GATAe (Okumura et al., 2005). However, their findings 

contrast with a later report that showed that the majority of Drosophila GATA 

factors (including GATAe) possess only one zinc finger, instead of two (He et al., 

2007). 

Whereas the patterns of expression and biological functions of GATAe (and other 

invertebrate GATA factors) have been explored in detail (Okumura et al., 2005, 

Senger et al., 2006, Okumura et al., 2016, de Madrid and Casanova, 2018, Zhai 

et al., 2017, Dobson et al., 2018), the core studies of the structure and 

phylogeny of GATA factors and their zinc finger domains have been mostly 

focused on vertebrates (Lentjes et al., 2016, Morrisey et al., 1997, Lowry and 

Atchley, 2000). Also, the most complete characterisation of the different 

domains of GATA factors including Drosophila data was performed before the 

discovery of GATAe (Lowry and Atchley, 2000), and, in consequence, did not 

include any data regarding GATAe. The data showed in this thesis, in accordance 

with previous reports (He et al., 2007), indicated that GATAe only possesses one 

zinc finger domain, instead of two. 

In addition, the modelling methodology used in the first study that identified 

two zinc finger domains in GATAe was not specified (Okumura et al., 2005). 

Therefore, it is very likely that the methodology used for zinc finger 

identification in that report differs with the modelling tools used in this thesis 

and consequently, the number of zinc finger domains detected was different. It 

is important to note that srp (another Drosophila GATA factor related to 

haematopoiesis, see 1.4.3.2) was first shown to contain a single GATA zinc 

finger. However, it was later demonstrated that, by alternative splicing, some 

isoforms of srp contain two zinc finger domains instead of one, conferring 

specificity to its functions (Waltzer et al., 2002). However, it is unlikely that this 

is relevant to GATAe since regardless of the isoform used as a template (A, B or 

C), analysis has always resulted in one zinc finger domain. 
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Figure 6.2.1. Predicted 3D structure, sequence, and domains of GATAe protein.  
(A) Putative SWISS model of the 3D sequence of GATAe protein, viewed from two different angles. 
The Zn+ ion is shown as a grey ball. (B) PBLAST analysis of the isoform A of GATAe. The only zinc 
finger domain detected is shown in red. (C) Complete GATAe amino acid sequence (isoform A). 
The chosen sequence for antibody design (see below) is highlighted in green. 

6.3 Generation of an antibody against GATAe 

6.3.1 Sequence selection 

Since isoform A of GATAe is the most highly expressed GATAe isoform in the 

adult MTs (see 1.4.4.1), an antibody was generated using an antigenic sequence 

(epitope) of this specific isoform. Ab designer online software (Pisitkun et al., 

2012) was utilised according to 3 parameters: (i) The Ig-score rank (which lists 

all the potential peptides from the most to least immunogenic sequences), (ii) 

Uniqueness-optimized rank (which ranks the peptides regarding their specificity 

to the selected protein), (iii) Conservation-optimised rank (which compares 

different species and scores the sequences from the most conserved to the 
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least). The isoform A of GATAe protein was used as a template, and a 15 amino 

acid SPYSQQSTPQSQSPH sequence was selected (Figure 6.2.1C). Although this 

sequence scored 7th in all three ranks, it was selected as the other candidates 

that showed higher immunogenicity were all located within the GATA zinc finger 

DBD. As the zinc finger domain is common for all the GATA factors in Drosophila, 

and, a GATAe-specific antibody cannot be designed using the zinc finger domain 

epitopes. Rabbit polyclonal antibodies were generated by Genosphere 

Biotechnologies® (Paris, France) and the IGG fraction obtained was purified as 

described in 2.5.  

6.3.2 Immunocytochemistry and Western-Blot using GATAe 
antibody. 

The purified IGG fraction was analysed for their specificity against GATAe using 

ICC and wester-blot analysis (WB). Both the IGG fraction (crude antibody) and 

the peptide-affinity purified antibody were tested. Wild-type, adult MTs were 

dissected and immunostained using these samples. GATAe antibody was tested 

across a wide range of concentrations (1μg/ml, 5 μg/ml, 10 μg/ml and 20μg/ml). 

At any of those concentrations, while nuclear staining was expected, no clear 

labelling was observed in the nuclei of either PCs, SCs or RNSCs, in contrast with 

the results obtained employing the GATAe-Gal4 strain (see 4.2.1). ICC results 

from the IGG fraction and the peptide-purified antibody showed diverse patterns 

of expression, including Endoplasmic Reticulum (Figure 6.3.1C), perinuclear 

(Figure 6.3.1F), or cytoplasmic (Figure 6.3.1D, E) patterns. Additionally, the 

generated antibody did not recognise SCs in adult or pupal stages. However, 

faint but potentially specific expression in the PCs of the ureter region was 

detected at the adult stage in some cases (Figure 6.3.1A). 

In addition, embryos stained with GATAe antibody did not exhibit any specific 

staining in the MG or the MTs (data not shown), two tissues that express GATAe 

(Okumura et al., 2005). 
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Figure 6.3.1. ICC using GATAe antibody. 
ICC of adult (A-D) and pupal (E, F) MTs using the peptide-purified form of GATAe antibody. No 
specific staining in the nucleus was detected in either PCs, SCs or RNSCs, except faint staining in 
the nucleolus of the PCs in the adult stage (arrow in A). The antibody labels the ER (C), and it does 
not stain SCs in either adult (D) or pupal stage (E). In some cases, GATAe antibody stained a 
region bordering the nuclei of pupal PCs (arrow in F). U: ureter, MS: main segment. Scale bars are 
50μm for C, 20μm for A, B, D and E and 10μm for F.  

WB analysis was undertaken to determine the specificity of the GATAe antibody. 

WB analysis was initially performed from adult MTs protein samples using whole 

IGG fraction (non-peptide-purified GATAe antibody). Several bands could be 

detected, of approximate sizes of ~60, ~80 ~110kDa, and a weak band of 

~160kDa (Figure 6.3.2A). Membranes were stripped and re-stained with the 

peptide-purified antibody, and results show that the ~60 and ~110kDa bands 

were detected but not the ~80 and ~160kDa (Figure 6.3.2B). 



139 
 

 

Figure 6.3.2. Western blot analysis of GATAe antibody.  
(A) Analysis of three biological MT samples using the GATAe IGG fraction. (B) The same 
membrane of (A) was stripped and re-probed using the peptide-purified GATAe antibody. 

The GATAe isoform A is 746 amino acids long, resulting in an expected band size 

of 80.9kDa, whereas the isoforms B and C are 731 amino acids, resulting in a 

protein of 79.3kDa. The results obtained from the Western blot analysis indicate 

that the GATAe antibody detects an 80kD protein of a similar size to GATAe, it 

also detects other proteins, including one at 60 kDa. Therefore, the GATAe 

antibody generated does not accurately detect the GATAe protein, potentially 

explaining the ICC data (Figure 6.3.1) and would not be suitable for subsequent 

ChIP-seq experiments. 

6.4 Generation of a gain-of-function line of GATAe 

A GATAe gain-of-function strain was generated to investigate the potential 

effects of GATAe overexpression. Alternative ways to induce GATAe 

overexpression lines have been previously created, such as the introduction of a 

UAS-GATAe plasmid by germline transformation, for the study of developing and 

adult MG (Zhai et al., 2017, Okumura et al., 2005). Here, a transgenic line which 

expresses a fusion protein of GATAe isoform A and an HA tag was generated 

(GATAe-HA, see vector map and other details in 2.2.1). This HA tag should allow 
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GATAe protein pull-down experiments since it was not possible to produce a 

GATAe-specific antibody. 

The UAS-GATAe-HA construct obtained from DGRC is 11244bp long. To confirm 

the sequence of this plasmid, restriction enzyme digestion was carried out using 

different enzymes with distinct restriction patterns: KpnI and NheI, BamH1 and 

BamHI and NheI. Analysis of resulting bands (Figure 6.4.1) showed that bands of 

expected sizes were produced: KpnI and NheI each cut at a single site, resulting 

in two bands; BamHI cuts at two sites, and a combination of BamHI and NheI cuts 

at three sites (all cutting sites are shown in Figure 6.4.1). Additionally, bands 

were extracted and sequenced using specific primers against GATAe (data not 

shown). Altogether, these results confirmed the integrity sequence of the GATAe 

plasmid. 

 

Figure 6.4.1. Restriction enzyme digest analysis of UAS-GATAe-HA plasmid.  
UAS-GATAe-HA plasmid DNA was digested using restriction enzymes. A single cut with Nhe1 or 
Kpn1 (at positions 1304 and 102, respectively) results in a linearised plasmid of a size of ~11kb. 
BamHI cuts the DNA twice (at 104 and 4717), resulting in fragments of 4643 and 6601bp. 
Digestion of BamHI and NheI cuts the DNA three times (at 104, 4717 and 1304), resulting in 
fragments of 1200, 3443 and 6601bp. In this lane, there is presence of a very weak band of 
~4.5kb, that corresponds to partial digestion of BamHI. 

6.4.1 S2 cell analysis 

The UAS-GATAe-HA plasmid was transiently co-transfected together with the 

pMT-Gal4 plasmid in Drosophila S2 cells to confirm GATAe-HA protein 
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localisation. Results from ICC experiments show that as expected, GATAe-HA 

protein was exclusively localised in the nuclei of S2 cells (Figure 6.4.2). 

 

Figure 6.4.2. Nuclear localisation of GATAe-HA in Drosophila S2 cells.  
ICC of Drosophila S2 cells, stained with DAPI (purple) and anti-HA (green) Only co-transfected S2 
cells (white arrow) show evident nuclear HA staining, compared to untransfected cells, which only 
display DAPI staining (purple) The right panel shows merged channels of DAPI, HA and brightfield. 
Scale bars are 5μm. 

Furthermore, qPCR experiments showed a significant upregulation of the GATAe 

gene expression (>25 fold) in the GATAe-HA transfected cells compared to 

untransfected cells (Figure 6.4.3). Previous research has shown that 

overexpression GATAe induces the expression of inx7 and intβ two genes 

downstream of GATAe in the developing MG (Okumura et al., 2005, de Madrid 

and Casanova, 2018). Therefore, inx7 and intβ expression were measured in 

GATAe-HA transfected S2 cells. As expected, GATAe-HA transfected S2 cells 

exhibited significant upregulation of expression of both inx7 and intβ (~5 and ~4-

fold increase, respectively), demonstrating that the UAS-GATAe-HA plasmid is 

effective as an overexpression construct with no detrimental impact of the HA 

tag. 
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Figure 6.4.3. GATAe and putative downstream gene expression in S2 cells transfected with 
UAS-GATAe-HA. 
Relative mRNA levels, comparing S2 cells transfected with GATAe-HA (blue bars) and control S2 
cells (untransfected, yellow bars). Compared to the control, GATAe-HA co-transfected S2 cells 
show strong expression levels of GATAe, as well as the downstream factors intβ or Inx7. Relative 
mRNA levels were normalised to the rpl32 expression. The bars marked with * indicate significant 
difference (p<0.05, Student T-test, two-tailed). 

6.4.2 Tissue-specific overexpression in Drosophila 

Several independent transgenic fly lines were generated commercially in this 

study, using the UAS-GATAe-HA plasmid (see 2.2.1). These lines were used to 

overexpress GATAe in a cell-specific manner using PC and SC GAL4 drivers. GAL4 

drivers for ubiquitous expression were also used for comparative studies with the 

PC and SC-specific lines. Results from ICC experiments using CapaR>UAS-GATAe-

HA adult MTs showed that the pattern of expression of the GATAe-HA protein 

was limited to the nuclei of PCs, in line with the S2 cell data (Figure 6.4.4A-E). 

Accordingly, qPCR experiments confirmed that GATAe mRNA levels were 

significantly increased in CapaR>UAS-GATAe-HA MTs compared to the control 

(Figure 6.4.4H). Interestingly, CapaR>UAS-GATAe-HA MTs did not show any 

severe morphological malformations. However, compared to the controls, the 

CapaR>UAS-GATAe-HA MTs exhibited abnormally big aggregations in the lumen 

of the initial segment (Figure 6.4.4F and G), resembling kidney stones (Chi et 

al., 2015). Similar to the S2 cells, adult CapaR>GATAe HA MTs also showed 

increased expression of GATAe downstream genes Intβ (~1.7-fold increase), and 

Inx7 (~3-fold increase). 
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Figure 6.4.4. Characterisation of CapaR>UAS-GATAe-HA adult MTs. 
(A) Expression of GATAe-HA via CapaR-Gal4 localises GATAe-HA in the nuclei of PCs. (B-E) 
Magnification of the area highlighted in A, showing exclusion of expression in SC nuclei (white 
arrow in B-E). (F and G) Examples of concretions produced in the initial segment of adult tubules 
overexpressing GATAe. Most of them are localised in the initial segment (green in F-G), but they 
can also be found in other regions of the tubule (white arrows in A and G). (H) Relative mRNA 
quantifications of CapaR>UAS-GATAe-HA (blue bars) and both control (green and yellow bars) 
adult MTs. CapaR>UAS-GATAe-HA MTs show significantly higher levels of GATAe, (~4-fold 
increase) and both its targets, intβ and inx7 (~1.7 and 3-fold increase respectively). Relative mRNA 
expression levels were normalised to the rpl32 expression. (p<0.05, two-tailed student T-test). 
Scale bars are 100 µm in A, F and G, and 20µm in B-E. 

UAS-GATAe-HA expression was also driven with ClC-a-Gal4 to observe possible 

phenotypes in SCs, and driven with ctB-Gal4 to examine possible defects in 

embryonic development of the MTs. ClC-a>UAS-GATAe-HA MTs did not show any 

detectable defects (Figure 6.4.5A). In contrast, ctB>UAS-GATAe-HA and 

ubiquitous Actin>UAS-GATAe-HA larvae died before reaching pupariation, 

probably during in L1/L2 stages, as no WL3 specimens were observed. In 

ctB>UAS-GATAe-HA embryos, HA staining colocalised almost exclusively with the 

PC marker ct, indicating that HA expression was restricted to the PCs (arrows in 

Figure 6.4.5B). However, in other regions, such as the developing nervous 

system, HA staining was not detected, and only ct staining was observed, 

suggesting that ctB-Gal4 expression is limited to the developing MTs, in contrast 

to the extended pattern of ct antibody staining. It has been already reported 
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that ctB is expessed only in a subset of the native ct expression pattern (Jack 

and DeLotto, 1995). Interestingly no visible morphological phenotypes were 

observed in MTs of these embryos, so causes of larval lethality remain to be 

explored. 

 

Figure 6.4.5. Overexpression of UAS-GATAe-HA using different Gal4 lines. 
(A) Adult ClC-a>UAS-GATAe-HA MTs stained using antibodies against ClC-a (green), HA (red) 
and DAPI (blue). ClC-a>UAS-GATAe-HA MTs MTs show evident HA staining in the nucleus of SCs 
(B) Two examples of ctB>UAS-GATAe-HA embryos stained against ct (red) and HA (green). Both 
show a robust colocalization in developing MTs, but HA is not detected in the midline of the 
developing ventral nerve cord. Scale bars are 50µm. 

Rescue of the morphological phenotypes induced by GATAe silencing (see 4.2.2) 

was attempted by combining the constructs GATAe RNAi and UAS-GATAe-HA 

(CapaR>GATAe RNAi;UAS-GATAe-HA). Unfortunately, CapaR>GATAe RNAi;UAS-

GATAe-HA MTs phenocopied CapaR>GATAe RNAi MTs, suggesting that the effects 

of RNAi silencing of GATAe are epistatic over GATAe overexpression effects (as 

the RNAi line also targets the mRNA produced from the GATAe-HA construct). In 

other words, that the high levels of GATAe induced by UAS-GATAe-HA are not 
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able to compensate for the low levels of GATAe caused by RNAi silencing. A 

possible explanation of this issue is discussed in 6.6.1. 

6.5 Chromatin Immunoprecipitation Analysis of GATAe 

6.5.1  Chromatin Immunoprecipitation 

Chromatin Immunoprecipitation (ChIP) is a potent technique to identify specific 

DNA binding regions for particular TFs, allowing the study and characterisation 

of signalling pathways and genetic interactions (Ghavi-Helm et al., 2016). In 

brief, a DNA-binding protein, such as a TF, is fixed and immunoprecipitated, and 

any DNA sequences bound to the protein of interest can be identified by 

sequencing techniques (Chromatin Immunoprecipitation Sequencing, or ChIP-

Seq). ChIP-Seq has not only been used for the study of TFs, but it is also widely 

used to localise post-translationally modified histones, histone variants or 

enzymes associated with chromatin (Collas, 2010, Shoaib, 2011). This next 

chapter focused on the study of GATAe using ChIP-Seq and highlights 

troubleshooting that occurred during the optimisation of this technique. 

6.5.2 Technical ChIP optimisations 

There are several considerations when designing ChIP-seq experiments. Here, 

the first aim was to determine the proper quantity of tissue which ultimately 

yielded sufficient DNA concentration for sequencing. For ChIP-seq experiments 

with Drosophila, 150 imaginal wing discs (Oh et al., 2013), 10-50 millions of 

Drosophila S2 cells (Gilchrist et al., 2009), or 100mg of whole embryos (Menoret 

et al., 2013) were previously used. The commercially-based ChIP protocol used 

in this project (see 2.8) recommended an amount of 25mg of starting tissue in 

order to recover good DNA yields for sequencing. This amount corresponds to 

approximately 4000 dissected adult MTs (~1000 adult flies) for each sample. 

Therefore, for optimisation of the ChIP protocol before MT dissections, initial 

ChIP-Seq experiments were performed using S2 cells overexpressing the GATAe-

HA construct. 
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6.5.3 Results 

6.5.4 Immunoprecipitation analysis 

To determine if the antibody-coupled magnetic beads can specifically bind to 

the HA tag, both S2 cell samples (co-transfected with pMT-Gal4 and UAS-GATAe-

HA plasmids) and adult dissected MT samples overexpressing GATAe-HA 

(CapaR>UAS-GATAe-HA) were immunoprecipitated and analysed by WB. WB 

analysis against the HA tag showed a strong band of 110 kDa in both co-

transfected S2 cells and CapaR>UAS-GATAe-HA immunoprecipitated fractions 

(Figure 6.5.1A1 and B1), whereas no such band was detected in negative controls 

(untransfected S2 cells and UAS-GATAe-HA adult MTs, Figure 6.5.1A3 and B2 and 

3). Additionally, a band of around 50kDa was also detected in all IP experiments, 

which most probably corresponds to the heavy chain of the HA-antibody that is 

expected to co-elute with the IP sample (Janeway Jr et al., 2001). Although the 

detected band of 110 kDa is unique and corresponds to the GATAe protein, it 

differs from the theoretical molecular weight of GATAe (80kDa). This would be 

due to possible post-translational modifications of the protein, a common 

feature for TF regulation (Tootle and Rebay, 2005, Bode and Dong, 2004), which 

is also present in GATA TFs (Bresnick et al., 2012, Menghini et al., 2005). 

Possible post-translational modifications of the GATAe protein would explain the 

many different functions that this TF can have depending on the cellular 

context. Research to highlight these modifications and their significance would 

be an exciting direction for future studies. As expected, this specific 110 kDa 

band is not detected in samples that have not been subjected to IP or in the 

negative controls (see legend of Figure 6.5.1). 

Altogether, these results, demonstrate that the GATAe-HA protein is specifically 

immunoprecipitated using an anti-HA tag antibody and which therefore permits 

subsequent ChIP-seq experiments. 
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Figure 6.5.1. Western-blot analysis of IP experiments for HA tag. 
(A) IP of adult CapaR>UAS-GATAe-HA MTs (lane 1) or parental control line UAS-GATAe-HA/+ 
MTs (lane 3) using anti-HA antibody. A strong band of 110 kDa is detected only when GATAe-HA 
is overexpressed (lane 1). Lane 2 corresponds to the first wash after bead incubation. A weak band 
of 110 kDa is detected indicating that only a small amount of HA-tagged protein is lost during the 
first wash. Lanes 4 and 5 are positive (dissected adult CapaR>UAS-GATAe-HA MTs) and negative 
(dissected adult UAS-GATAe-HA/+ MTs) controls, which have not been subjected to IP (B) IP of S2 
cells which have been co-transfected with Des-Gal4 and UAS-GATAe-HA plasmid (lane 1) or two 
independent negative control samples (untransfected S2 cells, lanes 2 and 3). Lanes 4, 5 and 6 
correspond to the first wash after the incubation with the magnetic beads, of the IP samples from 
the lanes 1, 2 and 3, respectively (lane 4, which corresponds to the co-transfected sample, also 
shows a weak band of 110kDa, whereas lanes 5 and 6 are empty). Lanes 7 and 8 are positive (co-
transfected UAS-GATAe-HA S2 cells, lane 7) and negative controls (untransfected S2 cells, lane 
8), which have not been subjected to IP. 

6.5.5 Chromatin Immunoprecipitation 

6.5.5.1 S2 cells 

ChIP experiments were performed on the basis that the protocol for IP of 

GATAe-HA had been optimised. For ChIP, as previously mentioned, S2 cells were 

initially used to optimise the protocol. 1x107 cells were used for each ChIP 

sample. The commercial kit employed in this study recommended 4x106 

mammalian cells (see 2.8.1.1). Given the smaller size of S2 cells compared to 

mammalian cells, in this study 1x107 S2 cells were used. Cells were crosslinked 
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and treated with Micrococcal nuclease (Mnase) for 20 min. Mnase treatment 

results in the fragmentation of the DNA between 150bp and 900bp, equivalent to 

1 to 5 nucleosomes, which is the optimal size for sequencing (Figure 6.5.2). 

After Mnase treatment, and before IP, samples were run on an agarose gel, and 

chromatin concentration was calculated according to the manufacturer’s 

protocol. The DNA concentration in all chromatin samples was calculated as ~50 

ng/μl. However, despite following the standard protocol, after performing ChIP 

with the recommended antibody concentration (5μg of antibody for each assay), 

the final DNA concentrations in both IPd and non-IPd samples were ~0.12ng/μl, 

which suggests that GATAe HA-specific DNA was not present. 

Subsequently, several attempts were made to optimise the protocol and obtain 

significant ChIP DNA from S2 cells as follows: (i) concentration of anti-HA 

antibody for the pulldown was increased from 5μg up to 10μg for each assay. (ii) 

antibody incubation times were increased from 2h to overnight. (iii) time of 

protein elution from the beads was increased from 30min to overnight where 

bead elution and DNA de-crosslinking were included in the same step. (iv) Final 

DNA was eluted using a lower volume of elution buffer (30μl) or via a MinElute® 

QIAGEN DNA extraction kit which elutes DNA in 10μl, in order to concentrate 

DNA in the eluant fraction. However, none of these protocol optimisations was 

sufficient to obtain significant DNA concentrations from the chromatin 

preparation. 

Possible explanations for the lack of DNA include: (i) Transfection efficiencies in 

S2 cells are not sufficiently efficient to induce high expression of GATAe protein 

and subsequent DNA pulldown (the exact transfection efficiency levels are 

unknown, but as two plasmids needed to be transfected, they are presumably 

low). (ii) DNA degraded, as nuclease treatment could be too intense. 
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Figure 6.5.2. Micrococcal nuclease treatments of S2 cells. 
DNA of S2 cells was decrosslinked and purified before Mnase treatment (unsheared, left two lanes) 
and after 20min of Mnase treatment (Mnase, right two lanes). After nuclease digestion, DNA is cut 
in small fragments, majorly between 150bp and 900bp. HA indicates the DNA extracted from S2 
cells co-transfected with Des-Gal4 and UAS-GATAei-HA, and C indicates the DNA extracted from 
untransfected S2 cells (negative control). 

To determine which of these two hypotheses is correct, an additional ChIP 

experiment was performed using a high cell number (~7 x 107) cells for each 

condition, amounting to ~ 20x the number of cells required for each ChIP in the 

original protocol. This may probably compensate for the S2 transfection rates. In 

this case, a detectable quantity of DNA was measured in the pulldown pMT-

Gal4>UAS-GATAe-HA S2 sample. However, non-transfected samples had higher 

DNA concentrations. (Table 6.5-1A and B). Furthermore, the final DNA 

concentrations were extremely low. 

Previous reports have shown that low resulting DNA concentrations could be 

caused by poor cell lysis and therefore low DNA recovery (Bortz and Wamhoff, 

2011). To check this eventuality, pellets from step 2.8.2 of the ChIP protocol 

were resuspended and subjected to harsher sonication cell treatment. 

Interestingly, the final DNA concentration in the IP fraction using this method 

was drastically improved. However, the untransfected samples also showed 

higher final DNA concentrations compared to Des>UAS-GATAe-HA S2 cells (Table 

6.5-1C and D). 
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Sample DNA concentration (µg/ml) 

(A) Des-Gal4>UAS-GATAe-HA (S2 cells) 5 
(B) Untransfected (S2 cells) 20 
(C) Des-Gal4>UAS-GATAe-HA (Cell pellets) 68 
(D) Untransfected (Cell pellets) 720 

Table 6.5-1. Final ChIP DNA concentrations of S2 cells 
ChIP DNA concentrations of Des-Gal4>UAS-GATAe-HA transfected S2 cells (A and C) and non-
transfected S2 cells (controls, B and D). In all cases, DNA concentrations in the non-transfected 
controls are increased compared to Des-Gal4>UAS-GATAe-HA S2 cells.  

6.5.5.2 Adult whole-fly and MTs 

As optimisation of the ChIP protocol in S2 cells failed to yield GATAe-HA-specific 

DNA, the ChIP procedure was attempted in whole-fly samples ahead of MT 

preparations. Overexpressing GATAe-HA ubiquitously using Actin-Gal4 resulted in 

embryonic lethality, so viable CapaR>UAS-GATAe-HA adult flies were used 

instead. CapaR is mainly and strongly expressed in the MTs (Leader et al., 2018), 

but interestingly, it is also expressed in some regions of larval and adult MG 

musculature (Terhzaz et al., unpublished). For each ChIP, 50 CapaR>UAS-GATAe-

HA adult flies (~50g of total tissue) were used, but after carefully following the 

optimised protocol used for S2 cells, no ChIP DNA was detected in any of the 

adult fly samples. 

Despite this, MT samples from 1000 adult female flies (2000 MT pairs, (from 

CapaR>UAS-GATAe-HA and UAS-GATAe-HA/+) were dissected and subjected to 

the optimised ChIP protocol in order to identify possible downstream genes 

regulated by GATAe in the PCs. Pellets from step 2.8.1.3 were collected and 

sonicated to retrieve the optimal amount of DNA. Again, a second attempt with 

a higher number of sonication cycles was necessary and finally resulted in 

detectable DNA after ChIP. However, like the S2 cell samples, the control 

sample (UAS-GATAe-HA/+) resulted in higher DNA concentration compared to 

CapaR>UAS-GATAe-HA. 
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Sample DNA concentration (µg/ml) 

(A) CapaR>UAS-GATAe-HA Not detected 
(B) UAS-GATAe-HA/+ Not detected 
(C) CapaR>UAS-GATAe-HA 3 
(D) UAS-GATAe-HA/+ 6 

Table 6.5-2. ChIP DNA concentrations of adult MTs 
ChIP DNA concentrations of CapaR>UAS-GATAe-HA (A and C) and UAS-GATAe-HA/+ adult MTs 
(negative controls, B and D). C and D are the pellets collected in step X from A and B, respectively, 
which have been then subjected to stronger sonication cycles. ChIP DNA was only detected in C 
and D. Also, DNA concentrations in the negative controls are increased compared to Des-
Gal4>UAS-GATAe-HA S2 cells. 

Although DNA concentrations in both S2 cell and MTs samples were higher in the 

control samples, all samples in which ChIP DNA was detected were further 

analysed at Glasgow Polyomics and subjected to ChIP-sequencing. 

6.5.5.3 ChIP-Sequencing analysis 

Unfortunately, S2 cell samples were not able to be further processed due to the 

large size of the DNA fragments. However, two MT samples (GATAe-HA pulldown 

and negative control, C and D in Table 6.5-2, respectively), were fragmented 

more efficiently and were processed for sequencing analysis. After library 

preparation, quality control and sequencing, peak annotation was performed by 

Glasgow Polyomics facilities. The resulting peaks and gene lists were further 

analysed as described in 2.8.6. It is extremely important to note that, although 

the data showed in the next section is interesting, it must be considered as 

preliminary, as only one replicate is included. Future ChIP-Seq replicates, and 

further research will be required for validation of these data (see 6.6.1). 

6.5.5.4 Motif analysis 

Collaborators from Glasgow Polyomics analysed the significant peaks detected 

using two different False Discovery Rates (FDR, (Benjamini et al., 2006)). On the 

one hand, using an FDR of 0.1, more peaks were detected, but the reliability of 

the analysis could be potentially low. On the other hand, using an FDR of 0.01 

should result in fewer but more reliable peaks. Therefore, only the peaks 

detected using an FDR of 0.01 were further analysed in this thesis, to minimise 

false positives. Using two sets of parameters for different histone modifications 

(H3K4me3 and H3K27me3, see 2.8.6) a total of 108 differently expressed peaks 

(comparing GATAe-HA bound chromatin vs control chromatin) were detected (for 
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the complete list of genes associated to these peaks, Appendix 10). 

Furthermore, the services from Glasgow Polyomics also performed motif 

identification using HOMER (2.8.6 and (Heinz et al., 2010)). Only three different 

known motifs were significantly enriched in the peaks found, and those were 

two promoter motifs and a GATA motif (Figure 6.5.3). Thus, these data reinforce 

the roles of GATAe as a TF, binding to promoter regions to regulate 

transcription, possibly by binding to the GATA motifs of downstream genes. 

 

Figure 6.5.3. Enriched known motifs identified 1kb of the surrounding peaks detected. 
Significantly enriched (P=0.01) known motifs detected in a surrounding region of 1kb of the peak 
summits, using HOMER. Only three motifs were detected: Two motifs for Drosophila promoters 
(Unknown1 (NR/Ini-like), present in 4.85% of Target sequences and Initiator, present in 32.04% of 
Target Sequences) and a GATA factor motif, present in 25.24% of Target Sequences. 

Also, several de novo enriched motifs were identified, which are shown in Figure 

6.5.4. Peaks specifically bound by GATAe-HA exhibited overrepresentation of the 

transcriptional initiator TATA box. Interestingly, the motif GATA15 was also 

enriched in the peaks, in accordance with Figure 6.5.3. Also, known motifs for 

developmental regulators were enriched in the GATAe-HA bound peaks, such as 

the homeobox bagpipe (bap, CTTAAGAT, 10.68% of targets,(Furlong et al., 2001, 

Azpiazu and Frasch, 1993)), or the fork-head family TF sloppy paired 1 (slp1, 

TTTTAAATAT, 15.57% of targets). Furthermore, motifs for tailless (tll, AAGTCT, 

3.88% of targets), a master regulator for the development of the hindgut (which, 

in the embryonic development of the gut, activates the expression of 

brachyenteron, a hindgut-specific gene repressed by GATAe (Okumura et al., 

2005, Kispert et al., 1994)) have been detected in the peaks. It would be 

possible that in the adult MTs, the interaction between GATAe and another TF 

with a DBD domain similar to tll (as tll does not seem to be expressed in the 

adult MTs, according to FlyAtlas2). Possible candidates would be HNF4 or 

Hr39¸two TFs with a highly similar DBD to tll (Maglich et al., 2001, Fahrbach et 

al., 2012), which are strongly expressed in the adult MTs. It is important to note 
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that the de novo motifs found are displayed by HOMER according to the closest 

known match and, in some cases could not correspond to the known motifs 

(Heinz et al., 2010). For instance, the enriched motif AT1G20910 found by 

HOMER (15.53% of targets, Figure 6.5.4), is also highly matching with the tll 

motif, as it has as well a strong alignment similarity.  

Altogether, the known and de novo motifs found in this first replicate of the 

ChIP-Seq are a useful start to identify interactors of GATAe in the adult PCs. 

Therefore, performing at least other four extra replicates would profoundly 

improve the significance of the detected peaks, and provide valuable novel 

information. 

 

Figure 6.5.4. De novo motifs enrichment results 
De novo motifs enriched in the GATAe-HA bound sequences, sorted by their abundance. Their 
closest known match, P-value, and % of hits with the motif are indicated on the right. 
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6.5.5.5 Gene Ontology classification 

In addition, a list of genes was obtained from all the peaks, by identifying the 

genes neighbouring the peak regions (generated by Glasgow Polyomics), thus 

obtaining a list of potential direct downstream targets of GATAe (Table 7.3-3). 

This list of genes was further analysed and classified using two independent 

online GO classification tools: PANTHER, (Mi et al., 2013)) GOTermMapper 

(Consortium, 2004), as described in section 2.10. Interestingly, almost half of 

the genes (49 out of 108) are still named by their CG number, indicating that 

some of their functions are yet unknown and that some of them could 

potentially have novel roles in the MTs. Also, this illustrates the possible 

“phenotype gap” that exists in the Drosophila MTs (Dow, 2007, Dow, 2003), and 

highlights the importance of studying the function of novel genes.  

Both PANTHER and GOTermMapper use different algorithms and curate different 

databases, including previous literature for gene classification, and as a result, 

the resulting clusters have different names depending on the software used. 

However, in broad terms, both PANTHER and GOTermMapper classified the 

genes in similar groups. Note that all hits analysed by both tools (PANTHER and 

GOTermMapper) are classified in each category independently. Therefore, as 

some of the genes may be involved in different processes, it is possible that one 

same gene could appear in two or more categories according to its different 

involvement on biological processes or molecular functions (e.g. one of the top 

hits of the analysis, the gene longitudinals lacking, or lola, appears both in 

“Anatomical development” and “nitrogen metabolism” in Figure 6.5.5B). 
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Figure 6.5.5. Classification of ChIP-Seq hits according to their biological processes. 
Bar graphs representing the number of genes (hits) classified according to their biological 
processes, using (A) PANTHER or (B) GOTermMapper GO identification tools. The number of 
genes that correspond to each category is indicated above every bar.  

According to their involvement in biological processes, most of the genes in the 

list were associated to metabolic processes (Figure 6.5.5A), As the term, 

“metabolic processes” is highly general, the 26 hits under this category (Figure 

6.5.5A) were classified in more specific metabolic processes using PANTHER. 

Among them, 22 were associated with primary metabolic processes, 16 to 

macromolecule metabolic processes, 13 to organonitrogen metabolism, 8 to 

protein metabolism, and 6 to nucleic acid metabolism. The presence of genes 

involved in nitrogen metabolism in both GO analysis tools (22 genes involved in 

nitrogen metabolism according to GOTermMapper, Figure 6.5.5B) is particularly 

interesting, given the vital functions of the MTs in the secretion and elimination 

of nitrogenous wastes (Denholm and Skaer, 2009, Browne and O'Donnell, 2013). 

Interestingly, previous research demonstrated that GATA factors regulate 

nitrogen metabolism in yeast (Cooper, 2002), which could suggest an 

evolutionarily conserved function of GATA factors. 

Also, a significant proportion of the genes are involved in response to stimulus 

(GO:0051869, 32 genes, Figure 6.5.5A). Again “response to stimulus” is a broad 
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term, the hits under the category of “response to stimulus” were as well 

subdivided into more specific categories. The main categories representing these 

hits (according to PANTHER) were “cellular” response to stimulus (22 hits), 

“response to external stimulus” (GO:0009581, 7 hits), response to organic 

substances (6 hits). Importantly, there was presence of hits involved in response 

to stress (GO:0006950, 10 genes, which coincided with the GoTermMapper data 

in Figure 6.5.5B). Again, this correlates with the previously reported roles of the 

MTs in stress responses (Davies et al., 2012, Davies et al., 2014a, Terhzaz et al., 

2015b), and together with the experimental data showed in this thesis (see 4.3), 

suggests a role for GATAe in the response to stress. Also, the presence 7 genes 

related to immune system processes (GO:0002376, they are lola, pvf3, pvf2, 

lama, CG12780, ser and alpha-Man-1B) and the fact GATAe has been itself 

previously associated with immune responses in the larval and adult MGs (Zhai et 

al., 2018, Senger et al., 2006). Given the vital roles of the MTs in immune 

response (Dow and Davies, 2006, McGettigan et al., 2005), and the implications 

of some of the detected targets in immune responses in other tissues (Tokusumi 

et al., 2018, Kleino et al., 2005), including GATAe (Senger et al., 2006)it would 

be compelling to investigate the roles of GATAe and its targets in the regulation 

of immune responses in the MTs. 

There is a significant presence of genes involved in transport (GO:0006810, 19 

hits, Figure 6.5.5B). More specific transport functions include transmembrane 

transport (7 hits), vesicle-mediated transport (6 hits), among others. According 

to FlyAtlas, 11 of the genes involved in transport are enriched in the MTs in 

normal conditions (Table 6.5-3), whereas 9 of them are not present (Apoltp, 

best4, ctr1c, sur, task7, sytβ, brp, and ninaC), suggesting that GATAe could act 

both as an activator and as a repressor. Moreover, 9 of them are classified as 

transmembrane transporters (GO:0022857) according to their molecular function 

(Best4, Ctr1C, CG6125, Glut1, Ir21a, Mdr65, Sur, Task7, Tim17b1). This 

presence of transporters in the MTs correlates with the crucial transport 

functions performed by this organ (Beyenbach et al., 2010, O’Donnell et al., 

1998, Cabrero et al., 2014). Also, it has been linked that the modulation of the 

expression of several MT transporters is associated with the response to stress 

(Stergiopoulos et al., 2009, Davies et al., 2014a). These data could potentially 

place GATAe as a regulator of transport genes in response to stress, which also 
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fits with the results shown in 4.3 that demonstrate lower tolerance to stress 

upon GATAe knockdown. 

Gene Adult Male Adult Female 

 FPKM Enrichment FPKM Enrichment 

CG6215 228 17 419 115 

Scp2 422 15 394 54 

Mdr6 31 6.2 15 7.5 

GLUT1 53 3.9 51 4.4 

Pld 16 2.5 17 1.6 

Rlip 8.1 1.6 11 1.7 

Vps16A 9.6 1.5 9.9 1.2 

Zyx 35 1.4 33 2.2 

CG5142 2.7 1.4 6.6 3.3 

Tim17b1 4.7 0.4 2.4 1.2 

Cadps 4.8 0.3 2.5 0.8 

Table 6.5-3. Genes involved in transport called as present in the MTs. 
The table shows the genes involved with transport (according to GOTermMapper) detected in the 
ChIP-Seq analysis, and present in the adult MTs, scored by their enrichment. Adapted from 
FlyAtlas2. The abundance of each gene (FPKM), and enrichment, which measures the abundance 
of the gene relative to that in the whole fly, are indicated in the table. 

In addition, both GO software detected that a significant part of the genes is 

involved in developmental processes (16 genes associated to “organ 

development” according to PANTHER, Figure 6.5.5A, and 24 to “anatomical 

development”, as reported by GOTermMapper, Figure 6.5.5). Again, this 

associates with and reinforces the roles in maintaining MT architecture shown in 

this thesis (see 4.2.2), and previous literature that associated GATAe with the 

development of the MG (Okumura et al., 2005, de Madrid and Casanova, 2018, 

Buchon et al., 2013). Also, the enriched GO terms of “cell communication” and 

“signal transduction” fit well in the model proposed here, in which GATAe is 

essential for MT growth and stem cell proliferation control (see 4.2.6).  

Possibly, one of the most interesting genes detected in this category is zyx, an 

actin cytoskeleton component of the Hippo pathway, involved in tissue growth, 

which can regulate growth control in a Hippo dependent and independent 

manner (Gaspar et al., 2015, Rauskolb et al., 2011). Also, zyx functions are 

dependent on its interaction with cytoskeletal-binding protein Enabled (Gaspar 

et al., 2015), which, interestingly, is also expressed in the MTs (FlyAtlas2). 

Furthermore, it has been demonstrated that cell-to-cell communication is 

crucial for the maintenance of diverse stem cell populations including the 
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Drosophila ISCs and RNSCs (Singh et al., 2007, Ohlstein and Spradling, 2007). 

Importantly, many types of human cancers are induced by problems in processes 

of cell communication and signalling, and these processes are the focus for 

diverse therapies against this disease (Ghajar et al., 2013, Sinyuk et al., 2018, 

Oktay et al., 2015). Therefore, problems in cell communication could be one of 

the causes of the robust defects found upon GATAe knockdown in the PCs, and it 

would be of interest to study possible further interactions between GATAe and 

the Hippo pathway. Altogether, the analysis of the biological processes of this 

preliminary ChIP-Seq experiment matches closely with the model proposed in 

this thesis, in which GATAe is required to regulate cell-to-cell communication, 

signalling, and stress response processes in the PCs. Other important GO terms 

enriched in the detected peaks (according to GOTermMapper) were “cell 

proliferation” (5 hits, GO:0008283) and “cell cycle” (5 hits, GO:0007049).For 

example, these data suggest that GATAe can bind to the regions neighbouring 

pvf2, which is an essential factor in the age-induced proliferation of adult ISCs 

(Choi et al., 2008). As pvf2 is not expressed in the adult MTs (FlyAtlas2), it could 

be possible that GATAe represses the expression of pvf2 to control proliferation 

in the MTs. It is curious to note that, in human prostate cancer cell lines, both 

GATA1 and VEGFC (the human homolog of pvf2) show an altered expression 

(Dozmorov et al., 2009) suggesting an interaction between these two gene 

families in human cancers.  Another example is xrp1, which its possible role in 

the MTs is commented in 6.5.5.6. 

Genes were also classified depending on their assigned molecular function/s. As 

well as shown with their biological processes, both GO tools classified the genes 

in similar groups according to their molecular functions. 9 genes are TFs (Figure 

6.5.6A), and a similar number of them have DNA binding functions (11 genes, 

Figure 6.5.6B), suggesting that GATAe could be acting through the regulation of 

other TFs and DNA binding proteins in the PCs. Interestingly, a significant 

number of genes perform ion binding functions (5 genes involved in calcium ion 

binding Figure 6.5.6A, and 16 in ion binding, Figure 6.5.6B), and transport, 

which suggests a possible link between GATAe and the transport functions of 

multiple ions and compounds already reported in the MTs (Beyenbach et al., 

2010, Wang et al., 2004). Other molecular functions associated with detected 

genes include growth factor activity and oxidoreductase activity. 
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Figure 6.5.6. Significant ChIP-Seq detected genes classified according to their molecular 
function. 
Graphs showing the distribution of genes classified according to their molecular function using 
either (A) PANTHER or (B) GOTermMapper. The number of genes that correspond to each 
category is indicated above every bar. 

6.5.5.6 Top genes for further investigation 

All genes associated with the peaks detected in this first ChIP-seq experiment 

are shown in Table 7.3-3 The broad classifications performed using PANTHER and 

GOTermMapper are useful to identify the core pathways that could be altered 

when GATAe expression is impaired. However, they do not explain, at this stage, 

which are the exact pathways in which GATAe is acting in the MT PCs for its 

maintenance and function. To do this, further investigation needs to be 

performed, and the results of this first sequencing can serve as an excellent 

start to address these questions, as described below. 

It is important to consider that, given the number of dissections required to 

collect enough DNA for ChIP-seq, only one replicate was sequenced and 

analysed. Therefore, the conclusions extracted from the analysis of these data 

should be considered as preliminary, and as an initial step for future ChIP-seq 

experiments. However, this experiment still provides valuable data to identify 

novel functions of genes downstream of GATAe. For instance, one of the most 

reliable peaks obtained from this analysis (with an FDR of 2.52 x 10-30, Table 

7.3-3) detected in this experiment is Xrp1. It has been previously demonstrated 
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that Xrp1 prevents genomic instability and cell proliferation in S2 cells (Akdemir 

et al., 2007). Given that this gene is also strongly enriched in the larval and 

adult MTs, it would be interesting to investigate if it also performs a function in 

the control of proliferation in the MTs, and it is indeed acting downstream of 

GATAe. Other possible targets identified in this analysis are well-studied genes, 

such as serrate (Ser), a well-known component of the Notch signalling pathway 

involved in numerous developmental processes (Pérez-Gómez et al., 2013, 

Thomas et al., 1991), or the TF forkhead (fkh). In the case of fkh, its functions 

in the embryonic development of the MTs are well known (Maruyama et al., 

2011, Murakami et al., 1999, Gaul and Weigel, 1990). Also, fkh, is still highly 

enriched in the adult MTs (Table 6.5-4, (Wang et al., 2004)), and both genes 

perform similar roles for ISC maintenance (Lan et al., 2018). Furthermore, GATA 

factors have been previously related to ageing, and possibly interacting with fkh 

(Dobson et al., 2018, Alic et al., 2011), an event that has been already 

demonstrated in C. elegans (Tullet et al., 2008, Zhang et al., 2013). It would be 

compelling to investigate if fkh could perform novel roles in the adult renal 

system, aside from its developmental functions. 

Furthermore, several unnamed genes were identified in the hit list of the ChIP-

seq (a total of 49 different unannotated genes, Table 7.3-3). Interestingly, 9 of 

those genes exhibited specific enrichment in the larval and adult MTs, according 

to FlyAtlas2. Those genes are: CG9932, CG10513, CG12780, CG13315, CG15093, 

CG17029, CG3332, CG5399 and CG6125 (Table 6.5-4). Upon confirmation with 

additional ChIP-seq and qPCR experiments, it would be extremely valuable to 

identify how many of those genes are required for the maintenance or physiology 

of the MTs and study them in detail. 
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Gene Adult Male Adult Female Larval Molecular 
function 

 FPKM Enrichment FPKM Enrichment FPKM Enrichment 

Fkh 38 7.5 44 22 18 7.5 TF 

Hebe 52 2.7 65 6.2 30 1.8 Unknown 

Xrp1 148 2.6 147 7.3 95 3.0 P-element 
binding 

CG9932 37 1.4 33 3.3 8.5 1.2 TF 

CG10513 1456 32 926 91 2949 32 Unknown 

CG12780 118 1.1 197 7.3 0.2 0.0 Carbohydrate 
binding 

CG13315 4051 3.6 2006 5.9 491 1.5 Unknown 

CG15093 432 7.4 339 8.7 154 5.1 Oxidoreductase 
activity 

CG17029 569 14 620 35 543 13 Inositol 
monophosphate 
1-phosphatase 

activity 

CG3332 12 2.3 21 5.2 13 1.1 Unknown 

CG5399 263 2.4 387 4.3 86 0.3 Unknown 

CG6125 228 17 419 115 83 10 SLC26A/SulP 
transporter 

Table 6.5-4. Table of the most tubule-enriched genes from the ChIP-seq analysis. 
The table includes three enriched known genes (fkh, hebe and Xrp1), and all the unnamed CG 
genes reported in Table 7.3-3 that are specifically enriched in either larval or adult MTs (both males 
and females). The abundance of each gene (FPKM), and enrichment, which measures the 
abundance of the gene relative to that in the whole fly, are indicated in the table. Adapted from 
FlyAtlas 2. Molecular functions according to NCBI, Flybase, and previous literature are shown in 
the last column. 

Curiously, none of the genes examined in the qPCR experiments of this thesis 

(Figure 4.2.16) was detected in this ChIP analysis, suggesting that the variation 

in their expression could potentially be an indirect consequence of GATAe loss in 

the PCs, rather than being directly being regulated by GATAe. 

Altogether, this first ChIP-seq experiment provides valuable information on 

which genes could be acting downstream of GATAe in the MTs, and in which 

processes are they involved in order to maintain the integrity of the adult MTs. 

Therefore, the data presented here, although preliminary, could serve as a 

potentially good base to study novel genetic interactions of GATAe in the MTs 

and decipher the mechanisms of GATAe function in the maintenance of the 

homeostasis of the adult fly renal system. 

6.6 Discussion and troubleshooting 

In this chapter, different molecular tools have been elaborated and tested for 

functional characterisation of GATAe. A polyclonal antibody against GATAe 
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protein was produced, and an efficient GATAe gain-of-function line, containing 

an HA tag was generated and used for further qPCR and ChIP experiments. 

Unfortunately, the generated antibody does not specifically recognise GATAe 

protein, and as such is unsuitable for subsequent use in WB or ChIP experiments. 

However, the GATAe-HA overexpression fly line expressed the HA-tagged form of 

GATAe in the nuclei of the MTs and was successfully used for ChIP-seq. 

6.6.1 Further experiments to assess GATAe molecular function 

The morphological and functional defects induced by silencing GATAe in all MT 

cell types have been characterised in previous chapters. However, the potential 

effects of GATAe overexpression in the MTs merits further attention. 

Overexpression of GATAe in PCs did not result in any particular morphological 

defects (although driving this construct using ctB>Gal4 induced embryonic 

lethality), but the accumulation of potential structures resembling kidney stones 

was detected mainly in the initial segments of the CapaR>UAS-GATAe-HA MTs 

(see Figure 6.4.4). Overexpression of GATAe in SCs or RNSCs has not been 

examined in detail regarding fluid secretion or cell survival, but ICC experiments 

in ClC-a>UAS-GATAe-HA reveal normal morphology of the MTs (Figure 6.4.5). 

Furthermore, rescue experiments using the UAS-GATAe-HA line would be 

valuable to show that GATAe mutant lethality can be reversed by reintroducing a 

copy of the GATAe gene. However, all UAS-GATAe-HA lines generated are 

inserted in the third chromosome, and since GATAe is also localised in this 

chromosome, rescue experiments using any of the previously generated mutant 

lines GATAe- (Okumura et al., 2016, de Madrid and Casanova, 2018), are difficult 

to perform. Therefore, obtaining a homozygous mutant for GATAe containing at 

least a copy of UAS-GATAe-HA could be generated through genetic 

recombination, and it would be of extreme interest to combine both constructs 

perform future rescue experiments. 

In addition, as explained in 6.4.2, rescue experiments were performed using the 

RNAi line to silence the GATAe expression, and the overexpressing construct 

UAS-GATAe-HA. However, the MTs phenotype obtained in GATAe knockdown 

flies could not be rescued using the GATAe gain-of-function line. Also, as 

commented previously, one possible cause is that RNAi silencing effects are 
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epistatic over GATAe overexpression. Thus, although GATAe expression would be 

induced at very high levels in UAS-GATAe-HA MTs, at the same time, RNAi would 

bind to all GATAe mRNA, resulting in low levels of GATAe protein. In order to 

obtain flies that overexpress the GATAe-HA construct in the PCs, a recombinant 

fly line which contains 2 copies of both CapaR-Gal4 and UAS-GATAe-HA 

constructs was recently generated in this project (CapaR;UAS-GATAe-HA, Figure 

6.6.1, Dr Selim Terhzaz). As both CapaR and UAS-GATAe-HA constructs are 

already in the same chromosome, this doubly-homozygous line will facilitate the 

collection of considerable number of flies of the desired genotype for further 

ChIP experiments. 

 

Figure 6.6.1. Immunocytochemistry of recombinant GATAe to PCs 
Recombinant CapaR;UAS-GATAe-HA adult MTs expressing GATAe specifically in PCs were 
immunostained with ct (red), HA (green) and DAPI to confirm HA expression in the nucleus of PCs. 
Note the absence of HA staining in SCs (white arrow). Scale bars are 50µm. 

Furthermore, the ChIP-seq results obtained in this project using the GATAe-HA 

line are promising, and further reinforce the roles of GATAe in the PCs in cell 

communication, signalling and developmental processes. However, and as 

mentioned in 6.5.5.3, it is crucial to consider that this data is extracted from 

only one replicate, and it should be analysed with caution. Additional replicates 

need to be performed to confirm these results, and further ChIP-qPCR 
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experiments should be done to confirm the binding sites of GATAe in the 

genome. In parallel, measuring mRNA expression of the top candidates from this 

ChIP-seq experiment could be performed in adult CapaR:UAS-GATAe-HA MTs to 

further confirm these hits. 

Also, an alternative to ChIP-seq could be the generation of transgenic line 

containing a Gal4-inducible form of GATAe fused to a bacterial DNA methylase 

(UAS-GATAe-Dam). Using this technique, called Targeted DamID (TaDa), 

genome-wide profiling of GATAe could be investigated employing far fewer 

number of cells, compared to other methods (including ChIP-seq) (Marshall et 

al., 2016, Southall et al., 2013). A crucial advantage of the TaDa technique is 

that it does not require a specific antibody that binds to the protein of interest, 

avoiding the potentially problematic step of generating a specif antibody for 

GATAe. In addition, unlike ChIP-seq, TaDa does not require fixation of the 

sample, facilitating the extraction of DNA in unfixed or even live cells (Aughey 

and Southall, 2016).  

Precisely, the UAS-GATAe-Dam construct could be expressed in each of the three 

cell-types of the MTs (PCs, SCs and RNSCs), by using cell-specific Gal4 lines. In 

fact, the same Gal4 lines that have been used in this study could be employed 

(CapaR-Gal4 for PCs, clc-a-Gal4 for SCs, and esg-Gal4 for RNSCs), combined with 

a Gal80ts construct. This would allow the examination of genome-wide 

occupancy of GATAe in the adult stage (or in any other developmental stage) 

independently in every single MT cell-type. Once the direct downstream genes of 

GATAe are identified, their expression could be manipulated (by RNAi, or 

overexpression), in an attempt to recapitulate, or even rescue, the phenotype 

observed upon GATAe RNAi. This would potentially provide an exact picture of 

the function of GATAe in each MT cell-type. 

Altogether, this first replicate serves as a solid base to perform these additional 

experiments (e.g. it provided possibly new genes to perform ChIP-qPCR, and it 

has been crucial to confirm that the ChIP protocol used here is valid). 

In summary, a gain-of-function line for GATAe has been successfully generated 

and tested in this study. Preliminary results of ChIP-Seq analysis using this line 

driven in the PCs suggests that GATAe is acting upstream of several pathways 
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(developmental, cell communication and signalling pathways) to ensure the 

morphology and function of the MTs. Also, potential novel genes that could have 

a role in the function of the adult MTs have been identified in this ChIP-Seq 

experiment. Thus, these results are an excellent starting point for further 

experimentation that is required to decipher the molecular mechanism of the 

function of GATAe in the MTs.  
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7.1 Summary 

The primary goals of this thesis (shown in 1.5) were to design a complete genetic 

screen of TFs that may have a novel function in the MTs of Drosophila. After this 

screen, the TF GATAe was selected for further study, with the objective to 

decipher its novel roles in the MTs, by a diverse range of techniques, including 

the generation of new antibodies and tagged lines. A secondary and independent 

goal of this project, in collaboration with the RENALTRACT consortium, was to 

design a protocol to obtain high-quality 3D images of whole-fly preparations. All 

the aims of this PhD project, outlined in section 1.5, have been extensively 

covered and investigated, and the experiments and results of this thesis are 

summarised in here. 

7.1.1 Genetic screen 

By performing this screen, it was possible to reduce the original list of 30 TF 

enriched in the MTs to a list of 10, by searching the literature, documenting 

their patterns of expression and their human homologues. Of these 10 TFs, 

GATAe was selected to be investigated in detail. 

However, the screen also resulted in three other TFs - ptx1, HNF4 and hth- as 

strong candidates as novel regulators of development or physiology of the MTs. 

This is due to their enrichment during all the stages of development, their 

human counterparts involved in kidney development, or the lethality phenotypes 

observed upon downregulation of those genes in the MTs. 

In addition, apart from the TFs mentioned above, the ECM component Muc11A is 

another potential candidate to function in the development and morphology of 

MTs, as demonstrated by ICC experiments (see 3.3.1.1). 

7.1.2 GATAe involvement in the MTs 

The function of GATAe in MTs has been characterised in detail in this PhD 

project. Although GATAe is expressed in the MTs at all developmental stages, 

this is the first report to date that shows the functional involvement of GATAe in 

the MTs. GATAe is required in all three types of renal cells but is playing very 

different roles in each of them. 
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7.1.2.1 GATAe in the PCs 

The results showed in Chapter 3 demonstrate that GATAe is specifically 

expressed and necessary in the PCs to control tissue growth and cell 

proliferation. Downregulation of GATAe in the PCs (using diverse and 

independent RNAi and Gal4 lines) induce severe defects in the morphology and 

function of the adult MTs (see 4.2). 

However, this is not a consequence of MT developmental effects, since Gal80TS 

experiments showed that only when GATAe expression is silenced from L3 

onwards, that MTs start displaying morphological abnormalities, such as 

tumourous growth (see 4.2.4) or uncontrolled proliferation of potential RNSCs 

(see 4.2.6). qPCR experiments also demonstrated that GATAe downregulation in 

the PCs alters the expression of specific apoptosis and cell proliferation-related 

genes, as well as oncogenes and tumour suppressor genes, suggesting that 

GATAe can act as a master regulator upstream of all these genes (see 4.2.7). 

7.1.2.2 GATAe in SCs 

GATAe is also required for the survival of the SCs throughout development. 

Downregulation of GATAe in the SCs results in a significant and robust reduction 

in SC population, and the few SCs observed in these MTs are restricted to the 

initial segment, being absent in the main segment. In addition, these MTs 

showed impaired fluid secretion upon stimulation with kinin, a neuropeptide 

that stimulates specifically secretion through SCs (see 5.2). Thus, these results 

indicate that GATAe is required for the survival of SCs through metamorphosis. 

7.1.2.3 GATAe in RNSCs 

Apart from its functions in PCs and SCs, GATAe is also required for the early 

migration of the RNSCs during metamorphosis. Silencing GATAe in the RNSCs 

exclusively (by using the esg>GFPts line) is sufficient to deplete the whole RNSC 

population in the adult ureters and lower tubules (see 5.3). However, GATAe 

seems to be acting in the early migration of the RNSCs, as when GATAe was 

silenced from 24h APF, the RNSCs were correctly located in the adult MTs (also 

shown in 5.3). Furthermore, GATAe silencing in adult RNSCs did not induce any 
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loss of this cell population, suggesting that GATAe is required for RNSC migration 

rather than their adult maintenance. 

Altogether, these results indicate that GATAe is required in all three MT cell-

types (PCs, SCs and RNSCs), being involved in different processes for each of 

these cell types. A proposed model for the novel roles of GATAe in the MTs is 

shown in 5.5. 

7.1.3 Molecular and biochemical tools for GATAe functional 
characterisation 

7.1.3.1 Antibody and gain-of-function line generation 

To further investigate the mechanism in which GATAe modulates MT morphology 

and physiology, an antibody against the GATAe protein was generated. 

Theoretically, this antibody would have been used to confirm the pattern of 

expression of GATAe, and potentially to perform ChIP-seq experiments to 

identify novel downstream targets of GATAe. However, the experiments 

performed using this antibody demonstrated that it is not suitable for these 

purposes, for two main reasons: First, ICC experiments using different 

developmental stages of MTs were not able to detect GATAe protein in the cell 

nuclei using this antibody. Second, Western-blot analysis confirmed that the 

antibody generated was not specific for the GATAe protein (see 6.3). 

In addition, a gain-of-function GATAe line tagged with HA was generated in this 

study. It was extremely useful to investigate the overexpression phenotypes and 

to confirm downstream targets of GATAe (e.g., intβ or inx7) GATAe 

overexpression in the PCs of adult MTs induces the accumulation of aggregates in 

the tubule lumen, especially in the initial segment (see 6.4). 

7.1.3.2 ChIP-Sequencing 

In order to identify direct downstream targets of GATAe in the PCs, adult 

CapaR>UAS-GATAe-HA MTs were analysed by ChIP-seq. The preliminary results 

using this technique showed that the GATAe protein binds specifically near to at 

least 108 different genes, in the cellular context of the adult (5-7 d.o.) PCs 

(Appendix 10). A significant number of these genes were associated with 
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metabolic processes, such as nitrogen metabolism. Also, other biological 

processes overrepresented in these genes include development, cell 

differentiation and cell communication processes, which could explain the 

phenotypes observed upon GATAe downregulation in the PCs.  

In addition, almost half of the genes detected (49 out of 110) are still unnamed 

(CG number identification), indicating that most of them could have a novel role 

in the MTs. At least 9 of them are significantly enriched in the adult MTs, 

according to FlyAtlas 2. Therefore, these genes deserve further attention and 

would be interesting to explore their potential roles downstream of GATAe (see 

6.5.5.6). 

7.1.4 Observation of 3D structures in whole-fly preparations 

This part of the project focused on the elaboration of a protocol to observe 

intact MTs in undissected flies. To do this, different microscopy techniques were 

employed. This part of the project disclosures a new way to observe whole-fly 

structures and organs without the requirement of dissections, and with minimal 

alteration of organ position. Many aspects of this protocol, however, need to be 

still improved, such as a more effective way to permeabilise the adult cuticle 

without manual removing. Other parameters such as increasing the fixation time 

of concentration, or CUBIC treatment duration could as well influence in the 

quality of the images. 

7.2 Future work 

The results obtained in this PhD thesis have been generally successful and 

uncovered new TFs and other genes that could perform novel roles in the MTs. 

Nevertheless, and as mentioned in previous sections, there are several questions 

that were raised during the course of this thesis which could be potentially 

interesting to answer in future investigations. This section will try to summarise 

the remaining open questions and which directions could be explored to answer 

these.  
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7.2.1 Study of other genes detected in the screening 

As mentioned in 3.3.1 several other genes aside from GATAe were identified via 

the genetic screening. Several lines of research could emerge from these results, 

investigating any of the other exciting genes identified during this selection 

process. Perhaps the most interesting gene to be studied could be Muc11A. Low 

levels of Muc11A in the PCs induced severe morphological defects (see Figure 

3.2.1B). In addition, the emerging importance of the mucin family in the 

development of diverse tissues of both vertebrates and invertebrates (Syed et 

al., 2008, Dhanisha et al., 2018), makes this gene (and possibly other genes of 

the mucin family) a motivating target to study in the MTs. 

Another potential gene which may modulate novel functions in the MTs is HNF4. 

It has been previously reported that HNF4 gene is enriched in the MTs, (Palanker 

et al., 2009) in accordance to FlyAtlas data, and its direct human homolog, 

HNF4,is also expressed in the kidney in an isoform-specific manner (Duncan et 

al., 1994, Dean et al., 2010). These data suggest that HNF4 could potentially 

have a function in the developing or adult MTs, and these functions may be 

conserved along evolution. Therefore, further research on Drosophila HNF4 

could shed light on a renal role. 

7.2.2 Further research on GATAe 

Regarding GATAe, there are several directions to where subsequent research 

could be pointing to decipher its functions in the renal system and it possible 

homologies in vertebrates. 

7.2.2.1 ChIP-Sequencing 

An exciting achievement of this research project has been the generation of a 

functional overexpression line for GATAe, which contains an HA tag. Therefore, 

the immediate future work that should be done is to continue the ChIP-Seq 

experiments. The ChIP-seq data presented in 6.5, although promising, is 

preliminary, as only one replicate was sequenced. Therefore, a good starting 

point for future experiments would be to use the recombinant-generated line 

CapaR>UAS-GATAe-HA to perform further replicates of the ChIP-seq experiments 

and identify the direct downstream targets of GATAe in the MTs. Also, ChIP-
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qPCR of the top hits should be performed to confirm the gene hits found. This 

would then further elucidate those specific pathways modulated by GATAe to 

maintain MT architecture. Also, alternative approaches to identify downstream 

targets of GATAe could be performed to confirm the ChIP-seq data. RNA-Seq 

experiments would provide useful insights in which genes show altered 

expression upon downregulation or gain-of-function of GATAe. However, this 

technique would not provide information about which of them are direct targets. 

Alternatively, the targeted DamID (TaDa) technique has been proven to be very 

useful to identify chromatin binding sites (Marshall et al., 2016). This technique 

allows the detection DNA-binding sites of proteins in a rapid way without 

fixation and IP steps and using very low initial quantity of tissue or cells 

(Marshall et al., 2016). Thus, it could be a valuable alternative of ChIP-Seq or an 

additional way to confirm the hits found using this technique. 

7.2.2.2 GATAe in RNSCs 

Possible novel roles of GATAe in the RNSCs have been demonstrated in this thesis 

(see 5.5). The results showed here suggested that GATAe is not required for 

RNSC survival, as happens with other factors, such as yorkie or svb (Bohère et 

al., 2018). However, low levels of GATAe in RNSCs before their migration to the 

MTs caused a total absence of RNSCs in the adult ureters, suggesting a role for 

GATAe in RNSC integration to the MTs. However, many additional questions arise 

from these results. Is GATAe involved in the active division rates of the RNSCs? It 

has been shown that GATAe controls the proliferation of ISCs (Okumura et al., 

2016). It could be possible that GATAe performs similar functions in the RNSCs, 

but these roles could be masked due to the extremely low mitotic rates of RNSCs 

(Li et al., 2015, Zeng et al., 2010). Also, the phenotypes observed here upon 

GATAe downregulation in RNSCs are strikingly similar to the ones observed when 

Rac1 function is impaired (Takashima et al., 2013), suggesting a possible 

interaction between these two genes. Thus, it would be worth investigating if 

there is a genetic or physical interaction between these two proteins to pinpoint 

the function of GATAe in RNSCs. 
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7.2.2.3 Conservation of GATA factor functions 

Finally, it would be compelling to investigate possible homologies of GATA 

factors in the development and adult maintenance of the vertebrate kidney. 

Significant evolutionary similarities have been presented from the results of this 

thesis (e.g. the involvement of human GATA factors in tumorigenesis, or even 

the interactions between the GATA and bcl protein families, see 4.2.7). 

Therefore, one of the best directions that subsequent research could take is to 

investigate, for example, if introducing a copy of the Drosophila GATAe in 

vertebrate kidney models (e.g. Xenopus embryos or mouse kidney) can rescue 

some phenotypes observed induced by loss of vertebrate GATA factors. 

7.3 Final conclusion 

In conclusion, the data presented in this thesis can serve as a strong base to 

investigate novel functions of genes involved in the development and 

homeostasis of the Drosophila renal tubules. Strikingly, the results obtained with 

the study of GATAe in the MTs has uncovered new functions for GATAe in all 

three cell types of the MTs, thus reinforcing the functional versatility of this TF 

depending on the specific cellular context. This, together with further research 

in Drosophila and additional systems (perhaps mammalian or organoid models) 

would provide new and vital insights into the mechanisms of development and 

adult maintenance of the kidney. 
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Appendices 

Appendix 1 Drosophila media composition 

Compound Quantity 

Soya Flour 5.25g/l 

Maize Meal 15g/l 

Yeast 35g/l 

Wheat germ 10g/l 

Glucose 30g/l 

Treacle 30g/l 

Sucrose 15g/l 

Agar 10g/l 

Propionic acid 5ml/l 

Methylparaben 10ml/l 

Water Up to required 

Table 7.3-1. Recipe for the Drosophila Standard medium (Fly food). 
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Appendix 2  Grape juice agar medium 
preparation 

Compound Quantity 

Agar 20g/l 

Glucose 52g/l 

Sucrose 26g/l 

Dried yeast 7g/l 

Red grape/orange juice 88ml/l 

Nipagin 7ml/l 

Water Up to required 

 
Protocol for embryo collection medium preparation: 

1. Dissolve agar in ~800ml of water. 
2. Add the dried yeast and bring to boil. 
3. Once the solution is boiling, add the glucose and sucrose. 
4. Boil for 10min 
5. Add the red grape/orange juice, and cool down. 
6. Once the solution is cooled down, add the Nipagin 
7. Add water up to 1L and pour in the plates. 

Any remaining medium that has not been poured into the plates can be stored at 

4°C in a 500ml sterile glass bottle for up to 6 weeks. 
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Appendix 3 E. coli growth media recipes 

L-broth per litre of water 
 

10g Bacto-tryptone 

 5g yeast extract 

 10g NaCl 

L-agar  per litre of water 
 

10g Bacto-tryptone 

 5g yeast extract 

 10g NaCl 

 15g Bacto-agar 

SOC medium 2% tryptone 
 

2.5mM KCl 

 10mM MgCl2 

 10mM MgSO4 

 20mM glucose 
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Appendix 4 List of primers used 

All primer pairs used have been designed using MacVector™ 14.5.3 Software (MacVector Inc.) 
and summarised in  

Table 7.3-2.  

Primer pairs Sequence 5’-3’ Purpose 

rpl32F TGACCATCCGCCCAGCATAC Housekeeping gene for PCR and qPCR. 
Test the expression of rpl32. 

Rpl32R ATCTCGCCGCAGTAAACG Housekeeping gene for PCR and qPCR. 
Test the expression of rpl32 

DIAP1F CGTGGTGCGATAAGAGGTGA Used in qPCR to test the expression of 
DIAP1 

DIAP1R TTGAATAGCTGGGTCGCGTT Housekeeping gene for PCR and qPCR. 
Test the expression of rpl32 

Ras85DF GCAAGAGAGGTGGCCAAACA Used in qPCR to test the expression of 
Ras85D 

Ras85DR TCGGCTTGTTCATTTTGCGG Used in qPCR to test the expression of 
Ras85D 

wtsF AGCCGACAATAACTGGGTGG Used in qPCR to test the expression of 
Warts 

wtsR CGAGTGATTGCCGTTCTCCT Used in qPCR to test the expression of 
Warts 

debclF TTTTTCGCTCCAGCATCACC Used in qPCR to test the expression of 
debcl 

debclR CGTCAATCCCAAGAACG Used in qPCR to test the expression of 
debcl 

Ahcyl1F GGCGAGACGGAAGAGGACT Used in qPCR to test the expression of 
Ahcyl1 

Ahcyl1R AGAGAGCTGATAGAGACGGTG Used in qPCR to test the expression of 
Ahcyl1 

BuffyF GCCACACTACATTCCGCATCAC Used in qPCR to test the expression of 
buffy 

BuffyR ATTCATCGCCCAGCACTTC Used in qPCR to test the expression of 
buffy 

Inx7F GGTGTTGTGTCTCCGGTCAT Used in qPCR to test the expression of 
GATAe 

Inx7R CACAGGGCATGGGGAATGTA Used in qPCR to test the expression of 
GATAe 

IntβF ACGCACTCAGTTTGCCGATA Used in qPCR to test the expression of 
Intβ 

IntβR TGTTTCCTGACAGGGACACG Used in qPCR to test the expression of 
Intβ 

ScribF AGACGCAAACGACCTCCACG Used in qPCR to test the expression of 
scribbler 

ScribR CCTGGGTGGCTTTGCCAGAA Used in qPCR to test the expression of 
scribbler 

GATAe1F AAGAAACGCAAAGAAGCGGC Used in qPCR to test the expression of 
GATAe 

GATAe1R TTAATTCAAGTGTGCCGGCTG Used in qPCR to test the expression of 
GATAe 

GATAe2F GTTCAGCCAGTACCCACCAT Used in qPCR to test the expression of 
GATAe, and for sequencing UAS-GATAe-
HA 

GATAe2R CTGGGACATTGGTCTTGGC Used in qPCR to test the expression of 
GATAe, and for sequencing UAS-GATAe-
HA 
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GATAe3F ATGGTCTGCAAAACTATCTCACCG Used in qPCR to test the expression of 
GATAe, and for sequencing UAS-GATAe-
HA 

GATAe3R TTCGCTGACGCCCGCTTGGCCCG
TCT 

Used in qPCR to test the expression of 
GATAe, and for sequencing UAS-GATAe-
HA 

 

Table 7.3-2. Primer sequences and their purpose 

 

Appendix 5 5X TBE buffer recipe 

Compound Quantity 

Tris base 54g/l 

Boric acid 27.5g/l 

EDTA pH8 20ml/l 

Make up to 1L with ddH2O and then dilute 1/10 for 0.5X working solution.  
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Appendix 6 10X PBS and 10X TBS recipes 

For 10X PBS (Phosphate-Buffered Saline) 

Compound Quantity 

NaCl 80g/l 

KCl 2g/l 

Na2HPO4 14.4g/l 

KH2PO4 2.4g/l 

Dissolve all components in 800ml ddH2O and adjust pH to 7.4. Then make up to 

1L. Dilute 1/10 for a 1X working solution. 

For 10X TBS (Tris-Buffered Saline) 

Compound Quantity 

Tris base 24g/l 

NaCl 88g/l 

Dissolve all components in 800ml ddH2O and adjust pH to 7.4. Then make up to 

1L. Dilute 1/10 for a 1X working solution. 
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Appendix 7 Solutions 1 and 2 for ECL 
development 

Chemicals needed:  

Luminol: a 250mM stock is prepared in DMSO and kept in the dark at -20°C in 

100μl aliquots. 

P-coumaric acid: a 0-mM stock is prepared in DMFO and kept in the dark at -20°C 

in 50μl aliquots 

The composition of solutions 1 and 2: 

Solution 1 Quantity 

250mM Luminol 100μl 

90mM P-coumaric acid 44μl 

1M Tris-HCl pH 8.5 1ml 

ddH2O Up to 10ml 

Solution 2  

H2O2 6.4μl 

1M Tris-HCl pH 8.5 1ml 

ddH2O Up to 10ml 
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Appendix 8 CUBIC solution preparation 

Compound Quantity 

Urea powder 25g 

Quadrol (Sigma) 24.96g 

ddH2O 28.8g 

Triton X-100 15g 

Protocol for CUBIC solution preparation: 
For 100g final weight, measure all components by weight, not by volume, due to 
the high density of Quadrol and Triton X-100. 
 

1. Weight Quadrol 
2. Add the urea powder and ddH2O 
3. Warm and stir for 10 min 
4. Cool down the solution 
5. Add the Triton X-100 
6. Store at RT for several weeks 
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Appendix 9 Drosophila saline recipe 

Recipe adapted from (Dow et al., 1994). 

Dissolve in ~800ml of water 

Compound mM g/l 

NaCl 117.5 6.86 

KCl 20 1.49 

CaCl2*H2O 2 0.29 

MgCl2*6H2O 2 0.41 

Glucose 20 3.96 

HEPES 8.6 2.05 

Dissolve separately in 100ml of water each, and then add to the rest of the 
mixture 

NaHCO3 10.24 0.86 

NaH2PO4 4.5 0.70 

Adjust pH to 6.8 and add water up to 1l, filter sterilise and store at 4°C 
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Appendix 10 ChIP-Sequencing gene list 

Gene name/Symbol Fold Change P-Value FDR-Threshold 

Xrp1 2.61421 2.24E-33 2.53E-30 

CG17029 2.482363 4.25E-27 3.43E-24 

CG10513 2.256099 2.68E-20 9.48E-18 

CG41520 2.32489 3.6E-17 9.68E-15 

hebe 2.045903 9.38E-16 1.83E-13 

CG17475 1.646703 3.23E-11 3.44E-09 

Ser 1.604976 1.18E-09 1.09E-07 

lola 1.581707 2.73E-09 2.31E-07 

CG6125 1.618846 4.43E-09 3.58E-07 

Adgf-E 1.554887 5.31E-09 4.17E-07 

CG5399 1.534427 6.92E-09 5.15E-07 

CG17514 1.538586 1.68E-08 1.19E-06 

Pms2 1.5302 3.36E-08 2.26E-06 

Sytbeta 1.416815 4.54E-08 3.02E-06 

CG18577 1.48793 9.11E-08 5.48E-06 

CG2111 1.555304 1.87E-07 1.03E-05 

CG18666 1.503826 2.03E-07 1.09E-05 

Tie 1.471477 2.64E-07 1.35E-05 

CG12780 1.481234 2.66E-07 1.34E-05 

retn 1.633881 3.99E-07 1.93E-05 

CG17687 1.529261 5.14E-07 2.44E-05 

mus205 1.519235 6.24E-07 2.87E-05 

CG10559 1.513551 1.13E-06 4.8E-05 

l(2)09851 1.499667 1.16E-06 4.88E-05 

CG5823 1.589722 1.41E-06 5.62E-05 

Cadps 1.342624 1.41E-06 5.59E-05 

CG13315 1.473426 1.92E-06 7.45E-05 

Ggamma30A 1.429009 2E-06 7.7E-05 

CG15093 1.442194 2.31E-06 8.61E-05 

Fmo-2 1.466874 3.42E-06 0.000124 

CG44227 1.412284 3.52E-06 0.000127 

Rlip 1.406559 3.98E-06 0.00014 

fkh 1.400999 4.48E-06 0.000154 

CG34265 1.453165 5.51E-06 0.000181 

CG7695 1.399037 5.69E-06 0.000186 

CG14853 1.445271 6.38E-06 0.000204 

Best4 1.397016 7.22E-06 0.000224 

CG17324 1.377853 7.38E-06 0.000227 

lama 1.377853 7.38E-06 0.000227 

ect 1.388825 8.56E-06 0.000257 

CG12883 1.43971 8.76E-06 0.000262 

brp 1.386174 9.05E-06 0.000269 
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CG31122 1.375942 1.12E-05 0.000323 

TrissinR 1.373474 1.18E-05 0.000335 

Zyx 1.381358 1.21E-05 0.000342 

vg 1.415692 1.67E-05 0.000453 

CG33143 1.368842 1.88E-05 0.000503 

CG32816 1.489107 2.33E-05 0.000605 

Ir21a 1.363936 2.5E-05 0.000637 

Pld 1.347474 3.48E-05 0.000859 

CG7213 1.345252 3.64E-05 0.000886 

CG13693 1.351758 3.82E-05 0.000926 

CG9932 1.347126 4.18E-05 0.001001 

Pvf2 1.361313 4.56E-05 0.001066 

CG14020 1.378384 4.86E-05 0.001125 

ND-B14.5AL 1.388292 4.95E-05 0.001138 

Vps16A 1.342171 5.49E-05 0.001242 

Nse1 1.333365 6.52E-05 0.001428 

CG3332 1.341697 6.61E-05 0.001439 

CG31176 1.341697 6.61E-05 0.001439 

Gr93b 1.334916 7.51E-05 0.001576 

lgs 1.334916 7.51E-05 0.001576 

euc 1.372909 7.81E-05 0.001623 

Glut1 1.350616 7.98E-05 0.001654 

Cpr47Ef 1.369866 8.22E-05 0.001678 

Menl-1 1.32103 8.29E-05 0.001687 

Cpr49Ad 1.332045 9.42E-05 0.001869 

CG13438 1.300258 0.000107 0.002053 

SdhB 1.363936 0.00011 0.002078 

Syn2 1.355192 0.000127 0.00235 

CG7101 1.313249 0.000134 0.002415 

CG5142 1.320406 0.000138 0.002478 

ninaC 1.3579 0.000145 0.002579 

CG4631 1.354962 0.000153 0.002681 

CG2217 1.351758 0.000193 0.003245 

tnc 1.291476 0.000203 0.003355 

MsR1 1.284927 0.00023 0.003676 

CG1402 1.293932 0.000265 0.004121 

alpha-Man-Ib 1.406559 0.000276 0.004283 

Tim17b1 1.29809 0.000287 0.004378 

sns 1.269871 0.000308 0.004582 

slp2 1.331601 0.000317 0.004684 

CG4669 1.283576 0.00032 0.004675 

CG13891 1.290704 0.000328 0.004765 

tna 1.283704 0.000372 0.005216 

CG32052 1.321313 0.000374 0.005228 

CG14546 1.272452 0.000393 0.005434 

CG8929 1.273864 0.000444 0.005936 

CG16779 1.257259 0.000453 0.006031 
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Task7 1.380369 0.000475 0.006262 

Apoltp 1.275368 0.000502 0.006519 

CG12617 1.360188 0.000513 0.00662 

unc79 1.27374 0.000516 0.006633 

Mdr65 1.308037 0.000544 0.00696 

CG9624 1.303438 0.000585 0.007315 

CG42355 1.313964 0.000586 0.007312 

CG31176 1.257629 0.000597 0.007378 

Pvf3 1.298986 0.000627 0.007659 

Sur 1.268726 0.000653 0.007908 

Act79B 1.259977 0.000659 0.007899 

Ctr1C 1.294673 0.000671 0.007991 

hng3 1.26714 0.000671 0.007975 

Pif1A 1.264029 0.000709 0.008366 

Sf3b2 1.225612 0.000737 0.008632 

Scp2 1.26846 0.00076 0.008821 

h-cup 1.290868 0.000834 0.009469 

caup 1.348436 0.000866 0.009703 

CG9040 1.348436 0.000866 0.009703 

CG13643 1.26054 0.000869 0.009692 

Ids 1.26818 0.000884 0.00982 

Table 7.3-3. Complete gene list detected by the ChIP-Seq. 
The complete list of genes detected in the first replicate of the ChIP-seq experiment using 
CapaR>UAS-GATAe-HA adult MTs, immunoprecipitated using an antibody against the HA tag. 
Only genes detected using an FDR<0.01 (p-value adjusted by multiple testing employing the 
Benjamini-Hochberg method) are shown in this list (see methods and 6.5.5.3 for more information). 
Genes are ranked by their Fold change (comparing sample vs control). Genes highlighted in yellow 
are the ones that were found to be unannotated according to GOTermMapper.  
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Appendix 11 Observation of whole-fly 
Malpighian tubules using tomography 

projection microscopy 
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7.4 Introduction 

The research presented here was performed in the laboratory of Professor Seppo 

Vainio, in BioCenter Oulu (Finland), as part of a secondment of the RENALTRACT 

network. This internship aimed to obtain whole-fly 3D images of adult and larval 

MTs through the cuticle without the need of dissection. The primary purpose 

during this visit was to: (i) design a protocol to fix and clear whole-fly larval and 

adult Drosophila samples. (ii) use OPT and two-photon microscopy technologies 

to obtain 3D pictures of these cleared samples, by detecting endogenous GFP 

expression.  

It has been demonstrated that the migration of the MTs to their final positions in 

a highly stereotypical manner is crucial for the survival of the fly through 

development (Weavers and Skaer, 2013, Denholm, 2013). Whereas the migration 

of the developing MTs within the embryo can be easily observed using confocal 

microscopy, their localisation in later stages (L3, pupal, or adult stages) requires 

more sophisticated imaging systems, due to the increased size of the samples. 

Therefore, the experiments performed during this secondment could represent a 

good advance into the design of new protocols to observe whole-fly adult organs. 

It is particularly important to study these processes in the MTs since they change 

their shape and length dramatically during metamorphosis dramatically (see 

1.2.3.8, and (Wessing and Eichelberg, 1979, Denholm, 2013). Also, it would be 

significant to obtain 3D images of whole-fly MTs to identify how the localisation 

of this organ affects the overall functions of the fly in conditions where the MTs 

are shorter than normal. Related to this, an interesting question to answer using 

this technology would be if the MT positioning is affected in GATAe knockdown 

conditions (as these MTs resulted significantly shorted compared to the controls, 

Figure 4.2.5), and if these possible defects in MT positioning also contribute to 

the strong functional deficiencies observed in the results of previous chapters. 

7.5 Results 

CapaR>GFP flies were used for this purpose, as they specifically expressed 

cytosolic GFP in PCs (Terhzaz et al., 2012). The CUBIC treatment (Richardson 

and Lichtman, 2015) was performed as a clearing method in these specimens see 

2.7.2 and Appendix 8). After CUBIC clearing, samples were placed in the OPT 
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microscope and scanned at different angles, covering all 360°. After image 

processing using Imaris Software, the 3D images were reconstructed, and 

indistinguishable GFP areas could be observed in different parts of the body, 

(Figure 7.5.1A). However, no specific GFP expression was observed in the MTs. 

After using different approaches to optimise the protocol to clear the samples, 

the dorsal carcass was carefully removed after the fixation step, just before 

CUBIC treatment. This allowed increasing the transparency of the sample and 

detection of the specific GFP expression in the MTs. After the scanning process, 

specific and robust GFP expression was observed in the MTs, improving the 

results of this technique (Figure 7.5.1B and C). 

 

Figure 7.5.1. 3D images of whole adult flies using OPT microscopy.  
Adult female flies treated with CUBIC for 24h. (A) CapaR>GFP flies in which the carcass has not 
been removed show nonspecific GFP expression all along the body, with no specific signal from 
the MTs. (B and C) Two examples of CapaR-GFP flies with the carcass removed before CUBIC 
treatment show strong GFP expression in their MTs (white arrows). GFP is shown in green, and 
bright field channel is shown in red. 
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To obtain higher resolution images of the adult MTs, specimens were scanned 

using a two-photon microscope. This microscopy technique allows the 

observation of 3D structures with higher sensitivity than confocal microscopy 

(Helmchen and Denk, 2005). This technique has been used to observe other 

tissues such as the MG or HG, and combined with label-free Third Harmonic 

Generation (THG) imaging (Weigelin et al., 2016). Combining the specific GFP 

signal and THG imaging, the MTs and surrounding tissues’ morphology are easily 

observed in cellular detail in 3D (Figure 7.5.2). The resolution obtained using 

two-photon microscopy is considerably better than the resolution obtained using 

OPT, and, for example, the nuclei of the PCs can be easily distinguished (Figure 

7.5.2B). Also, two-photon microscopy offers increased depth penetration 

compared to confocal microscopy, thereby allowing better 3D images of whole-

fly MTs. 
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Figure 7.5.2. Adult MTs observed using multiphoton fluorescence microscopy. 
(A) Adult posterior CapaR>GFP MTs in an intact fly scanned with a two-photon microscope. Single 
cells can be identified. B’ and C’ are zoomed projections of the B and C squares, respectively. C’ 
shows the area of the hindgut visceral muscle where the MTs are attached (Hoch et al., 1994). All 
images are frames from a video generated with Imaris software. As these images are snapshots of 
the resulting .AVI file, they do not include a scale bar. 

Embryo imaging was also performed using two-photon microscopy. Embryos were 

dechorionated and fixed, but not processed with a CUBIC solution, as they are 

natively transparent enough to be observed with no need of clearing protocols. 

The 3D structure of their MTs stained with ct antibody could be easily identified 

(Figure 7.5.3). 

 

Figure 7.5.3. 3D structure of embryos observed using two-photon microscopy. 
3D stacks of a wild-type embryo (~stage 10) immunostained with ct antibody. The structure of the 
MTs can be observed in all the stacks (arrowheads). Orientation: top is posterior and bottom 
anterior. As these images are snapshots of the resulting .AVI file, they do not include a scale bar. 
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7.6 Discussion 

These experiments performed in BioCenter Oulu provided imaging of 3D intact 

organs without the need of dissections. Whole-specimen imaging methods are 

especially helpful for analyses where the localisation of the organ is essential, 

e.g. to identify defects in the migration of the MTs that could affect their 

stereotypical attachments.  

OPT technology has been previously used in other systems, such as mouse, 

Xenopus or zebrafish (Susaki and Ueda, 2016), but it has not been yet used in 

invertebrates. One of the main problems of this technique in arthropods is the 

difficulty to permeabilize and clear the insect cuticle. In this study, it has been 

shown that Drosophila is suitable for this technology, as long as the cuticle is 

manually removed. 

Alternative fixation systems could make the epidermis more permeable or 

transparent, e.g. via methanol fixation. This method of fixation can be 

recommended for specific types of tissues or antibodies, but the main 

disadvantages are that it does not preserve lipid structures or chromosome 

structures (Bonaccorsi et al., 2011). Another protocol step which can be 

modified is the clearing solution or the length of incubation. In this study, only 

the CUBCC solution has been used, but different methods, such as BABB or 

CLARITY (Susaki and Ueda, 2016) have been utilised in other systems that could 

also be suitable in Drosophila (Susaki and Ueda, 2016, Tainaka et al., 2016). A 

recent publication also presented an effective way to overcome some of these 

clearing difficulties (McConnell and Amos, 2018). Alternatively, other studies 

have investigated a non-invasive technology called X-ray micro-computed 

tomography (micro-CT) to stain whole-body Drosophila and internal organs 

(Fanenbruck et al., 2001), and recent work has used this same technology to 

stain the nervous system of this animal (Sombke et al., 2015), and a 

onychophoran limb (Müller et al., 2017) with stunning resolution results. Even 

though micro-CT technology allows a very high resolution and precise 

identification of internal organs, it is confined to small specimens, which can be 

a limiting condition for use in other organisms apart from Drosophila. 
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In contrast to the larval and adult samples, Drosophila embryos are easily 

imaged by two-photon microscopy, as they are more transparent and smaller. 

This allows an easier observation of 3D structures and tissue organisation in the 

embryonic development. However, although the images are shown here show a 

clear 3D structure of the MTs of the embryos, the results may not be much 

different using a standard confocal microscope. Therefore, the potential 

advantages that this technique could have using adult or larval specimens, it 

would not be applicable to embryonic samples, as, in the embryos, the use of a 

standard confocal microscope would be enough to observe any internal 

structures. However, it still would be a good for imaging live embryos, due to 

the improvement in depth and penetration. 

In conclusion, the method presented in this chapter could serve as a 

complementary way to observe 3D structures in Drosophila and could be used in 

a similar way to the 3D imaging methods employed in vertebrate systems. 

Further experimentation with different protocols and clearing/fixating 

approaches would be required to refine and optimise this technique in the larval 

and adult stages of Drosophila.  
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Appendix 12 Publications 

MARTÍNEZ-CORRALES, G., CABRERO, P., DOW, J. A., TERHZAZ, S. & DAVIES, S.-

A. 2019. Novel roles for GATAe in growth, maintenance and proliferation of cell 

populations in the Drosophila renal tubule. Development, 146, dev178087. 

DAVIES, S.-A., CABRERO, P., MARLEY, R., CORRALES, G. M., GHIMIRE, S., 

DORNAN, A. J. & DOW, J. A. 2019. Epithelial Function in the Drosophila 

Malpighian Tubule: An In Vivo Renal Model. Kidney Organogenesis. Springer. 
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