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Abstract 

While Light Emitting Diodes (LEDs) hold much potential as the future of lighting, the high 

junction temperatures generated during usage result in higher than expected degradation rates 

and premature failures ahead of the expected lifetime.  This problem is especially under-

addressed under conditions of high humidity, where there has been limited studies and 

standards to manage humidity based usage. This research provides an analysis of the factors 

that contribute to high junction temperatures and suggests prognostic techniques to aid in LED 

thermal management, specifically under humidity stress.   

First, this research investigates the effects of current, temperature and humidity on the 

electrical-optical-thermal (EOT) properties.  Temperature rises within an LED because of input 

stressors which cause heat to build up: the input current, the operating and ambient temperature, 

and the relative humidity of the environment.  Not only is there an accumulation of heat due to 

these factors that alter the thermal properties, but the electrical and optical characteristics are 

changed as well.  By uncovering specific configurations causing the EOT performance to 

degrade under stress, better thermal management techniques can be employed.   

Second, this research proceeds to quantitatively link the EOT performance degradation to the 

humidity causal factor.  The recent proliferation of LED usage in regions with high humidity 

has not corresponded with sufficient studies and standards governing LED test and usage under 

the humidity stressor. This has led to indeterminate use and consequentially, a lack of 

understanding of humidity based failures.  A novel humidity based degradation model (HBDM) 

is successfully developed to gauge the impact of the humidity stressor by means of an index 

which is shown to be an effective predictor of colour degradation.  This prognostication of the 

colour shift by the HBDM provides both academia and industry not only with an indicator of 

the physical degradation but also an assessment of the LED yellow-blue colour rendering 

stability, a critical application criterion.  Using the HBDM parameters as indicators of the state 

of the LED, the degradation study is expanded in the development of a Distance Measure 

approach to isolate degraded samples exceeding a specified multivariate boundary.  The 

HBDM and Distance Measure approach serve as powerful prognostic techniques in overall 

LED thermal management. 
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Chapter 1 

Introduction 

1.1 Research Motivation  

According to the U.S. Department of Energy, the average energy consumption of Light 

Emitting Diodes (LEDs) over its life cycle is about one quarter of the incandescent lamp energy 

consumption [8], which makes it an exciting potential as lighting source of the future.  

However, LED degradation due to high junction temperatures is the main limiting factor to its 

widespread adoption [9], and remains a major challenge to be addressed by researchers [10]. 

The main factors responsible for the degradation of LEDs are the electrical stress, the 

temperature at which it operates, and the relative humidity of the environment [11], all of which 

cause a build-up of heat and lead to subsequent damage.  The number of humidity related 

studies are significantly low [11], but with the advent of LED usage in harsher environmental 

conditions and environments, this is an area of research that should not be overlooked, 

considering that one fifth of electronic device failures are attributable to humidity [12].  In 

addition, current test standards do not include the humidity factor, which is particularly crucial 

for countries with high relative humidity. 

The degradation of the LED is primarily categorised into 2 kinds: lumen depreciation and 

colour shift, both of which result from the inherently high amount of heat accumulation [13].  

The colour shift is closely related to lumen depreciation of the LED and is a critical indicator 

of overall degradation.  Additionally, the colour shift is an important attribute where the 

evaluation depends on the chromaticity maintenance either for the same LED in various 

applications or various LEDs for the same application.  Most literature treat these two 

characteristics individually [14] even though they should be studied together.  The motivation 
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behind this research is the need to quantitatively link this degradation to its input stressor so as 

to provide a practical tool for overall thermal management.  Accordingly, a humidity based 

degradation model (HBDM) is developed that indicates the impact of humidity based on a 

comprehensive study of the effect of all 3 input factors on the electrical, optical and thermal 

characteristics of the LED.  This model is shown to be an effective predictor of colour 

degradation, providing system integrators, manufacturers and consumers alike not only an 

indicator of the physical degradation but also an assessment of the LED yellow-blue colour 

rendering stability.  Besides reliability prediction, an approach to issue advance failure 

warnings via early anomaly detection capability would help to improve future designs and aid 

in evidence based scheduled maintenance.  This need would be fulfilled by a deterministic 

model based on the performance of key features of the LED.  The methodology prescribed 

offers a cost-effective alternative to the resource-consuming component or functional testing 

currently used in industry.  Used together with the HBDM, the methodology provides effective 

overall thermal management of LEDs, which may be used also to complement existing 

solutions to provide LEDs with higher reliability. 

 

1.2 Objectives and Overview 

The primary objective of this research is to develop an approach to quantitatively link the 

degradation of LEDs to the input stressors which induce heat accumulation by comprehensive 

analyses of the impact of input stressors on the electrical-optical-thermal performance.  In the 

development of a model to serve this purpose, the following objectives are identified to achieve 

this goal. 
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1.  Develop proper measurement procedures to derive the electrical-optical-thermal (EOT) 

performance characteristics of the LED, in particular with regard to the temperature control 

during measurement (Chapter 3). 

2.  Establish how the inputs of current and temperature affect the EOT performance of LEDs 

of different Correlated Colour Temperatures (CCT) and packaging architectures, not only to 

ascertain critical thermal management principles but also to develop a platform upon which the 

parameters of the model will be based (Chapter 4). 

3.  Establish how humidity affects the EOT performance of different LEDs and their 

degradation mechanisms, to provide the failure characteristics in the development of the model 

(Chapter 5). 

4.  Develop a humidity based degradation model with the capability to quantitatively indicate 

the level of moisture incursion and the associated degradation of the correlated colour shift 

(Chapter 6).  

5.  Enhance the degradation model with the development of a method to detect LED 

degradation outliers using key interrelated features to provide the capability of early failure 

prediction (Chapter 6). 

Fig. 1.1 presents an overview of the research plan which is delineated into primarily 3 phases 

to encompass the above objectives. 
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  .  

Fig. 1.1.  Overview of Research Plan. 

 

Phase 1 work flow corresponds to Chapter 3 and 4, with the following key processes: 

1.  Establish baseline parametric measurements and process traceability.  As the EOT properties 

of an LED are interlinked with each other, it is crucial that the equipment setup when measuring 

these properties under varying temperature control is properly established so that there is 

consistency in all the results.   

2.  Conduct EOT characterization to investigate properties and performance of the LEDs under 

test, serving as the starting point for the research.   

3.  Identify and isolate anomalies either in the test samples or test methodology not previously 

identified.   
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4.  Investigate the degradation modes under conditions of high current and/or temperature.  As 

the phosphor layer is a key component of LED degradation, particular attention is paid to the 

impact of current and temperature on the phosphor layer. 

Phase 2 work flow corresponds to Chapter 5, with the following key processes: 

1.  Evaluate the effect of relative humidity on the EOT characteristics of the LED.  Degradation 

characteristics and data is used directly for the development of the model. 

2.  Conduct failure analysis to analyze the failure mechanism due to the moisture incursion.    

Phase 3 work flow corresponds to Chapter 6, with the following key processes: 

1.  Develop the humidity based degradation model based on the experimental data derived from 

the previous 2 phases. 

2.  Establish the rigour of the model with proper validation. 

Table 1.1 provides a summary of the major research proceedings in each phase in terms of their 

intended quantitative and qualitative objectives.  While some procedures are conducted 

concurrently, the activities in subsequent phases depend on the completion of those in the 

previous phases so that the desired outcome is achieved.   
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Table 1.1.  Quantitative and Qualitative Objectives of the Research by Phase. 

Descriptor Quantitative Objectives Qualitative Objectives 

Phase 1 

Instrumentation 

(Chapter 3) 
• Instrumentation setup for traceable 

measurement quantities 

• Establish t = 0 baseline parametric 

EOT quantities for subsequent 

experiments 

• Establish correct EOT 

methodologies and conditions 

for parametric measurements 

• Investigate and identify 

anomalous test conditions 

Thermal 

(Chapter 4)  
• EOT parametric measurements at 

varying operating temperature and 

currents for 3 types of LEDs:  

Electrical: P 

Optical: 𝛷, 𝛷𝑒, CCT, YBR 

Thermal: Trise, Rth 

• EOT parametric measurements at 

different operating temperatures for 

1 W LEDs at varying CCT levels 

• Investigate the impact of 

packaging on EOT 

characteristics  

• Investigate heat dissipation 

capabilities of bonding 

configurations 

Phase 2 

Reliability 

(Chapter 5)  
• Accelerated Temperature-Humidity 

Aging Tests to obtain parametric 

measurements at varying humidity 

levels and current @1000h 

intervals: 

Electrical: I-V, 𝑃, Rs 

Optical: 𝛷, 𝛷𝑒, CCT, YBR 

Thermal: Trise, Rth  

• SEM-EDX, Impedance (C-V)  

verification 

• Relate EOT reliability 

degradation behaviour to 

corresponding failure 

mechanisms  

• Investigate reliability heat 

dissipation capabilities of 

different packaging  

Phase 3 

Model 

Development 

(Chapter 6) 

• TM-21 based quantification of 

reliability results to determine 

degradation parameters  

𝛼, B  

• Degradation based humidity 

parametric computations to develop 

a humidity index 

• ∆YBR and Rth based profiling for 

model development 

• Establish degradation pattern 

of the different LEDs via use 

of experimental model  
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1.3 Novelty and Contribution 

In the course of the research, a number of unique discoveries and novel developments were 

made.  Some of the main novelties and contributions are: 

1.  A new approach to indicate the lumen degradation of LEDs due to the effects of humidity 

from which a humidity index was developed as a practical gauge of moisture incursion.  The 

degree of incursion is related to different failure mechanisms which varies across different 

types and brands of LEDs [15, 16].  A quantitative indication of the amount of incursion serves 

an analytical function to aid in the distinguishing of the mode or mechanism of failure.  The 

index also easily translates to remaining lifetime, which provides the user with the linkage 

between the impact of humidity and the lifespan of different LEDs.  While several non-

humidity based prognostication options exist for LEDs, in particular for remaining lifetime 

[17], this approach provides a humidity based model useful to both academia and industry.  In 

the LED manufacturing industry, the humidity index developed allows for sub-binning 

according to different levels of relative humidity instead of being broadly based at a single 

relative humidity level, giving a higher level of reliability precision catering for markets in 

different areas of the world with different relative humidity levels.  The index allows for stage 

checking in the binning process and a fast cost-effective means of ranking the quality of the 

binned LEDs, which would be useful in particular to LED system integrators.  The time-

dependent nature of the developed model also gives an extra dimension to the manufacturer to 

predict the long-term behaviour of the LED under specific humidity environments.  Such 

information provided in testing documentation or datasheets allows both system integrators 

and consumers alike to understand the range of proper operation for different humidity 

conditions and make the correct LED selection. 

2.  A novel way to predict the quantitative colour change in terms of the yellow-blue shift 

caused by a change in humidity levels. 
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Although colour shift is an important attribute of LED performance, there are currently no 

standards governing the colour stability [18].  Colour shift varies for different types of LEDs 

and fluctuate even within LEDs of the same power class [19].  Furthermore, there are relatively 

few studies on the impact of humidity on colour shift.  This research provides a comprehensive 

analysis of the effect of relative humidity on the critical parameters of LED performance, and 

provides a direct and effective approach to predict the colour shift from the lumens degradation 

based humidity index developed in the model.  In LED manufacturing, as lumens based binning 

is relatively straightforward and cheaper, this approach gives a fast and economical alternative 

to colour based binning, which can be complex and time-consuming [20].  In addition, the 

methodology may be used to complement existing component and functional testing of LEDs 

to improve product reliability.  This method presents manufacturers, system integrators and 

consumers a cost-effective verified colour shift prediction system for environments with 

different relative humidity.   

3.  A humidity-specific artificial neural network (ANN) simulation of the degradation model 

using six key degradation attributes.   

LED research methodologies in companies are well entrenched and the risk-benefit ratio of 

new methods may cause reluctance to their introduction, especially given the success of 

existing methods [21, 22].  As such LED studies using ANNs are almost non-existent in the 

public domain, especially given the competitive environment and proprietary nature of LED 

research and developmental methodologies [23-25].  Using the key attributes from the humidity 

based model developed, the ANN simulation provides a fast and efficient method to 

demonstrate the results of the prognostication.  It also serves as a platform for further 

enhancement with the variation of input parameters into the model not just for different types 

of LED and input conditions. 
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4.  A new Trivariate Distance Measure Approach using three interrelated features which 

provide good indication of the state of the LED.   

The results demonstrate that this approach is a more effective gauge of anomalies than using 

the usual screen test of one or two variables, which are inconsistent and have a high error rate 

without supplementary statistical evidence [26].  The method also provides a cheaper 

alternative to expensive hardware in physically detecting outliers in LED manufacturing and 

binning processes.  Unlike conventional statistical methods, this distance measure approach 

takes into account the covariance and correlation of the variables involved for greater accuracy 

in outlier detection.  Used together with the humidity based model, the approach provides a 

powerful tool for overall LED health management.  

5.  A comprehensive analysis of the impact of current and temperature on the efficiency and 

colour of LEDs with different CCT levels and package configurations, leading to the 

establishment of important thermal management principles. 

Current thermal studies have largely focussed on individual characteristics of the LED 

impacted by the stressor, usually driven by piecemeal developments in certain areas [27-33].  

The analysis presented provides a comprehensive investigation of the thermal impact by 

current and temperature stressors on different LED configurations, and also depicts the heat 

accumulation and dissipation profiles of such configurations by different packaging 

architectures.  The analysis contributes a thorough overall understanding of the linkages 

between various LED configurations and thermal performance, a critical issue when selecting 

the right LED for specific applications. 

6.  Discovery of key discrepancies for different temperature feedback systems utilized during 

thermal measurements which affect the final results.   

The widespread use of electrical sweep and transient thermal measurements in both industry 

and academia [34, 35] point to the importance of proper instrumental setup to ensure accurate 
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measurements.  Even slight deviation can snowball to possibly catastrophic errors leading to 

the failure of integrated LED products.  This investigation presented uncovers hitherto 

unreported inconsistencies in the routine temperature control settings used during 

measurements and details the setting changes required to ensure the correct results.  Proper 

control and procedures for different setups are proposed to prevent erroneous measurements 

being reported in LED data sheets and documents. 

 

1.4 Thesis Organization 

The thesis organization correspond to the phases of the research plan of Fig. 1.1 which 

represent a logical flow of the research. 

Chapter 3 presents key findings during instrumentation set-up and design of methodology 

during the initial stages of Phase 1.  Several anomalies involving temperature control were 

reported during EOT measurements to be taken into account during the experiments conducted 

subsequently. 

Chapter 4 describes the key research findings during Phase 1 experiments to study the thermal 

response of LEDs to varying input current and operation temperature.  Heat accumulation and 

dissipation characteristics of LEDs with different package configurations and CCTs were 

investigated with critical thermal management principles established.   

Besides the using of current and operating temperature as stressors in Phase 1, long-term 

exposure to high levels of humidity also induces thermal related degradation in LEDs, and is 

therefore an important aspect of thermal management.  Chapter 5 investigates the impact of 

long-term humidity effects on LEDs based on their packaging methods, which is the focus of 

Phase 2. 

Chapter 6 brings together the work done in previous phases and closes out Phase 3 with a 

humidity based degradation model (HBDM) built upon the characterization data from the 
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lumens degradation data.  A practical estimation method from the degradation behaviour is 

developed to gauge the moisture incursion by means of a novel humidity index.  In addition, a 

Trivariate Distance Measure approach (TDMA) based on the parameters of the HBDM as LED 

state indicators is developed to isolate LEDs failing a specified degradation threshold. 

1.5 List of Publications 

Table 1.2 is a list of publications that have been accepted and published as at present.  To date, 

three journal papers have been published, while two conference papers were presented and 

published, as shown below. 

Table 1.2.  List of accepted publications. 

Journal/ 

Conference 

Name 

Article Title Date  

Published 

Volume/Issue/ 

Page  

URL 

Journal Publications 

IEEE Photonics 

Journal 

A Practical 

Degradation Based 

Method to Predict 

Long-Term Moisture 

Incursion and Color 

Change in High 

Power LEDs 

Oct 2018 10/5/1-14 https://ieeexplor

e.ieee.org/docu

ment/8472891 

Journal of 

Electronic 

Packaging 

(American 

Society of 

Mechanical 

Engineers 

ASME) 

Effect of Packaging 

Architecture on the 

Optical and Thermal 

Performances of 

High-Power LEDs 

Feb 2017 139/3/031003-1 

to 031003-5 

http://electronic

packaging.asme

digitalcollection.

asme.org/article.

aspx?articleid=2

607880 

IEEE 

Transactions on 

Device and 

Materials 

Reliability 

Implications of 

Phosphor Coating on 

the Thermal 

Characteristics of 

Phosphor-Converted 

White LEDs 

 

Aug 2016 16/4/576-582 http://ieeexplore.

ieee.org/docume

nt/7557080/?rel

oad=true 

https://ieeexplore.ieee.org/document/8472891
https://ieeexplore.ieee.org/document/8472891
https://ieeexplore.ieee.org/document/8472891
http://electronicpackaging.asmedigitalcollection.asme.org/article.aspx?articleid=2607880
http://electronicpackaging.asmedigitalcollection.asme.org/article.aspx?articleid=2607880
http://electronicpackaging.asmedigitalcollection.asme.org/article.aspx?articleid=2607880
http://electronicpackaging.asmedigitalcollection.asme.org/article.aspx?articleid=2607880
http://electronicpackaging.asmedigitalcollection.asme.org/article.aspx?articleid=2607880
http://electronicpackaging.asmedigitalcollection.asme.org/article.aspx?articleid=2607880
http://ieeexplore.ieee.org/document/7557080/?reload=true
http://ieeexplore.ieee.org/document/7557080/?reload=true
http://ieeexplore.ieee.org/document/7557080/?reload=true
http://ieeexplore.ieee.org/document/7557080/?reload=true
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Conference Publications 

IEEE 18th 

Electronics 

Packaging and 

Technology 

Conference 

(EPTC), 2016 

 

Effects of humidity 

on the electro-optical-

thermal 

characteristics of 

high-power LEDs 

Feb 2017 2016/18/718-

723 

http://ieeexplore.

ieee.org/docume

nt/7861576/ 

IEEE 17th 

Electronics 

Packaging and 

Technology 

Conference 

(EPTC), 2015  

 

Achieving accurate 

electro-optical-

thermal 

measurements of 

high-power LEDs 

Feb 2016 2015/17/1-14 http://ieeexplore.

ieee.org/docume

nt/7412321/?rel

oad=true&arnu

mber=7412321 
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Chapter 2 

Literature Review 

2.1 The EOT Thermal-Humidity Model 

Advances in Gallium Nitride (GaN) based LED technology have led to widespread adoption 

of high power LEDs for lighting applications.  Because lighting makes up about 20% of energy 

usage in the world [36], a need arises for emerging lighting inventions to enhance energy 

utilization and yet simultaneously control carbon production.  GaN LEDs have the potential to 

become the light source of the future due to their high luminous efficacy, long expected lifetime 

and low overall cost of ownership.  The relationship between light output and the factors that 

influence it is a complicated one exemplified by Poppe and Lasance's "Light depends on 

everything" model [1] (Fig. 2.1).  The relationship shows that light and heat output are 

dependent upon the input current and the operating temperature, with these factors reliant on 

each other.  However, the electrical-optical-thermal (EOT) characteristics of the LED are also 

affected by reliability conditions such as humidity, which can invoke different mechanisms 

resulting in higher temperatures and optical losses.   

 

Fig. 2.1.  "Light Depends on Everything" Model [1]. 
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Current studies usually separate reliability from thermal research, but for proper thermal 

management, both thermal and reliability based stressors should be considered.  Accordingly, 

humidity may be treated as a stresssor like temperature and current, with demonstrated 

interdependence with other parameters in Poppe’s model.  A model to illustrate the inclusion 

of humidity as an input factor or stressor to the LED may then be represented in Fig. 2.2. 

 

Fig. 2.2.  The EOT Thermal-Humidity Model. 

 

The EOT Thermal-Humidity Model (Fig. 2.2) is an input-output based description of the main 

factors that influence the light output and heat generation in the LED.  It is unique as it 

incorporates the relatively little researched humidity dimension [11] which is not usually 

included in other thermal models.  Along with operating temperature and current, humidity is 

included as an external stressor to the LED.  As the work in Chapter 5 and 6 will show, humidity 

impacts the EOT output, which can be compared to the time-independent impact of the 

operating temperature and current (studied in Chapters 3 and 4).   
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This literature review is organized to address the effect of the stressors of current, temperature 

and humidity on the LED.  Following this, the state of quantitative and qualitative prognosis 

of LEDs is addressed as a precursor for the HBDM prognostic model presented in Chapter 6. 

 

2.2 Effect of current and temperature  

Phosphor converted LEDs (pcLEDs) are manufactured by combining phosphor materials with 

the chip.  As the phosphor medium plays such a key role in determining the electrical, optical 

and thermal properties of the LED, it is essential to understand its behaviour with different 

configurations and under different stressors.   

The most widely used and commercially available pcLEDs are based on an InGaN LED chip 

with the Yttrium Aluminum Garnet: Cerium (YAG:Ce) phosphor.  The phosphor host emits 

yellow light (photoluminescence) due to the excitation of blue light (electroluminescence) from 

the InGaN LED chip, and the mixing of the blue and yellow light produces white light.  By 

altering the properties of the phosphor layer, such as thickness, concentration and location etc, 

a wide range of CCT (Correlated Colour Temperature) values can be realized.  The CCT value 

is the temperature of a blackbody radiator closest in appearance attempting to use a single 

number to characterize a full spectrum [2].  In Fig. 2.3, the International Commission on 

Illumination (CIE) chromaticity diagram depicts the relationship between chromaticity 

(defined by the xy colour chromaticity coordinate system) and assigned CCT level.  This 

chromaticity system is used extensively as the primary binning scheme by LED manufacturers.  

The system however does not take into account the impact of variation of input current, 

operating temperature or relative humidity on colour output, areas that are explored in 

subsequent chapters, in particular with respect to the role of the phosphor layer (Chapter 4), 

which is responsible for the colour output of pcLEDs. 
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Fig. 2.3.  The CIE 1931 Chromaticity Diagram [2] as it relates chromaticity to CCT levels.  

The x and y coordinate system in this diagram defines the derived parameters for 

chromaticity in the CIE colour space.  The ellipses (MacAdam ellipses) are the regions 

containing those colours which are indistinguishable to the average human eye from the 

colour at the center of the ellipse. 

 

 

The thickness and concentration of the phosphor layer as well as the phosphor particle size are 

found to strongly influence the luminous efficacy and the colour chromaticity and Colour 

Rendering Index (CRI) of the light emitted.  The CRI is a quantitative measure of  the LED’s 

ability to display its colour output in comparison to a given standard.  The CRI is calculated 

from the differences in the chromaticities of eight CIE standard colour samples (CIE 1995 

standard) when illuminated by a light source and by a reference illuminant of the same CCT 

[37].  Tran et al. [3] demonstrated that the lumen output can be improved by regulating the 

phosphor layer thickness and concentration of the phosphor particles in the phosphor layer.  It 

has been shown that backscattering and back reflection of light within the LED package can 
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also be minimized by employing optimally sized phosphor particles [4, 38].  With an increase 

of the phosphor concentration, the CCT output of LED packages decreases because the 

increased phosphor concentration increases the probability or the amount of blue light being 

absorbed and correspondingly converted to yellow light, and thus results in a higher yellow-

to-blue power ratio and hence lower CCT since yellow light has lower CCT.  

As shown in Fig. 2.4(a), the lumen output also decreases with increasing phosphor 

concentration.  As the phosphor concentration increases, there is an associated increase in 

backscattering and absorption loss by the packaging materials.  The absorption loss incurred 

by this increase in phosphor concentration becomes higher than the positive effect of blue-to-

yellow conversion on the luminous efficacy, and the lumen output thus begins to decrease, as 

demonstrated by Tran et. al [3] . 

In terms of phosphor thickness, the package with higher phosphor thickness has higher lumen 

output than the package with lower phosphor thickness (Fig 2.3(b)).  This improvement in 

lumen output is due to the reduction in optical trapping and an increase in the average distance 

between the phosphor particles and the LED die.  When phosphor thickness increases, the 

phosphor concentration decreases, thereby obtaining the same CCT value as the package with 

lower phosphor thickness.  Lower phosphor concentration reduces the optical trapping modes 

of light inside a package by the phosphor particles, especially yellow light, and thus reduces 

light absorption loss by the packaging materials [39]. 
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Fig. 2.4.  Lumen dependence on (a) phosphor concentration with phosphor thickness h fixed 

at 0.8 mm, and (b) as a function of CCT and phosphor thickness h [3].   
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The phosphor particle size affects the scattering intensity and absorption of light within the 

LED [4].  The scattering intensity distribution of the excitation light and phosphor-emitted light 

depends on the phase function, which is a function of phosphor size, wavelength, and refractive 

index of the phosphor particle and the medium.  Phosphor particles of different sizes scatter 

different amount of light with different angular distribution, and a smaller particle size scatters 

more light than a larger particle size.   

As the particle size increases from a nanosize to submicron size, the lumen output decreases.  

As the particle size continues to increase from the submicron size, the composite becomes more 

and more transparent to the visible light.  The increase in light transparency reduces the 

trapping efficiency caused by the scattering of particles and the lumen output thus increases as 

there is more light output and less yellow emission.  As shown in Fig. 2.5, the lumen output 

reaches its maximum value at the particle size of around 20 m  [4].   

 

Fig. 2.5.  Lumen output of LEDs with different particle sizes [4].  D indicates the diameter 

of the particles (in µm) only for this figure. 
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The relative conversion efficiency is the ratio of conversion efficiency to maximum conversion 

efficiency.  The conversion efficiency 
 𝑐𝑜𝑛𝑣

 is defined as the ratio of the emitted power of light 

by the LED package to the power of light emitted by the LED chip while the maximum 

conversion efficiency [4] is defined as: 


𝑚𝑎𝑥 𝑐𝑜𝑛𝑣

=
(𝑃𝐵 − 𝑃𝐵𝑓) × 

𝑃
+ 𝑃𝐵𝑓

𝑃𝐵
 

(2.1) 

where 𝑃𝐵 is the power of light (blue) emitted by the LED chip, 𝑃𝐵𝑓 is the power of blue light 

in the dichromatic white light output of a pc-white LED, and 
𝑃

 is the conversion efficiency 

of phosphor material.   

To demonstrate this concept in relation to the LEDs used in this thesis, experiments were 

conducted to extract the relevant parameters under conditions of varying current and 

temperature for 3 types of LEDs (1 W Philips P1W, 1 W Seoul Semiconductor S1W and 0.3 

W Seoul Semiconductor S03W).  5 samples were used for each type of LED to investigate the 

relative conversion efficiency.  Under varying current density, the operating temperature used 

was 20 C (Fig. 2.6(a)).  Under varying temperature, 350 mA driving input current was applied 

to both P1W and S1W, while 100 mA driving input current was applied to S03W (Fig. 2.6(b)).  

The mean relative conversion efficiency conv/max conv for all the samples with respect to 

current density and temperature were computed and plotted in Fig. 2.6.  When current is applied 

to the LED structure, the amount of light emitted from the LED is governed by the carrier 

continuity model.  At a sufficiently high current density where radiative recombination 

dominates over the non-radiative processes, high external quantum efficiency is observed.  As 

the drive current increases, the accompanying device self-heating effect leads to a higher 

amount of non-radiative recombination processes.  This causes the external quantum efficiency 

to reduce with current density.   
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Fig. 2.6. Relative conversion efficiency for P1W, S1W and S03W, (a) as a function of current 

density and (b) as a function of temperature.  Data points represent the average (mean) 

relative conversion efficiency of all samples tested. 
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On the other hand, the relative efficiency is seen to increase with higher operating temperature.  

The radiant flux for all 3 LEDs decreases with increasing temperature but the rate of decrease 

is less than that of the relative conversion efficiency with temperature.  As such, the overall 

relative efficiency is seen to increase in spite of the reduced phosphor conversion efficiency 

with temperature.   

A gap in LED research studies exists for the comprehensive analysis of the behaviour of 

different phosphor configurations under both temperature and current stress.  In Chapter 4, 

LEDs with different phosphor configurations and die-bonding architectures are compared in 

relation to CCT levels for insights into the role of the phosphor in the EOT characteristics. 

The optical losses bring upon the implication of phosphor self-heating effect [40-43] which 

may exacerbate the package’s thermal load and as a result, reduce the optical light output 

further. Huang and Yang [40] have shown that 25% to 45% of the radiant energy emitted from 

the LED chip is lost as heat during the process of down converting high energy blue light into 

relatively lower energy yellow light.  The heat generated by the phosphor particles not only 

increase the junction temperature of the LED device, but may also cause phosphor quenching.  

This will inevitably lower the optical efficiency and may raise thermal issues that could cause 

materials degradation.  

Lago et al. [41] reported significant temperature rise on remote phosphor plates under blue 

light irradiation.  Simulations on the optical-thermal interactions in the phosphor particles were 

also conducted to understand the phosphor self-heating effect [42, 43].  The temperature on the 

phosphor layer is found to be significantly higher than the LED junction temperature and this 

changes the photometric and colorimetric properties of the white light emitted.  Although it is 

recognized that the phosphor particles generate self-heating, its implications on package-level 

thermal performance have not been well understood.  Heat generation in the phosphor layer 
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should be taken into consideration in the packaging design to improve the phosphor’s 

conversion efficiency and prevent abrupt emitter failure.   

As the heat generated by the LED device and the phosphor layer is transferred mainly through 

its package [30], poor thermal management will not only change the light output in terms of 

intensity and chromaticity shift but may also cause permanent deterioration in materials such 

as silicone yellowing, silicone carbonization and even delamination [44, 45].  As such, thermal 

analyses in terms of LED junction temperature Tj and thermal resistance Rth were conducted 

to understand the heat dissipation capabilities in the package [46-49].  Tao et al. [46] calculated 

that the Rth of their LED packages reduced with higher input power.  However, Yang et al. [47] 

observed two differing Rth trends as a function of input power between a single- and multi-chip 

LED package and attributed it to the differences in the power dissipated by the internal series 

electrical resistances.  Electrical resistance is based on a single dimensional electrical current 

flow path whereas Rth is typically three-dimensional.  As such, the differing Rth trends can also 

be attributed to the packaging architecture since the amount of heat accumulation and heat 

transfer depends on the heat dissipation capabilities within the package [50, 51].  Under 

practical circumstances, the LED junction temperature and its associated Rth in the package are 

also poised to change with its operating temperature.  Chapter 4 addresses this need to 

understand the thermal capabilities for different types of packages. 

 

2.3 Effect of Humidity 

Studies on humidity aging in LEDs are very scarce [11] with most research centred on generic 

reliability behaviour of LEDs.  The humidity based degradation of LEDs over time may 

primarily be divided into LED-based failure (e.g. generation of nonradiative defects) or 

package-related degradation (e.g. degradation of ohmic contact, coloration of epoxy) [6].  With 
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chip failure, the increased defects and activated dopant caused the tunnelling components of 

the current to keep increasing in the subsequent ageing process [52].  The high density of line 

defects  (dislocations) induced in the epilayer process were responsible for the tunnelling 

currents of GaN-based LEDs [53].  

Hu et al. [5] showed that at chip level, the effect of the defects during aging may be represented 

by equation 2.2 which combines the expression for the Shockley–Read–Hall (SRH) 

recombination rate [54] into the continuity equation for injected electron density [55] at steady-

state conditions to give: 

 

𝐿𝑒 = 𝐵𝑟𝑎𝑑𝛾2 =
𝐽𝐷

𝑒𝑑
−

(𝑁𝑑𝑣𝑡ℎ𝜖)𝛾

2
 

(2.2) 

 

where 𝐿𝑒 is the photon emission rate, 𝐽𝐷 is the electron current density, 𝑒 the unit elementary 

charge, 𝑑 the thickness of the active layer, 𝐵𝑟𝑎𝑑 the radiative recombination coefficient, 𝛾 the 

carrier density, 𝑁𝑑  the defect density, 𝑣𝑡ℎ the thermal velocity and 𝜖 the capture cross section.  

Assuming the thermal velocities and the capture cross sections are equal for both carrier types, 

the increase in the defect density 𝑁𝑑  results in a decrease in the total light intensity for a certain 

input current [5].  

As shown in Fig. 2.7, the I-V characteristics of an LED at low bias regions, show the current 

increases after degradation.  This indicates the generation of defects, which cause additional 

channels in the active layers.  At high bias voltages, the LED shows an increase of series 

resistances due to the increase of the parasitic resistive components of the semiconductor and 

contact layers.  This results in the decrease in the ability of the current and emission spreading 

at the device surface, and the subsequent loss in optical power. 
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Fig. 2.7.  I-V characteristics during the aging process.  (Inset: Enlarged view of currents at 

high voltages) [5]. 

 

At the package level, Huang et al. [56] reported that some of the modes seen due to humidity 

include silicone carbonization, package encapsulant yellowing, blackening of silver-coating 

lead frames and phosphor dissolution.  Under high humidity conditions, the optical output 

degradation is related to both these package and LED problems.  Moisture diffuses into the 

interfaces of packaging material which causes a decrease in light output [57] while chip failure 

causes the blue intensity to degrade faster than the yellow intensity of the optical output [58].  

Moisture inside LED packaging may also cause Rth to increase, due to delamination between 

chip and substrate in high moisture content environments [59, 60].  This exacerbates the 

package's thermal load, bringing about a corresponding increase in Tj and Rth. 

There are currently no technical standards which consider LED operation under high humid 

conditions [61, 62], which presents an issue especially for countries with high relative 
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humidity.  There exists a need to study the thermal characteristics of LEDs in humidity aging 

under different package configurations for proper thermal management.  In addition, there is 

much potential to further the research not only on lumens output, but in particular on the colour 

shift and its linkage to the humidity based degradation of the LED. 

 

2.4 LED Prognostication 

Reliability studies arise from the need to understand the EOT performance of LEDs under high 

temperatures or humidity while over time.  Armed with this knowledge, the logical progression 

would be to predict the future reliability by assessing the extent of deviation of the LED from 

its normal operating conditions [63].  Accordingly, prognostic techniques are applied to LEDs 

with the intention of improving future performance.  Table 2.1 provides a summary of the main 

methods or models used in LED prognostication.  Essentially, they can be divided into data-

driven and physics-based methods.  

 

Table 2.1.  Summary of main LED Prognostication methods. 

Statistical models Probabilistic models Computational 

models 

Physics-based 

Models  

Linear/non-linear 

regression 

 

Distance measuring 

Two-stage method 

Logistic regression 

Approximation 

method 

 

Analytical methods 

Bayesian Network 

Kalman filter 

Particle filter 

Hidden Markov 

Artificial Neural 

Network 

Support Vector 

Machine 

General Physics 

of Failure (POF) 

 

Special Physics 

of Failure (POF) 

 

Empirical  
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Statistical, probabilistic and computational models generally come under the purview of data 

driven (DD) models because these methods utilize observed or monitored data to identify the 

system state and forecast future reliability without using physical models.  Physics-based 

models on the other hand use a physical model to describe the degradation combined with 

measured data to predict future behaviour.  DD methods are currently the most widespread 

methods used for LED prognostics.  DD studies of LED degradation are commonly analyzed 

by linear or nonlinear statistical regression methods.  Examples of linear regression techniques 

are the Euclidean Distance and Mahalanobis Distance techniques, which have been used to 

measure the degradation of an LED’s light output based on the two variables of junction 

temperature and operating current [64] from which linear extrapolation is then used to predict 

the remaining useful life of LEDs.  However, the Euclidean Distance assumes the data to be 

isotropically Gaussian, and does not take into account the association between the variables, 

whereas the Mahalanobis Distance is particularly useful for correlated variables, particularly 

in multivariate space.  For nonlinear regression, commonly used approaches include the 

exponential function, the inverse power law model, and the Arrhenius model.  For example, 

the Illuminating Engineering Society IES TM-21 standard [65] uses the exponential regression 

model and least-squares regression (LSR) approach to project the long-term luminous flux 

maintenance under different operational conditions.  However, in actual practice, the IES TM-

21 generates large errors caused by different types of uncertainties, such as discontinuous 

measurement, operating environment, and future load [66].  This methodology also does not 

provide statistical or detailed reliability information on its own.  

There are also many variants or combinations of the regression methods such as the two-stage 

method, approximation methods, analytical methods, the Wiener process, the Gaussian 

process, and the gamma process, the use of each dependent upon specific requirements.  For 

example, the general degradation path model by Lu and Meeker [67] describes a statistical 
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method in which degradation measures were used to estimate a time-to-failure distribution.  

Based on this general degradation path model, Fan et al. [68, 69] proposed a model combining 

several regression methods (approximation approach, analytical approach, and two-stage 

method) and statistical models (Weibull, lognormal, and normal) optimized to predict LED 

lifetime.  

While Wiener processes are useful for many degradation modelling applications, it is 

appropriate when the degradation process varies bidirectionally over time with Gaussian noise.  

For example, Huang et al. [70] used an efficient likelihood function employing a modified 

Wiener process to produce results matching IES TM-21 lifetime predictions, following 

previous research on the Wiener diffusion process by Tsai et al. [71]. However, for one-

directional processes like LED light output degradation, the gamma process is a more 

appropriate model where the degradation over time may be split up into sequential steps and 

modelled by the gamma distribution [72].  However, because this approach is inherently 

complicated and difficult to analyze, other algorithms (for example Markov chain Monte Carlo) 

are likely to be necessary to obtain the unknown parameters.  Other DD methods not primarily 

involving statistical regression include Bayesian networks, Kalman filters and Particle filter 

methods.  While Bayesian methods are simple to build and modify even with incomplete data, 

the method is only suitable for time independent data, besides needing structural historical 

information regarding the cause and effects of failures [73].  For example, Lall et al. use 

Bayesian probabilistic models [74] to analyze LED degradation with a statistical approach 

which establishes the failure threshold decay rate using the Arrhenius model as a basis, but 

omitting the effects of current or humidity.  Alternatively, the Kalman Filtering method is an 

effective technique for state estimation for linear systems, but may not be as suitable for non-

linear systems.  Accordingly, variants such as the unscented Kalman Filter developed by Fan 

et al. [75] to predict the future LED chromaticity state alleviate this problem by using a 



49 

 

deterministic sampling approach.  This approach is however still encumbered by the 

complexity of the state estimation model.  On the other hand, the Particle Filtering method is 

better suited for highly non-linear processes.  Fan et al. depict a particle filter-based approach 

[76] based on both Sequential Monte Carlo and Bayesian techniques to predict the lumen 

maintenance life.  This method is reported as having a higher accuracy in predicting the long-

term lumen maintenance life.  However, the prediction accuracy of the Particle Filtering 

method is highly dependent on parametric initialization and thus limits the suitability for new 

LED products.   

Although artificial neural network modeling is a DD method widely used in prognostics [17, 

77, 78], they are almost non-existent in LED studies.   ANNs provides an estimated output 

from a mathematical representation derived from observed data.  The main advantage of ANN 

is that the output is not dependent upon an understanding of the physical or functional 

mechanism of the system it seeks to model.  As such, ANN can be applied to model complex 

and unstable systems, although the quality of the output is determined by the integrity of the 

inputs which need to be well chosen.   

Despite ANNs being appropriate for LED prognostic study, such methods related to LEDs are 

rare.  LED research methodologies in companies are well established and rooted due to 

commercial or proprietary reasons.  The benefits of new research technology introduction may 

not outweigh the resource or financial setbacks involved, leading to some degree of resistance  

to their introduction, especially given the success of existing methods [21, 22].  In addition, 

most of such systems are dedicated product-specific applications considered corporate secrets 

and are shrouded in secrecy given the intense competition within a specific industry [79, 80], 

explaining the lack of such models in the public domain.  As such LED studies using ANNs 

are almost non-existent in the public domain, especially given the competitive environment 

and proprietary nature of LED research and developmental methodologies [23-25].  The only 
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such application relevant to LEDs found was a simple neural network developed by Sutharssan 

[81], which served as a basic preliminary prognostic tool to diagnose the state of LEDs.  

The use of the highly computationally efficient ANNs has much potential for analyzing LED 

reliability, which can have complex, non-linear processes unsuitable for other deterministic 

models.  The ANN model presented in Chapter 6 is a feed forward network using six key 

attributes or indicators of LED degradation to model the humidity based degradation model 

developed.  Although the degradation of the LED is of great interest as this is a limiting factor 

to its widespread adoption, there is comparatively little research in LED reliability, particularly 

with humidity as a stress factor [82].  While other studies investigate lumen degradation from 

primarily qualitative approach [56, 83, 84], the scarcity of research taking into account the 

impact of relative humidity specifically and its corresponding association with colour 

degradation is notable.  Despite LED lumen depreciation and colour shift being two critical 

modes of degradation of the LED which should be analyzed in tandem, most literature treat 

these two as independent phenomena [14, 31, 85-88].  Although the requirement for colour 

consistency has become more important than lumen maintenance in many applications, 

prediction models involving colour shift are limited [89].  The spectral power distribution 

(SPD) is the quantitative inference of an LED’s colour shift process and both the lumen 

depreciation and colour shift are related to the SPD since photometric and colorimetric 

parameters such as luminous flux, Correlated Colour Temperature (CCT), and yellow-to-blue 

spectral ratio (YBR) can be computed from the SPD.  Based on the SPD analysis, Qian et al. 

[89] predicted both lumen depreciation and colour shift by using the prediction of the 

evolutionary degradation process of the SPD to predict the lumen and associated colour drift 

curves based on the CIE (International Commission on Illumination) 1976 chromaticity 

coordinate system.  The YBR is another indicator of colour shift which has the advantage of 

also being a way to indicate the LED failure mechanism.  Greater degradation of the blue 



51 

 

intensity over yellow is likely related to chip failure while the reverse is suggested to be due to 

phosphor degradation [6, 58].  Under high stress conditions which incur higher degradation 

rates and colour change, a method to predict YBR colour shift would be particularly practical 

as an indication of the likely failure mechanism due to more pronounced symptoms.  In Chapter 

6, such a prognostication model based on the LED degradation behaviour is proposed not only 

to quantitatively gauge the long-term moisture incursion, but also to predict the colour shift 

due to the humidity.   

To provide the capability to filter anomalies, the study is taken further to propose a novel 

trivariate Distance Measure approach.  This approach is more accurate than univariate analysis 

and other Distance Measure techniques as it takes into account the actual correlations and 

covariance of the selected features, and does not require any assumptions about the data 

distribution.  The degradation rate, the colour shift and Rth change are the interdependent 

features specifically extracted for this method as they are critical indicators of the physical state 

of the LED.  Used together, these two methods provide powerful prognostic tools in LED health 

management. 
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Chapter 3  

Effect of Temperature Control  

3.1 Introduction 

Currently, LEDs generate significant amount of heat fluxes with only about 40-50% of the 

electrical input power being converted into visible light [18].  The high heat generation affects 

not only the optical light output, but also the reliability of the LED package.  Tj and Rth are 

typical parameters used to compare the thermal performance and heat dissipation capabilities 

of LEDs.  System designers rely on these parameters to ensure the LED specifications are 

within safe operational limits [46].  Tj affects the LED optical performance and luminous 

efficacy [90] while the Rth is an indicator of the heat dissipation capabilities of the LED. 

Thermal resistance models can also show changes in the heat transfer path which cause 

irregular escalation of Tj leading to possible premature failure or accelerated degradation [50].  

Rth may also be used as a gauge of any modifications of the thermal interface material or the 

GaN which occur with the increase in heat due to the changes in conductivity as a function of 

either drive current or operating temperature [91].  Moreover, the measured series resistance is 

linked to the thermal effects [28, 92] of LEDs in that an elevated series resistance is observed 

to be consistent with thermal degradation as the current is varied.  The series resistance is also 

a key component in the LED conversion efficiency as the temperature increases [93].  

Furthermore, the series resistance indicates the maximum chip size and power density limits 

within which the LED can perform effectively [92].  In consideration of the significance of the 

parameters discussed, it is imperative that the methodology or measurement techniques used 

to derive these quantities are sufficiently thorough so as to produce reliable and accurate data. 
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Larger LED chip sizes and higher LED packing densities such as Chip-on-Board (COB) 

packaging architectures are now more pervasive as the industry demand for higher power 

density applications increases.  These high power density applications provide serious thermal 

challenges as the input power to the LED is controlled by the maximum temperature rating of 

the materials in the LED package and the intended application environment of the luminaire.  

With the growing pace of technological advancements in high power device fabrication and 

processes recently, it is important for LED characterization and measurement techniques to 

also keep up so that the resulting data is both dependable and reflective of the true status of the 

LED performance.  Lighting system designers and LED integrators rely on specifications from 

the manufacturer to provide system solutions for their customers while the final consumers 

themselves use these datasheets for product comparisons.  In case of data inaccuracies, the 

released data will be of limited functional use as the overall validity of the final performance 

and reliability estimations computed cannot be depended upon.  This concern is highlighted by 

Poppe and Lasance [94, 95] who recommended a higher level of sophistication in LED thermal 

characterization and standardization of LEDs and LED-based products.  This research 

highlights the possibility of ambiguity faced in optical, electrical and thermal characterization 

of high-power LEDs due to the temperature control set-up mode and the need for measures to 

ensure accurate measurement results. 

3.2 Experimental Setup and Procedures 

3.2.1 Instrumentation Setup 

Fig. 3.1 shows the components of the measurement station set-up to study the optical-electrical-

thermal properties of the LED under different temperature feedback controls.  This LED 

measurement station comprises a Labsphere 20” integrating hemi-sphere system, a Peltier-

based temperature controller (TEC), a Keithley 2602A Source Meter and a Mentor Graphics 
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T3ster Transient Thermal Analyzer.  To establish traceable optical measurement, a reference 

lamp calibration and absorption correction were conducted before measurements.  The LED is 

secured onto a temperature-controlled surface with an accuracy of up to 0.1 C or using the 

T3ster thermostat module to ensure the same thermal conditions during both optical and 

thermal analyses.  The photometric and colorimetric properties of the emitted light output are 

measured using a spectro-radiometer.     

Thermal measurement, which includes LED Tj and transient thermal response, are 

approximated by means of the electrical forward voltage VF of the LED. [96].  The time-

dependent behaviour of the heat flow path in the LED packages are analyzed using the structure 

function-based evaluation of the thermal transient measurements.  Rth is usually calculated 

from the change of temperature rise Trise in a package under a fixed applied heat input power 

PH.  Since optical light radiation is emitted out of the LED, the remaining heat dissipated power 

is thus determined by the difference between the supplied electrical input power and the optical 

radiant output.  The total radiant flux emitted from the LED is factored into consideration for 

the calculation of the real thermal resistance, Rth-real.  Electrical I-V measurement is conducted 

prior to and after the optical-thermal measurements to ensure that device does not degrade 

significantly during testing.  This instrumentation setup is utilized for all electrical, optical and 

thermal measurements done in this and subsequent chapters. 

 
Fig. 3.1.  Schematic layout of LED measurement set-up. 
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3.2.2 Experimental Procedures 

The LED package used in this experiment was the Cree CXA1304 COB LED package which 

has a maximum rating of 1 A.  The LED array in this COB LED package is arranged in 4 

parallel paths, each with 3 LEDs connected in series.  A thermistor was attached onto the Tj 

test point of the package to provide temperature feedback for the controller as it regulates the 

temperature.  In view of the nature of testing, the IES LM80-08 [97] test standard was adopted 

with a sample size of 20 chosen to undergo electrical, optical and thermal measurements using 

the setup described.  In Fig. 3.2 and Fig. 3.3, each data point represents the mean value of 20 

samples while the rest of the figures in the chapter show the results based on the data for one 

LED which represents the behaviour of all the samples.  In this and subsequent chapters, the 

figures which show individual LED results mentioned in the captions represent all tested 

samples include electrical sweep (I-V) measurements, spectral power distributions (SPD) and 

thermal responses, i.e. structure functions, where illustration of multiple results in the diagrams 

is impractical and where the intended focus is to demonstrate a qualitative effect or response.  

In all other diagrams, the data points represent the mean value of the data collected. 

The controller uses two forms of temperature feedback control – open-loop (pulsed) and close-

loop (adaptive) – to regulate the requisite temperature.  In the open-loop mode, the temperature 

controller gives a constant-pulse input power under a fixed duty cycle in order to obtain the 

required temperature.  In the close-loop mode, the thermistor supplies constant temperature 

feedback at 10 Hz to the controller.  For all measurements, a data acquisition (DAQ) unit was 

used not only to monitor the input power to the TEC module and LED, but also the surface 

temperatures of the LED, the TEC cold plate, and its environment.   
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3.3 Results and Discussion 

3.3.1 Optical Measurements 

The optical characteristics and the relation to the heat load are initially studied.  To assess the 

optical performance of the LED package, measurements were made at different temperature 

and input current settings.  As the temperature increases at a fixed current input of 5W, the 

radiant flux and luminous efficacy show a decreasing trend (Fig. 3.2(a)).  However, the heat 

flux from the LED QLED-heat, which was calculated by subtracting the total radiant flux from the 

electrical input power, shows a reciprocal response to the radiant flux with respect to 

temperature.  This demonstrates that a higher heat load is brought about with increased 

operating temperatures.  This higher heat load was caused by an increase in non-radiative 

recombination processes and increased leakage currents in the quantum wells of the LED at 

higher operating temperatures [43, 98].  On the other hand however, an elevation in power 

raises the quantum efficiency resulting in greater radiant flux output while producing much 

higher heat (Fig. 3.2(b)) at a constant operating temperature of 45 C, which is opposite to the 

observed effect of increasing temperature.  This considerably larger heat in turn causes a greater 

decrease in luminous efficacy with input power [99].  As the drive current rises, the LED self-

heating effect causes a larger quantity of non-radiative recombination processes, resulting in 

the light output lessening with power.  This decrease of luminous efficacy with rising power 

has been associated to mechanisms like current leakage [100, 101], which is further related to 

increased series resistances at elevated current levels.  It has also been suggested that the Auger 

recombination process takes place at higher current densities [102].  From the radiant flux 

measured at different input power, the QLED-heat trends can be derived for increasing operating 

temperatures as shown in Fig. 3.3.  The effect of power increase on the heat load is observed 

to be more substantial than that of operating temperature.  The large amount of heat produced 
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by the LED at increased temperatures and input power lead to a higher LED Tj and may 

correspondingly change the temperature conditions during measurement hence inadvertently 

altering the parameters obtained from the procedure.  This issue and its consequences will be 

discussed in detail in the following sections.  

 
 

 
Fig. 3.2.  Radiant flux, heat flux and luminous efficacy of the LED under (a) varying 

temperature at constant 5W input power (b) varying input power at constant 45 C 

temperature.   
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Fig. 3.3.  Heat flux QLED-heat rise with increasing operating temperatures for different input 

powers.   

 

 

3.3.2 Electrical Measurements 

To investigate the electrical characteristics of the LED device, current-voltage (I-V) 

measurements were conducted.  To make sure that the device is kept at a constant temperature 

throughout measurement, the LED is seated onto a Peltier-controlled plate.  In the closed-loop 

approach, a voltage sweep is applied during which a high amount of heat can be generated by 

the high-power LEDs.  The measurements for this experiment are conducted separately at 4 

different operating temperatures  (30 C , 45 C, 60 C  and 75 C).  The surface temperature 

of the LED rises accordingly within this measurement period as demonstrated in Fig. 3.4(a).  

This temperature increase begins at 7 s, attaining a peak of 8 C at about 12 s (Fig. 3.4(a)).  

After reaching the peak, temperature regulation provided by the TEC causes the temperature 

to gradually reduce.  The heat produced by the LED activates the TEC to compensate for the 

increased heat load so as to control the required temperature setting and adjust it back to the 
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original operating temperature.  However, as shown in Fig. 3.4(b), the TEC has a delayed 

response to the heat produced by the LED and does not compensate sufficiently fast enough to 

adjust the temperature back to its original setting during the measurement period.  This lack of 

an instantaneous response from the TEC means that the LED has not been truly maintained at 

a fixed temperature during the entire voltage sweep.  The TEC overcompensates eventually 

resulting in the negative temperature rise seen.  The higher the operating temperature, the 

quicker the temperature rise reduces to a negative value.  At 75 C operating temperature, the 

temperature rise reduces to a negative value at 25 s while at 30 C operating temperature, this 

negative decrease happens at 33 s.  As the operating temperature increases, the increased heat 

flux brings about a more aggressive response from the TEC as it attempts to reinstate the initial 

temperature. 

An elevated voltage indicates that the TEC attempts to decrease the temperature while a 

reduction in the voltage output shows that the TEC attempts to raise the temperature.  The TEC 

voltage dip at about 17 s causes the rate of temperature decrease to slow down until the 

temperature rise eventually bottoms out at about 55 s.  The amount of TEC outputs differs 

because of the greater amount of heat flux generated by the LED as the operating temperature 

increases.  The temperature rise reaches its lowest value of -3.5 C for 75 C operating 

temperature compared to -1 C for 30 C operating temperature because of the larger TEC 

output as the heat flux increases with correspondingly higher temperatures.  The TEC voltage 

subsequently alternates between increasing and decreasing trends in its effort of steadily 

facilitating the LED temperature back to its initial operating temperature at the beginning of 

the experiment. 
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Fig. 3.4.  (a) The surface temperature rise of the LED and (b) the corresponding TEC 

response during the voltage sweep of LED with input current 1 A.  This figure shows the 

results based on the data for one LED and is representative of all the samples. 

 

In order to investigate in detail the self-heating effect during electrical measurement, the I-V 

testing was also conducted manually.  This procedure involves physically measuring the 

current individually at each voltage level instead of using the I-V sweep function.  The manual 

procedure allows for the LED's self-heating to be compensated so that it reaches the final steady 

state condition.  This tedious approach nevertheless yields fixed temperature conditions for the 

LED.  As Fig. 3.5 shows, both the closed-loop and manual approaches produced similar I-V 

measurement results at the diode region of the I-V curves.  At the higher voltage region 

however, the manual approach produced a lower voltage drop across all the operating  
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temperatures in comparison to the closed-loop sweep approach.  As the input power was less 

than 0.8 W in the diode region of the I-V curve, the amount of heat produced by the LED was 

small.   

In the high voltage region however, the input power was more than 3W, implying a 

considerably higher amount of the self-heating.  Due to this larger self-heating effect, a greater 

voltage drop is needed under each current driving condition.  From these results, the 

temperature dependent series resistance of the LED can be derived from the high voltage region 

of the I-V characteristics.  It can be seen from Table 3.1 that for both measurement methods, 

there is a reduction in series resistance as the operating temperature increases.  This decrease 

in the series resistance is because of the higher acceptor activation that occurs at higher 

temperatures which cause the higher conductivity of the p-type GaN layer [103].  A comparison 

of the series resistance for each temperature setting for both the manual and closed-loop 

approaches reveals that Rs for the closed-loop approach is about 1 Ω lower than that for the 

manual approach.  The higher heat load produced by the LED in the closed-loop approach and 

the correspondingly higher temperature leads to the lower series resistance seen.  Due to the 

fact that the electrical analysis of the LED is considerably affected by temperature, the 

instrumentation set-up requiring responsive temperature regulation is necessary to 

instantaneously compensate for the self-heating effect so as to provide proper diagnoses of the 

LED. 
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Fig. 3.5.  (a) I-V characteristics of the LED under both closed-loop and manual approaches at 

different operating temperatures. (b) Magnification of high voltage region of I-V curves under 

both closed-loop and manual approaches.  This figure shows the results based on the data for 

one LED and is representative of all the samples. 
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Table 3.1.  Average (mean) Series Resistances Rs for both closed-loop and manual approaches 

at different temperature settings for all samples. 

 

Operating 

Temperature 

Rs (Manual 

Approach) 

Rs (Closed-loop 

Approach) 

30 C 5.0 Ω 4.0 Ω 

45 C 4.7 Ω 3.7 Ω 

60 C 4.5 Ω 3.5 Ω 

75 C 4.4 Ω 3.4 Ω 

 

 

3.3.3 Thermal Measurements 

To understand the thermal behaviour of the LED package, transient thermal measurements are 

conducted in accordance to the guidelines provided by JEDEC [104].  The cooling 

measurement mode is used with the radiant flux (derived in Section (3.3.1)) taken into 

consideration in the thermal analysis.  In this method, the LED is turned on for a prescribed 

period until such time Tj becomes constant.  Once steady-state condition is achieved, the input 

current to the LED is reduced to only 1 mA, thereby allowing the transient change in Tj to be 

computed via the electrical test methodology described by the Joint Electron Device 

Engineering Council (JEDEC).  This sequence is portrayed in Fig. 3.6.  For the whole duration 

of the measurement window, it is imperative that the thermal conditions i.e. QTEC from the TEC 

be kept constant so as to ensure that the LED temperature rise is not forcibly controlled.  

Typically, the thermal time constant for the temperature of the LED package to drop to its 

ambient temperature is between 150 to 200 s.  In closed-loop measurement, the TEC reacts to 

the abrupt change in heat flux from the LED at t = 0 s, causing QTEC to fluctuate, thereby 

artificially altering the actual Tj reading and corresponding Rth of the LED (Fig. 3.6).   
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The TEC response under different LED input power levels is shown in Fig. 3.7.  As the LED 

is switched to 1 mA at t = 0 s under closed-loop control, the TEC input voltage drops 

immediately to negative value and the ensuing voltage changes indicate that the TEC is 

adjusting for the rapid loss of heat from the LED package.  The greater the LED input power, 

the higher the heat flux produced with correspondingly higher Tj.  A higher TEC input voltage 

is therefore needed to regulate for the higher heat load that comes with the higher input power 

of the LED.  

 

 
 

 

Fig. 3.6.  QLED-heat, QTEC and LED temperature rise during measurement.  QTEC stays constant 

throughout measurement cycle during open-loop approach as TEC does not compensate for 

change in QLED-heat and LED temperature.  In closed-loop approach however, QTEC does not 

stay constant throughout the measurement cycle as the TEC compensates for change in       

QLED-heat and LED temperature. 
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Fig. 3.7.  TEC voltage response during closed-loop thermal measurement at different input 

power levels. The TEC reacts to the sudden change of heat load from the LED in order to 

reach thermal equilibrium in the system.  This figure shows the results based on the data for 

one LED at each input power level. 

 

As shown in Fig. 3.8, in closed-loop feedback control, the overall effect of the TEC 

involvement is to regulate the temperature back to its original state at t = 0 s.  The sudden 

change of the LED's thermal load accounted for the TEC response in compensating QLED-heat.  

The initial drop in the temperature is due to the TEC overcompensation which then triggers the 

TEC to raise the temperature in response.  During this measurement period as the TEC readjusts 

the temperature back to the initial state, the temperature is observed to alternate between rise 

and fall.  Since temperature rise is related to Rth, this repression of the temperature could result 

in inaccurate computation of the Rth, as will be discussed later in this chapter.  In contrast to 

the closed-loop measurement where the TEC continuously controls the temperature by utilizing 

a fixed duty-cycle, in the open-loop measurement mode, the TEC does not regulate the 

temperature change, permitting a steady QTEC flow.  The TEC is non-adaptive to the 

temperature shifts all through the duration of the measurement window.   As observed in Fig. 
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3.8, the LED temperature as a consequence is left completely uncontrolled and reduces steadily 

during the whole measurement window.  This implies an unconstrained thermal analysis of the 

LED, allowing for accurate thermal results.  

 

Fig. 3.9 shows the LED cooling curve response for closed-loop, open-loop and thermostat 

based measurement approaches, while Fig. 10 shows the impact on the structure function.  At 

30 C temperature setting, a temperature rise of about 4.8 C is seen for both closed-loop and 

the thermostat approach while a temperature rise of 5.8 C is observed for the open-loop 

approach.  At 45 C temperature setting, the temperature rise is 5.8 C and 6.2 C for the closed-

loop and thermostat approaches respectively versus 7.8 C for the open-loop approach.  As 

shown in Table 3.2, these observations translate to a pronounced difference between the Tj 

obtained by open-loop and closed-loop measurements, with this discrepancy increasing with 

 
Fig. 3.8.  Comparison of LED surface temperature response in both closed and open-loop 

thermal measurements of one LED. 
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higher operating temperature.  As expected, the results obtained for the thermostat 

measurements are comparable to that obtained for the closed-loop approach  

 
Fig. 3.9.  Cooling response of LED under different temperature controls at different operating 

temperature settings.  This figure shows the results based on the data for the same LED under 

the different testing conditions. 

 

 
 

Fig. 3.10.  Cumulative structure function of LED under different temperature controls at 

different operating temperature settings.  This figure shows the results based on the data for 

the same LED under the different testing conditions. 
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as the thermostat also adopts a similar adaptive feedback control to regulate the temperature.  

As the operating temperature increases, the greater rise in Tj for open-loop compared to closed-

loop is because of the increased heat flux produced resulting in the greater rise in temperature.  

Furthermore, in Fig. 3.9 it can be seen that in the open-loop method, QTEC allows the 

temperature to be uncontrolled during the whole measurement period while in the closed-loop 

and thermostat method, the temperature is regulated to the specified setting in just a few 

seconds.  As explained above, this adaptive control of QLED-heat leads to inaccuracy in the 

results.  

The effect of open and closed-loop temperature control can be further studied via the structure 

function of the LED (Fig. 3.10).  It was observed that the closed-loop temperature feedback 

control exhibits similar structure function characteristics and Rth values with the thermostat.  

The open-loop temperature control also exhibits similar structure function attributes but with 

higher Rth values at both operating temperatures.  The structure functions show significant 

divergence towards the conclusion of the heat flow and this is repeatable at higher operating 

temperatures.  Table 3.2 shows Rth of about 2.1 K/W for closed-loop/thermostat approaches 

and 2.5 K/W for open-loop at 30 C operating temperature.  The Rth at 45 C operating 

temperature are respectively 2.6 K/W in closed-loop/thermostat and 3.1 K/W in open-loop.  

Considerable temperature shift occurs in the open-loop method due to QTEC being kept constant 

for the duration of the measurement period.  On the other hand, in the closed-loop and 

thermostat methods, the temperature adapter responds to any variation in heat load to readjust 

the temperature back to the initial value, thereby minimizing the final change in temperature.  

Since Rth is directly proportional to temperature change, it follows that Rth for the open-loop 

approach is also larger than that for the closed-loop/thermostat approaches.  Temperature rise 

and thermal resistance are therefore incorrectly repressed during closed-loop measurement, 

resulting in wrong data specifications.   
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Table 3.2.  Average (mean) Thermal Resistance (Rth) and Junction Temperature (Tj) for open-

loop, closed-loop and thermostat approaches at different operating temperature settings for all 

the samples. 

Operating 

Temperature 

TEC Open TEC Closed Thermostat 

Tj (C) Rth 

(K/W) 

Tj (C) Rth 

(K/W) 

Tj (C) Rth 

(K/W) 

30 C 35.8 2.5 34.8 2.1 34.8 2.2 

45 C 52.8 3.1 50.8 2.6 51.1 2.6 

 

 

3.4 Summary 

The heat flux generated by high-power devices and assemblies must be taken into account as 

discrepancies during measurement can occur depending on the adaptive feedback set-up.  The 

findings in this chapter present new perspectives on the implications of incorrect temperature 

control.  In the case of electrical measurements, it has been shown that the temperature adapter 

has a delayed response to the LED heat load, meaning that the LED had not been preserved at 

a consistent temperature during the entire measurement cycle.  This resulted in different series 

resistance values in comparison to when measurement were done manually.  Accordingly, use 

of manual temperature control is suggested to compensate for the LED self-heating so as to 

provide proper analysis of the LED's electrical attributes.  On the other hand, when conducting 

transient thermal measurement, a consistent heat flow from the TEC is required so that the 

LED is not kept at a fixed temperature throughout the whole thermal measurement period.  It 

is therefore suggested that an open-loop temperature feedback system which is non-adaptive 

be used during thermal measurement to maintain such conditions.  In contrast to the closed-

loop system, open-loop control will allow for correct derivation of the Rth and Tj.  It should 

also be noted that although these experiments were conducted using LEDs, these measures are 

also applicable for other similar high-power devices and assemblies. 
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Chapter 4  

Effect of Current and Temperature  

4.1 Introduction 

Yttrium Aluminum Garnet: Cerium (YAG:Ce) phosphor is the most widely used phosphor in 

pcLEDs based on InGaN LED chips.  Due to the excitation of blue light (electroluminescence) 

from the InGaN LED chip (with typical peak wavelength of 450 nm), the phosphor host emits 

yellow light (photoluminescence) (with typical peak wavelength range between 550 to 650 nm) 

and the mixing of the blue and yellow light produces white light.     

As described in the literature review, the thickness and concentration of the phosphor layer as 

well as the phosphor particle size strongly influence the luminous efficacy and the colour 

chromaticity of the light emitted.  The temperature on the phosphor layer is significantly higher 

than the LED Tj in many situations [27, 43, 105] and this changes the photometric and 

colorimetric properties of the white light emitted.  While it is recognized that the phosphor 

particles generate self-heating [32, 42], the implications on package-level thermal performance 

are not well understood.  Heat generation in the phosphor layer should be taken into 

consideration in the packaging design to improve the phosphor’s conversion efficiency and 

prevent abrupt emitter failure. 

In this chapter, two types of experiments are conducted.  In the first set of experiments, the 

optical performance and thermal response of the LED package will be evaluated under various 

phosphor layer variations as well as die-bonding configurations.  Through understanding the 

implications of light extraction losses in the phosphor layer on the thermal performance of a 

package, the performance and reliability of high power phosphor coated (pcLED) packages can 

be improved.  
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In the second set of experiments, the effect of the phosphor layer and die-bonding configuration 

on the photometric, colorimetric and thermal properties of pcLED packages under different 

operating conditions are investigated.  The heat dissipation capabilities of the different LED 

die-bonding configurations are studied, from which the relationship between the optical and 

thermal properties in pcLED packages is established. 

4.2 Experimental Setup and Procedures 

4.2.1 Instrumentation Setup 

For all the electrical, optical and thermal measurements done for the two experiments described 

in Section (4.3), the LED packages are measured using the integrated LED measurement 

system represented in Fig. 3.1 (Chapter 3) consisting of a Labsphere 20” integrating hemi-

sphere system, a Keithley 2602A Source Meter, a Mentor Graphics T3ster, and a Peltier-based 

temperature controller (TEC).  To ensure traceable optical measurement, reference lamp 

calibration and absorption correction were conducted prior to each measurement.  In addition, 

electrical I-V measurement was conducted prior to and after the optical-thermal measurements 

to ensure that device did not degrade significantly during testing.   

4.2.2 Experimental Procedures 

For the first set of experiments, commercial 1mm2 GaN LEDs, with a blue peak wavelength of 

~450 nm, bonded onto Aluminum Nitride (AlN) substrate either conventionally (Seoul 

Semiconductor S1W) or in a flip-chip approach (Philips P1W) are used.  In the conventional 

die-bonding approach, the GaN LED is grown on a 100 µm sapphire substrate and is 

subsequently bonded onto AlN substrate.  In the flip-chip bonding configuration, the GaN LED 

is bonded directly onto an AlN substrate via Au bumps.  For both bonding configurations, a 

layer of phosphor is subsequently coated over the LED chip to emit white light.  The thickness 
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of the phosphor layer in conventional bonded LED and the concentration of phosphor particles 

in flip-chip bonded LED are varied to obtain different CCT values.  Table 4.1 shows the 

phosphor thickness variation for different LED die bonding configurations.  To achieve 2700 

K CCT, Lutetium-based phosphor particles are used while the others use YAG-based garnet 

phosphor particles.  Lutetium-based phosphor has better CRI properties whereas YAG-based 

phosphor exhibit higher efficiency [106, 107].  The elemental composition of the Lutetium-

based phosphor particles is Lu (61-62 wt.%), Al (14-16 wt.%) and O (22-24 wt.%) while the 

YAG-based phosphor particles have average compositions of Y (42-49 wt.%), Al (15-21 wt.%) 

and O (30-35 wt.%).   

Table 4.1.  Phosphor Thickness Variation for Different CCT Values and Die-Bonding 

Configurations. 

 

Die-Bonding 

Configuration 

CCT (K) 

2700 4000 5000 7000 

Conventional (C) 95 µm 85 µm 48 µm 32 µm 

Flip-chip (FC) 60 µm - 

 

To understand the implications of the phosphor layer in the package, absolute optical and 

thermal properties of each of the LED packages is evaluated.  In view of the nature of the 

testing, the data collection methodology in the IES LM-80-08 test standard is adopted with 20 

samples of each type of LED (FC and C) for each CCT level selected for experimentation.  An 

input drive current of 350 mA is used for the LEDs, which are 1 W rated LEDs.  

For the second experiment, three different sets of pcLED packages – 1 W (Philips P1W and 

Seoul Semiconductor S1W) and 0.3 W (Seoul Semiconductor S03W) rating – are used.  

Stratified sampling was performed using both their photometric and colorimetric properties to 

achieve tight radiant tolerance with zero CCT shift tolerance.  Each pcLED packages has a 

fixed CCT value of 4000 K with a radiant flux variation of ± 3.5 mW at 25 C.  For the S1W 
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and S03W LED packages, GaN LED is grown onto sapphire and subsequently bonded onto a 

heat spreading substrate.  The P1W LEDs adopt a flip-chip die-bonding approach whereby the 

GaN LED device is directly bonded onto a heat spreading substrate via Au bumps, while the 

S1W and S03W LEDs adopt conventional die-bonding approach.  In terms of phosphor 

deposition, the S03W LEDs applied dispersed phosphor coating method whilst the P1W and 

S1W LEDs adopt conformal phosphor coating approach.  The details of these LED packages 

are summarized in Table 4.2.  To evaluate the effect of phosphor coating and light scattering 

losses caused by the packaging architectures, LED packages with and without their phosphor 

layers are compared.  Throughout this thesis, the blue emitting LED and pcLED packages are 

labelled as blue and white LEDs, respectively.  20 samples of blue and white LEDs for P1W, 

S1W and S03W were selected for experimentation.  Except for the experiment for current 

density variation (Fig. 4.7(a)), an input drive current of 350 mA is used for P1W and S1W, 

while 100 mA is used for S03W. 

Table 4.2.  Physical Characteristics of the LED packages. 

LED LED Chip Size 
Die-Bonding 

Configuration 

Phosphor 

Material 

Phosphor 

Coating 

P1W 10.45 X 10-3 cm2 Flip-chip 

YAG:Ce 

Conformal 

S1W 4.78 X 10-3 cm2 Conventional Conformal 

S03W 6.01 X 10-3 cm2 Conventional Dispersed 

 

4.3 Results and Discussion 

4.3.1 Impact of Phosphor Coating 

In the first experiment to analyze the impact of the phosphor coating, the spectral power 

distribution (SPD) characteristics of the blue and pcLEDs are first measured as shown in Fig. 

4.1.  Both sets of LEDs exhibit a blue peak emission of ~450 nm at 20 C.  After phosphor is 
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deposited over the LED, the blue peak intensity reduces significantly, and a broad yellow-

orange spectrum is produced.   

 

 
 

Fig. 4.1.  Typical spectral power distribution of (a) conventional (S1W) and (b) flip-chip 

(P1W) bonded LEDs at different CCT rating.  This figure shows the results based on the data 

for one LED at each CCT level and is representative of all the samples. 
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Depending on the CCT rating, different proportion of blue and yellow light is acquired.  As the 

CCT value decreases, the blue peak intensity will reduce while the yellow-orange spectrum 

broadens and shifts to longer wavelength accordingly.  This shows that a higher proportion of 

down-conversion processes occurring in the phosphor particles increase the yellow-orange 

spectral intensity.  From the SPD characteristics, the efficiency of the blue and pcLEDs are 

subsequently evaluated at various operating temperatures in Fig. 4.2.  The conventional bonded 

LEDs exhibit a high external quantum efficiency of ~43% at 20 C and reduce steadily with 

higher operating temperature.  On the other hand, flip-chip bonded LEDs have a lower 

efficiency of ~39% at 20 C but demonstrate improved optical stability at elevated 

temperatures.  The efficiency for the pcLEDs also exhibits a similar trend compared to their 

respective blue LEDs but with a difference in magnitude.  This efficiency drop might be 

attributed to a number of factors; (i) increased non-radiative recombination processes and 

increased leakage currents in the quantum wells of the LEDs, (ii) phosphor quenching and (iii) 

increase of transmission loss in the silicone [43, 108, 109].  After blue light is emitted out of 

the LED, two types of losses could occur within the package: Stokes energy loss and package-

related losses.  Stokes loss is determined by the amount of down-conversion processes in the 

phosphor particles while package-related loss is due to light scattering and absorption losses.  

Light scattering may occur within the phosphor particles or in the packaging material.  On the 

other hand, the emitted light from the LED and phosphor particles can be (re-)absorbed by the 

surfaces of the LED device, phosphor particles, and its packaging materials.  These 

aggregations of losses are termed as light extraction losses.  The light extraction losses for both 

die-bonding configurations were found to increase with lower CCT value.   

In Fig. 4.2 to Fig. 4.5, each data point represents the mean value of 20 samples while the error 

bars represent the standard deviation of the mean.  As shown in Fig. 4.2, the radiant efficiency 

for the conventional bonded and flip-chip bonded LEDs dropped to ~32% and ~23% 
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respectively at CCT value of 2700 K.  Since the packaging material and physical construction 

of the package are similar for the particular LEDs under test, the efficiency difference between 

the various CCT ratings is assumed to be attributed mainly to the phosphor layer. 

 

 

 
 

Fig. 4.2.  Radiant efficiency of (a) conventional and (b) flip-chip bonded LEDs. Radiant 

efficiency reduces with respect to higher operating temperatures for all the CCT values.   
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In a pcLED package, the light emitted from the package is determined by both the LED device 

and the phosphor layer.  To study the light extraction losses contributed by the phosphor layer, 

the yellow (phosphor) and blue (LED) light outputs are computed separately as yellow-blue 

ratio (YBR).  The YBR is computed by evaluating the spectral power distribution for the 

respective LEDs based on the two decomposed peaks, one for the phosphor converted yellow 

light and  the other for the blue light emitted from the LED.   

Typically, a low CCT value would yield a high YBR due to a higher proportion of yellow light 

emission and vice versa.  Generally, the YBR was observed to reduce with temperature for all 

the CCT values as shown in Fig. 4.3.  The reduction of YBR at elevated temperature is assumed 

to be caused by the phosphor conversion efficiency, which decreases as the temperature 

increases.  However, the YBR decay rate increases with higher CCT values for both the 

conventional and flip-chip bonded LEDs, with the implication that a thicker phosphor layer or 

a higher phosphor concentration increases the amount of light extraction losses.  It is also 

possible that the different phosphor species used in the 2700 K CCT of both the C and FC 

LEDs may cause the change of YBR due to their different temperature-dependent and optical 

properties.  The lower phosphor conversion efficiency and higher light extraction losses as the 

operating temperature increases may generate significant self-heating in the phosphor layer and 

cause the LED Tj to increase.  
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Fig. 4.3.  Yellow-Blue ratio of (a) conventional and (b) flip-chip bonded LEDs.  Significant 

YBR shift was observed for the 2700 K CCT as compared to the remaining CCT values.   
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To understand the implication of light extraction losses on the thermal response of the LED 

package, the Tj of the LED has been approximated using the electrical forward voltage method.  

The Trise is the temperature difference between the LED’s Tj with respect to the operating 

temperature.  Both conventional and flip-chip bonded pcLEDs exhibit the same characteristics 

of a higher temperature rise with decreasing CCT as shown in Fig. 4.4.  This phenomenon is 

attributed to 2 main factors; (i) low phosphor quantum efficiency, which induces phosphor self-

heating, (ii) light absorption losses in the phosphor layer.   

As presented in the literature review in Chapter 2, the thickness and concentration of the 

phosphor layer as well as the phosphor particle size are found to strongly influence the 

luminous efficacy.  However, as the thickness or concentration in the phosphor layer increases, 

higher amount of light scattering and absorption losses is likely to occur.  Together, these 

factors will exacerbate the heat load in the package, leading to significant temperature increase.  

This is clearly demonstrated for both sets of LEDs where the temperature rise increases by as 

much as ~2.6 times and ~1.4 times at 2700 K CCT for the conventional bonded and flip-chip 

bonded LEDs, respectively.  This temperature rise has a direct impact on the Rth value since 

Rth is derived directly from the temperature rise.  Accordingly, the Rth performance for both 

types of LEDs at the different operating temperatures is expected to exhibit similar trends to 

the temperature rise.  A higher temperature rise will typically lead to a higher Rth value and this 

will imply greater heat accumulation and a larger temperature gradient that exists within the 

package.  
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Fig. 4.4.  Temperature rise of (a) conventional and (b) flip-chip bonded LEDs.  Conventional 

bonding exhibits an upward temperature rise trend whereas flip-chip bonding can readily 

reduce the temperature rise due to its improved heat dissipation capabilities.   
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For the conventional bonded LEDs, an upward temperature rise and Rth trend is observed for 

all the CCT levels as the operating temperature increases.  This means that the conventional 

bonded LEDs experience more heat accumulation within the package as the operating 

temperature increases.  However, the flip-chip bonded LEDs showed an opposite downward 

response at all CCT levels.  For the FC LEDs, the Rth exhibits a decreasing trend as the 

temperature increases.  This conflicting result is observed is in spite of the fact that a higher 

operating temperature will increase the amount of non-radiative recombination processes, 

leading to even higher heat flux generation in the LED package.  The differing temperature rise 

or Rth trend is attributed to its packaging architecture since the heat accumulated in the package 

depends not only on the heat generated by the LED device itself, but also on its heat dissipation 

capabilities.  The results in Fig. 4.5 indicate the superior dissipation effectiveness for the flip-

chip configuration. 

 It is worth noting that manufacturers currently report a fixed Rth value for all CCT values under 

a fixed operating temperature [7, 110].  However, the preceding investigations have shown that 

the Rth depends on the CCT values as well as operating temperature, which leads to a 

recommendation that reported Rth values in LED data sheets and test documents be stated 

alongside the corresponding CCT and operating temperature of the test conditions.  These 

results are in line with studies demonstrating dependency on ambient temperature and CCT 

[111-113].  Inaccurate LED metrics reporting can be detrimental as overexposure to high 

temperature can adversely affect the lumens performance and service life span of the LED 

package [14]. 
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Fig. 4.5.  Real thermal resistance of (a) conventional and (b) flip-chip bonded LEDs at 

different operating temperatures.   
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Although flip-chip bonding offers a more effective heat dissipating capability as compared to 

conventional bonded LEDs, the flip-chip bonded LEDs exhibit a slightly lower optical 

efficiency than the conventional bonded LEDs for all the CCT values.  It is postulated that the 

flip-chip bonded LEDs have a higher total internal reflection (TIR) within the LED structure.  

For an effective comparison between the different die-bonding configurations, the total light 

extraction losses due to light scattering and absorption losses are computed with reference to 

their corresponding blue emitting LEDs and the normalized optical efficiency is depicted in 

Table 4.3.  A higher phosphor concentration or a thicker phosphor layer increases the light 

trapping efficiency due to the higher probability of the blue light emitting from the LED 

interacting with the phosphor particles.  The trapping of light lowers the light output 

substantially and causes higher heat generation.  At 2700 K CCT, the flip-chip bonded LEDs 

exhibit a normalized optical efficiency of about 59% whereas conventional bonded LEDs have 

a higher efficiency of 74% as compared to their respective blue emitting LEDs.  The higher 

light extraction loss for the flip-chip bonded LEDs is attributed to the higher amount of light 

scattering and back reflection of light from the high phosphor particle concentration in the 

phosphor layer.  This finding substantiates Tran et al. [3]’s simulations that a thicker phosphor 

layer with lower concentration of phosphor particles can reduce the amount of light extraction 

losses.  However, a lower light extraction loss does not translate to a lower temperature rise.  

In the case of the conventional bonded LEDs at 5000 K CCT, a low light extraction loss of 

about 12% can cause the LED Tj to increase by almost 2 times as compared to its blue LEDs.  

In comparison to the flip-chip bonded LEDs at the same CCT values, 15% light extraction 

losses only constitute 1.3 times increase of Tj. 
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Table 4.3.  Optical and thermal comparison of LED Packages under different light emission 

properties.  7000K CCT Flip-chip LEDs are not part of product line at time of experimentation 

[7]. 

 

Colour 

Conventional bonding/phosphor 

thickness variation 

Flip-chip bonding/phosphor 

concentration variation 

Efficiency 

 

Trise 

(º C) 

Trise 

(relative) 
Efficiency 

Trise 

(º C) 

Trise 

(relative) 

Blue 100% 7.1 1X 100% 14.8 1X 

7000K 93% 12.9 1.8X    

5000K 88% 14.0 2.0X 85% 18.6 1.3X 

2700K 74% 18.2 2.6X 59% 20.9 1.4X 

 

 

When heat is generated in a material, i.e. LED device or phosphor particles, heat will 

accumulate in the material and the extent of temperature rise depends on the thermal properties 

of itself as well as the heat dissipating means within the package.  Analogous to an electrical 

circuit, the heat flow path depends on the thermal conductivity of its materials and contact 

thermal resistance between adjoining materials.  A thin and high thermal conductive material 

will transfer heat fluxes more effective than a thick and poor thermal conductor.  For the blue 

emitting LED, the top surface of the LED device is exposed to air, which has much poorer 

thermal properties as compared to the packaging materials such as phosphors, silicone etc.  

Hence, the bulk of the heat generated in the LED device is dissipated downwards through the 

LED package.  When phosphor is deposited over the LED, the additional heat source(s) from 

the phosphor layer increases the LED Tj.  The physical presence of the phosphor layer and the 

packaging materials allow possible heat flow paths from the top of the LED package.  Hence, 

to analyze the influence of the phosphor layer on the thermal response in the LED package, 

structure function evaluation of the blue LEDs and their corresponding pcLED packages were 

computed.  Heat accumulation and the change of heat flow paths within the LED package are 

identified by analyzing the change of transient thermal response.  In the case of the 
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conventional bonded LEDs (Fig. 4.6(a)), heat accumulation is observed from the merging of 

structure function peaks, which is the separation point between two thermally contrasting 

materials (Fig. 4.6(a) inset).  As the phosphor thickness increases, the heat generated at the 

LED and phosphor layer intensifies due to the low phosphor quantum efficiency in addition to 

higher light extraction losses.  The heat accumulation at the LED-phosphor layer region 

gradually converges and, at a low CCT rating of 2700 K, the heat flux generated by both the 

LED and phosphor layer dominate such that the thermal interfaces at the LED-phosphor layer 

region became indistinguishable.  It was also possible that the heat generated in the phosphor 

layer first dissipated upwards and around the LED chip and then subsequently onto the AlN 

substrate.  

As illustrated in Fig. 4.6(a), the heat generated by the GaN LED device is transferred to the 

AlN substrate through the thick sapphire material.  Due to the poor intrinsic thermal 

conductivity of the sapphire material (KAl2O3 ~46 W/m·K), there is significant heat 

accumulation within the GaN LED device.  As such, the conventional bonded LEDs exhibit an 

upward temperature trend.  On the other hand, flip-chip bonding allows effective heat transfer 

onto the AlN substrate due to the high thermal conductivity of the gold bumps (KAu ~318 

W/m·K).  The heat generated by the LED is transferred effectively to the AlN substrate.  Hence, 

the high optical loss in flip-chip bonded pcLEDs does not cause any significant changes to its 

thermal paths and merely exhibits a shift of partial Rth in the structure function evaluation as 

compared to its blue LEDs (see Fig. 4.6(b)).  This shows that almost all the heat fluxes 

generated in the LED dissipated through the Au bumps and reinstates the fact that the 

packaging architecture has a significant influence on the temperature rise and thermal 

resistance of the package. 
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Fig. 4.6.  Derivative structure function at 20 C of (a) conventional (inset: heat accumulation 

at the phosphor-LED region can be observed when the phosphor layer thickens, leading to 

the merging of the structure function peaks), and (b) flip-chip bonded LEDs.  The figures 

show the results for one LED at each CCT level and is representative of the findings for the 

samples tested. 
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4.3.2 Impact of Packaging Architecture 

In this experiment to assess the impact of the packaging architecture, the light output of the 

blue and white LEDs was first measured at different operating temperature and drive current 

conditions. The radiant flux was found to increase both with higher current density and lower 

operating temperature. Since the forward voltage VF changes with the operating condition, the 

light output efficiency of the LED is utilized for effective comparison.  The efficiency is 

defined as the radiant flux emitted by the LED divided by the electrical input power supplied 

to the LED.  

As described in Section (4.2.2), 20 samples each of blue and white LEDs for P1W, S1W and 

S03W were selected for experimentation.  To establish the overall behaviour in Fig 4.7 and 

Fig. 4.9 to 4.11, the data points represent the mean value of the 20 samples used while the error 

bars represent the standard deviation of the mean.  As shown in Fig. 4.7, the optical efficiency 

was observed to reduce with temperature and current density.  The optical efficiency reduces 

more significantly with current density due to the higher amount of Joules heating [114-116] 

and Auger recombination processes [101, 102].  Table 4.4 shows the variation of the mean 

voltages with temperature demonstrating the temperature dependence of the LED forward 

voltage.   Although the mean voltages for all the LEDs decrease with temperature, the overall 

efficiency still decreases due to the higher rate of nonradiative recombination leading to the 

corresponding radiant flux reduction, which means the radiant flux has a higher decrease 

compared to VF with increasing temperature. 
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Fig. 4.7.  Radiant efficiency of various LED packages at different (a) current densities at 20 

C and (b) operating temperatures.   
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Table 4.4.  Temperature-dependent forward voltage of the LEDs decreases with temperature, 

with low variability from the mean indicated by the standard deviation. 

 

 P1W S1W S03W 

Temperature Mean 

Voltage 

(V) 

Standard 

Deviation 

(V) 

Mean 

Voltage 

(V) 

Standard 

Deviation 

(V) 

Mean 

Voltage 

(V) 

Standard 

Deviation 

(V) 

25 C 2.971 0.021 3.071 0.084 3.047 0.022 

45 C 2.940 0.033 3.022 0.070 2.999 0.024 

65 C 2.890 0.019 2.967 0.067 2.962 0.025 

85 C 2.883 0.044 2.950 0.084 2.923 0.024 

 

 

For a pcLED package, a layer of phosphor is usually deposited over the LED chip either in a 

dispersed or conformal approach.  The light extraction efficiency depends on the phosphor 

down-conversion process (Stoke’s energy loss) and package efficiency (light scattering and 

absorption losses).  Due to these losses, the blue LEDs exhibit higher optical efficiency as 

compared to their associated white LEDs for all the operating conditions shown in Fig. 4.7.  

The total light extraction loss is calculated based on the difference in radiant efficiency between 

the blue and white LEDs.  Both the P1W and S03W LEDs exhibit a higher light extraction loss 

of 10-11% as compared to about 5% for the S1W LEDs.  Light emission studies (see inset of 

Fig. 4.8(b)) reveal that more direct blue light emission was observed through the phosphor 

layer for the S1W LEDs than the other two LED packages.  As such, the amount of light 

scattering and absorption losses in the phosphor layer as well as the down-conversion processes 

are reduced.  This resulted in lower light extraction losses for the S1W LEDs.  
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Fig. 4.8.  Typical light emission (inset) and cross-sectional SEM images for one sample of 

each pcLED package (a) P1W, (b) S1W and (c) S03W.  Direct blue light emission can be 

observed through the phosphor layer (yellow-orange emission). 
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To analyze the light emission contribution between the LED device and the phosphor material, 

YBR is utilized (Fig. 4.9).  YBR is derived from the spectral power distribution where Y 

represents the yellow emission from the phosphor material and B represents the blue emission 

from the LED.  The S1W pcLEDs exhibit the lowest YBR value as compared to the other two 

LED packages.  As shown in the inset image of Fig. 4.8(b), this is due to the larger amount of 

blue light emission escaping through certain regions of the phosphor layer.  As temperature 

increases, the disproportionate contribution of light emission between the LED device and the 

phosphor layer will cause the chromaticity properties i.e. CCT and YBR to change.  It is 

observed that the P1W LEDs exhibit a fairly stable YBR with higher operating temperature 

whereas the YBR decays significantly for both S1W and S03W LEDs.  This may be attributed 

to the uniform distribution of phosphor particles over the P1W LED, providing a more 

consistent down-conversion of yellow light emission across the phosphor layer.  Hence, the 

S1W pcLEDs exhibit a much more significant YBR decay.  It is also possible that the YBR 

decays with temperature due to lower phosphor conversion efficiency [117]. 

 
 

Fig. 4.9.  YBR of different white pcLED packages as a function of operating temperatures.  

(Inset: Typical spectral power distribution of white pcLED package). 
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To evaluate the thermal performance of the LED package, the self-heating effect and heat 

dissipation capabilities are analyzed in terms of relative junction temperature rise Trise and 

thermal resistance Rth.  In response to the efficiency drop with operating temperature (see Fig. 

4.7(b)), a higher LED Tj was expected.  As shown in Fig. 4.10, it is also observed that the white 

LEDs exhibit a higher temperature rise as compared to their respective blue LEDs.  As the 

white LEDs exhibit lower optical efficiency due to the light extraction losses incurred in the 

phosphor layer and their associated packaging materials, these light extraction losses will 

inevitably increase the LED Tj.   Interestingly, as the operating temperature increases, the S1W 

and S03W LEDs both exhibit a higher junction Trise whereas an opposite trend is observed for 

the P1W LEDs.  The downward Trise trend is in spite of the fact that higher operating 

temperature increases the amount of non-radiative recombination processes in the LED, 

leading to higher heat flux generation in the package.  However, as temperature increases, VF 

of the LED reduces and this will lower the heat generation due to the lower electrical input 

power.  Furthermore, the LED Tj depends not only on the heat generated by the LED device, 

but also on its heat dissipating means.  As shown in Fig. 4.8(a), the GaN LED device for the 

P1W is flip-chip bonded onto the AlN substrate via gold bumps.  The heat generated by the 

LED is transferred effectively to the AlN substrate due to the high thermal conductivity of the 

gold bumps (kAu~318 W/m·K).  On the other hand, for the S1W and S03W LED packages, the 

GaN LED device is grown onto a sapphire substrate (kAl2O3
~46 W/m·K) and is then die-

bonded to the AlN substrate.  Due to the low thermal conductivity of the thick sapphire, the 

heat generated in the GaN LED device is accumulated within the material.  Although the VF of 

the S1W and S03W LEDs also reduces with temperature, their heat dissipating capabilities are 

not as efficient due to its conventional die-bonding configuration.  This causes the heat to 

accumulate within the GaN LED device, resulting in higher LED Tj.  As such, both S1W and 

S03W LEDs exhibit an upward temperature rise trend. 
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Fig. 4.10.  LED junction temperature rise of blue and white LED packages at various 

operating temperatures. 

  

As shown in Fig. 4.11, the Rth of the LED packages correlates with the trend of the junction 

temperature rise.  An increase of Rth means there is a build-up of heat accumulation within the 

LED package.  The S03W LED packages exhibit a much higher Rth value as compared to the 

other two LED packages.  The significant heat accumulation in the LED package causes the 

light output to decrease and explains the YBR decay with higher operating temperature.  The 

Rth for all the different LED packages is observed to exhibit an inverse relationship with the 

YBR as a function of operating temperature (see Fig. 4.9).  At higher operating temperatures, 

an increase of Stoke’s energy and light extraction losses will lower the YBR and increase the 

LED Tj and Rth accordingly.  This further shows that the inter-dependency between the optical 

and thermal characteristics in a pcLED package.  By alleviating the heat accumulation in the 

package, higher photometric and more stable colorimetric properties can be achieved.  
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Fig. 4.11.  Thermal resistance of (a) P1W & S1W and (b) S03W LED packages at different 

operating temperatures. 
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4.4 Summary 

The two experiments in this chapter demonstrate the effect of the phosphor layer and the die-

bonding configuration on the optical and thermal performance of the LED.  The first 

experiment highlights the impact of phosphor concentration and thickness on both the 

photometric and colorimetric qualities of conformal phosphor coated LEDs and the subsequent 

thermal effects with different bonding configurations.  It has been shown that white light 

emission with various colour qualities can be attained by varying the phosphor particle 

concentration or thickness of the phosphor layer in a pcLED package.  A thicker phosphor layer 

and a higher phosphor particle concentration increases the amount of light trapping due to light 

scattering and back reflection of light.  The light extraction losses in the phosphor layer induce 

heat accumulation at the phosphor layer and increase the temperature and Rth in the LED 

package.  Hence, the Rth of the LED package changes with the CCT values.  However, the 

temperature rise and Rth can be reduced with a flip-chip die-bonding configuration where the 

heat generated in the LED chip and phosphor layer is dissipated effectively onto the AlN 

substrate.  This is verified by observing the thermal paths in the structure function evaluation 

of both flip-chip and conventional die-bonding configurations.  As the Rth of the LED package 

is found to change with different operating temperatures, CCT values and die-bonding 

configurations, there is a need to provide detailed thermal information for different LED 

packages.  Insufficient or inaccurate reporting of thermal data may change the photometric and 

colorimetric properties of the white light emitted from the LED package.  

In the second experiment, it has been shown that the packaging method is critical in enhancing 

the light extraction efficiency and heat dissipation capabilities in high-power LED 

applications.  The uniformity and concentration of the phosphor particles affects both the 

optical efficiency and colour quality.  A non-uniform and sparse phosphor layer causes the 

YBR to shift significantly due to the disproportionate contribution of light emission between 
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the LED and phosphor layer.  It was also observed that the YBR exhibits an inverse relationship 

with Rth.  A higher Stoke’s energy and light extraction losses will increase the LED Tj, causing 

higher heat accumulation within the package.  The amount of heat accumulation depends on 

the die-bonding configuration and heat dissipation capabilities within the package.  Flip-chip 

die-bonding can reduce the LED junction temperature rise and Rth under higher operating 

temperature due to the superior heat dissipation capabilities. 
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Chapter 5 

Effect of Humidity  

5.1 Introduction 

Besides drive current and operating temperature, high humidity can also lead to internal build-

up of heat and subsequent damage of the LED package.  Moisture infuses into the interfaces of 

packaging material resulting in a number of issues which may cause a decrease in light output 

[57] or a change in the colour output [58].  Moisture inside LED packaging may also cause Rth 

to increase, for example due to delamination  between chip and substrate causing impedance 

to the heat flow [59, 60].  This exacerbates the package's thermal load, bringing about a 

corresponding increase in Tj. 

This chapter focuses on the impact of long-term humidity effects on three different types of 

LEDs based on their power rating (1 W or 0.3 W), die-bonding configuration (flip-chip or 

conventional) and phosphor coating method (conformal and dispersed).  The goal of the 

experiments is to understand the implications of high moisture environments on the electrical, 

optical and thermal (EOT) performance of the different LED packages.  Chapter 6 thereupon 

builds on this information to develop a humidity based prognostication model. 

 

5.2 Experimental Setup and Procedures 

5.2.1 Instrumentation Setup 

Electrical, optical and thermal measurements conducted in this chapter were done using the 

same integrated LED measurement system represented in Fig. 3.1 (Chapter 3) consisting of a 

Labsphere 20” integrating hemi-sphere system, a Keithley 2602A Source Meter, a Mentor 

Graphics T3ster, and a Peltier-based temperature controller (TEC).  To ensure traceable optical 
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measurement, reference lamp calibration and absorption correction were conducted prior to 

each measurement.  In addition, electrical I-V measurement was conducted prior to and after 

the optical-thermal measurements to ensure that device did not degrade significantly during 

testing.  Capacitance-voltage (C-V) tests for the LED heterostructure degradation were 

conducted using a Keysight E4990A Impedance Analyzer.  In-depth failure analyses of the 

samples were done by means of Scanning Electron Microscopy with Energy Dispersive X-ray 

Spectrometry (SEM–EDX).  Humidity reliability aging tests were conducted using the CTS 

Climatic Test System environmental cabinets. 

 

5.2.2 Experimental Procedures 

As in Chapter 4, the same three sets of pcLED packages – 1 W (Philips P1W and Seoul 

Semiconductor S1W) and 0.3 W (Seoul Semiconductor S03W) rating – are used.  The LEDs 

have different configurations in terms of power rating, die-bonding and phosphor coating 

methods, as summarized in Table 5.1.  Details of these configurations including their graphical 

representations have been disclosed in Chapter 4. 

 

Table 5.1.  Configurations of LEDs used in experiments. 

 

LED Power Rating Die-bonding 

Configuration 

Phosphor 

Coating 

P1W 1 W Flip-chip Conformal 

S1W 1 W Conventional Conformal 

S03W 0.3 W Conventional Dispersed 
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As recommended in IES TM-21 standard [65] which stipulates the procedures for projecting 

long term LED lumen maintenance for at least 6000 h, a sample size of 20 was used for each 

LED (P1W, S1W and S03W) at each humidity level (10% and 85% relative humidity).  To 

simulate actual environmental conditions, the selected humidity condition of 85% is within the 

range of daily relative humidity levels in several countries in Southeast Asia [118].  The LED 

packages were mounted onto heatsinks and placed into the environmental test chambers preset 

at 10% and 85% relative humidity (RH) at a temperature of 55 ⁰C, driven at a bias current of 

350 mA for the 1 W LEDs (P1W and S1W) and 100 mA for the 0.3 W LED (S03W).  Electrical, 

optical and thermal measurements were conducted using the integrated LED measurement 

setup at every 1000 h interval up to 8000 h. 

On completion of the 8000 h humidity aging tests on all the LED packages, the integrated LED 

measurement system described in Section (5.2.1) was used to evaluate the electrical-optical-

thermal properties of the LED packages.  The same bias currents (350 mA for P1W and S1W, 

100 mA for S03W) were applied for the optical and thermal measurements, while the optical 

and electrical measurements were conducted at 20 ⁰C.  Capacitance-voltage measurements 

were conducted at 20 ⁰C with the LEDs biased from −7 V to 2 V.   

In Fig. 5.1, 5.2, 5.3 and 5.7, each data point represents the mean value of the 20 samples tested 

for the specified LED while the error bars show the standard deviation from the mean.  The 

rest of the figures depict the performance for individual LEDs but are representative of that for 

the entire sample tested. 
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5.3 Results and Discussion 

5.3.1 Optical Characteristics 

Depreciation of optical characteristics is related to both the chip and package degradation.  At 

the chip level, the decrease in optical power is attributed to increased non-radiative 

recombination processes due to the generation of defects in the active region.  This in turn leads 

to increased heat losses and higher Tj.  At the package level, dissolution of the phosphor and 

discoloration of encapsulation materials [58, 119] are mechanisms that could exacerbate the 

optical output degradation. 

The humidity based degradation of the both radiant flux and luminous flux of both types of 

LEDs is shown in Fig. 5.1 and Fig. 5.2.  The radiant flux is the total radiant or electromagnetic 

energy emitted by the LED in watts while the luminous output is the perceived power of light 

adjusted to reflect the varying sensitivity of the human eye to different wavelengths of light 

measured in lumens.  While both these interchangeable quantities indicate the optical 

performance of LEDs, they provide specifically different information on the light output.  

Radiant flux characterizes light physical in terms of the energy in the light waves, while 

luminous flux characterizes how light is perceived by humans [120].  Both these quantities are 

measured by means of the integrating sphere and spectro-radiometer at 1000 h intervals until 

8000 h with the experimental procedures specified in Section (5.2.2).  The test methodology 

abides by the LM80-08 [97] test procedure for photometric measurement of LEDs, which 

provides a standard for the consistent use of methods and physical test conditions for the LED 

industry. 
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In Fig. 5.1 and Fig. 5.2, each data point on the dotted line represents the mean value of 20 

samples while the error bars represent the standard deviation of the mean.  The dotted line 

represents the trend of the sample mean for each 1000 h interval measurement.  As the least 

squares curve fit method is prescribed by the TM-21 [65] standard for projecting the long term 

light output maintenance of LED light sources for minimum 6000 h duration (or until the light 

output decreases to a stipulated level), only the lumen and radiant light output data over the 

8000 h test period was used to produce the straight line in Fig. 5.1 and Fig 5.2 with the general 

equation: 

𝑦 = 𝑚𝑥 + 𝑐 (5.1) 

For a set of 𝑛 experimental data points represented by (𝑥, 𝑦), 𝑚 is the slope of the graph (which 

is used to derive the lumens and radiant flux degradation rate in Table 5.2) and 𝑐 is an intercept 

of the straight line graph. 

𝑚 =
𝑛 ∑ 𝑥𝑦 − ∑ 𝑥 ∑ 𝑦

𝑛 ∑ 𝑥2 − (∑ 𝑥)2
 

(5.2) 

𝑐 =
∑ 𝑦 − 𝑚 ∑ 𝑥

𝑛
 

(5.3) 

 

To normalize the data to [0, 1] in Fig. 5.1 and Fig 5.2, the following formula was applied: 

𝐸′ =
𝐸 − 𝐸𝑚𝑖𝑛

𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛
 

(5.4) 

 

where 𝐸′ is the value to be normalized, 𝐸 the original raw value, 𝐸𝑚𝑖𝑛 the minimum value in 

the data set or range, and 𝐸𝑚𝑎𝑥 the maximum value in the data set or range.  The use of both 

Microsoft Excel and OriginPro software was used in the data analysis, curve fitting 

computations and graph productions.  This methodology is explored further in Chapter 6 in 

relation to the development of a humidity based degradation model (HBDM) [121] . 
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Fig. 5.1.  Radiant flux degradation of (a) P1W, (b) S1W and (c) S03W at 10% RH and 85% 

RH.  Radiant flux data is normalized into the interval [0,1].  The dotted line shows the trend 

of the sample mean. 
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Fig. 5.2.  Lumens degradation of (a) P1W, (b) S1W and (c) S03W at 10% RH and 85% RH.  

Lumen output data is normalized into the interval [0,1].  The dotted line shows the trend of 

the sample mean. 
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All the LEDs exhibit a high external quantum efficiency at both relative humidity (RH) levels 

and both radiant power and luminous flux have a higher rate of degradation with time at 85% 

RH.  The results in Table 5.2 indicate that the higher relative humidity results in a higher 

amount of degradation for all LEDs.  It is observed that the S03W has a much more severe 

degradation rate at 85% RH compared to the 1 W LEDs.  This is in line with the observations 

of the electrical characteristics (Section (5.3.2)) in that the change in series resistance is much 

more pronounced for S03W indicating a different failure mechanism from the 1 W LEDs.  It 

is postulated that the suspected package deterioration is responsible for the significantly 

higher optical degradation seen.  Investigation by failure analysis to confirm this failure 

mode in S03W is reported later in this chapter. 

 

Table 5.2.  Computations of the degradation rates (in Fig. 5.1 and Fig. 5.2) for various LEDs 

at differing RH levels for 8000 h (using Equation 5.2). 

 

 

LED %RH 

Lumens 

Degradation 

Rate 

Change in 

Lumens 

Degradation 

Rate 

Radiant 

Degradation 

rate 

Change in 

Radiant 

Degradation 

Rate 

P1W 10 7.145E-06 2.772E-06 1.341E-6 1.946 E-06 

85 9.917E-06 3.287E-6 

S1W 10 4.702E-06 1.495 E-06 8.218E-7 1.934 E-06 

85 6.197E-06 2.756E-6 

S03W 10 1.765E-05 4.708 E-06 1.169E-6 3.756 E-06 

85 6.473E-05 4.924E-6 
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In a phosphor converted LED package, the light emitted from the package is determined by the 

LED device, the phosphor layer and the packaging materials [122].  To further examine optical 

degradation contributed by the phosphor layer and the LED, the blue (LED) and yellow 

(phosphor) light outputs are computed separately as yellow-blue ratio (YBR).  Fig. 5.3 shows 

the comparison of YBR of all the LEDs at 10% RH and 85% RH.  The data points represent 

the mean values of the 20 samples tested for each LED. 

For both P1W and S1W, the samples at 85% RH stress demonstrate higher YBR than 10% RH, 

indicating a higher yellow emission than blue emission at higher humidity.  This suggests that 

LED degradation may be more pronounced than phosphor degradation at the higher humidity 

level.  Table 5.3 tabulates the change in YBR over 8000 hours of the S1W and P1W are about 

3.4 and 2.4 times at 85% RH compared to 10% RH respectively.  As shown by Tan et al. [58, 

123], the reduction of blue light output may indicate LED chip degradation as a possible 

predominant failure mechanism in the two 1 W LEDs.  On the other hand, for the S03W, the 

YBR trend is reversed, i.e. the YBR decreases for both 10% and 85% RH.  This change in YBR 

is more significant at about 4.6 times higher for 85% RH over 10% RH.  In contrast to the 1 W 

LEDs, the decrease in yellow emission may indicate deterioration of the phosphor layer or 

packaging materials [124], which is consistent with the inference from the electrical results.  

Under high humidity conditions, it is postulated that moisture content affects the functioning 

or efficiency of the phosphor layer [125-128].   
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Fig. 5.3.  YBR of (a) P1W, (b) S1W and (c) S03W at 10% RH and 85% RH. 
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Table 5.3.  Change in YBR over time and RH levels computed from the data points (mean 

values of YBR) used in Fig. 5.3. 

 

LED YBR change over 

8 Kh @10% RH 

(a) 

YBR change over 

8 Kh @85% RH 

(b) 

Ratio of YBR 

change 

between RH 

[(b)/(a)] 

P1W 0.204 0.502 2.460 

S1W 0.102 0.351 3.441 

S03W -0.331 -1.547 -4.673 

 

 

To provide further insight into the YBR trends, the normalized spectral power distribution 

(SPD) characteristics of the LEDs at both RH levels are derived as shown in Fig. 5.4.  All three 

sets of LEDs exhibit a blue peak emission of ~450 nm and yellow peak emission of ~600 nm.  

The S1W LED maintains both higher blue and yellow intensity throughout the test period 

compared to the P1W LED even as the humidity level increases.  In contrast to the 1 W LEDs, 

the yellow intensity of the S03W LED is seen to degrade much more severely, in particular at 

85% RH.  The absolute change in the YBR or ∆YBR appears to have a positive correlation 

with the lumen degradation rate and is explored in detail in Chapter 6. 

While the decrease of both blue and yellow emission in the LEDs are related to both chip failure 

and phosphor degradation, the more pronounced reduction in blue over yellow intensity for the 

1 W LEDs at 85% RH may indicate chip failure as a primary failure mechanism while severe 

reduction in the yellow emission of the S03W suggests a failure mechanism involving the 

packaging/phosphor layer.  In addition, the more pronounced increase in series resistance RS 

at 85% RH compared to 10% RH for S03W (discussed in the next section) possibly indicates 

degradation of the electrical properties of the devices due to increased resistivity of the contact 

and to the degradation of the properties of the ohmic contacts [129].  Failure analysis is 

subsequently performed (described in Section (5.3.4)) to investigate the cause of failure. 
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Fig. 5.4.  Spectral power distribution of (a) P1W, (b) S1W and (c) S03W at 10% RH and 

85% RH.  The figures show the results for individual LED at each RH level and is 

representative of the findings for the samples tested. 
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5.3.2 Electrical Characteristics 

Current–voltage (I–V) characteristics of the 3 LEDs at 10% and 85% RH are shown in Fig. 

5.5.  The three characteristic regions of diode operation can be seen from the curves [130].  In 

the low bias region (less than 1.5 V), the I–V characteristic is dominated by non-radiative 

recombination of carriers in the space charge region.  At both humidity levels, P1W and S1W 

both exhibit significant current increase in this low forward bias voltage region in comparison 

to S03W due to humidity aging.  As the bias voltage becomes larger than about 1.5 V the 

radiative processes become dominant.  Beyond the bias voltage of about 3 V the I–V 

characteristic becomes ohmic due to the device series resistance.  S03W exhibits significant 

change in this region due to humidity aging in comparison to P1W and S1W. 

Below 2.5 V, the effect of the humidity aging is to shift the I–V curve to higher currents at the 

same forward bias voltage at the same time increasing the ideality factor.  This effect is not 

seen beyond 2.5 V approaching the ohmic region as the radiative recombination dominates 

over the nonradiative.  This shifting of the I–V curve is believed to be due to defect generation 

in the LED chip which increases the non-radiative recombination rates in the LED chip.   

Electromigration of the metal atoms in the electrical contact to the surface of the LED die, and 

instability in Mg diffusion in p-GaN layer and dislocation generation and movement at chip 

level had been reported [131-133].  Significant current increase (and hence defect density 

increase) due to aging is seen only in the low and mid bias region (0.5 V - 2.5 V).  This low-

injection characteristics are dominated by carrier tunneling to the active region because of the 

highly doped junction and high-density defects in the space-charge region [134, 135].  It is 

postulated that the higher moisture incursion at the higher humidity level causes increased 

defects in the LED chip for P1W and S1W.  On the other hand, the I-V profile of S03W 

indicates that the failure mechanism in S03W due to higher humidity may be related to the 

series resistance instead. 
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Fig. 5.5.  I-V characteristics of (a) P1W, (b) S1W and (c) S03W at 10% RH and 85% RH.  

The figures show the results for individual LED at each RH level and is representative of the 

findings for the samples tested. 
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From the current-voltage electrical measurements done on the LEDs, the series resistance RS 

is computed in Table 5.4.  Compared to S03W, the series resistance of both P1W and S1W 

showed less change over the test period of 8000 hours and between the two RH levels. This 

implies less deterioration of the ohmic contacts of the LED, suggesting that the failure 

mechanism for P1W and S1W is not related to the packaging materials.  The significantly larger 

increase of the series resistance for S03W would indicate greater reduction of the emission 

efficiency of the chip, explaining the higher lumen degradation (as shown in the subsequent 

optical discussion).  This increase in series resistance could possibly be due to metal–metal and 

metal–semiconductor inter-diffusion [128, 129, 136].  The larger shift in the S03W series 

resistance could possibly be due to the interaction between hydrogen and magnesium, which 

causes a reduction of the active acceptor concentration.  This leads to the deterioration of the 

properties of the anode contact, thereby changing the resistivity and p-layer injection properties 

[137].   

 

Table 5.4.  Change in Series Resistance RS over time and RH levels. 

 

LED RS change over         

8 Kh @10% RH (a) 

(ohms) 

RS change over       

8 Kh @85% RH (b) 

(ohms) 

Ratio of RS 

change 

between RH 

[(b)/(a)] 

P1W 0.325 0.589 1.812 

S1W 0.261 0.362 1.387 

S03W 0.485 1.091 2.249 
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For further validation of the LED reliability characteristics based on electrical analyses, 

investigation of the physical mechanisms due to the degradation of LEDs is conducted using 

capacitance-voltage (C-V) tests (Fig. 5.6).  C-V measurements provide a tool to detect any 

modification of the heterostructure of GaN based LEDs.  The technique uses the LED p–n 

junction to create a depletion region which may contain electrically active defects or traps, 

whose width varies according to the voltage applied.  The dependence of the depletion width 

upon the applied voltage provides information on the semiconductor's internal properties, such 

as its doping profile and defect densities [138].  An increase in capacitance may indicate an 

increase in the charge concentration in the active region of the LEDs due to either a rise in the 

concentration of defects or a redistribution of the charge in the space-charge region, because 

of a doping or impurity diffusion process [136, 139].   

In Fig. 5.6, it is observed that the capacitance-voltage curves change for both P1W and S1W.  

At the P1W reverse bias region between -1 and -3 V, there is a distinct step-like change in 

capacitance at 85% RH which suggests a doping increase attributable to an increase in charge 

concentration within the quantum well.  The decreasing  slope at this region implies that the 

net fixed charge concentration in the depletion region is not uniform and that the small increase 

of capacitance with voltage increase implies a high net fixed charge concentration as a greater 

amount of bias voltage increase is required to achieve the same increment of depletion layer 

width [140, 141].   
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Fig. 5.6.  Capacitance-Voltage (C-V) measurements for (a) P1W, (b) S1W and (c) S03W at 

10% RH and 85% RH.  The figures show the results for individual LED at each RH level 

and is representative of the findings for the samples tested. 
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For S1W, the increased capacitance at the S1W reverse bias region at 85% RH demonstrates 2 

distinct gradient changes.  From 0 to -0.5 V, similar to P1W, a gentler slope is seen at 85% RH 

while between -1.5 to -2 V, a steeper slope is observed for 85% RH.  As with P1W, the gentler 

gradient indicates a highly charged area.  However, the steeper gradient between -1.5 to -2 V 

implies a lowly charged region.  The resulting carrier concentrations have been attributed to 

the accumulation of carriers within the quantum wells resulting in the movement of charged 

defects towards the active layer of the LEDs.  The rate of non-radiative recombination is 

directly correlated to the density of defects located within the active region and an increase in 

charged defect density can lead to a decrease in the optical efficiency of the LED [127].  This 

corresponds to the non-radiative region of the I-V curves of P1W and S1W.   

On the other hand, the C-V measurements for S03W do not display any discernible changes in 

the C-V profile from 10% to 85% RH, which preliminarily may indicate little modifications to 

the LED itself.  These C-V results are in line with the I-V measurements in Fig. 5.5 which 

indicate defect generation in the active layers of both the 1 W LEDs, but no such visible 

deterioration for S03W.  Accordingly, a different physical degradation mechanism for S03W 

compared to the two 1 W LEDs is proposed to account for the more pronounced optical 

degradation in S03W compared to P1W and S1W.  Although the S03W has a greater lumen 

and radiant degradation rate together with a marked YBR change, the C-V measurements 

support the inference that LED chip deterioration is more likely not to be the cause for S03W 

compared to P1W and S1W. 
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5.3.3 Thermal Characteristics 

The previous electrical and optical discussions suggest that the defect generation in the active 

layer may be the predominant degradation mechanism in both the 1 W LEDs.  Comparing the 

two 1 W LEDs, the ratio of the change in series resistance between RH for P1W was computed 

as 1.8 versus 1.3 for the S1W (Table 5.4).  In addition, P1W shows higher degradation rate 

changes for both lumen and radiant flux over the test period over S1W (Table 5.2).  

Accordingly, this comparatively greater optical deterioration should lead to a higher increase 

on the thermal load for P1W leading to greater heat accumulation and subsequent expected 

increase in Rth for P1W over S1W.  However, this is not reflected in the graphs shown in Fig. 

5.7, with both S1W and S03W demonstrating higher changes in Rth over 8000 hours compared 

to P1W.   

Table 5.5 summarizes the change in Rth over the test period for each humidity level.  Compared 

to the other LEDs, P1W exhibits the lowest increase in Rth over 8000 hours from 10% RH to 

85% RH, with a change ratio of 2.7 versus 4.5 for S1W and 6.4 for S03W.  The difference in 

this Rth increase between 10% and 85% RH is only about 60% of that of S1W and 40% of that 

of S03W.  It is postulated that the relatively lower Rth in the P1W could be due to the impact 

of the P1W flip-chip die bonding configuration, which could reduce the heat accumulation 

significantly.  A flip-chip bonded LED dissipates the heat generated in the GaN LED 

effectively, and results in a decrease in temperature rise compared to the other LEDs. 
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Fig. 5.7.  Rth of (a) P1W, (b) S1W and (c) S03W at 10% RH and 85% RH. 
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Table 5.5.  Change in Rth over time and RH levels computed from the data points (mean values 

of Rth) used in Fig. 5.7. 

 

LED Rth change over 

8 Kh @10% RH 

(a) (K/W) 

Rth change over 

8 Kh @85% RH 

(b) (K/W) 

Ratio of Rth 

change 

between RH 

[(b)/(a)] 

P1W 1.57 4.27 2.719 

S1W 2.07 9.37 4.527 

S03W 1.40 8.99 6.418 

 

Most of the heat generated in the LED device is dissipated through the LED package, thereby 

creating variable heat flow paths.  To provide a visualization of the heat flow from the phosphor 

layer to the ambient, the schematic in Fig. 5.8 illustrates the layers through which the heat 

dissipates.  To derive the layer configuration of the LED, a three-pronged approach using 

SEM/EDX, thermal capacitance computation and the cumulative structure function is utilized 

[142, 143].  By using information obtained from the SEM/EDX analysis, the various materials 

constituting the layers of the LED can be confirmed by comparing the calculated thermal 

capacitances with that obtained in the cumulative structure functions.  Fig. 5.8 also provides an 

orientation of the differential structure functions with respect to the heat flow paths (Fig. 5.9) 

and SEM/EDX micrograph analysis (Fig. 5.11) presented later. 

Structure function evaluation of all the LEDs were computed for both RH levels (Fig 5.9) to 

analyze the thermal response of the LEDs.  The recorded cooling curves in the transient thermal 

measurements from the T3ster were evaluated to extract the thermal characteristics and derive 

the differential structure functions.   
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Fig. 5.8.  LED schematic with cross-sectional orientation in Fig. 5.9 and Fig. 5.11. 

 

At 85% RH, the S03W and S1W show greater increase in Rth compared to the P1W over the 

test period.  The smaller Rth change seen in P1W could be attributed to the flip-chip die-bonding 

which allows for effective heat transfer onto the AlN substrate.  Consequently, the P1W has a 

lower measured Rth compared to the two other LEDs where heat generated is directly 

transferred to the AlN substrate through the thick sapphire material.  The low thermal 

conductivity of the sapphire material (KAl2O3 ~46 W/m·K) implies inferior heat dissipation 

allowing for greater heat accumulation within the device compared to flip-chip devices.  

Conversely, flip-chip bonding allows effective heat transfer onto the AlN substrate due to the 

higher thermal conductivity of the gold bumps (KAu ~318 W/m·K).  The heat fluxes generated 

in P1W through the Au bumps allows for lower temperature rise and Rth of the package, in 

spite of the degeneration of the electrical and optical properties, which might suggest otherwise. 
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Fig. 5.9.  Derivative structure function of (a) P1W, (b) S1W and (c) S03W at 10% RH and 

85% RH. 



120 

 

5.3.4 Failure Analysis 

The implication of the EOT analysis is that the S03W underwent package based degradation 

in contrast to the 1 W LEDs where defect mechanisms is suggested to cause the LED to 

degrade.  The S03W exhibited significant changes due to the increase in humidity in particular 

the series resistance, lumen degradation and YBR change.  These changes consequently had 

the effect of a pronounced change in the Rth of the package.  On the other hand however, S03W 

exhibited little change in the low forward bias voltage region during the I-V tests and displayed 

little variation for the C-V tests due to the increased RH levels.  These observations lead to 

added justification of degradation to the package instead of to the LED chip due to the effect 

of humidity on S03W. 

To validate these results and observations, further investigation by SEM-EDX was conducted 

to discover the failure mechanism on dissected S03W samples.  A close examination of the 

degraded S03W (Fig. 5.10) reveals that there was delamination at the Cu/AL2O3 interface of 

the LED at 85% RH, whereas there appeared to be no visible damage at 10% RH.  This 

delamination is depicted by the encircled area in Fig. 5.10(b).  A possible reason is cited as von 

Mises stress at the interface due to hygroscopic stress caused by moisture ingression over time 

[144].  It is postulated that higher relative humidity levels cause further moisture inception 

leading to greater degrees of delamination which has been shown to be a mechanism for white 

LED light degradation [145].   
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..  

 

Fig. 5.10.  Micrographs of S03W at (a) 10% RH and (b) 85% RH. 

 

In addition, SEM–EDX analysis of the LED (Fig. 5.11) indicates an increase of elemental 

oxygen at 85% RH compared to 10% RH at the interface of the chip and the lead frame, which 

is coated with silver to enhance light reflectivity.  As shown in Table 5.6, there is a significant 

increase in the weight percentage of oxygen and this observation is consistent for all the S03W 

samples subjected to failure analysis.  It had been reported by Chen et al. [146] that in the 

presence of humidity, atomic oxygen will react with the absorbed water to form a hydroxyl 
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(OH) radical, which reacts with Ag to form Ag2O which is the cause of silver corrosion on the 

surface of the lead frame.  This oxidation leads to a change of the reflective properties of the 

silver layer [147-149] which impairs its light reflectivity and affects the colour output of the 

LED.  This result aligns with the shift in YBR reported earlier in the chapter.  

 

 
Fig. 5.11.  (a) SEM micrograph and (b) EDX analysis of die after 85% RH aging. 
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Table 5.6.  S03W Elemental weight by percentage at 10% RH and 85% RH. 

Element Element weight percentage      

@10% RH 

Element weight percentage 

@85% RH 

Carbon C 2.41 2.25 

Oxygen O 7.76 13.04 

Magnesium Mg 0.4 0.58 

Silicon Si 0.51 0.76 

Titanium Ti 0.86 0.78 

Zinc Zn 1.38 1.42 

Silver Ag 86.68 84.38 

 

In addition, it is theorized that at higher humidity levels, the water vapour reaches the die, 

causing phosphor degradation.  Light scattering due to the water layer and internal reflection 

of the light from the die occurs due to the change in the refractive index of the water layer, 

leading to a reduction in the phosphor conversion efficiency [61, 150-152], which corresponds 

to the YBR reduction.   

5.4 Summary 

Three different LEDs of varying power, die-bonding configurations and phosphor coating 

methods were analyzed for their EOT performance under the conditions of two relative 

humidity levels, 10% RH and 85% RH.  The I-V and C-V profiles and RS changes suggest 

package or phosphor deterioration in S03W, and defect generation in the active layer of the      

1 W LEDs.  This postulation is supported by the pronounced reduction in yellow intensity for 

S03W versus the increase in YBR for P1W and S1W.  The package deterioration for S03W is 

confirmed by SEM-EDX analysis which show delamination and silver corrosion on the lead 

frame.  These results form the basis of the prognostication model developed in Chapter 6.   

For the 1 W LEDs, in spite of the expected high thermal load and heat accumulation, P1W 

exhibits significantly better thermal performance compared to S1W.  The Rth is only 60% of 

that of S1W and this is due to the superior heat dissipating capabilities by the flip-chip die-

bonding configuration.   
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Chapter 6  

Prognosticating the Effect of Humidity 

6.1 Introduction  

Based on an understanding of the effects of the humidity stressor on the EOT performance of 

the LED covered in Chapter 5, the challenge is to quantitatively associate these changes 

observed with the impact of humidity.  Such a model would provide not only an indicative 

assessment of the current state of the LED but also provide prognostication into the likely 

development of future problems.  In spite of the need for greater LED reliability research to 

ensure its universal adoption, there are comparatively few studies in this area [82], in particular 

regarding lumen depreciation and colour shift, two critical indicators of LED reliability.  

Although these two factors should be analyzed in relation to each other, most existing literature 

treat these two as independent phenomena [14].  Prediction models involving colour shift are 

also limited [89] despite the requirement for colour consistency being more important than 

lumen maintenance in many applications.  In spite of the need for information on LED 

chromaticity shift, there are still no official standards providing acceptability guidelines of 

colour shift [18].  Even more scarce is the availability of studies investigating the colour 

degradation in high humidity conditions.  As conditions of high humidity can incur significant 

lumens degradation and colour change, a method to predict colour shift has both academic and 

industrial significance as an indication of the impending nature and amount of this change.  

Based on degradation data of different types of LEDs under humidity stress, this study in this 

chapter proposes a data driven humidity based degradation model (HBDM) using the lumen 

depreciation data to predict the time-dependent effect of humidity on the LED.  The humidity 

index, derived using Hallberg-Peck's model and the IES TM-21 approach is developed to 

provide a practical indication of the impact of moisture incursion according to the lumen decay 
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under varying humidity levels.  Subsequently, the yellow-blue ratio (YBR) shift is analyzed 

from experimental data and the association of this humidity index with the magnitude of the 

change in YBR is investigated and analyzed.  

To further build on the HBDM, an artificial neural network (ANN) model is then developed as 

an efficient tool to predict the YBR changes based on the humidity degradation data, taking 

advantage of its high computational efficiency.  The use of ANNs for LED prognostication is 

extremely rare, with only one such application currently uncovered, despite their suitability for 

LED prognostic study [81].  The model presented is a feed forward network using six key 

attributes or indicators of LED degradation to model the HBDM. 

There is also a need to be able to identify potential failures under such conditions of high 

humidity by sensing the current condition of the LED [63].  The degree of deviation from the 

expected normal operating condition provides warning of impending failures and also improves 

LED reliability qualification, helping to design future products.  As such, a novel Trivariate 

Distance Measure Approach (TDMA) for LEDs based on the Mahalanobis method [153] to 

identify outliers based on the combined characteristics of Rth change, colour shift and the 

degradation rate of the LEDs is developed.  The advantage of this approach is that it does not 

make any assumptions regarding the underlying distribution of data.  This method draws its 

strength from the data and its inherent features, without requiring specific knowledge of the 

LEDs under test, and is ideal for the suspected or presumed correlation between the parameters 

used.  The results demonstrate that this approach is a more effective gauge of anomalies than 

using the usual screen test of one or two variables.   
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6.2 Experimental Setup and Procedures  

6.2.1 Instrumentation Setup 

The work in this chapter comprises primarily data and results obtained from previous chapters, 

which were collected using the same integrated LED measurement system represented in Fig. 

3.1 (Chapter 3).  Humidity reliability aging tests (Chapter 5) were conducted using the CTS 

Climatic Test System environmental cabinets.  The failure analyses of the samples described 

in Section (6.3.2) were done by means of Scanning Electron Microscopy with Energy 

Dispersive X-ray Spectrometry (SEM–EDX).   

 

6.2.2 Experimental Procedures 

For the derivation of the HBDM and TDMA, results from the same LEDs used in humidity 

experiments described in Section (5.3) were used.  The test procedures and conditions as 

recommended in IES TM-21 [65] described in Section (5.2.2) were used.  A sample size of 20 

was used for each LED (P1W, S1W and S03W) at each humidity level (10% and 85% relative 

humidity).  The results and discussion that follow in this chapter are based on this LED set. 

The figures used in this chapter vary in presentation based on purpose and the type of data or 

results available.  As Fig. 6.1, 6.3 and 6.12 are statistically based diagrams and display the 

distributions of the entire sample of LEDs used, the data points in these figures are computed 

from all the LED samples.  However, in Fig. 6.2, for the purpose of quantifying the humidity 

index’s correlation to the average change in YBR, the mean data extracted from the 20 samples 

of each LED type is used (Section (5.3.1)).  Similarly, in Fig. 6.4 to Fig. 6.8, the figures are 

based on data provided from external sources using mean values for computation of the data 

points similarly to demonstrate the validity of the HBDM.  The procedure to derive the slope 

showing the lumens degradation in Fig. 6.4 and Fig. 6.6 are as described in Section (5.3.1). 
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6.3 Results and Discussion 

6.3.1 The Humidity Based Degradation Model (HBDM) 

6.3.1.1 Derivation of the HBDM  

As the degradation of the lumen performance follows an exponential trend [154], from IES 

TM-21 [65], the following degradation equation can be used to fit the averaged degradation 

data: 

𝛷(𝑡) = 𝐵𝑒𝑥𝑝(−𝛼𝑡) (6.1) 

 

where 𝑡 is the operating time and 𝛷(𝑡) the averaged normalized luminous flux output at time 

𝑡.  The projected initial constant 𝐵 = 𝑒𝑥𝑝(𝑐) and the decay rate 𝛼 = (−𝑚) where both 𝑐 and 

𝑚 are parameters obtained from the least squares curve-fit described in Section (5.3.1).  To 

incorporate the effect of both temperature and humidity on LED life, the Hallberg-Peck model 

[155] is typically used and the acceleration factor due to this model can be described as follows: 

𝐴𝐻 = (
𝑅𝑢𝑠𝑒

𝑅𝑠𝑡𝑟𝑒𝑠𝑠
)𝜃𝑒𝑥𝑝 (𝐾 [∆ (

1

𝑇
)]) 

(6.2) 

 

where 𝐴𝐻 is a humidity acceleration factor, 𝑅𝑠𝑡𝑟𝑒𝑠𝑠 𝑎nd 𝑅𝑢𝑠𝑒 the testing and reference relative 

humidity respectively, 𝐾 and 𝜃 are predetermined humidity specific constants and 𝑇 the 

operating temperature in kelvin.  For the purpose of providing information on the sole effects 

of humidity stress, equation (6.2) is treated as having one independent variable (relative 

humidity) with stress conditions at constant temperature, leading to the factoring out of the 

exponential term.  Under such conditions then, 𝐴𝐻 reduces to [
𝑅𝑢𝑠𝑒

𝑅𝑠𝑡𝑟𝑒𝑠𝑠
]

𝜃
 and the time 𝑡𝑠𝑡𝑟𝑒𝑠𝑠 to 

reach a specified lumen level in terms of the reference 𝑡𝑢𝑠𝑒 is described as: 
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𝑡𝑠𝑡𝑟𝑒𝑠𝑠 = [
𝑅𝑢𝑠𝑒

𝑅𝑠𝑡𝑟𝑒𝑠𝑠
]

𝜃

𝑡𝑢𝑠𝑒 
(6.3) 

 

For the same specified lumen output level 𝛷 reached at use and stress conditions, the expression 

in (6.1) under the reference and stress conditions can then be equated giving: 

𝛼𝑠𝑡𝑟𝑒𝑠𝑠𝑡𝑠𝑡𝑟𝑒𝑠𝑠 = 𝛼𝑢𝑠𝑒𝑡𝑢𝑠𝑒 (6.4) 

 

where 𝛼𝑢𝑠𝑒 is the lumens degradation rate under stated initial humidity conditions and 

𝛼𝑠𝑡𝑟𝑒𝑠𝑠 the degradation rate under the stress humidity conditions.  On assumption that during 

the stress tests, the failures induced by temperature and humidity are independent, a functional 

form describing the light degradation can be developed to account for the exponential loss in 

luminous flux under conditions of increasing relative humidity.  From equations (6.3) and (6.4), 

a degradation model developed as a function of some base degradation rate 𝛼𝑢𝑠𝑒 that caters to 

both these factors would fundamentally be described as: 

𝛼𝑠𝑡𝑟𝑒𝑠𝑠 = 𝐻𝛼𝑢𝑠𝑒 (6.5) 

 

where 𝐻 is a humidity expression. From both experimental observation and parameter fitting, 

this humidity expression derived from the Hallberg-Peck's model may be described as: 

𝐻 = [
𝑅𝑠𝑡𝑟𝑒𝑠𝑠

𝑅𝑢𝑠𝑒
]
𝐻

 
(6.6) 
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where 
𝐻

 is described as a humidity constant which represents the level of moisture related 

degradation in the LED.  The expression is incorporated into the original exponential curve-fit 

equation (6.1) to give the following combined model: 

𝛷(𝑡) = 𝐵𝑒𝑥𝑝(− [
𝑅𝑠𝑡𝑟𝑒𝑠𝑠

𝑅𝑢𝑠𝑒
]
𝐻

𝛼𝑢𝑠𝑒𝑡) 
(6.7) 

 

The combined expression (6.7) can be described as a humidity-based degradation model 

(HBDM) which can be fitted to LED lumen maintenance data.  Using degradation data, the 

HBDM describes the effect of assumed moisture ingress in an LED at an operational RH level 

compared to a specified base RH level.  

Using the procedure prescribed in IES TM-21 for 20 units of each of the 3 types of LED used 

for experimentation, the nonlinear least squares method was utilized for the degradation curve-

fit.  The extracted parameters are used to extrapolate the lumen maintenance value to where 

the luminous flux output decreases to L70 (70% of initial luminous flux).  The lumens 

exponential curve-fit based on equation (6.1) for the 3 types of LEDs used at both 10% RH and 

85% RH was presented in Fig. 5.2 in Chapter 5.  Using 10% RH as the baseline for all tests, 


𝐻

 is assigned an initial value of 0 at 𝛼𝑢𝑠𝑒 at this humidity level.  Accordingly, rearranging 

equations (6.5) and (6.6) above, 
𝐻

 can be derived as:  


𝐻

=
𝑙𝑜𝑔(

𝛼𝑠𝑡𝑟𝑒𝑠𝑠
𝛼𝑢𝑠𝑒

⁄ )

𝑙𝑜𝑔 (
𝑅𝑠𝑡𝑟𝑒𝑠𝑠

𝑅𝑢𝑠𝑒
⁄ )

 
(6.8) 

 

For the validity of 
𝐻

, the baseline values 𝛼𝑢𝑠𝑒 and 𝑅𝑢𝑠𝑒 are set below that of 𝛼𝑠𝑡𝑟𝑒𝑠𝑠 and 

𝑅𝑠𝑡𝑟𝑒𝑠𝑠 respectively.  The results for 
𝐻

 for the experimental data is as shown in Table 6.1.  As 

RH increases with corresponding increase of the degradation rate 𝛼, 
𝐻

 increases in proportion 
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to the degradation rate.  This indicates the relative level of moisture incursion in the LED 

associated to the lumen decay.  At 85% RH, it is observed that 
𝐻

 = 0.607 for the lower 

powered S03W compared to 
𝐻

 = 0.129 and 0.153 for the higher powered S1W and P1W 

respectively corresponding to a higher 
𝐻  at higher degradation rates 𝛼.   

 

Table 6.1. Computations of 
𝐻

 for various LEDs at differing RH levels. 

 

LED power rating LED %RH Degradation rate 𝛂 
𝑯

 

1 W 

 

P1W 
10 7.145E-06 0 

85 9.917E-06 0.153 

1 W 

 

S1W 
10 4.702E-06 0 

85 6.197E-06 0.129 

0.3 W 

 

S03W 
10 1.765E-05 0 

85 6.473E-05 0.607 

 

Assuming the normalised expression for lifetime LP based on TM-21 where: 

𝐿𝑝 =
𝑙𝑛 (100

1
𝑝

)

𝛼𝑠𝑡𝑟𝑒𝑠𝑠
 

(6.9) 

 

where 𝐿𝑝 is the lumen maintenance life and 𝑝 is the percentage of the initial lumen output that 

is maintained.  By substituting in equation (6.9), 
𝐻  may then be used to predict the lifetime at 

a particular RH level.  The lumen degradation mechanisms of the experimental data were 

explored using statistical methodology.  The lifetime data of each individual sample at 10% 

RH and 85% RH was collected for probability distribution analysis and plotted in Fig. 6.1.  

Lognormal distribution is commonly used for demonstrating fatigue-stress failure modes.  The 
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degradation mechanisms for both humidity stress conditions for P1W are similar as the shape 

parameters of the lognormal distributions are close to each other as shown in Table 6.2.  

Similarly, the degradation mechanisms for S1W at both 10% and 85% RH are noted to be 

similar.  However, because of the comparatively larger difference in the scale factor and shape 

parameter for S03W between 2 RH levels, the degradation mechanism is expected to be 

different [6, 56]. 

 

 

Fig. 6.1.  Lognormal Distribution of P1W, S1W and S03W at 10% RH and 85% RH.  MTTF 

70% is the Mean Time to Failure for L70.  Data points are computed from all the LED samples 

to demonstrate the distribution.   
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Table 6.2.  Lognormal Distribution shape and scale parameters.  The shape parameter indicates 

the standard deviation while the scale parameter indicates the median of the distribution. 

 

 P1W S1W S03W 

Lognormal Distribution 

Parameters 

10% 

RH 

85% 

RH 

10% 

RH 

85% 

RH 

10% 

RH 

85% 

RH 

Shape 10.804 10.461 11.234 10.951 9.965 8.626 

Scale 0.154 0.177 0.089 0.115 0.287 0.165 

 

6.3.1.2 Prediction of Colour Change by the HBDM  

Colour output is evaluated from the LED spectral power distribution (SPD).  Based on the two 

decomposed peaks, the ratio of the phosphor converted yellow light (𝑆𝑃𝐷𝑃) to blue light 

(𝑆𝑃𝐷𝐵) emitted from the LED or yellow-to-blue ratio (YBR) could be calculated from [156]: 

YBR =
∫ 𝑆𝑃𝐷𝑃( )𝑑

∫ 𝑆𝑃𝐷𝐵( )𝑑
 

(6.10) 

where the 𝑆𝑃𝐷𝑃 and 𝑆𝑃𝐷𝐵 are derived from the radiant flux as a function of the wavelength 

.  The SPDs for all 3 LEDs at the different RH levels were presented in Fig. 5.4 in Chapter 5.  

Computed over the entire test period of 8000 hours, the trend of YBR change was demonstrated 

for all 3 LEDs for 10% (base) and 85% (stress) RH in Fig. 5.3 and Table 5.3.  Based on these 

results, the difference between ∆(YBR)RH at stress and use RH are computed in Table 6.3 along 

with the corresponding 
𝐻

 using equation (6.8).  It is observed that the experimental ∆(YBR)RH 

computations correspond closely to twice the value of 
𝐻

.  This correlation is explored further 

in detail later and tested in different experiments to validate the relationship.  Fig. 6.2 illustrates 

the comparison between the measured YBR shift and the HBDM predicted shift computed in 

Table 6.3 over the entire test period.  The dashed lines demonstrate the overall HBDM 

predicted ∆(YBR)RH based on the same 𝑅𝑢𝑠𝑒 for each LED type. 
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Table 6.3.  Measured versus HBDM predicted YBR shift over RH levels. 

 

 

LED 

YBR Change over 

test period @base 

condition 

YBR Change over 

test period @stress 

condition 

YBR 

Difference 

between RH 

=  (b) - (a) 


𝑯

 HBDM 

predicted 

∆(YBR) 

𝑹𝒖𝒔𝒆 ∆(YBR)RH 

(a) 

𝑹𝒔𝒕𝒓𝒆𝒔𝒔 ∆(YBR)RH 

(b) 

P1W 10% 

RH 

0.204 85% 

RH 

0.502 0.298 0.153 0.306 

S1W 10% 

RH 

0.102 85% 

RH 

0.351 0.249 0.129 0.258 

S03W 10% 

RH 

-0.331 85% 

RH 

-1.547 -1.219 0.607 -1.214 

 

 

 

 

Fig. 6.2.  Measured and HBDM predicted YBR shift at different RH levels.  The solid lines 

display the shift of the mean value of the 20 samples for each LED after 8000 h. 
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It is observed from Fig. 6.2 that at all RH levels, the P1W and S1W both exhibit increasing 

trends while the S03W conversely has a decreasing yellow-blue light output ratio.  Table 6.3 

summarizes this YBR change over the test period for each RH level as well as the difference 

in YBR change ∆(YBR)RH between the stress condition Rstress and the base condition Ruse.  

S03W has a significantly larger YBR change over the test period at both RH levels and between 

the RH levels, the negative sign for S03W denoting the decreasing YBR.  The results correlate 

with the larger difference in scale parameter computed for S03W (Table 6.2) in relation to the 

other LEDs, indicating a different degradation mechanism for this LED.  It is observed for all 

the LEDs that 
𝐻

 is positively associated to the absolute value of ∆(YBR)RH in that an increase 

in ∆(YBR)RHis reflected by a corresponding increase in 
𝐻

.  The correlation of colour shift 

to lumen depreciation has been corroborated in several studies [6, 58, 89] and since 
𝐻

 is based 

on the degradation curves of lumen depreciation, it is proposed that 
𝐻

 serves as an degradation 

based index to estimate the colour shift in the LED related to the relative humidity.  As a means 

of statistically measuring the strength of the relationship between 
𝐻

 and ∆(YBR)RH, the 

Pearson correlation coefficient value 𝑟 [157, 158] is computed based on: 

𝑟 =
𝑁 ∑ 𝑞1𝑞2 − (∑ 𝑞1)(∑ 𝑞2)

√[𝑁 ∑ 𝑞1
2 − (∑ 𝑞1)2][𝑁 ∑ 𝑞2

2 − (∑ 𝑞2)2]
 

(6.11) 

 

where 𝑞1and 𝑞2 represent the 
𝐻

 and ∆(YBR)RH variables respectively, and 𝑁 is the number 

of pairings of the two respective variables.  The correlation coefficient 𝑟 is computed to be 

greater than 0.99 indicating a high positive association in that as 
𝐻

increases, the value of 

∆(YBR)RH increases correspondingly.  Applying the t-test [158] for the data where: 
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𝑡 = |𝑟√
𝑁 − 2

1 − 𝑟2
| 

(6.12) 

 

gives t = 170, which at P-value < 0.001 implies that the correlation coefficient may be regarded 

as significant. Fig. 6.3 shows the correlation scatter matrix which shows good association 

between the two variables, with all the data points falling within close proximity in the 

confidence ellipse.  The proposed HBDM thus serves to provide an indication of the impact of 

humidity correlating the value of 
𝐻

 with the absolute value of the change of YBR caused by 

this moisture incursion.  

 

 

 

 
Fig. 6.3.  Scatter matrix with confidence ellipse of 

𝐻
 and ∆(YBR)RH.  Data points are 

computed from all the LED samples to demonstrate the distribution.   
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As a means of validation of the link between the lumen degradation and the change in colour, 

the photopic eye sensitivity function relationship with lumen output Φ(t) as prescribed by the 

International Commission on Illumination ( CIE ) [159] given by the base equation is used:  

𝛷(𝑡) = 𝐾𝑚 ∫ 𝛷𝑒(𝜆). 𝑉(𝜆). 𝑑𝜆
780

380

 
(6.13) 

 

where the maximum spectral luminous efficacy normalization factor 𝐾𝑚  = 683 lm/W, 𝛷𝑒 the 

radiant flux derived from the SPD from wavelength 380 nm to 780 nm, and 𝑉(𝜆) the spectral 

luminous efficiency function for photopic vision.  Inserting the HBDM expression for 𝛷(𝑡) 

from equation (6.7) into equation (6.13) gives:  

 

𝐵𝑒𝑥𝑝 (− [
𝑅𝑠𝑡𝑟𝑒𝑠𝑠

𝑅𝑢𝑠𝑒
]
𝐻

𝛼𝑢𝑠𝑒t) = 𝐾𝑚 ∫ 𝛷𝑒(𝜆). 𝑉(𝜆). 𝑑𝜆
780

380

 
(6.14) 

 

Using the degradation values at the corresponding humidity levels from Table 6.1, then the 

value of 
𝐻

 applying the human eye sensitivity function aspect may be computed from the 

radiant flux.  It is observed from the experimental data that the minima or separation point 

between the yellow and blue spectra may be approximated at about 470 nm.  To establish the 

relationship between the H in equation (6.14) and the YBR, equation (6.13) may be separated 

into two components representing the blue and yellow SPD peaks respectively: 

𝛷(𝑡) = 𝐾𝑚 ∫ 𝛷𝑒(𝜆). 𝑉(𝜆). 𝑑𝜆
470

380

+  𝐾𝑚 ∫ 𝛷𝑒(𝜆). 𝑉(𝜆). 𝑑𝜆
780

470

 
(6.15) 

 

So as to allow for the input of the discrete experimental values, equation (6.15) is approximated 

by numerical summation which may be described as: 
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𝛷(𝑡) = 𝐾𝑚 ∑ 𝛷𝑒(𝜆𝑖)𝑉(𝜆𝑖)𝛿(𝜆𝑖)

𝑖=470

𝑖=380

+ 𝐾𝑚 ∑ 𝛷𝑒(𝜆𝑖)𝑉(𝜆𝑖)𝛿(𝜆𝑖)

𝑖=780

𝑖=470

 

(6.16) 

 

As the YBR is derived from the deconvoluted SPD of the LED, the expression for YBR in 

equation (6.10) may be thus written as:  

YBR =
∑ 𝛷𝑒(𝜆𝑖)𝛿(𝜆𝑖)𝑖=470

𝑖=380

∑ 𝛷𝑒(𝜆𝑖)𝛿(𝜆𝑖)𝑖=780
𝑖=470

 
(6.17) 

 

 

By substituting the radiant flux and spectral luminous efficiency function values for photopic 

vision at the respective relative humidity levels into equation (6.17), the change in YBR based 

on the photopic eye sensitivity function had shown to yield similar values for the different LED 

samples as in Table 6.3 with a variation of less than 6% for 
𝐻

 and ∆(YBR)RH.  Although the 

universal applicability of the HBDM method can only be verified by applying the method to 

the field or experimental data at all scenarios, this approach has certain advantages over other 

data driven methodologies.  The index H is simple to calculate and use and allows for both 

the prediction of relative moisture incursion and colour shift under specified humidity 

conditions.  

In addition, both the parametric and physical investigation reported in Chapter 5 verify the 

HBDM colour predictions.  The magnitude of the I-V and RS changes correlate well to the 

degradation and YBR degradation data, and failure analysis of S03W show delamination and 

silver corrosion, which explains the package deterioration predicted, causing the pronounced 

degradation of the YBR. 
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6.3.1.3 Robustness of the HBDM 

To demonstrate the robustness of the model, HBDM was applied to different LED samples 

used in a separate experiment.  As mentioned earlier in the chapter introduction, humidity based 

degradation studies are few and far between, not to mention the dearth of comparative research 

providing experimental setup and conditions suitable for validity studies with the HBDM.  

Using data from one such research conducted by Tan et al [6], relevant parameters were 

extracted at 70% RH and 95% RH to be used in the HBDM.  The lumen degradation data 

extracted was curve fitted as shown in Fig. 6.4 and the degradation rates α derived.  Using Rstress 

= 95% RH and Ruse = 70% RH, the humidity index 
𝐻  is then computed using equation (6.8) 

to give a value of 0.72, which indicates the relative amount of moisture incursion for the LED.   

Based on the positive association of 
𝐻

 to the absolute value of ΔYBRRH described in Section 

(6.3.1.2), 
𝐻

 =  0.72 corresponds to predicted ΔYBRRH = 1.44.   

 

Fig. 6.4.  Lumens degradation of Osram 1W LED at 70% RH and 95% RH [6].  Mean data 

provided by external source with slope of curve fit computed using procedure in Section 

(5.3.1). 
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To test the model, the YBR data points may be computed at different degradation points from 

the given data.  As the HBDM predicts the overall change in YBR, the initial and final YBR 

reported at both RH values over the test period are utilized in this test.  The overall ΔYBRRH 

is measured to be 1.38 as shown in Table 6.4.  This measured ∆(YBR)RH differs from the 

HBDM prediction of 1.44 by less than 5%, which validates the correlation between humidity 

index 
𝐻

 and colour change proposed by the HBDM. 

To demonstrate these results, Fig. 6.5 is plotted with the initial and final measured YBR values 

used to compute the overall measured ΔYBRRH.  Superimposed in the graph in red is the 

HBDM predicted ΔYBRRH to illustrate how the HBDM predicted overall ΔYBRRH varies 

with the measured values.  The red line illustrates the predicted overall outcome over the entire 

period under test (based on the same Ruse depicted as the baseline) and is not indicative of the 

trend, as the HBDM takes into account only the change in YBR over the entire period and not 

the interim values.  It is also notable that although the duration of this experiment is 

considerably shorter than the duration the HBDM was developed for, the good correlation may 

be attributable to stabilization of lumen output and hence YBR early in the life cycle, allowing 

for comparable long term results. 

Table 6.4.  ∆(YBR)RH HBDM prediction using Osram LEDs. 

 

LED 

YBR Change 

over test period 

@base condition 

YBR Change 

over test period 

@stress condition 

Difference 

between 

RH 

∆(YBR)RH            

= (b) - (a) 

HBDM 

predicted  

∆(YBR)RH 

Variation 

between 

predicted 

and 

measured 
𝑹𝒖𝒔𝒆 ∆(YBR)RH 

(a) 

𝑹𝒔𝒕𝒓𝒆𝒔𝒔 ∆(YBR)RH 

(b) 

Osram 

1W 

70% 

RH 

0.1 95% 

RH 

1.48 1.38 1.44 4.10% 
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Fig. 6.5.  Measured and HBDM predicted YBR shift for Osram 1W LED [6].  Solid lines 

represent the shift of the mean YBR data points provided by external source after 350 h.   

 

Validation by means of data from external sources has proven to be difficult due to the lack of 

humidity based studies with relevant information.  Additionally, data sheets typically do not 

publish data at more than one humidity level.  Nevertheless, the results of this investigation 

show good correlation between the humidity index 
𝐻

 and the colour change experienced in 

another research, which provides validation of the HBDM model’s prognostication capability 

for different LEDs under different RH conditions. 

Another validation of the HBDM is done through the analysis of commercial outdoor LEDs 

used for street illumination (Fig. 6.6).  As part of a separate research project to understand the 

performance of LEDs in harsh environments, 20 LEDs each with a maximum rating of 30W 

were deployed under local outdoor conditions (average Rstress = 83% RH) with another 5 LEDs 

under indoor conditions (average Ruse = 31% RH). 
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Fig. 6.6.  Outdoor Street LEDs in customized enclosure deployed in local outdoor 

conditions.  (Inset:  Enclosure disassembled with LED displayed). 

 

 

Similar to the 1W LEDs studied, the experimental setup described in Section (5.2) was used to 

extract the data used for the derivation of the required optical parameters.  The lumen 

degradation data was curve fitted as shown in Fig. 6.7 and the degradation rates α derived.  

Using Rstress = 83% RH and Ruse = 31% RH, 
𝐻  is then computed using equation (6.8) to give 

a value of 0.11.  Based on the association of 
𝐻

 to the absolute value of ΔYBRRH described in 

Section (6.3.1.2), 
𝐻

 = 0.11 corresponds to predicted ΔYBRRH = 0.22.   
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Fig. 6.7.  Lumens degradation of Outdoor Street LED at 31% RH and 83% RH.    Mean data 

provided by external source with slope of curve fit computed using procedure in Section 

(5.3.1). 

 

The initial and final measured YBR at both RH values over 8000 h are used to compute the 

overall ΔYBRRH as shown in Table 6.5.  This measured ∆(YBR)RH of 0.20 differs from the 

HBDM prediction of 0.22 by a fine margin of 0.02 or 9%, demonstrating that the HBDM is 

sufficiently robust to accommodate the variability of the outdoor street LED samples and 

suggests its effectiveness as a useful industrial prognostic tool. 

As with the previous Osram data, to provide an illustrative comparison between the actual and 

HBDM prediction, the YBR starting and ending data points are plotted in Fig. 6.8 for the entire 

test period.  Superimposed in the graph is the predicted overall difference in ΔYBRRH between 

the RH levels to demonstrate the HBDM predicted ΔYBRRH based on the same Ruse baseline.  

Although HBDM was developed using comparatively lower power LEDs, the results with the 



143 

 

outdoor street LEDs bode well with the model.  However, further research is needed to establish 

the validity of the HBDM with all LED species and power ratings. 

Table 6.5.  ∆(YBR)RH HBDM prediction using Outdoor Street LEDs. 

 

LED 

YBR Change 

over test period 

@base condition 

YBR Change 

over test period 

@stress condition 

Difference 

between 

RH 

∆(YBR)RH            

= (b) - (a) 

HBDM 

predicted  

∆(YBR)RH 

Variation 

between 

predicted 

and 

measured 
𝑹𝒖𝒔𝒆 ∆(YBR)RH 

(a) 

𝑹𝒔𝒕𝒓𝒆𝒔𝒔 ∆(YBR)RH 

(b) 

Street 
31% 

RH 

0.08 83% 

RH 

0.28 0.20 0.22 9.0% 

 

 

 
 

Fig. 6.8.  Measured and HBDM predicted YBR shift for Outdoor Street LED.  Solid lines 

represent the shift of the mean YBR data points after 8000 h.   
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6.3.1.4 Artificial Neural Network modeling of the HBDM 

To further build on the HBDM, an artificial neural network model is developed to provide an 

efficient tool to predict the YBR changes based on the humidity degradation data.  Based on 

the observations in Table 6.3, ∆(YBR)RH ≈ 2 
𝐻

 and an empirical expression to describe 

∆(YBR)RH may be given as: 

∆(YBR)RH  =
2𝑙𝑜𝑔(

𝛼𝑠𝑡𝑟𝑒𝑠𝑠
𝛼𝑢𝑠𝑒

⁄ )

𝑙𝑜𝑔 (
𝑅𝑠𝑡𝑟𝑒𝑠𝑠

𝑅𝑢𝑠𝑒
⁄ )

 
(6.18) 

The neural network to represent this relationship is represented in Fig 6.9 with one hidden layer 

and an output layer.  To estimate ∆(YBR)RH, 6 attributes are used as inputs to match up to the 

associated target output; LED type, Ruse, Rstress, αuse, αstress, 𝐻
.  The LED type is classified as 

1, 2 or 3 for input as a quantifiable variable according to P1W = 1, S1W = 2, S03W = 3.  A 

total of 60 LED samples initially (20 each from P1W, S1W and S03W described in Section 

(6.2.2) are used as input to the system).  The input matrix thus has 6 rows for the 6 attributes 

and 60 columns corresponding to the LED samples.  The network is designed by using the 

input quantities with known ∆(YBR)RH to train it to produce the target valuations.   

If 𝑥1, 𝑥2, …𝑥6 are the input signals into the hidden layer 𝑎1, and 𝑧 represents the product of 

the input signals and weight for the individual nodes plus the bias: 

𝑧 = ∑ 𝑥𝑖𝑤𝑖
1

6

𝑖=1
+  𝑏𝑖

1 
(6.19) 

where 𝑤1 and 𝑏1 are the weights and bias terms respectively associated with the hidden layer.  

The activation function 𝑓1 applied to the hidden layer is a Tansig hyperbolic transfer function 

centred at 0 with an output range between +1 and -1 given by: 

𝑓1(𝑧) =
2

[1 + 𝑒𝑥𝑝(−2𝑧)]
− 1 

(6.20) 
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The key advantage of the Tansig activation function besides its operation speed, is that negative 

and positive inputs are clearly mapped as negative and positive respectively [160].  The hidden 

layer output 𝑎1 may then be represented as: 

𝑎1 = 𝑓1(𝑧) (6.21) 

The samples are divided into training, validation and test sets according to the following ratio: 

70%, 15%, 15% corresponding to 42 for training (14 each of P1W, S1W and S03W), 9 for 

validation (3 each of P1W, S1W and S03W) and 9 for test (3 each of P1W, S1W and S03W) 

respectively.   

 

Fig. 6.9.  Schematic overview of neural network setup used.  Tansig activation function is 

applied to hidden layer while Purelin activation function is applied to the output layer.  The 

final output of the network provides ∆(YBR)RH prediction. 

Using the output from the hidden layer, the final output a2 may be represented as: 

𝑎2 = 𝑓2(𝑎1𝑤2 + 𝑏2) (6.22) 

Where 𝑤2 and 𝑏2 are the weights and bias terms respectively associated with the output layer.  

The activation function 𝑓2 applied to the output layer Purelin, is a linear transfer function which 

is a neutral transfer function which provides good representation of the input/output behaviour 

expected to be linear or close to linear [161].  The Purelin function converts the multiple input 

parameters to the network (described above) into a single output linear product ∆(YBR)RH and 

is given by: 
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𝑓2(𝑧) = 𝑧 (6.23) 

 

MATLAB is used to synthesize the model.  Network training on the training set continues as 

long as the network continues improving on the validation set.  The test set is completely 

independent of the target results in the input data and was set to an initial pre-trained value of 

0.  The aim of the process is to adjust the weights to minimize the error between the actual and 

desired output for each neuron.  The network is trained with the Levenberg-Marquardt 

backpropagation algorithm, which has been shown to have good results with fitting problems 

[162].  The results of 3 trial runs are shown in Table 6.6 with the parameters for the runs 

indicated in Table 6.7.   

Table 6.6.  Results of trial runs conducted using Levenberg-Marquardt backpropagation 

algorithm. 

Input 

LED 1 1 2 2 2 3 3 3 

Ruse 10 10 10 10 10 10 10 10 

Rstress 10 85 10 55 85 10 85 70 

αuse 7.15E-6 7.15E-6 4.71E-6 4.71E-6 4.71E-6 1.80E-5 1.80E-5 1.80E-5 

αstress 7.15E-6 9.92E-6 4.71E-6 5.70E-6 6.20E-6 1.80E-5 6.47E-5 5.70E-5 


𝐻

 0 0.15301 0 0.11176 0.12831 0 0.59804 0.59236 

Expected 

∆(YBR)RH 0 0.30602 0 0.22352 0.25662 0 1.19608 1.18472 

Results 

Trial 1  0.00134 0.31022 0.00455 0.23890 0.24445 -0.0182 1.00562 0.92185 

Trial 2  -0.0074 0.29991 0.00521 0.20556 0.22945 0.00693 1.27184 1.25999 

Trial 3  0.00211 0.31211 0.00201 0.21438 0.24840 -0.0157 1.12185 1.12223 
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Table 6.7.  Parameters of trial runs conducted. 

 Trial 1 Trial 2 Trial 3 

Best validation 2.62318E-05 1.1568E-01 1.0634-01 

Epoch 9 6 3 

No of neurons 10 50 48 

R value (All Fittings) 0.856876 0.872823 0.895660 

Weights 2 3 2 

Bias 2 3 1 

Algorithm Levenberg-

Marquardt 

Levenberg-

Marquardt 

Levenberg-

Marquardt 

 

Performance is measured in terms of mean squared error and shown in log scale.  It rapidly 

decreased as the network was trained and training stops once the validation performance 

reaches steady state.  Fig. 6.10 shows the validation performance for trial 3 which illustrates 

the final network that performed best on the validation set. 

 

Fig. 6.10.  Validation Performance plot at Epoch 3 for Trial 3. 
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A measure of how well the neural network has fit the data is the regression plot shown in Fig. 

6.11, which is plotted across all training samples.  The regression plot shows the actual network 

outputs plotted in terms of the associated target values.  The linear fit to this output-target 

relationship closely intersects the bottom-left and top-right corners of the plot, implying that 

the network has learned to fit the data relatively well. 

 

Fig. 6.11.  Training Regression plot for Epoch 3 Validation stop.  The solid line shows the 

linear regression between actual output data and targets for the 42 training data points, while 

the dotted line represents the ideal result (i.e. outputs = targets).  The high R value indicates 

a good fit between the network output and the target values.  

The results show that the ANN developed has good potential in simulating the HBDM given 

the right parametric inputs.  With more samples to be used for training, the network can be 

fine-tuned to produce even better fit.  Although this model uses 6 key parameters critical to 

humidity analysis derived from the HBDM, the model may be given better precision by 

inclusion of other important input attributes such as the chip design, material composition of 

the active layer, internal layer material configuration, etc.  While the ANN model demonstrated 

accomplishes the task of HBDM prediction of YBR shift, its role may also be expanded in 
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practical applications to prognosticate degradation in other LED characteristics by the careful 

use of appropriate input attributes. 

6.3.2 The Trivariate Distance Measure Approach (TDMA) 

A Distance Measure approach is developed specifically for High Power LEDs due to the 

necessity to isolate outliers to improve reliability qualification.  This approach is based on three 

variables and is more accurate than univariate analysis and other Distance Measure techniques 

as it takes into account the actual correlations and covariance of the selected features, and does 

not require any assumptions about the data distribution.  The degradation rate, the colour shift 

and Rth change are the interdependent features specifically extracted for this method and are 

critical indicators of the physical state of the LED. 

Anomaly identification based on single variables have setbacks, as this does not take into 

consideration the other variables.  While one variable might indicate an anomaly, the LED 

might still be within the specified boundaries of the other variables, and overall be an 

acceptable operational unit.  The difficulty is to define the constitution of an overall acceptable 

LED, and while there may be ambiguity in defining outliers in the overall context of LED 

health [163], one possibility is the use of a multivariate model with covariance or correlation 

between the variables based on preset boundaries or standards.      

The TDMA uses the shifting from the expected norms of the combined variables in multivariate 

space to identify outliers based on the Mahalanobis Distance technique.  The LED degradation 

rate 𝛼, the colour shift ∆YBR and the change in thermal resistance ∆Rth are the critical 

measurements used in this combined model.  While any one of these on their own may be a 

useful standalone indicator of outlier LEDs, a combined multivariate approach to evaluate the 

collective deviation from these three correlated quantities would be more accurate in 

identifying outliers.   
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A data point can be a univariate outlier for any variable but not a multivariate outlier, and with 

complex dependencies between variables, the reverse may be true.  Since the Mahalanobis 

Distance (MD) accounts for unequal variances as well as correlations between features, it will 

evaluate the distance by assigning different weights or importance factors to the features of 

data points [164], making MD a more sensitive measure than checking the dimensions 

individually.  Unlike Euclidean distance, MD or Squared MD would take into account any 

correlation between the degradation rate α, the colour shift ∆YBR and the change in thermal 

resistance ∆Rth in computing the distance to a combined mean.  The Squared Mahalanobis 

Distance 𝐷 utilizes the square of the interpoint distance and is a generalized form of the MD.  

𝐷 accounts for the variance and covariance between the measures and may be defined as: 

𝐷 = (ꞷ − 𝜇)𝑇𝑆−1(ꞷ − 𝜇) (6.24) 

where: 

𝑆−1 = [

𝑐𝑜𝑣(ꞷ1,ꞷ1) 𝑐𝑜𝑣(ꞷ1,ꞷ2) 𝑐𝑜𝑣(ꞷ1,ꞷ3)
𝑐𝑜𝑣(ꞷ2,ꞷ1) 𝑐𝑜𝑣(ꞷ2,ꞷ2) 𝑐𝑜𝑣(ꞷ2,ꞷ3)
𝑐𝑜𝑣(ꞷ3,ꞷ1) 𝑐𝑜𝑣(ꞷ3,ꞷ2) 𝑐𝑜𝑣(ꞷ3,ꞷ3)

] 

(6.25) 

and 𝐷 is the Squared Mahalanobis Distance or generalized squared interpoint distance, ꞷ an 

observation from a set of observations with mean 𝜇 and 𝑆 the covariance matrix for all the 

parameters.   The criteria for an anomaly to be identified can be obtained from Physics of 

Failure (POF) models, historical databases, or expert knowledge.  Depending on the specific 

requirement, the outlier boundary may be set as a multiple of the standard deviation, 𝜎 for each 

measure.  Using S03W samples measured at 10% RH and at 85% RH, the univariate threshold 

values are computed for all the LEDs at 𝜇, (𝜇 + 𝜎) and (𝜇 + 2𝜎) and the corresponding Squared 

Mahalanobis Distance 𝐷 computed as shown in Table 6.8.   
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Table 6.8.  Squared Mahalanobis Distance 𝐷 and univariate boundary computations at specific 

thresholds. 

Thresholds ∆YBR ∆Rth 𝛼 𝐷 

10% RH 

𝜇 0.337 1.053 1.76E-05 0 

(𝜇 + 𝜎) 0.341 1.116 1.77E-05 3.6497 

(𝜇 + 2 𝜎) 0.344 1.178 1.77E-05 14.5988 

85% RH 

𝜇 1.559 8.799 6.48E-05 0 

(𝜇 + 𝜎) 1.645 11.581 6.82E-05 2.1372 

(𝜇 + 2𝜎) 1.730 14.363 7.15E-05 8.5488 

 

Table 6.9 shows the computed variables and corresponding 𝐷 values for six S03W samples 

selected from the 20 S03W LEDs at different humidity settings in Section 6.2.2, with the 

darkened cells indicating the particular variable being out of the specific 𝜎 range for that 

measure.  It can be seen that for samples B, C, E and F, although a variable is out of the specific 

𝜎 range, the 𝐷 values are still within the corresponding 𝜎 range established in Table 6.8.  These 

LEDs are considered as within the Mahalanobis Distance multivariate boundary although they 

are univariate outliers.  On the other hand, sample 𝐷 has 2 variables outside 2𝜎.  With 𝐷 > 

𝐷(𝜇 + 2𝜎), sample 𝐷 is classified as a multivariate outlier.  If the univariate threshold of 𝜇 at 2𝜎 

for this sample was used solely, the LED would have been considered acceptably within 

𝐷(𝜇 + 2𝜎) specification instead of being considered an outlier placed beyond by the TDMA 

approach.  In spite of the association between the variables, deviation from one variable norm 

while being within specification of another is possible due to the different rates of degradation 

of the variables, or different mechanisms dominating.  Using all 20 S03W samples at each RH 

level described in Section (6.2.2), the relative positions of the LEDs in 3-D space were plotted 

using MATLAB in Fig. 6.12. 
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Table 6.9.  Squared Mahalanobis Distance 𝐷 and univariate computations for various samples 

at different RH conditions. 

 ∆YBR ∆Rth 𝜶 𝑫 Univariate 

criterion 

TDMA 

criterion 

10% RH 

 Sample A 0.339 0.995 1.75E-05 1.367 Within 1𝜎 Within 1𝜎 

Sample B 0.334 1.158 1.77E-05 3.148 Outlier 1𝜎 (∆Rth) Within 1𝜎 

85% RH 

Sample C 1.539 11.765 6.43E-05 1.929 Outlier 1𝜎 (∆Rth) Within 1𝜎 

Sample D 

 

1.876 18.645 6.73E-05 17.719 Outlier 2𝜎  

(∆YBR + ∆Rth) 

Outlier 2𝜎 

Sample E 1.771 8.845 6.82E-05 8.169 Outlier 2𝜎 (∆YBR) Within 2𝜎 

Sample F 1.556 15.534 6.45E-05 8.025 Outlier 2𝜎 (∆Rth) Within 2𝜎 

 

Failure analysis conducted (described in Section (5.3.4)) shows delamination in Sample D only.  

In addition, EDX elemental analysis reveal a considerable increase in elemental oxygen for 

Sample D compared to the other samples at the interface of the chip and the lead frame, shown 

as a darkened cell in Table 6.10.  As discussed in in Section (5.3.4), the higher oxygen content 

in sample D indicates a higher chance of silver corrosion leading to severe colour deterioration 

compared to the other samples.  These results justify the TDMA identification of sample D as 

an outlier. 

Table 6.10.  Weight by percentage of key elements for the LED samples. 

Sample Oxygen O weight % Carbon C weight % Silver Ag weight % 

A 6.16 2.41 84.13 

B 6.83 2.54 82.22 

C 7.76 2.78 81.17 

D 13.04 2.25 84.38 

E 7.23 2.77 80.45 

F 7.19 2.10 86.10 
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Fig. 6.12.  3-D diagram of computed TDMA data points at (a) 10% RH and (b) 85% RH.  

Data points shown are computed from all the 20 S03W LED samples at each RH level to 

demonstrate the distribution.   
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However it should be mentioned that while the Mahalanobis method performs well for 

identifying scattered outliers, it does not perform as accurately when the data set contains 

severely clustered outliers, due to masking and swamping effects [165].  The TDMA approach 

should be used in conjunction with a POF approach as part of a comprehensive prognostic tool 

for proper anomaly evaluation, with the sensitivity tweaked if necessary by adjusting the type 

or number of variables used.  The TDMA provides indication of the physical state of the LED 

and utilized together with the HBDM, provides an effective tool in the overall LED health 

management process, especially for the LED manufacturing industry, where the combined 

methodology may be used to complement existing component and functional testing of LEDs 

to improve product reliability. 

6.4. Summary  

A new approach to indicate both the lumen and colour degradation of LEDs due to the effects 

of humidity is developed.  A practical predictive method from the degradation behaviour is 

proposed to gauge the long-term moisture incursion by means of a humidity index 
𝐻

.  This 

index shows good agreement with the absolute change in YBR with a positive association 

although a limitation of the model is that the direction of this change is not directly discernible.  

∆(YBR)RH values extracted from experimental degradation data derived from separate 

independent external sources at different RH show close approximation to the HBDM 

predicted values.  This provides validation of the HBDM’s robustness for different LEDs under 

different RH conditions. 

The HBDM is effective in indicating the extent of the impact of humidity and the relative YBR 

colour shift associated with this impact, demonstrating good accuracy with longer periods of 

moisture exposure.  Physical analyses have indicated that P1W and S1W may exhibit chip 

deterioration while S03W exhibits phosphor or package decay by delamination and silver layer 
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corrosion.  The results are in line with the HBDM in terms of lumen and YBR predictions.  The 

HBDM is modeled by a feed forward network with six key attributes or indicators of LED 

degradation used to develop the HBDM, which shows good fitting results.   

The HBDM alone does not however directly provide information on impending LED failures 

or improve reliability qualification.  Accordingly, the study goes further to propose a new 

Trivariate Distance Measure Approach (TDMA) using three interrelated features which 

provide good indication of the state of the LED.  The results demonstrate that this approach is 

a more effective gauge of anomalies than using the usual screen test of one or two variables.  

Used together with the HBDM, these two methods provide powerful prognostic tools in LED 

health management.   

In the LED manufacturing binning process where LEDs may be categorized according to light 

output, the HBDM serves a cost-effective and rapid tool to sub-categorize according to colour 

output at various RH levels without the need for physical measurement.  These binned LEDs 

may then subsequently be subject to the TDMA to ensure the overall reliability of each LED.  

On the other hand, if the integrity of the LED is important before a colour categorization 

exercise or experimentation (for example in laboratory research work), the TDMA may be 

performed prior to the HBDM to ensure that the work is performed on parametrically sound 

LEDs. 
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Chapter 7 

Conclusions 

This concluding chapter is divided primarily into 2 parts.  In the first, the key findings are 

discussed with focus on how they impact academia and industry, while in the second, 

recommendations are proposed to either enhance the processes involved or proceed to the next 

stage of the research. 

 

7.1. Concluding Remarks  

This thesis presents research on both the thermal and reliability aspects of LEDs.  The main 

stressors that induce heat accumulation in the LED, namely the drive current, the operating 

temperature and the relative humidity and their impact on the electrical-optical-thermal 

performance of the LED were analyzed in turn to uncover specific configurations and 

conditions upon which thermal management could be improved.  In Chapter 3, anomalies 

involving temperature control affecting the LED self-heating which could affect subsequent 

measurements during EOT measurements were uncovered.  Consequently, the proper 

temperature control procedures were determined to ensure accurate measurements.  The 

universal use of temperature control in electrical sweep and transient thermal measurements in 

both industry and academia warrants immediate attention to these findings to prevent data 

reporting errors.  As LEDs are commonly integrated into products downstream, the errors are 

magnified in the final device, potentially causing product failures due to component 

specification mismatch.  In addition, LED data sheets and documentations reporting erroneous 

specifications may result in inaccurate LED choices for the consumer.  

In Chapter 4, the effects of phosphor thickness and particle concentration on the optical 

efficiency and temperature rise on phosphor-coated LED packages were analyzed.  A thicker 
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phosphor layer and a higher phosphor particle concentration will increase the amount of 

backscattering and back reflection of light from the phosphor layer.  These light extraction 

losses not only reduce the optical efficiency of the light output but also cause heat accumulation 

in the phosphor layer, leading to higher LED Tj.  The chromaticity shift and light extraction 

losses also depend on the uniformity of phosphor particles deposited over the LED surface.  A 

non-uniform and sparse phosphor layer affects the Correlated Colour Temperature (CCT) and 

the spectral YBR due to the disproportionate contribution of light emission between the LED 

device and the phosphor layer.  Furthermore, the YBR reduces with temperature due to higher 

Stoke’s energy and light extraction losses in the phosphor layer.  The thermal performance of 

a LED package however, is dependent on the die-bonding configurations (conventional and 

flip-chip).  Due to the improved heat dissipation capabilities in flip-chip bonding, the 

temperature rise and Rth of the package was observed to reduce with temperature.  By 

alleviating the heat accumulation in the package, flip-chip bonding can dissipate the heat 

generated in the GaN LED and phosphor layer effectively besides achieving more stable 

colorimetric properties such as CCT and YBR.  The research provides a comprehensive 

investigation of the thermal impact by current and temperature stressors on different LED 

configurations, and also details the heat accumulation and dissipation profiles of such 

configurations by different packaging architectures.  The analysis links the relationship 

between various LED configurations and thermal performance, a critical issue to industry in 

particular when selecting the right LED for specific application, while at the same time 

contributing important LED thermal management principles. 

However, the Tj is also impacted by the long-term humidity effects which affect the 

temperature rise and Rth.  In Chapter 5, the experiments also reveal photometric and 

colorimetric degradation at high humidity.  The study indicates that the 1 W LEDs show 

accelerated chip failure compared to 0.3 W LED.  It was observed however that the temperature 
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rise and Rth for the flip-chip bonded LEDs do not increase substantially as compared to the 

conventionally bonded LEDs.  This is because the Tj can be reduced with a flip-chip die-

bonding configuration where the heat generated in the LED chip is dissipated effectively onto 

the AlN substrate, thereby reducing the increase in temperature rise and Rth.  The experimental 

results are supported by evaluation of the derivative structure functions.  In addition, as the Rth 

of the LED package varies with different humidity levels, there is a need to specify the 

conditions of humidity in data sheets as LED manufacturers routinely specify a universal Rth 

value under a fixed operating condition [7, 32].  This information disclosure not only benefits 

system integrators and end-consumers, but also allows the manufacturers to align their LED 

package designs to cater to the relative humidity of the region of operation.  As part of a 

government supported initiative, the findings in this phase of the research were communicated 

to relevant government agencies and research institutes providing the foundation for proper 

selection and management of lighting LEDs in open spaces in schools, parks and housing areas 

exposed to the environment humid conditions in Singapore.  In addition, as part of the national 

Energy Efficiency program, the research played a key role in the institution of LEDs over 

fluorescent lighting in public infrastructure projects. 

This increase in temperature rise is associated with both lumen degradation and colour shift, 

both of which are critical indicators of LED reliability.  Using the lumen degradation data under 

varying conditions of relative humidity, the lumens maintenance of the LED is characterized 

using the TM-21 method, from which a humidity based degradation model (HBDM) is built.  

A practical estimation method from the degradation behaviour is developed to gauge the 

moisture incursion by means of a humidity index 
𝐻

.  This index shows good agreement with 

the change in the colour shift YBR with a positive association.  The HBDM provides a 

quantification of the extent of the impact of humidity on the LED.  In addition, the results 

demonstrate that the model is capable of predicting the relative YBR colour shift associated 
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with the level of this impact, an important attribute used not only to determine the physical 

deterioration, but also to evaluate the suitability for particular industrial applications.  

Differentiating itself from other numerically complex data-driven methods, the HBDM is a 

novel yet simple model allowing for a direct and rapid reliability prognostication.  The model 

is a unique practical approach to quantify the degree of moisture incursion and the 

corresponding colour shift, which is expected to provide an effective yet descriptive approach 

to indicating LED degradation due to humidity, distinguishing the mode or mechanism of 

failure.  The index also easily translates to remaining lifetime, which provides the user with the 

linkage between the impact of humidity and the lifespan of different LEDs.   

In the LED manufacturing industry, the humidity index developed allows for sub-binning 

according to the LED performance at different levels of relative humidity instead of being 

broadly based at a single relative humidity level, giving a higher level of reliability precision 

catering for markets in different areas of the world with different relative humidity levels.  The 

index allows for stage checking in the binning process, providing a cost-effective means of 

benchmarking and ranking the quality of the binned LEDs, which would be useful particularly 

to LED system integrators.  As the HBDM is derived from long-term LED degradation 

behaviour, it also provides the manufacturer insights on the long-term behaviour 

prognostication of the LED under specific humidity environments.  Such information provided 

in testing documentation or datasheets allows both system integrators and consumers alike to 

understand the range of proper operation for different humidity conditions and make the correct 

LED selection.  As the HBDM development was conducted with the consultation and support 

of LED manufacturers and integrators who incorporate the LEDs into their end products, the 

model has received endorsement for its concept, with the view to impending implementation 

with the refinements discussed later in the second part of this chapter. 
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 To complement the HBDM lumen and colour stability predictive capability, the Trivariate 

Distance Measure Approach (TDMA) provides a reliable and accurate method to weed out 

outliers using the same humidity based data.  The sensitivity of this flexible approach may be 

adjusted by changing the type or number of variables used.  The TDMA provides indication of 

the physical state of the LED and utilized together with the HBDM, provides an effective tool 

in the overall LED thermal management process, especially for the LED manufacturing 

industry, where the methodology may be used to complement existing component and 

functional testing of LEDs to improve product reliability. 

The work presented in this thesis is a detailed analysis of the impact of the temperature, current 

and humidity stressors on the EOT characteristics of the LED.  Based on these studies, the 

HBDM and TDMA prognostic models were developed with the aim of providing academia 

and industry with tools to not only indicate the current physical condition of the LED exposed 

to long term humid environments, but also to predict and prevent future issues that might arise.     

7.2. Recommendations for Future Work  

The research presented paves the way for future work based on the following 

recommendations.   

1. To overcome the issues of erroneous control of the self-heating in LEDs during 

measurement, it is proposed that an adaptive environmental temperature feedback control 

be developed to automatically detect and control the test temperature.  Using the LED 

junction temperature as input, the system predictively controls the temperature setting or 

duty cycle to the correct value in response to the input.  The system will provide industry 

and academia alike with an automated solution to ensure accurate measurement results.  Fig 

7.1 illustrates the proposed adaptive temperature feedback control system. 
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Fig. 7.1.  Proposed adaptive temperature feedback control system.  Tenv is the control 

temperature of the TEC, and Tj the LED junction temperature. 

 

2. Based on the test parameters used for the HBDM, it is proposed that a repository be setup 

consisting of a library of measurement results for LEDs of different brands, power levels 

and package configurations.  The repository will provide an invaluable resource for 

academia and industry to tap on for further research and developmental work, and also a 

platform for expanding the database to improve the effectiveness of the HBDM and its 

associated ANN simulations.  In addition, the repository augments the accuracy of the 

model with a larger sample size, reinforcing the user confidence. 

3. By using a larger sample size through the proposed repository, it is proposed that a POF 

based outlier labelling process is conducted to further investigate any TDMA cases of false 

positives or false negatives arising, in particular any that might contradict the HDMA 

results.  If necessary, outlier accommodation via robust statistical techniques may be 

designed to fine-tune the model.   

4. To provide a single compact combined model encompassing the HBDM and TDMA, the 

ANN solution may be enhanced to provide outputs of moisture incursion, colour prediction 

and outlier detection, all inputs based on the same database created in the repository.  This 

upgrade from an individualised system provides convenience to the user, while improving 

the functionality of the HBDM and TDMA through the effectiveness of the ANN and the 

use of repository.  The resolution of the remodelled ANN may be improved through 
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experimentation with different activation functions, training algorithms, neuron numbers, 

etc. to optimize the result which provides a complete picture of the LED’s humidity 

performance and current benchmarked physical status.  In addition, to complete this 

proposed prognostication combined model, the suggested adaptive temperature feedback 

control system is implemented at the backend to ensure the integrity of the measurement 

results being input into the ANN.  Fig. 7.2 illustrates the proposed combined model which 

incorporates the HBDM and TDMA. 

 

Fig. 7.2.  Proposed compact combined model incorporating HBDM and TDMA. 
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