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Abstract 

 

The work described in this thesis has examined the hypothesis that exercise training 

restores Ca2+ handling and metabolic abnormalities induced by heart failure (HF) in 

skeletal muscle and left ventricle (LV), with emphasis on sarcoplasmic reticulum Ca2+ 

ATPase (SERCA) function and energy systems. For this purpose, distinct experimental 

conditions (ATP+CrP, ADP+CrP, ADP without CrP and ADP without CrP plus azide) 

were used to assess aspects of mitochondrial-SR interaction. The aims of this study 

consisted of 1) develop valid and reproducible protocol to retrospectively examine SR 

function in frozen muscle biopsies and compare uptake responses to the functionality of 

fresh tissue; 2) determine the ability of high-intensity exercise training to restore Ca2+ 

handling central (heart) and peripheral (skeletal) dysfunction when implemented as 

described in the present programme; 3) investigate SERCA mediated Ca2+ uptake and its 

dependence on ATP or ADP supply (ATP/ADP ratio) and CrP withdrawal; 4) examine the 

local regulation of SERCA by CK and mitochondria in situ in a rat model of HF; 5) 

address the effects of exercise training skeletal muscle systems for energy production and 

transfer in HF; and, 6) investigate the expression of Ca2+-regulatory proteins in failing 

striated muscle from a rat model of HF. 

A rat model of post-MI HF was obtained by permanently ligating the left coronary 

artery during thoracotomy under anaesthesia  (Kemi et al. 2007; Wisløff et al. 2002; Kemi 

et al. 2006). This model mimics important aspects of human HF, including  40% reduction 

in exercise capacity, pulmonary congestion, diastolic and systolic dilatation, increased 

diastolic and reduced systolic pressures, reduced pump capacity, and pathologic growth of 

the heart, as reduced contraction, relaxation, ECC, and Ca2+ handling, abnormal energetics, 

and pathologic growth of the cardiomyocyte. Intensity-controlled aerobic treadmill running 

was used as exercise training. Rats with and without post-MI HF and accustomed to the 

treadmill were tested for VO2max by continuously measuring air flow, O2, and CO2 during 

progressive running in a metabolic chamber. Exercise training sessions initiated 4 weeks 

month post-MI consisted of a 10-min warm-up at 50% of VO2max, whereupon 4-min 

intervals of running at 90% of VO2max are continued for 60-90-min, each interval 

interspersed by 3-min low-intensity recovery running. This was repeated 5 times per week 

and continued for 2 months. 
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SERCA function in freshly harvested fibres of EDL and SOL was demonstrated to be 

significantly different (p=0.0429). This divergence in uptake rates translates into 

physiological differences in SERCA isoforms, consistent with a higher turnover SERCA rate 

in fast compared to slow fibres Nonetheless, although SERCA is sequestering Ca2+ at 

different rates, Ca2+ binding capacity was found to be essentially the same for both muscle 

groups (p=0.2245); it means that, binding properties were similar regardless of the fibre 

composition. A comparative study of the uptake capacities in fresh versus frozen 

specimens has revealed Ca2+ uptake rate displayed by frozen specimens is equivalent, in 

functionality, to Ca2+ transportation of fresh tissue. This response was observed in both 

oxidative and glycolytic muscle. Current data support the assumption that SERCA function 

is maintained after thawing upon equilibration of fibres in appropriate media 

The present data do not indicate an improved Ca2+ uptake rate in SOL after the 

implementation of an exercise training regimen. Similar uptake rates observed in SOL 

fibres across the experimental groups are consistent with previous studies suggesting 

SERCA2 activity is constant in HF. EDL fibres were tested in ATP and ADP+CrP media, 

generating as in SOL, comparable results amongst groups. Similarly, investigation of LV 

indicated no relevant differences amongst experimental groups. It was found that muscle 

from trained animals have exhibited similar Ca2+  uptake rates compared to sedentary rats 

under conditions of ATP+CrP, ADP with and without CrP. In summary, data have 

supported that exercised animals exhibited SERCA rates comparable to the control 

condition, which suggests there is normalisation (in some degree) of the oxidative function 

induced by exercise.  

Investigation of the SR function in muscular tissue under various conditions has 

provided information on the cellular bioenergetics of a rat model of HF. The present results 

show that slow-twitch fibres treated with azide (SOL and heart muscle) did not change 

their Ca2+ uptake after freezing compared to control samples; whereas the glycolytic fibres 

from frozen EDL greatly varied their uptake rates. This demonstrates a correlation between 

fibre type composition and survival of mitochondrial function post-thawing. 

To address how physical training would modulate the energetic state of a 

dysfunctional muscle, citrate synthase (CS) activity was investigated. Present data 

evidenced that CS activity was 2.5 fold higher in HF trained rats than in healthy animals, 

after the implementation of the HIIT protocol. After, energy transfer systems were 

examined. Adenylate kinase (AK)-mediated phosphotransfer reactions were two-fold 

higher in post-MI exercised animals than in control group. Increased AK levels were found 
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to be metabolically more efficient in HF trained animals in comparison to control (p=0.02); 

or HF sedentary rats (p=0.02), suggesting that this enzyme has contributed to a higher 

cellular ATP turnover in exercised animals. This study has found that the enzymes 

involved in energy transfer systems in the EDL muscle are increased after the 

implementation of a HIIT protocol. These alterations occur in parallel with increased 

aerobic capacity.  

Biochemical studies on Ca2+ modulatory proteins have shown that the four targets 

quantified (SERCA, PLB, RyR and CaMKII) in LV lysates displayed minimal differences 

in protein expression comparing control to HF animals, either sedentary or trained. The 

small changes in SERCA (decreased by 11% in trained rats and 5% in sedentary infarcted 

animals) were not statistically or functionally significant, supporting the conclusion that 

SERCA2 expression is unchanged in sedentary or trained animals.  However, the data was 

gained from samples that were frozen at -80°C for prolonged periods, and degenerative 

process may add variability to the WB signal. PLB expression in exercised ventricles was 

not functionally changed compared to control animals. HF sedentary animals displayed 

increased RyR2 levels by approximately 33% compared to control rats; and the trained 

group exhibited augmented expression of RyR2 by 14% against control. No major 

differences could be found in CaMKII expression in the current study. SOL muscle 

exhibited decreased SERCA2 in the trained group by around 30% in relation to the control 

group. In this scenario, expression of SERCA2 in this type of fibre needs further 

examination. Overall, the outcome of these studies contributes to the knowledge 

concerning SERCA expression in skeletal muscle in HF and, after modulation by exercise 

training. PLB expression in SOL did not exhibit further significance changes across 

groups. Decreased CaMKII expression (by 31%) in post-MI trained SOL animals 

compared to the control group was evident. Expression of fast SERCA1 levels was 

likewise found to be unchanged in EDL fibres. This indicates the degree of HF in the 

present animal model did not cause derangements in skeletal muscle SERCA function that 

could be linked to reduction in SERCA1 expression associated with fibre type shift.   
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CV Coefficient of variation 

Cr Creatine 

CK Creatine kinase 

DHPR Dihydropyridine receptor 

Kd Dissociation constant 

DTT Dithiothreitol 

EF Ejection fraction 

ER Endoplasmic reticulum 

EGTA Ethylene glycol tetra acetic acid 

ECC Excitation contraction coupling 

EBCR Exercise-based cardiac rehabilitation 
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EDL Extensor digitorum longus 

FF Fast- fatigable fibres 

FR Fast-fatigue resistant fibres 

GAS Gastrocnemius 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

HF Heart failure 

HFpEF Heart failure with preserved ejection fraction 

HfrEF Heart failure with reduced ejection fraction 

IHD Ischaemic heart disease 

HK Hexokinase 

HIIT High intensity interval training 

HKP Housekeep protein 

ILC Internal loading control 

LAD Left anterior descending artery 

LNF Lane normalisation factor  

LV Left ventricle 

LVEF Left ventricle ejection fraction 

mi-CK Mitochondrial creatine kinase 

MCT Moderate continuous training 

MICT Moderate intensity continuous training 

MM-CK Muscle creatine kinase 

MB–CK Muscle-brain creatine kinase 

MI Myocardial infarction 

MHC Myosin heavy chain 

MLC Myosin light chains 

NIR Near-infrared 

NYHA New York Heart Association 

NADP Nicotinamide adenine dinucleotide phosphate 

NADPH Nicotinamide adenine dinucleotide phosphate 

OD Optical density 

OXPHOS Oxidative phosphorylation 

VO2 Oxygen consumption 

WB Western blotting 

p38MAPK p38 mitogen-activated protein kinase 
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PGC1 
Peroxisome proliferator-activated receptor γ 

coactivator -1 

Pi Phosphate 

PCr Phosphocreatine 

PLB Phospholamban 

PMT Photomultiplier tube 

PAGE Polyacrylamide gel electrophoresis 

PVDF Polyvinylidene difluoride 

pH Potential hydrogen 

QoL Quality of life 

QWB Quantitative western blotting 

RIPA Radio Immuno Precipitation Assay 

RRE Recommendation of regular exercise 

RP Reference protein 

RyR Ryanodine receptor 

SR Sarcoplasmic reticulum 

SERCA Sarcoplasmic reticulum calcium ATPase 

SDS Sodium dodecyl sulphate 

SOL Soleus 

SD Standard deviation 

SEM Standard error of the mean 

TA Tibialis anterior 

TP Total protein 

TCA Tricarboxylic acid 

CvO2 Venous oxygen content 

VO2 max Maximum rate of oxygen consumption 

VGCC Voltage-gated Ca2+ channel 
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1.1 Introduction 

 

Heart failure (HF) is a clinical syndrome characterized by cardiac abnormality, 

resulting in reduced cardiac output and/or elevated intracardiac pressures at rest or during 

stress (Task et al. 2016). It is not a single entity, but a pathophysiological condition that 

may have different characteristics according to age, sex, race or ethnicity, left ventricular 

ejection fraction (LVEF) status, and HF aetiology (Bui et al. 2011). HF is a major health 

problem associated with significant morbidity, mortality, and increase of burden with 

health care costs (Task et al. 2016). 

Over the past decades, survival rates for HF subjects have improved in many parts of 

the world in parallel with the introduction of new therapies and patient management 

strategies (Ponikowski et al. 2014; Bueno et al. 2010). Conversely, regardless of a variety 

of pharmacological and device therapies available, prognosis and quality of life (QoL) 

remain poor (Fleg et al. 2015; Braunwald 2013; Schopfer & Forman 2016). 

Exercise intolerance is a primary symptom in patients with chronic HF, both those 

with preserved ejection fraction (HFpEF) and reduced ejection fraction (HFrEF) (Borlaug 

& Reddy 2015), and is a strong determinant of prognosis and of reduced QoL (van Tol et 

al. 2006). Symptoms and disease progression also involve alteration of peripheral organs 

and neurohormonal activation (Tabet et al. 2009), all of which contribute to patients’ 

fatigue development and decreased endurance. 

The current therapies for patients with HF aim to improve their clinical status, 

functional capacity and QoL, prevent hospital admission and minimise mortality rates 

(Task et al. 2016). These existing treatments primarily slow the progression of the 

dysfunctional condition, and it is essential to develop novel preventative and reparative 

therapies (Houser et al. 2012). In this context, cardiac-based rehabilitation based on 

exercise training programmes has been shown to improve mortality rates in patients with 

ischaemic heart disease (IHD) (Heran et al. 2011). This adjunct therapy includes mainly 

exercise training sessions combined with medication adjustments in high-risk patients.  

Exercise training is endorsed in most guidelines and clinical studies as a beneficial 

intervention for individuals with stable chronic HF (Dickstein et al. 2008; Task et al. 2016; 

Dickstein et al. 2011; Achttien et al. 2015; Lewinter et al. 2015; Yancy et al. 2013). This 

recommendation is based on the fact that exercise improves endurance capacity and QoL, 

does not adversely impact left ventricular remodelling, and may reduce mortality and 



 

 

23 

 

hospitalization in patients with mild-to-moderate chronic heart failure (CHF) (Dickstein et 

al. 2008). 

As well as promoting physical conditioning, exercise training contributes to the 

partial correction of the peripheral abnormalities and tends to decrease the neurohormonal 

stimulation in chronic HF without having a deleterious effect on left ventricular 

remodelling (Tabet et al. 2009). 

 In this scenario, new therapeutic and, preferentially, integrative strategies for HF 

management and prevention continue to be an important challenge to the field of 

cardiovascular medicine. Interventions as exercise training and its modulatory effects on 

HF are under current investigation. 

 

1.1.1 Effects of HF on cardiac function 

 

 Regardless of whether HF is based on preserved or reduced contractility, its 

pathophysiology and clinical manifestations are determined by the affected ventricle. 

Alterations in basic hemodynamic parameters include preload, after- load, and contractility 

(Berthiaume et al. 2015). Essentially, the heart rate is increased at rest and decreased at 

peak exercise in chronic HF patients  (Tabet et al. 2008). The desensitization of β- 

adrenergic receptors resulting from the continuous sympathetic stimulation contributes to 

the mismatch between pump capacity and increases in demand. The heart rate recovery, 

interpreted as a modulator of parasympathetic nervous system tone, is also diminished in 

HF subjects immediately after exercise (Ventura-Clapier 2009). 

 

1.1.2  Impacts of HF on the periphery: shifting focus from the heart to skeletal 

muscle 

 

Over the past decades, attention has been raised on defining central versus peripheral 

mechanisms that could explain the weakness, increased fatigability and development of 

symptoms in HF individuals. During this clinical syndrome, skeletal muscle function is 

found to be altered both in experimental models and in patients (Munkvik et al. 2011). 

“Skeletal myopathy” has been widely described and confirmed by different 

investigative groups (Middlekauff 2010; Ventura-Clapier et al. 2002; Rehn et al. 2012). 

Abnormalities observed include muscle atrophy and deconditioning (Tabet et al. 2009); fat 

infiltration may happen and, modification in fibre type, from slow twitch, oxidative type I 
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fibres to fast twitch, glycolytic type IIb fibres has also been documented (Mancini et al. 

1992; Drexler et al. 2015; Drexler et al. 1992; Ventura-Clapier et al. 2004; Duscha et al. 

1999). The shift in fibre type has been correlated with diminished exercise capacity as 

indicated by peak oxygen uptake (Mancini et al. 1992). 

The correlation between exercise capacity and cardiac performance can be translated 

by the Fick equation: VO2 = Q (CaO2–CvO2) (VO2: oxygen consumption; Q: cardiac 

output; CaO2: arterial oxygen content; CvO2: venous oxygen content). According to this 

principle, both central cardiac and peripheral mechanisms exert influence on aerobic 

capacity (Maeyer et al. 2013). Findings by Franciosa and colleagues demonstrated that left 

ventricular filling pressure and cardiac output do not correlate with exercise capacity in 

patients with HF (Franciosa et al. 1981). In this way, peripheral factors implicated in 

oxygen transfer (peripheral vascular function), oxygen uptake and utilization (skeletal 

muscle) could be associated with diminished endurance (Maeyer et al. 2013). 

Evidence supports the concept that there may be a peripheral block experienced by 

HF subjects which restricts the capacity to translate changes in central hemodynamics into 

changes in functional capacity (Higginbotham et al. 1983; Franciosa et al. 1981). This local 

impediment could underlie the reason why many therapies fail in improving endurance 

capacity, be that low LVEF, increased pulmonary wedge pressure, and other hemodynamic 

indices measured at rest do not predict exercise capacity in HF (Higginbotham et al. 1983).  

A study done by Maskin and colleagues demonstrated that alterations in leg skeletal 

muscle of failing patients resulted in activation of anaerobic metabolism, both under basal 

conditions and after occluding muscle blood flow compared with aerobically matched 

sedentary normal controls (Maskin et al. 1983; Wilson et al. 1983). To corroborate with 

these findings, the poor link between exercise capacity and LVEF (Franciosa et al. 1981; 

Ventura-Clapier et al. 2004), was evident even when exercising small muscle groups in 

which bulk blood flow is not limited by reduced cardiac output (Brassard et al. 2006). 

Similarly, it was revealed that the acute use of inotropes and vasodilators does not translate 

into improvements in exercise tolerance or reduction of premature anaerobic metabolism, 

despite improving blood flow in big muscle groups (Maskin et al. 1983; Rubin et al. 1980). 

Confirming these outcomes, a study developed by Wilson’s investigative group 

demonstrated that dobutamine infusion had no influence on exercise duration, oxygen 

extraction or pH in the exercising muscle (Wilson et al. 1984). 
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Combined, these aspects lead to the assumption that peripheral adaptations to HF, 

particularly intrinsic skeletal muscle remodelling, may be partially accountable for the 

decrease in exercise capacity (Tabet et al. 2009; Rehn et al. 2012; Piepoli & Coats 2013). 

 

1.1.3 Exercise training in HF 

 

Until the start of the 1980s, patients with HF were incentivised to adopt a sedentary 

lifestyle (Munkvik et al., 2010) and avoid physical stimuli that could cause adverse 

symptoms (Dickstein et al. 2011). Nevertheless, scientific evidence from the last decades is 

contributing to overcome traditional barriers as recent studies legitimate that exercise 

reduces both hospitalisation and mortality rates and increases QoL of these patients (Tabet 

et al. 2009; Connor et al. 2010).  

 

8.1.1.1 Safety 

 

Multiples exercise modalities are available for clinically stable patients. During 

supervised exercise-based cardiac rehabilitation (EBCR), parameters as clinical and 

haemodynamic tolerance and, acceptability should be verified and prove safety (Dickstein 

et al. 2011). So far, only restricted evidence on safety and efficacy of exercise 

rehabilitation, even for older and frail patients, has been described in the literature 

(Dickstein et al., 2011).  

Resources to study safety of high intensity interval training (HIIT) in HF are reduced 

in comparison to pharmacological interventions. Besides, these studies are usually 

characterized by a short-term follow up (Støylen et al. 2012). Rognmo and colleagues have 

addressed the effects of HIIT compared to moderate intensity continuous training (MICT) 

in stable coronary artery disease (CAD)-patients (Rognmo et al. 2004). They found that 

HIIT was superior to MICT for improving VO2 peak; nevertheless, is still necessary to 

study the potential detrimental effects of high intensity training in a population of non-

CAD patients (Rognmo et al. 2004), which may involve HF subjects.  

On the other hand, studies pointed out that the adoption of exercise training protocols 

was well-tolerated and did not result in more adverse effects than control groups. The 

Study of Myocardial Recovery After Exercise Training in Heart Failure (SMARTEX-HF) 

was a randomized controlled trial that examined 261 patients stratified according different 

training protocols, involving MICT; HIIT, and recommendation of regular exercise (RRE). 
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It has been demonstrated MICT was implemented safely in patients with CHF (Dickstein 

et al. 2008; Yancy et al. 2013; van Tol et al. 2006). These findings are in accordance with 

the previous HF-ACTION study, a large randomized multicentre trial which demonstrated 

that a programme of exercise training at moderate intensity is safe (Connor et al. 2010). 

Currently, MICT is the best described and implemented modality of physical training 

given its well- demonstrated efficacy and safety (Vanhees et al. 2012).  

So far, no safety data on HIIT was addressed in CHF patients. It also noticeable these 

trials were not powered enough or specifically designed to assess safety, in such manner 

the evidence from these studies suggest only an indication that exercise is safe. 

Overall, EBCR is widely recognised as an important adjunct therapy for the 

management of HF in stable patients (Task et al., 2016). Physical training is pointed a non-

costly strategy that can be integrated into the established drug and non-drug management 

of HF individuals (Tabet et al. 2009; Task et al. 2016). Some studies have pointed that 

even high intensity exercise seems to be well tolerated, and physical inactivity can 

accelerate the disease progression (Kavanagh et al. 2002). 

Exercise is also related to the reduction of cardiovascular disease as well as cardiac 

events regardless gender or age (Bernardo et al. 2018)  and survival rates after the 

concurrence of a cardiovascular event is greater in physically active individuals compared 

with more sedentary subjects (Chomistek, et al, 2016; D. Lee, Sui, & Artero, 2012; Saito, 

Yachi, & Shimano, 2014). Cardiac rehabilitation programmes are recommended for 

patients classified in New York Heart Association (NYHA) functional categories II and III 

(Dickstein et al., 2011; Panel et al., 2015) and their beneficial effects are extensively 

discussed in several randomized clinical trials (Belardinelli et al. 1999; Coats et al. 1992; 

Hambrecht et al. 2003; Hambrecht et al. 2000; Coats 2000; Nelson et al. 1986; Maeyer et 

al. 2013; Tanasescu et al. 2015).  

 

8.1.1.2 Effects of exercise training on HF 

 

It is also been reported that subjects who undergo exercise training protocols 

demonstrate improvements in HF symptoms (Connor et al., 2010), reduced frequency in 

hospital admissions (Lewinter et al., 2015), improved functional capacity and therefore, 

enhanced QoL (Belardinelli et al. 1999; Sagar et al. 2015). 
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Exercise training decreases the incidence of HF (morbidity and mortality) in patients 

already on optimal pharmacological treatment (Giannuzzi et al. 2003; Wisløff et al. 2007).  

It is conceivable that physical training has potential to ameliorate dysfunctional Ca2+ 

control in diastole  (Kemi et al. 2012). It also improves exercise capacity and cardiac 

function by increasing autonomic function and neurohormonal activation, and unloads the 

heart by improving vascular and skeletal muscle functions (Hambrecht et al. 2000; van Tol 

et al. 2006).  

 It has numerous benefits on heart cells but also exert positive modulation of other 

organs and tissues, including vascular system, skeletal muscle, adipose tissue and brain. 

The modulation of these systems, in turn, can determine secondary effects on the heart 

(Adams et al. 2008; Haram et al. 2008; Kemi & Wisløff 2010; Kojda & Hambrecht 2005).  

The cross-talk between vascular and muscular systems at the level of peripheral 

vessels and muscles in HF consist an essential aspect in understanding the pathophysiology 

of Ca2+ cycling and metabolic abnormal cellular processes that culminate in exercise 

limitation underlying this syndrome. This systemic communication, thus, may contribute to 

the investigation of HF progression, prevention and treatment.  

Small-scale clinical studies have shown that exercise  induces changes intrinsic to the 

heart such as reversed pathologic remodelling (mass and dilatation), increased EF and 

stroke volume, and improved parameters of systolic and diastolic function. The 

mechanistic basis for these beneficial effects is presently unknown, but studies using a rat 

model of HF suggest that improved cardiac performance is achieved partly through the 

normalisation of SR Ca2+ handling protein expression (Wisløff et al. 2002). A recent 

review of exercise training has examined 33 trials with 4740 patients with HF 

(predominantly HFrEF). There was a trend towards a reduction in mortality with exercise 

in trials with 1 year of follow-up (Sagar et al. 2015). 

Endurance adaptations induced by exercise in HF appear to improve intracellular 

Ca2+ dynamics and metabolic function also in skeletal muscle. Further, it leads to an 

important enhancement in muscle aerobic capacitiy, followed by increase in myofibril 

cross-sectional area, mitochondrial density, volume density of cytochrome c oxidase-

positive mitochondria and capillary density (Lancisi et al. 1995; Hambrecht et al. 1995).  

These exercise-induced adaptations are correlated with enhancement of cardiovascular and 

muscle function.   

In this scenario, benefits of physical activity on cardiac cells, organic systems, 

organelles and contractile machinery demand further studies. In this research, an 
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investigation was conducted to examine the impacts of exercise on excitation contraction 

coupling (ECC), organ to organ cross-talk and mitochondrial adaptations. 

 

1.1.4 Types of exercise training protocols 
 

Low, moderate, and high-intensity exercise have all been shown to provide some 

degree of benefit to HF patients (Chomistek et al. 2016; Fiuza-Luces et al. 2013; 

Tanasescu et al. 2015; Lee et al. 2003). 

Exercise training protocols can be characterised by multifactorial parameters that 

must be considered during prescription, including intensity (aerobic and anaerobic), type 

(endurance, resistance and strength) and method (continuous and intermittent/interval) 

(Dickstein et al. 2011). Irrespective of LVEF, patients with HF are recommended to 

perform properly designed exercise training (Task et al. 2016). 

 

8.1.1.3 Moderate intensity continuous training (MICT) 

 

MICT is usually performed at moderate-to-high intensities in steady-state conditions 

of aerobic energetic yield, which permits patients to perform prolonged training sessions 

(up to 45–60 min duration) (Piepoli & Coats 2013; Ellingsen et al. 2017). Usually it is 

equivalent to 50–60% of VO2 peak, 60–70% of peak heart rate, 11–13 Borg scale, no 

shortness of breath (Støylen et al. 2012; Rognmo et al. 2004). 

 

8.1.1.4  High intensity interval training (HIIT) 

 

Interval or intermittent exercise has been elucidated as a more effective training 

strategy when compared to MICT regarding improvements in exercise capacity. In this 

modality, patients are asked to perform short bouts of high intensity training alternated 

with periods of low intensity recovery phases (Dickstein et al. 2011). In the present study, 

it will be referred as HIIT. High-intensity programmes have been executed by patients 

exercising on a treadmill at band speeds (Haykowsky et al. 2016; Fleg et al. 2015). Each 

active session usually corresponds to 85–90% of VO2 peak, 90–95% of peak heart rate, 15–

17 Borg scale, shortness of breath (Støylen et al. 2012) which is interspersed with recovery 

periods at low intensity. The duration of these active versus recovery intervals may differ 

according to the protocol adopted (Wisløff et al. 2007). 



 

 

29 

 

Wisløff and group have found that exercise intensities yields distinct beneficial 

adaptations (Wisløff et al. 2007). The intensity of training is a determining aspect for 

reversing LV pathological remodelling and enhancing endurance and QoL in post-MI HF 

subjects (Wisløff et al. 2007).  

Some research groups have been interested in studying the ability of HIIT in 

increasing peak VO2 in stable patients.  It has been shown that 3 months of HIIT markedly 

improved VO2 secondary to enhanced peak exercise stroke volume and cardiac output in 

older patients with HFrEF (Fu et al. 2013). A meta-analysis study has addressed a few 

number of small trials and indicated that HIIT was more effective than MICT in enhancing 

peak VO2, while ventricular function did not alter significantly (Haykowsky et al. 2013). 

Another investigative group has proposed that even higher exercise intensities (which 

trigger anaerobic pathways), as sprint training would recover cardiac function towards 

normal. Zhang et al. have examined whether 6–8 week of high-intensity sprint training 

(HIST) would restore intracellular Ca2+ transient and SR function in post-MI rat myocytes. 

The training regimen used consisted of 1-min bouts daily on a treadmill, 5 days per week 

and each running bout was interspersed with 60 seconds of rest (Zhang et al. 2000). Post-

MI anaerobic training was shown to improve [Ca2+]i dynamics in myocytes (Zhang et al. 

2000). 

 

8.1.1.5 Recommendation of regular exercise (RRE) 

 

Regular physical activity, including aerobic activity and muscle-strengthening 

exercises, is essential for healthy aging (Nelson et al. 2007). Regarding the RRE, it is 

advised that training sessions should be executed at 50–70% of peak heart rate for 20–30 

minutes (Støylen et al. 2012). Nelson and colleagues extended these recommendations by 

pointing that older patients need aerobic physical activity for a minimum of 30 min on five 

days each week, to promote and maintain health (Nelson et al. 2007). Aerobic training 

could also be combined with other exercise modalities in order to meet these 

recommendations. An activity plan could be established to reach integration of preventive 

and therapeutic recommendations (Nelson et al. 2007; Task et al. 2016). In line with this, 

O’Connor and group have shown that regular exercise training in patients HF was safe. 

Exercise training was associated with modest significant reductions for both all-cause 

mortality or hospitalization and cardiovascular mortality or HF hospitalization (Connor et 

al. 2010). 
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1.1.5 Effects of training modalities on cardiovascular and muscle function  

 

Over the past years, several investigative groups have focused attention on 

comparing the outcomes of MICT and HIIT (Ellingsen et al. 2017; Ulbrich et al. 2016; 

Stølen et al. 2009; Wisløff et al. 2007). HIIT consists of alternating periods of high-

intensity exercise and periods of low-intensity exercise or rest (Meyer et al. 2012),  

The most evaluated exercise modality is MICT, which seems to be more effectively 

tolerated for patients (Dickstein et al. 2011). Recently, it was conversely showed HIIT was 

not superior to MICT regarding improving left ventricular remodelling or aerobic capacity 

(Ellingsen et al. 2017) in HF patients. Inconsistencies in the execution of the training 

protocol among the different exercise centres involved in this study might have 

underestimated its potential, considering that 51% of patients exercised below prescribed 

target during supervised HIIT and 80% above target in MICT. Thus, adherence to the 

exercise protocol was extremely low. 

In contrast with these results, further clinical trials have demonstrated HIIT had a 

superior outcome regarding exercise capacity, peak VO2 and LVEF when compared to 

MICT (Connor et al. 2010; Kemi et al. 2005; Kemi et al. 2007; Kemi et al. 2011; Wisløff 

et al. 2007); likewise, it has improved myocyte function in comparison to moderate 

training (Kemi et al. 2008; Kemi et al. 2007). To endorse these findings, other trial 

evidenced that higher exercise intensity leads to larger improvements in peak VO2 against 

low exercise intensities, respectively 23% and 7% (Ismail et al. 2013).  

Rognmo and collaborators  have also demonstrated that interval training was better 

correlated with the eradication of risk factors for metabolic syndrome when compared to 

MICT; and it was likewise superior in ameliorating endothelial function (9% versus 5%; 

P<0.001), skeletal muscle biogenesis, and ECC (Rognmo et al. 2004). Moreover, interval 

training was linked with reverse left ventricular remodelling (a significant reduction in 

diastolic and systolic left ventricular volume and an increase of 35% in LVEF [p< 0.01]) 

(Tabet et al. 2009). 
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1.1.6 Bioenergetics of slow and fast-twitch muscles: ATP synthesis in diverse 

metabolic profiles 

 

Muscle cells display distinct features regarding their energetic requirements (Allen 

2008). Skeletal muscle is richly endowed with mitochondria and heavily reliant on 

oxidative phosphorylation for energy production (Egan & Zierath 2013). According to the 

main classification system of muscle fibres based on metabolic profiles, two main patterns 

are indicated (Schiaffino & Reggiani 2011).  

Fast skeletal muscle has the ability to promptly mobilise limited energy sources 

(phosphocreatine (CrP) and glycogen) to generate fast and strong contraction over a short 

time length (Vaarmann et al. 2008). Muscles that fit in this classification, such as extensor 

digitorum longus (EDL) are prone to fatigue, slow recovery of substrate reserves and 

production of energy through anaerobic metabolism, and in a restricted degree, via 

mitochondria activity. 

On the other hand, slow muscle fibres are adapted to exhibit a low power of 

contraction that is compensated by the long-term contractile activity. Muscles as soleus 

(SOL) rely on oxidative metabolism and are fatigue-resistant, essentially due to the 

efficient adjustment of the ratio of energy production and expenditure modulated by the 

great number of mitochondria present in its structure (Ventura-Clapier 2009). 

 Enzymes in healthy muscle mediate energy production and utilisation ensuring fast 

transfer of energy and relevant molecules towards adenosine triphosphate (ATP) 

consumption sites. There are three ways a muscle fibre can form ATP: 1) phosphorylation 

of adenosine diphosphate (ADP) by CrP, 2) oxidative phosphorylation of ADP in the 

mitochondria, and 3) phosphorylation of ADP by the glycolytic pathway in the cytosol 

(Man et al. 2009). Phosphorylation of ADP by CP provides a very rapid mean of forming 

ATP at the onset of contractile activity (Ingwall 2011). Nevertheless, if the contraction has 

to be prolonged, the muscle should use the other strategies mentioned to form ATP (Barker 

et al. 2012). 

 

1.1.7 Modulation of sarcoplasmic reticulum-calcium ATPase (SERCA) by creatine 

kinase (CK) system 

 

CK participates in energy shuttling within cardiac and skeletal muscle cells (Saks et 

al. 1998) and catalyses the reversible transfer of a phosphate group between ATP and 
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creatine (Cr). Mitochondrial regulation of energy fluxes is of vital importance for normal 

cell life, especially for those with high energy demand, such as cardiac and skeletal muscle 

(Guzun et al. 2009). This organelle can directly support the SERCA function (Kaasik et al. 

2001; Kuznetsov et al. 2003), which in turn, requires a considerable amount of ATP for 

muscle relaxation. Two Ca2+ ions are transported by this pump for each ATP molecule 

consumed in both skeletal and cardiac SR (Tada et al., 1982; Reddy et al., 1996). The 

efficient functioning of SR, necessary for a proper contraction and relaxation, greatly relies 

on ATP supply and ADP withdrawal (high localized ATP/ADP ratio) (Dzeja & Terzic 

2003). Thus, CK is assumed to directly affect the thermodynamic efficiency of ATP 

hydrolysis, which may be critical for SECA functionality. 

In this way, an efficient system of energy transfer kinases ensures that energy 

consumption by ATPases is exactly matched by energy production (Joubert et al. 2008). 

Energy metabolism is designed so that the rate of ATP synthesis via rephosphorylation of 

ADP closely matches the varying rate of ATP use by cellular components such as myosin, 

ion pumps, synthesis, and degradation of molecules (Ventura-Clapier 2009; Ingwall 2011). 

In the present research, the ATP/ADP ratio is considered an indicator of CK capacity, 

which is investigated as a regulatory parameter of SERCA activity. Differences in energy 

transfer regarding metabolic fibres are displayed in figure 1. 
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B 

 

Figure 1: Functioning of CK shuttle in muscular cells. A. In slow-oxidative fibres, 

where mitochondria exhibit larger dimensions than those observed in fast-twitch muscle, 

CrP is synthesised within this organelle. It happens due to the localization of the 

mitochondrial isoform of CK (mi-CK). CrP molecules are translocated to bound cytosolic 

CK isotype (MM-CK) present in myofilaments, where re-phosphorylation happens using 

the ADP produced by myosin ATPase as substrate. B. In fast-twitch muscle, there is a 

great reservoir of CrP molecules, which act as a spatiotemporal buffer for ATP. Similarly, 

to what is observed in oxidative fibres, MM-CK cycles the phosphoryl group back to the 

ADP generated by the ATPase. Mitochondria and glycolytic complexes are directly 

involved renewal of the CrP pool. Adapted from (de Sousa et al. 2000) 
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1.1.8 Energy metabolism in HF 

Tissues exhibiting elevated and fluctuating energetic requirements such as heart and 

muscle need efficient systems to produce and allocate energy molecules in a reasonable 

amount and speed, in order to meet high metabolic demands (Kaasik et al. 2001). 

Nevertheless, a status of energy insufficiency, marked by an unbalanced ATP/ADP ratio, is 

observed in HF and this aspect may consist in one of the pathophysiological foundations of 

the syndrome (Wende et al. 2017; Ventura-Clapier 2009; Dimopoulos et al. 2018). 

Energetic characteristics of failing muscles comprise changes in substrate utilisation 

from fatty acid to glucose; markedly reduced oxidative pathways mediating energy 

synthesis due to depletion in mitochondrial content; diminished activity of 

phosphotransferases culminate in limitations on energy mobilisation and decreased 

efficiency in energy consumption (Ventura-Clapier 2009). 

Metabolic alterations in HF, consequent to muscular underperfusion and low 

anaerobic threshold, impair both cardiac and skeletal muscles, suggesting a generalised 

metabolic myopathy (Ventura-Clapier et al. 2002) characterised by low oxidative capacity. 

Several studies have reported greater CrP depletion during HF  (Drexler et al. 1992; 

Duscha et al. 1999; Pisano et al. 2016). The functionality and content of CK and 

mitochondria were likewise found to be reduced in failing hearts (Pinz et al. 2011; Sousa et 

al. 1999a; Ventura-Clapier et al. 2004) and skeletal muscle. This is consistent for both 

experimental HF animal models and in patients (Munkvik et al. 2011; Harrington et al. 

1997).  

Concerning the abnormalities observed in skeletal muscle, muscle atrophy, decreased 

vascularization, fibre type shift towards faster phenotype, and decreased resistance to 

fatigue (Drexler et al. 2015) are highlighted as the underlying causes for reduced 

phosphorylation.  

Studies  have reported reductions in muscle mitochondria function, density, size, and 

expression of mitochondrial enzymes involved in the Krebs cycle, energy production and 

transfer (Arnolda et al. 1991; Pisano et al. 2016; Vaarmann et al. 2008; Schrepper et al. 

2012; Kaasik et al. 2001; Tabet et al. 2009). Alterations in mitochondrial density and 

activity are strongly related to decreased VO2 peak consumption in HF patients (Massie et 

al. 1996). 

In the severely failing human myocardium and in hearts of animal models of severe 

failure, [ATP] is approximately 30% lower than in healthy heart (Ingwall 2011). As the 
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failing heart is known to exhibit cytoarchitectural inadequacies that may compromise 

mitochondrial structure, SR and myofilament interactions, it is assumed that local 

ATP/ADP ratio would be impaired, leading to contractile dysfunction (Joubert et al. 2008). 

 

1.1.9 The SR network  

8.1.1.6 The SR 

 

The SR is a membrane-bound organelle which allows sequestration and release of 

Ca2+ within muscle (Periasamy & Kalyanasundaram 2007). Previous studies recognise that 

active transport is required to import Ca2+ into the SR lumen after muscle activation (Inesi 

et al. 2008b). Characterised as an extensively developed and highly organised network, the 

SR morphologically exhibits structures as tubules and cisternae that interact to mediate the 

Ca2+ dynamics within the cell. Furthermore, this organelle acts as a reservoir of Ca2+ ions 

in striated muscle (Lopez & Allen 2012), which volume and capacity can vary according to 

cell type. It has been described that SR is furthermore numerous in skeletal muscle in 

comparison to the mammalian heart (Bers 2001).  

The SR present in skeletal muscle differs from those in cardiac tissue in a number of 

important ways. Although functional differences in the activation of contraction can be 

seen between these tissues (Bers 2001; Heiny & Meissner 2012), the general scheme of 

ECC is still comparable.  

Electrical stimulation of the surface of the membrane triggers an action potential 

(AP) that immediately propagates the depolarization along the sarcolemma and into the 

fibres interior through a specialized system of transversely oriented tubular membranes 

(transverse-tubules or t-tubules) (Heiny & Meissner 2012). In addition to reaching the 

fibres interior, T-tubules also approximate outer membranes to the vicinity of the SR at 

specialized intracellular junctions named triads, which is a platform for assembling 

sarcolemmal Ca2+ channels (dihydropyridine receptor (DHPRs)), SR Ca2+ release channels 

(ryanodine receptors - RyRs) and additional proteins that regulate Ca2+ release from the SR 

(Bers 2008) 

The Ca2+ ions that enter through the membrane upon the AP diffuse across a short 

inter-membrane space and activate the RyR, which are embedded in the adjacent 

membrane of the SR (Eisner et al. 2009). RyRs allow the efflux of Ca2+ ions that were 
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stored in the SR, which spread out in the cytoplasm and engage the myofilaments therefore 

triggering contraction (Eisner et al. 2009). 

In this scenario, ECC on skeletal muscle depends nearly solely on Ca2+ released from 

the SR with quantitatively insignificant Ca2+ influx across the sarcolemma during a normal 

twitch. Cardiac muscle contraction, contrarily, relies on both Ca2+ entry via sarcolemma 

and Ca2+ release from the SR (Bers 2001). Skeletal muscle, therefore, presents a vast and 

well-arranged SR system, characterised by large capacious terminal cisternae adjoining the 

narrow T- tubules. In contrast, cardiac muscle usually shows a sparser and less severely 

organised SR net, which displays smaller saccular enlargements at the cell surface and at 

junctions, with the much larger diameter T- tubules (200 nm in heart vs. 30-40 nm in 

skeletal muscle) (Bers 2001). 

Skeletal and cardiac muscles express distinct subunits of either voltage-gated Ca2+ 

channels (VGCC) or RyR (CaV1.1 and RyR1 in skeletal vs. CaV1.2 and RyR2 in cardiac) 

(Guerrero-Hernández et al. 2014). In skeletal muscle, a direct physical interaction between 

the Ca2+ and the RyR 1 isoform promptly stimulates morphologic alterations in the RyR 

that culminates with the SR Ca2+ release (Dulhunty 2006). This process is recognised as 

voltage-gated Ca2+ release. Opposed to this mechanism, in cardiac muscle ECC depends on 

Ca2+ entry via CaV1.2 which in turn, binds to and activates RyR2, resulting in SR 

Ca2+efflux (Bannister 2013). 

Stern and group. demonstrated that RyR are distributed in a divergent pattern on the 

SR underneath the T-tubular membrane in skeletal and cardiac muscle. These 

configurations were matched by an organised display of DHPR present in the T-tubule 

membrane (Stern et al. 1997).  

 

8.1.1.7 SERCA 

 The SR starts muscle contraction by releasing Ca2+ through the RyR into the 

cytosol (Periasamy & Kalyanasundaram 2007; Maier & Bers 2002) and facilitates muscle 

relaxation by dynamic reuptake of Ca2+ by SERCA (Bers 2001) which actively transport 

cations across membranes at the expense of ATP hydrolysis (Carafoli & Brini 2007). 

A model proposed by MacLennan's group presents the molecular structure of 

SERCA, indicating the nucleotide domain where ATP binds, a phosphorylation site and a 

hinge region (Lytton et al. 1992). This morphology is characterised by a transmembrane 

spanning regions that protrude to the cytoplasmic side. High affinity Ca2+ binding sites are 

localised in transmembrane domains (Toyofuku et al. 1992) (figure 2). 
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Figure 2: Diagram representing the structure of SERCA-pump. The majority parcel 

of the protein is in the cytoplasmic side of the SR membrane. A. ATP binds to the 

affinity site triggering structural alterations that mediate the influx of Ca2+ ions. B Ca2+ 

entry from cytosol is released into the SR lumen after ATP hydrolysis. Adapted from 

(Bers 2001). 

 

 

SERCA pump undergoes multiple conformational stages upon Ca2+ binding to its 

high affinity sites on cytoplasmic face. As a consequence of the occupation of these 

domains, ATP molecules go through hydrolysis triggering several molecular changes that 

promote transport of Ca2+ across the membrane (Periasamy & Kalyanasundaram 2007). 

 

1.1.9.1.1 SERCA isoforms 

 

This 110 kilodaltons (kDa) transmembrane protein is encoded by three different 

genes as a result of developmental or tissue-specific alternative splicing and so, is able to 

produce five different isoforms (Berchtold et al. 2000). 

SERCA1 is the predominant type present in adult mammalian type II fibres, 

classified as fast-twitch muscle; characterised by an adult isoform (SERCA1a) and a 
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neonatal (SERCA1b) variant.  SERCA2 is expressed in all tissues; SERCA2a is a muscle-

specific protein (heart, slow-twitch skeletal muscle, and smooth muscle) (Murphy et al. 

2009; Bers 2001), appearing very early in development, whereas SERCA2b is found in 

non-muscle tissues and in smooth muscle cells (Berchtold et al. 2000). SERCA3 is 

expressed at high levels in platelets, lymphoid cells, and some endothelial cells (Periasamy 

& Kalyanasundaram 2007). 

Under optimised conditions, SERCAs transport 2 Mol of Ca2+ across the SR 

membrane upon the hydrolysis of 1 mol of ATP (Bers 2001; Smith et al. 2013). 

 

1.1.1.1.2 SERCA functional differences according isoform heterogeneity  

 

To cause muscle relaxation by lowering the cytosolic Ca2+, and to restore SR Ca2+ 

reservoir indispensable for muscle contraction, the Ca2+ uptake properties of SERCA vary 

according demands of distinct type I and II fibres (Allen et al. 2008).  

The pump functionality relies on a number of factors, comprising Ca2+ ion 

concentration, ATP level, pH, and ADP and inorganic phosphate concentration. These 

aspects are able to modulate pump affinity for Ca2+, rate of phosphorylation, ATP binding 

and hydrolysis, and decomposition ATP-binding site (Periasamy & Kalyanasundaram 

2007). The primary morphological structure is highly conserved among isoforms (Shareef 

et al. 2014). It is also relevant to mention that all of the SERCA variants are inhibited by 

thapsigargin (Periasamy & Kalyanasundaram 2007). 

In vitro studies developed by Submilla and colleagues reported that SERCA1 and 

SERCA2a isoforms shared comparable Ca2+ affinity and velocity of Ca2+ uptake (Vmax). 

However, a higher kinetic turnover was demonstrated for SERCA1 compared with the 

SERCA2a (Sumbilla et al. 1999). SERCA2a, but not SERCA1a, was demonstrated to be 

regulated by PLB. This fact suggests that functional diversity could be additionally 

established by regulatory molecules of the SERCA pump (Periasamy & Kalyanasundaram 

2007). Lamboley has shown that he Ca2+ sensitivity of uptake is substantially higher in 

type I fibres than in type II fibres in humans (Lamboley et al. 2014). Disruption of 

SERCA2 in a genetic mice model skeletal was associated to reduction in SERCA2 protein 

in several muscles with slow-twitch fibre (Sjåland et al. 2011). 

Fast fibres show greater amplitude of Ca2+ transients and faster decay kinetics due 

to a more developed SR (Schiaffino et al. 1970) and presents abundant amount of Ca2+ 

release channels, SERCA, intraluminal Ca2+ binding protein and cytosolic buffers. 
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Quantification of SERCA pumps in EDL and SOL muscle of mice was pointed to be 

different in a study done by Smith. Proportion of SERCA1a:SERCA2a was ~91:1 in EDL 

compared with ~14:1 in soleus and in total there were ~4.9-fold more SERCA pumps 

(SERCA1a + SERCA2a) in EDL than soleus (Smith et al. 2013).  

 

1.1.10 Mitochondria  

 

The mitochondria are the site of oxidative phosphorylation (OXPHOS) and the 

tricarboxylic acid cycle (TAC). Energy metabolism is designed so that the rate of ATP 

synthesis is maintained high and constant on a beat-to-beat basis in order to support the 

functionality of myosin, ion pumps, synthesis, and degradation of large and small 

molecules (Ingwall 2011). Rates of ATP production and utilisation are extremely high in 

cardiac tissue and a large mitochondrial content is therefore seen in mammalian ventricle 

(Bers 2001). So, the heart relies on OXPHOS to generate ATP within the mitochondria 

primarily from lipid sources (Williams et al. 2015). 

There is a wide variation in mitochondrial volume across different types of skeletal 

muscle, which reflects differences in the oxidative capacity of those fibre types as well as 

the process of mitochondrial biogenesis (Ventura-Clapier, 2009). Schiaffino and Regigiani 

have demonstrated the mitochondrial content in rat fibres changes accordingly the muscle 

profile, ranging from 2.2% in gastrocnemius (GAS) fast-glycolytic fibres to 10% in SOL 

slow-oxidative muscle (Stefano Schiaffino & Reggiani, 2011). 

Mitochondrial cytoarchitecture and enzymatic activity are different in fast and slow 

muscles in a number of respects (Rasmussen et al. 2004). A study that used isolated 

mitochondrial preparations have shown that regeneration based on TCA cycle is more 

effective in slow than in fast fibres because of the superior mitochondrial density and 

greater TCA cycle fuelling based on oxidation, which is about three times higher in slow 

than in fast fibres (Schiaffino & Reggiani 2011)  

Besides, slow and fast fibres exhibit distinct regulatory processes of mitochondrial 

activity considering the effects of intracellular concentrations of ADP and Cr. Fast fibres 

are more stimulated by ADP whereas oxidative muscle responds more efficiently to Cr 

stimuli (Schiaffino & Reggiani 2011).  

Energy production and transferring of ATP molecules are processes mediated by 

mitochondria that are fundamental for the maintenance of cell viability (Hickey et al. 

2009). In mammalian cardiac tissue, this organelle occupies 30–40% of the healthy 
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cardiomyocyte – this percentage is conditional to species, health state and age. 

Mitochondria is functionally able to supply 95% of cellular energy via CK systems 

coupled to energy consumption sites in heart (Ventura-Clapier et al. 2002).  

A special form of CK is observed in cardiac mitochondria. This distinct mi-CK 

enzyme is able to convert newly generated ATP into CrP molecules in the intermembrane 

space. Because oxidative muscle exhibits restrictions regarding the permeability of ADP 

molecules, mi-CK plays an essential role regulating mitochondrial energy synthesis 

(Ventura-Clapier et al. 2002). On the other hand, glycolytic fibres are more permeable to 

ADP, what suggests a tissue-specific regulation of mitochondrial function (Booth et al. 

2015). CrP molecules originally produced in mitochondria are translocated through the 

cytosol via cytosolic CK isoform (MM-CK) to the sites of energy consumption. MM-CK 

bound to the myofilaments and SR can locally recycle ADP supporting contraction or Ca2+ 

pumping (Ventura-Clapier et al. 2002). 

Mitochondria have autonomy to independently support myofibrillar–SR–calcium 

ATPase function as proficiently as the coupled CK system (Kaasik et al. 2001). This 

indicates that a localized crosstalk between energy producing and energy consuming sites 

in the cell is required to ensure efficient Ca2+ active transport (Joubert et al. 2008; 

Vaarmann et al. 2008).  

  

 

1.1.11 Investigation of Ca2+ fluxes mechanisms 

8.1.1.8 Regulation of the SERCA by phospholamban (PLB) 

 

The Ca2+-ATPase in cardiac and slow-twitch skeletal but not fast-twitch skeletal 

muscle (where SERCA1 is the major Ca2+ pump isoform) is modulated by a regulatory 

small protein, named phospholamban (PLB) (Carafoli & Brini 2007). PLB in its non-

phosphorylated form reversibly supresses SERCA pump and this inhibition is relieved 

upon phosphorylation reaction by cAMP-dependent protein kinase A (PKA) and 

Ca2+/calmodulin-dependent kinase II (CaMKII) (Periasamy & Kalyanasundaram 2007; 

Carafoli & Brini 2007; Kemi et al. 2007) during β-adrenergic stimulation (Haghighi et al. 

2014) . Dephosphorylated PLB interacts with SERCA1, SERCA2a and SERCA2b, but not 

with SERCA3 (Carafoli & Brini 2007; Toyofuku et al. 1993). There is ~10 times less PLB 

in atrial muscle and lower concentrations in slow skeletal muscle (Briggs et al. 1992). 
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There is ~10 times less PLB in atrial muscle and lower concentrations in slow skeletal 

muscle (Briggs et al. 1992). 

 

8.1.1.9 Contributions of CaMKII on SR uptake  

 

Ca2+/calmodulin dependent kinase II (CaMKII) is a ubiquitously expressed protein 

that is activated as a result of an increase in intracellular Ca2+ levels.  It exhibits 

modulatory mechanisms upon key elements of the ECC (Maier & Bers 2002), being 

capable of initiating a multitude of cellular processes. This kinase is encoded by four 

homologous but different genes (α, β, γ, δ), being the δ isoform predominant in 

myocardium (Smith et al. 2006; Maier & Bers 2002), specifically by two splice variants: 

δB and δC (Gray & Brown 2014). At least one gene product is expressed in all tissues, 

comprising skeletal muscle (Tobimatsu & Fujisawa 1989). In fast-twitch fibres, CaMKII 

targets RyR, DHPR, and some of their associated proteins (Damiani et al. 2000); whilst in 

slow-twitch fibres, CaMKII also modulates SERCA and PLB (Sacchetto et al. 2000).  

CaMKII activation is recognised to both augment loading and promote leakage of the 

cardiomyocyte SR Ca2+ (Parks et al. 2014). CaMKII seems also essential for maintaining 

SR Ca2+ release during repeated contractions in skeletal muscle (Rose & Hargreaves 

2003a). 

 

1.1.12 The ryanodine receptor (RyR) 

 

The RyR is a permeable cation release channel that plays a pivotal contribution in 

ECC. This tetramer is responsible for the efflux of Ca2+ ions stored in the SR later during 

relaxation (Bers 2008) in both skeletal and cardiac muscle (Zalk et al. 2015). The channel 

complex is situated in the SR membrane with its cytoplasmatic domain interacting with the 

DHPR, connecting the gap between T-tubules and the terminal cisternae of the SR (Capes 

et al. 2011).  

The activation of RyR occurs upon a Ca2+ influx via plasma-membrane Ca2+ 

channels and a subsequent great outward flow of Ca2+ from the SR occurs. This 

mechanism, termed calcium-induced calcium release (CICR), is usually observed in the 

majority of the tissue types, with exception of skeletal muscle, in which roughly 50% of 

RyR channels are mechanically activated by direct interaction with VGCCs existing on the 

plasma membrane (Paolini et al. 2004). In the skeletal muscle, the L-type Ca2+ channel 
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does not conduct any Ca2+ current that is of importance to ECC Upon activation, the 

skeletal muscle DHPR interacts directly with the juxtaposed RyR1 that open and allow 

Ca2+ to be released from the SR into the cytoplasm so that contraction can occur (Heiny & 

Meissner 2012). To relax the muscle, Ca2+ is pumped back into the SR by the skeletal 

muscle SERCAs. Thus, in skeletal muscle, cellular Ca2+ is cycled between the SR and 

cytoplasm with little or no exchange in the extracellular environment (Allen et al. 2008) 

Mammals display three distinct genes encoding for RyR1, RyR2 and RyR3 

isoforms, being the first one highly present in skeletal muscle, mainly in fast-twitch fibres;  

heart cells greatly express the RyR2 isotype, whereas RyR3 was identified in brain, 

skeletal and smooth muscles (Guerrero-Hernández et al. 2014).  

 

1.1.13 The SERCA inhibitor – thapsigargin  

 

Many molecules are capable to inhibit SERCA activity within low- micromolar to 

nanomolar - concentration ranges, specifying their high binding affinities (Michelangeli & 

East, 2011). Thapsigargin, a sesquiterpene lactone derived from the plant Thapsia 

garganica, is the furthermost widely used SERCA inhibitor and was demonstrated as 

capable of blocking all SERCA isoforms (Periasamy & Kalyanasundaram, 2007). This 

drug is very selective inasmuch as it does not appreciably supress other related Ca2+-

ATPases such as the PMCA (plasma membrane Ca2+-ATPases) or the SPCA (secretory 

pathway Ca2+-ATPases), at very low concentrations (Wootton & Michelangeli, 2006). To 

confirm the absence of influence on plasma membrane ATPases, studies reported 

thapsigargin shows no effects on Na+/K+ ATPase (Periasamy & Kalyanasundaram, 2007). 

In addition, it seems that this blocker displays differential inhibitory effects upon 

the SERCA isoforms, being 60 times more potent for SERCA1 than for SERCA3 (Ki 

values of 0.2, 1 and 12nM for SERCA-isoforms 1, 2 and 3 respectively) (Wootton & 

Michelangeli, 2006). The distinct thapsigargin sensitivities displayed by SERCA types 

suggest functional variances that could have a profound outcome on Ca2+ handling. 

 

1.1.14 Metabolites supporting Ca2+ SR uptake  

 

8.1.1.10 Effects of adenosine triphosphate (ATP) and phosphocreatine (CrP) on 

sarcoplasmic reticulum (SR) 
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Every biological process that demands energy provision employs ATP as the 

molecular unit of currency (Turner & Gant, 2013). ATPases are able to cleave the terminal 

phosphate group bound to ATP releasing chemical energy that is converted into 

intracellular mechanical work, mediating essential functions for cell viability, as 

contraction, ion pumping, molecular trafficking, etc. (Ingwall 2009). 

Studies on skinned muscle fibres elucidate that the decline in [ATP] and [CrP] can 

diminish SR Ca2+ pumping and increase pump leakage, resulting in elevated resting [Ca2+]i 

as typically observed in fatigue (Allen et al. 2008). 

Bearing in mind that the reserve of ATP in the heart is very limited (around 10mM) 

and insufficient to sustain proper cardiac function, the myocardium must continually re-

synthesize it (Ingwall 2009). In healthy subjects, this fluctuating demand is commonly 

matched via beta-oxidation in mitochondria. However, under conditions of higher ATP 

demands, heart cells employ alternative mechanisms to keep energy production constant, 

using different substrates, such as fatty acid, glucose and amino acids. Additionally, there 

is the recruitment of distinct metabolic pathways that take place in different subcellular 

locations, such as glycolysis and the phosphotransferase reactions catalysed by CK and 

adenylate kinase (AK). This flexible dynamic metabolic network is the normal state of the 

myocyte (Ingwall 2009). The different pathways for ATP supply have different rates of 

ATP synthesis: phosphoryl transfer via CK is approximately 10 times faster than ATP 

synthesis in mitochondria (~0.7 mM/s) which is ~20 times faster than glycolysis (Ingwall 

2009). 

The hydrolysis of ATP occurs at functional micro compartments around the cell to 

release energy from a high-energy transfer pathway known as the creatine 

kinase/phosphocreatine (CK/CrP) energy shuttle. Cr is an essential component of the 

CK/CrP energy transport phosphate bond (Turner & Gant, 2013). CK catalyzes the 

reversible Lohmann reaction which describes the fundamental pathway of the CK/CrP 

system: 

 

1)                                   

 

 

 A broad range of published studies have established that the ATP resynthesis 

process occurs locally within muscle fibres due to CK isoenzymes (Korge et al. 1993) 

which are bound inside muscle cells at locations of high energy utilization, including the 
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SR membrane (Rossi et al. 1990). These kinases can create an in situ pool of ATP on the 

proximity of the cellular energy utilization sites. ATP synthesis via the CK reaction may 

also have an essential role in supporting Ca2+ handling during normal ECC (Wallimann et 

al. 1992).  

The SERCA pump active reaction is initiated with the transport of two Ca2+ ions 

and one ATP molecule binding to high affinity sites on the cytoplasmic side of the pump 

(Bers 2014). Thus, the local ATP/ADP ratio may be a critical regulatory parameter for the 

SR Ca2+ATPase functionality, in both skeletal and cardiac SR (Bers 2001). ATP and ADP 

exert a kinetic (through affinity and inhibition constants) as well as a thermodynamic 

(through free energy of ATP hydrolysis) control on energy transduction (Ventura-Clapier 

et al. 2004). 

It was previously shown in myocytes that ATP alone is not sufficient to sustain SR 

Ca2+ load, and local withdrawal of ADP and regeneration of ATP by either CK or 

mitochondria or both (Kaasik et al., 2001) is essential for efficient control of ATPases 

(Joubert et al., 2008). Supporting this finding, studies done in saponin-permeabilized fibres 

illustrate that SR could be filled considerably more efficiently with CrP and ATP in 

comparison to ATP alone (Kaasik et al. 2001).  

Tests performed on isolated SR vesicles and permeabilized muscle fibres indicate 

that bound CK is coupled to SERCA (Yang & Steele, 2002a). In corroboration with this, 

the work done by Korge and group show specifies that, in the presence of millimolar levels 

of cytosolic ATP, introduction of CrP evidently increased the Ca2+ uptake rate and the 

maximum SR Ca2+ content (Korge et al. 1993). Moreover, an exogenous ATP regenerating 

system (phosphoenol pyruvate and pyruvate kinase), supplied in these experiments, was 

less effective at supporting SR Ca2+ sequestration than CrP acting in conjunction with 

bound CK (Korge et al. 1993). Tian et al. found that inhibition of CK limits SR Ca2+ 

handling and thereby limits contractile reserve in the intact heart (Tian et al. 1998) 

In conclusion, it has been implied that ATP synthesized locally by CK may have 

preferential access to the SERCA (Arrio-Dupont et al. 1992). The effects of CrP depletion 

impairs SR Ca2+ uptake, despite the presence of millimolar levels of cytosolic ATP (Yang 

& Steele, 2002a). 

 

8.1.1.11 Presence of ADP and CrP on SR modulation  
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A product from ATPase-mediated hydrolysis, ADP acts via the phosphoryl 

exchange systems as a feedback molecule to modulate ATP synthesis s. CK and other 

intracellular glycolytic enzymes are able to process ADP as a product of ATPase reactions 

(Saks et al. 1994). Evidence suggests that ADP is not able to freely circulate within the 

cytoplasm and so, the phosphor transfer network would promote a unidirectional metabolic 

flux to drive this metabolite at cellular distances (Dzeja & Terzic 2003). The existence of 

specialized compartmentalization of ATP and ADP molecules demonstrates a functional 

complex between CK and SERCA. In the presence of ADP and CrP, CK efficiently 

transfers the high-energy phosphate group CrP to ADP in the vicinity of SERCA and may 

supply much of the ATP utilized by this pump under normal conditions (Yang & Steele, 

2002a). In this way, an adequate ECC essentially relies on a ATP source and capacity of 

ADP withdraw in the vicinity of SERCA (Dzeja & Terzic 2003).  

 

8.1.1.12 ADP in the absence of CrP: mitochondrial contribution for SR Ca2+ uptake 

following CrP withdrawal 

 

Increased ADP concentrations are known to inhibit or reverse the SR Ca2+ pump 

(Joubert et al. 2008). In conditions where a diminished CrP to Cr ratio was seen, cytosolic 

ADP levels were increased causing a reduction in the driving force of SERCA pump and 

subsequently, decreased functionality. This supports a causal relationship between declined 

energy reserve and contractile dysfunction (Ingwall 2011). MacDonald and Stephenson 

have demonstrated that elevation in [ADP] in the micromolar range decreased the ability of 

the SR to store Ca2+, since it was linked to passive leak of Ca2+ from the SR via and by 

decreasing the rate of the SR Ca2+ pump (Macdonald & Stephenson 2001). 

Correspondingly, it was shown that the amount of Ca2+ leakage in rat skinned fibres 

augmented progressively as the [ADP] was increased from 0.1 μM to1mM (Lamboley et 

al. 2014). 

Studies conducted by Yang and Steele (2002) have illustrated that the withdrawal 

of CrP is followed by a decrease of the Ca2+ consumption by muscle fibres, which might 

be underlined  by a diminished activity of SERCA. Although, in the presence of CrP, the 

SR Ca2+ uptake rate is fundamentally unaffected by large decreases in [ATP] from 5 to 

~0.2 mM ATP;this suggests that a local reduction in [ATP] is unlikely to explain the 

effects of CrP fall (Yang & Steele 2002).  
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CrP withdrawal is also associated with the reduction of the maximum Ca2+ content 

in the SR. As a possible explanatory mechanism, the lack of CrP could indirectly affect the 

gating of the RyR by altering ATP/ADP.Pi in the junctional space (Steeghs et al. 1997)  

 

8.1.1.13 Blocking mitochondria-supported energy production and transfer: effects of 

sodium azide 

 

Mitochondria are primary source of ATP production via respiratory chain. The 

direct channelling of ATP between mitochondria and the SR points to a specific 

relationship between organelles through compartmentation of molecules. Spatial 

localization of mitochondria and their response to increases in intracellular energy demand 

(Dzeja & Terzic 2003); and their association to enzymes complexes is linked to the 

optimization and support of energetic communication between ATP-generating and ATP- 

consuming/ATP-sensing sites (Saks et al. 1994; Joubert et al. 2002). This dynamic 

configuration suggests that the distance of energy transfer is critical for adequate energy 

supply. (Dzeja & Terzic 2003) 

In order to assess this network relationship and potential impairments in energy 

production/transfer, the literature highlights properties of sodium azide on mitochondria 

(Schrepper et al. 2012; Zhu & Nosek 1992). Sodium azide inhibits cytochrome oxidase 

(Kaasik et al. 2001), the final enzyme involved in this electron transport chain. This 

hindrance impedes the oxidative phosphorylation process from happening and therefore, 

produces an accelerated depletion of intracellular ATP levels. 

 

1.1.15 Characterization of skeletal muscle biopsy samples 

 

8.1.1.14 EDL and SOL muscle: fibre heterogeneity and diversity in physiological 

profiles  

 

Skeletal muscle fibres exhibit different metabolic sates, contractile velocity and Ca2+ 

handling features, seeing the broad range of activities they are able to engage (Schiaffino 

& Reggiani 2012). By converting potential energy into work upon stimuli, the diverse 

types of fibre can be classified according their capacity to shortening – fast or slow; and 

the enzymatic machinery available to form ATP, considering their mitochondrial content, 

what characterizes them as oxidative or glycolytic (MacIntosh et al. 2012).  
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Other systems of fibres classification including fatigue resistance or myosin light 

chains (MLC) dynamics are also accessible, although the dominant system for mammalian 

skeletal muscle is based on expression of myosin heavy chain (MHC) which determines 

the rate of cross-bridges cycles, and therefore, the capacity of contraction and energy 

production (Allen et al. 2008). This classification leads to four major fibre types: I, IIa, IIx, 

and IIb. While all types of MHC are expressed in rodent muscles, IIb MHC is not 

expressed in human muscle, with type I being the slowest, type IIa intermediate, and IIx/b 

the fastest (Schiaffino & Reggiani 2012). They are also known as slow, fast-fatigue 

resistant (FR), and fast- fatigable (FF) fibres. 

The most widely studied group of muscles in the human body is the leg muscle. It is 

been shown that slow type I fibres are more abundant in the posterior compartment, where 

slow SOL muscle is also located due to the greater postural role of posterior muscles 

(Schiaffino & Reggiani 2011). The SOL of Wistar rats consists of 94% slow twitch fibres 

(Soukup et al. 2002). In small mammals, as mice, type I fibres are confined to rare muscles 

as SOL (Schiaffino & Reggiani 2011). SOL, thus, exhibits a majority of slow-twitch fibres 

and a minor group of relatively faster units, corresponding to type IIa muscle fibres.  

EDL is comprised of units with comparable fast-twitch properties but flexible force. 

It is contains >90% type II fibres (mostly IIB) and <10% of type I fibres (Agbulut et al. 

2003; Allen et al. 2001). This muscle displays a single slower unit, equivalent to the rare 

type I fibres (Schiaffino & Reggiani 2011). Across many species, type II fibres are more 

abundant in forelimbs than in hind limbs and, accordingly, in humans upper limb muscles 

are faster than lower limb muscles (Harridge et al. 1996). 

Importantly, evidence has suggested morphological differences regarding SR 

capacity in these fibres. Small mitochondria-rich and large mitochondria-poor muscle 

fibres in rat EDL muscle showed a highly developed SR, opposing to the poorly developed 

SR seen in the slow-twitch SOL fibres (Stefano Schiaffino & Reggiani, 2011). 

These fibre profiles and composition present a possible target for exercise-induced 

modulation in skeletal muscle in HF. 
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1.1.16 Objectives and main hypothesis 

1.1.17 General objective 

 

To examine the hypothesis that exercise training restores Ca2+ handling and 

metabolic abnormalities induced by HF in skeletal muscle and LV. 

 

1.1.18 Specific objectives  

The specific aims of the studies were to: 

 

1) Develop valid and reproducible protocol to retrospectively examine SR function in 

frozen muscle biopsies and compare uptake responses to the functionality of fresh 

tissue.  

 

2) Determine the ability of high-intensity exercise training to restore Ca2+ handling 

central (heart) and peripheral (skeletal) dysfunction when implemented as 

described in the present programme. 

 

3) Investigate SERCA mediated Ca2+ uptake and its dependence on ATP or ADP 

supply (ATP/ADP ratio) and CrP withdrawal. 

 

4) Examine the local regulation of SERCA by CK and mitochondria in situ in a rat 

model of HF. 

 

5) Address the effects of exercise training skeletal muscle systems for energy 

production and transfer in HF. 

 

6) Investigate the expression of Ca2+-regulatory proteins in failing striated muscle 

from a rat model of HF. 
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CHAPTER TWO 

GENERAL METHODS  
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2.1 Rat model: Coronary artery ligated  

 

A rat model of post-MI HF was obtained by permanently ligating the left coronary 

artery during thoracotomy under anaesthesia  (Kemi et al. 2007; Wisløff et al. 2002; Kemi 

et al. 2006). This model mimics important aspects of human HF, including  40% reduction 

in exercise capacity, pulmonary congestion, diastolic and systolic dilatation, increased 

diastolic and reduced systolic pressures, reduced pump capacity, and pathologic growth of 

the heart, as reduced contraction, relaxation, ECC, and Ca2+ handling, abnormal energetics, 

and pathologic growth of the cardiomyocyte (Kemi et al. 2011). 

Experiments were undertaken in adult Wistar male rats (250-450g) and the surgical 

procedure was performed by technicians in the Biological Services facility of the 

University of Glasgow.  Animals were sedated using a mix of Hypnorm and Hypnovel and 

intubated. Anaesthesia was induced with 4% Isoflurane and maintained at 1%. Local 

anaesthesia was administered at the ribs of surgical site and at two ribs above and below. A 

thoracotomy was performed at the left fourth intercostal space and the left anterior 

descending (LAD) artery was identified. The ligature was executed in the middle of the 

ventral side of the heart (between the auricle and apex) (Wu et al. 2011) This procedure 

generated 40-50% MI of the LV and lead to subsequent HF in ~90% of the rats; those 

without confirmed HF were not included in the subsequent studies (Kemi et al. 2006; O. 

Kemi et al. 2007). Post-operative analgesia was provided as needed. Rats were monitored 

for any signs of distress. 

Rats were randomized into three groups, according their clinical condition (control or 

HF) and adhesion to the exercise training regimen (sham control sedentary or control 

sedentary; post-MI HF sedentary, post-MI HF training). In this way, each group at any 

stage or part of the study had at least six animals. LV, SOL and EDL biopsies were then 

examined in control, post-MI HF sedentary and post-MI HF exercised animals. This last 

group underwent chronic aerobic high-intensity exercise training program.  

The described training regimen was selected considering that the degree of cardiac 

adaptation to physical training is directly related to the exercise intensity adopted. This 

correlation between training intensity and cardiac remodelling was observed in healthy and 

HF patients, as well as in animal models (Kemi et al. 2005; Wisløff et al. 2007; Wisløff et 

al. 2002). 

Following surgery, animals were allowed to recover for four weeks prior starting the 

exercise training sessions and subsequently sacrificed for in vitro experimentation. The 
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preconized recovery time is in good accordance with the formation and stabilization of the 

myocardial scar tissue, proposed by Cleutjens and colleagues. It was demonstrated that 

granulation tissue is formed within few days after the MI, accompanied by the formation of 

new blood vessels around the wound. A mature granulation tissue can be noticed around 2 

to 3 weeks after the myocardial insult and is characterised by enriched cellular 

composition, including macrophages, myofibroblasts and collagen. During this phase of 

cardiac healing, collagen become practically entirely cross-linked (Cleutjens et al. 1999) 

generating a permanent scar tissue. Compared to humans, cardiac wound cicatrisation is 

faster in smaller mammals, as mice and rats (Cleutjens et al. 1999). 

Given the time length between the starting of this project and current sample 

collection, two categories of control animals were considered for different assays. Initially, 

sham-operations without coronary ligations created sham-control rats. During the first 

stage of this research, parameters as MI size, cardiomyocyte length and exercise capacity 

in infarcted animals were compared against sham-operated rats (figure 3). 
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Figure 3: Scar tissue, cardiomyocyte length and exercise capacity in sedentary (HF 

SED) and exercise trained (HF TR) sham-operated (SHAM) and post-MI heart failure (HF) 

rats. A, B: MI size 40-45% with no effect for exercise training. C: MI led to pathologic 

hypertrophy. D: Post-MI HF reduced aerobic exercise capacity and exercise training 

normalized it (Kemi, 2005). 

 

 

A scar post-MI with size around 40-45% was observed in sedentary and trained rats 

and the exercise training had no effect upon it. MI led to a pathologic cell hypertrophy 

response, with increased cardiomyocyte cell length ~25% in HF sedentary rats; despite of 

exercise training did not normalise it completely, was capable to reverse the pathological 

remodelling. In this way, that post-MI HF was linked to reduction in aerobic exercise 

capacity whereas exercise training was capable to normalise it. 

For the subsequent experiments of this study, animals that did not undergo surgical 

procedures constituted the control group. In light of the recommendations of the Animals 

(Scientific Procedures) Act 1986, non-operated rats were employed with aims to eliminate 

or reduce to the minimum the harms to these animals (Home office 2016). Given that, 

functional assays including efficiency of SERCA pump and biochemistry studies (WB) 

have employed healthy non-operated animals comprising the control condition. 
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2.1.1 Effects of MI on skeletal muscle   

MI can be induced in rodents by surgical interruption of coronary arteries to produce 

ischemic injury via either permanent coronary ligation (Kemi et al. 2006; Loennechen et 

al. 2002; Kemi et al. 2012) or reperfused infarction. This is one of the most commonly 

utilized techniques for inducing left-sided HF in mice and rats (Vercauteren et al. 2006; 

Loughrey et al. 2007; Patten & Hall-Porter 2009). 

After the MI, the cardiomyopathy phenotype progressively develops and the degree 

of LV remodelling is proportionally related to the infarct size (Fletcher et al. 1981); so, it is 

essential to demonstrate equivalence of infarcted areas amongst different groups when 

comparing subsequent remodelling responses (Fletcher et al. 1981). 

The present disease model is a well-established HF model (Drexler et al. 1987; 

Pfeffer et al. 1978; Musch et al. 1986). The coronary artery ligation procedure has been 

linked to the development of skeletal muscle dysfunction, since SR function and force 

output were found to be altered following the induction of MI (Arnolda et al. 1991). A 

study performed by Arnolda pointed that infarcted rats with HF exhibited similar 

alterations regarding the handling of high energy phosphates in muscle, as described in 

human HF (Arnolda et al. 1991).Furthermore, Perreault and colleagues employed the same 

rat model to address contractile properties of fibres after myocardial injury and, they 

indicated that Ca2+ signalling changes in skeletal and cardiac muscles were resulting from 

abnormalities in the release and/or reuptake of Ca2+ by the SR of both types of striated 

muscles, such as might occur via decreased activity of the Ca2+-ATPases (Perreault et al. 

1993). Similar, Ca2+ release was found to be suppressed in skeletal muscle after MI, 

reflecting the impaired global and local Ca2+ handling (Szigeti et al. 2007).  

The described experimental model is likewise in accordance with the clinical 

outcomes produced by Munkvik and colleagues, who generated post-MI rats that displayed 

reduced fractional shortening and signs of pulmonary congestion. In that study, although 

the contractile performance of SOL from rats with HF was similar to sham animals, 

slowing of relaxation was observed between groups (Munkvik et al. 2011). 

 

 

2.2 Exercise Training Program 
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Intensity-controlled aerobic treadmill running was used as exercise training. Rats 

with and without post-MI HF and accustomed to the treadmill were tested for VO2max by 

continuously measuring air flow, O2, and CO2 during progressive running in a metabolic 

chamber. Exercise training sessions initiated 4 weeks month post-MI consisted of a 10-min 

warm-up at 50% of VO2max, whereupon 4-min intervals of running at 90% of VO2max are 

continued for 60-90-min, each interval interspersed by 3-min low-intensity recovery 

running. This was repeated 5 times per week and continued for 2 months. 

This protocol allowed a close control of exercise intensity and induced the largest 

reported improvement of cardiac function in normal, post-MI HF, and other disease 

models. This program also mimic the high-intensity exercise training that, in clinical trials, 

has improved systolic and diastolic myocardial function and reversed the pathologic 

remodelling, which low-to moderate-intensity exercise training fails to do (Wisløff et al. 

2007). Dependence of high exercise intensity for cardiac adaptation has now been 

established in post-MI HF, coronary artery disease, obese, and metabolic syndrome 

patients (Mattiazzi et al. 2005).  

The present high intensity-controlled treadmill exercise protocol rats exhibit aspects 

that mimics human adaptations (Kemi et al. 2007; Kemi et al. 2007; Wisløff et al. 2002; 

Wisløff et al. 2012). Exercise capacity was estimated based on exercise volume and 

intensity. After this training regimen,~2-fold increase in exercise capacity, myocardial 

performance and cardiomyocyte Ca2+ transients; SERCA2 activity, as well as 10-15% 

cardiac hypertrophy were reported (Kemi et al. 2007; Kemi et al. 2007; Wisløff et al. 2002; 

Wisløff et al. 2012). More benefits of HIIT are described in the section 1.1.4.2. 

 

 

2.3 Harvesting  

 

Animals were euthanized via cervical dislocation were then placed onto the bench 

in the supine position for tissue extraction. All muscle harvested were placed into 

Eppendorf containing adjusted 0.05mM R solution (100mM KCl, 25mM HEPES, 0.05mM 

EGTA, 10mM glucose, 5.5mM MgCl2, titrated with HCl to pH 7). This buffer composition 

lacks ATP in order to avoid yielding an exogenous source of this compound to the tissue.  

Three muscular samples were harvested, including two different types of skeletal muscle, 

being EDL and SOL; and LV. 
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2.4.1 EDL extraction 

 

The hind limbs were separated from the body by incisions performed bilaterally at 

the muscles of the caudal appendages along the inguinal lines, starting from the 

semitendinosus to gluteus superficialis. The distal tibialis anterior (TA) tendons as well as 

the extensor were exposed and the fascia covering the TA muscle was gently removed. The 

distal TA tendon was cut and used to peel off the muscle, which in turn, was carefully 

removed at its proximal attachment. An incision was performed in the distal portion of the 

biceps femoris muscle to expose the proximal EDL muscle, that was isolated with the aid 

of a forceps and then harvested (Hakim et al. 2013). 

 

8.1.1.15 SOL extraction 

 

To harvest SOL, the skin was separated from the underlying connective tissue, and 

the superficial muscle layer was cut. The extraction began over the gastrocnemius (GAS) 

and cut proximally, along the same line as the skin incision. The incision path was done 

along the pathway of the saccadic nerve towards the knee, and care was taken to stay well 

above the nerve. During this process, SOL can be seen along the underside of the GAS. 

Dissection with a sharp scissor and scalpel was used to separate the SOL muscle from the 

GAS muscle. The SOL tendon was then cut close to the distal end (MacIntosh et al. 2011). 

 

8.1.1.16 Heart and LV extraction 

 

The thoracic cavity was opened; the heart was quickly excised and placed into a 

beaker containing adjusted 0.05mM R solution on ice. The heart was then trimmed to 

remove fat and connective tissue and its total weight was taken. LV was isolated by 

carefully dissecting alongside the septum. These biopsies were either used immediately 

after extraction or stored for further experiments.  

 

2.4 Freezing of biopsies 

 

Muscle sample preservation was achieved by collecting the specimens immediately 

after harvesting. Temperature-related protein degradation was minimised during sample 

transportation by employing nitrogen vapours that maintained specimens around −194 °C; 
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the amount of tissue deposited in Eppendorf was carefully selected since freezing causes 

expansion of the tissue volume and can result in distortion of cellular architecture and 

viability (Lal et al. 2015). Given that, only the LV excised from explanted hearts was 

placed per vial; similarly, entire SOL or EDL (~150mg) were cleaned from any connective 

tissue, individually transferred and placed into these vials. This ensured that only a 

restricted and necessary amount of tissue was stocked for further use. 

 Then, Eppendorfs were placed into permanent batch storage for later comparison to 

freshly harvested samples. All samples were deposited in freezers at −80 °C; some of them 

were already under long-term preservation in the sample bank and stored over a period of 5 

years. These long-term biopsies were likewise employed for Ca2+ assessment and 

consequent functional analysis. 

The present functional SERCA assay does not rely on histological properties of 

fibres or on techniques to address genetic features.  In this respect, concerns regarding ice 

formation within the fibres were not relevant. So, challenges related to freezing of 

specimens, including solute concentration, and crystallization of buffer solutes that could 

lead to pH changes (Cao et al. 2003), were not seen as a limiting factor for SR activity 

during freezing.  

 

 

2.6.1 Chemical skinning procedure  

The chemical agent saponin interacts with cholesterol in membranes, acting as a 

chemical permeabilising agents and allowing metabolites to interact with the internal 

components of the cell. Because saponin holds a hydrophobic steroid core, it has a 

significant affinity to cholesterol-rich membranes (Kuznetsov et al. 2008). Plasma 

membranes hold nearly 0.5 mol cholesterol per mol phospholipid, whereas the membrane 

of endoplasmic reticulum (ER) has a much lower cholesterol composition (molar ratio 0.1), 

and mitochondrial outer and inner membranes contain an even smaller amount of 

cholesterol (molar ratios 0.07 and 0.01, respectively) (Korn 1969; Comte et al. 1976). 

 Due to the cholesterol composition of these membranes, saponin preferentially 

affects the plasma membrane of the muscle fibre, leaving intracellular membrane structures 

as mitochondria, myofilaments or SR of permeabilized preparations functionally intact and 

able to rapidly respond to changes in concentrations of ions, metabolites, substrates, 

inhibitors etc. (Kunz et al. 1993; Veksler et al. 1987; Khuchua et al. 1994) (figure 4). 
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Figure 4: Representation of the principle of studying mitochondria and SR in situ by 

selective membrane permeabilization with saponin. 1. Saponin molecules; 2. sarcoplasmic 

reticulum; 3. Mitochondria; 4. Myosin filaments; 5. Actin filaments. A. Muscle fibres prior 

and B. after treatment with saponin from sea cucumber. As a cholesterol-complex-forming 

agent, saponin interacts with cholesterol molecules, abundantly present in plasma 

membrane. This causes a loss of membrane integrity (permeabilization), so that the barrier 

between the intracellular space and surrounding medium disappears. The cholesterol 

content of intracellular organelles or membrane structures like mitochondria or SR is 

considerably lower and such that saponin does not disrupt them, thus allowing 

investigation of their functionality. Adapted from Kuznetsov et al. (Kuznetsov et al. 2008). 

 

 

Various studies in permeabilized muscle fibres have demonstrated that  mitochondria 

are able to utilize distinct substrates, indicating their functional intactness (Saks et al. 1998; 

Veksler et al. 1987; Kunz et al. 1993; Kuznetsov et al. 2008). Other intracellular structures 

like SR have also been shown to remain intact (Altschuld et al. 1985).  

In light of the present protocol, the muscle tissue was saponin-permeabilized 

(100µg/ml-1) and centrifuged with slow rotation for 5 minutes (Yang & Steele 2002). The 

excess of saponin was removed by washing the sample, which was spun at low rotation for 

one minute at room temperature. 
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2.6.2 SERCA inhibition with thapsigargin 

The dependence of cytosolic Ca2+ signalling on transport by SERCA was 

demonstrated directly by inhibiting its catalytic and transport activity (Sagara & Inesi 

1991) with thapsigargin. In the present experimental set up, Ca2+ pumping in the SR 

vesicles was performed by the addition of 1mM of CaCl2 to control samples; and muscles 

from the contralateral hind limb were blocked with 25µMol/ml of thapsigargin (Munkvik 

et al. 2010). 

 

2.7 Biochemical studies  

 

2.7.1 General tissue preparation 

 

Fresh tissue coming from healthy (non-operated) control animals and frozen 

biopsies from rats with HF were studied. Control rats were humanely sacrificed by brain 

concussion followed by cervical dislocation.  

The skeletal muscles were quickly excised from six rats that comprised the control 

condition; another set of six control animals was used to provide the LV samples. Muscle 

and heart samples were rinsed in ice cold modified R solution (lacking ATP and CrP) in 

order to avoid exogenous supplementation. These samples were then blot dried with fine 

tissue, placed in vials and immediately frozen in liquid nitrogen. Vials were transferred to a 

freezer and kept at -80°C until further use. 

 

2.7.2 Homogenisation of tissue samples for Western Blot (WB) analysis 

Tissue samples were thawed in the same modified R solution as previously 

described and connective and fat tissue were removed. Samples were weighed and cut with 

a sharp scalpel blade.  

Following this, tissue fragments were manually homogenised on ice, using 

disposable mortar and pestle. For a ~5 mg piece of tissue, ~300 μl of RIPA (Radio Immuno 

Precipitation Assay) lysis buffer (150 mM sodium chloride, 1.0% Triton X-100, 0.5% 

sodium deoxycholate, 0.1% SDS (sodium dodecyl sulphate) and 50 mM Tris, pH 8.0) was 

rapidly added to the tube (Abcam 2012). The volume of lysis buffer was determined in 

relation to the amount of tissue to be processed, being the minimum protein concentration 

0.1 mg/ml. 
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In order to preserve the protein content from detrimental activity of endogenous 

proteases, dithiothreitol (DTT), protease inhibitor P8340, phosphatase inhibitor cocktail 2 

P5726, phosphatase inhibitor cocktail 3 P0044 (Sigma-Aldrich) , were added to the buffer 

which was kept at 4°C. 

Homogenisation was performed in intervals to prevent the samples from 

overheating. This was repeated until a homogenate was obtained. Tubes were spun for 20 

min at 12000 rpm at 4°C in a microcentrifuge. Subsequently, they were place on ice, the 

supernatant was aspirated and placed in a fresh tube; pellet was discarded. Some of the 

lysates were promptly used for protein quantification while the remaining tubes were kept 

at -80°C. 

 

8.1.1.17 Estimation of protein concentration 

 

Frozen protein homogenates were thawed at room on ice. Once lysates were ready, 

they were submitted to protein quantification assay.  

At the beginning of this project, protein content of samples was determined using the 

Coomassie Plus protein reagent (Pierce) and Bovine serum albumin (BSA), using the range 

of 0.1 to 1mg/ml-1 protein as standards. As detergents present on RIPA buffer can interact 

with the Coomassie reagent and generate high backgrounds, later protein quantification 

was carried out using the Bicinchoninic Acid (BCA) method. 

The BCA protein assay allows for quantification of a broad BSA concentration 

with standards diluted in RIPA ranging from 0 to 2mg/ml-1. In the present protocol, 10 µl 

of the protein samples were loaded onto the well plate and 200 µl of BCA reagent were 

added to each well (ThermoFisher Scientific 2013). This was carried out in duplicates for 

each sample. The plate was mixed thoroughly on a plate shaker for 30 seconds and left at 

room temperature for 30 minutes. The purple-coloured reaction product of this assay is 

formed by the interaction of molecules of BCA with cuprous ions. This water-soluble 

complex exhibits a strong absorbance that is almost directly proportional to the increasing 

protein contents (Pierce Biotechnology 2005). 

Figure 5 shows a typical linear calibration curve produced by BCA standards. 

Protein concentration was estimated by measuring the absorbance of samples at the 

wavelength of 562 nm using the BMG FLUOstar Optima microplate reader, BMG 

laboratories. 
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Figure 5: Representative linear correlation between BSA standards and optical 

density. Regressions was plotted intercepting zero (y=mx; y=1.0059x). Diluted BSA 

standards (0–2.0mg/ml) were added to BCA Protein Assay working reagent, and 

absorbance (560nm) was measured. Protein quantitation was linear in the range tested. 

Data are represented as signal minus background. Data points were calculated from 

duplicates. 

 

 

Quantification of absorption measured at this particular wavelength is standardised 

using the calibration curve and converted to protein concentration. Within the linear range 

of detection, the optical density measured can be used to calculate the concentration of 

protein in the sample. 

 

8.1.1.18 Biochemical solutions for WB 

 

Immunoblotting has diverse applications for investigating molecular events. This 

multiple-step procedure involves the use of polyacrylamide gel electrophoresis (PAGE), 

transferring from gel to a nitrocellulose membrane, and immunostaining of a blot with a 

primary antibody followed by a secondary antibody (Gerk 2011).  

PAGE is implemented to separate out denatured and negatively charged proteins 

based on their molecular weight (Bass et al. 2017). Separation of protein samples within 

polyacrylamide gels and electrotransfer uses several buffers that are listed in table 1. 
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Table 1: List of solutions employed during SDS-PAGE and protein transfer in WB 

technique. 

Buffer Concentration 

Running buffer 
NuPage 20X MOPS SDS or tris-acetate 20X SDS running 

buffer (Invitrogen) diluted in deionised water. 
 

Transfer buffer 
NuPage 20X transfer buffer, diluted in deionised water and 

10% methanol. 

Incubation buffer 
1% cow milk diluted in tris buffered saline with tween 
(TBST) 1x. Antibodies were added to this suspension. 

 

Blocking buffer 
5% cow milk diluted in TBST 1x 

 

LI-COR REVERT Total 
Protein Stain 

Acetic Acid < 10%; water >90% 

 

LI-COR REVERT Wash 
Solution 

 

7% (v/v) glacial acetic acid, 30% (v/v) methanol, in water 

LI-COR REVERT Reversal 
Solution 

0.1% (w/v) sodium hydroxide, 30% (v/v) methanol, in 
water. 

 

 

 

WB was performed to determine the content and relative proportion of SERCA, 

CaMKII and RyR in EDL, LV and SOL; additionally, expression of PLB was studied in 

LV and SOL. Homogenate samples (sample processing described in section 2.4.1), were 

diluted with deionised water and sample buffer (Invitrogen) to the optimal concentration 

obtained based on protein linear range studies and antibody validation. Samples were 

mixed and boiled at 70°C for 10 minutes prior being transferred to the gel. In order to 

optimise the experiment, 15 wells gels were used.  

According to the ideal linear range, 10µg/ml of protein was loaded to 12% 

polyacrylamide gels (for SERCA, CaMKII and PLB) or 3-8% gels (for RyR). A pre-

stained protein ladder (BioLab reagents) was used as molecular weight reference.  

Protein mixtures were separated using SDS-PAGE protocol. The running phase was 

performed at 200V for 50 minutes (Biorad Power/pac 1000) with mini gel tanks kept on 

ice. The separated protein bands were then transferred to pre-cut 0.2µm nitrocellulose 

membranes (ThermoFisher Scientific). Gel and blotting membrane were assembled into a 

sandwich along with filter paper sheets and so in the blot module. Wet transfer was run at 

30V for 1 hour in an ice-cooled bath, using transfer buffer containing 10% of methanol. 
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Following electrotransfer, membranes were incubated with 5 ml of REVERT™ Total 

Protein (TP) stain solution for 5 minutes. This is a reversible stain that indicates the 

amount of TP bound to the membrane per loading lane. A LI-COR Odyssey System at 

700nm was used to scan the membranes for further TP quantitation. Next, if performing 

two-colour target detection, the REVERT Reversal Solution was employed for no more 

than 10 minutes. Reversal was completed when stain was no longer visible. This procedure 

removed the staining buffer and also allowed the measurement of target detection in two 

different channels, 700 and 800nm.  

Membranes were blocked in 5% milk for approximately one and a half hour at room 

temperature, reducing non-specific protein binding onto membranes. Membranes were 

then incubated with respective primary antibodies overnight at 4°C with gentle shaking.  

Following primary antibody incubation, they were washed three times for 15 minutes 

with TBST 1x and then incubated with the secondary antibody for 1 hour at room 

temperature. During incubation, membranes were protected from light exposure, as 

secondary antibodies are photosensitive. The antibodies used are described in table 2. After 

this final step, they were washed again in TBST (three times for 15 minutes each) and 

taken to the LI-COR scanner for detection of the target proteins.  
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Table 2: Details of optimised blocking times, antibody dilutions and incubation times 

for the specific target proteins investigated: SERCA, CaMKII, PLB and RyR. 

Target protein Molecular 

weight 

Blocking time Primary 

antibody 

Secondary 

antibody 

SERCA 110 kDa 90 min 

1:5.000 – 

overnight 

(Mouse 

monoclonal) 

1:10.000 – 

60min 

Donkey anti-

mouse 

PLB 25 kDa 90 min 

1:5.000 – 

overnight 

(Mouse 

monoclonal) 

1:10.000 - 

60min 

Donkey anti-

mouse 

CaMKII 55 kDa 90 min 

1:5.000 – 

overnight 

(Rabbit 

monoclonal) 

1:10.000 - 

60min 

Donkey anti-

rabbit 

RyR 525 kDa 90 min 

1:5.000 – 

overnight 

(Mouse 

monoclonal) 

1:10.000 - 

60min 

Donkey anti-

mouse 
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2.7 Quantification of immunoreactive bands 

 

Fluorescent detection is generally considered the most accurate method for 

quantitative immunoblotting (Schutz-geschwender et al. 2004; Wang et al. 2007; Gerk 

2011). This is an non-enzymatic method based on the use of secondary antibodies 

covalently labelled with fluorescent dyes, normally in the near-infrared (NIR) spectrum 

(LI-COR 2016b); these bands will fluoresce when exposed to excitation light of 

appropriate wavelength. 

Quantification is based on the selection of the protein band area after detection and 

measurement of the signal intensity relative to background fluorescence. Quantification 

was done by the Image Studio Lite software version 5.2 (LI-COR) where intensities of 

specific bands obtained by fluorescence were normalised to the entire protein content of 

the corresponding sample lane. Figure 6 illustrates representative quantification of TP 

content and target bands from the same blot.  
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A 

  
 

B 

 

 

Figure 6: Interface of Image Studio Lite version 5.2. A. Quantification of TP 

content per lane. Each lane is manually selected with the tool “draw rectangle” and, 

signal intensity is measured for that particular lane. In the right side, representation of 

lane fluorescence, measured in axis X and Y. B. Estimation of fluorescence intensity 

for target bands. Protein bands are selected and quantified individually. Target protein 

values are normalised by the corresponding TP content. 
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8.1.1.19 Data analysis of protein expression in LV 

 

LV homogenates were used at the final stage of this study, following optimisation of 

the WB protocol in skeletal muscle. Seven animals comprised each biological group 

(control n=7, HF sedentary n=7 and HF trained n=7) and lysates were loaded in duplicates. 

All groups were loaded onto the same gel for comparison. Thus, homogenates were loaded 

in the sequence: control sample, HF sedentary and HF trained animals. Homogenates from 

four rats from control, sedentary and trained group were loaded per 15 well gels; apart 

from the last gel, which was loaded with the remaining six samples, as displayed in table 3. 

 

 

Table 3: Configuration of sample loading in polyacrylamide gels for protein 

separation. C refers to control animals; S, HF sedentary and T corresponds to HF trained 

rats. Duplicates were performed per animal. Experiments were performed in triplicate.  

 Order of sample loading 

Gel 1 C1 S1 T1, C2 S2 T2, C3 S3 T 3, C4 S4 T4 

Gel 2 C5 S5 T5, C6 S6 T6, C7 S7 T7, C1 S1 T1 

Gel 3 C2 S2 T2, C3 S3 T3, C4 S4 T4, C5 S5 T5 

Gel 4 C6 S6 T6, C7 S7 T7 

 

 

 

8.1.1.20 Data analysis of protein expression in skeletal muscle  

 

Gel loading for skeletal muscle samples was performed differently from LV 

homogenates. This was carried out for SOL lysates before the optimisation of the protocol. 

Protein homogenates were loaded in the sequence: control (n=6), followed by HF 

sedentary (n=6) and HF trained (n=6), over two gels. However, the disadvantage of this 

arrangement is the absence of a control sample in the second gel. This was problematic 

since the widely used “housekeeping protein” normalisation technique produced highly 

variable results and could not be taken as reliable internal loading control (ILC). 

 Therefore, TP was used as a loading control rather than a ‘housekeeping’ protein: 

the mean of the signal intensity for the whole gel would be interpreted as a “gel 
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normalisation factor”. Thus, relative values (for sedentary and trained animals) were 

achieved by dividing the signal of target protein by the gel normalisation factor. It was 

more accurate to use this approach, as every experiment would be individually normalised 

by its own gel. Two 10 wells polyacrylamide gels were utilised per experiment and sample 

arrangement is shown in table 4. 

 

 

Table 4: Configuration of sample loading onto gels for protein separation. C refers to 

control animals; S, HF sedentary and T correspond to HF trained rats. Single loading was 

performed for each experiment. Experiments were carried out in triplicate. 

 Order of sample loading 

Gel 1 C1, C2, C3, C4, C5, C6, S1, S2, S3 

Gel 2 S4, S5, S6, T1, T2, T3, T4, T5, T6 

 

 

As sample loading was not executed in duplicates per experiment (just single 

loadings per sample), results referring to skeletal muscle homogenates show the average of 

triplicates. 

 

8.1.1.21 Establishment of an ILC for protein quantification 

 

Earlier experiments have shown inconsistencies in signal intensities of reactive bands 

across replicates; the same protein sample would exhibit discrepant values depending on 

the gel it was separated or system used for electro transfer, even after normalisation 

procedures. In order to produce accurate results, an internal quality control was established 

per gel and implemented as reference. Target proteins were normalised by the TP content 

per lane in order to correct for technical errors.  

From these corrected values a mean of signal intensity for each blot was generated. A 

margin of variation within 25% and 400% from the averaged signal was considered 

suitable to include the values in the data analysis. It was established that a variation greater 

or smaller than this would be beyond the biological variation. Thus, whether 

immunoreactive bands displayed values out of this range, they would be considered as 

outliers and therefore, unsuitable to be included.  
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A smaller margin of variation (from 50% to 200% of the mean signal) was 

considered which may exclude more points than the wider exclusion criteria. However, 

results were not different between the two approaches, and so the first option (25-400% 

variation) was taken as the internal quality control parameter. Relative values of target 

protein expression were obtained by dividing signals from sedentary and trained rats by a 

control (healthy) animal within each gel as these blots were considered comparable. Once 

duplicates were performed in each experiment for LV samples, an average of relative 

values was calculated for each sample. 

 

2.8 Enzymatic activity in muscle homogenates: assessment of energy production 

and transfer systems. 

 

To assess the ATP/CrP balance and enzymatic mechanisms that modulate muscle 

energetics in HF, frozen biopsies were weighed, homogenized in ice-cold buffer 

(approximately 50 mg wet weight per ml) containing: HEPES 5 mM (pH 8.7), EGTA 1 

mM, dithiothreitol 1 mM, and Triton X-100 (0.1%) and incubated for 60 min at 4 °C for 

complete enzyme extraction (Kemi et al. 2007).  Activities of citrate synthase (CS), 

cytochrome C oxidase (COX), creatine kinase (CK) and adenylate kinase (AK) were 

measured in EDL muscle, considering its higher content of enzymatic targets due to 

glycolytic characteristics.   

CS kinetics was measured through colorimetric assay based on the reaction between 

5’, 5’-Dithiobis 2-nitrobenzoic acid (DTNB) and coenzyme A (CoA) to form ¼ 5-thio-2-

nitrobenzoic acid (TNB), which exhibits maximum absorbance at 412 nm. CS activity in 

lysates from control, HF sedentary and HF trained animals was quantified as described by 

Srere (Srere, 1969), using saturating concentrations of substrates and cofactors: 0.1 mM 

DTNB-Tris-HCl pH 8, 0.3 mM acetyl-CoA, and 0.5 mM oxaloacetate, at pH 8, 30 °C.  

After reading a blank sample, an aliquot of lysates was added to a 1-ml cuvette and 

inserted into a Beckman DU 640B spectrophotometer connected to a water bath and 

maintained at 30°C. The repeated absorbance values were then plotted against time and 

determined to be linear (Leek et al. 2001). CS activity was calculated as micromoles per 

minute per gram of protein. The intensity of the absorbance is directly proportional to the 

CS function. 

After, the total activity of COX was estimated. Cytochrome C from horse heart 

(Sigma-Aldrich, catalogue 7752) was used to create the standards. COX function in EDL 
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was measured by the decreased absorbance owing to the oxidation of ferrocytochrome c 

(reduced by sodium dithionite) in the reaction buffer (50 mM KH2PO4, pH 7.4) at 550 nm. 

The interaction between the reduced cytochrome C molecule and oxygen produces an 

oxidised form of cytochrome and, because these two isoforms are not detected under the 

spectrum of absorption, COX could be examined by quantifying the disappearance of 

reduced cytochrome C at 550 nm (Kemi et al. 2007). 

The total activities of CK and AK were examined at 30 °C, pH 7.5 using the coupled 

enzyme assay of glucose-6-phosphate dehydrogenase and hexokinase. AK and CK 

measurements were done consecutively, being AK quantified first. They were assayed at 

30 °C, pH 7.5 (Kemi et al. 2007). CrP was added to measure both CK and AK activities 

combined; and in order to obtain values regarding CK function separately, AK activity is 

subtracted from the total assay.  

For this, production of NADPH in the absence of AK and in the presence of CrP was 

measured spectrophotometrically at 340 nm (Sousa et al. 2002). This activity can be 

kinetically measured by detecting ATP generated from ADP as a substrate, which is based 

on a multi-step reaction, resulting in the generation of an intermediate component which 

interacts with AK and forms a colorimetric (570 nm) product. They were assayed at 30 °C, 

pH 7.5 (Kemi et al. 2007). 

CK activity is determined by a coupled enzyme reaction resulting in the production 

of NADPH. In the presence of glucose and hexokinase (HK) the ATP formed in the first 

reaction will be converted to ADP and glucose-6-phosphate. The glucose-6-phosphate then 

subsequently reacts with beta-NADP+ in the presence of glucose-6-phosphate 

dehydrogenase (G6P-DH) to form 6-phosphogluconate and beta-NADPH. Conversion of 

beta-NADP+ to beta-NADPH results in an increase in absorbance at 340nm and, this 

change in absorbance, is proportional to the CK activity in the sample (Sousa et al. 2002). 

 

 

2.9 Fluorescence imaging of intracellular Ca2+: SR Ca2+ uptake in muscle samples  

 

The technique relies on the principle that skinned muscle fibres excised from hind 

limbs and LV can have SR function studied in a solution with electrolyte equivalent to the 

physiological background (Lamboley et al. 2014; Steele et al. 1996). When CaCl2 is 

delivered to these prepared fibres, the rise of free Ca2+ in the cytosol stimulates SERCA 

function, which will actively mediate Ca2+ influx into the SR at the expense of ATP 
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hydrolysis (Sjåland et al. 2011). Oxalate-supported Ca2+ uptake into SR was monitored 

using the fluorescent indicator Fura-2 free acid (Currie & Smith 1998). 

 

2.9.1 Apparatus for Ca2+ detection in permeabilized muscle fibres: the Perspex 

block bath 

After being prepared, fibres were transferred to a cylindrical bath (5 mm diameter, 

maximum volume 100µl) and exposed to 0.05mM R solution as previously done by Steele 

and co-workers (Steele et al. 1996), which contained electrolytes and high energy 

phosphate content, similar to the intracellular milieu. Compounds loaded into solutions 

used in the Perspex apparatus are listed in the table 5. 

 

 

Table 5:  List of compounds used for solutions loaded into the Perspex bath system. 

These are the concentrations estimated for standard experiments, unless otherwise 

specified. 

Compound Concentration (mM) 

Fura-2 0.024 

CaCl2 0.1 

Oxalate 0.1 

ATP 5 

ADP 5 

CrP 10 

EGTA 0.9 

CaEGTA 0.9 

 

 

 

The bottom of the bath was formed by attaching a coverslip to the underside of the 

block using silicone grease. CaCl2 loading was manually performed on multifactorial 

conditions, as previously described in table 2. Samples were then supplied with an external 

source of either ATP or ADP with or without CrP to estimate the efficiency of 

mitochondrial ATP synthesis and/or CK-system stimulation. Azide was utilised to abolish 

mitochondria-mediated energy production (Currie & Smith 1998; Kaasik et al. 2001).  
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Fura-2 was added to the bath at (0.024mM) and agitated to ensure interaction 

between dye and Ca2+. Agitation was produced by the pipette tip touching both 

experimental buffer and biopsy within the chamber. The stirring step was characterised by 

circular motions that allowed the sample to move freely within the well. This was followed 

by withdraw of the tip from the chamber in such way the sample could remain steady 

during the decay imaging.  

In this way, the chosen apparatus allowed measurement of [Ca2+] in permeabilized 

striated muscle fibres. This set up permitted easy access and following up of Ca2+ 

dynamics in such way that Ca2+ loading and stirring steps could be performed manually, 

without any physical impediments. Pipette tips were inserted longitudinally through the 

centre of the bath chamber and loadings were done as bolus (figure 7). 
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A 

 

 

B 

 

Figure 7: Apparatus used for measurement of [Ca2+] in permeabilized striated muscle 

biopsies. A. This configuration allows the top of the chamber to be open for easy solution 

addition or insertion of micropipettes. Skinned fibres are placed in the centre of the 

chamber and gently stirred. Biopsies were exposed to experimentally manipulated buffers. 

B. Standard configuration used for Fura-2 fluorescence detection. Images of Fura-2 

fluorescence at 510 nm emission are obtained with 340- and 380-nm excitation 

wavelengths (adapted from (Miyata et al. 1994). 

 

 

An inverted microscope was utilised to detect fluorescence changes in the bath. This 

is the most appropriate choice because it facilitates visual observation of functional fibres 

(Miyata et al. 1994). The tissue bath was placed on the stage of the microscope and 

samples were visualized by a 20x objective lens (Nikon Plan Flour w20 DLL). SR 

properties were examined (in units of nMol/mg wet weight) using the fluorescent dye 

Fura-2. The fluorescent indicator Fura-2 was selected for this protocol because ratiometric 

Ca2+ measurement is less prone to potential artefacts that might be generated in case the 

sample moves (Yang & Steele 2000).  

The binding of Ca2+ shifts the fluorescence excitation spectrum of Fura-2 to shorter 

wavelengths so that increasing [Ca2+] increases the excitation efficiency at 340- 350 nm 

and depresses that at 380-390 nm  (figure 8).  The emission spectrum peaks at 505-510 nm 

and hardly shifts wavelength when Ca2+ is bound (Tsien & Poenie 1986). As a 
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consequence, quantification of fluorescence at two excitation wavelengths can be applied 

to achieve an estimate of [Ca2+]i regardless of cytosolic dye concentration, cell thickness, 

and excitation light intensity (Miyata et al. 1994). 
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Figure 8: Excitation scans showing the spectrum of Fura-2 upon binding calcium 

ions for mammalian cytoplasm, in a titration through a series of increasing [Ca2+] 

concentrations. EGTA is buffering all the established free [Ca2+] values. The excitation 

peak shifts towards 340 nm as [Ca2+] increases (Tsien & Poenie 1986). 

 

 

 In this way, the rate of Ca2+ uptake was found by measuring the fluorescence signal 

of the Ca2+-binding dye Fura-2. A PMT system with appropriate data processing permitted 

the continuous recording of fluorescent intensity and thus allowed continuous monitoring 

of [Ca2+] (Miyata et al. 1994).  

Fluorescence ratio measurements of [Ca2+]i using Fura-2 requires multiple steps: 

measuring cell and background fluorescence at the excitation wavelengths of 340 and 380 

nm. Subsequently, background measurements are subtracted from cell/fibres 

measurements. Then, the obtained ratio (340:380 nm) of the two resulting measurements is 

calculated and, finally, ratio images are calibrated in terms of [Ca2+]i (Miyata et al. 

1994). Ratios are converted into Ca2+ values using a calibration curve obtained from Fura-2 

in different buffers of known Ca2+ concentration. 

Fura-2 was excited using a xenon arc lamp 75W excitation source every 100 

milliseconds for the 380nm channel and at every 50 milliseconds for the 340nm 

wavelength. Fluorescence emission was detected with a photometer and photomultiplier 

tube (PMT) (Cairn Research Ltd, Kent, UK).  500 Hz rotating optical chopper and 

bandpass filters excited the Fura-2 loaded muscle fibres by alternating 340 nm and 380 nm 

wavelengths, while 510 nm emission was recorded to allow ratiometric evaluation of Ca2+ 

uptake. When excited at 340 nm, fluorescence emission increases with increasing Ca2+ 
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whereas at 380 nm excitation, emission decreases with increasing Ca2+. Additionally, 

ratioing minimizes potential aberrations of uneven dye loading and leakage. Capture-and-

analysis software IonWizard (Ionoptics Co) handled the generated data. 

 

8.1.1.22 Fura-2 free acid  

 

Fura-2 pentapotassium, also denominated Fura free acid, has been extensively used 

to measure intracellular Ca2+ concentration in order to elucidate Ca2+ handling mechanisms 

and its role in multiple signalling pathways (Uto et al. 1991). 

Advantages of Fura-2 over other fluorescent probes contributed to its widespread 

use in the study of physiological properties and disease states of cells. Fura-2 has a higher 

quantum yield and an improved selectivity for Ca2+, and is more resistant to 

photobleaching when compared to other dyes (Grynkiewicz, Poenie, & Tsien, 1985). 

Other fluorescent indicators are known to buffer Ca2+ ions when used in specific 

concentrations. Consequently, this could affect results, by potentially lowering [Ca2+]i or 

blunting Ca2+ transients. In contrast, it has been demonstrated that although Fura-2 is 

likewise able to buffer Ca2+, because it has a higher emission spectrum than other probes, 

the 30-fold increase in fluorescence intensity makes it possible to reduce intracellular dye 

loading and, therefore minimise buffering of [Ca2+]i (Miyata, Hideharu, & Haruo, 1994). 

Additionally, Williams and Fay corroborate by confirming that the level of EGTA should 

be sufficiently high that Fura-2 represents an insignificant Ca2+-buffering contribution in 

comparison (EGTA:Fura-2 >> 100:1) (Williams & Fay 1990) 

Other advantages include Fura-2 ratiometric properties. There is a marked shift in 

the excitation spectrum when Ca2+ binds to Fura-2, in such way the 340nm excitation 

increases upon the formation of Ca2+-Fura-2 complexes, while 380nm signal is reduced 

(Grynkiewicz et al., 1985). 

Importantly, Fura-2 is also presented as cell-permeable acetoxymethyl (AM) esters 

which are intracellularly hydrolysed, trapping the Ca2+-sensitive-dye inside cells without 

disrupting their membranes, enabling the measurement and fast following up of Ca2+ 

dynamics (R. Y. Tsien, 1981). 

The in vitro calibration of Fura-2 is obtained by measuring the fluorescent emission 

spectrum in a solution which approximates the intracellular milieu composition and 

contains increasing concentrations of Ca2+ (Grynkiewicz et al., 1985). So, the recorded 

fluorescent ratio is plotted as a function of the applied Ca2+ concentration. 
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2.9.2 Sample preparation for SR Ca2+ uptake measurements 

 

For skeletal muscle samples, the entire muscle (from tendon to tendon) was removed 

from the limbs. Care was taken to collect as little tendon as possible without damaging the 

muscle. Unless indicated, the sample was placed in adjusted R solution for dissection and 

gently blotted dry. Samples were weighed and then snap-frozen before handling. The 

solution used in the further processing was either R solution or solutions with CrP or ADP 

added.  

Biopsies were obtained either from the sample bank kept in the -80°C freezer or 

freshly harvested from the control animals. They were removed from their respective 

storage vial and transferred to a petri dish on ice and immediately washed and equilibrated 

in the dissection solution, with low Ca2+ contamination. Samples were kept cold. Fascia 

and connective tissue were removed using sharp scissors and a scalpel blade, as well as any 

extraneous contamination such as blood, and fragments of rat hair.  

For both fresh and frozen tissue, intact samples were carefully blotted with fine 

tissue and weighted. Through the aid of a scalpel blade, muscle biopsies were cut into 

fragments of approximately 10mg.  Immediately after the weight was taken, these 10 mg 

fragments were placed into their respective Eppendorf containing the experimental solution 

to be studied. Vials were placed on ice for approximately one hour until sample 

preparation. 

The experimental buffers simulated four distinct metabolic conditions ATP+CrP, 

ADP+CrP, ADP without CrP and finally, ADP without CrP plus sodium azide (see table 

5). They were made up fresh daily, prior the assay, which was performed in triplicates, 

unless otherwise stated. 

Samples were suspended in the appropriate solution on a petri dish on ice, under a 

low power resolution microscope. Forceps and microlances were employed to dissect the 

muscle fibre bundles from SOL, EDL or LV. Tissue fragments were “skinned” until a net 

of loosen muscle fibres was obtained (Steele et al. 1996).  This preparation maximised the 

interaction between muscle fibres and buffers, as the contact surface of the fibres was 

increased. This arrangement was achieved without causing fibre disruption of the muscle 

fragment, preserving the muscle integrity 

 

8.1.1.23 The thawing of muscle biopsies for SERCA measurement 
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Thawing was accomplished by equilibrating the sample in the adjusted R solution 

(see table 5), which contains electrolyte and metabolites similar to the intracellular 

environment (100mM KCl, 25mM HEPES, 0.05mM EGTA, 5.5mM MgCl2). This process 

was thought to attenuate the possible changes in the muscle fibres, providing a gradual 

return of the tissue to its original state, supported by an ideal buffer at room temperature, 

thereby preventing mechanical damage to the cell membrane and rupture.  

To assess muscle fibre integrity post-thawing, SERCA activity was measured. This 

was done in a high electrolyte and phosphate buffer to compare frozen to fresh samples.  

SERCA function was also used to assess the remaining coupled metabolic enzymes.  

Muscle bundles were skinned under standard solution, saponin-permeabilized 

(100μg/ml-1), and transferred to a cylindrical bath (5 mm diameter, maximum volume 

100μl) in a Perspex block, at room temperature. Oxalate (10mM) was included to prevent 

Ca2+ accumulation within the SR lumen.  

Local regulation of ATP/ADP ratio, CK and mitochondrial activity on SERCA were 

retrospectively investigated in frozen biopsy samples in contrast to freshly collected 

muscle. For this purpose, Ca2+ loading was performed on multifactorial conditions: 

samples were supplied with external source of either ATP or ADP with or without CrP to 

estimate the efficiency of mitochondrial ATP synthesis and/or CK-system stimulation; 

Azide (2mM) was employed to abolish potential mitochondria-mediated energy 

production. 

This method provides understanding on whether the Ca2+ uptake properties of the SR 

are affected by the thawing process, and, indirectly addresses the mechanisms that may be 

linked to potential protein denaturation in thawed biopsy samples.  

 

 

2.9.3 Composition of ‘mock intracellular’ solutions  

The R solution was prepared as previously described (Sousa et al. 1999b; Veksler et 

al. 1987; Mettauer et al. 2001), with H+ and Ca2+ being buffered by HEPES and EGTA, 

respectively. This standard solution was subjected to manipulation of distinct metabolites 

in order to stimulate or inhibit cellular components. SR uptake was investigated with ATP 

alone, and with or without CrP and azide.  

All samples were saponin-treated and placed into buffers to either support SERCA-

pump, the CK-system or mitochondrial activity, or to inhibit cellular energy synthesis. The 
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ionic composition of the buffers was adjusted to maintain [Ca2+], [Mg2+], [Na2+], [K+] and 

pH constant. MgCl2 was used in the concentration of 1mM as described by Yang & Steele 

(Yang & Steele 2000). The free [Ca2+] was experimentally increased to the desired level by 

addition of 1mM CaCl2. The following table (table 6) illustrates how distinct solution 

composition enabled assessing the contribution of metabolites on SR Ca2+ uptake. 
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Table 6: Manipulation of different solutions proportionated assessing the 

contribution of multiple metabolites upon SR Ca2+ uptake. 

Solution Principle Activation of Inhibition of 

 
ATP+CrP 

 
Optimal substrate for functioning 

of SERCA-pump 

 
SERCA 

 
- 

 
ADP+CrP 

 
Substrate for CK-coupled 

systems 

 
Mito-CK 

 
- 

MM -CK 

 
ADP no CrP 

 
Substrate for CK-coupled 

systems, assisted by 
mitochondrial-produced CrP 

molecules. 

 
CK 

 
- 

Mitochondria 

 
ADP no CrP + 

Azide 

 
Solo activation of CK-systems. 

Energy production abolished in 
mitochondria. 

 
MM-CK 

 
Mitochondria 

 

 

 

The evaluation of the functional state of SERCA in striated muscle required the 

employment of multiple solution compounds, which are listed in table 6 below.  
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Table 7: List of compounds employed during functional assessment of SERCA 

Item Supplier Catalogue number 

ATP (disodium salt hydrate) Sigma-Aldrich A2383 

ADP (diphosphate sodium 

salt) 

Sigma-Aldrich A2754 

Creatine Phosphate (dibasic 

tetra hydrate) 

Sigma-Aldrich 27920 

CaCl2 VWR Chemicals 190464K 

Glucose Fisher G050053 

Fura-2 pentapotassium ThermoFisher F1200 

HEPES Sigma-Aldrich H3375 

KOH VWR Chemicals 31300.291 

Oxalate Sigma-Aldrich 04126 

Thapsigargin ThermoFisher T7459 

EGTA Sigma-Aldrich E4378 

CaCO3 VWR Chemicals 0179 

NaCl VWR Chemicals 27810.295 

MgCl2 VWR Chemicals 25108.260 

KCl VWR Chemicals 26764.260 
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In order to enable the generation of a Ca2+ peak followed by the Ca2+ uptake 

descending phase, R solution was employed as the standard buffer in all scenarios. 

However, when alternative physiological conditions demanded investigation, variation in 

substrates, such as ATP or CrP, were used to simulate diverse metabolic states and induce 

specific cellular mechanisms (table 8). 
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Table 8: Catalogue of chemicals required to make the experimental solutions. All 

buffers were adjusted to be at pH 7, at ~24°C. Solutes were dissolved in double distilled 

water and volumes were precisely adjusted by using volumetric flasks. 

 Solution composition 

Compound Dissection 

solution 

0.05R 

(mM) 

ADP+CrP(mM) ADPØCrP(mM) Azide(mM) 

ATP - 5 -  - - 

ADP - -  5 5 5 

CrP 10 10 10 - - 

EGTA 0.05 0.05 0.05 0.05 0.05 

Glucose 10 10 10 10 10 

HEPES 25 25 25 25 25 

KCl 100 100 100 100 100 

MgCl2 5.5 5.5 5.5 5.5 5.5 

NaN3 - - - - 2 

 

 

 

8.1.1.24 Oxalate 

 

Oxalate is a precipitating ion which is rapidly transported across the SR membrane. 

As SR Ca2+ content increases, the formation of Ca2+-oxalate complexes occurs, followed 

by its subsequent precipitation inside the SR (Hove-Madsen & Bers, 1993). This property 

allows the SR Ca2+ uptake to continue almost linearly as a function of time at a given 

[Ca2+] and simplifies quantification of the [Ca2+]-dependence of SR Ca transport (Bers 

2001). 

Muscle fibres were chemically skinned in a saponin-EGTA solution and treated with 

oxalate, which reduced free [Ca2+] inside the SR and allowed Ca2+ uptake by the SR at a 

continuous rate (Hove-Madsen & Bers 1993). In this way, the rate of SR Ca2+ uptake can 

stay at the rate determined by the free Ca2+ in the bath (rather than be limited by high free 

Ca2+ inside the SR). This is crucial to quantify SR Ca2+ pump rates over a range of free 

[Ca2+] whilst uptake is occurring. In the absence of oxalate, values regarding the uptake 

rates would be ~10 times lower as the Ca2+ in the SR limits the uptake (Hove-Madsen & 
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Bers 1993). Therefore, 10mM oxalate was utilized in this protocol to avoid the increase of 

free Ca2+ inside the SR. 

 

2.10 Inducing Ca2+ peak and SR active uptake 

 

 Permeabilized fibres were immersed in a 100µl bath with 0.05R solution containing 

2µl of Fura-2 pentapotassium, 10µl of oxalate and no added Ca2+. The peak that induced 

Δ[Ca2+] was triggered by addition of a bolus of 10µl of 1mM CaCl2 to the chamber. Then, 

the well was manually stirred with a pipette tip in order to ensure the diffusion of Ca2+ in 

the bath and optimal dye loading.  After stirring, solution plus fibres were allowed to reach 

a steady state (15 seconds). [Ca2+] in the bath decayed as a result of SR uptake over 12 

minutes. Data were sampled at set intervals over the full time course.  

At the conclusion of the decay phase, calibration buffers (EGTA and CaEGTA) were 

loaded to the bath to generate known ratio values to calibrate uptake rates against known 

[Ca2+]. The amount of calibration solutions loaded was proportional to the total volume in 

the well. By the end of the experiment, total bath volume was 112 µl (100 µl of R solution 

+ 2 µl of Fura-2 + 10 µl of 1mM of CaCl2), and therefore 12µl of 10mM EGTA was added 

to the chamber and stirred manually.  

Calibration traces produced were recorded for 3 minutes, which was time enough to 

generate stable signals and as EGTA bound to Ca2+ and reduced free [Ca2+]. During this 

time interval, Ca2+ levels were brought to bellow the initial experimental baseline and 

provided the Rmin, necessary to convert fluorescence ratio into Ca2+ values. Later, 13µl of 

10mM CaEGTA were likewise injected in the bath, increasing free [Ca2+] in the solution. 

Taken together, addition of EGTA followed by CaEGTA loading generated a well-

established Ca2+ value equivalent to the 1:1 solution employed as an intermediate point in 

the Fura-2 calibration curve. This standard calibration procedure allowed the estimation of 

intracellular/extracellular fluorescence ratio for each experiment performed. 

The decay traces were individually analysed for the correlation between: ∆[Ca2+]free, 

[Ca2+]steady state and τ233 (decay at 233 seconds or 1/3 of the decay length). These values 

would later be incorporated into a mathematical model. To acquire a typical Ca2+ decay, 

triplicates were executed and uptake traces were superimposed with respect to the τ ½ and 

an average was estimated, as illustrated in the figure 9; these ratio signals were quantified 

and converted into Ca2+ values. 
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Figure 9: Example of typical trace for studying decay curves in permeabilized 

muscle fibres from rat left ventricle biopsies. In this case, the solution used supplied 

ADP+CrP to the prepared samples. A. A Ca2+ peak is obtained by locally increasing 

[Ca2+] within the experimental bath; this is immediately followed by a decrease in the 

Ca2+ trace, indicating the SR Ca-pump activity. Changes in [Ca2+]free are detected based 

on fluorescence ratios obtained from individual wavelength channels (340 and 380nM). 

Alterations in fluorescence track alterations in [Ca2+]. B. Depicts changes in Ca2+ 

extracellular space; this trace is obtained after individual analysis of imaged traces and 

removal of potential artefact; besides calibration procedures. 
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2.10.1 Calculation of SR Ca2+ uptake 

 

SERCA activity is represented by the descending phase of Ca2+ transient (figure 23). 

This measurement is also able to indirectly provide functional data on SR coupled CK 

system capacity to locally cycle ADP (as product of SERCA-mediated ATP hydrolysis); 

and energy production by mitochondria, which provides high-energy phosphate groups to 

SERCA pump through the transfer of CrP molecules.  

A timeline was adopted to investigate how multiple time points would modulate 

energetic and thermodynamic status of SERCA pump. As established in this protocol, the 

full Ca2+ decay phase was approximately 700 seconds. By dividing this time length into 

three identical sections, measurements of SR Ca2+ uptake were set at 233 seconds, 466 and 

700 seconds (τ233, τ466 and τ700) of the decay. Variation in Ca2+ levels at these specific 

time points provide data on the [Ca2+] gradient across the SR membrane and pumping. 

This mathematical approached is suggested to calculate fractional SR uptake (figure 10):  
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Figure 10: Assessment of the fractional Ca2+ uptake rates. Diagram demonstrates 

different time lengths selected for the study of the Ca2+ decay, being τ the variable that 

represents these points. EP: equilibration period, time interval of 15 seconds recommended 

to stabilise the system. 700 seconds is equivalent to the full decay rate. 

 

 

This detailed analysis provided further functional data on the SR uptake capacity 

before the pump reaches the thermodynamic equilibrium. 

The initial time point was addressed at the first stages of the decay rate in order to 

study SR properties. Once more, the amount of Ca2+ taken in each muscle sample was 

examined by measuring the reminiscent cytosolic Ca2+ over at the first third of the full 

decay transient. Molecular mechanisms involved in Ca2+ uptake regulation were then 

addressed at 223 seconds (τ233) (figure 11). 
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Figure 11: SERCA activity in skeletal muscle biopsies. This diagram represents the 

first 233 seconds of the uptake rate. [Ca2+]1 corresponds to original Ca2+ concentration 

prior external Ca2+ addition; [Ca2+]2 correlates to Ca2+ loading; [Ca2+]3, final Ca2+ levels 

after decay phase. EP: equilibration period, time interval of 15 seconds recommended to 

stabilise the system. 𝝉 is equivalent to the time length required for SR uptake. 

 

The above mentioned approach is translated into these equations: 

 

(1) 𝐶𝑎 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 =
𝐶2 (𝜇𝑀𝑜𝑙𝑠)

(𝐶2 −𝐶1)(𝜇𝑀𝑜𝑙𝑠)
 

 

Where Ca2+ binding property is calculated by dividing the amount of Ca2+ added to 

the system (µMols) by the value obtained for Ca2+ loading (C2) subtracted by the original 

Ca2+ concentration (C1).   

Fractional SR uptake considered SERCA pump flux in a model of Ca2+ regulation in 

intact fibres, which was used based on the following theoretical approach: 

 

(2)     𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑅 𝑈𝑝𝑡𝑎𝑘𝑒: 
(𝐶2−𝐶3) 

(𝐶2−𝐶1)
 𝑥 50µ𝑀𝑜𝑙 

 

The SR sequestration rate was calculated based on fluctuations on Ca2+ levels 

overtime considering fibre functionality and experimental set up. The total SR uptake was 

found by subtracting the external supplied Ca2+ loading (C2) by final Ca2+ levels after 

decay phase (C3) over the external supplied Ca2+ loading (C2) minus the original Ca2+ 

concentration (C1). This value is then multiplied by 50µMol, which equals the EGTA 
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buffering capacity. Here, Δ[Ca2+]i is translated into changes in total cytosolic 

[Ca2+](Δ[Ca2+⫹]Tot), assuming unchanged cytosolic Ca2+ buffering. 

By applying these equations, the fractional rate of Ca2+ uptake can be measured 

reasonably, since outcomes largely depended on the Ca2+ peak loading. Pronounced 

increases in free [Ca2+] initiate variable Ca2+ uptakes accordingly distinct profiles of 

muscle biopsies As such, values could be directly compared irrespective of almost all 

methodological assumptions. 

 

2.11.1 Calibration procedures for Fura-2 measurement of free Ca2+ 

 

An accurate evaluation of intracellular Ca2+ dynamics may provide information on 

Ca2+ handling mechanisms in healthy and diseased backgrounds. For this reason, a precise 

quantitative measurement of cytosolic free Ca2+ concentration is essential for the 

interpretation of experimental results. 

Having this in mind, determination of the relationship between excitation ratios 

(340nm:380nm), Ca2+ and the dissociation constant (Kd) for Fura-2 was established 

through several calibration procedures at a given temperature, ionic strength and pH. 

Measurements were executed utilising solutions characterized by increasing Ca2+ 

concentrations. For most physiological processes, calibration of Fura-2 ratios includes the 

preparation of solutions of known free [Ca2+] in the nM and µM range (Groden et al. 

1991).  

So, these buffers were prepared from stock solutions 100Mm EGTA and 100mM 

CaEGTA (table 9) in such way a series of mixed dilutions was achieved.  This set of 

calibration buffers exhibited different well-established free Ca2+ values ranging from zero 

(10mM EGTA) to 60μM (10mM CaEGTA). The intracellular [Ca2+] concentrations were 

estimated using the React software, created by Professor Smith (Godfrey Smith, 1990). 

Values concerning the buffering capacity of EGTA were obtained from Smith and Miller 

(1985). 
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Table 9: List of chemicals used to make 10mM EGTA and 10mM CaEGTA stock 

solutions for generation of the calibration Fura-2 calibration curve. Stock solution were 

calibrated to pH 7 using KOH at 20-24°C. They were stored in the fridge for further use. 

For early experiments, they were left at room temperature. 

 Calibration buffer composition 

(mM) 

Compound EGTA buffer CaEGTA buffer  

EGTA 10 - 

CaEGTA - 10 

KCl 100 100 

HEPES 25 25 

MgCl2 1 1 

 

 

 

In this context, seven distinct dilutions were equivalent to the multiple points in the 

Fura-2 calibration curve. Dilutions utilized were: 10mM EGTA, 10:1, 3:1, 1:1, 1:3, 1:10, 

10mM CaEGTA (table 10). Each one of these solutions were loaded in 100µl chambers 

with Fura-2 and manually stirred with the aid of a pipette tip. 
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Table 10: Proportions and volumes of EGTA and CaEGTA buffers. The table 

illustrates the respective volumes required in order to make up the calibration buffers and 

generate multiple Ca2+ values for use in a calibration curve. Stock solutions were already 

made prior the calibration procedures, with pH adjusted to 7 by using KOH or HCl, at 21-

24°C. 

 
 

EGTA:CaEGTA 

Volume to be added 

(µl) 
 

 

[Ca2+] EGTA CaEGTA 

1:0 (10mM EGTA) 1000 0 1E-09 

10:1 900 100 4E-08 

3:1 600 300 1E-07 

1:1 500 500 4E-07 

1:3 300 600 1E-06 

1:10 100 900 4E-06 

0:1 (10mM CaEGTA) 0 1000 6E-05 

 

 

 

One by one, wells were positioned on the stand of the inverted microscope and the 

fluorescence ratios produced at 340nm and 380nm were recorded. A calibration curve of 

fluorescence ratio against the Ca2+ concentration was plotted in logarithmic scale (figure 

13). This procedure was routinely used to calibrate the fluorescent signals. 



 

 

91 

 

 

Figure 12: Calibration curve for Fura-2 pentapotassium based on mixtures of EGTA 

and CaEGTA. The ratio of the Fura-2 fluorescence was plotted against the LogCa (M) in 

order to generate a sigmoidal curve fitted according to the logistic function (equation: y = 

A2 + (A1-A2)/(1 + (x/x0)^p)) utilising an analysis program (Origin, Version 7.5) for non-

linear data.  Rmin was calculated to be 0; Rmax was equivalent to 7.43 ± 0.50 and, 

measured Kd was 1.98E-6 ± 6.18E-7. Slope was equal 1. Data is represented as means± SE 

(n=7). Readings were performed in triplicates. 

E 

 

8.1.1.25 Estimation of Fura-2 dissociation constant for Ca2+ 

 

Fura-2 Kd was estimated from absorbance spectra measured in calibration solutions 

containing the same concentration of Fura-2 (0.024mM) but different free Ca2+ 

concentrations. Figure 12 (above) has illustrated the curve resulting from a series of 

replicates. However, when curves were analysed individually, fluctuation in Kd values 

could be observed from one experimental set up (table 11). Major variation was reported 

for the 1:1 calibration point. These readings were performed at ~23°C. 
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Table 11: Summary of calibration parameters and Kd across multiple experiments. 

Values were originated from at least three technical replicates 

 

 

 

Values for Kd were found to vary in some determinations. Although ratios provide 

an intermediate dynamic range on the comparison of the Kd displayed, the variation in 

values were relatively large. The observed increase in Kd following increases in Rmax 

could be partially attributed to the poor fluorescence intensity for Ca2+-bound Fura-2 at 

380nm (Uto et al. 1991). Importantly, taken together as an averaged measurement 

calculated for error and variation, the standard Kd obtained can be considered a reliable 

constant which is being regularly checked. In general terms, this means that despite some 

discrepancies, Kd values are still within the acceptable range of variation. This dataset 

allowed the determination of the relationship between excitation ratio and Ca2+, and for 

calculation of the Kd for Ca2+ Fura-2 in the myoplasmic environment of skeletal fibres.  

 

8.1.1.26 Effects of solution composition on determination of Kds 

 

To address whether solution composition influences the fluorescence properties of 

Fura-2, potential variation of Kd was studied throughout multiple physiological buffers 

used in this protocol. The hypothesis the Kd would be altered in different metabolic 

solutions was tested by plotting calibration curves, based on three standardisation points.  

Quantitation of intracellular free Ca2+ was estimated as 1E-09 for the low [Ca2+] 

condition; the 1:1 point referred to an intermediate [Ca2+] in the bath, correspondent to 

3.75E-07; and lastly, the high [Ca2+] was read as 6E-05 (figure 13). Empirically, the low 

[Ca2+] parameter refers to starting Ca2+ levels present in the experimental solutions. A 

bolus of CaCl2 was then loaded to increase Ca2+ in the chamber and generate the high 

Calibration curve Rmin 1:1 Rmax Kd (M) 

4 0.33 0.89 7.91 6.1E-06 

5 0.35 0.89 7.06 4.9E-06 

6 0.35 0.89 6.53 4.9E-06 

7 0.36 1.5 7.42 2.4E-06 
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[Ca2+]. Finally, the CaEGTA calibration buffer was injected in the system, producing the 

1:1 point. 

 

 

Figure 13: Fura-2 calibration curves for three experimental buffers: ATP+CrP, 

depicted in black; ADP+CrP is represented by the dark grey line; ADPØCrP buffer is 

depicted in light grey. Distinct [Ca2+] are displayed as low [Ca2+], 1:1 and high [Ca2+], 

respectively. Readings were performed in triplicate for each curve. 

 

 

Fluorescence ratios at distinct [Ca2+] and variable metabolite composition were 

recorded with Fura-2. Three separate calibration curves were constructed based on in vitro 

measurements and then, graphically superimposed. Figure 10 shows the curves generated 

at ~23°C (n=7, mean±SD). They allowed the comparison of the apparent Kd for ATP+CrP, 

ADP+CrP and ADPØCrP solutions. This shows that these [Ca2+] parameters are essentially 

identical among buffers, as shown in table 12. 
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Table 12: Comparison of fluorescence ratios and Kd values obtained in different free 

[Ca2+] occasions. Measurements were performed in triplicate and data is shown as 

means±SD. 

 Low[Ca2+] 1:1 High[Ca2+] Kd value 

ATP+CrP 0.478± 0.016 0.931±0.047 3.741±0.281 2.43E-6 

ADPØCrP 0.381±0.045 1.036±0.086 3.822±0.487 1.64E-6 

ADP+CrP 0.486±0.020 1.033±0.037 4.973±0.546 2.84E-6 

 

 

 

There was a slight difference in Kd observed across solutions loaded with Fura-2. 

The apparent indicator's Kd for Ca2+ was estimated to be ~2µM for ATP+CrP and 

ADPØCrP solutions; whereas ~3µM was documented in the ADP+CrP buffer. It seems 

possible that this result can contribute to the generation of higher Ca2+ peak shapes when 

calculating the decay rates in ADP- and CrP-based solutions. Nonetheless, the fluorescence 

ratio signal changed relatively little, which allowed a reasonable comparison among 

experimental baths and in different physiological conditions. In conclusion, diminished 

variation found permitted accurate quantitation of cytoplasmic free Ca2+ in a variety of 

experimental solutions. 

 

2.11.2 Methods for conversion of fluorescence to Ca2+ 

 

The free [Ca2+] is a function of the Kd of CaEGTA; Kd of an indicator or chelator is 

defined as the concentration at which it reaches the half-saturation point (Groden, Guan, & 

Stokes, 1991). 

The sigmoidal relationship observed can be explained by the equation:  

 

(1)                          Ca2+
 = Kd*((Rmin-Rmax)/(Rmax-R)-1)) 

 

Where R is the Fura-2 ratio, Rmin is the ratio in the Ca2+free solution, Rmax refers to 

the ratio at a saturating Ca2+ concentration and K is the constant (Grynkiewicz et al. 1985). 

A curve was generated by fitting the data points obtained to the logistic equation: 
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(2)              R= Rmax + (Rmin – R max)/ (1+ (x/kd)) 
p
 

 

Thusly, Fura-2 is a function of the Ca2+ concentration and is influenced by Rmin, 

Rmax and Kd. Using the software Origin version 7.5, the best fit for this curve was applied 

and Ca2+ concentrations could be determined using the equation (1). Rmin and Rmax 

values were then applied to the equation (1) for intracellular estimation of Ca2+. 

 

 

2.12 Data recording, analysis and curve fitting  

 

The output voltage from the PMT for the individual wavelengths (340nm and 

380nm) and the ratio were saved on a hard disk for later evaluation. The interpretation of 

fluorescent ratio and channels data required the use of the software Origin version 7.5. The 

decay sections of the Ca2+ uptake experiment were selected manually for each experiment 

and potential artefact or noise resulting from the chamber loading and stirring step were 

removed. When inconsistencies concerning time length or reagents load timing were 

detected among readings, they were adjusted to be consistent across triplicates. 

Ratiometric data was converted into Ca2+ concentration adopting the parameters 

obtained from the Fura-2 calibration curves. Data are presented as mean values ± SEM. 

Unless otherwise stated, statistical significance was calculated using One-way ordinary 

ANOVA and statistical significance defined as p<0.05 

 

2.13 Simple modelling of SR Ca uptake and leak to guide analysis 

 

Skinned fibres are known to be a valuable model for studying the complex 

interactions determining Ca2+ dynamics in muscle. This type of tissue preparation allows 

direct diffusional access to the myoplasm with its Ca2+-binding sites, whereas the 

membrane of the SR with its release and uptake sites for Ca2+ remains intact (Steele et al. 

1996; Saks et al. 1998).  

A simple model presented in this section aims to simulate the Ca2+ fluxes associated 

with SR activity to understand how changing SR Ca uptake via SERCA and SR leak (non-

specific and RyR mediated) (figure 14) affect the time course and steady state levels of 

Ca2+.  To meet this purpose, the following approach is being proposed to calculate Ca2+ SR 

uptake (figure 15):  
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Figure 14: Diagram representing the Ca2+ fluxes pathways across the SR considered 

in the present mathematical model.  1. Uptake via the SERCA- pump; 2. Efflux via 

ryanodine receptor and passive leak pathway. 
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Figure 15: Representation of SERCA activity in biopsy muscle samples. ∆[Ca2+] 

free corresponds to the difference between the original [Ca2+] in the bath and the external 

addition of a bolus of CaCl2, that generates a Ca2+ peak.  [Ca2+] steady state represents 

the final Ca2+ levels after decay phase (SERCA-mediated uptake), when the system 

reaches the equilibrium. The initial equilibration period (EP) is the time interval of 15 

seconds that enables the Ca2+ within the system to mix and settle at an initially high value. 

τ is fixed time interval employed to quantify the SERCA uptake and so, τ250s is the 

variation is the extent of uptake over 250 seconds of the uptake  

 

 

It is known that the transport mediated through SERCA requires ATP utilization by 

formation of a phosphorylated enzyme intermediate, promoting the transportation of Ca2+ 

ions across the SR membrane against a concentration gradient; these reactions take place 

by cause of hydrolysis of ATP (Inesi et al. 2008b). The active Ca2+ transportation out of 

the cytosol into the SR vesicle is then calculated as follows: 

 

1) 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶𝑎 𝑢𝑝𝑡𝑎𝑘𝑒 =
𝑀𝑎𝑥  𝑅𝑎𝑡𝑒 𝑜𝑓 𝑢𝑝𝑡𝑎𝑘𝑒

(1+(𝐵𝑎𝑡ℎ 𝐶𝑎2+

𝐾𝑑
⁄ )

2
)
 

 

The rate of uptake will depend on the affinity of SERCA for Ca (Kd) and the 

maximum rate of uptake, the latter will depend on the levels of SERCA within the SR 

membrane.  
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SR leak via: (1) non-specific leak pathways and (ii)  SR Ca2+ release channels (RyR). 

This was modelled simply as a flux proportional to the Ca2+ concentration gradient either 

side of the membrane. 

 

2) 𝑅𝑎𝑡𝑒 𝑜𝑓 𝐶𝑎 𝑙𝑒𝑎𝑘 = 𝐿𝑒𝑎𝑘 𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑥 (𝑆𝑅 𝐶𝑎2+  𝑆𝑅 − 𝐵𝑎𝑡ℎ 𝐶𝑎2+) 

 

In theory the leak of Ca  via RyR has complex characteristics (Bers 2001). In normal 

physiological conditions, RyR would close completely at the end of the Ca2+ cycle to allow 

Ca2+ withdrawing from the cytoplasm via SERCA mechanism and so, limit the energetic 

expenditure of this pump to compensate for the SR Ca2+ leak (Bers 2014). Following a 

Ca2+ influx after depolarisation, Ca2+ binds to the cytosolic activation site on the RyR 

resulting in the gate opening. In addition to RyR mediated leak, there will be leak via non-

specific possibly as a result of damage to the SR membrane. In the model, the simplifying 

assumption was made that the summed SR Ca2+ leak could be modelled by a simple linear 

leak. 

This assumption is more valid for the situation that exists in the assay, i.e. after 

oxalate has equilibrated. Luminal oxalate binds to Ca2+ within the SR and precipitates to 

maintain low intra SR levels. This process is not thought to be limiting in standard 

experiments since if the SR oxalate reaches full capacity, the SR may be damaged by the 

Ca-oxalate precipitate and fail to sequester any further Ca2+, furthermore on saturation of 

oxalate, the subsequent rise of luminal Ca will inactivate SERCA and activate RyR SR Ca 

leak (Shannon et al. 2004). 

In this regard, oxalate is a key component in retaining standard luminal free Ca2+ and 

therefore constant luminal activation of SERCA and inhibition of RyR.  This model 

includes a balance of cellular Ca2+ uptake and leak mechanisms (Bassani et al., 1994; 

Puglisi et al., 1999). Using equations (1) and (2) the model can predict the change in Ca at 

the next time point by: 

 

3). 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝐶𝑎(𝑏𝑎𝑡ℎ) = 𝑈𝑝𝑡𝑎𝑘𝑒 𝑟𝑎𝑡𝑒 − 𝐿𝑒𝑎𝑘 𝑟𝑎𝑡𝑒  

 

With an initial specified concentration (e.g. 1microM) this equation will generate an uptake 

curve that depends on the relative values of Uptake and Leak rates and can be used as a means of 

understanding 1) the relationship between SERCA activity and uptake rate and, 2) the effect of 

various background leak fluxes to the time course (Figure 16) 
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A 

 
B 

 
 

Figure 16: Example curves of Ca2+ uptake from a maximum value of 1uM when 

model parameters such as SERCA Rate (Panel A) are varied ranging from 1E-3M to 8E-

3M. The [Ca2+] reached after 250s is indicated by the blue line. B. Panel B illustrates the 

effects of changes in Ca2+ leak values, curves generated by leak rates ranging from 1E-3M 

to 3E-3M.  
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2.14 Relationship between calcium concentration and SERCA uptake: investigating 

Ca2+ influxes  

 

The two sets of curves depicted in figure 16 (Panels A and B) show that as expected, 

increasing SERCA activity in the absence of any changes in leak rate both increased the 

rate of decline and lowered the steady state Ca2+ achieved in the steady state (Panel A).  

Changes in leak rate in the absence changes in SERCA activity changed the steady-state 

Ca2+ but did not alter rate of decline of the Ca2+. This suggests uptake rate can be derived 

from the rate of decay, regardless of the steady state Ca2+. It also suggests that affects Ca2+ 

leak will not affect the ability to distinguish effects on SERCA mediated uptake. 

 

2.15 Exponential fitting of model generated decay curves 

 

In the present work, curve fitting has been used in order to quantitatively address the 

changes in Ca2+ decay traces. Each decay trace can be estimated based on a fitting equation 

in such way alterations in the decay shape are reflected by the parameter of the fitting 

function. 

Initially, the exponential function was suggested to investigate the Ca2+ uptake time 

course using the first order equation: 

 

1)                                     y = A1*exp(-x/t1) + y0 

 

Where A1 is the inclination of the curve, y0 represents the initial condition and t 

equals to the decay rate. 

For this purpose, two parameters were considered for each decay curve, including the 

uptake rate at 1µM Ca2+ concentration and the time corresponding to the faster phase of 

Ca2+ uptake rate. However, these values were greatly diverging among the experiments. 

After the conversion of ratio into Ca2+ values, some samples have demonstrated that the 

Ca2+ peak would not reach 1µM Ca2+; whereas for others, it would go further it. In light of 

variable Ca2+ peaks achieved on addition of Ca2+ and the increase difference in time course 

of the decay shape (component A1 in the equation), the exponential fitting was proven do 

not be appropriate for this function.  

Importantly, it was observed the uptake did not occur at a constant rate. This is 

applicable for samples within a group and may be related to biological variation. Other 
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sources of variation may be inter-group, because of distinct physiological backgrounds and 

rates could also be modulated by the use of different buffers containing or lacking 

metabolites to support uptake activity. So, the time course of the active transportation of 

Ca2+ greatly changes in such a way as to deviate significantly from a mon-exponential 

decay. The diagrammatic representation of the exponential model and inconsistencies 

observed are simulated in the model below (figures 17 and 18): 
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Figure 17: Exponential fitting for the time-dependent changes in free [Ca2+] 

predicted from the model of Ca2+ uptake and Ca2+ leak. Two scenarios were modelled: 

decay from 800nM (Panel A) and decay from 2uM (Panel B). Curves were fitted to the 

equation y = A1*exp(-x/t1) + y0. A. At 800nMol, the first order exponential function 

appears suitable for the Ca2+ decay curve (R2= 0.998). Nonetheless, as Ca2+ increases up to 

2µl, B. the exponential fitting seems not fit the curve well (R2 = 0.987) for the model. 
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A 

 

 

B 

 

Figure 18: Relationship between [Ca2+] and SERCA uptake rate. Mathematical 

simulation is suggesting how to determine the expected range in which an exponential 

decay is achievable.  A. SERCA activity in Mols/sec illustrates the lack of correlation with 

the exponential function, since uptake rate across [Ca2+] is not consistent. B. Range of 

[Ca2+] in which would be conceivable to fit a first order exponential equation (between 

0.1µMol and 0.6µMol). The imposed red line that lies between the dots represents the 

interval where the exponential fit is observed 

 

 

Experimental data were fitted to compare Ca2+ sequestration versus time using 

exponential analysis to evaluate the uptake rates, considering the goodness of fittings based 

on the parameters R2 and Chi2. It was possible to quantify the respective standard deviation 

(SD) for the fittings taking into account the physiological responses supported by 

ATP+CrP buffer. Fittings were performed in control, HF sedentary and HF trained samples 

in oxidative and glycolytic fibres  

Curves were further examined regarding the correlation between fitting adequacies to 

Ca2+ uptake traces. Fitting was performed on Origin Software version 7.5, with aims to 

allowing clear visualization and comparison of decays distribution. The values of the 

uptake rates (n=7) were plotted and superimposed with exponential traces. In the initial set 

of analysis, a first order exponential equation was applied to multiple Ca2+ decays traces 

from EDL samples from sedentary infarcted rats (figure 19). 
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Figure 19: Exponential fitting for Ca2+ decays in EDL samples of heart failure rats. 

Experimental results illustrate the difference (grey solid line) over the decay trace (black 

line) in optimal substrate conditions (ATP+CrP). Decays are means of triplicates 

performed for each experiment and shown as mean±SE; n=7. 
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Experimental data show that although curves are theoretically highly R squared and 

Chi2 values appear to be consistent concerning multiple comparisons, in a practical 

approach, the fitting is not appropriate to reflect decays as an exponential function. Despite 

reasonable fitting parameters reported, there are mismatches along the decay traces that are 

noticeable mainly through visual inspection. It seems the main reason for inhomogeneity 

resides on imperfect fitting profiles yielding decreased correlation with the decay rate.  

In this scenario, association of simulated and empiric data suggests that a range in 

within an exponential decay would occur during the Ca2+ uptake time course would be 

certainly restricted and would not provide further information on other components that 

may affect the shape and/or rate of the uptake descending phase.  

Hence, other method was proposed to calculate the SR uptake rates, in view of the 

building a mathematical model in which the features of the decay curve would be 

accounted, considering the traces heterogeneities overtime. 

 

2.16 Summary 

 

The simple model illustrates that Ca2+ uptake and leak from the SR can be 

individually assayed in the permeabilised muscle preparation. The model indicates that 

both processes affect the uptake and steady-state Ca2+ profile in unique ways assuming 

simple behaviour of both processes. The model also indicates that a mono-exponential 

decay curve can only be expected from the system within a restricted set of initial and final 

Ca2+ values. Out with these ranges, the decay curve does not fit well a simple mon-

exponential decay. Given the range of initial and final Ca2+ values typically achieved in 

these experiments, the analysis of the relative decay to a set point (e.g. t250s) is a more 

suitable approach. 
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CHAPTER THREE  

EFFECTS OF FREEZING ON MUSCLE SAMPLE BIOSPSIES  
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3.1 Introduction 

 

In the current study, concerns were raised as to whether the freezing process would, 

and if so in what manner it would, potentially influence the cellular mechanisms in 

samples stored for long-term periods. Therefore, extensive studies were conducted to 

compare Ca2+ uptake features on freshly harvested tissue against long-term frozen biopsies. 

The creation and refinement of a protocol relied on ensuring the reproducibility of 

the technique, optimisation of tissue preparation, freezing-thawing operating conditions 

and calibration procedures. 

In order to perform efficient protein analysis, is relevant that the tissue under 

investigation be handled in ways that reproducibly preserve important aspects of its 

proteome intact (Ericsson et al. 2006). The most common method of preserving 

biospecimens is freezing and storage at low temperatures, in order to inhibit protein loss 

and degradation. All biological specimens contain degradative molecules, including 

lipases, carbohydrases, proteases, and nucleases, which may be present in fluid and/or 

tissue biospecimens (Hubel et al. 2014). 

Cryopreservation may be defined as the maintenance of samples at sub-freezing 

temperatures, below - 80°C (Baust et al. 2009). It has become standard practice to freeze 

muscle specimens for clinical and research purposes in order to investigate mainly 

pathological states, despite the technical challenges that various freezing techniques might 

pose (Meng et al. 2014). 

It is known that temperature exert an important influence on protein dynamics, in 

such way reduced temperatures are related to diminished protein activity. This is one 

mechanism by which biospecimens are stabilized at low temperatures (Hubel et al. 2014) 

Freezing allows that sufficient material for analysis can be extracted from the tissue 

itself. The critical biological properties of the biospecimen must be preserved during 

processing, transport, and storage (Hubel et al. 2014). 

Previous studies verified preservation of mitochondria, for example, inside 

cryopreserved sperm, cardiac, and skeletal muscle fibres (Fuller et al. 1989; De Loecker et 

al. 1991; Kuznetsov et al. 2003) as well as cryopreservation of isolated brain mitochondria 

(Nukala et al. 2006). Valenti et al have also confirmed integrity and maintenance of 

efficiency of mitochondrial ATP production in cryopreserved brain cells, in such manner it 

was found they were suitable for bioenergetics analysis (Valenti et al. 2014). 
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It is known that cardiomyocytes are resilient and can be maintained in culture for 2–3 

weeks after thawing (Ge et al. 2015). Evaluation of motility of thin filaments reconstituted 

in rabbit skeletal muscle and human heart muscle tropomyosin was likewise performed in 

vitro after freezing (Bayliss et al. 2013). This evidence implies that functional assessment 

of muscle fibres is practical after thawing.  

Cryopreservation techniques not only expand the possibilities for analysis of 

muscle’s pathologies and location of key intracellular targets, but also may allow the 

creation of sample banks (Kuznetsov et al. 2003). This would provide understanding on 

well-defined diseased states, thus allowing technologies to be applied to investigation of 

physiology of skeletal muscle or ventricular samples (Kuznetsov et al. 2003). 

In the present study, was crucial to examine the viability of frozen samples regarding 

the functionality of these intracellular targets. For this, comparisons were performed based 

on physiological responses obtained from frozen biopsies against outcomes from the fresh 

group. 

In this scenario, it was investigated whether 1) SERCA would remain active in 

segments of tissue after thawing; 2) any potential SERCA activity would be measurable 

and sensitive enough to indicate differences between healthy and diseased states; and 

finally, 3) whether the functional compartmentation network, including localized 

phosphotransfer kinases and mitochondria, would still be active after freezing, and 

therefore, ability to support SERCA-pump. 

 

3.2 Aims 

The aim of this chapter is to study functionality of SERCA in R solution. SERCA 

pumping capacity was systematically examined in striated muscle samples after thawing.  

 

3.2 Methods 

 

Skinned muscle fibres harvested from hind limbs and also LV were investigated with 

regard to SR function. A solution containing electrolyte equivalent to the physiological 

background was used (Lamboley et al. 2014; Steele et al. 1996). After skinning and 

saponin treatment, fibres were transferred to a cylindrical bath (5 mm diameter, maximum 

volume 100µl) and exposed to 0.05mM R solution (Steele et al. 1996). CaCl2 was added to 
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fibres and SERCA function was activated. Rates of Ca2+ uptake were measured in oxalate-

supported bath using Fura-2 free acid (Currie & Smith 1998).  

 

3.3 Results 

 

3.3.1 Characterization of SR properties in fresh muscle 

 

Uptake rate and the ability of the SR to lower the free [Ca2+] back to resting levels 

after an increase in the free [Ca2+] was measured. This was estimated by quantifying the 

amount of Ca2+ bound to fluorescent dye present in the experimental solution. 

Determination of the amount of Ca2+ sequestered from the time variation resulted in the 

decay response. 

Firstly, fractional Ca2+ uptake rates were established in fresh EDL and SOL. This is 

part of the characterization of control group and measurement of normal Ca2+ 

transportation profile. It was hypothesised that in the first stages of the Ca2+ uptake, 

pronounced changes would be more likely detectable, given the pump would be 

thermodynamically optimised and with a good pool of substrate available.  

Ca2+ decay phase takes approximately 700 seconds to conclusion. This value is 

resulting from the optimisation of the protocol, considering the time needed to allow Ca2+ 

sequestration, addition of exogenous buffers to the chamber and performing trials in 

triplicates. 700 seconds was divided into three identical sections, generating the first third 

of the decay phase, equivalent to 233 seconds (or τ233). SR Ca2+ uptake was examined in 

type I and II fibres from control rats during τ233 (figure 20). 
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Figure 20: SERCA function in freshly harvested fibres of EDL (n=11) and SOL 

(n=14) during the first 233 seconds of the Ca2+ decay phase (τ233), in buffer containing 

ATP+CrP. Findings result from averages of triplicates. Error in the decay graphs are 

represented by dashed grey lines and is shown as mean±SEM. A. SERCA uptake in fresh 

SOL, n=14. B. SERCA activity in EDL, n=11. C. Comparison of SERCA activity between 

fresh biopsies of EDL and SOL (*p= 0.0429). D. Calcium binding capacity in fresh EDL 

and SOL. 

 

 

At τ233, uptake rates were estimated for fresh SOL (n=14) and EDL (n=11). Muscles 

were tested with aims to compare and identify whether uptakes mediated by two SERCA 

isoforms would impact on the rate of SR uptake.  
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SERCA uptake in fresh SOL was calculated based on 8.9±0.02mg/ml fragments of 

wet weight tissue. The averaged samples wet weight for fresh EDL was 9.57±0.07mg/ml. 

Ca2+ binding capacity in fresh EDL and SOL was identical (p= 0.7718). 

Fresh EDL demonstrated a slightly steeper decay transient, which suggests a higher 

Ca2+ sequestration ability compared to type I fibres (p= 0.0429). The glycolytic muscle 

displayed an uptake rate equivalent to 28.32±2.42 µMol/s. On the other hand, SOL 

biopsies exhibited a somewhat longer and slower decay phase over the same time interval, 

being the active SR Ca2+ transportation rate calculated as 21.79±1.91 µMol/s.  

EDL was 30% faster in mediating active Ca2+ influx when compared to SOL. These 

value was derived simply from the time taken to load the SR at 233 seconds after response 

elicited by CaCl2 addition. In this way, quantification of uptake capacity based on fibres 

profiles in fresh tissue provides background for understanding further comparative 

experiments. 

 

3.3.2 Is the SR efficiency modulated in a tissue mass-dependent manner? 

 

Further, uptake efficiency was verified according to biopsies weight. With aims of 

testing whether the rate of Ca2+ intake to the SR would increase in a tissue mass-dependent 

manner, fragments of 5, 10 and 20mg were tested under well-defined assay conditions 

upon Ca2+ loading. By utilising distinct amounts of tissue, fluorescence data could provide 

a quantitative description of the Ca2+ transport and diffusion in its free and bound form. 

The intact muscle was cleaned of potential connective tissue and fat and chopped in 

fragments with a sharp scalpel blade. Segments of muscle were then blotted dry with fine 

tissue and had their weight taken. Immediately after, uptake rates were measured in vitro in 

buffer containing ADP+CrP (figure 21). 
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Figure 21: Fractional SR Ca2+ uptake in EDL fresh fibres at τ233. 5, 10 and 20 

mg of tissue were employed to address whether uptake would be modulated by the 

sample mass present in the bath. Black line represents 20 mg biopsies; dark grey trace 

illustrates the uptake in 10 mg fragments, and light grey decay shows the rate for 5 mg 

samples. Uptake was measured in fresh fibres of EDL muscle. Experiments were 

performed in duplicates, with n=2. 

 

 

 

Initial observations suggest an association between uptake rates and quantity of 

tissue available in the experimental chamber. EDL appears to demonstrate a linear 

correlation between Ca2+ uptake efficiency and number of fibres. Uptake capacity 

gradually increases accordingly tissue amount in such way in 5mg biopsies uptake was 

measured as 16.08 µMol/s; 27.95 µMol/s was the rate found for 10mg fragments, whereas 

20mg tissue would uptake 24.21 µMol of Ca2+ per second. 

 

3.3.3 Does snap-freezing affect samples outcomes? 

 

The previous study where τ233 was addressed in fresh fibres has shown that 

differences in uptake rates were markedly significant. In this way, in order to examine if 

the pump would be subject to kinetic limitations overtime, SR dynamics was studied 

during full decay transients (700 seconds or τ700) instead of only the first third of it. For 

this purpose, complete Ca2+ decay phase was set up to be approximately 700 seconds, 

being this value resulting from the optimisation of the protocol, considering the time 
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needed to allow Ca2+ sequestration, addition of exogenous buffers to the chamber and 

running trials in triplicates. The assessment of SR properties during this time length 

provided quantitative information on the full active state of the SR pumping post-thawing. 

Given that the thermodynamic driving force required for the SR Ca2+ pump is 

determined by the [Ca2+] gradient across the SR membrane (Tian et al. 1998), it was 

thought that an extended decay time would decrease the amount of Ca2+ free in the 

cytoplasm and consequently, the pump efficiency. The following diagram represents the 

calculation method of τ700, which corresponds to the full decay time. 

The same buffer composition applied to identify the SR-mediated uptake in fresh 

muscle was likewise utilised to support Ca2+ influx in frozen biopsies. EDL and SOL fibres 

were incubated with SERCA substrates (ATP+CrP) after thawing and respective uptakes 

were recorded (figure 22).  

  



 

 

114 

 

 

A 

 

B 

 
C 

 

D 

 
 

Figure 22: Comparison of SERCA uptake capacity in fresh versus frozen biopsies. 

Experiments were performed in triplicates. A. SERCA activity in SOL (fresh, n=10; frozen 

n=4). B. SERCA uptake rates in EDL (fresh, n=7; frozen n=4). C. Bar graphs contrasting 

Ca2+ decay mediated by SERCA in fresh and frozen biopsies. D. Comparison of Ca2+ 

decay through SERCA in EDL biopsies. Non-parametric t-tests were used to assay the 

functional data. No statistically significant differences were reported between groups. 

 

 

 

Data and samples’ wet weight are displayed as mean ± SEM. Results for SERCA 

activity in SOL were obtained based on the averaged wet weight of 8.88±0.15mg/ml for 

fresh samples; and 9.89±0.10mg for frozen fragments of SOL. For EDL biopsies (fresh, 

n=7; frozen n=4) the averaged weight was 9.57±0.07mg/ml fragments of fresh samples; 

and 10.6±0.73mg/ml pieces of frozen biopsies. SERCA activity in fresh and frozen 
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biopsies displayed comparable rates (p=0.6047). Likewise, contrasting uptakes from fresh 

and frozen specimens of EDL, no statistically significance was achieved (p=0.1270). 

Unpaired t-tests have demonstrated that SERCA-mediated uptake in SOL showed 

no differences in fresh (37.93±3.43 µMol/s) and frozen samples (29.52±6.45 µMol/s), 

being p=0.604. Under the same conditions, a similar performance was evidenced in EDL 

biopsies (p=0.127), in such way the Ca2+ uptake rate was kept constant regardless the 

tissue condition. It was found the rate of Ca2+ SR influx as being 42.84± 2.71 µMol/s in 

fresh biopsies against 39.22±1.31 µMol/s. 

. 

 

3.3.4 Comparative effects of distinct time points on fractional uptake rate by SR 

 

Time-dependent uptake was estimated during three distinct time periods for each 

muscle and preservation state (fresh or frozen) with aims to address the dynamics of Ca2+ 

sequestration overtime (figure 23). 
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Figure 23: Fractional SR Ca2+ uptake in fresh and frozen specimens at different time 

courses of the decay phase. Uptake rates are being displayed as µMol/s at τ233, τ466 and 

τ700 seconds of the decay. Results shown as mean±SE. A. Rate of uptake for fresh SOL, 

n=14, 13 and 12 for τ233, τ466 and τ700, respectively. B. Ca2+ in frozen SOL biopsies; 

n=9. C. Fractional SR uptake in fresh segments of EDL, n=11, 7 and 7. D. Uptake rate in 

frozen EDL, n=9. 
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Many characteristics of the Ca2+-pump have been analysed in mixed populations of 

fibres. Ca2+ uptake in fresh SOL was investigated in 14 rats for τ233 time point; in 13 

animals during τ466; and finally, in 12 rats for the full decay rate (τ700). Uptake rates were 

calculated as being 22.82±2.17; 34.77±2.40 and 40.49±3.03 µMol/s for τ233, τ466 and 

τ700, accordingly. It was found that between τ233 and τ466 the rate of uptake has changed 

substantially (*p=0.0044); this trend was also observed between the τ466 and τ700 

(*p<0.0001). It can be clearly seen the higher sequestration rate at τ700 of the decay, 

which is augmented by 31% against τ233 values.   

Fluctuation in Ca2+ decaying time reached statistically significance in frozen SOL 

biopsies. Frozen specimens demonstrated a similar behaviour in comparison to fresh tissue. 

There was a significant variation (*p=0.0030) between τ233 and τ466, being uptake rates 

estimated to be 18.08±2.79 and 32.91±2.99 µMol/s, in this order; whereas variation from 

τ466 to τ700 was pointed by *p< 0.0001.  

Concerning EDL samples, fibres harvested form 11 animals were examined for the 

τ233; and 7 rats were studied during the time points τ466 and τ700. Fresh EDL samples 

showed uptake rates equivalent to 24.11±2.31µMol/s, 36.82±3.45 and 41.07±2.59, 

respectively, for these three time intervals. There was variation calculated between τ233 

and τ466 (*p= 0.0083). τ466 also varied in comparison to full decay time (τ700) 

(*p=0.0006). Alike, Frozen EDL fibres (n=9) also displayed relevant differences 

comparing the first 233 seconds (τ233) followed by CaCl2 loading, and intermediate 

measurements (τ466), being rates 26.68±2.5 µMol/s and 36.82±3.45 µMol/s, accordingly 

(*p= 0.0034). During the second third of the Ca2+ decay transient (τ466), uptake in thawed 

EDL fibres was enhanced by 66%, while an increase of 10% was detected over the decay 

in comparison to that criterion (*p < 0.0001). 

A summary of these findings is displayed in the following table (table 13). 
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Table 13: Quantification of fractional SR Ca2+ uptake rate in muscle fibres. Values 

are displayed in µMol/s. Results are shown as means ± SEM and are being compared per 

row. N refers to number of samples studied. On the top, description of the time course, in 

seconds, when data was collected (τ233, τ466 and τ700). Outcomes are shown according to 

biopsies preservation states: fresh or frozen. On the left side, samples are described as 

SOL: soleus; EDL: extensor digitorum longus. *, p<0.05. Statistical comparison obtained 

from unpaired, non-parametric t-tests 

 

  

Fractional SR Ca2+ uptake rate (µMol/s) 

  τ233 τ466 τ700 

SOL 

Fresh 22.82 ± 2.17 (n=14)* 34.77±2.40 (n=13) 40.49 ± 3.03 (n=12)* 

Frozen 18.08 ± 2.79 (n=8) * 32.91 ± 2.99 (n=8) 39.56 ± 2.50 (n=8)* 

EDL 

Fresh 24.11 ± 2.31 (n=11)* 36.82 ± 3.45 (n=7)* 41.07 ± 2.59 (n=7)* 

Frozen 26.68 ± 2.54 (n=9) * 38.78 ± 2.52 (n=9) 44.52 ± 2.42 (n=9)* 
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3.3.5 Preservation state of energy production and transportation systems in skeletal 

muscle 

 

Subsequently, the efficiency of ATP production by mitochondria and the ability of 

ATP regeneration/transfer via bound CK-system were examined in comparison to fresh 

biopsies. The following experiments were conducted considering the full Ca2+ decay length 

(τ700), so Ca2+ influx would be fully favoured. 

SR Ca2+ uptake after external Ca2+ loading was then addressed either 1) by external 

ADP+CrP, 2) ADP lacking CrP, and 3) ADP in absence of CrP plus azide. Experiments 

were performed for EDL (figure 24) in order to investigate how fibre types would adapt 

their metabolism to distinct substrates that simulate contrasting physiological backgrounds.  
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Figure 24: Diagram representing energetic crosstalk between energy production and 

transfer systems and SERCA activity in EDL fibres. Comparisons were made with fresh 

and frozen biopsies. Experiments were performed in triplicates. Data is displayed as mean 

± SEM. A. No differences were reported comparing fresh (n=7) and frozen (n=4) samples 

when SERCA was supported with ATP+CrP. B. Uptake in frozen EDL biopsies (n=4) 

versus fresh (n=7) was significant (p=0.0351), in ADP+CrP buffer. C.Ca2+ uptake in 

frozen samples (n=4) against fresh (n=7), in solution containing ADP and in absence of 

CrP.(p=0.0005) D. Blocking mitochondrial activity depressed Ca2+ uptake in frozen tissue 

(n=4) compared to fresh (n=7), (p<0.0001). 
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When immersed in ATP+CrP buffer, EDL biopsies presented a comparable 

behaviour, irrespective to the preservation state of the fibres (p=0.364). The averaged wet 

weight of fresh samples (n=7) was 9.57±0.07mg/ml; whereas 10.6±0.73mg/ml was 

averaged samples’ weight used to investigate uptake in frozen samples (n=4). ADP+CrP 

solution seems to stimulate frozen tissue (n=4; mean wet weight 10.6±0.73mg/ml) in 

comparison to fresh (n=7; 9.08±0.24 mg/ml). An opposite behaviour was reported when 

only ADP was supplied to the fibres in the absence of CrP. Frozen tissue (averaged wet 

weight 10.6±0.73mg/ml) displayed a higher uptake against fresh (9.01±0.24mg/ml) 

(p=0.0005). Lastly, mitochondrial energy production was depressed in frozen tissue 

(averaged wet weight 10.6±0.73mg/ml) compared to fresh (9.58±0.38mg/ml). 

Alike, experiments were performed in SOL (figure 25). Responses demonstrated 

fibres adaptation upon multiple metabolic scenarios.  
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Figure 25: Diagram representing energetic crosstalk between energy production and 

transfer systems and SERCA activity in SOL muscle. Comparisons were made with fresh 

and frozen biopsies. Experiments were performed in triplicates. Data is displayed as mean 

± SEM. A. Ca2+ uptake rates in fresh (n=10) and frozen (n=4) samples when SERCA’ 

substrate was ATP+CrP. B. SR Ca2+ in frozen samples (n=4) against fresh (n=6) biopsies, 

in a solution supplied only with ADP. C. No differences were reported after inhibition of 

mitochondrial activity in frozen (n=4) compared to fresh (n=6) samples, using azide-based 

solution. 
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Measurement of wet weight is displayed in mean ± SEM. ATP+CrP substrate 

supplied a similar response between fresh (n=10; 9.0±0.02 mg/ml) and frozen (n=4; 

averaged wet weight: 9.89±0.10 mg/ml) biopsies. The solution that contained only ADP 

also mediated comparable uptake responses between fresh (n=6; 9.21±0.19mg/ml wet 

weight) and frozen (n=4; wet weight: 9.18±0.22 mg/ml). No differences were reported 

after inhibition of mitochondrial activity in frozen (n=4; 10.3±1.00 mg/ml) compared to 

fresh (n=6; 9.59±0.37 mg/ml) samples. 

 

 

3.3.6 Efficiency of energy production and transportation systems in LV samples 

 

SR Ca2+ loading capacity was measured in fresh and frozen rat cardiac fibres as 

previously described. In saponin-skinned cardiac bundles, Ca2+ uptake was detected at low 

EGTA concentration in various experimental conditions. Correspondingly to the uptakes 

observed in skeletal muscle specimens, LV samples were characterised as follow (figure 

26). 
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Figure 26: Bar graphs illustrating the energetic crosstalk between energy 

production/transfer systems and fractional uptake mediated by SERCA in LV. 

Comparisons were based on fresh and frozen biopsies; fractional SR uptake is shown in 

µMol/s. Data is displayed as mean ± SEM and results are averages of triplicates. A. SR 

Ca2+ uptake in fresh (n=5) and frozen (n=6) samples when the substrate was ATP+CrP. B. 

Frozen (n=6) and fresh (n=5) biopsies supplied with ADP and CrP. C. No variation 

reported in LV SR Ca2+ uptake supported only by ADP, regardless muscle preservation 

state (fresh, n=4; frozen n=5). D. Azide-blocked mitochondria supported SR activity in 

fresh (n=5) and frozen biopsies (n=5). 
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SR Ca2+ uptake was statically different (p<0.0001) comparing fresh (n=5; wet 

weight: 11.1±0.11mg/ml) and frozen (n=6; wet weight: 10.8±0.18mg/ml) samples when 

the substrate for SERCA was ATP+CrP. Frozen (n=6) and fresh (n=5) biopsies displayed 

variations in Ca2+ uptake rates (p=0.004) when supplied with ADP and CrP, being 

averaged wet weights calculated as 11.5±0.61mg/ml and 11.3±0.60mg/ml, respectively. 

On the other hand, no significant statistic variations were reported in SR Ca2+ uptake 

supported only by ADP (p=0.555), being 4 fresh samples tested (averaged weight 

11.5±0.66mg/ml) versus 5 frozen biopsies, with averaged weight equals 11.4±0.44 mg/ml. 

Azide-blocked mitochondria supported SR activity in fresh (n=5; 11.0±0.07mg/ml) and 

frozen biopsies (n=5; 10.16±0.20mg/ml). In this metabolic condition, uptake rates were 

similar, with frozen samples displaying a marginally lower active influx (p=0.0810). 

Regarding comparisons of LV function, it was reported that overall estimates of SR 

capacity was greater in fresh tissue supported by buffers containing PCr and ATP or ADP 

addition. Functional measurements showed contrasting uptake profiles when the CK 

system alone was stimulated by ADP buffer, since the frozen group demonstrated a slightly 

superior (despite non-significant) uptake rate. Fresh ventricular samples appear to be more 

resistant to the azide-induced blockade, as observed in slow-twitch SOL; although no 

statistic variation was achieved (p=0.081). Once more, the presence of a minimal 

mitochondrial response after thawing confirms the assumption that the increased number 

of mitochondria present in these fibres compensate for the metabolic response 

 

 

3.3.6.1 Summary of results 

 

Overall comparisons of uptake differences with SR assessment of function and fibres 

yielded significant findings that warrant discussion. Oxalate-facilitated SR Ca2+ uptake 

measured in diverse fibre types is summarised in the following table 14: 
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Table 14: Values are means ± SEM; outcomes are compared per row. n, number of 

samples. On the top, description of solutions employed during each phase of the 

experiment, being ATP: adenosine triphosphate; ADP: adenosine diphosphate; CrP: 

phosphocreatine. Findings are shown accordingly samples preservation states: fresh or 

frozen. On the left side, description of biopsies analysed: EDL: extensor digitorum longus; 

SOL: soleus; LV: left ventricle. For every muscle and metabolic substrates, readings were 

performed in triplicates. *p<0.05. Statistical comparison obtained from unpaired, non-

parametric t-tests. 

 

 

3.3.7 SR function under metabolic modulation 

 

As a further demonstration of SERCA involvements in Ca2+ transient kinetics, the 

decay of the uptake rates was studied under the effects of different metabolites (figure 27). 

The behaviour of freshly harvest skeletal muscle was identified and established as the 

standard response for each muscle group. The data collected was used for further 

comparison with frozen specimens. 

  

Oxalate-facilitated SR Ca2+ uptake (μMol/s) 

 ATP+CrP ADP+CrP ADPØCrP Azide 

Fresh Frozen Fresh Frozen Fresh Frozen Fresh Frozen 

EDL 42.8±2.7 

n=7 

39.2±1.3 

n=4 

39.9±2.9 

n=7 

49.3±2.4 

n=6 

45.0±2.1* 

n=7 

16.6±6.2 

n=4 

46.20±2.3* 

n=7 

13.0±4.0 

n=4 

         

SOL 37.9±3.4 

n=10 

29.5±6.4 

n=4 

  36.4±1.7 

n=6 

29.6±6.2 

n=4 

37.8±2.0 

n=6 

35.9±3.2 

n=4 

         

LV 48.4±1.3* 

n=5 

34.4±1.2 

n=6 

47.6±1.0* 

n=5 

27.9±4.7 

n=6 

6.76±2.6 

n=4 

12.3±7.6 

n=5 

15.5±3.8 

n=5 

6.40±2.3 

n=5 
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Figure 27:  SERCA activity in fresh SOL and EDL biopsies. Ca2+ uptake and its 

relation with local CK-mediated ATP restoration and CrP supplied by mitochondria, upon 

different metabolites. Experiments for each metabolic condition were done in triplicates. 

Results are presented in means±SEM. Black traces and graph bars represent the ATP+CrP 

buffer; light grey, the ADP no CrP solution; and finally, azide buffer is illustrated as the 

dark grey colour. A. SR uptake in fresh SOL, n=11, using multiple buffers; on the right 

side, the respective bar graph representation of the decays. B. Ca2+ decay in freshly 

harvested EDL fibres, being n=11. 

 

 

In fresh SOL, the present SERCA2a isoform seems to exhibit similar uptake capacity 

when comparing the uptake response mediated by ADP lacking CrP buffer (36.42± 1.75 

µMols/s) to ATP+CrP (38.52± 1.75 µMols/s) solution. Furthermore, fibres blocked with 

the azide buffer still displayed an uptake rate of 37.80±2.09 µMols/s. SOL Averaged wet 
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weights of tissue samples are 8.90±0.02; 9.07±0.35 and 9.95±0.53mg/ml for ATP+CrP, 

ADPØCrP and azide buffers, accordingly.  

Type II fibres of freshly collected EDL exhibited a descendent change in uptake rates 

starting from azide buffer to ATP+CrP. SERCA1a has intermediated the uptake of 42.67± 

2.50 µMols/s in control condition, against 44.78± 1.86 µMols/s for the ADPØCrP solution. 

Fibres blocked with azide demonstrated a decreased uptake rate of 44.80± 2.06 µMols/s. 

Averaged wet weights were estimated to be respectively 9.57±0.07, 9.01±0.24 and 

9.58±0.38 mg/ml for ATP+CrP, ADPØCrP and azide solutions. No relevant differences 

among uptakes was evidenced by One-way ANOVA (p= 0.7288). 

Regarding frozen biopsies, the same solutions were applied to the same type of fibre 

preparation. Figure 32 indicates that in frozen SOL specimens there were no statistically 

significant variation upon different stimuli induced by presence or absence of CrP or other 

metabolites (p=0.659). On the other hand, EDL presented a significantly higher Ca2+ 

uptake rate observed for the ATP+CrP buffer (39.22± 1.31 µMols/s) compared to the other 

simulated conditions, including ADP no CrP (16.67± 6.30 µMols/s) and azide (13.02±4.03 

µMols/s) buffers. One-way ANOVA has pointed that differences between ATP+CrP and 

ADP-induced response exhibited p=0.0136; whereas responses induced by the azide 

solution were statistically significant compared to the control buffer (p= 0.0057).  

The response profile of frozen biopsies was also investigated. Figure 28 displays 

SERCA activity in frozen SOL and EDL biopsies. 
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Figure 28: SERCA activity in frozen SOL and EDL biopsies. Ca2+ uptake and its 

relation with local CK-mediated ATP restoration and CrP supplied by mitochondria, upon 

different metabolites. Experiments for each metabolic condition were done in triplicates. 

Results are presented in means±SEM. Black traces and graph bars represent the ATP+CrP 

buffer; light grey, the ADP no CrP solution; and finally, azide buffer is illustrated as the 

dark grey colour.  A. SR uptake in frozen SOL, n=4, using multiple buffers; on the right 

side, the respective bar graph representation of the decays. B. Ca2+ decay in freshly 

harvested EDL fibres, being n=4.  

 

 

SOL rates were measured based on frozen fragments of tissue of 9.89±0.10; 

9.18±0.22 and 10.31±1.00 mg/ml tested in ATP+CrP, ADPØCrP and azide solution, 

respectively. No statistically significant differences were evidenced by One-way ANOVA. 
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EDL Averaged samples wet weights were 10.75±0.26mg/ml, 9.38±0.28mg/ml and 

9.71±0.58mg/ml for ATP+CrP, ADPØCrP and azide conditions, accordingly. One-way 

ANOVA detected significant differences between ATP+CrP (control) and ADPØCrP (p= 

0.0136); and regarding the uptakes in control versus azide (p= 0.0057). 
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3.4 Discussion 

 

The present method described a series of measurements designed to examine the 

functionality of SERCA pump function and energetic crosstalk between mitochondria and 

SR in freshly collected samples with aims to compare it to remaining cellular activity in 

frozen biopsies. 

The objective was to quantify any potential variation in the function of relevant 

targets in order to validate a technique able to address alterations in Ca2+ handling in an 

infarct model of HF in rats and for future studies including potential human studies. 

Although a variety of studies have pointed the use of lysates to address SERCA-

pump activity (Lamboley et al. 2014; Lamboley et al. 2015; Kemi et al. 2008; Steele et al. 

1996) and compartmentation of high energy molecules, scarce data is accessible regarding 

intact and skinned fibres; particularly when contrasting outcomes from fresh and frozen 

specimens.  

SERCA function in freshly harvested fibres of EDL and SOL was demonstrated to 

achieve statistical significance (*p=0.0429). This divergence in uptake rates translates into 

physiological changes in activity of SERCA isoforms, in such way it is indicates that 

density of pumps is higher in fast than in slow fibres. Nonetheless, although SERCA is 

sequestering Ca2+ at different rates, Ca2+ binding capacity was found to be essentially the 

same for both muscle groups (p=0.2245); it means that, based on the present calculation 

approach, binding properties were similar regardless of the fibre composition. 

A comparative study of the uptake capacities in fresh versus frozen specimens has 

revelead Ca2+ uptake rate displayed by frozen specimens is equivalent, in functionality, to 

Ca2+ transportation of fresh tissue. This response was observed in both oxidative and 

glycolytic muscle. Current data support the assumption that SERCA functionality remains 

intact after thawing upon equilibration of fibres in appropriate solution. Despite the 

absence of cryoprotectant media prior storage, snap-freezing of the muscle tissue seemed 

to ensure long-term stability of samples without severely affecting SERCA capacity, 

irrespective to isoforms. Therefore, the present protocol appears reasonable to allow 

investigation of SERCA activity in two specific preservation state of muscle. Immediately 

after thawing, frozen skeletal muscle exhibited comparable uptakes to the control group, 

thereby being suitable for the study of SR capacity. This is particularly important for 

integrating an alternative approach in SR research 
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Energetic crosstalk between energy production and transfer systems and SERCA 

activity in EDL fibres were also investigated, in fresh and frozen specimens. Both types of 

biopsies share a number of key features. Graphs show there was a gradual increase in the 

Ca2+ uptake rate overtime. A higher Ca2+ sequestration was observed at the end of the full 

decay phase (τ700) for all specimens examined, irrespective to freezing process. Since 

cytoplasmic Ca2+ levels are diminishing overtime and the concentration gradient is 

sufficient to stimulate pump driving force, there is evidence that Ca2+ influx via SERCA is 

still efficient at τ700. 

At the conclusion of the decay phase, the uptake was increased by 16% at the 

compared to initial transportation rates. This trend is kept in frozen fibres despite the pump 

sequesters smaller amounts of Ca2+. Variation in Ca2+ uptake rates was statistically 

significant between τ233 and τ466; and at τ233 and τ700 seconds of the decay transient, 

regardless biopsies preservation state. 

This data evidence how the thermodynamic driving force is modulated during the 

full decay phase of Ca2+ active influx into the SR. Fluctuation in Ca2+ balance 

demonstrates the complex dynamic mediated by SERCA pump upon diverse fibres, 

revealing how SR can be regulated during fresh or frozen states. 

The uptake activity was significantly higher at τ700 of the decay compared to the 

first third of the measurement (τ233), in all occasions. During the length of this period 

SERCA is mediating significant changes in intracellular [Ca2+]. Variation was not detected 

between τ466 and τ700 for any of the biopsy preservation state. 

EDL pattern of dependence upon PCr as a metabolic fuel demonstrated 

downregulated activity post-thawing. In contrast, SOL has proven to be less sensitive to 

azide and more resistant to freezing. Depletion of intracellular Ca2+ from exogenous Ca2+ 

loading was equivalent during metabolic manipulation of the media, irrespective to the 

state of fibre bundles. Abundant mitochondrial content is thought to contribute to 

cytoplasmic Ca2+ regulation by synthetizing energy molecules to supply SERCA.  

The model based on two major fibre types has contributed to address fibre 

heterogeneity in permeabilized rat muscles. Such results represent fibres diversity and 

reflect, mainly, post-thawing adaptations to the diverse physiological backgrounds, which 

can be quantified in terms of uptake decay rate. Different activity patterns between fibres 

determine not only the specializations in SR properties, but also in the associated 

mitochondrial based energy supply. 
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Ca2+ uptake in type I fibres shown to be essentially equivalent in muscle in fresh 

state versus thawed when optimal substrate (ATP+CrP) was supplied to the solution. As 

pointed in a previous study, EDL fibres from rats were found have a variable 

mitochondrial content, ranging from <5% to >25% of total fibre volume (Schiaffino et al. 

1970). A possible explanation for these outcomes is that the freezing process likely 

damages mitochondria; and considering the functional requirements of the fast-twitch fibre 

does not largely rely on oxidative phosphorylation due to its intrinsic glycolytic properties 

(Schiaffino & Reggiani 2011), residual activity of mitochondria would be comparable to 

fresh tissue. In this context, no relevant differences were reported after thawing.  

Interestingly, in the second simulated environment (ADP+ CrP), it was observed that 

EDL frozen tissue displayed 24% higher SR activity than fresh. The reason for this is 

unknown, but a simple explanation is that the coupled CK system in fresh tissue was 

locally cycling ADP at a lower rate than in frozen biopsies, indicating if anything that CrP 

shuttle is not efficient in previously frozen tissue, but further work is required to establish 

this. 

Subsequently, ADP-based buffer lacking CrP was employed to induce cells to use 

the endogenous CrP molecules produced by mitochondria and so, load the SR at the 

expense of mitochondrially produced energy. A marked decrease in Ca2+ uptake was 

verified in the frozen group compared to control (p=0.0351), endorsing the assumption that 

freezing process compromises capacity of mitochondria-generated energy in EDL muscle. 

This corroborates with the previous findings, which has shown that fibres supplied with 

ATP+ CrP demonstrate comparable uptake responses between groups. So, this 

mitochondrial ATP supply seems less effective than externally supplied ATP in sustaining 

Ca2+ uptake, in type I fibres.  

Finally, azide was used to inhibit mitochondrial activity. A decrease of 72% was 

observed in muscles in the frozen state against control tissue. 

Similar to the trend observed for EDL, the fractional rates of Ca2+ uptake indicated 

that SERCA2 activity in SOL fibres did not significantly differ between frozen tissue (n=4) 

from fresh control (n=10) in optimum conditions (p=0.236). Likewise, no further 

divergences were observed for any other cytoplasmic composition in SOL, considering 

ADP without CrP as well as for the azide solution (fresh, n=6, frozen, n=4). The oxidative 

profile characterised by the enriched mitochondrial content of these fibres might exert a 

role on the stability of SR active transport via SERCA2 and, maintenance of energy fluxes. 
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It is suggested the high mitochondrial density in SOL can compensate the damage 

induced by freezing in such way that viability of reactions is biologically similar to freshly 

prepared samples. So, although the biopsies were in distinct preservation states, 

mitochondrial function and metabolic profile were relatively conserved in slow skeletal 

muscle. 

Cardiac muscle is recognised among the highest ATP consumer organs and displays 

the highest mitochondrial content associated to an efficient system of energy transfer 

kinases (Joubert et al. 2008). Freezing process has shown to decrease SERCA activity in 

LV by 40% even in samples supplied with the ideal substrate (ATP+CrP) (p<0.0001). 

Despite this is diverging from results found for SOL, which shares the same SERCA and 

CK isoform as heart muscle, it is known that CK content in cardiac fibres hold a greater 

content of mitochondria to ensure that energy expenditure by ATPases is corresponded by 

energy production (Joubert et al. 2008). So, a larger content of SERCA or CK enzymes 

might have been affected by the effects of freezing. A statistically significant difference 

was likewise observed studying the SR content using the ADP+ CrP solution, in such way 

freshly prepared fibres (n=5) had up taken 70% more Ca2+ than those stored for a long-

term period (n=6). Lastly, no relevant variations were reported for the ADP in the absence 

of CrP (p=0.555) buffer; or for the azide buffer (p=0.081), irrespective the tissue status. 

The present results show that slow-twitch fibres treated with azide (SOL and heart 

muscle) did not change their Ca2+ uptake after freezing compared to control samples; 

whereas the glycolytic fibres from frozen EDL greatly varied their uptake rates. It 

demonstrates the correlation of fibre type composition and modulation of mitochondrial 

function. It is being proposed because slow-twitch fibres are mitochondria-enriched, they 

are more resistant to the freezing process and the abundant mitochondria volume may 

compensate the effects of long-term storage. This is in good accordance with studies that 

showed functionality of frozen–thawed mitochondria to have roughly 50% of normal 

respiratory function, and the mitochondria were found to be well couple (Yamaguchi et al., 

2007). Nevertheless, freezing appears to induce a decrease in glycolytic capacity and 

mitochondrial enzyme activities in EDL muscles. 

In this scenario, fluctuation in outcomes due to changes in intracellular metabolites 

and substrates illustrate a responsive and viable micro compartmentation of molecules in 

striated muscle, which makes them suitable for functional studies. The current protocol 

will make available the use of frozen specimens for research on SERCA uptake and other 

enzymatic functions.  
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CHAPTER FOUR 

SARCOPLASMIC RETICULUM CALCIUM UPTAKE 
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4.1 Introduction 

Ideal contractile function and Ca2+ handling rely on energy-producing and utilizing 

pathways, which must to be tightly regulated in the heart and muscles. ATP is primarily 

produced by oxidative phosphorylation in the mitochondria (>95%) and TCA cycle 

contributes with 5% of the phosphorylation processes (Ingwall 2009). The key ATP 

consumers in the heart are the actomyosin ATPase in the myofibril, SERCA in the SR, and 

PMCA and Na+, K-ATPase in the sarcolemma (Gorski et al. 2015). 

The levels of ATP are kept constant despite the high energy demand for muscle 

performance (Ingwall 2009). Energetics also depends on PCr levels, being the high energy 

molecule that is the primary energy source in heart and muscle. According to Bittl and 

Ingwall, PCr is present in cells 2-fold higher than ATP (Bittl & Ingwall 1985).  

Explanted failing human hearts, and rat hearts with coronary artery ligation induced-

HF, have demonstrated remarkably lower levels of PCr than controls (Neubauer et al. 

1999). Corroborating with this, Smith and group detected a 35% decrease in cardiac PCr in 

patients with LV hypertrophy (Smith et al. 2006). Various animal models have also shared 

this feature, characterized by reduced PCr levels, including a canine model of tachycardia 

induced HF (Jameel et al. 2016) and a porcine model of pressure-overload-induced HF 

(Zhang et al. 2015). 

Subjects with cardiac disease were found to exhibit dysfunctional systolic and 

diastolic function, associated with morphological changes, including an increase in 

length/size, sarcomeric disorganization, and myofibrillar disarray (Harvey & Leinwand 

2011; Kehat & Molkentin 2010). 

These abnormalities are linked to altered expression or function of Ca2+ transporting 

or binding proteins. It is also known that the failing heart, for example, displays a 

multitude of impairments in both energy supply and demand, which altogether result in an 

organ that is both energy starved and ill functioning (Gorski et al., 2015). Skeletal muscle 

also demonstrates impairment in function, as wasting and compositional changes (Duscha 

et al. 1999; Haykowsky et al. 2014) shift in fibre type from oxidative to glycolytic 

(Mancini et al. 1989; Haykowsky et al. 2014) and diminished metabolism (Kiilavuori et al. 

2000). 

There has been a growing attention to the role of energetic impairment and 

progression of HF. This metabolic derangement is now recognized as a systemic process 

with complex interplay between the myocardium and peripheral tissues and organs (Hunter 

et al. 2016). Some agents may be the target of studies and therapeutic approaches in order 



 

 

137 

 

to correct this dysfunction, including changing substrate utilization for energy production, 

by improving mitochondrial ETC function; or increasing energy transfer from the 

mitochondrion to the cytosol (Gorski et al. 2015). 

Adaptive growth of the muscle cell occurs in response to regular exercise. Molecular 

mechanisms that govern the adaptation to exercise training involve a gradual alteration in 

protein content and enzyme activities (Egan & Zierath 2013). SR function is regulated by 

the free intracellular Ca2+ concentration ([Ca2+]i). Of particular interest is SERCA, which 

re-sequesters the biggest amount of cytosolic Ca2+ back to the SR during diastole (Maier & 

Bers 2002). 

Some of the most pronounced intracellular alterations in HF are the increase in end-

diastolic cytosolic Ca2+ levels and prolongation of the Ca2+ transient during diastole. This 

is primarily due to a decrease in SR calcium uptake because of SERCA dysfunction 

(Gorski et al. 2015). 

SERCA isoforms present in fibres are suggested to distinctly modulate SR Ca2+ 

loading features, as previously hypothesized by Murphy and colleagues (Murphy et al. 

2009). However, little is acknowledged regarding the Ca2+ uptake characteristics and SR 

functionality of rat skeletal muscle fibres. Studies performed using muscle fibres show a 

marked diversity in ADP sensitivity which may affect the capacity of the SR to get refilled 

(Schiaffino & Reggiani 2011). Factors such as number of pumps per fibre, presence of 

regulatory units (as PLB) and the free Ca2+ gradient might be involved with the efficiency 

of the uptake rate. 

Despite that protein expression studies have reported that SERCA in the myocardium 

increases after exercise training, the activity of SERCA and hence rate of SR Ca2+ uptake 

remains unknown after exercise training (Kemi et al. 2008). Wisløff and colleagues have 

demonstrated that exercise training increased the expression of SERCA2 in LV samples, 

which could have contributed for the increased rate of decay of Ca2+ transient (Wisløff et 

al. 2001).  

 

4.2 Methods  

Muscle biopsies were equilibrated in modified 0.5Mm EGTA solution (no ATP or 

ADP) and submitted to mechanical skinning process. Tissue was morphologically 

described as a loosen net of fibres. After this step, fibres were permeabilized by exposure 

to solution containing 100µg/ml-1 saponin for 5 min. This treatment makes sarcolemma 

permeable to small ions and molecules without disrupting SR function (Saks et al. 1998).  
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Saponin was then removed by washing the fibres in 0.5 mM EGTA before continuing with 

the experiment. All readings were performed at room temperature. The prepared tissue was 

then incubated in specific buffers (ATP+CrP, ADP+CrP, ADPØCrP or azide) according to 

the metabolic condition to be investigated (see chapter 2). 

The present analysis estimated the amount of Ca2+ sequestered into the SR lumen by 

measuring the detectable remaining Ca2+ ions bound to Fura-2 in the cytoplasm. Ca2+ 

uptake rates were measured in triplicates. 

 

4.2.1 Anatomical data 

 

Four weeks after the induction of MI by permanent coronary artery ligation (Kemi et 

al. 2007; Kemi et al. 2006; Wisløff et al. 2002), rats exhibited many of signs of 

physiological decompensation that correlate with aspects of human HF. The procedure has 

generated 40-50% MI of the LV and subsequently leading to HF in >90% of the rats. 

Infarcted animals showed 40% decrease in exercise capacity, pulmonary congestion, 

dysfunctional diastolic and systolic pressures, depressed pump capacity, and pathologic 

growth of the heart and cardiomyocyte. Besides, abnormalities in Ca2+ dynamics, 

depressed ECC and energetics confirmed the presence of HF in this model. 

Muscle biopsies were skinned while immersed in modified R solution (lacking ATP or 

ADP, see Methods) and originally contained their endogenous SR Ca2+ content. After 

skinning procedure, the tissue could be described as a loosen net of fibres. Equilibrated in 

the Ca2+-buffered solution, SR membranes present in these fibres are not capable of 

transporting any appreciable amount of Ca2+. Besides, any Ca2+ leaking from the SR would 

be re-sequestered before being lost to the bathing solution (Lamboley et al. 2014). The 

prepared tissue was then incubated in specific buffers according to the physiological 

condition to be studied.  

The analysis considered the amount of Ca2+ sequestered into the SR lumen by 

measuring the detectable remaining free Ca2+ ions using Fura-2 within the bathing 

solution. This was estimated in a 0.5 mM EGTA solution by estimating the half time for 

Ca2+ uptake from the timecours of the decline in Ca2+. The uptake ratios were measured in 

triplicates. 

In this context, the present study suggests an original approach to address the 

functionality of cellular constituents of fresh and frozen muscle biopsies.  Previous studies 
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have examined SR uptake properties using lysates, whereas the current method utilize 

crude fragments of tissue to determine the SR uptake rate in slow and fast-twitch fibres. 

4.2.2 Measurement of SR content 

Frozen biopsies were retrospectively studied under multiple circumstances. SR Ca2+ 

content was assessed in saponin-permeabilized control and HF rat fibres. The magnitude 

and time course of SERCA uptake rate was measured using a charge-couple device (CCD).  

Loading with the Ca2+-sensitive Fura-2 pentapotassium ratiometric dye allowed high-

fidelity whole fibre Ca2+ decay measurement, after ultraviolet excitation by a 

monochromator for fast wavelength shifting and emission capture by a PMT tube. 

Functionality of SERCA isoforms was addressed by analysing the Ca2+ decay rates in 

distinct types of muscle fibre. SR Ca2+ loading was performed over 700 seconds in the 

presence of ATP and with CK and/or mitochondrial substrates (Joubert et al. 2008). 

A previous study has pointed a significant reduction in PCr/ATP ratio in patients 

with HF (with preserved EF) and, this diminished energetic reservoir, was likely  

associated to the slowing of LV relaxation and deficiency in ventriculo-vascular coupling 

during exercise (Phan et al. 2009). 

Spatially arranged intracellular enzymatic networks are associated to the 

maintenance of cytosolic ATP synthesis and has an important role in supporting Ca2+ 

regulation during normal ECC (Wallimann et al. 1992; Gorski et al. 2015). Reactions 

catalysed by creatine kinase, adenylate kinase and carbonic anhydrase and glycolytic 

enzymes support  high-energy phosphoryl transfer and signal communication between 

ATP-generating and ATP- consuming/ATP-sensing processes (Wallimann et al. 1992; 

Saks et al. 1994; Dzeja et al. 1998; Dzeja & Terzic 2003). This metabolic 

compartmentation contributes to efficient intracellular energetic communication. 

HF is associated to various mitochondrial defects, including impaired ATP synthesis, 

decline in mitochondrial respiratory function and diminished mass or dysfunctional activity 

(Mathier et al. 2012; Weiss et al. 2005). Substrate utilization for energy production is 

disturbed in HF, described as a ‘‘metabolic shift’’ from fatty acid oxidation to glucose use 

through glycolysis (Wende et al. 2017). 

Mitochondria act as Ca2+ sensors, allowing the propagation of the Ca2+ signal 

initiated by SR release. Efficient synthesis of ATP and its translocation to the SR are 

modulated by cytosolic and mitochondrial Ca2+ levels, as several mitochondrial enzymes 
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are activated by increases in Ca2+ (Denton et al. 1972). Faulty energy transfer between SR 

and mitochondria has been implicated in ECC coupling deterioration (Wilding et al. 2006).  

 

4.3 Aims  

The present assay investigates whether exercise-induced adaptations can be a 

determinant factor for improved SR Ca2+ uptake rate post-MI in segments of fibres from 

EDL, SOL and LV. SERCA function was addressed by employing Fura-2 based 

fluorescence microscopy. The aim of the present study was to investigate changes in the 

intracellular Ca2+ of cardiac and skeletal muscle fibres that have been exposed to 

myoplasmic Ca2+ levels comparable to those seen in intact fibres at rest. 

 

4.4 Results 

 

4.4.1 Effects of thapsigargin on SERCA 

To exclude the probability of Ca2+ uptake being mediated by other intracellular Ca2+ 

transport processes (e.g. mitochondria), the specific SERCA blocker thapsigargin was 

added in control experiments (Sjåland et al. 2011). This drug was characterised as a potent 

inhibitor of SERCA pumps from skeletal muscle SR as well as cardiac SR (Kijima et al. 

1991) and has no effect on Na+/K+ ATPase or other plasma membrane ATPases 

(Periasamy & Kalyanasundaram 2007). 

In accordance, Carafoli and Brini have indicated that SERCA1 isoform – found in 

EDL; and SERCA 2, present in SOL and LV, are inhibited by thapsigargin (Carafoli & 

Brini 2007). 

In the present experimental set up, Ca2+ pumping in the SR vesicles was performed 

by the addition of 1mM of CaCl2 to control samples; and muscles from the contralateral 

hind limb were blocked with 25µMol/ml of thapsigargin (Munkvik et al. 2010). The 

SERCA inhibitor was added to the chamber solution at the beginning of the experiment, 

followed by exogenous Ca2+ loading. A major inhibition of SR was reported in skeletal 

muscle (figure 29). 
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Figure 29: Averaged traces of SERCA uptake measurement in freshly collected 

samples. Experiments were run in triplicates, n=5. The descending black line represents the 

uptake rate, which is decreasing overtime and indicates SERCA activity; whereas the grey 

trace illustrates the absence of uptake induced by thapsigargin, depicted as a straight line 

that indicates no variation in cytoplasmic [Ca2+]. A. control versus thapsigargin-blocked 

uptake in SOL. B. abolishment of Ca2+ uptake in fresh EDL compared to control. 

 

 

The data evidenced that thapsigargin efficiently inhibited SERCA isoforms in freshly 

harvested muscle, including oxidative and glycolytic fibres, which is in good agreement 

with previous studies (Khuchua et al. 1994; Chen 2014). It has been demonstrated that 

Ca2+ uptake was fully abolished in the presence of this drug, eliminating the possibility that 

non-SERCA Ca2+ ATPases to subsidise Ca2+ uptake measurements (Sjåland et al. 2011). 

The Fura-2 fluorescent signal coming from control samples (thapsigargin-free bath) 

demonstrates that SR remains functional and able to sequester Ca2+. However, upon 

addition of thapsigargin, no uptake activity could be detected. Taken together, these results 

suggest that SERCA isoforms in this type of muscle preparation are the single mediator for 

the reduction of free [Ca2+] detected in the experimental solution (Kemi et al. 2008). 

In conclusion, the necessity of cytosolic Ca2+ signalling on transport by SERCA can 

be verified directly by inhibiting its catalytic and transport activity with thapsigargin (Inesi 

et al. 2008a). 

 

4.4.2 SR Ca2+ uptake in saponin-permeabilized SOL fibres 

Ca2+ uptake was measured in resting cytoplasmic conditions upon exogenous 

addition of CaCl2.  In resting conditions, skeletal muscle cells maintain [Ca2+]i in a low 
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concentration, around 100 nM. This minimal cytosolic level was demonstrated in 

mammalian skeletal muscle (Yang et al. 2007; Löapez et al. 1988).  

Increasing total Ca2+ to 100µM of CaCl2 (which increases free [Ca2+] in the 

experimental bath to 1-2 µM) was used to initiate SERCA uptake in striated muscle. SR 

responses obtained from the control and HF animals in a 0.05mM EGTA solution are 

exhibited in the following graph (figure 30). 

 

 

Figure 30: Rate of fractional Ca2+ uptake in the SR in SOL permeabilized fibres. The 

black bar represents control rats (n=9); while light grey corresponds to HF sedentary (n=6) 

and dark grey, HF trained (n=6). Assays were performed in triplicates. Panel shows data as 

means±SEM. No statistical significance was reported amongst groups (p= 0.2099). 

 

 

The fractional SR uptake rate was similar among groups in SOL biopsies. The Ca2+ 

re-sequestration rates were calculated as being 39.94± 2.76 µMol/s for control rats (n=9); 

44.02±1.86 µMol/s for HF sedentary animals (n=6) and 46.41±2.52 µMol/s for HF trained 

rats (n=6).No difference was observed in SR Ca2+ loading between control and HF.  

 

4.4.3  SR Ca2+ uptake in saponin-permeabilized EDL fibres 

In conjunction with SERCA1-pumping activity, regulation in situ of CK was 

investigated in order to examine a functional coupling between this enzyme and SR. EDL 

was chosen for this purpose in light of its greater amount of CK compared to oxidative 

fibres (figure 31). 
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Figure 31: Rate of fractional Ca2+ uptake in the SR in EDL fibres. The black bars 

represent control rats; light grey, HF sedentary; and dark grey bars illustrates the HF 

trained group. Panel shows data as means±SE. A. Muscle biopsies were supplied with 

ATP+CrP. Control, n=11; HF SED, n=7; HF TRN, n=7; p= 0.0581. B. ADP+CrP solution 

was used as substrate to supply CK-coupled activity and consequent Ca2+ transportation 

mediated by SERCA. Control, n=6; HF SED, n=7; HF TRN, n=6; p=0.0617. No 

statistically significant differences could be evidenced by Tukey's multiple comparisons 

test. 
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Glycolytic fibres were investigated in two different circumstances. This included 

supplying SERCA1 with the ideal substrates (ATP+CrP); and then, CK-system activity 

was addressed by delivering ADP+CrP. Nevertheless, the effects of exercise training on 

infarcted animals were like those observed in sedentary or healthy ones. SERCA uptake 

was 45.09±1.64 µMol/s in the control group (n=11); 37.84±4.65 µMol/s in infarcted 

sedentary animals (n=7), against 35.89± 2.43 µMol/s observed in the group of post-MI 

trained rats (n=7).  

In addition to this, the coupling of  CK to SERCA was investigated, no differences 

among groups could be evidenced by the present method and the rates of Ca2+ active 

transportation were 49.39±2.42µMol/s, 35.85±5.75 µMol/s and 35.90±2.87 µMol/s for 

control (n=6), HF sedentary (n=7) and HF trained (n=6), respectively.  

This data demonstrates a similar behaviour of the Ca2+-pump function to those 

observed when ATP+CrP was used. The difference in SR uptake in the HF group was 

~30% lower than control data and indistinguishable from trained group. None of these 

changes were statistically significant, although this may be due to insufficient group sizes 

since a 30% change would be considered to be physiologically important  (Joubert et al. 

2008). 

 

4.4.4 Estimation SR Ca2+ uptake in saponin-permeabilized LV fibres 

 

Additionally, Ca2+ pump activity of SERCA2 was evaluated by determining the rate 

of Ca2+ uptake into oxalate-loaded SR prepared from the LV of HF and control hearts. As 

executed previously, Ca2+ sequestration was initiated by adding an aliquot of CaCl2 to the 

multiple experimental buffers, at 23°C. Uptake rates can be seen in figure 32. 
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C 

 

D 

 
 

Figure 32: SR Ca2+ uptake measured in intact and permeabilized ventricular 

myocytes. Ca2+ uptake was estimated under different energetic conditions. Experiments 

were performed in triplicates. Control rats are represented by black bars; HF sedentary, by 

light grey and, HF trained animals by dark grey bars. A. ATP+CrP buffer; Control, n=11; 

HF SED, n=7; HF TRN, n=7; B. SR supported by ADP+CrP. Control, n=6; HF SED, n=7; 

HF TRN, n=7; C. LV fibres in presence of ADP without creatine. Control, n=5; HF SED, 

n=6; HF TRN, n=6. D. SR loading upon azide modulation of mitochondria. Control, n=5; 

HF SED, n=6; HF TRN, n=6. Results are presented as means±SE; One-way ANOVA has 

not indicated significant variances amongst groups by Tukey's multiple comparisons test. 

 

 

From the above experiments it is possible to assume that Ca2+ uptake rates were 

similar for all conditions and groups. Findings have demonstrated that prepared fibres from 
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failing LV of HF sedentary rats did not exhibited a major decrease in Ca2+ sequestration 

rates (p=0.218) in solution containing 5mM ATP and 10mM CrP. These outcomes contrast 

the study done by Currie and Smith, who have reported reduced SERCA activity in a rabbit 

model of HF (Currie & Smith 1998). On the other hand, it has been shown that cardiac 

SERCA2 expression was normal in a rat model of HF (Joubert et al., 2008). 

Loading supported by exogenous ADP was again not significantly different from 

control rats 34.40±1.23 µMol/s, (29.20±3.48 µMol/s in HF sedentary and 34.78±1.71 

µMol/s in trained animals).  

 Following, the next buffer addressed the ability of mitochondrial direct CrP 

molecules to local CK to control the ATP/ADP ratio in the vicinity SERCA (Joubert et al., 

2008). Similarly to the above mentioned results, no important variations were detected in 

control (12.30±7.62 µMol/s) versus sedentary animals (5.92±1.14 µMol/s) and trained 

(11.41±1.11 µMol/s). Finally, mitochondrial ATP production was blocked due to azide 

inhibitory mechanism. The uptake rates were markedly reduced in this experiment in 

comparison to those obtained based on control buffer, and they were calculated as 

6.40±2.36 µMol/s, 5.61±1.10 µMol/s and 5.87±1.54 µMol/s for control sedentary and 

trained groups, representing similar values to that seen in ADP zero CrP solutions. This 

suggests that there is insufficient CK/CrP shuttle activity in saponin permeabilised cardiac 

fibres to supply ATP for Ca2+ pump activity. 

 

4.5 Discussion 

 

Investigation of the SR function in muscular tissue under various conditions has 

provided information on the cellular bioenergetics of a rat model of HF. Despite the 

current method has demonstrated to be reliable in detecting distinct SR functional states in 

control samples, it could not evidence differences in clinical endpoints. 

In contrast to earlier findings (Bueno et al. 2010; Wisløff et al. 2002), the present 

data do not suggest improved Ca2+ uptake rates in SOL after the implementation of an 

exercise training regimen. However, other researches have reported that HF did not 

significantly alter protein levels of SERCA2 in SOL muscle (Lunde et al. 2006); and the 

amount of SERCA2 of slow-twitch fibres was found to be even upregulated in 

experimental models of HF (Lunde et al. 2006). Similar uptake rates observed in SOL 

fibres across the experimental groups might be consistent to studies that ensure modulation 

of SERCA2 is constant in HF. Besides, the condition tested in this muscle was only 

ATP+CrP, which is the ideal substrate for SERCA function; additionally, the enriched 
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mitochondrial content in these fibres might have compensated for potential dysfunctional 

uptake induced by HF. 

EDL fibres were tested in ATP and ADP+CrP media, generating as in SOL, 

comparable results among groups. Glycolysis might play a role in supporting Ca2+ active 

translocation regardless the sedentary state of the animals. In the perspective of peripheral 

muscles, a reasonable explanation to justify such findings in EDL and SOL is that the 

degree of HF in this animal model was not severe enough to induce skeletal myopathy 

described by many investigative groups. 

Investigation of LV provided further information on SERCA2 functionality in HF. 

Even though no relevant differences were reported amongst experimental groups, it is 

interesting to observe how fibres respond to distinct metabolic environments, with 

activation of different intracellular systems, including mitochondria and the CK shuttle. It 

was found that trained animals have exhibited slightly higher Ca2+ uptakes against 

sedentary rats in scenarios as ATP+CrP, ADP with and without CrP. Data have supported 

exercised animals exhibited rates comparable to the control condition, which suggests there 

is normalisation (in some degree) of the oxidative function induced inferred by exercise. 

A possible explanation for this might be that SERCA and CK function in LV was not 

severely affected by HF in this animal model. This assumption is endorsed by Kaasik and 

research group, who indicated that CK deletions do not consist of a key obstacle to normal 

heart function under controlled conditions (Kaasik et al. 2001). It has been recognised that 

mice hearts lacking CK exhibited comparable function to control mice (Saupe et al. 2000).  

In conclusion, the reporting of absence of significant results in HF and subsequently 

after training is still valuable, since any difference will be hypothesis generating for the 

clinical effect. Importantly, there is some bias regarding sample preservation state, as 

training studies would perhaps demonstrate more pronounced effects of exercise-induced 

improvements whether samples were fresh or not so ancient. With aims of addressing 

physiological effects, an approach involving recently exercised animals would greatly add 

to the further understanding of SR modulation by physical training. 
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CHAPTER FIVE 

ENZYMATIC STUDIES OF ENERGY PRODUCTION AND 

TRANSFER SYSTEMS 
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5.1 Introduction 

SERCA is a pump that consumes one molecule of ATP to transport two molecules of 

Ca2+ from the cytosol to SR and so, plays a pivotal role in maintaining SR load and 

regulating cytosolic Ca2+ during systole and diastole (Pinz et al. 2011). Efficiency of 

contraction rely on myofibrillar function, whereas proper relaxation depends on SR Ca2+ 

uptake, accordingly (Wilding et al. 2006). Mediating these processes, constant ATP supply 

and ADP removal are necessary to maintain a high local ATP/ADP ratio (Wilding et al. 

2006). 

SERCA has a high affinity ATP site (Kd ~1 µM), referred to as the substrate site. In 

normal conditions, ATP levels are widely abundant and readily available to supply SERCA 

demands. As such, intracellular Ca2+ is the limiting substrate that regulates SERCA 

function  (Bers 2001).  

In pathological circumstances, such as the ischemia that occurs after an MI, there 

may be some decline in SR Ca2+-pumping, and slowing of Ca2+ uptake (Lunde et al. 2015). 

 The thermodynamic response to this cellular configuration is that energetic limitation 

observed in HF (Weiss et al. 2005)– such as reduced ATP production, ADP accumulation 

or increases in Pi concentration - may affect Ca2+ uptake by the SR (Bers 2001). This ratio, 

ATP/ADP+Pi, known as the phosphorylation potential, defines the free energy obtainable 

from ATP hydrolysis (∆G~ATP) necessary to drive ATP-demanding reactions (Ingwall 

2011). Without the energy coming from the cleavage of ATP, ions could not move against 

their concentration gradients, and most biological reactions simply would not take place 

(Ingwall 2011).  

Therefore, pump inhibition or slowing would reduce the amount of Ca2+ accumulated 

by the SR during a given loading period (Steele et al. 1996). For example, whether ATP 

concentration reduces or ADP or Pi level rises, the G~ATP available to the Ca2+-pump is 

reduced (Bers 2001), which leads to a decrease of the Ca2+ gradient that the SERCA pump 

can generate. This is more pronounced when intracellular Ca2+ declines, as the pump 

reaches an equilibrium - lower [Ca2+]SR and higher intracellular Ca2+ (Bers 2001).  

In this scenario, glycolytic enzymes are activated as a protective mechanism with 

respect to changes in G~ATP. Muscle fibres use specialized systems of energy transfer 

such as CK which is bound to the mitochondrial inner membrane, myofibrils and SR 

(Weiss & Hiltbrand 1985; Wilding et al. 2006) and take part in energy synthesis reactions, 

producing ATP locally, and consuming local ADP. This ensures the efficiently transfer of 
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high-energy phosphate group of mitochondrial ATP to ADP in the vicinity of the 

myofibrils and SR (Wilding et al. 2006). This ATP appears to have preferential access to 

the SERCA-pump, which may ensure optimal G~ATP availability for Ca2+ (Bers 2001). 

It was hypothesised the direct channelling of ATP from mitochondria to SR was 

altered due to dysfunction in skeletal muscle induced by HF. It was examined if exercise 

training would be able to improve synthesis and/or translocation of high energy molecules 

from mitochondria to SR, in order to energetically supply SERCA. 

 

5.1.1 Depressed bioenergetics in HF and shared dysfunctional pathways in cardiac 

and skeletal muscle 

HF is characterised by altered metabolic patterns and depressed bioenergetics that 

correlates to reduced functionality in muscle (Ventura-Clapier 2009). Metabolic and 

energetic failure are associated to several factors, such as decreased oxidative capacity and 

energy production, due to decreased mitochondrial biogenesis, reduction in the efficiency 

of phosphotransfer kinases reactions, altered energy fluxes with impaired utilisation and 

consumption of phosphate molecules (Ventura-Clapier 2009; Kemi et al. 2007; 

Middlekauff 2010; Arnolda et al. 1991).  

CK activity and mitochondrial content are found to be reduced in HF (Sousa et al. 

1999a; Ingwall 2011; Ventura-Clapier et al. 2004), contributing to depressed energy 

transfer and utilization. In this dysfunctional scenario, the energy reserve in muscle is 

reduced, resulting in lower CrP/ATP ratio and CK fluxes. In tissues with high and sudden 

energy demand, such as fast-twitch muscle, for example EDL, CK- and AK-catalysed 

reactions make up the major pathways to ensure efficient communication between the 

subcellular compartments responsible for production and use of metabolic energy 

(Wallimann et al. 1992; Janssen et al. 2000). AK and CK display, therefore, a 

complimentary and alternate activity (Veksler et al. 1995; Dzeja et al. 1998) minimising 

large fluctuations in the chemical driving force in cells. When in synchrony with the 

glycolytic enzymes, they comprise the cellular energetic infrastructure responsible for 

handling and distribution of high energy phosphoryl groups throughout muscle 

environment. 

Modulation of SERCA by CK  is important for relaxation during diastole in cardiac 

muscle and, therefore on contractility as well (Sousa et al. 1999a). This is supported by 
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findings that showed inhibition of CK limited SR Ca2+ handling and thereby, the 

contractile reserve in the intact heart  (Tian et al. 1998). 

Additionally, failing cardiac and skeletal muscle cells are known to display 

cytoarchitectural disorganization that may affect mitochondria, SR and myofilament 

interactions (Ventura-Clapier et al. 2002). This pattern was also observed in a rat model of 

HF induced by aortic banding, in which animals exhibited decreased oxidative capacity of 

skeletal muscles, which was associated to the downregulation of the mitochondrial 

biogenesis (Garnier et al. 2003). Given that, it was hypothesized that SERCA modulation 

by the local ATP/ADP was impaired and could culminate in contractile and metabolic 

alterations detrimental to normal function. 

 

5.1.2 Metabolic impairments in skeletal muscle in HF 

Critical metabolic impairments are observed in skeletal muscles from HF patients 

and animals (Ingwall 2011; Sullivan et al. 1990). Like the energetic starvation that takes 

place in the heart (Ingwall & Weiss 2004), the physiology of skeletal myopathy has its own 

modulatory mechanisms and specific effects on: fibre expression, oxygen diffusion, and 

enzyme activity, such as endothelial and neurohormonal components. 

 In early anaerobic metabolism, the CrP depletion and increased lactate production 

that occurs during exercise (Kiilavuori et al. 2000), are associated to delayed CrP recovery 

at the end of a training bout. These abnormalities can be detected regardless of the 

dimensions of the muscle, especially since dysfunctional patterns can be present even in 

groups of small muscular mass (Maskin et al. 1983). 

Muscle fibres function by converting chemical energy into physical work and rely 

on ATP for suitable contractility. Depressed mitochondrial content and density, a marked 

shift towards expression of glycolytic enzymes, and depressed activity of essential 

enzymes contribute to an insufficient energy production which is linked to the occurrence 

of  local myopathy (Ventura-Clapier et al. 2002). The depleted mitochondrial volume is 

linked to the reduced endurance capacity of HF patients, which suggests that HF majorly 

contributes to the impaired oxidative metabolism in muscle fibres and compromised 

exercise capacity.  

In this respect, ADP and mitochondrial kinases (such as AK and CK) can be 

functionally compromised in HF, leading to a status of altered energy fluxes and impaired 

Ca2+ handling. Despite the scarce literature on skeletal muscle myopathy, it has been 
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demonstrated that the CK system is affected in these muscles, especially when taking into 

account the different isoforms existent in skeletal fibres (MM-CK and mi-CK) (de Sousa et 

al. 2000; Mettauer et al. 2001). 

The effects of HF in skeletal muscle and in the myocardium are comparable. The 

resulting impairment in CK leads to an energy mismatch, which negatively impacts the rate 

of Ca2+ pumping from the SR, slows the cytosolic Ca2+ sequestering and contractile 

proteins in the failing skeletal muscle (Ventura-Clapier et al. 2002). 

5.1.3 Exercise training modulation upon energy systems in HF 

Adaptive cardiovascular and muscular responses induced by endurance training are 

linked to improvements in energy metabolism, enhanced ventricular function and increased 

resistance to myocardial injury (Kemi et al. 2007; Ventura-Clapier 2009; Egan & Zierath 

2013). 

Studies in animal models have shown that regular exercise increases glycolysis and 

oxidative metabolism (Stuewe et al. 2001; Kemi et al. 2007). In a rat model of HF induced 

by coronary ligation, training caused a substantial increase in aerobic capacity in skeletal 

muscle (Arnolda et al. 1991). Endurance training enhances total myocardial CK activity 

and muscle-brain (MB–CK) isoenyzme content in the canine left ventricular myocardium 

(Stuewe et al. 2001). Exercising has also been correlated to an increase in mitochondrial 

biogenesis (Mercer 2014; Lancisi et al. 1995; Hambrecht et al. 1995), enhancement of 

mitochondrial proteins, together with an increased efficacy of energy transfer (Gianni et al. 

2004; Iversen et al. 2011). 

 

5.2 Methods 

To examine relevant kinetics that modulate muscle energetics in HF, EDL samples 

were weighed, homogenized in ice-cold buffer and incubated for 60 min at 4 °C for 

complete enzyme extraction (see chapter 2). The total activities of CK and AK were 

measured spectrophotometrically at 340 nm. COX was addressed by quantifying the 

disappearance of reduced cytochrome C at 550 nm; and CS function was measured at 412 

nm according with previously described method (see chapter 2). 
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5.2.1 Statistical analysis 

Data are presented as mean±SEM. The significance level was set to be p<0.05. 

Ordinary one-way ANOVA with post-hoc Tukey’s multiple comparison test examined 

outcomes amongst experimental groups. 

5.3 Results 

5.3.1 Energy production systems: total activity of CS 

Energy-generating metabolic pathways are regulated by multiple modulatory 

enzymes. CS is an essential catalytic key that condensates oxaloacetate and acetyl 

coenzyme A to form citrate in the tricarboxylic acid cycle (Siu et al. 2003). It has been 

widely used as a metabolic marker in assessing oxidative capacity and mitochondrial 

activity. CS kinetics was addressed in EDL fibres from control and HF animals (figure 33). 
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Figure 33: Enzymatic activity of CS. Control (n=5); HF SED: HF sedentary (n=6); 

HF TRN: HF trained (n=6). Assays were performed in duplicates. Data is shown as mean ± 

SEM. HF TRN shows higher CS activity compared control animals, *p=0.018. Control and 

HF sedentary rats exhibited similar results (p=0.0746).  

 

 

Results show that exercise training has improved CS function in animals that 

underwent a training protocol (814.0±98.0 IU/mg-1) in comparison to control (362.7± 55.7 

IU/mg-1), p=0.0180. Tukey's multiple comparisons test has revealed the difference in CS 

activity did not reach statistical significance when comparing infarcted sedentary (705.7± 

119.7 IU/mg-1) group and control rats (p=0.0746). 

 

5.3.2 Energy production systems: total activity of COX 

Complex IV or COX is the final H+ pump in the electron transport chain and propels 

H+ ions across the inner mitochondrial membrane (IMM), generating the “H+-motive 

force” or “proton-motive force” utilized by complex V to phosphorylate ADP into ATP 

(Williams et al. 2015). The activity of COX was quantified in EDL lysates (figure 34). 
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Figure 34: Enzymatic activity COX in EDL homogenates. Control (n=5); HF SED: 

HF sedentary (n=6); HF TRN: HF trained (n=6). Readings were performed in duplicates. 

Data are displayed as mean± SEM. Exercise training increased CS function in HF TRN in 

comparison with control (p= 0.0572).  

 

 

The activity of COX was found to be unchanged amongst experimental groups. 

Tukey's multiple comparisons test has shown that variation between controls (227.1±40.7 

IU/mg-1) and HF sedentary rats (488.8± 78.7 IU/mg-1) was not significant (p=0.0768); 

besides, although non-significant, further comparison between control and HF exercised 

rats (506.6± 89.7 IU/mg-1) has pointed a marginal p value (p=0.0572), which may indicate 

a trend towards improved COX kinetics adaptive to HIIT. 

 

5.3.3 Energy transfer systems: total activity of AK 

AK isoenzymes use their kinetic properties and strategic cellular locations to protect 

cells against energy scarcity in periods of high metabolic demand (Janssen et al. 2000; 

Dzeja & Terzic 2003). Coordinated action of mitochondrial and cytosolic isoforms of AK 

are understood to deliver a path for assigning two high-energy phosphoryls in one 

molecule of ATP from its generation to utilizing sites (Zeleznikar et al. 1995).  

In the present protocol, AK and CK measurements were done consecutively using 

EDL homogenates, being AK quantified first. Subsequently, CrP was added to measure 

both CK and AK activities combined. In order to obtain values regarding CK function 

separately, AK activity is subtracted from the total assay and it is expressed as total 
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production of NADPH in the absence of CrP. Results of AK activity in type I fibres are 

shown in the figure 35. 

 

 

 

Figure 35: Enzymatic activity of AK in EDL homogenates. Control (n=6); HF SED: 

heart failure sedentary (n=6); HF TRN: heart failure trained (n=5). Data are displayed as 

mean ± SEM and readings were performed in duplicates. Exercise training improved the 

AK function in HF TRN comparable with control (*p= 0.0187). Statistical significance 

was reported between exercise-trained group and sedentary rats (*p=0.0198) by Tukey’s 

multiple comparison test. 
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Energy transfer supported by AK, which translocate a phosphate group between 

ADP molecules, was found to be markedly elevated in exercised rats (45864± 9122 IU/mg-

1) compared to controls (22660± 3366 IU/mg-1), p=0.0187. Controls and HF sedentary 

(22878± 1703 IU/mg-1) group have exhibited comparable AK activities, and no statistical 

significance was achieved between them, being p=0.9995. Treatment by exercise training 

also induced a further increase in the activity of AK in comparison to sedentary animals 

(p=0.0198). 

 

 

5.3.4 Energy transfer systems: total activity of CK 

In skeletal muscle, the principal CK isoform is MM-CK, present as a soluble protein 

in the cytosol, bound to myofibrils and to SR (Rossi et al. 1990). In light of the present 

protocol (see chapter 2, section 2.6), outcomes for EDL fibres are displayed in figure 36: 
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Figure 36: Enzymatic activity of CK in EDL homogenates. Control (n=5); HF SED: 

HF sedentary (n=6); HF TRN: HF trained (n=5). Data are displayed as mean ± SEM. 

Measurements were performed in duplicates. Exercise training had neutral effect in CK 

activity when comparing the trained group against control rats (p= 0.9066). No statistical 

significance was achieved between HF sedentary and control animals (p= 0.8327). 

 

 

CK values were found to be unchanged amongst groups. Although non-significant, 

exercise training seems to restore the activity levels of total CK. Rate in control animals 

was estimated to be 60308± 12698 IU/mg-1, against 67979±17618 IU/mg-1 displayed by 

trained group (p=0.9066). This variation in kinetics represents an increase of 12% in CK 

activity in exercised EDL muscle. No statistical significance was reported between 

sedentary (50240±6411 IU/mg-1) and control animals (p= 0.8327). 

 

5.4 Discussion 

Enzymatic reactions have been performed in situ, using homogenates from EDL 

muscle. The ATP flux was assessed in order to determine whether the metabolic function 

would improve or be restored after the establishment of an exercise training protocol.  

To address how physical training would modulate the energetic state of a 

theoretically dysfunctional muscle, CS activity was investigated. Present data evidenced 

that CS activity was 2.5 fold higher in HF trained rats than in healthy animals, after the 

implementation of the HIIT protocol. This outcome is in accordance with findings shown 
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by Kemi and colleagues, who reported that CS was partially restored by exercise training 

(Kemi et al. 2007). A possible explanation for this is that an ischemic myopathy could 

have trigged inflammatory responses that led to an increase in expression of coactivators 

that stimulate mitochondrial biogenesis as a compensatory mechanism. Diminished O2 

diffusion and utilization is a commonly described result of HF in skeletal muscle (Esposito 

et al. 2011; Drexler et al. 1987; Hambrecht et al. 1995). The latter plays a role in creating 

an ischemic environment, which may induce the expression of muscle protective factors, 

and, in turn, leads to an increase in peroxisome proliferator-activated receptor γ 

coactivator-1 (PGC1)-alpha levels and subsequent upregulation in mitochondrial function 

(Vescovo et al. 2005). It has been demonstrated that PGC-1alpha is a result of hypoxia in 

skeletal muscle cells via p38 mitogen-activated protein kinases (p38MAPKs)  (Arany et al. 

2008). Additionally, cellular stress induced by the exercise protocol could contribute to the 

enhancement in mitochondrial activity, as endurance training has been recognized as 

potent stimulant to mitochondrial content in skeletal muscle (Russell et al. 2014).  

Research has consistently shown that endurance exercise training increases oxidative 

enzyme activity in skeletal muscle (Bacurau et al., 2009; Gordon et al., 1996; Linke et al., 

2005). Similarly, outcomes by Leak and collaborators demonstrate that CS levels increased 

significantly in response to a physical activity programme when in rested state, compared 

to untrained subjects (Leek et al., 2001). Exercise training has also been recognised as a 

molecular stressor agent to the cell and appears to be responsible for the initial activation 

of mitochondrial biogenesis after training (Russell, Foletta, Snow, & Wadley, 2014).  

The present data concurs and further expands the outcomes of previous studies which 

reported that exercise training in HF improves exercise tolerance and increases 

mitochondrial volume density (Higginbotham et al. 1983; Booth et al. 2015).  

Finally, it is important to highlight that this enhancement in CS occurred in parallel 

with increased aerobic capacity. This suggests that there are benefits that positively affect 

heart and muscle, resulting from cellular adaptations to exercise. 

Similar to CS, COX is a marker for energy production in mitochondria. In the current 

fast-twitch glycolytic fibre, there was a trend for an increase in catalytic rates when 

examining lysates from infarcted rats compared to controls, regardless of whether these 

animals are sedentary or trained. These enhanced levels were found to be statistically 

significant (p= 0.0439). A possible physiological explanation would be that mitochondria 

activity is potentially upregulated to compensate the ischemic environment in the failing 

muscle, so it is possible that COX function underwent a cellular adaption pathway in order 
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to maintain necessary ATP levels and support cell viability. Interestingly, exercise did not 

increase COX activity further. 

Subsequently, the energy transfer systems were examined. Skinned fibre dynamics 

showed that AK-mediated phosphotransfer reactions were two-fold higher in post-MI 

exercised animals than in control group. Increased AK levels were found to be 

metabolically more efficient in HF trained animals in comparison to control (*p=0.0187); 

or HF sedentary rats (*p=0.0198), meaning that this enzyme has contributed to a higher 

cellular ATP turnover in exercised animals. This is supported by studies which reported 

decreased AK levels in HF which were reversed by exercise training (Kemi et al. 2007). 

Moreover, exercise-induced adaptations were previously studied on muscle enzyme 

modulation and AK values were demonstrated to have also increased with exercise in 

humans (Linossier et al. 1997). Complementarily, a mouse model of skeletal muscle AK 

knockout has shown a dramatic reduction in the rate phosphoryl transfer, suggesting that 

the AK deficient muscle has a lower potential to sustain nucleotide ratios during functional 

load (Janssen et al. 2000). It was found that exercise training corrected the depressed AK 

activity in HF in EDL muscle. This improvement might be related to enhanced 

mitochondrial bioenergetics and transferring efficiency of phosphate groups. 

Regarding CK kinetics, studies have shown that, in the heart, total CK and other 

isoforms, such as mi-CK and muscular MM-CK, are depressed in HF (Sousa et al. 1999b; 

Ingwall & Weiss 2004) and exercise training is able to restore total levels of CK (Kemi et 

al. 2007). Although the present data indicate that CK may be increased by ~10% in the 

trained group, this is not significant (p=0.602). These findings are in agreement with 

previous outcomes that showed that HF did not alter glycolytic enzyme activity in animals 

or patients (Sullivan et al. 1990; Delp et al. 1997; Mancini et al. 1989). 

Present results show that AK enzymatic rates were increased in EDL in HF trained 

rats, which indicates an energetic remodelling mediated through exercise; while CK 

activity was kept constant amongst groups. This metabolic behaviour suggests that the 

function of these enzymes is interconnected and intracellularly organised in such way that 

CK function can be complemented by activation of AK phosphotransfer pathways. The 

compensatory upregulation of AK activity may act as an alternative mechanism to provide 

energy allocation in the cell, while CK system is minimised or not properly functioning.  

The lack of difference when comparing control samples to sedentary or exercised 

animals suggests that the CK energy transfer properties remained unchanged while the 

AK-system was activated. As previously shown, in CK-deficient muscles, phosphotransfer 
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is catalysed by AK as well as by glycolytic enzymes, that provide the major route for 

intracellular high energy phosphoryl transfer (Dzeja et al. 1998).  

In summary, this study has reported that the enzymes involved in energy transfer 

systems in the EDL muscle are increased after the implementation of a HIIT protocol. 

These alterations occur in parallel with increased aerobic capacity. The current enzymatic 

assays provided quantitative data on the kinetic performance of the energy production 

targets - CS and COX-; as well as on the behaviour of transfer reactions catalysed by AK 

and CK in saponin-treated muscle fibres. 

  



 

 

162 

 

 

CHAPTER SIX  

QUANTIFICATION OF TECHNICAL VARIATION IN  

WESTERN BLOTTING TECHNIQUE 
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6.1 Introduction 
 

To evaluate how different proteins existent in muscle fibres are affected by HF, the 

western blot (WB) technique was used as an analytical method. This approach allowed for 

the identification of specific molecular targets of the control and infarct animal models’ 

complex proteome (Lee et al. 2016). While WB is widely used in biochemical research, its 

application to skeletal muscle and exercise physiology is becoming more prominent (Bass 

et al. 2017). Nevertheless, it is necessary to have appropriate experimental strategies in 

place to avoid unintentionally inaccurate data production and interpretation (Bass et al. 

2017; Li & Shen 2013). Despite the refinement of technical features, improvement of 

equipment and optimisation of protocols over the years, variability and error are 

intrinsically related to the WB.  

To ensure accurate and reproducible WB results proper correction for technical error, 

normalization, and processing of the data is essential (Collins et al. 2015). High quality 

WB and increased reproducibility can be achieved when a systematic and quantitative 

approach is used.  Quantitative western blotting (QWB) mathematically corrects for 

unavoidable sample-to-sample and lane-to-lane variation by comparing the target protein 

to an internal control (LI-COR 2017a).  

Immunoblotting steps introduce unavoidable error. Normalisation strategies such as 

the use of an internal loading control (ILC) can help correct for variability introduced 

during sample preparation, gel loading and transfer from gel to membrane (LI-COR 

2016a). By understanding how normalisation methods work and how they affect data, it is 

possible to design experiments to minimise variation and reduce error. Reducing or 

eliminating sources of error will improve sample reproducibility and minimize the 

contribution of normalisation to data analysis (LI-COR 2016b). 

The principles of the WB technique rely on multiple steps that include i) isolation of 

target proteins from a protein mixture (in this case, muscle tissue); ii) quantification of 

protein content and separation through an electrophoretic field; iii) transferring the content 

of a gel matrix to a high-affinity surface (membrane); iv) avoiding unspecific protein 

binding by blocking membranes; v) probing membranes with highly-specific antibodies, 

which should be validated in light of protein expression versus antibody concentration; and 

finally, vi) quantification of immunoreactive signals using a fluorescence detection 

software.  

Separation of proteins upon electric properties and conformational alterations 

contribute to the sensitivity and specificity inherent to WB. The use of standard proteins 
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with known molecular weights also aid to identify targets based on protein sizes (Ghosh et 

al. 2014; Signore & Reeder 2012). Lastly, antibody-antigen complexes formation allow the 

detection of intracellular targets and their interactions (Ghosh et al. 2014). These features 

determine WB as a tool to offer mechanistic insight into many regulatory cellular 

processes. 

QWB method was addressed to determine its applicability and limits to compare 

biological replicates of the same experimental conditions. Moreover, a systematic analysis 

was performed to address linearity between protein concentrations and quantified optical 

densities, which is a fundamental prerequisite to use WB data quantitatively. For this 

purpose, three studies were conducted: 1) evaluation of signal linearity; 2) methodological 

variation; and 3) antibody binding efficiency.  

 

6.1.1 Aims 

 

So, this chapter aims to 1) identify the major sources of variation observed during the 

execution of technique and protein readouts; 2) suggest approaches to minimise potential 

bias introduced by biological and technical aspects; and finally, 3) investigate 

reproducibility and limitations concerning interpretation of immunosignals.  

 

6.2 Methods 
 

6.2.1 Linearity studies  
 

WB was performed to determine the content and relative proportion of SERCA and 

CaMKII in LV lysates. A gradient of LV homogenate samples was loaded on every gel to 

generate a standard curve for signal calibration.  

LV tissue was homogenized in RIPA buffer as previously described and complete 

protease inhibitor cocktail (see chapter 2, section 2.5.4). Protein concentration was 

determined by BCA assay (Thermo Fisher Scientific). Denatured tissue homogenates (10 

min at 70°C) were used for WB (8-12% polyacrylamide gel) using anti-SERCA (1:5.000, 

Abcam), anti-CaMKII (1:1,000; Abcam) and anti-CS (1:5.000, Abcam) as primary 

antibodies (see chapter 2, table 2). REVERT™ Total Protein Stain (LI-COR 

Biotechnology) was used for estimation of TP. 1 to 30 micrograms of protein were 

separated on Bis-Tris SDS- PAGE ready gels and transferred to nitrocellulose membranes 

(Thermo Fisher Scientific). Secondary antibodies used were IRDye 800CW goat anti-
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mouse (1:10,000; Abcam) and IRDye 680LT donkey anti-rabbit (1:10,000; Abcam) (see 

chapter 2, table 2). Protein bands were visualized using an Odyssey fluorescence imaging 

system, and band intensities were imaged using LI-COR Image Studio 3.1 (LI-COR 

Biotechnology).  For each protein concentration in the relevant lane on the gel image was 

used as the measure of the relative amount of protein loaded. 

Linearity was studied for TP loading by measuring the fluorescence signal intensity 

in multiple lanes. Thereafter, it was done individually for SERCA and CaMKII antibodies. 

A serial dilution protocol of protein samples was performed in order to generate a set of 

increasing protein content (from 1μg/ml to 30μg/ml) using LV homogenates to determine 

the correct volume of protein that should be loaded during future experiments. 

Lysates were separated by electrophoresis, blotted to a nitrocellulose membrane and 

detected with a NIR fluorescent stain REVERT™ Total Protein Stain (LI-COR Company) 

and relevant antibodies. These assays were replicated three times for CaMKII and four 

times for SERCA2. 

A linear range of detection should be developed to ensure that protein signal 

fluorescence is accurate, and has little to no saturation or noise. Thus, to examine the 

linearity of signal intensities against input content, LV homogenates were used to generate 

a protein gradient (1µg, 5µg, 10µg, 15µg, 20µg and 30µg) which was loaded on different 

lanes of the same gel. In this way, experiments were implemented with the aim of 

determining the best linear range of exposure, in which the band intensity is directly 

proportional to the abundance of the target protein.  

Initially, membrane quantification was done towards TP detection and later for the 

proteins of interest. For SERCA and CaMKII antibodies, different dilution arrays were 

tested by determining R2. The latter was based on the measurement of visible lanes or 

bands, and the computing of the least intense signal that could be detected.  

Linear regression was used to address the dilutions, and the coefficient of 

determination R2 was estimated using GraphPad Prism 6. The closer this coefficient is to 1, 

the more the linear model is appropriate to represent the data. Plotting standard curves also 

aids in the identification of the linear range, and in determining the approximate point of 

saturation (LI-COR 2016b).  The latter was found to be different for SERCA and CaMKII.  

Linear equations were developed for each one of these regression plots. After 

background subtraction during graph plotting, QWB should strive for zero-intercept 

linearity: y = bx, where y is the measured band intensity, x is the amount of the protein, 

and b is a flexible value that refers to a proportionality coefficient (Janes 2015). Plotting 



 

 

166 

 

with nonzero intercepts suggests errors in background subtraction and the presence of 

nonlinear relationships may be linked to issues regarding detection sensitivity or saturation 

(Janes 2015). In the present study, b values were set to zero, by subtraction from all plots 

in order to help resolve lower levels of protein expression. 

  

6.2.2 Estimating the coefficient of variation (CV) 
 

To examine variation of expression of SERCA and CaMKII within a range of protein 

concentrations, the density of these target bands in a given homogenate were normalised 

by the measure of TP for that lysate. Results were normalised to the TP input run on the 

same gel, enabling comparison of data across different gels (see chapter 2, section 2.5.4). 

The linearity of signals and the methodological CV were obtained.  

Quantification of variation will contribute towards the identification of key sources 

of bias over the technique, based on the assumption that a lower CV value means lower 

variation. By characterising the experimental steps that exhibits higher CV, it is possible to 

implement mathematical normalisation strategies. It includes, for example, defining a 

value as an acceptable internal quality control (reduced error margin in signal intensity) to 

select data to be accounted for analysis (chapter 2). CV also indicates how reproducible is 

the data and therefore, is possible to elucidate what limitations can be associated with each 

step of the WB. 

 

6.2.3 Statistical analysis 

CV was calculated as being the standard deviation (SD) divided by the mean of 

values (CV=SD/Mean). Multiple CV was resulted from technical replicates and an 

averaged CV with its respective SEM was calculated. Data are shown as mean±SEM. 

 

6.3 Results 

 

6.3.1 Linearity studies: TP detection range  

 

Linear regression of the six (n=6) visible signals from the different protein 

concentrations (either lanes or bands) was determined and the R2 was generated. The 

following graph (figure 37) shows the relationship between fluorescence intensity and 

protein loading for TP staining.  
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A 

 

B 

 

       

Figure 37: Concentrations ranging from 1 to 30µg/ml create a gradient of protein 

homogenate. Graph shows fitting not intercepting zero (y=mx+b). Linear regression was 

plotted based on equation y= 22476x + 147608, R2=0.9950. The same protein sample, with 

gradually increasing protein concentration, was loaded across 10-12% polyacrylamide bis-

tris gels. Nitrocellulose membranes were probed immediately after transfer by incubation 

for 5 min with REVERT™ Total Protein Stain (LI-COR) at room temperature. After, 

membranes were scanned on Odyssey Imaging Systems (LI-COR) and stain was removed. 

A. Points in the graph are shown as mean ± SEM R2=0.995. The assay was repeated 4 

times, in different experiments. CV is interpreted as the mean of CV±SEM: 0.20±0.05. B. 

Representative blot of TP staining. Protein gradients ranging from 1 to 30 ug/ml. 

 

The linearity assay indicated that TP staining fits within a linear range of detection, 

and that signal intensity is proportional to input proteome. The ideal detection gap is when 

protein concentration is situated 5 and 10µg/ml, considering the error margin for these 

values is reduced. TP appears to accurately represent protein expression in concentrations 

smaller than 15µg/ml. Knowing the ideal protein concentration to be loaded onto gels is of 

particular interest when WB is performed with a limited amount of homogenates available. 

Individual regressions of TP staining were nearly identical, demonstrating similar staining 

properties of the membranes (figure 37B).  

Despite the reduced technical error reported (CV±SEM: 0.20±0.05) and relative 

stability of all protein concentrations tested, the best concentration to be used in the future 

appears to be between 5 and 10µg/ml of protein. The lower (<5µg/ml) and higher 
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(>15µg/ml) detection limits exhibit larger errors in comparison to the 5-10µg/ml interval 

and might not accurately translate the relationship between OD and protein loading. 

These results suggest that TP can have a potential application as a consistent internal 

loading control (ILC). The strong correlation established in this project indicates that this 

normalisation approach has potential to rectify for probable variation in different WB 

stages, such as gel loading and membrane transfer. Furthermore, the staining buffer used in 

this protocol is easily reversible, which means that it can be washed from membranes 

without generating a residual background during scanning. 

 

6.3.2 Addressing linearity of protein loading for individual target proteins 

 

The correlation between fluorescence intensity and lysates with various protein 

concentrations was investigated. Despite being crucial for the success of experimental 

work, sample loading is rarely optimised (Mahmood & Yang 2012). Many labs routinely 

load a specific, set amount of TP per lane, generally 10-50 μg  (Janes 2015; Ghosh et al. 

2014; Taylor & Posch 2014). 

Sample optimisation procedures are necessary to ensure that signals are not 

saturated, and thus unusable for quantification (Bass et al. 2017).  If samples are 

overloaded, there will be consistent band densities for an abundant internal loading control 

protein (LI-COR 2016b); however, it can generate strong band signals that can exceed 

local capacity of the transfer membrane and/or exceeded the linear dynamic range of 

detection (LI-COR 2016b), causing signal saturation and overestimation of fluorescence 

intensity, skewing data interpretation. 

Janes has demonstrated the importance of studying sample optimisation by 

examining distinct proteins. He used two-fold serial dilutions from excessive overload to 

below the detection range, and found that for one protein, the linear detection was up to 

50μg of TP; whereas for other target, saturation was observed with less than 25μg of TP 

(Janes 2015). Corroborating with this, it was previously demonstrated that 20μg/lane is 

excessive (Ghosh et al. 2014); whereas 5-10μg/lane were reported to be usually overloaded 

and saturated (Taylor & Posch 2014). 

Optimisation of sample loading includes determination of the ideal amount to load 

onto gels by running a dilution series of samples. Kirshner and Gibbs pointed that linear 

ranges of quantification can be achieved by graphing intensities of serial dilutions in order 

to select a range of dilutions with the highest linearity (Kirshner & Gibbs 2018). Gel 
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loading should be adjusted according to the estimated protein concentration, and samples 

loaded as accurately as possible (Janes 2015; Degasperi et al. 2014). 

This study investigated whether adjustments of protein concentration prior loading 

samples onto gels had an effect. Antibody concentrations were further studied to optimise 

the protocol, with interest is how these affect interpretation of fluorescence levels (figure 

44). R2 was independently computed for each replicate (four for SERCA and three for 

CaMKII), producing a mean and a SEM of the fitting (figure 38). 
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Figure 38: Study of linear fittings of protein gradients ranging from 1 to 30µg/ml of tissue 

homogenate. Graphs compare fittings between regressions simulated through zero (y=mx); 

and lines not plotted through zero (y=mx+b). Membranes were firstly scanned for TP 

detection (at 700nm) and then, fluorescence of the protein of interest was measured. A. 

SERCA expression across a gradient of protein concentration (y= 1909x) B. Fitting of 

linear regression using the equation y=2012x+2109, R2=0.9377. C. Linearity of CaMKII 

antibody for regression intercepted through zero; y=215.6x. D. Fitting of CaMKII antibody 

linearity using the equation y=160.8x+1118 (R2=0.8777). 
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Selection of an optimum protein amount input is essential for producing stable 

signals for later quantification. By studying the linearity graphs, it is possible to select the 

data points where the protein range exhibits the smallest margin of error and, therefore, 

should be preferred. Linear regression was compared against values intercepting zero and 

not intercepting zero. QWB 

This was performed with aims to mathematically study the best fitting option and 

subsequently, generate data on the ideal protein loading protocol 

Both SERCA and CaMKII antibodies share a comparable fluorescence detection 

range, which relies between 1 and 10μg/ml of protein load. This ideal protein concentration 

is associated with minimisation of technical error and optimisation of the immunosignal. 

Although similar protein contents are required to generate detectable signals for SERCA 

and CaMKII, exposure for these antibodies was observed in different fluorescence scales. 

SERCA displays higher optical density for the same amount of protein loaded for CaMKII. 

While 5μg/ml of protein content reached an immunosignal of 10.000 units of optical 

density for SERCA antibody, the same protein concentration produced a signal of 

approximately 2.000 OD for the CaMKII antibody. 

Despite overall results have shown that optimal exposure for antibody detection is 

between 1 and 10µg/ml, it is interesting to note that all protein concentrations used to 

examine SERCA expression exhibited small margin errors in the detection span across the 

gradient of concentrations tried (figure 38A). This suggests that all concentrations could be 

used efficiently for SERCA detection.  

However, with aims to further optimise gel loading, some criteria were taken into 

account prior experiments. Despite small error observed for 1µg/ml and 5µg/ml of protein 

detection for SERCA and CaMKII, it is possible these concentrations are too diluted 

during sample preparation; additionally, concerns were raised over unwanted protein 

degradation or loss due to technical reasons. In this scenario, 10µg/ml was thought to be 

logistically reasonable and would ensure the presence of a good amount of protein over 

experimental stages. Besides, 10µg/ml would produce good signal quantification. 

 

6.3.3 Compatibility of fluorescence range: TP staining versus target protein 

 

When normalising QWB, it is a requirement that proteins of interest can be detected 

within the same range as the ILC (Eaton et al. 2013; Kirshner & Gibbs 2018; Li & Shen 

2013) which, in this case, is the TP staining method.  
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For this reason, linear regression of target proteins was individually plotted against 

the respective TP values in order to identify a fluorescence gap in which both signals could 

be detected simultaneously.  

The accuracy of this protocol relies on the proportional relationship between the 

signal intensities of the ILC and target protein being quantified within the same linear 

range of detection. This span was determined experimentally, using homogenates from LV 

control animals. When regressions of target proteins and ILC are graphically 

superimposed, it is possible to estimate the amount of protein that has to be loaded to 

produce a linear response for both (figure 39). 
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Figure 39: Linear relationship between OD and protein load (µg/ml) in homogenates 

from control LV samples. White points represent TP loaded; black, the target band signals. 

Data is shown as mean ±SD. A. Serial dilution of LV extract and reactivity to SERCA 

antibody, n=4. A positive correlation is observed across the entire gradient. B. Linear range 

determined for CaMKII, n=3. For these targets (TP + individual target), the linear range 

span seems to be around 1 to 10µg/ml of protein. 
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Similarly to the study of individual targets, normalisation by TP should produce a 

linear signal output in response to sample concentration. Considering that each protein 

demonstrates an ideal dilution for antibody detection, it was established that an average 

amount of 10µg/ml would ensure that signal intensity is reasonable and compatible to the 

TP load.  

 

6.3.4 Methodological variation and reproducibility of WB 

 

After, methodological variation was addressed. Technical and biological replicates 

were used to quantitatively assess the within membrane/gel variability caused by 

methodology. Likewise, the reproducibility of results was evaluated across different gels. 

Studies were done to investigate uniformity of sample loading (see below). 

 

6.3.4.1 Uniformity of sample loading 

 

To examine the accuracy of the sample loading, the same sample was loaded 

repeatedly (9 times) across a gel. This set up was repeated three times. Another reason for 

performing this experiment was to separate the methodological variation from the inter-

animal variation.  

Figure 46 shows representative blots and values obtained for fluorescence. Signal 

intensity was detected from the same homogenate SOL sample, and nitrocellulose 

membranes were probed with the reversible stain from LI-COR in order to detect the TP 

content per lane.  

This experiment was concluded within 12h of its start, and three gels were run in two 

tanks, being 2 gels run in parallel in one tank; and one gel ran by itself in another tank. 

This was done using one power supply, in such way all three gels were run in the same 

equipment. However, to perform the next step (i.e. electrotransfer), three tanks were 

accommodated between two power supplies from the same manufacturer (BioRad 

Laboratories), following the configuration that gels 1 and 2 were always transferred in the 

equipment 1 (PowerPac™ HC High-Current); while gel 3, in the other machine (Power 

Pac 3000). The same voltages (200V) and transfer time (1 hour) were applied for both 

systems; all tanks were immersed on ice. Figure 40 depicts the reproducibility of 

quantitative immunoblots during technical replicate. 
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Figure 40: Reproducibility of quantitative immunoblots during technical replicate. 

The same protein sample (10μg/ml) was loaded across gels. Experiments were performed 

in triplicate and nitrocellulose membranes were probed with TP stain and different 

antibodies. Left side shows protein load input per lane, with matching representative blots 

on the right. Blots exhibit TP staining detected at 700nm (representing the TP content in 

the lane). 
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Data present the outcomes of an identical sample loading across 3 different gels. The 

same protein homogenate was systematically loaded per gel in such manner all wells 

contained, technically, comparable volume and protein content. 

Quantification of immunoreactive signals have indicated that for gels 1 and 2, the 

majority of protein values were detected between 4 and 5 (arbitrary units); whereas for gel 

3, fluorescence was observed in a smaller scale, situated between 0.06 and 0.10. Although 

a great variation on fluorescence intensity could be detected from gels 1 and 2 compared to 

the third gel, the consistency of sample loading was kept in all gels. Results show that 

variability on signal detection across repetitive loadings is very small, as can be observed 

in the scattered data plots. Concerns emerge on other potential sources of variation that 

could contribute to the occurrence of evident gel-to-gel variation in signal.  

 It has been suggested that variation is reduced between gels transferred 

simultaneously using the same power supply (gels 1 and 2).  Dissimilarity on fluorescence 

signal becomes greater when comparing those to gel 3, electrophoresed using different 

equipment. This led to the assumption that gels ran in distinct power systems could exhibit 

altered intensity values, resulting from different transferring efficiencies. Although protein 

bands on blot 3 appear to be visually more pronounced than in blots 1 and 2, it seems this 

membrane underwent a different level of exposure, which resulted in reduced values.  

Thus, gel-to-gel variation is suggested to be the cause of bias. This is supported by 

the high consistency of fluorescent values within the same gel (table 15). This may reflect 

how pronounced discrepancy among signals can be when different equipment or gels are 

employed to perform the same protocol. 
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Table 15: CV of sample loading performed across distinct polyacrylamide gels. SD, 

SEM and CV are exhibited per gel. 

 

 

 

 

 

 

 

 

 

 

Table 15 shows data regarding individual presented as mean ± SEM. For tests related 

to tank 1, where gels 1 and 2 were ran in parallel, variation of the signal intensity for gel 1 

is 4.26±0.06 and for the later, 4.08±0.05, being CV calculated as 0.04 and 0.03 

respectively.  

The average of fluorescence in these gels demonstrated a very minor degree of 

discrepancy in loading technique, evidencing uniformity of loading across lanes within the 

same gel, and between gels under the same experimental conditions. Gel number 3 was 

quantified in signal intensity in a reduced detection range. Despite decreased fluorescence, 

consistency of loading was still present and CV is comparable to other gels. 

Notwithstanding differences in fluorescence detection, overall lane-to-lane variation 

across gels was minimal, which is endorsed by consistent CV values found (0.04, 0.03 and 

0.04), respectively. In this way, it was found the major source of variability related to the 

present technique may rely on the equipment itself instead of in loading characteristics. 

 

6.3.5 Reproducibility of results across gels  

 

Combining results from multiple gels is a strategy that raises concerns for QWB 

because the fluorescence intensity can greatly vary from gel to gel (Kirshner & Gibbs, 

2018). Despite the assumption that the quantification of relative levels of a target protein in 

one sample should be comparatively consistent among gels, variation is intrinsic to the 

experiment and can still be observed.  

 Intra-gel variation 

 Averaged signal (n=9) SD SEM CV 

Gel 1 4.26 0.18 0.06 0.04 

Gel 2 4.08 0.15 0.05 0.03 

Gel 3 0.08 0.003 0.001 0.04 
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Three distinct biological samples from control rats were chosen to elucidate: 1) intra-

animal variation; 2) reproducibility across multiple gels by measuring signals obtained 

after antibody testing. Repetitive loading of homogenates (3 consecutive loadings per 

sample) from SOL muscle was carried out in order to study variation. 

Firstly, samples (SOL 1, 2 and 3) were run onto three separated gels (figure 41). 

Lysates were loaded at a volume of 10µl to achieve a total of 10µg/ml of protein per lane. 

This concentration was confirmed by previous linearity studies that ensured signals from 

protein targets fit the linear detection range. It is possible to compare two blots or more if 

they exhibit precisely the same conditions when using different homogenates derived from 

tissue biopsies and treated in the same approach (Degasperi et al., 2014). Thus far, these 

requisites are met when producing a biological replicate. Electrotransfer and consequent 

antibody probing for SERCA2 was carried out to evaluate the consistency of signals from 

diverse animals.  
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Figure 41: Reproducibility across gels. Relationship between immunochemical 

reaction of SERCA2 antibody and tissue homogenate loaded per well across separated 

samples and gels. Panels A, B and C display the repetitive loadings of three biological 

samples (SOL 1, SOL 2, and SOL 3) in distinct gels (triplicates).  CV concerning sample 

loading is 0.25±0.07; whereas variation across gels is equivalent to 0.19±0.37. 
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Graphs A, B and C illustrate the variability in signal intensity of SERCA2 protein 

(~110kDa) detected after reversible staining performed afterward electrotransfer. Analysis 

of the three blots show that the majority of the values (signals from SOL 1, 2 and 3) in gel 

1 situate between 3 and 5; in gel 2, between 2 and 4; lastly, 2 and 4 for the third gel. 

However, sample SOL 3 is displaying the greatest variation in expression compared to the 

others. CVs were calculated based on triplicates of each biological sample, which means 

they were generated from the average of each sample. These values were obtained by 

dividing the SD by the mean of the OD detected from sample sets (table 16). 

 

 

Table 16: CV calculated per sample input. Each sample was run in triplicate onto 

three separated gels and had their variation calculated. Lysates from different animals 

(SOL 1, 2 and 3) were tested. 

 Analysis of intra-sample variation  

Sample Mean of CV SEM 

SOL 1 0.18 0.05 

SOL 2 0.22 0.01 

SOL 3 0.34 0.14 

 

 

 

The consistency of signals from SERCA2 was studied and compared for each of the 

three sample sets. Values represent CV of data collected across the control group (Table 

18). Fluorescence data show that CV for SERCA probing, following normalisation by TP, 

was around 20% for samples 1 and 2. Deviation was higher (34%) amongst loadings 

coming from SOL 3. Sample loading within gel 1 presented the highest variation (29%) 

while the signal quantification varied 15 and 13% for gels 2 and 3, respectively.  

An often cited typical CV for WB is reported to be between 20 - 30% (Aguilar, 

Zielnik, Tracey, & Mitchell, 2010; Aldridge, Podrebarac, Greenough, & Weiler, 2009; 

Janes, 2015). Loading from sample SOL 3 is not within this range, while the other 

immunosignals fit these criteria.  
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Thereafter, the signal variation was compared among gels (gel 1, 2 and 3). This was 

executed with the aim to investigate in which manner deviation in fluorescence across 

multiple gels would affect results regardless biological variation (table 17). 

 

Table 17: CV calculated per gel. Each sample was run in triplicate onto three 

separated gels. All signals (from SOL 1, 2 and 3) were quantified and a general CV was 

calculated per gel (instead of per sample group, as done in the previous analysis). Results 

are displayed as the mean of CV±SEM for each gel. 

 Analysis of gel to gel variation  

Gel Mean of CV SEM 

1 0.29 0.59 

2 0.15 0.26 

3 0.13 0.25 

 

 

 

This table shows the variability observed in gel 1, which was twofold higher 

(0.29±0.59) compared to gels 2 (0.15±0.26) and 3 (0.13±0.25). Combined with the 

previous outcomes (table 19), results indicate variation can be a result from the gel itself. It 

suggests that gels can contribute to increases in variability instead of the amount of target 

protein present in homogenate samples. 

 

6.3.6 Efficiency of antibody binding  

 

Finally, the efficiency of antibody binding was addressed in different membranes. 

The aim was to quantify the capacity of the antibody to specifically bind to the antigen 

present in the membrane surface, regardless membrane region. To test whether antibodies 

would bind uniformly across the membrane surface area, two different antibodies were 

tested against CS and SERCA proteins in SOL lysates (figure 42). 
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Figure 42: Reproducibility of immunoblots during technical replicate. The same 

protein sample (10μg/ml) was loaded across gels. Experiments were performed in 

triplicate. Nitrocellulose membranes were probed with TP stain and antibodies. 

Normalisation was done by TP content. Circles represent the bands detected on gel 1, 

squares on gel 2, and triangles represent the signals from the third gel. CV was calculated 

as SD/mean. A. SERCA2 antibody probing. CVs were calculated as 0.15, 0.05 and 0.13 for 

gels 1, 2 and 3 respectively. B. Nitrocellulose membranes were tested against CS antibody 

(CVs = 0.16, 0.05 and 0.14 for gels 1, 2 and 3 correspondingly). 
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Inasmuch as all buffers employed and transferring times were comparable (all gels 

were run under the same conditions), any variation could be linked to other steps of the 

technique. It is possible that protein quantification, transfer set up, or membrane staining 

could generate discrepancies in signal quantification of immunoreactive bands. However, 

protein content detected across gels suggests that the transfer step and antibody binding 

seem to be adequate within the same gel, since bands shown a wide distribution over the 

wells. Seeing that antibody binding capacity was investigated by using two distinct 

antibodies against this protein homogenate, affinity seems to be irrespective of antibody 

type; and nitrocellulose membranes appear to be homogeneously exposed to the antibody 

buffers.  

CV calculated for CS probing is 0.12±0.03, while the variation detected for SERCA2 

testing is 0.11±0.03. Therefore, antibody binding displays minimal variation and can be 

considered stable intra and inter gels. Antibodies are not considered as a potential source of 

inconsistencies towards signal interpretation.  

 

6.3.7 Assessing sources of experimental variation 

 

In conclusion, variation can be introduced during several stages of the 

immunoblotting technique. Table 18 below summarises the sources of variability by stages 

and issues that might be generated by them. 
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Table 18: Sources of experimental variation during WB technique. 

Sources of variability within the 

technique 

Implications 

STEP: SAMPLE PREPARATION AND HANDLING 

Homogenisation of tissue sample Proteases might disrupt original 

protein content if proper anti-

enzymatic cocktails are not used. 

 

Tissue fragments might be loaded onto 

the gel. 

 

Quantification of protein content 

in samples 

Using non-compatible reagents might 

over- or underestimate protein content 

in samples. 

 

Sample loading onto gel prior 

electrophoresis 

Inaccurate pipetting by using non-

calibrated equipment or inconsistencies 

during manual input are associated to 

poor quality protein bands. 

 

STEP: ELECTROTRANSFER 

Protein transfer from gel to 

membrane 

Inadequate voltage or transfer time 

produce faint bands, underestimating 

signals. 

 

Transfer sandwich assembling  Wrong set up or outworn transfer pads 

generate blotched membranes. 

 

Membrane staining for estimation 

of transfer efficiency 

Inconsistencies on the time interval 

from membrane staining to scanning 

might generate bands with different 

signal intensities. 

 

STEP: ANTIBODY PROBING 

Antibody binding Antibody cross-reactivity 

Varying substrate availability 

Unstable signal 

 

Membrane scanning and optical 

density measurements 

Improper background subtraction 

User bias selecting bands 
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6.4 Discussion 

This study has found that linearity assays contributed to the understanding on how 

TP staining can be adopted as an ILC, by examining its fitting in a linear range of 

detection. Fluorescence was proportional to the amount of protein content loaded, with 

lower and higher detection limits displaying larger errors in comparison to the optimal 

protein concentration (5-10µg/ml). This protocol also showed the ideal protein 

concentration for studying individual targets. Values found were associated to 

minimization of error and optimisation of the immunosignal, situated between 1 and 

10µg/ml of protein. 

Compatibility between target protein and TP was demonstrated by employing the 

amount of 10µg/ml of homogenate, which generated reasonable imaged signals, within 

comparable detection span. Superimposition of calibration curves have illustrated how to 

avoid low-intensity detection or increased signal-to-noise ratio during normalisation. 

By employing the concentration of 10µg/ml, both TP and targets are simultaneously 

imaged. This concentration also avoids low-intensity detection or increased signal-to-noise 

ratio that can be observed when smaller loadings (as 1µg/ml) are used. Moreover, the 

occurrence of strong bands with density exceeding the local capacity of the transfer 

membrane, and/or exceeding the linear dynamic range of detection, may occur when 

higher protein concentrations (such as 20 or 30µg/ml) are used to evaluate targets. 

So, despite both target and ILC being detected within the same linear range, there are 

some other aspects to be considered: CaMKII expression, particularly, exhibits a much 

lower gradient compared to SERCA, which means that resolution of expression differences 

may be lower. Nevertheless, this method is still suitable based on detection range and 

biological context. 

These systematic studies on linearity have confirmed the suitable amount of 

proteome loading to be employed for rat LV QWBs. The most adequate concentration is 

10µg/ml given the diminished estimated error, improved reproducibility, and optimisation 

of homogenates usage. The same dilution should be employed in studies regarding SOL 

and EDL muscles, given the similarities of target proteins and protein content. 

 Technical replicates confirmed the uniformity of sample loading and thus, accuracy 

of manual technique. The overall lane-to-lane variation across gels was verified to be 

minimal, being endorsed by fixed CV values (0.04, 0.03 and 0.04).  
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In experiments where multiple samples (n=3) are studied (variation intra-group), 

fluctuation found in these values might be consequence of the gel but also due to biological 

variation. However, it has been demonstrated that the calculation of a mean CV per sample 

set can rectify for both biological and technical variation. 
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CHAPTER SEVEN 

WESTERN BLOTTING: COMPARISON BETWEEN 

NORMALISATION SOURCES 
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7.1 Introduction 

 

In molecular biological studies on protein expression, it essential to use a standard set 

of proteins that minimally change with different experimental conditions, biological 

background or study objects (Kim et al. 2014; Lee et al. 2016). To reach reproducible and 

robust results, it is necessary to establish the use of appropriate internal controls.  

A variety of endogenous proteins denominated “housekeeping proteins” were widely 

used to normalise levels of protein expression (LI-COR 2017b). This consist of a set of 

genes whose expression index is expected to do not change across arrays and to be 

consistently expressed in all cells, not only under a healthy state, but also under 

pathological conditions (Kim et al. 2014; Degasperi et al. 2014). The most commonly used 

housekeeping gene-coded proteins are β-actin, β-tubulin and Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) (Vigelsø et al. 2015; Lee et al. 2016) Those RPs are usually used 

as internal controls in the WB with presumed stability and no changes in physiological 

condition (Li & Shen 2013). 

Nevertheless, a growing body of studies indicates that the housekeeping genes, now 

called reference proteins (RPs), do change their expression with diverse conditions (Greer 

et al. 2010; Lee et al. 2016). The RPs expression was found to be not always constant 

across cell types and tissues (Vogel & Marcotte, 2012) and may be modulated by disease 

states, experimental settings, tissue type, growth conditions and stage of development. 

Evidence has also demonstrated that RP levels vary under hypoxia, serum starvation, 

exercise, and transplantation (Ferguson et al., 2005; Ruan & Lai, 2007; Schmittgen & 

Zakrajsek, 2000). Corroborating, Wilhelm and colleagues used mass spectrometry to 

establish that expression levels of proteins such as GAPDH greatly vary across tissue types 

(Wilhelm et al. 2014). In a study to look for an appropriate loading control for WB analysis 

of ischemic myocardium, Zhang and group have demonstrated that GAPDH levels were 

unchanged in the ischemic monkey heart tissue compared with sham control; however, in 

the mouse model, GAPDH levels were found to be was decreased (Zhang et al. 2017). 

Several investigative groups have shown that biological and methodological factors 

mi influence the expression levels of RPs. The variability of these markers is associated 

with several circumstances, and aspects of gene expression are not consistently linked to 

cellular protein abundances (Vogel & Marcotte, 2012) and, therefore, do not consistently 

predict the amount of protein present in the samples.  
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RPs expression levels were investigated mainly as specific physiological conditions 

have been proposed to alter endogenous RPs levels in human skeletal muscle, such as fibre 

type distribution (Galpin et al., 2013; Lowe, Degens, Chen, & Alway, 2000) and loss of 

muscle mass (Nedergaard et al., 2012) due to inactivity, which can be one consequence of 

HF. 

Another issue is that RP is usually abundant, generating strong bands frequently 

associated to signal saturation (Taylor & Posch 2014) This reduces the precision of 

detection and under-estimates the actual amount of internal control protein in each lane, 

particularly when large amounts of TP are loaded to detect low abundance target proteins 

(Taylor & Posch, 2014; Welinder & Ekblad, 2011). 

When biochemistry studies were initiated at the beginning of this project, the aim was 

to normalise all samples coming from distinct groups (control, HF sedentary and HF 

trained) to expression. As previously stated, GAPDH levels are usually expected to have a 

stable expression over multiple samples and be unaffected by experimental conditions  

Assuming GAPDH would be constant over arrays, band intensities would be 

quantified such that the sum or the average of all signal intensities would be constant 

across experiments. Based on this assumption, GAPDH, taken as an internal reference 

protein (RP) (called “housekeeping protein” in the past), could be used as reference for 

internal normalisation.  

Nevertheless, after analysis and quantification of several blots, it was noticed that 

marked alterations regarding GAPDH expression were present amongst sample groups and 

technical replicates. This was endorsed by new studies that indicate that internal RP is 

occasionally less reliable than expected as loading controls, since their expression may not 

be as stable throughout all cells of an organism, as previously hypothesized (Li & Shen 

2013). 

In this way, alternative normalisation strategies were investigated in order to define 

how choosing a normalisation method would affect the data. In particular, normalisation 

approaches were assayed in terms of minimisation of variability; and, in which way these 

calculations could affect statistical decisions. Studies towards the expression of β-actin, 

GAPDH and α-tubulin were performed in SOL and EDL lysates. 
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7.1.1 RPs as loading controls in WB of rat skeletal muscle 
 

 

8.1.1.27 Actins 

 

Actins, including three main groups of isoforms, α, β, and γ, are the most abundant 

proteins in eukaryotic cells (Ruan & Lai, 2007) and play a central role in providing the 

force to drive cell movements and intracellular transport (Leavith et al. 1987). This protein 

polymerizes into filaments that are indispensable for many forms of cellular motility, 

including muscle contraction, as well as the structure and mechanical properties of the 

cytoplasmic matrix (Pollard & Cooper 1986). 

 

8.1.1.28 GAPDH  

 

GAPDH is an enzyme that catalyses one of the stages of the glycolysis process (Lowe 

et al., 2000) and has been recognized as an important key component for production of 

ATP and pyruvate through anaerobic in the cytoplasm (Nicholls et al. 2012).. In skeletal 

muscle, the flux through the glycolytic pathway is reliant on the fibre type composition of 

that muscle (Ferguson et al., 2005). GAPDH has also been implicated in the regulation of a 

multitude of intracellular processes including gene transcription, apoptosis, cell survival 

and growth signalling (Nicholls et al. 2012). 

 

8.1.1.29 Tubulins  

 

Like β-actin, α-tubulin is a structural protein. Tubulin is a generic name for a family of 

globular proteins which exist in solution as heterodimers of α and β type subunits and is 

one of the more abundant cytoplasmic proteins (Slack 2013). It is the basic building block 

of microtubules and this intracellular cylindrical filamentous structure is present in almost 

eukaryotic cells.  

 

7.2  Aims  

 

The aim of the work described in this chapter was to investigate the quantitative use 

of WB to establish its applicability and limits depending on the data normalisation strategy 

used to compare biological replicates. For this purpose, it was performed a systematic 
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validation of the TP method to compare it to the RPs β-actin, α-tubulin and GAPDH as 

normalisation controls in rat skeletal muscle. Furthermore, it was aimed to address how the 

selection of a given normalisation strategy, (such as a RP or the establishment of an 

internal quality control sample per gel) can influence the normalised data  

Conditions that have been suggested to alter RPs levels, such as fibre type 

composition, poor oxygen diffusion in muscle and muscle weakness, which  are described 

in the literature during HF, were considered to build the assumption the expression of these 

proteins would be altered. 

 

7.3 Methods  

 

Skeletal muscle tissue was homogenized in RIPA buffer and complete protease 

inhibitor cocktail as previously described (see chapter 2, section 2.5.4). Protein 

concentration was determined by BCA assay (Thermo Fisher Scientific). Denatured tissue 

homogenates (10 min at 70°C) were used for WB (8-12% polyacrylamide gel) using anti-

β-actin (1:5.000, Abcam), anti-α-tubulin (1:1,000; Abcam) and anti-GAPDH (1:5.000, 

Abcam) as primary antibodies. REVERT™ Total Protein Stain (LI-COR Biotechnology) 

was used for estimation of TP. 10μg/ml of protein were separated in Bis-Tris SDS- PAGE 

ready gels and transferred to nitrocellulose membranes (Thermo Fisher Scientific). 

Secondary antibodies used were IRDye 800CW goat anti-mouse (1:10,000; Abcam) and 

IRDye 680LT donkey anti-rabbit (1:10,000; Abcam). Protein bands were visualized using 

an Odyssey fluorescence imaging system, and band intensities were imaged using LI-COR 

Image Studio 3.1 (LI-COR Biotechnology). 

Protein loads coming from distinct biological sources were tested prior to 

experiments with the aim of finding the optimum reference signal for immunoblotting. In 

order to allow multiple samples comparison across an individual electrophoresis gel, three 

distinct samples (10μg/ml) were loaded. The skeletal muscle preparation coming from the 

current HF rat model allowed the detection of possible molecular changes occurring in 

peripheral musculature during HF. 

 

7.3.1 Statistical Analysis  

 

Data are shown as mean ± SEM and analysed by parametric tests complemented by 

ANOVA multi variant analysis in order to compare multiple groups. A value of p<0.05 

was considered statistically significant. 
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7.4 Results 

 

7.4.1 β-actin 

 

In this study, β-actin detection was addressed only in SOL. It was initially believed 

that studies on EDL unnecessary as, according to literature, β-actin is considered a RP and 

as such levels should not vary across muscle types or biological stimuli (Ferguson et al. 

2005). As such, initial experiments show the β-actin expression in SOL biopsies (figure 

43). 

 

 

 

Figure 43: β-actin detection in SOL from control, HF sedentary (SED) and HF 

trained (TRN) rats. Graph displays protein expression in arbitrary units (AU) across 

different physiological conditions. Results are shown as mean±SEM. Black bar 

corresponds to control animals (n=6); light grey, HF sedentary (n=6) and the dark grey bar 

HF trained rats (n=6). One-way ANOVA showed no statistical significant differences 

across groups, p=0.5284. 

 

 

As described in the methods chapter (section 2.5.5.3), a strategy of normalisation 

was applied to obtain an ILC for protein quantification. A variation between 25% and 

400% from the averaged fluorescence signal was taken as acceptable to be accounted for 

the data analysis. Discrepancies higher or lower than this span were considered to be 

beyond biological variation. 



 

 

193 

 

By applying these criteria, the effects of study of outliers were examined for β-actin 

expression in SOL muscle. After intra-gel normalisation, it was noticed the majority of the 

results already fit in the internal quality control interval. Based on the stability of the 

immunosignals, a similar graph was generated. Relative values were adopted during this 

analysis (figure 44). 

 

 

 

Figure 44: Effects of outlier’s analysis on fluorescence signals of β-actin expression 

in SOL. After intra-gel normalisation, signals were found to be constant across groups. 

Black bar corresponds to control group (CON), n=6, 0.75± 0.06; grey bar, HF sedentary 

animals (HF SED), n=6, 0.58± 0.09; and white bar refers to HF trained rats (HF TRN) n=6, 

0.66±0.11. Ordinary One-way ANOVA did not reveal statistical significance across group 

(p= 0.4638). 
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7.4.2 GAPDH 

 

Expression of this protein was studied in SOL and EDL homogenates. Results are 

displayed in figure 45. 

 

 

a
A 

 
b

B 

 
 

Figure 45: GAPDH expression in muscle from control and HF rats in SOL and EDL 

homogenates. Graphs display protein expression in arbitrary units (AU) across different 

physiological conditions. Black bars correspond to control animals (CON); grey are HF 

sedentary (HF SED), and white bars are HF trained rats (HF TRN). A. GAPDH in SOL is 

increased in control animals (CON, n=5; HF SED, n=6 and HF TRN n=6) *p=0.015. B. 

EDL from HF trained animals (n=8) expressed higher levels of GAPDH when compared to 

HF sedentary rats; *p<0.0001 (n=6). One-way ANOVA tests were performed and level of 

significance was set at p< 0.05.  
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The aforementioned data set was then re-analysed in light of the internal quality 

control method.  Figure 46 demonstrates the impacts of removal of outliers and the effects 

of normalisation per individual gel prior gathering results from multiple experiments. 

 

 

A 

 
  

 
B 

 
 

Figure 46: GAPDH expression brought across different gels after outlier analysis. A. 

Intra-gel normalisation and relative results for GAPDH expression in SOL homogenates. 

CON, n=3; HF SED, n=7; HF TRN, n=7; p= 0.1679. B. GAPDH detection in EDL 

homogenates after internal normalisation. CON, n=4; HF SED, n=7; HF TRN, n=7; p= 

0.8896. For both conditions, no statistically significance was detected.  
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Figure 46 represents the averages of total signal fluorescence measured per gel. 

Samples from control animals were not constant across gels. Some of these gels were 

loaded with only sedentary or only trained animals. Although this set up is not ideal for 

stablishing values from healthy animals per gel, it was still possible to quantify the 

variation per experiment. Tables 19 and 20 display the individual CVs found for GAPDH 

expression in SOL and EDL homogenates per experiment, respectively. Values were 

obtained after studying the effects of outliers. 

 

 

Table 19: Summary of CVs of GAPDH expression calculated per individual 

experiment, in SOL protein lysates. CV was calculated as SD/mean. 

Experiment CV 

Exp1 0.42 

Exp2 0.15 

Exp3 0.12 

Exp4 0.24 

Exp5 0.23 

Exp6 0.07 

Exp7 0.13 

Average CV 0.19 

SEM 0.04 
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Table 20: Summary of CVs of GAPDH expression calculated per individual 

experiment, in EDL homogenates. CV was calculated as SD/mean. 

Experiment CV 

Exp1 0.19 

Exp2 0.29 

Exp3 0.21 

Exp4 0.29 

Exp5 0.24 

Exp6 0.13 

Exp7 0.12 

Average CV 0.21 

SEM 0.03 

 

 

 

Tables 19 and 20 show CVs found per individual experiment, using homogenates 

from SOL and EDL fibres, respectively. After establishing individual CV values, a mean 

CV was generated and SEM was calculated. CV for GAPDH expression is SOL was 

calculated as 0.19±0.04; whereas CV regarding variation in GAPDH levels in EDL was 

0.21±0.03. It is noticeable the CV are comparable amongst experiments and also, muscle 

types. This suggests the variation is kept constant. This approach allowed identification of 

the experiment with highest individual variation and provided data on technical error 

against fluctuation regarding expression of GAPDH levels.  

Finally, figure 51 exhibits GAPDH expression behaviour upon distinct groups 

considering raw data analysis; which contrasts figure 52, which displays the GAPDH 

detection after inclusion of criteria for immunosignals selection. The current study 

demonstrates the use of an internal quality control as a powerful tool to able to normalise 

RPs data. 
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7.4.3 α-tubulin  

 

Expression of α-tubulin across biological groups and polyacrylamide is being 

displayed in figure 47. 

 

A 

 
  

 
B 

 
Figure 47: α-tubulin expression in muscle from control (CON), HF SED (HF 

sedentary) and HF TRN (HF trained) rats, in SOL and EDL muscle, respectively. Black 

bars correspond to control animals; grey, to HF SED and white bars represent HF TRN 

rats. A. α –tubulin expression in SOL is stable across groups (CON, n=3; HF SED, n=3; 

HF TRN, n=3) with p= 0.2560; B. Immunoreactive bands display a constant expression in 

all conditions studied in EDL homogenates CON, n=5; HF SED, n=5; HF TRN, n=6); 

Tukey’s multiple comparison test has revealed found a non-significant p value (0.6768).  
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After implementation of quality control analysis (please see chapter 2, section 2.2.5) 

the aforementioned results were normalised and converted into relative values. α-tubulin 

detection is presented as follows (figure 48). 

 

 

A 

 
  

B 

 
 

Figure 48: Relative results of α-tubulin detection over multiple gels after outlier’s 

analysis. Intra-gel normalisation was performed according to an internal quality control. A. 

Expression of α-tubulin in SOL. CON, n=3; HF SED, n=3; HF TRN, n=3 (p= 0.721). B. α-

tubulin detection in EDL homogenates. CON, n=5; HF SED, n=5; HF TRN, n=6; (p= 

0.519). One-way ANOVA has not shown significant results by Tukey's multiple 

comparisons test. 
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The study of outliers has allowed removal of aberrant signals and aimed for an 

internal quality control that could contribute to normalisation of signals. After data 

treatment,  

In conclusion, after examining the variability of the WB signals from 3 RPs (β-actin, 

GAPDH and α-tubulin), prior intra-gel normalisation, β-actin showed the largest variability 

expressed as CV (table 21); yet, all signals exhibited a high variability across gels. 

GAPDH-antibody interaction tends to lead to larger variation in the total signal per gel. 

This was evident as a marked reduction in variability after intra-gel normalisation as 

previously shown in figure 48. 

 

 

Table 21: Mean CV for RPs expression in SOL and EDL homogenates. 

 SOL EDL 

 β-actin α-tubulin GAPDH β-actin α-tubulin GAPDH 

Mean CV 0.48 0.19 0.19 - 0.27 0.21 

SEM 0.08 - 0.04 - 0.03 0.03 

 

 

 

7.5 Discussion 

 

In this chapter, quality control standards were addressed by normalising the signal 

across one gel from one sample. This was used as an alternative to the use of a single 

standard sample from the same tissue standard that was used across all gels for several 

reasons:  (i) there was not a common sample used across all WBs, (ii) the gel lane design 

prioritised the experimental groups i.e. 6 sedentary and 6 trained samples leaving no spare 

lanes for tissue standards. 

The main advantage of this method is that it makes individual signal quantification 

less sensitive to variation. It usually enables the use of multiple gels that did not include 

control rats as standards; additionally, it allows the detection and correction of errors per 

measurement.  

Circumstances, such as hypoxia and exercise, can change β-actin expression (Ruan & 

Lai, 2007). Eaton and colleagues showed that expression of this protein was significantly 

down regulated in a mouse model of muscle atrophy compared to control tissue by 
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19.36%, while TP demonstrated a high degree of uniformity between wild type an affected 

mice (Eaton et al., 2013). 

An analytical study of the database ProteomicsDB pointed 20 ubiquitously- and 

constitutively-expressed internal reference controls with %CV<20% that could be applied 

for quantification of differential protein expressions. Nonetheless, it was interesting that 

commonly used RPs such as GAPDH, β-actin and α-tubulin were excluded from the this 

pool since their CV seem to be greater than 20%; consequently, the high variation 

observed characterised them as unreliable for protein normalisation (Lee et al., 2016). 

The present findings indicate substantial variability in GAPDH levels across 

intervention groups. This is in accordance to many studies that have demonstrated 

modulation of endogenous control proteins by experimental set ups or biological 

conditions in a range of tissues.  It is extensively reported that the expression of GAPDH is 

linked to age-related metabolic changes that occur in muscle, and fluctuation in its levels is 

correlated to conditions such as muscle fatigue and atrophy which, in turn, may follow HF 

or aging process. It seems that muscles containing a large proportion of glycolytic fibres, 

such as EDL, display lower GAPDH levels in aged rats (Lowe et al., 2000). Galpin and 

colleagues have also shown that GAPDH levels might be expressed differently among 

skeletal muscle fibre types in human (Galpin et al., 2013). WB analysis in mouse samples 

from 12 week-old mice found the CV of GAPDH expressed among tissues (liver, brain and 

lung) was 51.25% (Lee et al., 2016).  

Regarding the applicability of α-tubulin as ILC, a detailed study showed the CV 

obtained after comparing different RPs was not improved after normalisation, potentially 

due to saturation of the signal (Janes, 2015).  Vigelsø and co-workers performed QWB in 

skeletal muscle of middle-aged men with either a life-long history of endurance training or 

normal sedentary control subjects. They showed the inter-subject variation was lower in 

TP measured than in the corresponding alfa-tubulin level, being 10% vs. 23%, respectively 

(Vigelsø et al., 2015). In this study, α-tubulin appeared to be a suitable alternative against 

GAPDH. However, caution must to be adopted when interpreting these outcomes due to  

the reduced number of technical replicates executed. Despite its stable levels, α-tubulin 

immunoreactive bands were frequently poorly imaged. Considering the antibody could 

only be detected in the 700nm channel (the same wavelength used for TP quantification), 

the signal-to-noise ratio appeared to be increased by either membrane’s background 

fluorescence or due to non-specific interaction between target-antibody. Literature reports 

that the membrane blocking step might generate high background depending on the 
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solution employed or type of media; however, membranes from experiments were blocked 

identically (5% milk blocking buffer) and the same type of membrane was used for all 

other assessments. In this way, dimmer signals could be potentially underrepresented, 

another alternative, the quantification of TP, was then investigated. 

In conclusion, the use of RPs to normalise/correct the signals from proteins of 

interest (e.g. SERCA) is limited by the high variability shown across a single gel. The basis 

of the variation is unknown; in part the differences may arise from variation in the 

antibody-protein binding that is part of the WB process with some antibody-protein 

combinations being more variable than others (β-actin). Nevertheless, a large source of the 

variation appears to be inherent to the technique that, therefore, limits the ability to resolve 

changes in protein expression within the muscle samples. The large variation of the RP 

signals was present across all experimental groups while no large consistent changes 

between groups were detected.  

 

7.5.1 Normalisation by TP staining  

 

TP staining is a direct measure of the overall protein input for each lane of a gel and 

does not depend on RPs as internal indicators of protein concentration. This approach does 

not require validation for each experimental context, biological system, or primary 

antibody (LI-COR Biosciences, 2016). And because it does not rely on the expression of 

endogenous RP, it eliminates the error that can be introduced by the use of a single or even 

multiple internal control protein (Aldridge et al., 2009; Eaton et al., 2013; Taylor & Posch, 

2014). 

In this study, a fluorescent membrane stain (REVERT™ Total Protein Stain) was 

used. This product was used for TP detection and normalisation and all nitrocellulose 

membranes stained were scanned on the recommended software - Odyssey Imaging 

Systems. In order to ensure compatibility and reproducibility, some requirements were 

considered when selecting this stain. The protein load never exceeded the range of 60 µg 

of protein per gel; it was ensured, by serial dilution studies that the target protein and the 

internal control (TP) could be detected within the same linear range. Membranes were 

scanned according to the manufacturer’s recommendations and TP staining was also 

compatible with immunodetection of target proteins. 
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7.5.2 Limitations of TP by using REVERT® Total Protein Stain  

 

In the present study, REVERT TP stain was used as a normalisation strategy in 

quantitative WB analysis of skeletal muscle tissue homogenates. It was chosen over RPs 

because it displays a linear signal output according to sample concentration; it also showed 

a suitable sensitivity when used to probe nitrocellulose membranes. This stain was also 

compatible with the immunodetection of the proteins of interest (SERCA, CaMKII, RyR 

and PLB). 

Despite the described advantages, this staining procedure was not performed on other 

media types, such as gels or PVDF membranes, and so was not possible to compare to 

normalisation on other surfaces and investigate if they would provide better accuracy. 

Although requiring minimal handling and time, the REVERT® TP stain is relatively 

expensive and non-reusable, which can increase costs when doing more batches of tests. 

Calculations suggested by the manufacturer do not necessarily produce a consistent 

and unified signal across lanes despite the excellent signal sensitivity. For this reason other 

calculation strategies were tested to compare the original results, and, consequently, reduce 

variation. 

Additionally, target bands are detected more accurately when using the 800 channel. 

Nevertheless some antibodies will produce an immunoreaction only identified on the 

700nm wavelength, which can generate low-intensity bands that can be masked due to 

similar membrane backgrounds, as observed for the current CaMKII antibody. 

 

7.5.3 Future technical improvements  

 

Accuracy in quantitative immunoblotting relies on appropriate normalisation and 

minimizing error. After studying the present sources of variability, several measures, listed 

below, are suggested to be adopted over distinct stages of WB technique for future 

experiments. 

 

7.5.3.1 Sample homogenisation 

 

Initial homogenisation was done using a blade rotor (Polytron), which was not 

adequate for the sample type and size, and produced heat which affected the lysis process. 

This also increased the likelihood of cross-contamination amongst biological groups. For 
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this reason this equipment was later replaced by a bead beater (Restch Mixer Mill 300) that 

optimised sample homogenisation by allowing processing multiple samples 

simultaneously. The contamination risk was eliminated since disposable vials were used, 

and heating was prevented by cooling samples on ice between bursts. The size of the beads 

used is of importance. Samples were thawed as needed and homogenised by manual 

grinding through disposable mortar and pestle. Vials allowed the use of smaller volumes of 

lysis buffer. This strategy is slow, but produced homogenous lysates. For future 

experiments, it is suggested to snap freeze the samples by using liquid nitrogen prior 

grinding, and, for this, porcelain or metal based mortar and pestle are recommended.  

 

7.5.3.2 Protein quantification assay  

 

The choice of protein assay is influenced by the presence of detergents, buffers, or 

other components of the studied samples. Detergent compatible protein assays, such as 

BCA, are recommended when using RIPA buffer. Originally, the Bradford assay was the 

preferred strategy when producing the initial lysates, however, since RIPA buffer was 

introduced in order to maximise protein retrieval from tissues samples, BCA assay was 

then implemented. 

 

7.5.3.3 Reducing technical variability: sample loading optimization  

 

In initial experiments, several samples were electrophoresed on multiple gels and 

experiments were executed over different days. This fragmentation of the technique 

potentially introduced an inter-gel variation, considering that although gels should have 

identical features, dramatic variation on fluorescence intensity could be observed in the 

same sample when interpreting images and their respective values from one gel to another. 

It is believed that inconsistent signal intensities are quantified from the same protein 

homogenate when experiments are performed in different days.  

As these experiments may require a long time, it is suggested that the technique 

should be optimised by performing the sample loading on the same gel in such way that all 

the groups studied could be loaded on the same gel and so, fewer days are needed to 

address all groups in triplicates. For this purpose, it is recommended the use of 

polyacrylamide gels that hold a bigger number of wells, preferentially up to 15. In this set 

up, is possible to evaluate alterations in signals coming from the same membrane 
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background and under the same running conditions across groups. It also eliminates the 

need for fractionation of technical replicates usually done in more than one day, which 

contributes to decrease the potential inter-experiment biases.  

 

7.5.3.4 Single protein normalisation vs multiple internal loading controls  

 

In order to establish the most adequate normalisation approach towards the right 

sample type, biological context, and experimental set up, it is important to understand how 

the target protein relates to the ILC, which are limitations of the employed RP, and 

potential strengths for each approach.  

As previously discussed, proteins such as GAPDH, actin and tubulins are commonly 

employed as ILC for immunoblotting. Some steps need to be followed when choosing a 

single RP to correct for sample-to-sample variation. Firstly, the selected internal control 

must to be constant across different physiological or experimental conditions, secondly, the 

fluorescence intensity should proportionately reflect the abundance of this marker (Janes, 

2015). Nonetheless, recent studies have raised concerns to the fact that a single loading 

control may not meet these requirements (Taylor & Posch, 2014). RP can also generate 

saturated signals due to its high abundance, and be fluorescent in a range that is not 

compatible with the target band, making normalisation less accurate. This method does not 

account for biological variability since structural proteins, for example, can be affected by 

disease states or experimental conditions. In this way, recent evidence points to a need for 

an accurate QWB, so that RP be assayed for each biological context. As such, RPs have to 

repeatedly go under validation for each experiment in order to minimise biological 

variability and confirm stable expression. Conversely, those proteins are still extensively 

used as normalisation tools, and frequently, multiple studies discuss WB data without any 

type of validation (Eaton et al., 2013) 

 In order to avoid the introduction of false-positive or negative results, the use of the 

multiprotein normalisation procedure is suggested, which relies on the use of multiple 

loading controls (Eaton et al., 2013; Janes, 2015; Taylor & Posch, 2014). In this strategy, it 

is possible to calculate a mean of total cellular content that is less sensitive to the technical 

or biological fluctuations of a single loading control. By employing the use of several 

internal controls, such as TP staining or multiple RPs, the variability might be diminished. 

In his work, Janes (2015) recommends the use of three or more internal loading controls as 

a strategy to normalise data by sum on hypothesis testing to depend on the mean of the 



 

 

206 

 

data tested (Janes, 2015). Thus, these approaches are now emerging as a new standard for 

immunoblot normalization (Collins et al., 2015; Eaton et al., 2013; Moritz, Marz, Reiss, 

Schulenborg, & Friauf, 2014; Rajeshwary Ghosh et al., 2014). 

 

7.5.4 Future of QWB 

 

Recent studies have indicated that is possible to improve accuracy during 

normalisation by introducing bioinformatics and analysis strategies to interpret the raw 

data (Andrews & Rutherford, 2016; Degasperi et al., 2014). There is an open source, and is 

in the public domain software (Smoldyn Software) recommended for calibration, proposed 

by Andrews and Rutherford, which computes all normalised measurements under the 

assumptions of statistical tests and points the most probable values based on batches (batch 

could be an immunoblot) readings that do not include standards. This approach can 

mediate the analysis of data which is lacking some standard measurements (Andrews & 

Rutherford, 2016). 

Although the practical side of the normalisation methods may appear imprecise or 

divergent in literature, a determining factor to ensure successful quantification and analysis 

may aggregate the use of familiar loading controls with emerging analytical paradigms 

implemented to current techniques. Combination of standardization approaches may 

represent a promising methodology for improved QWB. 
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 CHAPTER EIGHT 

QUANTIFICATION OF PROTEIN EXPRESSION USING WESTERN 

BLOTTING 
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8.1 Introduction  

HF is characterized by poor exercise tolerance and early fatigue (Middlekauff et al. 

2012). In the failing heart, defective Ca2+ dynamics is associated with diminished SERCA 

expression (Hasenfuss 1998; Bers 2001) and increased SERCA inhibition by 

dephosphorylated PLB (Currie & Smith 1998; Kranias & Hajjar 2012); RyR have been 

reported to become hyperphosphorylated (Marx et al. 2000) and leaky in HF (Reiken et al. 

2003), whereas CaMKII activity is increased in hypertrophied and failing myocardium 

from animal models and patients (Anderson et al. 2011). 

Somewhat interestingly, previous studies have demonstrated that reduced exercise 

endurance is not directly related to the degree of LV injury (Franciosa et al. 1981; 

Higginbotham et al. 1983; Middlekauff 2010). Evidence points towards a skeletal 

myopathy in both animal models and in humans with HF (Lunde et al. 2001). 

Skeletal and cardiac muscle share common mechanisms that underlie defective 

contractile activity (Bellinger et al. 2008) which is centred around abnormal signalling 

pathways that contribute to decreased SR Ca2+ release and reuptake; as increased Ca2+ leak 

after contraction (Middlekauff et al. 2012). Reiken and colleagues corroborate indicating 

HF may be characterized as a generalized EC coupling myopathy that affects both forms of 

striated muscles, cardiac and skeletal (Reiken et al. 2003).  

The role of each Ca2+ regulatory protein under the scope of the pathophysiology of 

HF will be discussed as follows. 

 

 

8.1.2 SERCA 

 

 

SERCA is a key modulator of striated muscle performance and acts by storing 

intracellular Ca2+, and regulating cytosolic Ca2+ concentration. This polypeptide exhibits a 

molecular mass of 110 kDa and is localized both in the endoplasmic reticulum and SR 

membrane (Periasamy & Kalyanasundaram 2007). Antibodies employed against this target 

are available in the monoclonal or polyclonal form. Previous studies have documented that 

expression of SERCA is downregulated in humans (Middlekauff et al. 2012) and likewise, 

in animal models (Zhang et al. 2003; Talukder et al. 2009) in cardiac muscle HF, but few 
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studies have examined Ca2+ handing proteins across striated muscle from the same animal 

model and after an exercise intervention. 

The role of SERCA in cytosolic Ca2+ removal is presented in a study developed by 

Del Monte and group, which demonstrated a significant correlation between SERCA 

function and cardiac energetic state ([CrP]/[ATP] ratio) in a rat model of HF (del Monte et 

al. 2001). A large body of evidence has shown that, through the implementation of a 

training protocol, SERCA function can be restored (Tjønna et al. 2008; Brum et al. 2011; 

Kemi et al. 2008). Conversely, it has been shown that the levels of SERCA2 were 

unchanged in HF (Schwinger et al. 1995). These results are similar to those reported by 

Movsesian and colleagues, who could not detect any differences in SR Ca2+ uptake 

mediated by SERCA from non-failing and failing human hearts (Movsesian et al. 1989). 

 

8.1.3 PLB 

 

Cardiac and slow-twitch skeletal, but not fast-twitch fibres, express an intrinsic 

protein called phospholamban (PLB). This inhibitory protein does not exhibit multiple 

isoforms, as such, the same protein is expressed in cardiac and slow twitch skeletal muscle 

(Fujii et al. 1988).  Dephosphorylated PLB interacts with SERCA2a and inhibits the 

pumping activity, while phosphorylation of PLB by PKA and CAMKII relieves the 

inhibitory modulation and augments the Ca2+ reuptake parameters (Gorski et al. 2015; 

Haghighi et al. 2014).  

Previous reports have indicated that PLB is less phosphorylated in HF (MacLennan 

& Kranias 2003) corroborated by reduced phosphorylation states (Mills 2006; Sande et al. 

2002). However, in contrast to earlier findings, enhanced phosphorylation of PLB in HF 

(Hoehn et al. 2015; Currie & Smith 1998) has been confirmed. A study on functional PLB 

knockout in humans pointed the absence of this protein caused HF and the gene-targeted 

PLB-knockout mice had no apparent cardiac dysfunction (MacLennan & Kranias 2003). 

Unlike previous studies, Movsesian and group have documented no detectable changes in 

PLB protein expression during myocardial failure (Movsesian et al., 1994). Therefore, the 

reduced levels of SERCA expression observed during this syndrome are the consequence 

of the increased PLB-to-SERCA ratio, which culminates with the inhibition of SERCA2a 

(Gorski et al. 2015). Since expression of PLB appears to be model-related, its contribution 

in myocardial failure still requires investigation. Caution is advised when interpreting 
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results and extrapolating outcomes from animal models to human HF (MacLennan & 

Kranias 2003).  

 

8.1.4 CaMKII 

 

The family of protein kinases observed in skeletal muscle are not well characterised, 

but evidence suggests that CaMKII is expressed in skeletal muscle (Rose & Hargreaves, 

2003). 

In the HF state, CaMKII levels are augmented as well as the occurrence of 

phosphorylation of CaMKII-dependent sites present in RyR (Dobrev & Wehrens 2014). 

Enhanced phosphorylation on CaMkinase site of RyR has been shown to cause enhanced 

SR Ca2+leak and explain reduced SR content. Investigative groups have elucidated that 

CaMKII function is augmented in failing myocardium from animal models and also 

patients. Furthermore, overexpression of CaMKII is directly correlated to HF, while 

CaMKII inhibition is associated to improvements in HF symptomatology (Anderson et al. 

2011). Interestingly, paradoxical activity of a specific cardiac isoform of CaMKII (δC) is 

described in the perspective of exercise training in HF. Increased CaMKII activity 

contributes to reduced inotropy and lusitropy; whereas exercise training increases 

CaMKIIδC function in healthy hearts by stimulating inotropy and lusitropy. 

Mono and polyclonal antibodies are commercially available against CaMKII, for 

which specificity is restricted to skeletal and cardiac muscle. The predicted molecular 

weight of this target is 56 kDa. 

 

8.1.5 RyR 

 

Two distinct genes encode the cardiac (RyR2) and skeletal muscle (RyR1) specific 

ryanodine receptor isoforms. This Ca2+-sensitive receptor is activated by a local increase in 

Ca2+ resulting from trans-sarcolemmal Ca2+ influx via L-type channels (Maier & Bers 

2002). Despite multiple factors contributing to defective activity of RyR in HF, in some 

studies the expression of this channel appears unchanged (Sainte Beuve et al. 1997). 

Munkvik has shown that, in exercised leg muscles of HF patients, RyR content was 

depressed, although not associated to changes in Ca2+ leak or release rate (Munkvik et al., 

2010). Dobrev and Wehrens showed increased CaMKII-dependent phosphorylation at 

specific sites of RyR2 in HF (Dobrev & Wehrens 2014). In agreement with these findings, 
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it was likewise reported that the RyR becomes hyperphosphorylated in HF state (Marx et 

al. 2000).  

In summary, various modulatory proteins mediate a fine interaction between Ca2+ 

and signalling pathways. This complex net is of pivotal importance for proper contraction 

and Ca2+ handling; and many studies provide evidence that Ca2+ regulatory proteins 

display defective function in HF. In this scenario, the purpose of the present study was to 

test the hypothesis that in rats with HF Ca2+ cycling proteins in the cardiac and skeletal 

muscle are abnormal. The expression levels of SERCA, PLB, CaMKII and RyR were 

determined by WB (see Table 1 for sources of primary antibodies).  

 

8.1.6 Statistical analysis 

 

Results are displayed as means±SE. One way ANOVA was implemented to study 

differences among experimental groups, considering outcomes from several technical 

replicates. p < 0.05 was taken as statistically significant. 

 

8.2 Methods 

 

SOL, EDL and LV  were examined as it has been reported that protein expression 

depends on muscle fibre type and correlates with primary cardiac insult and skeletal 

muscle training (Middlekauff et al. 2012). Samples were prepared in RIPA buffer and 

subject to denaturing SDS-PAGE as described previously (see chapter 2, section 2.4.1). 

The expression of SERCA, CaMKII, RyR and PLB proteins was determined by 

QWB (see chapter 2, table 2 for antibodies). For LV analysis, an internal standard was 

adopted on all blots. This internal standard was obtained from control animals and used to 

normalise protein expression on each gel. Signal quantification was compared between 

healthy and HF states, including exercise-induced adaptations in a group of HF trained 

rats. Details of protein loading, antibody concentrations and sources are provided in the 

Methods chapter. 
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8.3 Results  

 

8.3.1 Protein expression in LV homogenates 

 

Multiple Ca2+-handling proteins are involved in the maintenance of cardiac Ca2+ 

homeostasis and contractile function. Expression of these modulatory proteins was studied 

in LV homogenates as described in chapter 2, and is being discussed in the following 

session. 

8.3.1.1 SERCA expression in LV 

 

SERCA expression in left ventricular samples is shown in Figure 49. After 

normalisation procedures and relative comparison to control animals, One-way ANOVA 

analysis revealed that there was no statistically significance among groups. HF sedentary 

rats appear to have a similar SERCA2 expression (1.70±0.22a.u.) to exercised 

(1.60±0.16a.u.) and control animals (1.80± 0.25a.u.). 

 

 

 

 

Figure 49: SERCA expression in rat LV. Control (n=7); HF SED: HF sedentary 

(n=7); HF TRN: HF trained (n=7). Assays were performed in duplicates per each 

experiment and repeated three times. Data shown as mean ± SEM. HF groups are not 

significantly different from control. 
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8.3.1.2 PLB expression in LV 

 

PLB levels in trained animals were increased by approximately 6% compared to 

control group. An enhancement of around 60% was also reported in sedentary infarcted 

rats in comparison to healthy animals. However, these changes did not reach statistical 

significance. Furthermore, exercise training appears to restore PLB levels towards control 

values (Fig 50). Despite of these findings, One-way ANOVA analysis has not indicated 

significant variances among different data sets by Tukey's multiple comparisons test (p= 

0.4774). Expression of PLB was calculated as being 2.36±0.52a.u. for control rats; 

3.75±0.95a.u. and 2.50±1.03a.u. for HF sedentary and HF exercised rats, accordingly 

(figure 48). 

 

 

 

Figure 50: PLB expression in rat LV. Control (n=7); HF SED: HF sedentary (n=7); 

HF TRN: HF trained (n=7). Assays were performed in duplicates per each experimental 

day and repeated three times. Data shown as mean ± SEM. One-way ANOVA has not 

evidenced significant variances by Tukey's multiple comparisons test. 
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8.3.1.3 RyR2 expression in LV 

 

Comparisons between control, HF sedentary and HF exercised rats are shown in 

figure 51, where no differences in expression of RyR2 levels were reported. Although it is 

of relevance that, in trained animals (1.50±0.38 a.u.), RyR2 levels were increased in 14% 

compared to controls (1.31±0.18 a.u.); and reduced by 16% against HF sedentary group 

(1.74±0.47 a.u.). 

 

 

 

Figure 51: RyR levels in rat left ventricular samples. Control (n=7); HF SED: heart 

failure sedentary (n=7); HF TRN: heart failure trained (n=7). Assays were performed in 

duplicates per experimental day and repeated three times. Data is shown as mean ± SEM. 

One-way ANOVA has shown no significant differences by Tukey's multiple comparisons 

test. 
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8.3.1.4 CaMKII expression LV 

 

There was no statistically significant variation among data sets. CaMKII expression 

was found to be 1.14± 0.21a.u. in the control group; 1.16± 0.16a.u. in sedentary rats, 

followed by 1.10± 0.14a.u. for trained animals (figure 52).  

 

 

 

Figure 52: CaMKII expression in rat left ventricular biopsies. Control (n=7); HF 

SED: HF sedentary (n=7); HF TRN: HF trained (n=7). Blots were performed in duplicates 

per each day and then, reproduced three times. Data shown as mean ± SEM. ANOVA 

revealed no significant differences between data sets, p= 0.9730. 
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8.3.2 Results: protein expression in skeletal muscle 

8.3.2.1 SERCA expression in SOL 

 

The study of SERCA2 expression in skeletal muscle is a novelty in the field of 

exercise training in HF, therefore literature on this topic is scarce. Assays were performed 

to investigate whether the levels of SERCA would be altered in peripheral muscle, such as 

SOL. It has been demonstrated that, interestingly, SERCA expression was significantly 

decreased in HF trained rats (0.69± 0.09 a.u.) compared to sedentary (1.11± 0.14 a.u.), 

being p= 0.0297 (figure 53).  

 

 

 

Figure 53: SERCA expression in rat SOL biopsies. Control (n=7); HF SED: HF 

sedentary (n=7); HF TRN: HF trained (n=7). Blots were performed in triplicates. Data 

shown as mean ± SEM. ANOVA revealed significant differences between HF sedentary 

and HF trained animals, p= 0.0297. 
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8.3.2.2 PLB expression in SOL 

 

Expression of PLB in trained SOL (0.78±0.09a.u.) was reduced by 16% against 

control animals (0.92±0.11a.u.); whereas sedentary animals exhibited increased levels (by 

approximately 35%) compared to control rats (figure 54).  

 

 

 

Figure 54: PLB expression in rat SOL homogenates. Control (n=7); HF SED: HF 

sedentary (n=7); HF TRN: HF trained (n=7). Blots were performed in triplicates. Data 

shown as mean ± SEM. ANOVA evidenced no significant differences between data sets, 

p= 0.0621. 
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8.3.2.3 CaMKII expression in SOL 

 

Results suggest that CaMKII is increased in HF sedentary (1.44±0.19 a.u.) compared 

to control (0.92±0.25a.u.), but this result is not statistically significant. This alteration 

represents an enhancement of approximately 56% in skeletal CaMKII, but further 

replicates are required. However, One-way ANOVA tests have revealed statistically 

significant variation between HF sedentary and HF trained rats (0.63±0.03a.u.). A 

reduction in CaMKII levels of 31% in exercised animals was reported against rats that did 

not exercise (p= 0.0201) (figure 55). As such, exercise training seems to induce a response 

that leads to reduced CaMKII levels in skeletal muscle. 

 

 

 

Figure 55: CaMKII levels in SOL homogenates from rats. Control (n=7); HF SED: 

HF sedentary (n=7); HF TRN: HF trained (n=7). Assays reproduced in triplicates. Data is 

shown as mean ± SEM. One-way ANOVA has pointed significant differences by Tukey's 

multiple comparisons test between HF sedentary and HF trained animals (p= 0.021). 
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8.3.2.4 SERCA expression in EDL fibres 

 

The present cellular studies suggest that glycolytic fibres display a diverse response 

to exercise compared to slow-oxidative muscle. However, data must be interpreted with 

caution because outcomes were generated out of a single experiment, and, although it was 

performed with six animals per condition, it was not further reproduced. SERCA1 appears 

to be unchanged across data sets, being 1.38± 0.30 a.u.  for control rats; 1.33± 0.29 a.u.  in 

the sedentary group against 1.29± 0.20 a.u.  in the exercised rats (figure 56). 

 

 

 

Figure 56: SERCA expression in EDL homogenates from rats. Quantification is 

displayed in arbitrary units (mean±SEM). CON: controls (n=6); HF SED: heart failure 

sedentary (n=6); HF TRN: heart failure trained (n=6). This is resulting from a single 

experiment. One-way ANOVA has not evidenced significant differences by Tukey's 

multiple comparisons between data sets. 
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8.4 Discussion  

 

In summary, this study has found that the four targets quantified (SERCA, PLB, RyR 

and CaMKII) in LV lysates displayed minimal differences in protein expression comparing 

control to HF animals, either sedentary or trained. SERCA was decreased by 11% in 

trained rats and 5% in sedentary infarcted animals. So, this research has pointed the 

occurrence of unchanged SERCA2 expression in sedentary or trained animals. To some 

degree, it contradicts well-described abnormalities in LV intracellular Ca2+ homeostasis, 

which are initiated by dysfunctional SR Ca2+ load. 

However, the current SERCA data may not accurately represent the change in 

expression of SERCA2 in the functioning LV. The samples were frozen at -80C for 

prolonged periods and any degenerative process may add variability to the WB signal. It is 

difficult to know whether shorter storage times would have revealed differences between 

experimental groups unless the degenerative processes were differential between the 

experimental groups. On the other hand, these findings are in good accordance with a 

study done by Wisløff and colleagues, who have indicated that SERCA2 might 

demonstrate variable patterns when it comes to rat training samples, being one of the 

possible outcomes an unaltered expression. This depends on experimental model, infarct 

size, degree, and duration of HF (Wisløff et al. 2001). 

PLB expression in exercised ventricles was increased by 6% compared to control 

animals. Additionally, HF SED rats exhibited a trend towards an increase of 60% in PLB 

levels against the control group. Nonetheless, results might reveal an increase in PLB-to-

SERCA2 ratio in sedentary animals, given SERCA2 expression was found to be essentially 

unchanged across groups. If SERCA2 is unchanged and is associated with increased PLB 

expression, the attenuating effect on Ca2+ uptake could alter SR loading. 

Sedentary animals also displayed increased RyR2 levels by approximately 33% 

compared to healthy rats; and the trained group exhibited augmented expression of RyR2 

by 14% against control. Despite these data did not achieving statistical significance, the 

overexpression of RyR2 might increase the likelihood of intracellular SR Ca2+ leak and 

impaired Ca2+ dynamics (Andersson & Marks 2010) in LV samples. 

It has been reported that CaMKII activity was increased nearly 3-fold in HF (Maier 

& Bers 2002). This is corroborated by Anderson and colleagues, who have demonstrated 

CaMKII function is markedly enhanced in murine and human HF cardiac tissue (Anderson 

et al. 2011). In the present study, relationship between CaMKII and RyR2 was addressed. 
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Although many investigative groups agree CaMKII-dependent RyR2 phosphorylation 

increases RyR2 gating (Bers 2012), no major differences could be found in CaMKII 

expression in the current study. So a physiological interaction between these two targets 

could not be evidenced with significance. 

An interesting finding was that the expression of proteins in SOL muscle, which 

exhibited decreased SERCA2 in the trained group by around 30% in relation to the control 

group. This is in contrast with findings by Brum and group, who have shown that exercise 

training is able to counteract skeletal muscle myopathy (Brum et al. 2011). Present results 

suggest that the mechanisms underlying improvement of Ca2+ sequestration on slow-

oxidative fibres might be distinct for those observed in LV. It is possible that a longer 

period of training might be required to induce adaptations in peripheral musculature, or 

that fibre type shift observed in skeletal myopathy is potentially related to reduction of 

expression of SERCA2 in SOL. In this scenario, expression of SERCA2 in this type of 

fibre needs further examination. Overall, this outcome contributes to integrate a novel and 

growing body of investigation of SERCA expression in skeletal muscle in HF and, under 

modulation of exercise training. 

PLB expression in SOL did not exhibit further significance across groups. 

Unchanged levels of PLB were reported in models of HF before (Kemi et al. 2007, 

Munkvik et al., 2010). Nonetheless, sedentary animals exhibited increased PLB levels by 

approximately 35% compared to control rats. This difference might indicate a relevant 

trend. The consequences of PLB overexpression on SERCA activity and Ca2+ transport in 

skeletal muscle is still not clear (Fajardo et al. 2015). 

To analyse the hypothesis that skeletal muscle would mirror dysfunctions induced by 

MI, CaMKII homogenates from SOL were studied. Decreased levels of CaMKII (by 31%) 

were found for post-MI trained SOL animals against the control group. Complementarily, 

sedentary animals exhibited 56% increased expression in comparison to healthy animals. 

This pattern of expression of CaMKII, characterised by being increased in HF (Høydal et 

al. 2016), and cytoplasmic CaMKII decreased through exercise-induced mechanisms 

(Kemi & Wisløff 2010), was previously reported. These findings, however, are not in 

global agreement. Exercise training has also been linked to increased activity of CaMKII in 

human skeletal muscle (Rose & Hargreaves 2003b). 

Finally, the expression of fast SERCA1 levels were likewise found to be unchanged 

in EDL fibres. This indicates the degree of HF in the present animal model did not cause 
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derangements in skeletal muscle (fibre type shift) that could be linked to reduction in 

SERCA1 levels.  
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CHAPTER NINE 

GENERAL DISCUSSION 
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The general aim of this thesis was to investigate the hypothesis whether exercise 

training restores dysfunctional Ca2+ handling and metabolic abnormalities induced by HF 

in skeletal muscle and LV. 

 

To meet this purpose, the initial aim of the study described in this thesis was to 

establish and characterise a valid protocol to retrospectively examine skinned muscle 

fibre preparations using skeletal muscle and LV from control rats. This set up would 

act as experimental platform for modulation of SR activity upon multiple metabolic 

backgrounds. 

 

SR Ca2+ uptake properties were studied in SOL, EDL and LV biopsies from control 

rats. After skinning and being treated with saponin, fibres were moved to the Perspex bath 

and exposed to 0.05mM R solution, enriched with energy phosphate content and low Ca2+. 

The technique relies on the principle that skinned muscle fibres excised from hind limbs 

and LV can have SR function studied in a solution with electrolyte equivalent to the 

physiological background (Lamboley et al. 2014; Steele et al. 1996). After being prepared, 

fibres were transferred to a cylindrical bath (5 mm diameter, maximum volume 100µl) and 

exposed to 0.05mM R solution as previously done by Steele and colleagues (Steele et al. 

1996), which contained electrolytes and high energy phosphate content, similar to the 

intracellular milieu. When CaCl2 is delivered to these prepared fibres, the rise of free Ca2+ 

in the cytosol stimulates SERCA function, which will actively mediate Ca2+ influx into the 

SR at the expense of ATP hydrolysis (Sjåland et al. 2011). Oxalate-supported Ca2+ uptake 

into SR was monitored using the fluorescent indicator Fura-2 free acid (Currie & Smith 

1998). The experimental buffers simulated four distinct metabolic conditions, including 

ATP+CrP, ADP+CrP, ADP without CrP and finally, ADP without CrP plus sodium azide. 

Ca2+ uptake in type I fibres was demonstrated to be equivalent in fresh state versus 

thawed when optimal substrate (ATP+CrP) was supplied. The ADP+ CrP buffer 

contributed to evidence that frozen EDL tissue exhibited 24% higher SR Ca2+ uptake than 

fresh, indicating that CrP shuttle is not efficient in previously frozen tissue; but further 

work is required to fully explain this result. The solution containing ADP and lacking CrP 

was employed to stimulate EDL fibres to use their intracellular CrP. A marked decrease in 

Ca2+ uptake was verified in the frozen group compared to control, endorsing the 

assumption that freezing limits mitochondria-generated energy in EDL. 
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Cardiac SR Ca2+ loading supported by SR-bound CK was significantly reduced in 

frozen fibres. Freezing seems to suppress SERCA function by 40%, even in samples 

supplied with ATP+CrP (p<0.0001). A statistically significant difference was likewise 

observed studying the SR content using the ADP+ CrP solution, in freshly prepared fibres 

(n=5) Ca2+ uptake rate was 70% higher than those stored for a long-term period (n=6).  

This study has found that slow-twitch fibres treated with azide (SOL and heart 

muscle) did not exhibit alteration in Ca2+ decay transients after freezing compared to 

control samples. On the other hand, frozen glycolytic muscle demonstrated marked 

variation in uptake rates, suggesting variable recovery from freezing in this tissue. This 

result correlates with fibre type composition and relative mitochondrial function.  It is 

assumed that, given slow-twitch fibres are rich in mitochondria, they are more likely 

resistant to the freezing process, in such way the abundant mitochondrial volume may 

resist the damage associated with long-term storage. By contrast, freezing and storage 

appears to depress glycolytic capacity and mitochondrial enzymes function in EDL to the 

extent that SR Ca2+ uptake is affected. The current protocol enables the use of frozen 

specimens for research on SERCA uptake and other enzymatic functions. 

 

Determine the ability of high-intensity exercise training to restore Ca2+ handling 

central (heart) and peripheral (skeletal) dysfunction when implemented as described 

in the present programme. 

The present animal model, depressed cardiac function was evidenced by reduction in 

fractional shortening, increased cardiomyocyte length and reduced aerobic capacity. 

Intensity-controlled aerobic treadmill running was used as exercise training ( Kemi et al. 

2007; Kemi et al. 2006). Controlled aerobic training was performed five times a week, 

continuously for 2 months.  

A scar post-MI of similar size was observed in sedentary and trained rats. MI led to a 

pathologic cell hypertrophy response, with increased cardiomyocyte cell length by 

approximately 25% in HF sedentary rats. As previously published, exercise training 

reversed the pathological remodelling. The effects of exercise training on SR activity were 

studied through a series of measurements designed to examine pump function and 

energetic crosstalk between mitochondria and SR.  
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Investigate SERCA mediated Ca2+ uptake and its dependence on ATP or ADP 

supply (ATP/ADP ratio) and CrP withdrawal; and consequently, study the local 

regulation of SERCA by CK and mitochondria in situ in an animal model of HF. 

 

This thesis also examined whether exercise-induced adaptations improved SR Ca2+ 

uptake rate post-MI in segments of fibres from EDL, SOL and LV.  Fibres were moved to 

the Perspex bath and exposed to 0.05mM R solution, enriched with energy phosphate 

content and low Ca2+ A retrospective study was executed with aims to address the 

dynamics of local regulation of ATP/ADP ratio, CK and mitochondrial activity on 

SERCA. Functional and cellular mechanisms of frozen samples were contrasted to 

outcomes from freshly harvested specimens. SR Ca2+ content was assessed in saponin-

permeabilized control and HF rat fibres, using the transient decay induced by CaCl2 

loading.  Ca2+ loading on fibre bundles was performed on multiple approaches: 

exogenously supplied ATP or ADP, with or without CrP. Azide (2mM) was used to 

extinguish mitochondria-mediated energy synthesis. This was done with aims to quantify 

variation in activity of relevant intracellular targets and, consequently, validate a technique 

that enables to address alterations in Ca2+ handling in an infarct model of HF.  

Identical uptake Ca2+ rates were found across the three experimental groups, which 

suggests that SERCA2 activity is constant in HF in ATP+CrP buffer. Given this is the 

ideal energetic substrate for SERCA pump, it was thought that the defect in HF may lie in 

the energetic communication between mitochondrial activity and SR function.  EDL and 

SOL fibres were tested in the same media, and showed that HF and exercise did not affect 

SERCA uptake across all groups. Although significant effects on exercise capacity were 

observed from the HF and exercise interventions, it may be that these changes were not 

present for a long enough duration to induce some aspects of skeletal myopathy. 

Regarding LV uptake rates, exercised animals have displayed comparable Ca2+ 

uptakes rates compared to sedentary controls in physiological levels of ATP+CrP, ADP 

with and without CrP. Even though no functionally relevant differences were achieved, the 

data has supports the view that after an HIIT regimen, Ca2+ influx rates were comparable to 

the control rats. This suggests there is normalisation (in some degree) of the oxidative 

function inferred by exercise. 
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Address the effects of exercise training in skeletal muscle systems for energy 

production and transfer in HF. 

 

Enzymatic reactions have been performed in situ, using homogenates from EDL 

muscle and the ATP flux was addressed to determine whether the metabolic function 

would be improved or restored after the establishment of an exercise training protocol. 

Present data evidenced that CS activity was 2.5 fold higher in HF trained rats than in 

control animals, after the implementation of the HIIT protocol. The following general 

discussion summarises these results and considers the limitations of the data-set and a 

possible track for future studies. 

In the current fast-twitch glycolytic fibre, there was a trend of increased catalytic 

rates when examining lysates from infracted rats compared to controls, regardless these 

animals are sedentary or trained. These enhanced levels were found to be statistically 

significant (p= 0.044). AK-mediated phosphotransfer reactions were two-fold higher in 

post-MI exercised animals than in control group. Increased AK levels were found to be 

metabolically more efficient in HF trained animals in comparison to control (p=0.0187); or 

HF sedentary rats (p=0.0198), meaning that this enzyme has contributed to a higher 

cellular ATP turnover in exercised animals. Exercise training corrected the depressed AK 

activity in HF. 

 In summary, this study has reported that the enzymes involved in energy transfer 

systems in the EDL muscle are increased after the implementation of a HIIT protocol. 

These alterations occur in parallel with increased aerobic capacity and reduction in 

cardiomyocyte length. The current enzymatic assays provided quantitative data on the 

kinetic performance of the energy production targets (CS and COX); as well as on the 

behaviour of transfer reactions catalysed by AK and CK in saponin-treated muscle fibres. 

 

Investigate the expression of Ca2+-regulatory proteins in failing striated muscle 

from a rat model of HF 

 

This study has found that expression levels of Ca2+ handling proteins were minimally 

changed in LV homogenates across the experimental groups (control, HF sedentary and 

HF trained). It is believed current SERCA data may not accurately represent the change in 

expression of SERCA2 in the functioning LV, since samples were stored for prolonged 

periods and any degenerative process may add variability to the WB signals. PLB was 
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shown to be constant across arrays. Sedentary HF animals exhibited increased expression 

of RyR2 levels by around 33% against the group of healthy rats; whereas exercised 

animals displayed increased expression of RyR2 by 14% compared to control. No 

important differences expression could be found in CaMKII 

Interestingly, SOL of exercised rats exhibited reduced levels of SERCA2 (30%) 

compared to control. Further studies are necessary to elucidate the mechanisms that 

underlie this response. Expression of the inhibitory protein, PLB, was not significantly 

altered across groups. Decreased levels of CaMKII (by 31%) were found for post-MI 

trained SOL animals against the control group. EDL homogenates were investigated on 

SERCA1 expression and it was found that SERCA1 was also unchanged in this type of 

muscle. This result may indicate that the degree of HF induced in the present rat model 

was not severe or chronic enough to generate fibre type shift that would be associated to 

reduction of SERCA1 expression.  

 

Limitations of this study  

 

 The primary limitation of this study is the sample size of the experimental groups. In 

retrospect, higher group size (20-30 animals in each group) are necessary to resolve 

molecular basis to establish the interaction/communication between the heart and skeletal 

muscle. This estimate was only possible in retrospect after detailed error analysis of both 

the SR uptake and Western blot assays. These assay systems had not previously been 

applied to the small samples acquired from the animal models. This conclusion will enable 

better design for future studies. 

 

SR Ca2+ uptake  

 

Although the chosen Perspex apparatus demonstrated to be suitable to allow the 

manipulation of permeabilized muscle fibre bundles and Ca2+ decay recording in a 

chamber up to 5 mm diameter, the temperature of the bath was below physiological, a 

feature that can interfere with SERCA capacity. Additionally the SR Ca2+ content was not 

estimated in the study.  

CaCl2 injection was done manually, there were some logistic inconsistencies 

regarding the time interval when loading was performed across multiple samples; these 

differences had to be manually corrected with the aid of an automated system. 
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Fura dyes are excited at 340nm and 380nm and changes in fluorescence are detected 

based on ratiometry. This contributes to reduction of artefact caused by movement or 

background noise. An arc lamp was used for the first batch of experiments and then, 

replaced; new calibration curves were performed and new kd values for Fura were 

obtained in this experimental system. A constant value was calculated and used to adjust 

the equations for Ca2+ conversion and signals. 

Results in permeabilized frozen biopsies can be directly extrapolated to freshly 

collected infarcted LV or skeletal muscle require further investigation with higher sample 

sizes. To minimize this limitation, a mathematical simulation studies were performed, 

modelling the relationship between leak and uptake rates and how these features would 

modulate the shape of the Ca2+ transient decay. 

Biopsies also seemed to be affected by freezing and for prolonged storage. The 

damage of mitochondria and energy systems may have reduced the potential of the present 

findings; more work is required to investigate ways to retain mitochondrial function 

through the cryopreservation process. 

 

Enzymatic studies  

 

Enzymatic activity observed in EDL could not be extended to compare to slow-

twitch fibres, such as SOL and LV due to: (i) limited time in host laboratory and (ii) 

inability to transfer techniques to home laboratory. Measurements were done at least, in 

duplicates; but the basis of the basis of the variation in uptake rates within and across 

samples is not fully understood and could be reduced with further studies. 

 

Western blotting technique  

 

The Western blotting assays lacked control samples in some of the gels. There were 

to be variation in fluorescence signals from identical samples likely due to the differences 

in equipment features. These systematic variation were there despite every effort to 

minimuse variation and limited the differences that could be resolved with the current 

sample size. Generally 10% changes are thought to be of physiological significance, the 

intrinsic variation in the blotting procedure means that a sample size of >20 is required to 

resolved 10% changes in protein expression. 
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 Limitations to the extension of this study into the exercise training benefits of a 

wider intervention group include the need of freshly harvested samples from infarcted 

animals. The usage of other muscle groups more recruited during treadmill running could 

also help to elucidate a better response regarding training adaptations post-MI HF. 

 

 

Contribution to future studies  

 

In summary, this thesis provided quantitative data about SR Ca2+ uptake and Ca2+ 

leak in frozen and fresh striated muscle fibres of rat. It was demonstrated that the SR 

function was preserved in long-term stored biopsies after thawing; while the mitochondria-

SR link was damaged. CK- or mitochondria-mediated control of SERCA via the local 

ATP/ADP ratio may take part in the impairment of Ca2+ handling in HF and thus, ECC.  

This places a requirement for the use of fresh tissue in studies such as these unless methods 

can be resolved to preserved mitochondrial function. This would allow the SR function 

assay to be used in multiple physiological scenarios including clinical studies. The study 

also quantified the optimum design for Western blots studies of striated muscle and 

showed  the benefit of correlating SR uptake activity with protein abundance 

measurements to understand the status of energy transfer systems in skeletal and cardiac 

muscle in a rat models of exercise and post-MI HF. 
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