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SUMMARY

The a 2 c-subclass of adi'energic receptor mediates some of the antinociceptive actions 

of noradrenaline in the spinal cord. This receptor is present on axon terminals in the 

superficial dorsal horn.

A series of double-labelling experiments for confocal microscopy was performed in 

the rat (Wistar) to investigate the relationship between the a 2 c-adrenergic receptor and 

each of seventeen chemical markers that label various types of axon tenninal in the dorsal 

horn. Quantitative analysis revealed that aic-adrenergic receptors are neither present on 

terminals of unmyelinated, myelinated or peptidergic primary afferents nor on descending 

noradrenergic or serotoninergic temiinals, whereas they are present on terminals of spinal 

origin, azc-adrenergic receptors are predominantly found on axon terminals of excitatory 

interneuronal populations and also to a lesser extent they are present on terminals of 

inhibitory interneurons, hi addition, the receptor is present on terminals that contain certain 

peptides, which indicates that subpopulations of interneurons possessing the a 2 c-adrenergic 

receptor can be differentiated on the basis of their peptidergic content. Electron 

microscopic analysis revealed that immunoreactivity is predominantly associated with axon 

terminals that are presynaptic to dendrites while a small proportion of immunoreactive 

terminals formed axoaxonic synaptic arrangements.

Experimental techniques were combined in order to investigate the relationship of 

terminals possessing a 2 c-adrenergic receptors with supraspinally projecting neurons. The 

techniques included retrograde labelling, multiple and sequential-immunolabelling, 

coiTelated confocal-electron microscopy and induction of the immediate early gene c-Fos 

by peripheral noxious stimulation. The findings indicated that axon temiinals containing 

the a 2 c-adrenergic receptor densely innervate spinomedullary neurons that express the 

substance P receptor, neurokinin-1. The latter temiinals are glutaniatergic (excitatory) and 

form synapses with this type of neuron. In addition, a substantial number of neurokinin-1 

projection neurons in lamina I that are responsive to peripheral thermal noxious 

stimulation, i.e. express c-Fos, receives innervation h'oni axon terminals containing a i c  

adrenergic receptors.

The a 2 c-adrenergic receptor is also present in axon temiinals in the lateral spinal 

nucleus. This nucleus is found in the rat and other rodents and contains projection neurons 

that are densely imiervated by peptidergic varicosities. Double-labelling inimunostaining



experiments showed that aic-adrenergic receptors are present on axon terminals of mainly 

excitatory interneurons but also of inhibitory interneurons, and frequently contain peptides. 

Electron microscopy revealed that terminals possessing the receptor are presynaptic to 

dendrites and somata of neurons in the lateral spinal nucleus. The involvement of lateral 

spinal nucleus neurons in nociceptive transmission and their relationship with axons that 

possess a 2 c-adrenergic receptors was investigated. By combining retrogi'ade labelling of 

projection neurons with induction of c-Fos expression by peripheral noxious stimulation 

and multiple-immunolabelling, it was possible to identify NK-1 projection neurons in the 

lateral spinal nucleus that express c-Fos and to determine if such cells receive contacts 

from terminals possessing the a 2 c receptor. The results show that neurons in this nucleus 

are densely innervated by axons that possess the receptor and that a small proportion can be 

activated by theiinal noxious stimulation.

In conclusion, noradrenaline is likely to modulate nociceptive transmission by acting 

on terminals of interneurons that contain the aic-adrenergic receptor in the superficial 

dorsal horn and also in the lateral spinal nucleus.
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Chapter 1 

G eneral Introduction



Pain is a very versatile sensation, it can be localised or a widespread discomfort, 

acute or clmonic, in an attempt to describe it we talk about piercing, throwing or thumping 

pain. We even refer to pain as a physical symptom linlced to generally unpleasant emotions 

like frustration, injustice, or rejection. Metaphorically, pain is a universal language that 

ultimately makes us self-aware of our existence; it could be argued that it represents the 

survival sense, and that it plays an important role in guiding our actions throughout life. 

While the meaning and function of pain in human existence is an exciting issue worthwhile 

to study and debate, it is also self-evident that pain compromises our well being and 

disrupts our lives to a greater or a lesser extent and for this reason a great concentration of 

effort is devoted to pain research. Pain research is a vast multidisciplinary field, which 

focuses on understanding the mechanisms of nociception in order to design effective 

therapeutic strategies for relieve of pain. Part of this field of research concentrates in the 

study of the so called endogenous analgesia systems. Indeed the context of the present 

work is the noradrenergic system, which is one of the major descending analgesia systems, 

together with the opioidergic and serotoninergic systems.

The tliree systems are activated by rostral projections from the cortex and 

hypothalamus, as well as by ascending projections carrying nociceptive or other type of 

information from caudal stmctures. All three are known to interact and produce analgesia 

by spinal mechanisms (reviewed by Willis and Coggeshall, 1991). Evidence for 

supraspinal antinociception was originally derived from studies in which lesions, electrical 

stimulation and microinjection of drugs to specific regions of the brain effectively 

influenced the modulation of pain transmission (Mayer and Price, 1976; Willis et al., 1977; 

Hayes et al., 1979).

The aim of this introductory chapter is to review the extensive literature up to date 

available regarding the noradrenergic system, hi order to build up a framework, the 

information has been broken down into sections, which summarise different aspects of the 

existing evidence for spinal noradrenergic antinociception.

1. Noradrenergic innervation of the spinal cord

2. Effect of noradrenaline on dorsal horn neurons: excitation versus iidiibition

3. Mediators and mechanisms of noradrenergic antinociception

4. Functioning of az-adrenergic receptors

5. Control of noradrenaline release

6. Candidate aa-AR subtypes as mediators of spinal noradrenergic antinociception



1. Noradrenergic innervation of the spinal cord.

The noradrenergic system consists of a collection of nuclei which contain cell bodies 

of neurons that synthesise noradrenaline (NE); such nuclei are found in the brainstem: A l, 

A2, A3, A4, A5, A6 (also referred to as locus coeruleus, LC) and A l  nuclei (Hillarp et al., 

1966; Dahlstrom, 1971). Anterograde and retrogi'ade tract tracing techniques, frequently 

combined with imniunocytochemical labelling, have been used widely to elucidate the 

circuitry of the system. Investigations carried out in a variety of species indicated that the 

pontine nuclei A5, LC and A l  are the major sources of noradrenergic imiervation of the 

spinal cord (Westlund el al., 1981, 1982; Schroder and Skagerberg, 1985; Clark and 

Proudfit, 1993). Noradrenergic innervation of the spinal cord dorsal horn was proposed to 

arise principally horn the LC nucleus based on investigations in rat, cat, and monkey 

(Karoum et al., 1980; Westlund et al., 1983, 1984). Nevertheless later studies in the rat 

gave rise to controversy regarding the specific termination area in the spinal cord 

corresponding to the different noradrenergic nuclei:

Evidence supports that in the rat, noradrenergic axons from the LC descend within 

laminae I and II to end in the dorsal horn and intermediate region; while those from A5 and 

A l  nuclei, descend mainly in the ventral and dorsolateral funiculi to supply motoneurons 

and autonomic preganglionic neurons (Fritschy and Grzanna, 1990). Additionally this 

study indicated that the contribution of A5 and A l  to the noradrenergic spinal projection is 

greater than that of the LC. Contradicting the above studies, noradrenergic neurons located 

in the pontine A l  nucleus have been reported to constitute the major source of 

noradrenergic innervation of the spinal cord dorsal horn (Clark and Proudfit, 1991a). The 

same research group also concluded that LC neurons supply noradrenergic innervation to 

the intermediate zone and ventral horn and not to the dorsal horn (Proudfit et al., 1990; 

Clark and Proudfit, 1991b; Proudfit and Clark, 1991).

These inconsistencies could be explained by intraspecies or even substrain 

differences between the specimens used by the diverse groups. Even though disagreement 

appears to exist regarding the origin and destination of noradrenergic spinal projections, the 

observations suggest the presence of a specific descending noradrenergic pathway able to 

influence the transmission of sensory information at the dorsal horn, while other 

noradrenergic pathways will be involved in the control of locomotion or autonomic 

functions by influencing other areas within the spinal cord.



Iiiimunohistochemical investigations in the rat using antiserum against NE identified 

noradrenergic tenninals in laminae I, II and IV-VI of the dorsal horn, as well as in the 

intermediate region (including the intermediolateral cell column), lamina X and the ventral 

horn (Dahlstrom and Fuxe, 1965; Westlund et al., 1983; Mouchet et ah, 1992; Rajaofetra et 

ah, 1992). Immuno electron microscopic studies also in the rat using anti serum against NE 

showed that noradrenergic terminals principally form axodendritic synapses in the ventral 

horn and intermediolateral cell column; while in the dorsal horn noradrenergic imiervation 

was suggested to be non-synaptic since no synapses were observed (Rajaofetra et ah, 

1992). This contrasts with results Rom electron microscopic investigations in the cat, 

which used antisera against tyi'osine hydroxylase (TH) or dopamine-(3-hydroxylase (D|3H); 

these studies reported the presence of TH or D|3H-IR axonal boutons forming axodendritic 

symmetric junctions in the dorsal horn (Doyle and Maxwell, 1991a). Additionally, 

correlated light microscopy immunohistochemistry showed the presence of the NE 

markers, TH and D^H, throughout laminae I-IV in the cat (Doyle and Maxwell, 1991b), 

thus implying a more extensive distribution of the noradrenergic imiervation in the dorsal 

horn than that reported in studies using NE antisemni. In the latter study it was concluded 

that descending noradrenergic innervation to the cat spinal cord is very widespread while 

particularly rich in the superficial dorsal horn, hideed, noradrenergic innervation appears to 

be more widespread than serotoninergic innervation on the spinal grey matter; as 

serotoninergic temiinals are mainly located in laminae I-II and IX of the rat spinal cord 

(Steinbusch, 1981). Also, noradrenergic terminals do not colocalise with glutamic acid 

decarboxylase (GAD) or neuropeptides in the rat spinal cord; and for this reason spinal 

noradrenergic imiervation is considered to be neurocheniically exclusive, at least in the rat 

(Patel et a l, 1997).

2. Effect of iioradreiialiiie on dorsal horn neurons: excitation versus inhibition

The release of NE in the spinal cord leads to antinociception. Stimulation of the 

sciatic nerve, dorsolateral funiculus, medulla and certain supraspinal regions such as the 

LC or A l  noradrenergic nuclei, or others like the periaqueductal grey or reticular 

formation, can cause release of NE in the spinal cord which produces inhibition of dorsal 

horn neurons and results in antinocieption (Tyce and Yaksh, 1981; Hammond et ah, 1985; 

Abhold and Bowker, 1990). Intrathecal administration of NE mimics the latter stimulation-



induced antinociceptive effects, further supporting that the descending noradrenergic 

system contributes to spinal antinociception (Yaksh, 1985). These two lines of evidence 

together with the fact that noradrenergic terminations are present in those laminae where 

nociceptive neurons (laminae I and IV-VI) and nociceptive primary afferents also exist 

(laminae I-II) (Clnistensen and Perl, 1970; Menétrey et a l, 1977; Light and Perl, 1979b; 

Sugiura et al., 1986; Alvarez et al., 1993), suggest that spinal NE release can potentially be 

responsible -at least partly- for descending tonic inlribition of spinal nociception at two 

different levels, i.e. primary afferent and spinal neuron level.

However, disagreement exists about the effect of NE on dorsal horn neurons. 

Ionophoretic application of NE to the dorsal horn has been reported to produce not only 

inhibitory but also excitatoiy effects. Application of NE to the dorsal horn leads generally 

to inlhbition of the background activity of the cells and their response to excitatory amino 

acids (Biscoe et al., 1966; Belcher et al., 1978; Headley et al., 1978; Fleetwood-Walker et 

al., 1985; Davies and Quinlan, 1985; Howe and Zieglgansberger, 1987). Apparently 

controversial observations regarding the effect of NE on cells from superficial versus deep 

laminae of the dorsal horn, as well as according to the response characteristics of the cells. 

On one hand, NE has been indicated to inhibit low-threshold and wide dynamic range cells 

in superficial laminae and to excite proprioceptive cells in deep laminae (Howe and 

Zieglgansberger, 1987); but on the other hand NE has been reported to excite low- 

threshold cells in superficial laminae, suggested to be interneurons, and to inliibit high- 

threshold cells in lamina I and wide dynamic range cells in the deep dorsal horn (Todd and 

Millar, 1983; Millar and Williams, 1989). Indeed these results are not necessarily 

contradictory and could be complementary, if we consider that the recordings can 

correspond to different populations of neurons within the same area.

3. Mediators and mechanisms of noradrenergic antinociception

In the CNS, investigations on a-adrenergic receptors (ARs) have shown that NE 

induces excitation acting on ai-ARs, while NE induces inhibition acting on a%-ARs. 

(DeBernardis et al. 1986; Bylund et al., 1994; Arnsten et al., 1998). Based on this line of 

evidence and previous obseiwations, Peng and coworkers (1996) proposed a model of 

noradrenergic antinociception (Fig. 1.1, adapted from Peng et al., 1996). In this model ai~ 

ARs are present on inliibitory interneurons of the superficial dorsal horn; and a 2 ~ARs are



located on deep dorsal horn neurons which have ascending supraspinal projections. The 

inhibitory intemeuron in the superficial dorsal horn is excited by NE acting on ai-ARs 

which induces the synaptic release of GAB A and/or glycine, that in turn inhibit the deep 

dorsal horn neuron. The deep projection neuron is also directly inliibited by NE through a%- 

ARs.

This paradigm fits with the proposal by Millar and Williams (1989) that NE induces 

excitation of low-tlii'eshold inhibitory interneurons, which synapse on high-threshold and 

wide dynamic range neurons. However the latter model does not agree with some of the 

current evidence. The effect of NE on substantia gelatinosa neurons was studied in a slice 

preparation, hitracellular recording showed that NE has a predominant hyperpolarising 

effect in the superficial dorsal horn (lamina II), which is mediated by a%-ARs since 

hyperpolarisation was only reversed by ai-AR antagonists (North and Yoshimura, 1984). A 

high concentration of binding sites was shown in lamina II by autoradiography after 

application of [^H]-clonidine, i.e. an antinociceptive ai-AR agonist; such sites are 

considered to represent Œ2 -AR binding sites (Bouchenafa and Livingstone, 1987). NE- 

induced antinociceptive effects can be reproduced by ai-AR agonists, and reversed by a :- 

AR antagonists, while p or ai-AR agonists and antagonists do not mimic or reverse NE- 

antinociceptive effects respectively (Howe et al., 1983; Yaksh, 1985; Proudfit, 1988). 

These facts suggest that NE-induced antinociception is mediated principally by a^-ARs and 

involves hyperpolarisation of the superficial dorsal horn where a 2 -ARs are concentrated.

There ai‘e diverse possible mechanisms of a 2 -AR~mediated noradrenergic 

antinociception in the spinal cord:

( i ) Presynaptic inhibition o f nociceptive transmission on nociceptive primary afferents. 

Descending noradrenergic terminals have been reported to directly inliibit 

nociceptive primary afferents through the activation of a 2 -ARs present on central 

terminals of this type of afferent. Local application of NE to the dorsal horn 

produced complete inhibition of the noxious mechanical stimuli-evoked release of 

substance P (SP); and the latter effect was only fully reversed by a selective Œ2 -AR- 

antagonist (Kuraishi et al., 1985). hihibition of glutamate release fi'om primary 

afferents has been also confirmed to accompany the inhibition of SP release 

(Kamisaki et al., 1993). In addition, release of calcitonin-gene related peptide 

(CGRP), which is exclusively present on primary afferents (Levine et al., 1993), was



prevented by the ai-AR-agonist clonidiiie in an in vitro preparation of spinal cord 

(Solomon et ah, 1989).

( ii ) Postsynaptic inhibition o f  nociceptive transmission on spinal neurons. 

lonophoretically applied-NE produced a potent selective inhibition of nociceptive 

responses from multireceptive neurons (i.e. activated by noxious and innocuous 

cutaneous stimuli) in the dorsal horn. This selective inhibitory effect was only 

mimicked by a^-AR agonists, not ai or (3-AR agonists, and for this reason activation 

of a 2 -ARs on spinal nociceptive neurons was concluded to be a mechanism for NE- 

spinal antinociception (Fleetwood-Walker et al., 1985). The az-ARs mediating this 

selective inhibitory effect were indicated to be localised to laminae IV-V and to 

laminae II-III, because ionophoretic administration of NE on either of both areas 

gave rise to selective nociceptive inhibition of neurons recorded in laminae IV-V 

(Davies and Quinlan, 1985). Electron microscopic evidence further supports this 

mechanism, hi the monlcey, spinothalamic tract neurons in laminae I and IV-V which 

transmit nociceptive information to supraspinal levels, have been reported to receive 

axodendritic and axosomatic synapses from D|3H positive axonal boutons; i.e. direct 

noradrenergic imiervation (Westlund et al., 1990). hi the cat, dorsal column 

postsynaptic neurons that project to the dorsal column nuclei have been reported to 

be a target of noradrenergic temiinations since DpH positive axonal boutons fomied 

synapses onto their somata and proximal dendrites (Doyle and Maxwell, 1993). This 

type of neuron is found in laminae ÎII-V and is multireceptive; i.e. respond to 

innocuous and nociceptive -mechanical- stimuli.

Therefore, the conclusion so far is that (%2 -ARs have an important role in the 

mediation of NE-induced antinociception and that this action very likely involves 

inhibition of nociceptive primary afferents and dorsal horn neurons. But what could be the 

role of spinal interneuronsl hiterestingly noradrenergic terminals concentrate especially in 

the superficial dorsal horn where many interneurons are Imown to exist. It has already been 

noted that lamina II interneurons hyperpolarise after NE application (North and Yoshimura, 

1984), but what is the functional significance of this observation? Does it reflect the 

situation in vivo? Hokfelt and collaborators (1977) proposed the hypothesis that 

stimulation-produced analgesia is related to activation of spinal intemeurons forming 

axoaxonic synapses with SP-containing primary afferents in the superficial laminae of the



dorsal horn. Indeed, the role of inhibitory intemeurons as inhibitory units of nociceptive 

primary afferent input has been substantially accepted (reviewed in Rudomin and Schmidt, 

1999). In contrast, little evidence supports a role for intemeurons in NE-antinociception as 

possible inhibitory units of nociceptive neurons (Peng et ah, 1996; Millar and Williams, 

1989) and as commented above this notion is in disagreement with current evidence. 

Nevertheless, the investigation canied out by Davies and Quinlan (1985) suggests an 

underlying role for intemeurons in NE-mediated antinociception. Application of NE in the 

superficial laminae II and III inliibited nociceptive neurons in laminae IV and V. NE could 

cause this effect by acting on postsynaptic a 2 -ARs present on the distal dendrites of deep 

nociceptive neurons. Alternatively NE could be acting on presynaptic az-ARs present on 

axon terminals of primary afferents and/or intemeurons, which contact the distal dendrites 

of deep nociceptive neurons as they extend into the superficial laminae. If we consider that 

in laminae II and III intemeuronal terminals are predominant and that NE has a major 

hyperpolarising action on lamina II intemeurons (North and Yoshimura, 1984), then the 

observations of Davies and Quinlan are probably indicative of an intemeuronal mechanism 

of neuronal inhibition, in which excitatory intemeurons would be inhibited by NE. 

Therefore, on the light of cuiTent evidence it can be suggested that intemeurons are 

involved in NE-induced antinociception, although the details of the intemeuronal circuits 

and mechanisms of action are yet to be uncovered.

4. Fiiiictioiiiiig of az-adrenergic receptors

4.1. Effector mechanism

(%2 -ARs belong to the superfamily of seven-transmembrane spanning domain G~ 

protein-coupled receptors and share common signal transduction pathways mediated 

through the inhibitory G-proteins G, and Go (Crain et al., 1987; Hoelm et al., 1988). The 

involvement of inliibitory G-proteins was demonstrated by means of the application of 

pertussis toxin, a substanee that blocks the action of inhibitory G-proteins. Pretreatment 

with pertussis toxin prevented the antinociceptive effects of intrathecally administered NE 

and morphine (Hoelm et al., 1988). Studies carried out in guinea pig submucosal neurons 

demonstrated that NE acting on az-ARs reduces the Câ "̂  cuiTent, i.e. influx, (Suiprenant et 

ah, 1990) by decreasing the opening frequency of Câ "̂  chamiels and thus the Câ "̂  chamiel 

activity (Shen and Surprenant, 1991). Additionally, NE acting on az-ARs has been reported



to increase the current, i.e. efflux, (Tatsumi et at., 1990) by increasing the opening of K'*’ 

channels (Surprenant and North, 1988; Shen et ah, 1992). Application of pertussis toxin to 

block the action of inliibitory G-proteins, made ois-AR agonists ineffective by preventing 

the changes in Câ "̂ ’ and conductances (Surprenant et ah, 1990; Tatsumi et ah, 1990). 

Therefore it can be concluded that the effector mechanism of NE-induced 

hyperpolarisation through az-ARs which leads to antinociception involves: 1 activation of 

pertussis toxin-sensitive inliibitory G-proteins Gj and Go; 2 coupling to Câ '*' channels, 

which tend to close resulting in a decreased influx of Ca^^; 3 coupling to channels, 

which tend to open resulting in an increased efflux of K^.

Additionally, activation of Gj and Go-proteins suppresses the activity of adenylate 

cyclase by inliibiting a pool of such enzymes, which consequently leads to a reduction in 

the formation of cAMP. a^-AR agonists were reported to inliibit eAMP fonnation (Hoehn 

et ah, 1988; Uhlen and Wikberg, 1988). ag-ARs that inhibit cAMP formation have been 

proposed to be present on cells which are accessible to the stimulation of cAMP by 

forskolin application. Forskolin, vasoactive intestinal peptide (VIP) and capsaicin 

stimulated the formation of cAMP, however cAMP fonnation was only inhibited by « 2 -AR 

agonist when forskolin, not VIP or capsaicin, had been previously applied (Uhlen and 

Wikberg, 1989). This raises the possibility of a dynamic behaviour of the a%-AR dependent 

on micro - environmental neurochemistry. For instance, could peptides like VIP modulate 

the functioning of az-ARs and interfere in the formation of cAMP? If so, how could this 

happen?

It has been pointed out that the different subtypes of ag-ARs: azA, glib and a 2 c 

(Bylund et ah, 1994) exhibit a different receptor-effector coupling leading to the inhibition 

of cAMP. The a 2 A-AR is coupled with high efficacy but with low sensitivity to the 

effector, while the ct2 c-AR is coupled with both high efficacy and high sensitivity (Jansson 

et ah, 1994a, 1994b). However not much is known about the functional relevance of such 

subtype-related specificities.

The general effector mechanisms maybe suimnarised as follows: activation of a 2~ 

ARs by NE triggers the coupling of the receptor to a G-protein, which acts on Ca^  ̂ and 

channels and inliibits adenylate cyclase activity resulting in a decrease of cAMP. hiitially it 

was reported that inhibition of adenylate cyclase was responsible for deereasing neuronal 

excitation (Limbird, 1988; Ulrlen and Wikberg, 1988). However, later investigations



support that inhibition of adenylate cyclase, and thus cAMP, by aa-AR activation is not 

directly linked to the antinociception mediated tlu*ough such receptors and that differing 

a 2 -AR pathways seem to mediate antinociceptive effects (Ulilen et al., 1990). Indeed, 

controversy exists about the role of the cAMP signal. Raise in intracellular cAMP has been 

related to the loss or attenuation of the noradrenergic and opioidergic suppressant effect; 

i.e. loss of drug-sensitivity and antinociception (Crain et ah, 1987). But, paradoxically 

cAMP is considered to be a signal that induces an increase in ocg-AR expression and hence 

receptor availability (Limbird, 1988), which would favour noradrenergic effectiveness. We 

can conclude that cAMP acts as a signal or messenger in a variety of pathways leading to 

diverse events taking place in the cell; and therefore the decrease on cAMP resulting from 

Œ2 -AR activation cannot be considered as a signal purely involved in the mediation of 

noradrenergic antinociception.

4.2. Agonist-promoted activation

Chronic exposure to certain 0 1 2-AR agonists (eg. clonidine), or opiate agonists (eg. 

morphine) leads to the development of tolerance; in other words loss of sensitivity to the 

behavioural effects of the drug including antinociception. The molecular substrate for such 

behavioural phenomenon has been investigated and it has been found to lie at receptor 

level (reviewed in Liggett and Raymond, 1993). It is Imown that certain exogenously 

applied compounds require a great amount of available a 2 -ARs. For instance, clonidine 

requires more available a 2 -ARs than dexmedetomidine and the former develops tolerance 

while not the latter (Hayashi et al., 1995). It is possible then that under long term-agonist 

exposure the requirement of a 2 -ARs is not satisfied by the expression of new ai-ARs, 

leading to the loss of clonidine sensitivity, i.e. effectiveness. The specific receptor 

behaviour of each subtype (a 2 A, (%2 B, (%2 c) in response to agonists is starting to be 

elucidated.

A series of experiments combining pharmacology with Œ2 -AR site directed 

mutagenesis, revealed differences in the regulation of the diverse subtypes of a 2 -AR in 

response to agonist-activation. Both « 2 A and a 2 B-ARs, have been shown to undergo short­

term desensitisation; while not the a 2 C"AR. Such desensitisation has been reported to 

require the phosphorylation of more than two serine residues on an EESSSS motif located 

at the C-terminal of the adrenergic receptor. Because this motif is present in the 0 1 2A and 

a 2 B"ARs and absent in the a 2 c-AR, it is considered to represent a moleculai* determinant of
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desensitisation. In contrast, the a 2 c-AR is thought to be susceptible to long-term 

downregulation, although there is no evidence of it, while the 0 C2 A-AR has been reported 

not to undergo long-term downregulation (reviewed in Liggett and Raymond, 1993). What 

is the significance of this difference? Is the activation or availability of different a 2 -ARs 

time-dependent; are they functionally synclu'onised? Not much is laiown about the 

response pattern of the a 2 c-AR to short and long-term agonist activation. It would be 

interesting to investigate the a 2 c-AR behaviour, since the expression of this receptor has 

been reported to be maintained or even increased after different models of peripheral nerve 

injury (Stone et al., 1999); which indicates the aic-AR as a potential mediator of the 

reported antinociceptive effects of clonidine or other a 2 -AR agonists, in neuropathic 

conditions (Fairbanks et al., 2002).

5. Control of noradrenaline release

NE-induced analgesia is known to involve cholinergic activation. Œ2 -AR agonists 

increase the concentration of ACh in the CSF (Detweiler et a l, 1993; De Kock et a l, 1997) 

and in microdialysates (Klimscha et a l, 1997). Application of cholinergic antagonists 

further supports the involvement of cholinergic stimulation because they reduce the 

antinociceptive effects of Œ2 -AR agonists (Gorth et a l, 1989). Additionally, 

antinociception induced by Œ2 -AR agonists has been reported to be dependent not only on 

cholinergic activation, but also on nitric oxide (NO) mechanisms. Perfusion of in vitro 

preparations with cholinergic and Œ2 -AR agonists stimulates NO synthesis and the 

antinociception induced by the latter agonists can be diminished by nitric oxide synthase 

(NOS) inhibitors (Xu et a l, 1996a, 1996b, 1997). Extensive evidence supports that Œ2 -AR 

agonists produce antinociception under both normal and neuropathic pain conditions 

(Yaksh, 1985; Ossipov et a l, 1997; Fairbanks et a l, 2000). Cholinergic activation has been 

demonstrated to occur in both situations; under normal conditions both muscarinic and 

nicotinic receptors are similarly activated, while under pathological conditions muscarinic 

receptors play a predominant role, hi both cases activation of cholinergic receptors by ACh 

leads to the synthesis and release of NO (Xu et a l, 2000).

Much controversy exists regarding the role of (%2 -AR activation on NE release in the 

spinal cord. The classical view contends that (%2 -ARs are present on noradrenergic 

terminals and function as auto-inliibitory receptors to reduce NE release, whilst a more
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recent view proposes that the net effect of stimulating ai-ARs in the spinal cord is to 

increase NE release. These views support the concept of antagonistic feedback loop-like 

mechanisms: a negative versus a positive feedback on NE release.

5.1. Evidence fo r  a positive feedback loop

(%2 -AR agonists applied in vivo increase NE release as measured by dorsal horn tissue 

microdialysis (Klimscha et al., 1997). hijection of a 2 -AR antagonists decreases the release 

of NE into CSF following stimulation of noxious input (Eisenach et al., 1996) and also 

decreases systemic opioids (Bouaziz et al., 1996). NE-induced NO synthesis has been 

related to the control of NE release. Chiari and colleagues (2000) have proposed a NE-a2 - 

AR cascade mechanism that exerts a positive feedback on NE release in the spinal cord: 

The release of NE from descending terminals leads to activation of (%2 -ARs, which in turn 

leads to the release of ACh that activates cholinergic receptors. Both muscarinic and 

nicotinic receptors induce the synthesis of NO which is released. NO combines with NE to 

form 6-nitro-NE (de la Breteche et al., 1994). There is evidence supporting the 

involvement of 6-nitro-NE in the regulation of NE release. Intrathecal injection of either 6- 

nitro-NE or NE, produced antinociception, thus suggesting that 6-nitro-NE leads to NE 

action and is a potential element in a positive feedback loop for NE release, hi addition, 

because destruction of NE nerve terminals decreased the 6-nitro-NE-induced 

antinociception mentioned above, it can be concluded that 6-nitro-NE acts on NE 

descending terminals to lead to the NE cycle of action (Chiari et al., 2000). The same 

research group, has reported that 6-nitro-NE inhibits NE reuptake by acting directly on 

noradrenergic fibres and in doing so increases the released NE extracellularly (Li et al., 

2000b), which would favour the maintenance of NE action. In addition, 6-nitro-NE has 

been suggested to be acting as an endogenous amphetamine-like substance; it enters 

noradrenergic terminals via the NE transporter, where it induces NE release by a Ca^ ‘’- 

independent mechanism via reverse transport (Li et al., 2000b).

Aimar and colleagues (1998) proposed a NMDA-NO cascade mechanism that leads 

to spinal hyperexcitability and increased pain perception. Glutamate released from primary 

afferents acts on NMDA receptors located on interneurons that produce NO; newly 

synthesised NO is released and in turn triggers the release of peptides like SP from primary 

afferents (Aimar et al., 1998). If this is the situation in vivo, the effect of NO on primary 

afferents could be neutralised by the presence of NE, as combination of both substances
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would lead to the formation of 6-nitro-NE. This could represent one of the mechanisms by 

which NE leads to suppression of pain transmission. Indeed it begs the question, how does 

NE action lead to the release/synthesis of ACh and NO?

5.2. Evidence fo r  a negative feedback loop: autoinhibitory az-adrenergic receptors

It has been assumed that a 2 A-ARs are presynaptic autoinhibitory receptors at spinal 

terminals of noradrenergic descending fibres, because high levels of a 2 A-AR 

immunoreactivity and mRNA were detected on the cell bodies of noradrenergic supraspinal 

nuclei (Nicholas et ah, 1993; Rosin et ah, 1993; Scheinin et ah, 1994; Guyenet et ah, 

1994). NE is thought to induce inliibition of NE release from noradrenergic terminals by 

acting on these autoinliibitory az-ARs located on these spinal terminals (Langer et al., 

1985; Trendelenbing et al., 1999). However only recent evidence supports the existence of 

autoinliibitory ag-ARs in the spinal cord, hi an in vitro preparation of spinal cord tissue 

devoid of synaptic circuits, application of NE decreased NE release, indicating that NE can 

produce direct inhibition of NE terminals through ai-ARs and in this way decrease the NE 

release (Li et ah, 2000a). However anatomical investigations have failed to identify 

autoinliibitory az-ARs in the spinal cord. Experiments combining radio-ligand binding 

with treatments for noradrenergic destruction (i.e. intrathecal 6-hydroxydopamine and 

cervical spinal hemisection) were carried out to investigate the origin of az-ARs in the 

cord. The results indicated that (%2 -ARs are not present either in noradrenergic descending 

fibres, or in other type of descending fibres because ccz-AR binding sites did not decrease 

following any of the treatments (Howe et al., 1987a). This has been eonsequently 

confirmed by immunocytochemical studies. Neither oczA nor azc subtypes of adrenergic 

receptors appear to exist on descending noradrenergic terminals since no colocalisation was 

observed between azA or azc-AR inimunoreactivities and D(3H or TH immunoreactivities, 

being both enzymes involved in NE biosynthesis (Stone et ah, 1998). Therefore, although 

investigations indicate the presence of autoinliibitory az-ARs at the cord, there is no 

anatomical evidence supporting a presynaptic autoinliibitory mechanism controlling NE 

release, i.e. a negative feedback circuit.

In summary, there is extensive evidence indicating the presence of a positive 

feedback mechanism involving a spinal circuit on which the described cascade relays {NE- 

(a2-AR)-ACh-CH0LINERGIC receptors~NO-(6~nitro-NE)~NE RELEASE], The negative 

feedback loop could exist, even though autoinhibitory az-ARs have not been detected
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anatomically. Indeed, this could be due to the existence of only a small proportion of 

autoinhibitory az-ARs, which in turn could explain the predominance of the positive loop 

to increase NE release that is consistent with multiple studies refeired to above.

6. Candidate ai-AR subtypes as mediators of spinal noradrenergic antinociception

A number of studies have attempted to investigate the subtypes of az-AR involved in 

spinal noradrenergic antinociception. These studies can be broadly classified, according to 

the tecluiiques applied, into pharmacological, genetic and localisation studies. Recently 

investigations have become more integrative and frequently apply a combination of 

techniques from the different approaches.

6.1. Pharmacological studies

Pharmacological studies can provide information about the involvement of a receptor 

in specific actions by using receptor specific agonists and antagonists. However the 

agonist/antagonist approach is limited to resolve the roles of the different az-AR subtypes 

because of the unspecificity of exogenous compounds that selectively bind to the different 

az-AR subtypes (even though the subtypes have been well characterised). For this reason, 

the population of spinal az-ARs that mediates NB-antinociceptive effects, has been 

determined, pharmacologically, as being of indistinguishable characteristics; i.e. specific 

affinity properties for each subtype have not been found (Yaksh, 1985). A diversity of 

strategies has been applied in order to characterise the subtype-selectivity of diverse 

ligands, but only marginal subtype-selectivity has been found. Competition with radio­

labelled ligands is one of the strategies that has been used to characterise the subtype- 

selectivity of a ligand. For instance, oxymetazoline is an az-AR agonist that binds with 

high affinity to azA-ARs and with low affinity to aze and azc-ARs (Wikberg-Matsson et 

al., 1995). A drawback of this kind of pharmacological study is that they are performed in 

membrane preparations, which contain a high concentration of the receptor. This differs 

from the situation in vivo where the amount of receptor varies across tissues and species 

and diverse receptors coexist in the same cell in variable proportions. Additionally, the 

agonist or antagonist can have affinity for multiple receptors and bind to other adrenergic 

receptors ([3 or ai), or even to non-adrenergic receptors (e.g. imidazoline receptors) 

(Fairbanks and Wilcox, 1999). All these factors make the interpretation of the observations 

difficult when investigating adrenergic receptors with ligands.
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Although only marginal activity of a^-AR. agonists and antagonists has been 

confirmed, the Œ2 A-AR subtype has been suggested as mediator of antinociception in mice, 

based on the potent specificity of the a 2 A-AR-antagonist, idazoxan, which abolished the 

antinociceptive action of the (%2 -AR agonist, UK 14,304 (Millan, 1992; Millan et al., 1994). 

It has been proposed that the site of action for the antinociceptive effect of a 2 ~AR agonists 

maybe at either 0 C2 A-ARs or non-oi2 A-ARs depending on the agonist used which suggests a 

role for the a 2 c-AR in spinal noradrenergic analgesia (Takano and Yaksh, 1992; Takano et 

ah, 1992; Graham et ah, 2000). The a 2 B or (%2 c subtypes have been indicated as mediators 

of analgesia based on the fact that adrenergic receptor agonists produced inhibition of 

neurotransmitter release from spinal cord preparations by a prazosin-sensitive receptor; i.e. 

the 0 .2 8 -AR and/or a 2 c-AR, because prazosin is a partially selective antagonist with a 

binding affinity much greater for them than for the 0 1 2A-AR (Hanison et ah, 1991; Takano 

and Yaksh, 1992; Marjamaki et ah, 1993). In addition, it is known that the Œ2 B-AR is 

predominantly, if not exclusively, located in the periphery (Nicholas et ah, 1993), which 

would indicate the a 2 c-AR as a mediator of the ct2 -AR agonist-induced analgesia.

Therefore, conventional pharmacological investigations strongly prove that 

noradrenergic antinociception is mediated by a 2 -ARs (Yalcsh, 1985), but do not provide 

definitive information about the subtype/s responsible for it.

Investigations that combine pharmacology with genetic manipulation techniques (e.g. 

gene deletion -knock-out-; gene substitution -functional knock-out-, antisense 

oligonucleotides -knock-down-) have helped to elucidate the role of the different 0 1 2-AR 

subtypes in noradrenergic analgesia. The Œ2 A-AR was first reported to be the primary 

mediator of a 2 -AR-mediated spinal analgesia (Hunter et ah, 1997; Lakhlani et ah, 1997; 

Stone et ah, 1997b). By using a genetically modified mouse line expressing a point 

mutation in the a 2 A~AR, which is considered to be a functional loiock-out of the a 2 A-AR, it 

was observed that application of an Œ2 -AR agonist results in a dramatic loss of analgesic 

effect. This is in contrast with the situation in the wild type mice where the agonist indnces 

analgesia. Recent characterisation of a novel Œ2 -AR agonist, moxonidine (Armah and 

Stenzel, 1981), has helped to demonstrate that the a 2 c-AR plays an important role in aj- 

AR-mediated antinociception; the role of the receptor has been described as subtle but clear 

(Fairbanlcs et al., 2002). Spinal antinociceptive activity of moxonidine appears largely 

independent from 0 1 2A-AR activation and for this reason it has been used to test for an (%2 C-
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AR role in analgesia (Fairbanks and Wilcox, 1999). Moxonidine-induced antinociception 

is minimally decreased in functional Œ2 A - AR-knock- out mice, while moderately, but 

significantly decreases in oc2 c-AR-knock-ont mice. No change is detected in a 2 B-AR- 

laiock-out mice, hi addition, a 2 c-AR-knock-down using antisense oligodeoxinucleotides, 

not only decreases a 2 c~AR immunoreactivity, but also significantly reduces moxonidene- 

induced antinociception.

6.2 Genetic studies

Molecular biology by means of the application of homologous recombination 

strategies has clarified the classification of a 2 -ARs in order to find out about the functional 

contributions of each of the subtypes. Currently it is known that the three subtypes (azA, 

tt2 B and cc2 c) are encoded by thiee different genes, each one being located on a different 

clu’oniosome. The a 2 A-AR-gene is on CIO; the a 2 B-AR-gene is on C2; and the ocic-AR- 

gene on C4. All three subtypes have been cloned and sequenced in a variety of species 

(reviewed in Kable et ah, 2000). Different functions are likely to be mediated by different 

subtypes, and much effort is being directed toward understanding the physiological roles of 

the various subtypes. Mice with altered Œ2 -AR genes have been generated in order to 

elucidate the subtype-specific functions of the three a 2 -AR subtypes. These in vivo 

behavioural studies indicate that the a 2A-AR is the main mediator of spinal antinociception, 

as well as of most of the other classical functions mediated by a 2 -ARs: hypotension, 

sedation, hypothermia, anaesthesia and analgesia. The a 2 B-AR has been suggested as the 

principal mediator of hypertension. Finally the a 2 c-AR has been related to many CNS 

processes such as startle reflex, stress response and locomotion, as well it has been reported 

to be involved in hypothermia and dopamine turnover. Both subtypes, ajK and a ic  are 

considered important in the presynaptic inhibition of NE release, although they seem to 

have distinct regulatory roles still undefined (reviewed in Kable et ah, 2000).

hi the literatme, the Œ2 C-AR is regarded as an enigmatic receptor. The reason for this 

is that no obvious function was initially elucidated as only subtle differences were found 

between the a 2 c-AR-knock-out and the wild type mice. This was rather surprising given 

the a 2 c-AR is extensively conserved throughout evolution and therefore expected to have 

an important role. It has been argued that the Œ2 C-AR function could be compensated by 

other receptors or mechanisms as a consequence of its constant fiinctional absence. In 

addition, the finding of cell-specific gene expression indicates a specific (%2 c-AR function.
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The a 2 C"AR has been hypothesised to modulate the modulator; i.e. to modulate NE, which 

in turn modulates the activity of neurotransmitter pathways and circuits. This could imply 

that the a 2 C“AR alone has a marginal activity (reflected in the subtle differences of azc- 

AR-laiock-outs), but that at the same time is essential for physiological efficiency 

(MacDonald et ah, 1997). It was careful analysis by later investigations of the subtle 

differences between aic-AR-knock-out, a 2 c-AR-overexpressing and wild type mice, which 

elucidated the involvement of the a 2 c-AR in a multiplicity of processes (mentioned above). 

Indeed, Fairbanks and colleagues (2002) have added a new role to the list of azc-AR 

functions : antinociception.

From the evidence above we can conclude that both the aiA and 0 1 2c subtypes of 

adrenergic receptor are involved in spinal antinociception.

6.3. Localisation studies

Many studies concentrate on the localisation of a 2 -AR and its different subtypes in 

order to elucidate their functions.

Radioligand binding studies have provided extensive information about the 

distribution of ai-ARs.

In the dorsal horn, aa-ARs have been reported to be concentrated in superficial 

laminae, because a high concentration of binding sites were shown in lamina II by 

autoradiography after application of [^H]-clonidine, i.e. a radioactive Œ2 -AR agonist 

(Bouchenafa and Livingstone, 1987). A proportion of these binding sites must be present 

on axons and terminals of primary afferents since dorsal root ganglionectomy decreased the 

concentration of Œ2 -AR binding sites by a 20%, as detected by [^H]-rauwolscine (Howe et 

ah, 1987b). North and Yoshimura (1984) investigation agrees with the first observation, 

because NE-induced hyperpolarisation of the superficial dorsal horn, in particular lamina 

II, is only reversed by 0 1 2-AR antagonists, which suggests lamina II as a major location of 

a 2 -ARs (North & Yoshimura, 1984). The second observation is also in agreement with 

other experimental evidence which is discussed later in this chapter (Nicholas et ah, 1993; 

Cho et ah, 1997; Stone et ah, 1998; Shi et ah, 2000)

In contrast to the observations in the dorsal horn, radioligand binding studies 

concluded that a 2 -ARs are not present on ventral horn motoneurons, because ventral 

rhizotomy does not alter the density of a 2 -AR binding sites (Howe et ah, 1987b). However 

this conclusion is not correct if  we considered that ventral rhizotomy, unlike dorsal
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rhizotomy, does not necessarily imply degeneration of the central component, i.e. 

motoneuron cell bodies.

Based on binding studies, ag-ARs are not found on descending axons or if  so only in 

very small proportions. The preceding evidence is derived from an experiment in which 

two different treatments (i.e. intrathecal 6-hydroxydopamine or cervical spinal 

hemisection) to eliminate descending innervation, effectively decreased the release of NE, 

while the density of a 2 -AR binding sites was not altered (Howe et al., 1987a), or even 

increased at specific areas like the superficial dorsal horn which was consequently 

described as supersensitive (Roudet et a l, 1994).

Radioligand binding teclmiques have the following limitations: the anatomical 

resolution is low, and no subtype-specific distribution can be obtained since no subtype- 

selective ligands are available. The exception is [^H]-rauwolscine, which appears to 

discriminate between the « 2 0  and aiA subtypes in the rat, by binding primarily otin and (%2 C- 

ARs (Boyajian et a l, 1987). Radioligand binding studies of Œ2 -AR densities using [^H]- 

rauwolseine as ligand revealed the presence of a 2 -ARs throughout the whole gray matter 

with a preferential location in the superficial dorsal horn; such a pattern is maintained at all 

rostrocaudal levels of the cord (Sullivan et a l, 1987; Roudet et a l, 1994). These binding 

sites very probably represent the distribution of the aic-AR, because a 2 B-ARs are mainly 

found in the peripheral nervous system (Nicholas et a l, 1993).

Immunocytochemical studies have provided information about the distribution of 

the different az-AR subtypes thanks to the availability of subtype-specific antibodies. Such 

information can help us to understand the roles of the different subtypes. To a great extent 

the results from immunocytochemical studies agree with other approaches which generally 

confirm findings obtained with this method. Tlri'oughout the CNS both adrenergic 

receptors, azA and azc, are widely distributed, while comparatively the azs-AR appears to 

be expressed at lower levels and in a more restricted distribution.

• Immunoreactivity for the a%A-AR has been detected in a subset of dorsal root 

ganglion (DRG) cells (Gold et a l, 1997); on cell bodies of neurons in the spinal cord 

dorsal horn (laminae I-II and IV-V), central canal (lamina X) and intermediolateral cell 

column (Rosin et a l, 1993; Talley et a l, 1996); as well as on axon terminals at all 

levels of the superficial dorsal horn (laminae I-II) (Stone et a l, 1998). azA-ARs have 

been shown to be present on spinal terminals of SP-containing primary afferents; as



well as on CGRf-containing primary afferents (Stone et al., 1998), which very likely 

correspond to nociceptors (Levine et al., 1993). a 2 A-AR immunoreactivity did not 

coexist with enkephalin or preprodynorphin, both endogenous opioid peptides. The fact 

that enkephalin is not present in primary afferents (Hokfelt et ak, 1977, Johansson et 

al., 1978; Seybold and Elde, 1980) further suggests that the a 2 A-AR is found 

predominantly on primary afferent terminals.

• Immunoreactivity for the aic-A R  has been detected on DRG cells (Birder and Perl, 

1999), on cell bodies of neurons in the dorsal horn (laminae IV-VI), central canal 

(lamina X), intemiediolateral cell column, and ventral horn. Some of the latter cell 

bodies displayed typical motoneuronal soma staining (Rosin et al., 1996). hr addition

0 .2 C-AR immunoreactivity, as for the a%A subtype, is present on axon terminals of the 

superficial layers (laminae I and II) of the dorsal horn; however the a 2 C“AR was more 

prevalent in deeper layers of the dorsal horn. a 2 c-AR immunoreactivity was also 

detected in the lateral spinal nucleus (Stone et al., 1998). a 2 c-ARs were found to be 

present on enlcephalin containing terminals (Stone et al., 1998), which, in turn, 

indicates that the receptor is expressed by spinal enlcephalin-containing neurons, since 

enkephalin is absent from primary afferents (Hokfelt et al., 1977). Colocalisation with 

somatostatin suggests that a 2 c-ARs could exist on somatostatin-containing primary 

afferents, which are Imown to be small diameter umnyelinated primary afferents that 

lack SP (Hokfelt, 1976; Tuchscherer and Seybold, 1985). However, probably the 

majority, if not all of the a 2 c-AR terminals colocalising with somatostatin, are located 

on terminals of a population of spinal somatostatin-containing neurons, because in the 

rat somatostatin is mainly of spinal origin (Nagy et al., 1981).

Double-labelling of the (%2 A and a 2 c-AR subtypes showed no colocalisation between 

these receptor subtypes and it was suggested that the two subtypes are located on different 

neuronal populations (Stone et ak, 1998). This agrees with the situation described in the 

brain, where the (%2 A and a 2 C”AR subtypes exhibit a distinctive pattern of distribution 

(Rosin et ak, 1996).
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In conclusion the existing evidence indicates that the superficial dorsal horn is a 

target for noradrenergic influence, with distinct ag-AR sites of action:

•  a2A-AR-containing primary afferent terminals

• Œ2A-AR somata in the superficial and deep dorsal horn

• a 2 c-AR-containing spinal terminals of interneurons in the superficial dorsal horn

• a 2 c-AR somata in the deep dorsal horn

In  situ hybridisation studies pemiit the distribution of the niRNAs encoding a 

particular receptor subtype to be visualised; i.e. they indicate the site of receptor synthesis. 

Several in situ hybridisation studies have been carried out in order to provide information 

about the sites of synthesis of the different {%2 -AR subtypes. They involve the use of 

subtype-specific probes (cRNA or oligonucleotides) to visualise the subtype-specific 

niRNAs.

• Œ2 A-AR mRNA has been reported to exist in a subset of DRG neurons (Nicholas et a l, 

1993; Cho et a l, 1997; Shi et a l, 2000), which probably correspond to the reported 

a 2 A-AR-immunoreactive (IR) DRG neurons (Gold et a l, 1997) that very likely give rise 

to the central a 2A-AR-lR terminals reported by Stone and colleagues (1998). a 2 A-AR 

mRNA has been detected in spinal cord dorsal and ventral horn neurons (Zeng and 

Lynch, 1991; Winzer-Serhan et a l, 1997a) and the intemiediolateral cell column 

(Nicholas et al, 1993). While most of these studies agree with the immunocytochemical 

findings, 0 C2 A-AR mRNA has been detected in ventral horn neurons (Zeng and Lynch, 

1991; Winzer-Serhan et a l, 1997a), where no Œ2 A-AR immunoreactivity has been 

reported.

• Œ2 C-AR mRNA in the rat spinal cord has been detected on the majority of both large 

and small DRG neurons (Nicholas et a l, 1993; Cho et a l, 1997; Gold et a l, 1997; Shi 

et a l, 2000), this is controversial a priori because while a 2 c-AR immunoreactivity 

exists on DRG cell bodies, no immunoreactivity, or very little appears to be present on 

central primary afferent projections. A reconciling possibility is that the a 2 c-AR is 

synthesised in the DRG and mainly trafficked to the peripheral terminal This idea is 

supported by studies which claim a role for the (%2 c-AR in peripheral antinociception 

(Kliasar et a l, 1995). Surprisingly there is veiy little evidence of a 2 C“AR mRNA in the 

spinal cord dorsal and ventral horns (Winzer-Serhan et a l, 1997b) and indeed many
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studies have failed to report a 2 c-AR mRNA in the spinal cord; this leaves unresolved 

the question of which neurons synthesise the aic-ARs that are present on spinal origin 

terminals at the superficial dorsal horn.

The current picture provided by in situ hybridisation studies is rather incomplete; this 

could be a consequence of methodological limitations. It is possible that the applied 

techniques are not sensitive enough to detect small amounts of mRNA; or that the receptor 

mRNA is in a nomdetectable conformation.

Immunocytochemistry provides a special advantage with respect to other techniques. 

While radioligand binding detects the receptors on the membrane, typically considered as 

the functional receptors; and in situ hybridisation detects the receptor mRNA at the 

nucleus, considered as the source of the receptor; only immunocytochemistry can pinpoint 

the distribution of the receptor at subcellular level. Although these observations are not 

specific to the spinal cord, the ctzA and a 2 c subtypes have been reported to display a distinct 

pattern of subcellular distribution:

• The Œ2 A-AR antibody appears to bind to two different types of substrate. One of these 

was punctate in nature, intracellular and associated with vesicle-like structures. The 

other one was diffuse and labelled cell bodies, neurites and glial cells (Talley et ah, 

1996).

• The a 2 C“AR antibody mainly localised the a 2 c~AR-IR substrate intracellularly 

(perinuclear), and unlike the aiA-AR immunoreactivity, it was not found in the 

neuropil, i.e. regions of synaptic interaction. However this lack of neuropil labelling 

could result from a limited sensitivity of the staining (Rosin et ah, 1996). hideed, 

initially no (%2A-AR staining was appreciated in distal dendrites and only after 

methodological modifications distal dendritic labelling was achieved (Talley et ah, 

1996).

Very limited immunoelectroii microscopic evidence is available regarding the a 2 - 

AR subtypes at the ultrastructural level. In the rat LC, a 2 c-ARs were observed to be 

postsynaptic on catecholaminergic dendrites that receive axodendritic asymmetric synapses 

(Lee et ah, 1998a). azA-ARs were presynaptic on axon terminals and postsynaptic on 

heterogeneous dendrites (approximately 50% were catecholaminergic) (Lee et ah, 1998b). 

Prior to the present study there was no information available about a 2 -ARs in the spinal 

cord at the electron microscope level.
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7. Morphological and neurochemical characteristics of superficial dorsal horn 

interneurons

The evidence up to date available indicates that the receptor in present in the 

superficial dorsal horn on the terminals of interneurons; for this reason a brief account is 

given regarding the morphological and neurochemical characteristics of interneurons in the 

superficial dorsal horn.

hiterneurons in lamina II have been divided into limitrophes or stalked cells and 

central or islet cells (Ramon y Cajal, 1909; Gobel 1978, 1979). hi the rat, Todd and Lewis 

(1986) found that neurones resembling Gobel’s stalked and islet cells made up the majority 

of lamina II cells. Stalked cells are larger than islet cells and their somata are located in 

lamina IL. Their dendritic tree has a cone shape, which is directed ventrally and passes 

through laminae II-IV. The main axonal destination of this type of cell is lamina 1. Gobel 

suggested (1978) that these cells are excitatory. Later studies support the latter suggestion, 

since lamina II stalked cells did not show GABA-IR (Todd and McKenzie, 1989). Stalked 

cells may contain somatostatin, enlcephalin, dynorphin or tachykinins, which could be 

coexisting within the same cell (review in Todd and Spike, 1993). Recordings from these 

cells indicated that they are either nociceptive specific or wide-dynamic-range (Bennett et 

ah, 1980). Islet cells are very numerous in lamina II. Their dendritic trees extend within 

lamina II and are oriented in the rostrocaudal plane. Similarly, their axons tenninate mainly 

within lamina II (Gobel, 1978, 1979; Shoenen, 1982). Gobel (1978) suggested that islet 

cells are inhibitory interneurons. Indeed, numerous large islet cells have been reported to 

contain G ABA and in occasions also glycine; however small islet cells have been reported 

to be non-GABAergic (Todd and McKenzie, 1989; Todd and Sullivan, 1990). Small islet 

cells may contain neurotensin or somatostatin, whereas large islet cells that were only 

immunoreacti ve for GAB A (i.e. non-glycinergic) could be containing enlcephalin or 

neuropeptide Y (reviewed in Todd and Spike, 1993). Gobel described three other types of 

cell: arboreal, II-III Border and spiny (Gobel 1975, 1978). hi the rat substantia gelatinosa 

some of these cell types were found, however often they had mixed structural features 

corresponding to diverse cell types (Todd and Lewis, 1986). Many interneurons also exist 

in lamina I and lamina III, but veiy little information is available that correlates their 

morphology and neurochemical content. In lamina III neurons with dorsoventral dendritic 

trees were found to be non-immunoreactive for GAB A, indicating that these are very likely 

excitatory. Differently lamina III islet cells were found to be GABA-IR. Cholinergic
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neurons, bearing a characteristic moiphology, have been found in laminae III-V. These 

cells have dendrites which pass dorsally into lamina II and extend in rostral and caudal 

directions. Their axons terminate mainly in lamina II and in. Lamina I neurons are thought 

to be mainly excitatory, because 72% of the lamina I neurons were reported to be not 

containing GAB A or glycine (reviewed in Todd and Spike, 1993).
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Figure 1,1. A model of spinal noradrenergic antinociception adapted from Peng et al., 

1996. NE released from descending terminals acts on ai-ARs to excite inhibitory 

interneurons in the superficial dorsal horn; in turn inliibitory intemeurons release inhibitory 

transmitters (GABA and/or glycine) and inliibit projection neurons in deep dorsal horn by 

acting on G ABA and/or glycine receptors (GABAr and/or GlycineR). Projection neurons 

are also directly inliibited by NE released from descending terminals, which acts on az- 

ARs.
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Chapter 2

Aims and G eneral Experim ental Procedures



1. Aims

The purpose of the first section in this chapter is to give a brief account of the 

principal aims pursued, and hypothesis tested, in each of the investigations as well as the 

experimental approaches used. The specific experimental procedures, that were applied in 

each of the three investigations earned out, are explained in detail in the corresponding 

results chapter.

Investigations 1 and 2 focus on the organisation of the azc-AR in the dorsal horn of 

the rat spinal cord, while the topic of investigation 3 is the organisation of the receptor in 

the lateral spinal nucleus (LSN), a nucleus in the dorsal lateral funiculus.

Investigation 1

Aim: to study the origin and properties of axon terminals that possess (%2 c-ARs in the rat 

dorsal horn

Hypothesis 1 : azc-ARs are located on axon terminals of spinal origin.

Double-labelling immunocytochemistry for confocal microscopy was used to study 

the colocalisation patterns of azc-ARs with diverse markers for descending systems, 

primary afferent fibres and excitatory or inliibitory intemeurons. Two methods of 

quantification were applied in order to estimate the extent of colocalisation of azc-ARs 

immunoreactivity with other markers immunoreactivity. One method measured the area of 

overlap of immunoreactivities while the other one provided the frequency o f double­

labelled terminals.

Immunoelectroii microscopy was used to investigate at the ultrastructural level the 

characteristics of azc-AR-IR structures in the neuropil of the superficial dorsal horn. 

Quantitative analysis of the azc-AR-IR terminals involved classification of the terminals 

according to the type of synaptic arrangement and type of synapse they formed, as well as 

the presence or absence of dense-core vesicles (DCVs) within them. A morphometric 

analysis of the terminals was also produced.
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Investigation 2

Aim: to study the relationship of axon terminals possessing azc-ARs with projection 

neurons that express the neurokinin-1 receptor (NK-1) in the dorsal horn

Hypothesis 1 : NK-1 projection neiu'ons are innervated by terminals containing azc-ARs.

Retrograde labelling of projection neurons was combined with triple-labelling 

immunocytochemistry for confocal microscopy to reveal cholera toxin B subunit (CTb; i.e. 

the retrograde tracer), NK-1 and azc-ARs. NK-1 retrogradely labelled neurons were 

identified and scamied to be reconstructed three-dimensionally. Contacts formed by azc- 

AR-IR terminals on the neurons were mapped on the reconstructions, which allowed the 

study of the distribution of “azc-AR innervation” on NK-1 projection cells.

Hypothesis 2: terminals containing azc-ARs form synaptic contacts on NK-1 projection 

neurons.

A combined confocal-electron microscopy method permitted the identification of 

terminals making contact on a neuron with confocal microscopy and consequent 

visualisation of the ultrastructural detail of the same terminals with electron microscopy. 

With this method it was possible to test if appositions from azc-AR-IR terminals form 

synaptic contacts on NK-1 projection cells.

Hypothesis 3: terminals containing azc-ARs which innervate NK-1 projection neurons are 

excitatory.

A sequential immunocytochemical method was applied in order to determine if the 

azc-AR appositions on NK-1 projection cells are excitatory or inhibitory.

Hypothesis 4: NK-1 projection neurons that receive innervation from azc-AR-containing 

terminals are responsive to noxious stimulation.

Expression of the immediate early gene c-Fos was induced by application of 

peripheral noxious thermal stimulation to investigate if  NK-1 projection neurons in the 

dorsal horn are activated by nociceptive stimulation. Combination of this approach with 

retrograde labelling of projection cells and multiple-labelling innnunocytochemistry was 

used to determine if c-Fos expressing cells, i.e. responsive to noxious stimulation, are 

associated with azc-AR-IR teiminals.

28



Investigation 3

Aim: to study the organisation of azc-ARs in the LSN

Hypothesis 1 : azc-ARs in the LSN are located on axon terminals of spinal origin.

As in Investigation 1 for the dorsal horn, double-labelling immunocytochemistry for 

confocal microscopy and immunoelectron microscopy were used to study the 

colocalisation patterns of azc-ARs and the characteristics of azc-AR-IR structures at the 

ultrastructural level, respectively.

Hypothesis 2: LSN neurons receive innervation from terminals possessing azc-ARs and 

are not responsive to noxious stimulation

Expression of c-Fos by application of noxious stimulation was combined with 

retrograde labelling of projection neurons and multiple-labelling innnunocytochemistry to 

investigate the identity of LSN neurons, their involvement in nociception and their 

relationship with azc-AR-IR structures.

2. General Experimental Procedures

This section gives an account of some relevant aspects regarding 

innnunocytochemistry and confocal microscopy, which were both used consistently 

throughout the present work. The aim is to provide general information to facilitate the 

understanding of the specific experimental protocols applied and described in chapters 3,4 

and 5.

2.1. Multiple immiinolabelling fo r  confocal microscopy

This technique allows the identification of more than one antigen in the same section 

of spinal cord. The antigens can be neurotransmitters, enzymes, peptides or receptors. The 

rationale of the protocol can be summarised to two essential general steps (Fig. 2.1, 

diagram):

1. Incubation of spinal cord sections with primary antibodies that have been raised in 

different species. Normally a primary antisera cocktail contains two or tliree 

primary antibodies and each one is derived from a different species. Currently is 

also possible to include four primary antibodies provided they have been raised in a 

different species.

2. Incubation of sections in a cocktail containing species specific-secondary 

antibodies, that are coupled each one to a different fluorophore. Generally a
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secondary antibody is an immunoglobulin (Ig) raised in donkey, which is directed 

against an Ig of a particular X species. The resulting secondary antibody will hind 

to any antigen of the X species and will he readily identified by means of the 

fluorophore coupled to it.

Following the incubations and rinses, the sections are mounted and finally they are 

ready to he scanned with the confocal microscope. Immunoreactivity for each of the 

antigens can he independently visualised as revealed by the corresponding fluorophore- 

coupled secondary antibody. Images from the same optical section can he merged in order 

to study the relative spatial distribution of the antigens. For instance it can he assessed if 

two antigens colocalise (Fig. 2.1, images).

Exceptionally two primary antibodies from the same species can he used provided 

they are Imown to identify antigens associated with separate cellular compartments. For 

instance, immunoreactivity for the NK-1 receptor is localised to the cell membrane while 

c-Fos immunoreactivity is present essentially in the nucleus of the cell. For this reason 

both antigens can he labelled with a primary antibody of the same species and the same 

secondary antibody and still it will be possible to discern both types of immunoreactivity. 

Figure 5.8 (b) illustrates immunoreactivity for NK-1 and c-Fos that has been obtained 

using primary antibodies raised in the same species (i.e. rabbit anti-NK-1 and rabbit anti- 

c-Fos), which were revealed with the same secondary antibody (i.e. donkey anti-rabbit Ig 

coupled to the fluorophore fluorescein isothiocyanate, FITC).

It is also possible to use two primary antibodies of the same species if the incubation 

is performed sequentially. This procedure implies additional steps: 1 incubation in the 

primary and secondary antisera cocktails, 2 scanning of the regions of interest in the 

section, 3 re-incubation with the additional primary antibody (this will be of the same 

species as one of the originally used antibodies) followed by incubation with exactly the 

same secondary antibody that was used to reveal the original primary antibody of the same 

species, 4 re-location and re-scamiing of the previously selected area of interest, 5 

comparison of the scans obtained before and after re-incubation allows detection of extra­

labelling in the corresponding channel which represents immunoreactivity for the 

sequentially added antibody (Fig. 2.2).
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2.2. Confocal microscopes

Two different confocal laser scanning microscopes have been used in the present 

investigations: a Bio-Rad MRC 1024 and a Radiance 2100 (Bio-Rad, Heniel Hempstead, 

UK).

The Bio-Rad MRC 1024 microscope is equipped with a Kiypton Ai'gon laser, which 

can emit light of three different wavelengths. Each of the wavelengths can excite 

specifically the fluorophores coupled to the secondary antibodies (Table 2.1, below). This 

microscope was used to scan sections of spinal cord, which had been labelled with a 

maximum of three secondary antibodies each one coupled to a different fluorophore. 

Scanning with the BioRad MRC 1024 was performed sequentially to avoid bleed-tlii'ough 

between channels.

The Radiance 2100 microscope is equipped with four lasers: Argon, Green Helium 

Neon, Red diode and Blue diode, which allowed the scamiing of sections that had been 

labelled with four secondary antibodies each one being coupled to a different fluorophore 

(Table 2.1, below). Figure 5.7 illustrates the scamiing of tissue labelled with four 

secondary antibodies coupled each one to a different fluorophore. With the microscope 

Radiance 2100, scanning could be performed simultaneously.

Table 2.1. Excitation-émission wavelengths corresponding to the fluorphores used 

Fluorophore excitation X emission X

Fluorescein isothiocyanate (FITC) 494 518

Rliodamine-red 570 590

Cyanine 5.18 (CY-5) 650 670

" '̂Pacific blue 416 451

* Only the Radiance 2100 confocal microscope was equipped to scan 

labelling with this fluorophore.
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Figure 2.1. Diagram and confocal images to illustrate double-labelling 

immuuoiluoresceuce. Above, a flow diagram simplifies the two basic steps of a 

protocol for double-labelling immunocytochemistry of the aac-AR (a2C) and 

somatostatin (SOM). Below, confocal images exemplify how the distribution of 

each antigen can be studied independently in the same optical plane; a 2 c-AR (a2C, 

green) and somatostatin (SOM, red). The relative spatial distribution of the antigens 

can be assessed by merging the images. In this case the merged image shows an 

overlap of the immunoreactivities (in yellow) indicating the antigens colocalise.
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Figure 2.2. Flow diagram and confocal images to illustrate triple-labelling and 

sequential immunofluorescence. Above, a flow diagram indicates the essential 

steps to perform triple-labelling immunocytochemistry for the a 2 c-AR (A2C), the 

NK-1 receptor (NKl), and the retrograde tracer: cholera toxin B subunit (CTb). A, 

A series of four confocal images exemplifies how the tlrree types of labelling can be 

visualised independently (NKl, green; CTb, blue; A2C, red) and how the images 

can be merged to study the relative spatial distribution of the antigens. In order to 

perform sequential immunocytochemistry with and additional primary antibody, the 

section is removed from the slide and re-incubated in the primary and then 

secondary antisera cocktail. In this example, the sequentially added primary 

antibody is a rabbit-anti-vesicular glutamate transporter 2 (VGLUT2), which is 

revealed with a donkey anti-rabbit Ig coupled to the fluorophore FITC; i.e. the same 

secondary antibody used originally to label NK-1. Once the section is mounted the 

same area is re-located and re-scanned. B, A series of four confocal images shows 

the resulting labelling. The additional VGLUT2 labelling can be differentiated flom 

the NK-1 labelling by comparing A and B. The extra-green labelling in B 

represents VGLUT2 immunoreactivity (NK1+VGLUT2); CTb (CTb) and the azc- 

AR immunoreactivities are not altered (A2C). Merging of the images reveals the 

localisation of VGLUT2 in relation to the rest of the antigens. (Scale bars=20p,m)
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Chapter 3 

Investigation 1:

Origin and properties o f axon term inals that possess 

a 2c-adrenergic receptors in the rat dorsal horn



1. Introduction

Noradrenergic systems in the dorsal horn of the spinal cord are involved in 

modulation of nociceptive transmission but the mechanisms and circuitry that underlie 

these actions are poorly understood. Pharmacological evidence indicates that the 

antinociceptive action of NE is mediated principally by ai-ARs (Howe et ah, 1983; Yaksh, 

1985; Proudfit, 1988). Neurochemical and immunocytochemical studies show that 

noradrenergic fibres, which originate from nuclei in the brainstem, are present in all areas 

of the spinal cord grey matter but are particularly concentrated in the superficial laminae of 

the dorsal horn (Dahlstrom and Fuxe, 1965; Sclu’oder and Skagerberg, 1985; Rajaofetra et 

a l, 1992; Doyle and Maxwell, 1991a, 1991b). The superficial dorsal horn also has a high 

concentration of ai-AR binding sites (Sullivan et a l, 1987; Howe et a l, 1987). Three 

subtypes of az-ARs (aiA, oizB, and a 2 c) have been sequenced (Bylund et a l, 1994; Kable et 

a l, 2000) and the Œ2 a and the 0 C2 c subtypes are widely distributed in the CNS (Rosin et a l, 

1996; Talley et a l, 1996). Unfortunately it is not possible to differentiate between these 

two subtypes of ai-A R phamiacologically because subtype-selective compounds are not 

available. “Khiock-ouf’ techniques support the idea that a 2 A“ARs mediate NE-induced 

antinociception, while no function had been established for the a 2 c-AR in the dorsal horn 

at the time this investigation was carried out (Kable et a l, 2000). Recently Fairbanlcs and 

co-workers (2002) have reported a role for the a 2 C“AR in noradrenergic antinociception.

The tt2 A“AR is found on axons of the superficial dorsal horn which contain SP and 

CGRP (Stone et a l, 1998) which are likely to be terminals of nociceptive primary afferents 

(Levine et a l, 1993). Immimoreactivity for the (%2 c-AR is also concentrated on axons of 

superficial layers of the dorsal horn (Stone et a l, 1998). The numbers of a 2 A-AR-IR 

terminals in the superficial dorsal horn decrease dramatically as a consequence of dorsal 

rhizotomy or neonatal capsaicin treatment whereas oc2 c-AR immimoreactivity is not 

significantly reduced by either of these treatments (Stone et a l, 1998). This evidence 

indicates that a 2A-ARs are located principally on small diameter primary afferents whereas 

a%c-ARs do not appear to be associated with primary afferent fibres. Double-labelling 

experiments, using antibodies specific for the a 2^ and oi2 c subtypes, also show that the two 

subtypes are located on different axonal populations (Stone et a l, 1998). Some a 2 c-AR 

immimoreactivity is associated with axons that contain enlcephalin and somatostatin 

indicating that it is present on temiinals of some types of local circuit neuron. The
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immunocytochemical evidence is, however, at variance with findings of in situ 

hybridisation studies where a 2 c-AR mRNA was not detected in intrinsic neurons of the 

dorsal horn but was detected on the majority of DRG neurons (Nicholas et ah, 1993; Cho 

et ah, 1997; Gold et ah, 1997; Shi et ah, 2000). In one of these studies azA-AR mRNA was 

also detected on a small proportion of DRG neurons (Nicholas et ah, 1993; Cho et ah, 

1997; Shi et ah, 2000).

There is clearly disagreement about the distribution of the a 2 C“AR in the superficial 

dorsal horn and its function is obscure. In the present investigation, the cellular and sub- 

cellular organisation of this receptor was characterised in order to gain further insight into 

its role in the superficial dorsal horn. Quantitative immunocytochemical approaches in 

conjunction with confocal microscopy were used to determine patterns of distribution of 

a 2 c-ARs in relation to neurochemical markers that label axons of primary afferents, 

descending systems and populations of inhibitory or excitatory interneurons. The sub- 

cellular distribution of aic-AR imunoreactivity was also examined with electron 

microscopy to investigate the synaptic organisation of axon terminals that possess the 

receptor.

2. Experimental Procedures

Confocal Microscopy 

Fixation o f tissue

Tlnee male Wistar rats (25Og; Harlan, UK) were deeply anaesthetised with sodium 

pentobarbitone (1ml intraperitoneally, i.p.) and perfused tlirough the left ventricle with 

saline followed by a fixative containing 4% formaldehyde in phosphate buffer pH 7.6. All 

animal procedures were conducted according to British Home Office regulations and steps 

were taken to avoid suffering and minimise the numbers of animals used in the 

experiments. The L4 lumbar segment was removed hoin each animal and postfixed in the 

same fixative solution for 8 hours.

Double-labelling immunocytochemistry

Transverse sections (50pm thick) were cut with a Vibratome. Sections were treated 

with 50% ethanol (30 minutes) to enhance antibody penetration, which was followed by 

blocking in 10% normal donkey serum for 1 hour. Double-labelling immunofluorescence 

was performed with a guinea pig anti-a2 C"AR antiserum (diluted 1:500; Neuromics,
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Minneapolis, U.S.A.; see Stone et a l, 1998 for details) which was incubated for 48 hours 

with each one of the following antisera: rabbit anti-dopamine (3-hydroxylase (D(3H; 1:500), 

rabbit anti-serotonin (5HT; 1:200), rabbit anti-calcitonin gene-related peptide (CGRP; 

1:500; all from Affmiti, Exeter, U.K.), rat anti-substance P (SP; 1:200; Sera-Lab, 

Loroughborough, U.K.), rabbit anti-neurotensin (1:1000), rabbit anti-somatostatin 

(1:1000), rabbit anti-met-enlceplialin (1:500), rabbit anti-neuropeptide Y (1:500), rabbit 

anti-galanin (1:500; all from Peninsula Labs., St. Helens, U.K.), goat anti-choline 

acetyltransferase (ChAT; 1:100), rabbit anti-nitric oxide synthase (NOS; 1:500; both from 

Chemicon, Harrow, U.K.), sheep anti-glutamic acid decarboxylase (GAD; 1:400; Oertel et 

a l, 1981) and rabbit anti-glycine transporter 2 (Gly-T2; 1:2500; Zafra et a l, 1995), rabbit 

anti-vesicular glutamate transporter 1 (VGLUTl; 1:5,000) and rabbit anti-vesicular 

glutamate transporter 2 (VGLUT2; 1:5,000), which are markers for glutamate (Takamori et 

a l, 2000; Varoqui et a l, 2002; both obtained from Synaptic Systems, Gottingen, Germany) 

and goat anti-cholera toxin B subunit (CTb; 1:5,000; List Laboratories, California, USA), 

which was used to label myelinated primary afferent terminals (see below). The anti-(%2 c- 

AR antiserum was also incubated with biotinylated iso lectin B4 (IB4; Sigma-Aldrich, 

Dorset, U.K.) for 72 hours (1:200), which labels unmyelinated non-peptidergic primary 

afferent fibres predominantly (Silverman and Kruger, 1990). Sections were rinsed and 

incubated for 3 hours in solutions containing species-specific secondary antibodies (all 

raised in donkey and diluted 1:100) coupled to fluorophores: FITC, to identify azc-AR 

immunoreactivity, or rhodamine-red to identify the marker (Jackson ImmimoResearch, 

Luton, U.K.). The presence of the IB4 lectin was identified by incubating sections in 

avidin-rhodamine for 3 hours (1:1000). Antibodies were diluted in phosphate buffered 

saline (PBS) containing 0.3% Triton X-100 and 1% normal donkey serum. Following the 

incubations, sections were mounted in anti-fade medium (Vectashield, Vecta Laboratories, 

Peterborough, UK) and stored in a fi*eezer at -20°C.

Labelling o f myelinated primary afferent terminals in the lumbar spinal cord

Three male Wistar rats (250g; Harlan, UK) were deeply anaesthetised with 

halothane, and 4pi of 1% CTb (List Laboratories, California, USA) were injected into the 

left sciatic nerve to label terminations of myelinated primary afferents (LaMotte et a l, 

1991 ; Rivero-Melian et a l, 1992). Tluee days later, the animals were deeply anaesthetised 

with sodium pentobarbitone (1ml of 60mg/ml ip) and perfused transcardially. Following 

postfixation the tissue was processed for double-labelling as described above.
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Quantitative methods o f colocalisation: automated and visual-assessment

Once the sections were mounted, fields from the central region of the superficial 

dorsal horn (one from lamina I and one from lamina II; except for: CTb, one from lamina I 

and one from lamina III; and VGLUTl, both from laminae II/III) were systematically 

scanned with a BioRad MRC 1024 confocal laser scanning microscope. Each field 

(70x70jLim) consisted of six pairs of optieal sections gathered sequentially with a X40 oil- 

immersion lens at 0.5pm intervals in the Z-axis and a zoom factor of 3. Multiple fields 

were collected for each of the seventeen combinations. Four fields (two from the right horn 

and two from the left horn) were collected from six transverse sections for each animal. 

Thus, a total of 24 fields per marker was collected from each of the three animals (i.e.72 

fields in total for each marker). CTb was only scanned from the left dorsal horn -ipsilateral 

to the sciatic injection-.

In the first place we applied an automated quantitative method by using a Kronton 

KS400 image analysis system (Kontron Elektronik, GmbH), which measures the extent of 

overlap of a 2 C“AR immunoreactivity with immunoreactivity for neurochemical markers. 

The analysis programme converted pairs of optical images, corresponding to the same 

optical plane, into binary images and calculated the total area occupied with a 2 c-AR 

immunoreactivity and the percentage of this area that was masked by immunoreactivity for 

the marker (Maxwell et ah, 1996). A total of 432 pairs of images was analysed for each 

marker (i.e. 6 optical sections x 72 fields). The percentage overlap value estimated for each 

of the markers is expressed as the mean value (istandard deviation, SD) of this percentage 

for the three animals.

The automated method provides relative (not absolute) values and is suitable for 

comparing proportions of overlap of various markers. In addition it was decided to apply a 

visual-assessment method to produce an accurate estimate of numbers of 0 L2 C-AR-IR 

puncta that possess immunoreactivity for markers of excitatory versus inhibitory terminals 

of interneurons (i.e. VGLUT2 and GAD, respectively). For this purpose, 100 0 C2 C-AR-IR 

puncta per animal (i.e. 300 in total) were sampled from the scanned fields with the aid of 

NeuroLucida for Confocal software (MicroBrightField, Inc., Colchester, VT). For each 

animal, a random sample of 10 boutons per marker was extracted from the third and fourth 

optical sections of 10 fields collected. Sampled a 2 c-AR-IR boutons were assessed 

individually to determine if they contained immunoreactivity for the marker. The numbers
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of double-labelled aic-AR puncta were then counted for each animal and the final overall 

mean percentage value (±SD) was calculated for the three animals.

Electron microscopy

Fixation o f tissue

Three male Wistar rats (250g; Harlan, UK) were prepared for immunoelectron 

microscopy. The animals were deeply anaesthetized with sodium pentobarbitone (1ml i.p.) 

and perfused with saline followed by a fixative containing 1% glutaraldehyde and 1% 

formaldehyde in phosphate buffer (pH 7.6). L4 segments were removed and placed in the 

same fixative for 8 hours.

Processing fo r iinmunoelectron microscopy

L4 segments were cut into 50jum transverse sections with a Vibratome. The sections 

were treated with 50% ethanol for 30 minutes to improve antibody penetration and then 

with 1% sodium borohydiide for 30 minutes to counteract the effects of glutaraldehyde. 

After blocking in 10% normal donkey serum for 1 hour, sections were incubated for 48 

hours in guinea pig anti-a2 c-AR antiserum (1:2,500; Neuromics, Mimieapolis, U.S.A.), 

rinsed in PBS and then placed for 2 hours in biotinylated donkey anti-guinea pig Ig (1:500; 

Jackson ImmimoResearch, Luton, U.K.). Primary and secondary antibodies were diluted in 

PBS supplemented with 1% noiinal donkey serum. After a further rinse in PBS, sections 

were incubated in avidin-biotin-HRP complex (Vector Elite, Peterborough, U.K.) for 1 

hour and then reacted with 3, 3 '-diaminobenzidine (DAB) in the presence of hydrogen 

peroxide to reveal peroxidase activity, i.e. HRP. The processed sections were treated for 30 

minutes with 1 % osmium tetroxide in phosphate buffer, dehydrated in a series of acetone 

solutions, stained en. bloc with uranyl acetate and flat-embedded between acetate foils in 

Durciipan resin (Fluka, Switzerland). Selected sections were mounted onto blocks of cured 

resin and trimmed to include the superficial dorsal horn (laminae I-III). Ultrathin sections 

were cut with a diamond laiife and collected on Formvar-coated single-slot grids. Sections 

were examined with a Philips CMIOO electron microscope.

Analysis o f  a2 crAR-IR profiles

A  sample of 100 a 2 c-AR-IR profiles was randomly collected from each animal for 

the quantitative analysis. The analysis involved classification of the immunoreactive 

terminals according to the synaptic arrangements they fonned (axodendritic or axoaxonic), 

the presence or absence of DCVs and whether they formed symmetric or asymmetric
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synaptic junctions. The fi'equency of these categories was then calculated and an image 

analysis programme was used to estimate the dimensions of aic-AR-IR profiles (Kronton 

KS400, Kontron Elektronik, GmbH).

3. Results

Neurochemical profile o f  axons possessing the azc-ctdrenergic receptor

Immunoreactivity for the a 2 c-AR was concentrated on axon terminals in laminae I 

and II of the dorsal horn and in the lateral spinal nucleus (Fig. 3.1). This pattern of 

labelling was identical to that reported by Stone and co-workers (1998). We used markers 

to identify axons originating from descending systems, primary afferents, and excitatory or 

inhibitory interneurons in order to characterise the types of neuron that possess the a 2 c- 

AR. Typical examples of images for the a 2 c-AR and these markers are shown in Figure

3.2, 3.3 and 3.4. The results derived from both types of quantitative analysis are 

summarised in Table 3.1 (below) and in two histograms in Figure 3.5.

We could find no evidence that either noradrenergic or serotoninergic axons possess 

the receptor (Fig. 3.2, a-b), as there was almost no overlap with immunoreactivity for D|3H 

or 5-HT (0.48% and 0.54% respectively).

Similarly, umnyelinated primary afferents that bind the lectin IB4 and primary 

afferents containing CGRP also displayed minimal overlap (0.73% and 0.42% 

respectively; Fig. 3.2, c-d). This latter finding is consistent with the fact that SP-containing 

axons also do not possess the receptor (1.00% overlap) since the majority of these axons 

will also contain co-localised CGRP (Fig. 3.3, a). We could find no evidence to show that 

CTb labelled myelinated primary afferent terminals in lamina I or in lamina III possess the 

receptor (0.21%; Fig. 3.2, iii, I) even though numerous CTb labelled axons were present in 

these regions (Fig. 3.2, i,ii). In addition, no overlap was found between the receptor and 

VGLUTl (0.37%, Fig. 3.2, e), a marker for glutamate which is associated mainly with 

large myelinated primary afferent terminals (Todd et a l, 2003).

Markers for galanin; Gly-T2, which labels terminals of glycinergic neurons (Zafra et 

a l, 1995; ChAT, which labels cholinergic cells (Barber et a l, 1984; Borges and Iversen, 

1986; Sheriff and Henderson, 1994) and NOS also showed minimal overlap (2.09%, 

0.92%, 0.77% and 0.86% respectively; Fig. 3.3, b-e). The majority of temiinals labelled 

with these markers are likely to originate from inliibitory local circuit neurons although 

galanin is also present in primary afferent terminals (Todd and Spike, 1993). However
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there was evidence of colocalisation with neuropeptide Y, a marker for axons of inhibitory 

cells (Rowan et ah, 1993), which displayed moderate overlap with the azc-AR (6.09%; 

Fig. 3.3, f). The receptor was also present on axons containing neurotensin (10.81%) and 

somatostatin (17.48%; Fig. 3.3, g-h) which probably originate from excitatory interneurons 

(see Discussion). Finally axons labelled with enkephalin displayed a great amount of 

overlap with immunoreactivity for the receptor (27,67%; Fig. 3.3, i).

Table 3 .1 . Automated and visual quantification of colocalisation patterns of the a 2 c-AR in 

the superficial dorsal horn

AUTOMATED

METHOD

VISUAL-ASSESSM ENT

METHOD

marker Overlap +SD
D(5H 0.48 0.15
5-HT 0.54 0.38
IB4 0.73 0.5

CGRP 0.42 0.34
VGLUT1 0.37 0.22

CTb-sciatic 0.21 0.17
SP 1.00 0.05

Galanin 2.09 0.61
Gly-T2 0.92 0.49
ChAT 0.77 0.49
NOS 0.86 0.24

Neuropeptide Y 6.09 0.91
Neurotensin 10.81 2.38

Somatostatin 17.48 1.20
Enkephalin 27.67 2.77

Frequency ±SD
GAD

VGLUT2
11.33
83.67

1.53
2.52

Inhibitory versus excitatory ajc-^R-IR terminals

In order to estimate the proportion of aic-AR axons that are likely to have an 

excitatory or inhibitory action we applied a visual-assessment quantitative method in 

addition to the automated method. For this purpose we used markers that label terminals of 

spinal interneurons containing excitatory (i.e. VGLUT2) or inhibitory (i.e. GAD) amino 

acid transmitters. Numerous a 2 C“AR-IR puncta contained immunoreactivity for VGLUT2 

(Fig. 3.4, a-a” ) and a small number of a 2 c-AR-IR terminals were associated with GAD
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immunoreactivity (Fig 3.4, b-b” ). The percentage of overlap of VGLUT2 and GAD with 

the a 2 C"AR is smaller than the percentage of double labelled a 2 c-AR-IR terminals. This 

can be explained by the characteristics of the labelling produced by the markers. The 

intensity of labelling of these markers, especially for VGLUT2, varied considerably in 

terminals from very intense to weak and all intensities of immunoreactivity were 

considered positive for the purposes of the quantitative analysis (see arrows in Fig. 3.4). 

Quantitative analysis confirmed that 83.67+2.52% of a 2 c-AR axons contain VGLUT2 but 

that only 11.33+1.53% contain GAD (Fig. 3.5, histogram 2).

Ultrastructure o f terminals containing the a2 c~AR

A total of 300 a 2 c~AR“IR profiles was collected randomly (100 profiles from each of 

the three experiments) and classified according to the synaptic arrangements they formed, 

the presence or absence of DCVs and whether they formed symmetric or asymmetric 

synaptic junctions. Figure 3.6 illustrates examples of each type of profile. All a 2 C"AR-IR 

profiles observed were presynaptic to other structures; the vast majority formed 

axodendritic synaptic arrangements (95.33%; Fig. 3.6, A-D), and a small proportion of 

a 2 c-AR-IR terminals formed axoaxonic synapses (4.67%; Fig. 3.6, E-F). Approximately 

one third of terminals in axodendritic arrangements and one half of terminals in axoaxonic 

arrangements (Table 3.2, below) contained DCVs. The majority of immunoreactive 

terminals (76.33%) formed asymmetric synapses whereas the remainder formed symmetric 

synapses (23.67%). Flowever, all immunoreactive terminals at axoaxonic complexes 

established symmetric synapses (4.67%), whereas terminals forming axodendritic synapses 

were found to form asymmetric (76.33%) or symmetric (19%) synapses (Table 3.2, 

below). The area and diameter of its equivalent circle were measured for each of the 

profiles collected. The average area of profiles is 0.62pnf and the average diameter of the 

equivalent circle is 0.87pm (SD=+0.19pnf ; range: 1.38-0.41 pm). On several occasions 

Œ2 C-AR-IR terminals were seen to cluster around large dendritic profiles especially in 

lamina I. These terminals often contained DCVs and formed synapses with the dendritic 

profile (Fig. 3.7).
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Table 3.2. Table summarising the quantification of electron microscopic observations of 

the Œ2 C-AR in the superficial dorsal horn

AXODENDRITIC AXOAXONIC
average % 95.33 4.67

DCV no DCV DCV no DCV
average % 39.67 55.67 2 2.67

ASYMMETRIC 28.33 48.00 0 0 76.33
SYMMETRIC 11.33 7.67 2 2.67 23.67

Data pooled from three experiments, which synthesise the ultrastructural properties 

of a 2 c-AR-IR terminals. Boutons were classified according to whether they fonned 

axodendritic or axoaxonic synapses, symmetric or asymmetric junctions and possessed 

DCVs.

4. Discussion

Methodological considerations

The specificity and staining properties of the a 2 c-AR antibody used in this study have been 

discussed by Stone and coworkers (1998). Anti-peptide antisera were generated against the 

C-terminal portion of the rat a 2 c-AR (Lanier et al., 1991). The sequence of the epitope 

was: HILFRRRRRGFRQ. A series of controls of specificity were carried out by Stone and 

coworkers. MDCK cells, transfected with the (%2 c-AR or untransfected, were stained with 

the guinea pig-derived antisera generated against the a 2 c-AR and a 2 c-AR-IR was observed 

only on cells transfected with the aac-AR. The a 2 c-AR-IR was only blocked by 

preabsorption of the antisemm with the peptide corresponding to the a 2 c-AR. These results 

demonstrated that the antibody used recognizes the receptor against which it was 

generated. In addition, the distribution pattern of a 2c-AR immunoreactivity obtained in the 

present investigation is identical to the pattern described by Stone and co-workers (1998); 

a 2 c-AR-IR is concentrated in the superficial laminae of the dorsal horn (laminae I-II) on 

axon terminals and is also found in the adjacent lateral spinal nucleus.
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The automated computer-based method used to quantify patterns of overlap of «zc- 

AR with other markers has been discussed in Maxwell et ah, 1996. This method avoids the 

subjectivity of a human-assessed analysis. Any errors that occur are likely to be consistent 

and therefore values of overlap for different markers can be compared. In addition, 

Maxwell et ah, (1996) compared the accuracy of a visual assessment method and the 

automated image analysis method used in the present study and eoneluded that there was 

good agreement between the two approaches. The values provided by the automated 

method are not absolute; indeed the validity of the results resides on the fact that they are 

relative values. Finally, application of an automated system enables the quantification of 

very large samples of images, which would be very laborious and time-eonsuming if a 

human-based visual assessment teclmique was used.

The visual assessment method lacks the advantages provided by the automated 

method but its use is required in order to estimate numbers of terminals positive or 

negative for a marker; i.e. a proportion of terminals (frequency), rather than a proportion of 

overlap (area), hi addition, in the case of GAD and VGLUT2 these two parameters (i.e. 

frequency and area) are especially divergent. This can be explained largely by the 

variability observed in the intensity of labelling of these markers which ranges from very 

weak to very strong. The ultimate reason for the use of a visual-assessment method is that 

the presence of a weakly labelled terminal versus a non-labelled terminal is a major 

differenee of physiological significance; such differences can only be detected currently by |  

means of a visual assessment.

Interpretation o f results

Œ2C-ARS are o f spinal origin

Quantitative analysis of overlap patterns for azc-ARs immunoreactivity with the 

markers investigated in this study confirms that the receptor is not present on deseending 

terminals of the noradrenergic or serotoninergic systems and also is not found on 

myelinated, unmyelinated or peptidergic primary afferents labelled with CTb, IB4 and 

CGRP respectively. In addition, the reeeptor was not found on terminals labelled with 

VGLUTl, a marker that is associated mainly with large myelinated primary afferents 

(Todd et ah, 2003). Our results are in agreement with previous reports that showed no 

significant reduction of aic^AR immunoreactivity following rhizotomy or neonatal 

capsaicin treatment (Stone et ah, 1998). Therefore, it is presumed that the a 2 c-AR-IR 

axons in the superfieial dorsal horn are not terminals of primary afferents. Nevertheless, in
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situ, hybridisation studies indicate that both large and small DRG neurons contain a 2 c-AR 

mRNA (Nicholas et al., 1993; Cho et al., 1997; Gold et al., 1997; Shi et al., 2000) and 

therefore this receptor would be expected to be present on central terminals of primary 

afferent fibres. Taken together with the previous findings, our evidence suggests that few, 

if any, a^c-AR-IR axons in the superficial dorsal horn, originate from primary afferents. It 

is difficult to reconcile this conclusion with the findings of the in situ hybridisation studies 

but it is possible that azc-ARs manufactured in DRG cells are not trafficked to central 

terminations and, in this respect, may be similar to the neuropeptide Y Y1 receptor (Zhang 

et al., 1994). Alternatively some azc-ARs may be present on a subgi'oup of primary 

afferents that are not labelled by CTb, IB4 or CGRP.

Our results therefore support the suggestion made by Stone et a l, (1998) that azc- 

AR-IR axons originate mainly from spinal interneurons. However, Stone et a l, (1998) also 

reported that ctic-AR immunoreactivity was present on some CGRP-IR fibres. We found 

no evidence for this. Furthermore such an observation would be unexpected since the 

majority of C GRP - c out aining primary afferents also contain SP (Todd and Spike 1993), 

and no evidence was found for the presence of a 2 c-ARs on SP-IR axons in our study or in 

the study of Stone et a l, (1998). The present work extends our knowledge of the 

neurochemical characteristics of spinal neurons expressing a 2 c-ARs. The results show that 

a 2 C"ARs are predominantly found on axon terminals of excitatory interneuronal 

populations but are also present on terminals of inhibitory interneurons and that 

subpopulations of a 2c-AR-possessing interneurons can be differentiated on the basis of 

their peptidergic content.

Interneurons that possess a2 c~AR-IR terminals are predominantly excitatory

The principal finding derived from the quantification based on a visual-assessment 

method is that in the superficial dorsal horn over 80% of aic-AR-IR temiinals also contain 

VGLUT2. This evidence suggests that a 2 c-ARs are associated with axons of glutamatergic 

interneurons that predominantly have an excitatory action (Todd et al, 2003). We also 

confirmed that only a small proportion (approximately 11%) of these axons contain GAD. 

Most GABAergic neurons in the superficial dorsal horn contain G ABA or a mixture of 

G ABA and glycine (Todd and Spike, 1993) and the GAD marker would be predicted to 

label the entire population of inhibitory axons that release classieal inliibitory amino acid 

transmitters. Therefore it is likely that only a small proportion of aac-AR-IR axons have an
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inhibitory action. The conclusion that most azc-AR-IR terminals are excitatory is also 

supported by the electron microscopic observations, which show that more than 75% of 

a 2 C"AR"IR terminals form asymmetric axodendritic synapses. Terminals forming this type 

of synapse are predicted to have an excitatory action (Uchizono, 1965). In addition, the 

automated quantitative analysis indicated that many a 2 c-AR-IR terminals also contain 

enkephalin, somatostatin or neurotensin and all of these types of peptidergic terminal are 

associated with high proportions of VGLUT2 immunoreactivity (Todd et al., 2003). These 

findings strongly support that the majority of a 2 c-AR-IR terminals contain glutamate and 

have an excitatory action.

Subpopulations o f interneurons with a 2c-AR-IR terminals

In the superficial dorsal horn, GAB A and glycine are colocalised in the majority of 

inhibitory cells although a subpopulation of cells containing G ABA only is also present 

(Todd and Spike, 1993). Immunoreactivity for the a 2 C"AR was not present on axons which 

express Gly-T2, (a marker for glycinergic axons) and it can be concluded that the 

population of inhibitory neurons possessing the a 2 C"AR belong to the group of GABAergic 

cells, which do not contain co-localised glycine. In addition, aic-AR-IR axons were found 

to possess neuropeptide Y, which has been reported to coexist only in GABAergic 

interneurons that do not contain glycine (Rowan et ah, 1993). Therefore it is likely that a 

proportion of a 2 c-AR-IR axons, derived from inhibitory intemeurons, originates from the 

subpopulation of GABAergic cells, which also contains neuropeptide Y.

The presence of the a 2 c-AR on axons, which are also immunoreactive for 

neurotensin and somatostatin, suggests that there are at least two different subpopulations 

of excitatory interneurons that express the receptor. Neurotensin and somatostatin are 

present in separate neuronal populations in the dorsal horn (Proudlock et ah, 1992). 

Neurotensin has been shown to be present in axon terminals that do not show G ABA 

immunoreactivity and are emiched with glutamate (Todd et al., 1992; Todd et al., 1994b), 

and cells which contain somatostatin are not immunoreactive for GABA and are presumed 

to be excitatory (Proudlock et al., 1992). Somatostatin is also found in a population of 

CGRP-containing primary afferent fibres (Leah et al., 1985), but it is likely that the 

somatostatin-containing fibres which possess the aic-AR are derived entirely from spinal 

interneurons, since CGRP-IR axons do not possess the receptor and this peptide is present 

only in peptidergic primary afferents (Levine et a l, 1993). The highest value of overlap



with a peptidergic marker was obtained for enlcephalin (almost 30% of aic-AR-IR), which 

is found in a mixed population of excitatory and inliibitory interneurons (Todd and Spike, 

1993). However, in view of the relatively low numbers of inhibitory axons that possess the 

receptor and that the majority of enkephalinergic terminals are glutamatergic (Todd et ah, 

2003) it is likely that the majority of a 2 c-AR and enkephalin-containing axons originate 

from excitatory cells. Enkephalin and somatostatin have been reported to coloealise in the 

dorsal horn (Todd and Spike, 1993) therefore a proportion of a 2 C“AR-IR axons may 

contain both enkephalin and somatostatin. Stone et al. (1998) also observed colocalisation 

of the aic-AR with enkephalin and somatostatin but did not quantify the degree of 

colocalisation.

Majority o f azc-AR-IR terminals are presynaptic to dendrites

The electron microscope analysis confirmed that a 2 C"AR-IR profiles were axon 

terminals and showed that the vast majority of them formed axodendritic synapses, 

although a small minority formed axoaxonic synapses. Therefore most axon terminals 

possessing the a 2 c-AR are likely to have direct postsynaptic actions on their target cells, 

while a minority of them may have a presynaptic action. Axoaxonic synapses are found 

exclusively on terminals of primary afferent fibres (see Alvarez, 1998) and therefore such 

presynaptic a 2 c-AR-IR axons would be predicted to influence primary afferent 

transmission. About 76% of the synapses foimed by a 2 c-AR-IR terminals made 

asymmetrical junctions; this type of synapse is generally associated with excitatory 

transmitters (Uchizono, 1965) and therefore supports our hypothesis that it is 

predominantly excitatory neurons that possess the a 2 c-AR. A smaller number of a 2 c-AR- 

IR terminals (23%) formed symmetric junctions, which are thought to be indicative of an 

inhibitory action (Gray, 1962; Uchizono, 1965). The presence of DCVs within numerous 

a 2 c-AR-IR terminals is also consistent with the confocal microscope findings, which show 

that there is extensive colocalisation of the a 2 c-AR with neuropeptides, as neuropeptides 

are thought to be stored within DCVs (Merighi et ah, 1989). However about two thirds of 

terminals which form asymmetric junctions did not contain DCVs. This indicates that 

many a 2 c-AR-possessing terminals contain an amino acid transmitter that is not 

colocalised with a peptide. In the case of terminals forming asymmetric junctions, this 

transmitter would be expected to be glutamate. Indeed, this is largely in keeping with the
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confocal microscopic observations which showed that the vast majority of azc-AR-IR 

terminals were glutamatergic.

Finally, concentrations of a 2 c-AR-IR terminals (mostly containing DCVs) were 

found on many occasions to surround large dendritic profiles in lamina I and form 

synapses with them. This evidence indicates that axons possessing the receptor target 

specific cells in lamina I. It is likely that azc-AR axons will have a powerful postsynaptic 

influence upon these cells and that NE will modulate this influence.

Functional implications

In this study we have shown that a 2 c-ARs are present on axon terminals of spinal 

interneurons and that the majority of these form axodendritic synapses, although a small 

number of axoaxonic synapses were also found. Therefore, NE acting on aic-ARs is likely 

to modulate transmission in polysynaptic pathways to projection cells or spinal 

interneurons, as well as influence activity at axoaxonic synapses on primary afferent 

terminals. The action of NE at such synapses is almost certain to operate through volume 

transmission, firstly because noradrenergic terminals do not fonn axoaxonic synapses 

within the superficial dorsal horn (Doyle and Maxwell, 1991a, 1991b) and secondly 

because we could find no evidence to support the idea that a 2 c-AR-TR profiles are 

postsynaptic to other axons, hideed it is generally accepted that axoaxonic anangements 

are found only on primary afferent terminals (e.g. see Alvarez, 1998). NE, acting on age- 

ARs, could reduce the efficacy of synaptic transmission at these sites by inducing neuronal 

membrane hyperpolarisation (Hoehn et a l, 1988; Surprenant et a l, 1990; Shen et a l, 

1992). Consequently, it can be hypothesised that if the azc-AR-containing terminal is 

excitatory the excitability of the postsynaptic element would be inhibited, whereas if it is 

inhibitory the postsynaptic element would be disinliibited. Since most a 2 C"AR 

immunoreactivity is associated with terminals of excitatory interneurons which form 

axodendritic synapses, the predominant effect of NE acting on presynaptic a 2 c-ARs would 

be predicted to be depressive. Neuropharmacological studies show that the principal effect 

of NE, and Œ2 -AR agonists, on dorsal horn neurons is inliibitory (North and Yoshimura, 

1984; Fleetwood-Walker et a l, 1985; Davies and Quinlan, 1985) but, as was discussed in 

the Introduction, it is not possible to differentiate between a 2 A-AR and a 2 C"AR effects 

with current pharmacological agents. One intriguing possibility is that some of the large 

dendrites that were observed in lamina I, and received multiple synapses from a 2 c-AR-IR
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profiles, belong to projection cells. If this is the case then NE could have a major influence 

on the activity of cells in this region, which are likely to have an involvement in 

nociceptive transmission (Naim et al., 1997; Todd et al., 2002). This is the topic of the next 

chapter.
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Figure 3.1. Immunoreactivity for the ct2 c-AR in the dorsal horn. A low magnification 

confocal microscope image of a transverse section of the dorsal horn at the L4 segment. 

Immunoreactivity for the (%2 c-AR (A2C) is concentrated in the superficial dorsal horn and 

lateral spinal nucleus and is restricted to axon terminals. (Scale bar=100p.m)





Figure 3.2. Double-labelling of the aac-AR with D[3H, 5HT, IB4, CGRP, VGLUTl 

and CTb. Six sets of single optical sections are shown (a-f). In each set, the first image 

shows immunoreactivity for the aic-AR (gieen), the second image shows labelling of a 

neurochemical marker (red), and the third one is the result of merging both images where 

overlap could be detected by the presence of yellow colour. Note that there is no overlap 

between the (%2 c-AR and any of the mai’kers. f and iii show the absence of overlap with 

CTb, in lamina III and lamina I respectively, (i) A low-power image showing the pattern of 

labelling in the dorsal horn with CTb following injection into the sciatic nerve, (ii) A 

magnified view of the dorsolateral area of the dorsal horn illustrated in (i) showing the 

relationship between immunoreactivities for the (%2 c-AR (A2C, green) and CTb (red), (iii) 

Details of the boxed area in (ii) showing CTb labelling in lamina I (red) and 

immimoreactivity for the a 2 c-AR (green). Note that there is no overlap of CTb and a 2c-AR 

puncta in either lamina I (iii) or lamina III (f). (Scale bars: a=10pm; i= 100pm; ii=50pm; 

iii=10pm; scale bar in a valid for b-f)

(DBH, dopamine ^-hydroxylase; 5-HT, serotonin; IB4, isolectin B4; CGRP, calcitonin 

gene-related peptide; VGLUTl, vesicular glutamate transporter 1; CTb, B subunit o f  

cholera toxin)
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Figure 3.3. Double-labelling of the a 2 c-AR with SP, galanin, Gly-T2, ChAT, NOS, 

neuropeptide Y, neurotensin, somatostatin and enkephalin. Nine sets of single optical 

sections are shown (a-i). In each set, the first image shows immunoreactivity for the a 2 C“ 

AR (green), the second image shows labelling of a neurochemical marker (red), and the 

third one is the result of merging both images. Overlap can be detected by the presence of 

yellow colour in f-i. (Scale bar; a=10pm; scale bar in a valid for b Î)

(SP, substance P; GAL, galanin; GLYT2, glycine transporter T2; ChAT, choline 

acetyltransferase; NOS, nitric oxide synthase; NPY, neuropeptide Y; NT, neurotensin; 

SOM, somatostatin; ENK, enkephalin.)
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Figure 3.4. Double-labelling of the a 2 c-AR with VGLUT2 and GAD. Two sets of single optical sections 

are shown. In each set, the first image shows immimoreactivity for the azc-AR (a and b), the second image 

shows labelling for the vesicular glutamate transporter 2 (VGLUT2) and glutamic acid decarboxylase (GAD) 

(a’ and b’, respectively) and the third image is the result of merging both images (a” and b”). The presence 

of yellow profiles in a” and b” indicates overlap of immunoreactivity. Arrows indicate selected a 2 c-AR-IR 

puncta that are double-labelled with intense VGLUT2 and arrowheads show terminals that are associated with 

weak VGLUT2 in series a. Arrows indicate selected structures that are double labelled with GAD in series b. 

(Scale bar: a= 10pm, valid for all images)
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Figure 3.5. Histograms summarising the quantification of colocalisation patterns of

the a 2 c:-AR in the superficial dorsal horn. Histogi'am 1 shows the average percentages of 

overlap of the a 2 c-AR with fifteen different markers. Histogram 2 shows the average 

percentage values of numbers of a 2c-AR immunoreactive puncta that were double-labelled 

with the markers VGLUT2 or GAD. A substantial number of a 2 c-AR puncta were 

immunoreactive for VGLUT2 and a small number were immunoreactive for GAD. (n=3; 

Error bars=standard deviation)

(DBH, dopamine /3-hydroxylase; 5-HT, serotonin; IB4, isolectin B4; CGRP, calcitonin 

gene-related peptide; VGLUTl, vesicular glutamate transporter I; CTb, B subunit o f  

cholera toxin; SP, substance P; GAL, galanin; GLYT2, glycine transporter-T2; ChAT, 

choline acetyltransferase; NOS, nitric oxide synthase; NPY, neuropeptide Y; NT, 

neurotensin; SOM, somatostatin; ENK, enkephalin; GAD, glutamic acid decarboxylase; 

VGLUT2, vesicular glutamate transporter 2)



Histogram 1. Overlap of a 2 c-AR immimoreactivity with diverse markers in the dorsal 
horn
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Histogram 2. Frequency of excitatory and inhibitory aic-AR-IR terminals in the dorsal 
horn.
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Figure 3.6. Electron micrographs of a 2 c-AR-IR profiles in the superficial dorsal horn.

Examples of a 2 c-AR-IR profiles fonning axodendritic (A-D) and axoaxonic (E-F) 

synapses. The synapse in F is associated with a central bouton of a glomerulus. In A and C 

immunoreactive tenninals form asymmetric synapses, while B, D, E, F they make 

symmetric synapses. Dense-core vesicles (DCVs) are indicated by white arrowheads. 

(Den=dendrite; Ax=axon; scale bars=0.5pm)





Figure 3.7. Association of aic-AR-IR terminals with large profiles in lamina I. A and

B, Electron micrographs showing concentrations of a 2 c-AR-IR tenninals around large 

dendritic profiles in lamina I, Insets 1, 2 and 3 show magnified images of the 

corresponding areas indicated by the numbered anows in A and B, and confiim that 

synaptic junctions are formed by the imunoreactive tenninals with the dendrites. (Scale 

bars=lpm)
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Chapter 4 

Investigation 2:

R elationship o f axon term inals possessing a 2c-adrenergic  

receptors w ith neurokinin-1 projection neurons in the

rat dorsal horn



1. Introduction

Both (%2 A and a ie  subclasses of adrenergic receptor are involved in NE-induced 

antinociception (Stone et ah, 1997; Li and Eisenach, 2001; Fairbanlcs et ah, 2002) and 

immunoreactivity for both receptor subclasses is concentrated in the superficial dorsal 

horn. Experiments using antibodies specific for the a 2 A and a 2 c subclasses show that they 

are associated with different axonal populations (Stone et ah, 1998). The a 2 A-AR is found 

in axons that contain SP and CGRP (Stone et ah, 1998) which are likely to be terminals of 

nociceptive primary afferents (Levine et ah, 1993) whereas the a 2 c-AR is present in axon 

terminals of spinal origin (Stone et ah, 1998; Olave and Maxwell, 2003). Most (84%) age- 

AR terminals are immunoreactive for VGLUT2 (Olave and Maxwell, 2003) and therefore 

are likely to have an excitatory action; however a small proportion (11%) of tenninals 

contain GAD and therefore are considered inhibitory (Olave and Maxwell, 2003). 

Ultrastructural observations of a 2 c-AR-IR axon terminals show that they form multiple 

synapses with large dendritic profiles in lamina I and indicate that they may target certain 

cells in this region (Olave and Maxwell, 2002). The identity of these target cells is not 

known but if they prove to be projection neurons that are activated by nociceptive stimuli, 

then NE could specifically inhibit excitatory polysynaptic input to such cells. This type of 

arrangement could be particularly important, because the a 2 c-AR is a potentially 

interesting target for selective analgesics since sedative effects mediated via a 2 A~ARs 

could be avoided (Guo et ah, 1999; Fairbanlcs et ah, 2002).

The aim of the present investigation was to study if axons of excitatory interneurons 

possessing a 2 c-ARs target nociceptive projection neurons, hi the first place retrograde 

labelling of spinomedullary projection neurons with CTb was combined with triple­

immunofluorescence to examine the relationship of projection neurons that possess the SP 

(NK-1) receptor and axons that possess a 2 c-ARs. Neurons of this type are likely to be 

involved in the transmission of nociceptive information (Naim et ah, 1997; Todd et ah,

2002). Furthermore, mice lacking NE display a SP-dependent chronic thermal hyperalgesia 

(Jasmin et ah, 2002), which suggests that NK-1 neurons are components of the circuitry 

involved in NE antinociception. A combined confocal and electron microscopic method 

was used to detemiine if a 2 c-AR terminals make synapses with this type of neuron; and 

additionally a sequential immunocytochemical method with a VGLUT2 antibody was 

applied to determine if  the a 2 c~AR terminals that contact NK-1 projection cells are likely 

to have an excitatory action on these cells. Finally, the involvement of NK-1 projection
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neurons in nociceptive transmission was studied. For this purpose, the expression of the 

immediate early gene c-Fos was analysed within the nucleus of the neurons following the 

peripheral application of a thermal nociceptive stimulus (Hunt el ah, 1987). NK-1 

projection neurons that expressed c-Fos were assessed for a 2 C“AR terminal innervation.

2. Experimental Procedures

Confocal microscopy and neuronal reconstruction

Three male Wistar rats (25 Og; Harlan, UK)) were deeply anaesthetised 

(ketamine/xylazine mixture, 7.33 and 0.73mg/100g ip) and an aqueous solution of CTb 

(200nl of 1% CTb; Sigma, Poole, Dorset, UK) was injected stereotaxically within the left 

caudal ventrolateral medulla (CVLM; co-ordinates = A? -4.8; DV -0.6; ML +2.1; Paxinos 

and Watson, 1997). Following three days survival, the animals were anaesthetised with 

sodium pentobarbitone (1ml ip) and perfused through the left ventricle with saline 

followed by a fixative containing 4% formaldehyde in phosphate buffer pH 7.6. The L4 

lumbar segment was removed from each animal and postfixed in the same solution for 8 

hours. Parasagittal sections (70pm thick) were cut with a Vibratome. Sections were treated 

with 50% ethanol (30 minutes) to enhance antibody penetration, which was followed by 

blocking in 10% normal donlcey serum for 1 hour. Triple-labelling immunofluorescence 

was performed with a guinea pig anti-aac-AR antiserum (diluted 1:500; Neuromics, 

Minneapolis, U.S.A.; see Stone et ah, 1998 for details), rabbit anti-NK-1 antiserum 

(diluted 1:10,000; Sigma, Poole, Dorset, UK), and goat anti-CTb antiserum (diluted 

1:5,000; List Laboratories, California, USA). After a 48 hour incubation period, sections 

were rinsed and incubated for 3 hours in solutions containing species-specific secondary 

antibodies coupled to the following fluorophores (all raised in donkey and diluted 1:100): 

rhodamine-red to identify aic-AR immunoreactivity; FITC to identify NK-1 receptor 

immunoreactivity; and CY5 to identify CTb (all obtained from Jackson ImmunoResearch, 

Luton, U.K.). Antibodies were diluted in PBS containing 0.3% Triton X-100 and 1% 

normal donkey serum. The sections were mounted in anti-fade medium (Vectashield; 

Vector Laboratories, Peterborough, UK) and stored at -20°C. Double-labelled cells (i.e. 

retrogradely labelled cells with NK-1 receptor immunoreactivity) contralateral to the side 

of the injection were systematically scanned using a BioRad MRC 1024 confocal laser 

scanning microscope with a X40 oil-immersion lens at 0.5 pm intervals in the Z-axis and a 

zoom factor of 2. Thirty lamina I and 15 lamina III/IV neurons were reconstructed with
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Neurolucida for Confocal software (MicroBrightField, Colchester, VT, USA) and 

appositions formed by a 2 c~AR axon terminals were plotted on the reconstructions. A Sholl 

analysis was performed to study the pattern of distribution of contacts for the two 

populations of neurons; numbers of contacts per 100pm unit length of dendrite contained 

within concentric spheres with radii whieh increased at 25pm intervals from the centre of 

the cell body were estimated.

In order to determine if a 2 c-AR contact densities on NK-1 projection cells were 

greater than would be expected by chance, we compared them with protein kinase C-y 

(PKCy)-IR cells which are also found in laminae I and II within the dense plexus of a 2c~ 

AR-IR axons. PKCy cells are predominantly excitatory interneurons (Polgar et al., 1999) 

and therefore would be expected to be very different funetionally from NK-1 projection 

neurons. Triple-labelling immunofluorescence was performed as described above, except 

on this oceasion the rabbit anti-NK-1 antiserum was replaced by rabbit anti-PKCy 

antiserum (diluted 1:1,000; Santa Cruz Biotechnology, California, USA). Contact densities 

per lOOpm^ of dendritic surface area were calculated for lamina I and lamina III/IV NK-1 

projection cells and for PKCy-IR cells by using the Neurolucida programme. The average 

contact density was calculated for each animal (n=3 on each occasion; 10 cells from each 

animal for lamina I and 5 cells from each animal for lamina III/IV and PKCy) and the 

overall mean for three animals was calculated (±SD). Statistical comparisons were made 

by using one-way analysis of varianee (ANOVA) and a Tukey’s post hoc pairwise 

comparison. P values less than 0.05 were eonsidered to be significant.

Combined confocal and electron microscopy

A second set of tlmee male Wistar rats (25Og; Harlan, UK) was deeply anaesthetised 

with ketamine and xylazine and received unilateral stereotaxic injections of 200nl of 1% 

CTb (Sigma, Poole, Dorset, UK) in the left CVLM as described in the section above. The 

combined confocal and electron microscopic method used, is a modification of that 

described by Todd (1997). Following a three-day survival period, the animals were deeply 

anaesthetized with sodium pentobarbitone (1ml ip) and perfused with saline followed by a 

fixative containing 4% fonnaldehyde, 0.2% glutaraldehyde, and 0.2% of saturated picric 

acid in phosphate buffer (pH 7.6). L4 segments were removed, placed in the same fixative 

for 8 hours and eut into 50pm horizontal sections with a Vibratome. The sections were 

treated with 50% ethanol for 30 minutes to improve antibody penetration and also with 1% 

sodium borohydride for 30 minutes to counteract the effects of glutaraldehyde. Sections
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were incubated for 3 days in guinea pig anti-a2 c-AR antiserum (diluted 1:500; Neuromics, 

Minneapolis, U.S.A.), rabbit anti-NK-1 antiserum (diluted 1:10,000; Sigma, Poole; Dorset, 

UK), and a goat anti-CTb antiserum (diluted 1:5,000; List Laboratories, California, USA). 

Sections were then rinsed in PBS and placed for 1 day in a cocktail of donkey secondary 

antibodies which consisted of rhodamine-red-anti-guinea pig Ig, FITC-anti-rabbit Ig, CY5- 

anti-goat Ig (all diluted 1:100), and biotinylated-anti-guinea pig Ig (diluted 1:500; all 

obtained from Jackson ImmunoResearch, Luton, U.K.). Primary and secondary antibodies 

were diluted in detergent-free PBS. After rinsing in PBS, sections were incubated in 

avidin-biotin-HRP complex (diluted 1:1,000; Vector Elite, Peterborough, U.K.) for 1 day. 

Once the sections were mounted, they were scanned with the confocal microscope and 

lamina I cells were selected for analysis. A total of six NK-1 receptor-IR CTb-labelled 

neurons (2 from each animal), which received multiple contacts from a 2 c-AR-IR 

terminals, were examined. Optical sections were gathered sequentially in order to avoid 

bleed-through. Multiple scans were performed with a X60 oil-immersion lens at 0.5pm 

intervals in the Z-axis and a zoom factor of 1.5 in order to produce a montage of each 

selected neuron. In addition, scans with a X40, X20, X I0 and X4 lenses were performed to 

gather progressively lower power images that would serve as a frame of reference for 

identification of each cell with the electron microscope.

Sections containing scamied cells were removed from slides and processed for 

electron microscopy. Following rinsing, they were reacted with DAB in the presence of 

hydrogen peroxide. They were then placed in a 1% solution of osmium tetroxide for 30 

minutes, dehydrated in acetone, stained en bloc with uranyl acetate and finally flat- 

embedded in Durcupan resin (Fluka, Switzerland) between cellulose acetate sheets. 

Sections were examined with a light microscope to establish the location of each cell; DAB 

positive a 2 C"AR-IR terminals surrounding cells and landmarks such as blood vessels were 

used to identify their location within sections. Sections were mounted onto blocks of cured 

resin, which were trimmed to include the region containing the cell. Ultrathin sections 

were cut serially with a diamond knife, collected on Formvar-coated grids and viewed with 

an electron microscope (Philips CM 100).
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Seciuential immunocvtochemistry

The rationale of this protocol has been explained in Chapter 2\ 2.1. Multiple 

immunolabelling fo r  confocal microscopy (pg 27). A third set of three male rats (Wistar, 

250 g; Harlan, UK) was used for this part of the study. The first part of the procedure 

applied was basically identical to that described in the section above (see for details: 

Confocal microscopy and neuronal reconstruction', pg 65), however additional steps were 

required. Therefore, following stereotaxic injection of CTb in the left CVLM, a three-day 

survival period, fixation by cardiac perfusion, postfixation for 8 hours, cutting of 

horizontal sections (50pm thick) from the L4 lumbar segments and triple-labelling 

immunocytochemistry for NK-1, CTb and a 2 c-AR, NK-1 retro gradely labelled neurons 

associated with a 2 c-AR-IR terminals were scanned from lamina I. When scanning of 

selected double-labelled neurons was completed, sections were retrieved fi*om the slides 

and re-incubated in a fourth antiserum: rabbit anti-VGLUT2 antiserum (diluted 1:5,000 

from Synaptic Systems, Gottingen, Germany) for 48 hours. They were then rinsed and 

incubated for 3 hours in a solution containing donkey anti-rabbit Ig coupled to FITC 

(diluted 1:100, Jackson Immunoresearch, Luton, U.K.). Finally, sections were re-mounted 

and the same neurons that had been scanned previously were identified and scamied again. 

The same secondary antibody was used to reveal the rabbit anti-NK-1 and rabbit anti- 

VGLUT2 primary antibodies, but by comparing the FITC-labelling before and after the re­

incubation in VGLUT2 antiserum, it was possible to detect the additional FITC labelling, 

which represents immunoreactivity for VGLUT2. No additional immunoreactivity was 

observed in control experiments when the VGLUT2 antibody was omitted in the sequential 

reaction. Equally the pattern of immunostaining was not altered when performing the 

sequential incubation in a reverse order for the NK-1 and VGLUT2 labelling, i.e. first 

incubation containing the rabbit anti-VGLUT2 antiserum in the cocktail of primary 

antisera followed by sequential incubation in rabbit anti-NK-I antiserum.

Induction o f c-Fos expression

Three rats were used for this set of experiments (Wistar, 250 g; Harlan, UK). 

Following stereotaxic injection of CTb in the left CVLM (see for details: Confocal 

microscopy and neuronal reconstruction; pg 65) and a tliree-day survival period, animals 

were prepared for c-Fos induction. The rats were deeply anaesthetised (ketamine/xylazine 

mixture, 7.33 and 0.73mg/100g ip) and then the right hind paw -contralateral to the side of 

the CTh injection- was immersed in water at a temperature of 52°C for a period of 20
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seconds. Note that the CTb injection in the CVLM was perfonned in the left side and the 

noxious stimulation for c-Fos induction was produced on the right side. The purpose of this 

was to obtain as many projection cells as possible in the region of maximum c-Fos 

expression in order to optimise the estimation of the proportion of projection neurons that 

respond to the peripheral stimulation. The basis for this is that (1) a CTb injection in the 

left CVLM labels neiuons predominantly on the right dorsal horn, because most CVLM 

neurons are larown to project contralaterally (Todd et ah, 2000), and (2) peripheral noxious 

stimulation in the right hind limb induces the expression of c-Fos mainly in neurons in the 

ip si lateral dorsal horn, i.e. right, especially in the medial portion of the superficial dorsal 

horn (Hunt et a l, 1987; Todd et a l, 1994a; Doyle and Hunt, 1999; Todd et a l, 2002; see 

Fig.4.1, a). Animals were maintained under anaesthetic for 2 hours. In order to keep the 

animals deeply anaesthetised, the corneal reflex was checked regularly and 0.1ml or 0.2ml 

injections (ketamine/xylazine mixture) were administered as soon as any evidence of the 

reflex was detected minimally. After the 2 hour period animals were prepared for 

transcardiac perfusion. Following fixation, L4 lumbar segments were removed and 

postfixed for 8 hours. Horizontal, parasagittal and transverse sections (50pm thick) were 

cut with a Vibratome.

Two control experiments were carried out in order to demonstrate that the c-Fos 

expression is due to the stimulus applied, hi the latter experiments animals were treated 

following exactly the same protocol as described above {Induction o f  c-Fos expression) 

with the exception that the stimulus was not applied. Immunocytochemical labelling of 

c-Fos showed almost a complete absence of c-Fos labelling in the spinal cord. The few 

c-Fos-IR nuclei found were generally located in superficial laminae and around the central 

canal (Fig.4.1, b).

Iminunofluorescent labelling o f four markers

The rationale of this procedure has been explained previously in Chapter 2\ 2.1 

Mvdtiple immunolabelling for confocal microscopy (pg 27) and it is described in detail 

below. Sections were treated with 50% ethanol for 30 minutes and blocked in 10% normal 

donkey serum for 1 hour. Quadruple-labelling immunofluorescence was performed with 

guinea pig anti-a2 c-AR antiserum (diluted 1:500; Neuromics, Miimeapolis, U.S.A.; see 

Stone et a l, 1998 for details), rabbit anti-NK-1 antiserum (diluted 1:10,000; Sigma, Poole, 

Dorset, UK), rabbit anti-c-Fos antiserum (diluted 1:5,000; Hunt et a l, 1987), and goat anti- 

CTb antiserum (diluted 1:5,000; List Laboratories, Campbell, CA). After a 48 hour
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incubation period, sections were rinsed and incubated for 24 hours in solutions containing 

three different species-specific secondary antibodies coupled to fluorophores: rhodamine- 

red-anti-guinea pig Ig to identify a 2 c-AR immunoreactivity; FITC-anti-rabbit Ig to identify 

NK-1 receptor and c-Fos immunoreactivity; and CY5-anti-goat Ig to identify CTb (all 

raised in donkey and diluted 1:100; Stratech, Cambridge, U.K). Notice that the NK-1 

receptor and c-Fos can be labelled with the same secondary antibody because they are 

located in clearly different cellular structures, cell membrane and nucleus, respectively, 

which allows distinction of both types of immunolabelling through the same channel. All 

antibodies were diluted in PBS containing 0.3% Triton X-100 and 1% normal donkey 

serum. Once rinsed, the sections were mounted.

Quantitative analysis o f c-Fos expression on dorsal horn NK-1 projection neurons

In the first place, a general analysis of c-Fos positive cells was carried out. c-Fos- 

labelled cells present in the ipsi and contra-lateral sides to the stimulation, were counted in 

order to estimate the relative proportion of c-Fos-IR cells in the ipsilateral versus the 

contralateral dorsal horns (laminae I-IV). The sample for the cell counts consisted of three 

transverse sections from three different experiments, i.e. nine sections. This analysis 

agreed with previous investigations using a similar approach (Hunt et al., 1987; Todd et al., 

1994a; Todd et al., 2002). The proportion of c-Fos cells in the dorsal horn ipsilateral to the 

stimulation was almost five times higher than that one in the contralateral side (counts per 

section: average±SD; ipsilateral 54.89+2.36, contralateral 12.11+1.58). Student’s t-test 

confirmed that this difference was highly significant (P<0.01).

Secondly, a more specific analysis was produced to study the expression of c-Fos on 

NK-1 projection neurons. A sample of 30 lamina I and 15 lamina III/IV neurons (10 and 5 

respectively from each of the animals), which were double labelled for NK-1 and CTb, 

were scanned using a Radiance 2100 confocal laser scanning microscope with a X40 oil- 

immersion lens at 1 pm intervals in the Z-axis and a zoom factor of 1. All the neurons 

sampled were located within the medial portion of the right dorsal horn, which was 

contralateral to the CVLM injection site and ipsilateral to the c-Fos induction side, because 

as expected this area contained a high concentration of c-Fos-IR neurons and many 

retro gradely labelled neurons projecting contralaterally to the CVLM. Lamina I neurons 

were sampled from horizontal sections of spinal cord, while lamina III/IV neurons were 

sampled from parasagittal sections. The analysis involved quantification of the proportion 

of NK-1 retro gradely labelled cells that were c-Fos positive in both samples of lamina I
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and lamina III/IV neurons. Finally, lamina I NK-1 retro gradely labelled neurons were 

assessed for a 2 C“AR-IR temiinal innervation. The sample did not include lamina III/IV 

NK-I neurons because in the 50pm thick sections examined it was usually not possible to 

follow their dendrites to the superficial dorsal horn, where they would be expected to 

receive innervation from a 2 c-AR-IR terminals.

3. Results

NK-1 spinomedullary neurons are innervated by axons that possess the a2 c~AR

Spinomedullary neurons were labelled by injection of the retrograde tracer CTb in 

the left CVLM. Figure 4.2 shows the injection site for one of the experiments, and an 

example of the extent of the tracer spread in another experiment. As predicted, numerous 

retro gradely labelled neurons were found in lamina I and lamina III/IV of the spinal dorsal 

horn, especially contralateral to the injection site (Todd et ah, 2000). A large proportion of 

CTb-labelled neurons was present in lamina 1 in the right dorsal horn along with 

immunoreactivity for the NK-1 receptor and axon terminals possessing the aic-AR (Fig. 

4.3, a; and Fig. 4.4, a). At high magnification it was possible to identify NK-1 projection 

cells by the presence of CTb within them and to study their relationship with azc-AR-IR 

profiles. Cell bodies and proximal dendrites of lamina I cells frequently received large 

numbers of contacts from a 2 c-AR-IR structures (Fig. 4.3, b-d; and Fig. 4.4, c) as did distal 

dendrites of labelled cells in lamina 111/lV which extended dorsally into lamina I (Fig. 4.4, 

b, d-f). More than half of the NK-1 projection cells were found to receive contacts from 

Œ2 c-AR terminals (average±SD=57.3±5.26%).

Distribution and density o f a2 c-AR contacts on NK-1 projection neurons

The distribution of a 2 c-AR contacts was studied in the two populations of NK-1 

projection neurons. The neurons were sampled from parasagittal sections which were 

contralateral to the injection site. A sample of 30 lamina I neurons was scanned (10 from 

each of the three experiments), while the sample of lamina III/IV neurons was reduced to 

15 (5 from each experiment) as they were found less frequently. The intensity of 

immuno staining for the NK-1 receptor varied from cell to cell and while some neurons 

were very strongly labelled others were weakly labelled. Neurons showing any evidence of 

NK-1 receptor immunoreactivity were included in the analysis. On average 83% of the 

retro gradely labelled neurons were NK-1 positive (SD=16.7%). Once the neurons were
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scanned they were reconstmcted and the a 2 c-AR contacts were mapped (see examples in 

Fig. 4.5). Shell analysis of the distribution of a 2 c~AR contacts revealed that NK-1 

projection neurons with somata in lamina I receive numerous a 2 c-AR contacts on cell 

bodies and proximal dendrites, while NK-1 projection neurons with somata in lamina 

III/IV receive most a 2 c~AR contacts on distal dendrites which extend into laminae I-IL 

The average number of contacts per 100pm of dendritic length was higher for lamina I 

neurons than for lamina III/IV neurons (average±SD=109.3+38.1 and 69.3+20.7 

respectively; see histograms in Fig. 4.5). We also calculated average densities of (%2 c-AR 

contacts per unit area (100 pnf) of dendritic surface for lamina I and lamina III/IV NK-1 

projection cells in order to compare them with a population of PKCy-IR intemeurons (Fig. 

4.6). Dendrites of lamina I cells had approximately seven times the density of contacts 

associated with PKCy cells (average±SD contacts per 100 p n f=1.09+0.07 and 0.14+0.01 

respectively) and lamina III/IV cells were associated with 3 times the density (0.51+0.09 

contacts per 100 pm^). Statistical comparisons confirm that these differences are 

significant (P<0.001, ANOVA; individual differences between all tlmee groups were 

significant at P<0.05, Tukey’s post hoc pairwise comparison).

Axon terminals containing the azc-AR form synapses wnth NK-1 projection neurons

By means of the combined confocal and electron microscopic method applied it was 

possible to firstly visualise a 2 c-AR-IR terminals forming appositions on NK-1 

spinomedullary neurons, and secondly, following processing of the tissue for electron 

microscopy, to determine if such terminals formed synapses with the neuron (Fig. 4.7). In 

total, six neurons were examined (two from each animal) which received 45 appositions 

from Œ2 C-AR terminals. Electron microscopic analysis confirmed that 42 of these formed 

synapses with the neurons. Most of these synapses could be classified as asymmetric but 

occasionally it was difficult to define the type of synapse. The remaining tlrree appositions 

were not observed to form synapses. Synaptic boutons contained circular agranular 

vesicles and often granular vesicles also (Fig. 4.7).

axon terminals that innervate NK-1 projection neurons are excitatory 

Sequential immunocytochemistry with a fourth antibody against VGLUT2 was used 

to determine if a 2 c-AR-IR profiles fonning appositions with NK-I projection cells were 

immunoreactive for VGLUT2 (Takamori et ah, 2000; Varoqui et al., 2002). A sample of 

thirty NK-1 retrogradely labelled lamina I neurons was scamied (10 from each of the three
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animals) from the side contralateral to the injection. An average of 43 a 2 c-AR appositions 

per neuron was recorded (SD=12). Of these appositions, 100% were found to be VGLUT2 

positive when the selected neurons were re-scanned following the sequential incubation in 

VGLUT2 antiserum (example illustrated in Fig, 4.8).

NK-1 projection neurons respond to thermal noxious stimulation and are innervated by 

azcMRNR terminals

The analysis of c-Fos expression included NK-1 projection neurons with cell bodies 

in lamina I and lamina III/IV that were contralateral to the side of the CTb injection and 

ipsilateral to the side of peripheral thermal nociceptive stimulation. The majority of NK-1 

spinomedullary neurons in medial portion of lamina I were found to express c-Fos in their 

nuclei (70+10%), while a minimal proportion of NK-1 spinomedullary neurons in lamina 

III/IV were found to be positive for c-Fos (6.67+5.77%). A high proportion of the analysed 

lamina I NK-1 projection neurons received innervation from a 2 c-AR-IR terminals 

(42+5.77%) which included both c-Fos positive (23+5.77%); example illustrated in Figure 

4.9) and c-Fos negative (20+0%) neurons.

4. Discussion

The major finding of this investigation is that axon terminals containing the a 2 c-AR 

densely innervate NK-1 spinomedullary neurons that project to the CVLM. Both lamina I 

and lamina III/IV projection neurons were associated with a 2 C“AR contact densities that 

were significantly greater than contact densities on interneurons possessing PKCy 

immunoreactivity and it can be concluded that this represents a specific type of 

arrangement that has not arisen merely by chance. Tenninals were concentrated around 

cell bodies and proximal dendrites of lamina I neurons, while in lamina III/IV neurons the 

terminals were apposed predominantly to distal dendrites which extended dorsally into 

laminae I and II. We were able to demonstrate that axon terminals possessing the (%2 c-AR 

form synapses with NK-1 projection neurons in lamina I, and that they are likely to have 

an excitatory action because they also contained VGLUT2 which is a marker for 

glutamatergic axon terminals (Takamori et al., 2000; Varoqui et al., 2002; Todd et al.,

2003). In addition, a considerable proportion of lamina I NK-1 projection neurons were 

found to be responsive to thermal noxious stimulation as well as receive innervation Rom 

axon terminals containing a 2c-ARs. On this basis, it can be concluded that our hypothesis
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is correct and that axons of excitatory interneurons possessing a 2 c-Ails do indeed target 

nociceptive projection neurons.

Identification o f NK-1 projection neurons

Our quantitative analysis was confined to neurons contralateral to the CVLM 

injection site that were NK-1 positive since neurons of this type are very likely to be 

involved in the transmission of nociceptive information (Naim et a l, 1997; Todd et a l, 

2002). Stereotaxic injections were made into the CVLM because this region of the 

brainstem is known to receive substantial input from lamina I (Lima et a l, 1991; Craig, 

1995) and also because lamina I neurons labelled from the CVLM are more numerous than 

those labelled from other projection targets (i.e. dorsal reticular nucleus, periaqueductal 

gray, or thalamus; Marshall et a l, 1996; Todd et a l, 2000). Most spinomedullary neurons 

labelled from the CVLM project contralaterally and only a minority project ipsilaterally. 

Neurons retrogradely labelled fr'om the CVLM also include a population of lamina III/IV 

cells, which have dorsally directed dendrites that terminate in lamina I. Double-labelling 

studies indicate that most CVLM neurons also have collateral projections to the lateral 

parabrachial area (Todd, 2002) and therefore many of the cells analysed in this study are 

likely to project to this area in addition to the CVLM. Both these regions of the brainstem 

are known to be targets of nociceptive neurons and are intimately involved in nociceptive 

processing (Gauriau and Bernard, 2002; Lima et a l, 2002).

Functional significance o f a2 c~AR innervation o f NK-1 projection neurons

Our findings indicate that NE can influence NK-1 projection neurons tlnough a 

presynaptic action on axon terminals that possess a 2 c-ARs. Both lamina I and lamina 

III/IV NK-1 projection cells receive dense innervation from small diameter primary 

afferent fibres that contain a combination of SP and glutamate (De Biasi and Rustioni, 

1988; Naim et a l, 1997; Todd et a l, 2002). Glutamate is undoubtedly involved in acute 

pain signalling mechanisms but the role of SP in nociceptive transmission is subtle. 

Ablation of lamina I NK-1 cells attenuates the development of thermal and mechanical 

hyperalgesia (Mantyh et a l, 1997; Kliasabov et a l, 2002) and mice that lack the NK-1 

receptor do not display the characteristic amplification and intensity coding of nociceptive 

reflexes (De Felipe et a l, 1998). Such Tcnock-ouf animals also have reduced descending 

inhibition evoked by peripheral noxious stimuli (Bester et a l, 2001) thus indicating that 

NK-1 neurons are components of an ascending-descending antinociceptive loop. The NK-1 

receptor is directly implicated in the mediation of NE antinociception because genetically
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engineered mice that lack NE show a SP-dependent chronic hyperalgesia (Jasmin et a l, 

2002). These lines of evidence suggest that NK-1 neurons are likely to be components of 

the circuitry that underlies NE antinociception. NE descending inhibitory systems could be 

recruited by NK-1 spinomedullary neurons, as these cells terminate in a region close to the 

lateral reticular nucleus that contains DpH-IR neurons, which in turn, project to the spinal 

dorsal horn (Lee et al., 2001).

It is well established that the antinociceptive action of NE is mediated by az-ARs 

(Howe et ah, 1983; Yaksh, 1985; Proudfit, 1988) but it has been shown only recently that 

both 0 , 2  A-AR and 0 2 c-AR subtypes are involved in this process (Stone et ah, 1997; Li and 

Eisenach, 2001; Fairbanks et al., 2002). Budai et al. (1998) reported that periaqueductal 

gray neurons inliibit nociceptive dorsal horn cells by a presynaptic action on oz-ARs. Our 

findings also support this proposal, as we have shown that 0 2 c-ARs are located on axon 

terminals that are presynaptic to nociceptive cells. In addition, virtually all of these 

terminals are likely to be glutamatergic as they are immunoreactive for VGLUT2 and 

therefore would be expected to have an excitatory action on their target cells. This finding 

is also in agreement with studies reporting that activation of a 2 -ARs can reduce the release 

of glutamate. Pan et al. (2001) showed that the a%-AR agonist clonidine inliibits 

glutamatergic synaptic input to spinal neurons in outer lamina II by a presynaptic action on 

1%2 -ARs. The (%2 A and (%2 c-ARs not only differ in their cellular location in the dorsal horn, 

but also differ in their affinity for NE and deactivation kinetics. The azc-AR has a gieater 

affinity for NE than the Œ2 A-AR and the oizc-AR shows slower deactivation following NE 

stimulation (Bunemann et al., 2001). These differences suggest that each subclass has 

distinct physiological functions, even if both types of receptor are implicated in NE 

antinociception. The results indicate that part of the antinociceptive action of NE could be 

mediated via a 2 c-ARs present on terminals of excitatory spinal interneurons that are 

presynaptic to nociceptive neurons in lamina I and distal dendrites of presumed nociceptive 

neurons in lamina III/IV.
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Figure 4.1. c-Fos labelling with and without peripheral thermal noxious stimulation, a shows c-Fos 

labelling in ipsilateral (ipsi) and contralateral (contra) dorsal horns following application of peripheral 

thermal noxious stimulation. A high concentration of c-Fos-labelled neurons is found in the medial portion of 

the superficial dorsal horn (green arrowhead). Some c-Fos-IR cells can be seen in the lateral spinal nucleus 

(blue arrowhead), b illustrates the sparse c-Fos labelling obtained in the control experiment when no 

peripheral thermal noxious stimulation was applied. Few c-Fos cells are found (red arrowheads).

(Scale bar: b= 100pm, valid for both images)
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Figure 4.2. Injection of retrograde tracer in the CVLM. a Photo micrograph illustrating 

the CTb-injection site in the left CVLM. 4v, 4̂ '’ ventricle; c u , cuneate nucleus; CC, central 

canal; XII, hypoglossal nucleus; spV, spinal trigeminal nucleus; ml, medial lemniscus; 

LRt, lateral reticular nucleus; VSC, ventral spinocerebellar tract; py, pyiamidal tract, b  

Reconstruction of an injection site indicating the interaural co-ordinate (Paxinos and 

Watson, 1997). The spread of the tracer is represented by the dark gi ey area.
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Figure 4.3. Immunoreactivity for CTb, the NK-1 receptor and a^c-AR in a horizontal 

section of lamina I. a A merged image of a horizontal section of lamina I (blue, CTb; 

green, NK-1 receptor; red, aic-AR) illustrating the general pattern of triple-lahelling at a 

low magnification (made from 20 projected confocal images gathered at Ipm  steps with a 

X20 lens), b-d, show projected images of tliree retrogradely labelled neurons at high 

magnification (built from 15, 10 and 5 single optical sections for b, c, d respectively. 

Optical sections were gathered at 0.5pm steps with a X40 lens). Cells shown in b and c  are 

multipolar, whereas the cell shown in d is fusifomi. As in a, CTb is blue, NK-1 receptor 

labelling is green and immunoreactivity for the a 2 c-AR is red. All three neurons receive 

multiple contacts from a 2 c-AR-IR terminals, b’-d’, show the corresponding a 2 c-AR 

immunoreactivity. Note that a 2 C'-AR terminals delineate the cell bodies and dendrites of 

these neurons. (Scale bars; a=100pm; b=10pm; scale in b valid for c-d and b’-d’)





Figure 4.4, Triple-labelling of CTb, the NK-1 receptor and aic-AR in a parasagittal 

section, a A projected image of a parasagittal section built flom 30 confocal images which 

were gathered at 1 pm steps with a X20 lens (blue, CTb; green, NK-1 receptor; red, a 2c~ 

AR). The locations of laminae I to IV are indicated on the right side of the image. A cell 

that is labelled with CTb and the NK-1 receptor can be observed in lamina III. This cell has 

three dorsally orientated dendrites that extend into lamina I. b A projected image at high 

magnification showing the boxed area in a which includes one of the dorsal dendrites Rom 

the lamina III cell (made from 20 optical sections, gathered at 0.5pm steps with a X60 

lens), c A single optical section showing that a 2 c-AR teiininals form contacts with the 

lamina 1 cell seen in b which contains CTb and is labelled for the NK-1 receptor, d A 

projected image of the boxed area in b (built from 7 optical sections, gathered at 0.5pm 

steps with a X60 lens); seven boutons, indicated by the numbered arrows, form appositions 

with the NK-1 positive dendrite which belongs to the lamina III cell seen in a. Appositions 

are shown in single optical sections: 1 and 3 in e, and 2, 4-7 in f. (Scale bars: a=100pm, b- 

c=20pm, d=10pm; scale in d valid for e-f)
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Figure 4.5. Distribiitiou of ocic-AR contacts on NK-1 projection cells. Left, two 

examples of NK-1 projection cells reconstructed with Neurolucida. Contacts (black circles) 

from a 2 c-AR-IR puncta were mapped on the reconstmctions. A lamina I cell is shown 

above and a lamina III/IV cell bellow. (Scale bars=100|Lxm). Right, histograms 

summarising the Sholl analysis of the distribution of 0 G2 C-AR contacts on both populations 

of cells (lamina I, n=30; lamina III/IV, n=15). The number of contacts per lOOjum of 

dendritic length is plotted against the distance from the soma, where Ot-tm represents the 

cell body and the consecutive numbers represent the radii of the concentric shells, which 

increase at 25pm intervals.
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Figure 4.6. Double-labelling of PKCy and the azc-AR in a parasagittal section, a A

projected image of a parasagittal section showing iinniunoreactivity for PKCy and the aic- 

AR (green and red respectively) at low magnification (made from 20 single optical 

sections, gathered at 0.5|.im steps with a X20 lens). The location of laminae I-III is 

indicated on the right side of the image. A FKCy-IR cell ean he seen in lamina I, dorsal to 

the main PKCy plexus in lamina II. Note that azc-AR immunoreactivity is dense in the 

superficial dorsal horn where dorsal PKCy cells are found, b A projected image of the 

dorsal PKCy cell at high magnification (made fiom 15 optical sections, gathered at 0.5pm 

steps with a X40 lens), b ' shows the corresponding aic-AR immunoreactivity; note that 

(Xzc-AR terminals do not delineate the outline of the cell, c  A reconstmction of the dorsal 

cell illustrated in a and b; only one a 2 c-AR terminal was found to form a contact (red 

circle) with the cell, d and e, are single optical sections extracted from the z-series in b 

illustrating the paucity of contacts formed by (%2C'AR terminals with the cell body and 

dendrites of the PKCy cell. (Scale bars: a=40pm; b-c=20pm; scale in b valid for b% d-e)





Figure 4.7. Combined confocal and electron microscopy of a 2 C“AR contacts, a A

single optical section of a NK-1 projection cell in lamina I which is apposed by tliree a 2 c~ 

AR-IR terminals (arrows numbered 1-3; blue, CTb; green, NK-1 receptor; red, a 2 C"AK) b 

An electron micrograph of the same cell. The a 2 c-AR-IR terminals can be recognised by 

the dark DAB-reaction product. The thi*ee terminals indicated by the arrows (numbered 1- 

3) correspond to those indicated in a. The areas delineated by the purple and blue boxes in 

b are shown at higher magnification in c and f respectively, c-e, show progressively 

magnified images of the axon tenninal indicated by arrow 1. This forms an asymmetric 

synapse with a proximal dendrite of the cell, f-h, are progressively magnified images of the 

terminal indicated by arrow 3. This bouton fonns a long asynnnetric synapse. Boutons 

contained circular agranular vesicles and often also granular vesicles (red arrowheads in 

g). (Scale bars: a-b=10pm; c, f=lpin; d, g=0.5pm; e, h=0.25pm)





Figure 4.8. Sequential immunocytochemistry for VGLUT2. a A single optical section of a NK-1 

projection cell from lamina 1 that receives numerous contacts from a 2 c-AR terminals. Immunoreactivity for 

the NK-1 receptor (NKl), CTb (CTb), and a 2 C“AR (a2C) are shown independently. A merged image formed 

from the previous tliree is shown on the right, b A single optical section of the same cell which has been re­

scanned following sequential incubation with a 4̂ ’’ antibody against VGLUT2. The extra-green labelling 

present in b, that was absent in a, corresponds to the additional VGLUT2 immunostaining (see 

NK1+VGLUT2). Notice that all a 2 c-AR-IR terminals, that form appositions on the NK-1 projection cell, are 

immunoreactive for VGLUT2 (yellow profiles in b, merged image on the right) and hence can be considered 

to be excitatory glutamatergic terminals. (Scale bars: a and b=20pm)





Figure 4.9. Quadruple-labelling of CTb, the NK-1 receptor, azc-AR and c-Fos in lamina I. d A projected 

image of a retrogradely labelled neuron at high magnification (built from 10 single optical sections that were 

gathered at 0.5pm steps with a X40 lens). The CTb-labelled neuron is positive for NK-1 and c-Fos and 

receives contacts from a 2 C“AR-IR terminals, a shows the distribution of the aic-AR (a2C); b shows the 

immunoreactivity for c-Fos and NK-1 (c-Fos+NKl); and C displays the CTb labelling (CTb).

(Scale bar; a=20pm, valid for all images)
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Chapter 5 

Investigation 3: 

a2c-adrenergic receptors in the lateral spinal nucleus



1. Introduction

The lateral spinal nucleus (LSN) is found within the dorsal lateral funiculus at all 

four levels of the rat spinal cord. However, the LSN is not present in all species, indeed it 

is found mainly in rodents such as the rat or guinea pig, and is not present in rabbit, cat or 

human (Gwyn and Waldron, 1969). This nucleus differs from the superficial dorsal horn in 

the nature of its neuropil. The LSN area contains rostrocaudal myelinated axons, 

unmyelinated axons and cell bodies encrusted with boutons. On occasions dendrites extend 

laterally and almost appear to appose the pial surface (Bresnahan et ah, 1984). LSN 

neurons have multipolar and fusiform cell bodies with non-oriented dendrites (Giesler et 

ah, 1979a). Electrophysiological studies indicated that LSN neurons have no obvious 

cutaneous sensitivity (Giesler et ah, 1979b; Menétrey et al., 1980), but that some can be 

responsive to innocuous movement of joints and deep tissue (Menétrey et al., 1980). 

Additionally, neurons in the LSN have no spontaneous activity and possess axons with 

slow conduction velocities (unmyelinated range) that project contralaterally (46%) and 

bilaterally (40%) (Menétrey and Besson, 1981). Neurochemically, LSN cells were first 

reported to be positive for ACh (Gwyn and Waldron, 1968), based on the presence of the 

enzyme acetylcholinesterase; however this is unlikely because later evidence showed that 

the enzyme is a non specific marker for cholinergic cells (Albanese and Butcher, 1980; 

Greenfield, 1991). LSN neurons contain SP (Hokfelt et al., 1977; Giesler and Elde, 1985). 

Leah and coworkers (1988) investigated ascending tract cells in the rat lumbosacral cord 

containing neuropeptides. Interestingly, 90% of these peptidergic projection cells 

congregated in two main areas: the LSN, especially, and the region surrounding the central 

canal. LSN peptidergic neurons contained VIP, bombesin, SP, and dynorphin and were 

reported to project mainly contralaterally. Retrograde labelling studies showed that LSN 

neurons project through diverse tracts: the spinoreticular, spinomesencephalic (Menetrey et 

al., 1982, Pechura and Liu, 1986), spinosolitary (Menétrey and Basbaum, 1987; Leah et ah, 

1988) and spinohypothalamic tracts (Burstein et ah, 1990). An additional characteristic of 

the LSN is its great content of peptidergic varicosities, which underlies an extensive 

peptidergic input to LSN neurons. The plexi of SP, enkephalin, dynorphin, somatostatin 

and FMRF (neuropeptide Y-like substance) present in the LSN were not affected following 

any experimental lesion that interrupted primary afferent or descending pathways, 

indicating that the peptidergic afferent input to the LSN arises from the same or nearby 

segmental levels of the spinal cord (Jessel et ah, 1978; Larabi et ah, 1983; Seybold and
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Elde, 1980; Giesler and Elde, 1985; d iffe r et aL, 1988). Not much is known about the 

function of the LSN, however previous work indicated that aic-ARs are present on axon 

terminals in the LSN (Stone et ah, 1998; Olave and Maxwell, 2002), which suggests that 

NE is likely to modulate input to LSN neurons by acting at these terminals.

In order to further elucidate the function of the aac-AR in the LSN we investigated 

the neurochemical profile and morphological properties of azc-AR-IR terminals by using 

confocal microscopy and electron microscopy, respectively. To study the neurochemical 

profile of aic-AR-IR terminals we used double-labelling immunocytochemistry and 

quantitatively studied the patterns of colocalisation of the receptor with diverse markers 

that label axons of primary afferent, descending systems and populations of inhibitory and 

excitatory interneurons. In additon, we investigated the involvement of LSN neurons, 

including CTb retrogradely labelled neurons from the CVLM, in nociceptive transmission 

by studying the expression of c-Fos following application of a thermal nociceptive 

stimulus peripherally (Hunt et ah, 1987). Finally quintuple immunocytochemistry for 

NeuN -a neuronal marker-, c-Fos, NK-1, CTb and (%2 C-AR was used to investigate diverse 

populations of LSN neurons and their relationship with axons that possess a 2 c-ARs.

2. Experimental Procedures

Double-labelling immunocytochemistry for confocal microscopy

In this study the experimental procedures used for the analysis of colocalisation with 

confocal microscopy are basically identical to those described in Investigation 1 {Chapter

3, pg 36) Confocal Microscopy, i.e. fixation of tissue, double-labelling 

immunocytochemistry, labelling of myelinated primary afferent terminals in the lumbar 

spinal cord, and the quantitative methods of colocalisation including both automated and 

visual-assessment methods. Double-labelling immunocytochemistry involved combined 

labelling of the oi2 c-AR with each of the following seventeen markers: DpH, 5-HT, CGRP, 

SP, neurotensin, somatostatin, enlcephalin, neuropeptide Y, galanin, CliAT, NOS, GAD, 

Gly-T2, VGLUT I, VGLUT2, CTb (injected in the sciatic nerve) and IB4 (for details see; 

Chapter 3: Investigation 1, pg 37). There are a few differences between both investigations 

regarding the collection of Eelds with the confocal microscope. Obviously, in the present 

investigation fields were systematically scanned from the central part of the LSN, rather 

than the superficial dorsal horn. Two fields, one from the right LSN and one from the left 

LSN, (with exception for CTb which was only scanned from the left LSN -ipsilateral to the
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sciatic injection-) were collected from six transverse sections (i.e. 12 fields per marker 

from each of the tlii'ee animals, making a total of 36 fields per marker). Since each field 

consists of 6 pairs of optical sections, a total of 216 pairs of images was analysed with the 

automated method for each marker (i.e. 6 optical sections x 36 fields). An additional 

specificity of the present study is that several of the markers were absent from the LSN and 

for this reason they were not scamied for quantification (i.e.VGLUTl, CTb, NOS, IB4, 

CGRP; Fig. 5.1).

Electron microscopy

The experimental procedures applied in this investigation for electron microscopy 

have been already described in Investigation 1 {Chapter 3, pg 39) Electron Microscopy,

i.e. fixation of tissue and processing for immunoelectron microscopy. In this case the area 

trimmed corresponded to the LSN, instead of the superficial dorsal horn, and the analysis 

involved qualitative observation of the neuropil and a quasi-quantitative approach.

Identification o f LSN neurons

Retrograde labelling o f spinomedullary neurons

As described in Investigation 2 {Chapter 4, pg 65) CTb was injected in the left 

CVLM. Following a three day survival period animals were prepared for induction of the 

immediate early gene c-Fos.

Induction o f c-Fos expression

A set of three rats (Wistar, 25 Og; Harlan, UK) was deeply anaesthetised 

(ketaniine/xylazine mixture, 7.33 and 0.73mg/100g ip) and then the right hind paw 

-contralateral to the CTb injection side- was immersed in water at a temperature of 52°C 

for a period of 20 seconds. This procedure has been explained in detail in Investigation 2 

{Chapter 4, pg 68). Animals were maintained under anaesthetic for 2 hours. After this 

period the animals, which were under deep anaesthesia (ketamine/xylazine mixture), were 

fixed by perfusion with 4% formaldehyde as previously described {Chapter 3, pg 36). For 

the present investigation transverse sections (50pm thick) were cut with a Vibratome. The 

c-Fos control experiments described in Investigation 2 {Chapter 4, pg 69) are also valid for 

the present investigation. Figure 4.1 illustrates the scarcity of c-Fos-labelled neurons when 

the noxious peripheral stimulation was not applied.
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Immunofluo res cent labelling o f five markers

The rationale of mnltiple-immimolabelling has been explained previously in Chapter 

2 (pg 27); the specific procedure used is described in detail below. Quintuple-labelling 

immunofluorescence was perfomied with a guinea pig anti-a2 c-AR antiserum (diluted 

1:500; Neuromics, Minneapolis, U.S.A.; see Stone et a l, 1998 for details), rabbit anti-NK- 

1 antiserum (diluted 1:10,000; Sigma, Poole, Dorset, UK), rabbit anti-c-Fos antisemm 

(diluted 1:5,000; Hunt et a l, 1987), goat anti-CTb antiserum (diluted 1:5,000; List 

Laboratories, Campbell, CA), and mouse anti-NeuN anti serum (diluted 1:1,000, 

Chemicon, Harrow, U.K.). After a 48 hour incubation period, sections were rinsed and 

incubated for 24 hours in solutions containing four different species-specific secondary 

antibodies raised in donlcey. Three of them were coupled to fluorophores: rhodamine-red- 

anti-guinea pig Ig to identify (%2 c-AK immunoreactivity; FITC-anti-rabbit Ig to identify 

NK-1 receptor and c-Fos immunoreactivity; and CY5-anti-goat Ig to identify CTb (the 

three diluted 1:100). The fourth secondary antibody was a biotinylated-anti-mouse Ig 

which binds to NeuN (diluted 1:500, all obtained from Stratech, Cambridge, U.K.). Notice 

that the NK-1 receptor and c-Fos can be labelled with the same secondary antibody 

because they are located in clearly different cellular structures, cell membrane and nucleus, 

respectively, which allows distinction of both types of immunolabelling through the same 

channel (discussed in Chapter 2, pg 28). Following rinsing, the sections were incubated for 

24 hours in solutions containing avidin coupled to the fluorophore pacific blue to identify 

the biotinylated antibody coupled to NeuN (diluted 1:1,000; Molecular Probes, Leiden, 

The Netherlands). All antibodies were diluted in PBS containing 0.3% Triton X-100 and 

1% normal donkey serum. Once rinsed, the sections were mounted in anti-fade medium 

(Vectashield; Vector Laboratories, Peterborough, UK) and stored in a freezer at -20°C.

Quantitative analysis

The right and left LSNs were systematically scanned using a Radiance 2100 confocal 

laser scanning microscope, equipped with Argon/Green Helium Neon/Red diode/Blue 

diode lasers with a X40 oil-immersion lens at 1 pm intervals in the Z-axis and a zoom 

factor of 1. Each field included the total extent of the LSN (1024x 1024pixels=3 01x301 pm) 

in the transverse plane and consisted of 20 optical sections that represent a field depth of 

20pm in the rostro-caudal axis. From each of the three animals, two fields (one h om the 

left LSN and one from the right LSN) were scanned from six transverse sections (i.e. a 

total of 36 fields, 18 from the left LSN -ipsilateral to the injection site- and 18 from the
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light LSN -contralateral to the injection site and ipsilateral to the c-Fos induction side-). 

The quantitative analysis involved three steps. First, the number of LSN neurons was 

calculated by counting the neuronal cell bodies, which were revealed by NeuN. Second, 

the neurons were classified into one of the following eight categories according to their 

pattern of immunoreactivity:

1. Only immunoreactive for c-fos

2. Only immunoreactive for CTb

3. Only immunore active for NK-1

4. Double-labelled for c-Fos and CTb

5. Double-labelled for c-Fos and NK-1

6. Double-labelled for CTb and NK-1

7. Triple-labelled for c-Fos, CTb and NK-1

8. Unlabelled by any of the markers but NeuN

Third, LSN neurons were assessed for a 2 c-AR innervation by examining their 

relationship with a 2 c-AR-IR axon terminals; only LSN neurons labelled with CTb and/or 

NK-1 (i.e. those corresponding to category 2 to 7) were studied since these were the only 

markers revealing the outline of the cell, which is essential to assess the relationship 

between the neuron and the terminals.

Finally, the following calculations were produced to summarise the data; 1 total 

count of each category of LSN neuron per experiment, 2 average and standard deviation of 

each category from the tluee experiments, 3 percentage of each category of LSN neuron to 

calculate the proportion of each category of neuron in the LSN. Equivalent calculations 

were done for LSN neurons receiving imiervation from a 2 C"AR-IR terminals (i.e. CTb 

and/or NK-1 neurons, categories 2 to 7). Statistical comparisons between the values 

obtained from the left and right LSNs were made by using Student's t-test. P values less 

than 0.05 were considered to be significant.

3. Results

Neurochemical profile o f  a 7r-AR-IR terminals in the LSN

The markers used in this investigation are the same as those used in Investigation 1 

for the superficial dorsal horn. In this case, of the seventeen markers applied only twelve 

were found in the LSN and therefore were consequently quantified. Images a-e in Figure 

5.1, show the lack of labelling in the LSN for CTb (injected in the sciatic nerve), IB4,
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CGRP, VGLUTl and NOS. Examples of LSN fields for the a 2 C“AR and the rest of the 

markers are exhibited in Figure 5.2 and 5.3. The results obtained from both types of 

quantitative analysis (i.e. automated or visual) are summarised in Table 5.1 (below) and in 

the histograms in Figure 5.4.

No overlap of immunoreactivity was found between the a 2 c-AR and DpH or 5-HT 

(0.08% and 0.06% respectively) indicating that neither noradrenergic nor serotoninergic 

axons possess the receptor (Fig. 5.2, a-b). Similarly, markers for CliAT, which labels 

cholinergic cells and terminals (Barber et ak, 1984; Borges and Iversen, 1986; Sheriff and 

Henderson, 1994); Gly-T2, which labels glycinergic terminals (Zafra et ak, 1995); and 

galanin exhibited minimal overlap (0.04%, 0.26%, 0.79% respectively; Fig. 5.2, c-e). The 

majority of terminals labelled with these markers probably originate from inhibitory local 

circuit neurons (Todd and Spike, 1993). Nevertheless, there was evidence of moderate 

overlap of the receptor with neuropeptide Y (3.22%; Fig. 5.3, a), a marker for axons of 

inhibitory cells (Rowan et ak, 1993) and neurotensin (4.91%, Fig. 5.3, b), which originates 

from excitatory intemeuroiis (Tood et ak, 1992; Todd et ak, 1994b). The a 2 c-AR was also 

found on axons containing SP, somatostatin and enleephalin with which the receptor 

displayed a substantial overlap (16.41%, 26.62% and 30.10% respectively; Fig. 5.3, c-e).

Inhibitory versus excitatory a2 c~AR-IR terminals in the LSN

The visual-assessment quantitative method was applied to estimate the proportion of 

Œ2 C-AR-IR terminals that are likely to be excitatory or inhibitory. The markers VGLUT2 

and GAD were used to label terminals of spinal interneurons containing excitatory or 

inhibitory amino acid transmitters respectively. The great majority of a 2 C“AR-IR boutons 

contained immunoreactivity for VGLUT2 while a minority of the a 2 c-AR-IR axon 

terminals was associated with GAD immunoreactivity (Fig. 5.3, f-g). The quantitative 

analysis derived from the visual assessment revealed that 82.33+3.51% of a 2 C“AR-IR 

boutons contain VGLUT2 and 10.67+4.16% contain GAD. (see Table 5.1 below and Fig. 

5.4, histogi'am 2).
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Table 5.1. Automated and visual quantification of colocalisation patterns of the a 2 C“AR in 

the LSN

AUTOMATED
METHOD

VISUAL-ASSESSMENT
METHOD

marker Overlap ±SD
D(3H 0.08 0.12
5-HT 0.06 0.10
ChAT 0.04 0.05
Gly-T2 0.26 0.26
Galanin 0.79 0.13

Neuropeptide Y 3.22 0.31
Neurotensin 4.91 2.84

SP 16.41 0.89
Somatostatin 26.62 2.24
Enkephalin 30.10 3.82

Frequency + SD

VGLUT2 82.33 3.51
GAD 10.67 4.16

Ultrastructure o f a^r-AR-IR terminals in the LSN

Observation with the electron microscope showed the high content of myelinated and 

unmyelinated axons in the LSN and the presence of neurons surrounded by axon terminals. 

Many of these terminals were iimminoreactive for the aic-AR and formed synaptic 

contacts on the cell body and dendrites of LSN neurons. Often many of these synapses 

could be clearly identified as asymmetric, but occasionally it was difficult to determine if 

they were symmetrical or asymmetrical. See Figure 5.5. Additionally, no axoaxonic 

arrangements were found.

Relationship o f LSN neurons with aTc-AR-IR terminals

The average number of sampled neurons, as detected by the neuronal marker NeuN, 

was very consistent between experiments and also between the right and left sides of the 

spinal cord (right LSN, average±SD=54±5.57; left LSN, 53+2.79). Following counting for 

each of the defined neuronal categories, averages (±SD) and percentages were calculated. 

Examples of LSN neurons corresponding to each of the eight established categories are 

shown in Figure 5.6, 5.7 and 5.8. Table 5.2 (below) exhibits the percentages obtained for 

each of the eight categories of LSN neuron (see first row ‘COUNT’), as well as the 

percentage of neurons in each category that received inneiwation from a 2 C"AR~IR 

terminals (see second row ‘A2C INPUT’). Statistical comparisons of data corresponding to
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the right and the left sides of the lumbar cord revealed that there is no significant difference 

in the proportion of each neuronal population between the right and the left side {Mest, 

P>0.05).

The average percentage of all c-Fos positive cells (i.e. sum of categories 1, 4, 5 and 

7) in the right LSN is similar to that one in the left LSN (23.70+2.65% and 20.73+3.81% 

respectively). Again, there is very little difference between the right (7.51+1%) and left 

(6.71+1.06%) LSN regarding the proportion of c-Fos projection cells (i.e. those labelled 

with c-Fos and CTb corresponding to categories 4 and 7). Indeed, none of these differences 

were found to be significant statistically {t~test, P>0.05). The total proportion of CVLM 

projection neurons (i.e. categories 2, 4, 6 and 7) was slightly higher in the right LSN 

(42.77+3.61%), which is contralateral to the injection site in the brainstem, than in the left 

LSN (35.37±3.81%). Statistical comparison demonstrated that this difference is significant 

{t-test, P=0.035). Note that the P value is close to 0.05, which suggests that the difference 

is significant but not highly significant. Indeed, this difference is considerably more 

obvious in the dorsal horn (Todd et al., 2000).

A high proportion of LSN neurons received innervation from a 2 c-AR-IR terminals; 

90.10+9.07% and 85.06+3.98% of the neurons in the right and left LSN, respectively, were 

apposed by terminals positive for the a 2 C“AR. hiterestingly, almost all of the NK-1 

retrogradely labelled neurons were innervated by 0 C2 c-AR-IR terminals (right LSN, 

100+0%; left LSN, 96.15+16.65%). Neurons that were only positive for c-Fos or NeuN, 

were not assessed for 0 C2 c-AR innervation, because the outline of the cell was not 

consistently defined by any marker.

Table 5.2. Table summarising the percentages obtained for each of the eight categories of 

LSN neuron

AVERAGE PERCENTAGE OF EACH CATEGORY
1 2 3 4 5 6 7 8

RIGHT c-fos cvim nkl c-fos+cvim c-fos+nk1 cvlm+nk1 c-fos+cvlm+nk1 NeuN only
COUNT 13.87 2.89 13.29 0.58 2.31 32.37 6.94 27.75

A2C-1NPUT * 2.31 8.09 0.58 2.31 32.37 6.94 *

LEFT c-fos cvIm nkl c-fos+cvIm c-fos+nki cvlm+nki c-fos+cvlm+nk1 NeuN only
COUNT 10.37 2.44 14.02 1.22 3.66 26.22 5.49 36.59

A2C-1NPUT * 1.83 8.54 1.22 3.05 25.00 5.49 *
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4. Discussion

a2 c~ARs in the LSN are o f spinal origin

The results confirm that aic-ARs in the LSN are not present on descending 

noradrenergic or serotoninergic terminals, or on myelinated, unmyelinated or peptidergic 

primary afférents labelled with CTb, IB4 and CGRP. Indeed, the absence of CTb, IB4, 

CGRP and also VGLUTl (marker associated with large myelinated primary afférents; 

Todd et ah, 2003) from the LSN not only indicates that the receptor is not present on these 

types of terminal, but also implies that LSN neurons do not receive input from these 

classes of primary afferent. These results are in agreement with previous studies. Stone and 

coworkers (1998) reported that the a 2 c-AR is of spinal origin, because immunoreactivity 

for the receptor is not reduced after rhizotomy or neonatal capsaicin treatment, either in the 

superficial dorsal hom, or in the LSN. In addition, electrophysiological studies showed that 

LSN neurons do not have obvious cutaneous sensitivity (Giesler et ah, 1979b; Menétrey et 

ah, 1980), which agrees with the observed lack of primary afferent markers in the LSN. 

This body of evidence indicates that, as in the superficial dorsal horn, few if any a%c-AR- 

IR terminals originate from primary afferents in the LSN. However it is also possible that 

(%2 c-ARs exist on a subgroup of primary afferents which are not labelled by CTb, IB4 or 

CGRP.

a 2c-ARs in the LSN are predominantly excitatory

The visual-assessment method of quantification showed that in the LSN over 80% of 

the Œ2 C-AR-IR temiinals also contain VGLUT2, which suggests that cc2 c-ARs are present 

on axons of glutamatergic interneurons and therefore are presumed to have an excitatory 

action (Todd et ah, 2003). A small proportion of a 2 C“AR-IR terminals (-10%) was found 

to contain GAD, which indicates that these teiminals are GABAergic and therefore are 

expected to have an inlhbitory action (Todd and Spike, 1993). Observations derived from 

the electron microscopic analysis are in agreement with the latter results, because the great 

majority of a 2 c-AR-IR terminals form asymmetric axodendritic synapses, which are 

predicted to have an excitatory action (Uchizono, 1965). Results derived from the 

automated method further support the findings obtained with the visual-assessment 

method. The former method indicated that a 2C"AR immunoreactivity overlaps 

considerably with neuropeptides (neurotensin, SP, somatostatin and enlcephalin), which are 

associated with high proportions of VGLUT2 immunoreactivity (Todd et ah, 2003). All
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these findings closely resemble the situation in the superficial dorsal horn, however two 

main differences were found: 1 the proportion of asymmetric synapses is higher in the 

LSN, which could be explained partly by the lack of axoaxonic synapses; 2 a 2 c-AR 

immunoreactivity overlaps with SP immunoreactivity in the LSN, which must be of spinal 

origin, because there is no CGRP labelling. This body of evidence strongly indicates that 

although differences exist between both spinal regions, the majority of a 2 C“AR.~IR 

terminals contain glutamate and have an excitatory action either in the superficial dorsal 

horn or in the LSN.

a2 c~̂ ijRs in the LSN are derived from diverse subpopulations o f spinal interneurons

The results indicate that a 2 c-ARs in the LSN are derived from an inliibitory and an 

excitatory population of interneurons. Based on the colocalisation of the receptor with the 

inhibitory markers GAD and neuropeptide Y, and the lack of colocalisation with Gly-T2 

-a marker for glycine (Zafra et ak, 1995)-, we can conclude that, as in the superficial dorsal 

horn, such inhibitory population corresponds to the G ABA only subpopulation of 

interneurons, which do not contain glycine, and can also contain neuropeptide Y (Todd and 

Spike, 1993; Rowan et ak, 1993). The excitatory population includes several peptidergic 

subpopulations of interneurons, which can contain neurotensin, SP, somatostatin and 

enkephalin. The neurotensin and somatostatin populations have been shown to be present 

in distinct exclusive populations of interneurons in the dorsal hom (Proudlock et ak, 1992) 

and therefore they can be presumed to represent distinct excitatory subpopulations in the 

LSN, since peptidergic terminals in this nucleus have been suggested to arise from the 

same or nearby segmental levels of the spinal cord (Jessel et ak, 1978; Larabi et ak, 1983; 

Seybold and Elde, 1980; Giesler and Elde, 1985; d iffe r et al., 1988). Conversely, SP, 

somatostatin and enlcephalin colocalise in the dorsal horn (Todd and Spike, 1993). Indeed 

preliminary observations indicated that SP and enkephalin colocalise considerably in the 

LSN (Fig. 5.9) and enkephalin is Icnown to colocalise greatly with somatostatin (Todd and 

Spike, 1993), which suggests that a considerable proportion of the a 2 c-ARs in the LSN is 

likely to be derived from an interneuronal subpopulation that expresses the three peptides. 

The results obtained from Investigation 1 {Chapter 3, pg 40) regarding the neurochemical 

profile of a 2 C“AR-IR terminals in the superficial dorsal horn are very similar to the present 

results in the LSN; however an obvious difference can be noticed. Overlap of 

immunoreactivity between the a 2 c-AR and SP is found in the LSN, while it is absent in the
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superficial dorsal horn. This divergence indicates that a specific population of interneurons 

containing SP gives rise to axons in the LSN which possess a 2 C“ARs on their terminals.

Axon terminals possessing ajc-ARs are presynaptic to LSN neurons

Observation at the ultrastructural level showed that aac-AR-IR terminals are 

presynaptic to cell bodies and dendrites of LSN neurons with which they predominantly 

establish asymmetric synapses. Oui* results are in agreement with previous electron 

microscopic studies of the LSN. Bresnahan and coworkers (1984) reported that SP and 

enkephalin-IR boutons in the LSN form asymmetric synapses on LSN neurons.

LSN neurons are activated by noxious stimulation

A great number of LSN neurons was labelled by other marker/s in addition to NeuN, 

however, a proportion of LSN neurons was only labelled by NeuN (right LSN, 27.75%; 

left LSN, 36.59%). These NeuN only labelled neurons could be projecting to supraspinal 

regions different to the CVLM, or alternatively could be local interneurons. Based on our 

classification the most common type of cell was the NK-1 neuron projecting to the CVLM 

which occasionally showed c-Fos expression.

The presence of immunoreactivity for the immediate early gene c-Fos in nuclei of the 

LSN indicates that thermal noxious stimulation activates a propoi*tion of LSN neurons. 

Although NK-1 projection neurons which expressed c-Fos were not very numerous, the 

presence of such neurons is bound to be meaningful because omission of the thermal 

stimulus in the control experiment resulted in lack of c-Fos expression, which 

demonstrates that the c-Fos detected is most probably due to the noxious stimulation 

applied.

In addition, the mechanism of cellular activation, as detected by c-Fos, would be 

expected to be different from that occurring in the dorsal horn for diverse reasons. First, no 

cutaneous primary afferent input has been detected in LSN neurons. Second, LSN cells 

were activated bilaterally and no significant difference was found in the proportions of 

c-Fos-IR neurons between the right and the left LSNs, i.e. ipsi and contra-lateral to 

peripheral stimulation, unlike the situation in the superficial dorsal horn where neurons 

must be activated mainly unilaterally since the highest concentration of c-Fos-IR neurons 

is located on the dorsal horn ipsilateral to the peripheral stimulation (Hunt et al., 1987; 

Todd et al., 1994a; Todd et al., 2002; and also results from Investigation 2, pg 70).
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Possible mechanisms o f activation

LSN neurons could be activated by descending fibres that originate from supraspinal 

nuclei, which in turn are activated by ascending fibres of spinal projection neurons located 

in the superficial dorsal horn. There is evidence that superficial dorsal horn neurons 

expressing NK-1 activate descending pathways, which control spinal excitability (Suzuki 

et al., 2002). The activation of LSN neurons by descending fibres projecting bilaterally 

could explain the bilateral appearance of e-Fos.

LSN neurons could be also activated by spinal neurons. Grudt and Perl (2002) 

reported that some lamina I neurons possess occasional axon collaterals that enter the 

dorsal lateral funiculus. Interestingly these neurons have characteristic thick axons, which 

course ventrally and cross contralaterally to project in the ventral lateral funiculus. 

Therefore, it is possible that this type of lamina I projection neuron is activated by primary 

afferent input and in turn activates LSN neuron/s tluough an axon collateral, hiterneurons 

would be expected to influence the LSN, since the dense peptidergic input to the LSN is of 

spinal origin (Jessel et ah, 1978; Larabi et ah, 1983; Seybold and Elde, 1980; Giesler and 

Elde, 1985; d iffe r et ah, 1988) and possibly activate neurons because as indicated by the 

present investigation most of this input is supposed to be excitatory. Also commissural 

interneurons could be involved in the neuronal circuit responsible for bilateral activation of 

LSN neurons. Petko and Antal (2000), using retrogi'ade and anterograde labelling 

teclmiques, showed that neurons in the lateral part of the dorsal horn possess commissural 

axons that project to the lateral aspect of the dorsal horn in the contralateral side. Careful 

observation of their diagrams provides evidence for labelling of neurons and axons in the 

LSN, after injections of retrograde and anterograde tracers, respectively, in the lateral 

dorsal horn. This observation suggests that neurons in the LSN could be activated by ipsi 

and/or contra-lateral projections from neurons in the lateral dorsal horn. Furthermore, it is 

possible that the tracer injections partially invaded the LSN (as appears in the 

photographs), in which case it could be suggested that LSN neurons themselves project 

contralaterally and can be reciprocally activated. Of course both mechanisms, involving 

descending and spinal neurons, could be combined to mediate bilateral activation of LSN 

neurons.

Additionally or alternatively, LSN neurons may be activated by primary afferents not 

detected. Indeed, umnyelinated primary afferent terminals from muscle have been 

identified in the dorsal lateral white matter of the guinea pig spinal cord recently (Ling et 

ah, 2003). It is also possible that the nucleus receives visceral primary afferent input;
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Sugiura and coworkers (1989) reported the dorsal lateral funiculus as a termination area of 

visceral unmyelinated fibres.

LSN neurons frequently display dendrites that extend toward the pial surface of the 

cord where they branch; transmitters circulating in the CSF could have an effect on the 

outermost distal dendrites of LSN neurons. This is likely since neurons in the dorsal medial 

funiculus, which possessed similar kind of surface dendrites, have been reported to respond 

to neurotransmitters and drugs injected in the CSF (Abbadie et ah, 1999). Of course drugs 

in the CSF are expected to influence the whole of the spinal cord and indeed this is the 

basis of intrathecal administration of phannacological compounds tlnough canulae. 

Flowever, in physiological conditions the concentration of neuroactive substances in the 

CSF is likely to be lower and the superficially located dendrites of LSN neurons could be 

influenced by neurotransmitters in a more sensitive manner than most of the spinal grey.

LSN neurons are innervated by axon terminals possessinga2c~^Rs

Many of the LSN neurons assessed (i.e. NK-1 and/or CVLM neurons) were found to 

receive imiervation from a 2 c-AR-IR tenninals. Indeed, almost all NK-1 projection neurons 

in the LSN received this type of innervation, which is approximately twice the value 

obtained in Investigation 2 for lamina I NK-1 projection neurons {Chapter 4, pg 71). This 

suggests that NE may have a very powerful influence in the modulation of LSN neurons 

and in particular NK-1 neurons projecting to the CVLM.

Functional significance

The LSN may function as an integrative nucleus where neurons could receive inputs 

from umnyelinated muscle and visceral primary afferents, neurons and intemeurons in the 

spinal grey and as well could be influenced by neurotransmitters circulating in the CSF. 

Unlike the dorsal horn, the LSN does not receive cutaneous primary afferent input; and 

interestingly the vast majority of their neurons are densely innervated by spinal terminals 

containing a^c-AKs.

Another interesting specific property of the LSN is its great content of peptidergic 

projection neurons (Leah et ah, 1988). Based on the latter observation, Leah and coworkers 

(1988) suggested that activation of this type of neuron could lead to release of the peptide/s 

at supraspinal levels and therefore modulate the activity of diverse nuclei to which LSN 

neurons project.

LSN neurons and dorsal horn neurons have common supraspinal projections, 

however two main differences have been reported regarding their ascending projections.
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Retrograde labelling studies indicate that LSN neurons, unlike dorsal horn neurons, do not 

project to the thalamus (Giesler et ah, 1979a; Kevetter and Willis, 1983). In contrast, many 

LSN neurons were retrogradely labelled from the hypothalamus, while only a minority of 

dorsal horn neurons was labelled (Burstein et ah, 1990). This is a very interesting 

observation; noxious stimulation, mechanical stimulation of nipples during lactation, 

changes in temperature of the skin, stimulation of pelvic and abdominal viscera are known 

to trigger the firing of hypothalamic neurons, that in timi regulate autonomic and 

neuroendocrine functions as heart rate, blood pressure, vasodilation, and feeding, drinking 

and satiety behaviours. LSN neurons may be an essential element of the circuitry 

underlying such autonomic and homeostatic functions.
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Figure 5.1. Lack of CTb, IB4, CGRP, VGLUTl and NOS in the LSN. a  An image of 

the dorsolateral area of the spinal cord obtained by combining transmitted light with 

immunofluorescence for the a 2 c-AR (green). The spinal grey matter can be observed to 

contain intense green (a 2 c-AR) labelling. The adjacent LSN is labelled in the image and 

also contains a 2 c-AR immunoreactivity. b-f show double-labelling immunocytochemistry 

for the 0 L2 C-AR (green) and NOS, IB4, CGRP, CTb (injected in the sciatic nerve) and 

VGLUTl (all in red), respectively. Note that no immunoreactivity (red) is found in the 

LSN for any of the markers. (Scale bar: b^lOOfrm, valid for all images)
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Figure 5.2. Doiible-labeliing of the aic-AR with DpH, 5HT, ChAT, GIy-T2 and 

galanin. Five sets of three images obtained horn the same optical plane (a-e). In each set, 

the first image shows labelling for the aac-AR (green), the second image shows labelling 

of the corresponding neiirochemical marker (red), and the third one is the result of merging 

both images where no overlap can be detected (note lack of yellow colour).

(Scale bar: a=20pm, valid for all images)

(DBH, dopamine fd-hydrox)dase; 5-HT, serotonin; ChAT, choline acetyltransferase, 

GLYT2, glycine transporter 2; GAL, galanin)
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Figure 5.3. Double-labelling of the oczc-AR with neuropeptide Y, neurotensin, SP, 

somatostatin, enkephalin, GAD and VGLUT2. Seven sets of tliree images obtained from 

the same optical plane (a-g). In each set, the first image shows labelling for the a 2 c-AR 

(green), the second image shows labelling of the coiTesponding neurochemical marker 

(red), and the third one is the result of merging both images where overlap can be detected 

(note presence of yellow colour).

(Scale bar: a=20pm, valid for all images)

(NPY, neuropeptide Y; NT, neurotensin; SP, substance P; SOM, somatostatin; ENK, 

enkephalin; GAD, glutamic acid decarboxylase; VGLUT2, vesicular glutamate 

transporter 2)
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Figure 5.4. Histograms summarising the quantification of colocalisation patterns of

the a 2 c-AR in the LSN. Histogi-am 1 shows the average percentages of overlap of the a 2 c- 

AR with each of the ten markers. Histogram 2 shows the average frequency of oc2 c-AR-IR 

terminals which colocalise with GAD or VGLUT2. The majority of a 2 c-AR-IR puncta 

were immunoreactive for VGLUT2 and a small number were immunoreactive for GAD. 

(n=3; Error bars=standard deviation)

(DBH, dopamine /3-hydroxylase; 5-HT, serotonin; ChAT, choline acetyltransf erase; 

GLYT2, glycine transporter 2; GAL, galanin; NPY, neuropeptide Y; NT, neurotensin; SP, 

substance P; SOM, somatostatin; ENK, enkephalin; GAD, glutamic acid decarboxylase; 

VGLUT2, vesicular glutamate transporter 2)
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Figure 5.5. Electron micrographs of a 2 c-AR-IR profiles in the LSN. All images were 

obtained from ultrathin sections cut from ti ans verse SOjnm thick sections of spinal cord, a 

A low power micrograph of a cell in the LSN; note the numerous myelinated axonal fibres 

surrounding the cell, b A large a 2 c-AR-IR terminal makes contact with a dendrite that 

extends in a mediolateral direction, c  Several a 2 c-AR-IR tenninals fonn synapses with 

dendrites oriented in the rostrocaudal direction (D1, D2). The area delineated by the blue 

(left) and magenta (right) boxes is shown in a magnified view in d and e , respectively. 

Both synapses are asymmetric. (Scale bars: a=5pm; b=2pm, valid for c; d=0.2pm, valid 

for e).





Figure 5.6. Quintuple-Iabelling of aac-AR, NK-1, c-Fos, CTb and NeuN in the LSN. a,

A merged image of a transverse section of the LSN built from 9 projected confocal images 

gathered at 1pm steps with a 40X lens (red, a 2 c-AR (a2C); gi'cen, NK-1 and c-Fos 

(NKl+c-Fos); blue, CTb (CTb)). b, shows independently the corresponding NeuN 

labelling, which allows to identify the number of neurons present in the scamied area. 

These images illustrate diverse categories of LSN neuron, which are indicated by the 

numbers; 1 only c-Fos-IR; 3 only NK-l-IR; 6 double-labelled for CTb and NK-1; 7 triple­

labelled for c-Fos, CTb and NK-1 and 8 only NeuN-IR. (Scale bar: a=20pm, valid for both 

images)
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Figure 5.7. Independent visualisation of four fluorophores with confocal microscopy, a, b, c and d

show, respectively, immunoreactivities for a 2 c-AR (a2C); NK-1 and c-Fos (NKl+c-Fos); CTb (CTb); and 

NeuN (NeuN) corresponding to image shown in Figure 5.6. Independent visualisation is essential for optimal 

assessment of the pattern of immunoreactivity of the cells and their consequent classification. Numbers 

indicate the same LSN neurons as in Figure 5.6. (Scale bar: a=20pm, valid for all images)





Figure 5.8. Examples of LSN neurons. Merged images of transverse sections of the LSN 

are shown in a and b, both built from 9 projected confocal images gathered at Ipiii steps 

with a 40X lens (red, azc-AR; green, NK-1 and c-Fos; blue, CTb). Numbers in a indicate 

LSN neurons corresponding to categories 2 only CTb-IR, 3 only NK-1 and 5 double­

labelled for c-Fos and NK-1. Number 4 in b highlights a LSN neuron from category 4 

doubled-labelled for c-Fos and CTb. (Scale bar: a=20pm, valid for both images)
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Figure 5.9. Triple-labelling of aic-AR, enkephalin and SP in the LSN. azc-AR (green), enkephalin (ENK, 

red) and SP (SP; blue). The three sets of images correspond to the same optical section. Notice the extensive 

colocalisation between enkephalin and SP (ENK/SP) and the numerous a 2 c-AR-IR terminals which contain 

enkephalin and SP as observed in the merged images on the right side of the figure (triple-labelled boutons 

appear white). (Scale bar=20pm, valid for all images)
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Chapter 6 

General D iscussion



The aim of this chapter is to discuss further the functional significance of the results 

obtained from the different investigations that were earned out. For this purpose the main 

conclusions of each investigation are summarised briefly followed by hypothetical 

functional models.

1. Conclusions and models

Investigation 1: Axon terminals possessing the azc-AR in the rat dorsal horn are of spinal 

origin. The majority of these terminals is excitatory and presynaptic to dendrites, however 

a minority is inhibitory and can be presynaptic to axons.

Action o f NE through a2 c~ARs on excitatory versus inhibitory terminals

In the superficial dorsal horn, there is a dense plexus of NE fibres (Rajaofetra et al., 

1992) which largely overlaps with areas of intense (%2 c-AR imunoreactivity. Noradrenergic 

axons do not form axoaxonic synapses in this region (Doyle and Maxwell, 1991a, 1991b), 

indeed axoaxonic synapses have been found only on primary afferent terminals and are not 

formed with terminals of interneurons (Alvarez, 1998). NE therefore cannot act upon 

interneuron axons through a classical synaptic mechanism and any interaction with 

terminals possessing adrenergic receptors must occur via volume transmission. The results 

indicate that NE could modulate transmission at the superficial dorsal horn by acting 

through Œ2 C-ARS which are present on the terminals of interneurons. Figure 6.1 illustrates 

possible actions of NE on terminals containing the a 2 c-AR and in turn the consequent 

effect on the postsynaptic element. The action of NE on a 2 C"ARs is expected to induce 

hyperpolarisation (Surprenant et ah, 1990; Shen et al., 1992) of the membrane and 

therefore lead to a reduction in the efficacy of synaptic transmission (Fig. 6.1, A and B). If 

the terminal contains an excitatory transmitter, the action of NE on a 2 c~ARs would be 

predicted to induce suppression of excitatory transmission (Fig. 6.1, A). If the terminal is 

of an inhibitory nature the action of NE on (%2c-ARs would be predicted to induce 

suppression of inhibitory transmission or disinliibition (Fig. 6.1, B). This implies that NE 

could lead to opposite effects in the postsynaptic element by acting at inhibitory or 

excitatory terminals containing the a 2 c-AR. Alternatively, the action of NE on inhibitory 

terminals could be different to the one on excitatory terminals, i.e. excitatory, so that the 

resulting effect on the postsynaptic element would be facilitation of the inhibitory 

transmission (Fig. 6.2, C). Indeed it has been reported that activation of presynaptic aj-
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ARs increases GABAergic synaptic transmission in the substantia nigra (Cathala et al., 

2002). If this is also the case in the spinal cord, then it is possible that the action of NE on 

presynaptic terminals that contain the aic-AR could result in a net inhibitory effect of the 

postsynaptic targets by suppressing excitatory transmission and facilitating inliibitory 

transmission.

Theoretically, the action of NE on excitatory terminals which contain the a 2 c-AR 

could be hypothesised to result in facilitation of excitatory transmission, however this 

appears unlikely and for this reason this possibility has not been included in the diagram in 

Figure 6.1. NE or (%2 -AR agonists have been reported to inhibit the release of glutamate 

and SP from primary afferents terminals (Kuraishi et ah, 1985; Kamisaki et al., 1993) 

suggesting that NE inliibits excitatory transmission from excitatory terminals by acting on 

Œ2 -ARS. Although these receptors would be expected to be of the aiA subclass because 

they are the predominant type on primary afferents (Stone et al., 1998), it is likely that the 

efleet of NE on a 2 C“ARs located on intemeuron terminals resembles the effect occurring 

on 0 ,2 A-ARs of primary afferent terminals. Furthermore, the above studies could be 

including both types of receptors since the experiments were not carried out with aj- 

siibtype-specific compounds, which are still currently unavailable. In addition, the a rA R  

has been recently reported to prime excitatory synapses increasing the excitatory drive in 

the hypothalamus (Gordon and Bains, 2003), which suggests that although it is possible, it 

would be unexpected, that a 2 -ARs mediate a similar effect.

It should be kept in mind that we do not know much about the identity of the 

postsynaptic elements. They can be projection neurons or interneurons of excitatory or 

inhibitory nature, as well as primary afferent fibres. In the case of postsynaptic neurons 

these are more likely to be excitatory, because the majority of neurons in the dorsal horn is 

excitatory (Todd and Spike, 1993). Uncovering the identity of the postsynaptic targets of 

Œ2 C-AR terminals can help us to elucidate the circuitry involved in NE modulation of 

nociception and by extension increase our understanding of the functional organisation of 

the dorsal horn. Investigation 2 reveals the identity of a postsynaptic target.
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Investigation 2\ NK-1 projection neurons in the rat dorsal horn receive synaptic contacts 

from excitatory axons that possess a 2 C“ARs and can be responsive to thermal noxious 

stimulation.

An a2 c-AR-inediated mechanism o f noradrenergic antinociception

A model of a possible mechanism of antinociception mediated through a 2 C“ARs is 

])resented in Figure 6.2. The action of NE on an excitatory terminal containing cc2 c-ARs 

would be predicted to induce membrane hyperpolarisation (Surprenant et ah, 1990; Shen et 

ah, 1992), which would lead to a reduction in the efficaey of synaptic transmission 

between a 2 c-AR-containing terminals of excitatory interneurons and projection neurons. 

This would selectively suppress excitatory polysynaptic input to these neurons, which, in 

turn, would attenuate transmission of nociceptive information to supraspinal structures. In 

addition, it is possible that NK-1 neurons projecting to the CVLM are responsible for the 

spinal release of NE. Activation of such projection neurons could lead to the recruitment of 

NE descending inhibitory systems as these neurons terminate close to the lateral reticular 

nucleus, which contains noradrenergic neurons that in turn project to the spinal dorsal horn 

(Lee et ah, 2001).

Model o f noradrenergic modulation o f n ociception through aj-ARs

Both presynaptic actions on primary afferent terminals (Kuraishi et ah, 1985; 

Kamisaki et ah, 1993) and postsynaptic actions on dorsal horn cells (Fleetwood-Walker et 

ah, 1985; Davies and Quinlan, 1985) have been proposed as mechanisms for NE 

modulation of nociceptive transmission through a 2 -ARs. The investigations carried out 

suggest that a third mechanism can also operate: i.e. that NE modulates transmission at 

tenninals of interneurons. These three mechanisms could operate in a complementary 

manner. A model is shown in Figure 6.3 which is an attempt to integrate the diverse 

mechanisms of a 2 -AR-mediated antinociception within the circuitry of the dorsal horn. It 

is likely that both a 2 A~ARs, located on primary afferent terminals and dorsal horn neurons, 

as well as cc2 c-ARs on interneuron terminals and dorsal horn cells (Rosin et ah, 1993; 

Rosin et ah, 1996; Talley et ah, 1996; Stone et ah, 1998) are involved in these modulatory 

processes.

Noradrenergic system versus serotoninergic system

The NE descending system, along with the serotoninergic system, performs a major 

role in the regulation of nociceptive transmission in the dorsal horn. However the
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mechanisms of action of these two monoamines on NK-1 neurons are likely to be different. 

Many projection cells that possess the NK-1 receptor in lamina I and laminae III-IV are 

heavily targeted by 5HT-IR axons which form numerous contacts with their cell bodies 

and proximal dendrites (Stewart and Maxwell, 2000; Polgar et ah, 2002) but NE contacts 

on these cells are very sparse indeed (Stewart and Maxwell, 2000; Stewart, 2001). This 

evidence suggests that 5HT operates directly upon NK-1 cells via a postsynaptic action 

whereas the effect of NE is more likely to be diffuse and operate mainly via volume 

transmission.

Investigation 3 : Axon temiinals possessing a 2 c-ARs in the ESN are of spinal origin, 

predominantly excitatory, and exclusively presynaptic to dendrites and cell bodies. ESN 

neurons are densely innervated by axons that possess aic-AKs, and a small proportion can 

be activated by thermal noxious stimulation.

Noradrenergic modulation o f the LSN through a2 crA.Rs

Although the ESN and the dorsal horn share common characteristics, they both 

possess unique properties {Chapter 5: Investigation 3, Discussion, pg 105), which suggests 

that these closely related areas subserve divergent functions that probably are 

complementary. While the superficial dorsal horn is involved extensively in the processing 

and transmission of nociception, the specific functions of the ESN are currently unclear 

and interestingly it has been suggested to have a role in autonomic and homeostatic 

functions. The results show that the ESN is involved, to a certain extent, in nociceptive 

processing, and that NE could have an important modulatory action on this nucleus 

tlu’ough a 2 c-ARs. Notice the ESN is also represented in the model in Figure 6.3. ESN 

neurons that were responsive to noxious stimulation, potentially could have been activated 

by excitatory spinal interneurons as suggested by the presence of excitatory terminals in 

the ESN. Many of these terminals also possess a 2 c-ARs on which NE can act to induce 

liyperpolarisation of the excitatory terminal and reduce the efficacy of synaptic 

transmission. Therefore, NE could inhibit the excitatory interneuronal input to the ESN and 

in turn attenuate excitatory transmission to projection neurons, which would suppress the 

transmission of nociceptive or other types of information that they transmit supraspinally.

In the previous chapter a body of evidence was presented supporting that the ESN 

displays a set of unique characteristics and has a specific function/s {Chapter 5: 

Investigation 3, pg 107); this evidence also favours the idea that species without ESN, are 

likely to possess a functional equivalent. It has been hypothesised that neurons subserving
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an equivalent function and with similar characteristics to the LSN are integrated within the 

superficial dorsal horn (Leah et ah, 1988). If this is the case, the LSN, present in rat, mice 

(preliminary observations) and other rodents, could be a very convenient model to 

investigate the role of “LSN-like” neurons.
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Figure 6.1. Model of possible actions of NE on a^c-ARs located on excitatory or 

inhibitory axon terminals. A represent the effect of NE on the teraiinal of an excitatory 

interneiiron, while B and C represent two possible effects of NE on the temiinal o f an 

inhibitory interneuron. In all three cases, NE acts by volume transmission on a 2 c-ARs. In 

A and B NE has an inlribitory effect on the presynaptic teiminal, i.e. either on excitatory or 

inhibitory terminals, which results in opposite net postsynaptic effects depending on the 

nature of the terminal (see labels on the right side of the diagram). In C, NE has an 

excitatory effect on the inhibitory presynaptic terminal which results in facilitation of the 

inhibitory transmission, i.e. an inhibitory net postsynaptic effect as in A. Blue boxes denote 

inhibitory net effect; red box denotes excitatory net effect. The postsynaptic element is 

generic and could be a projection neuron, an interneuron or a primary afferent axon.
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Figure 6.2. A model of a possible mechanism of noradrenergic antinoeiception 

mediated by aic-ARs. Under nociceptive stimulation NK-1 neurons projecting to the 

CVLM are activated and could induce the release of NE. 1 NE acts by volume 

transmission on aoc-AKs. 2 NE induces hypeipolarisation of the excitatory intemeuron 

axon terminal by acting on aac-ARs. 3 Reduction in the efficacy of synaptic transmission 

results in 4, inhibition of supraspinal transmission of nociceptive infoiination.
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Figure 6.3. Presynaptic and postsynaptic mechanisms of noradrenergic modulation 

through ai-ARs. Presynaptic mechanisms involve temiinals of small diameter primary 

afferents containing a 2 A-ARs (green terminals) and terminals of intemeurons containing 

a 2 C"ARs (red terminals). Although cell bodies of interneurons that synthesise a 2 c-ARs 

have not been detected in the superficial dorsal horn, these must exist and are drawn in the 

diagram with a red circle within them that represents the synthesis of the aic-AR in the 

soma. NE acts by volume transmission at (%2 A and a 2 c~ARs located on presynatic terminals 

and attenuates the transmission to postsynaptic nociceptive projection neurons (blue cells 1 

and 2). Postsynaptic mechanisms involve cell bodies expressing 0 1 2-ARs; potentially NE 

could act on superficial and deep dorsal horn neurons that possess a 2 A-ARs on the cell 

bodies (green cells), as well as on deep dorsal horn neurons that possess a 2 c-ARs on the 

cell bodies (red cells). Noradrenergic terminals could act directly (synaptically) on 

projection neurons; based on the innnunocytochernical distribution of Œ2 -AR on cell 

bodies it is possible that superficial projection cells possess a 2 A-ARs (blue cell, 1), while 

deep projection cells could contain aic-ARs or a 2 A-ARs (blue cell, 2). The purple arrows 

represent supraspinal axonal projections, hi the dorsal horn: Cell 1 is nociceptive and Cell 

2 is nociceptive rnultireceptive; in the LSN: Cell 3 is nociceptive and/or viseeral. LSN 

neurons can also be modulated by NE tlnough a presynaptic mechanism that involves 

terminals of interneurons containing {%2 c-ARs (red terminals in LSN).
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