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Abstract 

 

In cost-effectiveness analysis, outcomes are typically averaged across large groups to 

represent a patient population. Implementation and reimbursement decisions based on such 

analyses often ignore considerable heterogeneity in cost-effectiveness between patients. 

While good practice guidance for economic evaluations suggest including subgroup analysis, 

in practice this is frequently overlooked or underutilised. This thesis shows that failing to 

adequately represent heterogeneity in decision-making leads to an inefficient distribution of 

healthcare resources. This theory is applied in a study of cholesterol-reducing medication for 

the primary prevention of cardiovascular disease (CVD).  

 

Despite improvements in recent years, CVD remains a significant cause of mortality, 

morbidity, and health inequality around the world. Rates of the disease have begun to plateau 

in recent years and novel approaches to its prevention are required. 

 

Cholesterol reduction for the primary prevention of cardiovascular disease is a clinical area 

where better reflection of heterogeneity in cost-effectiveness could significantly improve 

current practice. Statins are a widely prescribed cholesterol-reducing medication which have 

recently come off patent. This has led them to become cheaper and cost-effective in a large 

proportion of CVD-free populations in high-income countries. PCSK9 inhibitors are a more 

expensive and more effective cholesterol-reducing medication. For both treatments, decision-

makers must establish which groups they will prioritise for treatment. Through epidemiologic 

and health economic analysis, this thesis aims to establish optimal approaches for prioritising 

patients for cholesterol-reducing therapy. 

 

Preventive statin therapy is typically targeted at individuals estimated to have a high ten-year 

risk of developing CVD. However, individuals with the same ten-year risk may experience 

different outcomes from preventive treatment. The epidemiologic bases for three alternative 

approaches to the CVD prevention are discussed. These are: (i) continued use of ten-year risk 

scoring, (ii) novel decision mechanisms which incorporate ten-year risk, and (iii) direct use 

of decision-analytic models in clinical practice to guide treatment decisions. 

 

Several treatment policies may be characterised by one of the aforementioned approaches to 

prevention. These include: lowering the risk threshold for treatment initiation, improving the 

discrimination of risk scores with novel biomarker testing, age-stratified risk thresholds, 
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absolute risk reduction-guided therapy, and outcome maximisation with decision-analytic 

models. Decision-analytic modelling was employed to assess the long-term effectiveness and 

cost-effectiveness of these policies. Additional analysis showed how decision-makers can 

signal demand for PCSK9 inhibitors and achieve welfare gains by reflecting heterogeneity in 

their decision-making. 

 

This thesis demonstrates the importance of reflecting heterogeneity in cost-effectiveness. It 

shows that standard care regarding the primary prevention of CVD often ignores 

heterogeneity, leading to suboptimal decision-making. This holds true for long-established, 

inexpensive treatments like statin therapy and novel, expensive treatments like PCSK9 

inhibitors. 
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Chapter 1 

Introduction 

 

In cost-effectiveness analysis, outcomes are often averaged across large groups of patients. 

Making implementation and reimbursement decisions based on such analysis may ignore 

considerable heterogeneity in cost-effectiveness between patients. This thesis shows that 

failing to represent such heterogeneity in decision-making leads to an inefficient distribution 

of constrained healthcare resources. 

 

Cardiovascular disease (CVD) is a highly prevalent chronic health condition which is 

responsible for large amounts of mortality and morbidity worldwide (1). Prioritising patients 

for preventive interventions for CVD is important for policy-makers around the world (2). 

To target preventive treatment efficiently, it must be recognised that outcomes from such 

treatment often differ systematically between patient subgroups. Subgroups may be defined 

based on CVD risk factors which include age, sex, cholesterol, and blood pressure. 

 

Despite improvements in recent years, cardiovascular disease remains a significant cause of 

mortality, morbidity, and health inequality around the world (3). As rates of the disease 

plateau, novel approaches to CVD prevention will be required. 

 

Cholesterol reduction is a well-established means of reducing CVD risk (4,5). Clinical 

guidelines in high-income countries commonly recommend that high-risk patients are 

prioritised for statin, ezetimibe, or PCSK9 inhibitor therapy to reduce low-density lipoprotein 

cholesterol (LDL-C). Such treatments are often initiated based on a patient’s 10-year risk of 

experiencing a primary CVD event (6). However, this approach to treatment prioritisation 

does not adequately reflect heterogeneity in the patient population. This leads to an inefficient 

distribution of healthcare resources. Cholesterol-reducing medication guidelines are analysed 

in this thesis to highlight the benefits that can be accrued by better representing heterogeneity 

in cost-effectiveness when determining which health care interventions to implement. 

 

The purpose of this introductory chapter is to provide an orientation to the thesis. Four 

overarching objectives for the work are presented. This is followed by a description of the 

thesis structure. 
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1.1 Objectives 

 

(i) Describe the health economic benefits associated with reflecting heterogeneity in 

cost-effectiveness analysis. 

(ii) Apply the theory of heterogeneity in cost-effectiveness to the clinical area of CVD 

and its prevention. 

(iii) Estimate the cost-effectiveness of novel policies to prioritise individuals for CVD 

prevention through cholesterol reduction. Pharmacologic intervention to reduce 

cholesterol forms a key part of guidelines for preventive intervention of CVD in most 

high-income countries. Without loss of generality, the prioritisation of cholesterol-

reducing medication is utilised as a case study of the benefits associated with 

reflecting heterogeneity in cost-effectiveness analysis. 

(iv) Produce policy recommendations based on findings from the novel approaches to 

CVD prevention explored in (iii). 

 

1.2 Thesis Structure and Chapter Outline 

 

The thesis is divided into four parts which each comprise of chapters. An overview of each 

part and each chapter is provided below. 

 

Part 1: Reflecting Heterogeneity in Cost-Effectiveness Analysis 

 

Part 1 of the thesis aims to describe the benefits associated with reflecting heterogeneity in 

cost-effectiveness from a theoretical standpoint. This provides a framework under which 

heterogeneity in cost-effectiveness of preventive therapy for CVD can be discussed 

throughout the remainder of the thesis. 

 

Chapter 2 is the sole chapter included in Part 1. Traditional health economic decision rules 

are described. It is shown that they can be manipulated to derive optimal decision rules in the 

presence of heterogeneity in cost-effectiveness in a patient population. Optimal decision-

making processes are described in two scenarios. The first scenario occurs when treatment 

cost is fixed and a decision-maker must determine which subgroups to treat. The second 

scenario occurs when treatment cost is not fixed. In this scenario, a decision-maker can signal 

demand for a treatment and ensure that an equilibrium between supply and demand is 

achieved whereby they achieve consumer surplus. 
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Part 2: Cardiovascular Disease Prevention 

 

Part 2 provides a background to CVD and its prevention. Detailed descriptions of the health 

and economic consequences of the disease are provided. The epidemiologic basis for 

different approaches to CVD prevention and the importance of cholesterol-reduction, due to 

the integral role of LDL-C in atherogenesis, are described. The purpose of Part 2 is twofold: 

to demonstrate the applicability of the theory contained in Part 1 to the prevention of a highly 

prevalent disease and to develop specific policies which are analysed later in the thesis to 

inform policy recommendations. 

 

Chapters 3 and 4 constitute Part 2 of the thesis. Chapter 3 describes CVD and approaches 

that can be adopted to reduce its incidence. The prevalence, incidence, and economic burden 

associated with the disease are discussed alongside different types of preventive intervention. 

Current guidelines regarding the prioritisation of patients for preventive intervention in high-

income countries are reviewed. These guidelines typically recommend targeting treatment at 

patients with elevated 10-year risk of developing CVD. 

 

Chapter 4 describes CVD epidemiology and aims to explain the existence of heterogeneity 

in outcome from preventive treatment for CVD. This helps to establish three broad 

approaches to prioritising patients for preventive intervention. Each approach attempts to 

address heterogeneity in cost-effectiveness. These are: 

 10-year risk scoring 

 Novel decision mechanisms which incorporate 10-year risk 

 Using decision models in clinical practice 

Specific policies that adhere to one of these approaches to prioritisation are introduced. 

 

Part 3: Cost-Effectiveness Analyses of Preventive Policies 

 

Part 3 considers the cost-effectiveness of policies introduced earlier in the thesis. The first 

two chapters in Part 3 aim to set up proceeding analyses, introducing decision-analytic 

models that can be employed in the cost-effectiveness analysis of preventive interventions 

for CVD and detailing the clinical evidence for and against cholesterol-reducing treatments. 

Latter chapters describe cost-effectiveness analyses, set in Scotland and the U.S., which 

assess specified interventions. 
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Chapter 5 describes the rationale behind decision-analytic modelling and introduces two 

previously-published CVD policy models that will be employed in cost-effectiveness 

analyses of preventive interventions in later chapters. These are the Scotland-based Scottish 

CVD Policy Model (7,8) and the U.S.-based CVD Microsim Model (9). 

 

Chapter 6 describes the evidence base regarding the efficacy, effectiveness, and safety of 

statin therapy. Statins are the most commonly prescribed cholesterol-reducing medication 

around the world (5) and many of the cost-effectiveness analyses included in the thesis relate 

to prioritising patients for this treatment.  

 

Chapters 7 to 9 contain detailed descriptions of multiple cost-effectiveness analyses of statin 

prioritisation policies. Chapter 7 assesses the cost-effectiveness of two policies which involve 

continued use of 10-year risk scoring. The policies considered are reducing the risk threshold 

for statin initiation in Scotland and improving the discrimination of risk scores with novel 

biomarker testing. Chapter 8 assesses the cost-effectiveness of two policies which involve 

novel decision mechanisms that incorporate 10-year risk scoring. The policies considered are 

age-stratification of risk thresholds and the ‘absolute risk reduction’ approach to statin 

prioritisation. The latter targets treatment at patients based on a combinatory measure of their 

10-year CVD risk and baseline LDL-C. Chapter 9 considers the cost-effectiveness of directly 

using decision models in clinical practice to maximise health outcomes. 

 

Statins are cheap and relatively effective. Chapter 10 considers more expensive and more 

effective cholesterol-reducing medications. Analysis was conducted to establish a demand 

curve for PCSK9 inhibitor therapy for cholesterol reduction in patients with familial 

hypercholesterolaemia and statin intolerance or ‘residual cholesterol risk’ while receiving 

preventive statin therapy. 

 

Part 4: Policy Recommendations, Further Research, and Conclusions 

 

Part 4 aims to synthesise results from the thesis. It further aims to produce policy 

recommendations, provide concluding remarks, and recommend further research to increase 

understanding of heterogeneity in cost-effectiveness and its interaction with CVD prevention. 
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This part consists of Chapters 11 and 12. Chapter 11 synthesises and summarises cost-

effectiveness results from Part 3. These recommendations relate to optimal statin 

prioritisation policies and signalling demand for PCSK9 inhibitors. Chapter 12 provides a 

summary of the research conducted throughout the thesis and highlights areas for further 

research. 
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Part 1 

Reflecting Heterogeneity in Cost-Effectiveness Analysis 

 

The objective of Part 1 is to describe the benefits associated with reflecting heterogeneity in 

cost-effectiveness. When decision-makers make reimbursement decisions based on cost-

effectiveness results that have been averaged over a large population, they often ignore 

systematic variability in cost-effectiveness between patients. If one identifiable subgroup of 

patients is cost-effective to treat while another is not, making decisions based on costs and 

benefits averaged across the total population is suboptimal. 

 

The following chapter describes forms of subgroup and heterogeneity in patient populations, 

discusses traditional decision rules employed in cost-effectiveness analysis, and shows how 

these can be adapted to account for heterogeneity. The theory discussed in Part 1 will be 

employed throughout the thesis. This theory guides and motivates the establishment of novel 

approaches for the primary prevention of CVD which better reflect heterogeneity in cost-

effectiveness.  
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Chapter 2 

Stratified Medicine, Heterogeneity, and Cost-Effectiveness 

 

2.1 Purpose 

 

Cost-effectiveness analysis of health care interventions aims to assess the value for money 

represented by a healthcare investment. This is generally achieved by dividing the costs 

associated with a treatment by accrued health benefits. Hence, a cost-per-unit of health 

associated with the treatment is derived. This type of analysis is an important tool for 

healthcare decision-makers who wish to maximise population health given a constrained and 

exogenously determined healthcare budget. However, costs and benefits associated with a 

treatment are often averaged across large groups of patients. This may ignore systematic 

variability in health and cost outcomes between identifiable patient subgroups. 

 

This chapter will discuss stratified medicine and heterogeneity in patient populations. 

Furthermore, it will explain traditional cost-effectiveness decision rules and extend these 

rules to consider the impact of heterogeneity and stratification on cost-effectiveness. 

 

2.2 Stratified Medicine 

 

Definition 

 

In recent decades, researchers have unravelled the genomic, epigenomic, and behavioural 

bases for many health conditions. It has therefore become increasingly feasible to stratify 

patient populations into risk- and benefit-based subgroups. These developments have been 

met with a clinical trend towards stratified medicine – described by the World Health 

Organisation as assessing “per population stratum” the benefit-risk profile of a health care 

intervention (10). Concurrently, researchers, healthcare institutions, funding bodies, and 

politicians have heralded an age of ‘personalised’ and ‘precision’ medicine, often promoting 

the idea that novel diagnostic technology can be employed to stratify populations and dictate 

patient treatment (11–20). 

 

Variability in a dataset describes the extent to which data points are distributed around an 

average value. Heterogeneity in a patient population refers to variability in sociodemographic 
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and biological characteristics between patients. Subgroups are a set of patients defined by 

one or more of these characteristics. Heterogeneity in outcome specifically refers to 

variability in health and cost outcomes between individuals receiving the same treatment that 

can be explained by variability in the patient population. These definitions are listed in Table 

2-1. 

 

Patient outcomes may differ relatively or absolutely. Those receiving the same relative effect 

from a treatment will experience a treatment-related multiplicative alteration of their baseline 

health or cost outcome (e.g. 50% reduction in event probability, 20% increase in treatment 

costs). Those receiving the same absolute effect from a treatment will experience the same 

absolute change in outcome (e.g. one adverse event prevented, £100 additional costs 

incurred). 

 

Term Definition 

Variability Extent to which data points are distributed around an 
average value 

Heterogeneity in 
population 

Variability in sociodemographic and biological 
characteristics between patients 

Heterogeneity in  
outcome 

Variability in health and cost outcomes between 
individuals receiving the same treatment explained 
by heterogeneity in the population 

Subgroup Set of patients defined by one or more 
sociodemographic or biologic characteristic 

Table 2-1: Definition of terms related to variability and heterogeneity 

 

Forms of Subgroup and Heterogeneity 

 

Interventions can produce heterogeneous outcomes due to a range of sociodemographic and 

biological factors. Sculpher (21) lists six forms of subgroup and heterogeneity: intervention-

related factors, factors unrelated to intervention but related to health condition, factors 

unrelated to intervention and health condition, factors unrelated to the patient, preferences, 

and factors revealed over time. These forms of heterogeneity exist in all clinical areas, from 

chronic to acute conditions. The following section will describe these forms of subgroups 

and heterogeneity. These descriptions will be supplemented with examples from CVD. 

 

1. Intervention-related factors are commonly considered in studies of clinical 

effectiveness. They characteristics typically indicate differential relative outcomes in 
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a population and can be referred to as treatment effect modifiers. Relative benefit is 

often quantified by hazard ratio or relative risk of adverse event (22). 

 

Many examples of treatment effect modifiers exist in the clinical literature. An 

intervention-related factor which causes differential relative treatment effect in the 

prevention of CVD is LDL-C. Patients at high risk of experiencing a CVD event may 

be prescribed statins, an LDL-C reducing medication. Evidence suggests that statins 

produce a greater relative risk reduction for CVD in patients with higher baseline 

LDL-C (4). This is likely due to the strong positive relationship between LDL-C and 

CVD risk (23). 

 

Intervention-related factors may also lead to systematic differences in costs. For 

example, dosage for some pharmacological interventions is determined by patient 

body mass index (BMI). This multiplicatively increases costs for patients based on 

BMI. Weight-based dosing is important for a range of medications including 

hydrocortisone for adrenal insufficiency, vancomycin for the treatment of bacterial 

infections, and aprotinin for use in cardiac surgery (24). 

 

2. Factors unrelated to an intervention effect but related to health condition often 

alter absolute risk of adverse event. They may also cause differential pricing and 

preference valuation of clinical events. 

 

Even when patients receive the same relative risk reduction from a treatment, absolute 

risk reduction may vary greatly. Consider two subgroups of a patient population in 

which the adverse event rate is 50% and 10%, respectively. Further consider a 

treatment which halves adverse event rates in all patient subgroups. While relative 

risk reduction is constant, the group with higher baseline risk will receive a much 

greater absolute risk reduction (25% versus 5%). 

 

There are many examples of factors related to health condition but not treatment 

which affect patient outcomes. Based on the principles described above, risk 

stratification is often used to determine which patients should receive preventive 

treatment for CVD (25–28). 
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Sculpher notes that costs and quality of life valuations may also differ systematically 

based on observable patient characteristics. Evidence suggests that the direct medical 

cost of experiencing a stroke can vary between sexes and increases with age (29) and 

health state valuation is consistently lower for individuals with comorbid diabetes 

(30). 

 

3. Factors unrelated to both treatment effect and health condition may affect patient 

outcomes. 

 

Age is an example of such a factor. Elderly individuals are typically at an increased 

risk of developing chronic diseases (e.g. CVD, chronic obstructive pulmonary 

disease, cancer) and experiencing adverse events (e.g. serious falls). These competing 

risks limit older individuals’ capacity-to-benefit from interventions and, in turn, 

systematically alter the cost-effectiveness of treating them. 

 

Factors which alter risk of mortality are often unrelated to health condition and 

treatment effect but ultimately affect patient outcome. For example, though not 

necessarily correlated with surgery success, long-term survival after liver 

transplantation is significantly greater for younger individuals (31). Probability of 

non-CVD mortality increases with age and this competing risk can similarly limit an 

elderly individual’s capacity-to-benefit from preventive treatment. However, the 

CVD example is complicated by the fact that age is an independent predictor of CVD 

risk, and therefore the competing risk of non-CVD mortality must be weighed against 

the increased risk of disease-related event (32). 

 

4. Factors unrelated to the patient may affect health and cost outcomes. There is a 

multiplicity of such factors, including geographic location of treatment, treatment 

provider, or other environmental factors. 

 

Much research has been conducted which considers geographic- and provider-related 

sources of heterogeneity in patient outcome. An analysis of multinational clinical 

trials provides evidence that healthcare costs vary substantially between countries 

(33). Geue et al. have shown significant differentials exist between inpatient costs in 

rural and urban settings (34). Treatment success rate is also likely to vary based on 

physician characteristics. For example, research suggests that more experienced 
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surgeons have greater surgical success rates and their patients have better post-

operative quality of life (35). 

 

5. Preferences may lead to differential cost-effectiveness of health care interventions 

between patient subgroups. The health-related quality of life patients attribute to 

different treatments and health states often varies based on observable characteristics. 

 

An online survey of 1,000 U.S. residents found that the disutility attributable to 

regular pill-taking for CVD prevention varies greatly across the U.S. adult population 

(36). In a decision modelling study, Pandya et al. (37) showed that pill-taking 

disutility is a key determinant of the cost-effectiveness of preventive statin therapy. 

Additionally, studies have shown that individuals differentially value health states 

based on age (38). 

 

6. Factors revealed over time may explain heterogeneity in cost-effectiveness. If these 

factors are observable, patients can be split into subgroups and a decision-maker can 

make differential decisions based on each group’s respective outcomes. 

 

Treatment response is a factor which is revealed over time which may allow for 

differential decision-making. Some patients receiving statin therapy experience 

adverse effects including myalgia and loss of memory (39). These can often be 

avoided by changing dosage or choice of statin. Altering such treatment parameters 

can affect the patient’s costs and health outcomes. 

 

The types of heterogeneity and subgroup discussed may all be employed to stratify patient 

populations in cost-effectiveness analysis. The body responsible for health technology 

assessment and clinical guidelines for NHS England and NHS Wales is the National Institute 

for Health and Care Excellence (NICE). NICE discusses heterogeneity and subgroups in its 

reference case document (40), stating that “…it is important to consider how clinical- and 

cost-effectiveness may differ because of differing characteristics of patient population”. Such 

heterogeneity, they note, should be analysed as part of a NICE health technology assessment. 

They also recognise that the use of a technology may be approved conditionally on the 

presence of a biomarker which predicts patient response to treatment. Indeed, the NICE 

Diagnostics Assessment Programme was set up in 2010 to evaluate the clinical- and cost-

effectiveness of diagnostic technologies (41). 
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2.3 Cost-Effectiveness Analysis 

 

Traditional Cost-Effectiveness Decision Rules 

 

Cost-effectiveness analyses compare the costs and benefits associated with alternative 

treatment options. Employing cost-effectiveness analysis ensures that healthcare decision-

makers receive acceptable value for money when investing in a health technology, accounting 

for the opportunity cost associated with displacing funds from the healthcare budget (42,43). 

 

Standard health economic decision rules dictate that an intervention should be implemented 

over a relevant comparator if the incremental benefits from the intervention justify the 

incremental expenditure required to achieve these benefits (42). If incremental costs are 

negative and incremental benefits are positive, the treatment is considered ‘cost-saving’ and 

should be implemented. If the incremental costs are positive and the incremental benefits are 

negative, the treatment is ‘dominated’ and should not be implemented. When incremental 

costs and benefits are both positive or both negative, decision-makers must consider the 

treatment’s incremental cost-effectiveness. 

 

The measure typically adopted to represent health-related quality of life in cost-effectiveness 

analysis is the quality-adjusted life year (QALY). One QALY equals one year lived in full 

health (44,45) while zero QALYs is equivalent to death. Values between zero and one 

represent different health states, ranked in terms of preference by some population of interest. 

An individual’s quality-adjusted life expectancy is equal to the product of the amount of time 

spent in different health states multiplied by the QALY value of these health states, summed 

over all the health states they experience in their life. 

 

Disability-adjusted life years (DALYs) are an alternative metric which can be used to 

measure morbidity alongside longevity of life (46). They equal the sum of years of life lost 

from a health condition and years lived with disability weighted by a disability factor. One 

DALY equals one year of full health lost. 

 

While they aim to capture similar health-related outcomes, QALYs and DALYs are not 

directly interchangeable. The DALY is primarily a measure of disease burden and may only 

be comparable with QALYs under the assumption that the quality of life associated with a 
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health condition is equivalent to the level of disability it confers (47). In practice, the 

preference-based nature of QALYs necessitates derivation through preference-elicitation 

from populations of interest while DALYs tend to be estimated through expert evaluation 

(48–50). Fundamentally, the decision rules which underpin cost-effectiveness analysis do not 

change dependent on whether QALYs or DALYs are being maximised. 

 

The incremental cost-effectiveness ratio (ICER) is a metric which enables incremental 

comparison of the cost-effectiveness of health care interventions. The ICER of implementing 

a treatment over a comparator is equal to the treatment’s incremental costs divided by 

incremental benefits, Equation (3-1). As QALYs are the most common health metric 

employed in cost-effectiveness analysis, ICERs usually represent the cost-per-QALY 

attributable to implementing a treatment. 

ICER =  
∆𝐶

∆𝐸
.                                                                 (3-1) 

  

A decision-maker should implement an intervention over its comparator if they believe that 

the cost-per-QALY offered by the treatment represents acceptable value for money. 

Willingness-to-pay for a unitary increase in health benefit is represented by the decision-

maker’s cost-effectiveness threshold, λ. If incremental costs and benefits are both positive, 

the decision-maker should implement the treatment over its comparator if its ICER is below 

the cost-effectiveness threshold, as shown in Decision Rule 1A (43). 

 

Intervention funded if: 𝐼𝐶𝐸𝑅 =  
∆𝐶

∆𝐸
< λ; ∆𝐶 > 0, ∆𝐸 > 0 

Decision Rule 1A: Implementation of intervention with positive costs and positive 
effects based on ICER 

 

If incremental costs and benefits are both negative, the decision-maker should implement the 

treatment over its comparator if its ICER is above the cost-effectiveness threshold, as shown 

in Decision Rule 1B. This is because the cost savings attributable to the intervention can be 

spent elsewhere in the budget to produce more health than is lost. 

 

Intervention funded if: 𝐼𝐶𝐸𝑅 =  
∆𝐶

∆𝐸
> λ; ∆𝐶 < 0, ∆𝐸 < 0. 

Decision Rule 1B: Implementation of intervention with negative costs and negative 
effects based on ICER 
 

Incremental net monetary benefit (INMB) is an alternative measure of cost-effectiveness (51). 

Calculation of INMB requires converting incremental health benefits to costs to represent the 
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monetary value of these benefits. This is achieved by multiplying health benefits by the cost-

effectiveness threshold. Next, the treatment’s incremental costs are subtracted from this 

value, Equation (3-2). Notably, this measure does not require separate decision rules 

dependent on the sign of incremental costs or benefits. In addition, it is not a ratio of means 

and is therefore always defined and continuous.  

𝐼𝑁𝑀𝐵 = 𝜆 ∗ ∆𝐸 − ∆𝐶.                                                   (3-2) 

 

A policy should be adopted over a comparator if it has an INMB greater than zero, as 

presented in Decision Rule 2. A welfare gain is achieved by implementing such a policy. 

When there are multiple interventions to choose between, the policy with the highest INMB 

should be implemented. In this situation, all policies must be compared incrementally to a 

common comparator. 

 

Intervention funded if: 𝐼𝑁𝑀𝐵 > 0. 

Decision Rule 2: Implementation of intervention based on INMB 
 

Incremental net health benefit (INHB) is a comparable measure to INMB (52). When 

calculating INHB, all incremental costs are represented by the health benefit value of these 

costs. This is achieved by dividing incremental costs by the cost-effectiveness threshold. 

Hence the costs represent the minimum amount of health that could be theoretically 

purchased elsewhere in the budget if the policy was not implemented. Similar to Decision 

Rule 2, a decision-maker should implement an intervention if INHB is greater than zero. 

 

The incremental costs and effects attributable to implementing a health care intervention 

compared with a relevant comparator have been described by Weinstein and Stason (53). 

Constituents of incremental health and incremental cost are described in Equation (3-3) and 

Equation (3-4), respectively: 

∆𝐶 = ∆𝐶𝑅𝑥 + ∆𝐶𝑠𝑒 + ∆𝐶𝑚𝑜𝑟𝑏 + ∆𝐶𝑙𝑒                                    (3-3) 

∆𝐸 = ∆𝐸𝑙𝑒 + ∆𝐸𝑚𝑜𝑟𝑏 + ∆𝐸𝑠𝑒.                                               (3-4) 

 

ΔC refers to incremental change in costs, and consists of: direct treatment costs (Rx), cost 

increases attributable to treatment-related side effects (se), cost savings due to reduced 

morbidity (morb), and cost increases associated with extended life expectancy (le). ΔE refers 

to the incremental change in effect, typically measured by QALYs. Incremental effect 

consists of: increased benefits attributable to extension of life expectancy (le), increased 
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benefits due to reduced morbidity (morb), and reduced benefits due to treatment-related side 

effects (se). 

 

One final measure to consider is Treatment Value. This is defined as the INMB excluding 

treatment costs, Equation (3-5). 

 

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 = 𝐼𝑁𝑀𝐵 + ∆𝐶𝑅𝑥 = 𝜆 ∗ ∆𝐸 − (∆𝐶𝑠𝑒 + ∆𝐶𝑚𝑜𝑟𝑏 + ∆𝐶𝑙𝑒)      (3-5) 

 

It is possible to derive a decision rule for investing in health care interventions dependent on 

treatment cost. A decision-maker should invest in an intervention if the treatment value is 

greater than the direct treatment costs, shown below in Decision Rule 3. This rule makes it 

possible to determine the average cost-effective price at which a treatment becomes cost-

effective. 

 

Intervention funded if: 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 > ∆𝐶𝑅𝑥 

Decision Rule 3: Implementation of intervention based on Treatment Value 
 

Perspective 

 

Perspective should be considered when performing cost-effectiveness analysis. The health 

sector decision-maker and societal perspectives are the two perspectives most commonly 

applied in health technology assessment (54). 

 

The health sector perspective accounts for all health gains (often represented by QALYs) in 

the population of interest, and all direct and indirect costs incurred by the health sector 

(40,54). This perspective aims to maximize health outcomes given an exogenously 

determined health sector budget. 

 

Explicitly aiming to maximise health, with no direct attempt to affect other dimensions of 

social welfare, can be described as extra-welfarism. Extra-welfarists value health intrinsically 

and are willing to override individual preference to improve overall health in a population. 

This has been justified on the grounds that health is fundamental to an individual’s “capacity 

to flourish” as a human being (55,56). Extra-welfarism closely mirrors Amartya Sen’s 

‘capability approach’ which stresses that utilitarian calculus ignores inequalities and 

oppression that limit the capability of some individuals to achieve “valuable functioning as a 
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part of living”. The capability approach instead looks to equalise each person’s capability to 

achieve happiness and fulfilment (57,58). 

 

Some researchers and decision-makers prefer to employ the societal perspective. The societal 

perspective accounts for all direct medical, indirect medical, and indirect costs. This 

perspective aims to maximize social welfare, not just welfare derived from health. It assigns 

value to lost productivity and lost wages, for example. It therefore represents a utilitarian 

approach to prioritising public expenditure. 

 

Some scholars argue that the societal perspective should be treated as a ‘gold standard’ for 

assessing health care interventions. The Second Panel on Cost-Effectiveness in Health and 

Medicine recommends in its reference case that the societal approach is adopted, 

acknowledging that this approach is best suited to a decision-maker who is concerned with 

the broad allocation of resources across a population (54). Drummond et al. also argue that 

healthcare decision-makers should be concerned with a broader array of outcomes than 

QALYs alone (42). A similar case is presented by Weatherly et al. (59). It is often difficult 

and time-consuming to conduct analyses from a societal perspective, however, and debate 

continues about the validity of welfarism versus extra-welfarism in determining which health 

care interventions are funded (42,54,60). 

 

Despite recommendation to the contrary, the default perspective adopted in many cost-

effectiveness analyses is that of a health sector decision-maker. A recent report suggests that 

decision-making bodies in most countries with established procedures for assessing the cost-

effectiveness of health care interventions adopt the health sector perspective (61). 

 

2.4 Stratified Cost-Effectiveness Analysis 

 

At its core, stratified medicine aims to address heterogeneity in clinical outcomes. It 

recognises that average treatment outcomes often comprise of systematically different 

patient-level outcomes. Reflecting heterogeneous outcomes is arguably more important when 

conducting cost-effectiveness analysis. This is because cost-effectiveness results averaged 

across whole populations disregard heterogeneity related to both health and cost outcomes.   
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Benefits and costs of interventions are typically averaged across large patient groups in cost-

effectiveness analyses. This leads to a situation in which heterogeneity may be overlooked in 

healthcare decision-making. Across populations, each constituent of incremental costs and 

incremental benefits may vary. For example, individuals with high levels of a biomarker may 

receive a greater relative risk reduction from a treatment and older individuals typically have 

worse health outcomes following acute illness (62–64). 

 

If INMB can be reliably calculated at the individual- or subgroup- level, the decision to initiate 

treatment in the wider population can be separated into a set of mutually exclusive decisions. 

Dependent on willingness-to-pay, it is possible to establish ‘limited use criteria’ which avoid 

treating patients with INMB less than zero (65). 

 

Likewise, if Treatment Value can be calculated at individual- or subgroup-level, decision-

makers can establish the proportion of the patient population that should be eligible for 

treatment at a range of different prices. Performing this analysis and making decisions based 

on the results allows decision-makers to signal demand to healthcare providers. 

 

Figure 2-1 demonstrates the health economic effect of disregarding heterogeneity of outcome 

on the cost-effectiveness plane. The figure presents a scenario in which two patient subgroups 

experience very different absolute health benefits from a treatment. Costs, however, are 

constant across the patient population. Subgroup A represents the average incremental 

outcomes attributable to the treatment in the total population (1 QALY gained), while 

Subgroups B and C represent outcomes in the population’s two constituent subgroups (-2 and 

3 QALYs gained, respectively). Costs are equal to £40,000 in each of the subgroups. A cost-

effectiveness threshold of £30,000/QALY is represented by a dashed line on the graph. 

 

If a decision-maker employs a cost-effectiveness threshold of £30,000/QALY, it is possible 

to determine whether Subgroups A, B, and C should be given treatment based on their 

position on the cost-effectiveness plane. When the decision to implement treatment is based 

on average treatment effects, the decision-maker would choose not to provide treatment to 

anyone in the population. 
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Figure 2-1: Differential treatment effects in subgroups, represented on the cost-
effectiveness plane 

  

Disaggregating the treatment effect leads to an alternative implementation decision. 

Treatment should be implemented in subgroups with positive costs and positive effects which 

lie above the dashed line on the cost-effectiveness plane. Treating Subgroup C, the patients 

who receive a positive health effect from treatment, represents acceptable value for money 

and should be implemented. The intervention should not be implemented in Subgroup B as 

these patients receive negative health benefits while incurring costs. Failure to recognise 

variability in treatment outcomes leads to inefficient and suboptimal decision-making as 

patients who are cost-effective to treat do not receive treatment. 

 

2.4.1 Implementing Decision Rule 2: Stratified Cost-Effectiveness Analysis with 

Fixed Treatment-Related Costs 

 

When the price of an intervention is fixed, stratified cost-effectiveness analysis can be 

employed to establish ‘limited use criteria’. Limited use criteria restrict funding for 

interventions to those patient groups in which treatment is cost-effective. 
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Coyle et al. discuss the role of stratified cost-effectiveness in establishing limited use criteria 

for health care (65). They produce a mathematical framework which can be used to quantify 

the welfare gains achievable through the stratification of patient populations in cost-

effectiveness analysis. 

 

Let i be a discrete variable representing univariate subgroups of a patient population. These 

subgroups are mutually exclusive and when combined include every member of the patient 

population. Further, let INMBi represent the incremental net benefit of an intervention in 

group i and INMB represent the total net benefit in a population. The population-level INMB 

is equal to INMBi summed across all patient subgroups. We can define this relationship 

mathematically as follows: 

𝐼𝑁𝑀𝐵 = ∑ 𝐼𝑁𝑀𝐵𝑖𝑖 . 

 

It is possible that a subset of the subgroups will have an INMB less than zero. An efficient 

limited use criterion ensures that all subgroups with positive INMBi are treated, while those 

with negative INMBi remain untreated. 

 

Let 𝐼𝑁𝑀𝐵𝑠(𝑖) be the total 𝐼𝑁𝑀𝐵 associated with only treating subgroups iϵs(i), where s(i) is 

the subset of subgroups with INMBi greater than zero. We can define 𝐼𝑁𝑀𝐵𝑠(𝑖) as follows: 

𝐼𝑁𝑀𝐵𝑠(𝑖) = ∑ 𝐼𝑁𝑀𝐵𝑖𝑖 , ∀𝑖 𝑤ℎ𝑒𝑟𝑒 𝐼𝑁𝑀𝐵𝑖 >  0. 

 

It follows that, in all situations, 

𝐼𝑁𝑀𝐵𝑠(𝑖) ≥ 𝐼𝑁𝑀𝐵. 

 

The net benefit gain from stratification, ΔSINMB, is equal to the net benefit of treating only 

cost-effective subgroups subtracting the total net benefit in the population. Intuitively, this is 

equal to the negative sum of incremental net monetary benefit in all subgroups with negative 

𝐼𝑁𝑀𝐵𝒊: 

∆𝑆𝐼𝑁𝑀𝐵 = 𝐼𝑁𝑀𝐵𝑠(𝑖) − 𝐼𝑁𝑀𝐵 

=  − ∑ 𝐼𝑁𝑀𝐵𝑖 , ∀𝑖 𝑤ℎ𝑒𝑟𝑒 𝐼𝑁𝑀𝐵𝑖 <  0𝑖 . 

 

Additional complexities can be added to this mathematical framework which better reflect 

the reality of stratification in clinical practice. The framework can be extended to the situation 

where more than one type of subgroup is used to stratify the patient population. Furthermore, 
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stratification of patients into subgroups may require additional costs. For example, it often 

requires additional testing and physician time to stratify patients into biomarker-related 

subgroups. These additional costs can be weighted into the 𝐼𝑁𝑀𝐵𝐢 calculations. 

 

2.4.2 Implementing Decision Rule 3: Signalling Demand with Stratified Cost-

Effectiveness Analysis 

 

Stratifying treatment decisions based on heterogeneity in cost-effectiveness allows decision-

makers to signal demand to manufacturers (66,67). Decision-makers can establish a price at 

which an intervention becomes cost-effective in an entire patient population. Manufacturers 

respond to this decision mechanism by setting their price at the average cost-effective price. 

Implementing an intervention at the average cost-effective price for all individuals in a patient 

population leads to an INMB of zero. 

 

Signalling demand is particularly relevant to situations with monopolist manufacturers and 

monopsonist decision-makers. Such a situation occurs when a manufacturer receives patent 

protection for a novel treatment and NICE must determine whether to recommend its use in 

the NHS (67). 

 

If an intervention’s treatment value can be established for every member of a population, then 

it is possible to determine the maximum price that one should pay for every individual. 

Consider a graph with 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒𝑖 and proportion of patient population on its vertical 

and horizontal axes, respectively. Due to the relationship presented in Decision Rule 3, the 

vertical axis can alternatively and interchangeably be labelled as the maximum acceptable 

price of treatment for the decision-maker. This will hereafter be referred to as the patient’s 

‘reverse-engineered price’. Having calculated reverse-engineered price for every individual 

in a population it is possible to plot these individuals on a graph in descending order with 

reverse-engineered price on the vertical axis, as shown by the black curves in Figures 2-2 and 

2-3. The graph produced is a demand curve. This curve details the proportion of a patient 

population that a decision-maker is willing to provide treatment to at a range of prices. 
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Figure 2-2 (left) and Figure 2-3 (right): Demand curves. Consumer’s welfare loss 
equals welfare gain when average cost-effectiveness price adopted. Consumer 
realises surplus when reflecting heterogeneity in treatment decisions. 

 

Figure 2-2 displays the scenario in which heterogeneity in cost-effectiveness exists in a 

population, but the decision-maker does not consider heterogeneity in their decision-making 

process. A manufacturer will set their price at the average cost-effectiveness price, plotted at 

Point A. This is the highest price the decision-maker is willing-to-pay for the treatment and 

it therefore maximises the provider’s revenue (unit price multiplied by quantity sold). At this 

price, welfare gain is necessarily equal to welfare loss for the decision-maker. 

 

Figure 2-3 displays the alternative situation in which heterogeneity is reflected in the 

decision-making process. It is assumed that differential pricing is not possible. From a 

decision-maker’s perspective, they should choose to reimburse up to the least cost-effective 

individual with positive 𝐼𝑁𝑀𝐵𝒊 at a given price (plotted along the demand curve). Any 

individual that is more cost-effective to treat than this person will produce welfare gains for 

the decision-maker because the price is set below the level at which their 𝐼𝑁𝑀𝐵𝒊 is zero. A 

monopolist manufacturer will attempt to maximise profit. This occurs when marginal revenue 

is equal to the marginal cost of producing the intervention, shown at Point B. 

 

In most cases, it will be difficult to establish a reverse-engineered price for every individual 

in a population. Moreover, a paradigm shift in health service decision-making would be 

necessary for cost-effectiveness decisions to be made at the level of individual patients. 

However, it is often possible to stratify populations into subgroups between which cost-

effectiveness varies. This stratification can be based on risk score, age, biomarker levels, or 
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other relevant variables. In such analysis the demand curve would be discretised in the form 

of a step function. 

 

2.5 Identifying Subgroups: Feasibility, Validity, and Equity 

 

Clinical feasibility, statistical validity, and equity must be considered when reflecting 

heterogeneity in cost-effectiveness analysis. Decision-makers must determine whether 

subgroups identified can be operationalised in clinical practice, whether there is sufficient 

data to support stratified cost-effectiveness results, and whether stratification could lead to 

an inequitable distribution of healthcare resources (21). 

 

Clinical feasibility should be a primary concern when conducting stratified cost-effectiveness 

analysis. Several patient characteristics may be routinely collected in clinical practice. These 

include patients’ age, sex, family history of disease, and some clinical markers like blood 

cholesterol levels and blood pressure. It may require extra cost and effort to obtain other 

relevant patient characteristics. It is increasingly feasible to obtain genomic data from patients 

(68) and considerable research funding has been invested in identifying novel biomarkers for 

a range of health conditions. The additional costs incurred stratifying patients based on these 

characteristics must be accounted for in cost-effectiveness analyses. 

 

Statistical validity is another key concern when addressing heterogeneity in cost-

effectiveness analysis. When assessing cost-effectiveness in multiple subgroups, it is possible 

that researchers might identify relationships due to random error rather than the existence of 

a real relationship. This is referred to as the multiple testing problem in statistics (69). 

Techniques to correct for multiple testing in studies of clinical effectiveness have been 

discussed in the literature (70,71). Sculpher argues that these rules may be too imposing and 

“represent arbitrary hurdles for identifying meaningful subgroups for decision making”. An 

alternative proposition is the pre-specification of subgroups for analysis alongside some 

hypothesised clinical or economic justification. 

 

The uncertainty associated with subgrouping must be explored. In lieu of sufficient evidence 

from clinical trials, cost-effectiveness studies typically employ decision-analytic models to 

predict health and cost outcomes. 
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Uncertainty can be evaluated with decision-analytic models by altering model inputs and 

recording the effect that this has on estimated health and cost outcomes. Traditional 

sensitivity analysis (TSA) involves incrementally changing one or a set of model parameters. 

This approach can be used to assess the effect of key modelling assumptions on predicted 

outcomes. Probabilistic sensitivity analysis (PSA) involves assigning each parameter of 

interest a distribution instead of a fixed value. The model is run repeatedly, allowing 

parameters to vary according to their assigned distribution, and outcomes are recorded. The 

distribution of outcomes produced in PSA informs researchers of the scope of parametric 

uncertainty in the modelling process. Both TSA and PSA can be employed at the subgroup 

level to gain increased understanding of the inherent uncertainty in the decision-making 

process. 

 

Consideration must be made regarding data limitation when undertaking stratified cost-

effectiveness analysis. Meta-analysis of randomised controlled trial data should be treated as 

the gold standard for assessing the relationship between independent and dependent variables 

(72). Individual-level longitudinal data allows researchers to establish covariates which drive 

heterogeneity in cost-effectiveness outcomes in a population and to model covariate 

interactions. Cross-sectional datasets may also provide information on the baseline 

distribution of risk factors, costs, and morbidity in a population. 

 

Subgrouping patient populations requires making inferences based on a smaller amount of 

data than in other cost-effectiveness studies. Uncertainty will therefore be greater in stratified 

cost-effectiveness analyses and it may be necessary to acquire more subgroup-level data. 

Espinoza et al. (73) provide a framework to estimate the expected value of acquiring further 

subgroup-related data when addressing heterogeneity in cost-effectiveness analysis. 

Applying the value of information framework (74), they show that the total expected value 

of perfect information (tEVPI) in a population which comprises of S mutually-exclusive 

subgroups is equal to the sum of each subgroup-specific EVPI (𝐸𝑉𝑃𝐼𝑠) weighted by the 

proportion of that subgroup in the population (𝑤𝑠): 

𝑡𝐸𝑉𝑃𝐼 = ∑ 𝐸𝑉𝑃𝐼𝑠𝑤𝑠
𝑆
𝑠=1 . 

 

Equity is a final concern when implementing policies which reflect heterogeneity in cost-

effectiveness. Making treatment decisions based on some patient characteristics may be 

deemed socially unacceptable. Stratifying populations based on sociodemographic 

characteristics like age, sex, race, and social class is likely to raise equity issues. 
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Alternatively, stratification by such characteristics may be considered socially acceptable if 

this stratification leads to a reduction in health inequalities (75). One approach to limit equity 

issues is for decision-making bodies to pre-specify acceptable characteristics with which to 

stratify patient populations. 

 

2.6 QALYs and their Constrained Maximisation 

 

Health economic analyses typically aim to influence policy in a manner that maximises 

QALYs in a population (40,42,55,59). It is worth questioning whether this is the correct 

maximand for decision-makers. Let ‘correct’ be defined by two necessary and sufficient 

dimensions first expressed by Williams (76). The correct way to prioritise treatment must be 

just, though this is an “essentially contested” concept, and must rest on some notion of 

consent from affected parties. Through consideration of these fundamental questions, it 

becomes clear that all healthcare decision-making is constrained, even for organisations like 

NICE who explicitly pursue cost-effective practice. 

 

Is QALY Maximisation Just? 

 

One reason that QALYs are seen to be just is that they represent an objective means to 

compare disparate health states. The benefit of using this metric to compare health-related 

utility across different health states and disease areas is well-established (77,78). Unlike 

biological health metrics (e.g. CVD events prevented, deterioration in CD4 count), QALYs 

can be compared across disease areas. Unlike life years gained and lives saved, they 

cardinally rank health state utility and therefore represent both longevity and quality of life 

in decision-making. While cardinal ranking of health state utility is difficult and 

controversial, it allows analysis to account for the intuitive fact that some health states are 

more desirable than others. 

 

Some have argued that QALY maximisation in unjust. Harris imagines a world in which poor 

health is randomly distributed in a population. He argues that in such a world it is unjust to 

direct treatment away from those who suffer from diseases with high cost-per-QALY 

treatments (79). Two hypothetical patients who may receive a life-saving treatment are 

presented. The intervention will extend their lives by an equal amount of time (80). One 

patient is a ‘victim of disaster’ and has a low quality of life, while the other lives in full health. 

Under QALY maximisation, the fully healthy patient would receive treatment. The less 
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healthy patient appears to suffer ‘double jeopardy’ in this case: they experience a debilitating 

event and are punished for this by not receiving future treatment. 

 

Cubbon argues that QALY maximisation is a just basis for allocating healthcare resources 

and takes issue with Harris’ critiques (78). He acknowledges QALY maximisation can 

discriminate against those less capable of deriving benefit from resources. Importantly, he 

notes this is only contingently true – it is not primarily because someone is ill that they are 

not treated. Rather, it is because someone else can gain more benefit given restricted 

healthcare resources. This discrimination loses its “sting” for Cubbon if those whose 

treatment is considered to have low cost-effectiveness are not systematically part of a clearly-

defined and unchanging group. Lower value patients are a disparate group, he continues, and 

the conditions that constitute this group are continually changing. 

 

The concept of ‘double jeopardy’ has been singled out for challenge in the literature. Singer 

et al. (81) highlight that more often than not health care aims to ameliorate a patient’s 

condition rather than save their life. There is much more scope to increase quality of life for 

a patient living at a QALY of 0.40 than a patient living at a QALY of 0.95. Hence, health 

resources are more likely to be directed towards the ill. 

 

Rawles also questions unconstrained QALYs maximisation (82). He argues that life, life 

years, and suffering are distinct dimensions of the human experience that cannot be 

synthesised into a unitary metric. Harris echoes this critique of QALYs (79). Both researchers 

argue that life (of any quality) is undervalued in QALY formulation (83). 

 

Cubbon notes that caring solely about life years or lives saved leads to irregular decision-

making (78). If concerned only with saving lives, one may equally value saving a baby with 

short life expectancy to saving another who will live 70 more years. Intuitively this seems 

wrong. Health, in Cubbon’s view, is “sine qua non” for a range of human activity. In other 

words, its existence dictates one’s ability to appreciate their remaining life years. 

 

Additional concerns have been raised with the use of QALYs in decision-making (76). Three 

distinct ethical concerns with QALYs raised are: 

(i) The wrong population may be used to elicit preference for QALYs 

(ii) Moving from individual to group values may be invalid. 

(iii) QALY maximisation ignores interpersonal distribution of health gains. 
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Williams refutes the validity of the concerns raised above (76). With regards to preference 

elicitation, he notes that the way in which QALYs are derived allows for different views to 

be accepted. Originally clinicians’ views were used to value health states, but the general 

public and patients can also inform valuation. Of the second concern, it is noted that some 

physicians may believe it unethical to replace the values of an individual patient with that of 

a larger group of patients. It follows that they should be able to provide care in a way which 

best suits their individual patient’s desires. Williams counters: only in a purely private market 

(with no charity and no insurance) does a patient get everything they want. Pursing policies 

which maximise population-level QALYs simply increases transparency and accountability 

in areas where clinicians previously had “unchallenged private discretion”. 

  

Williams denies that the QALY approach to priority-setting must necessarily ignore 

interpersonal distribution of health (76). Nothing in the QALY approach requires that QALYs 

alone are maximised. In simple QALY maximisation, a value judgement is made that 

postulates that all QALYs gained are equal, regardless of who experiences them. This is 

described by Nord et al. (84) as the principle of “distributive neutrality”. Williams notes that 

the principle of distributive neutrality can be defied and QALYs can be weighted by 

coefficients to represent a society’s aversion to inequality. 

 

Is QALY Maximisation Consented to by Affected Parties? 

 

The second dimension necessary to define a correct maximand for health sector decision-

makers is consent from affected parties. There are many parties affected by health sector 

decision-making. Anyone who may seek care in the health system is affected by a healthcare 

decision as no individual is certain of their future health status. Moreover, the decision to 

fund one programme (healthcare or otherwise) necessarily benefits some individuals and 

‘disbenefits’ others through displaced funds (76). 

 

QALY maximisation alone as the objective function of a health sector decision-maker is only 

justified if the general public subscribes to the principle of distributive neutrality. Decades of 

research, across many countries, suggests that individuals do not subscribe fully to the 

principle of distributive neutrality, that ‘a QALY is a QALY is a QALY’ (85) regardless of 

the characteristics of the person gaining health. 
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Empirical studies have long shown that individuals value QALY gains differently dependent 

on who receives them. There is considerable public and political support for the idea that 

QALY production in young children and parents should be valued at a higher rate than in the 

elderly (84,86–90). Initial and final health state may affect valuation of health gains. Research 

shows a tendency for individuals to prefer treatment in those that are very ill (91–94) and an 

aversion to treatments which leave a patient significantly disabled (94–96). 

 

Evidence pertinent to preventive services shows that people may value QALYs differently 

dependent on how much health a patient gains. Choudhry et al. (97) found that individuals 

are more likely to support a large number of small health gains distributed across a large 

population rather than large health gains distributed across a smaller population, even when 

the total number of QALYs gained is equal. They additionally show that this decision reverts 

at very low levels of gain for the many. 

 

Finally, individuals may value QALYs differently dependent on the socioeconomic status of 

patients who derive benefits. Dolan et al. reviewed literature to assess whether social value 

of health is affected by socioeconomic inequality. They showed widespread belief that health 

funds should be spent on reducing socioeconomic inequality in health while also increasing 

population health (98–104). This research additionally suggested that there may be a 

threshold of inequality that individuals are willing to accept. 

 

As alluded to previously, weightings can be applied to QALYs in cost-effectiveness analyses 

to ensure that health gains are distributed to in a way that reflects a society’s preference for 

health production in different patients. It appears that many candidate patient characteristics 

would need to be considered in a truly representative weighting process. Priority-setting 

based on weighted outcomes fundamentally accepts that QALYs are not the sole maximand 

of a health sector decision-maker. 

 

QALY Maximisation and Health Sector Decision-Making 

 

From the discussion above, it appears the QALYs should not necessarily be the sole 

maximand for a health sector decision-maker. However, in lieu of consensus regarding the 

distributive preferences of affected parties in a health system, cost-effectiveness analysis and 

the principle of distributive neutrality are likely the most valid mechanisms for priority-

setting. It is roundly agreed that health gains should play an important role in determining 
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who receives treatment and valid weightings for patient characteristics have not been 

established. 

 

In the NHS in England and Wales, the decision to implement new health technologies is 

assessed by NICE. Cost-effectiveness analyses and review of economic evaluations are 

conducted by NICE to determine whether an intervention is cost-effective at a willingness-

to-pay threshold of £20,000-£30,000/QALY. In its Guide to the Methods of Technology 

Appraisal (40), NICE states that interventions with ICERs below £20,000/QALY should be 

appraised solely on their cost-effective. Interventions with ICERs above £20,000/QALY 

should account for additional factors including: innovative nature of the technology, whether 

the treatment extends life expectancy in patients near the end of their life, and ‘non-health 

objectives’. Elsewhere the guide states that NICE committees "will take non-health 

objectives of the NHS into account by considering the extent to which society may be 

prepared to forego health gain in order to achieve other benefits that are not health related”. 

NICE can therefore be thought of as generally pursuing QALY maximisation, somewhat 

constrained by other health- and non-health-related objectives. 

 

In the Scottish NHS, the Scottish Medicines Consortium (SMC) is responsible for consulting 

local health boards about newly-licenced medicines and the Scottish Intercollegiate 

Guidelines Network (SIGN) is responsible for ensuring evidence-based clinical practice 

(105,106). Guidelines from the SMC and SIGN are more equivocal about the role of cost-

effectiveness in decision-making. In its guidance to manufacturers on new product 

assessment, the SMC states that they do not have a fixed cost-effectiveness threshold with 

which they judge new submissions (107). The guidance continues, however, that the SMC 

takes note of NICE’s cost-effectiveness thresholds and decision-making process for 

evaluating interventions. In its Guideline Developer’s Handbook, SIGN is equally vague 

about the role of cost-effectiveness in its decision-making (108). It states that the incremental 

cost of a new intervention should be weighed against the benefits gained, but does not define 

a specific threshold for treatment implementation. 

 

To different degrees, NICE, the SMC, and SIGN all support the principle of maximising 

health using cost-effectiveness analysis but are constrained in this maximisation. NICE 

explicitly states that its decisions may be shaped by additional measures of benefit. The 

equivocal language of the SMC and SIGN suggests that they too value non-QALY benefits 

in their decision-making. 
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Research supports the idea that health sector decision-makers in the U.K. do not solely aim 

to maximise QALYs. Shah et al. (109) looked at data from 51 impact assessments produced 

by the U.K. Department of Health in 2008 and 2009. They found that in only eight (15.6%) 

of the impact assessments, benefits were measured in terms of QALYs. Other benefits 

considered were patient and carer experience, patient and public empowerment, choice and 

access, equity and fairness, public trust and confidence, improved staff morale, and markets 

and structure. Some of these features may help the NHS to produce QALYs in the future, but 

the results certainly suggest that health expenditure in the U.K. does not aim solely to increase 

QALYs. Appleby et al. (110) similarly found that QALYs and cost-effectiveness are rarely 

mentioned in local government assessments of health expenditure. 

 

It is useful to consider the role of a healthcare decision-maker in the U.K. as a QALY 

maximiser constrained by more than just costs. As Shah et al. (109) found, the decision-

maker competes for resources with government-mandated health investments with disparate 

objectives. NICE guidelines contend that dimensions outwith simple QALY maximisation 

may be used to support rejection or reimbursement of an intervention. Mooney highlights 

that the very nature of NHS as it exists in Scotland, England, and Wales constrains QALY 

maximisation. The NHS was founded on the principle of equality of access: a system free at 

the point of service that meets the needs of everyone, based on clinical need rather than ability 

to pay (111). In its very structure, it assigns weight (and therefore distributes costs) to the 

production of health equity which need not align perfectly with QALY maximisation. 

 

The role of cost-effectiveness analysis in the U.S. is more complicated. Some organisations 

that issue health care guidance aim to maximise health, or at least have general regard to the 

social welfare function of a patient population. The two most discussed U.S. guideline 

organisations in this thesis will be the American College of Cardiology (ACC) and the 

American Heart Association (AHA). Both claim that their objective is to maximise patient 

health and have discussed the role that cost-effectiveness analysis plays in this process (112–

114). Neumann and Greenberg note that many other U.S. organisations also subscribe to 

some form of QALY maximising objective (115). Improving patient health is not the aim of 

all health sector decision-makers in the U.S., where profit-driven providers often offer more 

costly and worse services than their not-for-profit rivals (116–120). 
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2.7 Discounting in Health Economic Analysis 

 

This thesis will regularly rely on the concept of discounting in health economic analysis. 

What follows is a short description of discounting, justifying its use in latter chapters. 

 

Present health benefits and costs are often considered to be more important than those in the 

future. Cost-effectiveness analysis of health technologies can account for potential changes 

in the real value of benefits and costs through discounting. Decision-makers look to maximise 

health given an exogenous budget, acknowledging that costs incurred effectively amount to 

foregone health. By looking at the decision rules invoked by such maximisation it is possible 

to determine the rate at which health and costs should be discounted, respectively. 

 

Discounting of future costs should not be considered as a simple reflection of individual 

preferences but instead as a means of accounting for real rates of return to investment, 

opportunity costs, and social time preference rates. For example, £1,000 today could be 

prudently invested to garner more real money in a year’s time. Future costs should be 

weighted to account for the opportunity cost associated with paying for health in the present 

rather than the future. Moreover, if a society is expected to have increasing access to 

resources, current costs are more burdensome than those incurred in the future and 

discounting should be applied. 

 

While discounting of costs is seen as intuitive and uncontroversial, the intuition for 

discounting of health benefits is less clear (121). This debate stems from the fact that health, 

unlike costs, cannot be invested in order to yield future gains. Hence the previous logic for 

cost discounting does not hold. It is important, however, to also consider time preference 

rates for health. Evidence suggests that it is natural for humans to prioritise current health 

and partially ignore future consequences (4,122,123). It may then be necessary to discount 

future health benefits associated with the introduction of new health technologies. The 

amount of health in period t+1 considered to be equivalent to one unit of health in period t is 

defined as the social time preference rate for health. 

 

It is assumed that a health sector decision-maker has estimates of a few necessary variables 

when determining whether or not to implement a new health care intervention. These are 

listed below. 
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Δht – incremental health benefits in period t 

Δct – incremental costs in period t 

kt – cost-effectiveness threshold in period t 

rh – social time preference rate for health 

                     

Under the assumption that all costs fall on a constrained budget, the expected foregone health 

in each period due to the additional costs of adopting the respective health technology can be 

represented by incurred costs divided by the cost-effectiveness threshold in each period 

(Δct/kt). Health benefits and costs over two periods can then be represented as shown in Table 

2-2 below, adapted from Claxton et al. (124). Note that the values in Period 2 are discounted 

to account for the social time preference rate for health. 

 

Parameter 
Time Period 

1 2 

Health gained (present value) 𝛥ℎ1 
𝛥ℎ2

(1 + 𝑟ℎ)
 

Health foregone (present value) 
𝛥𝑐1

𝑘1
 

𝛥𝑐2

𝑘2(1 + 𝑟ℎ)
 

Table 2-2: Present value of health gained and health foregone over two time 
periods, adapted from Claxton et al. (text) 

 

A decision-maker is expected to implement a new technology if the health gained is greater 

than health foregone over the total time period. As previously discussed, health gained minus 

health foregone can be described as incremental net health benefit. A decision-maker is 

expected to accept a new health technology if, and only if: 

INHB = (Δh1 +
Δh2

(1+𝑟ℎ)
) − (

Δc1

k1
+

Δc2

𝑘2(1+𝑟ℎ)
) > 0. 

 

Note here that costs are simply a proxy for foregone health so health and costs should be 

discounted at the same rate. Importantly, however, this decision rule does not account for 

potential growths in the cost-effectiveness threshold. Such growth is common, and may be 

caused by changes to the health service’s budget and cost of health care services and products. 

Claxton et al. show that differential discount rates should be employed for health benefits and 

costs if the cost-effectiveness threshold is projected to change (124). 

 

The suggested discount rate for both health benefits and costs recommended by NICE is 3.5% 

(40). Paulden and Claxton argue that this value is set too high, and should be closer to 1.0-

1.5% (125). In the U.S., the Second Panel on Cost-Effectiveness in Health and Medicine 
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recommends an equal discount rate of 3.0% (54). These values will be adopted as parameters 

for cost-effectiveness analyses in Chapters 7 to 10. 

 

2.8 Chapter Summary 

 

This chapter described stratified medicine, stratified cost-effectiveness analysis, and 

heterogeneity in cost-effectiveness. It showed that health services can achieve consumer 

surplus by reflecting heterogeneity in outcome in their decision-making. 

 

Heterogeneity in cost-effectiveness will be an important consideration throughout this thesis. 

When selecting which subgroups of a population should receive a treatment, it is important 

to consider heterogeneity in expected health and cost outcomes. Epidemiology can help to 

establish patient subgroups that are most likely to benefit from a treatment. Chapter 4 

discusses the epidemiology of CVD and the epidemiologic basis for novel approaches to its 

prevention. The remainder of the thesis then considers the relative cost-effectiveness of these 

novel approaches to prevention. 
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Part 2 

Cardiovascular Disease Prevention 

 

Part 2 provides an introduction to CVD and discusses approaches to its prevention. A 

particular focus is placed on linking this highly prevalent chronic health condition to the 

theory presented in Part 1 regarding heterogeneity in cost-effectiveness. Current clinical 

guidelines are discussed alongside the epidemiologic basis for alternative approaches to 

prevention. 

 

Chapter 3 describes the prevalence and incidence of CVD in Scotland, England and Wales, 

the U.S., and the rest of the world. Theory regarding the prevention of CVD and current 

clinical guidelines are discussed. These guidelines typically recommend targeting treatment 

at patients with elevated 10-year CVD risk. 

 

Chapter 4 presents the epidemiologic basis for three different approaches to CVD prevention. 

It describes the respective abilities of these approaches to reflect heterogeneity in cost-

effectiveness and provides examples of policies which adopt each of these approaches to 

prevention. The three approaches discussed are: 

 Continued use of 10-year risk scoring 

 Novel decision mechanisms that incorporate 10-year risk scoring 

 Use of decision-analytic models in the clinical process. 
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Chapter 3 

Cardiovascular Disease 

 

3.1 Purpose 

 

This chapter aims to describe CVD and approaches that can be adopted to reduce its 

incidence. The prevalence, incidence, and economic burden associated with the disease in 

Scotland, England and Wales, the United States, and the rest of the world are discussed, 

respectively. A brief overview is provided of different forms of intervention that can be 

adopted to prevent CVD. Finally, guidelines regarding the prioritisation of patients for 

preventive intervention in high-income countries are detailed. These guidelines typically 

recommend targeting treatment at patients who have elevated 10-year risk of experiencing a 

primary CVD event. ‘High-income’ is defined according to the World Bank Atlas 

methodology, and therefore incorporates all countries with a gross national income (GNI) per 

capita greater than $12,056 in 2019 (126). 

 

The purpose of this chapter is to introduce the clinical area of CVD. A primary objective of 

the thesis is to apply theory regarding heterogeneity in cost-effectiveness to CVD prevention. 

 

3.2 Cardiovascular Disease 

 

Definition 

 

CVD is a term used to describe a range of diseases of the heart and blood circulatory system. 

The International Statistical Classification of Disease and Health Related Problems (ICD) 

indexes different forms of CVD. The conditions which constitute CVD can predominantly 

be described as either coronary heart disease (CHD) or cerebrovascular disease (CBVD), 

along with some less prevalent conditions (Table 3-1). 

 

Coronary heart disease, also referred to as ischaemic heart disease (IHD) and coronary artery 

disease (CAD), is the most common type of CVD. It may manifest itself in the form of stable 

or unstable angina pectoris, myocardial infarction, or sudden cardiac arrest. These conditions 

generally stem from a similar physiological process called atherosclerosis (127). 
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Atherosclerosis is the build-up of fibro-fatty plaque on the walls of arteries, typically over 

many decades before the primary onset of a clinical event, as shown in Figure 3-1 (128). This 

build-up may lead to ischaemia (a restriction of blood flow) to the myocardium (the muscular 

tissue of the heart). Atherosclerotic build-up can be exacerbated or slowed down by a range 

of ‘risk factors’. When myocardial oxygen demand is not met, an individual may experience 

chest pain or pressure (angina pectoris) and damage and death of heart tissue (myocardial 

infarction). Ischaemia can also cause the heart to pump irregularly which may ultimately 

result in cardiac arrest (129). 

 

Cerebrovascular disease refers to conditions that arise when the flow of blood to the brain is 

restricted (130). An ischaemic stroke occurs when severe restriction of blood flow to the brain 

occurs, often caused by the dislodgement of a blood clot in an individual’s arteries. This may 

lead to the damage and death of brain cells. Transient ischaemic attacks (TIAs) occur when 

there is a temporary restriction of blood flow to the brain. These events typically last less than 

an hour and are commonly referred to as ‘mini-strokes’. Atherosclerosis is a key causal 

predictor of stroke risk (131,132). 

 

ICD10 
Codes 

Condition 

I20-25 Coronary Heart Disease 

I60-69, 
G45 

Cerebrovascular Disease 

I00-16 
I20-52 
I70-99 

Other: Acute rheumatic fever, chronic rheumatic fever, 
hypertensive diseases, pulmonary heart disease and diseases 
of pulmonary circulation, other forms of heart disease, 
diseases of arteries, arterioles, and capillaries, diseases of 
veins, lymphatic vessels and lymph nodes, not elsewhere 
classified, other and unspecified disorders of the circulatory 
system 

Table 3-1: International Classification of Disease codes for CVD (text) 

 

Less common constituent forms of CVD include pulmonary heart disease, acute rheumatic 

fever and chronic rheumatic heart disease, pericarditis, and myocarditis. The relationship 

between these conditions and modifiable risk factors is less established than CHD and 

CBVD, and they often develop following an initial CHD or CBVD event (133–135). Hence 

CVD prevention often focuses on reducing rates of CHD and CBVD. 
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Figure 3-1: Timeline of atherosclerotic build-up (text) 

 

Prevalence and Incidence 

  

Advancements in health technology throughout the first half of the 20th century dramatically 

changed the medical landscape, extending population-level life expectancy and changing the 

types of diseases that cause mortality and morbidity in high-income countries. 

 

In the early 1900s, leading recorded causes of mortality in Scotland, England and Wales, and 

the U.S. were respiratory conditions, infectious disease, and parasitic disease (136–138). 

Record keeping was poor at the time, however, and up to 50% of deaths were registered as 

‘other’. Cancer and heart disease were common but not leading causes of mortality. 

 

Since the start of the twentieth century, life expectancy in high-income countries has 

increased markedly. This, in turn, has altered the distribution of mortality and morbidity in 

these countries. Cutler, Deaton, and Lleras-Muney attribute the increase in life expectancy to 

knowledge, science, and technology (139). Enlightenment ideas of personal health and public 

administration resulted in individuals living a better quality of life, eating more nutritious 
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diets, and living in less squalor with better sanitation. Increased medical knowledge led to 

the spread of new health technologies (e.g. polio vaccines, oral rehydration therapy for 

diarrhea, vaccines, antibiotics) and practices were developed to combat illness (e.g. sanitary 

practice to prevent spread of germs). 

 

As life expectancy increased, so too did the prevalence of chronic illnesses like cancer and 

CVD. Individuals began to live long enough to experience advanced atherosclerosis and the 

effects of unhealthy behaviour (including smoking, consumption of processed foods, and 

sedentary lifestyle) (140). Chronic conditions replaced infectious diseases as the major health 

concern for high-income populations. By 1950, age-adjusted rates of CHD and stroke 

mortality were 307 and 105 per 100,000, respectively (140). The mortality rate for CHD in 

the U.K. was around 200 per 100,000 in 1950, and peaked at 550 per 100,000 in 1970 (141). 

 

In high-income countries, incidence rates of CVD have fallen in recent decades. O’Flaherty 

et al. note that CVD mortality rates fell by 50-80% in the U.S., U.K., and Western Europe in 

the latter half of the 20th century (142). Large decreases in CHD and CBVD mortality were 

observed across Western Europe. From 1980-2009, CHD mortality fell 67% and 66% to 87 

and 38 per 100,000 for men and women, respectively. A similar reduction in CBVD mortality 

was observed during the same time period (143). From 1990-2013, age-adjusted 

cardiovascular mortality rates also decreased significantly in the U.S., from 376 to 274 per 

100,000 (140). 

 

Studies have attempted to quantify the contributors to falling rates of CVD in high-income 

countries. Changes in health behaviours alongside the development and improvement of 

primary and secondary health care interventions are largely responsible for this reduction in 

CVD mortality and morbidity (142). Hunink et al. estimated that around 54% of the decrease 

in CHD mortality in the U.S. in 1980-1990 could be attributed to reduction in risk factor 

levels while 43% was explained by improvements in treatment of chronic CHD (144). 

Similarly, Ford et al. found that 44% of the decrease in U.S. CHD mortality from 1980-2000 

was explained by changes in risk factors, while 47% was explained by changes in treatment 

of chronic CHD (145). They additionally note that reduction in total cholesterol, systolic 

blood pressure, smoking, and physical inactivity accounted for 23%, 20%, 12%, and 5% of 

these reductions, respectively. A study set in the U.K. estimated that declines in CHD 

mortality from 1981-2000 were explained 58% by risk factor control and 42% by treatments 

(146). This study found that reduced levels of smoking had the greatest effect of all risk 
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factor-related disease reduction, followed by cholesterol and blood pressure control. A final 

study in 2012 estimated that half of the 6% reduction in CHD mortality observed in the U.K. 

between 2000-2007 was explained by improved treatment uptake (147). 

 

Despite large improvements, it remains vital for health systems to fund preventive 

interventions for CVD. Rates of CVD in high-income countries have plateaued recently. 

Despite reductions in incidence, the condition remains a highly prevalent cause of morbidity, 

mortality, and economic burden in richer countries (140,148). Funding preventive 

interventions for CVD is also important in low- and middle-income countries. Rates of 

infectious disease are falling across the globe. As observed in high-income counterparts 

during the 20th century, low- and middle-income countries may soon experience an increase 

in chronic conditions like CVD as life expectancy increases (142). 

 

Scotland, England, and Wales 

 

CVD was responsible for around 160,000 deaths in the U.K. in 2015. Rates of the disease are 

disproportionately high in Scotland, where more than 15,000 people died of CVD in 2015 

(149). With a population of approximately 5.4 million, Scotland represents around 8.2% of 

the total U.K. population while contributing 9.8% of CVD fatalities (150). In addition, the 

British Heart Foundation estimates that more than 7 million people in the U.K. currently live 

with CVD. Again, this rate is disproportionately high in Scotland, where 670,000 individuals 

are estimated to suffer from the condition (149). 

 

There exists a strong socioeconomic deprivation gradient in CVD in the U.K. and Scotland. 

Hotchkiss et al. show that there is a strong socioeconomic gradient in unhealthy CVD risk 

factors in Scotland (151). These risk factors included smoking, insufficient fruit and 

vegetable consumption, excessive salt consumption, excessive alcohol consumption, 

diabetes, and hypertension. 

 

Woodward, Brindle, and Tunstall-Pedoe have shown that the socioeconomic gradient in CVD 

persists when one controls for traditional risk factors like age, sex, diabetes, cholesterol, 

family history of CVD, chronic kidney disease, smoking, and blood pressure (152). Figure 

3-2 shows the 2011-2015 standardised mortality rates for CHD in Scotland, provided by the 

Information Services Division of NHS National Services Scotland, disaggregated into three 

age-groups and an index of social deprivation (153). Individuals from more deprived areas 
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have a much greater rate of CHD mortality, and this is especially true for individuals aged 

less than 65 years old. Hippisley-Cox et al. have observed a similar relationship between 

social deprivation and CVD risk in England and Wales (154). 

 

 

Figure 3-2: Standardised CHD Mortality Rate in Scotland for 2011-2015, Information 
Services Division NHS Scotland (text) 

 

United States 

 

The AHA estimates that CVD accounts for 835,000 deaths annually in the U.S., making it 

the nation’s most common cause of death. In addition, it is estimated that some 92 million 

American adults currently live with chronic CVD (155). 

 

Rates of CVD differ significantly amongst subgroups of the U.S. population. In 2009, the 

U.S. Center for Disease Control reported that non-Hispanic Black Americans have a 51.6% 

and 47.4% greater age-adjusted rate of CHD and stroke mortality compared to non-Hispanic 

Whites, respectively. It has also been shown that low socioeconomic status (defined by 

household income less than 150% of the federal poverty level) is a significant predictor of 

any CHD event and CHD mortality (156). 

 

Figure 3-3 shows age-adjusted CVD mortality rates in the U.S. from 1969-2011, stratified by 

quintile of socioeconomic status (157). This analysis by Singh et al. showed both the secular 

trend of falling CVD mortality rates in the U.S. as well as the persistent socioeconomic 

disparity in the disease’s mortality rate. 
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Predicting future incidence and prevalence of a health condition is a difficult process which 

entails inevitable uncertainty. Heidenreich et al. predict that there will be a substantial 

increase in CVD mortality in the U.S. by 2030. This study adopted cohort-component 

methodology which assumes changes in mortality rates are explained solely by assumptions 

regarding future births, deaths, and net migration (158). Pearson-Stuttard et al., on the other 

hand, employed a trend-based model which accounts for historical trends in CVD reduction 

(159). They predicted that CHD mortality would fall by 27% by 2030, while stroke mortality 

rates would remain constant. 

 

 

Figure 3-3: Age-standardised CVD Mortality Rate in U.S., 1969-2011, Singh et al. 

(text) 

 

Europe and Rest of World 

 

The Global Burden of Disease (GBD) Study has published detailed estimates of CVD 

incidence, prevalence, and incidence trends (1). This study estimated that CVD rates have 

decreased from 1990-2015 in almost all European countries. The gradient of decline has been 

much greater in Central and Western European countries. The study estimated that around 85 

million individuals live with CVD in Europe, a number that has increased since 1990 despite 

falling incidence rates. This increase in prevalence is likely attributable to sociodemographic 

changes in the European population (e.g. aging populations) alongside increased obesity. 
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Age-standardised CVD mortality rates fell in all high-income countries and most middle-

income countries between 1990-2015, however the GBD study notes that no significant 

change was observed in most of sub-Saharan Africa and countries across Oceania and Asia 

(1). In addition, Bangladesh and the Philippines experienced significant increases in age-

standardised CVD mortality. The study also examined the relationship between a region’s 

development (assigned using a combinatory measure of income per capita, education 

attainment, and fertility) and CVD mortality rates. They found that CVD mortality increases 

with the development index at low levels of development, but this trend reverts at higher 

levels of development, as shown in Figure 3-4 (1). This observation supports the hypothesis 

that rates of CVD increase (and will continue to increase) in less-developed countries as they 

become more successful at reducing rates of infectious disease, prolonging their population’s 

life-expectancy. 

 

 

 
Figure 3-4: Age-standardised death rate for a range of cardiovascular conditions 
versus sociodemographic index for males and females, Roth et al. (text) 
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While this thesis will focus on CVD prevention in high-income countries, trends in the 

incidence and prevalence of the disease around the world should also be considered. The 

GBD analysis suggests that preventive strategy in high-income countries may become 

relevant to low- and middle-income countries in coming years as their health services and 

sociodemographic characteristics evolve. Indeed, one of the United Nations’ Sustainable 

Development Goals is to achieve universal health coverage across the globe by 2030 (104). 

Implementing cost-effective interventions will help countries to achieve this goal. 

 

3.3 Economic Burden of CVD 

 

To estimate the total economic burden of a disease, researchers must account for primary, 

secondary, and tertiary healthcare costs alongside non-healthcare costs. Non-healthcare costs 

include informal care and years of lost work through mortality and incapacity. 

 

The economic burden of CVD has been estimated in the U.K. and around Europe. In 2006, 

Luengo-Fernandez et al. performed a cost-of-illness analysis, considering the direct and 

indirect costs that CVD inflicts on the U.K. economy. It was estimated that the total economic 

burden of CVD in the U.K. in 2004 was £29.1 billion, of which the non-healthcare costs 

accounted for £11.7 billion (160). The same authors estimated the annual total economic 

burden and non-healthcare cost of CVD in the E.U. to be €168.8 billion and €64.2 billion, 

respectively (161). 

 

In 2010, Heidenreich et al. performed cost-of-illness analysis for the AHA, estimating both 

the current and future economic burden of CVD (158). They estimated that in 2010, 

healthcare (“direct medical”) and non-healthcare (“indirect”) costs of CVD in the U.S. were 

$272.5 billion and $171.8 billion ($US 2008), respectively. By 2030 they predicted these 

costs will rise to $818.1 billion and $275.8 billion, respectively. The larger relative increase 

in healthcare costs was explained by the aging population in the U.S. and an upwards trend 

in per capita medical expenditure (159). 

 

3.4 CVD Risk Factors 

 

Increased etiological understanding of CVD has improved clinicians’ ability to estimate the 

likelihood that a disease-free individual will experience a primary CVD event. Several risk 

scores have been developed since 1967, when Truett, Cornfield, and Kannel performed 
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multivariate discriminant function analysis to evaluate risk in the Framingham Heart Study 

(162). A recent systematic review (163) identified 363 multivariable models for the 

prediction of any future CVD outcome in an asymptomatic population since Truett et al.’s 

seminal paper. 

 

While a range of variables have been considered in CVD risk estimation, Damen et al. note 

that most models include a similar set of covariates (163). Five key variables, age, sex, 

smoking, blood pressure, and blood cholesterol levels, appeared in 66% of the models 

identified in their systematic review. Other commonly included covariates were diabetes 

(52%) and BMI (29%). High levels of LDL-C are considered to increase CVD risk, while 

high levels of high-density lipoprotein cholesterol (HDL-C) are associated with reduced rates 

of CVD events (164). Both LDL-C and HDL-C are members of a group of biological 

substances called lipids. The term cholesterol and lipid are often used interchangeably in the 

discussion of CVD risk. Lipid is a broad term, however, which pertains to a wide range of 

biomolecules including fatty acids, vitamins, glycerides, and waxes (165). 

 

3.5 Preventing CVD 

 

Types of Prevention 

 

There is a wide range of approaches and policies that can be adopted to prevent CVD. These 

are typically described by four categories: primordial, primary, secondary, and tertiary 

prevention. 

 

Primordial prevention aims to stop the development of a disease’s risk factors in early life. 

This is an important stage in the prevention of CVD. Even though atherosclerosis most often 

leads to CVD events which occur during adulthood, it has been established that 

atherosclerotic lesions develop in childhood (166). 

 

The Special Turku Coronary Risk Factor Intervention Project (STRIP), conducted in Turku, 

Finland, provides an example of primordial prevention for CVD (167). Over 1,000 infants 

were randomised to receive an individualised dietary intervention versus standard care. By 

their mid-teenage years, individuals who received the intervention had lower levels of 

metabolic syndrome, high blood pressure, high blood glucose, and high waist circumference. 

While long-term follow-up is currently not available to show the effect of these reductions 
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on CVD risk, this primordial intervention should theoretically have arrested or delayed the 

development of atherosclerosis before its initial development. 

 

Primary prevention aims to arrest the development of a disease before the occurrence of an 

incident event. This typically involves targeting unhealthy risk factors after they have 

developed. Preventive interventions for CVD usually take the form of legislative change, 

lifestyle advice, and pharmacological treatment. For example, the Soft Drinks Industry Levy 

was introduced in the U.K. in April 2018 (168). This is a tax on businesses which produce 

excessively sugary beverages, and aims to reduce obesity rates in the country (169). 

Pharmacologic forms of primary prevention include provision of cholesterol- and blood-

pressure-reducing medication to patients to reduce atherosclerotic build-up and subclinical 

CVD (170). 

 

Secondary prevention is employed to manage a condition. A key focus of such interventions 

is the correct diagnosis and management of patients who exhibit symptoms of a condition. 

Such interventions in CVD aim to slow down and prevent disease progression, improving 

patients’ quality of life. Cholesterol-reducing medications are often prescribed for the 

secondary prevention of CVD. These aim to reduce LDL-C, and hence slow the continuation 

of atherosclerotic build-up that may lead to recurrent CVD events (171). 

 

Finally, tertiary prevention is undertaken with the aim of reducing the level of morbidity 

experienced by individuals with symptomatic illness and preventing further disease-related 

deterioration. While secondary prevention aims to arrest further development of a disease, 

tertiary interventions simply aim to improve the quality of life, capability, and functioning of 

individuals with an established disease. Examples from CVD include stroke rehabilitation 

programmes and patient support groups to promote patient wellness and solidarity (172). 

 

High-Risk vs. Population Approaches to Primary Prevention 

 

This thesis will focus on the epidemiological basis, feasibility, and cost-effectiveness of 

different strategies for the primary prevention of CVD. All stages of prevention have 

contributed to the large reduction in CVD rates observed across high-income countries in 

recent decades. While there is increasing support for primordial prevention campaigns in the 

U.K. and U.S., the majority of preventive programs still focus on primary prevention. 
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Typically, such programs focus on risk factor reduction for CVD-free individuals aged 40 

years and above (25,26,173,174). 

 

In the seminal article Sick Individuals and Sick Populations, epidemiologist Geoffrey Rose 

set out two alternative approaches to primary prevention: the high-risk and population 

approaches (175). Building on previous analysis regarding CVD prevention (176), he showed 

that these different approaches to prevention could lead to very different population-level 

health outcomes. Sociologists, epidemiologists, and medical professionals have evaluated 

and critiqued these theories ever since. 

 

As its name suggests, the high-risk approach to prevention focuses on a subset of a population 

predicted to be at high-risk of developing a condition. Rose describes this as the “traditional 

and natural medical approach to prevention” (175). A doctor may identify a patient as having 

high blood pressure. They will then intervene to reduce this individual’s blood pressure, often 

through lifestyle modification or prescription of blood pressure-reducing medication. These 

preventive interventions will lead to reduced risk of illnesses associated with hypertension in 

future years. 

 

Rose suggests that the benefits of the high-risk approach to prevention are the ease with which 

interventions can be tailored to patients’ needs, the motivation of high-risk patients to 

improve their health, the motivation of physicians to improve the health of high-risk patients, 

and the favourable ratio of benefit to risk (or cost) associated with treating those most likely 

to develop a condition. 

 

One issue with the high-risk approach to prevention is the difficulty associated with 

predicting CVD risk. This difficulty is demonstrated in Figure 3-5. The figure displays the 

distribution of estimated baseline risk in two subsets of the Scottish population derived from 

the Scottish Heart Health Extended Cohort (177). Risk was estimated using a statistical tool 

called the ASSIGN risk score which estimates an individual’s probability of experiencing a 

primary CVD event within 10 years, dependent on traditional CVD risk factors (152,178). 

Individuals in the first subset, outlined in red, did not experience a CVD event within 10 

years of baseline risk measurement. Underlying this distribution in green is the baseline risk 

distribution of individuals who experienced a CVD event within 10 years of risk prediction. 

A large number of events occurred in supposedly ‘low-risk’ individuals. As Rose puts it, 

“The painful truth is that for [an individual in the lowest cardiovascular risk group] in a 
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Western population, the commonest cause of death—by far—is coronary heart disease! 

Everyone, in fact, is a high-risk individual for this uniquely mass disease” (175). 

 

 
Figure 3-5: ASSIGN risk score distribution (whole population versus those who have 
event) in SHHEC 

 

The population approach to primary prevention aims to lower average risk factor values in a 

population. This is typically achieved through ‘public health’ approaches to prevention 

including legislative changes and adoption of public health programmes. Examples of 

legislative changes are increased taxation or banning of unhealthy goods, regulation to 

improve environmental exposure of populations, subsidies for healthy produce, and mass 

media campaigns which promote healthy living. It is also possible to implement 

pharmacologic treatments using the population approach. For example, mass vaccination 

campaigns and public water fluoridation programmes adopt the population approach. 

 

The key benefits of the population approach, according to Rose, are the radical nature of the 

intervention and the potential for large population-level gains. The radical nature of the 

intervention refers to the fact that the intervention aims to address the conditions that lead to 

high prevalence of a disease’s underlying risk factors. This links directly to the next stated 

benefit. By moving population averages of risk factor levels to a healthier state, much greater 

benefit can be achieved than targeting a select group of individuals.  

 

Limitations of the population approach are also discussed by Rose. Notably there is a 

‘prevention paradox’ whereby larger population-level gains are achieved under the 

population approach, while smaller individual-level gains are achieved. This is because the 

gains are averaged over a much larger population. This directly leads to three other issues 
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with the population approach: due to low individual-level gains patients may have poor 

motivation to improve health, physicians may have poor motivation to treat patients, and the 

treatment may have unfavourable benefit-to-risk ratios. 

 

Academics have long evaluated and critiqued Rose’s high-risk and population approaches to 

prevention. Writing in the American Journal of Cardiology in 1985, Kottke et al. (179) 

estimated that lowering total serum cholesterol to 190 mg/dL and diastolic blood pressure to 

80 mmHg for the top decile of CVD risk in the U.S. population would lead to a 33% reduction 

in CVD mortality in the U.S Alternatively, if population mean total serum cholesterol and 

diastolic blood pressure were lowered to these values, a 70% reduction in CVD mortality 

would be achieved. This argument disregards Rose’s postulation that it is more difficult to 

motivate low-risk individuals to improve their health. 

 

Barton et al. consider the cost-effectiveness of population interventions to reduce cholesterol 

and blood pressure in England and Wales (180). A worksheet-based model predicted life 

years lost, QALYs lost, and healthcare costs incurred for men and women aged 40-90 

attributable to CVD. Relative risks were derived for blood pressure- and cholesterol-reducing 

interventions based on outcomes of previously enacted population health interventions. The 

life years gained, QALYs gained, and cost incurred associated with introducing such policies 

were then evaluated. 

 

For blood pressure reduction, a salt reduction campaign was modelled. It was conservatively 

assumed that such a programme may achieve a population-wide 3g/day reduction in salt 

intake, based on studies of similar programmes in Japan, Finland, and other countries. 

Analysis of the U.K. survey data suggested that this dietary change would lead to a 2.5 mmHg 

reduction in mean population systolic blood pressure. Finally, based on the Framingham risk 

functions for the U.K., this blood pressure reduction was assumed to correspond to a 2% 

relative risk reduction for CVD events. Similar calculations were undertaken to predict that 

trans-fat levels could be reduced by around 0.5% of total dietary intake in the U.K., resulting 

in a population-level 6% relative risk reduction for fatal CVD events. Trans fats have been 

shown to increase LDL-C and reduce HDL-C, increasing CVD risk (181,182). 

 

The salt reduction intervention was estimated to produce approximately 9,600 discounted life 

years and 131,000 discounted QALYs, leading to a discounted cost saving of £347 million 

over 10 years. The cholesterol reduction intervention was estimated to produce 
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approximately 571,000 discounted life years and 754,000 discounted QALYs, leading to 

discounted cost savings of £235 million over 10 years. 

 

There are limitations with Barton et al.’s study: no intervention-related costs were applied 

and a short time horizon of ten years was adopted. The authors acknowledge these limitations. 

They note that the cost-savings imply that large amounts of money could be spent cost-

effectively instituting the policies discussed. Moreover, they state that conservative 

modelling assumptions regarding prevention of recurrent events make their analysis 

“somewhat conservative” (180). It is also unclear how non-CVD costs were accounted for in 

the analysis. Any intervention that extends population life expectancy will certainly incur 

such costs which could be spent elsewhere by the health service. Nonetheless, this study 

shows that population interventions are likely to produce large health gains in a population 

through small average changes in risk factor levels and that these interventions may also be 

cost-effective. 

 

Zulman et al. considered the relative benefits of the population and high-risk approaches 

using sex-specific Weibull regression models (183). They simulated a population of 10 

million CVD-free Americans, applying four different treatment strategies: a population-

based low-intensity intervention, a population-based medium-intensity intervention, a 

medium-intensity intervention for individuals in the top 25% of the population’s LDL-C 

distribution, and medium-intensity treatment for individuals in the top 25% of the 

population’s CVD risk distribution. The low-intensity population intervention was found to 

be comparable with the LDL-C-targeted intervention, leading to around 0.77 million events 

prevented over five years. The moderate-intensity population intervention was found to be 

comparable to risk-targeted intervention, leading to around 1.72 million events prevented. 

However, in both cases number needed to treat was much greater for population-based 

approaches. When a small risk of treatment-related adverse events was modelled, it was much 

more desirable to implement the targeted strategies. 

 

The effect of population and high-risk strategies of prevention on health inequalities have 

long been discussed. Frohlich and Potvin (184) argue that effective population interventions 

can exacerbate health inequalities. They note that when a health care intervention is not 

specifically targeted at vulnerable populations, uptake and adherence of the intervention is 

usually greatest in higher socioeconomic status patients. Specific examples of this 

phenomenon are presented which relate to disparity in publicly provided cervical cancer 
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screening in Ontario, Canada and the U.S. (185), the inability of neonatal care programmes 

in Brazil to reach low-income mothers (186), and greater comprehension and uptake of health 

information campaigns regarding smoking by better educated individuals in Italy (187). Each 

of these examples highlights a specific mechanism through which population interventions 

may exacerbate health inequalities in a population. 

 

Less socially deprived individuals are often better equipped to benefit from population health 

interventions. This may be due to better education as well as the apparent paradox that 

healthier patients often have better access to health services. The latter of these explanations 

has been described as the ‘inverse care law’. The inverse care law was first theorised in a 

1971 article by Julian Tudor Hart and states that availability of health care services tends to 

vary inversely with the need of the population receiving care (188). Richer, healthier 

populations have easy access to care while poorer, less healthy populations have limited 

access. Hart famously declared that the inverse care law “operates more completely where 

medical care is most exposed to market forces, and less so where such exposure is reduced” 

(188). This quotation highlights an important nuance to discussion regarding the population 

versus high-risk question. The capacity for a preventive strategy to reduce health inequalities 

is intrinsically linked to the health system and economic system in which it is implemented. 

 

The tendency for population interventions to exacerbate health inequalities led Frohlich and 

Potvin to argue for a multidisciplinary ‘vulnerable population’ approach to prevention (184). 

They describe a vulnerable population as a group in society which is at a higher “risk of risks” 

due to shared social characteristics. Some examples of vulnerable populations in Canada are 

provided in the paper. These include First Nations peoples, people with low socioeconomic 

positions, and people with low levels of education. The key aims of the vulnerable population 

approach are to systematically lower mean risk factor values within vulnerable populations 

and to reduce intergenerational transmission of risk. 

 

Studies have looked to compare the effect of population and high-risk strategies of care on 

health inequalities. Platt et al. (189) simulated primary prevention smoking cessation 

strategies using U.S. survey data. The high-risk population was defined as all smokers. The 

key outcomes recorded were: mean SBP in the population, standard deviation of SBP in the 

population, and the proportion of the population with hypertension. The high-risk primary 

prevention strategy assumed all smokers with SBP ≥130 mmHg would experience a blood 

pressure reduction equal to the mean difference between those who smoke and those who do 
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not in the dataset. The population strategy assumed 33% and 50% of smokers would stop 

smoking, causing a reduction in SBP. The high-risk strategy led to a greater reduction in 

population-level SBP than the population strategy, a greater reduction in population-level 

SBP variability, and fewer individuals suffering from hypertension. The authors note that the 

high-risk strategy led to a greater proportion of low-income individuals avoiding 

hypertension. 

 

Kypridemos et al. (190) performed a simulation analysis of high-risk and population 

approaches to CVD prevention in England and Wales. They employed a microsimulation 

model of CVD to predict cardiovascular events and fatalities for five treatment scenarios. 

These were: baseline, universal screening and treatment of high-risk patients (patients with 

10-year risk ≥10%, elevated cholesterol, or elevated SBP), targeted screening of only the two 

most deprived quintiles of the population and treatment of high-risk patients, population-

wide interventions (a tax on high sugar beverages, mandatory food reformulation, increased 

fruit and vegetable consumption, and a public smoking cessation campaign), and a 

combination of universal screening and population-wide interventions. This analysis found 

that population interventions had a greater effect on CVD event reduction than the high-risk 

approach to prevention. In addition, it found that the combined population and high-risk 

strategy was the most successful at reducing health inequalities. A retrospective analysis of 

public health interventions introduced in the Netherlands between 1970-2010 produced 

similar findings (191). Both of these studies support the idea that high-risk strategies play an 

important role in prevention alongside population interventions. 

 

3.6 Statins and Other Cholesterol-Reducing Medication 

 

This thesis will focus on the cost-effectiveness of pharmacologic interventions which reduce 

cholesterol levels. These interventions were chosen as a case study to exhibit heterogeneity 

in cost-effectiveness because there is considerable equipoise regarding which individuals 

should receive them. For statins, this is because they recently came off patent. Prices have 

dropped substantially and more individuals are likely cost-effective to treat (192). Decision-

makers must determine which of these individuals they are willing to extend treatment 

eligibility to. Prioritisation of patients for PCSK9 inhibitors is also an area of contention. This 

treatment received regulatory approval in recent years and is currently very expensive (193). 

Therefore, it is important to target treatment at patients with a high capacity-to-benefit. 
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Statins 

 

Statins are a group of cholesterol-reducing medications. In biomedical literature they are 

often referred to as HMG-CoA reductase inhibitors. They have been shown to significantly 

reduce an individual’s likelihood of developing CVD, and are recommended for the primary 

prevention of CVD in high-risk adults. 

 

Links between cholesterol and CVD have long been established. As early as 1961, 

researchers working with data from the Framingham Heart Study established that, alongside 

high blood pressure, irregular heartbeat, and smoking, elevated cholesterol was a key risk 

factor for CVD (194). 

 

Despite the established relationship between cholesterol and CVD, there was no treatment 

for cholesterol reduction with well-documented efficacy and tolerability before 1987 (195). 

At this time, cholesterol treatment was limited to dietary recommendations (reduced dietary 

saturated fat and cholesterol) which had high tolerability but low efficacy (196), bile-acid 

sequestrants which had moderate efficacy but low tolerability (197), fibrates which had 

moderate efficacy (198), and probucol, which was not routinely administered because it 

decreases HDL-C (or “good cholesterol”) (199). 

 

By the early 1970s, research had established that cholesterol was largely synthesised in 

human bodies by the liver with the aid of the enzyme HMG-CoA reductase (200). Around 

this time, biochemist Akira Endo began researching cholesterol-reducing drugs. His work led 

directly to the isolation of a fungi-derived compound which inhibited HMG-CoA reductase, 

ultimately resulting in the development of the class of drugs known as statins. 

 

The first statin formulation to be approved for use by a regulatory authority was Merck & 

Co.’s lovastatin, marketed as Mevacor. Lovastatin received U.S. Food and Drug 

Administration (FDA) approval in 1987. A range of other similar formulations followed 

lovastatin to market in the following years, including simvastatin (1988), pravastatin (1991), 

fluvastatin (1994), atorvastatin (1997), cerivastatin (1998) and rosuvastatin (2003) 

(195,201,202). 

 

Cholesterol control is now an integral part of many CVD prevention campaigns. Indeed, 

statins are one of the most commonly dispensed classes of drugs in most high-income 
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countries. In Scotland, England, and the U.S., atorvastatin and simvastatin frequently appear 

on lists of the ten most prescribed drugs (203–205). 

 

Statin Patent Expiration 

 

Merck & Co.’s patent for lovastatin expired in 2001. For around five years, lovastatin was 

subject to generic competition while other branded statins were not. This had little effect on 

sales of other branded statins, however, as lovastatin was clinically perceived as less effective 

than the later-released formulations (192). 

 

Patent protection for most other statin formulations began to expire in the mid-2000s. Merck 

& Co.’s simvastatin, marketed as Zocor, was an early statin formulation which received 

approval for clinical use in the U.K. and U.S. Patent protection for Zocor expired in the U.K. 

and U.S in 2003 and 2006, respectively (206,207). Upon patent expiration, numerous 

companies began producing generic simvastatin. By 2005, these pills were less than 10% of 

the price of branded rivals. The annual cost per patient of simvastatin fell from more than 

£400 to £40 between 2003 and 2005 (206). A proportional reduction in the price of 

simvastatin occurred in the U.S. following Merck and Co.’s patent expiry in 2006 (208). 

 

In recent years, patent protection for several other statins has expired. In 2011, Pfizer’s patent 

protection for atorvastatin, marketed as Lipitor, expired in the U.S. (208). Lipitor’s patent 

protection expired in the U.K. in 2012 (209). In 2016, the FDA approved the first generic 

version of rosuvastatin, which had previously been co-marketed by Shionogi & Co. and 

AstraZeneca under the brand name Crestor (210). Patent protection for rosuvastatin expired 

in the U.K. in December 2017 (211). 

 

Simvastatin and atorvastatin are the two most prescribed statins in the U.S. and U.K. 

(208,212). In the U.K., moderate intensity formulations of these drugs can be purchased for 

£11 and £14 per patient per annum respectively (213). The average manufacturer prices of 

these drugs in the U.S. (as estimated for use in Medicaid reimbursement schedules) are $16 

and $31 per patient per annum, respectively (214). 

 

Given the recent expiration of rosuvastatin’s U.K. patent protection and the tendency for drug 

costs to fall substantially in the years proceeding patent expiration, decision-makers on both 
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sides of the Atlantic might expect a further reduction in the weighted average price commonly 

paid for statins in their respective health systems. 

 

Ezetimibe 

 

While statins remain the most commonly prescribed pharmacologic treatment for cholesterol 

reduction, since 2000 two major pharmacologic alternatives to statin therapy have been 

developed: ezetimibe and PCSK9 inhibitors. 

 

In the early 2000s, a cholesterol-reducing agent named ezetimibe was approved for use in the 

U.S. by the FDA (215) and in Europe through the mutual recognition procedure of the 

European Union following German authorisation (216). 

 

Systematic reviews of ezetimibe studies have established that ezetimibe-statin combination 

therapy offers greater LDL-C reduction than statin monotherapy (217–220). Additionally, 

evidence shows that ezetimibe monotherapy significantly reduces LDL-C levels (220).  

However, this reduction is smaller than the effect that can be achieved by statin monotherapy 

in statin tolerant patients. 

 

More recent analysis has shown that, alongside reducing LDL-C, ezetimibe (monotherapy 

versus placebo or ezetimibe plus some other lipid-lowering agent versus that agent alone) 

significantly reduces risk of myocardial infarction and stroke, without affecting risk of all-

cause mortality, cardiovascular mortality, or cancer (221). A review of cost-effectiveness 

studies suggests that combination ezetimibe-statin treatment is cost-effective in select groups 

of high-risk patients (220). 

 

PCSK9 Inhibitors 

 

The second major class of new cholesterol-reducing agents are PCSK9 inhibitors. These are 

‘fully human monoclonal antibodies’ which target the enzyme proprotein convertase 

subtilisin/kexin type 9 (PCSK9). This protein is produced in the liver and limits the ability of 

the body to remove serum LDL-C from circulation (222). 

 

Alirocumab and evolocumab are two drugs which have been developed to inhibit the 

production of PCSK9 in the liver. They both received approval from the FDA and European 
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Medicines Agency (EMA) in 2015 (223–226). A review by the Institute for Clinical and 

Economic Review (IfCER) estimated that PCSK9 inhibitors have a much greater LDL-C-

reducing effect than statins or ezetimibe (227), and results from the FOURIER trial show that 

they can reduce risk of CVD event substantially in an asymptomatic population (228). 

However, the IfCER report also stated that a large reduction in price will be necessary for 

PCSK9 inhibitors to be cost-effective for CVD prevention, even in high-risk statin intolerant 

individuals. 

 

3.7 Risk Scoring 

 

Asymptomatic patients are often prioritised for statin therapy and other preventive treatments 

for CVD based on their 10-year risk of experiencing a primary CVD event. Many risk scores 

have been developed to estimate an individual’s 10-year risk of experiencing a primary CVD 

event. 

 

Risk scores are developed using a branch of statistics called survival analysis (229). Survival 

analysis involves analysing data where the outcome of interest is time to some key event, 

often death or disease progression. 

 

In CVD risk scores, the event of interest is a disease-free individual’s primary CVD event. 

The definition of such events differs between risk scores, but are broadly similar, accounting 

for the most common CVD events one is likely to experience. Typically, these include: fatal 

and non-fatal myocardial infarctions, fatal and non-fatal strokes, and angina. Likelihood of 

experiencing one of these events is estimated based on a range of variables, known as ‘risk 

factors’. 

 

Framingham was the first risk score to be used in routine clinical practice. The equations that 

underpin this score were developed by Anderson et al. (230). The score was most recently 

updated for use in the U.S. population in 2008 (231). It includes age, sex, smoking status, 

systolic blood pressure (SBP), total cholesterol (TC), HDL-C, and diabetes as risk factors.  

 

Another risk score commonly employed in clinical practice in the U.S. is the ACC/AHA 

Pooled Cohorts risk equation (232). This risk score is currently recommended for use by the 

ACC/AHA cholesterol treatment guidelines, which aim to reduce risk of CVD in 

asymptomatic adults (27,174). The events which comprise this score are ‘hard’ 
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atherosclerotic CVD events: myocardial infarction, fatal CHD, and non-fatal and fatal stroke. 

Other scores often employ broader definitions of CVD which include softer events including 

TIAs. Hence, an individual’s risk will be lower when estimated with the ACC/AHA Pooled 

Cohorts equation compared to most other CVD risk scores. 

 

While the Framingham equations have been validated extensively, they were developed using 

data from the U.S. For clinical practice in the U.K., there was considerable demand for a risk 

score derived from U.K. data. In recent years the QRISK, QRISK2, and QRISK3 scores have 

been developed in the U.K. (233–235). These scores were developed with Cox proportional 

hazard models, and were each developed with data from a group of more than one million 

patients across the U.K. QRISK accounts for several CVD risk factors including: age, sex, 

SBP, ratio of TC to HDL-C, family history of CVD, socioeconomic deprivation as measured 

by the Townsend deprivation score (236), smoking status, BMI, and use of hypertension 

treatment. QRISK2 contains the same variables as QRISK but also includes ethnicity, 

diagnosed type-2 diabetes, rheumatoid arthritis, renal disease, atrial fibrillation, and some 

interaction between traditional risk factors as covariates. QRISK3 again added new 

covariates to the risk score. These were: chronic kidney disease, SBP variability, migraine, 

corticosteroid use, systemic lupus erythematosus, atypical antipsychotic use, severe mental 

illness, and HIV/AIDS. Guidelines from NICE in 2014 recommend that QRISK2 alone is 

used to estimate risk of CVD in England and Wales (25).  

 

The ASSIGN score was developed in Scotland by Woodward et al. (152). The ASSIGN risk 

factors were age, socioeconomic deprivation as measured by Scottish Index of Multiple 

Deprivation (237), SBP, TC, HDL-C, cigarettes per day (CPD), diabetes, and family history 

of CVD. Both ASSIGN and QRISK2 includes separate equations for men and women, 

allowing the magnitude of the association between risk factors and outcomes to differ 

between sexes. 

 

ASSIGN was developed with data from the Scottish Heart Health Extended Cohort 

(SHHEC). SHHEC recruited approximately 16,000 men and women with no established 

CVD above the age of 35 from across Scotland in 1984-1987. Baseline risk factor information 

was recorded for a set of CVD risk factors. Subsequently, the dataset was linked to Scottish 

Morbidity Records (238) and death records (239). This allowed the clinical outcomes of 

survey participants to be recorded. SIGN recommends that the ASSIGN score be used to 

estimate CVD risk in Scotland as it was developed with a Scottish population and is the score 
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which most adequately describes the socioeconomic deprivation gradient in CVD incidence 

in Scotland (240). 

 

While the risk scores employed vary, most high-income countries prioritise patients for 

preventive therapy like statins using 10-year risk scores. There are drawbacks to prioritisation 

based on 10-year risk alone. Ten years is a relatively short period of time over which to 

consider risk. This is especially true because CVD is a disease which develops over an 

extended period and often begins in childhood. It has therefore been argued by some 

researchers that 30-year or lifetime risk scores should be employed so that early causes of 

CVD risk can be addressed (241–243). Arguing that such scores would better reflect the 

benefit of preventive intervention in younger individuals, Ridker and Cook state, “by 

emphasizing so strongly the impact of aging in coronary risk prediction models, we 

inadvertently underemphasize those risk factors that are modifiable early in life and that can 

greatly alter long-term outcomes” (244). 

 

The clinical utility of long-term scores has been largely disregarded (245). This is because 

most individuals are at high lifetime risk of experiencing a CVD event based on extensive 

nature of the disease. This makes inference from longer-term risk scores difficult (246). Later 

sections of this thesis will discuss the epidemiological basis for employing 10-year risk as a 

means of stratifying patient populations for preventive treatment in CVD, and alternative 

approaches to prioritisation. 

 

3.8 Statin Guidelines 

 

England and Wales 

 

Several healthcare bodies have issued guidelines regarding the primary prevention of CVD. 

A key aspect of these guidelines is determining the subset of a CVD-free population that 

should be eligible to receive statin therapy. 

 

NICE is responsible for publishing clinical practice guidelines, health technology assessment 

reports, guidance for social workers, and guidance for health promotion in the NHS in 

England and Wales. 
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NICE guidelines for statins for the primary prevention of CVD were published in 2008. NICE 

Clinical Guideline (CG) 67 defined individuals with no established CVD as being high-risk 

if they had a 10-year CVD risk score of 20% or greater (247). CG67 recommended that those 

patients classified as high-risk should receive intermediate-intensity statin therapy. No 

starting statin or preferred risk estimation tool was explicitly recommended by the guideline. 

  

In 2014, NICE published a new guideline pertaining to the primary prevention of CVD (25). 

NICE Clinical Guideline 181 defines high-risk patients as individuals aged 40 and above with 

no established CVD and a 10-year risk score of 10% or greater, estimated using the QRISK2 

risk estimation tool. The guideline additionally states that an individual should be considered 

high-risk if they have hypercholesterolaemia (defined as total cholesterol ≥7.5 mmol/L). 

CG181 states that high-risk patients are eligible to receive intermediate-intensity statin 

therapy (atorvastatin 20mg/day). It additionally states that prior to statin initiation, the 

benefits of lifestyle modification should be discussed, and statin initiation may be delayed 

until the patient has attempted to reduce their risk through lifestyle modification. 

 

Reducing the threshold to 10% resulted in several million more people being eligible for 

statin therapy. Extensive analysis was completed in the development of this guideline using 

a Markov model which drew on work by Ward et al. (248). This analysis showed that 

transitioning to the 10% risk threshold was highly cost-effective. 

 

NICE’s decision to lower the risk threshold in England and Wales has been criticised. 

Opponents have warned against the dangers of mass-medication, and have pointed out that 

statins are known to have some adverse effects (249). Abramson et al. (250) argue that statins 

have little effect on populations with a 10-year risk lower than 10%. However, a meta-

analysis of individual data from 27 randomised trials suggests this assertion is incorrect (251).  

 

Scotland 

 

SIGN is responsible for producing and disseminating guidelines for clinical practice in the 

Scottish NHS. It published Clinical Guideline 97, Risk Estimation and the Prevention of 

Cardiovascular Disease, in 2007 (240). CG97 recommended that individuals aged 40 and 

above with no established CVD and an ASSIGN risk score of 20% or greater should be 

considered ‘high-risk’. Also considered in this category of risk are individuals with very 
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elevated levels of TC, individuals over the age of 40 with diabetes, and individuals with 

advanced levels of chronic kidney disease.  

 

CG97 recommended several strategies for risk reduction in those who are judged to be at 

high-risk of developing CVD. The guideline states that overweight and obese individuals 

should be targeted with dietary interventions with the aim of reducing weight by at least 3kg. 

Furthermore, it recommends that high-risk individuals should be offered a regimen of 

intermediate-intensity statins (atorvastatin 20 mg/day) after a discussion with their clinician 

regarding the benefits and risks of the treatment. The guideline further states that the patient 

should be encouraged to reduce their cholesterol levels through lifestyle measures. 

 

An update to CG67 was published in 2017 (26). No change was made to the way in which 

individuals are prioritised for preventive statin therapy. However, it was acknowledged that 

alternative approaches to 10-year risk scoring for statin prioritisation may lead to a more 

effective and cost-effective distribution of healthcare resources. The guideline specifically 

notes that age-stratified risk thresholds or reformulation of risk calculators could be 

implemented in the future in Scotland. It concludes that further economic analysis must be 

completed before SIGN can implement a novel approach to statin prioritisation. A key aim 

of this thesis is to produce such analysis. Indeed, work included in this thesis was referenced 

in the new guideline, and my thesis supervisors and I were acknowledged for contributing to 

ongoing work in risk estimation (26). 

 

U.S. and Rest of the World 

 

The ACC and AHA have issued joint guidelines for the management of cholesterol with 

statins in CVD-free individuals. Unlike NICE and SIGN, these are not public bodies but 

rather non-governmental, non-profit organisations. They state that initiation of statin therapy 

should be recommended for primary prevention patients with a 10-year ASCVD risk score 

greater than or equal to 7.5%, and should be considered for those with ‘borderline’ scores 

between 5.0-7.5% (27,174). These guidelines also stated that physicians should promote 

lifestyle measures to reduce cholesterol levels, regardless of the recommendation of 

pharmacological interventions. An update to ACC/AHA guidelines in 2018 recommended 

statins to borderline-risk patients with a variety of ‘risk-enhancing factors’ (174). These 

factors include family history of CVD, LDL-C ≥160 mg/dL, metabolic syndrome, chronic 

kidney disease, and other comorbidities. Finally, it is recommended that physicians promote 
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lifestyle measures to reduce LDL-C, regardless of the recommendation of pharmacological 

interventions. 

 

Several healthcare bodies around the world have published similar guidance on statin 

eligibility. The 2016 European Guidelines on Cardiovascular Disease Prevention offers 

guidance based on 10-year risk of fatal CVD event. It states that high-risk individuals (5.0-

10% risk, estimated using the SCORE European cardiovascular risk assessment model) 

should receive lifestyle advice and be considered for statin therapy. The guideline continues 

that for ‘very high-risk’ individuals (≥10% risk) statin therapy is more frequently required. It 

also notes, however, that individual circumstance should be considered in older patients, who 

often have a healthy profile of risk factors without statins, regardless of 10-year risk (173). 

 

The 2016 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidaemia 

for the Prevention of Cardiovascular Disease in the Adult recommends that individuals at 

‘intermediate risk’ of CVD event (10-19% Framingham risk score) should be offered statins 

if they have any other individually elevated CVD risk factor, and all high-risk individuals 

(≥20% Framingham risk score) should be offered the treatment (28). 

 

Guidelines issued by non-profit and governmental institutions in Australia, Singapore, New 

Zealand, Hong Kong, Japan, and many other high-income countries also recommend risk-

based statin prioritisation (252–256). 

 

Guideline Implementation and Regional Variation 

 

National clinical guidelines are only useful insofar as they are able to influence clinical 

decision-making. Consistent decision-making across a health system is fundamental in 

maintaining equitable access to health care, a founding principle of the NHS. 

 

The Scottish NHS is split into 14 geographically-based health boards. Health boards are 

prospectively funded through a resource allocation formula, accounting for demographic, 

geographic, and disease-related factors (257). This funding mechanism assigns health boards 

considerable scope to determine how resources are allocated in their locality. Such an 

arrangement allows health boards to address local health problems effectively but may 

undermine the influence of national clinical guidelines.  
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Many Scottish health boards have published guidelines related to preventive statin therapy in 

recent years (258–263). These guidelines tend to adhere to SIGN’s recommendations 

regarding treatment for individuals with ASSIGN score ≥20%. Some notable exceptions 

exist. Clinicians adhering to NHS Lothian guidelines, for example, may consider statin 

treatment in individuals with ASSIGN score 10-20% (259). Audit Scotland has also shown 

that the type of statin prescribed to patients varies significantly across health boards (264). 

Such variation in practice may create a ‘postcode lottery’ whereby access to preventive 

therapy is not determined by need or capacity-to-benefit, but rather by geographic location. 

 

Variation in the statin prescribing across the U.K. has been reported. Age-, sex-, and social 

deprivation-adjusted rates of statin initiation were greater in England and Wales than in 

Scotland during the period 2004-2012 (265). At this time, guidelines were relatively 

consistent between the countries of the U.K. Variations in practice have also been reported 

across English primary care practices (266,267), and practice-level variation in statin 

prescription has been observed in the U.S. (268). 

 

Many approaches can be adopted to influence clinician behaviour and support wider 

implementation of clinical guidelines. Wettermark et al. (269) divide these strategies into 

four categories: education, engineering, economics, and enforcement. Education involves 

informing healthcare workers about best practice guidelines. Engineering involves 

organisational or managerial intervention, including institution of prescribing targets and 

micromanaged task delegation. Economic interventions include pay-for-performance 

schemes as well as co-payment mechanisms to align patient preference for treatments with 

clinical guidelines. Enforcement refers to imposition of legal regulations. 

 

The impact of different approaches to guideline implementation have not been extensively 

studied (269,270). However, research from the U.K. suggests that concomitant prescription 

targets and pay-for-performance schemes have improved uptake of guidelines related to statin 

prescription (271–273). Retrospective analysis has shown that the benefits achieved from 

such schemes were maintained after their expiration (274). Time-limited campaigns to 

improve uptake of national clinical guidelines may affect long-term change on clinical 

practice and help ensure that guidelines are implemented effectively. This may help to reduce 

regional variation in clinical practice. 
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3.9 Statin Therapy: Cost-Effectiveness and Heterogeneity 

 

This thesis will consider the cost-effectiveness of different approaches to the prioritisation of 

individuals for preventive statin therapy. As discussed in Chapter 2, representing 

heterogeneity in cost-effectiveness can result in welfare gains for decision-makers. What 

follows is a review of studies which synthesise results from cost-effectiveness analyses of 

statins. Patient-level drivers of cost-effectiveness are highlighted as these may be used to 

establish subgroups in which the treatment is likely most cost-effective. 

 

Several reviews of the cost-effectiveness of statin therapy in primary prevention have been 

conducted. These have been primarily published as academic articles or as evidence 

alongside statin guidelines. 

 

Morrison and Glassberg, 2003 

 

In 2003, Morrison and Glassberg (275) examined the factors which determine cost-

effectiveness of different statins. Four studies were identified which consider the cost-

effectiveness of statins in the primary prevention of CVD, quantified by cost-per-life years 

saved (LYS). No studies of primary prevention considered cost-per-QALY. Data extraction 

methodology is not discussed. 

 

There was considerable variability in the cost-effectiveness of statins in the studies reviewed. 

The incremental cost-per-LYS varied from $4,300 to $1,500,000. Groups of patients with 

multiple risk factors were typically more cost-effective to treat, as evidenced in Table 3-2, 

which presents data from Goldman et al. (276). It is also noted that statins are very cost-

effective in “specific risk groups” including patients with heterozygous familial 

hypercholesterolaemia and type-2 diabetes. 

 

This study has various limitations. The parameters of the individual studies considered are 

not discussed in much depth. While variability of cost-effectiveness within studies is 

explained, variability between studies is not. It is likely that study parameters (including time 

horizon, statin price, statin efficacy, and comparator) drives between-study heterogeneity in 

cost-effectiveness. 
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LDL-C 
(mmol/L) 

Sex HTN Obese Smoker Cost-Per-LYS 

≥7.8 F - - - 130,000 
6.5-7.7 M - - - 93,000 
≥7.8 M - - - 58,000 
≥7.8 M + - - 28,000 
≥7.8 M + + - 17,000 
≥7.8 M + + + 15,000 

HTN – hypertension 

Table 3-2: Cost-per-LYS of preventive statin therapy for patient subgroups, from 
Goldman et al. (text) 

 

Franco et al., 2005 

 

In a 2005 review, Franco et al. synthesised literature on the cost-effectiveness of statins (277). 

This review sought to compare the cost-effectiveness of statin therapy versus no 

pharmacological treatment, quantified by incremental cost-per-LYS. The review identified 

24 studies for review, which contained 216 ICERs. For each study, the following data were 

extracted: publication date, setting, annual drug costs, type of model, category of prevention, 

mean age at start of treatment, annual level of absolute CHD risk at start of treatment, time 

horizon, method of effect calculation, economics perspective, funding source, and cost-

effectiveness ratio. 

 

The authors first analysed the cost-effectiveness of statin therapy versus absolute CHD risk. 

This analysis found a high degree of variance between studies but a consensus that statins are 

cost-effective for individuals with absolute annual CHD risk greater than 4% and cost-

ineffective below an annual risk of 1%. Multilevel linear regression analysis was then 

performed to estimate the effect of these variables on cost-effectiveness. In univariate 

analysis it was found that statins were significantly more cost-effective in secondary 

compared with primary prevention and at higher levels of risk when applying a two-sided p-

value <0.005. 

 

Secondary analysis considered interaction effects with absolute risk of CHD and other 

predictors. There was no significant difference between cost-effectiveness and source of 

funding in the univariate analysis. However, the secondary analysis showed that 

pharmaceutical industry-funded research was more likely to find that statins were cost-

effective at low levels of risk. This could be explained by the fact that the patent for many 

different statins were soon due to expire in 2005. Anticipating loss of revenue attributable to 
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loss of market exclusivity, pharmaceutical companies likely desired to broaden the base of 

patients eligible to receive statin therapy. 

 

One key limitation of this study was that it only included results for male populations. It was, 

therefore, unable to identify systematic differences in cost-effectiveness between men and 

women. Moreover, women tend to have lower absolute risk of CVD event than men. Omitting 

results of studies pertaining to women has the added effect of reducing the amount of data on 

low-risk populations. Three studies were also excluded from the review because they were 

cost-utility analyses and the study’s main outcome was cost-per-LYS. Disregarding cost-

utility ignores the fact that many CVD events are non-fatal, and the distribution of fatal and 

non-fatal events may differ between subgroups in a population. 

 

Ward et al., 2007 

 

Alongside NICE’s 2007 guideline for the prevention of CVD, Ward et al. (248) conducted a 

review of statin cost-effectiveness studies. They specifically focused on the methodology of 

analyses set in the U.K. Several databases were searched for studies of statin cost-

effectiveness, and titles and abstracts of identified studies were assessed by a review team. 

Initially 206 studies were identified by searches and 173 of these studies did not match 

inclusion criteria. Seven studies of primary prevention in the U.K. were identified. Studies 

included in the review were narratively reviewed, with particular emphasis placed on 

reporting the model structure and cost-effectiveness results. 

 

Three of these studies estimated cost-effectiveness in male populations alone, one study 

employed a Markov model, one employed a decision tree, and three studies employed a ‘life 

table approach’. The CVD risk of the population considered, time horizon of the study, mean 

age of participants in the study, CVD history of participants, and specific statin modelled 

varied extensively between studies. Central estimates of cost-effectiveness were presented in 

terms of cost-per-life year gained (LYG) in all studies. Lifetime cost-per-LYG ranged from 

£5,000-£13,000/LYG in high-risk and secondary prevention populations to £14,000-

£30,000/LYG in low-risk populations. 

 

Two non-U.K. studies regarding the cost-effectiveness of preventive statin therapy were 

identified. Johannesson and colleagues (278) estimated the optimal risk score cut-offs for 

treatment initiation in Swedish men and women, aged 35 and 70, at a range of cost-
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effectiveness thresholds. It was found that lower treatment initiation thresholds were justified 

in younger men and women. This suggests that risk score alone is not an adequate determinant 

of statin cost-effectiveness. Van Hout and Simoons (279) analysed preventive statin therapy 

in a Dutch population. They similarly found that lower risk threshold should be employed for 

treatment initiation in younger individuals. Sensitivity analysis found that key drivers of 

statin cost-effectiveness are the price of treatment and relative risk reduction achieved by the 

therapy. 

 

This study was limited by its scope. The authors focused on the modelling approaches taken 

in the studies they analysed. Heterogeneity in cost-effectiveness results is rarely discussed. 

The small number of studies identified for review is another limitation. Relaxing inclusion 

criteria would have allowed the authors to review a larger body of evidence. 

 

Mitchell and Simpson, 2012 

 

Mitchell and Simpson published a review of statin cost-effectiveness in the prevention of 

CVD in 2012 (280). This study specifically reviewed cost-effectiveness analyses of statins 

versus non-statin comparator for primary prevention published since 2000 and set in the U.S 

After the initial search, 365 studies were identified for further review. 100 studies were 

excluded from the analysis as they were published more than 10 years before the review was 

conducted, 154 were excluded from the analysis after title review, 42 were excluded due to a 

non-U.S. setting, and a further 27 were removed due to study design that did not meet 

inclusion criteria. Eventually, four studies were included in the review. Data on time horizon, 

CVD risk, ICER, LYG, and statin cost were collected from each of these studies. 

 

Model parameters varied greatly between the reviewed studies. The time horizon employed 

ranged from five years to lifetime, the outcome measure employed varied between cost-per-

QALY and cost-per-LYG, the annual cost of statin therapy ranged from $770 to $1,500, the 

age and risk factor profile of patient populations differed greatly, and the choice of non-statin 

treatment comparator varied between studies. 

 

Running linear regression on the extracted data, ICERs were estimated at a range of drug 

prices for patients with Framingham risks scores of 5%, 10%, and 25%, respectively. As 

presented in Figure 3-6, the authors estimated that patients with a Framingham risk score of 

10% and 5% would be cost-effective to treat at monthly statin prices of around $70/month 
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and $50/month, respectively, when employing a cost-effectiveness threshold of 

$50,000/QALY. 

 

 

Figure 3-6: Monthly drug cost versus ICER for preventive statin therapy, 
stratified by 10-year CVD risk, Mitchell and Simpson (text) 

 

Catalá-López et al., 2013 

 

Catalá-López et al. (281) examined the potential for bias in cost-effectiveness analyses of 

statins for the primary prevention of CVD. They extracted data regarding quantitative cost-

effectiveness outcomes (ICERs inflated to $US 2011), qualitative cost-effectiveness 

conclusions (favourable, unfavourable, neutral), source of funding (industry, non-profit, no 

funding/none disclosed), journal impact factor, and other study-level covariates for 43 

identified cost-effectiveness analyses. 

 

Fisher’s exact tests were performed on 2x2 contingency tables to establish the relationship 

between qualitative conclusions and type of sponsorship and journal impact factor. They 

found that industry-sponsored studies were significantly more likely to report favourable 

results than others (p <0.001), but no evidence of publication-based bias. Industry-sponsored 

studies found that the statin-based intervention of interest was cost-saving or had an ICER 

below $50,000/QALY more regularly than other studies (62% versus 22%, respectively; p 

<0.001). 

 

The methodology employed in this analysis did not allow for covariate adjustment. In 

addition, no further analysis considered drivers of cost-effectiveness in the included studies. 

Therefore, little information was provided regarding the cause of within- or between-study 

heterogeneity in cost-effectiveness. 
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Two limitations should be noted with regards to this study. Information on study funding was 

derived solely from the corresponding research article. It is possible that complete 

information on funding was not obtained. Furthermore, reviewers subjectively determined if 

a study’s results were favourable, unfavourable, or neutral. The subjective nature of this 

classification was countered with guidance on the type of language that pertains to each of 

these categories and consensus was sought when reviewers were not in agreement. 

Nonetheless, the objectivity of the study’s inputs may be questioned. 

 

NICE, 2014 

 

A review of statin cost-effectiveness was published alongside NICE’s 2014 update to 

guidelines for the primary prevention of CVD (25). Four papers, pertaining to three studies 

comparing statin therapy to placebo in primary prevention were included in this review, with 

many of the studies discussed in previous reviews omitted because they had “very serious 

limitations” or because “more recent evidence was identified which was more applicable”. 

 

Two studies compared statins to placebo in an intermediate-risk CVD-free population, while 

the third study estimated the cost-effectiveness of preventive statin therapy versus placebo in 

patients with low LDL-C and elevated high-sensitivity C-reactive protein (hs-CRP) 

(248,282,283). All studies found statins were cost-effective, with the ICER ranging from 

cost-saving to £16,500/QALY. 

 

A limitation regarding this study was the small number of studies included. This made it 

difficult to determine the drivers of cost-effectiveness between different studies. However, 

extensive reporting of sensitivity analysis results was included in the review. These results 

suggest potential drivers of heterogeneity in statin cost-effectiveness. Shorter duration of 

statin effectiveness, increased cost of statins, increased monitoring costs, reduced statin 

efficacy, increased treatment-related disutility, and reduced population CVD risk all led to 

reductions in cost-effectiveness. 
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Heterogeneity in Statin Cost-Effectiveness 

 

This section summarised previously published systematic reviews which pertain to the cost-

effectiveness of preventive statin therapy. These reviews showed considerable heterogeneity 

in the cost-effectiveness of statin therapy. 

 

A number of potential drivers of cost-effectiveness were highlighted. It was shown across 

studies that 10-year risk of CVD is a key driver of the cost-effectiveness of preventive statin 

therapy. Other potential sources of heterogeneity in statin cost-effectiveness presented were: 

age of treatment initiation, cost of statin therapy, treatment efficacy, duration of treatment 

effectiveness, and treatment-related disutility. 

 

3.10 Chapter Summary 

 

Cardiovascular disease is a highly prevalent condition that leads to morbidity and mortality 

in low-, middle-, and high-income countries. It is often caused by atherosclerotic build-up in 

individuals’ arteries, a process which commences at a young age. CVD has a high associated 

economic burden, and there is often a high socioeconomic gradient in the disease which 

exacerbates health inequalities within countries. Primary, secondary, and tertiary prevention 

of CVD can all be employed to halt the development of the disease, arrest its progression in 

patients with the condition, and improve sufferers’ quality of life. Primary prevention often 

targets modifiable CVD risk factors like smoking, cholesterol, and SBP. 

 

Most high-income countries employ risk-based statin prioritisation, regardless of health 

system. The degree to which clinical guidelines influence clinical practice may vary across 

these countries. By defining a group of patients as being ‘high-risk’, clinicians acknowledge 

heterogeneity in the CVD-free patient population. Preventive therapy may be more effective 

and cost-effective for high-risk subpopulations. However, reviews of statin cost-effectiveness 

suggested that other factors, like age of treatment initiation, may independently affect statin 

cost-effectiveness, Chapter 4 will discuss the epidemiologic basis for using 10-year risk to 

prioritise patients for preventive therapy for CVD. Further, it will discuss alternative 

approaches that clinicians could adopt that may better reflect heterogeneity in outcome from 

preventive treatment. 
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Chapter 4 

Epidemiology and Prevention of Cardiovascular Disease 

 

4.1 Purpose 

 

The cost-effectiveness of an intervention can vary between patient subgroups for a variety of 

reasons. The importance of reflecting heterogeneity in cost-effectiveness analysis has been 

established. Current standard of care in CVD relies predominantly on prioritising individuals 

for preventive therapy based on 10-year risk scores. A review of cost-effectiveness analyses 

showed that 10-year risk is indeed one determinant of preventive statin therapy’s cost-

effectiveness. The purpose of this chapter is to establish the epidemiologic basis for a range 

of different approaches to CVD prevention. 

 

This chapter will first present an illustrative example to show that individuals with the same 

10-year risk score may experience different outcomes from preventive therapy for CVD. It 

will then proceed to discuss the epidemiological basis for alternative approaches to 

prevention which may better reflect heterogeneity in outcome. Three approaches which may 

better reflect heterogeneity in cost-effectiveness than standard of care are identified. These 

are: (i) continued use of 10-year risk scores, (ii) novel decision mechanisms which 

incorporate 10-year risk, and (iii) using decision models directly in clinical practice. 

 

4.2 Illustrative Example 

 

The following example aims to highlight issues inherent to 10-year CVD risk scoring. Risk 

factor profiles are presented for three hypothetical patients, each with a risk score of 10%. It 

is shown that these patients may experience very different outcomes attributable to preventive 

therapy. 

 

Consider the three risk factor profiles presented in Table 4-1. Each of these hypothetical 

patients has a 10-year CVD risk of 10%, estimated with the ASSIGN risk score (152). This 

table demonstrates the importance of distinguishing between modifiable and non-modifiable 

risk factors. Modifiable risk factors, like LDL-C, HDL-C, SBP and CPD, can be intervened 

upon to reduce risk of disease. Non-modifiable risk factors, like age and sex, cannot be 

intervened upon. 
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Risk Factor 
Patient 

A B C 

Sex Female Female Male 
Age 50 50 70 
SIMD 15.89 15.89 15.89 
Family History No No No 
Diabetes No No No 
CPD 0 35 0 
SBP (mmHg) 140 140 110 
LDL-C (mmol/L) 8.7 4 4.5 
HDL-C (mmol/L) 0.9 1.5 2 

hs-CRP (mg/L)* 1 10 1 

10-Year Risk** 10 10 10 

*Not included in the ASSIGN risk score  
**Estimated using the ASSIGN risk score 

Table 4-1: Three different patients with ASSIGN score of 10% 

 

Patient A and Patient B are both 50-year-old females with no family history of CVD. Risk of 

developing CVD increases with age, and is generally higher for men and for individuals with 

a family history of premature cardiovascular illness. Based solely on these non-modifiable 

risk factors, Patients A and B should be at a very low risk of developing CVD. However, they 

are at 10% 10-year risk driven by unhealthy levels of modifiable risk factors. Patient C, on 

the other hand, has a healthy modifiable risk factor profile but is male and aged 70 years. 

When risk is determined by a non-modifiable factor like age, capacity-to-benefit from 

preventive treatment is often diminished. 

 

Even amongst individuals of the same age and CVD risk, the effect of preventive 

interventions may differ substantially. For example, strong evidence suggests that an 

individual’s risk reduction from statin therapy is directly proportional to their LDL-C 

(251,284). Hence, Patient A will experience a greater absolute CVD risk reduction from statin 

therapy than Patient B, even though they have equal baseline risk. 

 

Existing risk scores may also be incomplete. Most commonly-used 10-year risk scores 

contain a similar set of explanatory variables as those included in the ASSIGN Score. 

Research suggests that many independent risk factors for CVD are not included in risk scores. 

One such factor is hs-CRP. This biomarker has been shown to independently predict CVD 

risk when controlling for traditional risk  factors (285,286). Though Patient A and Patient B 

have the same ASSIGN risk score, the former is likely at greater risk of developing CVD 
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event due to their increased hs-CRP. By identifying this risk through hs-CRP testing, it may 

be possible to better prioritise patients for statin therapy. 

 

4.3 Heterogeneity in the Cost-Effectiveness of CVD Prevention 

 

There are many forms of subgroup and heterogeneity relevant to CVD. The example above 

showed that patients with the same risk score may experience different outcomes attributable 

to the preventive CVD interventions. Failing to reflect such heterogeneity leads to suboptimal 

decision-making. 

 

This thesis will consider three approaches to reflect heterogeneity in the cost-effectiveness of 

preventive interventions for CVD which theoretically improve upon standard of care: 

1. Continued, but improved, use of 10-year risk scores. 

2. Novel decision mechanisms which incorporate 10-year risk. 

3. Using decision models directly in clinical practice. 

 

What follows is a short epidemiological analysis of the basis for each of these approaches. 

Chapters 7, 8, and 9 will detail cost-effectiveness analyses of specific policies which adopt 

these approaches to prevention. 

 

4.4 Continued Use of 10-Year Risk Scores 

 

4.4.1 Theory Behind Current Practice 

 

Continued use of 10-year risk scores is one approach to CVD prevention. The 2007 World 

Health Organisation (WHO) guidelines for assessment and management of cardiovascular 

risk discuss the basis for the “total risk approach” to prevention of CVD (287). It notes that 

the main biological process which contributes to CVD is atherosclerosis, and traditional risk 

factors work concurrently to increase the rate of atherosclerosis progression. 

 

Atherosclerosis develops over a long period of time, and therefore disease state is difficult to 

define in CVD (166). Indeed, most individuals spend extended periods in a ‘preclinical’ state 

with extensive atherosclerotic build-up prior to experiencing a morbid CVD event (288). A 

multitude of studies have established a range of ‘risk factors’ which increase atherosclerosis, 

and these factors can be described as indicators of preclinical CVD (163,289). 
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The WHO guideline notes that risk factors “commonly coexist and act multiplicatively” 

(287). An individual with a unitary elevated factor might therefore be at lower total risk of 

developing CVD than an individual with a combination of moderately elevated factors. By 

combining the independent effect of many risk factors into a combinatory index, researchers 

have developed metrics which predict CVD risk better than focusing on individual factors. 

These indices most frequently take the form of 10-year CVD risk scores. 

 

In addition to providing greater predictive validity than single variables, risk scores have the 

benefit of representing variables continuously. Many risk factors do not dichotomously affect 

risk, but rather have a continuous effect. LDL-C, for example, increases CVD risk in a 

continuous, direct relationship (4,290–292). An intervention commencement rule which aims 

to treat individuals with high LDL-C must necessarily set a cut-off at which treatment is 

initiated. For example, the AHA’s 2013 definition of hyperlipidaemia is LDL-C ≥160 mg/dL 

(4.14 mmol/L) (27). A decision rule which only recommended statins for individuals with 

hyperlipidaemia ignores the potential benefit of the treatment in individuals with borderline 

hyperlipidaemia. Such a policy creates a false dichotomy which suggests that LDL-C does 

not affect risk below the threshold and drives risk above it. In contrast, a risk score 

dynamically reflects the incremental effect of increases in LDL-C on CVD risk. 

 

Another argument commonly posited in support of 10-year risk scores for statin prioritisation 

relates to relative risk. The WHO and SIGN explicitly employ this argument in respective 

guideline documents (26,240,287) and both use statin therapy as an example. They argue that 

patients with elevated 10-year risk gain most from statin therapy. It is assumed that statins 

reduce relative risk of CVD equally across all patient subgroups. Those with higher absolute 

risk should therefore gain the greatest absolute risk reduction from treatment 

 

To illustrate the point above, let us assume that the relative risk of CVD for a preventive 

therapy is 70% compared to no treatment. Additionally, assume that the therapy results in an 

equal relative risk versus no treatment across a population. Now consider two prospective 

patients, Patients X and Y, who have CVD risk scores of 50% and 10%, respectively. 

Absolute risk reduction attributable to this therapy is greater for Patient X, as shown in Table 

4-2. 
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Sections 4.4.2 and 4.4.3 will discuss specific policies which retain 10-year risk scoring as the 

principal mechanism for statin prioritisation. These approaches attempt to counter issues with 

heterogeneity in cost-effectiveness of statin initiation based on 10-year risk alone without 

drastically changing current practice. 

 

Patient 
10-Year Risk 

(10YR) 
Absolute Risk 

Reduction* 

X 50% 15% 
Y 10% 3% 

                               *Absolute risk reduction = 10YR*0.3 
Table 4-2: 10-year risk and absolute risk reduction, assumes equal relative risk of 
therapy for all patients 

 

4.4.2 Policy: Lowering the Risk Threshold 

 

Many statins have come off patent in recent years, leading to a drastic reduction in price. 

Therefore, many more individuals are now cost-effective to treat. In response, treatment 

guidelines have been updated which lower the threshold at which initiation of preventive 

statin is recommended (25,27). 

 

Lowering the risk threshold will lead to more individuals who proceed to have events (cases) 

being treated. This occurs at the cost of treating more individuals who do not proceed to have 

events (non-cases). The statistical concepts of sensitivity and specificity help to illustrate this 

point. 

 

Sensitivity and Specificity 

 

In statistical terms, reducing the threshold at which a treatment is initiated increases the 

sensitivity of risk scoring. Sensitivity of a diagnostic tool, also referred to as its true positive 

rate, describes the ability of the score to correctly identify cases. It is therefore the probability 

of an individual being identified as high-risk given that they will proceed to have an event. 

 

Mathematically, this can be represented as follows: 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑃(′ℎ𝑖𝑔ℎ 𝑟𝑖𝑠𝑘′|𝑒𝑣𝑒𝑛𝑡). 

Reducing the CVD risk threshold treats all individuals prioritised for treatment under the 

previous threshold while expanding the subgroup of individuals who are eligible for 

treatment. Hence, the sensitivity of the new policy is necessarily equal to or greater than the 
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previous policy. As alluded to by Geoffrey Rose, many events occur in apparently ‘low-risk’ 

populations in a disease as highly prevalent as CVD (175) and we may expect a marked 

increase in sensitivity of a risk score as the threshold is reduced. 

 

Notably, the conditional probability that defines sensitivity does not account for false 

negatives. A statistical counterpart to sensitivity is specificity, also referred to as the true 

negative rate. This term describes the probability of a non-case being identified as low-risk. 

 

Specificity can be formulated mathematically as follows: 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑃(′𝑙𝑜𝑤 𝑟𝑖𝑠𝑘′|𝑛𝑜 𝑒𝑣𝑒𝑛𝑡). 

Reducing the risk threshold leads to a reduction in the number of individuals classified as 

low-risk. Hence, specificity of the score using the reduced risk threshold is equal to or less 

than the previous policy. 

 

Policy Assessment 

 

Within the framework of 10-year risk scoring, choosing whether to reduce a risk threshold is 

a matter of weighing the benefits of increased sensitivity against the costs of reduced 

specificity. Increased sensitivity implies that more individuals who should be treated will be 

treated. Reduced specificity, on the other hand, implies that more individuals who should not 

be treated will be treated and hence will incur unnecessary costs and treatment-related 

disutility. Chapter 7 employs a decision-analytic model to perform such calculus. 

 

4.4.3 Policy: Improving 10-Year Risk Scores 

 

At the start of this chapter, it was shown that two individuals with the same risk score may 

be at very different CVD risk attributable to non-traditional risk factors. Patient B was likely 

at greater 10-year risk of CVD than Patient A as they had elevated hs-CRP. However, hs-

CRP is not included in the ASSIGN risk score. Adding this biomarker as a covariate in an 

updated risk score would better reflect heterogeneity in risk. 

 

Much research in CVD prevention has focused on improving the predictive validity of 10-

year risk scores. By including additional covariates in risk scores, two individuals previously 

identified as identical risk may be reclassified. Improving 10-year risk scores allows decision-
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makers to more confidently target treatment at patients who are likely to experience a CVD 

event within the next 10 years. 

 

What follows is a short description of statistical methods typically employed to assess risk 

score improvement. The advantages and disadvantages of these methods are described, and 

the need for decision-analytic modelling is established. 

 

Estimating the Statistical Validity of a Risk Score 

 

Statistical techniques have been developed to assess the improvement that novel risk factors 

provide to risk prediction algorithms (293,294). The statistical validity of a risk score has 

traditionally been described in two ways: discrimination and calibration. Discrimination 

refers to the ability of a risk function to prospectively separate cases and non-cases into two 

distinct groups. Calibration, on the other hand, refers to how well a risk score predicts average 

risk in a population and subsets of this population. 

 

Unless a risk score has perfect dichotomising predictive capability (correctly designating 

individuals as either 0% or 100% risk), perfect discrimination and calibration cannot be 

achieved simultaneously (295). Consider, for example, a risk score which designates one 

group of individuals as 5% risk and another as 95% risk. Presume that this risk score has 

perfect calibration; then 1 in 20 individuals in the lower risk group and 19 in 20 individuals 

in the higher risk group will experience an event. The fact that there are cases and non-cases 

in each risk group necessarily means that this score does not have perfect discrimination. On 

the other hand, presume that the score has perfect discrimination: all individuals in the lower 

risk group remain event-free while every individual in the higher risk group experiences an 

event. In this situation, the predicted and observed event rates in the risk groups are not 

correct, so the score is imperfectly calibrated. 

 

Discrimination is the most important attribute when deciding who to treat with a risk score. 

When focusing on a 10-year time horizon, a physician wants to dichotomise a population into 

two groups: those who will have an event and those who will not. As long as a risk threshold 

can be defined which distinctly identifies these two groups, individuals’ specific risk scores 

do not matter. This thesis aims to develop methodology which allows decision-makers to 

better specify which individuals should receive preventive interventions for CVD. Poorly 

calibrated risk scores may remain clinically useful if they highlight a group of individuals 
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who would benefit from treatment (296). Therefore, the discriminative ability of risk scores 

is of particular interest. 

 

The importance of calibration should not be disregarded. Accurately predicting disease 

incidence and prevalence in a population relies on a score’s calibration (297). If a health 

system planner wants to argue that more money should be invested in one disease are over 

another, they must know the future population-level incidence and prevalence of each 

disease. This requires good calibration of risk estimates. 

 

Discrimination – Area under the Receiver Operating Curve Analysis 

 

With regards to discrimination, the internal and external validation of risk scores is important. 

Internal validity refers to a risk score’s ability to replicate results observed in the data used 

in its development. External validity refers to a score’s ability to replicate results from 

datasets not used in its development. 

 

Internal and external validation of risk scores can be described by area under the receiver 

operating curve (AUROC) analysis. The receiver operating curve (ROC) is a graphical 

representation of a risk score’s sensitivity and specificity. It is constructed by plotting the 

score’s sensitivity against the complement to its specificity (one minus specificity), as shown 

in Figure 4-1. A risk score which perfectly dichotomises cases and non-cases is referred to 

as ‘perfect’. A perfect risk score is exemplified by the green curve in the figure. The threshold 

which dichotomises the patient population as such can be plotted on the ROC at point (0, 1). 

 

The blue curve on Figure 4-1 plots a random risk score, also referred to as an ‘uninformative’ 

risk score. At all points on this curve sensitivity is equal to one minus specificity. This means 

that the probability of a case being identified as high-risk is always equal to the probability 

of a non-case being identified as high-risk. It follows that the ratio of cases estimated as high-

risk to non-cases estimated as high-risk will always be equal to the ratio of cases to non-cases 

in the population. Therefore, the score provides no more information on a patient’s risk than 

a completely random identification mechanism. 

 

In the case of non-perfect informative risk scores, when the threshold is set such that all 

individuals are classified as high-risk the score has a sensitivity of one. This is because all 

cases are classified as high-risk. At the same time, the specificity of the score would be zero. 
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This is because the non-empty subset of non-cases is also classified as high-risk. Similarly, 

when the specificity is equal to one, the sensitivity is equal to zero. For a non-perfect score, 

we can plot sensitivity and one minus specificity for a continuous range of risk thresholds, as 

exemplified by the purple curve in Figure 4-1. 

 

The c-statistic, or the AUROC, is an index employed in the quantitative comparison of ROCs. 

It is equal to the area between the ROC and the x-axis, and can range from 0.5 to 1. A perfect 

risk score has an AUROC of 1 and a random score has a value of 0.5. Hence, the closer a 

score is to a value of 1, the better its discrimination. If a score is less than 0.5, this implies 

systematic misspecification. Note, however, if the score consistently misspecifies 

individuals, then reclassifying all individuals to the opposite risk category will bring the score 

above 0.5. 

 

 

Figure 4-1: Receiver operating curve 
 

A growing body of literature highlights the weakness of traditional measures of 

discrimination in highlighting the benefit of novel technology in risk assessment. The 

improvement offered by adding a new covariate to an existing risk score cannot be adequately 

described by AUROC analysis. 

 

The law of diminishing returns makes it increasingly difficult for each additional risk factor 

added to a risk score to significantly improve the score’s predictive ability. Intuitively, more 

of the explicable population-level uncertainty in outcome is described by each additional risk 
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factor. Hence, fewer individuals in a population will experience a notable change in their risk 

score attributable to each additional covariate included in a score. Most risk scores for CHD, 

stroke, and CVD have c-statistics of around 0.75-0.80 and a model based on age and sex 

alone can result in an c-statistic of 0.70 (298). Additionally, Wang et al. (299) have shown 

that the addition of an established CVD biomarker to traditional covariates in risk prediction 

models only increases the c-statistic from 0.76 to 0.77. 

 

Reclassification Tables and Net Reclassification Indices 

 

Increase in c-statistic does not fully capture the clinical benefit of adding new covariates to a 

risk score. A substantial proportion of a population is unlikely to be reclassified as high- or 

low-risk by including new covariates in a risk score. Nonetheless, the additional risk factor 

information may prove significant in reclassifying a subset of a total population. Specifically, 

the new risk factor may lead to considerable reclassification of intermediate-risk individuals 

(those whose traditional risk score is near the threshold for treatment initiation). 

 

One methodological approach to address the shortcomings of AUROC analysis is the use of 

reclassification tables (300). Individuals in the population used to construct a risk score are 

split into separate risk-based categories (e.g. 0-10%, 10-20%, and >20% risk). The benefit of 

adding a new risk factor is evaluated by cross-tabulating individuals’ categorisation for two 

risk scores: one which does not include the new risk factor and one which does. The 

researcher next assesses the proportion of the population that is reclassified with the new risk 

score, calculates the expected event rate in this reclassified population, and compares this to 

the observed event rate. 

 

Reclassification tables are not particularly useful in evaluating updated risk scores. Simply 

calculating the proportion of individuals reclassified lacks information on the predictive 

benefits offered by such reclassification. Moreover, considering event rates in reclassified 

individuals is unlikely to produce a useful and objective measure of the improvement in the 

risk score. Such an approach considers all individuals reclassified collectively and therefore 

neglects the possibility of individual-level heterogeneity in the statistical benefit of the 

additional risk factor. 

 

Pencina et al. highlight the issues with reclassification tables (293). They consider a 

hypothetical example where a new covariate is added to a 10-year risk score, and 100 
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individuals are reclassified ‘upwards’ from a 10-20% risk group to a >20% risk group. It is 

further considered that the observed event rate is 25% in this risk group. In this situation, 

despite the fact the reclassification table approach appears to support the use of the new 

covariate in risk scoring, 75% of the individuals reclassified should have stayed in the lower 

risk category. 

 

Net reclassification improvement (NRI) is an alternative measure of a risk scores’ 

reclassification value proposed by Pencina et al. (293). Estimation of NRI is achieved by 

splitting reclassified individuals into two groups: those reclassified ‘upwards’ to a higher risk 

group and those reclassified ‘downwards’ to a lower risk group. As with sensitivity, 

specificity, and AUROC analysis, this approach requires one distinct ‘cut-off’ at which 

individuals are considered high-risk. NRI reflects the net improvement in classification of 

individuals who are reclassified upwards and the net improvement in individuals who are 

classified downwards. For individuals who are both reclassified and were observed to have 

experienced an event, the posterior probabilities of being reclassified upwards and 

downwards are computed, respectively. The latter is subsequently subtracted from the 

former, Equation (4-1). A similar calculation is performed for reclassified individuals who 

do not experience an event, Equation (4-2). Finally, these two values are subtracted from 

each other, Equation (4-3). Unlike reclassification tables, this index is able to concurrently 

consider the effect of updating a risk score in terms of sensitivity and specificity. 

𝐴 =  P(up|event) –  P(down|event)                                     (4-1) 
𝐵 =  P(up|no event) –  P(down|no event)                                   (4-2) 
𝑁𝑅𝐼 =  𝐴 − 𝐵                                                                            (4-3) 

 

Beyond NRI 

 

Greenland argues that NRI can provide decision-makers with misleading support for the 

implementation of an updated risk score. He points out that “predictive values, costs, and cut-

points must be considered together to make well-informed decisions” (301). Pencina et al. 

responded by formulating an updated NRI index which details the incremental costs 

attributable to implementing the new risk score (302). The updated index is presented in 

Equation (4-4) and is referred to as the weighted NRI (wNRI). 

  

 𝑤𝑁𝑅𝐼 = 𝑆1 ∗ (𝑃(𝑒𝑣𝑒𝑛𝑡|𝑢𝑝) ∗ 𝑃(𝑢𝑝) − 𝑃(𝑒𝑣𝑒𝑛𝑡|𝑑𝑜𝑤𝑛) ∗ 𝑃(𝑑𝑜𝑤𝑛)) 

+𝑆2 ∗ (𝑃(𝑛𝑜 𝑒𝑣𝑒𝑛𝑡|𝑑𝑜𝑤𝑛) ∗ 𝑃(𝑑𝑜𝑤𝑛) − 𝑃(𝑛𝑜 𝑒𝑣𝑒𝑛𝑡|𝑢𝑝) ∗ 𝑃(𝑢𝑝))               (4-4) 
 



96 
 

 

𝑆1 represents the savings from correct upwards reclassification and 𝑆2 represents the savings 

from correct downwards reclassification. These values may be positive or negative. 

According to Pencina et al. (302), the new risk score should be adopted if the sum of the 

wNRI and population-level testing costs is negative. In other words, cost-savings are obtained 

attributable to the new testing and treating strategy. If the summed value of the wNRI and 

testing costs is positive, they suggest that the decision-maker must perform further formal 

cost-effectiveness analysis. 

 

Extending the scope of wNRI to account for health outcomes could produce an index which 

better summarises the consequences of ‘correct’ and ‘incorrect’ treatment decisions. An 

updated weighted NRI score could replace the cost values in the wNRI equation (𝑆1 and 𝑆2) 

with net monetary benefits attributable to treating or not treating cases and non-cases 

respectively. Such an index would combine both the incremental costs and incremental 

QALYs associated with reclassification. This would better quantify the consequences of 

reclassification. However, it would only highlight the benefit of adding a risk factor in an 

existing dataset with follow-up information available for all individuals. Such data are rarely 

available, especially for novel risk factors. 

 

Policy Assessment 

 

The statistical methods described above do not fully assess the cost-effectiveness of adding 

risk factors to an existing risk score. Decision-analytic modelling allows researchers to 

bypass restrictive data requirements and enables them to predict outcomes in a wide range of 

populations. Chapter 7 presents a framework that can be employed to assess the incremental 

costs and health benefits associated with updating risk scores with novel risk factor 

information. 

 

4.4.4 Policy Analysis in Chapter 7 

 

Chapter 7 will assess the cost-effectiveness of two policies that retain the central role of 10-

year risk scores in statin prioritisation but attempt to improve upon current practice. It will 

consider the cost-effectiveness of: 

 Lowering the risk thresholds for statin initiation in Scotland 

 Improving the precision of current risk scores with novel biomarker data. 
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4.5 Novel Decision Mechanisms Which Incorporate 10-Year Risk 

 

Novel approaches to prevention have been proposed which incorporate 10-year risk scoring. 

The aim of these approaches is to better reflect heterogeneity in patients with similar risk 

scores but different projected outcomes. Typically, such approaches involve treating 

according to 10-year risk while additionally stratifying treatment decisions by some other 

factor. 

 

Age and LDL-C are two common factors with which 10-year risk-based decision-making 

may be additionally stratified. This stratification aims to correct for issues with the simple 

risk-based approach to prevention. These issues include neglecting competing risks, 

cumulative exposure, and heterogeneity in relative treatment effect. 

 

4.5.1 Policy: Age-Stratified Risk Thresholds 

 

Age-stratified risk thresholds are a decision mechanism which incorporate 10-year risk. This 

policy for prevention of CVD was introduced in Norway in 2009 (303). It requires setting 

separate treatment initiation thresholds for different age-groups. Effectiveness of statin 

prioritisation will likely improve if the threshold were reduced for younger age-groups and 

increased for the elderly. 

 

Two key epidemiological factors support the implementation of age-stratified risk thresholds: 

competing risks and cumulative exposure to risk factors. Both of these factors contribute to 

the fact that treatment outcomes differ greatly between younger and older individuals. 

 

The illustrative example at the start of this chapter showed individuals with drastically 

different risk profiles can have the same 10-year risk score. Patient C, for example, was a 70-

year-old male with a healthy set of modifiable risk factors. Patient A and Patient B, on the 

other hand, were 50-year-old females with elevated levels of modifiable risk factors like TC 

and SBP. Patient C likely has less to gain from preventive therapy. This is partly because 

they are at high-risk of developing many fatal health conditions, regardless of treatment. 

Additionally, atherosclerosis is a cumulative process. Hence, slowing down its progression 

is likely to produce the greatest benefit at younger ages. 
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Competing Risks 

 

The statistical methods used to estimate 10-year CVD risk typically ignore competing risks, 

limiting their utility. Competing risks are events that can occur prior to an event of interest, 

biasing statistical models of disease (304). 

 

Estimation of 10-year risk involves applying survival analysis to longitudinal datasets. 

Survival analysis is a branch of statistics often employed in epidemiology. It involves 

statistically modelling the time it takes for a specific event of interest to occur and the effect 

of relevant covariates on time to event. In CVD, the event of interest is typically a primary 

CVD event. Relevant covariates included in risk scores include age, sex, cholesterol, smoking 

status, and blood pressure. 

 

Andersen et al. (305) describe two key concepts central to survival analysis: risk and rate. 

Risk is defined as the proportion of individuals in a population who develop a condition in a 

specified period, say time zero through t. Equation (4-5) defines risk mathematically, with D 

representing the number of individuals with event from zero to t, and N representing the 

number of individuals in population of interest. Rate is defined as the number of individuals 

who develop a disease in a specific period divided by the amount of person-time at risk. 

Equation (4-6) defines rate mathematically with Y representing person-time at risk. 

 

𝑟𝑖𝑠𝑘 =
𝐷

𝑁
                                                                      (4-5) 

𝑟𝑎𝑡𝑒 =
𝐷

𝑌
                                                                      (4-6) 

 

The statistical counterparts of risk and rate are probability and hazard, respectively. 

Probability of an event occurring can be represented by the cumulative incidence function, 

F(t). The value of this function is equal to the relative frequency of individuals with time to 

event less than t. The probability density function (PDF), f(t), is central to the estimation of 

F(t). In survival analysis, the PDF is interpreted as the probability that an event occurs at time 

t. F(t) is related to the PDF by the relationship presented in Equation (4-7). In the situation 

where data are complete, Equation (4-4) provides an unbiased estimate for F(t). A similar 

measure that can be computed is the survival function, defined as the probability that an 

individual will survive beyond a given time and presented in Equation (4-8). 

 

𝐹(𝑡) = ∫ 𝑓(𝑡)𝑑𝑡
𝑡

0
                                                           (4-7) 

𝑆(𝑡) = 1 − 𝐹(𝑡)                                                            (4-8) 
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Hazard is represented by the hazard function, h(t). The value of this function is equal to the 

instantaneous risk of event for an individual from time t to t+d, where d is a small interval of 

time. The hazard function represents the instantaneous probability of an event occurring at 

time t, f(t), conditional on the probability that an individual had survived until time t, S(t). 

Equation (4-9) presents the mathematical formulation of h(t). This equation provides a 

reliable estimate of hazard when data are complete (304). Cumulative hazard, H(t), is equal 

to the integral of the hazard function from time zero through t, Equation (4-10). 

 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
                                                     (4-9) 

𝐻(𝑡) = ∫ ℎ(𝑡)𝑑𝑡
𝑡

0
                                                           (4-10) 

 

When there are no competing risks, there is a one-to-one correspondence between survival 

and hazard. The proof for this relationship is shown in Figure 4-2. Consequently, models of 

the hazard function can be employed in simple survival analysis to estimate cumulative 

incidence of an event. This corollary is not true when competing risks are present. 

 

ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
=

𝑓(𝑡)

1 − 𝐹(𝑡)
=

𝐹′(𝑡)

1 − 𝐹(𝑡)
 

= −
𝜕

𝜕𝑡
ln(1 − 𝐹(𝑡)) = −

𝜕

𝜕𝑡
ln (𝑆(𝑡)) 

∴ −
𝜕

𝜕𝑡
ln(𝑆(𝑡)) = ℎ(𝑡) 

⇒ − ln(𝑆(𝑡)) = ∫ ℎ(𝑡)𝑑𝑡
𝑡

0

 

⇒ ln(𝑆(𝑡)) = −𝐻(𝑡) 

⇒ 𝑆(𝑡) = 𝑒−𝐻(𝑡) 

Figure 4-2: Proof of one-to-one relationship between h(t) and S(t) 

 

Data limitations can affect the reliability of results derived from survival analysis. A dataset 

containing time to event or survival data for all individuals over a set period is desirable when 

building survival models. For a variety of reasons, such data may be unavailable. Individuals 

may become ‘lost to follow-up’. This means that, despite providing longitudinal data at some 

point, the individual is not followed up until the event of interest or through the end of the 

study. This may occur when the individual leaves the locality of the study, dies, or chooses 

to stop providing information to researchers. These individuals are described as ‘censored’. 
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If censoring is independent – meaning that it occurs completely at random and is not 

correlated with the dependent variable – a valid method for correction of survival models is 

to assume that the event rate for censored individuals is equal to that of the uncensored 

individuals (304). This will hereafter be described as naïve correction for censoring in 

survival analysis. Competing risk methodology is required to obtain unbiased estimates of 

hazard and survival when censoring is not independent. 

 

Estimation of hazard and survival is complicated by the existence of competing risks. 

Competing risks lead individuals in a dataset to experience a censoring event before the event 

of interest. This censoring cannot always be treated as independent. The underlying 

mechanism that causes a competing event to occur often relates to the individual’s risk of 

experiencing the event of interest. For example, Keurentjes et al. (306) estimate revision rates 

for patients receiving hip replacement surgery. They show that all-cause mortality is a 

competing risk for revision surgery, and patients who are at elevated risk of receiving revision 

surgery are also at a greater risk of all-cause mortality. Therefore, survival models which 

apply naïve correction methodology overstate probability of revision surgery. 

 

Dealing with Competing Risks 

 

Andersen et al. discuss the most appropriate methodology for competing risk survival 

analysis (305). Consider two competing events, A and B. In each interval of time t to t+d, 

individuals have the possibility of remaining event-free, experiencing Event A, or 

experiencing Event B. The cause-specific hazard of Event A is defined as hA(t), and is equal 

to the probability of experiencing Event A between time t and t+d. This value is a conditional 

probability, dependent on survival from both event types through time t. The cause-specific 

hazard of Event B is defined similarly as hB(t). Cumulative hazard of Event A, HA(t), is equal 

to the integral of hA(t) from time zero through t. 

 

The survival function is computed differently in naïve and competing risk survival analyses. 

Survival relates to survival from both events in competing risk analysis. It is therefore 

calculated as follows: 

𝑆(𝑡) = 𝑒−𝐻𝐴(𝑡)−𝐻𝐵(𝑡). 

Now consider FA(t), the probability (cumulative incidence function) of Event A through time 

t. This is equal to the product of survival and cause-specific hazard, summed over all intervals 

between zero and t, Equation (4-11). 
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𝐹𝐴(𝑡) = ∫ 𝑓𝐴(𝑡)𝑑𝑡
𝑡

0
= ∫ ℎ𝐴(𝑡) ∗ 𝑆(𝑡)𝑑𝑡

𝑡

0
= ∫ ℎ𝐴(𝑡) ∗ 𝑒−𝐻𝐴(𝑡)−𝐻𝐵(𝑡)𝑑𝑡

𝑡

0
        (4-11) 

 

Observing the functions which constitute Equation (4-11), there is no longer a one-to-one 

correspondence between cumulative incidence and cause-specific hazard. Incidence of a 

given event is now influenced by the rate of the competing event. Two major corollaries 

relate to this finding (305): naïve estimators of cumulative incidence are biased and the way 

in which a covariate affects cause-specific hazard may differ from the way in which it affects 

cumulative incidence. 

 

The first corollary can be stated as follows: in the presence of competing risks, a naïve 

estimator of cumulative incidence (and therefore estimated probability of event) is biased. 

Volf provides a sports-based example of this situation (307). The time taken to score the first 

goal in a football match is the event of interest. A team may score the first goal, concede the 

first goal, or the game may end in a goalless draw. These are three mutually exclusive, 

competing endpoints. A naïve analysis will censor goalless draws and presume that the rate 

of games in which a team scores first in all games is the same as the rate at which they score 

first in games with goals. A football fan (or statistically-minded gambler) may be interested 

in estimating the probability that a team will score first in a game, given a range of covariates. 

A naïve analysis will overpredict this likelihood by disregarding the possibility of a goalless 

draw. 

 

The second major corollary is: the way in which a covariate affects cause-specific hazard 

may differ from the way in which it affects cumulative incidence. Regarding the football 

example, consider if the covariates in the survival models included ‘number of defenders’. A 

team that defends well is less likely to concede a goal, increasing the likelihood of them 

scoring first and of a goalless draw. We therefore expect this variable to be positively 

correlated with the cause-specific hazard of scoring first and the cause-specific hazard of a 

goalless draw. Consider further that number of defenders is a stronger predictor of a team 

being involved in a goalless draw than of a team scoring first. If a team plays a formation 

with several defenders, the cumulative incidence of goalless draws may increase markedly. 

Because of the mutual exclusivity of considered events, this may lead to an overall reduction 

in the cumulative incidence of games where the team scores first. Hence, despite being 

positively associated with cause-specific hazard of scoring first, playing too many defenders 

likely leads to a reduction in the incidence of such events occurring. 
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Competing Risks as they Relate to CVD 

 

Competing risks are particularly important when evaluating 10-year CVD risk scores. 

Applying the terminology from survival analysis literature, 10-year risk scores are estimates 

of cumulative incidence. They estimate probability of experiencing any primary CVD event 

within a 10-year period, moderated by a range of covariates. The methodology employed to 

estimate this probability can be described as naïve estimation. Individuals who leave the 

dataset due to non-CVD mortality are censored and it is assumed that they have a similar rate 

of disease to those who remain in the risk set (152,231,233–235,308). 

 

As noted in the first corollary above, in the presence of competing risks, a naïve analysis 

provides biased estimations for event probability. This is true with CVD risk scores. Such 

scores disregard the fact that individuals may experience non-CVD mortality in the ten years 

following risk estimation. Therefore, risk of CVD will be overestimated by these scores. On 

a population level, utilising risk scores to predict future incidence of CVD in a large group 

of individuals will lead to overprediction. On the individual level, physicians who present 

risk scores to their patients will be providing misleading information. 

 

Another key issue with 10-year risk scores relates to age. Age is a particularly dominant risk 

factor in CVD. This fact is reflected in the ASSIGN risk score algorithm which ascribes a 

1.77 hazard ratio per 10-year increase in age for CVD development. In comparison, smoking 

an additional 10 cigarettes per day has an estimated hazard ratio of 1.22, and having a family 

history of CVD has a hazard ratio of 1.31 (152). 

 

Figure 4-3 presents the significance of age in CVD risk scoring diagrammatically (309). This 

figure shows a set of CVD risk profiles and was built using the ASSIGN risk score. The 

numbers inside the cells are the specific risk score for that profile. Along the horizontal axis 

is patient’s ratio of TC to HDL-C, and along the vertical axis is the patient’s SBP. Each of 

these is positively associated with CVD risk, and therefore the healthiest health state is the 

bottom left hand corner of each profile. 

 

Each profile set represents a different type of patient, based on their age and smoking status. 

The two profile sets on the left are for patients in the least socially deprived quintile of the 

Scottish population, and the highest deprived quintile is on the right. All risk profiles were 
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assigned the average family history (0.26) and diabetes (0.15) values from the Scottish Heart 

Health Extended Cohort, a study which representatively sampled the CVD-free adult Scottish 

population. 

 

 

Figure 4-3: ASSIGN risk charts for Scottish males in the lowest and highest deprived 
quintiles according to Scottish Index of Multiple Deprivation, Lawson (text) 

 

The profiles in Figure 4-3 show the strength of the age gradient in CVD risk. Red represents 

high-risk (≥20%), orange represents medium-risk (10-20%), and green represent low-risk 

(<10%). Notably, the majority of people above 60 years old are at high risk of developing 

CVD. While these risk charts are only for males, similar patterns occur in the charts for 

females. 

 

Figure 4-4 shows the distribution of ASSIGN scores in the Scottish population. This graph 

was developed with data from the Scottish Health Survey (SHeS) 2011 (310). It presents a 

plot of age versus ASSIGN score for all CVD-free individuals aged 40 and above in the 

survey and clearly shows that 10-year risk increases with age. 

 

The second corollary above stated that, in competing risks analyses, the way in which a 

covariate affects cause-specific hazard may differ from the way in which it affects cumulative 

incidence. This is true with regards to age and CVD risk. Age is positively associated with 

non-CVD mortality. This is because age is a risk factor generic to a range of chronic illnesses 

including chronic lower respiratory diseases, cancer, and dementia and Alzheimer’s (311). 
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Alongside CVD, these diseases represent the leading causes of mortality in Scotland, England 

and Wales, and the U.S. (312–314). An elderly individual deemed to be at very high risk of 

CVD will often experience a fatal occurrence of one of these competing events before 

developing CVD. Therefore, increases in age will not necessarily lead to an increased 

incidence of CVD, as predicted with naïve estimations of 10-year risk. 

 

 
Figure 4-4: ASSIGN score versus age in the Scottish Health Survey 2011 

 

Cumulative Exposure 

 

A second argument in favour of the age-stratified risk threshold approach to prevention is 

that commencing treatment early in life reduces cumulative exposure to harmful risk factors. 

In turn, this should reduce atherosclerotic build-up and later life CVD risk. 

 

Atherosclerosis is a cumulative process and extended exposure to modifiable risk factors 

increases CVD risk. The relationship between risk factor exposure and CVD risk was 

established in studies of long-term exposure to smoking. Cumulative exposure to smoking 

can be represented by pack-years, the number of cigarette packs smoked per day by an 

individual multiplied by the number of years they have smoked. A strong relationship 

between pack-years and cardiovascular risk has been identified in various studies (315–317). 

It has additionally been shown that years since quitting smoking is a significant predictor of 

CVD risk (318). 
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Early life exposure to many CVD risk factors including SBP, LDL-C, and triglycerides have 

also been shown to increase risk of atherosclerotic build-up in later life (319–323). These 

studies estimate the effect of risk factor exposure on atherosclerotic build-up rather than hard 

disease-related events. This is because extensive follow-up is required to link young adult 

exposure to events which often occur in later life. However, in an analysis of Framingham 

Offspring Study data, Vasan et al. have shown a significant effect of cumulative exposure to 

risk factors in middle-aged individuals on later life CVD events (324). 

 

A breakthrough study published in 2017 showed that exposure to unhealthy risk factor levels 

in young adulthood significantly increases risk of experiencing a CVD event in later life 

(325). Pletcher et al. analysed data from 4,860 individuals who were enrolled in the 

longitudinal Framingham Offspring Study. These individuals attended an average of 6.3 in-

person examinations. Age at first examination ranged from 20 to 70 years. Average length of 

follow-up was 24.5 years. Modifiable risk factor values, specifically LDL-C, HDL-C, 

diastolic blood pressure (DBP), and SBP, were imputed for every individual for each age 

from 20 to 70. This was achieved with a mixed modelling approach that fitted risk factor 

trajectories for every individual based on trends in the population. 

 

Regression analysis was performed to estimate the effect of cumulative exposure to risk 

factors on later life CVD risk. Every individual’s time weighted average LDL-C, HDL-C, 

DBP, and SBP between the ages of 20-39 was calculated. Cox proportional hazards models 

were then constructed to estimate the hazard ratio associated with these factors, adjusting for 

various traditional CVD risk factors. The dependent variable in these Cox models was any 

CHD event after age 40 and adjustment variables included current and cumulative later life 

values for the modifiable risk factors. Results showed that cumulative exposure to DBP and 

LDL-C in young adulthood significantly increased risk of CHD in later life (Figure 4-5). The 

relationship with SBP in young adulthood was less pronounced. The authors hypothesise that 

this was due to collinearity between individuals’ SBP in early and later life. 

 

Martin and Michos (326) argue that onetime assessment of cholesterol in adulthood likely 

leads to underestimation of its relationship with CHD. They note that in the Bogalusa Heart 

Study, two thirds of individuals in the highest quintile of non-HDL cholesterol and LDL-C 

during childhood ranked in the lowest two quintiles in adulthood. Hence, current levels of a 

risk factor were poor predictors for past exposure. 
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There are two implications of the results described above. First, two individuals with identical 

traditional risk factor profiles may be at very different risk of experiencing a CVD event, 

based on previous exposure. This implies that current risk scores do not adequately reflect 

heterogeneity in patient risk. Second, preventive interventions should commence as early as 

possible to reduce cumulative exposure. 

 

 

Figure 4-5: Adjusted hazard ratio for SBP, DBP, LDL-C, and HDL-C in Pletcher et al. 
(325). Categories: SBP - <120 (ref), 121-140, 141-160, >160 mmHg, DBP - <80 (ref), 
81-90, 91-100, >100 mmHg, LDL-C - <100 (ref), 101-130, 131-160, >160 mg/dL, 
HDL-C - >65 (ref), 51-65, 36-50, <35 mg/dL. “P overall” refers to overall 
contribution of risk factor to the model. 

 

Policy Assessment 

 

Age-stratification of risk thresholds allows for better reflection of heterogeneity in patient 

risk and outcome. Reducing the risk threshold for younger individuals will allow treatment 
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to be targeted at individuals whose risk is driven by modifiable factors. Similarly, increasing 

the threshold for older individuals will lead to fewer healthy elderly individuals being treated. 

Due to competing risks, these individuals are less likely to experience the health benefits of 

preventive treatment. Moreover, commencing treatment in early life will limit individuals’ 

cumulative exposure to risk factors which will reduce atherosclerotic build-up and CVD 

events in later life. 

 

4.5.2 Policy: Absolute Risk Reduction-Based Prioritisation 

 

The absolute risk reduction approach is a novel decision mechanism which incorporates 10-

year risk. This policy requires prioritising individuals for preventive therapy based on the 

expected risk reduction they will achieve from treatment. 

 

The basis for the absolute risk reduction approach to prevention is that risk factors can modify 

treatment effect.  This violates the assumption that relative risk reduction for a treatment is 

equal across all subgroups of the population. With regards to preventive statin therapy for 

CVD, baseline LDL-C is a known treatment effect modifier. 

 

In the presence of treatment effect modifiers, 10-year risk does not accurately predict 

treatment outcomes for patients with the same risk score. Two patients with the same risk 

score but different values of a treatment effect modifier will experience different relative risk 

reductions from a preventive treatment. 

 

LDL-C as a Treatment Effect Modifier 

 

Several major clinical trials have analysed the effect of statins on CVD risk (327–337). 

Established in 1994, the Cholesterol Treatment Trialists’ Collaboration (CTTC) synthesises 

data from these trials (338). This has enabled powerful inference of statin effectiveness in 

patient subgroups. 

 

A key finding from the CTTC is that relative risk reduction from statin therapy per mmol/L 

reduction in LDL-C is near constant (251). Further, it has been shown in large randomised 

controlled trials that statin efficacy, represented by reduction in LDL-C, is directly 

proportional to baseline LDL-C (339). Intermediate-intensity statins do not lead to a unitary 

reduction in LDL-C but rather a percentage reduction of around 29% (284). Combining these 
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two findings suggests that individuals with higher baseline LDL-C achieve greater absolute 

risk reduction attributable to statin therapy. Soran et al. (340) acknowledge this consequence. 

They show that the number needed to treat with statins to prevent one CVD event is often 

lower in low- and intermediate-risk individuals with high baseline LDL-C when compared 

with high-risk individuals with low baseline LDL-C. 

 

Predicting Absolute Risk Reduction for Statins 

 

Based on the theory presented above, Thanassoulis et al. developed an equation to predict 

10-year absolute risk reduction (ARR10) or 10-year absolute benefit (AB10) attributable to 

statin therapy (341). This equation accounts for both absolute 10-year risk (AR10) and 

baseline LDL-C, and presumes that statin therapy produces a 40% reduction in LDL-C. 

 

Let AR10,un equal baseline untreated 10-year risk and bLDL equal baseline LDL-C. 

Furthermore, let AR10,tr equal treated 10-year risk, S10,un be untreated event-free survival, and 

S10,tr be treated event-free survival. The three latter terms are presented in Equations (4-12 to 

4-14). 

𝑆10,𝑢𝑛 = 1 − 𝐴𝑅10,𝑢𝑛                                       (4-12) 
𝑆10,𝑡𝑟 = 𝑆10,𝑢𝑛

𝑥                                               (4-13) 
𝐴𝑅10,𝑡𝑟 = 1 − 𝑆10,𝑡𝑟                                         (4-14) 

 

If HR is the hazard ratio associated with a one mmol/L reduction in LDL-C, then the relative 

risk reduction experienced by an individual receiving statin therapy can be described by 

Equation (4-15). 

𝑥 = 𝐻𝑅𝑏𝐿𝐷𝐿∗0.4                                                (4-15) 

 

It follows that the absolute risk reduction attributable to statin therapy can be described in 

terms of AR10,un, x, and bLDL. This relationship is presented in Equation (4-16), which states 

that absolute CVD risk reduction attributable to statin therapy is equal to untreated risk minus 

treated risk. This is also equal to treated minus untreated event-free survival. The previous 

equations formalised the fact that statins reduce risk conditional on bLDL and therefore 

treated 10-year risk is dependent on bLDL. Hence absolute risk reduction is dependent on 

baseline LDL-C. 

 

𝐴𝑅𝑅10 = 𝐴𝑅10,𝑢𝑛 − 𝐴𝑅10,𝑡𝑟 

       = 𝑆10,𝑡𝑟 − 𝑆10,𝑢𝑛 

= 𝑆10,𝑢𝑛
𝑥 − 𝑆10,𝑢𝑛                                    (4-16) 
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Thanassoulis et al. (341) consider the difference between the AR10 and the ARR10 approach 

to prevention. They obtained risk factor data for 2,134 individuals from National Health and 

Nutrition Examination Survey 2005-2010, representing 71.8 million Americans who are 

potentially eligible to receive statins for the primary prevention of CVD. AR10 was estimated 

for every individual using the ACC/AHA pooled cohorts 10-year risk score (342). They 

found that if the threshold for treatment initiation was not standard of care (AR10 ≥7.5%), but 

rather ARR10 ≥2.3%, 9.5 million lower-risk individuals would be prioritised for treatment 

who would achieve equal or greater benefit from statin therapy. The value 2.3% was selected 

as a prioritisation threshold because this was the minimum ARR10 in the group of individuals 

with AR10 ≥7.5%. 

 

Policy Assessment 

 

A full economic analysis of the absolute risk reduction approach to prevention has not yet 

been conducted. Thanassoulis et al. have established that this approach may lead to a large 

reduction in CVD events over a 10-year time horizon compared to standard of care. More 

extensive analysis should account for QALYs, costs, discounting, competing risks, and 

should employ a lifetime horizon. 

 

4.5.3 Policy Analysis in Chapter 8 

 

Chapter 8 will assess the cost-effectiveness of two alternatives to prioritisation based on 10-

year risk alone for statin initiation. These approaches incorporate 10-year risk, but are 

stratified by age and LDL-C, respectively. They are: 

 Age-stratified risk thresholds 

 Absolute risk reduction. 

 

4.6 Direct Use of Decision Models in Clinical Practice 

 

4.6.1 Basic Concept 

 

High-risk young adults generally gain more life years from treatment than elderly individuals. 

However, this is not necessarily true when the younger individual’s risk is driven by smoking. 

Smokers of all ages are subject to significant fatal competing risks (343), and this drastically 



110 
 

 

limits their capacity-to-benefit from a preventive treatment. There clearly exists a 

complicated network of predictors and interactions that determine an individual’s capacity-

to-benefit from preventive therapy. It is therefore not surprising that defining a simple 

decision rule to prioritise patients for preventive treatment is very difficult. 

 

As presented throughout this chapter, the 10-year risk scores used to prioritise patients for 

statin therapy in current practice do not capture heterogeneity in outcome effectively. In the 

presence of competing risks, missing variables, misspecified models, and non-linear 

treatment effects, it is very difficult to define a decision rule that maps any specific variable 

to an individual’s capacity-to-benefit. Decision-analytic models allow researchers to 

synthesise data from multiple sources (344). Direct use of such models in clinical practice 

may allow clinicians to objectively weigh up the multitude of factors which should inform 

whether a patient is treated. 

 

4.6.2 Policy: Treating Patients with Greatest Expected Life Year Gains 

 

A decision-analytic model which predicts lifetime outcomes with perfect calibration would 

allow a decision-maker to assess who is likely to gain most from preventive therapy. This 

would require using a decision-analytic model in clinical practice to explicitly account for 

patient-level heterogeneity in outcome. The decision rule to commence treatment would not 

be based on a risk threshold. Rather, a decision-analytic model would be employed to predict 

an individual’s absolute expected benefit from treatment. Those individuals that meet a 

minimum benefit threshold would receive treatment. 

 

Decision-makers can employ decision-analytic models to maximise cost-effectiveness, life 

expectancy, or quality-adjusted life expectancy in a population. Treating patients with the 

lowest estimated cost-per-QALY attributable to treatment would maximise cost-

effectiveness. Treating patients with the maximum estimated life years gains or QALY gains 

attributable to treatment would maximise life expectancy or quality-adjusted life expectancy, 

respectively. 

 

Maximising Health Outcomes with Decision Analytic Models 

 

Decision-analytic models, which will be discussed further in Chapter 5, predict health and 

cost outcomes in individuals based on a range of covariates. These models could be used in 
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clinical practice to determine which patients receive preventive treatment. This would allow 

physicians to target treatment at patients based on some expected outcomes. This could be an 

objective health outcome (e.g. expected life years or QALYs gained) or a marker of value 

(e.g. expected net health benefit from treatment). 

 

In practice, a physician would use a decision model rather than a risk score to determine 

whether an individual receives treatment. Many physicians already use computer-based 

applications to access risk scores like ASSIGN, QRISK2, and the ACC/AHA ASCVD Risk 

Score (178,345,346). 

 

Patient 
ASSIGN 

Score 

Statin 
Effect on 

Life Years 

Treatment Eligibility 

ASSIGN≥20 
Life Year 

Maximisation 

A 24 0.13 0.13 0.13 

B 7 0.15 0.00 0.15 

C 3 0.11 0.00 0.00 

D 39 0.13 0.13 0.13 

E 17 0.05 0.00 0.00 

F 43 0.12 0.12 0.00 

G 28 0.04 0.04 0.00 

H 17 0.05 0.00 0.00 

I 7 0.14 0.00 0.14 

J 24 0.02 0.02 0.00 

K 36 0.16 0.16 0.16 

L 9 0.03 0.00 0.00 

M 5 0.13 0.00 0.13 

N 15 0.18 0.00 0.18 

O 52 0.07 0.07 0.00 

Total LY gain: 0.67 1.02 

Table 4-3: Example of risk scoring versus life expectancy maximisation to 
determine statin eligibility 

 

Table 4-3 provides an example of how a decision model could be used to prioritise preventive 

statin therapy in Scotland. This table includes data for 15 patients from the Scottish Health 

Survey of 2011 (347). The first two columns show the patient’s ID and ASSIGN score, 

respectively. Column three shows the life expectancy effect of statins on each patient, as 

predicted using the Scottish CVD Policy Model (7). Column four applies that effect to the 

patient if their assign score is above 20%. Hence, seven of the fifteen patients are highlighted 

grey and assigned the ‘treated’ change in life expectancy. Column five demonstrates an 

alternative approach: patients are prioritised based on their estimated capacity-to-benefit 

from treatment. The seven patients with the highest expected increase in life expectancy (life 
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year gain ≥0.13) are highlighted green and assigned an increase in life expectancy. Finally, 

in the bottom row, columns four and five are summed. 

 

Even amongst this small cohort of potential patients, determining treatment eligibility with a 

decision-analytic model leads to a marked increase in health benefit. For this benefit to carry 

into actuality, it is necessary that the model predicts individual-level treatment benefit with 

an acceptable degree of discrimination and calibration 

 

4.6.3 Policy Analysis in Chapter 9 

 

Chapter 9 will assess the cost-effectiveness of using decision models in the clinical setting. 

Specifically, it will consider the cost-effectiveness of a statin initiation rule which aims to 

maximise life expectancy in a population. 

 

4.7 Homogeneity in Cost-Effectiveness of Statin Therapy 

 

Individuals evidently achieve different benefits from statin therapy based on 

sociodemographic and biological variables. However, statins are relatively low cost and have 

a small adverse effect profile (36,348). Collins et al. state that the large amount of evidence 

from randomised trials of statin therapy indicates that it is “unlikely that large absolute 

excesses in other serious adverse events still await discovery” (349). If individuals have a 

small chance of experiencing statin-related benefit, then all individuals in a population may 

soon be cost-effective to treat. While health outcomes attributable to treatment may differ in 

populations, there may be considerable homogeneity in cost-effectiveness of statin therapy. 

 

In microsimulation analysis, Pandya et al. (37) found that with generic statin pricing the 10-

year risk threshold for statin initiation could be reduced to less than 4% in the U.S., 

representing 65% of the CVD-free population aged 40 years and above. This cost-

effectiveness was largely driven by drug price. In similar analyses Heller et al. found that 

implementing the ACC/AHA guideline would be cost-saving (350) and research by NICE 

found that the threshold for statin initiation in England and Wales could be reduced to 6% or 

lower and still be cost-effective (25). This suggests that much more than 65% of the CVD-

free adult population would be cost-effective to treat. 
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Concerns over mass-medicalisation may limit the institution of statin prioritisation policies 

which treat large numbers of people. This is especially true because the expected absolute 

gains from preventive treatment are often small. There has been significant backlash from 

the clinical community following NICE’s decision to reduce its threshold for treatment 

initiation from 20% to 10% in England and Wales (351). Uptake of the new guidelines has 

been low with around one fifth of individuals with risk scores between 10-19% receiving 

treatment (352). Clearly there has been a disconnect between those producing treatment 

guidelines based on cost-effectiveness analysis and clinicians concerned about 

overmedication of healthy individuals and polypharmacy in the elderly (353). Simple cost-

effectiveness rules may not be sufficient in determining who should receive statin therapy, as 

guidelines based on cost-effectiveness may not be clinically acceptable. 

 

Policy Assessment 

 

Chapter 11 compares the policies discussed throughout this chapter. Primarily, it compares 

the cost-effectiveness of these strategies. Given the backlash to recent statin guidelines, it is 

also necessary to consider implicit constraints on prioritisation policies and alternative 

metrics to cost-effectiveness with which to assess these policies. This chapter compares 

strategies for CVD prevention constrained by treating a limited proportion of a population. It 

additionally considers the ability of alternative statin prioritisation policies to address health 

inequalities. 

 

4.8 Chapter Summary 

 

Outcomes attributable to preventive intervention in CVD may differ substantially between 

individuals. Even amongst individuals with the same 10-year risk score, there may be 

considerable heterogeneity in outcome associated with statin therapy. Three approaches were 

presented in this chapter which may better address heterogeneity in patient outcomes than 

current standard of care. These were: continue and updated use of 10-year risk scoring, novel 

decision mechanisms which incorporate 10-year risk alongside other important covariates, 

and direct utilisation of decision-analytic modelling in the clinical process. 

 

Policies were presented which may be stratified into one of the three approaches to prevention 

discussed. Policies that involve continued and updated use of 10-year risk scores are lowering 

the threshold for treatment initiation and improving risk scores with novel risk factor 



114 
 

 

information. These policies would respectively allow decision-makers to increase the 

sensitivity of risk scoring and better target treatment at patients with elevated risk, 

respectively. Policies that involved novel decision mechanisms which incorporate 10-year 

risk alongside other important covariates were age-stratified risk thresholds and prioritisation 

based on statin absolute risk reduction. These policies address competing risks related to the 

age gradient in CVD risk, cumulative exposure to risk factors, and the existence of treatment 

effect modifiers, respectively. Finally using decision-analytic models in clinical practice 

would allow decision-makers to maximise health outcomes. The following chapters, 

contained within Part 3 of the thesis, will assess the cost-effectiveness of the policies 

described in this chapter. 
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Part 3 

Cost-Effectiveness Analyses of Preventive Policies for CVD 

 

Part 3 considers the cost-effectiveness of treatment prioritisation policies introduced in earlier 

chapters. Most of these analyses focus on the cost-effectiveness of prioritising patients for 

preventive statin therapy through different decision mechanisms. A final analysis shows how 

decision-makers can signal demand for more expensive cholesterol-reducing interventions in 

patients with statin intolerance or who require further cholesterol reduction while on statin 

therapy. 

 

Chapters 5 and 6 set up the cost-effectiveness analyses. Chapter 5 describes two previously-

published decision-analytic models that will be used throughout the remainder of Part 3 to 

assess the cost-effectiveness of different treatment policies. Despite being a commonly 

prescribed medication, there remains some controversy regarding statin therapy and 

perceived adverse effects. Chapter 6 discusses evidence regarding the safety, efficacy, and 

effectiveness of statin therapy. 

 

Chapters 7 to 9 consist of a series of cost-effectiveness analyses of different prioritisation 

policies for preventive statin therapy. Chapter 7 considers two policies which involve 

continued use of 10-year risk scoring: reducing the risk threshold for treatment initiation and 

improving the discrimination of risk scores with novel biomarker testing. Chapter 8 considers 

two policies which involve novel decision mechanisms alongside 10-year risk scoring: age-

stratified risk thresholds and the absolute risk reduction approach to statin prioritisation. 

Chapter 9 considers the cost-effectiveness of using decision models in clinical practice to 

maximise outcomes in the patient population. 

 

Chapter 10 relates to PCSK9 inhibitors, a treatment which is more effective at reducing LDL-

C than statin therapy and more expensive. This treatment may be useful for patients with high 

capacity-to-benefit from cholesterol reduction who require treatment supplemental to statin 

therapy or for patients who are statin intolerant. This chapter shows how decision-makers can 

signal demand for PCSK9 inhibitors by reflecting heterogeneity in their decision-making. 
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Chapter 5 

Cardiovascular Disease Policy Models 

 

5.1 Purpose 

 

To maximise health outcomes given an exogenously determined healthcare budget, decision-

makers must invest in cost-effective treatments. Decision-analytic models can be employed 

to estimate the cost-effectiveness of different treatments. These models allow researchers to 

systematically synthesise evidence regarding an intervention and estimate its health and cost 

consequences in a population of interest. 

 

The purpose of this chapter is to describe the rationale behind policy modelling and to 

introduce existing models for CVD that can be employed in cost-effectiveness analyses 

throughout the remainder of thesis. Types of decision-analytic models and approaches for 

their validation and recalibration are described. The Scottish CVD Policy Model and the 

U.S.-based CVD Microsim Model are discussed, and these models are employed in 

epidemiologic analyses of CVD prevention. 

 

5.2 Policy Models 

 

Decision-analytic models are typically built with a specific research question in mind. For 

example, pharmaceutical companies often develop models which can be used to assess the 

cost-effectiveness of a specific product. Policy models adopt a more generic approach to 

disease modelling. They can be used in the assessment of multiple treatment options. 

 

5.2.1 Types of Model 

 

Decision models can take many forms, ranging from simple decision trees to complex state-

transition models (354). 

 

Decision Tree Models 

 

Decision tree models are the simplest form of decision-analytic model. They involve 

constructing a probabilistic pathway that describes key stages in a patient’s disease and 
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treatment history. They can be represented diagrammatically in a flowchart structure. 

Decision trees typically start with a square decision node. At this point in the flowchart, the 

initial treatment decision is made. Straight lines descend from the initial node representing 

patient pathways. Future events can be modelled with circular chance nodes (which assign a 

probability to future pathways in the model) and additional decision nodes. Finally, each 

pathway ends with a terminal node. Terminal nodes are assigned health and cost outcomes. 

The expected outcomes associated with different clinical decisions can hence be estimated 

by summing the probabilistically weighted outcomes of each terminal node, conditional on a 

set of clinical decisions. 

 

Figure 5-1 presents a decision-tree employed by Bachman (355) in a cost-effectiveness 

analysis of community-based therapy for children with severe acute malnutrition in Zambia. 

The initial decision node determines whether individuals receive the care. Children receiving 

no care are stratified by HIV status, as this is a key determinant of mortality probability in 

untreated malnourished children. Those children who receive therapy may recover, die, be 

admitted to hospital, or default from care. Probability of mortality was lowest for children 

who received the intervention, followed by those who defaulted from care, while children 

admitted to hospital had the highest mortality rate. 

 

 
Figure 5-1: Decision tree model, Bachmann (text) 

 

State-Transition Models 

 

State-transition models are one of the most common types of decision-analytic model used 

in economic evaluations of health care interventions. Instead of modelling decision processes 

as a range of mutually exclusive pathways with terminal outcomes, state-transition models 

structure the process over a set of discrete time periods. These models are defined by a set of 
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mutually exclusive states (often determined by disease status). During each cycle one 

transition between states is possible, determined by an estimate of transition probability. Each 

state typically has an associated cost and measure of health. Transition between states may 

also be attributed health and cost outcomes. 

 

The simplest form of state-transition model is a Markov cohort model. Figure 5-2 displays 

an example of a Markov cohort model that was employed in the cost-effectiveness analysis 

of interventions to prevent the onset of diabetes in high-risk individuals (356). Individuals or 

cohorts enter the model with normal glucose tolerance (NGT). They may then transition to a 

state of impaired glucose intolerance (IGT) based on a probability that is conditional on a set 

of risk factors. IGT is a predictor of an individual’s risk of developing type-2 diabetes (T2D) 

(357). Next, individuals may transition from IGT to development of T2D. Individuals 

inhabiting all states are subject to the competing risk of death. An intervention which reduces 

development of T2D will reduce probability of state transition in the model. 

 

 
NGT – normal glucose tolerance, IGT – impaired 
glucose tolerance, T2D – type-2 diabetes. 

Figure 5-2: Markov cohort model, Neumann et al. (text) 

  

To estimate health and cost outcomes for a cohort or individual, Markov models are ‘run’ for 

several cycles. The number of cycles employed in an analysis multiplied by the length of 

each cycle is referred to as the time horizon of the analysis. When comparing two treatment 

strategies, a time horizon should be employed which adequately captures all incremental 

disease-related outcomes (358). 

 

Two key types of state-transition models exist: Markov cohort and microsimulation models. 

Markov cohort models simulate an entire cohort, distributing individuals deterministically 

across model states after each cycle based on state transition probabilities. The average length 
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of time spent in each state by the cohort is multiplied by health and cost valuations for the 

state. This allows for outcomes including life expectancy (LE), quality-adjusted life 

expectancy (QALE), and expected healthcare costs to be summed over the time horizon 

(359). Future health and cost outcomes can be discounted within the model structure. 

 

Markov cohort models rely strictly on the Markovian assumption that state transitions occur 

in a ‘memoryless’ fashion. This means that once an individual enters a state in the model, 

their future transitions and outcomes are not dependent on their past disease history. Disease 

history includes both the time they have spent in their current state and the previous states 

they have occupied. With reference to Figure 5-2, an individual who has spent 10 cycles in 

the IGT state has the same probability of transition to T2D as an individual who has spent 

one year in the state, even if their risk factors are the same. Likewise, an individual who has 

spent their whole life with IGT would be at the same risk of transitioning to T2D as an 

individual who only recently developed IGT. 

 

Complexity can be added to the structure of Markov models to reflect better disease 

processes. For example, additional ‘tunnel’ states can be added to models. All individuals in 

a state progress into a tunnel state after a specified number of cycles. However, including 

several tunnel states makes a model unwieldy. 

 

Microsimulation is a more complex form of modelling. This process (also referred to as 

patient-level simulation) involves simulating a finite number of individuals. First-order 

Monte Carlo simulation is performed. This means that each transition between states is 

stochastically determined (as opposed to deterministically in the case of cohort models). The 

costs and QALYs accumulated in each discrete individual-level simulation are averaged to 

obtain population-level health and cost estimates. Essentially, each simulated individual’s 

‘disease history’ is tracked. 

 

With its additional complexity, microsimulation offers some benefits over cohort modelling.  

NICE recently published a report which identified conditions under which microsimulation 

is preferable to a cohort modelling (360). These conditions include: model non-linearity with 

respect to heterogeneous patient characteristics, patient flow which is determined by time 

since last event (non-Markovian behaviour), and the desire to add additional modelling 

complexity in future analyses. 
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Discrete Event Simulation Models 

 

Discrete event simulation is a further level of complexity that can be added to decision-

analytic models. Unlike Markov models, discrete event simulation does not run cyclically. 

Instead individuals experience disease-related events based on probabilistic time-to-event 

distributions. At the time of each modelled event, the individual’s accumulated costs and 

outcomes are estimated. In addition, their likelihood of future events is modified at this point. 

Extensive longitudinal cost and outcome data are often required to develop such a model. 

 

Discrete event simulation represents an efficient means of modelling diseases with time 

varying event rates. Diseases defined by extensive periods of inactivity followed by rapid 

onset of numerous events, for example, cannot be efficiently modelled with state-transition 

models which cyclically estimate cumulative costs and outcomes. Discrete event simulation 

can also be performed without mutually exclusive branches and discrete states, increasing 

modelling flexibility (361). 

 

The modelling process and derivation of time-to-event distributions required for discrete 

event simulation is generally considered less straightforward and more challenging than the 

construction of decision tree and state transition models (362). 

 

5.2.2 Which Type of Model for CVD? 

 

Albert Einstein may (or may not) have stated that “Everything should be as simple as it can 

be, but not simpler” (363).  This principle holds true when constructing a model of CVD. A 

model should not be too complex that it requires an unobtainable amount of data to produce 

valid results. Simplistic model structures also aid in transparency as a wider audience may 

review and critique the model. Decision-makers who are not versed in decision-analytic 

modelling are more likely to accept results produced by a model which they understand. 

Nonetheless, considerable complexity is often required to model a disease and relevant 

treatments adequately. 

 

Decision Tree, State-Transition, or Discrete Event Simulation? 

 

Decision trees optimally represent processes with short time horizons and relatively few 

mutually exclusive pathways – otherwise a tree becomes ‘bushy’ and unwieldy.  
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Individuals may experience a range of different CVD events that lead to different health and 

cost outcomes. For example, a patient suffering an ischaemic stroke is likely to experience 

much greater chronic disease costs and quality of life decrements than a patient suffering 

from a myocardial infarction (364). Representing different disease states in a decision model 

can drastically increase the number of mutually-exclusive pathways in a decision tree. The 

time at which individuals experience a CVD event also matters. Individuals experiencing an 

event earlier in life have a much greater chance of full recovery and experience smaller 

reductions in quality of life (365). 

 

CVD is a disease which can affect individuals at any time in the life. Moreover, exposure to 

risk factors can lead to events many years in the future. Hence a lengthy time horizon is 

required to capture all costs and effects attributable to a treatment. All the reasons listed 

suggest that a state-transition model should be used to optimally represent CVD. 

 

Discrete event simulation models do not offer substantial benefits over state-transition 

models for CVD. The disease is defined by a limited set of health states and continually 

increasing risk. Hence the added complexity of event- and time-dependency in disease rates 

offered by discrete event simulation is not justified. 

 

Markov Cohort or Microsimulation? 

 

Under the assumption that state-transition models are the most efficient means of modelling 

CVD, it remains to establish whether cohort or microsimulation models should be preferred. 

The optimality of these model types is largely determined by the complexity of the decision 

problem. 

 

Cohort models generally require more assumptions and hence less data to construct than 

microsimulation models. A key feature of Markov cohort models is the memoryless property: 

the assumption that any future disease-related transition in the model is not influenced by 

disease history. Previous exposure to risk factors and the individual’s history of disease-

related events are not important determinants of future outcome so data on these factors are 

not required to estimate transition probabilities. Cohort models also average health and cost 

outcomes across a large population. This is an unbiased means of predicting outcomes in a 

population under the assumption that there is a linear relationship between patient 
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characteristics and outcomes. However, in the event that this is not true, it is necessary to 

stratify analysis by subgroups in order to obtain unbiased estimates of outcomes (360). As 

with all statistical models, increased granularity of research question involves increased data 

requirement. 

 

Microsimulation can offer considerable benefits in the modelling of CVD. It allows 

individual patient disease and covariate histories to be tracked. Microsimulation may also be 

employed as a means of dealing with the non-linear relationship between CVD risk factors 

and health outcomes. For example, an individual’s likelihood of experiencing a secondary 

CVD event is much greater for older individuals with an unhealthy risk factor profile than 

for young healthy individuals (366,367). Microsimulation enables researchers to account for 

the combinatory effect of disease and risk factor histories on recurrent events. 

 

CVD events have also been causally linked to a range of non-cardiovascular conditions. 

There is, for example, a growing understanding of the causal relationship between CVD and 

dementia (368). Developing a microsimulation model allows for easy adaptations of the 

model in the future, to answer increasingly complex research questions. 

 

An additional benefit of microsimulation model relates to computing efficiency. Often a 

study requires estimating outcomes for a range of individuals from a representative cohort of 

a population. Running data for several thousand individuals through a cohort model can be 

very time-consuming: all potential outcomes must be considered and averaged for every 

individual. On the other hand, each ‘run’ of a microsimulation involves computing one 

disease history. Such time efficiency is particularly important when conducting 

computationally demanding processes like probabilistic sensitivity analysis. 

 

5.2.3 Validating Models 

 

The validity of an economic model can be established in numerous quantitative and 

qualitative ways. Qualitative inspection by experts can confirm that there is a sound basis for 

the model’s structure and assumptions. Quantitative analysis helps to establish the internal 

validity, external validity, and cross validity of a model. 
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Internal validity is a measure of how accurately a model reproduces results from the data 

sources that contributed to its construction. The c-statistic is a statistical measure of the 

predictive accuracy for logistic regression models (369). 

 

External validity refers to a model’s ability to reproduce results from a dataset which did not 

contribute to its construction. External validation of a model requires a large individual-level, 

longitudinal dataset with sufficient follow-up. The model’s predicted outcomes for an 

individual in that dataset are then compared with actuality. 

 

5.2.4 Recalibrating Models 

 

Recalibration is the process of systematically adjusting model inputs so that outputs 

generated are suitable in the population of interest (344). Suitability is typically measured by 

comparison with some external real-world dataset. For example, a model which aims to 

estimate the effect of different health care interventions on all-cause mortality in the Scottish 

population may be recalibrated to recent mortality rates provided by the Scottish 

Government.  

 

5.3 CVD Policy Models 

 

The need to choose between competing interventions for CVD has become an increasingly 

important issue for healthcare decision-makers in recent years. While rates of the disease 

have dropped significantly since the 1980s, CVD remains a leading cause of mortality in the 

U.K., U.S., and around the world. 

 

Increased understanding of CVD’s physiology and advancements in health technologies have 

led to the development of several novel interventions for CVD. These include: the 

development of new cholesterol-reducing medications, improved diagnosis of CVD risk, 

improved surgical outcomes, and support for population-based interventions. Policy models 

have been developed to assess the effectiveness and cost-effectiveness of these interventions. 

 

For the purpose of this thesis, access was granted to two existing policy models: The Scottish 

CVD Policy Model (7,8,309) and the CVD Microsimulation Model (9). These were 

extensively redeveloped, modified, and employed for epidemiologic evaluation of CVD as 

well as cost-effectiveness analyses of multiple primary prevention policies. The first section 



124 
 

 

of this chapter will detail these two policy models. Next, epidemiological arguments from 

Chapter 4 will be evaluated using these models. 

 

5.3.1 The Scottish CVD Policy Model 

 

Background 

 

Given the need for Scotland-specific analysis of CVD policy, in 2010 the Chief Scientist 

Office for Scotland funded research to develop the Scottish CVD Policy Model (309). The 

Scottish CVD Policy Model is a decision-analytic model that predicts LE, QALE, and cost 

outcomes for individuals based on their ASSIGN risk factors (7,8). It currently exists as two 

extensive Microsoft Excel documents, one for males and one for females. 

 

Structure 

 

Figure 5-3 shows a diagram of the model. Individuals enter CVD-free, and transition to one 

of four first event types throughout the course of their lives: non-fatal CHD, non-fatal CBVD, 

fatal CVD, or fatal non-CVD. 

 

 
Figure 5-3: Structure of the Scottish CVD Policy Model 

 

The model is particularly useful as it accounts for the competing risk of non-CVD death as a 

first event. This means it can account for the fact that age is a risk factor generic to a range 

of chronic illnesses. It also accounts for competing risks between different types of CVD 
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event. Risk factors may differentially increase risk of different CVD events. After the 

occurrence of a non-fatal first event, individuals progress to a final absorption state 

representing all-cause mortality. 

 

Each state in the model has an assigned QALY value, sometimes disaggregated by patient 

characteristics. Individuals who have not experienced a primary CVD event are attributed a 

background health-related quality of life (HRQoL) value. These values are disaggregated by 

age and sex. Individuals inhabiting one of the two non-fatal chronic CVD states are assigned 

a decrement to this background HRQoL value, determined by the type of first event (CHD 

or CBVD). Within the chronic disease states, a proportion of individuals are assumed to 

experience further utility decrements attributable to secondary CVD events (disaggregated as 

myocardial infarctions, strokes, TIAs, heart failure, peripheral artery disease, and ‘other’ 

CVD events). 

 

Costs are also assigned to all health states in the model. For individuals whose primary event 

is fatal, linear equations predict pre-event hospitalisation costs. These equations include age 

entering the model, SIMD, and family history of CVD as covariates. Similar equations 

predict pre-event health state costs for individuals whose primary event is non-fatal CHD or 

CBVD. Individuals inhabiting the chronic CVD states are attributed costs based on a linear 

equation that includes age at primary event, SIMD, and family history of CVD as covariates. 

 

The sources and methodology used to derive health and cost estimates for each health state 

in the model are described later in this section. 

 

Cohort Simulation 

 

The Scottish CVD Policy Model can be employed in two ways. Primarily, it can produce 

individual-level outcome estimates for prospective patients based on their ASSIGN risk 

factors. In turn this can inform patient and physician decision-making. 

 

Individual-level outcome estimates are obtained by inputting the individual’s risk factor 

information into the model. These factors then dictate the probabilities that the individual 

will inhabit each model state each cycle of analysis. These factors also determine the cost 

and QALYs that an individual will accumulate in each state and cycle combination. The 
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individual’s expected cost and QALYs are then summed over the time horizon of the analysis 

as follows: 

𝐸[𝑐] = ∑ ∑ 𝑝𝑠,𝑡 ∗𝑠 𝑐𝑠,𝑡    
ℎ
𝑡=0   

𝐸[𝑒] = ∑ ∑ 𝑝𝑠,𝑡 ∗𝑠 𝑒𝑠,𝑡
ℎ
𝑡=0  . 

E[c] and E[e] refer to expected cost and expected health effects, respectively. These values 

are equal to the product of an individual’s probability of inhabiting disease state, s, in cycle, 

t, summed over the time horizon of the analysis, h, and all disease states included in the 

model. 

 

A further use of the model is to estimate population-level outcomes. In this situation, 

individual-level outcome estimation is computed as described above for a large number of 

individuals. The risk factor profiles for this analysis can be derived from large-scale cross-

sectional surveys like the Scottish Health Survey (310). These outcomes can then be 

projected onto a wider population. 

 

State Transition Probabilities: Data 

 

Two types of state transitions exist in the model: transition to a primary event (fatal or non-

fatal) and transition to the all-cause mortality state after a primary non-fatal event. Both of 

these transitions are determined by equations derived from competing risk survival analysis 

of a longitudinal dataset of Scottish adults. 

 

All state transition probabilities in the model are derived from a dataset that linked baseline 

risk factor information in the Scottish Heart Health Extended Cohort (370–372) to a 

collection of routinely collected clinical data called the Scottish Morbidity Records (SMR) 

(238). 

 

SHHEC is an extensive dataset that was used in the construction of the ASSIGN score. 

Baseline CVD risk factor information was recorded for 6,419 men and 6,618 women from 

25 Scottish districts between 1986 and 1995. The risk factors collected as baseline were those 

previously described as the ASSIGN risk factors: age, sex, TC, HDL-C, SBP, FH, Diabetes, 

CPD, and SIMD. 

 

The SMR is an electronic database maintained by the Scottish NHS’ Information Services 

Division (ISD). This database records all hospitalized events that occur in the Scottish NHS, 
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detailing reason for admission, up to five secondary diagnoses, length of stay, and wait time. 

Health boards submit hospitalisation data to the ISD every 6 weeks, and audits of the SMR 

have found the data to be 99% complete (373–375). 

 

SHHEC participants permitted their baseline data to be linked with the SMR via a unique 

NHS identification number. Linking these two datasets allows researchers to analyse the 

relationship between individuals’ baseline characteristics and health outcomes. The most 

recent SHHEC-SMR linkages included data through 2006 and 2009, respectively. The 2006 

linkage was employed in the development of the ASSIGN score and the 2009 linkage was 

employed in the development of the Scottish CVD Policy Model. 

 

State Transition Probabilities: Analysis 

 

A parametric competing risks approach was taken to estimate the probability of primary 

events. The competing risk approach provides an unbiased methodology for estimating event 

probability in the presence of competing events. This approach was discussed in Section 

4.5.1. Primarily, it involves estimating cause-specific hazard functions for a set of mutually 

exclusive events. Probability of event-free survival can then be computed as a function of 

survival from all event types. 

 

Cause-specific hazard reflects the probability that an individual will experience an event at a 

moment in time, conditional on the fact that they have not yet experienced a competing event. 

It can be estimated with parametric regression analysis. This analysis models the functional 

form of a population’s cause-specific hazard based on some pre-defined statistical 

distribution. 

 

The Gompertz distribution is a statistical distribution to which human survival data are often 

fitted. This model is named after actuarial scientist and mathematician Benjamin Gompertz, 

who postulated in an 1825 letter that human death rates increase exponentially with age (376). 

This model assumes an ‘initial death rate’ in humans, and assumes that as individuals age, 

their vulnerability to the causes of the initial death rate increases (377). 

 

When performing Gompertz regression, the cause-specific hazard of an event type, k, is 

described by the function: 

ℎ𝑘(𝑡) = exp(𝑥𝑏) ∗ exp (𝛾𝑡). 
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In this equation, xb is a linear predictor which modifies hazard rates for individuals based on 

x, a vector of covariates. The vector b consists of log hazard ratios for unitary increases in 

the covariates included in x. The term exp(γt) represents the underlying hazard rate in the 

population, with t representing time and γ being an ancillary parameter which defines the 

relationship between time and hazard in the population. Hence the term exp(xb) 

multiplicatively alters an individual’s hazard rate dependent on their covariates. 

 

Gompertz regression was performed on the SHHEC-SMR dataset to estimate cause-specific 

hazard functions for the four primary events in the model: non-fatal CHD, non-fatal CBVD, 

fatal CVD, and fatal non-CVD. In the model, survival and event probability for each cycle 

was then computed within the competing risk framework described in Chapter 4. The 

covariates included in these regression models were the ASSIGN variables. Results for the 

primary event regressions, developed by Lewsey et al. (7,309), are presented in Table 5-1. 

 

Secondary transition rates out of the two non-fatal CVD states to all-cause mortality were 

also derived by performing Gompertz regression on the SHHEC-SMR dataset. Competing 

risks were not relevant as the analysis only considered the probability of transition to an 

absorption state with no competing events. The covariates employed in this regression were: 

age at first event, SIMD score, and family history of CVD. Results for the secondary event 

regressions, also developed by Lewsey et al. (7,309), are presented in Table 5-2. 

 

Health-Related Quality of Life Inputs 

  

HRQoL was assigned to disease states based on analysis of the Scottish Health Survey 2003 

(378). The Scottish Health Survey is an annual cross-sectional, representative survey of 

determinants of health in the Scottish population. In 2003, 7,054 survey respondents aged 20 

and above completed 12-item Short Form (SF-12) HRQoL questionnaires. These 

questionnaires can be used to generate QALYs (379). 

 

The QALY values for respondents in SHeS 2003 were used to produce baseline QALY 

estimates for the adult Scottish population and to estimate utility decrements related to 

primary CHD and CBVD. Stratified baseline QALY values were calculated. Stratification 

was performed by 5-year age-groups and sex. 

 



129 
 

 

The utility decrements associated with a range of CVD events were estimated through a linear 

regression. The dependent variable in this regression was SF-12-derived QALY value and 

the independent variables were sex, age, and six CVD events. The estimated utility 

decrements for angina, myocardial infarction, irregular heartbeat, other heart condition, 

stroke, and intermittent claudication were 0.0891, 0.0403, 0.0499, 0.0336, 0.0938, and 

0.0199, respectively. Within chronic disease states, an individual’s HRQoL was estimated as 

their baseline QALY value minus the decrement associated with their primary event. In 

addition, a proportion of individuals in the chronic disease states were assumed to experience 

each of the CVD events described above. Hence, a weighted additional utility decrement was 

employed in both chronic disease states to reflect reduction in HRQoL associated with 

secondary events. 

 

Cost Inputs 

 

The SHHEC-SMR dataset was used to estimate lifetime hospitalisation costs in the model. 

Lifetime hospitalisation costs are a function of events experienced by an individual and 

overall length of stay. Together these two variables represent the patient’s continuous 

inpatient stay (CIS). 

 

Method 1 from Geue et al. (380) was employed to attribute cost of CIS to each hospitalisation 

episode observed in the SHHEC-SMR dataset. This effectively required assigning a 

healthcare resource group (HRG) (309) to each hospitalisation episode in the dataset with 

HRGv3.5 Grouper software (381), followed by attributing costs to these episodes from the 

English NHS tariff (382). Finally, it was necessary to estimate the overall cost of each CIS 

that involved more than one episode of care. Treating all episodes of care separately would 

lead to overestimation of costs, so an approach was adopted which established a dominant 

episode (and HRG) for all hospitalisations but which simultaneously accounted for other non-

dominant episodes of care within this CIS. This was achieved by using a ‘Spell Converter’ 

software which designates episode of care dominance based on date of admission, date of 

discharge of final event, episode order, length of stay, and HRG. 

 

Once lifetime hospitalisation costs were estimated for every individual in the SHHEC-SMR 

dataset, these data were employed in regression models to predict pre- and post-event 

hospitalisation costs in the model. Cubic splines were also included in the regression model 

to add a degree of non-linearity over time to the cost estimations. In addition, regressions 
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analyses of post-event costs were run for post-non-fatal CHD and post-non-fatal CBVD costs 

in men and women. The dependent variable in these equations was post-event costs. The 

same independent variables were employed as before with the exception of baseline age, 

which was replaced by age at first event. Finally, these regression equations were used to 

assigned pre- and post-event costs in the model. 

 

Discrimination and Calibration 

 

Internal and external validation of the model has been completed. These validation exercises 

have shown that the model has a good level of discrimination and calibration (309). 

 

Internal validation of the functions that dictate state transition in the model was completed 

by means of AUROC analysis. The c-statistics for the primary risk functions for men and 

women are detailed in Tables 5-1 and 5-2. For primary events they range from 0.70-0.80, and 

for mortality post non-fatal CHD and CBVD they range from 0.65-0.68. C-statistics between 

0.70 and 0.80 are considered to provide “acceptable” discrimination for models of CVD, 

according to Lloyd-Jones, and a score of 0.65 is described as performing “much better than 

random chance” (383). 

 

The calibration of the model was assessed with data from the West Of Scotland COronary 

Prevention Study (WOSCOPS) (384). WOSCOPS was a placebo-controlled trial of 

pravastatin which enrolled hypercholesterolaemic men aged between 45 and 64 years, with 

an initial 5-year follow-up. 

 

The baseline data of men in the placebo and treatment arms of WOSCOPS were inserted into 

the Scottish CVD Policy Model. Predicted cumulative incidence of non-fatal CHD, non-fatal 

CBVD, fatal CVD, and fatal non-CVD was recorded. These results were then visually 

compared to event rates in the WOSCOPS population. Figure 5-4 presents the results of this 

analysis for the placebo arm of the trial, and Figure 5-5 presents the results for the treatment 

arm. 
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Parameter 
Hazard ratio: 

non-fatal CHD 
Hazard ratio: 

non-fatal CBVD 
Hazard ratio: 

CVD mortality 
Hazard ratio: 

non-CVD mortality 
Source 

Men 

Age 1.05 (1.04, 1.05) 1.07 (1.06, 1.08) 1.10 (1.09, 1.11) 1.10 (1.09, 1.11) 

SHHEC-
SMR 

Dataset 

SIMD 1.04 (1.01, 1.07) 1.10 (1.05, 1.15) 1.07 (1.03, 1.10) 1.10 (1.07, 1.13) 

Diabetes 1.93 (1.07, 2.76) 3.22 (1.94, 5.33) 2.37 (1.48, 3.81) 1.40 (0.84, 2.31) 

FH 1.50 (1.34, 1.69) 0.98 (0.79, 1.21) 1.18 (1.00, 1.39) 0.99 (0.85, 1.14) 

CPD 1.42 (1.34, 1.55) 1.61 (1.40, 1.86) 1.87 (1.67, 2.10) 1.84 (1.68, 2.02) 

SBP 1.08 (1.31, 1.11) 1.12 (1.08, 1.17) 1.16 (1.13, 1.20) 0.99 (0.95, 1.02) 

TC 1.29 (1.05, 1.35) 1.09 (1.00, 1.18) 1.13 (1.05, 1.21) 0.95 (0.90, 1.01) 

HDL-C 0.68 (1.23, 0.75) 0.94 (0.82, 1.07) 0.93 (0.83, 1.04) 1.21 (1.11, 1.32) 

c-statistic 0.70 (0.62, 0.71) 0.73 (0.71, 0.75) 0.77 (0.76, 0.79) 0.74 (0.72, 0.75) 

Women 

Age 1.06 (1.05, 1.07) 1.08 (1.07, 1.10) 1.11 (1.09, 1.12) 1.09 (1.08, 1.11) 

SHHEC-
SMR 

Dataset 

SIMD 1.09 (1.06, 1.12) 1.14 (1.09, 1.19) 1.04 (1.00, 1.09) 1.08 (1.04, 1.11) 

Diabetes 2.07 (1.41, 3.03) 3.01 (1.81, 4.99) 3.14 (1.97, 5.00) 0.96 (0.51, 1.81) 

FH 1.68 (1.48, 1.90) 1.43 (1.16, 1.75) 1.27 (1.05, 1.53) 0.98 (0.85, 1.14) 

CPD 1.51 (1.34, 1.71) 1.71 (1.41, 2.08) 2.61 (2.24, 3.03) 2.14 (1.91, 2.41) 

SBP 1.06 (1.03, 1.10) 1.15 (1.09, 1.20) 1.19 (1.14, 1.24) 1.03 (0.99, 1.06) 

TC 1.21 (1.15, 1.27) 0.95 (0.86, 1.05) 1.06 (0.98, 1.15) 0.93 (0.87, 0.99) 

HDL-C 0.69 (0.63, 0.76) 0.84 (0.73, 0.97) 0.92 (0.81, 1.04) 0.98 (0.89, 1.07) 

c-statistic 0.74 (0.73, 0.75) 0.76 (0.73, 0.78) 0.80 (0.78, 0.82) 0.72 (0.70, 0.74) 

Table 5-1: Cause-specific hazards of primary events in the Scottish CVD Policy Model (text) 
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Parameter 
Hazard ratio:              

mortality post-CHD 
Hazard ratio:              

mortality post-CBVD 
Source 

Men 

Age at event 1.08 (1.07, 1.09) 1.07 (1.05, 1.09) 

SHHEC-SMR 
Dataset 

SIMD 1.14 (1.09, 1.19) 1.09 (1.03, 1.16) 

FH 0.97 (0.79, 1.18) 1.06 (0.77, 1.47) 

c-statistic 0.68 (0.65, 0.71) 0.65 (0.61, 0.69) 

Women 

Age at event 1.08 (1.06, 1.09) 1.07 (1.05, 1.09) 

SHHEC-SMR 
Dataset 

SIMD 1.08 (1.03, 1.13) 1.00 (0.93, 1.08) 

FH 0.75 (0.60, 0.95) 1.20 (0.86, 1.67) 

c-statistic 0.67 (0.63, 0.70) 0.66 (0.61, 0.71) 

Table 5-2: Cause-specific hazard of post-CVD mortality in the Scottish CVD Policy Model (text) 
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Figures 5-4 and 5-5 show that empirical data and simulation output were relatively close for the 

placebo and treatment arms of the trial. For patients who received placebo, non-fatal CBVD, 

fatal CVD, and fatal non-CVD events, predicted cumulative incidence generally fell within the 

confidence interval of observed results. However, the model systematically underpredicted 

incidence of non-fatal CHD. Results were more promising for the treatment arm of the trial. 

This suggests that the model is capable of assessing the impact of primary interventions on CVD 

incidence in the Scottish population. The lack of complete agreement between the model and 

external data, however, serves as a reminder that the model is not able to perfectly predict 

outcomes in the Scottish population and that it is necessary to explore uncertainty in any results 

that the model produces. 

 

 

 

Figure 5-4: Predicted versus observed cumulative incidence of primary events in the 
placebo arm of the WOSCOPS trial, Lewsey et al. (text) 
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Figure 5-5: Predicted versus observed cumulative incidence of primary events in the 
treatment arm of the WOSCOPS trial, Lewsey et al. (text) 

 

Recalibration 

 

The Scottish CVD Policy Model was built with data that is becoming increasingly outdated. 

Event rates for CVD have followed a continuous downwards trajectory in Scotland since the 

mid-20th century (385). This reduction in event rate has been attributed to changes in biologic, 

demographic, and sociodemographic risk factors alongside improvements in health technology. 

This means that risk functions developed with data from the past likely overstate CVD 

incidence. Recalibration of the risk functions was performed to account for this. 

 

Risk functions in the model were recalibrated in an attempt to replicate contemporary Scottish 

life tables. Recalibration was achieved by multiplying the linear predictor in the risk functions 

by a set of multiplicative factors and recording predicted LE for a range of risk profiles. 

Predicted LE was then compared with 2009 Scottish life tables (386). The multiplicative factor 

which produced the smallest root mean square error (RMSE) between model-predicted LE and 

life tables was employed in the model. This process was completed for the male and female 

models separately. Ultimately, recalibration led the RMSE to be reduced from 1.54 to 0.26 years 
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for men and from 2.05 to 0.89 years for women (7,309). For the purpose of this thesis, the 

recalibration process was completed with 2018 Scottish life tables (387). 

 

5.4 CVD Microsimulation Model 

 

Background 

 

Motivated by the need to choose between competing interventions for CVD, Weinstein and 

colleagues published the CHD Policy Model in 1987 (388). This decision-analytic cohort 

simulation model was developed to forecast CHD incidence, prevalence, mortality, and cost in 

the U.S. population. 

 

The original model was developed with FORTRAN software (389) and will hereafter be referred 

to as the ‘FORTRAN model’. The FORTRAN model has been applied in many notable health 

technology assessments since its inception. It has been used to assess pharmacologic treatments 

and clinical guidelines in the U.S. (350,390–394), to analyse U.S. population interventions 

(395,396), and to predict future CVD incidence and prevalence in the U.S. population (397). 

The model has also been recalibrated and employed in analysis of CVD rates in Mexico, China, 

and Argentina (398–402). 

 

Several changes have been made to the model over time. Originally developed to study 

epidemiology and policy related to CHD alone, the model now predicts the health and cost 

outcomes of interventions related to both CHD and stroke. It is therefore now referred to as the 

CVD Policy Model. Inputs have also been updated regularly, as has the software platform on 

which the model runs. 

 

In 2014 the model was redeveloped to perform microsimulations (9). This new iteration of the 

model was developed using TreeAge software (403). Hereafter this new model will be referred 

to as the ‘TreeAge Model’ or the ‘CVD Microsim Model’. 
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Structure 

 

The CVD Microsim Model simulates CHD and stroke incidence and prevalence in the U.S. 

population aged 35 and greater. It is a microsimulation state-transition model, accepts a profile 

of CVD risk factors as inputs, and outputs health and cost outcomes for simulated individuals. 

State transitions are based on a range of data sources and statistical techniques, and the model’s 

primary outputs are life years, QALYs, and healthcare costs. 

 

Figure 5-6 shows the model structure. Individuals may enter a simulation before (State 1) or 

after (States 2-4) experiencing a primary CVD event. From the well state, they may transition 

to one of three non-fatal CVD states (CHD, Stroke, or Stroke + CHD), CVD mortality, or non-

CVD mortality. After the occurrence of a primary CVD event, individuals transition to one of 

two absorption states, CVD mortality or non-CVD mortality. 

 
Figure 5-6: Structure of the CVD Microsim Model 

 

Costs and QALYs are estimated according to an individual’s pathway through the model. Each 

health state has an attributed health-related quality of life and cost. Additionally, in-cycle events 
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and interstate transitions have attributed costs. An individual’s costs and QALYs over a pre-

specified time horizon are estimated in accordance with costs and QALYs accumulated during 

their stochastic progression through the model. 

 

An individual’s health state is updated annually and rate of transition between states is 

determined by risk factor profile. Individuals entering chronic health states may experience 

further events. Following a stroke, for example, it is possible to experience a CHD or further 

stroke event within a cycle. Such events are explicitly modelled within the health states and 

determine an individual’s cost and health outcomes as well as their disease history. In all years 

subsequent to an incident CVD event, individuals may experience CHD or stroke. Those who 

experience both CHD and stroke at any point in their lifetime transition to the Stroke + CHD 

state at the beginning of the model cycle following the second of these events. 

 

Microsimulation 

 

A large input dataset containing time-varying risk factor information for a group of individuals 

is required to run the model. This dataset should be representative of the population of interest 

for the given research question. 

 

For each ‘run’ of the model, N risk profiles are selected from the input dataset. Each profile is 

inserted into the model and a pathway which an individual with that profile may progress 

through the model is predicted. Based on the individual’s specific ‘history’ through the model, 

cost and health outcomes are estimated. After one run, TreeAge provides cumulative outcome 

information for the N microsimulations performed. This information allows cost-effectiveness 

and other decision-analytic metrics to be calculated for the population. 

 

State Transition Probabilities: Data 

 

The probability of transition between health states is determined using a range of data sources. 

Primary transitions are estimated with risk functions derived from analysis of a dataset which 

was constructed by pooling longitudinal data from several U.S. studies (Table 5-3). The 



138 
 

 

probability of subsequent transition between states was derived from a range of national and 

subnational health records (Table 5-4). 

 

The dataset that informs primary transition within the model consists of data obtained from the 

NHLBI Pooled Cohorts Project at Columbia University. Hereafter, this dataset will be referred 

to as the CU-NHLBI Pooled Cohorts dataset. The six studies included in the CU-NHLBI Pooled 

Cohorts dataset are the: Atherosclerotic Risk in Communities (ARIC) Study, Cardiovascular 

Risk Development In young Adults (CARDIA) Study, Cardiovascular Health Study (CHS), 

Framingham Heart Study Offspring Cohort (FHS-O), Health, Aging, and Body Composition 

(Health ABC) Study, and the Multi-Ethnic Study of Atherosclerosis (MESA) (404–409). All 

studies periodically collected information on participants’ CVD risk factors, and prospectively 

detailed incident CVD events.  

 

There were several exclusion criteria for the dataset. Participants were excluded if they had 

known clinical CVD at baseline or had at no values recorded for BMI, CPD, SBP, DBP, LDL-

C and HDL-C, diabetes, and use of lipid-lowering and anti-hypertensive medication. Missing 

values for BMI, CPD, SBP, DBP, LDL-C and HDL-C were imputed as the average of non-

missing values for the participant. For other risk factors including diabetes, hypertension, and 

use of lipid-lowering and anti-hypertensive medication, missing values were imputed by last 

value carried forward. The final dataset for the primary risk function analysis comprised of 

36,491 individuals from across the U.S., representing 731,241 life years of follow-up. 

 

The source of probabilities which dictate transition out of chronic CVD were taken from 

national or subnational health records of individuals with chronic CVD. These are included in 

Table 5-4. 

 

State Transition Probabilities: Analysis 

 

Primary event rates were estimated using analysis by Dr. Yiyi Zhang at Columbia University 

and replicated similar analysis of the Framingham Heart Study that underpins the FORTRAN 

model. Primary transition within the model is determined based on logistic risk function which 

take the following form: 
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𝑟𝑎𝑡𝑒𝑘,𝑖 =
exp (𝛼 + 𝑥𝑏)

1 + exp (𝛼 + 𝑥𝑏)
. 

 

In this equation, ratek,i denotes the annual probability of disease-free individual i experiencing 

primary CVD event k. The value α represents the underlying event rate for event k in the CU-

NHLBI Pooled Cohorts population (or more specifically the intercept in the null model). The 

term x is a vector of CVD risk factors. The risk factors included in the base model are: age, SBP, 

LDL-C and HDL-C, CPD, body mass index (BMI), and diabetes. The term β is a vector of 

coefficients where each coefficient represents the additive increase in log odds of event k 

associated with a risk factor in x. Therefore, an individual’s primary event risk is increased or 

decreased compared to the population average in accordance with their risk factor profile. Green 

and Symons have shown that the regression coefficients of the logistic model approximate to 

those of a proportional hazards model which has a constant underlying hazard rate (410). The 

pooled cohorts logistic risk equations are presented in Table 5-3. 

 

Probability of secondary events in the model is not assigned with risk functions. Instead, a 

proportion of individuals with chronic CVD are assumed to experience further events annually. 

These secondary events include: recurrent CHD event within a year of a prior CHD occurrence, 

recurrent CHD event after a year of a prior CHD occurrence, stroke after CHD, CHD after stroke 

within 10 years, and CHD proceeding stroke after 10 years. Secondary event probabilities were 

stratified by age and sex and are presented in Table 5-4. 

 

Following occurrence of all CHD and stroke events, a proportion of individuals (stratified by 

age and sex) are assumed to die within 30 days. These proportions were derived from 30-day 

case fatality rates from a combination of national and Californian data. The 30-day case fatality 

rate for CHD events differs between primary and recurrent CHD events. For stroke, 30-day case 

fatality rates were assumed to be equal for primary and secondary events. Values and sources 

for event and mortality rates are presented in Table 5-4. 
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Parameter Description 
Hazard Ratio                        

(95% CI) 
Beta Value                            

(95% CI) 
Distribution 

for PSA 
Source 

Risk function: Incident CHD event 

Age Years* 1.109 (1.092, 1.127) 0.1036 (0.0880, 0.1193) Beta 

CU-
NHLBI 

Pooled 
Cohorts 
Dataset 

African American Binary 0.842 (0.786, 0.901) -0.1725 (-0.2410, -0.1039) Beta 

Former smoker  Binary 1.201 (1.132, 1.275) 0.1835 (0.1240, 0.2430) Beta 

Current Smoker Binary 1.711 (1.525, 1.919) 0.5368 (0.4218, 0.6519) Beta 

Cigarettes per day - 1.006 (1.001, 1.010) 0.0055 (0.0008, 0.0102) Beta 

Systolic blood pressure mmHg 1.012 (1.010, 1.013) 0.0115 (0.0100, 0.0129) Beta 

Diabetes Binary 1.819 (1.699, 1.947) 0.5982 (0.5302, 0.6663) Beta 

HDL-C mg/dL 0.985 (0.983, 0.987) -0.0151 (-0.0174, -0.0128) Beta 

LDL-C mg/dL 1.006 (1.005, 1.007) 0.0060 (0.0052, 0.0067) Beta 

Age*LDL-C - 1.000 (1.000, 1.000) -0.0002 (-0.0002, -0.0001) Beta 

Risk function: Incident stroke event 

Age Years 1.147 (1.124, 1.171) 0.1372 (0.1170, 0.1575) Beta 

CU-
NHLBI 

Pooled 
Cohorts 
Dataset 

African American Binary 1.539 (1.370, 1.729) 0.4312 (0.3147, 0.5478) Beta 

Current Smoker Binary 1.639 (1.376, 1.953) 0.4943 (0.3194, 0.6692) Beta 

Cigarettes per day - 1.009 (1.001, 1.017) 0.0089 (0.0010, 0.0167) Beta 

Systolic blood pressure mmHg 1.019 (1.017, 1.021) 0.0188 (0.0166, 0.0210) Beta 

Diabetes Binary 1.871 (1.680, 2.083) 0.6263 (0.5186, 0.7340) Beta 

HDL-C mg/dL 0.996 (0.992, 0.999) -0.0045 (-0.0075, -0.0014) Beta 
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Parameter Description 
Hazard Ratio                        

(95% CI) 
Beta Value                            

(95% CI) 
Distribution 

for PSA 
Source 

LDL-C mg/dL 1.002 (1.001, 1.003) 0.0018 (0.0006, 0.0030) Beta 

Age*AA - 0.977 (0.969, 0.985) -0.0231 (-0.0316, -0.0147) Beta 

Age*Current Smoker - 0.991 (0.983, 0.999) -0.0095 (-0.0176, -0.0014) Beta 

Age*Diabetes - 0.985 (0.978, 0.992) -0.0149 (-0.0224, -0.0075) Beta 

Risk function: Non-CVD mortality 

Age Years 1.108 (1.100, 1.117) 0.1029 (0.0952, 0.1107) Beta 

CU-
NHLBI 

Pooled 
Cohorts 
Dataset 

African American Binary 1.417 (1.326, 1.513) 0.3483 (0.2825, 0.4141) Beta 

BMI kg/m2 0.991 (0.985, 0.996) -0.0095 (-0.0149, -0.0042) Beta 

Former smoker  Binary 1.280 (1.213, 1.352) 0.2472 (0.1931, 0.3012) Beta 

Current Smoker Binary 1.991 (1.803, 2.199) 0.6886 (0.5895, 0.7878) Beta 

Cigarettes per day - 1.019 (1.015, 1.023) 0.0192 (0.0152, 0.0232) Beta 

Diabetes Binary 1.526 (1.427, 1.632) 0.4224 (0.3553, 0.4895) Beta 

Age*AA - 0.988 (0.983, 0.993) -0.0121 (-0.0166, -0.0075) Beta 

Age*Diabetes - 0.992 (0.987, 0.997) -0.0080 (-0.0129, -0.0032) Beta 

*Years centred around age 55 

Table 5-3: CU-NHLBI Pooled cohorts logistic risk equations.  
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Parameter 
Base Case  

Value 
Distribution 

 for PSA 
Source 

Following CHD event (annual probability) 

Recurrent* CHD event within 1 year of previous CHD even 

Men aged 40-44 3.53 Beta 

(411–413,413,414) 

Men aged 45-54 4.74 Beta 

Men aged 55-64 6.49 Beta 

Men aged 65-74 7.96 Beta 

Men aged 75+ 12.8 Beta 

Women aged 40-44 2.26 Beta 

Women aged 45-54 3.96 Beta 

Women aged 55-64 4.98 Beta 

Women aged 65-74 8.29 Beta 

Women aged 75+ 13.55 Beta 

Recurrent CHD event after 1 year of previous CHD event 

Men aged 40-44 1.22 Beta 

(411–415) 

Men aged 45-54 1.60 Beta 

Men aged 55-64 2.23 Beta 

Men aged 65-74 2.79 Beta 

Men aged 75+ 4.53 Beta 

Women aged 40-44 0.96 Beta 

Women aged 45-54 1.25 Beta 

Women aged 55-64 1.63 Beta 

Women aged 65-74 2.72 Beta 

Women aged 75+ 4.66 Beta 
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Parameter 
Base Case  

Value 
Distribution 

 for PSA 
Source 

Stroke after CHD 

Men aged 40-44 0.55 Beta 

(416,417) 

Men aged 45-54 0.55 Beta 

Men aged 55-64 0.79 Beta 

Men aged 65-74 0.83 Beta 

Men aged 75+ 0.92 Beta 

Women aged 40-44 0.55 Beta 

Women aged 45-54 0.55 Beta 

Women aged 55-64 0.77 Beta 

Women aged 65-74 0.87 Beta 

Women aged 75+ 0.89 Beta 

Following stroke event (annual probability) 

Recurrent stroke 
event 

3.60 Beta (418) 

CHD after stroke 
within 10 years 

2.50 Beta (419) 

CHD after stroke 
after 10 years 

2.20 Beta (420) 

30-day case fatality rates 

Incident CHD 

Men aged 40-44 9.37 Beta 

(414,421–424) 

Men aged 45-54 14.60 Beta 

Men aged 55-64 17.44 Beta 

Men aged 65-74 20.77 Beta 

Men aged 75-85 18.41 Beta 

Men aged 85+ 78.18 Beta 
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Parameter 
Base Case  

Value 
Distribution 

 for PSA 
Source 

Women aged 40-44 7.08 Beta 

Women aged 45-54 9.83 Beta 

Women aged 55-64 13.16 Beta 

Women aged 65-74 17.97 Beta 

Women aged 75-84 14.97 Beta 

Women aged 85+ 81.39 Beta 

Recurrent CHD 

Men aged 40-44 2.24 Beta 

(414,421–424) 

Men aged 45-54 7.84 Beta 

Men aged 55-64 9.89 Beta 

Men aged 65-74 12.96 Beta 

Men aged 75-85 14.60 Beta 

Men aged 85+ 27.16 Beta 

Women aged 40-44 2.22 Beta 

Women aged 45-54 5.44 Beta 

Women aged 55-64 6.65 Beta 

Women aged 65-74 11.48 Beta 

Women aged 75-84 10.95 Beta 

Women aged 85+ 75.79 Beta 

Any stroke 

Men aged 40-44 6.23 Beta 

(425) Men aged 45-54 7.55 Beta 

Men aged 55-64 8.95 Beta 
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Parameter 
Base Case  

Value 
Distribution 

 for PSA 
Source 

Men aged 65-74 13.88 Beta 

Men aged 75-85 21.20 Beta 

Men aged 85+ 37.50 Beta 

Women aged 40-44 13.70 Beta 

Women aged 45-54 7.45 Beta 

Women aged 55-64 10.65 Beta 

Women aged 65-74 11.92 Beta 

Women aged 75-84 23.02 Beta 

Women aged 85+ 46.50 Beta 

Other 

Maximum annual 
number of CVD 
events per cycle 

2 n/a Assumption 

*Recurrent: any event following incident CVD event 

Table 5-4: Probabilities for secondary events in CVD Microsim Model 
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Simulation Cohort 

 

A longitudinal input dataset is required to run microsimulations with the CVD Microsim Model. 

The data inserted into the model come from the 1999-2014 iterations of the National Health and 

Nutrition Examination Survey (NHANES) (426). NHANES is a large-scale, nationwide survey 

of health and nutritional status amongst the non-incarcerated U.S. population. Participants were 

selected for inclusion in the survey using a complex, multistage probability sampling design. 

The probability sampling design allowed for oversampling of low-response demographics. 

Therefore, NHANES’ population should adequately reflect the civilian, non-institutionalized 

U.S. population. De-identified individual-level NHANES data are publicly available. 

 

Data regarding key CVD risk factors were obtained for all NHANES respondents aged 20-85 

years. All participants responded to a health-related questionnaire in an interview component of 

the study. Additionally, height, weight, and blood pressure measurements were obtained by 

trained professionals for almost all NHANES participants. A subset of respondents was 

randomly assigned to contribute fasting blood test information. 

 

Individuals were dropped from the dataset if they were below the age of 20 or reported a history 

of heart failure, angina, heart attack, or stroke. In order to perform microsimulations, complete 

risk factor information was needed for all individuals. Therefore, a large number of individuals 

with incomplete risk factor information were dropped from the dataset. Those missing lipid, 

BMI, and blood plasma glucose level information were censored. 

 

In total, information for 82,091 NHANES individuals was obtained. Of these individuals, 

67,269 were excluded, resulting in an input dataset of 14,822 individuals. Reasons for exclusion 

were: age <20 years (n=38,298), missing LDL-C data (n=25,595), existing CVD (n=1,964), and 

other missing data (n=1,412). Table 5-5 provides descriptive statistics of the included 

individuals. 

 

Sampling weights were applied to all individuals who provided blood samples in the NHANES 

cohort. These weights help determine how demographically representative each individual is of 

the total U.S. non-incarcerated population. Eligibility for inclusion in a microsimulation is 
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determined by an individual’s NHANES fasting blood weight. This methodology should create 

cohorts which are representative of the wider U.S. population 

 

Risk Factor Mean 
Std. 
Dev. 

Min Max 

Male (%) 47 50 0 1 
Age 47.4 17.6 20 85 
Diabetes (%) 12 32 0 1 
Cigarettes per Day 2.4 5.6 0 53 
SBP (mmHg) 122 12 93 199 
DBP (mmHg) 70 6 33 110 
LDL-C (mg/dL) 120 23 37 256 
LDL-C (mmol/L) 3.09 0.6 0.9 6.6 
HDL-C (mg/dL) 54 11 20 110 
HDL-C (mmol/L) 1.4 0.3 0.5 2.9 
BMI  28.4 5.8 14.2 57.2 
ASCVD Risk Score (%) 7.6 11.7 0.0 90.0 

Table 5-5: Descriptive statistics for NHANES 1999-2014 data 
 

Sampling weights were applied to all individuals who provided blood samples in the NHANES 

cohort. These weights help determine how demographically representative each individual is of 

the total U.S. non-incarcerated population. Eligibility for inclusion in a microsimulation is 

determined by an individual’s NHANES fasting blood weight. This methodology should create 

cohorts which are representative of the wider U.S. population 

 

Making NHANES ‘Longitudinal’ 

 

To carry out analysis with the TreeAge model a longitudinal table of input data is required. 

NHANES, however, is a cross-sectional dataset. Risk factor trajectories were therefore 

predicted for all individuals in the NHANES dataset. 

 

It would have been possible to assume that included NHANES individuals’ modifiable risk 

factors (lipids, blood pressure, and smoking status) did not change over time. However, such an 

assumption would likely bias results as it assumes no age-based trends in CVD risk factors. This 

assumption is unlikely to hold (427–429) 
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Statistical analysis was performed on the CU-NHLBI Pooled Cohorts dataset to predict 

individual-level time trends in CVD risk factors. This analysis developed predictive models for 

time varying CVD risk factors, obtaining best linear unbiased predictors (BLUPs) for time-

varying covariates. These models were employed to forwards and backwards predict risk factor 

values for individuals, centred on their cross-sectional NHANES observations. The NHANES 

dataset was therefore rendered longitudinal. The methodology employed to make the NHANES 

dataset longitudinal is discussed in depth by Zhang et al. (427). 

 

Health-Related Quality of Life Inputs 

 

The default perspective adopted in the CVD Microsim Model is that of a health sector decision-

maker. The analysis therefore accounts for all health gains in the population, and all direct and 

indirect medical costs. Details of the value and source of the model’s HRQoL inputs are included 

in Table 5-6. 

 

Quality of life and cost inputs were copied directly from the FORTRAN model’s input tables. 

Each chronic disease health state has an attributed annual QALY penalty and corresponding 

cost. Every simulated individual accrues an age-specific background (non-CVD) healthcare 

cost. Additionally, all acute events in the model (e.g., hospitalizations, fatalities) have an 

associated acute (30-day) cost and QALY penalty. All outcome values are age-differentiated to 

account for age-based heterogeneity in costs and HRQoL.  

 

The quality of life attributed to different health states in the model were obtained from a 

combination of data regarding CVD event rates in the U.S. (430,431) and utility weights derived 

from international analysis of the health-related quality of life associated with a range of disease 

(432). Treatment-related disutility can also be added to the model. 

 

 

 

 

 

 



149 
 

 

 

 

 

 

 

 

 

Parameter 
Base Case       

Value 

Distribution 

for PSA 
Source 

CHD 

Age 40-44 0.9348 Beta 

(430–432) 

Age 45-54 0.9374 Beta 

Age 55-64 0.9376 Beta 

Age 65-74 0.9372 Beta 

Age 75-84 0.9364 Beta 

Age 85+ 0.9358 Beta 

Stroke 

All ages 0.8835 Beta (430–432) 

Acute (30-day) CHD 

Age 40-44 0.8970 Beta 

(430–432) 

Age 45-54 0.8862 Beta 

Age 55-64 0.8669 Beta 

Age 65-74 0.8351 Beta 

Age 75-84 0.7946 Beta 

Age 85+ 0.6829 Beta 

Acute (30-day) stroke 

All ages 

 

0.8662 Beta (430–432) 

Table 5-6: Chronic and acute utilities employed in CVD Microsimulation Model 
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Cost Inputs 

 

A range of sources were used to estimate costs within the model. Details of the value and source 

of the model’s cost inputs are included in Table 5-7. 

 

Parameters 
Base Case 

Value 
Distribution 

for PSA 
Source 

Background health cost (USD 2010) 

Men aged 40-49 2,931 Gamma 

(433) 

Men aged 50-59 3,852 Gamma 

Men aged 60-69 5,133 Gamma 

Men aged 70-79 7,634 Gamma 

Men aged 80-89 11,552 Gamma 

Men aged 90+ 22,145 Gamma 

Women aged 40-49 4,118 Gamma 

Women aged 50-59 5,588 Gamma 

Women aged 60-69 8,040 Gamma 

Women aged 70-79 9,872 Gamma 

Women aged 80-89 14,720 Gamma 

Women aged 90+ 25,832 Gamma 

CHD first year (USD 2010) 

Aged 40-69 10,545 Gamma 
(433) 

Aged 70+ 16,115 Gamma 

CHD subsequent years (USD 2010) 

Aged 40-89 2,154 Gamma 
 (433) 

Aged 90+ 3,386 Gamma 

Acute (30-day) CHD (USD 2010) 

Men aged 40-49 6,608 Gamma 

(434,435) 

Men aged 50-59 11,230 Gamma 

Men aged 60-69 16,250 Gamma 

Men aged 70-79 19,171 Gamma 

Men aged 80-89 20,000 Gamma 

Men aged 90+ 20,861 Gamma 

Women aged 40-49 5,250 Gamma 

Women aged 50-59 7,050 Gamma 
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Parameters 
Base Case 

Value 
Distribution 

for PSA 
Source 

Women aged 60-69 13,754 Gamma 

Women aged 70-79 17,567 Gamma 

Women aged 80-89 20,622 Gamma 

Women aged 90+ 27,411 Gamma 

CHD Mortality (USD 2010) 

Men aged 40-49 51,012 Gamma 

(434,435) 

Men aged 50-59 53,643 Gamma 

Men aged 60-69 58,324 Gamma 

Men aged 70-79 51,254 Gamma 

Men aged 80-89 43,277 Gamma 

Men aged 90+ 36,923 Gamma 

Women aged 40-49 51,334 Gamma 

Women aged 50-59 45,252 Gamma 

Women aged 60-69 54,958 Gamma 

Women aged 70-79 50,798 Gamma 

Women aged 80-89 43,410 Gamma 

Women aged 90+ 36,763 Gamma 

Stroke first year (USD 2010) 

All ages 16,317 Gamma (433) 

Stroke subsequent years (USD 2010) 

All ages 4,534 Gamma (433) 

Acute (30-day) stroke (USD 2010) 

Men aged 40-49 20,792 Gamma 

(434,434) 

Men aged 50-59 18,063 Gamma 

Men aged 60-69 16,865 Gamma 

Men aged 70-79 14,233 Gamma 

Men aged 80+ 15,209 Gamma 

Women aged 40-49 20,083 Gamma 

Women aged 50-59 17,353 Gamma 

Women aged 60-69 16,156 Gamma 

Women aged 70-79 13,524 Gamma 

Women aged 80+ 14,500 Gamma 

Stroke Mortality (USD 2010) 

Men aged 40-49 25,696 Gamma (434,435) 
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Parameters 
Base Case 

Value 
Distribution 

for PSA 
Source 

Men aged 50-59 23,890 Gamma 

Men aged 60-69 22,820 Gamma 

Men aged 70-79 20,468 Gamma 

Men aged 80+ 21,340 Gamma 

Women aged 40-49 25,696 Gamma 

Women aged 50-59 23,256 Gamma 

Women aged 60-69 22,186 Gamma 

Women aged 70-79 19,834 Gamma 

Women aged 80+ 20,706 Gamma 

Inflation factor 

$US 2010 to $US 2018 1.25213 n/a (436) 

Table 5-7: Costs employed in CVD Microsimulation Model 

 

Costs for stroke hospitalization, CHD hospitalization, and acute stroke rehabilitation were 

estimated using Californian hospital data, deflated using cost-to-charge ratios and the ratio of 

U.S. national-to-Californian average costs (434,435). Outpatient costs incurred by patients with 

chronic CVD were estimated with pooled 1998-2008 Medical Expenditure Panel Survey 

(MEPS) data (433). Background costs were also estimated from MEPS. All costs were indexed 

to 2018 U.S. dollars using the medical component of the U.S. Consumer Price Index (436). All 

future costs and QALYs values are discounted at a rate of 3% in the model, in line with standard 

practice guidelines for the U.S. (54). 

 

Discrimination, Calibration, and Recalibration 

 

C-statistics were calculated for all logistic risk functions included in the microsimulation model. 

These values were 0.84, 0.85, and 0.87 for primary CHD, primary stroke, and non-CVD 

mortality, respectively. According to Lloyd-Jones, these c-statistic values indicate ‘excellent’ 

discriminative ability for these risk functions (383).  

 

Validation of cardiovascular event rates in the CVD Microsimulation Model has not been 

directly undertaken. The model has instead been recalibrated to produce results similar to the 

extensively validated FORTRAN model. The traditional CVD Policy Model regularly 
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completes a series of quantitative validation exercises. The first validation exercise involved 

assessing the model’s estimates for U.S.-wide stroke mortality, CHD mortality, and all-cause 

mortality against U.S. National Data for 2010. These model outcomes were within 1% of 

estimates from U.S. national vital statistics and the U.S. National Hospital Discharge Survey 

(NHDS) (392,393). 

 

Figures 5-7 and 5-8 each show two graphs used in the recalibration of the male and female 

microsimulation models. On the vertical axes are incidence rates of CHD and stroke, 

respectively, and on the horizontal axes are the age of the simulated cohort. As mentioned 

previously, both simulations begin with a cohort of 40-year-old individuals. In each figure, the 

red and blue line represent rates derived from the FORTRAN and TreeAge models, respectively. 

FORTRAN output for a cohort appears step-wise because predictions are made for 10-year age 

categories, not by continuous (single-year) age. The black line represents the exponential trend 

observed in the step function produced by the FORTRAN model. These charts suggest that the 

TreeAge model is well calibrated, as the red and blue lines do not differ substantially. 

 

Figure 5-9 shows two graphs which demonstrate the performance CVD Policy Model 

Microsimulation’s cumulative mortality rates compared to Centers for Disease Control and 

Prevention’s Wide-ranging ONline Data for Epidemiologic Research (CDC-WONDER) data, 

shown in red and blue, respectively. The vertical and horizontal axes represent all-cause 

mortality rate and age of cohort, respectively. By visual inspection, the model was judged to 

adequately reflect national-level U.S. all-cause mortality data. 

 

5.5 Examples: Epidemiologic Studies Using CVD Policy Models 

 

The following short studies provide examples of the Scottish CVD Policy Model and the CVD 

Microsimulation model. These models have been developed with the primary aim of performing 

cost-effectiveness analyses. However, they can be modified and intermediate outcomes (e.g. 

event rates, life expectancies) can be reported. This enables the models to address questions 

related to the epidemiologic concepts raised in Chapter 4. 
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Figure 5-7: CHD incidence rate for men (left) and women (right) according to TreeAge 
and FORTRAN models 

    
Figure 5-8: Stroke incidence rate for men (left) and women (right) according to 
TreeAge and FORTRAN models 

    

Figure 5-9: All-cause mortality rate for men (left) and women (right) according to 
TreeAge model and CDC-Wonder data 
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5.5.1 CVD Microsim Model: Cumulative Exposure to Risk Factors 

 

As discussed in Section 4.5.1, cumulative exposure to CVD risk factors in young adulthood can 

lead to later life events. This is because atherosclerotic build-up develops over a lengthy period 

of time. 

 

What follows is a description of two simulation studies which were performed to estimate the 

benefits associated with reducing cumulative exposure to CVD risk factors in young adulthood. 

These studies focused on the prevention of CVD in the U.S. using the CVD Microsim Model. 

 

This work utilised risk functions developed by Pletcher et al. (325) which predicted CHD risk 

based on cumulative exposure to LDL-C and SBP, adjusted for traditional risk factors. Hence, 

CHD rather than CVD (CHD and stroke) outcomes were the primary outcome of concern. 

 

Background 

 

Hypercholesterolaemia and hypertension are highly prevalent during young adulthood in the 

U.S. population, but have low levels of awareness, treatment, and control. Based on the 2011-

2012 U.S. NHANES, over six million young adults (18-39 years) have hypertension (7.3%) 

(437). Hypertension awareness (75%), treatment amongst those aware of their condition (50%) 

and control (40%) are all substantially lower in young adults compared with middle-aged adults 

(30-49 years) and older adults (≥60 years). Similarly, data from NHANES 2011-14 show that 

hypercholesterolaemia awareness is low in young adults (57%) (438). 

 

Objective 

 

The objective of this study was to quantify the opportunity cost associated with failing to control 

hypertension and hypercholesterolaemia in young adulthood. Opportunity cost is quantified in 

terms of later life CHD events that could have been prevented. The CVD Microsimulation was 

employed to estimate CHD outcomes. 
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Population, Intervention, Comparator, Outcome(s), Setting, Study Design (PICOSS) 

 

Two separate analyses were performed: (i) analysis of hypertension control and (ii) analysis of 

hypercholesterolaemia control, both in young adulthood. The intervention and comparator for 

these studies did not aim to replicate the effects of a given treatment but rather a hypothetical 

scenario where elevated risk factors received a moderate level of control. 

 

Population: The population of interest for the first analysis was any U.S. individual with DBP 

greater than 85 mmHg in young adulthood. The population of interest for the second analysis 

was any U.S. individual with LDL-C greater than 160 mg/dL (4.1 mmol/L) in young adulthood 

(aged 20-39). 

 

Intervention: The intervention considered in the first analysis was a 5 mmHg reduction in DBP 

in young adults with DBP greater than 85 mmHg. The intervention considered in the second 

analysis was a 50 mg/dL (1.29 mmol/L) reduction in LDL-C in young adults with LDL-C greater 

than 160 mg/dL (4.14 mmol/L). 

 

Comparator: The comparators for each of the analyses were no treatment and later life control 

of hypertension and hypercholesterolaemia, respectively. Later life was defined as 40 years of 

age and above. In the hypertension analysis, later life hypertension control was simulated by a 

10 mmHg reduction in SBP. In the hypercholesterolaemia analysis, later life 

hypercholesterolaemia control was simulated by a 50 mg/dL reduction in LDL-C. 

 

Outcomes: Later life CHD events prevented was the primary measure of outcome. These events 

were separated into primary and total events. Further reported were lifetime absolute CHD risk 

reduction, lifetime CHD relative risk, and person years of treatment. 

 

Setting: Primary care in the U.S. 

 

Study Design: Microsimulation. 
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Methodology 

 

The CVD Microsim Model estimated individual-level CHD outcomes for individuals, 

dependent on risk factors exposures and accounting for competing risk of stroke or non-CVD 

mortality. 

 

Cross-sectional CVD risk factor data were obtained from NHANES 1999-2010. The variables 

obtained were: age, sex, diabetes, LDL-C, HDL-C, smoking, SBP, DBP, BMI. Individuals were 

dropped from the dataset if they had heart failure or had experienced a CVD event. Forward and 

backwards trajectories were fitted using predictive equations, so a risk factor value was available 

for every individual from the ages 20-89. 

 

NHANES data were obtained for 7,435 females and 6,439 males. In this population, 168 (2.3%) 

females and 619 (9.6%) males had elevated DBP in young adulthood. Additionally, 356 (4.8%) 

females and 494 (7.7%) males had elevated LDL-C in young adulthood. A cohort of 20,000 

males and 20,000 females was produced using the NHANES dataset. This cohort was made 

representative of the U.S. population by selecting individuals from the original dataset for 

simulation based upon an NHANES-specific probability sampling weight. 

 

Every individual in the cohort was simulated through the model from ages 20-70. From the age 

of 20 to 39, a time weighted average of DBP and LDL-C was estimated, and it was assumed 

that no CVD events would occur before the age of 40. 

 

When this analysis was completed, the CU-NHLBI Pooled Cohorts dataset had not yet been 

fully cleaned. Risk functions that determine primary transition within the model were therefore 

taken from the Framingham Offspring Study (404). These risk functions take the same logistic 

form as the previously-discussed Pooled Cohort risk functions. However, they were updated to 

account for an individual’s cumulative exposure to LDL-C and SBP between the ages of 20 and 

39. Risk of first CHD event after age 40 was conditioned on both time-weighted average of 

early adult (ages 20-39) DBP and elevated DBP or SBP at age 40 and above. These new risk 

functions were derived from logistic regression analysis of the Framingham Offspring Study 

performed by Pletcher et al. (325). 
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The results from the Pletcher analysis are presented in Table 5-8. Increases in time-weighted 

average DBP (dbptwa23) and LDL-C (ldltwa23) were significantly associated with risk of CHD 

in later life. 

 

Before simulation analysis was undertaken, risk functions were recalibrated to ensure that event 

rates observed in the model’s runs were comparable to event rates produced by the FORTRAN 

CVD Policy Model.  

 

 

Table 5-8: Cox regression estimating effect of various covariates on risk of primary 
CHD event, accounting for young adulthood risk factor exposure. lvcf – last value 
carried forward, twa – time weighted average value aged 20-39 
 

In the hypertension analysis, CHD outcomes were simulated in cohort of U.S. adults with DBP 

≥85 mmHg any time in young adulthood in 3 scenarios: no treatment, later life SBP control 

alone, or early DBP control plus later life SBP control. In the hypercholesterolaemia analysis, 

Logistic Regression 118971

Log pseudolikelihood = -2942.0756 Wald chi2(12)   = 708.79

Prob > chi2       = 0.00000

Psuedo R2        = 0.1056

Covariate Odds Ratio
Robust       

Std. Err.
Z P>|Z|

SBP (lvcf) 1.156026 0.063360 2.65 0.008 1.038281 1.287124

LDL-C (lvcf) 1.105461 0.066135 1.68 0.094 0.983151 1.242988

HDL-C (lvcf) 0.756097 0.048637 -4.35 0.000 0.666534 0.857694

LDL-C (twa) 1.428349 0.137747 3.70 0.000 1.182395 1.725574

DBP (twa) 1.253343 0.125270 2.26 0.024 1.030212 1.524803

Male 1.906012 0.227689 5.40 0.000 1.508143 2.408844

Diabetes 1.882810 0.225214 5.29 0.000 1.489324 2.380257

Smoker 2.603872 0.263688 9.45 0.000 2.135111 3.175549

BP Meds 1.906012 0.239475 5.67 0.000 1.565245 2.512759

Lipid Meds 0.814329 0.133595 -1.25 0.211 0.590412 1.123166

Age 1.053910 0.006974 7.93 0.000 1.040329 1.067668

Age^2 0.998715 0.000375 -3.43 0.001 0.997981 0.999450

Constant 0.000031 0.000022 -14.73 0.000 7.83E-06 0.000124

[95% Conf. Interval]

Number of obs =
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CHD outcomes were simulated in cohort of U.S. adults with LDL-C ≥160 mg/dL at any time in 

young adulthood in 3 scenarios: no treatment, later life LDL-C control alone, or early and later 

life LDL-C control. 

 

Results 

 

In the hypertension analysis, in a cohort of 20,000 males and 20,000 females with elevated DBP 

during young adulthood, treating DBP early in life led to large reductions in CHD events. 

Compared to waiting to treat DBP in later life, around 400 primary and 450 total CHD events 

could be averted by controlling DBP in early adulthood. Treating early life hypertension would 

result in around 290,000 extra years of treatment in the cohort compared to later life control. 

Results from the hypertension analysis are presented in Table 5-9. Absolute CHD risk reduction 

was 1.58% in the group treated in both early and later adulthood, and 0.92% in the group with 

later life treatment alone. Relative risk in those who received early adulthood treatment was 

0.93, compared to 0.95 in the comparator arm. 

 

In the hypercholesterolaemia analysis, early plus later adulthood treatment prevented 

approximately 1,900 and 2,800 additional primary and total CHD events in the cohort compared 

with later life treatment alone, respectively. More than 400,000 additional patient years of 

treatment would be required to achieve these benefits. Results from the hypercholesterolaemia 

analysis are presented in Table 5-10. Absolute CHD risk reduction was 11.85% in the group 

treated in both early and later adulthood, and 7.19% in the group with later life treatment alone. 

Relative risk in those who received early adulthood treatment was 0.65, compared to 0.78 for 

those who received later adulthood treatment alone. 

 

Discussion and Limitations 

 

This study showed that existing CVD policy models can be adapted to answer novel research 

questions. By altering the risk functions within this model and recalibrating these functions to 

contemporary event rates, it was possible to predict the benefits associated with early life 

intervention on modifiable risk factors. 
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This study highlights the benefit of early preventive intervention for CHD. In terms of 

preventable CHD events, there is a large opportunity cost associated with waiting to commence 

preventive blood pressure- and LDL-C-lowering treatment. The effect of intervening from age 

20 onwards was investigated. While this may not be considered a viable, clinically feasible 

treatment strategy, the results presented suggest any reduction in the age at which treatment 

commences may improve health outcomes for individuals. Age-stratified risk thresholds for 

treatment initiation may help address this issue. 

 

Monetary costs are notably missing from this analysis. The cost of treating and monitoring an 

individual from young adulthood until death may be large. Moreover, the cost of screening all 

young adults for elevated DBP and LDL-C is likely to be substantial. Further research should 

include a full health economic evaluation of the proposed intervention. 

 

5.5.2 Scottish CVD Policy Model: Predicting Treatment-Related Health Outcomes 

 

It is possible to predict the benefits associated with different treatment strategies using decision-

analytic models. Moreover, the differential benefits associated with patient subgroups can be 

estimated. This can help guide research into which groups of patients should receive a treatment, 

and highlight issues with existing clinical practice. 

 

Background 

 

Lewsey et al. previously employed the Scottish CVD Policy Model to estimate life expectancy 

(LE) for a range of individuals in the Scottish population (7). Adapting their results, Figure 5-

10 was developed to assess the benefit of preventive intervention in individuals with differing 

risk factor profiles. As with the risk charts presented in Chapter 4, each cell represents a distinct 

combination of risk factors. Diabetes and FH values were set to the SHHEC average. 

 

The number within each box in Figure 5-10 represents the increase in quality-adjusted life years, 

discounted 3.5% annually, that an individual with this risk factor profile would experience if 

their SBP and TC to HDL-C ratio were reduced to 100 mmHg and 3, respectively. The boxes  
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Treatment Scenario 
cohort of 20,000 men 20,00 women with 
DBP ≥85 mmHg between ages 20-39 

CHD Events 
Prevented 

CHD 
Absolute 

Risk 
Reduction 

CHD 
Relative 

Risk 

Person 
Years of 

Treatment Primary Total 

No treatment 0 0 0 1 0 

Treat ≥ 40 years old 

246 476 0.92% 0.95 525,000 

Age 20-39: if DBP ≥85, no treatment 

Age ≥ 40:   if SBP ≥140 or DBP≥ 90, treat BP <140/90 

Treat ≥ 20 years old 

630 926 1.58% 0.93 815,000 

Age 20-39: if DBP ≥85, treat to DBP <85 

Age ≥ 40:   if SBP ≥140 or DBP≥ 90, treat BP <140/90 

Table 5-9: CHD outcomes associated with different blood pressure control scenarios in a cohort of hypertensive young 
adults. All comparisons are with no treatment. 

 

Treatment Scenario 
cohort of 20,000 men 20,00 women with 
LDL-C ≥160 mmol/L between ages 20-39 

CHD Events 
Prevented 

CHD 
Absolute 

Risk 
Reduction 

CHD 
Relative 

Risk 

Person 
Years of 

Treatment Primary Total 

No treatment 0 0 0 1 0 

Treat ≥ 40 years old 

2,850 3,940 7.19% 0.78 944,000 

Age 20-39: if DBP ≥85, no treatment 

Age ≥ 40:   if SBP ≥140 or DBP≥ 90, treat BP <140/90 

Treat ≥ 20 years old 

4,740 6,770 11.85% 0.65 1,355,000 

Age 20-39: if DBP ≥85, treat to DBP <85 

Age ≥ 40:   if SBP ≥140 or DBP≥ 90, treat BP <140/90 

Table 5-10: CHD outcomes associated with different LDL cholesterol control scenarios in a cohort of hypercholesterolaemic 
young adults. All comparisons are with no treatment.
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are colour-coded based on life years gained. Red represents life year gains less than 1 year, 

orange represents gains between 1-2 years, and green represents gains greater than 2 years. 

Results for women followed a similar pattern. 

 

 

Figure 5-10: Discounted QALY gains from reducing SBP, TC:HDL-C ratio, and smoking 
in men in the least and most deprived SIMD quintiles, adapted from Lewsey et al. 
(text) 
 

Figure 5-10 suggests that primary prevention is more effective at increasing QALE in 

individuals with unhealthy levels of modifiable risk factors like SBP, cholesterol, and cigarettes 

smoked per day. Conversely, ‘high-risk’ individuals whose risk is driven by a non-modifiable 

risk factor like age gain less from treatment. These results support the implementation of age-

stratified risk threshold approach to prevention, as this would target treatment at individuals 

with unhealthy modifiable risk factor values within their age-group. 

 

The analysis described predicts health gains associated with multifactorial interventions that 

return modifiable risk factors to healthy levels. In clinical practice no silver bullet treatment 

exists which will return every patient’s risk factors to the healthy levels assumed in the figures. 

Patterns in health gains associated with individual preventive policies may be different.  
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Objective 

 

The objective of this analysis was to quantify the effect of a cholesterol-reducing intervention 

on discounted QALE for individuals with a range of CVD risk factor profiles. 

 

PICOSS 

 

Population: The population of interest was men living in Scotland aged 40, 50, 60, and 70 years 

with no established CVD. The effect of the intervention on individuals with a range of different 

CVD risk factors was assessed. 

 

Intervention: The intervention considered was a 32% reduction in TC. This represents an upper 

estimate of the expected reduction in LDL-C achievable with intermediate-intensity statin 

therapy. No pill-taking decrement to quality of life and no treatment-related side effects (e.g. 

increase in risk of diabetes) were applied. 

 

Comparator: The comparator for this analysis was no treatment. 

 

Outcome: The outcome recorded was increase in discounted QALE attributable to the 

intervention. 

 

Setting: Primary care in the Scottish NHS. 

 

Study Design: Cohort simulation. 

 

Methodology 

 

Risk factors were inputted into the male version of the Scottish CVD Policy Model to estimate 

intervention-related benefits associated with LDL-C-reduction for individuals with a range of 

risk factor profiles. 

 

Risk factor profiles were developed which varied by age (40, 50, 60, and 70), SBP (100, 120, 

140, 160, and 180 mmHg), TC:HDL-C (4.5:1.5, 6.0:1.2, 6.3:0.9, 6.8:0.8, and 7.0:0.7 mmol/L), 
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SIMD (4.085 and 60.775), and cigarettes per day (0 and 20). Individual’s diabetes and FH values 

were set to 1.49% and 26.3%, respectively, the average values in the SHHEC population. Given 

the range of dimensions considered, n=4*5*5*2*2=400 profiles were simulated. Discounted 

QALE was recorded for each profile. This value will be referred to as the ‘baseline QALE’ 

associated with each risk factor profile. 

 

Next, each of the 400 profiles was re-simulated. However, in this simulation, TC was reduced 

by 32% at baseline. Again, discounted QALE was recorded for each individual. This value will 

be referred to as the ‘treated QALE’ associated with each risk factor profile. Finally, the 

difference between baseline and treated QALE was estimated for each risk factor. This was 

presented graphically, in a manner that would facilitate comparison with Figure 5-10. 

 

Results 

 

Cholesterol treatment was simulated for a range of male Scottish risk profiles. Figure 5-11 

estimates discounted QALY gains attributable to a 32% TC reduction for a number of risk factor 

profiles. The gains are colour-coded whereby blue, red, orange, and green cells represent 0-0.15, 

0.15-0.3, 0.3-0.45, and >0.45 discounted QALY gains, respectively. 

 

 
Figure 5-11: Discounted QALY gains from reducing TC by 32% in men in the least and 
most deprived SIMD quintiles 
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Discussion and Limitations 

 

This study paints a more nuanced picture of capacity-to-benefit than the results presented in 

Figure 5-10. A more realistic simulation of univariate preventive intervention showed that it is 

difficult to define a function that maps 10-year risk to capacity-to-benefit from statin therapy. 

 

Some relationships do emerge in Figure 5-11. Individuals with high levels of cholesterol achieve 

the most benefit from cholesterol reduction. However, unlike in Figure 5-10, non-smokers gain 

many more QALYs than smokers. Capacity-to-benefit is also highest in 50 and 60 year olds, 

suggesting a non-linear age-based trend. A corollary to these observations is that, even within 

age-groups, risk is not a singular predictor of capacity-to-benefit. The specific factors that drive 

risk matter. 

 

The reason that 10-year risk is a poor predictor of capacity-to-benefit can be explained by a 

multiplicity of factors. Competing risks are an important consideration. Age, SBP, and smoking 

are strong predictors of non-CVD mortality. These factors increase CVD risk but also increase 

risk of a censoring event which may negate the need for CVD prevention. Optimal treatment 

strategies for patients depends on their individual profile of risk factors, not just the combinatory 

measure of 10-year risk. 

 

Risk driven by modifiable risk factors may require alternative treatments alongside or in place 

of statin therapy. When an individual’s risk is driven by smoking, a primary stage in prevention 

should be to address this risk factor. Reducing cigarettes smoked per day will reduce both the 

individual’s risk of CVD and their risk of non-CVD mortality. Indeed, this analysis suggests 

that reducing smoking will likely improve their capacity-to-benefit from cholesterol reduction.  

 

Shared decision-making (439) is an important tool for individuals with risk driven by non-

modifiable risk factors. When an individual’s risk is driven by age, alternative treatment options 

are limited. In this case, a physician and patient must discuss the potential benefits of treatment 

alongside the reality of the individual’s life expectancy. 
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Ultimately, the only way to account for the multiplicity of factors that determine an individual’s 

capacity-to-benefit from treatment is to directly employ decision-analytic models in the 

decision-making process. Such a policy is assessed in Chapter 9. 

 

This study is limited by the simplicity of the intervention that was modelled and lack of 

sensitivity analysis. The study explicitly aimed to represent capacity-to-benefit from 

cholesterol-reducing treatment. Studies have shown a variety of small but significant side effects 

and disutilities associated with cholesterol-reducing treatments (36,440,441). This likely means 

the predicted QALY gains are overstated. The study also employs a combinatory index to 

capture the effect of TC and HDL-C on CVD risk. It would be clinically more useful to consider 

these risk factors separately. Finally, traditional and probabilistic sensitivity analysis were not 

completed. While the study quantifies variability in outcome related to patient characteristics, it 

does not reflect uncertainty related to model or treatment parameters. 

 

5.6 Chapter Summary 

 

This chapter has provided an introduction to policy models. Additionally, it has introduced, two 

existing CVD policy models which will be used throughout the remainder of this thesis to assess 

preventive interventions for cardiovascular disease. It was shown that these models can be 

updated with external data and can output intermediate outcomes to help answer questions 

regarding the benefits associated with preventive intervention. 

 

The specific type of preventive intervention that will be modelled in later chapters are 

cholesterol-reducing medications. These are treated as a cornerstone of CVD prevention 

strategies in high-income countries. The principle cholesterol-reducing treatment that will be 

considered is statin therapy. The proceeding chapter will establish the validity of statins as an 

efficacious and safe preventive medicine. This will enable the thesis to proceed with cost-

effectiveness analyses of statin prioritisation policies which aim to address heterogeneity in 

cost-effectiveness of the treatment. 

  



167 
 

Chapter 6 

Statins 

 

6.1 Purpose 

 

Many of the cost-effectiveness analyses in the remainder of this thesis will focus on statins and 

their role in the primary prevention of CVD. Although widely prescribed in high-income 

countries, statins are a controversial treatment. It is therefore important to justify their use in 

clinical practice. It is particularly important to prove that statins are safe, effective, and maintain 

efficacy in low- and intermediate-risk populations. This chapter will explore the validity of such 

assumptions. 

 

6.2 Efficacy of Statins in Low- and Intermediate-Risk Populations 

 

Evidence in Favour 

 

The efficacy of statin therapy for the primary prevention of CVD has been established in low- 

and intermediate-risk populations. In a 2011 meta-analysis, Tonelli et al. considered the efficacy 

of statin therapy in CVD-free intermediate-risk patients (442). Intermediate risk was defined as 

10-year risk less than 20% and was estimated by extrapolating CVD event rates in the control 

arm of analysed trials. It was found that in intermediate-risk populations, statins reduced risk of 

all-cause mortality (relative risk [RR] 0.90, 95% confidence interval [CI] 0.84-0.97), non-fatal 

myocardial infarction (RR 0.64, 95% CI 0.49-0.84), and non-fatal stroke (RR 0.81, 95% CI 

0.68-0.96). Similar results were reported by Navarese et al. in 2018 (339). 

 

The Cholesterol Treatment Trialists’ (CTT) collaborators also performed a meta-analysis of 

statin efficacy in low- and intermediate- risk populations (251). They considered the efficacy of 

statin therapy in five categories of 5-year major vascular risk: <5%, 5-10%, 10-20%, 20-30%, 

and >30%). Relative risk of major vascular event per 1.0 mmol/L LDL-C reduction was found 

to be consistent across risk groups, ranging from a relative risk of 0.62 (95% CI 0.47-0.81) to 

0.79 (95% CI 0.74-0.84) in the lowest and highest risk groups, respectively. Individuals in the 
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lowest two risk categories also experienced clinically and statistically significant reductions in 

major coronary events and stroke. 

 

Criticisms 

 

There is some controversy surrounding the evidence in favour of statin efficacy. Abramson et 

al. critique the analyses mentioned in the two preceding paragraphs (250). They argue that there 

is no hard evidence that statins reduce all-cause mortality in low-risk individuals, the endpoints 

used to describe CVD in studies of statin efficacy are too broad, and that side effects have been 

understated. Furthermore, they point out that low-risk individuals achieve a small 10-year 

absolute risk reduction from statin therapy and therefore a greater number of individuals must 

be treated to prevent one adverse event in a low-risk population. 

 

Other academics have expressed concern about the statistical methodology commonly applied 

to quantify statin benefits. Redberg and Katz (443) and Diamond and Ravnskov (444) argue that 

absolute rather than relative risk should be the measure employed to quantify benefit. Relative 

risk (RR) is equal to the ratio of event incidence in the treatment and control groups of a trial. 

Absolute risk reduction (ARR) is the absolute change in risk between arms. The number needed 

to treat to prevent an event in a population (NNT) is the inverse of ARR. Some argue that ARR 

better reflects a patient’s capacity-to-benefit from preventive treatment as it highlights the fact 

that many people will gain nothing from treatment. 

 

6.3 Safety of Statin Therapy 

 

Evidence in Favour 

 

Several side effects are commonly associated with statin therapy. These include: increased risk 

of diabetes, muscle pain (myalgia), muscle weakness (myopathy), cognitive dysfunction, and 

renal disorder. The evidence concerning such side effects overwhelmingly suggests that the 

benefits of the treatment outweigh the disadvantages. 

 

Many randomised clinical trials have been completed to assess the safety and efficacy of statin 

therapy. Reimold et al. highlight that more than 170,000 people who take statins have been 
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studied with considerable follow-up, and posit that “statins have been studied more than nearly 

any other drug that people take” (445). 

 

Meta-analyses largely confirm the safety profile of statin therapy. Finegold et al. considered the 

safety profile of statins in a 2014 meta-analysis which included data from 46,262 patients 

receiving statins for the primary prevention of CVD (446). Their study found that statins slightly 

increase an individual’s risk of two adverse events: new diabetes diagnosis (absolute risk 

increase [ARI] 0.5%, 95% CI 0.1%-1.0%) and elevated enzyme levels which may lead to liver 

damage (ARI 0.4%, 95% CI 0.2%-0.6%). The study rejected the hypothesis that statins increase 

likelihood of myalgia (p-value 0.407), myopathy (p-value 0.905), renal disorder (p-value 0.092), 

and ten other commonly attributed side effects. Taylor et al. (447) found no evidence of serious 

harm caused by statin treatment. 

 

Meta-analyses have also shown that statins have no deleterious effect on cognition. While the 

Finegold et al. study did not focus extensively on cognitive dysfunction, a separate meta-

analysis by Swiger et al. examined the short- and long-term cognitive effects of statins in 

patients with no baseline cognitive dysfunction (448). This study rejected the hypothesis that 

statins affect short-term cognition (p-value 0.050). Moreover, analysis of long-term data found 

that statins may play a statistically and clinically significant role in reducing incident dementia 

(hazard ratio 0.71, 95% CI 0.61-0.82). 

 

The link between statins and incident diabetes has been analysed in a meta-analysis of 

randomised controlled endpoint trials. Sattar et al. (440) found that statin therapy is associated 

with a statistically significant increase in incident diabetes (odds ratio 1.09; 95% CI 1.02–1.17). 

The authors of this study concluded that the increased risk of diabetes attributable to statins is 

offset by the treatment’s benefits. This sentiment has been echoed by the ACC and AHA, the 

U.S. Preventive Services Task Force, the Royal College of General Practitioners in the U.K., 

the British Heart Foundation, and a wide range of clinical experts (349,449–452). 

 

Criticism 

 

Despite strong clinical trial evidence for their safety, statins remain a subject of considerable 

controversy. Dr. Ben Goldacre was co-author of a previously cited meta-analysis on statin safety 
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(446) but urges caution on its findings. He argues that the methodology used in this trial is 

correct but the analysed data were flawed (453). He states that public reporting of side effects 

in clinical trials is very poor. 

 

Goldacre cites a study from Germany’s cost-effectiveness agency, the Institute for Quality and 

Efficiency in Health Care (IQWiG) to support his claim of flawed data (454). Researchers at 

IQWiG obtained access to unpublished clinical study reports (CSRs) for a range of different 

treatments. These are documents produced by pharmaceutical companies which extensively 

detail the methodology and outcomes of clinical trials. CSRs are generally not made public 

though are provided to regulatory agencies like the FDA in the U.S. and the EMA in the E.U. 

The IQWiG study revealed that CSRs provided complete information on 84% of benefits and 

87% of harms, while publicly available data only provided complete information on 35% of 

benefits and 43% of harms. A further 18% of benefits and 8% of harms were found to be 

‘reported partly’ in the publicly available data. 

 

Other researchers have questioned the reliability of evidence regarding statin safety. Yebyo et 

al. question whether the benefits of statins outweigh their harms over a 10-year time period, 

finding probability of net benefit is low when 10-year risk is low (455). In a cross-sectional 

analysis of 1999-2002 NHANES data, Buettner et al. (456) found that taking statins significantly 

increased risk of musculoskeletal pain. Abramson et al. argue that meta-analyses underestimate 

the risk of diabetes associated with statin therapy, noting that the increase in diabetes incidence 

observed in women taking statins in the JUPITER trial was more than five times the increase 

predicted by a 2012 CTT meta-analysis (250). Redberg and Katz (443) also discuss 

underreporting and misreporting of side effects in clinical trials, arguing that anecdotal evidence 

and results of a small clinical trial (457,458) suggest that statins may cause cognitive 

impairment. Including data from primary prevention trials, a preference study, and selected 

observational studies. 

 

6.4 Response to Criticism of Statin Safety and Efficacy 

 

It is important to ensure that statins are safe and efficacious in the patients for whom they are 

recommended. Placebo-controlled randomised clinical trials represent the gold standard for 

establishing these factors for a treatment. Meta-analyses of these trials suggest that statins are 
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safe and efficacious. Decision modelling techniques allow researchers to account for uncertainty 

inherent in these findings when assessing the cost-effectiveness of statins. 

 

Efficacy 

 

The benefits of statins are well-established. Greenhalgh provides a hierarchy for the reliability, 

validity, and generalisability of data (72). In descending order, this hierarchy consists of: 

systematic reviews and meta-analyses of randomised controlled trials, randomised controlled 

trials with definitive results, randomised controlled trials with non-definitive results, cohort 

studies, case-control studies, cross-sectional surveys, and case reports. Evidence from the 

multiple meta-analyses described above firmly suggests that statins are efficacious and safe in 

low- and intermediate-risk individuals. 

 

Common criticisms of evidence regarding statin efficacy are: statins do not show improvement 

in all-cause mortality and relative risk overstates the benefits of statin therapy. With regards to 

all-cause mortality, it is true that a meta-analysis of relevant trials studies failed to show a 

statistically significant reduction in all-cause mortality attributable to statin therapy in CVD-

free individuals (459). The results from this study, however, also show a strong relative risk for 

all-cause mortality which is marginally insignificant. Given existing debate regarding statistical 

significance (460–462), and the fact that average follow-up for individuals in this meta-analysis 

was 3.74 years, it is not surprising that it was difficult to establish a statistically significant 

relationship between the treatment and mortality - a rare event in CVD-free individuals. In 

addition, two separate contemporary analyses have shown a statistically significant effect of 

statins on all-cause mortality (251,442). 

 

A further consideration must be made explicit: even if statins do not reduce all-cause mortality, 

they have been shown to reduce cardiovascular events. Such events are extremely debilitating 

and it is of societal interest to reduce rates of CVD. 

 

The use of relative as opposed to absolute risk reduction in measuring statin efficacy must be 

considered. Redberg and Katz (443) and Diamond and Ravnskov (444) argue that the latter 

gives patients a better concept of their potential to benefit from treatment. Both articles note that 

statins have a high 10-year NNT to prevent one event for low-risk individuals. However, CVD 
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rates have dropped greatly in recent decades. Intuitively, as baseline event risk falls in a 

population, the NNT to prevent one event increases. As with all preventive interventions, the 

benefits accrued through treatment should be weighed against the costs of providing treatment 

to many people. Cost-effectiveness analysis explicitly undertakes such calculus. 

 

Safety 

 

Criticism regarding statin safety should be considered. Goldacre highlights the issue of trial 

reporting, while Abramson et al. and Redberg and Katz, and others question the interpretation 

and results of randomised clinical trials (250,443,453). Ultimately, statins are a widely studied 

treatment and their safety profile and benefit-harm ratio are well-established (463). 

 

Goldacre’s criticism of existing evidence for statin safety largely centres on clinical trial 

reporting. The IQWiG study cited (454) certainly provides evidence that the benefits and harms 

of pharmacological treatments are underreported in publicly-available resources. However, 

interpretation of this study could be more nuanced. The primary outcome measure employed in 

the study is completeness of outcome reporting. For a given treatment, some outcomes are less 

important than others and it is conceivable that publicly available resources deliberately 

document those outcomes considered to be clinically important. A larger proportion of studies 

were found to have incomplete reporting of benefits than harms. This suggests that selective 

reporting was employed, at least partly, to provide a concise summation of treatment outcomes 

rather than to conceal useful information. Furthermore, CSRs are made available to regulatory 

bodies. It is therefore likely that any serious adverse outcomes would be highlighted in approval 

documentation. 

 

Abramson et al. (250) argue that the rate of statin-related myopathy experienced by individuals 

in clinical practice is much larger than the rate observed in clinical trials. The cite a cross-

sectional study that shows statistically significant increase in ‘musculoskeletal pain’ 

experienced by individuals on statins (456). This study has some methodological limitations. 

Due to its cross-sectional nature, the study cannot account for the fact that patients can switch 

statins when they encounter side effects. Indeed, it has been shown that most patients who 

experience side effects can continue on the therapy without issue if they switch statin or dosage 

(464). 
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Both Abramson et al. (250) and Redberg and Katz (443) compare meta-analysis results to results 

from individual studies. With regards to diabetes risk, the former highlight that relative risk for 

development of diabetes was much greater for CVD-free women than the central estimate for 

increased diabetes risk produced by meta-analyses. This argument indeed highlights the need 

for better reflection of heterogeneity in treatment side effects in the literature. However, a post-

hoc analysis of an individual trial provides much less reliable information than a meta-analysis. 

This is especially true for outcomes which have a very low prevalence like statin-induced 

diabetes. Redberg and Katz cite anecdotal evidence and one small trial which found statin-

related side effects to be much greater than those observed in clinical trials. These sources 

provide useful information. However, meta-analyses provide much more reliable data than 

individual clinical trials, narrative reviews, or anecdotal evidence. 

 

The Role of Decision-Analytic Modelling 

 

The decision modelling process explicitly accounts for many of the issues raised by researchers 

who question evidence regarding statin safety and efficacy. Many researchers who are opposed 

to the expansion of statin eligibility for primary prevention argue that both the benefits and 

harms of statins must be considered. Of course, this is true. Decision-analytic modelling is a 

statistical methodology that was developed to perform such analysis. 

 

Goldacre states that statins, and other preventive interventions, need “perfect information” 

because their benefits and disadvantages are often closely balanced (465). Perfect information 

will never be available for any treatment. However, it is important to consider the effect that 

modelling assumptions and the inherent uncertainty in their estimation have on health and cost 

outcomes. Traditional and probabilistic sensitivity analysis can be employed to do this. 

 

6.5 Consequence of Statin Criticism in the Media 

 

Despite the strong evidence in favour of the safety and efficacy of statins, they continue to be 

one of the most controversial treatments available to a widespread population. Some of this 

controversy is expressed in the clinical literature, as presented in Sections 6.2 and 6.3. Criticism 
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of statin policy is regularly presented in much less academically rigorous outlets including 

newspapers, websites, magazines, and television programmes (466). 

 

It is possible that statins induce the nocebo effect, a phenomenon that occurs when patients 

anticipate side effects from a treatment. This anticipation manifests itself with the patient 

believing that they have experienced the expected side effect. Several researchers have 

attributed statin-induced muscle pains and other side effects to the nocebo effect (467–469). 

Indeed, a recent study found excess rates of adverse events in a trial of statin efficacy when 

patients and physicians were aware that statin therapy, and not placebo, was being administered 

(470). The authors suggested that this proved many of the side effects experienced by patients 

may not be causally linked to statins themselves, but rather to patient and physician perception 

of the treatment’s side effect profile. 

 

Additional consequences have been associated with continued adverse media coverage of 

statins. The ACC notes the strong relationship between adverse media coverage of statins and 

reduction in statin guideline uptake and adherence (471). Matthews et al. (472) performed an 

interrupted time series analysis of statin initiation and continuation. They analysed data 

collected in routine clinical practice in the U.K. to quantify the effect of an intense period of 

media criticism of the treatment on statin-taking behaviour. For the primary prevention 

population, they found no statistical difference in rates of statin initiation after such periods 

(odds ratio [OR] 0.99, 95% CI 0.87-1.13). However, they did find a significant proportion of 

those already taking statins stopped the treatment during these periods (OR 1.11, 95% CI 1.05-

1.18). Intense media scrutiny of statin safety and efficacy, they conclude, could lead to an extra 

2,000 CVD events in the U.K. over 10 years. Studies in Australia, Denmark, France, Turkey, 

and the Netherlands have also found a direct relationship between negative media attention and 

statin discontinuation (466,473–476). 

 

6.6 Imperfect Evidence, Manufacturer Incentives, and Statins 

 

Perfect evidence for the safety and efficacy of statin therapy will never exist. Researchers and 

decision-makers will always face data limitations. Given this reality and the low likelihood of 

further largescale statin trials, Goldacre is correct to argue that all available evidence regarding 
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statins should be made publicly available. Nonetheless, there is currently no great incentive for 

pharmaceutical companies to withhold information regarding statin safety and efficacy. 

 

As a proponent of increased transparency in clinical trials, Goldacre founded the AllTrials 

campaign. The aim of AllTrials is to register all clinical trials, and subsequently report on the 

methodology and results of these trials. An intermediate step towards achieving this is the 

publication of each study’s CSR. It is true that a large amount of medical research is 

unpublished. This was noted in the IQWIG study of CSRs versus publicly available resources 

(454). Pharmaceutical companies have a clear incentive to avoid publication of negative 

findings, even if doing so is detrimental to patient and population health. They may wish to 

suppress data on a treatment with regulatory approval but spurious efficacy, as demonstrated by 

Lee et al. (477). In addition, they may wish to avoid publishing negative results from trials of 

treatments discarded early in the development cycle (478). 

 

Underreporting of trials may occur due to the nature of academic medicine. Journals are more 

likely to publish articles which show a clear effect of a treatment. Due to this publication bias, 

studies which show no statistical benefit or harm are largely underreported (479). Studies which 

show the largest effect size are over-reported and this may lead to bias in their favour. 

 

An additional concern is that, without pre-specification of study methodology, pharmaceutical 

companies can benefit from the principle of multiple testing and undertake post-hoc analysis 

which favours their intervention. The incentive for pharmaceutical companies to apply a 

methodology which overstates the benefits or understates the harms of their intervention is clear. 

Constraints on publication, discussion, and analysis of data are common for researchers 

undertaking industry-funded clinical trials (480). Goldacre is correct to challenge the 

pharmaceutical industry and the way in which it withholds clinical trial data from researchers 

and decision-makers. 

 

With regards to statins, it is unlikely that complete publication of trial methodology and 

outcomes would lead to a radical reassessment of the treatment’s safety or efficacy. Statins are 

one of the most studied drugs in history. As the number of observations included in a meta-

analysis increases, the confidence interval around effect estimates generally shrinks. Data on 

more than 180,000 patients, representing several hundred thousand life years of follow-up, are 
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included in statin treatment arms of recent meta-analyses (251). It is therefore unlikely that there 

will be a great change in point estimates for the treatment’s benefits or harms. 

 

Pharmaceutical companies may be jointly withholding important side effect information 

regarding statins, but this is unlikely. A sentiment often proved wrong in healthcare might well 

stand in the case of statins. Consider Adam Smith’s famous quote about the invisible hand of 

the free market: “It is not from the benevolence of the butcher, the brewer, or the baker that we 

expect our dinner, but from their regard to their own interest” (481). The incentives for major 

pharmaceutical companies to shield side effect information is not clear now that all statin patents 

have expired. Regeneron, Sanofi, Amgen, and Merck & Co. are among the companies that 

currently have patent protection for non-statin cholesterol-reducing drugs including PCSK9 

inhibitors and ezetimibe (215,223,224). The target demographic for these drugs is typically 

patients with statin intolerance. It is therefore in the interest of these companies to emphasise 

the rate of side effects attributable to statin therapy. Indeed, the U.S. National Library of 

Medicine’s Clinical Trials database shows a large increase in trials focused on statin intolerance 

in recent years (482). 

 

6.7 Chapter Summary 

 

This chapter set out to justify the use of statins in primary CVD prevention. Widespread 

prescription of statins has been criticised in academic literature and other media. Critics have 

questioned the efficacy of statin therapy and have highlighted potential side effects associated 

with the treatment. Proceeding chapters in this thesis will analyse the cost-effectiveness of 

different decision mechanisms to prioritise patients for preventive statin therapy. It was 

therefore necessary to establish that statins are both efficacious and safe in primary prevention. 

 

Questions regarding statin efficacy often centre around their ability to reduce all-cause mortality 

and the weakness of relative risk reduction as a measure of benefit. Meta-analyses suggest that 

statins do reduce all-cause mortality. Moreover, a treatment need not reduce mortality to 

improve population health. Concern regarding the use of absolute versus relative risk reduction 

in reporting of trial evidence is valid. However, as rates of CVD fall in high-income countries, 

continued reduction in CVD incidence will only occur if more intermediate- and low-risk 
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patients are treated. Decision-analytic modelling offers a systematic means of performing the 

calculus necessary to determine whether it is worthwhile treating more patients. 

 

Concern regarding the safety of statins was also addressed. Meta-analysis evidence firmly 

supports the safety profile of statin therapy. However, statins are associated with a marginal 

increase in diabetes. Decision-analytic modelling can be employed to weigh this absolute risk 

increase for diabetes against the benefits provided by the treatment. 

 

Prescribing statins to a large number of people will entail screening, treatment, and monitoring 

costs and some side effects. The following three chapters consist of a series of cost-effectiveness 

analyses. These analyses aim to establish the costs and health benefits associated with different 

approaches to prioritising patients for preventive statin therapy.  
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Chapter 7 

Continued Use of 10-Year Risk Scores 

 

7.1 Purpose 

 

The following three chapters will discuss alternative approaches to the prioritisation of patients 

for preventive statin therapy. Cost-effectiveness analyses of different policies will be conducted. 

Each of these policies addresses heterogeneity in cost-effectiveness in the patient population to 

some extent, representing novel means of patient prioritisation. 

 

Continued use of 10-year risk scores is one approach to the prevention of CVD. Risk scores are 

used to prioritise individuals for preventive therapy for CVD in a range of high-income 

countries. As these thresholds apply to all individuals, regardless of any other source of patient-

level heterogeneity, hereafter this will be referred to as the ‘blanket’ risk threshold approach to 

prevention. 

 

The purpose of this chapter is to analyse two policies which involve the continued use of 10-

year risk scoring and aim to create more health than current standard of care. These policies are: 

 Reducing the risk threshold (treating more individuals). 

 Improving risk scores with novel biomarker data. 

 

The epidemiologic bases for the two policies proposed were presented in Sections 4.4.2 and 

4.4.3, respectively. Reducing the risk threshold will increase the sensitivity and reduce the 

specificity of the risk score. More cases and non-cases will be treated. Gaining novel biomarker 

data for will lead to an increase in testing costs but should target treatment at patients more 

likely to experience an event. Theoretically, both of these treatment strategies will improve 

population health outcomes but will lead to an increase in direct costs incurred by the healthcare 

system. 

 

Sections 7.2 and 7.3 will discuss reducing the risk threshold and updating risk scores with novel 

biomarker data, respectively. They will relate these policy changes to heterogeneity in cost-
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effectiveness analysis and estimate their cost-effectiveness in the setting of primary care in the 

Scottish NHS. 

 

7.2 Cost-Effectiveness Analysis: Threshold Reduction in Scotland 

 

7.2.1 Background 

 

In recent years, several healthcare bodies have issued guidelines proposing a reduction in the 

blanket risk threshold at which individuals are prioritised for preventive CVD therapy 

(25,27,28,173). In turn, millions more CVD-free individuals have become eligible to receive 

statins. Moves towards threshold reduction have occurred largely because the price of statins 

has dropped dramatically. This has heralded in a new age of cheap and effective generic 

cholesterol-reducing therapy.  

 

Analyses have been performed to estimate the cost-effectiveness of reducing the risk threshold 

for statin initiation in the U.S. and England and Wales (25,37,350). These analyses found that 

reducing the ACC/AHA Pooled Cohorts risk score threshold from 15% to 7.5% in the U.S. and 

QRISK2 risk threshold from 20% to 10% in England and Wales were cost-effective policies. 

No similar study has estimated the cost-effectiveness of reducing the threshold for statin 

initiation in Scotland. 

 

7.2.2 Objective 

 

The objective of this study was to estimate the cost-effectiveness of reducing the risk threshold 

for statin initiation in Scotland to 10%. Given that the focus of this study is to quantify the 

benefit of risk-based stratification, the comparator strategy was statins only for individuals with 

familial hypercholesterolaemia. This is a condition which SIGN and several other healthcare 

organisations recommend be treated with statin therapy. 

 

7.2.3 PPICOSS 

 

Population: The Scottish CVD-free population, aged 40 years and above. 
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Perspective: Scottish health sector decision-maker. All healthcare costs accrued by the Scottish 

NHS and health gains in treated patients are considered. 

 

Intervention: Intermediate-intensity statin therapy (Atorvastatin 20mg/daily or similar). Two 

treatment prioritisation criteria are considered: (i) blanket 20% risk threshold and (ii) blanket 

10% risk threshold. 

 

Comparator: Statin therapy for individuals with familial hypercholesterolaemia. 

 

Outcome: Lifetime cost-per-QALY, with both costs and QALYs discounted at 3.5% annually. 

Intermediate outcomes reported are: disaggregated healthcare costs, primary CVD events 

prevented, and CVD-free life years. 

 

Setting: Primary care in the Scottish NHS. 

 

Study Design: Cohort simulation. 

 

7.2.4 Methodology 

 

Scottish CVD Policy Model 

 

The Scottish CVD Policy model was employed to estimate the cost-effectiveness of different 

methods of statin prioritisation. This decision-analytic model predicts life expectancy, quality-

adjusted life expectancy, and cost outcomes for individuals based on their ASSIGN risk factors 

and was discussed in depth in Chapter 5.  

 

Treatment Strategies 

 

Three different treatment strategies were considered in the analysis. These were statin therapy 

initiation for individuals with familial hypercholesterolaemia, individuals with an ASSIGN 

score greater than 20% (ASSIGN 20), and individuals with an ASSIGN score greater than 10% 

(ASSIGN 10). 
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Statins for individuals with familial hypercholesterolaemia was included as a base case for the 

analysis as it was assumed that, regardless of risk threshold for statin initiation, these individuals 

would always receive statin therapy. Familial hypercholesterolaemia was defined as TC 

≥7.5mmol/L and a family history of CVD or TC ≥8.0 mmol/L, as per SIGN’s guideline for the 

primary prevention of CVD (26). 

 

Scottish Health Survey and Census Data 

 

All analysis was completed using a combination of the Scottish Health Survey 2011 (310) and 

the Scottish Census 2011 (483). 

 

SHeS is a study of public health which was commissioned by the Scottish Government Health 

Directorates (484). It was conducted face-to-face with trained interviewers, contains 

information on many health indicators, and is principally focused on CVD. Values for all 

ASSIGN risk factors can be derived for all survey respondents from SHeS data. Access to SHeS 

database was available through the U.K. Data Service website (347). 

 

The survey used a multi-stage stratified probability sampling design (485). Data were obtained 

from twenty-five strata. These divided Scotland into twenty-five distinct groups: the three island 

Health Boards (Orkney, Shetland, and Western Isles), along with 22 other groups constructed 

by dividing the remaining 11 Scottish Health Boards into data zones containing “deprived” and 

“non-deprived” populations. Areas were deemed to be deprived if they were in the top 15% of 

deprived areas according to SIMD. Stratification allowed for the oversampling of deprived 

areas. This was to ensure the survey gave a representative sample of the Scottish population, as 

response rates for surveys are typically lower in deprived areas. 

 

SHeS 2011 consisted of two stages. All respondents completed an initial interview which 

obtained information on core topics including: household information, general health, general 

CVD, use of health services, lifestyle factors, economic activity, education, ethnic background, 

national identity and origin, family health background, and height and weight. 
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The second stage was a nurse interview, in which blood samples were obtained. A subsample 

of those interviewed in stage 1 was offered nurse interviews. These were important with regards 

to this analysis, as they obtained information on patients’ cholesterol levels and blood pressure. 

 

In total, 10,431 addresses were selected for initial sample. Interviews were conducted with 7,544 

adults and the estimated response rate was approximately 56%. 4,644 of these adults were aged 

40 and above and CVD free. Of those interviewed, 2,224 were eligible for a nurse visit, and 725 

gave a blood sample. These low response rates are of some concern. However, the probability 

sampling approach accounted for the likelihood of non-response based on demographic 

predictors. 

 

Additional data were needed to project results onto the Scottish population. The 2011 Scottish 

Census (483) provided information on the Scottish population, and the distribution of age-

groups within it. 

 

Multiple Imputation 

 

A key issue with the SHeS data is the relatively small number of respondents for whom nurse 

interviews were performed. This means that data are sparse for three important modifiable risk 

factors: TC, HDL-C, and SBP. 

 

Typically, one would carry out an analysis with the subset of respondents for whom blood 

samples were available when so many data are missing. However, the results from such an 

analysis would not be particularly useful. Despite the probabilistic sampling techniques 

employed by SHeS administrators to determine which individuals received a nurse interview, 

the small number of people with full risk factor profiles will likely lead to small sample bias.  

 

The problem of small sample bias is exacerbated because this analysis was in part stratified by 

age-group. In the older age-groups, CVD was widespread. For example, CVD prevalence in the 

dataset for over 80s was 48%. Blood sample information was available for only 25 individuals 

older than 80 with no established CVD. 
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Almost complete information was available for respondent’s age, sex, SIMD score, diabetes, 

and family history of CVD. Data on hours exercised per week was available for all of these 

individuals. Evidence suggests that exercise has strong relationships with TC, HDL-C, and SBP 

(486). For all individuals who were not offered a nurse visit and therefore did not have complete 

cholesterol or blood pressure data, SBP, TC, HDL-C was imputed using all available ASSIGN 

variables plus weekly hours of exercise as predictors. 

 

It was determined that the best way to utilise the data available was to multiply impute missing 

SBP, TC, and HDL-C values for individuals who refused nurse visits (n=306) (487). Janssen et 

al. (488) show that imputing missing data is a more reliable means of obtaining unbiased 

estimates than removing variables with missing data or performing a complete case analysis in 

medical research. This result was validated even with 90% missing data in some variables, but 

strictly relied on the assumption that data were missing at random. 

 

For the 306 individuals who refused a nurse visit, SBP, TC, and HDL-C, ten imputed risk 

profiles were created by with Stata 12.1 (489). Non-missing ASSIGN variables were employed 

in the imputation process along with the individual’s weekly hours of exercise. During the 

simulation process, each of the ten imputed risk factor profiles was inputted into the model to 

simulate statin therapy, and the outcomes from these simulations were averaged to determine a 

central estimate of the treatment’s effect on the individual’s health and cost outcomes. 

 

Descriptive statistics of the final dataset are displayed in Table 7-1. The descriptive statistics of 

the subset of the data for individuals who were offered but refused a nurse visit are included in 

Table 7-2. FH, Diabetes, and Male are binary variables. All other variables are continuous. 

Individual SIMD scores were not available in the dataset, instead SIMD quintiles were available 

and individuals were assigned the median SIMD of their recorded quintile. 
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Risk Factor Obs Mean 
Std. 
Dev. 

Min Max 

Male 4,644 0.42 0.49 0 1 

Age 4,644 58.51 12.30 40 103 

SIMD 4,644 19.51 13.39 5.18 45.62 

Diabetes 4,644 0.07 0.25 0 1 

FH 4,644 0.46 0.50 0 1 

CPD 4,644 7 7.05 0 39 

SBP (mmHg) 4,644 131 8.81 90 203 

TC (mmol/L) 4,644 5.8 0.50 3.0 10.5 

HDL-C (mmol/L) 4,644 1.5 0.22 0.6 3.3 

ASSIGN Score 4,644 19.6 17.5 1.0 98.5 

Table 7-1: Descriptive statistics of SHeS 2011 dataset 
 

Risk Factor Obs Mean 
Std. 
Dev. 

Min Max 

Male 306 0.39 0.49 0 1 

Age 306 60.44 12.92 40 103 

SIMD 306 22.07 14.65 5.18 45.62 

Diabetes 306 0.09 0.29 0 1 

Family History 306 0.48 0.50 0 1 

CPD 306 7 3.77 0 39 

SBP (mmHg) 306 133 8.83 110 159 

TC (mmol/L) 306 5.6 0.53 3.8 6.9 

HDL-C (mmol/L) 306 1.5 0.23 0.9 2.0 

ASSIGN Score 306 23.1 20.1 2.0 98.5 

Table 7-2: Descriptive statistics of SHeS 2011 participants who refused a 
nurse visit; SBP, TC, and HDL-C multiply imputed 

 

Simulation 

 

The Scottish CVD Policy Model simulated the effect that giving statins to different groups of 

people. Two macros for Microsoft Excel were written using Microsoft Visual Basic (490). These 

are included in the appendix (A1). Macro One created a ‘Do Nothing’ scenario. This macro 

inserted the risk factor information for each individual from the dataset into the Scottish CVD 

Policy Model. It then recorded this individual’s life expectancy, quality-adjusted life 

expectancy, and lifetime health costs, as determined by the model. 
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Macro Two simulated the impact of giving statins to everyone in the dataset. Again, it inserted 

each individual’s risk factor information into the model systematically. However, this time 

several parameters were altered before outcomes were recorded, to simulate statin therapy. 

 

Treatment Parameters 

 

Parameters were altered in Macro Two to simulate the benefits, side effects, and cost of statin 

therapy. Intermediate-intensity statin therapy was simulated, in line with SIGN guidelines. The 

treatment simulated was Atorvastatin 20mg daily, again in accordance with SIGN guidelines. 

However, it was assumed that an individual could switch to a statin of similar potency if they 

experienced intolerance to the treatment. 

 

Treatment effect on cholesterol levels: Baseline cholesterol values were altered for individuals 

to simulate the effect of statins of CVD risk factors. Meta-analysis evidence suggests that statins 

produce a 29% reduction in LDL-C and a smaller 20% reduction in triglycerides 

(37,284,491,492). Meta-analyses additionally show that intermediate-intensity statins increase 

HDL-C by approximately 4-7% (493). 

 

The Scottish CVD Policy Model employs TC rather than LDL-C as a predictor of CVD risk. 

Moreover, SHeS 2011 only collected data on individual’s TC and HDL-C due complexity in 

LDL-C measurement (494). According to Friedewald’s equation, which has been extensively 

validated, LDL-C can be approximated by the following equation:  

LDL = TC − HDL − (
triglycerides

k
). 

In this equation, k=5 when cholesterol is measured in mg/dL and k=2.17 when cholesterol is 

measured in mmol/L (495,496). Hence non-HDL cholesterol is predominantly a combination of 

LDL-C and triglycerides. Conservatively assuming that LDL-C accounts for 80% of total non-

HDL cholesterol (284), the net effect of statins on non-HDL cholesterol was estimated to be 

27.2% (80%*0.29+20%*0.20). 

 

Side effects and treatment disutility: Statins are a relatively safe treatment with a well-

established side effect profile (446). They have, however, been shown to increase absolute risk 

of developing diabetes by 0.39% and 0.5% in two meta-analyses (440,446). The larger of these 
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estimates was employed in the base case statin analysis by increasing risk of diabetes 

development for on-treatment patients. 

 

An annual pill-taking disutility of 0.0011 QALYs was also applied. This value was derived from 

the willingness-to-pay to avoid daily pill-taking for CVD prevention in a cross-sectional cohort 

of 708 healthcare employees in Central North Carolina (497). As presented in Chapter 6, no 

meta-analysis provides statistically significant or positive point estimates for statin-induced 

myopathy. Therefore, no disutility or costs were applied for this perceived side effect. 

 

Treatment costs: Statin costs were obtained from the British National Formulary (213). An 

annual cost of £13 was applied for every year on statin therapy, representing the annual NHS 

indicative price for generic Atorvastatin 20mg. Several cheaper intermediate-intensity generic 

statins are also available in case of the need for statin switching. It was, however, assumed that 

patients would not switch to a more expensive or most effective statin, namely higher doses of 

Atorvastatin or Rosuvastatin. 

 

Risk assessment, monitoring, and side effect costs: Monitoring costs were also applied in the 

analysis. These costs were predominantly obtained from a cost-effectiveness analysis of risk 

thresholds for statin prioritisation included in NICE Clinical Guideline 181 (25). 

 

The NICE analysis assumed that statin patients will have two additional general practitioner 

(GP) visits in years subsequent to treatment initiation when compared with individuals not 

receiving treatment. This represents a conservative assumption in terms of treatment cost-

effectiveness, as one additional GP appointment was recommended by the NICE Guideline 

Development Group (GDG) (25). In this analysis it was assumed that all patients would attend 

one additional GP visit in subsequent years and one quarter of patients would have a further 

visit. This decision conservatively assumed resource use in excess of that suggested by the 

GDG, without overestimating the impact of costly GP appointments on the cost-effectiveness 

of statins. 

 

Additional costs were added to each individual attributable to the small increase in diabetes 

expected in the statin-taking population. These costs were also obtained from NICE CG181 

(25), and were weighted by the probability of statin-induced diabetes. These costs include the 
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annual cost of diabetes-related medication, four annual GP appointments, four annual nurse 

appointments, and a dietary management programme. These utilisation rates and costs are 

described in Table 7-3. 

 

Resource 
During Risk 
Assessment 

Utilisation 
year 1 

Utilisation 
year 2+ 

Price Source 

Appointments         

 (25) 

Appointment to take 
blood sample (with 
healthcare assistant) 

1 2 1 £6.46 

Appointment with 
nurse 

1 0 0 £13.43 

Appointment with GP 0 2.25 1.25 £45.00 

Blood tests         

Total cholesterol 0 2 1 £1.00 

HDL cholesterol 0 2 1 £1.00 

Triglycerides 0 0 0 £1.00 

Combined lipid profile 1 0 0 £3.00 

Liver transaminase 
(ALT or AST) 

1 2 1 £1.00 

Creatine kinase 0.1 0 0 £2.00 

HbA1c 1 1 1 £2.25 

Annual cost of early 
stage 2 diabetes 

      

£314.33  (25) 4x500mg metformin, 1x10mg ramipril 1x10mg amlodipine all 
daily, 4xGP appointments yearly, 5x nurse appointments 
yearly, 1 diet management programme every 4 years 

Total costs         

  
 (25) 

Annual monitoring 
cost, first year 

      £120.17 

Annual monitoring 
cost, subsequent 
years 

      £67.96 

Table 7-3: Monitoring price, utilisation, and cost of statin therapy in Scotland 
  

Discounting: All costs and health benefits were discounted at a rate of 3.5% annually, the U.K. 

public service discount rate, as suggested by NICE (40). 

 

Adherence: Adherence was not directly modelled but assumed to be reflected in the estimate for 

cholesterol modification. As all studies included in the meta-analyses to determine treatment 

parameters were conducted under the principle of ‘intention to treat’, it was assumed that 
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adherence was accounted for in the estimates of treatment effect. No costs, side effects, or 

treatment-related disutility values were modified by an adherence factor, representing a 

conservative assumption with regards to the cost-effectiveness of statin therapy. 

 

Table 7-4 presents the range of treatment parameters employed in the simulation. 

 

Parameter 
Base 
Case 

Value 

Distribution 
for PSA 

Lower Upper Source 

Change in cholesterol levels (%) 

Non-HDL cholesterol -27.2 Beta -15.0 -40.0  (284,491) 

HDL cholesterol +4.0 Beta 0.0 +9.0 (493)  

Statin-induced 
diabetes, absolute risk 
increase (%) 

+5.0 Log normal +0.1 +1.0 (446)  

Annual pill-taking 
disutility 

0.0011 Beta 0.005 0 (497)  

Annual treatment costs           

Atorvastatin 20mg/daily £13.00 Gamma £6.50 £19.50 (213)  

Annual risk assessment, monitoring, and side effect costs 

Risk assessment £26.34 Gamma £19.76 £32.93 

(25)  
  
  
  

Monitoring, first year £120.17 Gamma £75.17 £165.17 

Monitoring, subsequent  £67.96 Gamma £22.96 £112.96 

Weighted cost, type 2 
diabetes treatment 

£1.57 Gamma - - 

Table 7-4: Intermediate-intensity statin treatment parameters 

 

Estimating Outcomes 

 

Simulation results were stratified by prioritisation method. The policies considered were a 

blanket 20% risk threshold and blanket 10% risk threshold for prioritising preventive statin 

therapy, with statins for FH as a comparator. 

 

Health and cost outcomes were estimated for individuals with a combination of the output from 

Macro 1 and Macro 2. If an individual met eligibility criteria, their outcome value was obtained 

from the output of Macro 2. Otherwise, outcomes were obtained from the output from Macro 1: 

their baseline outcomes. Gains in outcome i, for individual j, under prioritisation method k, 

𝐺𝑖,𝑗,𝑘, was computed as follow: 
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𝐺𝑖,𝑗,𝑘 = 𝑂𝑖,𝑗,𝑘 − 𝑂𝑖,𝑗,𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

𝑖 ∈ {𝐿𝐸, 𝑄𝐴𝐿𝐸, 𝑐𝑜𝑠𝑡𝑠} 

𝑗 ∈ {1,2,3, … ,4644} 

𝑘 ∈ {𝐹𝑎𝑚𝑖𝑙𝑖𝑎𝑙 ℎ𝑦𝑝𝑒𝑟𝑐ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙𝑎𝑒𝑚𝑖𝑎, 20% 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 10% 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑}. 

 

In these equations, 𝑂𝑖,𝑗,𝑘 represents the simulated value of outcome 𝑖 for individual 𝑗 under 

prioritisation method 𝑘, and 𝑂𝑖,𝑗,𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 represents the simulated value of outcome 𝑖 for 

individual 𝑗 at baseline. Hence 𝐺𝑄𝐴𝐿𝐸,5,20% 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is equal to the QALYs gained by individual 

number 5 under the 20% blanket threshold compared to receiving no treatment. If individual 5 

has an ASSIGN score greater than 20%, they will receive treatment and this value will be non-

zero. If individual 5 has an ASSIGN score less than 20%, 𝑂𝑄𝐴𝐿𝐸,5,20% 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is equal to 

𝑂𝑄𝐴𝐿𝐸,5,𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒. They will receive no treatment effects and 𝐺𝑄𝐴𝐿𝐸,5,20% 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 will be equal 

to zero. More generally, for individuals who do not meet a prioritisation criterion k: 

𝐺𝑖,𝑗,𝑘 = 𝑂𝑖,𝑗,𝑘 − 𝑂𝑖,𝑗,𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 0. 

 

The results were stratified by age-group to facilitate projection of results onto the Scottish 

population. The sum of outcome gains was calculated for each prioritisation method for 

individuals in 5-year age bands from 40 to 79 and individuals aged above 80 years. This value 

will be referred to as the sample outcome gain (SG). SG was calculated within each age-group 

as follows: 

𝑆𝐺𝑖,𝑘,𝐴𝑔𝑒 = ∑ 𝐺𝑖,𝑗,𝑘

𝑗∈𝐴𝑔𝑒

 

𝐴𝑔𝑒 ∈ {40 − 44, 45 − 49, 50 − 54, 55 − 59, 

 60 − 64, 65 − 69, 70 − 74, 75 − 79, 80+}. 

 

Age refers to the subset of respondents in the dataset who fall into a given age-group. Hence, 

𝑆𝐺𝑐𝑜𝑠𝑡𝑠,10% 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,55−59 is equal to the simulated sum of cost differentials attributable to a 

10% risk threshold compared to no active treatment across all individuals aged 55-59 included 

in the SHeS sample. 

 

Next, the average sample age-group outcome gain, 𝑆𝐺𝑖,𝑘,𝐴𝑔𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, was estimated for strategy, 𝑘, in 

each age-group. This value was estimated as follows: 

𝑆𝐺𝑖,𝑘,𝐴𝑔𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

𝑆𝐺𝑖,𝑘,𝐴𝑔𝑒

|𝐴𝑔𝑒|
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. 

In the equation above, |𝐴𝑔𝑒| represents the number of people in the SHeS dataset within the 

age-group 𝐴𝑔𝑒. Hence, 𝑆𝐺𝐿𝐸,10% 𝑟𝑖𝑠𝑘 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,80+
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ equals the average life years gained under the 

10% risk threshold compared to receiving no treatment for individuals aged 80 and above in the 

SHeS dataset. 

 

Projecting Results 

 

Data from the Scottish Census of 2011 was used to project the results onto the Scottish 

population (483). The objective of this analysis was to estimate the number of people who would 

be recommended statins and the outcome gains that would be achieved under each method of 

prioritisation. 

 

The number of people in each age-group was obtained from the census data. As this study 

focused on statins for primary prevention of CVD, it was necessary to scale the number of 

people in each age-group down, to ensure the analysis related only to the CVD-free population. 

This was calculated by multiplying the number of people in each age-group according to the 

census by the percentage of CVD-free individuals in that age-group in the SHeS cohort. Table 

7-5 presents the estimated Scottish population and Scottish CVD-free population for each age 

group employed in this analysis. 

 

Age Males Female Population 
CVD-Free 

Population 
40-44 191,440 203,258 394,698 387,199 
45-49 200,319 210,610 410,929 394,903 
50-54 184,198 191,629 375,827 355,532 
55-59 162,197 168,694 330,891 307,729 
60-64 164,725 171,797 336,522 297,149 
65-69 124,671 136,527 261,198 223,585 
70-74 100,691 119,903 220,594 178,019 
75-79 76,818 101,296 178,114 134,120 
80+ 81,559 148,869 230,428 143,557 

Sum 1,286,618 1,452,583 2,739,201 2,421,793 

Table 7-5: Scottish Census population and estimated CVD-free 
populations, stratified by 5-year age-group 
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After obtaining the census-level age distributions, it was possible to estimate population-level 

absolute outcome gains in the different age-groups attributable to statin prioritisation strategies, 

denoted hereafter by 𝑃𝐺𝑖,𝑘,𝐴𝑔𝑒. Multiplying 𝑆𝐺𝑖,𝑘,𝐴𝑔𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ by the number of people within the 

respective age-group in the Scottish population gave an estimate of the absolute outcome gains 

that would be achieved in age-group 𝐴𝑔𝑒 under prioritisation method 𝑘 in the Scottish 

population. The number of people treated in each age-group was estimated by multiplying the 

percentage of people treated in the dataset by the number of CVD-free people in that age-group. 

This value will be denoted by 𝑃𝑇𝑘,𝐴𝑔𝑒. 

 

Finally, an estimate of the total outcome gains, 𝐺𝑖,𝑘, and number of people treated for each 

prioritisation policy, 𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑘, was obtained. This was achieved by summing 𝑃𝐺𝑖,𝑘,𝐴𝑔𝑒 and 

𝑃𝑇𝑘,𝐴𝑔𝑒 across all the different age-groups: 

𝐺𝑖,𝑘 = ∑ 𝑃𝐺𝑖,𝑘,𝐴𝑔𝑒

𝐴𝑔𝑒

 

𝑇𝑟𝑒𝑎𝑡𝑒𝑑𝑘 = ∑ 𝑃𝑇𝑘,𝐴𝑔𝑒

𝐴𝐺𝐸

. 

 

Inflation 

 

All chronic health and monitoring costs were inflated by 3.3%, accounting for annual inflation 

from 2014 to 2017. Values for the annual rate of inflation were derived from the U.K. 

Department of Health’s Hospital and Community Health Services Pay and Price Inflation index 

(498). Costs in the model have not been updated since 2014, so this allowed the analysis to 

account for upwards trends in fees paid by the NHS to healthcare providers. 

 

Cost-Effectiveness Analysis 

 

Cost-effectiveness analysis was performed using traditional cost-effectiveness decision rules 

(43,354). Three policies were considered: treatment for familial hypercholesterolaemia, a 20% 

risk threshold, and a 10% risk threshold. These policies were ranked in terms of increasing 

health benefits. After accounting for the possibility of strict domination (a policy which incurs 

more costs and gains less health than a competitor), the ICER was estimated. Each policy was 
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incrementally compared to the next most expensive non-dominated policy. The possibility of 

extended domination was also considered at this point. 

 

A willingness-to-pay threshold was defined for the cost-effectiveness analysis. The SMC and 

SIGN typically defer willingness-to-pay determination and cost-effectiveness analysis to NICE 

(499). A strategy was determined to be cost-effective if its ICER was below £20,000/QALY. 

This is the lower bound applied by NICE in their assessment of health technologies. The lower 

bound was selected for this analysis with consideration for analysis by researchers at the 

University of York which suggests that the willingness-to-pay threshold is presently set too high 

in the NHS (500) 

 

Inequality 

 

A final piece of analysis considered the consequences of different treatment strategies on health 

inequalities. Discounted QALY gains per 1,000 individuals were presented, disaggregated by 

SIMD quintile. The proportion of total QALYs gained by each SIMD quintile was also 

presented. A policy was considered progressive if more discounted QALYs were produced in 

the two most deprived compared to the two least deprived quintiles of the CVD-free Scottish 

population. 

 

Sensitivity Analyses 

 

One-way sensitivity analyses were undertaken to assess the impact of key modelling parameters 

on predicted cost-effectiveness outcomes. Table 7-4 describes the parameters and specific 

values altered in these analyses. Results from these sensitivity analyses were synthesised in a 

tornado diagram. 

 

The parameters included in sensitivity analyses were: pill-taking disutility, non-HDL 

cholesterol reduction and HDL cholesterol increase, monitoring costs in the first year of 

treatment, monitoring costs in subsequent years of treatment, cost of risk assessment, and price 

of statins. 
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Few studies exist which estimate the disutility associated with daily pill-taking. Moreover, 

existing studies predict large and inconceivable ranges of potential disutility. For example, in 

an internet survey of disutility associated with daily pill-taking for cardiovascular prevention, 

Hutchins et al. (36) found that 62% of respondents would experience no disutility from pill-

taking but 9% were willing to accept a 10% risk of immediate death to avoid daily pill-taking. 

It is very unlikely that such individuals would take statins if prescribed, and would therefore not 

encounter the costs or benefits of treatment. Sensitivity analyses considered the effect of 

nullifying and largely increasing the base case pill-taking disutility. 

 

Properly defining monitoring costs in cost-effectiveness analyses of statin therapy is very 

important. As seen in Table 7-4, annual monitoring costs are indeed much more expensive than 

the therapy itself. Moreover, SIGN provides little guidance on patient monitoring. GP visits are 

the key driver of monitoring costs and are also an area of considerable uncertainty. Sensitivity 

analysis focused specifically on GP visits in first and subsequent years of treatment, considering 

the effect of increasing and reducing visits by one appointment per year, respectively. 

 

Level of cholesterol modification was also varied in one-way sensitivity analyses. A relatively 

conservative estimate of the non-HDL cholesterol reducing effect of statins was applied in the 

base case analysis. Many studies have found non-HDL cholesterol reduction of more than 40% 

for intermediate-intensity statins (284). A 15% reduction was applied in a separate analysis, 

which conservatively reflects the non-HDL cholesterol reduction observed in trials of low-

intensity statin therapy (284). The HDL-C-increasing effect of statins has been widely observed, 

but scholars debate the importance of HDL-C in cardiovascular prevention (501,502). 

Therefore, HDL-C increase was varied from zero to 9%, a central estimate of HDL-C increase 

from a meta-analysis of statins efficacy (493). 

 

Probabilistic sensitivity analysis stochastically sampled Table 7-4 input distributions and Tables 

5-1 and 5-2 risk factor hazard ratios in 500 independent iterations. The Microsoft Visual Basic 

code used for this analysis is included in the appendix (A2). Correlation between risk factor 

hazard ratios was accounted for through the Cholesky decomposition method (309,503). Using 

the cost and QALY results from probabilistic analyses, a cost-effectiveness acceptability curve 

was produced which shows the probability of each treatment strategy being the most cost-

effective option for decision-makers at a range of willingness-to-pay thresholds. 
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7.2.5 Results 

 

Demographics of Treated Patients 

 

Table 7-6 provides descriptive statistics for the overall population and subpopulations treated 

under ASSIGN 20 and ASSIGN 10. It details the percentage of different age-groups treated 

under the different prioritisation strategies alongside the treated population’s average risk factor 

values. 

 

    
Overall 

Population 
ASSIGN  

20 
ASSIGN 

10 

P
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40-44 n/a 0 3 

45-49 n/a 2 14 

50-54 n/a 5 38 

55-59 n/a 15 74 

60-64 n/a 41 94 

65-69 n/a 75 100 

70-74 n/a 92 100 

75-79 n/a 100 100 

80+ n/a 100 100 

A
v
e
ra

g
e
 V

a
lu

e
 

Male (%) 42 45 47 

SIMD 19.5 21.2 20.5 

Diabetes (%) 7 15 11 

FH (%) 46 68 62 

CPD 7 8 7 

SBP (mmHg) 131 134 133 

TC (mmol/L) 5.8 5.8 5.8 

HDL (mmol/L) 1.5 1.5 1.5 

Table 7-6: Descriptive statistics of ASSIGN 20 and ASSIGN 10 
treated populations 

 

Compared to the general population, the treated populations include more men than women, 

have greater levels of social deprivation, and include a greater proportion of individuals with 

diabetes and family history of CVD. Risk factors levels are similar between the ASSIGN 20 and 

ASSIGN 10 subpopulations. However, more individuals aged 40-75 are treated under this 

strategy. 
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Base Case Cost-Effectiveness Analysis 

 

Results for the base case cost-effectiveness analysis are presented in Table 7-7, with number 

treated, QALYs, and costs incremental to a policy which treats only familial 

hypercholesterolaemia. No strategy was strictly or extendedly dominated. These results are 

presented on the cost-effectiveness plane in Figure 7-1. 

 

 

Policy 
Number 
Treated 

Discounted 
QALYs 

Discounted 
Cost (£1000's) 

ICER  
(£/QALY) 

Familial Hyp. Reference 

ASSIGN 20 794,000 92,300 636,000 6,900 

ASSIGN 10 1,381,000 164,000 1,596,000 13,500 

Table 7-7: Base-case cost-effectiveness results, ASSIGN 20 and ASSIGN 10 
 

 

Figure 7-1: Base case cost-effectiveness plane, ASSIGN 20 and ASSIGN 10 

 

The ASSIGN 20 strategy was estimated to treat around 794,000 individuals more than treatment 

for familial hypercholesterolaemia. The ICER of implementing ASSIGN 20 was estimated to 

be around £6,900/QALY. ASSIGN 10 required treating approximately 588,000 additional 
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individuals incremental to ASSIGN 20. The ICER of implementing ASSIGN 10 incremental to 

ASSIGN 20 was around £13,500/QALY. Therefore, with a willingness-to-pay threshold of 

£20,000/QALY, ASSIGN 10 is cost-effective and should be implemented. 

 

Intermediate Outcomes 

 

Tables 7-8 and 7-9 present intermediate outcomes for the base case. The former presents the 

primary CVD events prevented and life years gained estimated by the respective policies, and 

the latter presents an estimation of disaggregated costs. 

 

Policy 
Primary CVD 

Events 
Prevented 

Life Years 
Gained 

Familial Hyp. Reference 

ASSIGN 20 27,000 170,000 

ASSIGN 10 49,000 351,000 

Table 7-8: Base case CVD events prevented and 
life years gained, ASSIGN 20 and ASSIGN 10 

 

Incremental to statins for familial hypercholesterolaemia, ASSIGN 20 would prevent around 

27,000 additional events, producing around 170,000 life years in the Scottish population. 

Incremental to ASSIGN 20, ASSIGN 10 would prevent around 22,000 additional events, 

producing around 181,000 additional life years in the Scottish population. 

 

Policy 
Disc. Costs (£1000’s) 

Non-CVD CVD Statin Monitoring 

Familial Hyp. Reference 

ASSIGN 20 720,000 -718,000 84,000 550,000 

ASSIGN 10 1,562,000 -1,322,000 190,000 1,166,000 

Table 7-9: Base case disaggregated costs, ASSIGN 20 and ASSIGN 10 
 

Both ASSIGN 20 and ASSIGN 10 lead to CVD-related cost savings compared to treating 

familial hypercholesterolaemia alone. These cost savings are likely attributable to prevention of 

CVD events. Statin costs represent around 7% of cost increases attributable to treatment for both 

ASSIGN 20 and ASSIGN 10. Monitoring and non-CVD costs represent around 38-40% and 53-

55% of these costs, respectively. 
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Inequality Analysis 

 

Results were disaggregated to estimate the effect of threshold reduction on health inequalities. 

Figure 7-2 shows the discounted QALY gains achieved per 1,000 individuals in the population, 

disaggregated by SIMD quintile. The darkest bars represent the most deprived quintile (SIMD5) 

while the lightest bars represent the least deprived quintile (SIMD1). In absolute terms, all 

SIMD quintiles gained more discounted QALYs under Blanket 10 than Blanket 20. Absolute 

health gains continuously increased with level of social deprivation. 

 

 

Figure 7-2: Discounted QALY gains for blanket risk threshold strategies per 1,000 
individuals, disaggregated by SIMD quintile 

 

The proportion of health gains achieved per quintile of social deprivation was also estimated. 

These results are displayed in Figure 7-3. The distribution of discounted QALY gains was 

similar for the two policies. Both policies were progressive: they led to a greater proportion of 

health gains being achieved in the two most deprived SIMD quintiles compared with the two 

least deprived quintiles. 
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Figure 7-3: Proportion of discounted QALY gains achieved by different SIMD 
quintiles, blanket risk threshold strategies 

 

Sensitivity Analyses 

 

Figures 7-4 and 7-5 present the results of sensitivity analyses in the form of tornado diagrams. 

Tornado diagrams show the range of ICER estimates achieved by employing different parameter 

values in the decision modelling process, centred on the ICER estimated in the base case. 

 

Figure 7-4 presents the different ICERs attributable to implementing ASSIGN 20 over statins 

only for familial hypercholesterolaemia. Figure 7-5 presents the ICERs of moving from 

ASSIGN 20 to ASSIGN 10. These charts show that there is considerably more uncertainty in 

deciding to move from ASSIGN 20 to ASSIGN 10 compared with instituting the ASSIGN 20 

strategy. However, all sensitivity analyses produced ICERs less than £30,000/QALY for the 

transition from ASSIGN 20 to ASSIGN 10, suggesting the cost-effectiveness of extending statin 

eligibility is robust to changes in modelling assumptions. 

 

The largest areas of uncertainty for Scottish decision-makers deciding whether to reduce the 

risk threshold for statin initiation are the non-HDL cholesterol-reducing effect of statins, pill-

taking disutility, and monitoring costs in years subsequent to treatment initiation. 
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Figure 7-4: Tornado diagram, one-way sensitivity analysis of key parameters and 
their effect on ICER of implementing ASSIGN 20 over statins for only familial 
hypercholesterolaemia 
 

 

Figure 7-5: Tornado diagram, one-way sensitivity analysis of key parameters and 
their effect on ICER of implementing ASSIGN 10 over ASSIGN 20 
 

Probabilistic sensitivity analysis provides more in-depth information regarding the total 

uncertainty inherent in the modelling process. Results from the PSA are presented in a cost-

effectiveness acceptability curve in Figure 7-6. The red curve shows the proportion of 

simulations in which Blanket 20 was optimal at a range of cost-effectiveness thresholds and the 
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green curve represents Blanket 10. The black dashed line indicates a cost-effectiveness threshold 

of £20,000/QALY. At this threshold, Blanket 10 was optimal in 76% of simulations. 

 

 

Figure 7-6: Cost-effectiveness acceptability curve, ASSIGN 20 versus ASSIGN 10 
 

7.2.6 Discussion and Limitations 

 

Discussion 

 

Results from the preceding analysis suggest that reducing the ASSIGN risk threshold for statin 

initiation in Scotland to 10% would be cost-effective. Based on the willingness-to-pay threshold 

for NICE, the SMC, and SIGN, this policy should be enacted even under conservative modelling 

assumptions. 

 

The disaggregated costs presented in Table 7-9 show that statins prescriptions contribute a small 

percentage of the costs attributable to increasing statin availability. The key drivers of increased 

costs are those associated with extended life expectancy and monitoring. The cost of non-CVD 

health care treatment cannot be altered with ease. However, this analysis highlights that reducing 

monitoring costs for statins could make the treatment much more cost-effectiveness and 

facilitate the expansion of treatment eligibility. This may be achieved through reducing GP 

appointments in years following treatment initiation and increasing the role of nurses, 

pharmacists, and other healthcare professionals in the monitoring process. 
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The sensitivity analysis regarding monitoring costs in years subsequent to treatment initiation 

produced important results. When lower monitoring costs were applied, the ICER of expanding 

treatment eligibility from those with familial hypercholesterolaemia to those with ASSIGN 

score ≥20% was around £3,800/QALY. Incrementally moving from ASSIGN 20 to ASSIGN 10 

then produced an ICER of approximately £8,700/QALY. In this analysis it was assumed that 

patients would receive annual appointments with a healthcare assistant and have blood 

measurements recorded but that only 25% of patients would attend a GP appointment in years 

subsequent to treatment initiation. SIGN, NICE, and ACC/AHA guidelines do not explicitly 

specify a need for recurrent GP appointments in subsequent years of treatment. Therefore, the 

lower ICERs presented in this analysis may better represent the cost-effectiveness of expanding 

statin eligibility than base case estimates. 

 

Throughout the rest of this thesis, alternative approaches to traditional risk scoring for statin 

prioritisation will be considered. While ASSIGN 10 is likely more cost-effective than ASSIGN 

20, approaches which better represent patient-level heterogeneity in outcome may produce more 

health than a blanket risk threshold approach. 

 

Limitations 

 

While SHeS is an extensive survey which focuses on CVD in Scotland, it has many issues. Poor 

response rates are one issue that must be considered. It is possible that healthier people are more 

open to discussing the state of their health. This could introduce a bias in results, as the sample 

used for analysis may have been healthier than the general population. Consequently, the 

number of high-risk individuals in the Scottish population may have been underestimated. 

 

Another notable issue with the SHeS dataset is the small number of individuals who completed 

the nurse interview. This resulted in the imputation of TC, HDL-C, and SBP values for many 

individuals, and multiple imputation of these values for 306 individuals who refused the nurse 

visit. Sterne et al. (504) note that multiple imputation can lead to biased results when a large 

amount of data are missing not completely at random. 
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It was necessary to make assumptions regarding some parameters in the model which may have 

biased results. No rate of adherence was applied in the analysis. The implicit assumption was 

that the effectiveness of the treatment would be similar to that observed in intention-to-treat 

analyses of clinical trials. In real-world clinical practice, as opposed to clinical trials, it is likely 

that there would be lower adherence to recommended treatment regimens, and some physicians 

would not follow guideline recommendations. Therefore, estimated population health benefits 

may be overstated. However, it can be assumed that patients who do not take the treatment will 

not incur the costs or the benefits associated with treatment. They will therefore not contribute 

to average incremental outcomes. 

 

Some patients may fill their statin prescription but not consume the medication as scheduled 

(505). Table 7-9 showed that treatment monitoring and non-CVD costs accounted for a large 

proportion of cost increases associated with expanding statin eligibility. Hence, these patients 

will likely not incur the totality of incremental costs associated with statin therapy. Nonetheless 

they will achieve no health benefits from treatment while incurring costs. Results from this 

analysis will be significantly biased if this group represents a large proportion of the patient 

population. Non-compliance to preventive medication is poorly-defined in biomedical literature 

and data regarding the prevalence of different types of non-compliance are sparse (506,507). 

Further research should look to better explain non-compliance with statin therapy and its impact 

on cost-effectiveness. 

 

7.3 Cost-Effectiveness Analysis: Updating Current Risk Scores 

 

The following analysis will consider an alternative policy for preventive statin prioritisation 

which aims to better represent heterogeneity in decision-making while continuing to use 10-

year risk scores to make treatment decisions. This policy is prioritisation of patients with an 

updated risk score. Specifically, risk scores can be updated by including additional covariates 

which better identify individuals at elevated risk of experiencing a CVD event. 

 

Medical understanding of chronic diseases has advanced dramatically in recent decades. Such 

advancement can be attributed to many factors. These include: the exponential growth function 

of scientific knowledge, the availability of ‘big’ health data, increased computational power, 

new technology, and increased health research funding. Mannino and Buist note that 
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understanding of the combination of environmental and genetic factors along with comorbidities 

has drastically improved etiological understanding of COPD in recent years (508) and Beasley 

et al. (509) highlight the evolving role of novel factors in explaining asthma risk. In CVD, 

research led by Seidah and Boileau published in the early 2000s helped to establish the link 

between the PCSK9 gene in humans and familial hypercholesterolaemia (510). This work led 

directly to the development of a new class of drugs which inhibit PCSK9 with the aim of 

reducing LDL-C and CVD events. 

 

With regards to prevention, increased understanding of a disease’s risk factors and causes is 

clinically beneficial for two reasons: (i) it can help clinicians determine which asymptomatic 

individuals are at heightened risk of developing a disease, and (ii) new treatments can be 

developed which target the causes of a condition. This chapter will focus on the former. It will 

examine whether testing for novel CVD biomarkers will increase the cost-effectiveness of CVD 

risk diagnosis and subsequent treatment in the asymptomatic adult population. 

 

Section 4.4.3 showed that adding a covariate to a risk score for CVD is unlikely to reclassify 

many patients. However, the greatest degree of clinical uncertainty for physicians will always 

exist in those patients with intermediate risk scores. Obtaining additional information on these 

patients can help to solidify the physician’s treatment decision. 

 

7.3.1 Background 

 

Cost-Effectiveness of Novel Biomarker Testing in CVD 

 

Several studies have addressed the cost-effectiveness of testing for novel CVD-related serum 

biomarkers in an asymptomatic population (283,511–514). Most have assessed the cost-

effectiveness of screening for high-sensitivity C-reactive protein, a marker of inflammation. 

Estimates of the cost-effectiveness of hs-CRP testing have varied substantially, as have the 

structure of the economic evaluations. 

 

The cost-effectiveness of novel serum biomarker screening for preventive CVD interventions 

was discussed at length in a systematic review produced by the Belgian Health Care Knowledge 

Centre (BHCKC) (515). Five papers were identified in this review. Of these papers, only one, 
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authored by Lee et al., compares hs-CRP testing to traditional risk scoring (511). The rest 

compare hs-CRP testing to prioritisation of individuals based on elevated lipid levels and, in 

some cases, the presence of additional risk factors. 

 

The approach adopted in previous cost-effectiveness analyses likely biased their results. 

Omission of relevant comparators can bias ICER estimations, overstating the cost-effectiveness 

of expensive interventions (516). Given that most high-income countries employ 10-year risk 

scoring to prioritise individuals for primary CVD intervention, this approach should be treated 

as the primary comparator in any biomarker testing analysis. 

 

The cost-effectiveness of hs-CRP screening compared to traditional risk scoring has not been 

established. Lee et al. (511) considered the cost-effectiveness of hs-CRP testing in U.S. adults 

deemed to be at intermediate- and low-risk of CVD according to the Framingham Risk Score. 

A lifetime horizon and a U.S. health sector perspective were adopted for the analysis. Risk 

scoring without hs-CRP screening was estimated to be more cost-effective than risk scoring 

with hs-CRP screening of intermediate-risk individuals. These findings relied on three 

assumptions: statins are safe to use over an extended time horizon, they will remain inexpensive, 

and they provide benefit to low-risk individuals with normal hs-CRP levels. 

 

Novel Biomarkers for CVD 

 

Large amounts of money and effort has been invested in identifying novel biomarkers for CVD 

in recent years. A 2017 systematic review identified at least 21 studies of novel biomarkers 

which may be involved in “pathophysiological processes” associated with cardiovascular 

disease (299). These include markers of myocardial necrosis (cTn, hs-cTn, H-FABP), cardiac 

inflammation (hs-CRP, GDF-15, fibrinogen, urinary acid), plaque instability (PAPP-A, MPO, 

MMPs), platelet activation (Lp-PLA2, sPLA2, sCD40L), neurohormonal activation (Copeptin, 

MR-proADM), and myocardial stress (NPs, ST2, ET-1, Gal-3, NRG-1, and MicroRNAs). 

 

The European Union-funded Markers for Sub-clinical Cardiovascular Risk Assessment (EU-

MASCARA) project is a collaborative effort by universities from 15 European countries that 

aims to improve understanding and diagnosis of sub-clinical CVD. This project involved the 

evaluation of numerous potential CVD biomarkers. 
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One novel biomarker for CVD which has been identified as part of the EU-MASCARA project 

is the 85-peptide urinary proteomic biomarker HF1 (517–519). HF1 is an established risk factor 

for left ventricular dysfunction (520). In recent years, researchers at KU Leuven in Belgium 

have shown that HF1 is also significant predictor of primary non-fatal CHD events, when 

controlling for traditional CVD risk factors (518). They have additionally shown that adding 

HF1 to ‘basic’ models of cardiovascular risk prediction leads to significant net reclassification 

improvement in CVD-free individuals [NRI: 63.8%, p-value <0.001]. 

 

7.3.2 Assessing Novel Biomarker Cost-Effectiveness: The Role of Decision Modelling 

 

Section 4.4.3 discussed how traditional measures of statistical validity do not fully capture the 

costs and benefits of obtaining novel risk factor information from an individual. They often 

deliberately focus on epidemiologic ‘event counting’ and operate outside of the value system 

applied in health economic evaluation. Decision-analytic modelling, on the other hand, can be 

employed to assess the cost-effectiveness of introducing additional covariates to existing risk 

scores. Using decision models allows researchers to consider the long-term health and cost 

outcomes associated with preventive therapy in a range of individuals, accounting for 

heterogeneity in a way that other statistical techniques cannot. 

 

Some researchers have argued against using decision-analytic models in the analysis of novel 

biomarkers. Vickers et al. (296) argue that decision-analytic techniques are often difficult to 

implement in the research of novel biomarkers and risk scoring. They state that such an approach 

is difficult to adopt due to lack of data. While this is true, the same can be said of any approach 

for evaluating novel risk factors. Indeed, a defining feature of research into novel therapies is 

lack of data availability. 

 

Decision-analytic modelling enables the systematic combination of data from multiple sources. 

It therefore helps to overcome issues related to data availability. As with all studies, it is 

important to acknowledge and quantify the uncertainty inherent in the modelling process. 

Decision-analytic modellers have been proactive in developing methodology for the assessment 

of uncertainty (521). 
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Vickers et al. also argue that decision-analytic methodology is not of particular use in assessing 

novel risk scores as it requires dichotomising risk score results at a treatment initiation threshold 

(296). This is true of other methodologies developed to assess novel risk scores including the 

most widely used versions of NRI and wNRI. Moreover, health economic evaluations aim to 

assess implementable health policies. Such policies require a decision rule which allocates 

individuals to specific treatment strategies. 

 

7.3.3 Objectives 

 

The objective of this study was to develop a pragmatic methodological framework to assess the 

cost-effectiveness of novel biomarkers and their role in the primary prevention of CVD. This 

approach considers the inherent lack of data availability for such biomarkers. 

 

A secondary objective was to apply the framework in the cost-effectiveness analysis of a novel 

biomarker for CVD. The novel biomarker analysed was the 85-peptide urinary proteomic 

biomarker HF1. 

 

7.3.4 PPICOSS 

 

Population: The Scottish CVD-free population, aged 40 years and above. 

 

Perspective: Scottish health sector decision-maker. All healthcare costs accrued by the Scottish 

NHS and population-level health gains are considered. 

 

Intervention: Intermediate-intensity statin therapy (Atorvastatin 20mg/daily). Two treatment 

prioritisation criteria are considered: (i) blanket 10% risk threshold measured with traditional 

ASSIGN score (treating n=B10 individuals), (ii) blanket 10% risk threshold measured with 

updated ASSIGN risk score, and (iii) blanket risk threshold measured with updated ASSIGN 

score setting threshold such that n≈B10 individuals treated. 

 

Comparator: Statin therapy for individuals with familial hypercholesterolaemia. 

 

Outcome: Lifetime cost-per-QALY, with both costs and QALYs discounted at 3.5% annually. 
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Setting: Primary care in the Scottish NHS. 

 

Study Design: Cohort simulation. 

 

7.3.5 Methodology 

 

A Framework for the Cost-Effectiveness Analysis of Novel Biomarker Testing in CVD 

 

A framework was established, defining a series of steps required to assess the cost-effectiveness 

of novel CVD biomarkers. This framework provides a roadmap of the analysis required to take 

(often limited) data regarding a potential CVD biomarker and predict the long-term cost-

effectiveness of testing for this biomarker. The framework is predicated on the assumption that 

the researcher has access to data which can be analysed to predict the independent contribution 

of the biomarker to CVD risk. 

 

The framework comprised of five steps. These were: 

1. Estimate relationship between novel biomarker and risk of CVD, independent of any other 

relevant covariates. 

2. Update an existing risk score to account for the novel biomarker. 

3. Develop or update a decision-analytic model, using the novel biomarker information to 

inform CVD outcomes. 

4. Define testing and treatment strategies. 

5. Simulate the different strategies in a representative cohort of the population of interest. 

 

Overview of Case Study 

 

A case study was conducted which utilised the framework for cost-effectiveness analysis of 

novel biomarkers in CVD risk scoring. This case study examined the cost-effectiveness of 

testing for HF1 to prioritise patients for statin therapy in the Scottish NHS. 

 

The Scottish CVD Policy Model (7,309) was adapted to compare population-level health and 

cost outcomes attributable to different prioritisation and treatment strategies in the Scottish 
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population. Both the model and the ASSIGN score were updated to include HF1 as an 

independent covariate. Next, the effect of different prioritisation and treatment combinations 

were simulated in a hypothetical cohort of the Scottish population and results were projected 

onto the Scottish population. 

 

Step 1 - Estimating Relationship between HF1 and CVD Risk 

 

Katholieke Universiteit (KU) Leuven, an EU-MASCARA research partner, provided access to 

the FLEMish Study on ENvironment, Genes and Health Outcome (FLEMENGHO) (518). 

FLEMENGHO recruited participants across Northern Belgium from 1985-2004. Individuals 

were contacted for follow-up examinations between 2005-2010. A sample of urinary proteomic 

data were obtained from study participants (520). At annual intervals until October 2014, 

information on individual’s health status was obtained through the Belgian Population Registry 

and the Flemish Registry of Death Certificates. 

 

In order to update risk scores and decision-analytic models with the novel biomarker data, 

competing risk regressions were run to estimate hazard ratios associated with HF1 and two 

clinical endpoints: non-fatal CHD and combined CVD events. The parametric regression model 

chosen was the Gompertz model as this was the model employed in the estimation of the risk 

functions which underlie the Scottish CVD Policy Model. 

 

An attempt was made to control for all risk factors included in the Scottish CVD Policy Model 

(and ASSIGN score). This was carried out to ensure that the hazard ratios obtained for HF1 

were as transferable as possible between the Scottish and Flemish populations. 

 

It was not possible to include all covariates from the Scottish CVD Policy Model’s cause-

specific hazard functions. Baseline SIMD and FH values were not available in the 

FLEMENGHO dataset. The KU Leuven classification of social class was included as a covariate 

in the regressions. This is a rather limited and outdated index, which was developed at KU 

Leuven. It measures an individual’s social class in accordance with the ‘head’ of their family’s 

profession, ranked as: 0 – no profession, 1 – workers, housewives, and pensioners, 2 – middle 

class and small farmers, 3 – higher professions and big farmers. This score was specifically 

developed for the Belgian population. It was determined that using this local index would 
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maximise the potential for comparison between results derived from SHHEC and 

FLEMENGHO. Despite its limitations, it was assumed that the KU Leuven classification of 

social class would capture a similar effect to SIMD when controlling for all other ASSIGN risk 

factors for which data were available. 

 

The impact of sex on CVD risk factors was accounted for differently in the FLEMENGHO and 

original SHHEC analysis. Regressions were run separately for men and women when deriving 

the ASSIGN score and constructing the Scottish CVD Policy Model. This allowed the 

magnitude of the association between the risk factors and outcomes to be different between the 

sexes. Due to the relatively small sample size and short follow-up of the FLEMENGHO dataset, 

sex was included as an independent covariate in the hazard function regressions; this approach 

was selected instead of modelling hazard functions for men and women separately. Hence it was 

assumed that the hazard ratio associated with HF1 and each of the respective endpoints did not 

differ between sexes. 

 

Step 2 - Updating the ASSIGN Risk Score 

 

The ASSIGN score was updated using data from the HF1 analysis. The score is calculated 

separately for men and women, but takes the same form for each sex: 

𝐴𝑆𝑆𝐼𝐺𝑁 = 100 ∗ (1 − 𝑈𝐵).                                                   (7-1) 

In Equation (7-1), U represents the underlying 10-year survival rate from CVD in the SHHEC 

population for men and women respectively. B is a measure of the extent to which an 

individual’s risk factor values differ from the SHHEC averages, accounting for the log hazard 

ratio associated with that risk factor and 10-year combined CVD events. 

 

The ASSIGN score was updated using the hazard ratio obtained for HF1 from the cause-specific 

hazard regression for combined CVD events in the FLEMENGHO dataset. It was assumed that 

the updated ASSIGN score was the same as the traditional score for individuals with population 

mean HF1 scores and increased or decreased based on variation around this mean. 

 

Step 3 - Updating the Scottish CVD Policy Model 
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Hazard ratios from the FLEMENGHO analysis were also used to update the Scottish CVD 

Policy Model. Transition to each primary event, k, in the Scottish CVD Policy Model is 

determined by cumulative incidence, linked to a cause-specific hazard function estimated using 

Gompertz regression. Each of these functions can be described by the following equation: 

ℎ𝑘(𝑡) = 𝑒𝑥𝑝(𝑥𝑏) 𝑒𝑥𝑝(𝛾𝑡).                                                           (7-2) 

 

In Equation 7-2, xb is the linear predictor from the regression, and γ is an ancillary parameter 

which specifies an underlying event rate in the population. Notably, the second half of this 

equation, 𝑒𝑥𝑝(𝛾𝑡), should be unchanged by the addition of a new covariate to the model. 

 

The linear predictor takes the form: 

𝑥𝑏 =  𝛽𝑘,0 + 𝛽𝑘,1𝑥1 + ⋯ + 𝛽𝑘,𝑛𝑥𝑛.                                                   (7-3) 

In Equation (7-3), x is a vector containing an individual’s risk factor values, and b is a vector 

which defines log hazard ratios associated with these values and event k. Hence the cause-

specific hazard for an individual for each event is either greater than or less than the population’s 

underlying hazard based on the value of 𝑒𝑥𝑝(𝑥𝑏). 

 

Equation (7-4) shows the example of the linear predictor with the n ASSIGN risk factors 

included as covariates. In order to account for hazard related to HF1, the linear predictor was 

updated to take the form: 

xb′ =  βk,0′ + βk,1x1 + ⋯ + βk,nxn + βk,HFxHF.                                       (7-4) 

 

The key differences between Equations (7-3) and (7-4) are the inclusion of an HF1 log hazard 

ratio in the linear predictor and the updating of constant β0 to β0′ in Equation (7-4). 

 

It was assumed that the cause-specific hazard for an individual with a mean HF1 score would 

be equal whether or not the covariate was included in the model. This hazard would then 

increase or decrease in accordance with hazard ratios associated with HF1 obtained from the 

Gompertz regressions run on the FLEMENGHO dataset. Substituting Equation (7-3) into (7-4) 

allows for the derivation of a linear predictor which accounts for HF. This is shown in Figure 

7-7. It starts with the assumption that, at the average value of HF, 𝐻𝐹̅̅ ̅̅ , in a population, P, cause-
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specific hazard (and therefore the linear predictor) is equal for an individual, i, whether or not 

the covariate 𝐻𝐹 is included in the cause-specific hazard equation. 

 

∀𝑖 ∈ 𝑃, (𝐻𝐹 = 𝐻𝐹̅̅ ̅̅ ) → 𝑥𝑏′ = 𝑥𝑏 

⇒ βk,0′ + βk,1x1 + ⋯ + βk,nxn + βk,HF𝐻𝐹̅̅ ̅̅ = β0 + β1x1 + ⋯ + βnxn 

⇒ β0′ + βHF𝐻𝐹̅̅ ̅̅ = β0 

⇒ β0′ = β0 − βHF𝐻𝐹̅̅ ̅̅  

Now, substitute value for β0′ into equation for xb’: 

⇒ 𝑥𝑏′ = β0′ + β1x1 + ⋯ + βnxn + βHF𝐻𝐹̅̅ ̅̅  

             = (β0 − βHF𝐻𝐹̅̅ ̅̅ ) + β1x1 + ⋯ + βnxn + βHFxHF 

             = β0 + β1x1 + ⋯ + βnxn + βHF(xHF − 𝐻𝐹̅̅ ̅̅ ) 

Figure 7-7: Defining linear predictor in biomarker model 

 

In order to ensure outcomes were consistent for patients with average HF value in the simulated 

populations, event rates in the model were recalibrated. Recalibration was achieved by 

simulating individuals with mean risk factors profiles for a range of different age-, diabetes-, 

and sex-defined subgroups using hazard functions which contain HF1. Different multiplicative 

factors were systematically applied to the constant in the linear predictors for each primary event 

in the model. The root mean square error between non-fatal CBVD, fatal CVD, and fatal no-

CVD primary event rates with and without HF1 included in the hazard ratios were then 

computed. The multiplicative factor which minimised the RMSE between these values was 

included in the updated version of the model. 

 

Step 4 - Defining Testing and Treatment Strategies 

 

The updated risk score, which accounts for an individual’s HF1 value, will hereafter be referred 

to as ASSIGNBIO. Four strategies for prioritising individuals for preventive statin therapy were 

considered. These were: 

1. Treatment for familial hypercholesterolaemia. 

2. The traditional ASSIGN score, with blanket risk threshold of 10%. 

3. An updated ASSIGNBIO score, with blanket risk threshold of 10%. 

4. The updated ASSIGNBIO score with a different blanket risk threshold dependent on the 

number of individuals treated under ASSIGN 10. 
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Strategy 1 was included because there is no clinical debate regarding the necessity of statins for 

people with very elevated LDL-C. Strategy 2 represents standard of care. Despite the fact that 

Scotland currently utilises a 20% risk threshold for treatment eligibility, guideline bodies in 

England and Wales and the U.S. have reduced their risk thresholds in recent years (25,27). 

Therefore, due to prevailing international guidelines, the 10% risk threshold employed in 

England and Wales was treated as the standard of care in this analysis. 

 

Under Strategy 4, the ASSIGNBIO blanket risk threshold was permitted to deviate from 10%. A 

threshold was determined which would lead to an approximately equal number of people being 

treated under screening Strategy 3 and using the traditional ASSIGN 10 risk threshold. Keeping 

the number of people treated equal allowed for a more thorough investigation of the implications 

of using an updated risk score. 

 

HF1 is unlikely to change treatment decisions in the vast majority of individuals. This is because 

additional risk factors in regression models offer diminishing returns in terms of predictive 

capability. It was therefore decided that, in testing strategies that employed the ASSIGNBIO risk 

score, HF1 testing would only occur in a group with intermediate risk that may potentially be 

reclassified due to the biomarker. The specific intermediate-risk group was defined using a 

Scottish dataset, based on the range of traditional ASSIGN scores of patients who were upwards 

or downwards reclassified when their risk was calculated with ASSIGNBIO. 

 

Step 5 - Simulation and Projection 

 

The updated Scottish CVD Policy Model was used to simulate the effect that giving statins to 

different groups of people within this cohort would have on population life expectancy. Two 

Macros for Microsoft Excel were written using Microsoft Visual Basic and were explained in 

detail in Section 7.2.4.  

 

The first macro created a base case. This macro inserted the risk factor information for each 

individual from the dataset into the Scottish CVD Policy Model. It then recorded this 

individual’s health and cost outcomes, as determined by the model. The second macro estimated 

the impact of treating the patient with statin therapy for life. 
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Next, results were stratified by the prioritisation methods discussed, showing the incremental 

differences in health and cost outcomes for the individuals prioritised for treatment. Finally, 

these results were projected onto the Scottish population as a whole, using data from the Scottish 

Census of 2011, and employing the approach described in Section 7.2.4. 

 

Simulation Parameters 

 

The key parametric inputs for model costs and treatment effects were previously described in 

Table 7-4. The treatment provided to eligible patients was the same as the analysis in Section 

7.2. 

 

A cost of £419 for HF1 testing was applied for every individual who was judged to be eligible 

for urinary proteomic risk. Little evidence exists for the cost of urinary proteomic tests, and the 

HF1 test is provided by one laboratory, Mosaiques Diagnostics, which does not publicly disclose 

its price (522). The cost of HF1 testing in this analysis was therefore derived from a 2012 study 

of the cost-effectiveness of urinary proteomic testing for prostate cancer diagnosis (523) whose 

authors included several employees of Mosaiques Diagnostics. This study adopted a German 

health sector perspective, and reported the cost of a urinary proteomic test for prostate cancer as 

being €443. The value of €443 was inflated from EUR 2012 to EUR 2018, using European 

Commission data on inflation in the Euro area (524). The January 2018 exchange rate of EUR 

to GBP was then used to estimate the cost of testing in GBP 2018 (525). 

 

One-way sensitivity analyses employed the upper and lower parameter values described in 

Table 7-4. The cost of HF1 testing was increased and decreased by 50% in this analysis. 

 

Probabilistic sensitivity analysis stochastically sampled Table 7-4 input distributions, Tables 5-

1 and 5-2 risk factor hazard ratios, and the hazard ratio associated with HF1 and non-fatal CHD 

in 500 independent iterations. Correlation between most risk factor hazard ratios was accounted 

for with the Cholesky decomposition method (309,503). However, the hazard ratio for HF1 was 

varied independently. Cost and QALY results from the probabilistic analyses were used to 

produce a cost-effectiveness acceptability curve. 
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Hypothetical Cohort 

 

A hypothetical cohort of individuals from the Scottish population was created using data from 

the 2011 Scottish Health Survey (347). This was the same dataset employed for previously 

discussed analysis and therefore also included data for 4,644 CVD-free individuals. This dataset 

included values for all the Scottish CVD Policy Model and ASSIGN score inputs. Multiple 

imputation of variables was performed (487) for individuals who had missing variables and 

refused the nurse interview. 

 

HF1 information was not available in the SHeS dataset. A value for HF1 was estimated for each 

individual. This estimation was derived by considering the covariance between HF1 and other 

variables in the dataset while allowing some random variation. Linear regression was performed 

on the FLEMENGHO dataset to determine the relationship between HF1 and other ASSIGN 

risk factors. HF1 values were assigned to each individual in accordance with the derived linear 

regression equation. The intercept of this equation was allowed to vary randomly for each 

individual. This produced a hypothetical cohort of individuals with complete ASSIGN and HF1 

profiles. 

 

Descriptive statistics for the hypothetical SHeS dataset are shown in Table 7-10. 

   

Risk Factor Obs Mean 
Std. 
Dev. 

Min Max 

Male 4,644 0.42 0.49 0.00 1.00 

Age 4,644 58.49 12.28 40.00 103.00 

SIMD 4,644 20.11 14.47 5.21 48.89 

Diabetes 4,644 0.07 0.25 0 1.00 

Family History 4,644 0.45 0.50 0 1.00 

CPD 4,644 7 7.05 0 39 

SBP (mmHg) 4,644 131.12 8.58 89.50 202.50 

TC (mmol/L) 4,644 5.78 0.48 3.20 10.50 

HDL-C (mmol/L) 4,644 1.53 0.21 0.60 3.30 

HF1 4,644 -0.94 0.48 -2.45 0.68 

ASSIGN 4,644 20.23 18.71 0.77 99.69 

ASSIGN Bio 4,644 21.43 21.16 0.61 99.98 

Table 7-10: Descriptive statistics of hypothetical SHeS dataset, 
containing imputed HF1 values 

 



215 
 

7.3.6 Results 

 

Relationship between HF1 and primary CVD outcomes 

 

The hazard ratios associated with HF1 and five primary CVD outcomes were estimated using 

Gompertz regressions, performed on the FLEMENGHO dataset. The outcomes considered were 

non-fatal CHD and a combined CVD events. The Stata code used in this analysis is included in 

the appendix (A3). 

 

As shown in Tables 7-11 and 7-12, HF1 was estimated to have a significant hazard ratio 

associated with non-fatal CHD and the combined CVD events. The predicted hazard ratios for 

HF1 and these outcomes were 1.69 and 1.48, respectively. 

 

The hazard ratio associated with HF1 and three other outcomes were also estimated. These were 

non-fatal CBVD, fatal CVD, and fatal non-CVD events. It was assumed that HF1 had no effect 

on these outcomes, as there existed no published evidence suggesting this was the case. The 

effect of HF1 on these endpoints varied, and these risk models produced generally less reliable 

results, as shown in Tables 7-13 to 7-15. 

 

 
Table 7-11: Gompertz regression analysis of FLEMENGHO, endpoint: non-fatal CHD 

570

No. of failures   = 25

LR chi2(9)        = 30.70

Log likelihood    = -104.87 Prob > chi2      = 0.003

Covariate
Hazard 

Ratio

Std.     

Err.
Z P>|Z|

Age 1.067856 0.025436 2.76 0.006 1.019149 1.118892

Male 1.592539 0.722201 1.03 0.305 0.654754 3.873485

Social Status 1.150799 0.586987 0.28 0.783 0.423476 3.127310

HDL-C 1.518323 0.946809 0.67 0.503 0.447265 5.154228

TC 1.096418 0.269381 0.37 0.708 0.677396 1.774635

SBP 1.000397 0.012499 0.03 0.975 0.976198 1.025197

Diabetes 0.866543 0.701941 -0.18 0.860 0.177124 4.239392

CPD 1.048265 0.027452 1.80 0.072 0.995817 1.103475

HF1 1.686700 0.363188 2.43 0.015 1.105995 2.572306

Constant 0.000017 0.000038 -4.85 0.000 2.00E-07 0.001432

Gamma 0.355861 0.132823 2.68 0.007 9.55E-02 0.616190

Number of obs =

[95% Conf. Interval]

No. of subjects = 570

Time at risk       = 2684.01
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Table 7-12: Gompertz regression analysis of FLEMENGHO, endpoint: combined CVD 

 

 
Table 7-13: Gompertz regression analysis of FLEMENGHO, endpoint: non-fatal CBVD 

 

 

570

No. of failures   = 35

LR chi2(9)        = 46.98

Log likelihood    = -129.42 Prob > chi2      = 0.000

Covariate
Hazard 

Ratio

Std.     

Err.
Z P>|Z|

Age 1.083021 0.021692 3.98 0 1.041330 1.126381

Male 2.044032 0.775555 1.88 0.06 0.971676 4.299856

Social Status 0.864835 0.393940 -0.32 0.750 0.354163 2.111850

HDL-C 1.789390 0.921629 1.13 0.259 0.652066 4.910415

TC 1.234855 0.256811 1.01 0.310 0.821472 1.856263

SBP 0.990378 0.010475 -0.91 0.361 0.970058 1.011124

Diabetes 1.702969 0.983439 0.92 0.357 0.549099 5.281567

CPD 1.052059 0.023616 2.26 0.024 1.006776 1.099378

HF1 1.475500 0.269969 2.13 0.033 1.030853 2.111941

Constant 0.000016 0.000032 -5.68 0.000 3.60E-07 0.000731

Gamma 0.364783 0.112312 3.25 0.001 1.45E-01 0.584911

No. of subjects = 570 Number of obs =

Time at risk       = 2684.01

[95% Conf. Interval]

570

No. of failures   = 4

LR chi2(9)        = 7.04

Log likelihood    = -23.62 Prob > chi2      = 0.633

Covariate
Hazard 

Ratio

Std.     

Err.
Z P>|Z|

Age 1.090398 0.066605 1.42 0.157 0.967367 1.229077

Male 0.391354 0.503030 -0.73 0.465 0.031512 4.860357

Social Status 1.524187 1.849668 0.35 0.728 0.141276 16.444060

HDL-C 0.593889 1.029332 -0.30 0.764 0.019879 17.742450

TC 0.941828 0.610821 -0.09 0.926 0.264196 3.357510

SBP 0.930173 0.038300 -1.76 0.079 0.858056 1.008352

Diabetes 9.744097 14.500740 1.53 0.126 0.527255 180.078700

CPD 1.046633 0.068037 0.70 0.483 0.921428 1.188851

HF1 0.794405 0.474932 -0.38 0.700 0.246124 2.564070

Constant 0.132330 0.840595 -0.32 0.750 5.18E-07 33784.730

Gamma -0.075865 0.340944 -0.22 0.824 -7.44E-01 0.592374

No. of subjects = 570 Number of obs =

Time at risk       = 2684.01

[95% Conf. Interval]
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Table 7-14: Gompertz regression analysis of FLEMENGHO, endpoint: fatal CVD 
 

 
Table 7-15: Gompertz regression analysis of FLEMENGHO, endpoint: fatal non-CVD 

 

570

No. of failures   = 3

LR chi2(9)        = 25.30

Log likelihood    = -4.66 Prob > chi2      = 0.003

Covariate
Hazard 

Ratio

Std.     

Err.
Z P>|Z|

Age 1.432695 0.215155 2.390000 0.017000 1.067394 1.923017

Male 1.51E+11 8.59E+14 0.000000 0.996000 0.000000 .

Social Status 0.051866 0.290179 -0.530000 0.597000 0.000001 3000.2230

HDL-C 1.281408 2.363558 0.130000 0.893000 0.034486 47.613420

TC 7.867397 10.119860 1.600000 0.109000 0.632307 97.889060

SBP 0.998430 0.043429 -0.040000 0.971000 0.916839 1.087282

Diabetes 0.000000 0.000941 0.000000 0.999000 0.000000 .

CPD 1.350495 0.177687 2.280000 0.022000 1.043516 1.747780

HF1 0.342228 0.443316 -0.830000 0.408000 0.027020 4.334564

Constant 0.000000 0.000000 -0.010000 0.990000 0.000000 .

Gamma 1.862044 0.953737 1.95 0.051 -7.25E-03 3.731334

No. of subjects = 570 Number of obs =

Time at risk       = 2684.01

[95% Conf. Interval]
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The effects of HF1 on non-fatal CBVD, fatal CVD, and fatal non-CVD outcomes were not 

accounted for in further analysis. There was a relatively short follow-up time in the 

FLEMENGHO dataset, and a restricted number of individuals were included in the study. 

Therefore, a small number of non-fatal CBVD, fatal CVD, and fatal non-CVD events were 

observed (n=4, 3, and 10, respectively). The assumption that HF1 is not related with these 

outcomes may be considered conservative, especially for fatal CVD events. It is very likely that 

a risk factor which significantly and independently predicts non-fatal CHD risk in study with a 

relatively small number of participants and short time horizon will predict risk of fatal CVD in 

longer-term studies. This has been seen with TC, LDL-C, CPD, SBP, and other established CVD 

risk factors (152,231,233). Further research may identify such a relationship. 

 

Constant Risk Threshold 

 

Tables 7-16 and 7-17 describe the subpopulations reclassified above and below a risk score of 

10% through introduction of the updated ASSIGN score, respectively. While all other risk 

factors are similar in the upwards classified group, HF1 is significantly higher (suggesting a 

higher risk of non-fatal CHD).  Hence, the adapted ASSIGN score has successfully targeted 

individuals with a previously disregarded increased risk of CHD in the population. 

 

The ASSIGN score range of upwards reclassified individuals is 9.30 to 9.90, while the ASSIGN 

score range of downwards reclassified individuals is 10.01 to 11.39 individuals. The age of 

reclassified individuals ranged from 43 to 64. These values can be employed to determine the 

individuals that should have their HF1 tested in the analysis. In this situation, a logical testing 

population would be individuals aged 40 to 65 with traditional ASSIGN score between 9.25 and 

11.40. The Scottish Health Survey, combined with census data, can then be utilised to estimate 

the number of people in the Scottish population indicated for testing. 

 

The ASSIGN and ASSIGNBIO scores from Scottish Health Survey dataset were projected onto 

the Scottish population by 5-year age group using census data. This made it possible to 

determine the distribution of each of these scores in the Scottish population. Hence, the number 

of people treated under each of the risk scores could be calculated. 
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Variable Obs Mean Std. Dev. Min Max 

Male 11 0.00 0.00 0 0 
Age 11 58.73 6.83 46 64 
SIMD 11 14.28 13.42 5.21 48.89 
Diabetes 11 0 0 0 1 
FH 11 0.09 0.30 0 1 
CPD 11 2 4.96 0 14 
SBP 11 128.98 2.06 124.39 131.44 
TC 11 5.74 0.54 4.66 6.08 
HDL 11 1.59 0.13 1.31 1.7 
HF1 11 -0.95 0.27 -1.60 -0.64 
ASSIGN 11 9.69 0.15 9.30 9.90 
ASSIGNBIO 11 10.21 0.17 10.02 10.57 

Table 7-16: Characteristics of individuals ‘upwards’ reclassified above 10% risk 
 

Variable Obs Mean Std. Dev. Min Max 

Male 77 0.61 0.49 0 1 
Age 77 51.26 4.02 43 60 
SIMD 77 21.74 15.12 5.21 48.89 
Diabetes 77 0 0 0 0 
FH 77 0.65 0.48 0 1 
CPD 77 10 6.54 0 21 
SBP 77 128.72 2.58 116 133.5 
TC 77 5.68 0.36 5.00 7.60 
HDL 77 1.51 0.26 1.1 3.1 
HF 77 -1.11 0.32 -2.24 -0.44 
ASSIGN 77 10.46 0.34 10.01 11.39 
ASSIGNBIO 77 9.46 0.45 8.15 9.99 

Table 7-17: Characteristics of individuals ‘downwards’ reclassified below 10% risk 
 

It was assumed reclassification would only occur in individuals aged 40-65 with traditional 

ASSIGN score between 9.25 and 11.40. Table 7-18 presents the estimated number of people 

eligible for treatment under each risk score and the estimated number of individuals who would 

require biomarker testing, given these criteria. Fewer individuals were estimated to be eligible 

for treatment with the ASSIGNBIO score. This suggests that the current ASSIGN score 

overpredicts risk in the population constructed for this analysis.  

 

 
N 

Tested 
N Eligible for 

Treatment 

ASSIGN 10 0 1,371,231 

ASSIGNBIO 10 179,217 1,335,207 

Table 7-18: Number eligible for testing and 
treatment under ASSIGN 10 and ASSIGNBIO 10 
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Table 7-19 displays the population-level outcomes associated with implementing biomarker 

testing and treating to the ASSIGNBIO score compared with using the traditional ASSIGN score. 

At a testing cost of £419, this policy would be dominated by current practice. ASSIGNBIO 10 

would incur additional costs while leading to a reduction in QALYs, and is therefore said to be 

dominated and should not be implemented. Table 7-20 lists the disaggregated costs associated 

with this strategy. 

 

Policy 
Number 
Treated 

Disc. 
QALE 

Disc. Cost 
(£1000's) 

ICER 
(£/QALY) 

Familial Hyp. Reference 

ASSIGN 10 1,371,231 176,000 1,508,000 8,600 
ASSIGNBIO 10 1,335,207 173,000 1,522,000 Dominated 

Table 7-19: Base case cost-effectiveness results, ASSIGN 10 and ASSIGNBIO 10 
 

Policy 
Discounted Costs (£1000’s) 

Non-CVD CVD Statin Monitoring Testing 

Familial Hyp Reference 

ASSIGN 10 1,375,000 -1,125,000 180,000 1,078,000 0 
ASSIGNBIO 10 1,323,000 -1,087,000 173,000 1,037,000 75,000 

Table 7-20: Base case disaggregated costs, ASSIGN 10 and ASSIGNBIO 10 
 

While the ASSIGNBIO strategy is less cost-effective than current practice, the QALY gain per 

individual treated was greater in this group. This suggests that ASSIGNBIO was more effective 

at determining which individuals had the greatest capacity-to-benefit from treatment. 

 

Constant Number Treated 

 

The results above show that when a 10% risk threshold is employed, treating to the traditional 

ASSIGN score is more cost-effective than using ASSIGNBIO 10% This is driven by the fact that 

using an updated score would lead to less individuals receiving treatment. Restricting the use of 

statins is not advisable even in low-risk individuals. They are cheap and effective preventive 

interventions which are well tolerated by the vast majority of users. 

 

ASSIGNBIO highlighted a group of patients with greater capacity-to-benefit than the traditional 

ASSIGN score. It was determined that a reasonable comparison between the traditional and 
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updated risk scores would consider them at differential 10-year risk thresholds. A value for 

ASSIGNBIO was calculated which would lead to similarly-sized population being eligible for 

preventive therapy. Analysis suggested that a score of 9.56% would lead to a similar number of 

individuals being prioritized for preventive therapy as ASSIGN 10. Cost-effectiveness analysis 

was therefore conducted to assess the comparative cost-effectiveness of ASSIGN 10 versus 

ASSIGNBIO 9.56. 

 

Tables 7-21 and 7-22 describe the subpopulations reclassified to receive and not receive 

treatment through introduction of ASSIGNBIO 9.56, respectively. It was assumed reclassification 

would only occur in individuals aged 40-65 with traditional ASSIGN score between 8.90 and 

11.40. Table 7-23 presents the estimated number of people eligible for treatment under each risk 

score and the estimated number of individuals who would require biomarker testing, given these 

criteria. 

 

Table 7-24 presents population-level results from the differential threshold analysis. Treating to 

ASSIGNBIO 9.56 produces more than 300 discounted QALYs compared to ASSIGN 10, at a 

cost of around £93,000,000. The ICER of implementing this strategy is £230,000/QALY. This 

ICER is much greater than the cost-effectiveness threshold in most high-income countries and 

therefore HF1 testing should not be implemented.  

 

Variable Obs. Mean Std. Dev. Min Max 

Male 36 0.25 0.44 0 1 
Age 36 56.2 6.56 43 64 
SIMD 36 16.97 14.89 5.21 48.89 
Diabetes 36 0.11 0.32 0 1 
FH 36 0.25 0.44 0 1 
CPD 36 2 4.78 0 16 
SBP 36 129 4 111 143 
TC 36 5.7 0.46 4.4 6.5 
HDL 36 1.5 0.22 1.0 1.8 
HF 36 -1.01 0.28 -1.78 -0.45 
ASSIGN 36 9.91 0.24 8.99 9.95 
ASSIGNBIO 36 9.68 0.23 9.57 10.57 

Table 7-21: Characteristics of individuals reclassified upwards above 
ASSIGNBIO 9.56 
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Variable Obs. Mean Std. Dev. Min Max 

Male 35 0.68 0.47 0 1 
Age 35 50.5 3.76 43 59 
SIMD 35 20.33 13.53 5.21 48.89 
Diabetes 35 0 0 0 0 
FH 35 0.60 0.59 0 1 
CPD 35 12 5.47 0 21 
SBP 35 129 2 121 133 
TC 35 5.7 0.48 5.0 7.6 
HDL 35 1.5 0.34 1.1 3.1 
HF 35 -1.13 0.39 -2.10 -0.31 
ASSIGN 35 10.32 0.28 10.01 11.39 
ASSIGNBIO 35 9.08 0.35 8.15 9.56 

Table 7-22: Characteristics of individuals reclassified downwards 
below ASSIGNBIO 9.56 

 

 
N 

Tested 
N Eligible for 

Treatment 

ASSIGN 10 0 1,371,231 
ASSIGNBIO 9.56 215,660 1,371,261 

Table 7-23: Number of individuals tested and eligible 
for treatment under ASSIGN 10 and ASSIGNBIO 9.56 

 

Much of the total cost of this strategy is driven by the high cost of testing, as shown in Table 7-

25. This suggests that urinary proteomic testing could be cost-effective if the cost of testing 

were to fall dramatically. 

 

Policy 
Number 
Treated 

Disc. 
QALE 

Disc. Cost 
(£1000's) 

ICER 
(£/QALY) 

Familial Hyp. Reference 

ASSIGN 10 1,452,094 187,000 1,579,000 8,500 
ASSIGNBIO 9.56 1,452,110 187,300 1,649,000 230,000 

Table 7-24: Population-level outcomes for ASSIGN 10 and ASSIGNBIO 9.56 
 

Policy 
Discounted Costs (£1000’s) 

Non-CVD CVD Statin Monitor’ Testing 

Familial Hyp. Reference 

ASSIGN 10 1,375,000 -1,125,000 180,000 1,078,000 0 
ASSIGNBIO 9.56 1,371,000 -1,118,000 180,000 1,077,000 90,000 

Table 7-25: Disaggregated costs for ASSIGN 10 and ASSIGNBIO 9.56 
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Figure 7-8 quantifies uncertainty related to the cost-effectiveness estimates for ASSIGN 10 

compared to ASSIGNBIO 9.56. Figure 7-8 is a tornado diagram representing changes in the ICER 

of transitioning from ASSIGN 10 to ASSIGNBIO 9.56 associated with increasing and decreasing 

key parametric inputs in the modelling process. Results were most sensitive to changes in the 

cost of HF1 testing, follow by the effect of statins on cholesterol levels and the disutility 

associated with daily pill-taking. 

 

 

Figure 7-8: Tornado diagram, one-way sensitivity analysis of key parameters and their 
effect on ICER of ASSIGNBIO 9.56 versus ASSIGN 10 

 

Figure 7-9 presents results from the probabilistic sensitivity analysis in a cost-effectiveness 

acceptability curve. The dashed line represents a cost-effectiveness threshold of 

£20,000/QALY. At this threshold, it is highly probable that ASSIGN 10 is the most cost-

effective strategy for the decision-maker. As the threshold increases to very high levels, the 

proportion of iterations of the model that showed ASSIGNBIO 9.56 to be optimal grows. 

However, the majority of iterations do not favour this strategy until a threshold of approximately 

£250,000/QALY. This is well in advance of the threshold employed in all high-income 

countries. At very high thresholds ASSIGN 10 remained optimal in a significant proportion of 

iteration, suggesting considerable uncertainty in the ability of ASSIGNBIO 9.56 to increase 

QALYs in the population.  
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Figure 7-9: Cost-effectiveness acceptability curve, ASSIGNBIO 9.56 versus ASSIGN 10  

 

Cost-Effective Test Pricing 

 

It was possible to determine the cost-effectiveness of implementing the two strategies at a range 

of testing costs. Table 7-26 presents the costs at which the ASSIGNBIO 10 and ASSIGNBIO 9.56 

strategies would be considered cost-effective compared to ASSIGN 10. 

 

When comparing ASSIGNBIO 9.56 to ASSIGN 10, the price of testing was selected that brought 

the ICER below the willingness-to-pay threshold. Depending on the cost-effectiveness threshold 

adopted, an 89-94% reduction in HF1 testing costs (from £419) would be required to make 

ASSIGN BIO 9.56 more cost-effective than ASSIGN 10. 

 

ASSIGNBIO 10 produces less QALYs than ASSIGN 10. Therefore, the maximum acceptable 

testing price should lead the ICER to be greater than the cost-effectiveness threshold, based on 

traditional health economic decision rules (43). This testing price ensures that adequate cost 

savings are achieved to justify the loss in QALYs. At a testing price of £18, HF1 testing would 

save more than £20,000 per QALY lost and the updated risk score is therefore cost-effective. 

However, at a testing price of zero, the ICER associated with implementing ASSIGNBIO 10 is 
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less than £25,000/QALY. Hence, no testing price exists at which ASSIGNBIO 10 should be 

implemented given a cost-effectiveness threshold ≥£25,000/QALY. 

 

  
Cost Effectiveness 
Threshold (£/QALY) 

  20,000 25,000 30,000 

ASSIGNBIO 10 £18 DNE* DNE 
ASSIGNBIO 9.56 £26 £35 £44 

*Does not exist 

Table 7-26: Maximum acceptable testing price for different 
cost-effectiveness thresholds 

 

 

Figure 7-10: ICER and cost of HF1 test, ASSIGNBIO 9.56 versus ASSIGN 10 

 

Figure 7-10 presents the ICER associated with transitioning from ASSIGN 10 to ASSIGNBIO 

9.56 at a range of different test costs. As the cost of testing decreases, ASSIGNBIO becomes 

more cost-effective. 

 

7.3.7 Discussion and Limitations 

 

Discussion 

 

Few reliable cost-effectiveness analyses of novel biomarker testing for CVD prevention have 

been conducted. A review of relevant literature highlighted deficiencies in previously published 
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cost-effectiveness analyses. In particular, the choice of comparator in the majority of identified 

articles failed to truly represent the decision problem under consideration. In most high-income 

countries, standard practice involves prioritising individuals for statins based on their 10-year 

risk of developing CVD. Omitting this intervention from cost-effectiveness analyses will 

produce biased results that overestimate the cost-effectiveness of biomarker testing. 

 

Lee et al. (511) have assessed the cost-effectiveness of hs-CRP testing plus risk scoring with an 

adequate comparator. However, hs-CRP has been considered a viable biomarker for CVD for a 

long time. This research focused more specifically on novel biomarkers which inherently suffer 

from a lack of data availability. Hence, methods were developed which would allow the 

updating of a 10-year CVD risk score and a decision-analytic model without a comprehensive 

dataset with which all analysis could be performed. 

 

The framework developed allows for the estimation of cost-effectiveness at a population level. 

AUROC, NRI, and wNRI analyses are limited by the fact that they can only assess the internal 

validity and significance of adding novel risk factors to traditional CVD risk scores. Estimating 

costs and health benefits with a decision-analytic model and a representative population dataset 

provides decision-makers with more policy-relevant information. 

 

Using the framework developed to assess a urinary proteomic biomarker, it was established that 

testing prices for HF1 are currently too high. This is not surprising given that statin therapy is 

cheap and effective with a low side effect rate. Hence, the benefits outweigh the costs of 

initiating treatment in many untested patients and stratification is unnecessary. 

 

Sensitivity analysis showed that a large reduction in price of test and a restricted testing strategy 

would lead HF1 testing to become cost-effective. Currently HF1 tests are produced and 

processed by one manufacturer with one laboratory. A large and consistent demand for this 

product might lead to an increase in test production. Economies of scale may then drive down 

the price of the test. As the NHS buyer’s guide report for cholesterol measurement notes, “large-

scale laboratory testing incurs minimal cost per test” (526). However, there is a large degree of 

unresolved uncertainty regarding the treatment’s ability to improve population health. 
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An important distinction exists between diagnostic biomarkers and treatment effect modifiers. 

This modelling exercise assumed that HF1 was a diagnostic biomarker. Patients’ HF1 levels did 

not modify the treatment’s efficacy. Lee et al. (511) showed that if low hs-CRP reduces an 

individual’s capacity-to-benefit from preventive therapy, then the cost-effectiveness of testing 

for hs-CRP increases. There is no area of literature which describes HF1 as a treatment effect 

modifier for preventive interventions in CVD. 

 

Limitations 

 

Uncertainty in the effect estimate of HF1 on CHD risk is a limitation to this analysis. One issue 

with novel biomarkers is lack of data. It is possible to obtain a ‘statistically significant’ estimate 

for the effect of HF1 on CHD risk with relatively little data. However, a low p-value is arguably 

not a sufficient marker of estimative precision (527). Univariate probabilistic sensitivity analysis 

would help to better quantify the effect of the relationship between HF and CVD risk on health 

economic outcomes. This would involve allowing the HF1 beta in the CHD risk equation to 

vary in some pre-assigned distribution, while all other variables were kept constant, and 

recording health and cost outcomes. Development of such methods for the quantification of 

uncertainty in novel biomarker testing cost-effectiveness was beyond the scope of this thesis, 

but should be addressed in further work. 

 

An additional limitation with this analysis relates to the approach adopted when establishing 

how many individuals should receive an HF1 test. Testing as small a subset of the population 

as possible will increase the probability that HF1 testing is cost-effective. ASSIGN score and 

age-based cut-offs for testing were derived by examining descriptive statistics of patients 

reclassified in the SHHEC cohort. While such work was beyond the scope of this analysis, 

further research should consider optimal strategies for patient testing. 

 

The construction of the hypothetical cohort is a limitation of this study. The approach used to 

assign HF1 values to every individual in the SHES dataset ensures that a conceivable population 

was constructed for the simulation. However, it also limited the applicability of this study to the 

population of interest. A preferable option would have been to simulate individuals from a large 

cross-sectional dataset which includes information on the novel biomarker. In the case of HF1 

and the Scottish population, such data were not available. 
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7.4 Chapter Summary 

 

The purpose of this chapter was to analyse policies which involve the continued use of 10-year 

risk scoring but which aim to create more health than standard care. The cost-effectiveness of 

reducing the risk threshold for statin initiation in Scotland from 20% to 10% was estimated. 

Next, a framework was established for the cost-effectiveness analysis of risk scoring with novel 

biomarkers. This framework was employed in a case study of HF1, a urinary proteomic 

biomarker for CHD. 

 

The framework developed for the cost-effectiveness analysis of novel CVD biomarkers was 

employed in the assessment of HF1. This analysis found that testing for HF1 would only be 

cost-effective if prices reduced dramatically and testing were restricted to a small group of 

individuals with intermediate risk. Nonetheless, if a cheap biomarker does exist which 

independently predicts CVD risk, there may be a clinical role for this marker in helping 

physicians discriminate between intermediate-risk patients. 

 

Because statins are very cheap, have a relatively strong safety profile, and achieve benefit in 

low- and intermediate-risk patients, increasing the number of people receiving statins will be 

cost-effective in most cases. However, it is possible that a policy could be defined which treats 

the same number of individuals as ASSIGN 10 but leads to greater health outcomes in a 

population by better reflecting heterogeneity in cost-effectiveness of the treatment. Proceeding 

chapters will consider this possibility.  
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Chapter 8 

Novel Decision Mechanisms Which Incorporate 10-Year Risk 

 

8.1 Purpose 

 

Chapter 4 showed that 10-year risk scoring is not necessarily the most effective way to establish 

which CVD-free individuals in a population have the highest capacity-to-benefit from 

preventive statin therapy. Individuals can experience different outcomes from the same 

treatment for a variety of reasons. Alternative treatment strategies which are not fully reliant 10-

year risk which better represent heterogeneity in cost-effectiveness should be considered by 

decision-makers. 

 

A conservative reformation of current practice may look to retain a role for 10-year risk scoring 

in prioritisation for preventive therapy while modulating treatment decisions along some other 

parameter. Age-stratification of risk thresholds and the absolute risk reduction approach to 

prevention are two alternative policies which could be employed to prioritize statin therapy. The 

purpose of this chapter is to estimate the cost-effectiveness of these two policies. 

 

Section 8.2 considers the cost-effectiveness of age-stratified risk thresholds for statin 

prioritisation in Scotland. Section 8.3 considers the health benefits and cost-effectiveness of 

extending preventive statin therapy eligibility to U.S. adults with a combination of elevated 10-

year risk and elevated baseline LDL-C. 

 

8.2 Cost-Effectiveness Analysis: Age-Stratified Risk Thresholds 

 

There is considerable variability in outcome for statin therapy between patients of different age-

groups. Accounting for this variability should theoretically lead to population-level health gains. 

 

Age-stratification of risk thresholds can be justified on the premise that younger individuals 

often gain more from preventive statin therapy. Younger individuals face fewer competing risks 

and restraining atherosclerotic build-up in young adulthood provides greater benefit than 

treating subclinical atherosclerotic CVD in later life. While the age distribution of individuals 
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prioritised for treatment under the age-stratified risk threshold approach will be different from 

current practice, risk will remain a key determinant of who receives statins within age-groups. 

 

8.2.1 Background 

 

Epidemiology and Simulation Analysis 

 

Simulation analysis was presented in Chapter 5 that explored the epidemiology of CVD 

prevention. The results from this analysis showed that age is an independent predictor of 

capacity-to-benefit from preventive therapy for CVD, regardless of absolute risk. Section 5.5.1 

showed that extended exposure to DBP and LDL-C in young adulthood is associated with 

increased risk of CHD, and addressing these risk factors early would lead to large reductions 

rates of CHD. Section 5.5.2 showed that younger individuals can achieve much more health 

benefits from preventive therapy than older individuals, even when they are at lower 10-year 

risk of experiencing a primary CVD event. 

 

Current policy fails to account for the benefit offered by intervening on modifiable risk factors 

early in adulthood. Employing 10-year risk alone to determine an individual’s eligibility to 

receive preventive therapy for CVD likely leads to a waste of health service resources. The age-

stratified risk threshold approach to statin prioritisation is one policy which may lead to a more 

cost-effective distribution of resources. 

 

The age-stratified risk threshold policy requires setting separate treatment initiation thresholds 

for different age-groups. Younger individuals with elevated modifiable risk factors but low 10-

year risk are likely to gain most from such a policy. Therefore, age-stratification of risk 

thresholds will improve the effectiveness of statin prioritisation if the threshold is reduced for 

younger and increased for older people. 

 

Age-Stratified Risk Thresholds in Norway 

 

In 2009, Norway published and implemented its new guidelines for the prevention of CVD 

(303). The group of clinicians and academics tasked with developing these guidelines did not 

follow the European Society for Cardiology’s guidelines which focus preventive efforts on 
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individuals with elevated 10-year risk. Instead, the new guidelines involved the implementation 

of age-stratified risk thresholds. These are described in guideline documents as ‘age-

differentiated’ thresholds. 

 

The guideline development process in Norway was threefold: a systematic review of clinical 

evidence for preventive interventions was conducted, cost-effectiveness analyses were reviewed 

and a CVD policy model was developed, and guidelines were produced by an interdisciplinary 

working group. 

 

The systematic review of clinical literature was conducted by the Norwegian Knowledge Centre 

for the Health Services (NKCHS) and found that several treatments were effective for the 

prevention of CVD (528). High quality evidence was identified showing that blood pressure- 

and cholesterol-reducing medications reduce risk of disease-free individuals developing CVD. 

Amongst cholesterol-reducing medications, statins were assessed to have the strongest evidence 

base and efficacy. 

 

Review of existing cost-effectiveness analyses and development of a Norwegian CVD policy 

model was also conducted by the NKCHS. This analysis found strong evidence in favour the 

cost-effectiveness of statins in individuals as young as 40 years old (529). 

 

To estimate the benefits associated with age-stratified risk thresholds compared with blanket 

risk thresholds, a Markov model was developed (530). The Norwegian Cardiovascular Disease 

(NorCaD) Model was built with data on Norwegian CVD prevalence and healthcare costs. It 

predicts health and cost outcomes in the Norwegian population, moderated by the occurrence of 

CVD events. 

 

Using the NorCaD model, researchers estimated the distribution of health gains in the 

Norwegian population associated with age-stratification of risk thresholds (303). They looked 

at the effect of a reduction in the recommended 5% blanket risk threshold for younger 

individuals (aged 40-49) and an increase for older individuals (aged 60-69). 

 

Age-stratification of risk thresholds was estimated to reduce the number of individuals eligible 

for treatment by around 20% compared to the blanket threshold (198,100 versus 247,100). This 
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policy would lead to a disproportionately small 4% reduction in undiscounted life year gains 

(531,000 versus 539,000). Moreover, it would lead to a large increase in life expectancy for 

treated 40-49 year-olds and marginal reductions in life expectancy for treated individuals aged 

60-69. 

 

There were key limitations to this analysis. Primarily, this was not a cost-effectiveness analysis. 

Treating younger individuals with statins will require increased patient years of treatment and 

monitoring costs. Even if younger patients gain a lot of health from a preventive treatment, they 

are not necessarily cost-effective to treat. The analysis additionally did not account for health-

related quality of life, but rather looked at the effect of interventions on life years. It therefore 

fails to account for the fact that CVD prevention can avert non-fatal events that lead to patient 

morbidity. Finally, future health benefits were not discounted. Section 2.7 established the 

validity and necessity of discounting in health technology assessment. Failing to discount future 

health benefits and costs ignores the opportunity cost associated with waiting to invest in an 

intervention and social time preference for health. 

 

The Norwegian cardiovascular prevention guidelines group reviewed the NKCHS research, 

including the Norheim et al.’s novel analysis of age-stratified risk thresholds. In contrast to the 

5% blanket risk threshold recommended by the European Cardiovascular Society, the guideline 

group determined that the new guidelines for cardiovascular prevention would involve age-

stratification of risk thresholds. These thresholds were as follows: 

 ≥1% for individuals aged 40-49 

 ≥5% for individuals aged 50-59, 

 ≥10% for individuals aged 60-69. 

 

The guideline recommended that CVD risk is estimated using the NORRISK score (531) which 

was developed with Norwegian data. Unlike the ASSIGN, QRISK2, Framingham, and 

ACC/AHA ASCVD Risk Calculator, NORRISK estimates 10-year risk of cardiovascular 

mortality. This explains why these thresholds were generally lower than U.K. and U.S. 

thresholds for intervention which use risk scores which incorporate a broader range of clinical 

endpoints. Statin therapy was also indicated for patients with TC ≥8.0 mmol/L. 
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In 2017, new Norwegian guidelines for cardiovascular prevention were released (532). These 

guidelines retained the role of age-stratified risk thresholds in determining who receives statin 

therapy. The guideline did, however, make recommendations for treatment based on the 

NORRISK2 risk score (533). NORRISK2 estimates 10-year risk of both CVD mortality and 

morbidity, and therefore closer reflects risk scores like ASSIGN, QRISK2, and the ACC/AHA 

ASCVD Risk Calculator. The new thresholds for treatment initiation are as follows: 

 ≥5% for individuals aged 45-54, 

 ≥10% for individuals aged 55-64, 

 ≥15% for individuals aged 65-74. 

 

Norway’s 2008 and 2017 guidelines both state that elderly patients should be treated on a case-

by-case basis, considering “utility and risk” (532). Therefore, change in the upper age limit for 

treatment is not likely to greatly affect clinical practice. The new guidelines increased the age 

at which risk-based treatment is initiated. The guideline’s authors note, however, that very few 

individuals aged 40-44 met the previous age-stratified threshold for treatment initiation. The 

new guideline additionally recommends treatment of all patients aged 70 and below with TC 

≥7.0 mmol/L or LDL-C ≥5.0 mmol/L. 

 

Further Evidence for Age-Stratified Risk Thresholds 

 

Further research has been conducted which considers heterogeneity in outcome associated with 

CVD prevention driven by age. The results of these studies vary. Two studies support the 

implementation of age-stratification while one casts doubt on its capacity to produce long-term 

benefit when discounting is applied. 

 

Ngalesoni et al. consider the health, cost, and equity outcomes associated with employing age-

stratified risk thresholds to prioritise patients for preventive pharmacologic interventions for 

CVD (534). A Markov model simulated CVD outcomes in a closed, hypothetical cohort 

representative of the Tanzanian population. The cohort was assumed to have no history of MI 

or stroke at baseline. Compared to the WHO’s recommended blanket risk threshold of 10%, 

they found that age-stratification of risk thresholds would lead to improvements in treated 

patients’ life expectancy (1.7 years) and a more equitable distribution of health (0.02 reduction 

in Gini coefficient). Moreover, they found that these improvements in health and equity 
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outcomes could be achieved without a corresponding increase in healthcare expenditure. As 

with the previously-described analysis by Norheim et al. (303), a key limitation of this study 

was the fact that future health and cost outcomes were not discounted. 

 

Navar-Boggan et al. (535) adopt a different approach to assessing the benefit of age-

stratification of risk thresholds. Analysing data from the Framingham Offspring Study, they 

estimated the sensitivity and specificity of 10-year CVD risk scores for adults stratified into 

three age-groups. It was found that the ACC/AAH guideline-recommended threshold of 7.5% 

for statin initiation had low sensitivity for people aged 40-55 years. These values were 36% and 

48% respectively. On the other hand, the 7.5% threshold would lead to drastic overtreatment of 

patients aged 66-75 years, with specificities of 17% and 3% in women and men, respectively. It 

is concluded that lowering the risk threshold for treatment initiation in younger adults to 5% 

while increasing it to 10-15% in older adults would significantly improve the predictive ability 

of risk scoring. 

 

Not all analysis regarding age-stratification of risk thresholds has produced positive results. 

Liew et al. estimate potential years of life lost (PYLL) for patients in 5-year age-bands (536). 

PYLL is calculated as the life years gained from five years of total CVD risk elimination. 

Inasmuch, it represents the life years gained from a hypothetical, fully-effective but time-limited 

intervention. The effect of such an intervention was calculated separately with a simplistic age-

based residual risk model and a Markov cohort model. PYLL and discounted PYLL are 

estimated in both analyses. 

 

Liew et al.’s study addresses the lack of discounting in other modelling studies which consider 

age-stratified risk thresholds. Results show that undiscounted PYLL is much greater for younger 

individuals. However, when a 3.0% discount rate is applied, the age gradient in PYLL greatly 

reduces. 

 

It is likely that Liew et al. understate the benefits associated with early prevention of 

atherosclerotic build-up in the arteries. They presume that the intervention stops producing 

benefits in patients after five years. In addition, patients are analysed based on age and risk score 

alone. The analysis may therefore fail to identify subgroups of patients that may gain from the 
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hypothetical treatment. As discussed in Chapter 4, the covariates that combine to produce a risk 

score often independently predict capacity-to-benefit from a given treatment. 

 

No analysis of age-stratified risk thresholds has been conducted which specifically focuses on 

statin initiation in Scotland. Indeed, no such analysis has been conducted with regards to the rest 

of the U.K. 

 

8.2.2 Objective 

 

The objective of this analysis was to quantify the health and cost consequences associated with 

employing age-stratified risk thresholds to prioritise patients for preventive statin therapy in the 

Scottish NHS. This work aimed to build on previous analyses of age-stratified risk thresholds 

by performing a complete, discounted economic evaluation of the policy. 

 

8.2.3 PPICOSS 

 

Population: The Scottish CVD-free population, aged 40 years and above. 

 

Perspective: Scottish health sector decision-maker. All healthcare costs accrued by the Scottish 

NHS and population-level health gains are considered. 

 

Intervention: Intermediate-intensity statin therapy (Atorvastatin 20mg/daily). Four treatment 

prioritisation criteria are considered: (i) blanket 20% risk threshold (treating n=B20 individuals), 

(ii) blanket 10% risk threshold (treating n=B10 individuals), (iii) age-stratified risk threshold 

strategy (treating n≈B20 individuals), and (iv) age-stratified risk threshold strategy (treating 

n≈B10 individuals). 

 

Comparator: Statin therapy for individuals with familial hypercholesterolaemia. 

 

Outcome: Lifetime cost-per-QALY, with both costs and QALYs discounted at 3.5% annually. 

Intermediate outcomes reported are: disaggregated healthcare costs, primary CVD events 

prevented, and CVD-free life years. 
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Setting: Primary care in the Scottish NHS. 

 

Study Design: Cohort simulation. 

 

8.2.4 Methodology 

 

The methodology adopted to estimate the cost-effectiveness of age-stratified risk thresholds was 

the same as the methodology employed to estimate the cost-effectiveness of risk threshold 

reduction in Chapter 7. This allowed for comparison between results in these chapters. 

 

Scottish CVD Policy Model 

 

The Scottish CVD Policy model was employed to estimate the cost-effectiveness of different 

methods of statin prioritisation. This model was discussed in depth in Chapter 5. 

 

Treatment Strategies 

 

The analysis aimed to compare absolute risk-based blanket 20% and blanket 10% risk threshold 

strategies to comparable age-stratified strategies. It was assumed that intermediate-intensity 

statin therapy would always be provided to individuals with familial hypercholesterolaemia (as 

defined according to SIGN’s definition of elevated TC (≥7.5 mmol/L) and family history of 

premature CVD or TC ≥8.0 mmol/L. 

 

The four remaining strategies considered were intermediate-intensity statins for: individuals 

with an ASSIGN score greater than 20% (treating n=B20 individuals), individuals with an 

ASSIGN score greater than 10% (treating n=B10 individuals), and individuals who met 

eligibility criteria based on age-stratified risk thresholds which treat B20 and B10 individuals, 

respectively. 

 

The number treated in each case was kept approximately constant as this analysis aimed to 

estimate the cost-effectiveness of age-stratified risk thresholds. When comparing two strategies 

which treat different numbers of patients, it would be difficult to disaggregate the benefits 

accrued due to age-stratification and those accrued due to treating additional patients. 
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Defining Age-Stratified Risk Thresholds 

 

Many combinations of age-groups and thresholds can be chosen when defining an age-stratified 

risk threshold requirement rule for statins. A systematic approach was adopted in this analysis. 

 

Thresholds were changed per 5-year age group. Based on previously discussed assumptions, the 

threshold was reduced for younger and increased for older individuals. Two policies which 

would result in a similar number of people being treated to the two respective blanket thresholds 

were selected. These will hereafter be referred to as Age-Strat 20 (treating approximately B20 

individuals) and Age-Strat 10 (treating approximately B10 individuals). 

 

The process to determine age-stratified risk thresholds involved systematically lowering 

thresholds for younger individuals and increasing them for older individuals in a manner that 

led to a constant number of patients being treated. The specific age-stratified policies are shown 

in Table 8-1. 

 

Age-Strat 20 would result in elderly individuals (aged ≥80 years) not receiving treatment. 

SIGN’s guideline for CVD prevention states: “In the elderly, the decision to start statin therapy 

should be based on 10-year cardiovascular risk estimation, life expectancy, and quality of life. 

Age alone is not a contraindication to drug therapy" (26). Hence, it was generally presumed that 

older individuals receive treatment under standard of care. 

 

 Statin Treatment Eligibility Thresholds 

Age 
ASSIGN 

20 
ASSIGN  

10 
Age-Strat 

20 
Age-Strat 

10 

40-44 20% 10% 8.5% 7% 

45-49 20% 10% 10% 8% 

50-54 20% 10% 11% 9% 

55-59 20% 10% 13% 10% 

60-64 20% 10% 19% 12% 

65-69 20% 10% 24% 18% 

70-74 20% 10% 29% 25% 

75-79 20% 10% 34% 30% 

80+ 20% 10% n/a 45% 

Table 8-1: Blanket and age-stratified risk thresholds policies 
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Scottish Health Survey, Census Data, and Multiple Imputation 

 

As with the analyses in Chapter 7, all analysis was completed using a combination of the 

Scottish Health Survey 2011 and the Scottish Census 2011. The same dataset and imputation 

process was employed in this analysis as was employed in Section 7.2. The descriptive statistics 

for this dataset are described in Table 7-1. 

 

Simulation 

 

The Scottish CVD Policy Model simulated the effect of giving statins to different groups of 

people. The same approach to simulation was adopted as described in Section 7.2.4. This 

involved developing two Macros for Excel using Microsoft Visual Basic to estimate lifetime 

incremental health and cost outcomes attributable to intermediate-intensity statin therapy for all 

individuals in the dataset. 

 

Treatment Parameters 

 

The base case treatment parameters employed in this analysis were the same as the treatment 

parameters used to estimate cost-effectiveness of risk threshold reduction in Chapter 7. These 

parameters are presented in Table 7-4. 

 

Estimating Outcomes and Projecting Results 

 

Incremental costs and outcomes were simulated for all individuals in the SHeS dataset. The 

population was stratified by risk score, and only individuals meeting treatment criteria were 

assigned the incremental outcomes. Results were averaged across 5-year age-groups and 

projected onto the Scottish population with census data. Again, this process was described 

extensively in Chapter 7. 
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Cost-Effectiveness Analysis 

 

Cost-effectiveness analysis was performed using traditional cost-effectiveness decision rules 

(43,354). A willingness-to-pay of £20,000/QALY was adopted for this analysis. 

 

Sensitivity Analysis 

 

One-way sensitivity analyses were undertaken to assess the impact of parametric assumptions 

on cost-effectiveness. The parameters included in sensitivity analyses were: pill-taking 

disutility, non-HDL cholesterol reduction and HDL cholesterol increase, monitoring costs in the 

first year of treatment, monitoring costs in subsequent years of treatment, cost of risk 

assessment, and price of statins. 

 

Probabilistic sensitivity analysis stochastically sampled Table 7-4 input distributions and Tables 

5-1 and 5-2 risk factor hazard ratios in 500 independent iterations. Correlation between risk 

factor hazard ratios was accounted for with the Cholesky decomposition method (309,503). 

Cost-effectiveness results from probabilistic analyses were used to produce a cost-effectiveness 

acceptability curve. 

 

Inequality 

 

A final piece of analysis considered the consequences of different treatment strategies on health 

inequalities. Discounted QALY gains per 1,000 individuals were presented, disaggregated by 

SIMD quintile. The proportion of total QALYs gained by each SIMD quintile was also 

presented. 

 

8.2.5 Results 

 

Demographics of Treated Patients 

 

Table 8-2 provides descriptive statistics for the overall population and subpopulations treated 

under ASSIGN 20, Age-Strat 20, ASSIGN 10, and Age-Strat 10. It details the percentage of 
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different age-groups treated under the different prioritisation strategies alongside the treated 

population’s average risk factor values. 

 

    
Overall 

Population 
ASSIGN 

20 
Age-Strat 

20 
ASSIGN 

10 
Age-Strat 

10 
P
ro

p
o
rt

io
n
 o

f 
A

g
e
-

G
ro

u
p
 T

re
a
te

d
 (

%
) 

40-44 n/a 0 5 3 12 

45-49 n/a 2 14 14 29 

50-54 n/a 5 30 38 49 

55-59 n/a 15 50 74 74 

60-64 n/a 41 45 94 86 

65-69 n/a 75 52 100 85 

70-74 n/a 92 65 100 80 

75-79 n/a 100 74 100 88 

80+ n/a 100 0 100 81 

A
v
e
ra

g
e
 V

a
lu

e
 

Male (%) 42 45 53 47 51 

SIMD 19.5 21.2 23.5 20.5 21.4 

Diabetes (%) 7 15 17 11 11 

FH (%) 46 68 73 62 65 

CPD 7 8 10 7 7 

SBP (mmHg) 131 134 134 133 133 

TC (mmol/L) 5.8 5.8 5.8 5.8 5.8 

HDL (mmol/L) 1.5 1.5 1.5 1.5 1.5 

Table 8-2: Descriptive statistics of treated populations for ASSIGN 20, Age-Strat 20, 
ASSIGN 10, and Age-Strat 10 
 

As expected, a much larger proportion of young individuals were treated with age-stratified risk 

thresholds compared to the blankets approach. Age-stratification additionally increased the 

proportion of men and individuals with family history of CVD who were eligible for treatment. 

The average index of social deprivation for treatment eligible patients was marginally greater 

when age-stratified risk thresholds were applied, suggesting the treated population was from a 

more socially deprived background. 

 

Base Case Cost-Effectiveness Analysis 

 

The results from the base case cost-effectiveness analysis are presented in Table 8-3. These 

results are also shown on the cost-effectiveness plane in Figure 8-1 incremental to ASSIGN 20. 

Age-Strat 20 and Age-Strat 10 produced more discounted QALYs than their respective blanket 

threshold comparators. 
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Policy 
Number 
Treated 

Discounted 
QALYs 

Discounted 
Cost 

(£1000's) 

ICER 
 (£/QALY) 

Familial Hyp. Reference 

ASSIGN 20 793,559 92,300 636,000 6,900 

Age-Strat 20 793,596 99,500 882,000 Ext.  Dominated 

ASSIGN 10 1,381,059 164,000 1,596,000 13,500 

Age-Strat 10 1,381,054 168,000 1,719,000 27,400 

Ext. - extendedly 

Table 8-3: Base case cost-effectiveness results, ASSIGN 20, Age-Strat 20, ASSIGN 10, 
Age-Strat 10 
 

The additional health benefits offered by age-stratification of thresholds are purchased at a high 

cost. Age-Strat 20 is extendedly dominated by ASSIGN 10. The ICER associated with 

transitioning from ASSIGN 10 to Age-Strat 10 is around £27,400/QALY. This is in excess of 

the cost-effectiveness threshold adopted for this analysis. Therefore, given the policies 

considered and the base case assumptions, ASSIGN 10 is the optimal strategy for a decision-

maker. 

 

 
Figure 8-1: Base case cost-effectiveness plane, ASSIGN 20, Age-Strat 20, ASSIGN 10, 
and Age-Strat 10 
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Intermediate Outcomes 

 

Tables 8-4 and 8-5 present intermediate outcomes from the base case analysis. The former 

presents the primary CVD events prevented and life years gained for the respective policies, and 

the latter presents their disaggregated costs. 

 

Policy 
Primary 

CVD Events 
Prevented 

Life Years 
Gained 

Familial Hyp. Reference 

ASSIGN 20 27,000 170,000 
Age-Strat 20 29,000 198,000 
ASSIGN 10 49,000 351,000 
Age-Strat 10 50,000 368,000 

Table 8-4: Base case CVD events prevented and life years gained 
 

Implementing age-stratified risk thresholds would prevent more than 1,500 primary CVD events 

when compared with ASSIGN 20. This would be achieved while treating the same number of 

individuals. In turn, this would lead to an approximately 28,000 additional undiscounted life 

years in the Scottish population. Implementing Age-Strat 10 over ASSIGN 10 would prevent 

approximately 1,200 additional primary CVD events, producing around 16,500 undiscounted 

life years. 

 

Policy 
Disc. Costs (£1000’s) 

Non-CVD CVD Statin Monitoring 

Familial Hyp. Reference 

ASSIGN 20 720,000 -718,000 84,000 550,000 
Age-Strat 20 986,000 -889,000 108,000 678,000 
ASSIGN 10 1,562,000 -1,322,000 190,000 1,167,000 
Age-Strat 10 1,707,000 -1,408,000 200,000 1,220,000 

Table 8-5: Base case disaggregated costs 

 

All strategies led to a decrease in CVD-related healthcare costs and increases in non-CVD-

related healthcare costs. The age-stratified risk threshold strategies incurred greater non-CVD-

related, statin, and monitoring costs than comparable blanket risk threshold strategies. This 

suggests that increased costs for age-stratified policies are incurred through extension of life 
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expectancy and associated costs, increased patient years of treatment, and an increased period 

of patient monitoring. 

 

Inequality Analysis 

 

Results were disaggregated to estimate the effect of threshold reduction on health inequalities. 

Figure 8-2 shows the discounted QALY gains achieved per 1,000 individuals in the population, 

disaggregated by SIMD quintile. In absolute terms, all SIMD quintiles achieved greater health 

gains under Age-Strat 10 when compared with Age-Strat 20. In both treatment scenarios, 

absolute health gains continuously increased with level of social deprivation. 

 

 

 

Figure 8-2: Discounted QALY gains for age-stratified and blanket risk threshold 
strategies per 1,000 individuals, disaggregated by SIMD quintile 

 

The proportion of health gains achieved per quintile of social deprivation was also estimated 

and these results are presented in Figure 8-3. The distribution of discounted QALY gains was 

similar for both age-stratified risk threshold policies. The two most deprived quintiles of the 

Scottish population each achieved greater than 20% of all health gains. Both policies were 

progressive: they led to a greater proportion of health gains being achieved in the two most 

deprived SIMD quintiles compared with the two least deprived quintiles.  

 

Age-Strat 20 was more progressive than Blanket 20. The two most deprived SIMD quintiles 

combined gained 53% of all health benefits under Age-Strat 20, compared to 30% of health 
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gains achieved by the two least deprived quintiles – a 23% difference. For Blanket 20 this 

difference was 11%. Age-Strat 10 was more progressive than Blanket 10. The difference in 

proportion of QALY gains between the two most deprived and least deprived quintiles for Age-

Strat 10 and Blanket 10 were 12% and 7%, respectively. 

 

 
Figure 8-3: Proportion of discounted QALY gains achieved by different SIMD 
quintiles, age-stratified and blanket risk threshold strategies 

 

Sensitivity Analyses 

 

Results from the sensitivity analyses are presented in Figures 8-4 and 8-5. These tornado 

diagrams show the sensitivity of ICER estimates to univariate changes in model parameters. 

They present the ICERs associated with moving from ASSIGN 20 to Age-Strat 20 and ASSIGN 

10 to Age-Strat 10, respectively. Age-Strat 20 remained extendedly dominated by ASSIGN 10 

in all sensitivity analyses. The base case ICER of implementing Age-Strat 20 over ASSIGN 20 

was approximately £34,700/QALY. 

 

The three areas of greatest uncertainty highlighted by these analyses are pill-taking disutility, 

non-HDL cholesterol reduction, and monitoring costs. Pill-taking disutility and monitoring costs 

are particularly important when transitioning from a blanket threshold strategy to an age-

stratified risk threshold strategy because the latter approach will involve treating a younger 

group of individuals. These younger individuals will receive the treatment for an extended 

period of time, accumulating costs and pill-taking utility decrements. 
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Figure 8-4: Tornado diagram, one-way sensitivity analysis of key parameters and 
their effect on ICER of implementing Age-Strat 20 over ASSIGN 20 

 

 
Figure 8-5: Tornado diagram, one-way sensitivity analysis of key parameters and 
their effect on ICER of implementing Age-Strat 10 over ASSIGN 10 

 

Results from the PSA are presented in a cost-effectiveness acceptability curve in Figure 8-6. 

The red, black, blue, and green curves show the proportion of simulations in which Blanket 20, 

Age-Strat 20, Blanket 10, and Age-Strat 10 were optimal at a range of cost-effectiveness 

thresholds. The black dashed line indicates a cost-effectiveness threshold of £20,000/QALY. At 

this threshold, Age-Strat 10 was optimal in 45% of simulations. This analysis suggests some 

uncertainty regarding the cost-effective of Age-Strat 10, which may be the optimal treatment 

strategy. 
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Figure 8-6: Cost-effectiveness acceptability curve, ASSIGN 20, Age-Strat 20, ASSIGN 
10, and Age-Strat 10 

 

8.2.6 Discussion and Limitations 

 

Discussion 

 

This analysis suggests that age-stratification of risk thresholds would produce considerable 

health benefits in the Scottish population. This result is in agreement with analyses by Norheim 

et al. (303) and Ngalesoni et al. (534) which emphasise the benefits offered by age-stratification 

of risk thresholds. It is not in line with results from Liew et al. (536) who predict that discounting 

of future health outcomes limits capacity-to-benefit from preventive treatment in younger 

individuals. 

 

While the age-stratified approach to prevention leads to an increase in health outcomes, this 

improvement in population health was estimated to be too expensive for a Scottish NHS 

decision-maker. The ICER associated with transitioning from ASSIGN 20 to Age-Strat 20 and 

from ASSIGN 10 to Age-Strat 10 are both in excess of £20,000/QALY. 

 

The ICER associated with transitioning from ASSIGN 10 to Age-Strat 10 is within the £20,000-

30,000/QALY threshold range adopted by NICE in health technology assessment. However, 
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recent analysis suggests that the marginal cost of health production in the NHS is far below even 

£20,000/QALY (500). The optimality of ASSIGN 10 under base case assumptions may 

therefore be assumed robust. 

 

Age-Strat 20 may be extendedly dominated by ASSIGN 10 due to the fact that statins are cheap 

and effective. Reducing the blanket risk threshold means that a large number of younger 

individuals with high capacity-to-benefit from treatment receive treatment. Nonetheless, it is 

surprising that the ICER associated with treating this group is lower than the ICER associated 

with Age-Strat 20. A possible explanation is that the blanket threshold approach treats a greater 

number of older individuals, who gain less from the treatment but have a higher tendency to be 

cost-saving. 

 

Sensitivity analysis suggests that there may be a scenario in which the age-stratified approach 

to prevention would be the optimal choice for a Scottish NHS decision-maker. Two key factors 

which drive the high ICER for the age-stratified approach are cumulative pill-taking disutility 

and monitoring costs. Younger individuals are likely to spend longer receiving preventive 

treatment before the occurrence of a primary event and therefore accumulate much greater costs. 

Post-hoc analysis was performed to consider the circumstance in which ongoing monitoring 

costs and pill-taking disutility are completely nullified. In this situation, the ICER of instituting 

Age-Strat 10 would be around £13,500/QALY. 

 

Limitations 

 

Uptake and adherence are two aspects missing from this analysis. Clinical buy-in is important 

for preventive pharmacologic interventions. It is conceivable that medical providers look 

unfavourably on the concept treating elderly individuals with healthy risk factors. If this carries 

into clinical practice, then age-stratification may be a preferable strategy as it targets treatment 

at individuals who are unhealthy compared to their peers. 

 

Further work should consider potential variation in uptake and adherence to statin 

recommendations, stratified by different patient populations. Value of implementation analysis 

may be performed to assess the costs and benefits of interventions aimed at improving these 

factors (537). 
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Another limitation of this analysis is the fact that the effect of cumulative exposure to LDL-C 

is not accounted for. As demonstrated in Chapter 4, lowering LDL-C at an early stage in life 

reduces atherosclerotic build-up and intervening early to stop this build-up can therefore have a 

large impact on later life CVD risk. This analysis, however, assumes that the relative risk 

reduction from statin therapy is not predicated on the age that an individual initiates treatment. 

This analysis therefore likely underestimates the benefit of statin therapy for younger 

individuals.  

 

Further research could also focus on the cost-effectiveness analysis of reducing cumulative 

exposure to LDL-C. This analysis could consider the benefit of reducing the age at which annual 

risk assessment is currently recommended. This age limit is currently set at 40, but based on the 

cumulative exposure hypothesis, benefit can be accrued due to LDL-C-reduction at much earlier 

stages in life. 

 

8.3 Cost-Effectiveness Analysis: Absolute Risk Reduction 

 

A second policy which incorporates 10-year risk alongside some other covariate to prioritise 

statin therapy is the absolute risk reduction approach to prevention. Section 4.5.2 showed that 

baseline LDL-C is a predictor of absolute risk reduction from statin therapy. Individuals with 

higher baseline LDL-C may gain more health from LDL-C-reducing therapies than their peers. 

Employing a metric which accounts for both absolute 10-year risk and baseline LDL-C to 

determine who receives statins may lead to improvements in population-level health outcomes. 

 

The following study considers the health benefits and cost-effectiveness of statin therapy in 

different subgroups of the U.S. CVD-free population. The population is stratified by baseline 

absolute risk and LDL-C. Health and cost outcomes associated with statin therapy are then 

estimated. 

 

This study also considers the cost-effectiveness of a statin prioritisation policy based on both 

absolute risk and baseline LDL-C. Unlike the analysis of age-stratified risk thresholds, this 

analysis considers the cost-effectiveness of extending eligibility beyond current standard of 

care. There is considerable uncertainty in current U.S. guidelines regarding treatment of 



249 
 

individuals with risk scores between 5.0-7.5%. Rather than advocating a large change in clinical 

practice in the U.S., this study rather focuses on this area of existing uncertainty. Secondary 

analysis was conducted with the Scottish CVD Policy Model to enable comparison with other 

policies analysed in the thesis. 

 

8.3.1 Background 

 

The ACC and AHA have issued joint guidelines for the management of cholesterol with statins 

in CVD-free individuals. They recommend that primary prevention patients should be 

prescribed statin-therapy using a blanket risk threshold of 7.5%, estimated with the ACC/AHA 

ASCVD Risk Calculator. The guidelines additionally state that statins should be considered for 

CVD-free patients with ‘borderline’ risk scores between 5.0-7.5% (27). In 2018 guidelines, 

borderline-risk patients with a variety of ‘risk-enhancing factors’ were also recommended 

statins.  

 

The blanket risk threshold approach to prevention is predicated on the assumption that 

treatments produce consistent benefit across heterogeneous patient subgroups. In other words, 

this approach assumes the relative risk associated with statins is equal in all subsets of the patient 

population, regardless of baseline LDL-C. If this assumption holds, then individuals with greater 

absolute risk will always achieve greater absolute risk reduction from the preventive treatment. 

 

Several major clinical trials have analysed the effect of statins on CVD risk. Meta-analyses of 

data from more than 90,000 individuals, synthesizing more than 400,000 years of follow-up, 

has been conducted by the Cholesterol Treatment Trialists’ collaboration (284,538). The large 

sample size of these studies has allowed for inference of statin effectiveness and the moderating 

impact of patients’ covariates on effectiveness. 

 

A key finding from the CTT meta-analysis was that an ‘approximately linear relationship’ exists 

between absolute reductions in LDL-C achieved by statin therapy and the proportional 

reductions in incidence of CVD (538). Further, it has been shown in large randomised controlled 

trials that statin efficacy, represented by reduction in LDL-C, is directly proportional to baseline 

LDL-C (339). Combining these two findings suggests that individuals with higher baseline 

LDL-C achieve greater absolute risk reduction attributable to statin therapy. 
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Navarese et al. performed meta-regression on longitudinal studies of cardiovascular health 

comprising of a combined 136,299 patients (339). Their study further supports the hypothesis 

that baseline LDL-C is a predictor of relative benefit from LDL-C-reducing therapy. The 

primary endpoint for this analysis was all-cause mortality. Multivariable meta-regression 

models found that every 40 mg/dL (1.03 mmol/L) increase in baseline LDL-C was associated 

with a relative risk of 0.91 (95% CI: 0.85-0.98) for all-cause mortality. This value was adjusted 

for magnitude of LDL-C reduction, baseline risk profile, type of cholesterol-reducing agent, and 

age. Secondary endpoints in the analysis included cardiovascular mortality and major adverse 

cardiovascular events (MACE) as clinical endpoints. The adjusted relative risk per 40 mg/dL 

increase in baseline LDL-C for these events were 0.88 (95% CI: 0.80-0.97) and 0.91 (95% CI: 

0.85-0.98), respectively. Relative risks were similar for myocardial infarction and coronary 

revascularization. However, no significant effect was found on cerebrovascular outcomes. 

 

Soran et al. (340) acknowledge the direct relationship between baseline LDL-C and CVD risk 

reduction from cholesterol-reducing therapy. They show that the number needed to treat with 

statins to prevent one CVD event is often lower in low- and intermediate-risk individuals with 

high baseline LDL-C compared with high-risk, low LDL-C individuals. 

 

Based on the analysis presented above, Thanassoulis et al. developed an equation to predict 10-

year absolute benefit (ARR10), specifically 10-year absolute risk reduction, attributable to statin 

therapy (341). This equation accounts for both absolute 10-year risk (AR10) and baseline LDL-

C:  

𝐴𝑅𝑅10 = 𝐴𝑅10,𝑢𝑛 − 𝐴𝑅10,𝑡𝑟 

In this equation 𝐴𝑅10,𝑡𝑟 and 𝐴𝑅10,𝑢𝑛 represent treated and untreated absolute 10-year risk of 

CVD, respectively. 𝐴𝑅10,𝑡𝑟 is a product of both untreated risk and baseline LDL-C. Therefore, 

ARR10 is also a product of these factors. Thanassoulis et al. estimated that the minimum ARR10 

expected in a population with AR10≥7.5% is approximately 2.3%. 

 

Previous studies estimated the potential health benefits associated with prioritizing patients for 

statin therapy based on ARR10 rather than AR10 (340,341,539). Each study found that adding 

statin treatment based on ARR10 to standard AR10-based treatment would lead to considerable 



251 
 

health gains in the U.S. population. However, these studies all adopted a short, 10-year time 

horizon and did not consider the economic costs of statin treatment strategies. 

 

8.3.2 Objective 

 

The objective of this study was to establish the relationships between baseline 10-year risk, 

baseline LDL-C, and long-term benefits from preventive statin therapy. In addition, this study 

aimed to quantify the cost-effectiveness of extending preventive statin therapy eligibility based 

on ARR10 in the U.S. ARR10 was assumed to correspond directly with both AR10 and LDL-C. 

This stratified approach to statin eligibility expansion was compared to lowering the blanket 

risk threshold to 5.0%.  

 

To appeal to a clinical audience, while also establishing the economic benefits associated with 

different strategies of prevention, both the clinical- and cost-effectiveness of changing standard 

of care were considered. 

 

8.3.3 PPICOSS 

 

Population: The U.S. CVD-free population, aged 40 years and above. 

 

Perspective: Health sector decision-maker. All healthcare costs accrued and population-level 

health gains are considered. 

 

Intervention: Intermediate-intensity statin therapy. In health benefit analysis, the discounted 

QALYs gained from statin treatment are considered, stratified by age of treatment initiation, 

sex, baseline risk, and baseline LDL-C. In population-level cost-effectiveness analysis, two 

treatment eligibility expansions to standard of care were considered: 

(i) expanding treatment to individuals with the lowest ARR10 in the AR10 ≥7.5% 

population (ARR10 ≥2.3%) 

(ii) expanding treatment further to individuals with AR10 ≥5.0%. 

 

Comparator: Intermediate-intensity statins for individuals with AR10 ≥7.5% or diabetes, high-

intensity statins for individuals with AR10 ≥7.5% and diabetes or LDL-C ≥190 mg/dL. 
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Outcome: Health benefit analysis – long-term QALY gains from preventive statin therapy, 

discounted 3% annually. Health economic analysis – long-term cost-per-QALY associated with 

statin therapy, with both costs and QALYs discounted 3% annually. 

 

Setting: Primary care in the U.S. 

 

Study Design: Microsimulation. 

 

8.3.4 Methodology 

 

CVD Microsim Model 

 

The Cardiovascular Disease (CVD) Microsimulation Model, which was discussed in Chapter 5, 

evaluated the cost-effectiveness of different statin prioritisation policies. Survival time, health-

related quality of life, and healthcare costs are assigned to health states in the model (ASCVD-

free, coronary heart disease, stroke, combined coronary heart disease and stroke, or dead) 

 

Simulation Cohort 

 

A cohort of U.S. adults aged 40 years at baseline was assembled by repeatedly sampling pooled 

1999-2014 National Health and Nutrition Examination Surveys guided by survey sampling 

weights. Adult lifetime risk factor trajectories were selected to intersect with cohort members’ 

cross-sectional NHANES characteristics. These trajectories were estimated in the CU-NHLBI 

Pooled Cohorts Study dataset to predict individual-level lifetime trends in CVD risk factors, 

conditioned on age, sex, race, body mass index, and other covariates. 

 

ASCVD risk prediction and model validation 

 

Risk functions for incident CHD, stroke, and non-cardiovascular mortality were estimated in 

the Columbia University NHLBI (CU-NHLBI) Pooled Cohorts dataset. C-statistics for these 

risk functions were 0.84, 0.85, and 0.87, respectively. The CVD Microsim Model was 

recalibrated to match outcomes from the previously published and extensively validated 
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FORTRAN model that shares the same input data. Simulation model predictions were also 

validated by comparing simulation output with cumulative CHD and stroke incidence from 

individual cohort studies and cumulative survival curves derived from U.S. life tables. Chapter 

5 discusses the validation and recalibration process for the model in more depth. 

 

Simulation Parameters 

 

The main health outcome in lifetime statin treatment simulations was lifetime QALYs gained. 

Lifetime ASCVD events prevented was a secondary outcome. ASCVD and non-CVD 

healthcare costs were estimated for economic evaluations. Future QALYs and costs were 

discounted at a rate of 3% annually (54). Simulation parameters are shown in Table 8-6 and 

reflected current knowledge about the costs, benefits, and risks associated with statin therapy. 

 

Intermediate-intensity statin therapy reduced baseline LDL-C by 29% and high-intensity statin 

therapy reduced baseline LDL-C by 43% (284). Individuals on statins experienced a slightly 

increased diabetes risk and incurred annual QALY decrements attributable to the inconvenience 

of daily pill-taking (440,497). A proportion of statin users may suffer from myalgias and other 

minor medication side effects. Meta-analysis evidence firmly rejects the hypothesis that 

persistent statin use induces such adverse effects and these were therefore not modelled (446). 

These effects were accounted for in the rate of medication discontinuation and rate of follow up 

office visits, but no disutility was assumed. In a sensitivity analysis, 4.7% and 0.006% of 

persistent statin users experienced mild and major adverse events (37).  

 

Adherence to treatment (proportion persisting in taking statin beyond persistence observed in 

clinical trials) was assumed to be 67%, 53%, and 50% in the first, second, and subsequent years 

of treatment, respectively (540). These adherence factors attenuated LDL-C reduction, side 

effect risks, and treatment-related costs. Annual costs of medications and treatment monitoring 

were also included. 
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Parameter 
Base 
Case 

Distribution 
for PSA 

Lower Upper Source 

Statin LDL-C reduction (% change from baseline)  

Intermediate-intensity 29 Beta 14 38 (284) 

High-intensity 43 Beta 39 46 (284) 

RR per 1.0 mmol/L LDL-C reduction          

CHD 0.76 Beta 0.73 0.79 (251) 

Stroke 0.85 Beta 0.80 0.89 (251) 

Statin-induced diabetes, 
absolute risk increase (%) 

0.50 Log normal 0.00 0.01 (440) 

Pill-taking disutility 0.0011 Beta 0.0000 0.0055 (497) 

Treatment adherence*  

Year 1 67% Beta 50% 84% (540) 

Year 2 53% Beta 40% 66% (540) 

Subsequent Years 50% Beta 38% 63% (540) 

Statin costs           

Intermediate-intensity $24.16  Gamma $18.12  $30.20  (541) 

High-intensity $55.22  Gamma $41.42  $69.03  (541) 

Check-up and screening visit 
costs           

Check-up visit, on treatment $77.19  Gamma $57.89  $96.49  (542) 

Screening visit, no treatment $77.19  Gamma $57.89  $96.49  (542) 

Other costs           

Lipid panel test $19.00  Gamma $14.25  $23.75  (350) 

Liver panel test $1.17  Gamma $0.88  $1.46  (350) 

Weighted statin-induced 
diabetes cost 

$7.75  Gamma $5.81  $9.69  (350) 

Annual number of visits           

Years between screening visits 5  ND** 4 6 (27) 
Primary care check up on 
treatment (yearly or more) 1.25  Gamma 0 2.5 (27) 

Discount Rates           

Health 3.00% ND 6% 0 (54) 

Costs 3.00% ND 6% 0 (54) 

*Adherence represents adherence rate beyond observed adherence in clinical trials, 
reduces LDL-C, treatment-related disutility and treatment-related costs in 
simulation. **No distributional assumptions in probabilistic sensitivity analysis. 

Table 8-6: Simulation parameters for study of AR10 and ARR10-based statin therapy  
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Health Outcomes Analysis 

 

A health outcomes analysis evaluated the lifetime discounted QALYs gained from initiating 

preventive statin therapy in U.S adults without ASCVD at age 40, 50, or 60 years. Lifetime 

statin health outcomes were stratified by baseline AR10, baseline LDL-C, sex, and age at 

treatment initiation.  

 

Population Health Economic Analysis 

 

Health economic analyses evaluated lifetime cost-effectiveness associated with prioritizing a 

range of ASCVD risk groups for preventive statin therapy. In all health economic analyses, a 

U.S. health sector perspective was adopted. Therefore, all formal healthcare costs were included 

in the analysis, regardless of payer (54). 

 

Treatment groups included treat if AR10 ≥7.5%, (current standard of care; Group A); treat ARR10 

≥2.3% but AR10 <7.5% (Group B); and treat the remainder of AR10 ≥5.0% (Group C). The 

ARR10 threshold of 2.3% represents the minimum expected benefit in individuals eligible for 

statins under the 2013 ACC/AHA guidelines (that is, the minimum expected ARR10 at the lowest 

AR10) (341). The treatment groups are presented graphically in Figure 8-7, with each scatterplot 

point representing one-person year of treatment eligibility over the collective lifetime of the 

NHANES cohort and pie chart wedge areas representing the proportion of total person-years 

falling within the treatment group categories. Treatment strategies added these treatment groups 

sequentially and compared the outcomes associated with adding each new treatment group to 

the prior strategy incrementally: Group A was treated first, and then A+B, followed by A+B+C. 

Group A is currently strongly recommended for statin treatment in the 2013 ACC/AHA 

guideline. No specific guideline relates to Group B, but most of these individuals fall into the 

5.0-7.4% AR10 range. Group C is a large group for which treatment initiation recommendations 

are unclear. 

 

Following the ACC/AHA guidelines, in all treatment scenarios, patients with diabetes but AR10 

<7.5% were treated with intermediate-intensity statins (27). Similarly, in all treatment scenarios, 

patients with LDL-C ≥190 mg/dL and patients with diabetes and AR10 ≥7.5% received high-
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intensity statins. These groups were treated along with Group A and in all subsequent 

incremental strategies. 

 

A new wave of individuals became statin treatment eligible every five years, based on these 

treatment strategies and determined by sex and dynamic changes in age and risk factor levels. 

 

 

                                               
Figure 8-7: Treatment subgroups in population-level analysis. Each point represents 
estimated AR10 and ARR10 for one life year of an individual in NHANES 1999-2014. 
Underlying pie chart represents relative size of each treatment group. 

 

Stratified Health Economic Analysis 

 

Additional stratified analysis estimated ICERs associated with initiating statin therapy at age 40 

in male and female subgroups of the U.S. population, according to combinations of baseline 

AR10 and ARR10, each compared with no treatment.  Statin treatment benefit was classified as 

very cost-effective (ICER <$10,000/QALY or cost-saving), moderately cost-effective (ICER 

≥$10,000/QALY but <$50,000/QALY), borderline cost-effective (ICER ≥$50,000/QALY but 

<$150,000/QALY), or not cost-effective (ICER ≥$150,000/QALY) (543). 
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Sensitivity Analyses 

 

Sensitivity analysis quantified uncertainty inherent in population-level cost-effectiveness 

modelling. One-way sensitivity analyses explored the results of the health economic analysis at 

upper and lower uncertainty bounds of treatment parameters described in Table 8-6. 

 

Probabilistic sensitivity analyses stochastically sampled Table 8-6 input distributions in 500 

independent iterations. Using the cost and QALY results from probabilistic analyses, a cost-

effectiveness acceptability curve was produced to describe the probability of each treatment 

strategy being the most cost-effective option for decision-makers at a range of willingness-to-

pay thresholds. 

 

Secondary Analysis: Cost-Effectiveness of ARR in Scottish Population 

 

The objective of this study was to estimate the health benefits and cost-effectiveness of 

prioritising patients with a combination of elevated LDL-C and 10-year risk for preventive statin 

therapy. This analysis adopted a U.S. health sector perspective, with the U.S-based CVD 

Microsim Model. Conducting the analysis from a U.S. perspective allowed for collaboration 

with U.S. researchers, leading to ongoing work on a research paper that aims to influence clinical 

practice in the U.S. However, the results cannot be compared to previous results in this thesis; 

CVD event risk, risk scores used in clinical practice, and costs of health services vary between 

Scotland and the U.S. A secondary analysis was therefore conducted using the Scottish CVD 

Policy Model to allow comparison of the costs and benefits associated with ARR compared to 

other prioritisation strategies considered in this thesis. 

 

In the secondary analysis, population-level cost-effectiveness analysis was conducted from the 

perspective of a Scottish health sector decision-maker. The same methodology (e.g. estimation 

of Scottish population’s risk factor distribution using SHeS 2011, treatment-related costs and 

effects, projection of results) was adopted as in Chapter 7 and Section 8.2. Two ARR strategies 

were defined which would treat approximately the same number of individuals as ASSIGN 20 

and ASSIGN 10. Descriptive statistics of individuals treated, discounted QALYs, discounted 
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healthcare costs, CVD events prevented, and life years gained, were presented for each strategy. 

The SIMD-distribution of discounted QALY gains were also presented. 

 

8.3.5 Results 

 

Study cohort characteristics and outcomes without statin treatment 

 

Characteristics of the simulation cohorts at ages 40 (baseline), 50, and 60 years in the scenario 

without statin treatment are shown in Table 8-7. In total, 1,000,000 individual ASCVD life 

histories were simulated (500,000 female) starting at age 40 until age 89 years. Without statin 

treatment, approximately 4.7% of the baseline cohort was projected to have an incident ASCVD 

event by age 50 years. An additional 7.5% was projected to experience incident ASCVD by age 

60 years. AR10 increased with age, while mean LDL-C increased until age 50 years then 

decreased. 

 

Health Outcomes Analysis 

 

Across all age, AR10, and sex categories, individuals with higher LDL-C consistently achieve 

greater lifetime health benefits from statin therapy, as shown in Figures 8-8 and 8-9. When 

assessed at age 40, the large majority of individuals had risk scores <5.0%; conversely, when 

assessed at age 60, data were too sparse for males and females with AR10 <5.0%. 

 

At the same age at initiation, lifetime statin benefits increase directly and linearly with 

increasing AR10. At any given AR10, lifetime statin benefits are greater with higher baseline 

LDL-C. Indeed, high LDL-C, low-risk patients achieve greater lifetime statin benefit than high-

risk, low LDL-C individuals. For example, 40 year-old males with LDL-C ≥160 mg/dL and 

AR10 <1% benefit similarly from statins as 50-year-old males with AR10 15-20% and LDL-C 

130-159 mg/dL. Similarly, 40-year-old females with AR10 <1% and LDL-C ≥160 mg/dL benefit 

as much from statin treatment as 60-year old females with AR10 10-15% and LDL-C 130-159 

mg/dL. Notably, women with low levels of LDL-C may experience negative QALYs from 

treatment, regardless of baseline AR10. This is caused by the low levels of absolute risk reduction 

achieved in these populations and the existence of pill-taking disutility
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Table 8-7: Descriptive statistics of simulation cohort at ages 40, 50, and 60 years. Simulation starting at age 40. Data represents 
scenario with no statin treatment. 
 

Simulation baseline age (years) 40 50 60 40 50 60 40 50 60

Characteristics

N CVD-free 500,000 476,215 433,675 500,000 461,250 389,580 1,000,000 937,465 823,255

Cumulative mortality (%) 0.0 1.6 5.9 0.0 2.7 9.6 0.0 2.1 7.8

Cumulative CVD incidence (%) 0.0 3.5 8.7 0.0 5.9 15.6 0.0 4.7 12.2

African American (%) 11.5 11.4 11.2 10.5 10.5 9.9 11.0 10.9 10.6

<2.5 % 92.0 79.1 3.8 75.0 49.5 0.0 83.5 64.5 2.0

2.5-4.9 % 6.8 17.2 64.8 18.5 32.6 0.1 12.7 24.7 34.2

5.0-7.4 % 0.8 2.5 18.2 4.9 12.1 16.2 2.9 7.2 17.2

>=7.5% 0.3 1.2 13.2 1.5 5.8 83.7 0.9 3.5 46.6

<100 mg/dL 17.6 14.4 16.9 11.3 10.8 18.7 14.5 12.6 17.7

100-129 mg/dL 50.0 51.9 55.7 45.0 49.0 57.4 47.5 50.4 56.5

130-159 mg/dL 28.1 28.6 23.0 35.5 33.2 20.9 31.8 30.8 22.0

>=160 mg/dL 4.3 5.2 4.4 8.1 7.1 2.9 6.2 6.1 3.7

Ten year ASCVD risk (mean) 0.9 1.9 4.8 2.0 3.4 11.6 1.5 2.6 8.0

LDL cholesterol (mean, mg/dL) 120.6 122.6 119.6 127.4 125.9 117.4 124.0 124.2 118.5

HDL cholesterol (mean, mg/dl) 58.0 59.7 60.9 46.8 47.1 48.2 52.4 53.5 54.9

Systolic blood pressure (mean, mmHg) 115.1 120.0 124.7 121.0 123.5 125.5 118.1 121.7 125.0

Active smoking  (%) 18.9 18.1 16.9 26.4 25.0 22.7 22.6 21.5 19.6

Diabetes (%) 3.6 8.9 16.4 5.3 12.9 21.7 4.4 10.9 19.0

Females Males Total

Ten year ASCVD risk category (%)

LDL cholesterol category (%)
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Policy 
Years of             

Treatment 
Eligibility 

CVD                                    
Events 

CHD                             
Events 

CVD Free                           
Years 

Life                        
Years 

Discounted                                      
QALYs 

Discounted                              
Costs 

ICER*                     
($/QALY) 

Women  

Treat AR ≥7.5% 8,446,906 353,000 238,000 18,019,000 20,267,000 11,526,000 73,335,900,000 Reference 

Add AR <7.5% but AB ≥2.5% 9,140,950 353,000 237,000 18,028,000 20,269,000 11,526,700 73,336,100,000 350 

Add remainder AR ≥5.0% 10,014,973 352,000 236,000 18,038,000 20,271,000 11,527,100 73,340,300,000 7,700 

Men 

Treat AR ≥7.5% 10,921,835 552,000 367,000 15,143,000 18,721,000 10,943,700 72,517,600,000 Str. Dom** 

Add AR <7.5% but AB ≥2.5% 12,032,933 551,000 365,000 15,261,000 18,725,000 10,945,900 72,504,500,000 Reference 

Add remainder AR ≥5.0% 12,868,559 550,000 365,000 15,285,000 18,727,000 10,946,800 72,505,400,000 1,000 

Combined Women and Men 

Treat AR ≥7.5% 19,368,741 906,000 605,000 33,162,000 38,989,000 22,469,700 145,853,500,000 Str. Dom** 

Add AR <7.5% but AB ≥2.5% 21,173,883 903,000 603,000 33,289,000 38,995,000 22,472,500 145,840,600,000 Reference 

Add remainder AR ≥5.0% 22,883,532 902,000 601,000 33,323,000 38,998,000 22,474,000 145,845,700,000 3,400 

*Incremental to prior most effective, non-dominated strategy **Strictly dominated 

Table 8-8:  Cost-effectiveness, person years of treatment, CHD events prevented, ASCVD events prevented, CVD-free years 
gained, and life years gained for three AR10 and ARR10-based strategies for statin prioritization. 
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Figure 8-8: Average discounted QALY gains from statin therapy versus baseline AR10 
for women, stratified by baseline LDL-C. Dotted line: statin therapy initiated at age 
40, dashed line: statin therapy initiated at age 50, solid line: statin therapy initiated 
at age 60. Point size represents relative size of subgroup population. 
 

 

  

Figure 8-9: Average discounted QALY gains from statin therapy versus baseline AR10 
for men, stratified by baseline LDL-C. Dotted line: statin therapy initiated at age 40, 
dashed line: statin therapy initiated at age 50, solid line: statin therapy initiated at 
age 60. Point size represents relative size of subgroup population. 
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Population Health Economic Analysis 

 

In both the male and female simulations, large health gains were achieved by expanding statin 

eligibility. Statin therapy according to any strategy would prevent a larger number of CVD 

events in men, as shown in Table 8-8. 

 

For women, the ICER associated with extending treatment eligibility to Group B was 

approximately $350/QALY. The ICER associated with further extending treatment eligibility 

by reducing the threshold for treatment initiation to 5% would be approximately $7,700/QALY. 

 

For men, treating Group A only (current standard of care) was strictly dominated by treating 

Groups A+B. Adding men with ARR10 ≥2.3% but AR10 <7.5% to standard of care treatment 

would therefore gain health and save costs. The ICER for treating all individuals with AR10 ≥5% 

or ARR10 ≥2.3% (Groups A+B+C) compared with treating Groups A+B only was 

approximately $1,000/QALY. 

 

Compared with current practice, men would gain approximately 78% of the lifetime QALYs, 

71% of the life years, and 93% of the total CVD free years associated with adding ARR10 ≥2.3% 

but AR10<7.5%, respectively. Men would also experience around 62% of the total person years 

of treatment. 

 

When men and women were combined, extending treatment from standard of care to patients 

with ARR10 ≥2.3% was cost saving, and extending eligibility further to patients with AR10 ≥5% 

produced an ICER of $3,400/QALY. Given a willingness-to-pay threshold of $50,000/QALY, 

reducing the AR10 risk threshold to ≥5% while also treating all patients with ARR10 ≥2.3% was 

the optimal strategy. This finding was consistent in both the male and female subgroups. 

 

Sensitivity Analysis 

 

Figures 8-10 to 8-13 present results from the one-way sensitivity analysis in a tornado diagram. 

Figures 8-10 and 8-11 relate to the transition from treating Group A alone to treating Group 

A+B for men and women, respectively. Figure 8-12 and 8-13 relate to the transition from 

treating Group A+B compared to treating Group A+B+C. 
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Figure 8-10: Tornado diagram representing ICER of treating women in Groups A+B 
compared to Group A alone 

 
Figure 8-11: Tornado diagram representing ICER of treating men in Groups A+B 
compared to Group A alone 
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*Employing the upper estimate of pill-taking disutility led to the ARR10 approach 
being strictly dominated by no statin treatment 

Figure 8-12: Tornado diagram representing ICER of treating women in Groups A+B+C 
compared to Group A+B. 
 

 

Figure 8-13: Tornado diagram representing ICER of treating men in Groups A+B+C 
compared to Group A+B 
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Uncertainty in the ICER estimate was greater for women than men, likely due to lower event 

rates in women. For both men and women, efficacy of statin therapy and regularity of on-

treatment monitoring visits were strong determinants of cost-effectiveness. For women, higher 

pill-taking disutility led treatment of individuals with AR10 ≥7.5% or ARR10 ≥2.3% to be strictly 

dominated. At an annual pill-taking disutility of around 0.0033, the ICER for women fell below 

$50,000/QALY. An annual pill-taking disutility of 0.0033 for a 60-year-old with 20 years 

remaining life expectancy would amount to trading approximately 3.4 weeks of healthy life to 

avoid taking statins for the remaining lifetime. 

 

Probabilistic sensitivity analysis results are presented in Figure 8-14 for women and Figure 8-

15 for men. For men and women, at very low levels of willingness-to-pay (<$5,000/QALY), 

standard treatment has the highest probability of being cost-effective. As willing-to-pay 

increases, the probability that adding treatment of ARR10 ≥2.3% is optimal increases. However, 

if a decision-maker is willing to invest $10,000/QALY for men and $20,000/QALY for women, 

treating all AR10 ≥5.0% and ARR10 ≥2.3% becomes the most cost-effective strategy. 

 

Stratified Health Economic Analysis 

 

Figure 8-16 converts the health economic results into color-coded cost-effectiveness decision 

grids, ranking the cost-effectiveness (ICERs) of lifetime statin therapy at age 40 for a range of 

baseline AR10 and baseline LDL-C subgroups compared with no statin treatment. All 

combinations of AR10 and LDL-C are very or moderately cost-effective in men. In both men 

and women, cost-effectiveness increases with both higher AR10 and higher LDL-C. 

 

Treating individuals with low AR10 and high LDL-C has a health economic value equivalent to 

treating individuals with high AR10 and low LDL-C. This principle is illustrated most strikingly 

in the similar lifetime cost-effectiveness of treating the highest AR10 men and women aged 40 

years with LDL-C <100 mg/dL and the lowest AR10 men and women with LDL-C ≥160 mg/dL. 
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Figure 8-14: Cost-effectiveness acceptability curve for women 
 
 
 

 
Figure 8-15: Cost-effectiveness acceptability curve for men 
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Figure 8-16: Cost-effectiveness grids showing ICERs associated with lifetime 
intermediate-intensity statin therapy (starting at age 40) for a range of AR10- and 
LDL-C-defined subgroups. Results stratified by sex. 

 

Secondary Analysis: Cost-Effectiveness of ARR in Scottish Population 

 

Two absolute risk reduction-based prioritisation strategies were defined: ARR 20 which treats 

approximately the same number of individuals as ASSIGN 20 and ARR 10 which treats 

approximately the same number of individuals as ASSIGN 10. Individuals were treated under 

ARR 20 and ARR 10 if they were expected to achieve a minimum absolute risk reduction from 

treatment of 3.95% and 6.1%, respectively. 

 

Table 8-9 presents the descriptive statistics for the cohort of individuals prioritised for statin 

therapy under blanket risk threshold policies, ARR policies, and age-stratified risk threshold 

policies, and statistics for the overall SHeS 2011 population. A greater proportion of older 

individuals were treated under the ARR approach to prioritisation compared to age-stratification 

of risk thresholds. Indeed, it appears that ARR strategies prioritise a similar group of patients 

for treatment as the blanket threshold strategies. 

 

Cost-effectiveness results: Table 8-10 presents cost-effectiveness results for the ARR strategies 

compared to Blanket 20, Age-Strat 20, Blanket 10, and Age-Strat 10. Age-Strat 20 is extendedly 

dominated by Blanket 10. Blanket 20, ARR 20, Blanket 10, ARR 10, and Age-Strat 10 lead to 

consecutive increases in costs and QALYs. A decision-maker with a cost-effectiveness 

threshold of £20,000/QALY would choose to implement ARR 10. 

 

 

≥$150,000 per QALY Not cost-effective

$50,000-100,000 per QALY Borderline cost-effective

$10,000-50,000 per QALY Moderately cost-effective

<10,000 per QALY (or cost-saving) Very cost-effective

<100 100-129 130-159 >160

0-1% 215,815 88,360 23,773 9,633

1-2.5% 88,697 26,431 10,516 341

2.5-5% 31,346 11,094 1,196 Cost Saving

≥5% 4,729 608 Cost Saving Cost Saving

Women
Baseline LDL-C (mg/dl)
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<100 100-129 130-159 >160

0-1% 41,200 21,883 14,820 9,221

1-2.5% 34,127 17,728 10,633 5,415

2.5-5% 25,437 13,197 5,061 1,189

≥5% 11,437 4,182 3,610 192

Men
Baseline LDL-C
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Overall 
Popula

-tion 

ASSIGN 
20 

Age-
Strat 

20 

ARR  
20 

ASSIGN 
10 

Age-
Strat 

10 

ARR  
10 

P
ro

p
o
rt

io
n
 o

f 
A

g
e
-

G
ro

u
p
 T

re
a
te

d
 (

%
) 

40-44 n/a 0 5 0 3 12 2 

45-49 n/a 2 14 2 14 29 16 

50-54 n/a 5 30 6 38 49 39 

55-59 n/a 15 50 19 74 74 74 

60-64 n/a 41 45 45 94 86 93 

65-69 n/a 75 52 75 100 85 99 

70-74 n/a 92 65 89 100 80 99 

75-79 n/a 100 74 92 100 88 100 

80+ n/a 100 0 67 100 81 76 

A
v
e
ra

g
e
 V

a
lu

e
 

Male (%) 42 45 53 47 47 51 47 

SIMD 19.5 21.2 23.5 20.6 20.5 21.4 20.4 

Diabetes (%) 7 15 17 13 11 11 10 

FH (%) 46 68 73 67 62 65 61 

CPD 7 8 10 8 7 7 7 

SBP (mmHg) 131 134 134 134 133 133 133 

TC (mmol/L) 5.8 5.8 5.8 5.9 5.8 5.8 5.8 

HDL (mmol/L) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

Table 8-9: Descriptive statistics of treated patients for Blanket, ARR, and Age-Strat 
policies 

 

 

Policy 
Number 
Treated 

Discounted 
QALYs 

Discounted 
Cost 

(£1000's) 

ICER  
(£/QALY) 

Familial Hyp. Reference 

Blanket 20 793,559 92,300 636,000 6,900 
ARR 20 793,762 96,300 687,000 12,900 

Age-Strat 20 793,596 99,500 882,000 Ext. Dominated 

Blanket 10 1,381,059 164,000 1,596,000 13,500 

ARR 10 1,380,535 166,000 1,627,000 15,700 

Age-Strat 10 1,381,054 168,000 1,719,000 36,500 

Ext. – extendedly 

Table 8-10: Base case cost-effectiveness analysis, Blanket, ARR, and Age-Strat 
policies 
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Intermediate outcomes: Primary CVD events prevented, life year gains, and the disaggregation 

of costs are presented in Tables 8-11 and 8-12. ARR policies prevent fewer events than Age-

Strat policies and result in a smaller number of life year gains. 

 

Policy 
Primary 

 CVD Events  
Prevented 

Life Years 
 Gained 

Familial Hyp. Reference 

Blanket 20 27,000 170,000 
ARR 20 28,000 181,000 
Age-Strat 20 29,000 198,000 
Blanket 10 49,000 351,000 
ARR 10 49,000 356,000 

Age-Strat 10 50,000 368,000 

Table 8-11: Intermediate Outcomes for Blanket, ARR, and Age-Strat policies 

 

Policy 
Disc. Costs (£1000’s) 

Non-CVD CVD Statin Monitoring 

Familial Hyp. Reference 

Blanket 20 720,000 -718,000 84,000 550,000 
ARR 20 776,000 -751,000 88,000 573,000 
Age-Strat 20 986,000 -889,000 108,000 678,000 
Blanket 10 1,562,000 -1,322,000 190,000 1,166,000 
ARR 10 1,596,000 -1,337,000 192,000 1,176,000 
Age-Strat 10 1,707,000 -1,408,000 200,000 1,220,000 

Table 8-12: Disaggregated costs, Blanket, ARR, and Age-Strat policies 

 

Probabilistic sensitivity analysis: Figure 8-17 presents results from a probabilistic sensitivity 

analysis in which risk function hazard ratios and key simulation parameters (Table 7-4) were 

sampled stochastically in 500 independent iterations. At a willingness-to-pay threshold of 

£20,000/QALY, ARR 10 was optimal in 70% of iterations. 

 

Inequality Analysis: Results were disaggregated to estimate the effect of threshold reduction on 

health inequalities. Figure 8-18 shows the discounted QALY gains achieved per 1,000 

individuals in the population, disaggregated by SIMD quintile. In absolute terms, all SIMD 

quintiles achieved greater health gains under ARR 10 than ARR 20. Absolute health gains 

continuously increased with level of social deprivation. 
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Figure 8-17: Cost-effectiveness acceptability curve, ASSIGN 20, Age-Strat 20, ARR 
20, ASSIGN 10, Age-Strat 10, and ARR 10  

 

 

Figure 8-18: Discounted QALY gains for absolute risk reduction and blanket risk 
threshold strategies per 1,000 individuals, disaggregated by SIMD quintile 

 

The proportion of health gains achieved per quintile of social deprivation was also estimated. 

These results are displayed in Figure 8-19. The distribution of discounted QALY gains was 

similar for the absolute risk reduction-based treatment strategies. Both policies were 

progressive: they led to a greater proportion of health gains being achieved in the two most 

deprived SIMD quintiles of the Scottish population compared with the two least deprived 

quintiles.  
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ARR 20 was less progressive than Blanket 20. The two most deprived SIMD quintiles combined 

gained 44% of all health benefits under Age-Strat 20, compared to 37% of health gains achieved 

by the two least deprived quintiles – a 7% difference. This difference was 11% for Blanket 20. 

ARR 10 was less progressive than Blanket 10. The difference in proportion of QALY gains 

between the two most deprived and least deprived quintiles for ARR 10 and Blanket 10 were 

6% and 7%, respectively. 

 

 

Figure 8-19: Proportion of discounted QALY gains achieved by different SIMD 
quintiles, absolute risk reduction and blanket risk threshold strategies 

 

8.3.6 Discussion and Limitations 

 

Discussion 

 

Previous work has estimated the short-term (10-year) health benefits that could be achieved with 

ARR10-based prioritisation for preventive statin therapy. This study builds on these studies, 

employing a much lengthier time horizon. This longer time horizon allowed for the capture of 

lifetime statin benefits in younger adults with elevated LDL-C. The CVD Microsimulation 

Model employed in the analysis also accounts for the competing risk of non-CVD mortality 

faced by older individuals. Additional strengths of this analysis include: representation of 

generic health outcomes (QALYs) which permit comparison between disease areas, estimations 

of the costs associated with different treatment strategies, and discounting of future outcomes. 
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The current paradigm in CVD prevention is based on absolute risk alone. This may be biased 

due to short-term perspective and a failure to account for covariates which modify treatment 

effect. The health benefit analysis here showed that the long-term, discounted benefits from 

statin therapy are greater for individuals with elevated baseline LDL-C. Indeed, LDL-C appears 

to be a stronger predictor of capacity-to-benefit from statin therapy than AR10 alone. 

 

In the introduction of this study it was stated that the greatest degree of uncertainty in current 

U.S. guidelines relates to treatment decisions for individuals with an AR10 of 5.0-7.5%. The 

population-level cost-effectiveness analysis presented shows that it would be a cost-effective 

use of healthcare resources to treat individuals with AR10 <7.5% but ARR10 ≥2.3%. However, 

the highly cost-effective nature of statins suggests that adding treatment to all individual with 

AR10 ≥5.0% would also be cost-effective. 

 

A secondary analysis, set in the Scottish NHS, considered the cost-effectiveness of ARR-based 

prioritisation compared to blanket and age-stratified risk thresholds. These results showed that 

implementing ARR to prescribe statins would lead to fewer discounted QALY gains in the 

Scottish population compared to equivalent age-stratified risk threshold policies. ARR-based 

policies likely reclassify a smaller group of intermediate-risk patients than age-stratification of 

risk thresholds, as exhibited in the descriptive statistics of treated patients. However, ARR-based 

prioritisation is less expensive than age-stratification of risk thresholds. Indeed, ARR 10 was 

the optimal strategy considered for decision-makers with a cost-effectiveness threshold of 

£20,000/QALY. 

 

Limitations 

 

This study assumed a direct association between baseline LDL-C and statin benefit (risk 

reduction is directly related to unit reduction in LDL-C) and did not account for statin effects 

independent of LDL-C change. Specifically, statin benefits were modelled based only on LDL-

C change and not on alternative measures of statin efficacy like change in non-HDL cholesterol 

or Apo-E level. ASCVD prediction was based on “current” characteristics and not cumulative 

exposure history. Hence, this risk prediction may have underestimated the benefits of treating 

high LDL-C earlier in life, including before age 40. 
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Further research should consider the impact of changing the demographic profile of patients 

receiving statin therapy. Putting the onus of treatment on LDL-C alongside AR10 will likely 

result in the treated population being younger and less healthy. Changing the demographic 

profile of those treated may affect treatment uptake and adherence. 

 

8.4 Chapter Summary 

 

The purpose of this chapter was to analyse strategies which incorporate 10-year risk alongside 

another variable to determine who should receive preventive therapy for CVD. Age-stratified 

risk thresholds target treatment at individuals who are at heightened risk within their age-group 

due to unhealthy levels of modifiable risk factors. The absolute risk reduction approach to 

prevention targets treatment at patients with elevated levels of a treatment effect modifier. In 

the case of statins, this modifier is LDL-C. Each of these approaches aims to better reflect 

heterogeneity in treatment outcome between patients than a blanket risk threshold approach. 

 

Individuals with the same 10-year risk score may experience very different outcomes from 

preventive therapy dependent on their age. Age-stratification of risk thresholds can be 

undertaken to prioritise treatment for a greater number of young, unhealthy individuals and 

fewer old, healthy individuals. Younger individuals face fewer competing risks and are therefore 

likely to gain more health from preventive therapy. The analysis in this chapter showed that age-

stratification of risk thresholds leads to an improvement in overall population health. However, 

this strategy also requires regular monitoring of individuals from a young age. This regular 

monitoring, coupled with extended exposure to pill-taking disutility, leads age-stratification to 

have an ICER in excess of the cost-effectiveness threshold in the U.K. Innovative means of 

providing low cost patient monitoring would make age-stratification of risk threshold much 

more cost-effective. 

 

Individuals with the same 10-year risk score but different levels of a treatment effect modifier 

may also experience different outcomes from preventive therapy. In the case of statin therapy, 

LDL-C is an important determinant of absolute CVD risk reduction. Analysis in this chapter 

showed that, when risk is kept constant, individuals with elevated LDL-C achieve greater health 

benefits from statin therapy. It was additionally shown that expanding current treatment 
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guidelines in the U.S. to include treatment for individuals with intermediate risk and elevated 

LDL-C would be cost-effective. Further expansion of treatment guidelines to all intermediate-

risk patients would likely also be cost-effective. However, physicians may be inclined to prefer 

treatment strategies which focus on a subset of patients with an elevated level of a well-

established CVD biomarker. 

 

Age-stratified risk thresholds and the absolute risk reduction approach to statin prioritisation 

represent improvements upon current practice. They better reflect heterogeneity in patient 

outcome than simple 10-year risk scoring, potentially leading to welfare gains in the population. 

However, both policies modulate risk-based decision-making with one variable. Directly using 

decision models in clinical practice allows multiple drivers of heterogeneity in cost-

effectiveness to be addressed concurrently. Chapter 9 includes a cost-effectiveness analysis of 

such a policy for statin prioritisation.  
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Chapter 9 

Using Decision Models in Clinical Practice 

 

9.1 Purpose 

 

This thesis has so far considered two broad approaches to prioritising individuals for preventive 

statin therapy: continued use of 10-year risk scoring and reformulating treatment decisions 

based on 10-year risk score alongside some other determinant of benefit. 

 

There are advantages and disadvantages to the approaches hitherto assessed. Analysis has shown 

that, compared to standard of care, reducing the risk threshold for treatment initiation, improving 

the validity of existing risk scores, and modulating risk-based treatment decisions with age- and 

LDL-C-stratification may all lead to cost-effective improvements in population health. 

However, none of these policies simultaneously address multiple causes of heterogeneity in 

cost-effectiveness of statin therapy. 

 

In the presence of competing risks, missing variables, misspecified models, and non-linear 

treatment effects, it is difficult to define a decision rule that maps any specific variable to an 

individual’s capacity-to-benefit from CVD prevention. As presented in Section 5.5.2, high-risk 

young adults generally gain more life years from treatment than elderly individuals. However, 

this is not necessarily true when the younger individual’s risk is driven by smoking. Smokers of 

all ages are subject to significant fatal competing risks (343), and this drastically limits their 

capacity-to-benefit from preventive treatment. 

 

There exists a complicated network of predictors and interactions that determine an individual’s 

capacity-to-benefit from preventive therapy in CVD. It is therefore not surprising that defining 

a simple decision rule to prioritise patients for such treatment is very difficult. A final approach 

to statin prioritisation that will be considered is direct utilisation of decision-analytic models in 

clinical practice. Such an approach to prevention would necessitate a paradigm shift in clinical 

practice towards individual-level decision-making. 
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9.2 Cost-Effectiveness Analysis: Direct Use of Decision Models in Clinical Practice 

 

9.2.1 Background 

 

Decision-analytic models are tools which synthesise information regarding heath care 

interventions. They exist in many different forms including simple decision trees, Markov 

models, and discrete event simulation models. A distinguishing feature of these models which 

is pertinent to this chapter is that they predict absolute outcomes (e.g. life years, QALYs) as 

opposed to intermediate outcomes (e.g. risk reduction). 

 

Decision-analytic models are commonly used in cost-effectiveness analysis. They can quantify 

long-term costs and effects associated with a treatment, projecting both beyond the time horizon 

of clinical trial evidence. Another use for decision-analytic models is in clinical practice. In this 

setting they can be used as tools for shared decision-making or to objectively guide physicians’ 

decisions. 

 

Decision Models and Shared Decision-Making 

 

Decision-analytic models may be employed in clinical practice to help promote shared decision-

making. In this setting they are often referred to as ‘decision aids’ or ‘decision tools’. Shared 

decision-making is described by Barry and Edgman-Levitan (544) as a collaborative process 

between clinicians and patients. It aims to ensure that both health care recipient and provider 

have the same information regarding treatment options, allowing both to contribute to the final 

treatment decision. It may also help to increase patient adherence to treatment regimens as it 

better communicates to them potential benefits associated with the treatment (545). 

 

Despite the benefits offered by decision-analytic models in shared decision-making, they have 

rarely been used to help patients and clinicians come to shared decisions in clinical practice 

(546,547). Some examples of decision-analytic models used as shared-decision making aids do 

exist, however. 

 

Veloso’s agent-based simulation model of multiple sclerosis was developed for use in shared 

decision-making (548). This model considers baseline characteristics of a patient suffering from 
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chronic multiple sclerosis. Using this information, if performs multiple simulations of the 

patient’s potential 30-year disease progression. This progression can be altered by a list of 

treatment options. Alongside physicians, patients can observe the range of predicated outcomes 

and determine their preferred course of treatment. The model’s developers concluded that it is 

a valuable and reliable prediction tool and could be used in clinical practice. 

 

Nemes et al. (549) also developed a decision model for use in shared decision-making. Using 

stacked predictive models, their tool predicts 1-year health-related quality of life outcomes for 

patients receiving total hip replacements, dependent on a range of patient-level predictors. The 

authors conclude that such tools could be useful in clinical practice in the future. However, they 

also note that the predictive power of their model was not adequate for use in current clinical 

practice. 

 

Decision-Analytic Models to Guide Clinical Practice 

 

Decision-analytic models have also been developed to help physicians make objective decisions 

about treatment strategies in clinical practice. These models range across disease areas and 

involve differing degrees of modelling complexity. 

 

Montgomery et al. evaluated the use of a decision tree as a decision-making aid in the treatment 

of hypertension (550,551). In a randomly-selected sample of U.K. patients, they employed a 

decision tree to determine whether a hypertensive patient was recommended blood pressure-

reducing medication. This decision was based on the individual’s preference for CVD aversion 

and their treatment-related disutility, both measured using standard gamble methodology. The 

decision analysis notified GPs that the patient should be treated if their expected utility from 

treatment exceeded that of no treatment. There was marked difference between the population 

prioritised for treatment using decision analysis and the population that would be recommended 

treatment based on conventional SBP- and risk-based guidelines. Heterogeneity in patient 

preference, it appears, is a strong determinant of capacity-to-benefit from treatment. 

 

A decision tree was also developed by Bonner for use by mental health practitioners in clinical 

practice (552). They modelled complex ‘dual diagnoses’, where patients present to community-

based mental health practitioners with two serious and concomitant mental health conditions. In 
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their case study, the patient group considered was patients with psychosis and a history of 

substance abuse. For patients with dual mental health diagnoses, there is a high level of 

uncertainty in treatment outcome, likelihood of delayed and incomplete recovery, and it is 

difficult to gauge rational patient preference. 

 

A wide range of factors affect potential for recovery in patients with complex mental health 

conditions. It is therefore not clear whether a patient would be best served by hospitalization or 

community care. Bonner constructed a decision tree, for use in clinical practice, which would 

allow mental health practitioners to determine where a patient should be treated (552). This 

decision is contingent on the patient’s probability of accepting treatment, their likelihood for 

mental state deterioration, and a utility weighting given to several potential outcomes. 

 

As shown in the studies described above, using decision models to guide treatment decisions 

allows for complex, individual-level decision-making. It enables physicians to explicitly 

account for factors which limit capacity-to-benefit (e.g. high treatment-related disutility, old 

age, health state preference). If models can be developed with sufficient predictive capacity, 

then using decision models in clinical practice may be key to addressing heterogeneity of 

treatment-related outcome in a population. 

 

Decision Models in Clinical Practice for Prevention of CVD 

 

There is a clear and underexploited potential for decision analysis in the clinician’s office. This 

role may be in shared decision-making or in guiding clinical practice. This chapter will focus 

on the latter, specifically analysing the role that decision models may play in guiding clinical 

practice in CVD. 

 

Decision aids are particularly useful in clinical practice when there is considerable clinical 

equipoise (553,554). This is perhaps the case for statin therapy for the primary prevention of 

CVD. Statins are cheap and effective for almost all CVD-free individuals. However, clinicians 

appear unwilling to provide the treatment to all healthy adults (249). Clinical equipoise therefore 

exists in determining which subset of the CVD-free population should be prioritised to receive 

treatment. 
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Employing decision models to facilitate shared decision-making may increase adherence to 

treatment regimens, and help target treatment at those who experience the lowest levels of 

treatment-related disutility. Using decision models to determine objective guidelines for 

treatment initiation has the potential to more radically change clinical practice. Models like the 

Scottish CVD Policy Model can account for the array of factors which affect the risks and 

benefits associated with a treatment.  

 

Decision models offer an explicit means of accounting for the range of factors which determine 

how much benefit a CVD-free patient is likely to achieve from preventive statin therapy. 

However, no previous study has considered the clinical utility of employing decision-analytic 

models to maximise health outcomes in a population and explicitly guide statin prioritisation 

decisions. 

 

9.2.2 Objective 

 

The objective of this analysis was to quantify the health and cost outcomes associated with 

employing decision-analytic models in clinical practice to prioritise patients for preventive statin 

therapy in the Scottish NHS. The analysis specifically focused on using decision-analytic 

models to prioritise treatment for patients expected to gain the greatest number of life years from 

statins. 

 

9.2.3 PPICOSS 

 

Population: The Scottish CVD-free population, aged 40 years and above. 

 

Perspective: Scottish health sector decision-maker. All healthcare costs accrued by the Scottish 

NHS and population-level health gains are considered. 

 

Intervention: Intermediate-intensity statin therapy (Atorvastatin 20mg/daily). Four treatment 

prioritisation criteria were considered: (i) blanket 20% risk threshold (treating n=B20 

individuals), (ii) blanket 10% risk threshold (treating n=B10 individuals), (iii) life expectancy 
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maximisation (treating n≈B20 individuals), and (iv) life expectancy maximisation (treating 

n≈B10 individuals). 

 

Comparator: Statin therapy only for individuals with familial hypercholesterolaemia. 

 

Outcome: Lifetime cost-per-QALY, with both costs and QALYs discounted at 3.5% annually. 

Intermediate outcomes reported are: disaggregated healthcare costs, primary CVD events 

prevented, and CVD-free life years. 

 

Setting: Primary care in the Scottish NHS. 

 

Study Design: Cohort simulation. 

 

9.2.4 Methodology 

 

The methodology employed in this analysis was the same as the methodology employed to 

estimate the cost-effectiveness of risk threshold reduction and age-stratification of risk 

thresholds in previous chapters. This allowed for comparison between results in these chapters. 

 

Scottish CVD Policy Model 

 

The Scottish CVD Policy model was employed to estimate the cost-effectiveness of different 

methods of statin prioritisation. This model was discussed in depth in Chapter 5. 

 

Treatment Strategies 

 

The analysis aimed to compare absolute risk-based blanket 20% and blanket 10% risk threshold 

strategies to comparable life expectancy-maximising strategies which would be require using 

decision-analytic models in clinical practice. It was assumed that intermediate-intensity statin 

therapy would always be provided to individuals with familial hypercholesterolaemia (as 

defined according to SIGN’s definition of elevated TC (≥7.5 mmol/L) and family history of 

premature CVD, or TC ≥8.0 mmol/L. 
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The four remaining strategies considered were statins for: individuals with an ASSIGN score 

greater than 20% (treating n≈B20 individuals), individuals with an ASSIGN score greater than 

10% (treating n≈B10 individuals), the B20 individuals expected to gain the most life years from 

statin therapy, and the B10 individuals expected to gain the most life years from treatment. 

Expected benefit from treatment was estimated with the Scottish CVD Policy Model. 

 

Defining Minimum Life Year Gains 

 

Targeting treatment at patients who are expected to achieve the greatest life year gains from 

statins will hereafter be referred to as the ‘life expectancy maximisation’ approach to prevention. 

 

Much like the blanket risk threshold approach to prevention requires setting a minimum risk 

score at which treatment is recommended, the life expectancy maximisation approach requires 

setting a minimum life year gain from statin therapy. The minimum life year gain can be set 

according to many different constraints. This analysis specifically aimed to constrain the number 

of individuals eligible to receive statins. 

 

The number of people who would be treated at different life year gain thresholds were calculated 

by projecting simulated data from SHeS 2011 onto the Scottish population with census data. 

Life year gains from statin therapy were calculated for every individual in the SHeS dataset with 

the Scottish CVD Policy Model. The proportion of SHeS participants eligible for treatment at 

different life year gain-based thresholds were calculated by 5-year age-group. These proportions 

were then projected onto the CVD-free Scottish population using census data. 

 

Scottish Health Survey, Census Data, and Multiple Imputation 

 

As with analyses in Chapters 7 and 8, all analysis was completed using a combination of the 

Scottish Health Survey 2011 and the Scottish Census 2011. The same dataset and imputation 

process was employed in this analysis as was employed in Section 7.2.4. The descriptive 

statistics for this dataset are described in Table 7-1. 
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Simulation 

 

The Scottish CVD Policy Model simulated the effect of giving statins to different groups of 

people. The same approach to simulation was adopted as described in Section 7.2.4. This 

involved developing two macros for Excel using Microsoft Visual Basic to estimate lifetime 

incremental health and cost outcomes attributable to intermediate-intensity statin therapy for all 

individuals in the dataset. 

 

Treatment Parameters 

 

The base case treatment parameters employed in this analysis were the same as the treatment 

parameters used to estimate cost-effectiveness of risk threshold reduction in Chapter 7. These 

parameters are presented in Table 7-4. They include a 27.2% reduction in non-HDL cholesterol 

attributable to statin therapy, an absolute risk of diabetes increase of 0.5% in the population, a 

0.001 QALY decrement to account for pill-taking disutility, an annual cost of £13.00 for 

intermediate-intensity statin therapy, a £26.34 cost of initial risk assessment, a cost of £120.17 

for monitoring in the first year of treatment, and a monitoring cost of £67.96 in subsequent years. 

 

Estimating Outcomes and Projecting Results 

 

Incremental costs and outcomes were simulated for all individuals in the SHeS dataset. The 

population was stratified by risk score and expected life years gained from treatment. 

Individuals meeting treatment criteria were assigned the incremental treatment-related 

outcomes. Results were averaged across 5-year age-groups and projected onto the Scottish 

population with census data. Again, this process was described extensively in Chapter 7. 

 

Cost-Effectiveness Analysis 

 

Cost-effectiveness analysis was performed using traditional cost-effectiveness decision rules 

(43,354). A strategy was determined to be cost-effective if its ICER was below £20,000/QALY. 
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Sensitivity Analysis 

 

One-way sensitivity analyses were undertaken to assess the impact of parametric assumptions 

on estimated cost-effectiveness outcomes. Given that this study was subject to the same types 

of parametric uncertainty as analyses in Chapters 7 and 8, the same sensitivity analyses were 

performed. The parameters included in sensitivity analyses were: pill-taking disutility, non-

HDL cholesterol reduction and HDL cholesterol increase, monitoring costs in the first year of 

treatment, monitoring costs in subsequent years of treatment, cost of risk assessment, and price 

of statins. 

 

Probabilistic sensitivity analysis stochastically sampled Table 7-4 input distributions and risk 

factor hazard ratios from Tables 5-1 and 5-2 in 500 independent iterations. Correlation between 

risk factor hazard ratios was accounted for through the Cholesky decomposition method 

(309,503). Using the cost and QALY results from probabilistic analyses, a cost-effectiveness 

acceptability curve was produced which shows the probability of each treatment strategy being 

the most cost-effective option for decision-makers at a range of willingness-to-pay thresholds. 

 

Secondary Analysis: Cost-Effectiveness of QALE-Maximisation 

 

This analysis chose to maximise life expectancy. Discussion with stakeholders and the SIGN 

cardiovascular risk estimation guideline committee suggested that undiscounted life years 

gained was a logical outcome to maximise for clinicians. If a decision-maker truly wanted 

maximise population-level health outcomes in a population, they may instead wish to maximise 

discounted QALYs. A secondary analysis considered the health benefits and costs associated 

with employing the Scottish CVD Policy Model in clinical practice to maximise discounted 

quality-adjusted life expectancy (QALE) in the Scottish population. 

 

In the secondary analysis, population-level cost-effectiveness analysis was conducted from the 

perspective of a Scottish health sector decision-maker. The same methodology was adopted as 

used to estimate the cost-effectiveness of LE-Max 10 and LE-Max 20. Two QALY-Max 

strategies were defined which would treat approximately the same number of individuals as 

ASSIGN 20 and ASSIGN 10. Descriptive statistics of individuals treated, discounted QALYs, 
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discounted healthcare costs, CVD events prevented, and life years gained, are presented for each 

strategy. 

 

Inequality 

 

A final piece of analysis considered the consequences of different treatment strategies on health 

inequalities. Discounted QALY gains per 1,000 individuals were presented, disaggregated by 

SIMD quintile. The proportion of total QALYs gained by each SIMD quintile was also 

presented. A policy was considered progressive if more discounted QALYs were produced in 

the two most deprived quintiles of the CVD-free Scottish population and regressive if more 

discounted QALYs were produced in the two least deprived quintiles of the population. 

 

9.2.5 Results 

 

Minimum Life Year Gains 

 

Two treatment strategies were defined: Life Expectancy Maximisation 20 (LE-Max 20) which 

treats approximately the same number of individuals as ASSIGN 20 and Life Expectancy 

Maximisation 10 (LE-Max 10) which treats approximately the same number of individuals as 

ASSIGN 10. 

 

The minimum life year gains to ensure LE-Max 20 treated the correct number of individuals 

was calculated to be 0.349. For LE-Max 10 this number was 0.212. 

 

Demographics of Treated Patients 

 

Table 9-1 provides descriptive statistics for the overall population and subpopulations treated 

under ASSIGN 20, LE-Max 20, ASSIGN 10, and LE-Max 10. It details the percentage of 

different age-groups treated under the different prioritisation strategies alongside the treated 

population’s average risk factor values. 
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Implementing life expectancy maximisation would lead to large proportions of the CVD-free 

population aged 60 and below being treated. The vast majority of individuals prioritised for 

treatment under the LE-Max policies would be men. In addition, this population would be less 

socially deprived than the population treated under blanket risk thresholds, smoke less cigarettes 

per day, and have lower family history of CVD. 
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40-44 n/a 0 44 3 73 

45-49 n/a 2 39 14 68 

50-54 n/a 5 37 38 63 

55-59 n/a 15 38 74 60 

60-64 n/a 41 31 94 50 

65-69 n/a 75 32 100 51 

70-74 n/a 92 21 100 45 

75-79 n/a 100 17 100 38 

80+ n/a 100 4 100 24 
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Male (%) 42 45 94 47 72 

SIMD 19.5 21.2 20.0 20.5 19.0 

Diabetes (%) 7 15 1 11 4 

FH (%) 46 68 35 62 32 

CPD 7 8 5 7 5 

SBP (mmHg) 131 134 131 133 130 

TC (mmol/L) 5.8 5.8 5.8 5.8 5.8 

HDL (mmol/L) 1.5 1.5 1.5 1.5 1.5 

Table 9-1: Descriptive statistics of treated populations, ASSIGN and LE-Max policies 

 

Base Case Cost-Effectiveness Analysis 

 

The results from the base case cost-effectiveness analysis are presented in Table 9-2. These 

results are also shown on the cost-effectiveness plane in Figure 9-1. LE-Max 20 and LE-Max 

10 produced many more QALYs than their respective blanket threshold comparators.  

 

The additional health benefits offered by life-expectancy maximisation are purchased at a high 

cost. LE-Max 20 was dominated by ASSIGN 10. The ICER associated with transitioning from 

ASSIGN 10 to LE-Max 10 is around £29,900/QALY. This is in excess of the cost-effectiveness 

threshold adopted for this analysis. Therefore, given the policies considered and the base case 

assumptions, ASSIGN 10 is the optimal strategy for a decision-maker. 
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Policy 
Number 
Treated 

Discounted 
QALYs 

Discounted 
Cost (£1000's) 

ICER 
 (£/QALY) 

Familial Hyp. Reference 

ASSIGN 20 793,559 92,300 636,000 6,900 

LE-Max 20 793,387 141,000 1,597,000 Str. Dominated 

ASSIGN 10 1,381,059 164,000 1,596,000 13,500 

LE-Max 10 1,380,749 197,296 2,603,000 29,900 

Str. – strictly 

Table 9-2: Base case cost-effectiveness results, ASSIGN and LE-Max policies 
 

 

Figure 9-1: Base case cost-effectiveness plane, ASSIGN 20, LE-Max 20, ASSIGN 10, and 
LE-Max 10 

 

Intermediate Outcomes 

 

Tables 9-3 and 9-4 present intermediate outcomes from the base case analysis. The former 

presents the primary CVD events prevented and life years gained for the respective policies, and 

the latter presents their disaggregated costs. 
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Policy 
Primary  

CVD Events 
Prevented 

Life Years 
Gained 

Familial Hyp. Reference 

ASSIGN 20 27,000 170,000 

LE-Max 20 35,000 398,000 

ASSIGN 10 49,000 351,000 

LE-Max 10 55,000 564,000 

Table 9-3: Base case CVD events prevented and life years gained, ASSIGN and LE-Max 
policies 
  

Maximising life expectancy using decision models to dictate clinical practice would prevent 

around 7,600 primary CVD events compared with ASSIGN 20. This would be achieved while 

treating the same number of individuals. In turn, this would lead to an approximately 227,700 

additional life years in the Scottish population. Maximising life expectancy using decision 

models instead of ASSIGN 10 would prevent approximately 6,600 primary CVD events, 

producing around 212,400 undiscounted life years. 

 

Policy 
Disc. Costs (£1000’s) 

Non-CVD CVD Statin Monitoring 

Familial Hyp. Reference 

ASSIGN 20 720,000 -718,000 84,000 550,000 

LE-Max 20 1,487,000 -923,000 146,000 886,000 

ASSIGN 10 1,562,000 -1,322,000 190,000 1,166,000 

LE-Max 10 2,176,000 -1,388,000 262,000 1,552,000 

Table 9-4: Base case disaggregated costs, ASSIGN and LE-Max policies 

 

All strategies led to a decrease in CVD-related healthcare costs and increases in non-CVD-

related healthcare costs. The life expectancy maximising strategies incurred greater non-CVD-

related, statin, and monitoring costs than comparable blanket risk threshold strategies. This 

suggests that increased costs for age-stratified policies are incurred through extension of life 

expectancy- and treatment-related costs. 
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Sensitivity Analysis 

 

Results from the sensitivity analyses are presented in Figures 9-2 and 9-3. These tornado 

diagrams show the sensitivity of ICER estimates to univariate changes in model parameters. 

Presented are the ICERs associated with moving from ASSIGN 20 to LE-Max 20 and ASSIGN 

10 to LE-Max 10, respectively. The base case ICER of implementing LE-Max over ASSIGN 

20 was approximately £19,800/QALY, however this was strictly dominated by ASSIGN 10. 

 

 

Figure 9-2: Tornado diagram, one-way sensitivity analysis of key parameters and 
their effect on ICER of implementing LE-Max 20 over ASSIGN 20 

 

 

Figure 9-3: Tornado diagram, one-way sensitivity analysis of key parameters and 
their effect on ICER of implementing LE-Max 10 over ASSIGN 10 
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The key sources of uncertainty were pill-taking disutility, non-HDL cholesterol reduction, and 

monitoring costs in subsequent years. LE-Max 10 would only fall below the £20,000/QALY 

threshold compared to ASSIGN 10 if there were a large reduction in monitoring costs. 

 

PSA was undertaken and the results are presented in a cost-effectiveness acceptability curve in 

Figure 9-4. The red, blue, green, and black curves show the proportion of simulations in which 

Blanket 20, LE-Max 20, Blanket 10, and LE-Max 10 were optimal at a range of cost-

effectiveness thresholds. The black dashed line indicates a cost-effectiveness threshold of 

£20,000/QALY. At this threshold, Age-Strat 10 was optimal in around 50% of simulations. This 

suggests a considerable possibility that LE-Max 10 is the optimal treatment strategy. 

 

  

Figure 9-4: Cost-effectiveness acceptability curve, ASSIGN 20, LE-Max 20, ASSIGN 10, 
and LE-Max 10 

 

Inequality Analysis  

 

Results were disaggregated to estimate the effect of threshold reduction on health inequalities. 

Figure 9-5 shows the discounted QALY gains achieved per 1,000 individuals in the population, 

disaggregated by SIMD quintile. In absolute terms, all SIMD quintiles gained more discounted 
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QALYs under LE-Max 10 than LE-Max 20. For all policies, absolute health gains continuously 

increased with level of social deprivation. 

 

 

Figure 9-5: Discounted QALY gains for life expectancy maximisation and blanket risk 
threshold strategies per 1,000 individuals, disaggregated by SIMD quintile 
 

The proportion of health gains achieved per quintile of social deprivation was estimated. These 

results are displayed in Figure 9-6. The SIMD distribution of discounted QALY gains was 

similar for LE-Max 20 and LE-Max 10. Both policies were progressive: they led to a greater 

proportion of health gains being achieved in the two most deprived SIMD quintiles compared 

with the two least deprived quintiles.  

 

 

Figure 9-6: Proportion of discounted QALY gains achieved by different SIMD 
quintiles, life expectancy maximisation and blanket risk threshold strategies 
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LE-Max 20 was less progressive than LE-Max 10. The two most deprived SIMD quintiles 

combined gained 43% of all health benefits under LE-Max 20, compared to 37% of health gains 

achieved by the two least deprived quintiles – a difference of 6%. This difference was 11% for 

Blanket 20. LE-Max 10 was less progressive than Blanket 10. The difference in proportion of 

QALY gains between the two most and least deprived quintiles for LE-Max 10 and Blanket 10 

were 3% and 7%, respectively. 

 

Secondary Analysis: Cost-Effectiveness of QALE-Maximisation 

 

Quality-adjusted life expectancy maximisation requires setting a minimum expected discounted 

QALY gain necessary for treatment eligibility. Two strategies were defined: Quality-Adjusted 

Life Expectancy Maximisation 20 (QALE-Max 20) which treats approximately the same 

number of individuals as ASSIGN 20, and Quality-Adjusted Life Expectancy Maximisation 10 

(QALE-Max 10) which treats approximately the same number of individuals as ASSIGN 10. 

Individuals were treated under QALE-Max 20 and QALE-Max 10 if they were expected to 

achieve a minimum discounted QALY gain of 0.349 and 0.212, respectively. 

 

Descriptive Statistics: Table 9-5 presents the descriptive statistics for the cohort of individuals 

prioritised for statin therapy under blanket risk threshold policies, LE-Max policies, QALE-Max 

policies, and respective statistics in the overall SHeS 2011 population. Both QALE-Max 

policies lead to a more equal distribution in the age of individuals prioritised for statins. 

However, equity concerns may be raised about these policies as men are much more likely to 

be prioritised under a QALE-Max strategy compared to blanket and life-expectancy 

maximisation policies. 

 

Cost-effectiveness results: Table 9-6 presents cost-effectiveness results for the QALE-Max 

strategies compared to Blanket 20, LE-Max 20, Blanket 10, and LE-Max 10. LE-Max 20 and 

LE-Max 10 are strictly dominated by their QALY-maximising counterparts. In addition, Blanket 

10 is extendedly dominated by QALE-Max 10. A decision-maker with a cost-effectiveness 

threshold of £20,000/QALY would choose to implement QALE-Max 10. 
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Intermediate outcomes: Primary CVD events prevented, life year gains, and the disaggregation 

of costs are presented in Tables 9-7 and 9-8. LE-Max policies prevent approximately the same 

number of CVD events as QALE-Max policies, but result in a greater number of life year gains. 
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40-44 n/a 0 44 14 3 73 37 

45-49 n/a 2 39 28 14 68 49 

50-54 n/a 5 37 37 38 63 54 

55-59 n/a 15 38 41 74 60 63 

60-64 n/a 41 31 37 94 50 65 

65-69 n/a 75 32 43 100 51 69 

70-74 n/a 92 21 37 100 45 68 

75-79 n/a 100 17 35 100 38 61 

80+ n/a 100 4 17 100 24 42 
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Male (%) 42 45 94 99 47 72 73 

SIMD 19.5 21.2 20.0 20.2 20.5 19.0 20.2 

Diabetes (%) 7 15 1 5 11 4 8 

FH (%) 46 68 35 48 62 32 43 

CPD 7 8 5 6 7 5 5 

SBP (mmHg) 131 134 131 132 133 130 132 

TC (mmol/L) 5.8 5.8 5.8 5.8 5.8 5.8 5.8 

HDL (mmol/L) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

Table 9-5: Descriptive statistics of treated patients, ASSIGN and LE-Max policies 

 

Policy 
Number 
Treated 

Discounted 
QALYs 

Discounted 
Cost (£1000's) 

ICER (£/QALY) 

Familial Hyp. Reference 

Blanket 20 793,559 92,300 636,000 6,900 

LE-Max 20 793,387 141,000 1,597,000 Str. Dominated 

QALE-Max 20 793,775 150,000 1,313,000 11,700 

Blanket 10 1,381,059 164,000 1,596,000 Ext. Dominated 

LE-Max 10 1,380,749 197,000 2,603,000 Str. Dominated 

QALE-Max 10 1,381,122 206,000 2,306,000 17,700 

Ext. – extendedly, Str. - strictly 

Table 9-6: Base case cost-effectiveness analysis, ASSIGN and LE-Max policies 
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Policy 
Primary  

CVD Events 
Prevented 

Life Years 
 Gained 

Familial Hyp. Reference 

Blanket 20 27,000 170,000 
LE-Max 20 35,000 398,000 
QALE-Max 20 35,000 376,000 
Blanket 10 49,000 351,000 
LE-Max 10 55,000 564,000 
QALE-Max 10 55,000 535,000 

Table 9-7: Intermediate outcomes, ASSIGN and LE-Max policies 

 

Policy 
Disc. Costs (£1000’s) 

Non-CVD CVD Statin Monitoring 

Familial Hyp. Reference 

Blanket 20 720,000 -718,000 84,000 550,000 

LE-Max 20 1,487,000 -923,000 146,000 886,000 

QALE-Max 20 1,362,000 -955,000 126,000 779,000 

Blanket 10 1,562,000 -1,322,000 190,000 1,166,000 

LE-Max 10 2,176,000 -1,388,000 262,000 1,552,000 

QALE-Max 10 2,130,000 -1,449,000 232,000 1,393,000 

Table 9-8: Disaggregated costs, ASSIGN and LE-Max policies 

 

Probabilistic sensitivity analysis: Figure 9-7 presents results from a probabilistic sensitivity 

analysis in which risk function hazard ratios and key simulation parameters (Table 7-4) were 

sampled stochastically in 500 independent iterations. At a willingness-to-pay threshold of 

£20,000/QALY, QALE-Max 10 was optimal in 70% of iterations and QALE-Max 20 was 

optimal in 28% of iterations. 

 

Inequality analysis: Results were disaggregated to estimate the effect of threshold reduction on 

health inequalities. Figure 9-8 shows the discounted QALY gains achieved per 1,000 individuals 

in the population, disaggregated by SIMD quintile. In absolute terms, all SIMD quintiles gained 

more discounted QALYs under QALE-Max 10 than QALE-Max 20. For all policies, absolute 

health gains continuously increased with level of social deprivation. 

 

The proportion of health gains achieved per quintile of social deprivation was also estimated. 

These results are displayed in Figure 9-9. The distribution of discounted QALY gains was 

similar for LE-Max 10, LE-Max 20, QALE-Max 10, and QALE-Max 20. Both policies were 
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progressive: they led to a greater proportion of health gains being achieved in the two most 

deprived SIMD quintiles compared with the two least deprived quintiles.  

 

 
Figure 9-7: Cost-effectiveness acceptability curve, ASSIGN 20, LE-Max 20, QALE-Max 
20, ASSIGN 10, LE-Max 10, and QALE-Max 10  

  

 

Figure 9-8: Discounted QALY gains for QALE Max and blanket risk threshold 
strategies per 1,000 individuals, disaggregated by SIMD quintile 

 

QALE-Max 20 was less progressive than Blanket 20. The two most deprived SIMD quintiles 

combined gained 43% of all health benefits under QALE-Max 20, compared to 37% of health 

gains achieved by the two least deprived quintiles – a 6% difference. This difference was 11% 
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for Blanket 20. QALE-Max 10 was less progressive than Blanket 10. The difference in 

proportion of QALY gains between the two most and least deprived quintiles for QALE-Max 

10 and Blanket 10 were 3% and 7% for these policies, respectively. 

 

 

Figure 9-9: Proportion of discounted QALY gains achieved by different SIMD 
quintiles, QALE Max and blanket risk threshold strategies 

 

9.2.8 Discussion and Limitations 

 

This analysis considered the cost-effectiveness of using decision-analytic models in clinical 

practice to determine which individuals should receive preventive statin therapy. It showed that 

a large number of discounted QALYs and life years can be gained by treating the group of 

patients estimated to gain the most life years from treatment. However, this treatment strategy 

is likely to be costly and may involve societally unacceptable mass-medication of young and 

healthy individuals. 

 

Compared to blanket risk thresholds, life expectancy maximisation leads to large increases in 

population health. Theoretically, if a decision model perfectly predicts patient-level outcomes, 

this approach to prevention should maximise life expectancy in a population, given a constraint 

on the number of individuals that can be treated. However, it was shown that the subpopulation 

eligible for treatment under LE-Max 20 and LE-Max 10 are expensive to treat. This is likely 

because they are young and will therefore require many years of on-treatment monitoring. In 
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order to make this treatment strategy cost-effective, it will be necessary to reduce monitoring 

costs. 

 

Another key consideration related to the life expectancy maximisation approach to prevention 

is the societal acceptability of the policy. Table 9-5 showed that for CVD-free individuals aged 

40-44 and 45-49, 73% and 68% would be treated under LE-Max 10, respectively. This is a large 

and likely very healthy proportion of the Scottish adult population. Moreover, a vast majority 

of patients treated under life expectancy maximisation would be men, and the treated population 

would be less socially deprived than those treated under the blanket risk threshold approach. 

Both of these factors may give rise to health equity concerns related to the policy of life 

expectancy maximisation. 

 

Discussions were conducted with Scottish stakeholders and decision-makers when determining 

which treatment strategies should be analysed in this thesis. This involved attending several 

meetings of SIGN’s Risk Estimation and the Prevention of Cardiovascular Disease guideline 

committee and presenting initial results from the analysis to Scotland’s National Advisory 

Committee on Heart Disease. Based on feedback from these discussions, it was determined that 

life expectancy was most clinically comprehensible and acceptable outcome to maximise. 

Hence, the primary analysis in this chapter considered the cost-effectiveness of life expectancy 

maximisation. An alternative approach to prioritisation would be to maximise the clinical 

outcome most commonly considered in cost-effectiveness analyses, discounted QALYs. 

 

A secondary analysis considered the cost-effectiveness of discounted QALY maximisation to 

prioritise statin therapy. Results from this analysis show that such an approach to prevention 

would be much more cost-effective than life expectancy maximisation. Indeed, these results 

showed that decision-makers applying a cost-effectiveness threshold of £20,000/QALY should 

implement QALY maximisation. 

 

It is possible that QALY maximisation is not clinically feasible. This approach to prevention 

would disproportionately target treatment at men, which may be considered inequitable. Men 

are likely disproportionately prioritised for treatment because they are at higher risk of 

experiencing CVD and generally had higher total cholesterol levels than women in the SHeS 

2011 cohort. It may also be explained by differentiation in the type of CVD events experienced 
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by men and women. Bots et al. (555) have shown that the men to women ratio is greater for 

CHD than stroke. The risk functions which underpin state transition in the Scottish CVD Policy 

Model assume that TC (a proxy for LDL-C in this analysis) has a greater effect on CHD than 

stroke for both men and women (7,309). A final reason that men likely gain more discounted 

QALYs from treatment than women typically experience CVD events later in life than men 

(556). Therefore, benefits accrue longer after treatment initiation for younger women than men 

and these benefits are valued less than more immediate benefits due to discounting. 

 

9.3 Chapter Summary 

 

Despite concerns about the feasibility of outcome maximisation to prioritise statin therapy, this 

analysis shows that using decision models to determine who should receive preventive 

interventions for CVD could produce large population-level improvements in health. These 

models reflect multiple dimensions of heterogeneity in cost-effectiveness, maximising 

outcomes. 

 

Mass-medicalisation of the population prioritised for treatment with decision-analytic models 

may prove difficult. Efforts should perhaps be made to reduce cholesterol in this population 

through other means. Public health programmes aimed specifically at this population may be 

helpful. These may include health promotion campaigns and legislation that looks to reduce 

trans fats in food.  

 

So far, this thesis has presented several approaches for prioritising patients for preventive statin 

therapy. This chapter showed the theoretical maximum benefit that can be achieved with this 

treatment. Patients often have residual risk when receiving preventive statin therapy. Moreover, 

a small but significant proportion of patients are statin intolerant. The following chapter will 

consider how best to treat patients who require further cholesterol reduction following initiation 

of statin therapy.  
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Chapter 10 

Residual Risk and Statin Intolerance 

 

10.1 Purpose 

 

Statins are a cheap and effective means of reducing LDL-C and risk of CVD events. Because of 

this, researchers have noted that ‘downward reclassification’ of individuals with elevated levels 

of risk according to traditional risk scores is rarely warranted (557). Nonetheless, many patients 

treated with statins proceed to experience CVD-related morbidity and mortality. In the clinical 

literature, this has been referred to as the existence of ‘residual risk’ (558). In addition, some 

patients are statin intolerant. 

 

This chapter will consider alternative cholesterol-reducing strategies to statin monotherapy that 

address the issues of residual risk and statin intolerance. Alternative cholesterol-reducing 

treatments are often expensive. Hence, this chapter will focus on patients with familial 

hypercholesterolaemia for whom novel treatments like PCSK9 inhibitors are most likely to be 

cost-effective. Representing heterogeneity in cost-effectiveness analyses may help healthcare 

decision-makers to signal demand for products like PCSK9 inhibitors and ensure that they are 

provided to the subset of the population that is cost-effective to treat. 

 

10.2 Residual Risk 

 

Ridker distinguishes between two forms of residual cardiovascular risk that statin-treated 

patients may experience (558). These are ‘residual inflammatory risk’ and ‘residual cholesterol 

risk’. 

 

Arterial inflammation occurs as a response to injuries incurred in the arteries. It likely plays an 

important role in atherogenesis and can precipitate future CVD events (559). Biomarkers 

including high-sensitivity C-reactive protein are indicators of the presence of arterial 

inflammation. Ongoing clinical trials have considered the potential use of anti-inflammatory 

medications (including low-dose methotrexate, colchicine, interleukin-1 inhibitors, and 

interleukin-6 inhibitors) in the treatment of residual inflammatory risk (560). 
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This chapter will not consider treatment for residual inflammatory risk as there is limited clinical 

understanding of the relationship between inflammation and CVD. The European Society of 

Cardiology noted in 2017, “For the inflammation hypothesis of cardiovascular disease to 

become widely accepted, further studies will be needed to show that anti-inflammatory agents 

have beneficial effects” (561). 

 

Analysis in this chapter will focus on residual cholesterol risk, for which there are several 

established therapies. Residual cholesterol risk exists because statins do not produce enough 

LDL-C-reduction to completely minimize future risk of event. Remaining LDL-C continues to 

cause atherosclerotic build-up in the arteries which leads to CVD events. 

 

Once a patient has achieved LDL-C reduction with a maximally tolerated intensity of statin 

monotherapy, alternative LDL-C-reducing therapies must be employed to address residual 

cholesterol risk. These therapies are typically prescribed on top of the patient’s existing statin 

regimen. This chapter will predominantly consider the role of PCSK9 inhibitors in addressing 

residual cholesterol risk. 

 

Some CVD risk will remain even when all residual cholesterol risk is addressed for patients 

receiving statin therapy. Atherosclerosis commences at a young age. The atherosclerotic build-

up that develops in childhood and young adulthood may be irreversible. Reith and Armitage 

note, “…residual risk following standard LDL-lowering treatment may be partly explained by 

treating late in the course of the [subclinical] disease” (562). 

 

10.3 Statin Intolerance 

 

Statin intolerance occurs when a patient is unable to continue taking prescribed statin therapy. 

This intolerance may be partial or complete. Partial intolerance occurs when a patient is able to 

switch to a lower dose or different type of statin and continue treatment. Complete intolerance, 

when a patient is cannot continue taking any type of statin at any dose, is a rare occurrence. 

 

Patients may discontinue statins for several reasons. Meta-analysis evidence suggests that statins 

are a relatively safe treatment and that rates of commonly ascribed side effects have been shown 
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to be constant between treatment and control arms of randomised clinical trials 

(349,446,471,538). However, population-based studies have associated a range of side effects 

with statin treatment. Amongst these side effects are statin-associated muscle symptoms 

(SAMS). Other potential side effects highlighted by observational studies are: musculoskeletal 

complaints, gastro-internal discomfort, fatigue, increased liver enzymes, neuropathy, insomnia, 

and neurocognitive issues (563–566). 

 

The vast majority of statin users who experience SAMS are able to switch to a different dosage 

or type of statin and continue treatment. Zhang et al. (567) investigated statin persistence 

following treatment discontinuation in a retrospective cohort study. They found that 92.2% of 

the 6,579 patients ‘rechallenged’ with statin after treatment discontinuation were still taking a 

statin 12 months after experiencing a statin-related adverse event. 

 

The only prospective randomized analysis of the relationship between musculoskeletal issues 

and statin treatment comes from the Effects of Statins on Muscle Performance (STOMP) Study. 

STOMP was a double-blinded, placebo-controlled study which randomized 420 patients who 

had never been treated with statins to high-intensity statins (Atorvastatin 80mg daily) and 

placebo. Its primary outcome was rates of study-defined myalgia after 6 months. The prevalence 

of myalgia was 4.6% and 9.4% in the control and treatment arms of the trial, respectively. The 

difference in myalgia between the treatment groups was not judged to be significant (p-value 

0.054) (568,569). Results from the STOMP study suggest that rates of statin-related muscle 

symptoms may be lower than reported in observational studies. However, this study had a low 

sample size. Therefore, its results do not rule out the possibility of a causal relationship between 

statins and muscle pain which leads to treatment disadherence and discontinuation. 

 

10.4 Alternative Cholesterol-Reducing Therapies 

 

Several therapies exist that can reduce LDL-C. Most prominent amongst these, in order of 

weighted between-group difference in achieved LDL-C-reduction in clinical trials, are: fibrates, 

ezetimibe, niacin, CETP inhibitors, diet, statins, bile acid sequestrants, ileal bypass, and PCSK9 

inhibitors (4). 
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Analysis in this chapter will focus on PCSK9 inhibitors and their role in addressing residual 

cholesterol risk and statin intolerance. Bile acid sequestrants, ileal bypass, fibrates, and niacin 

are not recommended as first-in-line alternatives or supplements to statin therapy for patients 

with familial hypercholesterolaemia by NICE clinical guidelines or an expert consensus report 

from the ACC (25,570). 

 

Both NICE and the ACC recommend that ezetimibe is ‘considered’ as a treatment for LDL-C 

reduction in individuals suffering from familial hypercholesterolaemia (570,571). Ezetimibe 

may be prescribed as a monotherapy for statin intolerant patients as well as supplemental to 

statins for some persistent statin patients who maintain elevated levels of LDL-C. Ezetimibe is 

less effective at reducing LDL-C than PCSK9 inhibitors, both as a monotherapy and as a 

supplemental treatment to statin therapy (227). NICE and the ACC both highlight that ezetimibe 

is costly and likely confers less benefit than PCSK9 inhibitors (25,570). The treatment has been 

available as a generic formulation in both the U.K. and U.S. since 2016, and has therefore seen 

a dramatic reduction in price (572,573). 

 

PCSK9 Inhibitors 

 

PCSK9 inhibitors are class of cholesterol-reducing medication. They are more expensive and 

significantly more effective at reducing LDL-C than statin monotherapy. Due to the causal 

relationship between LDL-C and atherosclerotic CVD, it has been predicted that PCSK9 

inhibitors are more effective at reducing CVD risk in individuals compared to statin therapy 

(227). 

 

Two PCSK9 inhibitors have been approved for use by the EMA and the FDA. Alirocumab (trade 

name Praluent) and evolocumab (trade name Repatha) received market-authorisation by the 

EMA in 2015 (225,226). These PCSK9 inhibitors are indicated in adults with familial 

hypercholesterolaemia either in combination with a maximally tolerated statin dose or as 

monotherapy in statin intolerant patients. Both treatments also received initial approval in the 

U.S. in 2015, with indication in similar populations (223,224). 

 

Clinical trials have confirmed the efficacy of PCSK9 inhibitors. The landmark Further 

Cardiovascular Outcomes Research with PCSK9 Inhibition in Subjects with Elevated Risk 
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(FOURIER) outcomes trial aimed to assess whether addition of the evolocumab to intermediate- 

or high-intensity statin therapy reduces CVD risk. FOURIER was a randomized, double-

blinded, placebo-controlled trial which followed 27,564 patients for a median duration of 2.2 

years. Researchers found that addition of PCSK9 inhibitor treatment led to a significant 

reduction in their primary composite CVD endpoint (0.85; 95% CI: 0.79 to 0.92) (228). 

Secondary analysis of a 78-week randomized trial of alirocumab indicated a similar level of 

CVD risk reduction (574). In phase three trials, it has been shown that PCSK9 inhibitor 

monotherapy reduces LDL-C significantly more than alternative cholesterol-reducing therapies 

(575,576). 

 

PCSK9 inhibitors are very expensive. The undiscounted annual price for PCSK9 inhibitors is 

approximately £4,500 in the U.K. and around $6,000 in the U.S. (reduced from $14,500 in late 

2018) (577–579).The following analysis assesses the costs and benefits associated with PCSK9 

inhibitors in two subsets of the Scottish population, and determines the proportion of these 

subpopulations that should receive the treatment at different price levels. 

 

The SMC currently recommends that patients with familial hypercholesterolaemia and high 

levels of LDL-C after statin initiation or statin intolerance should be offered PCSK9 inhibitors. 

This guidance was based on a price reduction agreed under a ‘patient access scheme’ (580,581). 

Under such schemes, price of treatment is commercial in confidence and not available in the 

public domain. No novel cost-effectiveness analysis was undertaken when approving 

evolocumab or alirocumab in the Scottish NHS. Manufacturer submissions to the SMC, 

summarised in detailed advice documents, present cost-effectiveness estimates for the 

treatments in different subsets of the Scottish population with familial hypercholesterolaemia. 

However, these analyses found PCSK9 inhibitors to have very low ICERs, suggesting biased 

modelling or large price reductions. It is not clear which of these occurred. This lack of 

transparency gives the SMC considerable scope to implement cost-ineffective interventions 

when under pressure from patient groups and industry. Indeed, several interventions with 

dubious cost-effectiveness profiles have been approved for patients in the Scottish NHS in 

recent years (582–584). 

 

NICE also approved PCSK9 inhibitors for primary prevention in some patients based on patient 

access scheme pricing, recommending the treatment is only provided to patients with primary 
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heterozygous familial hypercholesterolaemia with consistently high LDL-C following initiation 

of first-line cholesterol-reducing treatment (577,585). 

 

10.5 Analysis: Signalling Demand for PCSK9 Inhibitors in the Scottish NHS 

 

It was shown in Chapter 3 that reflecting heterogeneity in cost-effectiveness analysis can serve 

as a means of signalling demand to healthcare providers. A rational supplier will set their price 

such that the marginal revenue is equal to the marginal cost of production. Decision-makers then 

realise consumer surplus by only paying for the intervention for patients with incremental net 

health benefit attributable to treatment greater than zero (Figure 2-2). 

 

The following section aims to establish demand curves for PCSK9 inhibitors in the Scottish 

NHS. This will be achieved by calculating individual-level cost-effectiveness for two 

hypothetical cohorts, representing Scottish populations with familial hypercholesterolaemia. 

 

10.5.1 Background 

 

There have been five studies of the cost-effectiveness of PCSK9 inhibitors for the primary 

prevention of CVD published in recent years that were not supported by industry. These resulted 

in publication of six peer-reviewed journal articles and three reports (227,392,392,577,578,586–

589). All studies found that providing PCSK9 inhibitors at current prices to patients with 

familial hypercholesterolaemia is not cost-effective. 

 

Kazi et al. estimated the cost-effectiveness of statins plus PCSK9 inhibitors compared to statin 

monotherapy in subgroups of the U.S. population with familial hypercholesterolaemia 

(392,578). This analysis was produced for a report on PCSK9 inhibitors published by the 

Institute for Clinical and Economic Review. PCSK9 inhibitor therapy was assumed to cost 

around $14,500 per year. From a health sector perspective, it was found that the ICER associated 

with statin + PCSK9 inhibitors in adults with heterozygous familial hypercholesterolaemia is 

around $504,000/QALY. A 68% reduction in the price of statins would be required to make the 

treatment cost-effective at a high cost-effectiveness threshold of $100,000/QALY. 
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An update to Kazi et al.’s analysis was published in 2017, which compared statins plus PCSK9 

inhibitors to statins plus ezetimibe in the same population (193,227). This analysis found that 

the ICER was around $450,000/QALY and a 71% reduction in PCSK9 inhibitor price would be 

required for the treatment to be cost-effective at a threshold of $100,000/QALY. This updated 

analysis additionally found that the ICER associated with transitioning from statin monotherapy 

to statins plus ezetimibe was around $199,000/QALY, and hence this treatment option should 

not be considered a valid comparator. 

 

Arrieta et al. simulated the cost-effectiveness of PCSK9 inhibitor therapy in FOURIER trial 

participants (586). The treatment was simulated incremental to current treatment, statin 

monotherapy for 70% of the population, and PCSK9 inhibitors were assumed to cost $14,000-

$15,000 annually. Treatment effect was modelled by a 61% reduction in LDL-C, as observed in 

FOURIER, translated to relative risks via the Framingham CVD risk equations (231). The 

hypothetical cohort simulated in the analysis had an average TC of around 5.2 mmol/L. The 

paper does not state whether risk of event differed between patients with and without established 

CVD. However, amongst participants in the FOURIER trial, approximately 28.7% of 

participants had experienced CHD, CBVD, or peripheral artery disease (228). The cost-

effectiveness analysis was conducted from the health sector perspective, and the calculated 

ICER associated with PCSK9 inhibitors was around $350,000/QALY. Sensitivity analysis 

found that the treatment would be cost-effective at an annual price of $4,250, given a threshold 

of $100,000/QALY. This would represent a 70% reduction in price of treatment. 

 

An updated analysis was published by Arrieta et al. in 2017 (587). This analysis employed new 

data from the FOURIER trial to model treatment efficacy in the three years subsequent to 

treatment initiation. The analysis was conducted from the health sector decision-maker and 

private payer perspectives. From the health sector perspective, results were similar to the 

previously discussed study. PCSK9 inhibitors were not judged to be cost-effective in the 

FOURIER trial populations, with an ICER of around $338,000/QALY. A 62% reduction in 

price would be required for the treatment to be cost-effective at a threshold of $100,000/QALY. 

From the private payer perspective, PCSK9 inhibitors were estimated to produce a negative 

return on investment. 
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In 2017, Korman and Wisløff conducted a cost-effectiveness analysis of PCSK9 inhibitors for 

CVD prevention in high-risk subpopulations in Norway (589). PCSK9 inhibitors were assumed 

to cost around €7,800 per year. The CVD-free subpopulations analysed were patients with: 

diabetes, heterozygous familial hypercholesterolaemia, statin intolerance, and ‘miscellaneous 

high-risk’. The estimated ICERs for these subpopulations were €94,000/QALY, 

€101,000/QALY, €139,000/QALY, and €213,000/QALY, respectively. Each of these ICERs is 

well in excess of the cost-effectiveness threshold of 600,000 NOK/QALY (€67,165/QALY) 

which is unofficially employed in health technology assessment in Norway. 

 

The final cost-effectiveness analysis of PCSK9 inhibitors was conducted by NICE in its 

evaluation of alirocumab (577). This analysis applied an annual cost of £4,383 for the treatment. 

ICERs associated with implementation in primary prevention were: £37,000/QALY in the 

heterozygous familial hypercholesterolaemia population (LDL-C ≥3.5 mmol/L), £44,300 for 

‘high-risk’ patients (LDL-C ≥2.5 mmol/L), and £34,000 for ‘very high-risk’ patients (LDL-C 

≥2.5 mmol/L). 

 

An additional three studies funded by industry have been published. These studies show PCSK9 

inhibitors to be cost-effective or borderline cost-effective at current prices (590–592). 

 

10.5.2 Objective 

 

The objective of this study was to establish demand curves for PCSK9 inhibitors in two distinct 

patient populations: 

(i) Patients with familial hypercholesterolaemia requiring residual cholesterol risk 

reduction supplemental to statin therapy. 

(ii) Patients with familial hypercholesterolaemia requiring cholesterol-reduction who are 

statin intolerant. 

 

10.5.3 PPICOSS 

 

Populations: Scottish adults with no CVD and familial hypercholesterolaemia (TC ≥8.0 

mmol/L). Separate analyses considered this population as two mutually exclusive subgroups: 

statin tolerant and statin intolerant patients. 
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Perspective: Scottish health sector decision-maker. All healthcare costs accrued by the Scottish 

NHS and population-level health gains are considered. 

 

Intervention: PCSK9 inhibitors (treated as a class of therapy) for the primary prevention of 

CVD. In analysis of the statin tolerant population, PCSK9 inhibitors plus statin therapy was the 

intervention studied. In the analysis of the statin intolerant population, PCSK9 inhibitor 

monotherapy was the intervention studied. 

 

Comparator: In statin tolerant patients, two potential comparators were considered: (i) statin 

monotherapy and (ii) ezetimibe plus statin therapy. In statin intolerant patients, two potential 

comparators were considered: (i) no active treatment and (ii) ezetimibe monotherapy.  

 

Outcome: The outcome considered was a demand curve, which details the proportion of each 

subpopulation that a decision-maker should provide treatment to at a range of treatment costs. 

Intermediate outcomes that helped to establish this demand curve were: discounted healthcare 

costs and QALYs. 

 

Setting: Primary care in the Scottish NHS. 

 

Study Design: Cohort simulation. 

 

10.5.4 Methodology 

 

Scottish CVD Policy Model 

 

The Scottish CVD Policy model was employed to estimate the cost-effectiveness of different 

methods of statin prioritisation. Intermediate outcomes, including weighted probability of 

remaining alive and CVD-free in each model state was also estimated. The model was discussed 

in depth in Chapter 5. 
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Simulation Cohort 

 

As there does not exist a large cross-sectional dataset of CVD risk factor information for Scottish 

adults with familial hypercholesterolaemia, a hypothetical cohort was constructed for this 

analysis. This cohort was constructed using the Scottish Health Survey 2011 dataset employed 

in previous analyses in this thesis. 

 

The SHeS 2011 dataset includes cross-sectional risk factor information on 4,644 CVD-free 

Scottish adults (aged 40 and above). Some respondents to the survey were offered a nurse visit, 

in which blood samples were taken. This dataset can be split into three subsets: individuals who 

have complete ASSIGN risk factor information, individuals who were not offered a nurse 

interview so have incomplete risk factor information, and individuals who refused a nurse 

interview so have incomplete risk factor information. For all risk factors except TC, missing 

values were imputed for patients who were not offered a nurse interview and multiply imputed 

for the 306 individuals who were offered a nurse interview and refused. The assumption 

underlying this process is that censoring of missing risk factor information was only informative 

for individuals who refused the nurse interview and it was necessary to account for uncertainty 

caused by this informative censoring. 

 

Patients with familial hypercholesterolaemia were the focus of this analysis. This condition is 

defined by SIGN as a TC ≥8.0 mmol/L (26). For patients with a family history of CVD, this 

threshold is lowered to 7.5 mmol/L. The analysis focused on patients with elevated TC alone as 

they were assumed have a higher likelihood of being cost-effective to treat. 

 

The majority of individuals included in the SHeS dataset were not hypercholesterolaemic. 

Extremely high levels of TC and LDL-C are most commonly caused by genetic factors and the 

condition can occur in a heterogeneous group of individuals (593). Hence, an individual’s non-

cholesterol risk factors are weak predictors of hypercholesterolaemia. This implies that, aside 

from cholesterol levels, the distribution of CVD risk factors are not significantly different 

between the hypercholesterolaemic and general population in Scotland. It was therefore 

determined that data from the SHeS 2011 dataset could be used to construct a hypothetical 

cohort of patients. 
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Each individual in the SHeS 2011 dataset was randomly assigned a TC value equal to or greater 

than 8.0 mmol/L. This value was randomly allocated from the distribution of TC values of 

patients with familial hypercholesterolaemia in the unaltered dataset. Hence, a dataset was 

constructed representing a hypothetical cohort of 4,644 Scottish adults with TC ≥8.0 mmol/L 

providing full ASSIGN risk factor information for each individual. 

 

The hypothetical cohort of patients was employed in two separate analyses. In one analysis it 

was assumed that each individual in the cohort was statin tolerant. In a second analysis it was 

assumed that each individual in the cohort was statin intolerant. Hence, a further assumption of 

this study was that ASSIGN risk factors are not predictive of statin tolerance. Treatment 

strategies and comparators differed in these two analyses. 

 

Approach to Analysis 

 

The analysis aimed to derive demand curves for PCSK9 inhibitors in two distinct Scottish 

populations: adults with familial hypercholesterolaemia who are statin tolerant and statin 

intolerant, respectively. 

 

The first stage in the analysis was establishing the optimal comparator to PCSK9 inhibitors in 

each population. Guidelines for PCSK9 inhibitors and ezetimibe in clinical practice in Scotland 

are vague and there is a lack of cost-effectiveness analysis underpinning these guidelines 

(26,240). In patients who do not achieve adequate cholesterol lowering through statins alone, 

SIGN states that ezetimibe and PCSK9 inhibitors ‘may be considered’ (26). Hence, the optimal 

comparator is not clear. 

 

The average benefits and costs of relevant comparators in the 4,644-individual cohort were 

estimated using the Scottish CVD Policy Model. For statin intolerant patients, the comparators 

considered were: no active treatment, statin monotherapy, ezetimibe plus statin therapy, and 

PCSK9 inhibitor plus statin therapy. For statin intolerant patients, the comparators considered 

were: no active treatment, ezetimibe monotherapy, and statin monotherapy. Traditional health 

economic decision rules (42,43) were employed to select the valid comparator in each 

population, employing a cost-effectiveness threshold of £20,000/QALY. 
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Based on previous cost-effectiveness analyses and the high price of PCSK9 inhibitor therapy, it 

was hypothesised that this therapy would have an ICER well in excess of £20,000/QALY in 

both populations. 

 

The next stage in the analysis was to construct the demand curves for PCSK9 inhibitors in the 

two populations. This was achieved in 4 steps: 

1. Estimation of discounted costs and QALYs associated with chosen comparator and 

PCSK9 inhibitors for each individual in the cohort. 

2. Establishment of Treatment Value (INMB disregarding direct treatment costs) of PCSK9 

inhibitors for each individual in the cohort. 

3. Calculation of annual cost of PCSK9 inhibitor therapy at which each patient’s treatment-

related costs would equal their Treatment Value. This is the maximum annual price, or 

reverse-engineered price, a decision-maker should pay for PCSK9 inhibitors, given their 

cost-effectiveness threshold. 

4. Plotting maximum annual price of treatment in descending order on a graph, creating 

the demand curve. 

 

Choosing Valid Comparator 

 

Several comparators exist for residual cholesterol risk reduction in patients with familial 

hypercholesterolaemia. As explained in the introductory section of this chapter, statins and 

ezetimibe are the two most relevant comparators according to clinical guidelines. 

 

To establish a demand curve for a treatment, it must be possible to compare this treatment to a 

unitary comparator. Preferably, this comparator will represent standard of care. Given the lack 

of cost-effectiveness analysis underpinning existing guidelines for the provision of ezetimibe in 

the Scottish NHS, the optimal comparator and standard of care may not align. Statin tolerant 

patients may receive no active treatment, statin monotherapy, or statins plus ezetimibe. Statin 

intolerant patients may receive no active treatment or ezetimibe monotherapy. 

 

Cost-effectiveness analyses were conducted to establish the cost-effectiveness frontier for 

addressing residual cholesterol risk in statin tolerant and statin intolerant Scottish patients. In 

both populations, the optimal treatment strategy (non-dominated with an ICER less than 
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£20,000/QALY) was chosen as the valid comparator for PCSK9 inhibitors in the demand curve 

analysis. 

 

Input Parameters 

 

The key parametric inputs for the treatment-related costs and effects are described in Table 10-

1. These relate to statin therapy, ezetimibe, and PCSK9 inhibitors. 

 

All statin-related modelling inputs were previously described in Chapter 7 (Table 7-4). The 

LDL-C-lowering and HDL-C-increasing effect of statin therapy were derived from meta-

analyses of preventive statin therapy (284,493). This meta-analysis informed treatment 

parameters in previous studies of statins in this thesis. Side effects and treatment-related 

disutilities were derived from a range of sources. Statins were assumed to increase risk of 

diabetes, and were also associated with a small annual pill-taking disutility 

 

Compared with statin therapy, there is less information regarding the efficacy and safety of 

ezetimibe and PCSK9 inhibitors. This is because they are newer treatments which have been 

studied in fewer clinical trials with shorter follow-up. The LDL-C-lowering effect of ezetimibe 

monotherapy, ezetimibe plus statin therapy, PCSK9 inhibitor monotherapy, and PCSK9 

inhibitors plus statin therapy were derived from a recent meta-analysis conducted by IfCER in 

the U.S. (578). In all treatment scenarios, LDL-C reduction was translated to a reduction in non-

HDL cholesterol using Friedewald’s equation (495,496), as in analyses in Chapters 7,8, and 9, 

assuming the treatments only affected LDL-C. Based on a previously-conducted cost-

effectiveness analysis, it was assumed that adverse injection-site reactions would occur in a 

proportion of patients receiving these injections and this would lead to patient disutility and 

increased costs (392). 
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Parameter 
Base Case 

Value 
Source 

Change in cholesterol levels 

HDL-C increase (statin monotherapy) +4.0% (493) 

LDL-C decrease (statin monotherapy) -29.0% (284) 

LDL-C decrease (ezetimibe monotherapy) -18.6% (578) 

LDL-C decrease (PCSK9 inhibitor monotherapy) -53.7%  (578) 

LDL-C decrease (statin plus ezetimibe) -45.7%  (578) 

LDL-C decrease (statin plus PCSK9 inhibitor) -75.3% (578) 

Non-HDL cholesterol (Statin monotherapy) -27.2% (495,496) 

Non-HDL cholesterol (ezetimibe monotherapy) -14.9% (495,496) 

Non-HDL cholesterol (PCSK9 inhibitor monotherapy) -42.9% (495,496) 

Non-HDL cholesterol (statin plus ezetimibe) -36.6% (495,496) 

Non-HDL cholesterol (statin plus PCSK9 inhibitor) -60.2% (495,496) 

Side effects and disutility 

Statin-induced diabetes, increase in absolute risk 5.0% (440) 

Annual pill-taking disutility (statins) 0.0011  (497) 

Annual disutility (PCSK9 inhibitors) 0.0003  (392) 

Treatment costs 

Annual price Atorvastatin 20mg/daily £13.00 (213)  

Annual price statin plus ezetimibe £506.74 (594)  

Annual price ezetimibe £342.03 (594)  

Annual price statin plus PCSK9 inhibitor £4,408.30 (594)  

Annual price PCSK9 inhibitor £4,395.30 (594)  

Risk assessment, monitoring, and side effect costs* 

Risk assessment £26.34 (25)  

Monitoring, first year (statins) £120.17 (25)  

Monitoring, subsequent years (statins) £67.96 (25)  

Annual cost of early type 2 diabetes treatment £314.33 (25)  

Table 10-1: Efficacy, side effects, disutility, and costs associated with statins, 
ezetimibe, and PCSK9 inhibitors. *Assumed to be equal across treatment strategies 

 

Producing Demand Curves 

 

Once a valid comparator was selected, the four steps described above were completed to produce 

the demand curve. Recall from Chapter 2 that Treatment Value is defined as the net monetary 

benefit of a treatment excluding its direct treatment-related costs but accounting for costs of 

side-effects, disease-related morbidity, and life-expectancy. The metric Treatment Value will be 
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key in establishing the demand curve for the two populations of interest in this analysis. 

Screening and annual monitoring costs may also be accounted for, when relevant. The four steps 

listed above were undertaken to establish a demand curve. 

 

Step 1: Estimation of costs and QALYS associated with comparator and PCSK9 inhibitors 

 

The first step towards producing PCSK9 inhibitors demand curves was estimating lifetime costs, 

QALYs, and weighted, discounted CVD-free life years associated with PCSK9 inhibitors and 

their comparator. These values were estimated for every individual in the cohort. In the analysis 

of statin tolerant patients, the PCSK9 inhibitor strategy is always considered as a supplement to 

statin therapy. For statin intolerant patients it refers to PCSK9 inhibitor monotherapy. The role 

of CVD-free life years in producing the demand curve will be discussed in Step 3. 

 

The Scottish CVD Policy Model was employed to estimate outcomes of interest using the 

simulation parameters listed above. Macros for Microsoft Excel were produced to conduct the 

analysis. 

 

For the comparator, all healthcare costs incremental to no active treatment were accounted for. 

These were: non-CVD-related healthcare costs, CVD-related healthcare costs, medication costs, 

and monitoring costs. Health benefits incremental to no active treatment included all QALY 

gains incurred from reduced CVD events alongside losses incurred due to treatment-related side 

effects and disutility. 

 

For PCSK9 inhibitors, incremental to no active treatment the healthcare costs accounted for 

included non-CVD-related healthcare costs, CVD-related healthcare costs, and monitoring 

costs. The cost of the PCSK9 inhibitor medication was not accounted for. Health benefits in the 

analysis included all QALY gains incurred from reduced CVD events alongside losses incurred 

due to treatment-related side effects and disutility. 

 

Step 2: Establishing Treatment Value of PCSK9 inhibitors for each individual in cohort. 

 

The next step in producing the demand curve was to estimate Treatment Value of PCSK9 

inhibitors versus the comparator for every individual in the cohort. All of the constituents of the 

Treatment Value equation were computed in Step 1. 
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Let ∆𝐶 equal the cost of PCSK9 inhibitors, excluding the cost of medication, incremental to the 

total cost of the comparator. This incremental cost can be split into four categories: ∆𝐶𝑠𝑒, 

incremental costs incurred due to side effects, ∆𝐶𝑚𝑜𝑟𝑏, incremental costs saved due reduced 

CVD-related morbidity, ∆𝐶𝑙𝑒, incremental costs incurred due to increased life expectancy, and 

∆𝐶𝑚𝑜𝑛𝑖𝑡𝑜𝑟, incremental costs incurred due screening and check-up costs. Further, let ∆𝐸 

represent the incremental QALYs associated with PCSK9 inhibitors versus the chosen 

comparator, ∆𝐶𝑅𝑥 represent the incremental medication costs associated with PCSK9 inhibitors, 

and λ represent the decision-maker’s cost-effectiveness threshold. Treatment Value for 

individual i can be estimated with the following equation: 

           𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒𝑖 = 𝐼𝑁𝑀𝐵 + ∆𝐶𝑅𝑥                                                                       (10-1) 

                                                = 𝜆 ∗ ∆𝐸𝑖 − (∆𝐶𝑠𝑒,𝑖 + ∆𝐶𝑚𝑜𝑟𝑏,𝑖 + ∆𝐶𝑙𝑒,𝑖 + ∆𝐶𝑚𝑜𝑛𝑖𝑡𝑜𝑟,𝑖).          (10-2) 

 

Step 3: Calculating reverse-engineered price for PCSK9 inhibitor therapy for each individual 

 

The next step was to establish the annual cost of PCSK9 inhibitors that would result in each 

individual’s incremental net monetary benefit to equal zero. This value represents the maximum 

price a decision-maker should be willing to pay for medication for patient i, given their cost-

effectiveness threshold. This will be referred to as the reverse-engineered price hereafter. 

Rearranging Equation (10-1), it can be shown that this value occurs when the patient’s total 

treatment-related costs equal Treatment Value. 

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒𝑖 = 𝐼𝑁𝑀𝐵 + ∆𝐶𝑅𝑥,𝑖 

⇒ 𝐼𝑁𝑀𝐵 = 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒𝑖 − ∆𝐶𝑅𝑥,𝑖 

⇒ 𝐼𝑁𝑀𝐵 = 0, if and only if 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒𝑖 = ∆𝐶𝑅𝑥,𝑖. 
 

The following calculations describe the computational process required to estimate the annual 

price of treatment which ensures that ∆𝐶𝑅𝑥 is equal Treatment Value for individual i. Let: 

𝑡 = cycle (years) after treatment initiation, 
ℎ = time horizon of analysis, 
𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒𝑖 = net present value of 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 for patient 𝑖, 
𝑝𝑡,𝑖 = probability that patient 𝑖 is CVD-free and alive at time 𝑡, 

𝑑𝑟 = discount rate (assumed equal for health and cost outcomes), 

𝑥 = annual cost of PCSK9 inhibitor medication,   

𝐸(𝐶𝑐𝑜𝑚𝑝,𝑖) = expected lifetime costs of comparator for patient 𝑖, 

𝐸(𝐶𝑅𝑥,𝑖) = expected lifetime costs of PCSK9 inhibitor for patient 𝑖. 
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The cost of PCSK9 inhibitor medication is only considered while the patient is CVD-free. It is 

assumed patients will receive the same treatment after a primary CVD event. Then, by 

definition, 

E(𝐶𝑅𝑥,𝑖) = 𝑝1,𝑖 ∗ 𝑥 +
𝑝2,𝑖

(1 + 𝑑𝑟)
∗ 𝑥 +

𝑝2,𝑖

(1 + 𝑑𝑟)2
∗ 𝑥 + ⋯ +

𝑝ℎ,𝑖

(1 + 𝑑𝑟)ℎ−1
∗ 𝑥 

 

⇒ ∑
𝑝𝑡,𝑖

(1 + 𝑑𝑟)𝑡−1

ℎ

𝑡=1

∗ 𝑥 = 𝑥 ∗ ∑
𝑝𝑡,𝑖

(1 + 𝑑𝑟)𝑡−1

ℎ

𝑡=1

 . 

 

We require a value of 𝑥 such that, 

∆𝐶𝑅𝑥 = 𝐸(𝐶𝑅𝑥,𝑖) − 𝐸(𝐶𝑐𝑜𝑚𝑝,𝑖) = 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒𝑖, 
 

⇒ 𝑥 ∗ ∑
𝑝𝑡,𝑖

(1 + 𝑑𝑟)𝑡−1

ℎ

𝑡=1

− 𝐸(𝐶𝑐𝑜𝑚𝑝,𝑖) = 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒𝑖 

 

∴ 𝑥 =
𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒𝑖 + 𝐸(𝐶𝑐𝑜𝑚𝑝,𝑖)

∑
𝑝𝑡,𝑖

(1 + 𝑑𝑟)𝑡−1
ℎ
𝑡=1

. 

 

The value on the denominator in this final equation is the sum of the weighted probabilities that 

an individual was CVD-free and alive at each stage in the analysis, accounting for the 

discounting of future life years. It was possible to obtain this value as output from the Scottish 

CVD Policy Model as it represents an intermediate step necessary for computing the model’s 

primary outcomes. Hence it was possible to establish a value xi such that the INMB associated 

with PCSK9 inhibitors compared to standard of care was equal to zero for each individual in the 

dataset. This value is the reverse-engineered price: the maximum annual price a decision-maker 

should be willing to pay to give patient i the intervention instead of the comparator. 

 

Step 4: Plotting demand curve 

 

The final step in producing the demand curve was to plot each individual’s value of 𝑥𝑖 against 

the percentile of 𝑥 values they represent in the population. Any point on the curve shows the 

proportion of the population that a decision-maker would choose to provide PCSK9 inhibitors 

to at a fixed annual price of treatment. 
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Secondary Analysis 

 

The analysis described so far aims to compute the optimal value of xi for every individual in the 

population. It is unlikely that such computation would be completed in clinical practice. 

However, a demand curve can be discretized into a step function, where xi is established for a 

set of subgroups of a population. Producing such a curve would allow decision-makers to 

recommend differential treatment strategies for different subgroups of a population. 

 

Secondary analysis aimed to establish subgroups of the populations that were significantly more 

likely to be cost-effective to treat at high medication prices. Linear regression was performed to 

highlight drivers of cost-effectiveness. Reverse-engineered price was the dependent variable in 

these regression analyses and the ASSIGN risk factors were included as predictors. 

 

10.5.5 Results 

 

Hypothetical Cohort Descriptive Statistics 

 

Table 10-2 describes the descriptive statistics for the hypothetical cohort of individuals with 

familial hypercholesterolaemia employed in the analysis. TC ranged from 8.0 to 10.5 mmol/L. 

 

Risk Factor Obs Mean 
Std. 
Dev. 

Min Max 

Male 4,644 0.42 0.49 0 1 

Age 4,644 58.51 12.30 40 103 

SIMD 4,644 19.51 13.39 5.18 45.62 

Diabetes 4,644 0.07 0.25 0 1 

FH 4,644 0.46 0.50 0 1 

CPD 4,644 7 7.05 0 39 

SBP (mmHg) 4,644 131 8.81 90 203 

TC (mmol/L) 4,644 8.3 0.54 8.0 10.5 

HDL-C (mmol/L) 4,644 1.5 0.22 0.6 3.3 

ASSIGN Score 4,644 19.6 17.5 1.0 98.5 

Table 10-2: Descriptive statistics of hypothetical Scottish cohort 
with familial hypercholesterolaemia  
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Choosing Valid Comparators 

 

Tables 10-3 and 10-4 display cost-effectiveness outcomes of different treatment strategies for 

statin tolerant individuals. Statin therapy, statins plus ezetimibe, and statins plus PCSK9 

inhibitors incrementally increase costs and QALYs compared to no active treatment, 

respectively. 

 

Policy 

Discounted QALYs Discounted Costs (£1000's) 

Disease-
Related 

Disutility 
Health 

Care 
Treatment Monitoring 

Do Nothing Reference 

Statin therapy 984 67 2,040 796 4,630 

Statins + Ezetimibe 1,200 19 2,590 31,400 4,670 

Statins + PCSK9i 1,940 19 4,880 283,000 4,830 

Table 10-3: Disaggregated costs and QALYs for statin tolerant population 
 

Policy 
Discounted 

QALYs 

Discounted 
Costs 

(£000's) 

ICER 

(£/QALY) 

Do Nothing Reference 

Statin monotherapy 917 7,460 8,100 

Statins + Ezetimibe 1,190 38,600 116,400 

Statins + PCSK9i 1,920 293,000 344,600 

Table 10-4: Cost-effectiveness results for statin tolerant population 
 

Employing a cost-effectiveness threshold of £20,000/QALY, statin monotherapy is the optimal 

treatment strategy for statin tolerant individuals. In the demand curve analysis, statin 

monotherapy was therefore considered to be the valid comparator to PCSK9 inhibitors. 

 

Tables 10-5 and 10-6 display the cost-effectiveness outcomes of different treatment strategies 

for statin intolerant individuals. Ezetimibe monotherapy and PCSK9 inhibitor monotherapy 

incrementally increase costs and QALYs compared to no active treatment. 

 

Employing a cost-effectiveness threshold of £20,000/QALY, no treatment is the optimal 

treatment strategy for statin intolerant individuals. In the demand curve analysis, statin 

monotherapy was therefore considered to be the valid comparator to no active treatment. 
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Policy 
Discounted QALYs Discounted Costs (£1000's) 

Disease-
Related 

Disutility 
Disease-
Related 

Health 
Care 

Monitoring 

Do Nothing Reference 

Ezetimibe* 493 18 878 31,700 4,500 
PCSK9i 1,410 19 3,170 275,000 4,720 

*Monotherapy 

Table 10-5: Disaggregated costs and QALYs for statin intolerant population 
 

Policy 
Discounted 

QALYs 

Discounted 
Costs 

(£000's) 

ICER 

(£/QALY) 

Do Nothing Reference 

Ezetimibe  475 37,100 78,000 
Statins + PCSK9i 1,390 283,000 269,800 

*Monotherapy 

Table 10-6: Cost-effectiveness results for statin intolerant population 

 

Demand Curves 

 

The demand curve for PCSK9 inhibitor therapy for the statin tolerant population with familial 

hypercholesterolaemia is presented in Figure 10-1. The key result is presented in the green 

curve, which represents demand for the treatment given a cost-effectiveness threshold of 

£20,000/QALY. The red curves represent demand at thresholds of £10,000/QALY and 

£30,000/QALY, respectively. 

 

The median reverse-engineered annual treatment price in the population was £250. At an annual 

PCSK9 inhibitor price of £519, the decision-maker would provide the therapy to 25% of the 

population. At an annual PCSK9 inhibitor price of £827, the decision-maker would provide the 

therapy to 10% of the population. At the current listed price for PCSK9 inhibitors in the Scottish 

NHS, not one individual in the hypothetical cohort would be cost-effective to treat. 
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Figure 10-1: Demand curve for PCSK9 inhibitors versus statin therapy in hypothetical 
cohort of CVD-free statin tolerant adults with familial hypercholesterolaemia 

 

The demand curve for PCSK9 inhibitor therapy for the statin intolerant population is presented 

in Figure 10-2. In this curve the key result is presented in the black curve, which represents 

demand for the treatment given a cost-effectiveness threshold of £20,000/QALY while the red 

curves represent demand at thresholds of £10,000/QALY and £30,000/QALY, respectively. 

 

The median reverse-engineered price in the population was £393. At an annual PCSK9 inhibitor 

price of £710, the decision-maker would provide the therapy to 25% of the population. At an 

annual PCSK9 inhibitor price of £1,152, the decision-maker would provide the therapy to 10% 

of the population. At the current listed price for PCSK9 inhibitors in the Scottish NHS, not one 

individuals in the cohort would be cost-effective to treat 
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Figure 10-2: Demand curve for PCSK9 inhibitors versus statin therapy in hypothetical 
cohort of CVD-free statin intolerant adults with familial hypercholesterolaemia 

 

Secondary Analysis 

 

Linear regression was conducted using results for both populations. These tests aimed to 

establish the factors which influenced individual-level maximum price of treatment in statin 

tolerant and intolerant individuals with familial hypercholesterolaemia. The dependent variable 

in each linear regression was reverse-engineered price of treatment. The independent variables 

were the ASSIGN variables. Results from the linear regression analysis are presented in Tables 

10-7 and 10-8. 

 

This linear regression model presented in Tables 10-7 and 10-8 represents a meta-model. Their 

respective adjusted r-squared terms of around 85% suggest that these models could be used 

successfully to predict reverse-engineered price for PCSK9 inhibitors in a cohort of statin 

tolerant and statin intolerant Scottish adults with familial hypercholesterolaemia. Hypothesis 

testing regarding the effect of different covariates on reverse-engineered price cannot be 

conducted reliably with a meta-model. However, results from these linear regressions show that 

the Scottish CVD Policy Model predicts several factors may be drivers of reverse-engineered 
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price. Male, Age, and TC are all strongly positively correlated with reverse-engineered price 

according to the model. 

 

 

Table 10-7: Linear regression analysis with reverse-engineered price of 
PCSK9 inhibitor therapy for statin tolerant individuals as dependent 
variable and ASSIGN risk factors as predictors 

 

 

Table 10-8: Linear regression analysis with reverse-engineered price of 
PCSK9 inhibitor therapy for statin intolerant individuals as dependent 
variable and ASSIGN risk factors as predictors 

4644 R-squared         = 0.8517

F(9,4634)          = 2956.34 Adj R-squared   = 0.85

Prob > F            = 0.0000 Root MSE          = 115.060

Covariate Coef.
Std.     

Err.
t P>|t|

Male 468.0 3.5 134.9 0.000 461.0 475.0

Age 10.7 0.145 73.4 0.000 10.4 11.0

SIMD 1.7 0.1 13.1 0.000 1.4 1.9

Diabetes 75.0 6.8 11.1 0.000 61.7 88.3

FH 8.2 3.6 2.3 0.021 1.3 15.2

CPD -2.4 0.2 -9.9 0.000 -2.8 -1.9

SBP 1.6 0.2 8.1 0.000 1.2 2.0

TC 65.9 3.2 20.8 0.000 59.7 72.1

HDL-C -125.0 8.0 -15.7 0.000 -141.0 -109.0

Constant -1060.0 39.7 -26.6 0.000 -1130.0 -978.0

Number of obs =

[95% Conf. Interval]

4644 R-squared         = 0.8559

F(9,4634)          = 30.58.10 Adj R-squared   = 0.86

Prob > F            = 0.0000 Root MSE          = 153.700

Covariate Coef.
Std.     

Err.
t P>|t|

Male 616.0 0.4 132.9 0.000 607.0 625.0

Age 16.6 0.2 85.2 0.000 16.2 17.0

SIMD 3.1 0.2 18.2 0.000 2.8 3.4

Diabetes 16.4 9.1 1.8 0.070 -1.3 34.2

FH -13.9 4.7 -2.9 0.003 -23.2 -4.6

CPD -5.8 0.3 -18.0 0.000 -6.4 -5.2

SBP 1.4 0.3 5.5 0.000 0.9 2.0

TC 88.5 4.2 20.9 0.000 80.2 96.8

HDL-C -139.0 10.7 -13.0 0.000 -160.0 -118.0

Constant -1450.0 53.0 -27.3 0.000 -1550.0 -1340.0

Number of obs =

[95% Conf. Interval]
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10.5.6 Discussion and Limitations 

 

Discussion 

 

Demand curves were produced which show the portion of two Scottish populations with familial 

hypercholesterolaemia that should be treated with PCSK9 inhibitors at a range of annual 

treatment prices. Undertaking this analysis can signal demand for PCSK9 inhibitors to 

manufacturers, helping dictate their pricing strategy. 

 

A rationally-acting monopolist manufacturer would choose to reduce their price in response to 

these results. Otherwise they would risk wasting their exclusivity period gaining less revenue 

than could otherwise be achieved if price were set at the point where marginal revenue equals 

marginal cost. 

 

Recent developments in PCSK9 inhibitor pricing suggests that manufacturers are aware of the 

need to reduce their price to find some equilibrium with demand for the product. In 2018, Amgen 

drastically reduced the price of Repatha and Regeneron and Sanofi have similarly reduced the 

price of Praluent (595–597). It is likely that this decision was taken in direct response to cost-

effectiveness analyses which showed that large reductions in the treatment price was necessary 

to justify expansive use of PCSK9 inhibitors in CVD prevention (193,392,578,586). The 

companies appear to have been rewarded for this decision with broader recommendations for 

PCSK9 inhibitor therapy in the 2018 ACC/AHA guidelines for cholesterol management (174). 

 

There is considerable heterogeneity in cost-effectiveness of PCSK9 inhibitors, even within the 

hypercholesterolaemic population. While no individual in either population was cost-effective 

to treat at the current price of PCSK9 inhibitors in Scotland, high annual medication costs (in 

excess of £800 per year) may be justified in some subgroups of the population. This analysis 

showed that a decision-maker should be willing to pay more for PCSK9 inhibitors for statin 

intolerant patients. Intuitively this makes sense as a cheaper, yet less effective, alternatives exist 

for cholesterol control in the statin tolerant population. 
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Annemans et al. have suggested that PCSK9 inhibitor therapy should be targeted at patients with 

high risk and high LDL-C, much like the absolute risk reduction approach to prevention 

discussed in Section 8.3 (598). Results from this analysis support this suggestion. Elderly 

patients, those with the highest levels of total cholesterol, and those with greater ASSIGN risk 

scores were deemed to be the most likely to be cost-effective to treat. 

 

Limitations 

 

As with all modelling studies, assumptions were required to undertake this analysis. These 

assumptions may limit the applicability of a study to the real world. Two key assumptions that 

could limit this analysis relate to the construction of a hypothetical cohort and the price of 

comparators. 

 

The low prevalence of familial hypercholesterolaemia in the Scotland means that it would be 

difficult to obtain risk factor information from enough individuals suffering from the condition 

to construct a truly representative cohort for the analysis. Due to lack of data availability, a 

hypothetical cohort was constructed for this analysis. The risk factors in this cohort were mostly 

taken from a cross-sectional survey of the Scottish population. Values for TC, however, were 

assumed to be in excess of 8.0 mmol/L. This was to reflect the TC of individuals with familial 

hypercholesterolaemia. The analysis therefore relies on the assumption that risk factors are 

distributed evenly amongst individuals in Scotland with and without familial 

hypercholesterolaemia. Further research should be conducted, perhaps supplemented with data 

from outside Scotland, to establish the validity of this assumption. 

 

Another assumption in this analysis relates to the price of comparators. The demand curve for 

PCSK9 inhibitors considers the proportion of the hypercholesterolaemic population treated at 

varying treatment prices. It was assumed, however, that the price of statins and ezetimibe were 

static. The high cost of ezetimibe resulted in it being excluded from analyses due to extended 

dominance. In reality, manufacturers of ezetimibe could reduce the price of their treatment in 

response to a reduction in the price of PCSK9 inhibitors. Inasmuch, this analysis just provides 

a framework for signalling demand for PCSK9 inhibitors. Further analysis should consider 

demand for PCSK9 inhibitors as a function of the price of relevant comparators. Treatment price 
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for comparators will tend towards the marginal cost of production and become relatively static 

after their patent expires (599). 

 

This study looked at incremental cost-effectiveness in the hypothetical cohort constructed for 

the analysis, but did not estimate absolute costs or health benefits at a population level. To 

establish population-level outcomes, a better understanding of the prevalence of statin tolerant 

and statin intolerant familial hypercholesterolaemia is required. Given the apparently low 

prevalence of the condition – around 1% in the Scottish Health Survey 2011 (347) – a very large 

study would be required to reliably estimate the prevalence of the condition. 

 

10.6 Chapter Summary 

 

The majority of this thesis has focused on heterogeneity in cost-effectiveness with specific 

regard to the prioritisation of patients for preventive statin therapy. After initiation of this 

treatment, some patients have residual cholesterol risk and others are deemed to be statin 

intolerant. This chapter aimed to establish how best to prioritise patients for expensive 

treatments that offer additional cholesterol reduction. 

 

Reflecting heterogeneity in decision-making would allow for a more cost-effective distribution 

of PCSK9 inhibitors in the Scottish population. PCSK9 inhibitors are much more expensive 

than statins. Therefore, stratifying patients into cost-effective subgroups is even more important 

for this treatment as it is necessary to avoid the large cost consequences associated with incorrect 

treatment decisions. 

 

More generally, this chapter showed that reflecting heterogeneity in cost-effectiveness in a 

population allows decision-makers to signal demand for a treatment. The theoretical 

underpinnings of demand signalling were discussed in Section 2.4.2. Willingness to treat 

different proportions of a population dependent on treatment price ensures that decision-makers 

are able to achieve welfare gains when investing in a health care intervention. 

 

In the case of PCSK9 inhibitors, making decisions based on the results of this analysis would 

likely force manufacturers to lower prices. The analysis in this chapter confirms results from the 



324 
 

literature that show PCSK9 inhibitors are currently too expensive, even in very high-risk subsets 

of the familial hypercholesterolaemic population (193,227,392,577,578,586–588). If decision-

makers abide by traditional health economic decision rules, they should not provide PCSK9 

inhibitors to any of their population unless considerable price reductions are agreed upon. 

 

In 2018, the manufacturers of PCSK9 inhibitors drastically reduced the price of treatment in the 

U.S. (595,596). Given this price reduction, it is now the role of decision-makers to ensure that 

the treatment is targeted at cost-effective subgroups of patients in the U.S. 

 

There has been less transparency in Scotland, England and Wales, where the treatment has been 

approved on patient access schemes (577,580,581,585). This chapter showed that a significant 

reduction in price would need to have been negotiated with manufacturers by the SMC for the 

treatment to be cost-effective for any individuals in Scotland. This is also true for NICE.  
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Part 4 

Policy Recommendations, Further Research, and Conclusions 

 

Part 4 aims to synthesise results from the thesis, produce policy recommendations, suggest 

further research, and provide concluding remarks. 

 

Chapter 11 provides policy recommendations based on the analyses in Part 3. Results from cost-

effectiveness analyses are synthesised to define optimal strategies for preventive statin therapy 

prioritisation. Optimal treatment decisions are presented for several scenarios, dependent on 

constraints that may be placed upon a decision-maker. Recommendations are also provided 

regarding the approach decision-makers should adopt to signal demand for PCSK9 inhibitors. 

 

Chapter 12 summarises the research contained within the thesis and highlights areas for further 

research. Four areas that require further research are highlighted. These are: parametric inputs 

for statin cost-effectiveness analyses, validity of novel CVD biomarkers, long-term safety and 

efficacy of PCSK9 inhibitor therapy, and optimal objective functions for healthcare decision-

makers. 
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Chapter 11 

Policy Recommendations 

 

11.1 Purpose 

 

Several approaches for the primary prevention of CVD have been analysed throughout this 

thesis. It has been shown that population-level health gains can be achieved by looking beyond 

10-year risk when prioritising patients for preventive therapy. However, the policies discussed 

have not yet been collectively compared with each other. 

 

The purpose of this chapter is to compare and contrast the approaches to prevention heretofore 

discussed. Decision-makers who wish to maximise health outcomes given an exogenously 

determined healthcare budget should invest in cost-effective treatment strategies. However, 

health sector decision-makers can have multiple objectives. Concomitant objectives can include 

the reduction of health inequalities, improvement of social welfare, as well as more nefarious 

aims like profit-maximisation. 

 

This chapter compares policies for statin prioritisation, selecting optimal treatment decisions for 

policymakers. It shows that these decisions may be constrained by societal preference regarding 

distribution of resources and distribution of health outcomes. Finally, a series of policy 

recommendations are produced, based on the analysis conducted in this thesis. 

 

11.2 Maximising QALYs in CVD Prevention 

 

This thesis has considered the costs and QALYs associated with several policies for prioritising 

patients for preventive statin therapy. These policies were split into three categories: policies 

which retain the role of 10-year risk scoring in decision-making, policies which prioritise 

treatment based on 10-year risk scoring alongside some other covariate, and policies which 

maximise outcomes through direct utilisation of decision models in clinical practice. Policies 

have been compared using traditional health economic decision rules within these categories. 

The aim of this section is to compare all policies simultaneously. 
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The policies that have been considered can be separated into two groups. One group treats the 

same number of individuals as current guidelines in Scotland (prioritisation for familial 

hypercholesterolaemia and individuals with ASSIGN score ≥20%). The second group treats the 

same number of individuals as a policy which extends treatment to all individuals with ASSIGN 

score ≥10%. Several decision mechanisms for patient prioritisation have been considered. These 

include prioritisation based on: blanket risk thresholds, updated ASSIGNBIO blanket risk 

thresholds, absolute risk reduction, age-stratified risk thresholds, life expectancy maximisation, 

and quality-adjusted life expectancy maximisation. 

 

ASSIGNBIO will not be included as a comparator. Assessment of the novel biomarker HF1 was 

completed as a case study rather than a genuine proposal for change in clinical practice. To 

assess whether a novel biomarker should be used to prioritise patients for preventive 

interventions in CVD, it is necessary to include a range of candidate biomarkers (and biomarker 

combinations) in the analysis. The population-level health gains associated with this strategy 

were small in comparison to the other policies considered as reclassification occurred in a small 

proportion of the total Scottish population. Probabilistic sensitivity analysis showed a large 

amount of uncertainty regarding the ability of HF1 testing to improve population health. Finally, 

the benefit of biomarker testing is not contingent on the use of a blanket risk threshold policy. 

Reclassifying patients based on biomarker values may prove equally as beneficial when 

combined with other policies discussed. 

 

Table 11-1 shows the discounted costs, discounted QALYs, and ICERs associated with several 

policies. The optimal policy for decision-makers with a threshold of £20,000/QALY is marked 

with an asterisk. These strategies are plotted on a cost-effectiveness plane in Figure 11-1 and 

uncertainty regarding these results are represented in a cost-effectiveness acceptability curve in 

Figure 11-2. Employing a cost-effectiveness threshold of £20,000/QALY, QALE-Max 10 

should be implemented. The demographics of patient prioritised for treatment under different 

policies are presented in Table 11-2. 
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Policy 

Number 

Treated 

Discounted 

QALYs 

Discounted 

 Cost 

(£1000's) 

ICER                 

(£/QALY)   

  Familial Hyp. Reference   

  Blanket 20 793,559 92,300 636,000 6,900   

  ARR 20 793,762 96,300 687,000 Extendedly 

Dominated 

  

  Age-Strat 20 793,596 99,500 882,000 Extendedly 

Dominated 

  

  LE-Max 20 793,387 141,000 1,597,000 Str. Dominated   

  QALE-Max 20 793,775 150,000 1,313,000 11,700   

  Blanket 10 1,381,059 164,000 1,596,430 Ext. Dominated   

  ARR 10 1,380,535 166,000 1,627,000 Ext. Dominated   

  Age-Strat 10 1,381,054 168,000 1,719,000 Ext. Dominated   

  LE-Max 10 1,380,749 197,000 2,603,000 Str. Dominated   

  QALE-Max 10 1,381,122 206,000 2,306,000 17,700*   

*Optimal policy with λ=£20,000/QALY. Ext. – extendedly, Str. – strictly 

Table 11-1: Costs, QALYs, and ICERs for various statin prioritisation policies  
 

 

Figure 11-1: Cost-effectiveness plane, all policies 
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Figure 11-2: Cost-effectiveness acceptability curve, all policies 
 

Instituting Constraints 

 

No policy is worth introducing if it does not garner clinical and societal buy-in. If a clinician 

does not agree with a treatment guideline they are unlikely to implement it (600,601). As the 

general public funds the NHS in the U.K., societal values may also constrain which policies are 

deemed acceptable and should be implemented. These considerations represent constraints on 

the decision-maker, limiting the policies that can be implemented. 

 

It is beyond the scope of this thesis to establish the constraints that clinicians, patients, and the 

general public are likely to place on preventive statin policy. Rather, two examples of the types 

of constraints that may be placed on policy-makers are considered. These examples were 

retrospectively derived from results presented in Table 11-2 and health inequality analysis 

conducted alongside the cost-effectiveness analyses throughout the thesis. The first constraint 

aims to establish equality in access to preventive statin therapy between men and women. The 

second constraint looks to maximise equality in outcome across quintiles of socioeconomic 

deprivation. 
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Constraint 1: Equality of Access 

 

The sex distribution of patients prioritised for treatment must be approximately equal. 

 

Examining Table 11-2, a clear inequality stands out between treated patient groups. The policies 

which prioritise treatment based on outcome maximisation disproportionately provide treatment 

to men. Reasons for this result are discussed in Section 9.2. These included distribution of TC 

between men and women, likely age of first event, and differentials between the type of CVD 

event men and women are likely to experience. If clinicians (or society) believe such an 

imbalance in treatment prioritisation is inequitable, LE-Max 10, LE-Max 20, QALE-Max 10, 

and QALE-Max 20 may be excluded from consideration for implementation. 

 

Under Constraint 1, ARR 10 emerges as the optimal policy for the decision-maker, as shown in 

Table 11-3. Age-Strat 10 is undominated so remains on the cost-effectiveness frontier, but has 

an ICER too high to justify implementation. Results from sensitivity analyses presented in 

Chapter 8 (Figure 8-5) suggest that Age-Strat 10 may be cost-effective if a policy could be 

defined which limits monitoring costs in years subsequent to treatment initiation. 

 

Notably, more than 40,000 QALYs are lost across the population when Constraint 1 is 

implemented compared to the optimal policy under unconstrained decision-making. Indeed, the 

potential welfare losses are even greater when one accounts for the fact that these QALYs would 

be purchased well below the decision-maker’s cost-effectiveness threshold. 
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    Overall 
Population 

ASSIGN 
20 

Age-
Strat 
20 

ARR 20 
LE-Max 

20 
QALE-
Max 20 

ASSIGN 
10 

Age-
Strat 
10 

ARR 10 
LE-Max 

10 
QALE-
Max 10 

P
ro

p
o
rt

io
n
 o

f 
A

g
e
-G

ro
u
p
 

T
re

a
te

d
 (

%
) 

40-44 n/a 0 5 0 44 14 3 12 2 73 37 

45-49 n/a 2 14 2 39 28 14 29 16 68 49 

50-54 n/a 5 30 6 37 37 38 49 39 63 54 

55-59 n/a 15 50 19 38 41 74 74 74 60 63 

60-64 n/a 41 45 45 31 37 94 86 93 50 65 

65-69 n/a 75 52 75 32 43 100 85 99 51 69 

70-74 n/a 92 65 89 21 37 100 80 99 45 68 

75-79 n/a 100 74 92 17 35 100 88 100 38 61 

80+ n/a 100 0 67 4 17 100 81 76 24 42 

A
v
e
ra

g
e
 V

a
lu

e
 

Male (%) 42 45 53 47 94 99 47 51 47 72 73 

SIMD 19.5 21.2 23.5 20.6 20.0 20.2 20.5 21.4 20.4 19.0 20.2 

Diabetes (%) 7 15 17 13 1 5 11 11 10 4 8 

FH (%) 46 68 73 67 35 48 62 65 61 32 43 

CPD 7 8 10 8 5 6 7 7 7 5 5 

SBP (mmHg) 131 134 134 134 131 132 133 133 133 130 132 

TC (mmol/L) 5.8 5.8 5.8 5.9 5.8 5.8 5.8 5.8 5.8 5.8 5.8 

HDL (mmol/L) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

Table 11-2: Descriptive statistics of individuals prioritised for treatment under different policies 
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  Policy 
Number 

Treated 

Discounted 

QALYs 

Discounted 

 Cost (£1000's) 

ICER                 

(£/QALY) 

  Familial Hyp. Reference 

  Blanket 20 793,559 92,300 636,000 6,900 

  ARR 20 793,762 96,300 687,000 12,900 

  Age-Strat 20 793,596 99,500 882,000 Ext. Dominated 

  LE-Max 20 793,387 141,000 1,597,000 Excluded 

  QALE-Max 20 793,775 150,000 1,313,000 Excluded 

  Blanket 10 1,381,059 164,000 1,596,000 13,500 

  ARR 10 1,380,535 166,000 1,627,000 15,700* 

  Age-Strat 10 1,381,054 168,000 1,719,000 36,500 

  LE-Max 10 1,380,749 197,000 2,603,000 Excluded 

  QALE-Max 10 1,381,122 206,000 2,306,000 Excluded 

*Optimal policy with λ=£20,000/QALY. Ext. – extendedly 

Table 11-3: Cost-effectiveness under Constraint 1 

 

Constraint 2: Equality of Outcome 

 

The implemented policy should not lead to an increase in health inequality in the Scottish 

population. 

 

Increased SIMD is a significant risk factor for fatal and non-fatal CVD events (152,309,602) 

and all-cause mortality (603). Moreover, an inverse relationship exists between SIMD and life 

expectancy (7). It can therefore be presumed that, if no treatment were enacted, health would be 

distributed unequally in favour of less socially deprived individuals in Scotland. 

 

The following analysis will treat statins for familial hypercholesterolaemia as status quo. This 

is despite the fact that SIGN currently recommends statins are initiated in all individuals with 

ASSIGN score greater than 20% (26). This decision was made to ensure that current practice is 

treated with as much scrutiny as other policies. If Blanket 20 is not cost-effective it should not 

be implemented. Similarly, in this example if it does not adhere to the constraints placed upon 

the decision-maker it should not be implemented. 
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Figure 11-3 shows discounted QALY gains for different statin prioritisation policies per 1,000 

individuals in the population, stratified by SIMD quintiles. Each number is incremental to a 

policy of only treating individuals with familial hypercholesterolaemia. Figure 11-4 shows the 

proportion of total health gains realised by each SIMD quintile. 

 

All of the policies considered would produce health gains in each SIMD quintile. Moreover, 

individuals in the two most deprived quintiles achieve more of the total QALY gains than those 

in the two least deprived quintiles for each policy. Hence, if any of the policies considered were 

implemented, they would reduce the social deprivation gradient in health compared to treatment 

for familial hypercholesterolaemia alone. 

 

Given the fact that no policy considered will increase health inequality, Constraint 2 does not 

lead to the exclusion of any of the treatment strategies for a decision-maker. Direct utilisation 

of decision models in clinical practice to maximise quality-adjusted life expectancy in a 

population, QALE-Max 10, is the optimal treatment strategy. 

 

Social deprivation is strongly associated with CVD risk and CVD risk factors (152,234,604). 

This likely explains why each policy is progressive compared to status quo. Policies which target 

treatment at individuals with high CVD risk, elevated risk factors, and a combination of these 

are likely to disproportionately treat more socially deprived patients. Constraints regarding 

health inequality may be of more interest to decision-makers in disease areas that 

disproportionately affect the less socially deprived. 
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Figure 11-3 (top): Discounted QALY gains for all policies per 1,000 individuals 
Figure 11-4 (bottom): Proportion of discounted QALY gains achieved by different SIMD quintiles 
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11.3 Policy Recommendations 

 

Most healthcare decision-makers are constrained in their ability to maximise QALYs. NICE is 

perhaps the decision-making body tasked most explicitly with QALY maximisation in the 

world, having explicitly stated its willingness-to-pay for QALYs since its inception in 1999 

(605). Even NICE does not treat the QALY as its sole maximand and include other (explicit 

and implicit) criteria in their decisions. On a personal note, working alongside the committee 

tasked with updating SIGN’s guidelines for risk estimation and CVD prevention, it was clear 

that some (potentially cost-effective) policies would not be considered due to ‘clinical 

infeasibility.’  Decision-makers clearly face many political, ethical, logistical, and clinical 

constraints when implementing interventions. 

 

It is not the task of a health economist to dictate what is clinically acceptable and feasible to 

healthcare practitioners. A health economist can (and should) inform decision-makers of the 

efficiency losses associated with treatment constraints. It was necessary to present results from 

the analysis in this thesis contingent on decision-making constraints. Policy recommendations 

are presented contingent on constraints that could be placed upon the decision-maker. 

 

Two existing policies are relevant to recommendations that may emerge from this thesis: SIGN 

guidance regarding statin prioritisation (26) and SMC policy regarding the use of PCSK9 

inhibitors in familial hypercholesterolaemic patients with residual cholesterol risk while on 

statin therapy or those with statin intolerance (580,581). 

  

Guidelines regarding preventive statin therapy were published by SIGN in 2017 (26). These 

guidelines retained the role of 10-year risk scoring in determining who should receive 

treatment. They state that statins should be offered to patients with familial 

hypercholesterolaemia and those with an ASSIGN score greater than or equal to 20%. The 

guideline additionally recommended that alternative approaches to statin prioritisation be 

considered in a guideline update when new evidence emerges. 

 

The SMC has approved the use of PCSK9 inhibitors for a select group of patients with familial 

hypercholesterolaemia (580,581). The cost-effectiveness of this decision is unclear, however, 
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as it was agreed under a patient access scheme in which a discount on the list price is agreed 

and kept confidential. Therefore, the price paid for the treatment was not disclosed to the public. 

While it is likely that the discounted price has made PCSK9 inhibitors more cost-effective, 

given the confidential nature of current SMC guidance on the use of PCSK9 inhibitors, it is 

useful to provide recommendation on their use in Scotland. 

 

Below are five policy recommendations for SIGN and the SMC, derived from analysis 

contained within this thesis: 

 

1. Statin eligibility should be expanded in Scotland. Analysis in this thesis consistently 

showed that, regardless of the specific decision mechanism implemented, it would be cost-

effective expand treatment eligibility to more individuals. This could be achieved by 

reducing the blanket risk threshold or instituting a novel policy which treats more people 

than standard care. 

 

2. If a decision-maker faces no constraints on who should be prioritised for treatment, direct 

utilisation of decision models in clinical practice to maximise discounted QALYs should 

be implemented. 

 

3. If outcome maximisation is rejected as a means of prioritising statin therapy, the absolute 

risk reduction approach to prevention should be implemented. This would maintain a role 

for risk scoring in the decision-making process, but would increase health gains in the 

population by targeting treatment at patients with elevated cholesterol levels. 

 

4. Reducing the monitoring costs for patients receiving statins would significantly increase 

the cost-effectiveness of statin therapy. In the case of recommendation number three above, 

such cost reduction would likely result in age-stratification of risk thresholds becoming the 

optimal treatment strategy. 

 

5. The SMC should conduct its own subgroup-level cost-effectiveness analysis when 

considering which patients with familial hypercholesterolaemia should receive PCSK9 

inhibitors. This will increase transparency in Scottish NHS decision-making and reduce 

reliance on manufacturer submissions. By representing heterogeneity in patient cost-

effectiveness and determining the proportion of patients that will be treated at different 

price points, the SMC can signal demand to pharmaceutical companies and ensure that they 

spend their limited health resources efficiently.  
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Chapter 12 

Conclusions and Further Research 

 

This thesis has described several approaches and policies for the primary prevention of CVD. 

Moreover, it has assessed a range of novel approaches to prioritise patients for preventive 

therapy for CVD. 

 

Standard of care in most high-income countries involves prioritising disease-free patients for 

preventive treatment like statin therapy, based on an assessment of their 10-year risk. One issue 

with this approach is that patients with the same risk score can experience vastly different 

outcomes from preventive treatment. By adopting treatment strategies which look beyond 10-

year risk, decision-makers can acknowledge and incorporate patient heterogeneity in their 

decision-making which can lead to improved population-level outcomes. Reflecting 

heterogeneity allows for differential decisions to be made regarding treatment for different 

subgroups of a population and leads to a more efficient distribution of limited health care 

resources. 

 

12.1 Heterogeneity in Cost-Effectiveness Analysis 

 

Chapter 2 highlighted the benefits that can be achieved when decision-makers reflect 

heterogeneity in cost-effectiveness in their decision-making processes. Two ways that decision-

makers can use knowledge on heterogeneity in cost-effectiveness were presented. 

 

Firstly, when the cost of a treatment is fixed, stratified decision-making can be used to make 

differential treatment decisions for patient groups with different cost-effectiveness. Central 

estimates of cost-effectiveness, which average costs and benefits over a large population, ignore 

the fact that outcomes can vary systematically between patient subgroups. Some of these 

subgroups may be cost-effective to treat while others are not. In such a situation, cost-

effectiveness analysis based on central estimates of costs and QALYs inevitably lead to 

suboptimal decision-making. If subgroup analysis is applied resources are invested more 

efficiently, treating patients who gain more health from an intervention and avoiding spending 

money on those who do not benefit sufficiently to justify expenditure. 
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Secondly, when treatment price is not set, decision-makers can signal demand for a treatment 

based on heterogeneity in cost-effectiveness. By estimating the maximum price that they are 

willing to pay for an intervention, defined for all relevant subgroups in a population, the 

decision-maker can then signal their demand to providers. Reimbursing providers based on this 

approach leads to population-level welfare gains. 

 

12.2 Epidemiology and Prevention of CVD 

 

Chapter 4 discussed the epidemiological basis for heterogeneous outcomes in CVD-free 

patients receiving statins. It focused on the fact that patients with the same 10-year risk, 

estimated with one of the many CVD risk scores, may experience different outcomes from 

preventive treatment. This chapter was split into three sections which reflected changes that 

could be made to policies currently employed for CVD prevention in high-income countries. 

 

The chapter first discussed the epidemiological basis for continued use of 10-year risk to 

prioritise patients for preventive statin therapy. It was shown that, under the assumption of 

equal risk reduction from a treatment across subgroups, patients with higher absolute risk 

receive the greatest risk reduction. Methods were discussed for the validation and improvement 

of 10-year risk scores, which may help to better prioritise patients for treatment. 

 

One alternative approach to the continued use of 10-year risk scoring is to use CVD risk 

alongside some other covariate to prioritise patients for treatment. Specifically, decision-

makers could use age or LDL-C to modulate risk-based decision-making. 

 

The principle of age-stratified risk thresholds was discussed at length. It was shown that 

traditional risk scores are ‘naïve’ estimators of event risk and ignore the presence of competing 

risks. This leads to a treatment prioritisation system whereby older individuals have a higher 

CVD risk score, but may experience fewer benefits from treatment due to their concurrent risk 

of non-CVD mortality. Hence, resources may achieve greater benefit when targeted at younger 

patients with an unhealthy profile of modifiable risk factors. 
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The epidemiological basis for the absolute risk reduction approach to statin prioritisation was 

also considered. The LDL-C reduction achieved with statin therapy is generally proportional 

to an individual’s baseline LDL-C. Each unitary decrease in LDL-C is associated with an 

approximately fixed relative risk of developing CVD. It follows that absolute risk reduction 

from statins is a function of both baseline risk and baseline LDL-C. 

 

Finally, the direct utilisation of decision-analytic modelling in the clinical process was 

considered. Decision models synthesise data from a range of sources in order to predict long-

term outcomes associated with a treatment. They can account for competing risks, differential 

treatment effect in patients, discounting of outcomes, and other factors. They represent a means 

of systematically addressing multiple drivers of heterogeneity in patient outcome 

simultaneously. 

 

12.3 Cost-Effectiveness Analyses of Statin Prioritisation Policies 

 

Analyses were conducted in Chapters 7 to 9 to assess the cost-effectiveness of several policies 

for prioritising patients for preventive statin therapy. These policies were thematically 

categorised in the same way as the epidemiology section: continued use of 10-year risk, novel 

decision mechanisms which incorporate 10-year risk, and direct use of decision-analytic 

models in the clinical process to maximise health outcomes. Each policy considered aims to 

address heterogeneity in cost-effectiveness of preventive therapy for CVD to some extent. 

Inasmuch, the analyses conducted in Chapters 7, 8, and 9 represented a case study for the health 

economic theory presented in Chapter 2. 

 

Chapter 7 assessed two policies for statin prioritisation which maintain the role of 10-year risk 

scoring in clinical decision-making. First, the cost-effectiveness of reducing the risk threshold 

for treatment initiation in Scotland from 20% to 10% was analysed. Increasing the number of 

people eligible to receive statins was shown to be cost-effective, driven by the treatment’s low 

price and robust safety profile. The cost-effectiveness of risk threshold reduction in Scotland 

has not previously been analysed and this research could help inform pending updates to 

SIGN’s guidelines on preventive statin therapy (26). Second, a framework was developed to 

assess the cost-effectiveness of including novel biomarkers in risk scoring algorithms. This 
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framework was employed to assess the cost-effectiveness of testing for the urinary proteomic 

biomarker HF1 in clinical practice. 

 

Chapter 8 assessed two policies for statin prioritisation which involve novel decision 

mechanisms which incorporate 10-year risk scoring. These policies were age-stratified risk 

thresholds and absolute risk reduction. Large health gains were achieved by targeting treating 

at younger patients. Lesser gains were achieved through absolute risk reduction. Previous cost-

effectiveness analyses of age-stratified risk thresholds have been conducted (303,534). 

However, these analyses were not conducted in accordance with best practice guidelines for 

decision modelling. They failed to account for health-related quality of life and did not discount 

future health and cost outcomes. No previous long-term cost-effectiveness analysis has been 

conducted regarding the absolute risk reduction approach to CVD prevention. Hence, this novel 

analysis may inform future research and clinical decision-making. 

 

Chapter 9 considered the cost-effectiveness of using decision-analytic models directly in 

clinical practice to determine which individuals should receive statins. It showed that a large 

number of discounted QALYs and life years can be gained by treating the group of patients 

estimated to gain the most life years or discounted QALYs from treatment. Maximising 

discounted QALYs produced the most health of all treatment strategies considered and was 

reasonably cost-effective. Both outcome-maximising policies led to resource allocation that 

may be societally unacceptable, targeting treating at large numbers of younger individuals and 

disproportionately treating men. 

 

Chapter 11 compared all of the policies evaluated in Chapters 7 to 9, producing policy 

recommendations based on the results. It was shown that expanding treatment eligibility is 

undoubtedly cost-effective, but the prioritisation mechanism that a decision-maker should 

employ may vary based on implementation constraints. A decision-maker who aims to 

maximise health in a population should implement the QALY maximisation policy evaluated 

in Chapter 9. 

 

The outcome-maximisation policies could be considered clinically or societally unacceptable 

by some decision-makers due to the distribution of patients prioritised for treatment. In this 
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case, absolute risk reduction would be the optimal treatment strategy for decision-makers, 

offering a small but cost-effective modification of the blanket risk threshold approach. 

 

12.4 Signalling Demand for PCSK9 Inhibitors 

 

Assessing heterogeneity in cost-effectiveness and using these results to guide individual- or 

subgroup-level treatment decisions was discussed in Chapter 2. Conducting such analysis 

signals demand for health care interventions to providers regarding acceptable costs for the 

treatments. Demand curves were constructed in Chapter 10 for PCSK9 inhibitors for the 

primary prevention of CVD in patients with familial hypercholesterolaemia.  

 

Considerable price reductions would be required to ensure that even a small proportion of the 

Scottish population with familial hypercholesterolaemia would be cost-effective to treat with 

PCSK9 inhibitors. Indeed, at current prices, not one individual in a hypothetical cohort of more 

than 4,500 patients was deemed eligible for treatment. Similar analysis has been conducted 

regarding the cost-effectiveness of PCSK9 inhibitors in high-risk subgroups of the CVD-free 

population (193,392,578,586,588). However, none of these studies explicitly approached the 

decision problem from the perspective of a decision-maker aiming to signal demand for a 

treatment. 

 

12.5 Further Research 

 

A variety of analyses have been conducted regarding the epidemiology of CVD and the cost-

effectiveness of CVD prevention. All analyses have limitations and further research can always 

be conducted to improve validity of results. Through conducting analysis for this thesis, four 

broad categories of further research emerged that would be useful for researchers and decision-

makers. These are research specific to: cost-effectiveness analysis of statins, novel biomarkers 

for CVD, PCSK9 inhibitors, and, more broadly, the objective of health sector decision-makers 

in the U.K. and U.S. 
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Cost-Effectiveness Analyses of Statins 

 

Inputs for several parameters included in cost-effectiveness analyses of statins have been under-

studied. One study (350) was identified which details adherence of patients to statin therapy 

and no literature was identified pertaining to health practitioners’ adherence to clinical 

recommendations for statin prioritisation. Another variable for which limited research was 

identified was pill-taking disutility. Two online surveys, conducted by the same research group, 

were identified (36,497). In these studies, pill-taking disutility varied greatly within the 

population and differed based on the preference-elicitation approach adopted. More research 

should be conducted on this parameter to inform updates of existing analyses and future 

analyses. 

 

More information on each of these covariates would allow for more accurate estimation of 

statin cost-effectiveness in all of the analyses in this thesis. Sensitivity analyses showed that 

adherence has little effect on cost-effectiveness outcomes. This is likely because individuals 

who stop taking a treatment did not accrue treatment-related benefits or costs in the analyses. 

Pill-taking disutility, on the other hand, has a large effect on cost-effectiveness outcomes. 

 

There is one key aspect of statin benefit may not have been adequately modelled in the statin 

cost-effectiveness analyses in this thesis. It was shown in Chapter 4 that cumulative exposure 

to LDL-C in young adulthood increases later life risk of CVD. This occurs because LDL-C 

continuously contributes to the atherosclerotic build-up in the arteries. Cost-effectiveness 

analyses in the thesis assumed that statins affect instantaneous risk of CVD, but did not account 

for benefits accrued due to a reduction in cumulative risk factor exposure. Further research 

should consider whether the way statin efficacy is modelled could be improved by accounting 

for cumulative exposure.  Further research should also consider the cost-effectiveness of 

reducing cumulative exposure to statins from a young age. This could be achieved by reducing 

the age at which CVD risk screening is initiated. 

 

Biomarkers 

 

A framework was established for the cost-effectiveness analysis of novel CVD biomarker 

testing. This framework explicitly accounted for the fact that data are often sparse for novel 
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biomarkers. Hence, further research would help establish the validity of novel CVD 

biomarkers, including HF1, as candidates for inclusion in CVD risk screening procedures. 

 

Analysis presented in Chapter 7 (Tables 7-11 to 7-15) showed a large degree of uncertainty in 

the independent effect of HF1 on CVD risk. It was established that HF1 is a significant 

independent predictor of non-fatal CHD. However, limited event data and short follow-up time 

made it impossible to predict the effect of HF1 on risk of other important outcomes like non-

fatal CBVD, fatal CVD, and fatal non-CVD events. As follow-up time increases for the ongoing 

FLEMENGHO study, more information will be available regarding these relationships. Repeat 

analysis on an updated dataset would help validate results regarding the cost-effectiveness of 

HF1 testing. 

 

Further research should also compare the cost-effectiveness of adding a range of different risk 

factors to CVD risk scoring algorithms. Even if HF1 were available at a price which justified 

implementation when compared to traditional risk scoring, it is possible that testing for 

alternative novel risk factors would offer better value for money to decision-makers. Indeed, 

several biomarkers that may be cheaper to procure than HF1 information have been shown to 

independently predict CVD risk (515,606–608). 

 

PCSK9 Inhibitors 

 

In Chapter 10, analysis of PCSK9 inhibitors was conducted in a hypothetical cohort of Scottish 

individuals with familial hypercholesterolaemia. This is because no dataset exists with 

extensive CVD risk factor information on patients with familial hypercholesterolaemia in 

Scotland. It was assumed that the hypothetical cohort of patients would have a similar 

distribution of CVD risk factors to the general population. However, if the risk factor 

distributions of this patient population systematically differ from CVD-free participants in the 

Scottish Health Survey 2011, then the demand curves for PCSK9 inhibitors may be biased. 

Further research should establish the risk factor profile of the hypercholesterolaemic population 

in Scotland. 
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Objective Function of Health Service Decision-Makers 

 

Chapter 11 produced policy recommendations for statin prioritisation based on results from this 

thesis. These recommendations came with a caveat: the optimal strategy for a decision-maker 

is determined by more than just financial constraints or efficiency goals. It is possible that 

implementation of a policy which increases health inequality would not be implementable for 

a health sector decision-maker. There may also be a degree of aversion to policies which 

disproportionately target treatment at one specific group of patients. Further research into 

societal aversion to different statin prioritisation policies is required to establish a definitive 

optimal treatment strategy. 

 

12.6 Conclusion 

 

The objectives of this thesis included describing the health economics benefits associated with 

reflecting heterogeneity in cost-effectiveness in healthcare decision-making and applying this 

theory to the prevention of cardiovascular disease. Optimal decision rules in the presence of 

heterogeneity in cost-effectiveness were defined, the epidemiologic basis for heterogeneity in 

outcome from preventive therapies for CVD were presented, and cost-effectiveness analyses 

of specific policies which address heterogeneity were conducted. 

 

Despite improvements in recent years, cardiovascular disease remains a significant cause of 

mortality, morbidity, and health inequality around the world. As rates of the disease plateau, 

novel approaches to CVD prevention will be required. 

 

‘Personalised’ and ‘precision’ medicine have long been considered the future of health service 

provision in high-income countries (11,12,14,15,601). Granulating treatment decisions often 

invokes the use of new and expensive diagnostic technology. This thesis accepts that novel 

approaches should be adopted which better reflect patient heterogeneity than current practice. 

It also argues, however, that better reflection of heterogeneity is not dependent on costly new 

technology. Rather, reformulation of patient prioritisation based on better use of existing 

information should be employed to improve population health. 
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Appendix  

 

A1. Microsoft Visual Basic code which simulates statin therapy using the Scottish 

CVD Policy Model 

 
 

Sub Statins_BASEandSTATIN() 

' 
' Statins_Statins Macro 
' 
 
'''''''''''''''''''''''''''''''''''''''''''''''''BASE PART 
Application.DisplayAlerts = False 
 
Dim Index 
Dim Trials 
Index = 0 
 
Application.StatusBar = True 
Windows("Scottish CVD Policy Model - Men.xls"). _ 
        Activate 
Trials = Worksheets("40+ NO CVD DATA").Cells(1, "A").Value 
 
Windows("Scottish CVD Policy Model - Women.xls"). _ 
        Activate 
    Sheets("Female - Parameters").Range("G14") = 0 
 
Windows("Scottish CVD Policy Model - Men.xls"). _ 
        Activate 
    Sheets("Male - Parameters").Range("G14") = 0 
 
Application.ScreenUpdating = False 
Application.Calculation = xlCalculationManual 
 
Do 
    Sheets("40+ NO CVD DATA").Select 
    Range("C6").Select 
    ActiveCell.Offset(Index, 0).Range("A1").Select 
     
    ''''''''''''''''''''''''''''''''''''''''''''''''MEN''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    If ActiveCell.Value = 1 Then 
     
    Range("D6").Select 
    ActiveCell.Offset(Index, 0).Range("A1:I1").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
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    Sheets("Male - Parameters").Select 
    Range("E9:M9").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 
        :=False, Transpose:=False 
         
    Calculate 
     
    Range("G4:P4").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
     
    ''''''''''''''''''''''''''''''''''''''''''''''WOMEN'''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Else 
      
    Range("D6").Select 
    ActiveCell.Offset(Index, 0).Range("A1:I1").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
     
    Windows("Scottish CVD Policy Model - Women.xls"). _ 
        Activate 
    Sheets("Female - Parameters").Select 
    Range("E9:M9").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 
        :=False, Transpose:=False 
     
    Calculate 
     
    Range("G4:P4").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
         
    End If 
 
'Pastes output 
Windows("Scottish CVD Policy Model - Men.xls"). _ 
        Activate 
Sheets("RESULTS").Select 
Range("B5").Select 
ActiveCell.Offset(Index, 0).Range("A1").Select 
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
    :=False, Transpose:=False 
'End of selecting and pasting output 
     
    Index = Index + 1 
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''''Hopefully a status bar 
 
Application.StatusBar = "Statins Progress: " & Index & " of " & Trials & ": " & 

Format(Index / Trials, "Percent") 
        DoEvents 
     
Loop While Index < Trials 
 
Application.ScreenUpdating = True 
Application.Calculation = xlCalculationAutomatic 
Application.StatusBar = False 
 
'''''''''''''''''''''''''''''''''''''''''''''''''STATIN PART 
 
Dim IndexA 
Dim TrialsA 
IndexA = 0 
Windows("Scottish CVD Policy Model - Men.xls"). _ 
        Activate 
TrialsA = Worksheets("40+ NO CVD DATA").Cells(1, "A").Value 
 
Windows("Scottish CVD Policy Model - Women.xls"). _ 
        Activate 
    Sheets("Female - Parameters").Range("G14") = 1 
 
Windows("Scottish CVD Policy Model - Men.xls"). _ 
        Activate 
    Sheets("Male - Parameters").Range("G14") = 1 
 
Application.ScreenUpdating = False 
Application.Calculation = xlCalculationManual 
 
Do 
    Sheets("40+ NO CVD DATA").Select 
    Range("C6").Select 
    ActiveCell.Offset(IndexA, 0).Range("A1").Select 
     
    ''''''''''''''''''''''''''''''''''''''''''''''''MEN''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    If ActiveCell.Value = 1 Then 
     
    Range("D6").Select 
    ActiveCell.Offset(IndexA, 0).Range("A1:I1").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
     
    Sheets("Male - Parameters").Select 
    Range("E9:M9").Select 
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    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 
SkipBlanks _ 

        :=False, Transpose:=False 
     
    Calculate 
     
    Range("G4:P4").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
     
    ''''''''''''''''''''''''''''''''''''''''''''''WOMEN'''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
    Else 
      
    Range("D6").Select 
    ActiveCell.Offset(IndexA, 0).Range("A1:I1").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
     
    Windows("Scottish CVD Policy Model - Women.xls"). _ 
        Activate 
    Sheets("Female - Parameters").Range("E9:M9").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 

SkipBlanks _ 
        :=False, Transpose:=False 
     
    Calculate 
     
    Range("G4:P4").Select 
    Application.CutCopyMode = False 
    Selection.Copy 
         
    End If 
 
'Pastes output 
Windows("Scottish CVD Policy Model - Men.xls"). _ 
        Activate 
Sheets("RESULTS").Select 
Range("O5").Select 
ActiveCell.Offset(IndexA, 0).Range("A1").Select 
Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 
    :=False, Transpose:=False 
'End of selecting and pasting output 
     
    IndexA = IndexA + 1 
     
''''Hopefully a status bar 
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Application.StatusBar = "Statins Progress: " & IndexA & " of " & TrialsA & ": " & 
Format(IndexA / TrialsA, "Percent") 

        DoEvents 
     
Loop While IndexA < TrialsA 
 
Application.ScreenUpdating = True 
Application.Calculation = xlCalculationAutomatic 
Application.StatusBar = False 
Application.DisplayAlerts = True 
 
End Sub 
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A2. Microsoft Visual Basic code which performs probabilistic sensitivity analysis 
using the Scottish CVD Policy Model 
 
 

Sub runPSA() 
' 
' runPSA Macro 
 
Dim PSA_Index 
Dim PSA_Trials 
PSA_Index = 1 
PSA_Trials = 100 
 
Do 
    'Copy coefficients to Men's model 
    Windows("CoefficientsMen F.xlsx").Activate 
    Range("B3:B67").Select 
    Selection.Offset(0, PSA_Index).Select 
    Selection.Copy 
    Windows("Scottish CVD Policy Model - Men.xls").Activate 
    Range("E21").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 
SkipBlanks_:=False, Transpose:=False 
 
    'Copy coefficients to Women's model 
    Windows("CoefficientsWomen F.xlsx").Activate 
    Range("C3:C67").Select 
    Selection.Offset(0, PSA_Index).Select 
    Selection.Copy 
    Windows("Scottish CVD Policy Model - Women.xls").Activate 
    Range("E21").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 
SkipBlanks_:=False, Transpose:=False 
 
    'Copy other PSA variables into women's model 
    Application.CutCopyMode = False 
    Calculate 
    Calculate 
    Calculate 
    Range("N19:N21").Select 
    Selection.Copy 
    Range("L25").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 
SkipBlanks_:=False, Transpose:=False 
 
        :=False, Transpose:=False 
    Range("L25:L27").Select 
    Selection.Copy 
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    'Copy other PSA variables into men's model 
    Windows("Scottish CVD Policy Model - Men.xls").Activate 
    Range("L25").Select 
    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, 
SkipBlanks_:=False, Transpose:=False 
 
    Range("A1").Select 
     
    'Runs Base_and_Statin macro 
    Call Statins_BASEandSTATIN 
     
    'Save results 
    Sheets("RESULTS").Select 
    Sheets("RESULTS").Copy 
    ActiveWorkbook.SaveAs Filename:= _ 
        "C:\Users\cnk2112\Desktop\PSA\Results F\Results" & PSA_Index & ".xlsx", 
FileFormat:= _ 
        xlOpenXMLWorkbook, CreateBackup:=False 
    ActiveWindow.Close 
    Sheets("Male - Parameters").Select 
    Range("A1").Select 
 
    PSA_Index = PSA_Index + 1 
 
Loop While PSA_Index < PSA_Trials 
 
End Sub 
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A3. Stata code which performed Gompertz regression on FLEMENGHO dataset 
 
 

//PREPARING THE DATASET 
//Can install via File>Install>Excel... 
 
set more off 
clear all 
 
cd "C:\Users\ciara\Desktop\Columbia PC - Desktop\Chapter 6 - 10-Year Risk 
Scores\Novel Biomarkers Scores\Older\Analysis Folder\FLEMENGHO" 
ssc install carryforward 
ssc install stcompet 
 
//Import (if not done so already) 
import excel "UrinaryProteomics.xls", sheet("g") firstrow 
 
//Drop people younger than 30 
drop if age<35 
 
//Drop people with history of CVD 
drop if hcv2==1 
summarize 
 
//Drop if missing cholesterol data 
drop if missing(tchol) 
drop if missing(HCHOL) 
 
//Generate variables 
//Sex (Male 1, Female 0) 
gen sex=0 
replace sex=1 if SEX==1 
BMI 
gen bmi=bw/bh/bh 
 
//Preparing Data for Competing Risks Analysis 
ssc install carryforward 
ssc install stcompet 
 
//Create necessary event variables 
//Non-fatal CHD 
gen nonfatalCHD=0 
replace nonfatalCHD=1 if nfcar2==1 
gen timenonfatalCHD=tnfcar2 
 
//Non-fatal CBVD 
gen nonfatalCBVD=0 
replace nonfatalCBVD=1 if nfcbv==1 
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gen timenonfatalCBVD=tnfcbv 
 
//Fatal CVD 
gen fatalCVD=0 
replace fatalCVD=1 if fcv==1 
gen timefatalCVD=fudf 
 
//Fatal non-CVD 
gen fatalNonCVD=0 
replace fatalNonCVD=1 if fncv==1 
replace fatalNonCVD=1 if frf==1 
gen timefatalNonCVD=fudf 
 
//Combined 
gen combinedCVD=0 
replace combinedCVD=1 if nonfatalCHD==1 
replace combinedCVD=1 if nonfatalCBVD==1 
replace combinedCVD=1 if fatalCVD==1 
 
//Generate time and status variables 
//time 
egen time=rowmin(timenonfatalCHD timenonfatalCBV timefatalCVD 
timefatalNonCVD) 
 
//event type 
gen 
status=0+1*(nonfatalCHD==1)+2*(nonfatalCBVD==1)+3*(fatalCVD==1)+4*(fatalNo
nCVD==1) 
gen status2=0+1*(combinedCVD==1) 
label define stat 0 "censored" 1 "Non-fatal CCHD" 2 "Non-fatal CBVD" 3 "Fatal 
CVD" 4 "Fatal Non-CVD" 
label values status stat 
 
//Carrying out regressions 
stset time, failure(status==1) scale(365.25) id(cpnbrx) 
streg age sex sock HCHOL tchol sbp hdm qcsmk HF, d(gom) 
matrix list e(V) 
//translate @Results nonfatalCHD.txt 
 
stset time, failure(status==2) scale(365.25) id(cpnbrx) 
streg age sex sock HCHOL tchol sbp hdm qcsmk HF, d(gom) 
matrix list e(V) 
//translate @Results nonfatalCBVD.txt 
 
stset time, failure(status==3) scale(365.25) id(cpnbrx) 
streg age sex sock HCHOL tchol sbp hdm qcsmk HF, d(gom) 
matrix list e(V) 
//translate @Results fatalCVD.txt 
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stset time, failure(status==4) scale(365.25) id(cpnbrx) 
streg age sex sock HCHOL tchol sbp hdm qcsmk HF, d(gom) 
matrix list e(V) 
//translate @Results fatalNonCVD.txt 
 
stset time, failure(status2==1) scale(365.25) id(cpnbrx) 
streg age sex sock HCHOL tchol sbp hdm qcsmk HF, d(gom) 
matrix list e(V) 
//translate @Results combinedCVD.txt 
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