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Abstract

In cost-effectiveness analysis, outcomes are typically averaged across large groups to
represent a patient population. Implementation and reimbursement decisions based on such
analyses often ignore considerable heterogeneity in cost-effectiveness between patients.
While good practice guidance for economic evaluations suggest including subgroup analysis,
in practice this is frequently overlooked or underutilised. This thesis shows that failing to
adequately represent heterogeneity in decision-making leads to an inefficient distribution of
healthcare resources. This theory is applied in a study of cholesterol-reducing medication for

the primary prevention of cardiovascular disease (CVD).

Despite improvements in recent years, CVD remains a significant cause of mortality,
morbidity, and health inequality around the world. Rates of the disease have begun to plateau

in recent years and novel approaches to its prevention are required.

Cholesterol reduction for the primary prevention of cardiovascular disease is a clinical area
where better reflection of heterogeneity in cost-effectiveness could significantly improve
current practice. Statins are a widely prescribed cholesterol-reducing medication which have
recently come off patent. This has led them to become cheaper and cost-effective in a large
proportion of CVD-free populations in high-income countries. PCSK?9 inhibitors are a more
expensive and more effective cholesterol-reducing medication. For both treatments, decision-
makers must establish which groups they will prioritise for treatment. Through epidemiologic
and health economic analysis, this thesis aims to establish optimal approaches for prioritising

patients for cholesterol-reducing therapy.

Preventive statin therapy is typically targeted at individuals estimated to have a high ten-year
risk of developing CVD. However, individuals with the same ten-year risk may experience
different outcomes from preventive treatment. The epidemiologic bases for three alternative
approaches to the CVD prevention are discussed. These are: (i) continued use of ten-year risk
scoring, (i) novel decision mechanisms which incorporate ten-year risk, and (iii) direct use

of decision-analytic models in clinical practice to guide treatment decisions.

Several treatment policies may be characterised by one of the aforementioned approaches to
prevention. These include: lowering the risk threshold for treatment initiation, improving the
discrimination of risk scores with novel biomarker testing, age-stratified risk thresholds,
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absolute risk reduction-guided therapy, and outcome maximisation with decision-analytic
models. Decision-analytic modelling was employed to assess the long-term effectiveness and
cost-effectiveness of these policies. Additional analysis showed how decision-makers can
signal demand for PCSK® inhibitors and achieve welfare gains by reflecting heterogeneity in

their decision-making.

This thesis demonstrates the importance of reflecting heterogeneity in cost-effectiveness. It
shows that standard care regarding the primary prevention of CVD often ignores
heterogeneity, leading to suboptimal decision-making. This holds true for long-established,
inexpensive treatments like statin therapy and novel, expensive treatments like PCSK9

inhibitors.
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Chapter 1

Introduction

In cost-effectiveness analysis, outcomes are often averaged across large groups of patients.
Making implementation and reimbursement decisions based on such analysis may ignore
considerable heterogeneity in cost-effectiveness between patients. This thesis shows that
failing to represent such heterogeneity in decision-making leads to an inefficient distribution

of constrained healthcare resources.

Cardiovascular disease (CVD) is a highly prevalent chronic health condition which is
responsible for large amounts of mortality and morbidity worldwide (1). Prioritising patients
for preventive interventions for CVD is important for policy-makers around the world (2).
To target preventive treatment efficiently, it must be recognised that outcomes from such
treatment often differ systematically between patient subgroups. Subgroups may be defined

based on CVD risk factors which include age, sex, cholesterol, and blood pressure.

Despite improvements in recent years, cardiovascular disease remains a significant cause of
mortality, morbidity, and health inequality around the world (3). As rates of the disease

plateau, novel approaches to CVD prevention will be required.

Cholesterol reduction is a well-established means of reducing CVD risk (4,5). Clinical
guidelines in high-income countries commonly recommend that high-risk patients are
prioritised for statin, ezetimibe, or PCSK?9 inhibitor therapy to reduce low-density lipoprotein
cholesterol (LDL-C). Such treatments are often initiated based on a patient’s 10-year risk of
experiencing a primary CVD event (6). However, this approach to treatment prioritisation
does not adequately reflect heterogeneity in the patient population. This leads to an inefficient
distribution of healthcare resources. Cholesterol-reducing medication guidelines are analysed
in this thesis to highlight the benefits that can be accrued by better representing heterogeneity

in cost-effectiveness when determining which health care interventions to implement.
The purpose of this introductory chapter is to provide an orientation to the thesis. Four

overarching objectives for the work are presented. This is followed by a description of the

thesis structure.
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1.1  Objectives

0] Describe the health economic benefits associated with reflecting heterogeneity in
cost-effectiveness analysis.

(i)  Apply the theory of heterogeneity in cost-effectiveness to the clinical area of CVD
and its prevention.

(i) Estimate the cost-effectiveness of novel policies to prioritise individuals for CVD
prevention through cholesterol reduction. Pharmacologic intervention to reduce
cholesterol forms a key part of guidelines for preventive intervention of CVD in most
high-income countries. Without loss of generality, the prioritisation of cholesterol-
reducing medication is utilised as a case study of the benefits associated with
reflecting heterogeneity in cost-effectiveness analysis.

(iv)  Produce policy recommendations based on findings from the novel approaches to

CVD prevention explored in (iii).

1.2 Thesis Structure and Chapter Outline

The thesis is divided into four parts which each comprise of chapters. An overview of each

part and each chapter is provided below.

Part 1: Reflecting Heterogeneity in Cost-Effectiveness Analysis

Part 1 of the thesis aims to describe the benefits associated with reflecting heterogeneity in
cost-effectiveness from a theoretical standpoint. This provides a framework under which
heterogeneity in cost-effectiveness of preventive therapy for CVD can be discussed

throughout the remainder of the thesis.

Chapter 2 is the sole chapter included in Part 1. Traditional health economic decision rules
are described. It is shown that they can be manipulated to derive optimal decision rules in the
presence of heterogeneity in cost-effectiveness in a patient population. Optimal decision-
making processes are described in two scenarios. The first scenario occurs when treatment
cost is fixed and a decision-maker must determine which subgroups to treat. The second
scenario occurs when treatment cost is not fixed. In this scenario, a decision-maker can signal
demand for a treatment and ensure that an equilibrium between supply and demand is
achieved whereby they achieve consumer surplus.
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Part 2: Cardiovascular Disease Prevention

Part 2 provides a background to CVD and its prevention. Detailed descriptions of the health
and economic consequences of the disease are provided. The epidemiologic basis for
different approaches to CVD prevention and the importance of cholesterol-reduction, due to
the integral role of LDL-C in atherogenesis, are described. The purpose of Part 2 is twofold:
to demonstrate the applicability of the theory contained in Part 1 to the prevention of a highly
prevalent disease and to develop specific policies which are analysed later in the thesis to

inform policy recommendations.

Chapters 3 and 4 constitute Part 2 of the thesis. Chapter 3 describes CVD and approaches
that can be adopted to reduce its incidence. The prevalence, incidence, and economic burden
associated with the disease are discussed alongside different types of preventive intervention.
Current guidelines regarding the prioritisation of patients for preventive intervention in high-
income countries are reviewed. These guidelines typically recommend targeting treatment at

patients with elevated 10-year risk of developing CVD.

Chapter 4 describes CVD epidemiology and aims to explain the existence of heterogeneity
in outcome from preventive treatment for CVD. This helps to establish three broad
approaches to prioritising patients for preventive intervention. Each approach attempts to
address heterogeneity in cost-effectiveness. These are:

= 10-year risk scoring

= Novel decision mechanisms which incorporate 10-year risk

= Using decision models in clinical practice

Specific policies that adhere to one of these approaches to prioritisation are introduced.

Part 3: Cost-Effectiveness Analyses of Preventive Policies

Part 3 considers the cost-effectiveness of policies introduced earlier in the thesis. The first
two chapters in Part 3 aim to set up proceeding analyses, introducing decision-analytic
models that can be employed in the cost-effectiveness analysis of preventive interventions
for CVD and detailing the clinical evidence for and against cholesterol-reducing treatments.
Latter chapters describe cost-effectiveness analyses, set in Scotland and the U.S., which
assess specified interventions.
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Chapter 5 describes the rationale behind decision-analytic modelling and introduces two
previously-published CVD policy models that will be employed in cost-effectiveness
analyses of preventive interventions in later chapters. These are the Scotland-based Scottish
CVD Policy Model (7,8) and the U.S.-based CVD Microsim Model (9).

Chapter 6 describes the evidence base regarding the efficacy, effectiveness, and safety of
statin therapy. Statins are the most commonly prescribed cholesterol-reducing medication
around the world (5) and many of the cost-effectiveness analyses included in the thesis relate

to prioritising patients for this treatment.

Chapters 7 to 9 contain detailed descriptions of multiple cost-effectiveness analyses of statin
prioritisation policies. Chapter 7 assesses the cost-effectiveness of two policies which involve
continued use of 10-year risk scoring. The policies considered are reducing the risk threshold
for statin initiation in Scotland and improving the discrimination of risk scores with novel
biomarker testing. Chapter 8 assesses the cost-effectiveness of two policies which involve
novel decision mechanisms that incorporate 10-year risk scoring. The policies considered are
age-stratification of risk thresholds and the ‘absolute risk reduction’ approach to statin
prioritisation. The latter targets treatment at patients based on a combinatory measure of their
10-year CVD risk and baseline LDL-C. Chapter 9 considers the cost-effectiveness of directly

using decision models in clinical practice to maximise health outcomes.

Statins are cheap and relatively effective. Chapter 10 considers more expensive and more
effective cholesterol-reducing medications. Analysis was conducted to establish a demand
curve for PCSKO9 inhibitor therapy for cholesterol reduction in patients with familial
hypercholesterolaemia and statin intolerance or ‘residual cholesterol risk’ while receiving

preventive statin therapy.

Part 4: Policy Recommendations, Further Research, and Conclusions

Part 4 aims to synthesise results from the thesis. It further aims to produce policy

recommendations, provide concluding remarks, and recommend further research to increase

understanding of heterogeneity in cost-effectiveness and its interaction with CVD prevention.
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This part consists of Chapters 11 and 12. Chapter 11 synthesises and summarises cost-
effectiveness results from Part 3. These recommendations relate to optimal statin
prioritisation policies and signalling demand for PCSK9 inhibitors. Chapter 12 provides a
summary of the research conducted throughout the thesis and highlights areas for further
research.
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Part 1

Reflecting Heterogeneity in Cost-Effectiveness Analysis

The objective of Part 1 is to describe the benefits associated with reflecting heterogeneity in
cost-effectiveness. When decision-makers make reimbursement decisions based on cost-
effectiveness results that have been averaged over a large population, they often ignore
systematic variability in cost-effectiveness between patients. If one identifiable subgroup of
patients is cost-effective to treat while another is not, making decisions based on costs and

benefits averaged across the total population is suboptimal.

The following chapter describes forms of subgroup and heterogeneity in patient populations,
discusses traditional decision rules employed in cost-effectiveness analysis, and shows how
these can be adapted to account for heterogeneity. The theory discussed in Part 1 will be
employed throughout the thesis. This theory guides and motivates the establishment of novel
approaches for the primary prevention of CVD which better reflect heterogeneity in cost-

effectiveness.
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Chapter 2

Stratified Medicine, Heterogeneity, and Cost-Effectiveness

2.1 Purpose

Cost-effectiveness analysis of health care interventions aims to assess the value for money
represented by a healthcare investment. This is generally achieved by dividing the costs
associated with a treatment by accrued health benefits. Hence, a cost-per-unit of health
associated with the treatment is derived. This type of analysis is an important tool for
healthcare decision-makers who wish to maximise population health given a constrained and
exogenously determined healthcare budget. However, costs and benefits associated with a
treatment are often averaged across large groups of patients. This may ignore systematic

variability in health and cost outcomes between identifiable patient subgroups.

This chapter will discuss stratified medicine and heterogeneity in patient populations.
Furthermore, it will explain traditional cost-effectiveness decision rules and extend these

rules to consider the impact of heterogeneity and stratification on cost-effectiveness.
2.2 Stratified Medicine
Definition

In recent decades, researchers have unravelled the genomic, epigenomic, and behavioural
bases for many health conditions. It has therefore become increasingly feasible to stratify
patient populations into risk- and benefit-based subgroups. These developments have been
met with a clinical trend towards stratified medicine — described by the World Health
Organisation as assessing “per population stratum” the benefit-risk profile of a health care
intervention (10). Concurrently, researchers, healthcare institutions, funding bodies, and
politicians have heralded an age of ‘personalised’ and ‘precision’ medicine, often promoting
the idea that novel diagnostic technology can be employed to stratify populations and dictate
patient treatment (11-20).

Variability in a dataset describes the extent to which data points are distributed around an

average value. Heterogeneity in a patient population refers to variability in sociodemographic
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and biological characteristics between patients. Subgroups are a set of patients defined by
one or more of these characteristics. Heterogeneity in outcome specifically refers to
variability in health and cost outcomes between individuals receiving the same treatment that
can be explained by variability in the patient population. These definitions are listed in Table
2-1.

Patient outcomes may differ relatively or absolutely. Those receiving the same relative effect
from a treatment will experience a treatment-related multiplicative alteration of their baseline
health or cost outcome (e.g. 50% reduction in event probability, 20% increase in treatment
costs). Those receiving the same absolute effect from a treatment will experience the same

absolute change in outcome (e.g. one adverse event prevented, £100 additional costs

incurred).

Term Definition

Variability Extent to which data points are distributed around an
average value
Heterogeneity in Variability in sociodemographic and biological

population characteristics between patients

Heterogeneity in Variability in health and cost outcomes between

outcome individuals receiving the same treatment explained
by heterogeneity in the population

Subgroup Set of patients defined by one or more

sociodemographic or biologic characteristic
Table 2-1: Definition of terms related to variability and heterogeneity

Forms of Subgroup and Heterogeneity

Interventions can produce heterogeneous outcomes due to a range of sociodemographic and
biological factors. Sculpher (21) lists six forms of subgroup and heterogeneity: intervention-
related factors, factors unrelated to intervention but related to health condition, factors
unrelated to intervention and health condition, factors unrelated to the patient, preferences,
and factors revealed over time. These forms of heterogeneity exist in all clinical areas, from
chronic to acute conditions. The following section will describe these forms of subgroups

and heterogeneity. These descriptions will be supplemented with examples from CVD.

1. Intervention-related factors are commonly considered in studies of clinical

effectiveness. They characteristics typically indicate differential relative outcomes in
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a population and can be referred to as treatment effect modifiers. Relative benefit is

often quantified by hazard ratio or relative risk of adverse event (22).

Many examples of treatment effect modifiers exist in the clinical literature. An
intervention-related factor which causes differential relative treatment effect in the
prevention of CVD is LDL-C. Patients at high risk of experiencing a CVD event may
be prescribed statins, an LDL-C reducing medication. Evidence suggests that statins
produce a greater relative risk reduction for CVD in patients with higher baseline
LDL-C (4). This is likely due to the strong positive relationship between LDL-C and
CVD risk (23).

Intervention-related factors may also lead to systematic differences in costs. For
example, dosage for some pharmacological interventions is determined by patient
body mass index (BMI). This multiplicatively increases costs for patients based on
BMI. Weight-based dosing is important for a range of medications including
hydrocortisone for adrenal insufficiency, vancomycin for the treatment of bacterial

infections, and aprotinin for use in cardiac surgery (24).

Factors unrelated to an intervention effect but related to health condition often
alter absolute risk of adverse event. They may also cause differential pricing and

preference valuation of clinical events.

Even when patients receive the same relative risk reduction from a treatment, absolute
risk reduction may vary greatly. Consider two subgroups of a patient population in
which the adverse event rate is 50% and 10%, respectively. Further consider a
treatment which halves adverse event rates in all patient subgroups. While relative
risk reduction is constant, the group with higher baseline risk will receive a much

greater absolute risk reduction (25% versus 5%).

There are many examples of factors related to health condition but not treatment
which affect patient outcomes. Based on the principles described above, risk
stratification is often used to determine which patients should receive preventive
treatment for CVD (25-28).
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Sculpher notes that costs and quality of life valuations may also differ systematically
based on observable patient characteristics. Evidence suggests that the direct medical
cost of experiencing a stroke can vary between sexes and increases with age (29) and
health state valuation is consistently lower for individuals with comorbid diabetes
(30).

Factors unrelated to both treatment effect and health condition may affect patient

outcomes.

Age is an example of such a factor. Elderly individuals are typically at an increased
risk of developing chronic diseases (e.g. CVD, chronic obstructive pulmonary
disease, cancer) and experiencing adverse events (e.g. serious falls). These competing
risks limit older individuals’ capacity-to-benefit from interventions and, in turn,

systematically alter the cost-effectiveness of treating them.

Factors which alter risk of mortality are often unrelated to health condition and
treatment effect but ultimately affect patient outcome. For example, though not
necessarily correlated with surgery success, long-term survival after liver
transplantation is significantly greater for younger individuals (31). Probability of
non-CVD mortality increases with age and this competing risk can similarly limit an
elderly individual’s capacity-to-benefit from preventive treatment. However, the
CVD example is complicated by the fact that age is an independent predictor of CVD
risk, and therefore the competing risk of non-CVD mortality must be weighed against

the increased risk of disease-related event (32).

Factors unrelated to the patient may affect health and cost outcomes. There is a
multiplicity of such factors, including geographic location of treatment, treatment

provider, or other environmental factors.

Much research has been conducted which considers geographic- and provider-related
sources of heterogeneity in patient outcome. An analysis of multinational clinical
trials provides evidence that healthcare costs vary substantially between countries
(33). Geue et al. have shown significant differentials exist between inpatient costs in
rural and urban settings (34). Treatment success rate is also likely to vary based on
physician characteristics. For example, research suggests that more experienced
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surgeons have greater surgical success rates and their patients have better post-

operative quality of life (35).

5. Preferences may lead to differential cost-effectiveness of health care interventions
between patient subgroups. The health-related quality of life patients attribute to

different treatments and health states often varies based on observable characteristics.

An online survey of 1,000 U.S. residents found that the disutility attributable to
regular pill-taking for CVD prevention varies greatly across the U.S. adult population
(36). In a decision modelling study, Pandya et al. (37) showed that pill-taking
disutility is a key determinant of the cost-effectiveness of preventive statin therapy.
Additionally, studies have shown that individuals differentially value health states
based on age (38).

6. Factors revealed over time may explain heterogeneity in cost-effectiveness. If these
factors are observable, patients can be split into subgroups and a decision-maker can

make differential decisions based on each group’s respective outcomes.

Treatment response is a factor which is revealed over time which may allow for
differential decision-making. Some patients receiving statin therapy experience
adverse effects including myalgia and loss of memory (39). These can often be
avoided by changing dosage or choice of statin. Altering such treatment parameters

can affect the patient’s costs and health outcomes.

The types of heterogeneity and subgroup discussed may all be employed to stratify patient
populations in cost-effectiveness analysis. The body responsible for health technology
assessment and clinical guidelines for NHS England and NHS Wales is the National Institute
for Health and Care Excellence (NICE). NICE discusses heterogeneity and subgroups in its
reference case document (40), stating that “...it is important to consider how clinical- and
cost-effectiveness may differ because of differing characteristics of patient population”. Such
heterogeneity, they note, should be analysed as part of a NICE health technology assessment.
They also recognise that the use of a technology may be approved conditionally on the
presence of a biomarker which predicts patient response to treatment. Indeed, the NICE
Diagnostics Assessment Programme was set up in 2010 to evaluate the clinical- and cost-
effectiveness of diagnostic technologies (41).
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2.3 Cost-Effectiveness Analysis

Traditional Cost-Effectiveness Decision Rules

Cost-effectiveness analyses compare the costs and benefits associated with alternative
treatment options. Employing cost-effectiveness analysis ensures that healthcare decision-
makers receive acceptable value for money when investing in a health technology, accounting

for the opportunity cost associated with displacing funds from the healthcare budget (42,43).

Standard health economic decision rules dictate that an intervention should be implemented
over a relevant comparator if the incremental benefits from the intervention justify the
incremental expenditure required to achieve these benefits (42). If incremental costs are
negative and incremental benefits are positive, the treatment is considered ‘cost-saving’ and
should be implemented. If the incremental costs are positive and the incremental benefits are
negative, the treatment is ‘dominated’ and should not be implemented. When incremental
costs and benefits are both positive or both negative, decision-makers must consider the

treatment’s incremental cost-effectiveness.

The measure typically adopted to represent health-related quality of life in cost-effectiveness
analysis is the quality-adjusted life year (QALY). One QALY equals one year lived in full
health (44,45) while zero QALYs is equivalent to death. Values between zero and one
represent different health states, ranked in terms of preference by some population of interest.
An individual’s quality-adjusted life expectancy is equal to the product of the amount of time
spent in different health states multiplied by the QALY value of these health states, summed

over all the health states they experience in their life.

Disability-adjusted life years (DALYS) are an alternative metric which can be used to
measure morbidity alongside longevity of life (46). They equal the sum of years of life lost
from a health condition and years lived with disability weighted by a disability factor. One

DALY equals one year of full health lost.

While they aim to capture similar health-related outcomes, QALYs and DALY's are not
directly interchangeable. The DALY is primarily a measure of disease burden and may only
be comparable with QALY under the assumption that the quality of life associated with a
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health condition is equivalent to the level of disability it confers (47). In practice, the
preference-based nature of QALYSs necessitates derivation through preference-elicitation
from populations of interest while DALYSs tend to be estimated through expert evaluation
(48-50). Fundamentally, the decision rules which underpin cost-effectiveness analysis do not

change dependent on whether QALY's or DALY's are being maximised.

The incremental cost-effectiveness ratio (ICER) is a metric which enables incremental
comparison of the cost-effectiveness of health care interventions. The ICER of implementing
a treatment over a comparator is equal to the treatment’s incremental costs divided by
incremental benefits, Equation (3-1). As QALYs are the most common health metric
employed in cost-effectiveness analysis, ICERs usually represent the cost-per-QALY

attributable to implementing a treatment.

AC
ICER = 4= (3-1)

A decision-maker should implement an intervention over its comparator if they believe that
the cost-per-QALY offered by the treatment represents acceptable value for money.
Willingness-to-pay for a unitary increase in health benefit is represented by the decision-
maker’s cost-effectiveness threshold, A. If incremental costs and benefits are both positive,
the decision-maker should implement the treatment over its comparator if its ICER is below
the cost-effectiveness threshold, as shown in Decision Rule 1A (43).

AC
Intervention funded if: ICER = AE <A AC>0,AE >0

Decision Rule 1A: Implementation of intervention with positive costs and positive
effects based on ICER

If incremental costs and benefits are both negative, the decision-maker should implement the
treatment over its comparator if its ICER is above the cost-effectiveness threshold, as shown
in Decision Rule 1B. This is because the cost savings attributable to the intervention can be

spent elsewhere in the budget to produce more health than is lost.

Intervention funded if: ICER = i—g > A AC < 0,AE < 0.

Decision Rule 1B: Implementation of intervention with negative costs and negative
effects based on ICER

Incremental net monetary benefit (INMB) is an alternative measure of cost-effectiveness (51).

Calculation of INMB requires converting incremental health benefits to costs to represent the
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monetary value of these benefits. This is achieved by multiplying health benefits by the cost-
effectiveness threshold. Next, the treatment’s incremental costs are subtracted from this
value, Equation (3-2). Notably, this measure does not require separate decision rules
dependent on the sign of incremental costs or benefits. In addition, it is not a ratio of means
and is therefore always defined and continuous.

INMB = 1 x AE — AC. (3-2)

A policy should be adopted over a comparator if it has an INMB greater than zero, as
presented in Decision Rule 2. A welfare gain is achieved by implementing such a policy.
When there are multiple interventions to choose between, the policy with the highest INMB
should be implemented. In this situation, all policies must be compared incrementally to a

common comparator.

Intervention funded if: INMB > 0.

Decision Rule 2: Implementation of intervention based on INMB

Incremental net health benefit (INHB) is a comparable measure to INMB (52). When
calculating INHB, all incremental costs are represented by the health benefit value of these
costs. This is achieved by dividing incremental costs by the cost-effectiveness threshold.
Hence the costs represent the minimum amount of health that could be theoretically
purchased elsewhere in the budget if the policy was not implemented. Similar to Decision

Rule 2, a decision-maker should implement an intervention if INHB is greater than zero.

The incremental costs and effects attributable to implementing a health care intervention
compared with a relevant comparator have been described by Weinstein and Stason (53).
Constituents of incremental health and incremental cost are described in Equation (3-3) and
Equation (3-4), respectively:
AC = ACgy + ACge + ACyorp + AC, (3-3)
AE = AE;, + AE,,0rp + AE,. (3-4)

AC refers to incremental change in costs, and consists of: direct treatment costs (RX), cost
increases attributable to treatment-related side effects (se), cost savings due to reduced
morbidity (morb), and cost increases associated with extended life expectancy (le). AE refers
to the incremental change in effect, typically measured by QALYs. Incremental effect
consists of: increased benefits attributable to extension of life expectancy (le), increased
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benefits due to reduced morbidity (morb), and reduced benefits due to treatment-related side

effects (se).

One final measure to consider is Treatment Value. This is defined as the INMB excluding

treatment costs, Equation (3-5).
Treatment Value = INMB + ACg,, = A x AE — (AC,o + ACpyorp + AC.)  (3-5)

It is possible to derive a decision rule for investing in health care interventions dependent on
treatment cost. A decision-maker should invest in an intervention if the treatment value is
greater than the direct treatment costs, shown below in Decision Rule 3. This rule makes it
possible to determine the average cost-effective price at which a treatment becomes cost-
effective.

Intervention funded if: Treatment Value > ACg,

Decision Rule 3: Implementation of intervention based on Treatment Value

Perspective

Perspective should be considered when performing cost-effectiveness analysis. The health
sector decision-maker and societal perspectives are the two perspectives most commonly

applied in health technology assessment (54).

The health sector perspective accounts for all health gains (often represented by QALYS) in
the population of interest, and all direct and indirect costs incurred by the health sector
(40,54). This perspective aims to maximize health outcomes given an exogenously
determined health sector budget.

Explicitly aiming to maximise health, with no direct attempt to affect other dimensions of
social welfare, can be described as extra-welfarism. Extra-welfarists value health intrinsically
and are willing to override individual preference to improve overall health in a population.
This has been justified on the grounds that health is fundamental to an individual’s “capacity
to flourish” as a human being (55,56). Extra-welfarism closely mirrors Amartya Sen’s
‘capability approach’ which stresses that utilitarian calculus ignores inequalities and

oppression that limit the capability of some individuals to achieve “valuable functioning as a
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part of living”. The capability approach instead looks to equalise each person’s capability to
achieve happiness and fulfilment (57,58).

Some researchers and decision-makers prefer to employ the societal perspective. The societal
perspective accounts for all direct medical, indirect medical, and indirect costs. This
perspective aims to maximize social welfare, not just welfare derived from health. It assigns
value to lost productivity and lost wages, for example. It therefore represents a utilitarian
approach to prioritising public expenditure.

Some scholars argue that the societal perspective should be treated as a ‘gold standard’ for
assessing health care interventions. The Second Panel on Cost-Effectiveness in Health and
Medicine recommends in its reference case that the societal approach is adopted,
acknowledging that this approach is best suited to a decision-maker who is concerned with
the broad allocation of resources across a population (54). Drummond et al. also argue that
healthcare decision-makers should be concerned with a broader array of outcomes than
QALYs alone (42). A similar case is presented by Weatherly et al. (59). It is often difficult
and time-consuming to conduct analyses from a societal perspective, however, and debate
continues about the validity of welfarism versus extra-welfarism in determining which health

care interventions are funded (42,54,60).

Despite recommendation to the contrary, the default perspective adopted in many cost-
effectiveness analyses is that of a health sector decision-maker. A recent report suggests that
decision-making bodies in most countries with established procedures for assessing the cost-
effectiveness of health care interventions adopt the health sector perspective (61).

2.4  Stratified Cost-Effectiveness Analysis

At its core, stratified medicine aims to address heterogeneity in clinical outcomes. It
recognises that average treatment outcomes often comprise of systematically different
patient-level outcomes. Reflecting heterogeneous outcomes is arguably more important when
conducting cost-effectiveness analysis. This is because cost-effectiveness results averaged

across whole populations disregard heterogeneity related to both health and cost outcomes.
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Benefits and costs of interventions are typically averaged across large patient groups in cost-
effectiveness analyses. This leads to a situation in which heterogeneity may be overlooked in
healthcare decision-making. Across populations, each constituent of incremental costs and
incremental benefits may vary. For example, individuals with high levels of a biomarker may
receive a greater relative risk reduction from a treatment and older individuals typically have

worse health outcomes following acute illness (62—64).

If INMB can be reliably calculated at the individual- or subgroup- level, the decision to initiate
treatment in the wider population can be separated into a set of mutually exclusive decisions.
Dependent on willingness-to-pay, it is possible to establish ‘limited use criteria’ which avoid

treating patients with INMB less than zero (65).

Likewise, if Treatment Value can be calculated at individual- or subgroup-level, decision-
makers can establish the proportion of the patient population that should be eligible for
treatment at a range of different prices. Performing this analysis and making decisions based
on the results allows decision-makers to signal demand to healthcare providers.

Figure 2-1 demonstrates the health economic effect of disregarding heterogeneity of outcome
on the cost-effectiveness plane. The figure presents a scenario in which two patient subgroups
experience very different absolute health benefits from a treatment. Costs, however, are
constant across the patient population. Subgroup A represents the average incremental
outcomes attributable to the treatment in the total population (1 QALY gained), while
Subgroups B and C represent outcomes in the population’s two constituent subgroups (-2 and
3 QALYs gained, respectively). Costs are equal to £40,000 in each of the subgroups. A cost-
effectiveness threshold of £30,000/QALY is represented by a dashed line on the graph.

If a decision-maker employs a cost-effectiveness threshold of £30,000/QALY, it is possible
to determine whether Subgroups A, B, and C should be given treatment based on their
position on the cost-effectiveness plane. When the decision to implement treatment is based
on average treatment effects, the decision-maker would choose not to provide treatment to

anyone in the population.
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Figure 2-1: Differential treatment effects in subgroups, represented on the cost-
effectiveness plane

Disaggregating the treatment effect leads to an alternative implementation decision.
Treatment should be implemented in subgroups with positive costs and positive effects which
lie above the dashed line on the cost-effectiveness plane. Treating Subgroup C, the patients
who receive a positive health effect from treatment, represents acceptable value for money
and should be implemented. The intervention should not be implemented in Subgroup B as
these patients receive negative health benefits while incurring costs. Failure to recognise
variability in treatment outcomes leads to inefficient and suboptimal decision-making as

patients who are cost-effective to treat do not receive treatment.

2.4.1 Implementing Decision Rule 2: Stratified Cost-Effectiveness Analysis with

Fixed Treatment-Related Costs
When the price of an intervention is fixed, stratified cost-effectiveness analysis can be

employed to establish ‘limited use criteria’. Limited use criteria restrict funding for

interventions to those patient groups in which treatment is cost-effective.
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Coyle et al. discuss the role of stratified cost-effectiveness in establishing limited use criteria
for health care (65). They produce a mathematical framework which can be used to quantify
the welfare gains achievable through the stratification of patient populations in cost-

effectiveness analysis.

Let i be a discrete variable representing univariate subgroups of a patient population. These
subgroups are mutually exclusive and when combined include every member of the patient
population. Further, let INMB; represent the incremental net benefit of an intervention in
group i and INMB represent the total net benefit in a population. The population-level INMB
is equal to INMB; summed across all patient subgroups. We can define this relationship
mathematically as follows:

INMB = ¥, INMB,.

It is possible that a subset of the subgroups will have an INMB less than zero. An efficient
limited use criterion ensures that all subgroups with positive INMB; are treated, while those
with negative INMB; remain untreated.

Let INMB, ;) be the total INMB associated with only treating subgroups ies(i), where s(i) is
the subset of subgroups with INMB; greater than zero. We can define INM By ;) as follows:
INMBS(I) = ZIINMBL , Vi where INMBl > 0.

It follows that, in all situations,
INMBg;y = INMB.

The net benefit gain from stratification, AsSINMB, is equal to the net benefit of treating only
cost-effective subgroups subtracting the total net benefit in the population. Intuitively, this is
equal to the negative sum of incremental net monetary benefit in all subgroups with negative
INMB;:

AsINMB = INMBg;y — INMB

= —);INMB;, Vi where INMB; < 0.

Additional complexities can be added to this mathematical framework which better reflect
the reality of stratification in clinical practice. The framework can be extended to the situation
where more than one type of subgroup is used to stratify the patient population. Furthermore,
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stratification of patients into subgroups may require additional costs. For example, it often
requires additional testing and physician time to stratify patients into biomarker-related

subgroups. These additional costs can be weighted into the INM B; calculations.

2.4.2 Implementing Decision Rule 3: Signalling Demand with Stratified Cost-

Effectiveness Analysis

Stratifying treatment decisions based on heterogeneity in cost-effectiveness allows decision-
makers to signal demand to manufacturers (66,67). Decision-makers can establish a price at
which an intervention becomes cost-effective in an entire patient population. Manufacturers
respond to this decision mechanism by setting their price at the average cost-effective price.
Implementing an intervention at the average cost-effective price for all individuals in a patient

population leads to an INMB of zero.

Signalling demand is particularly relevant to situations with monopolist manufacturers and
monopsonist decision-makers. Such a situation occurs when a manufacturer receives patent
protection for a novel treatment and NICE must determine whether to recommend its use in
the NHS (67).

If an intervention’s treatment value can be established for every member of a population, then
it is possible to determine the maximum price that one should pay for every individual.
Consider a graph with Treatment Value; and proportion of patient population on its vertical
and horizontal axes, respectively. Due to the relationship presented in Decision Rule 3, the
vertical axis can alternatively and interchangeably be labelled as the maximum acceptable
price of treatment for the decision-maker. This will hereafter be referred to as the patient’s
‘reverse-engineered price’. Having calculated reverse-engineered price for every individual
in a population it is possible to plot these individuals on a graph in descending order with
reverse-engineered price on the vertical axis, as shown by the black curves in Figures 2-2 and
2-3. The graph produced is a demand curve. This curve details the proportion of a patient

population that a decision-maker is willing to provide treatment to at a range of prices.
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Figure 2-2 (left) and Figure 2-3 (right): Demand curves. Consumer’s welfare loss
equals welfare gain when average cost-effectiveness price adopted. Consumer
realises surplus when reflecting heterogeneity in treatment decisions.

Figure 2-2 displays the scenario in which heterogeneity in cost-effectiveness exists in a
population, but the decision-maker does not consider heterogeneity in their decision-making
process. A manufacturer will set their price at the average cost-effectiveness price, plotted at
Point A. This is the highest price the decision-maker is willing-to-pay for the treatment and
it therefore maximises the provider’s revenue (unit price multiplied by quantity sold). At this

price, welfare gain is necessarily equal to welfare loss for the decision-maker.

Figure 2-3 displays the alternative situation in which heterogeneity is reflected in the
decision-making process. It is assumed that differential pricing is not possible. From a
decision-maker’s perspective, they should choose to reimburse up to the least cost-effective
individual with positive INMB; at a given price (plotted along the demand curve). Any
individual that is more cost-effective to treat than this person will produce welfare gains for
the decision-maker because the price is set below the level at which their INMB; is zero. A
monopolist manufacturer will attempt to maximise profit. This occurs when marginal revenue

is equal to the marginal cost of producing the intervention, shown at Point B.

In most cases, it will be difficult to establish a reverse-engineered price for every individual
in a population. Moreover, a paradigm shift in health service decision-making would be
necessary for cost-effectiveness decisions to be made at the level of individual patients.
However, it is often possible to stratify populations into subgroups between which cost-
effectiveness varies. This stratification can be based on risk score, age, biomarker levels, or
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other relevant variables. In such analysis the demand curve would be discretised in the form

of a step function.

2.5 ldentifying Subgroups: Feasibility, Validity, and Equity

Clinical feasibility, statistical validity, and equity must be considered when reflecting
heterogeneity in cost-effectiveness analysis. Decision-makers must determine whether
subgroups identified can be operationalised in clinical practice, whether there is sufficient
data to support stratified cost-effectiveness results, and whether stratification could lead to

an inequitable distribution of healthcare resources (21).

Clinical feasibility should be a primary concern when conducting stratified cost-effectiveness
analysis. Several patient characteristics may be routinely collected in clinical practice. These
include patients’ age, sex, family history of disease, and some clinical markers like blood
cholesterol levels and blood pressure. It may require extra cost and effort to obtain other
relevant patient characteristics. It is increasingly feasible to obtain genomic data from patients
(68) and considerable research funding has been invested in identifying novel biomarkers for
a range of health conditions. The additional costs incurred stratifying patients based on these

characteristics must be accounted for in cost-effectiveness analyses.

Statistical validity is another key concern when addressing heterogeneity in cost-
effectiveness analysis. When assessing cost-effectiveness in multiple subgroups, it is possible
that researchers might identify relationships due to random error rather than the existence of
a real relationship. This is referred to as the multiple testing problem in statistics (69).
Techniques to correct for multiple testing in studies of clinical effectiveness have been
discussed in the literature (70,71). Sculpher argues that these rules may be too imposing and
“represent arbitrary hurdles for identifying meaningful subgroups for decision making”. An
alternative proposition is the pre-specification of subgroups for analysis alongside some

hypothesised clinical or economic justification.
The uncertainty associated with subgrouping must be explored. In lieu of sufficient evidence

from clinical trials, cost-effectiveness studies typically employ decision-analytic models to

predict health and cost outcomes.
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Uncertainty can be evaluated with decision-analytic models by altering model inputs and
recording the effect that this has on estimated health and cost outcomes. Traditional
sensitivity analysis (TSA) involves incrementally changing one or a set of model parameters.
This approach can be used to assess the effect of key modelling assumptions on predicted
outcomes. Probabilistic sensitivity analysis (PSA) involves assigning each parameter of
interest a distribution instead of a fixed value. The model is run repeatedly, allowing
parameters to vary according to their assigned distribution, and outcomes are recorded. The
distribution of outcomes produced in PSA informs researchers of the scope of parametric
uncertainty in the modelling process. Both TSA and PSA can be employed at the subgroup
level to gain increased understanding of the inherent uncertainty in the decision-making

process.

Consideration must be made regarding data limitation when undertaking stratified cost-
effectiveness analysis. Meta-analysis of randomised controlled trial data should be treated as
the gold standard for assessing the relationship between independent and dependent variables
(72). Individual-level longitudinal data allows researchers to establish covariates which drive
heterogeneity in cost-effectiveness outcomes in a population and to model covariate
interactions. Cross-sectional datasets may also provide information on the baseline

distribution of risk factors, costs, and morbidity in a population.

Subgrouping patient populations requires making inferences based on a smaller amount of
data than in other cost-effectiveness studies. Uncertainty will therefore be greater in stratified
cost-effectiveness analyses and it may be necessary to acquire more subgroup-level data.
Espinoza et al. (73) provide a framework to estimate the expected value of acquiring further
subgroup-related data when addressing heterogeneity in cost-effectiveness analysis.
Applying the value of information framework (74), they show that the total expected value
of perfect information (tEVPI) in a population which comprises of S mutually-exclusive
subgroups is equal to the sum of each subgroup-specific EVPI (EVPI;) weighted by the
proportion of that subgroup in the population (w):

tEVPI = Y5_, EVPI ws.

Equity is a final concern when implementing policies which reflect heterogeneity in cost-
effectiveness. Making treatment decisions based on some patient characteristics may be
deemed socially unacceptable. Stratifying populations based on sociodemographic

characteristics like age, sex, race, and social class is likely to raise equity issues.
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Alternatively, stratification by such characteristics may be considered socially acceptable if
this stratification leads to a reduction in health inequalities (75). One approach to limit equity
issues is for decision-making bodies to pre-specify acceptable characteristics with which to
stratify patient populations.

2.6 QALYs and their Constrained Maximisation

Health economic analyses typically aim to influence policy in a manner that maximises
QALYSs in a population (40,42,55,59). It is worth questioning whether this is the correct
maximand for decision-makers. Let ‘correct’ be defined by two necessary and sufficient
dimensions first expressed by Williams (76). The correct way to prioritise treatment must be
just, though this is an “essentially contested” concept, and must rest on some notion of
consent from affected parties. Through consideration of these fundamental questions, it
becomes clear that all healthcare decision-making is constrained, even for organisations like

NICE who explicitly pursue cost-effective practice.

Is QALY Maximisation Just?

One reason that QALYSs are seen to be just is that they represent an objective means to
compare disparate health states. The benefit of using this metric to compare health-related
utility across different health states and disease areas is well-established (77,78). Unlike
biological health metrics (e.g. CVD events prevented, deterioration in CD4 count), QALYs
can be compared across disease areas. Unlike life years gained and lives saved, they
cardinally rank health state utility and therefore represent both longevity and quality of life
in decision-making. While cardinal ranking of health state utility is difficult and
controversial, it allows analysis to account for the intuitive fact that some health states are

more desirable than others.

Some have argued that QALY maximisation in unjust. Harris imagines a world in which poor
health is randomly distributed in a population. He argues that in such a world it is unjust to
direct treatment away from those who suffer from diseases with high cost-per-QALY
treatments (79). Two hypothetical patients who may receive a life-saving treatment are
presented. The intervention will extend their lives by an equal amount of time (80). One
patient is a ‘victim of disaster’ and has a low quality of life, while the other lives in full health.
Under QALY maximisation, the fully healthy patient would receive treatment. The less
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healthy patient appears to suffer ‘double jeopardy’ in this case: they experience a debilitating

event and are punished for this by not receiving future treatment.

Cubbon argues that QALY maximisation is a just basis for allocating healthcare resources
and takes issue with Harris’ critiques (78). He acknowledges QALY maximisation can
discriminate against those less capable of deriving benefit from resources. Importantly, he
notes this is only contingently true — it is not primarily because someone is ill that they are
not treated. Rather, it is because someone else can gain more benefit given restricted
healthcare resources. This discrimination loses its “sting” for Cubbon if those whose
treatment is considered to have low cost-effectiveness are not systematically part of a clearly-
defined and unchanging group. Lower value patients are a disparate group, he continues, and
the conditions that constitute this group are continually changing.

The concept of ‘double jeopardy’ has been singled out for challenge in the literature. Singer
et al. (81) highlight that more often than not health care aims to ameliorate a patient’s
condition rather than save their life. There is much more scope to increase quality of life for
a patient living at a QALY of 0.40 than a patient living at a QALY of 0.95. Hence, health

resources are more likely to be directed towards the ill.

Rawles also questions unconstrained QALYs maximisation (82). He argues that life, life
years, and suffering are distinct dimensions of the human experience that cannot be
synthesised into a unitary metric. Harris echoes this critique of QALY's (79). Both researchers

argue that life (of any quality) is undervalued in QALY formulation (83).

Cubbon notes that caring solely about life years or lives saved leads to irregular decision-
making (78). If concerned only with saving lives, one may equally value saving a baby with
short life expectancy to saving another who will live 70 more years. Intuitively this seems
wrong. Health, in Cubbon’s view, is “sine qua non” for a range of human activity. In other

words, its existence dictates one’s ability to appreciate their remaining life years.

Additional concerns have been raised with the use of QALY s in decision-making (76). Three
distinct ethical concerns with QALY raised are:

0] The wrong population may be used to elicit preference for QALY's

(i) Moving from individual to group values may be invalid.

(iii) QALY maximisation ignores interpersonal distribution of health gains.
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Williams refutes the validity of the concerns raised above (76). With regards to preference
elicitation, he notes that the way in which QALY s are derived allows for different views to
be accepted. Originally clinicians’ views were used to value health states, but the general
public and patients can also inform valuation. Of the second concern, it is noted that some
physicians may believe it unethical to replace the values of an individual patient with that of
a larger group of patients. It follows that they should be able to provide care in a way which
best suits their individual patient’s desires. Williams counters: only in a purely private market
(with no charity and no insurance) does a patient get everything they want. Pursing policies
which maximise population-level QALY simply increases transparency and accountability

in areas where clinicians previously had “unchallenged private discretion”.

Williams denies that the QALY approach to priority-setting must necessarily ignore
interpersonal distribution of health (76). Nothing in the QALY approach requires that QALY's
alone are maximised. In simple QALY maximisation, a value judgement is made that
postulates that all QALYs gained are equal, regardless of who experiences them. This is
described by Nord et al. (84) as the principle of “distributive neutrality”. Williams notes that
the principle of distributive neutrality can be defied and QALYs can be weighted by

coefficients to represent a society’s aversion to inequality.

Is QALY Maximisation Consented to by Affected Parties?

The second dimension necessary to define a correct maximand for health sector decision-
makers is consent from affected parties. There are many parties affected by health sector
decision-making. Anyone who may seek care in the health system is affected by a healthcare
decision as no individual is certain of their future health status. Moreover, the decision to
fund one programme (healthcare or otherwise) necessarily benefits some individuals and
‘disbenefits’ others through displaced funds (76).

QALY maximisation alone as the objective function of a health sector decision-maker is only
justified if the general public subscribes to the principle of distributive neutrality. Decades of
research, across many countries, suggests that individuals do not subscribe fully to the
principle of distributive neutrality, that ‘a QALY is a QALY is a QALY (85) regardless of

the characteristics of the person gaining health.
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Empirical studies have long shown that individuals value QALY gains differently dependent
on who receives them. There is considerable public and political support for the idea that
QALY production in young children and parents should be valued at a higher rate than in the
elderly (84,86-90). Initial and final health state may affect valuation of health gains. Research
shows a tendency for individuals to prefer treatment in those that are very ill (91-94) and an

aversion to treatments which leave a patient significantly disabled (94-96).

Evidence pertinent to preventive services shows that people may value QALY differently
dependent on how much health a patient gains. Choudhry et al. (97) found that individuals
are more likely to support a large number of small health gains distributed across a large
population rather than large health gains distributed across a smaller population, even when
the total number of QALY gained is equal. They additionally show that this decision reverts

at very low levels of gain for the many.

Finally, individuals may value QALY differently dependent on the socioeconomic status of
patients who derive benefits. Dolan et al. reviewed literature to assess whether social value
of health is affected by socioeconomic inequality. They showed widespread belief that health
funds should be spent on reducing socioeconomic inequality in health while also increasing
population health (98-104). This research additionally suggested that there may be a
threshold of inequality that individuals are willing to accept.

As alluded to previously, weightings can be applied to QALY in cost-effectiveness analyses
to ensure that health gains are distributed to in a way that reflects a society’s preference for
health production in different patients. It appears that many candidate patient characteristics
would need to be considered in a truly representative weighting process. Priority-setting
based on weighted outcomes fundamentally accepts that QALY are not the sole maximand

of a health sector decision-maker.

QALY Maximisation and Health Sector Decision-Making

From the discussion above, it appears the QALYs should not necessarily be the sole
maximand for a health sector decision-maker. However, in lieu of consensus regarding the
distributive preferences of affected parties in a health system, cost-effectiveness analysis and
the principle of distributive neutrality are likely the most valid mechanisms for priority-
setting. It is roundly agreed that health gains should play an important role in determining
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who receives treatment and valid weightings for patient characteristics have not been
established.

In the NHS in England and Wales, the decision to implement new health technologies is
assessed by NICE. Cost-effectiveness analyses and review of economic evaluations are
conducted by NICE to determine whether an intervention is cost-effective at a willingness-
to-pay threshold of £20,000-£30,000/QALY. In its Guide to the Methods of Technology
Appraisal (40), NICE states that interventions with ICERs below £20,000/QALY should be
appraised solely on their cost-effective. Interventions with ICERs above £20,000/QALY
should account for additional factors including: innovative nature of the technology, whether
the treatment extends life expectancy in patients near the end of their life, and ‘non-health
objectives’. Elsewhere the guide states that NICE committees "will take non-health
objectives of the NHS into account by considering the extent to which society may be
prepared to forego health gain in order to achieve other benefits that are not health related”.
NICE can therefore be thought of as generally pursuing QALY maximisation, somewhat
constrained by other health- and non-health-related objectives.

In the Scottish NHS, the Scottish Medicines Consortium (SMC) is responsible for consulting
local health boards about newly-licenced medicines and the Scottish Intercollegiate
Guidelines Network (SIGN) is responsible for ensuring evidence-based clinical practice
(105,106). Guidelines from the SMC and SIGN are more equivocal about the role of cost-
effectiveness in decision-making. In its guidance to manufacturers on new product
assessment, the SMC states that they do not have a fixed cost-effectiveness threshold with
which they judge new submissions (107). The guidance continues, however, that the SMC
takes note of NICE’s cost-effectiveness thresholds and decision-making process for
evaluating interventions. In its Guideline Developer’s Handbook, SIGN is equally vague
about the role of cost-effectiveness in its decision-making (108). It states that the incremental
cost of a new intervention should be weighed against the benefits gained, but does not define

a specific threshold for treatment implementation.

To different degrees, NICE, the SMC, and SIGN all support the principle of maximising
health using cost-effectiveness analysis but are constrained in this maximisation. NICE
explicitly states that its decisions may be shaped by additional measures of benefit. The
equivocal language of the SMC and SIGN suggests that they too value non-QALY benefits
in their decision-making.
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Research supports the idea that health sector decision-makers in the U.K. do not solely aim
to maximise QALYSs. Shah et al. (109) looked at data from 51 impact assessments produced
by the U.K. Department of Health in 2008 and 2009. They found that in only eight (15.6%)
of the impact assessments, benefits were measured in terms of QALYSs. Other benefits
considered were patient and carer experience, patient and public empowerment, choice and
access, equity and fairness, public trust and confidence, improved staff morale, and markets
and structure. Some of these features may help the NHS to produce QALYSs in the future, but
the results certainly suggest that health expenditure in the U.K. does not aim solely to increase
QALYSs. Appleby et al. (110) similarly found that QALY and cost-effectiveness are rarely

mentioned in local government assessments of health expenditure.

It is useful to consider the role of a healthcare decision-maker in the U.K. as a QALY
maximiser constrained by more than just costs. As Shah et al. (109) found, the decision-
maker competes for resources with government-mandated health investments with disparate
objectives. NICE guidelines contend that dimensions outwith simple QALY maximisation
may be used to support rejection or reimbursement of an intervention. Mooney highlights
that the very nature of NHS as it exists in Scotland, England, and Wales constrains QALY
maximisation. The NHS was founded on the principle of equality of access: a system free at
the point of service that meets the needs of everyone, based on clinical need rather than ability
to pay (111). In its very structure, it assigns weight (and therefore distributes costs) to the

production of health equity which need not align perfectly with QALY maximisation.

The role of cost-effectiveness analysis in the U.S. is more complicated. Some organisations
that issue health care guidance aim to maximise health, or at least have general regard to the
social welfare function of a patient population. The two most discussed U.S. guideline
organisations in this thesis will be the American College of Cardiology (ACC) and the
American Heart Association (AHA). Both claim that their objective is to maximise patient
health and have discussed the role that cost-effectiveness analysis plays in this process (112—
114). Neumann and Greenberg note that many other U.S. organisations also subscribe to
some form of QALY maximising objective (115). Improving patient health is not the aim of
all health sector decision-makers in the U.S., where profit-driven providers often offer more

costly and worse services than their not-for-profit rivals (116-120).
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2.7 Discounting in Health Economic Analysis

This thesis will regularly rely on the concept of discounting in health economic analysis.
What follows is a short description of discounting, justifying its use in latter chapters.

Present health benefits and costs are often considered to be more important than those in the
future. Cost-effectiveness analysis of health technologies can account for potential changes
in the real value of benefits and costs through discounting. Decision-makers look to maximise
health given an exogenous budget, acknowledging that costs incurred effectively amount to
foregone health. By looking at the decision rules invoked by such maximisation it is possible

to determine the rate at which health and costs should be discounted, respectively.

Discounting of future costs should not be considered as a simple reflection of individual
preferences but instead as a means of accounting for real rates of return to investment,
opportunity costs, and social time preference rates. For example, £1,000 today could be
prudently invested to garner more real money in a year’s time. Future costs should be
weighted to account for the opportunity cost associated with paying for health in the present
rather than the future. Moreover, if a society is expected to have increasing access to
resources, current costs are more burdensome than those incurred in the future and

discounting should be applied.

While discounting of costs is seen as intuitive and uncontroversial, the intuition for
discounting of health benefits is less clear (121). This debate stems from the fact that health,
unlike costs, cannot be invested in order to yield future gains. Hence the previous logic for
cost discounting does not hold. It is important, however, to also consider time preference
rates for health. Evidence suggests that it is natural for humans to prioritise current health
and partially ignore future consequences (4,122,123). It may then be necessary to discount
future health benefits associated with the introduction of new health technologies. The
amount of health in period t+1 considered to be equivalent to one unit of health in period t is

defined as the social time preference rate for health.
It is assumed that a health sector decision-maker has estimates of a few necessary variables
when determining whether or not to implement a new health care intervention. These are

listed below.
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Aht — incremental health benefits in period t
Act— incremental costs in period t

ki — cost-effectiveness threshold in period t
r'h — social time preference rate for health

Under the assumption that all costs fall on a constrained budget, the expected foregone health
in each period due to the additional costs of adopting the respective health technology can be
represented by incurred costs divided by the cost-effectiveness threshold in each period
(Act/ky). Health benefits and costs over two periods can then be represented as shown in Table
2-2 below, adapted from Claxton et al. (124). Note that the values in Period 2 are discounted

to account for the social time preference rate for health.

Time Period

Parameter 1 2
Health gained (present value) Ah ah,
g p 1 (1 + T'h)
ACl ACZ
Health foregone (present value — _
gone (p ) k. o+

Table 2-2: Present value of health gained and health foregone over two time
periods, adapted from Claxton et al. (text)

A decision-maker is expected to implement a new technology if the health gained is greater
than health foregone over the total time period. As previously discussed, health gained minus
health foregone can be described as incremental net health benefit. A decision-maker is

expected to accept a new health technology if, and only if:
INHB = (Ah; + ) = (12 + —2—) > 0

(1+7) kq ka(1+71p)

Note here that costs are simply a proxy for foregone health so health and costs should be
discounted at the same rate. Importantly, however, this decision rule does not account for
potential growths in the cost-effectiveness threshold. Such growth is common, and may be
caused by changes to the health service’s budget and cost of health care services and products.
Claxton et al. show that differential discount rates should be employed for health benefits and

costs if the cost-effectiveness threshold is projected to change (124).

The suggested discount rate for both health benefits and costs recommended by NICE is 3.5%
(40). Paulden and Claxton argue that this value is set too high, and should be closer to 1.0-
1.5% (125). In the U.S., the Second Panel on Cost-Effectiveness in Health and Medicine
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recommends an equal discount rate of 3.0% (54). These values will be adopted as parameters

for cost-effectiveness analyses in Chapters 7 to 10.

2.8 Chapter Summary

This chapter described stratified medicine, stratified cost-effectiveness analysis, and
heterogeneity in cost-effectiveness. It showed that health services can achieve consumer
surplus by reflecting heterogeneity in outcome in their decision-making.

Heterogeneity in cost-effectiveness will be an important consideration throughout this thesis.
When selecting which subgroups of a population should receive a treatment, it is important
to consider heterogeneity in expected health and cost outcomes. Epidemiology can help to
establish patient subgroups that are most likely to benefit from a treatment. Chapter 4
discusses the epidemiology of CVD and the epidemiologic basis for novel approaches to its
prevention. The remainder of the thesis then considers the relative cost-effectiveness of these
novel approaches to prevention.
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Part 2

Cardiovascular Disease Prevention

Part 2 provides an introduction to CVD and discusses approaches to its prevention. A
particular focus is placed on linking this highly prevalent chronic health condition to the
theory presented in Part 1 regarding heterogeneity in cost-effectiveness. Current clinical
guidelines are discussed alongside the epidemiologic basis for alternative approaches to

prevention.

Chapter 3 describes the prevalence and incidence of CVD in Scotland, England and Wales,
the U.S., and the rest of the world. Theory regarding the prevention of CVD and current
clinical guidelines are discussed. These guidelines typically recommend targeting treatment

at patients with elevated 10-year CVD risk.

Chapter 4 presents the epidemiologic basis for three different approaches to CVD prevention.
It describes the respective abilities of these approaches to reflect heterogeneity in cost-
effectiveness and provides examples of policies which adopt each of these approaches to
prevention. The three approaches discussed are:

= Continued use of 10-year risk scoring

= Novel decision mechanisms that incorporate 10-year risk scoring

= Use of decision-analytic models in the clinical process.
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Chapter 3

Cardiovascular Disease

3.1 Purpose

This chapter aims to describe CVD and approaches that can be adopted to reduce its
incidence. The prevalence, incidence, and economic burden associated with the disease in
Scotland, England and Wales, the United States, and the rest of the world are discussed,
respectively. A brief overview is provided of different forms of intervention that can be
adopted to prevent CVD. Finally, guidelines regarding the prioritisation of patients for
preventive intervention in high-income countries are detailed. These guidelines typically
recommend targeting treatment at patients who have elevated 10-year risk of experiencing a
primary CVD event. ‘High-income’ is defined according to the World Bank Atlas
methodology, and therefore incorporates all countries with a gross national income (GNI) per
capita greater than $12,056 in 2019 (126).

The purpose of this chapter is to introduce the clinical area of CVD. A primary objective of

the thesis is to apply theory regarding heterogeneity in cost-effectiveness to CVD prevention.
3.2 Cardiovascular Disease
Definition

CVD is a term used to describe a range of diseases of the heart and blood circulatory system.
The International Statistical Classification of Disease and Health Related Problems (ICD)
indexes different forms of CVD. The conditions which constitute CVD can predominantly
be described as either coronary heart disease (CHD) or cerebrovascular disease (CBVD),

along with some less prevalent conditions (Table 3-1).

Coronary heart disease, also referred to as ischaemic heart disease (IHD) and coronary artery
disease (CAD), is the most common type of CVD. It may manifest itself in the form of stable
or unstable angina pectoris, myocardial infarction, or sudden cardiac arrest. These conditions

generally stem from a similar physiological process called atherosclerosis (127).
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Atherosclerosis is the build-up of fibro-fatty plaque on the walls of arteries, typically over
many decades before the primary onset of a clinical event, as shown in Figure 3-1 (128). This
build-up may lead to ischaemia (a restriction of blood flow) to the myocardium (the muscular
tissue of the heart). Atherosclerotic build-up can be exacerbated or slowed down by a range
of ‘risk factors’. When myocardial oxygen demand is not met, an individual may experience
chest pain or pressure (angina pectoris) and damage and death of heart tissue (myocardial
infarction). Ischaemia can also cause the heart to pump irregularly which may ultimately
result in cardiac arrest (129).

Cerebrovascular disease refers to conditions that arise when the flow of blood to the brain is
restricted (130). An ischaemic stroke occurs when severe restriction of blood flow to the brain
occurs, often caused by the dislodgement of a blood clot in an individual’s arteries. This may
lead to the damage and death of brain cells. Transient ischaemic attacks (T1As) occur when
there is a temporary restriction of blood flow to the brain. These events typically last less than
an hour and are commonly referred to as ‘mini-strokes’. Atherosclerosis is a key causal
predictor of stroke risk (131,132).

Condition

120-25 Coronary Heart Disease
160-69,
G45

Cerebrovascular Disease

Other: Acute rheumatic fever, chronic rheumatic fever,
hypertensive diseases, pulmonary heart disease and diseases
100-16 of pulmonary circulation, other forms of heart disease,
120-52 diseases of arteries, arterioles, and capillaries, diseases of
170-99 veins, lymphatic vessels and lymph nodes, not elsewhere
classified, other and unspecified disorders of the circulatory
system

Table 3-1: International Classification of Disease codes for CVD (text)

Less common constituent forms of CVD include pulmonary heart disease, acute rheumatic
fever and chronic rheumatic heart disease, pericarditis, and myocarditis. The relationship
between these conditions and modifiable risk factors is less established than CHD and
CBVD, and they often develop following an initial CHD or CBVD event (133-135). Hence
CVD prevention often focuses on reducing rates of CHD and CBVD.
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Figure 3-1: Timeline of atherosclerotic build-up (text)

Prevalence and Incidence

Advancements in health technology throughout the first half of the 20th century dramatically
changed the medical landscape, extending population-level life expectancy and changing the

types of diseases that cause mortality and morbidity in high-income countries.

In the early 1900s, leading recorded causes of mortality in Scotland, England and Wales, and
the U.S. were respiratory conditions, infectious disease, and parasitic disease (136-138).
Record keeping was poor at the time, however, and up to 50% of deaths were registered as

‘other’. Cancer and heart disease were common but not leading causes of mortality.

Since the start of the twentieth century, life expectancy in high-income countries has
increased markedly. This, in turn, has altered the distribution of mortality and morbidity in
these countries. Cutler, Deaton, and Lleras-Muney attribute the increase in life expectancy to
knowledge, science, and technology (139). Enlightenment ideas of personal health and public

administration resulted in individuals living a better quality of life, eating more nutritious
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diets, and living in less squalor with better sanitation. Increased medical knowledge led to
the spread of new health technologies (e.g. polio vaccines, oral rehydration therapy for
diarrhea, vaccines, antibiotics) and practices were developed to combat illness (e.g. sanitary
practice to prevent spread of germs).

As life expectancy increased, so too did the prevalence of chronic illnesses like cancer and
CVD. Individuals began to live long enough to experience advanced atherosclerosis and the
effects of unhealthy behaviour (including smoking, consumption of processed foods, and
sedentary lifestyle) (140). Chronic conditions replaced infectious diseases as the major health
concern for high-income populations. By 1950, age-adjusted rates of CHD and stroke
mortality were 307 and 105 per 100,000, respectively (140). The mortality rate for CHD in
the U.K. was around 200 per 100,000 in 1950, and peaked at 550 per 100,000 in 1970 (141).

In high-income countries, incidence rates of CVD have fallen in recent decades. O’Flaherty
et al. note that CVVD mortality rates fell by 50-80% in the U.S., U.K., and Western Europe in
the latter half of the 20th century (142). Large decreases in CHD and CBVD mortality were
observed across Western Europe. From 1980-2009, CHD mortality fell 67% and 66% to 87
and 38 per 100,000 for men and women, respectively. A similar reduction in CBVD mortality
was observed during the same time period (143). From 1990-2013, age-adjusted
cardiovascular mortality rates also decreased significantly in the U.S., from 376 to 274 per
100,000 (140).

Studies have attempted to quantify the contributors to falling rates of CVD in high-income
countries. Changes in health behaviours alongside the development and improvement of
primary and secondary health care interventions are largely responsible for this reduction in
CVD mortality and morbidity (142). Hunink et al. estimated that around 54% of the decrease
in CHD mortality in the U.S. in 1980-1990 could be attributed to reduction in risk factor
levels while 43% was explained by improvements in treatment of chronic CHD (144).
Similarly, Ford et al. found that 44% of the decrease in U.S. CHD mortality from 1980-2000
was explained by changes in risk factors, while 47% was explained by changes in treatment
of chronic CHD (145). They additionally note that reduction in total cholesterol, systolic
blood pressure, smoking, and physical inactivity accounted for 23%, 20%, 12%, and 5% of
these reductions, respectively. A study set in the U.K. estimated that declines in CHD
mortality from 1981-2000 were explained 58% by risk factor control and 42% by treatments
(146). This study found that reduced levels of smoking had the greatest effect of all risk
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factor-related disease reduction, followed by cholesterol and blood pressure control. A final
study in 2012 estimated that half of the 6% reduction in CHD mortality observed in the U.K.
between 2000-2007 was explained by improved treatment uptake (147).

Despite large improvements, it remains vital for health systems to fund preventive
interventions for CVD. Rates of CVD in high-income countries have plateaued recently.
Despite reductions in incidence, the condition remains a highly prevalent cause of morbidity,
mortality, and economic burden in richer countries (140,148). Funding preventive
interventions for CVD is also important in low- and middle-income countries. Rates of
infectious disease are falling across the globe. As observed in high-income counterparts
during the 20" century, low- and middle-income countries may soon experience an increase

in chronic conditions like CVD as life expectancy increases (142).

Scotland, England, and Wales

CVD was responsible for around 160,000 deaths in the U.K. in 2015. Rates of the disease are
disproportionately high in Scotland, where more than 15,000 people died of CVD in 2015
(149). With a population of approximately 5.4 million, Scotland represents around 8.2% of
the total U.K. population while contributing 9.8% of CVD fatalities (150). In addition, the
British Heart Foundation estimates that more than 7 million people in the U.K. currently live
with CVD. Again, this rate is disproportionately high in Scotland, where 670,000 individuals

are estimated to suffer from the condition (149).

There exists a strong socioeconomic deprivation gradient in CVD in the U.K. and Scotland.
Hotchkiss et al. show that there is a strong socioeconomic gradient in unhealthy CVD risk
factors in Scotland (151). These risk factors included smoking, insufficient fruit and
vegetable consumption, excessive salt consumption, excessive alcohol consumption,

diabetes, and hypertension.

Woodward, Brindle, and Tunstall-Pedoe have shown that the socioeconomic gradient in CVD
persists when one controls for traditional risk factors like age, sex, diabetes, cholesterol,
family history of CVD, chronic kidney disease, smoking, and blood pressure (152). Figure
3-2 shows the 2011-2015 standardised mortality rates for CHD in Scotland, provided by the
Information Services Division of NHS National Services Scotland, disaggregated into three
age-groups and an index of social deprivation (153). Individuals from more deprived areas
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have a much greater rate of CHD mortality, and this is especially true for individuals aged
less than 65 years old. Hippisley-Cox et al. have observed a similar relationship between

social deprivation and CVD risk in England and Wales (154).
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Figure 3-2: Standardised CHD Mortality Rate in Scotland for 2011-2015, Information
Services Division NHS Scotland (text)

United States

The AHA estimates that CVD accounts for 835,000 deaths annually in the U.S., making it
the nation’s most common cause of death. In addition, it is estimated that some 92 million

American adults currently live with chronic CVD (155).

Rates of CVD differ significantly amongst subgroups of the U.S. population. In 2009, the
U.S. Center for Disease Control reported that non-Hispanic Black Americans have a 51.6%
and 47.4% greater age-adjusted rate of CHD and stroke mortality compared to non-Hispanic
Whites, respectively. It has also been shown that low socioeconomic status (defined by
household income less than 150% of the federal poverty level) is a significant predictor of
any CHD event and CHD mortality (156).

Figure 3-3 shows age-adjusted CVVD mortality rates in the U.S. from 1969-2011, stratified by
quintile of socioeconomic status (157). This analysis by Singh et al. showed both the secular
trend of falling CVD mortality rates in the U.S. as well as the persistent socioeconomic

disparity in the disease’s mortality rate.
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Predicting future incidence and prevalence of a health condition is a difficult process which
entails inevitable uncertainty. Heidenreich et al. predict that there will be a substantial
increase in CVD mortality in the U.S. by 2030. This study adopted cohort-component
methodology which assumes changes in mortality rates are explained solely by assumptions
regarding future births, deaths, and net migration (158). Pearson-Stuttard et al., on the other
hand, employed a trend-based model which accounts for historical trends in CVD reduction
(159). They predicted that CHD mortality would fall by 27% by 2030, while stroke mortality

rates would remain constant.
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Figure 3-3: Age-standardised CVD Mortality Rate in U.S., 1969-2011, Singh et al.
(text)

Europe and Rest of World

The Global Burden of Disease (GBD) Study has published detailed estimates of CVD
incidence, prevalence, and incidence trends (1). This study estimated that CVD rates have
decreased from 1990-2015 in almost all European countries. The gradient of decline has been
much greater in Central and Western European countries. The study estimated that around 85
million individuals live with CVD in Europe, a number that has increased since 1990 despite
falling incidence rates. This increase in prevalence is likely attributable to sociodemographic

changes in the European population (e.g. aging populations) alongside increased obesity.
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Age-standardised CVD mortality rates fell in all high-income countries and most middle-
income countries between 1990-2015, however the GBD study notes that no significant
change was observed in most of sub-Saharan Africa and countries across Oceania and Asia
(1). In addition, Bangladesh and the Philippines experienced significant increases in age-
standardised CVD mortality. The study also examined the relationship between a region’s
development (assigned using a combinatory measure of income per capita, education
attainment, and fertility) and CVD mortality rates. They found that C\VD mortality increases
with the development index at low levels of development, but this trend reverts at higher
levels of development, as shown in Figure 3-4 (1). This observation supports the hypothesis
that rates of CVD increase (and will continue to increase) in less-developed countries as they
become more successful at reducing rates of infectious disease, prolonging their population’s

life-expectancy.
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While this thesis will focus on CVD prevention in high-income countries, trends in the
incidence and prevalence of the disease around the world should also be considered. The
GBD analysis suggests that preventive strategy in high-income countries may become
relevant to low- and middle-income countries in coming years as their health services and
sociodemographic characteristics evolve. Indeed, one of the United Nations’ Sustainable
Development Goals is to achieve universal health coverage across the globe by 2030 (104).

Implementing cost-effective interventions will help countries to achieve this goal.

3.3 Economic Burden of CVD

To estimate the total economic burden of a disease, researchers must account for primary,
secondary, and tertiary healthcare costs alongside non-healthcare costs. Non-healthcare costs

include informal care and years of lost work through mortality and incapacity.

The economic burden of CVD has been estimated in the U.K. and around Europe. In 2006,
Luengo-Fernandez et al. performed a cost-of-illness analysis, considering the direct and
indirect costs that CVD inflicts on the U.K. economy. It was estimated that the total economic
burden of CVD in the U.K. in 2004 was £29.1 billion, of which the non-healthcare costs
accounted for £11.7 billion (160). The same authors estimated the annual total economic
burden and non-healthcare cost of CVD in the E.U. to be €168.8 billion and €64.2 billion,
respectively (161).

In 2010, Heidenreich et al. performed cost-of-illness analysis for the AHA, estimating both
the current and future economic burden of CVD (158). They estimated that in 2010,
healthcare (“direct medical”) and non-healthcare (“indirect”) costs of CVD in the U.S. were
$272.5 billion and $171.8 billion ($US 2008), respectively. By 2030 they predicted these
costs will rise to $818.1 billion and $275.8 billion, respectively. The larger relative increase
in healthcare costs was explained by the aging population in the U.S. and an upwards trend

in per capita medical expenditure (159).

3.4 CVD Risk Factors

Increased etiological understanding of CVD has improved clinicians’ ability to estimate the
likelihood that a disease-free individual will experience a primary CVD event. Several risk
scores have been developed since 1967, when Truett, Cornfield, and Kannel performed
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multivariate discriminant function analysis to evaluate risk in the Framingham Heart Study
(162). A recent systematic review (163) identified 363 multivariable models for the
prediction of any future CVD outcome in an asymptomatic population since Truett et al.’s

seminal paper.

While a range of variables have been considered in CVD risk estimation, Damen et al. note
that most models include a similar set of covariates (163). Five key variables, age, sex,
smoking, blood pressure, and blood cholesterol levels, appeared in 66% of the models
identified in their systematic review. Other commonly included covariates were diabetes
(52%) and BMI (29%). High levels of LDL-C are considered to increase CVD risk, while
high levels of high-density lipoprotein cholesterol (HDL-C) are associated with reduced rates
of CVD events (164). Both LDL-C and HDL-C are members of a group of biological
substances called lipids. The term cholesterol and lipid are often used interchangeably in the
discussion of CVD risk. Lipid is a broad term, however, which pertains to a wide range of

biomolecules including fatty acids, vitamins, glycerides, and waxes (165).

3.5 Preventing CVD

Types of Prevention

There is a wide range of approaches and policies that can be adopted to prevent CVD. These
are typically described by four categories: primordial, primary, secondary, and tertiary

prevention.

Primordial prevention aims to stop the development of a disease’s risk factors in early life.
This is an important stage in the prevention of CVD. Even though atherosclerosis most often
leads to CVD events which occur during adulthood, it has been established that

atherosclerotic lesions develop in childhood (166).

The Special Turku Coronary Risk Factor Intervention Project (STRIP), conducted in Turku,
Finland, provides an example of primordial prevention for CVD (167). Over 1,000 infants
were randomised to receive an individualised dietary intervention versus standard care. By
their mid-teenage years, individuals who received the intervention had lower levels of
metabolic syndrome, high blood pressure, high blood glucose, and high waist circumference.
While long-term follow-up is currently not available to show the effect of these reductions
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on CVD risk, this primordial intervention should theoretically have arrested or delayed the

development of atherosclerosis before its initial development.

Primary prevention aims to arrest the development of a disease before the occurrence of an
incident event. This typically involves targeting unhealthy risk factors after they have
developed. Preventive interventions for CVD usually take the form of legislative change,
lifestyle advice, and pharmacological treatment. For example, the Soft Drinks Industry Levy
was introduced in the U.K. in April 2018 (168). This is a tax on businesses which produce
excessively sugary beverages, and aims to reduce obesity rates in the country (169).
Pharmacologic forms of primary prevention include provision of cholesterol- and blood-
pressure-reducing medication to patients to reduce atherosclerotic build-up and subclinical
CVD (170).

Secondary prevention is employed to manage a condition. A key focus of such interventions
is the correct diagnosis and management of patients who exhibit symptoms of a condition.
Such interventions in CVD aim to slow down and prevent disease progression, improving
patients’ quality of life. Cholesterol-reducing medications are often prescribed for the
secondary prevention of CVD. These aim to reduce LDL-C, and hence slow the continuation

of atherosclerotic build-up that may lead to recurrent CVD events (171).

Finally, tertiary prevention is undertaken with the aim of reducing the level of morbidity
experienced by individuals with symptomatic illness and preventing further disease-related
deterioration. While secondary prevention aims to arrest further development of a disease,
tertiary interventions simply aim to improve the quality of life, capability, and functioning of
individuals with an established disease. Examples from CVD include stroke rehabilitation

programmes and patient support groups to promote patient wellness and solidarity (172).

High-Risk vs. Population Approaches to Primary Prevention

This thesis will focus on the epidemiological basis, feasibility, and cost-effectiveness of
different strategies for the primary prevention of CVD. All stages of prevention have
contributed to the large reduction in CVD rates observed across high-income countries in
recent decades. While there is increasing support for primordial prevention campaigns in the

U.K. and U.S., the majority of preventive programs still focus on primary prevention.
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Typically, such programs focus on risk factor reduction for CVD-free individuals aged 40
years and above (25,26,173,174).

In the seminal article Sick Individuals and Sick Populations, epidemiologist Geoffrey Rose
set out two alternative approaches to primary prevention: the high-risk and population
approaches (175). Building on previous analysis regarding CVD prevention (176), he showed
that these different approaches to prevention could lead to very different population-level
health outcomes. Sociologists, epidemiologists, and medical professionals have evaluated

and critiqued these theories ever since.

As its name suggests, the high-risk approach to prevention focuses on a subset of a population
predicted to be at high-risk of developing a condition. Rose describes this as the “traditional
and natural medical approach to prevention” (175). A doctor may identify a patient as having
high blood pressure. They will then intervene to reduce this individual’s blood pressure, often
through lifestyle modification or prescription of blood pressure-reducing medication. These
preventive interventions will lead to reduced risk of illnesses associated with hypertension in

future years.

Rose suggests that the benefits of the high-risk approach to prevention are the ease with which
interventions can be tailored to patients’ needs, the motivation of high-risk patients to
improve their health, the motivation of physicians to improve the health of high-risk patients,
and the favourable ratio of benefit to risk (or cost) associated with treating those most likely

to develop a condition.

One issue with the high-risk approach to prevention is the difficulty associated with
predicting CVD risk. This difficulty is demonstrated in Figure 3-5. The figure displays the
distribution of estimated baseline risk in two subsets of the Scottish population derived from
the Scottish Heart Health Extended Cohort (177). Risk was estimated using a statistical tool
called the ASSIGN risk score which estimates an individual’s probability of experiencing a
primary CVD event within 10 years, dependent on traditional CVD risk factors (152,178).
Individuals in the first subset, outlined in red, did not experience a CVD event within 10
years of baseline risk measurement. Underlying this distribution in green is the baseline risk
distribution of individuals who experienced a CVD event within 10 years of risk prediction.
A large number of events occurred in supposedly ‘low-risk’ individuals. As Rose puts it,
“The painful truth is that for [an individual in the lowest cardiovascular risk group] in a
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Western population, the commonest cause of death—by far—is coronary heart disease!

Everyone, in fact, is a high-risk individual for this uniquely mass disease” (175).
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Figure 3-5: ASSIGN risk score distribution (whole population versus those who have
event) in SHHEC

The population approach to primary prevention aims to lower average risk factor values in a
population. This is typically achieved through ‘public health’ approaches to prevention
including legislative changes and adoption of public health programmes. Examples of
legislative changes are increased taxation or banning of unhealthy goods, regulation to
improve environmental exposure of populations, subsidies for healthy produce, and mass
media campaigns which promote healthy living. It is also possible to implement
pharmacologic treatments using the population approach. For example, mass vaccination

campaigns and public water fluoridation programmes adopt the population approach.

The key benefits of the population approach, according to Rose, are the radical nature of the
intervention and the potential for large population-level gains. The radical nature of the
intervention refers to the fact that the intervention aims to address the conditions that lead to
high prevalence of a disease’s underlying risk factors. This links directly to the next stated
benefit. By moving population averages of risk factor levels to a healthier state, much greater

benefit can be achieved than targeting a select group of individuals.

Limitations of the population approach are also discussed by Rose. Notably there is a
‘prevention paradox’ whereby larger population-level gains are achieved under the
population approach, while smaller individual-level gains are achieved. This is because the

gains are averaged over a much larger population. This directly leads to three other issues
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with the population approach: due to low individual-level gains patients may have poor
motivation to improve health, physicians may have poor motivation to treat patients, and the

treatment may have unfavourable benefit-to-risk ratios.

Academics have long evaluated and critiqued Rose’s high-risk and population approaches to
prevention. Writing in the American Journal of Cardiology in 1985, Kottke et al. (179)
estimated that lowering total serum cholesterol to 190 mg/dL and diastolic blood pressure to
80 mmHg for the top decile of CVD risk in the U.S. population would lead to a 33% reduction
in CVD mortality in the U.S Alternatively, if population mean total serum cholesterol and
diastolic blood pressure were lowered to these values, a 70% reduction in CVD mortality
would be achieved. This argument disregards Rose’s postulation that it is more difficult to

motivate low-risk individuals to improve their health.

Barton et al. consider the cost-effectiveness of population interventions to reduce cholesterol
and blood pressure in England and Wales (180). A worksheet-based model predicted life
years lost, QALYs lost, and healthcare costs incurred for men and women aged 40-90
attributable to CVD. Relative risks were derived for blood pressure- and cholesterol-reducing
interventions based on outcomes of previously enacted population health interventions. The
life years gained, QALY s gained, and cost incurred associated with introducing such policies

were then evaluated.

For blood pressure reduction, a salt reduction campaign was modelled. It was conservatively
assumed that such a programme may achieve a population-wide 3g/day reduction in salt
intake, based on studies of similar programmes in Japan, Finland, and other countries.
Analysis of the U.K. survey data suggested that this dietary change would lead to a 2.5 mmHg
reduction in mean population systolic blood pressure. Finally, based on the Framingham risk
functions for the U.K., this blood pressure reduction was assumed to correspond to a 2%
relative risk reduction for CVD events. Similar calculations were undertaken to predict that
trans-fat levels could be reduced by around 0.5% of total dietary intake in the U.K., resulting
in a population-level 6% relative risk reduction for fatal CVD events. Trans fats have been
shown to increase LDL-C and reduce HDL-C, increasing CVD risk (181,182).

The salt reduction intervention was estimated to produce approximately 9,600 discounted life
years and 131,000 discounted QALYSs, leading to a discounted cost saving of £347 million
over 10 vyears. The cholesterol reduction intervention was estimated to produce
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approximately 571,000 discounted life years and 754,000 discounted QALYS, leading to

discounted cost savings of £235 million over 10 years.

There are limitations with Barton et al.’s study: no intervention-related costs were applied
and a short time horizon of ten years was adopted. The authors acknowledge these limitations.
They note that the cost-savings imply that large amounts of money could be spent cost-
effectively instituting the policies discussed. Moreover, they state that conservative
modelling assumptions regarding prevention of recurrent events make their analysis
“somewhat conservative” (180). It is also unclear how non-CVD costs were accounted for in
the analysis. Any intervention that extends population life expectancy will certainly incur
such costs which could be spent elsewhere by the health service. Nonetheless, this study
shows that population interventions are likely to produce large health gains in a population
through small average changes in risk factor levels and that these interventions may also be

cost-effective.

Zulman et al. considered the relative benefits of the population and high-risk approaches
using sex-specific Weibull regression models (183). They simulated a population of 10
million CVD-free Americans, applying four different treatment strategies: a population-
based low-intensity intervention, a population-based medium-intensity intervention, a
medium-intensity intervention for individuals in the top 25% of the population’s LDL-C
distribution, and medium-intensity treatment for individuals in the top 25% of the
population’s CVD risk distribution. The low-intensity population intervention was found to
be comparable with the LDL-C-targeted intervention, leading to around 0.77 million events
prevented over five years. The moderate-intensity population intervention was found to be
comparable to risk-targeted intervention, leading to around 1.72 million events prevented.
However, in both cases number needed to treat was much greater for population-based
approaches. When a small risk of treatment-related adverse events was modelled, it was much

more desirable to implement the targeted strategies.

The effect of population and high-risk strategies of prevention on health inequalities have
long been discussed. Frohlich and Potvin (184) argue that effective population interventions
can exacerbate health inequalities. They note that when a health care intervention is not
specifically targeted at vulnerable populations, uptake and adherence of the intervention is
usually greatest in higher socioeconomic status patients. Specific examples of this
phenomenon are presented which relate to disparity in publicly provided cervical cancer
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screening in Ontario, Canada and the U.S. (185), the inability of neonatal care programmes
in Brazil to reach low-income mothers (186), and greater comprehension and uptake of health
information campaigns regarding smoking by better educated individuals in Italy (187). Each
of these examples highlights a specific mechanism through which population interventions

may exacerbate health inequalities in a population.

Less socially deprived individuals are often better equipped to benefit from population health
interventions. This may be due to better education as well as the apparent paradox that
healthier patients often have better access to health services. The latter of these explanations
has been described as the ‘inverse care law’. The inverse care law was first theorised in a
1971 article by Julian Tudor Hart and states that availability of health care services tends to
vary inversely with the need of the population receiving care (188). Richer, healthier
populations have easy access to care while poorer, less healthy populations have limited
access. Hart famously declared that the inverse care law “operates more completely where
medical care is most exposed to market forces, and less so where such exposure is reduced”
(188). This quotation highlights an important nuance to discussion regarding the population
versus high-risk question. The capacity for a preventive strategy to reduce health inequalities

is intrinsically linked to the health system and economic system in which it is implemented.

The tendency for population interventions to exacerbate health inequalities led Frohlich and
Potvin to argue for a multidisciplinary ‘vulnerable population’ approach to prevention (184).
They describe a vulnerable population as a group in society which is at a higher “risk of risks”
due to shared social characteristics. Some examples of vulnerable populations in Canada are
provided in the paper. These include First Nations peoples, people with low socioeconomic
positions, and people with low levels of education. The key aims of the vulnerable population
approach are to systematically lower mean risk factor values within vulnerable populations

and to reduce intergenerational transmission of risk.

Studies have looked to compare the effect of population and high-risk strategies of care on
health inequalities. Platt et al. (189) simulated primary prevention smoking cessation
strategies using U.S. survey data. The high-risk population was defined as all smokers. The
key outcomes recorded were: mean SBP in the population, standard deviation of SBP in the
population, and the proportion of the population with hypertension. The high-risk primary
prevention strategy assumed all smokers with SBP >130 mmHg would experience a blood
pressure reduction equal to the mean difference between those who smoke and those who do
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not in the dataset. The population strategy assumed 33% and 50% of smokers would stop
smoking, causing a reduction in SBP. The high-risk strategy led to a greater reduction in
population-level SBP than the population strategy, a greater reduction in population-level
SBP variability, and fewer individuals suffering from hypertension. The authors note that the
high-risk strategy led to a greater proportion of low-income individuals avoiding

hypertension.

Kypridemos et al. (190) performed a simulation analysis of high-risk and population
approaches to CVD prevention in England and Wales. They employed a microsimulation
model of CVD to predict cardiovascular events and fatalities for five treatment scenarios.
These were: baseline, universal screening and treatment of high-risk patients (patients with
10-year risk >10%, elevated cholesterol, or elevated SBP), targeted screening of only the two
most deprived quintiles of the population and treatment of high-risk patients, population-
wide interventions (a tax on high sugar beverages, mandatory food reformulation, increased
fruit and vegetable consumption, and a public smoking cessation campaign), and a
combination of universal screening and population-wide interventions. This analysis found
that population interventions had a greater effect on CVD event reduction than the high-risk
approach to prevention. In addition, it found that the combined population and high-risk
strategy was the most successful at reducing health inequalities. A retrospective analysis of
public health interventions introduced in the Netherlands between 1970-2010 produced
similar findings (191). Both of these studies support the idea that high-risk strategies play an

important role in prevention alongside population interventions.

3.6  Statins and Other Cholesterol-Reducing Medication

This thesis will focus on the cost-effectiveness of pharmacologic interventions which reduce
cholesterol levels. These interventions were chosen as a case study to exhibit heterogeneity
in cost-effectiveness because there is considerable equipoise regarding which individuals
should receive them. For statins, this is because they recently came off patent. Prices have
dropped substantially and more individuals are likely cost-effective to treat (192). Decision-
makers must determine which of these individuals they are willing to extend treatment
eligibility to. Prioritisation of patients for PCSK9 inhibitors is also an area of contention. This
treatment received regulatory approval in recent years and is currently very expensive (193).

Therefore, it is important to target treatment at patients with a high capacity-to-benefit.
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Statins

Statins are a group of cholesterol-reducing medications. In biomedical literature they are
often referred to as HMG-CoA reductase inhibitors. They have been shown to significantly
reduce an individual’s likelihood of developing CVD, and are recommended for the primary

prevention of CVD in high-risk adults.

Links between cholesterol and CVD have long been established. As early as 1961,
researchers working with data from the Framingham Heart Study established that, alongside
high blood pressure, irregular heartbeat, and smoking, elevated cholesterol was a key risk
factor for CVD (194).

Despite the established relationship between cholesterol and CVD, there was no treatment
for cholesterol reduction with well-documented efficacy and tolerability before 1987 (195).
At this time, cholesterol treatment was limited to dietary recommendations (reduced dietary
saturated fat and cholesterol) which had high tolerability but low efficacy (196), bile-acid
sequestrants which had moderate efficacy but low tolerability (197), fibrates which had
moderate efficacy (198), and probucol, which was not routinely administered because it
decreases HDL-C (or “good cholesterol”) (199).

By the early 1970s, research had established that cholesterol was largely synthesised in
human bodies by the liver with the aid of the enzyme HMG-CoA reductase (200). Around
this time, biochemist Akira Endo began researching cholesterol-reducing drugs. His work led
directly to the isolation of a fungi-derived compound which inhibited HMG-CoA reductase,

ultimately resulting in the development of the class of drugs known as statins.

The first statin formulation to be approved for use by a regulatory authority was Merck &
Co.’s lovastatin, marketed as Mevacor. Lovastatin received U.S. Food and Drug
Administration (FDA) approval in 1987. A range of other similar formulations followed
lovastatin to market in the following years, including simvastatin (1988), pravastatin (1991),
fluvastatin  (1994), atorvastatin (1997), cerivastatin (1998) and rosuvastatin (2003)
(195,201,202).

Cholesterol control is now an integral part of many CVD prevention campaigns. Indeed,
statins are one of the most commonly dispensed classes of drugs in most high-income

68



countries. In Scotland, England, and the U.S., atorvastatin and simvastatin frequently appear

on lists of the ten most prescribed drugs (203-205).

Statin Patent Expiration

Merck & Co.’s patent for lovastatin expired in 2001. For around five years, lovastatin was
subject to generic competition while other branded statins were not. This had little effect on
sales of other branded statins, however, as lovastatin was clinically perceived as less effective

than the later-released formulations (192).

Patent protection for most other statin formulations began to expire in the mid-2000s. Merck
& Co.’s simvastatin, marketed as Zocor, was an early statin formulation which received
approval for clinical use in the U.K. and U.S. Patent protection for Zocor expired in the U.K.
and U.S in 2003 and 2006, respectively (206,207). Upon patent expiration, numerous
companies began producing generic simvastatin. By 2005, these pills were less than 10% of
the price of branded rivals. The annual cost per patient of simvastatin fell from more than
£400 to £40 between 2003 and 2005 (206). A proportional reduction in the price of
simvastatin occurred in the U.S. following Merck and Co.’s patent expiry in 2006 (208).

In recent years, patent protection for several other statins has expired. In 2011, Pfizer’s patent
protection for atorvastatin, marketed as Lipitor, expired in the U.S. (208). Lipitor’s patent
protection expired in the U.K. in 2012 (209). In 2016, the FDA approved the first generic
version of rosuvastatin, which had previously been co-marketed by Shionogi & Co. and
AstraZeneca under the brand name Crestor (210). Patent protection for rosuvastatin expired
in the U.K. in December 2017 (211).

Simvastatin and atorvastatin are the two most prescribed statins in the U.S. and U.K.
(208,212). In the U.K., moderate intensity formulations of these drugs can be purchased for
£11 and £14 per patient per annum respectively (213). The average manufacturer prices of
these drugs in the U.S. (as estimated for use in Medicaid reimbursement schedules) are $16

and $31 per patient per annum, respectively (214).

Given the recent expiration of rosuvastatin’s U.K. patent protection and the tendency for drug

costs to fall substantially in the years proceeding patent expiration, decision-makers on both
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sides of the Atlantic might expect a further reduction in the weighted average price commonly

paid for statins in their respective health systems.

Ezetimibe

While statins remain the most commonly prescribed pharmacologic treatment for cholesterol
reduction, since 2000 two major pharmacologic alternatives to statin therapy have been
developed: ezetimibe and PCSK9 inhibitors.

In the early 2000s, a cholesterol-reducing agent named ezetimibe was approved for use in the
U.S. by the FDA (215) and in Europe through the mutual recognition procedure of the
European Union following German authorisation (216).

Systematic reviews of ezetimibe studies have established that ezetimibe-statin combination
therapy offers greater LDL-C reduction than statin monotherapy (217-220). Additionally,
evidence shows that ezetimibe monotherapy significantly reduces LDL-C levels (220).
However, this reduction is smaller than the effect that can be achieved by statin monotherapy

in statin tolerant patients.

More recent analysis has shown that, alongside reducing LDL-C, ezetimibe (monotherapy
versus placebo or ezetimibe plus some other lipid-lowering agent versus that agent alone)
significantly reduces risk of myocardial infarction and stroke, without affecting risk of all-
cause mortality, cardiovascular mortality, or cancer (221). A review of cost-effectiveness
studies suggests that combination ezetimibe-statin treatment is cost-effective in select groups
of high-risk patients (220).

PCSKO9 Inhibitors

The second major class of new cholesterol-reducing agents are PCSK9 inhibitors. These are
‘fully human monoclonal antibodies’ which target the enzyme proprotein convertase
subtilisin/kexin type 9 (PCSK?9). This protein is produced in the liver and limits the ability of
the body to remove serum LDL-C from circulation (222).

Alirocumab and evolocumab are two drugs which have been developed to inhibit the
production of PCSKO in the liver. They both received approval from the FDA and European
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Medicines Agency (EMA) in 2015 (223-226). A review by the Institute for Clinical and
Economic Review (IfCER) estimated that PCSK9 inhibitors have a much greater LDL-C-
reducing effect than statins or ezetimibe (227), and results from the FOURIER trial show that
they can reduce risk of CVD event substantially in an asymptomatic population (228).
However, the IfCER report also stated that a large reduction in price will be necessary for
PCSKQ inhibitors to be cost-effective for CVD prevention, even in high-risk statin intolerant

individuals.

3.7 Risk Scoring

Asymptomatic patients are often prioritised for statin therapy and other preventive treatments
for CVD based on their 10-year risk of experiencing a primary CVD event. Many risk scores
have been developed to estimate an individual’s 10-year risk of experiencing a primary CVD

event.

Risk scores are developed using a branch of statistics called survival analysis (229). Survival
analysis involves analysing data where the outcome of interest is time to some key event,

often death or disease progression.

In CVD risk scores, the event of interest is a disease-free individual’s primary CVD event.
The definition of such events differs between risk scores, but are broadly similar, accounting
for the most common CVD events one is likely to experience. Typically, these include: fatal
and non-fatal myocardial infarctions, fatal and non-fatal strokes, and angina. Likelihood of
experiencing one of these events is estimated based on a range of variables, known as ‘risk

factors’.

Framingham was the first risk score to be used in routine clinical practice. The equations that
underpin this score were developed by Anderson et al. (230). The score was most recently
updated for use in the U.S. population in 2008 (231). It includes age, sex, smoking status,
systolic blood pressure (SBP), total cholesterol (TC), HDL-C, and diabetes as risk factors.

Another risk score commonly employed in clinical practice in the U.S. is the ACC/AHA
Pooled Cohorts risk equation (232). This risk score is currently recommended for use by the
ACC/AHA cholesterol treatment guidelines, which aim to reduce risk of CVD in
asymptomatic adults (27,174). The events which comprise this score are ‘hard’
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atherosclerotic CVD events: myocardial infarction, fatal CHD, and non-fatal and fatal stroke.
Other scores often employ broader definitions of CVD which include softer events including
TIAs. Hence, an individual’s risk will be lower when estimated with the ACC/AHA Pooled
Cohorts equation compared to most other CVD risk scores.

While the Framingham equations have been validated extensively, they were developed using
data from the U.S. For clinical practice in the U.K., there was considerable demand for a risk
score derived from U.K. data. In recent years the QRISK, QRISK2, and QRISK3 scores have
been developed in the U.K. (233-235). These scores were developed with Cox proportional
hazard models, and were each developed with data from a group of more than one million
patients across the U.K. QRISK accounts for several CVD risk factors including: age, sex,
SBP, ratio of TC to HDL-C, family history of CVD, socioeconomic deprivation as measured
by the Townsend deprivation score (236), smoking status, BMI, and use of hypertension
treatment. QRISK2 contains the same variables as QRISK but also includes ethnicity,
diagnosed type-2 diabetes, rheumatoid arthritis, renal disease, atrial fibrillation, and some
interaction between traditional risk factors as covariates. QRISK3 again added new
covariates to the risk score. These were: chronic kidney disease, SBP variability, migraine,
corticosteroid use, systemic lupus erythematosus, atypical antipsychotic use, severe mental
iliness, and HIV/AIDS. Guidelines from NICE in 2014 recommend that QRISK2 alone is
used to estimate risk of CVD in England and Wales (25).

The ASSIGN score was developed in Scotland by Woodward et al. (152). The ASSIGN risk
factors were age, socioeconomic deprivation as measured by Scottish Index of Multiple
Deprivation (237), SBP, TC, HDL-C, cigarettes per day (CPD), diabetes, and family history
of CVD. Both ASSIGN and QRISK2 includes separate equations for men and women,
allowing the magnitude of the association between risk factors and outcomes to differ

between sexes.

ASSIGN was developed with data from the Scottish Heart Health Extended Cohort
(SHHEC). SHHEC recruited approximately 16,000 men and women with no established
CVD above the age of 35 from across Scotland in 1984-1987. Baseline risk factor information
was recorded for a set of CVD risk factors. Subsequently, the dataset was linked to Scottish
Morbidity Records (238) and death records (239). This allowed the clinical outcomes of
survey participants to be recorded. SIGN recommends that the ASSIGN score be used to
estimate CVD risk in Scotland as it was developed with a Scottish population and is the score
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which most adequately describes the socioeconomic deprivation gradient in CVD incidence
in Scotland (240).

While the risk scores employed vary, most high-income countries prioritise patients for
preventive therapy like statins using 10-year risk scores. There are drawbacks to prioritisation
based on 10-year risk alone. Ten years is a relatively short period of time over which to
consider risk. This is especially true because CVD is a disease which develops over an
extended period and often begins in childhood. It has therefore been argued by some
researchers that 30-year or lifetime risk scores should be employed so that early causes of
CVD risk can be addressed (241-243). Arguing that such scores would better reflect the
benefit of preventive intervention in younger individuals, Ridker and Cook state, “by
emphasizing so strongly the impact of aging in coronary risk prediction models, we
inadvertently underemphasize those risk factors that are modifiable early in life and that can

greatly alter long-term outcomes” (244).

The clinical utility of long-term scores has been largely disregarded (245). This is because
most individuals are at high lifetime risk of experiencing a CVD event based on extensive
nature of the disease. This makes inference from longer-term risk scores difficult (246). Later
sections of this thesis will discuss the epidemiological basis for employing 10-year risk as a
means of stratifying patient populations for preventive treatment in CVD, and alternative

approaches to prioritisation.

3.8 Statin Guidelines

England and Wales

Several healthcare bodies have issued guidelines regarding the primary prevention of CVD.
A key aspect of these guidelines is determining the subset of a CVD-free population that

should be eligible to receive statin therapy.
NICE is responsible for publishing clinical practice guidelines, health technology assessment

reports, guidance for social workers, and guidance for health promotion in the NHS in
England and Wales.
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NICE guidelines for statins for the primary prevention of CVD were published in 2008. NICE
Clinical Guideline (CG) 67 defined individuals with no established CVD as being high-risk
if they had a 10-year CVD risk score of 20% or greater (247). CG67 recommended that those
patients classified as high-risk should receive intermediate-intensity statin therapy. No

starting statin or preferred risk estimation tool was explicitly recommended by the guideline.

In 2014, NICE published a new guideline pertaining to the primary prevention of CVD (25).
NICE Clinical Guideline 181 defines high-risk patients as individuals aged 40 and above with
no established CVD and a 10-year risk score of 10% or greater, estimated using the QRISK?2
risk estimation tool. The guideline additionally states that an individual should be considered
high-risk if they have hypercholesterolaemia (defined as total cholesterol >7.5 mmol/L).
CG181 states that high-risk patients are eligible to receive intermediate-intensity statin
therapy (atorvastatin 20mg/day). It additionally states that prior to statin initiation, the
benefits of lifestyle modification should be discussed, and statin initiation may be delayed

until the patient has attempted to reduce their risk through lifestyle modification.

Reducing the threshold to 10% resulted in several million more people being eligible for
statin therapy. Extensive analysis was completed in the development of this guideline using
a Markov model which drew on work by Ward et al. (248). This analysis showed that
transitioning to the 10% risk threshold was highly cost-effective.

NICE’s decision to lower the risk threshold in England and Wales has been criticised.
Opponents have warned against the dangers of mass-medication, and have pointed out that
statins are known to have some adverse effects (249). Abramson et al. (250) argue that statins
have little effect on populations with a 10-year risk lower than 10%. However, a meta-

analysis of individual data from 27 randomised trials suggests this assertion is incorrect (251).

Scotland

SIGN is responsible for producing and disseminating guidelines for clinical practice in the
Scottish NHS. It published Clinical Guideline 97, Risk Estimation and the Prevention of
Cardiovascular Disease, in 2007 (240). CG97 recommended that individuals aged 40 and
above with no established CVD and an ASSIGN risk score of 20% or greater should be

considered ‘high-risk’. Also considered in this category of risk are individuals with very

74



elevated levels of TC, individuals over the age of 40 with diabetes, and individuals with

advanced levels of chronic kidney disease.

CG97 recommended several strategies for risk reduction in those who are judged to be at
high-risk of developing CVD. The guideline states that overweight and obese individuals
should be targeted with dietary interventions with the aim of reducing weight by at least 3kg.
Furthermore, it recommends that high-risk individuals should be offered a regimen of
intermediate-intensity statins (atorvastatin 20 mg/day) after a discussion with their clinician
regarding the benefits and risks of the treatment. The guideline further states that the patient

should be encouraged to reduce their cholesterol levels through lifestyle measures.

An update to CG67 was published in 2017 (26). No change was made to the way in which
individuals are prioritised for preventive statin therapy. However, it was acknowledged that
alternative approaches to 10-year risk scoring for statin prioritisation may lead to a more
effective and cost-effective distribution of healthcare resources. The guideline specifically
notes that age-stratified risk thresholds or reformulation of risk calculators could be
implemented in the future in Scotland. It concludes that further economic analysis must be
completed before SIGN can implement a novel approach to statin prioritisation. A key aim
of this thesis is to produce such analysis. Indeed, work included in this thesis was referenced
in the new guideline, and my thesis supervisors and | were acknowledged for contributing to

ongoing work in risk estimation (26).

U.S. and Rest of the World

The ACC and AHA have issued joint guidelines for the management of cholesterol with
statins in CVD-free individuals. Unlike NICE and SIGN, these are not public bodies but
rather non-governmental, non-profit organisations. They state that initiation of statin therapy
should be recommended for primary prevention patients with a 10-year ASCVD risk score
greater than or equal to 7.5%, and should be considered for those with ‘borderline’ scores
between 5.0-7.5% (27,174). These guidelines also stated that physicians should promote
lifestyle measures to reduce cholesterol levels, regardless of the recommendation of
pharmacological interventions. An update to ACC/AHA guidelines in 2018 recommended
statins to borderline-risk patients with a variety of ‘risk-enhancing factors’ (174). These
factors include family history of CVD, LDL-C >160 mg/dL, metabolic syndrome, chronic
kidney disease, and other comorbidities. Finally, it is recommended that physicians promote
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lifestyle measures to reduce LDL-C, regardless of the recommendation of pharmacological

interventions.

Several healthcare bodies around the world have published similar guidance on statin
eligibility. The 2016 European Guidelines on Cardiovascular Disease Prevention offers
guidance based on 10-year risk of fatal CVD event. It states that high-risk individuals (5.0-
10% risk, estimated using the SCORE European cardiovascular risk assessment model)
should receive lifestyle advice and be considered for statin therapy. The guideline continues
that for ‘very high-risk’ individuals (>10% risk) statin therapy is more frequently required. It
also notes, however, that individual circumstance should be considered in older patients, who

often have a healthy profile of risk factors without statins, regardless of 10-year risk (173).

The 2016 Canadian Cardiovascular Society Guidelines for the Management of Dyslipidaemia
for the Prevention of Cardiovascular Disease in the Adult recommends that individuals at
‘intermediate risk” of CVD event (10-19% Framingham risk score) should be offered statins
if they have any other individually elevated CVD risk factor, and all high-risk individuals

(>20% Framingham risk score) should be offered the treatment (28).
Guidelines issued by non-profit and governmental institutions in Australia, Singapore, New

Zealand, Hong Kong, Japan, and many other high-income countries also recommend risk-
based statin prioritisation (252-256).

Guideline Implementation and Regional Variation

National clinical guidelines are only useful insofar as they are able to influence clinical
decision-making. Consistent decision-making across a health system is fundamental in
maintaining equitable access to health care, a founding principle of the NHS.

The Scottish NHS is split into 14 geographically-based health boards. Health boards are
prospectively funded through a resource allocation formula, accounting for demographic,
geographic, and disease-related factors (257). This funding mechanism assigns health boards
considerable scope to determine how resources are allocated in their locality. Such an
arrangement allows health boards to address local health problems effectively but may

undermine the influence of national clinical guidelines.
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Many Scottish health boards have published guidelines related to preventive statin therapy in
recent years (258-263). These guidelines tend to adhere to SIGN’s recommendations
regarding treatment for individuals with ASSIGN score >20%. Some notable exceptions
exist. Clinicians adhering to NHS Lothian guidelines, for example, may consider statin
treatment in individuals with ASSIGN score 10-20% (259). Audit Scotland has also shown
that the type of statin prescribed to patients varies significantly across health boards (264).
Such variation in practice may create a ‘postcode lottery’ whereby access to preventive

therapy is not determined by need or capacity-to-benefit, but rather by geographic location.

Variation in the statin prescribing across the U.K. has been reported. Age-, sex-, and social
deprivation-adjusted rates of statin initiation were greater in England and Wales than in
Scotland during the period 2004-2012 (265). At this time, guidelines were relatively
consistent between the countries of the U.K. Variations in practice have also been reported
across English primary care practices (266,267), and practice-level variation in statin

prescription has been observed in the U.S. (268).

Many approaches can be adopted to influence clinician behaviour and support wider
implementation of clinical guidelines. Wettermark et al. (269) divide these strategies into
four categories: education, engineering, economics, and enforcement. Education involves
informing healthcare workers about best practice guidelines. Engineering involves
organisational or managerial intervention, including institution of prescribing targets and
micromanaged task delegation. Economic interventions include pay-for-performance
schemes as well as co-payment mechanisms to align patient preference for treatments with

clinical guidelines. Enforcement refers to imposition of legal regulations.

The impact of different approaches to guideline implementation have not been extensively
studied (269,270). However, research from the U.K. suggests that concomitant prescription
targets and pay-for-performance schemes have improved uptake of guidelines related to statin
prescription (271-273). Retrospective analysis has shown that the benefits achieved from
such schemes were maintained after their expiration (274). Time-limited campaigns to
improve uptake of national clinical guidelines may affect long-term change on clinical
practice and help ensure that guidelines are implemented effectively. This may help to reduce

regional variation in clinical practice.
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3.9 Statin Therapy: Cost-Effectiveness and Heterogeneity

This thesis will consider the cost-effectiveness of different approaches to the prioritisation of
individuals for preventive statin therapy. As discussed in Chapter 2, representing
heterogeneity in cost-effectiveness can result in welfare gains for decision-makers. What
follows is a review of studies which synthesise results from cost-effectiveness analyses of
statins. Patient-level drivers of cost-effectiveness are highlighted as these may be used to
establish subgroups in which the treatment is likely most cost-effective.

Several reviews of the cost-effectiveness of statin therapy in primary prevention have been
conducted. These have been primarily published as academic articles or as evidence

alongside statin guidelines.

Morrison and Glassberg, 2003

In 2003, Morrison and Glassberg (275) examined the factors which determine cost-
effectiveness of different statins. Four studies were identified which consider the cost-
effectiveness of statins in the primary prevention of CVD, quantified by cost-per-life years
saved (LYS). No studies of primary prevention considered cost-per-QALY. Data extraction
methodology is not discussed.

There was considerable variability in the cost-effectiveness of statins in the studies reviewed.
The incremental cost-per-LYS varied from $4,300 to $1,500,000. Groups of patients with
multiple risk factors were typically more cost-effective to treat, as evidenced in Table 3-2,
which presents data from Goldman et al. (276). It is also noted that statins are very cost-
effective in “specific risk groups” including patients with heterozygous familial

hypercholesterolaemia and type-2 diabetes.

This study has various limitations. The parameters of the individual studies considered are
not discussed in much depth. While variability of cost-effectiveness within studies is
explained, variability between studies is not. It is likely that study parameters (including time
horizon, statin price, statin efficacy, and comparator) drives between-study heterogeneity in

cost-effectiveness.
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LDL-C

Cost-Per-LYS

(mmol/L)

>7.8 F - - - 130,000
6.5-7.7 M - - - 93,000
>7.8 M - - - 58,000
>7.8 M + - - 28,000
>7.8 M + + - 17,000
>7.8 M + + + 15,000

HTN - hypertension

Table 3-2: Cost-per-LYS of preventive statin therapy for patient subgroups, from
Goldman et al. (text)

Franco et al., 2005

In a 2005 review, Franco et al. synthesised literature on the cost-effectiveness of statins (277).
This review sought to compare the cost-effectiveness of statin therapy versus no
pharmacological treatment, quantified by incremental cost-per-LYS. The review identified
24 studies for review, which contained 216 ICERs. For each study, the following data were
extracted: publication date, setting, annual drug costs, type of model, category of prevention,
mean age at start of treatment, annual level of absolute CHD risk at start of treatment, time
horizon, method of effect calculation, economics perspective, funding source, and cost-

effectiveness ratio.

The authors first analysed the cost-effectiveness of statin therapy versus absolute CHD risk.
This analysis found a high degree of variance between studies but a consensus that statins are
cost-effective for individuals with absolute annual CHD risk greater than 4% and cost-
ineffective below an annual risk of 1%. Multilevel linear regression analysis was then
performed to estimate the effect of these variables on cost-effectiveness. In univariate
analysis it was found that statins were significantly more cost-effective in secondary
compared with primary prevention and at higher levels of risk when applying a two-sided p-
value <0.005.

Secondary analysis considered interaction effects with absolute risk of CHD and other
predictors. There was no significant difference between cost-effectiveness and source of
funding in the univariate analysis. However, the secondary analysis showed that
pharmaceutical industry-funded research was more likely to find that statins were cost-
effective at low levels of risk. This could be explained by the fact that the patent for many

different statins were soon due to expire in 2005. Anticipating loss of revenue attributable to
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loss of market exclusivity, pharmaceutical companies likely desired to broaden the base of

patients eligible to receive statin therapy.

One key limitation of this study was that it only included results for male populations. It was,
therefore, unable to identify systematic differences in cost-effectiveness between men and
women. Moreover, women tend to have lower absolute risk of CVD event than men. Omitting
results of studies pertaining to women has the added effect of reducing the amount of data on
low-risk populations. Three studies were also excluded from the review because they were
cost-utility analyses and the study’s main outcome was cost-per-LYS. Disregarding cost-
utility ignores the fact that many CVD events are non-fatal, and the distribution of fatal and

non-fatal events may differ between subgroups in a population.

Ward et al., 2007

Alongside NICE’s 2007 guideline for the prevention of CVD, Ward et al. (248) conducted a
review of statin cost-effectiveness studies. They specifically focused on the methodology of
analyses set in the U.K. Several databases were searched for studies of statin cost-
effectiveness, and titles and abstracts of identified studies were assessed by a review team.
Initially 206 studies were identified by searches and 173 of these studies did not match
inclusion criteria. Seven studies of primary prevention in the U.K. were identified. Studies
included in the review were narratively reviewed, with particular emphasis placed on

reporting the model structure and cost-effectiveness results.

Three of these studies estimated cost-effectiveness in male populations alone, one study
employed a Markov model, one employed a decision tree, and three studies employed a ‘life
table approach’. The CVD risk of the population considered, time horizon of the study, mean
age of participants in the study, CVD history of participants, and specific statin modelled
varied extensively between studies. Central estimates of cost-effectiveness were presented in
terms of cost-per-life year gained (LYG) in all studies. Lifetime cost-per-LYG ranged from
£5,000-£13,000/LYG in high-risk and secondary prevention populations to £14,000-
£30,000/LYG in low-risk populations.

Two non-U.K. studies regarding the cost-effectiveness of preventive statin therapy were
identified. Johannesson and colleagues (278) estimated the optimal risk score cut-offs for
treatment initiation in Swedish men and women, aged 35 and 70, at a range of cost-
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effectiveness thresholds. It was found that lower treatment initiation thresholds were justified
in younger men and women. This suggests that risk score alone is not an adequate determinant
of statin cost-effectiveness. Van Hout and Simoons (279) analysed preventive statin therapy
in a Dutch population. They similarly found that lower risk threshold should be employed for
treatment initiation in younger individuals. Sensitivity analysis found that key drivers of
statin cost-effectiveness are the price of treatment and relative risk reduction achieved by the

therapy.

This study was limited by its scope. The authors focused on the modelling approaches taken
in the studies they analysed. Heterogeneity in cost-effectiveness results is rarely discussed.
The small number of studies identified for review is another limitation. Relaxing inclusion

criteria would have allowed the authors to review a larger body of evidence.

Mitchell and Simpson, 2012

Mitchell and Simpson published a review of statin cost-effectiveness in the prevention of
CVD in 2012 (280). This study specifically reviewed cost-effectiveness analyses of statins
versus non-statin comparator for primary prevention published since 2000 and set in the U.S
After the initial search, 365 studies were identified for further review. 100 studies were
excluded from the analysis as they were published more than 10 years before the review was
conducted, 154 were excluded from the analysis after title review, 42 were excluded due to a
non-U.S. setting, and a further 27 were removed due to study design that did not meet
inclusion criteria. Eventually, four studies were included in the review. Data on time horizon,

CVDrisk, ICER, LYG, and statin cost were collected from each of these studies.

Model parameters varied greatly between the reviewed studies. The time horizon employed
ranged from five years to lifetime, the outcome measure employed varied between cost-per-
QALY and cost-per-LYG, the annual cost of statin therapy ranged from $770 to $1,500, the
age and risk factor profile of patient populations differed greatly, and the choice of non-statin

treatment comparator varied between studies.

Running linear regression on the extracted data, ICERs were estimated at a range of drug
prices for patients with Framingham risks scores of 5%, 10%, and 25%, respectively. As
presented in Figure 3-6, the authors estimated that patients with a Framingham risk score of
10% and 5% would be cost-effective to treat at monthly statin prices of around $70/month
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and $50/month, respectively, when employing a cost-effectiveness threshold of
$50,000/QALY.
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Figure 3-6: Monthly drug cost versus ICER for preventive statin therapy,
stratified by 10-year CVD risk, Mitchell and Simpson (text)

Catala-Lopez et al., 2013

Catala-Lopez et al. (281) examined the potential for bias in cost-effectiveness analyses of
statins for the primary prevention of CVD. They extracted data regarding quantitative cost-
effectiveness outcomes (ICERs inflated to $US 2011), qualitative cost-effectiveness
conclusions (favourable, unfavourable, neutral), source of funding (industry, non-profit, no
funding/none disclosed), journal impact factor, and other study-level covariates for 43

identified cost-effectiveness analyses.

Fisher’s exact tests were performed on 2x2 contingency tables to establish the relationship
between qualitative conclusions and type of sponsorship and journal impact factor. They
found that industry-sponsored studies were significantly more likely to report favourable
results than others (p <0.001), but no evidence of publication-based bias. Industry-sponsored
studies found that the statin-based intervention of interest was cost-saving or had an ICER
below $50,000/QALY more regularly than other studies (62% versus 22%, respectively; p
<0.001).

The methodology employed in this analysis did not allow for covariate adjustment. In
addition, no further analysis considered drivers of cost-effectiveness in the included studies.
Therefore, little information was provided regarding the cause of within- or between-study
heterogeneity in cost-effectiveness.
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Two limitations should be noted with regards to this study. Information on study funding was
derived solely from the corresponding research article. It is possible that complete
information on funding was not obtained. Furthermore, reviewers subjectively determined if
a study’s results were favourable, unfavourable, or neutral. The subjective nature of this
classification was countered with guidance on the type of language that pertains to each of
these categories and consensus was sought when reviewers were not in agreement.

Nonetheless, the objectivity of the study’s inputs may be questioned.

NICE, 2014

A review of statin cost-effectiveness was published alongside NICE’s 2014 update to
guidelines for the primary prevention of CVD (25). Four papers, pertaining to three studies
comparing statin therapy to placebo in primary prevention were included in this review, with
many of the studies discussed in previous reviews omitted because they had “very serious

limitations” or because “more recent evidence was identified which was more applicable”.

Two studies compared statins to placebo in an intermediate-risk CVVD-free population, while
the third study estimated the cost-effectiveness of preventive statin therapy versus placebo in
patients with low LDL-C and elevated high-sensitivity C-reactive protein (hs-CRP)
(248,282,283). All studies found statins were cost-effective, with the ICER ranging from
cost-saving to £16,500/QALY.

A limitation regarding this study was the small number of studies included. This made it
difficult to determine the drivers of cost-effectiveness between different studies. However,
extensive reporting of sensitivity analysis results was included in the review. These results
suggest potential drivers of heterogeneity in statin cost-effectiveness. Shorter duration of
statin effectiveness, increased cost of statins, increased monitoring costs, reduced statin
efficacy, increased treatment-related disutility, and reduced population CVD risk all led to

reductions in cost-effectiveness.
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Heterogeneity in Statin Cost-Effectiveness

This section summarised previously published systematic reviews which pertain to the cost-
effectiveness of preventive statin therapy. These reviews showed considerable heterogeneity

in the cost-effectiveness of statin therapy.

A number of potential drivers of cost-effectiveness were highlighted. It was shown across
studies that 10-year risk of CVD is a key driver of the cost-effectiveness of preventive statin
therapy. Other potential sources of heterogeneity in statin cost-effectiveness presented were:
age of treatment initiation, cost of statin therapy, treatment efficacy, duration of treatment

effectiveness, and treatment-related disutility.

3.10 Chapter Summary

Cardiovascular disease is a highly prevalent condition that leads to morbidity and mortality
in low-, middle-, and high-income countries. It is often caused by atherosclerotic build-up in
individuals’ arteries, a process which commences at a young age. CVD has a high associated
economic burden, and there is often a high socioeconomic gradient in the disease which
exacerbates health inequalities within countries. Primary, secondary, and tertiary prevention
of CVD can all be employed to halt the development of the disease, arrest its progression in
patients with the condition, and improve sufferers’ quality of life. Primary prevention often

targets modifiable CVD risk factors like smoking, cholesterol, and SBP.

Most high-income countries employ risk-based statin prioritisation, regardless of health
system. The degree to which clinical guidelines influence clinical practice may vary across
these countries. By defining a group of patients as being ‘high-risk’, clinicians acknowledge
heterogeneity in the CVD-free patient population. Preventive therapy may be more effective
and cost-effective for high-risk subpopulations. However, reviews of statin cost-effectiveness
suggested that other factors, like age of treatment initiation, may independently affect statin
cost-effectiveness, Chapter 4 will discuss the epidemiologic basis for using 10-year risk to
prioritise patients for preventive therapy for CVD. Further, it will discuss alternative
approaches that clinicians could adopt that may better reflect heterogeneity in outcome from

preventive treatment.
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Chapter 4

Epidemiology and Prevention of Cardiovascular Disease

4.1 Purpose

The cost-effectiveness of an intervention can vary between patient subgroups for a variety of
reasons. The importance of reflecting heterogeneity in cost-effectiveness analysis has been
established. Current standard of care in CVD relies predominantly on prioritising individuals
for preventive therapy based on 10-year risk scores. A review of cost-effectiveness analyses
showed that 10-year risk is indeed one determinant of preventive statin therapy’s cost-
effectiveness. The purpose of this chapter is to establish the epidemiologic basis for a range

of different approaches to CVD prevention.

This chapter will first present an illustrative example to show that individuals with the same
10-year risk score may experience different outcomes from preventive therapy for CVD. It
will then proceed to discuss the epidemiological basis for alternative approaches to
prevention which may better reflect heterogeneity in outcome. Three approaches which may
better reflect heterogeneity in cost-effectiveness than standard of care are identified. These
are: (i) continued use of 10-year risk scores, (ii) novel decision mechanisms which

incorporate 10-year risk, and (iii) using decision models directly in clinical practice.
4.2 llustrative Example

The following example aims to highlight issues inherent to 10-year CVD risk scoring. Risk
factor profiles are presented for three hypothetical patients, each with a risk score of 10%. It
is shown that these patients may experience very different outcomes attributable to preventive

therapy.

Consider the three risk factor profiles presented in Table 4-1. Each of these hypothetical
patients has a 10-year CVD risk of 10%, estimated with the ASSIGN risk score (152). This
table demonstrates the importance of distinguishing between modifiable and non-modifiable
risk factors. Modifiable risk factors, like LDL-C, HDL-C, SBP and CPD, can be intervened
upon to reduce risk of disease. Non-modifiable risk factors, like age and sex, cannot be

intervened upon.
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. Patient
Risk Factor A B C

Sex Female | Female

Age 50 50 70
SIMD 15.89 15.89 15.89
Family History No No No
Diabetes No No No
CPD 0 35 0
SBP (mmHg) 140 140 110
LDL-C (mmol/L) 8.7 4 4.5
HDL-C (mmol/L) 0.9 1.5 2
hs-CRP (mg/L)* 1 10 1
10-Year Risk** 10 10 10

*Not included in the ASSIGN risk score
**Estimated using the ASSIGN risk score

Table 4-1: Three different patients with ASSIGN score of 10%

Patient A and Patient B are both 50-year-old females with no family history of CVD. Risk of
developing CVD increases with age, and is generally higher for men and for individuals with
a family history of premature cardiovascular illness. Based solely on these non-modifiable
risk factors, Patients A and B should be at a very low risk of developing CVD. However, they
are at 10% 10-year risk driven by unhealthy levels of modifiable risk factors. Patient C, on
the other hand, has a healthy modifiable risk factor profile but is male and aged 70 years.
When risk is determined by a non-modifiable factor like age, capacity-to-benefit from

preventive treatment is often diminished.

Even amongst individuals of the same age and CVD risk, the effect of preventive
interventions may differ substantially. For example, strong evidence suggests that an
individual’s risk reduction from statin therapy is directly proportional to their LDL-C
(251,284). Hence, Patient A will experience a greater absolute CVD risk reduction from statin
therapy than Patient B, even though they have equal baseline risk.

Existing risk scores may also be incomplete. Most commonly-used 10-year risk scores
contain a similar set of explanatory variables as those included in the ASSIGN Score.
Research suggests that many independent risk factors for CVD are not included in risk scores.
One such factor is hs-CRP. This biomarker has been shown to independently predict CVD
risk when controlling for traditional risk factors (285,286). Though Patient A and Patient B
have the same ASSIGN risk score, the former is likely at greater risk of developing CVD
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event due to their increased hs-CRP. By identifying this risk through hs-CRP testing, it may

be possible to better prioritise patients for statin therapy.

4.3 Heterogeneity in the Cost-Effectiveness of CVD Prevention

There are many forms of subgroup and heterogeneity relevant to CVD. The example above
showed that patients with the same risk score may experience different outcomes attributable
to the preventive CVD interventions. Failing to reflect such heterogeneity leads to suboptimal

decision-making.

This thesis will consider three approaches to reflect heterogeneity in the cost-effectiveness of
preventive interventions for CVD which theoretically improve upon standard of care:

1. Continued, but improved, use of 10-year risk scores.
2. Novel decision mechanisms which incorporate 10-year risk.
3. Using decision models directly in clinical practice.

What follows is a short epidemiological analysis of the basis for each of these approaches.
Chapters 7, 8, and 9 will detail cost-effectiveness analyses of specific policies which adopt

these approaches to prevention.

4.4 Continued Use of 10-Year Risk Scores

4.4.1 Theory Behind Current Practice

Continued use of 10-year risk scores is one approach to CVD prevention. The 2007 World
Health Organisation (WHO) guidelines for assessment and management of cardiovascular
risk discuss the basis for the “total risk approach” to prevention of CVD (287). It notes that
the main biological process which contributes to CVD is atherosclerosis, and traditional risk

factors work concurrently to increase the rate of atherosclerosis progression.

Atherosclerosis develops over a long period of time, and therefore disease state is difficult to
define in CVD (166). Indeed, most individuals spend extended periods in a ‘preclinical’ state
with extensive atherosclerotic build-up prior to experiencing a morbid CVD event (288). A
multitude of studies have established a range of ‘risk factors’ which increase atherosclerosis,
and these factors can be described as indicators of preclinical CVD (163,289).
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The WHO guideline notes that risk factors “commonly coexist and act multiplicatively”
(287). An individual with a unitary elevated factor might therefore be at lower total risk of
developing CVD than an individual with a combination of moderately elevated factors. By
combining the independent effect of many risk factors into a combinatory index, researchers
have developed metrics which predict CVD risk better than focusing on individual factors.

These indices most frequently take the form of 10-year CVD risk scores.

In addition to providing greater predictive validity than single variables, risk scores have the
benefit of representing variables continuously. Many risk factors do not dichotomously affect
risk, but rather have a continuous effect. LDL-C, for example, increases CVD risk in a
continuous, direct relationship (4,290-292). An intervention commencement rule which aims
to treat individuals with high LDL-C must necessarily set a cut-off at which treatment is
initiated. For example, the AHA’s 2013 definition of hyperlipidaemia is LDL-C >160 mg/dL
(4.14 mmol/L) (27). A decision rule which only recommended statins for individuals with
hyperlipidaemia ignores the potential benefit of the treatment in individuals with borderline
hyperlipidaemia. Such a policy creates a false dichotomy which suggests that LDL-C does
not affect risk below the threshold and drives risk above it. In contrast, a risk score

dynamically reflects the incremental effect of increases in LDL-C on CVD risk.

Another argument commonly posited in support of 10-year risk scores for statin prioritisation
relates to relative risk. The WHO and SIGN explicitly employ this argument in respective
guideline documents (26,240,287) and both use statin therapy as an example. They argue that
patients with elevated 10-year risk gain most from statin therapy. It is assumed that statins
reduce relative risk of CVD equally across all patient subgroups. Those with higher absolute

risk should therefore gain the greatest absolute risk reduction from treatment

To illustrate the point above, let us assume that the relative risk of CVD for a preventive
therapy is 70% compared to no treatment. Additionally, assume that the therapy results in an
equal relative risk versus no treatment across a population. Now consider two prospective
patients, Patients X and Y, who have CVD risk scores of 50% and 10%, respectively.
Absolute risk reduction attributable to this therapy is greater for Patient X, as shown in Table
4-2.
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Sections 4.4.2 and 4.4.3 will discuss specific policies which retain 10-year risk scoring as the
principal mechanism for statin prioritisation. These approaches attempt to counter issues with
heterogeneity in cost-effectiveness of statin initiation based on 10-year risk alone without
drastically changing current practice.

Patient 10-Year Risk Absolute Bisk
(10YR) Reduction*
X 50% 15%
Y 10% 3%
*Absolute risk reduction = 10YR*0.3

Table 4-2: 10-year risk and absolute risk reduction, assumes equal relative risk of
therapy for all patients

4.4.2 Policy: Lowering the Risk Threshold

Many statins have come off patent in recent years, leading to a drastic reduction in price.
Therefore, many more individuals are now cost-effective to treat. In response, treatment
guidelines have been updated which lower the threshold at which initiation of preventive

statin is recommended (25,27).

Lowering the risk threshold will lead to more individuals who proceed to have events (cases)
being treated. This occurs at the cost of treating more individuals who do not proceed to have
events (non-cases). The statistical concepts of sensitivity and specificity help to illustrate this

point.

Sensitivity and Specificity

In statistical terms, reducing the threshold at which a treatment is initiated increases the
sensitivity of risk scoring. Sensitivity of a diagnostic tool, also referred to as its true positive
rate, describes the ability of the score to correctly identify cases. It is therefore the probability

of an individual being identified as high-risk given that they will proceed to have an event.

Mathematically, this can be represented as follows:

sensitivity = P('high risk'|event).
Reducing the CVD risk threshold treats all individuals prioritised for treatment under the
previous threshold while expanding the subgroup of individuals who are eligible for

treatment. Hence, the sensitivity of the new policy is necessarily equal to or greater than the
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previous policy. As alluded to by Geoffrey Rose, many events occur in apparently ‘low-risk’
populations in a disease as highly prevalent as CVD (175) and we may expect a marked

increase in sensitivity of a risk score as the threshold is reduced.

Notably, the conditional probability that defines sensitivity does not account for false
negatives. A statistical counterpart to sensitivity is specificity, also referred to as the true

negative rate. This term describes the probability of a non-case being identified as low-risk.

Specificity can be formulated mathematically as follows:

specificity = P('low risk'|no event).
Reducing the risk threshold leads to a reduction in the number of individuals classified as
low-risk. Hence, specificity of the score using the reduced risk threshold is equal to or less

than the previous policy.

Policy Assessment

Within the framework of 10-year risk scoring, choosing whether to reduce a risk threshold is
a matter of weighing the benefits of increased sensitivity against the costs of reduced
specificity. Increased sensitivity implies that more individuals who should be treated will be
treated. Reduced specificity, on the other hand, implies that more individuals who should not
be treated will be treated and hence will incur unnecessary costs and treatment-related

disutility. Chapter 7 employs a decision-analytic model to perform such calculus.

4.4.3 Policy: Improving 10-Year Risk Scores

At the start of this chapter, it was shown that two individuals with the same risk score may
be at very different CVD risk attributable to non-traditional risk factors. Patient B was likely
at greater 10-year risk of CVD than Patient A as they had elevated hs-CRP. However, hs-
CRP is not included in the ASSIGN risk score. Adding this biomarker as a covariate in an

updated risk score would better reflect heterogeneity in risk.

Much research in CVD prevention has focused on improving the predictive validity of 10-
year risk scores. By including additional covariates in risk scores, two individuals previously

identified as identical risk may be reclassified. Improving 10-year risk scores allows decision-

90



makers to more confidently target treatment at patients who are likely to experience a CVD

event within the next 10 years.
What follows is a short description of statistical methods typically employed to assess risk
score improvement. The advantages and disadvantages of these methods are described, and

the need for decision-analytic modelling is established.

Estimating the Statistical Validity of a Risk Score

Statistical techniques have been developed to assess the improvement that novel risk factors
provide to risk prediction algorithms (293,294). The statistical validity of a risk score has
traditionally been described in two ways: discrimination and calibration. Discrimination
refers to the ability of a risk function to prospectively separate cases and non-cases into two
distinct groups. Calibration, on the other hand, refers to how well a risk score predicts average

risk in a population and subsets of this population.

Unless a risk score has perfect dichotomising predictive capability (correctly designating
individuals as either 0% or 100% risk), perfect discrimination and calibration cannot be
achieved simultaneously (295). Consider, for example, a risk score which designates one
group of individuals as 5% risk and another as 95% risk. Presume that this risk score has
perfect calibration; then 1 in 20 individuals in the lower risk group and 19 in 20 individuals
in the higher risk group will experience an event. The fact that there are cases and non-cases
in each risk group necessarily means that this score does not have perfect discrimination. On
the other hand, presume that the score has perfect discrimination: all individuals in the lower
risk group remain event-free while every individual in the higher risk group experiences an
event. In this situation, the predicted and observed event rates in the risk groups are not

correct, so the score is imperfectly calibrated.

Discrimination is the most important attribute when deciding who to treat with a risk score.
When focusing on a 10-year time horizon, a physician wants to dichotomise a population into
two groups: those who will have an event and those who will not. As long as a risk threshold
can be defined which distinctly identifies these two groups, individuals’ specific risk scores
do not matter. This thesis aims to develop methodology which allows decision-makers to
better specify which individuals should receive preventive interventions for CVD. Poorly
calibrated risk scores may remain clinically useful if they highlight a group of individuals
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who would benefit from treatment (296). Therefore, the discriminative ability of risk scores

is of particular interest.

The importance of calibration should not be disregarded. Accurately predicting disease
incidence and prevalence in a population relies on a score’s calibration (297). If a health
system planner wants to argue that more money should be invested in one disease are over
another, they must know the future population-level incidence and prevalence of each
disease. This requires good calibration of risk estimates.

Discrimination — Area under the Receiver Operating Curve Analysis

With regards to discrimination, the internal and external validation of risk scores is important.
Internal validity refers to a risk score’s ability to replicate results observed in the data used
in its development. External validity refers to a score’s ability to replicate results from

datasets not used in its development.

Internal and external validation of risk scores can be described by area under the receiver
operating curve (AUROC) analysis. The receiver operating curve (ROC) is a graphical
representation of a risk score’s sensitivity and specificity. It is constructed by plotting the
score’s sensitivity against the complement to its specificity (one minus specificity), as shown
in Figure 4-1. A risk score which perfectly dichotomises cases and non-cases is referred to
as ‘perfect’. A perfect risk score is exemplified by the green curve in the figure. The threshold

which dichotomises the patient population as such can be plotted on the ROC at point (0, 1).

The blue curve on Figure 4-1 plots a random risk score, also referred to as an ‘uninformative’
risk score. At all points on this curve sensitivity is equal to one minus specificity. This means
that the probability of a case being identified as high-risk is always equal to the probability
of a non-case being identified as high-risk. It follows that the ratio of cases estimated as high-
risk to non-cases estimated as high-risk will always be equal to the ratio of cases to non-cases
in the population. Therefore, the score provides no more information on a patient’s risk than

a completely random identification mechanism.

In the case of non-perfect informative risk scores, when the threshold is set such that all
individuals are classified as high-risk the score has a sensitivity of one. This is because all
cases are classified as high-risk. At the same time, the specificity of the score would be zero.
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This is because the non-empty subset of non-cases is also classified as high-risk. Similarly,
when the specificity is equal to one, the sensitivity is equal to zero. For a non-perfect score,
we can plot sensitivity and one minus specificity for a continuous range of risk thresholds, as
exemplified by the purple curve in Figure 4-1.

The c-statistic, or the AUROC, is an index employed in the quantitative comparison of ROCs.
It is equal to the area between the ROC and the x-axis, and can range from 0.5 to 1. A perfect
risk score has an AUROC of 1 and a random score has a value of 0.5. Hence, the closer a
score is to a value of 1, the better its discrimination. If a score is less than 0.5, this implies
systematic misspecification. Note, however, if the score consistently misspecifies
individuals, then reclassifying all individuals to the opposite risk category will bring the score
above 0.5.
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Figure 4-1: Receiver operating curve

A growing body of literature highlights the weakness of traditional measures of
discrimination in highlighting the benefit of novel technology in risk assessment. The
improvement offered by adding a new covariate to an existing risk score cannot be adequately
described by AUROC analysis.

The law of diminishing returns makes it increasingly difficult for each additional risk factor
added to a risk score to significantly improve the score’s predictive ability. Intuitively, more

of the explicable population-level uncertainty in outcome is described by each additional risk
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factor. Hence, fewer individuals in a population will experience a notable change in their risk
score attributable to each additional covariate included in a score. Most risk scores for CHD,
stroke, and CVD have c-statistics of around 0.75-0.80 and a model based on age and sex
alone can result in an c-statistic of 0.70 (298). Additionally, Wang et al. (299) have shown
that the addition of an established CVVD biomarker to traditional covariates in risk prediction

models only increases the c-statistic from 0.76 to 0.77.

Reclassification Tables and Net Reclassification Indices

Increase in c-statistic does not fully capture the clinical benefit of adding new covariates to a
risk score. A substantial proportion of a population is unlikely to be reclassified as high- or
low-risk by including new covariates in a risk score. Nonetheless, the additional risk factor
information may prove significant in reclassifying a subset of a total population. Specifically,
the new risk factor may lead to considerable reclassification of intermediate-risk individuals

(those whose traditional risk score is near the threshold for treatment initiation).

One methodological approach to address the shortcomings of AUROC analysis is the use of
reclassification tables (300). Individuals in the population used to construct a risk score are
split into separate risk-based categories (e.g. 0-10%, 10-20%, and >20% risk). The benefit of
adding a new risk factor is evaluated by cross-tabulating individuals’ categorisation for two
risk scores: one which does not include the new risk factor and one which does. The
researcher next assesses the proportion of the population that is reclassified with the new risk
score, calculates the expected event rate in this reclassified population, and compares this to
the observed event rate.

Reclassification tables are not particularly useful in evaluating updated risk scores. Simply
calculating the proportion of individuals reclassified lacks information on the predictive
benefits offered by such reclassification. Moreover, considering event rates in reclassified
individuals is unlikely to produce a useful and objective measure of the improvement in the
risk score. Such an approach considers all individuals reclassified collectively and therefore
neglects the possibility of individual-level heterogeneity in the statistical benefit of the
additional risk factor.

Pencina et al. highlight the issues with reclassification tables (293). They consider a
hypothetical example where a new covariate is added to a 10-year risk score, and 100
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individuals are reclassified ‘upwards’ from a 10-20% risk group to a >20% risk group. It is
further considered that the observed event rate is 25% in this risk group. In this situation,
despite the fact the reclassification table approach appears to support the use of the new
covariate in risk scoring, 75% of the individuals reclassified should have stayed in the lower

risk category.

Net reclassification improvement (NRI) is an alternative measure of a risk scores’
reclassification value proposed by Pencina et al. (293). Estimation of NRI is achieved by
splitting reclassified individuals into two groups: those reclassified ‘upwards’ to a higher risk
group and those reclassified ‘downwards’ to a lower risk group. As with sensitivity,
specificity, and AUROC analysis, this approach requires one distinct ‘cut-off” at which
individuals are considered high-risk. NRI reflects the net improvement in classification of
individuals who are reclassified upwards and the net improvement in individuals who are
classified downwards. For individuals who are both reclassified and were observed to have
experienced an event, the posterior probabilities of being reclassified upwards and
downwards are computed, respectively. The latter is subsequently subtracted from the
former, Equation (4-1). A similar calculation is performed for reclassified individuals who
do not experience an event, Equation (4-2). Finally, these two values are subtracted from
each other, Equation (4-3). Unlike reclassification tables, this index is able to concurrently
consider the effect of updating a risk score in terms of sensitivity and specificity.

A = P(up|event) - P(down|event) (4-1)
B = P(up|no event) - P(down|no event) (4-2)
NRI = A—B (4-3)

Beyond NRI

Greenland argues that NRI can provide decision-makers with misleading support for the
implementation of an updated risk score. He points out that “predictive values, costs, and cut-
points must be considered together to make well-informed decisions” (301). Pencina et al.
responded by formulating an updated NRI index which details the incremental costs
attributable to implementing the new risk score (302). The updated index is presented in
Equation (4-4) and is referred to as the weighted NRI (WNRI).

WNRI = S, * (P(eventlup) * P(up) — P(event|down) * P(down))
+S, * (P(no event|down) * P(down) — P(no event|up) * P(up)) (4-4)
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S, represents the savings from correct upwards reclassification and S, represents the savings
from correct downwards reclassification. These values may be positive or negative.
According to Pencina et al. (302), the new risk score should be adopted if the sum of the
WNRI and population-level testing costs is negative. In other words, cost-savings are obtained
attributable to the new testing and treating strategy. If the summed value of the wNRI and
testing costs is positive, they suggest that the decision-maker must perform further formal

cost-effectiveness analysis.

Extending the scope of wNRI to account for health outcomes could produce an index which
better summarises the consequences of ‘correct’ and ‘incorrect’ treatment decisions. An
updated weighted NRI score could replace the cost values in the wNRI equation (S; and S,)
with net monetary benefits attributable to treating or not treating cases and non-cases
respectively. Such an index would combine both the incremental costs and incremental
QALYs associated with reclassification. This would better quantify the consequences of
reclassification. However, it would only highlight the benefit of adding a risk factor in an
existing dataset with follow-up information available for all individuals. Such data are rarely

available, especially for novel risk factors.

Policy Assessment

The statistical methods described above do not fully assess the cost-effectiveness of adding
risk factors to an existing risk score. Decision-analytic modelling allows researchers to
bypass restrictive data requirements and enables them to predict outcomes in a wide range of
populations. Chapter 7 presents a framework that can be employed to assess the incremental
costs and health benefits associated with updating risk scores with novel risk factor

information.

4.4.4 Policy Analysis in Chapter 7

Chapter 7 will assess the cost-effectiveness of two policies that retain the central role of 10-
year risk scores in statin prioritisation but attempt to improve upon current practice. It will
consider the cost-effectiveness of:

= Lowering the risk thresholds for statin initiation in Scotland

= Improving the precision of current risk scores with novel biomarker data.

96



4.5 Novel Decision Mechanisms Which Incorporate 10-Year Risk

Novel approaches to prevention have been proposed which incorporate 10-year risk scoring.
The aim of these approaches is to better reflect heterogeneity in patients with similar risk
scores but different projected outcomes. Typically, such approaches involve treating
according to 10-year risk while additionally stratifying treatment decisions by some other

factor.

Age and LDL-C are two common factors with which 10-year risk-based decision-making
may be additionally stratified. This stratification aims to correct for issues with the simple
risk-based approach to prevention. These issues include neglecting competing risks,

cumulative exposure, and heterogeneity in relative treatment effect.

4.5.1 Policy: Age-Stratified Risk Thresholds

Age-stratified risk thresholds are a decision mechanism which incorporate 10-year risk. This
policy for prevention of CVD was introduced in Norway in 2009 (303). It requires setting
separate treatment initiation thresholds for different age-groups. Effectiveness of statin
prioritisation will likely improve if the threshold were reduced for younger age-groups and
increased for the elderly.

Two key epidemiological factors support the implementation of age-stratified risk thresholds:
competing risks and cumulative exposure to risk factors. Both of these factors contribute to

the fact that treatment outcomes differ greatly between younger and older individuals.

The illustrative example at the start of this chapter showed individuals with drastically
different risk profiles can have the same 10-year risk score. Patient C, for example, was a 70-
year-old male with a healthy set of modifiable risk factors. Patient A and Patient B, on the
other hand, were 50-year-old females with elevated levels of modifiable risk factors like TC
and SBP. Patient C likely has less to gain from preventive therapy. This is partly because
they are at high-risk of developing many fatal health conditions, regardless of treatment.
Additionally, atherosclerosis is a cumulative process. Hence, slowing down its progression

is likely to produce the greatest benefit at younger ages.
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Competing Risks

The statistical methods used to estimate 10-year CVD risk typically ignore competing risks,
limiting their utility. Competing risks are events that can occur prior to an event of interest,

biasing statistical models of disease (304).

Estimation of 10-year risk involves applying survival analysis to longitudinal datasets.
Survival analysis is a branch of statistics often employed in epidemiology. It involves
statistically modelling the time it takes for a specific event of interest to occur and the effect
of relevant covariates on time to event. In CVD, the event of interest is typically a primary
CVD event. Relevant covariates included in risk scores include age, sex, cholesterol, smoking
status, and blood pressure.

Andersen et al. (305) describe two key concepts central to survival analysis: risk and rate.
Risk is defined as the proportion of individuals in a population who develop a condition in a
specified period, say time zero through t. Equation (4-5) defines risk mathematically, with D
representing the number of individuals with event from zero to t, and N representing the
number of individuals in population of interest. Rate is defined as the number of individuals
who develop a disease in a specific period divided by the amount of person-time at risk.
Equation (4-6) defines rate mathematically with Y representing person-time at risk.

risk = (4-5)

(4-6)

~lo=z|o

rate =

The statistical counterparts of risk and rate are probability and hazard, respectively.
Probability of an event occurring can be represented by the cumulative incidence function,
F(t). The value of this function is equal to the relative frequency of individuals with time to
event less than t. The probability density function (PDF), f(t), is central to the estimation of
F(t). In survival analysis, the PDF is interpreted as the probability that an event occurs at time
t. F(t) is related to the PDF by the relationship presented in Equation (4-7). In the situation
where data are complete, Equation (4-4) provides an unbiased estimate for F(t). A similar
measure that can be computed is the survival function, defined as the probability that an

individual will survive beyond a given time and presented in Equation (4-8).

F(t) = J, f(t)dt (4-7)
S(t)=1-F(t) (4-8)
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Hazard is represented by the hazard function, h(t). The value of this function is equal to the
instantaneous risk of event for an individual from time t to t+d, where d is a small interval of
time. The hazard function represents the instantaneous probability of an event occurring at
time t, f(t), conditional on the probability that an individual had survived until time t, S(t).
Equation (4-9) presents the mathematical formulation of h(t). This equation provides a
reliable estimate of hazard when data are complete (304). Cumulative hazard, H(t), is equal

to the integral of the hazard function from time zero through t, Equation (4-10).

h(t) = % (4-9)
H(t) = [ h(t)dt (4-10)

When there are no competing risks, there is a one-to-one correspondence between survival
and hazard. The proof for this relationship is shown in Figure 4-2. Consequently, models of
the hazard function can be employed in simple survival analysis to estimate cumulative

incidence of an event. This corollary is not true when competing risks are present.

f@  f@®  F(©)
St 1—F(@) 1-—F(@)
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]
oo —aln(s(t)) = h(t)

t
= —In(S(t)) =f h(t)dt
0

= In(S(t)) = —H(t)
= S(t) =e HO
Figure 4-2: Proof of one-to-one relationship between h(t) and 5(t)

Data limitations can affect the reliability of results derived from survival analysis. A dataset
containing time to event or survival data for all individuals over a set period is desirable when
building survival models. For a variety of reasons, such data may be unavailable. Individuals
may become ‘lost to follow-up’. This means that, despite providing longitudinal data at some
point, the individual is not followed up until the event of interest or through the end of the
study. This may occur when the individual leaves the locality of the study, dies, or chooses

to stop providing information to researchers. These individuals are described as ‘censored’.
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If censoring is independent — meaning that it occurs completely at random and is not
correlated with the dependent variable — a valid method for correction of survival models is
to assume that the event rate for censored individuals is equal to that of the uncensored
individuals (304). This will hereafter be described as naive correction for censoring in
survival analysis. Competing risk methodology is required to obtain unbiased estimates of

hazard and survival when censoring is not independent.

Estimation of hazard and survival is complicated by the existence of competing risks.
Competing risks lead individuals in a dataset to experience a censoring event before the event
of interest. This censoring cannot always be treated as independent. The underlying
mechanism that causes a competing event to occur often relates to the individual’s risk of
experiencing the event of interest. For example, Keurentjes et al. (306) estimate revision rates
for patients receiving hip replacement surgery. They show that all-cause mortality is a
competing risk for revision surgery, and patients who are at elevated risk of receiving revision
surgery are also at a greater risk of all-cause mortality. Therefore, survival models which

apply naive correction methodology overstate probability of revision surgery.

Dealing with Competing Risks

Andersen et al. discuss the most appropriate methodology for competing risk survival
analysis (305). Consider two competing events, A and B. In each interval of time t to t+d,
individuals have the possibility of remaining event-free, experiencing Event A, or
experiencing Event B. The cause-specific hazard of Event A is defined as ha(t), and is equal
to the probability of experiencing Event A between time t and t+d. This value is a conditional
probability, dependent on survival from both event types through time t. The cause-specific
hazard of Event B is defined similarly as hg(t). Cumulative hazard of Event A, Ha(t), is equal

to the integral of ha(t) from time zero through t.

The survival function is computed differently in naive and competing risk survival analyses.
Survival relates to survival from both events in competing risk analysis. It is therefore
calculated as follows:
S(t) = e Ha(®)-Hp(t)

Now consider Fa(t), the probability (cumulative incidence function) of Event A through time
t. This is equal to the product of survival and cause-specific hazard, summed over all intervals
between zero and t, Equation (4-11).
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Fa(t) = [, fa(®)dt = [ hy(t) x S(O)dt = [ hy(t) x e HaO-HsOgy  (4-11)

Observing the functions which constitute Equation (4-11), there is no longer a one-to-one
correspondence between cumulative incidence and cause-specific hazard. Incidence of a
given event is now influenced by the rate of the competing event. Two major corollaries
relate to this finding (305): naive estimators of cumulative incidence are biased and the way
in which a covariate affects cause-specific hazard may differ from the way in which it affects

cumulative incidence.

The first corollary can be stated as follows: in the presence of competing risks, a naive
estimator of cumulative incidence (and therefore estimated probability of event) is biased.
Volf provides a sports-based example of this situation (307). The time taken to score the first
goal in a football match is the event of interest. A team may score the first goal, concede the
first goal, or the game may end in a goalless draw. These are three mutually exclusive,
competing endpoints. A naive analysis will censor goalless draws and presume that the rate
of games in which a team scores first in all games is the same as the rate at which they score
first in games with goals. A football fan (or statistically-minded gambler) may be interested
in estimating the probability that a team will score first in a game, given a range of covariates.
A naive analysis will overpredict this likelihood by disregarding the possibility of a goalless

draw.

The second major corollary is: the way in which a covariate affects cause-specific hazard
may differ from the way in which it affects cumulative incidence. Regarding the football
example, consider if the covariates in the survival models included ‘number of defenders’. A
team that defends well is less likely to concede a goal, increasing the likelihood of them
scoring first and of a goalless draw. We therefore expect this variable to be positively
correlated with the cause-specific hazard of scoring first and the cause-specific hazard of a
goalless draw. Consider further that number of defenders is a stronger predictor of a team
being involved in a goalless draw than of a team scoring first. If a team plays a formation
with several defenders, the cumulative incidence of goalless draws may increase markedly.
Because of the mutual exclusivity of considered events, this may lead to an overall reduction
in the cumulative incidence of games where the team scores first. Hence, despite being
positively associated with cause-specific hazard of scoring first, playing too many defenders

likely leads to a reduction in the incidence of such events occurring.
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Competing Risks as they Relate to CVD

Competing risks are particularly important when evaluating 10-year CVD risk scores.
Applying the terminology from survival analysis literature, 10-year risk scores are estimates
of cumulative incidence. They estimate probability of experiencing any primary CVD event
within a 10-year period, moderated by a range of covariates. The methodology employed to
estimate this probability can be described as naive estimation. Individuals who leave the
dataset due to non-CVD mortality are censored and it is assumed that they have a similar rate
of disease to those who remain in the risk set (152,231,233-235,308).

As noted in the first corollary above, in the presence of competing risks, a naive analysis
provides biased estimations for event probability. This is true with CVD risk scores. Such
scores disregard the fact that individuals may experience non-CVD mortality in the ten years
following risk estimation. Therefore, risk of CVD will be overestimated by these scores. On
a population level, utilising risk scores to predict future incidence of CVD in a large group
of individuals will lead to overprediction. On the individual level, physicians who present

risk scores to their patients will be providing misleading information.

Another key issue with 10-year risk scores relates to age. Age is a particularly dominant risk
factor in CVD. This fact is reflected in the ASSIGN risk score algorithm which ascribes a
1.77 hazard ratio per 10-year increase in age for CVD development. In comparison, smoking
an additional 10 cigarettes per day has an estimated hazard ratio of 1.22, and having a family
history of CVD has a hazard ratio of 1.31 (152).

Figure 4-3 presents the significance of age in CVD risk scoring diagrammatically (309). This
figure shows a set of CVD risk profiles and was built using the ASSIGN risk score. The
numbers inside the cells are the specific risk score for that profile. Along the horizontal axis
IS patient’s ratio of TC to HDL-C, and along the vertical axis is the patient’s SBP. Each of
these is positively associated with CVD risk, and therefore the healthiest health state is the

bottom left hand corner of each profile.

Each profile set represents a different type of patient, based on their age and smoking status.
The two profile sets on the left are for patients in the least socially deprived quintile of the
Scottish population, and the highest deprived quintile is on the right. All risk profiles were
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assigned the average family history (0.26) and diabetes (0.15) values from the Scottish Heart
Health Extended Cohort, a study which representatively sampled the CVD-free adult Scottish
population.
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Figure 4-3: ASSIGN risk charts for Scottish males in the lowest and highest deprived
quintiles according to Scottish Index of Multiple Deprivation, Lawson (text)

The profiles in Figure 4-3 show the strength of the age gradient in CVD risk. Red represents
high-risk (>20%), orange represents medium-risk (10-20%), and green represent low-risk
(<10%). Notably, the majority of people above 60 years old are at high risk of developing
CVD. While these risk charts are only for males, similar patterns occur in the charts for

females.

Figure 4-4 shows the distribution of ASSIGN scores in the Scottish population. This graph
was developed with data from the Scottish Health Survey (SHeS) 2011 (310). It presents a
plot of age versus ASSIGN score for all CVD-free individuals aged 40 and above in the
survey and clearly shows that 10-year risk increases with age.

The second corollary above stated that, in competing risks analyses, the way in which a
covariate affects cause-specific hazard may differ from the way in which it affects cumulative
incidence. This is true with regards to age and CVD risk. Age is positively associated with
non-CVD mortality. This is because age is a risk factor generic to a range of chronic illnesses

including chronic lower respiratory diseases, cancer, and dementia and Alzheimer’s (311).
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Alongside CVD, these diseases represent the leading causes of mortality in Scotland, England
and Wales, and the U.S. (312-314). An elderly individual deemed to be at very high risk of
CVD will often experience a fatal occurrence of one of these competing events before
developing CVD. Therefore, increases in age will not necessarily lead to an increased

incidence of CVD, as predicted with naive estimations of 10-year risk.
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Figure 4-4: ASSIGN score versus age in the Scottish Health Survey 2011

Cumulative Exposure

A second argument in favour of the age-stratified risk threshold approach to prevention is
that commencing treatment early in life reduces cumulative exposure to harmful risk factors.

In turn, this should reduce atherosclerotic build-up and later life CVD risk.

Atherosclerosis is a cumulative process and extended exposure to modifiable risk factors
increases CVD risk. The relationship between risk factor exposure and CVD risk was
established in studies of long-term exposure to smoking. Cumulative exposure to smoking
can be represented by pack-years, the number of cigarette packs smoked per day by an
individual multiplied by the number of years they have smoked. A strong relationship
between pack-years and cardiovascular risk has been identified in various studies (315-317).
It has additionally been shown that years since quitting smoking is a significant predictor of
CVD risk (318).
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Early life exposure to many CVD risk factors including SBP, LDL-C, and triglycerides have
also been shown to increase risk of atherosclerotic build-up in later life (319-323). These
studies estimate the effect of risk factor exposure on atherosclerotic build-up rather than hard
disease-related events. This is because extensive follow-up is required to link young adult
exposure to events which often occur in later life. However, in an analysis of Framingham
Offspring Study data, Vasan et al. have shown a significant effect of cumulative exposure to

risk factors in middle-aged individuals on later life CVD events (324).

A breakthrough study published in 2017 showed that exposure to unhealthy risk factor levels
in young adulthood significantly increases risk of experiencing a CVD event in later life
(325). Pletcher et al. analysed data from 4,860 individuals who were enrolled in the
longitudinal Framingham Offspring Study. These individuals attended an average of 6.3 in-
person examinations. Age at first examination ranged from 20 to 70 years. Average length of
follow-up was 24.5 years. Modifiable risk factor values, specifically LDL-C, HDL-C,
diastolic blood pressure (DBP), and SBP, were imputed for every individual for each age
from 20 to 70. This was achieved with a mixed modelling approach that fitted risk factor

trajectories for every individual based on trends in the population.

Regression analysis was performed to estimate the effect of cumulative exposure to risk
factors on later life CVD risk. Every individual’s time weighted average LDL-C, HDL-C,
DBP, and SBP between the ages of 20-39 was calculated. Cox proportional hazards models
were then constructed to estimate the hazard ratio associated with these factors, adjusting for
various traditional CVD risk factors. The dependent variable in these Cox models was any
CHD event after age 40 and adjustment variables included current and cumulative later life
values for the modifiable risk factors. Results showed that cumulative exposure to DBP and
LDL-C in young adulthood significantly increased risk of CHD in later life (Figure 4-5). The
relationship with SBP in young adulthood was less pronounced. The authors hypothesise that

this was due to collinearity between individuals’ SBP in early and later life.

Martin and Michos (326) argue that onetime assessment of cholesterol in adulthood likely
leads to underestimation of its relationship with CHD. They note that in the Bogalusa Heart
Study, two thirds of individuals in the highest quintile of non-HDL cholesterol and LDL-C
during childhood ranked in the lowest two quintiles in adulthood. Hence, current levels of a

risk factor were poor predictors for past exposure.
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There are two implications of the results described above. First, two individuals with identical
traditional risk factor profiles may be at very different risk of experiencing a CVD event,
based on previous exposure. This implies that current risk scores do not adequately reflect
heterogeneity in patient risk. Second, preventive interventions should commence as early as

possible to reduce cumulative exposure.
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Figure 4-5: Adjusted hazard ratio for SBP, DBP, LDL-C, and HDL-C in Pletcher et al.
(325). Categories: SBP - <120 (ref), 121-140, 141-160, >160 mmHg, DBP - <80 (ref),
81-90, 91-100, >100 mmHg, LDL-C - <100 (ref), 101-130, 131-160, >160 mg/dL,
HDL-C - >65 (ref), 51-65, 36-50, <35 mg/dL. “P overall” refers to overall
contribution of risk factor to the model.

Policy Assessment

Age-stratification of risk thresholds allows for better reflection of heterogeneity in patient

risk and outcome. Reducing the risk threshold for younger individuals will allow treatment

106



to be targeted at individuals whose risk is driven by modifiable factors. Similarly, increasing
the threshold for older individuals will lead to fewer healthy elderly individuals being treated.
Due to competing risks, these individuals are less likely to experience the health benefits of
preventive treatment. Moreover, commencing treatment in early life will limit individuals’
cumulative exposure to risk factors which will reduce atherosclerotic build-up and CVD

events in later life.

4.5.2 Policy: Absolute Risk Reduction-Based Prioritisation

The absolute risk reduction approach is a novel decision mechanism which incorporates 10-
year risk. This policy requires prioritising individuals for preventive therapy based on the
expected risk reduction they will achieve from treatment.

The basis for the absolute risk reduction approach to prevention is that risk factors can modify
treatment effect. This violates the assumption that relative risk reduction for a treatment is
equal across all subgroups of the population. With regards to preventive statin therapy for

CVD, baseline LDL-C is a known treatment effect modifier.

In the presence of treatment effect modifiers, 10-year risk does not accurately predict
treatment outcomes for patients with the same risk score. Two patients with the same risk
score but different values of a treatment effect modifier will experience different relative risk

reductions from a preventive treatment.

LDL-C as a Treatment Effect Modifier

Several major clinical trials have analysed the effect of statins on CVD risk (327-337).
Established in 1994, the Cholesterol Treatment Trialists’ Collaboration (CTTC) synthesises
data from these trials (338). This has enabled powerful inference of statin effectiveness in

patient subgroups.

A key finding from the CTTC is that relative risk reduction from statin therapy per mmol/L
reduction in LDL-C is near constant (251). Further, it has been shown in large randomised
controlled trials that statin efficacy, represented by reduction in LDL-C, is directly
proportional to baseline LDL-C (339). Intermediate-intensity statins do not lead to a unitary
reduction in LDL-C but rather a percentage reduction of around 29% (284). Combining these
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two findings suggests that individuals with higher baseline LDL-C achieve greater absolute
risk reduction attributable to statin therapy. Soran et al. (340) acknowledge this consequence.
They show that the number needed to treat with statins to prevent one CVD event is often
lower in low- and intermediate-risk individuals with high baseline LDL-C when compared
with high-risk individuals with low baseline LDL-C.

Predicting Absolute Risk Reduction for Statins

Based on the theory presented above, Thanassoulis et al. developed an equation to predict
10-year absolute risk reduction (ARR10) or 10-year absolute benefit (AB1o) attributable to
statin therapy (341). This equation accounts for both absolute 10-year risk (AR1o) and
baseline LDL-C, and presumes that statin therapy produces a 40% reduction in LDL-C.

Let ARwoun equal baseline untreated 10-year risk and bLDL equal baseline LDL-C.
Furthermore, let AR10+ equal treated 10-year risk, Sio,un be untreated event-free survival, and
S1or be treated event-free survival. The three latter terms are presented in Equations (4-12 to
4-14).

SlO,un =1- ARlO,un (4-12)
SlO,tr = SlO,unx (4'13)
ARIO,tr =1- Slo,tr (4-14)

If HR is the hazard ratio associated with a one mmol/L reduction in LDL-C, then the relative
risk reduction experienced by an individual receiving statin therapy can be described by
Equation (4-15).

x = HRPLPL+04 (4-15)

It follows that the absolute risk reduction attributable to statin therapy can be described in
terms of AR1o.un, X, and bLDL. This relationship is presented in Equation (4-16), which states
that absolute CVD risk reduction attributable to statin therapy is equal to untreated risk minus
treated risk. This is also equal to treated minus untreated event-free survival. The previous
equations formalised the fact that statins reduce risk conditional on bLDL and therefore
treated 10-year risk is dependent on bLDL. Hence absolute risk reduction is dependent on
baseline LDL-C.

ARR,, = AR10,un - ARlO,tr

= SlO,tr - SlO,un
= SlO,unx - SlO,un (4'16)

108



Thanassoulis et al. (341) consider the difference between the AR1o and the ARR10 approach
to prevention. They obtained risk factor data for 2,134 individuals from National Health and
Nutrition Examination Survey 2005-2010, representing 71.8 million Americans who are
potentially eligible to receive statins for the primary prevention of CVD. AR1o was estimated
for every individual using the ACC/AHA pooled cohorts 10-year risk score (342). They
found that if the threshold for treatment initiation was not standard of care (AR10>7.5%), but
rather ARR10 >2.3%, 9.5 million lower-risk individuals would be prioritised for treatment
who would achieve equal or greater benefit from statin therapy. The value 2.3% was selected
as a prioritisation threshold because this was the minimum ARR1o in the group of individuals
with AR10 >7.5%.

Policy Assessment

A full economic analysis of the absolute risk reduction approach to prevention has not yet
been conducted. Thanassoulis et al. have established that this approach may lead to a large
reduction in CVD events over a 10-year time horizon compared to standard of care. More
extensive analysis should account for QALYS, costs, discounting, competing risks, and
should employ a lifetime horizon.

4.5.3 Policy Analysis in Chapter 8

Chapter 8 will assess the cost-effectiveness of two alternatives to prioritisation based on 10-
year risk alone for statin initiation. These approaches incorporate 10-year risk, but are
stratified by age and LDL-C, respectively. They are:

= Age-stratified risk thresholds

= Absolute risk reduction.

4.6 Direct Use of Decision Models in Clinical Practice

4.6.1 Basic Concept

High-risk young adults generally gain more life years from treatment than elderly individuals.

However, this is not necessarily true when the younger individual’s risk is driven by smoking.

Smokers of all ages are subject to significant fatal competing risks (343), and this drastically
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limits their capacity-to-benefit from a preventive treatment. There clearly exists a
complicated network of predictors and interactions that determine an individual’s capacity-
to-benefit from preventive therapy. It is therefore not surprising that defining a simple
decision rule to prioritise patients for preventive treatment is very difficult.

As presented throughout this chapter, the 10-year risk scores used to prioritise patients for
statin therapy in current practice do not capture heterogeneity in outcome effectively. In the
presence of competing risks, missing variables, misspecified models, and non-linear
treatment effects, it is very difficult to define a decision rule that maps any specific variable
to an individual’s capacity-to-benefit. Decision-analytic models allow researchers to
synthesise data from multiple sources (344). Direct use of such models in clinical practice
may allow clinicians to objectively weigh up the multitude of factors which should inform

whether a patient is treated.

4.6.2 Policy: Treating Patients with Greatest Expected Life Year Gains

A decision-analytic model which predicts lifetime outcomes with perfect calibration would
allow a decision-maker to assess who is likely to gain most from preventive therapy. This
would require using a decision-analytic model in clinical practice to explicitly account for
patient-level heterogeneity in outcome. The decision rule to commence treatment would not
be based on a risk threshold. Rather, a decision-analytic model would be employed to predict
an individual’s absolute expected benefit from treatment. Those individuals that meet a

minimum benefit threshold would receive treatment.

Decision-makers can employ decision-analytic models to maximise cost-effectiveness, life
expectancy, or quality-adjusted life expectancy in a population. Treating patients with the
lowest estimated cost-per-QALY attributable to treatment would maximise cost-
effectiveness. Treating patients with the maximum estimated life years gains or QALY gains
attributable to treatment would maximise life expectancy or quality-adjusted life expectancy,

respectively.

Maximising Health Outcomes with Decision Analytic Models

Decision-analytic models, which will be discussed further in Chapter 5, predict health and
cost outcomes in individuals based on a range of covariates. These models could be used in

110



clinical practice to determine which patients receive preventive treatment. This would allow
physicians to target treatment at patients based on some expected outcomes. This could be an
objective health outcome (e.g. expected life years or QALYSs gained) or a marker of value

(e.g. expected net health benefit from treatment).

In practice, a physician would use a decision model rather than a risk score to determine
whether an individual receives treatment. Many physicians already use computer-based
applications to access risk scores like ASSIGN, QRISK2, and the ACC/AHA ASCVD Risk
Score (178,345,346).

Statin Treatment Eligibility

ASSIGN Effect on Life Year

Score Life Years ASSIGN220 Maximisation

A 0.13

B 7 0.15

C 3 0.11

D 39 0.13

E 17 0.05 0.00 0.00

F 43 0.12 0.12 0.00

G 28 0.04 0.04 0.00

H 17 0.05 0.00 0.00

| 7 0.14 0.00 [N0N4

J 24 0.02 002]  0.00]

K 36 0.16 0.16 016 |

L 9 0.03 0.00]  0.00]

M 5 0.13 0.00 NGNS

N 15 0.18 0.00

0 52 0.07 0.07 0.00
Total LY gain: 0.67 1.02

Table 4-3: Example of risk scoring versus life expectancy maximisation to
determine statin eligibility

Table 4-3 provides an example of how a decision model could be used to prioritise preventive
statin therapy in Scotland. This table includes data for 15 patients from the Scottish Health
Survey of 2011 (347). The first two columns show the patient’s ID and ASSIGN score,
respectively. Column three shows the life expectancy effect of statins on each patient, as
predicted using the Scottish CVD Policy Model (7). Column four applies that effect to the
patient if their assign score is above 20%. Hence, seven of the fifteen patients are highlighted
grey and assigned the ‘treated’ change in life expectancy. Column five demonstrates an
alternative approach: patients are prioritised based on their estimated capacity-to-benefit

from treatment. The seven patients with the highest expected increase in life expectancy (life
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year gain >0.13) are highlighted green and assigned an increase in life expectancy. Finally,

in the bottom row, columns four and five are summed.

Even amongst this small cohort of potential patients, determining treatment eligibility with a
decision-analytic model leads to a marked increase in health benefit. For this benefit to carry
into actuality, it is necessary that the model predicts individual-level treatment benefit with

an acceptable degree of discrimination and calibration

4.6.3 Policy Analysis in Chapter 9

Chapter 9 will assess the cost-effectiveness of using decision models in the clinical setting.
Specifically, it will consider the cost-effectiveness of a statin initiation rule which aims to

maximise life expectancy in a population.

4.7 Homogeneity in Cost-Effectiveness of Statin Therapy

Individuals evidently achieve different benefits from statin therapy based on
sociodemographic and biological variables. However, statins are relatively low cost and have
a small adverse effect profile (36,348). Collins et al. state that the large amount of evidence
from randomised trials of statin therapy indicates that it is “unlikely that large absolute
excesses in other serious adverse events still await discovery” (349). If individuals have a
small chance of experiencing statin-related benefit, then all individuals in a population may
soon be cost-effective to treat. While health outcomes attributable to treatment may differ in
populations, there may be considerable homogeneity in cost-effectiveness of statin therapy.

In microsimulation analysis, Pandya et al. (37) found that with generic statin pricing the 10-
year risk threshold for statin initiation could be reduced to less than 4% in the U.S,,
representing 65% of the CVD-free population aged 40 years and above. This cost-
effectiveness was largely driven by drug price. In similar analyses Heller et al. found that
implementing the ACC/AHA guideline would be cost-saving (350) and research by NICE
found that the threshold for statin initiation in England and Wales could be reduced to 6% or
lower and still be cost-effective (25). This suggests that much more than 65% of the CVD-

free adult population would be cost-effective to treat.

112



Concerns over mass-medicalisation may limit the institution of statin prioritisation policies
which treat large numbers of people. This is especially true because the expected absolute
gains from preventive treatment are often small. There has been significant backlash from
the clinical community following NICE’s decision to reduce its threshold for treatment
initiation from 20% to 10% in England and Wales (351). Uptake of the new guidelines has
been low with around one fifth of individuals with risk scores between 10-19% receiving
treatment (352). Clearly there has been a disconnect between those producing treatment
guidelines based on cost-effectiveness analysis and clinicians concerned about
overmedication of healthy individuals and polypharmacy in the elderly (353). Simple cost-
effectiveness rules may not be sufficient in determining who should receive statin therapy, as

guidelines based on cost-effectiveness may not be clinically acceptable.

Policy Assessment

Chapter 11 compares the policies discussed throughout this chapter. Primarily, it compares
the cost-effectiveness of these strategies. Given the backlash to recent statin guidelines, it is
also necessary to consider implicit constraints on prioritisation policies and alternative
metrics to cost-effectiveness with which to assess these policies. This chapter compares
strategies for CVD prevention constrained by treating a limited proportion of a population. It
additionally considers the ability of alternative statin prioritisation policies to address health

inequalities.

4.8 Chapter Summary

Outcomes attributable to preventive intervention in CVD may differ substantially between
individuals. Even amongst individuals with the same 10-year risk score, there may be
considerable heterogeneity in outcome associated with statin therapy. Three approaches were
presented in this chapter which may better address heterogeneity in patient outcomes than
current standard of care. These were: continue and updated use of 10-year risk scoring, novel
decision mechanisms which incorporate 10-year risk alongside other important covariates,

and direct utilisation of decision-analytic modelling in the clinical process.

Policies were presented which may be stratified into one of the three approaches to prevention
discussed. Policies that involve continued and updated use of 10-year risk scores are lowering
the threshold for treatment initiation and improving risk scores with novel risk factor
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information. These policies would respectively allow decision-makers to increase the
sensitivity of risk scoring and better target treatment at patients with elevated risk,
respectively. Policies that involved novel decision mechanisms which incorporate 10-year
risk alongside other important covariates were age-stratified risk thresholds and prioritisation
based on statin absolute risk reduction. These policies address competing risks related to the
age gradient in CVD risk, cumulative exposure to risk factors, and the existence of treatment
effect modifiers, respectively. Finally using decision-analytic models in clinical practice
would allow decision-makers to maximise health outcomes. The following chapters,
contained within Part 3 of the thesis, will assess the cost-effectiveness of the policies

described in this chapter.

114



Part 3

Cost-Effectiveness Analyses of Preventive Policies for CVD

Part 3 considers the cost-effectiveness of treatment prioritisation policies introduced in earlier
chapters. Most of these analyses focus on the cost-effectiveness of prioritising patients for
preventive statin therapy through different decision mechanisms. A final analysis shows how
decision-makers can signal demand for more expensive cholesterol-reducing interventions in
patients with statin intolerance or who require further cholesterol reduction while on statin

therapy.

Chapters 5 and 6 set up the cost-effectiveness analyses. Chapter 5 describes two previously-
published decision-analytic models that will be used throughout the remainder of Part 3 to
assess the cost-effectiveness of different treatment policies. Despite being a commonly
prescribed medication, there remains some controversy regarding statin therapy and
perceived adverse effects. Chapter 6 discusses evidence regarding the safety, efficacy, and

effectiveness of statin therapy.

Chapters 7 to 9 consist of a series of cost-effectiveness analyses of different prioritisation
policies for preventive statin therapy. Chapter 7 considers two policies which involve
continued use of 10-year risk scoring: reducing the risk threshold for treatment initiation and
improving the discrimination of risk scores with novel biomarker testing. Chapter 8 considers
two policies which involve novel decision mechanisms alongside 10-year risk scoring: age-
stratified risk thresholds and the absolute risk reduction approach to statin prioritisation.
Chapter 9 considers the cost-effectiveness of using decision models in clinical practice to

maximise outcomes in the patient population.

Chapter 10 relates to PCSK9 inhibitors, a treatment which is more effective at reducing LDL-
C than statin therapy and more expensive. This treatment may be useful for patients with high
capacity-to-benefit from cholesterol reduction who require treatment supplemental to statin
therapy or for patients who are statin intolerant. This chapter shows how decision-makers can
signal demand for PCSKO inhibitors by reflecting heterogeneity in their decision-making.
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Chapter 5

Cardiovascular Disease Policy Models

5.1 Purpose

To maximise health outcomes given an exogenously determined healthcare budget, decision-
makers must invest in cost-effective treatments. Decision-analytic models can be employed
to estimate the cost-effectiveness of different treatments. These models allow researchers to
systematically synthesise evidence regarding an intervention and estimate its health and cost

consequences in a population of interest.

The purpose of this chapter is to describe the rationale behind policy modelling and to
introduce existing models for CVD that can be employed in cost-effectiveness analyses
throughout the remainder of thesis. Types of decision-analytic models and approaches for
their validation and recalibration are described. The Scottish CVD Policy Model and the
U.S.-based CVD Microsim Model are discussed, and these models are employed in

epidemiologic analyses of CVD prevention.

5.2 Policy Models

Decision-analytic models are typically built with a specific research question in mind. For
example, pharmaceutical companies often develop models which can be used to assess the
cost-effectiveness of a specific product. Policy models adopt a more generic approach to
disease modelling. They can be used in the assessment of multiple treatment options.

5.2.1 Types of Model

Decision models can take many forms, ranging from simple decision trees to complex state-

transition models (354).

Decision Tree Models

Decision tree models are the simplest form of decision-analytic model. They involve

constructing a probabilistic pathway that describes key stages in a patient’s disease and
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treatment history. They can be represented diagrammatically in a flowchart structure.
Decision trees typically start with a square decision node. At this point in the flowchart, the
initial treatment decision is made. Straight lines descend from the initial node representing
patient pathways. Future events can be modelled with circular chance nodes (which assign a
probability to future pathways in the model) and additional decision nodes. Finally, each
pathway ends with a terminal node. Terminal nodes are assigned health and cost outcomes.
The expected outcomes associated with different clinical decisions can hence be estimated
by summing the probabilistically weighted outcomes of each terminal node, conditional on a

set of clinical decisions.

Figure 5-1 presents a decision-tree employed by Bachman (355) in a cost-effectiveness
analysis of community-based therapy for children with severe acute malnutrition in Zambia.
The initial decision node determines whether individuals receive the care. Children receiving
no care are stratified by HIV status, as this is a key determinant of mortality probability in
untreated malnourished children. Those children who receive therapy may recover, die, be
admitted to hospital, or default from care. Probability of mortality was lowest for children
who received the intervention, followed by those who defaulted from care, while children

admitted to hospital had the highest mortality rate.

Die

Recover

Recover

Recover

Recover

Figure 5-1: Decision tree model, Bachmann (text)

State-Transition Models

State-transition models are one of the most common types of decision-analytic model used
in economic evaluations of health care interventions. Instead of modelling decision processes
as a range of mutually exclusive pathways with terminal outcomes, state-transition models

structure the process over a set of discrete time periods. These models are defined by a set of
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mutually exclusive states (often determined by disease status). During each cycle one
transition between states is possible, determined by an estimate of transition probability. Each
state typically has an associated cost and measure of health. Transition between states may
also be attributed health and cost outcomes.

The simplest form of state-transition model is a Markov cohort model. Figure 5-2 displays
an example of a Markov cohort model that was employed in the cost-effectiveness analysis
of interventions to prevent the onset of diabetes in high-risk individuals (356). Individuals or
cohorts enter the model with normal glucose tolerance (NGT). They may then transition to a
state of impaired glucose intolerance (IGT) based on a probability that is conditional on a set
of risk factors. IGT is a predictor of an individual’s risk of developing type-2 diabetes (T2D)
(357). Next, individuals may transition from IGT to development of T2D. Individuals
inhabiting all states are subject to the competing risk of death. An intervention which reduces

development of T2D will reduce probability of state transition in the model.

NGT

/

T20

NGT - normal glucose tolerance, IGT - impaired
glucose tolerance, T2D - type-2 diabetes.

Figure 5-2: Markov cohort model, Neumann et al. (text)

To estimate health and cost outcomes for a cohort or individual, Markov models are ‘run’ for
several cycles. The number of cycles employed in an analysis multiplied by the length of
each cycle is referred to as the time horizon of the analysis. When comparing two treatment
strategies, a time horizon should be employed which adequately captures all incremental

disease-related outcomes (358).

Two key types of state-transition models exist: Markov cohort and microsimulation models.
Markov cohort models simulate an entire cohort, distributing individuals deterministically

across model states after each cycle based on state transition probabilities. The average length
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of time spent in each state by the cohort is multiplied by health and cost valuations for the
state. This allows for outcomes including life expectancy (LE), quality-adjusted life
expectancy (QALE), and expected healthcare costs to be summed over the time horizon
(359). Future health and cost outcomes can be discounted within the model structure.

Markov cohort models rely strictly on the Markovian assumption that state transitions occur
in a ‘memoryless’ fashion. This means that once an individual enters a state in the model,
their future transitions and outcomes are not dependent on their past disease history. Disease
history includes both the time they have spent in their current state and the previous states
they have occupied. With reference to Figure 5-2, an individual who has spent 10 cycles in
the IGT state has the same probability of transition to T2D as an individual who has spent
one year in the state, even if their risk factors are the same. Likewise, an individual who has
spent their whole life with IGT would be at the same risk of transitioning to T2D as an

individual who only recently developed IGT.

Complexity can be added to the structure of Markov models to reflect better disease
processes. For example, additional ‘tunnel’ states can be added to models. All individuals in
a state progress into a tunnel state after a specified number of cycles. However, including

several tunnel states makes a model unwieldy.

Microsimulation is a more complex form of modelling. This process (also referred to as
patient-level simulation) involves simulating a finite number of individuals. First-order
Monte Carlo simulation is performed. This means that each transition between states is
stochastically determined (as opposed to deterministically in the case of cohort models). The
costs and QALYs accumulated in each discrete individual-level simulation are averaged to
obtain population-level health and cost estimates. Essentially, each simulated individual’s

‘disease history’ is tracked.

With its additional complexity, microsimulation offers some benefits over cohort modelling.
NICE recently published a report which identified conditions under which microsimulation
is preferable to a cohort modelling (360). These conditions include: model non-linearity with
respect to heterogeneous patient characteristics, patient flow which is determined by time
since last event (non-Markovian behaviour), and the desire to add additional modelling

complexity in future analyses.
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Discrete Event Simulation Models

Discrete event simulation is a further level of complexity that can be added to decision-
analytic models. Unlike Markov models, discrete event simulation does not run cyclically.
Instead individuals experience disease-related events based on probabilistic time-to-event
distributions. At the time of each modelled event, the individual’s accumulated costs and
outcomes are estimated. In addition, their likelihood of future events is modified at this point.
Extensive longitudinal cost and outcome data are often required to develop such a model.

Discrete event simulation represents an efficient means of modelling diseases with time
varying event rates. Diseases defined by extensive periods of inactivity followed by rapid
onset of numerous events, for example, cannot be efficiently modelled with state-transition
models which cyclically estimate cumulative costs and outcomes. Discrete event simulation
can also be performed without mutually exclusive branches and discrete states, increasing
modelling flexibility (361).

The modelling process and derivation of time-to-event distributions required for discrete
event simulation is generally considered less straightforward and more challenging than the

construction of decision tree and state transition models (362).

5.2.2 Which Type of Model for CVD?

Albert Einstein may (or may not) have stated that “Everything should be as simple as it can
be, but not simpler” (363). This principle holds true when constructing a model of CVD. A
model should not be too complex that it requires an unobtainable amount of data to produce
valid results. Simplistic model structures also aid in transparency as a wider audience may
review and critique the model. Decision-makers who are not versed in decision-analytic
modelling are more likely to accept results produced by a model which they understand.
Nonetheless, considerable complexity is often required to model a disease and relevant

treatments adequately.

Decision Tree, State-Transition, or Discrete Event Simulation?

Decision trees optimally represent processes with short time horizons and relatively few
mutually exclusive pathways — otherwise a tree becomes ‘bushy’ and unwieldy.
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Individuals may experience a range of different CVD events that lead to different health and
cost outcomes. For example, a patient suffering an ischaemic stroke is likely to experience
much greater chronic disease costs and quality of life decrements than a patient suffering
from a myocardial infarction (364). Representing different disease states in a decision model
can drastically increase the number of mutually-exclusive pathways in a decision tree. The
time at which individuals experience a CVD event also matters. Individuals experiencing an
event earlier in life have a much greater chance of full recovery and experience smaller

reductions in quality of life (365).

CVD is a disease which can affect individuals at any time in the life. Moreover, exposure to
risk factors can lead to events many years in the future. Hence a lengthy time horizon is
required to capture all costs and effects attributable to a treatment. All the reasons listed

suggest that a state-transition model should be used to optimally represent CVD.

Discrete event simulation models do not offer substantial benefits over state-transition
models for CVD. The disease is defined by a limited set of health states and continually
increasing risk. Hence the added complexity of event- and time-dependency in disease rates

offered by discrete event simulation is not justified.

Markov Cohort or Microsimulation?

Under the assumption that state-transition models are the most efficient means of modelling
CVD, it remains to establish whether cohort or microsimulation models should be preferred.
The optimality of these model types is largely determined by the complexity of the decision

problem.

Cohort models generally require more assumptions and hence less data to construct than
microsimulation models. A key feature of Markov cohort models is the memoryless property:
the assumption that any future disease-related transition in the model is not influenced by
disease history. Previous exposure to risk factors and the individual’s history of disease-
related events are not important determinants of future outcome so data on these factors are
not required to estimate transition probabilities. Cohort models also average health and cost
outcomes across a large population. This is an unbiased means of predicting outcomes in a
population under the assumption that there is a linear relationship between patient
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characteristics and outcomes. However, in the event that this is not true, it is necessary to
stratify analysis by subgroups in order to obtain unbiased estimates of outcomes (360). As
with all statistical models, increased granularity of research question involves increased data

requirement.

Microsimulation can offer considerable benefits in the modelling of CVD. It allows
individual patient disease and covariate histories to be tracked. Microsimulation may also be
employed as a means of dealing with the non-linear relationship between CVD risk factors
and health outcomes. For example, an individual’s likelihood of experiencing a secondary
CVD event is much greater for older individuals with an unhealthy risk factor profile than
for young healthy individuals (366,367). Microsimulation enables researchers to account for

the combinatory effect of disease and risk factor histories on recurrent events.

CVD events have also been causally linked to a range of non-cardiovascular conditions.
There is, for example, a growing understanding of the causal relationship between CVD and
dementia (368). Developing a microsimulation model allows for easy adaptations of the

model in the future, to answer increasingly complex research questions.

An additional benefit of microsimulation model relates to computing efficiency. Often a
study requires estimating outcomes for a range of individuals from a representative cohort of
a population. Running data for several thousand individuals through a cohort model can be
very time-consuming: all potential outcomes must be considered and averaged for every
individual. On the other hand, each ‘run’ of a microsimulation involves computing one
disease history. Such time efficiency is particularly important when conducting

computationally demanding processes like probabilistic sensitivity analysis.

5.2.3 Validating Models

The validity of an economic model can be established in numerous quantitative and
qualitative ways. Qualitative inspection by experts can confirm that there is a sound basis for

the model’s structure and assumptions. Quantitative analysis helps to establish the internal

validity, external validity, and cross validity of a model.
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Internal validity is a measure of how accurately a model reproduces results from the data
sources that contributed to its construction. The c-statistic is a statistical measure of the

predictive accuracy for logistic regression models (369).

External validity refers to a model’s ability to reproduce results from a dataset which did not
contribute to its construction. External validation of a model requires a large individual-level,
longitudinal dataset with sufficient follow-up. The model’s predicted outcomes for an

individual in that dataset are then compared with actuality.

5.2.4 Recalibrating Models

Recalibration is the process of systematically adjusting model inputs so that outputs
generated are suitable in the population of interest (344). Suitability is typically measured by
comparison with some external real-world dataset. For example, a model which aims to
estimate the effect of different health care interventions on all-cause mortality in the Scottish
population may be recalibrated to recent mortality rates provided by the Scottish

Government.

5.3 CVD Policy Models

The need to choose between competing interventions for CVD has become an increasingly
important issue for healthcare decision-makers in recent years. While rates of the disease
have dropped significantly since the 1980s, CVD remains a leading cause of mortality in the
U.K., U.S., and around the world.

Increased understanding of CVD’s physiology and advancements in health technologies have
led to the development of several novel interventions for CVD. These include: the
development of new cholesterol-reducing medications, improved diagnosis of CVD risk,
improved surgical outcomes, and support for population-based interventions. Policy models

have been developed to assess the effectiveness and cost-effectiveness of these interventions.

For the purpose of this thesis, access was granted to two existing policy models: The Scottish
CVD Policy Model (7,8,309) and the CVD Microsimulation Model (9). These were
extensively redeveloped, modified, and employed for epidemiologic evaluation of CVD as
well as cost-effectiveness analyses of multiple primary prevention policies. The first section

123



of this chapter will detail these two policy models. Next, epidemiological arguments from

Chapter 4 will be evaluated using these models.
5.3.1 The Scottish CVD Policy Model

Background

Given the need for Scotland-specific analysis of CVD policy, in 2010 the Chief Scientist
Office for Scotland funded research to develop the Scottish CVD Policy Model (309). The
Scottish CVD Policy Model is a decision-analytic model that predicts LE, QALE, and cost
outcomes for individuals based on their ASSIGN risk factors (7,8). It currently exists as two

extensive Microsoft Excel documents, one for males and one for females.
Structure

Figure 5-3 shows a diagram of the model. Individuals enter CVD-free, and transition to one

of four first event types throughout the course of their lives: non-fatal CHD, non-fatal CBVD,

fatal CVD, or fatal non-CVD.

Risk of having first event
Equation 1

.......
‘‘‘‘‘
‘‘‘‘‘‘
..............

Fatal Fatal
All cause Allcause

Equation 1: Function (age at survey, SBP, TC, HDL, CPD, family history, SIMD)

Risk of death following
non-fatal event
Equation 2

Equation 2: Function (age at first event, family history, SIMD)

Figure 5-3: Structure of the Scottish CVD Policy Model

The model is particularly useful as it accounts for the competing risk of non-CVD death as a
first event. This means it can account for the fact that age is a risk factor generic to a range

of chronic illnesses. It also accounts for competing risks between different types of CVD
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event. Risk factors may differentially increase risk of different CVD events. After the
occurrence of a non-fatal first event, individuals progress to a final absorption state

representing all-cause mortality.

Each state in the model has an assigned QALY value, sometimes disaggregated by patient
characteristics. Individuals who have not experienced a primary CVD event are attributed a
background health-related quality of life (HRQoL) value. These values are disaggregated by
age and sex. Individuals inhabiting one of the two non-fatal chronic CVD states are assigned
a decrement to this background HRQoL value, determined by the type of first event (CHD
or CBVD). Within the chronic disease states, a proportion of individuals are assumed to
experience further utility decrements attributable to secondary CVD events (disaggregated as
myocardial infarctions, strokes, TIAs, heart failure, peripheral artery disease, and ‘other’

CVD events).

Costs are also assigned to all health states in the model. For individuals whose primary event
is fatal, linear equations predict pre-event hospitalisation costs. These equations include age
entering the model, SIMD, and family history of CVD as covariates. Similar equations
predict pre-event health state costs for individuals whose primary event is non-fatal CHD or
CBVD. Individuals inhabiting the chronic CVD states are attributed costs based on a linear

equation that includes age at primary event, SIMD, and family history of CVD as covariates.

The sources and methodology used to derive health and cost estimates for each health state

in the model are described later in this section.

Cohort Simulation

The Scottish CVD Policy Model can be employed in two ways. Primarily, it can produce
individual-level outcome estimates for prospective patients based on their ASSIGN risk

factors. In turn this can inform patient and physician decision-making.

Individual-level outcome estimates are obtained by inputting the individual’s risk factor
information into the model. These factors then dictate the probabilities that the individual
will inhabit each model state each cycle of analysis. These factors also determine the cost

and QALYs that an individual will accumulate in each state and cycle combination. The
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individual’s expected cost and QALY's are then summed over the time horizon of the analysis

as follows:

E[C] = Z?:O Zs Pst *Cst
E[e] = Z?:O Zs Pst *€st -
E[c] and E[e] refer to expected cost and expected health effects, respectively. These values

are equal to the product of an individual’s probability of inhabiting disease state, S, in cycle,
t, summed over the time horizon of the analysis, h, and all disease states included in the

model.

A further use of the model is to estimate population-level outcomes. In this situation,
individual-level outcome estimation is computed as described above for a large number of
individuals. The risk factor profiles for this analysis can be derived from large-scale cross-
sectional surveys like the Scottish Health Survey (310). These outcomes can then be
projected onto a wider population.

State Transition Probabilities: Data

Two types of state transitions exist in the model: transition to a primary event (fatal or non-
fatal) and transition to the all-cause mortality state after a primary non-fatal event. Both of
these transitions are determined by equations derived from competing risk survival analysis

of a longitudinal dataset of Scottish adults.

All state transition probabilities in the model are derived from a dataset that linked baseline
risk factor information in the Scottish Heart Health Extended Cohort (370-372) to a
collection of routinely collected clinical data called the Scottish Morbidity Records (SMR)
(238).

SHHEC is an extensive dataset that was used in the construction of the ASSIGN score.
Baseline CVD risk factor information was recorded for 6,419 men and 6,618 women from
25 Scottish districts between 1986 and 1995. The risk factors collected as baseline were those
previously described as the ASSIGN risk factors: age, sex, TC, HDL-C, SBP, FH, Diabetes,
CPD, and SIMD.

The SMR is an electronic database maintained by the Scottish NHS’ Information Services

Division (ISD). This database records all hospitalized events that occur in the Scottish NHS,
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detailing reason for admission, up to five secondary diagnoses, length of stay, and wait time.
Health boards submit hospitalisation data to the ISD every 6 weeks, and audits of the SMR
have found the data to be 99% complete (373-375).

SHHEC participants permitted their baseline data to be linked with the SMR via a unique
NHS identification number. Linking these two datasets allows researchers to analyse the
relationship between individuals’ baseline characteristics and health outcomes. The most
recent SHHEC-SMR linkages included data through 2006 and 2009, respectively. The 2006
linkage was employed in the development of the ASSIGN score and the 2009 linkage was
employed in the development of the Scottish CVD Policy Model.

State Transition Probabilities: Analysis

A parametric competing risks approach was taken to estimate the probability of primary
events. The competing risk approach provides an unbiased methodology for estimating event
probability in the presence of competing events. This approach was discussed in Section
4.5.1. Primarily, it involves estimating cause-specific hazard functions for a set of mutually
exclusive events. Probability of event-free survival can then be computed as a function of

survival from all event types.

Cause-specific hazard reflects the probability that an individual will experience an event at a
moment in time, conditional on the fact that they have not yet experienced a competing event.
It can be estimated with parametric regression analysis. This analysis models the functional
form of a population’s cause-specific hazard based on some pre-defined statistical

distribution.

The Gompertz distribution is a statistical distribution to which human survival data are often
fitted. This model is named after actuarial scientist and mathematician Benjamin Gompertz,
who postulated in an 1825 letter that human death rates increase exponentially with age (376).
This model assumes an ‘initial death rate’ in humans, and assumes that as individuals age,

their vulnerability to the causes of the initial death rate increases (377).

When performing Gompertz regression, the cause-specific hazard of an event type, k, is
described by the function:
hy (¢) = exp(xb) * exp(yt).
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In this equation, xb is a linear predictor which modifies hazard rates for individuals based on
X, a vector of covariates. The vector b consists of log hazard ratios for unitary increases in
the covariates included in x. The term exp(yt) represents the underlying hazard rate in the
population, with t representing time and y being an ancillary parameter which defines the
relationship between time and hazard in the population. Hence the term exp(xb)

multiplicatively alters an individual’s hazard rate dependent on their covariates.

Gompertz regression was performed on the SHHEC-SMR dataset to estimate cause-specific
hazard functions for the four primary events in the model: non-fatal CHD, non-fatal CBVD,
fatal CVD, and fatal non-CVD. In the model, survival and event probability for each cycle
was then computed within the competing risk framework described in Chapter 4. The
covariates included in these regression models were the ASSIGN variables. Results for the

primary event regressions, developed by Lewsey et al. (7,309), are presented in Table 5-1.

Secondary transition rates out of the two non-fatal CVD states to all-cause mortality were
also derived by performing Gompertz regression on the SHHEC-SMR dataset. Competing
risks were not relevant as the analysis only considered the probability of transition to an
absorption state with no competing events. The covariates employed in this regression were:
age at first event, SIMD score, and family history of CVD. Results for the secondary event

regressions, also developed by Lewsey et al. (7,309), are presented in Table 5-2.

Health-Related Quality of Life Inputs

HRQoL was assigned to disease states based on analysis of the Scottish Health Survey 2003
(378). The Scottish Health Survey is an annual cross-sectional, representative survey of
determinants of health in the Scottish population. In 2003, 7,054 survey respondents aged 20
and above completed 12-item Short Form (SF-12) HRQoL questionnaires. These
questionnaires can be used to generate QALY (379).

The QALY values for respondents in SHeS 2003 were used to produce baseline QALY
estimates for the adult Scottish population and to estimate utility decrements related to
primary CHD and CBVD. Stratified baseline QALY values were calculated. Stratification

was performed by 5-year age-groups and sex.
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The utility decrements associated with a range of CVD events were estimated through a linear
regression. The dependent variable in this regression was SF-12-derived QALY value and
the independent variables were sex, age, and six CVD events. The estimated utility
decrements for angina, myocardial infarction, irregular heartbeat, other heart condition,
stroke, and intermittent claudication were 0.0891, 0.0403, 0.0499, 0.0336, 0.0938, and
0.0199, respectively. Within chronic disease states, an individual’s HRQoL was estimated as
their baseline QALY value minus the decrement associated with their primary event. In
addition, a proportion of individuals in the chronic disease states were assumed to experience
each of the CVD events described above. Hence, a weighted additional utility decrement was
employed in both chronic disease states to reflect reduction in HRQoL associated with

secondary events.

Cost Inputs

The SHHEC-SMR dataset was used to estimate lifetime hospitalisation costs in the model.
Lifetime hospitalisation costs are a function of events experienced by an individual and
overall length of stay. Together these two variables represent the patient’s continuous

inpatient stay (CIS).

Method 1 from Geue et al. (380) was employed to attribute cost of CIS to each hospitalisation
episode observed in the SHHEC-SMR dataset. This effectively required assigning a
healthcare resource group (HRG) (309) to each hospitalisation episode in the dataset with
HRGv3.5 Grouper software (381), followed by attributing costs to these episodes from the
English NHS tariff (382). Finally, it was necessary to estimate the overall cost of each CIS
that involved more than one episode of care. Treating all episodes of care separately would
lead to overestimation of costs, so an approach was adopted which established a dominant
episode (and HRG) for all hospitalisations but which simultaneously accounted for other non-
dominant episodes of care within this CIS. This was achieved by using a ‘Spell Converter’
software which designates episode of care dominance based on date of admission, date of

discharge of final event, episode order, length of stay, and HRG.

Once lifetime hospitalisation costs were estimated for every individual in the SHHEC-SMR
dataset, these data were employed in regression models to predict pre- and post-event
hospitalisation costs in the model. Cubic splines were also included in the regression model
to add a degree of non-linearity over time to the cost estimations. In addition, regressions
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analyses of post-event costs were run for post-non-fatal CHD and post-non-fatal CBVD costs
in men and women. The dependent variable in these equations was post-event costs. The
same independent variables were employed as before with the exception of baseline age,
which was replaced by age at first event. Finally, these regression equations were used to

assigned pre- and post-event costs in the model.

Discrimination and Calibration

Internal and external validation of the model has been completed. These validation exercises

have shown that the model has a good level of discrimination and calibration (309).

Internal validation of the functions that dictate state transition in the model was completed
by means of AUROC analysis. The c-statistics for the primary risk functions for men and
women are detailed in Tables 5-1 and 5-2. For primary events they range from 0.70-0.80, and
for mortality post non-fatal CHD and CBVD they range from 0.65-0.68. C-statistics between
0.70 and 0.80 are considered to provide “acceptable” discrimination for models of CVD,
according to Lloyd-Jones, and a score of 0.65 is described as performing “much better than

random chance” (383).

The calibration of the model was assessed with data from the West Of Scotland COronary
Prevention Study (WOSCOPS) (384). WOSCOPS was a placebo-controlled trial of
pravastatin which enrolled hypercholesterolaemic men aged between 45 and 64 years, with

an initial 5-year follow-up.

The baseline data of men in the placebo and treatment arms of WOSCOPS were inserted into
the Scottish CVD Policy Model. Predicted cumulative incidence of non-fatal CHD, non-fatal
CBVD, fatal CVD, and fatal non-CVD was recorded. These results were then visually
compared to event rates in the WOSCOPS population. Figure 5-4 presents the results of this
analysis for the placebo arm of the trial, and Figure 5-5 presents the results for the treatment

arm.
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Hazard ratio: Hazard ratio: Hazard ratio:

Hazard ratio:

Parameter non-fatal CHD non-fatal CBVD CVD mortality non-CVD mortality Source
Men

Age 1.05 (1.04, 1.05) 1.07 (1.06, 1.08) 1.10 (1.09, 1.11) 1.10 (1.09, 1.11)

SIMD 1.04 (1.01, 1.07) 1.10 (1.05, 1.15) 1.07 (1.03, 1.10) 1.10 (1.07, 1.13)

Diabetes 1.93 (1.07, 2.76) 3.22 (1.94, 5.33) 2.37 (1.48, 3.81) 1.40 (0.84, 2.31)

FH 1.50 (1.34, 1.69) 0.98 (0.79, 1.21) 1.18 (1.00, 1.39) 0.99 (0.85, 1.14) | SHHEC-
CPD 1.42 (1.34, 1.55) 1.61 (1.40, 1.86) 1.87 (1.67, 2.10) 1.84 (1.68, 2.02) SMR
SBP 1.08 (1.31, 1.11) 1.12 (1.08, 1.17) 1.16 (1.13, 1.20) 0.99 (0.95, 1.02) | Dataset
TC 1.29 (1.05, 1.35) 1.09 (1.00, 1.18) 1.13 (1.05, 1.21) 0.95 (0.90, 1.01)

HDL-C 0.68 (1.23, 0.75) 0.94 (0.82, 1.07) 0.93 (0.83, 1.04) 1.21 (1.11, 1.32)
c-statistic 0.70 (0.62, 0.71) 0.73 (0.71, 0.75) 0.77 (0.76, 0.79) 0.74 (0.72, 0.75)

Women

Age 1.06 (1.05, 1.07) 1.08 (1.07, 1.10) 1.11 (1.09, 1.12) 1.09 (1.08, 1.11)

SIMD 1.09 (1.06, 1.12) 1.14 (1.09, 1.19) 1.04 (1.00, 1.09) 1.08 (1.04, 1.11)

Diabetes 2.07 (1.41, 3.03) 3.01 (1.81, 4.99) 3.14 (1.97, 5.00) 0.96 (0.51, 1.81)

FH 1.68 (1.48, 1.90) 1.43 (1.16, 1.75) 1.27 (1.05, 1.53) 0.98 (0.85, 1.14) | SHHEC-
CPD 1.51 (1.34, 1.71) 1.71 (1.41, 2.08) 2.61 (2.24, 3.03) 2.14 (1.91, 2.41) SMR
SBP 1.06 (1.03, 1.10) 1.15 (1.09, 1.20) 1.19 (1.14, 1.24) 1.03 (0.99, 1.06) | Dataset
TC 1.21 (1.15, 1.27) 0.95 (0.86, 1.05) 1.06 (0.98, 1.15) 0.93 (0.87, 0.99)

HDL-C 0.69 (0.63, 0.76) 0.84 (0.73, 0.97) 0.92 (0.81, 1.04) 0.98 (0.89, 1.07)
c-statistic 0.74 (0.73, 0.75) 0.76 (0.73, 0.78) 0.80 (0.78, 0.82) 0.72 (0.70, 0.74)

Table 5-1: Cause-specific hazards of primary events in the Scottish CVD Policy Model (text)
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Hazard ratio:

Hazard ratio:

Parameter mortality post-CHD mortality post-CBVD
Men
Age at event 1.08 (1.07, 1.09) 1.07 (1.05, 1.09)
SIMD 1.14 (1.09, 1.19) 1.09 (1.03, 1.16) | SHHEC-SMR
FH 0.97 (0.79, 1.18) 1.06 (0.77, 1.47) Dataset
c-statistic 0.68 (0.65, 0.71) 0.65 (0.61, 0.69)
Women
Age at event 1.08 (1.06, 1.09) 1.07 (1.05, 1.09)
SIMD 1.08 (1.03, 1.13) 1.00 (0.93, 1.08) [ SHHEC-SMR
FH 0.75 (0.60, 0.95) 1.20 (0.86, 1.67) Dataset
c-statistic 0.67 (0.63, 0.70) 0.66 (0.61, 0.71)

Table 5-2: Cause-specific hazard of post-CVD mortality in the Scottish CVD Policy Model (text)
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Figures 5-4 and 5-5 show that empirical data and simulation output were relatively close for the
placebo and treatment arms of the trial. For patients who received placebo, non-fatal CBVD,
fatal CVD, and fatal non-CVD events, predicted cumulative incidence generally fell within the
confidence interval of observed results. However, the model systematically underpredicted
incidence of non-fatal CHD. Results were more promising for the treatment arm of the trial.
This suggests that the model is capable of assessing the impact of primary interventions on CVD
incidence in the Scottish population. The lack of complete agreement between the model and
external data, however, serves as a reminder that the model is not able to perfectly predict
outcomes in the Scottish population and that it is necessary to explore uncertainty in any results

that the model produces.
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Figure 5-4: Predicted versus observed cumulative incidence of primary events in the
placebo arm of the WOSCOPS trial, Lewsey et al. (text)

133



CHD (Treated, all patients) CBVD (Treated, all patients)

1
0.004 0.008
I 1

Cumulative incidence (proportion)
Cumulative incidence (proportion)

0.00 0.01 002 003 004
|

0.000

1] 1 2 3 4 5 o 1 2 3 4 5
Time (years) Time (years)

CVD Death (Treated, all patients) Other Death (Treated, all patients)

0015
1

0.010
L
|

0.005
!

o
=Y
A

Cumulative incidence (proportion)

Cumulative incidence (proportion)
0.000 0.005 0.010 0.015 0.020
1

0.000

T T T T T T
0 1 2 3 4 5

T T T T
2 3 4 5

Time (years) Time (years)

Figure 5-5: Predicted versus observed cumulative incidence of primary events in the
treatment arm of the WOSCOPS trial, Lewsey et al. (text)

o

Recalibration

The Scottish CVD Policy Model was built with data that is becoming increasingly outdated.
Event rates for CVD have followed a continuous downwards trajectory in Scotland since the
mid-20™ century (385). This reduction in event rate has been attributed to changes in biologic,
demographic, and sociodemographic risk factors alongside improvements in health technology.
This means that risk functions developed with data from the past likely overstate CVD

incidence. Recalibration of the risk functions was performed to account for this.

Risk functions in the model were recalibrated in an attempt to replicate contemporary Scottish
life tables. Recalibration was achieved by multiplying the linear predictor in the risk functions
by a set of multiplicative factors and recording predicted LE for a range of risk profiles.
Predicted LE was then compared with 2009 Scottish life tables (386). The multiplicative factor
which produced the smallest root mean square error (RMSE) between model-predicted LE and
life tables was employed in the model. This process was completed for the male and female

models separately. Ultimately, recalibration led the RMSE to be reduced from 1.54 to 0.26 years
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for men and from 2.05 to 0.89 years for women (7,309). For the purpose of this thesis, the

recalibration process was completed with 2018 Scottish life tables (387).

5.4 CVD Microsimulation Model

Background

Motivated by the need to choose between competing interventions for CVD, Weinstein and
colleagues published the CHD Policy Model in 1987 (388). This decision-analytic cohort
simulation model was developed to forecast CHD incidence, prevalence, mortality, and cost in

the U.S. population.

The original model was developed with FORTRAN software (389) and will hereafter be referred
to as the ‘FORTRAN model’. The FORTRAN model has been applied in many notable health
technology assessments since its inception. It has been used to assess pharmacologic treatments
and clinical guidelines in the U.S. (350,390-394), to analyse U.S. population interventions
(395,396), and to predict future CVD incidence and prevalence in the U.S. population (397).
The model has also been recalibrated and employed in analysis of CVD rates in Mexico, China,
and Argentina (398-402).

Several changes have been made to the model over time. Originally developed to study
epidemiology and policy related to CHD alone, the model now predicts the health and cost
outcomes of interventions related to both CHD and stroke. It is therefore now referred to as the
CVD Policy Model. Inputs have also been updated regularly, as has the software platform on
which the model runs.

In 2014 the model was redeveloped to perform microsimulations (9). This new iteration of the

model was developed using TreeAge software (403). Hereafter this new model will be referred
to as the ‘TreeAge Model’ or the ‘CVD Microsim Model’.
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Structure

The CVD Microsim Model simulates CHD and stroke incidence and prevalence in the U.S.
population aged 35 and greater. It is a microsimulation state-transition model, accepts a profile
of CVD risk factors as inputs, and outputs health and cost outcomes for simulated individuals.
State transitions are based on a range of data sources and statistical techniques, and the model’s

primary outputs are life years, QALYSs, and healthcare costs.

Figure 5-6 shows the model structure. Individuals may enter a simulation before (State 1) or
after (States 2-4) experiencing a primary CVD event. From the well state, they may transition
to one of three non-fatal CVD states (CHD, Stroke, or Stroke + CHD), CVD mortality, or non-
CVD mortality. After the occurrence of a primary CVD event, individuals transition to one of
two absorption states, CVD mortality or non-CVD mortality.

Figure 5-6: Structure of the CVD Microsim Model

Costs and QALY are estimated according to an individual’s pathway through the model. Each
health state has an attributed health-related quality of life and cost. Additionally, in-cycle events
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and interstate transitions have attributed costs. An individual’s costs and QALY's over a pre-
specified time horizon are estimated in accordance with costs and QALY's accumulated during

their stochastic progression through the model.

An individual’s health state is updated annually and rate of transition between states IS
determined by risk factor profile. Individuals entering chronic health states may experience
further events. Following a stroke, for example, it is possible to experience a CHD or further
stroke event within a cycle. Such events are explicitly modelled within the health states and
determine an individual’s cost and health outcomes as well as their disease history. In all years
subsequent to an incident CVD event, individuals may experience CHD or stroke. Those who
experience both CHD and stroke at any point in their lifetime transition to the Stroke + CHD

state at the beginning of the model cycle following the second of these events.

Microsimulation

A large input dataset containing time-varying risk factor information for a group of individuals
IS required to run the model. This dataset should be representative of the population of interest

for the given research question.

For each ‘run’ of the model, N risk profiles are selected from the input dataset. Each profile is
inserted into the model and a pathway which an individual with that profile may progress
through the model is predicted. Based on the individual’s specific ‘history’ through the model,
cost and health outcomes are estimated. After one run, TreeAge provides cumulative outcome
information for the N microsimulations performed. This information allows cost-effectiveness

and other decision-analytic metrics to be calculated for the population.

State Transition Probabilities: Data

The probability of transition between health states is determined using a range of data sources.
Primary transitions are estimated with risk functions derived from analysis of a dataset which

was constructed by pooling longitudinal data from several U.S. studies (Table 5-3). The
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probability of subsequent transition between states was derived from a range of national and
subnational health records (Table 5-4).

The dataset that informs primary transition within the model consists of data obtained from the
NHLBI Pooled Cohorts Project at Columbia University. Hereafter, this dataset will be referred
to as the CU-NHLBI Pooled Cohorts dataset. The six studies included in the CU-NHLBI Pooled
Cohorts dataset are the: Atherosclerotic Risk in Communities (ARIC) Study, Cardiovascular
Risk Development In young Adults (CARDIA) Study, Cardiovascular Health Study (CHS),
Framingham Heart Study Offspring Cohort (FHS-O), Health, Aging, and Body Composition
(Health ABC) Study, and the Multi-Ethnic Study of Atherosclerosis (MESA) (404-409). All
studies periodically collected information on participants’ CVD risk factors, and prospectively
detailed incident CVD events.

There were several exclusion criteria for the dataset. Participants were excluded if they had
known clinical CVD at baseline or had at no values recorded for BMI, CPD, SBP, DBP, LDL-
C and HDL-C, diabetes, and use of lipid-lowering and anti-hypertensive medication. Missing
values for BMI, CPD, SBP, DBP, LDL-C and HDL-C were imputed as the average of non-
missing values for the participant. For other risk factors including diabetes, hypertension, and
use of lipid-lowering and anti-hypertensive medication, missing values were imputed by last
value carried forward. The final dataset for the primary risk function analysis comprised of
36,491 individuals from across the U.S., representing 731,241 life years of follow-up.

The source of probabilities which dictate transition out of chronic CVD were taken from
national or subnational health records of individuals with chronic CVD. These are included in

Table 5-4.

State Transition Probabilities: Analysis

Primary event rates were estimated using analysis by Dr. Yiyi Zhang at Columbia University
and replicated similar analysis of the Framingham Heart Study that underpins the FORTRAN
model. Primary transition within the model is determined based on logistic risk function which
take the following form:

138



exp(a + xb)
1+ exp(a + xb)

ratey; =

In this equation, ratex; denotes the annual probability of disease-free individual i experiencing
primary CVD event k. The value « represents the underlying event rate for event k in the CU-
NHLBI Pooled Cohorts population (or more specifically the intercept in the null model). The
term x is a vector of CVD risk factors. The risk factors included in the base model are: age, SBP,
LDL-C and HDL-C, CPD, body mass index (BMI), and diabetes. The term g is a vector of
coefficients where each coefficient represents the additive increase in log odds of event k
associated with a risk factor in x. Therefore, an individual’s primary event risk is increased or
decreased compared to the population average in accordance with their risk factor profile. Green
and Symons have shown that the regression coefficients of the logistic model approximate to
those of a proportional hazards model which has a constant underlying hazard rate (410). The

pooled cohorts logistic risk equations are presented in Table 5-3.

Probability of secondary events in the model is not assigned with risk functions. Instead, a
proportion of individuals with chronic CVD are assumed to experience further events annually.
These secondary events include: recurrent CHD event within a year of a prior CHD occurrence,
recurrent CHD event after a year of a prior CHD occurrence, stroke after CHD, CHD after stroke
within 10 years, and CHD proceeding stroke after 10 years. Secondary event probabilities were

stratified by age and sex and are presented in Table 5-4.

Following occurrence of all CHD and stroke events, a proportion of individuals (stratified by
age and sex) are assumed to die within 30 days. These proportions were derived from 30-day
case fatality rates from a combination of national and Californian data. The 30-day case fatality
rate for CHD events differs between primary and recurrent CHD events. For stroke, 30-day case
fatality rates were assumed to be equal for primary and secondary events. Values and sources

for event and mortality rates are presented in Table 5-4.
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Parameter

Description

Hazard Ratio
(95% ClI)

Beta Value
(95% ClI)

Distribution
for PSA

Risk function: Incident CHD event

Age Years* | 1.109 (1.092, 1.127) 0.1036 (0.0880, 0.1193) Beta

African American Binary | 0.842 (0.786, 0.901) | -0.1725 (-0.2410, -0.1039) Beta

Former smoker Binary | 1.201 (1.132, 1.275) 0.1835 (0.1240, 0.2430) Beta

Current Smoker Binary | 1.711 (1.525, 1.919) 0.5368 (0.4218, 0.6519) Beta CU-
Cigarettes per day 1.006 (1.001, 1.010) |  0.0055 (0.0008, 0.0102) Beta P':g:—ef‘c:
Systolic blood pressure mmHg | 1.012 (1.010, 1.013) 0.0115 (0.0100, 0.0129) Beta | conhorts
Diabetes Binary [ 1.819 (1.699, 1.947) 0.5982 (0.5302, 0.6663) Beta | Dataset
HDL-C mg/dL | 0.985 (0.983, 0.987) | -0.0151 (-0.0174, -0.0128) Beta

LDL-C mg/dL [ 1.006 (1.005, 1.007) 0.0060 (0.0052, 0.0067) Beta
Age*LDL-C 1.000 (1.000, 1.000) | -0.0002 (-0.0002, -0.0001) Beta

Risk function: Incident stroke event

Age Years | 1.147 (1.124, 1.171) 0.1372 (0.1170, 0.1575) Beta

African American Binary | 1.539 (1.370, 1.729) 0.4312 (0.3147, 0.5478) Beta

Current Smoker Binary | 1.639 (1.376, 1.953) 0.4943 (0.3194, 0.6692) Beta NHCLLI;
Cigarettes per day 1.009 (1.001, 1.017) 0.0089 (0.0010, 0.0167) Beta | Pooled
Systolic blood pressure mmHg | 1.019 (1.017, 1.021) |  0.0188 (0.0166, 0.0210) Beta gg{‘;’;i
Diabetes Binary | 1.871 (1.680, 2.083) 0.6263 (0.5186, 0.7340) Beta

HDL-C mg/dL | 0.996 (0.992, 0.999) | -0.0045 (-0.0075, -0.0014) Beta
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Parameter

Description

Hazard Ratio
(95% ClI)

Beta Value
(95% ClI)

Distribution
for PSA

LDL-C mg/dL | 1.002 (1.001, 1.003) 0.0018 (0.0006, 0.0030) Beta

Age*AA 0.977 (0.969, 0.985) | -0.0231 (-0.0316, -0.0147) Beta
Age*Current Smoker 0.991 (0.983, 0.999) | -0.0095 (-0.0176, -0.0014) Beta
Age*Diabetes 0.985 (0.978, 0.992) | -0.0149 (-0.0224, -0.0075) Beta

Risk function: Non-CVD mortality

Age Years | 1.108 (1.100, 1.117) 0.1029 (0.0952, 0.1107) Beta

African American Binary | 1.417 (1.326, 1.513) 0.3483 (0.2825, 0.4141) Beta

BMI kg/m? | 0.991 (0.985, 0.996) | -0.0095 (-0.0149, -0.0042) Beta

Former smoker Binary | 1.280 (1.213, 1.352) 0.2472 (0.1931, 0.3012) Beta NHCLlé]
Current Smoker Binary | 1.991 (1.803, 2.199) 0.6886 (0.5895, 0.7878) Beta | Pooled
Cigarettes per day 1.019 (1.015, 1.023) |  0.0192 (0.0152, 0.0232) Beta gg;‘;’;i
Diabetes Binary | 1.526 (1.427, 1.632) 0.4224 (0.3553, 0.4895) Beta

Age*AA 0.988 (0.983, 0.993) | -0.0121 (-0.0166, -0.0075) Beta
Age*Diabetes 0.992 (0.987, 0.997) | -0.0080 (-0.0129, -0.0032) Beta

*Years centred around age 55
Table 5-3: CU-NHLBI Pooled cohorts logistic risk equations.
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Parameter Base Case Distribution
Value for PSA

Source

Following CHD event (annual probability)

Recurrent* CHD event within 1 year of previous CHD even

Men aged 40-44 3.53 Beta
Men aged 45-54 4.74 Beta
Men aged 55-64 6.49 Beta
Men aged 65-74 7.96 Beta
Men aged 75+ 12.8 Beta
Women aged 40-44 2.26 Beta (411-413,413,414)
Women aged 45-54 3.96 Beta
Women aged 55-64 4.98 Beta
Women aged 65-74 8.29 Beta
Women aged 75+ 13.55 Beta
Recurrent CHD event after 1 year of previous CHD event

Men aged 40-44 1.22 Beta
Men aged 45-54 1.60 Beta
Men aged 55-64 2.23 Beta
Men aged 65-74 2.79 Beta
Men aged 75+ 4.53 Beta
Women aged 40-44 0.96 Beta (411-415)
Women aged 45-54 1.25 Beta
Women aged 55-64 1.63 Beta
Women aged 65-74 2.72 Beta
Women aged 75+ 4.66 Beta
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Parameter

Stroke after CHD

Base Case
Value

Distribution
for PSA

Source

Men aged 40-44 0.55 Beta

Men aged 45-54 0.55 Beta

Men aged 55-64 0.79 Beta

Men aged 65-74 0.83 Beta

Men aged 75+ 0.92 Beta

Women aged 40-44 0.55 Beta (416,417)
Women aged 45-54 0.55 Beta

Women aged 55-64 0.77 Beta

Women aged 65-74 0.87 Beta

Women aged 75+ 0.89 Beta

Following stroke event (annual probability)

Recurrent stroke 3.60 Beta (418)
CHD after stroke 2.50 Beta (419)
CHD after stroke 2.20 Beta (420)
30-day case fatality rates

Incident CHD

Men aged 40-44 9.37 Beta

Men aged 45-54 14.60 Beta

Men aged 55-64 17.44 Beta

Men aged 65-74 20.77 Beta (414,421-424)
Men aged 75-85 18.41 Beta

Men aged 85+ 78.18 Beta
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Parameter

Base Case
Value

Distribution
for PSA

Source

Women aged 40-44 7.08 Beta
Women aged 45-54 9.83 Beta
Women aged 55-64 13.16 Beta
Women aged 65-74 17.97 Beta
Women aged 75-84 14.97 Beta
Women aged 85+ 81.39 Beta
Recurrent CHD

Men aged 40-44 2.24 Beta
Men aged 45-54 7.84 Beta
Men aged 55-64 9.89 Beta
Men aged 65-74 12.96 Beta
Men aged 75-85 14.60 Beta
Men aged 85+ 27.16 Beta
Women aged 40-44 2.22 Beta (414,421-424)
Women aged 45-54 5.44 Beta
Women aged 55-64 6.65 Beta
Women aged 65-74 11.48 Beta
Women aged 75-84 10.95 Beta
Women aged 85+ 75.79 Beta
Any stroke

Men aged 40-44 6.23 Beta
Men aged 45-54 7.55 Beta (425)
Men aged 55-64 8.95 Beta
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Parameter Base Case Distribution Source
Value for PSA
Men aged 65-74 13.88 Beta
Men aged 75-85 21.20 Beta
Men aged 85+ 37.50 Beta
Women aged 40-44 13.70 Beta
Women aged 45-54 7.45 Beta
Women aged 55-64 10.65 Beta
Women aged 65-74 11.92 Beta
Women aged 75-84 23.02 Beta
Women aged 85+ 46.50 Beta
Other
Maximum annual
number of CVD 2 n/a Assumption
events per cycle

*Recurrent: any event following incident CVD event

Table 5-4: Probabilities for secondary events in CVD Microsim Model
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Simulation Cohort

A longitudinal input dataset is required to run microsimulations with the CVD Microsim Model.
The data inserted into the model come from the 1999-2014 iterations of the National Health and
Nutrition Examination Survey (NHANES) (426). NHANES is a large-scale, nationwide survey
of health and nutritional status amongst the non-incarcerated U.S. population. Participants were
selected for inclusion in the survey using a complex, multistage probability sampling design.
The probability sampling design allowed for oversampling of low-response demographics.
Therefore, NHANES’ population should adequately reflect the civilian, non-institutionalized
U.S. population. De-identified individual-level NHANES data are publicly available.

Data regarding key CVD risk factors were obtained for all NHANES respondents aged 20-85
years. All participants responded to a health-related questionnaire in an interview component of
the study. Additionally, height, weight, and blood pressure measurements were obtained by
trained professionals for almost all NHANES participants. A subset of respondents was

randomly assigned to contribute fasting blood test information.

Individuals were dropped from the dataset if they were below the age of 20 or reported a history
of heart failure, angina, heart attack, or stroke. In order to perform microsimulations, complete
risk factor information was needed for all individuals. Therefore, a large number of individuals
with incomplete risk factor information were dropped from the dataset. Those missing lipid,

BMI, and blood plasma glucose level information were censored.

In total, information for 82,091 NHANES individuals was obtained. Of these individuals,
67,269 were excluded, resulting in an input dataset of 14,822 individuals. Reasons for exclusion
were: age <20 years (n=38,298), missing LDL-C data (n=25,595), existing CVD (n=1,964), and
other missing data (n=1,412). Table 5-5 provides descriptive statistics of the included

individuals.

Sampling weights were applied to all individuals who provided blood samples in the NHANES
cohort. These weights help determine how demographically representative each individual is of

the total U.S. non-incarcerated population. Eligibility for inclusion in a microsimulation is
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determined by an individual’s NHANES fasting blood weight. This methodology should create

cohorts which are representative of the wider U.S. population

Risk Factor

Male (%) 47 50 0 1
Age 47.4 17.6 20 85
Diabetes (%) 12 32 0 1
Cigarettes per Day 2.4 5.6 0 53
SBP (mmHg) 122 12 93 199
DBP (mmHg) 70 6 33 110
LDL-C (mg/dL) 120 23 37 256
LDL-C (mmol/L) 3.09 0.6 0.9 6.6
HDL-C (mg/dL) 54 11 20 110
HDL-C (mmol/L) 1.4 0.3 0.5 2.9
BMI 28.4 5.8 14.2 57.2
ASCVD Risk Score (%) 7.6 11.7 0.0 90.0

Table 5-5: Descriptive statistics for NHANES 1999-2014 data

Sampling weights were applied to all individuals who provided blood samples in the NHANES
cohort. These weights help determine how demographically representative each individual is of
the total U.S. non-incarcerated population. Eligibility for inclusion in a microsimulation is
determined by an individual’s NHANES fasting blood weight. This methodology should create

cohorts which are representative of the wider U.S. population

Making NHANES ‘Longitudinal’

To carry out analysis with the TreeAge model a longitudinal table of input data is required.
NHANES, however, is a cross-sectional dataset. Risk factor trajectories were therefore
predicted for all individuals in the NHANES dataset.

It would have been possible to assume that included NHANES individuals’ modifiable risk
factors (lipids, blood pressure, and smoking status) did not change over time. However, such an
assumption would likely bias results as it assumes no age-based trends in CVD risk factors. This
assumption is unlikely to hold (427-429)
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Statistical analysis was performed on the CU-NHLBI Pooled Cohorts dataset to predict
individual-level time trends in CVD risk factors. This analysis developed predictive models for
time varying CVD risk factors, obtaining best linear unbiased predictors (BLUPs) for time-
varying covariates. These models were employed to forwards and backwards predict risk factor
values for individuals, centred on their cross-sectional NHANES observations. The NHANES
dataset was therefore rendered longitudinal. The methodology employed to make the NHANES
dataset longitudinal is discussed in depth by Zhang et al. (427).

Health-Related Quality of Life Inputs

The default perspective adopted in the CVD Microsim Model is that of a health sector decision-
maker. The analysis therefore accounts for all health gains in the population, and all direct and
indirect medical costs. Details of the value and source of the model’s HRQoL inputs are included
in Table 5-6.

Quality of life and cost inputs were copied directly from the FORTRAN model’s input tables.
Each chronic disease health state has an attributed annual QALY penalty and corresponding
cost. Every simulated individual accrues an age-specific background (non-CVD) healthcare
cost. Additionally, all acute events in the model (e.g., hospitalizations, fatalities) have an
associated acute (30-day) cost and QALY penalty. All outcome values are age-differentiated to

account for age-based heterogeneity in costs and HRQoL.

The quality of life attributed to different health states in the model were obtained from a
combination of data regarding CVD event rates in the U.S. (430,431) and utility weights derived
from international analysis of the health-related quality of life associated with a range of disease
(432). Treatment-related disutility can also be added to the model.
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Base Case Distribution

Parameter Value for PSA Source
CHD
Age 40-44 0.9348 Beta
Age 45-54 0.9374 Beta
Age 55-64 0.9376 Beta
Age 65-74 0.9372 Beta (430-432)
Age 75-84 0.9364 Beta
Age 85+ 0.9358 Beta
Stroke
All ages |  0.8835 Beta |  (430-432)
Acute (30-day) CHD
Age 40-44 0.8970 Beta
Age 45-54 0.8862 Beta
Age 55-64 0.8669 Beta
Age 65-74 0.8351 Beta (430-432)
Age 75-84 0.7946 Beta
Age 85+ 0.6829 Beta
Acute (30-day) stroke
All ages | 0.8662 | Beta |  (430-432)

Table 5-6: Chronic and acute utilities employed in CVD Microsimulation Model
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Cost Inputs

A range of sources were used to estimate costs within the model. Details of the value and source

of the model’s cost inputs are included in Table 5-7.

Base Case

Parameters

Background health cost (USD 2010)

Value

Distribution
for PSA

Source

Men aged 40-49 2,931 Gamma
Men aged 50-59 3,852 Gamma
Men aged 60-69 5,133 Gamma
Men aged 70-79 7,634 Gamma
Men aged 80-89 11,552 Gamma
Men aged 90+ 22,145 Gamma (433)
Women aged 40-49 4,118 Gamma
Women aged 50-59 5,588 Gamma
Women aged 60-69 8,040 Gamma
Women aged 70-79 9,872 Gamma
Women aged 80-89 14,720 Gamma
Women aged 90+ 25,832 Gamma
CHD first year (USD 2010)
Aged 40-69 10,545 Gamma
(433)

Aged 70+ 16,115 Gamma
CHD subsequent years (USD 2010)
Aged 40-89 2,154 Gamma
Aged 90+ 3,386 Gamma (433)
Acute (30-day) CHD (USD 2010)
Men aged 40-49 6,608 Gamma
Men aged 50-59 11,230 Gamma
Men aged 60-69 16,250 Gamma
Men aged 70-79 19,171 Gamma

(434,435)
Men aged 80-89 20,000 Gamma
Men aged 90+ 20,861 Gamma
Women aged 40-49 5,250 Gamma
Women aged 50-59 7,050 Gamma
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Parameters Base Case Distribution Source
Value for PSA
Women aged 60-69 13,754 Gamma
Women aged 70-79 17,567 Gamma
Women aged 80-89 20,622 Gamma
Women aged 90+ 27,411 Gamma
CHD Mortality (USD 2010)
Men aged 40-49 51,012 Gamma
Men aged 50-59 53,643 Gamma
Men aged 60-69 58,324 Gamma
Men aged 70-79 51,254 Gamma
Men aged 80-89 43,277 Gamma
Men aged 90+ 36,923 Gamma
(434,435)
Women aged 40-49 51,334 Gamma
Women aged 50-59 45,252 Gamma
Women aged 60-69 54,958 Gamma
Women aged 70-79 50,798 Gamma
Women aged 80-89 43,410 Gamma
Women aged 90+ 36,763 Gamma
Stroke first year (USD 2010)
All ages 16,317 Gamma (433)
Stroke subsequent years (USD 2010)
All ages 4,534 Gamma (433)
Acute (30-day) stroke (USD 2010)
Men aged 40-49 20,792 Gamma
Men aged 50-59 18,063 Gamma
Men aged 60-69 16,865 Gamma
Men aged 70-79 14,233 Gamma
Men aged 80+ 15,209 Gamma
(434,434)
Women aged 40-49 20,083 Gamma
Women aged 50-59 17,353 Gamma
Women aged 60-69 16,156 Gamma
Women aged 70-79 13,524 Gamma
Women aged 80+ 14,500 Gamma
Stroke Mortality (USD 2010)
Men aged 40-49 25,696 Gamma (434,435)
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Base Case Distribution

Parameters Value for PSA Source

Men aged 50-59 23,890 Gamma

Men aged 60-69 22,820 Gamma

Men aged 70-79 20,468 Gamma

Men aged 80+ 21,340 Gamma

Women aged 40-49 25,696 Gamma

Women aged 50-59 23,256 Gamma

Women aged 60-69 22,186 Gamma

Women aged 70-79 19,834 Gamma

Women aged 80+ 20,706 Gamma

Inflation factor

SUS 2010 to SUS 2018 1.25213 n/a (436)

Table 5-7: Costs employed in CVD Microsimulation Model

Costs for stroke hospitalization, CHD hospitalization, and acute stroke rehabilitation were
estimated using Californian hospital data, deflated using cost-to-charge ratios and the ratio of
U.S. national-to-Californian average costs (434,435). Outpatient costs incurred by patients with
chronic CVD were estimated with pooled 1998-2008 Medical Expenditure Panel Survey
(MEPS) data (433). Background costs were also estimated from MEPS. All costs were indexed
to 2018 U.S. dollars using the medical component of the U.S. Consumer Price Index (436). All
future costs and QALY values are discounted at a rate of 3% in the model, in line with standard

practice guidelines for the U.S. (54).

Discrimination, Calibration, and Recalibration

C-statistics were calculated for all logistic risk functions included in the microsimulation model.
These values were 0.84, 0.85, and 0.87 for primary CHD, primary stroke, and non-CVD
mortality, respectively. According to Lloyd-Jones, these c-statistic values indicate ‘excellent’
discriminative ability for these risk functions (383).

Validation of cardiovascular event rates in the CVD Microsimulation Model has not been
directly undertaken. The model has instead been recalibrated to produce results similar to the

extensively validated FORTRAN model. The traditional CVD Policy Model regularly
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completes a series of quantitative validation exercises. The first validation exercise involved
assessing the model’s estimates for U.S.-wide stroke mortality, CHD mortality, and all-cause
mortality against U.S. National Data for 2010. These model outcomes were within 1% of
estimates from U.S. national vital statistics and the U.S. National Hospital Discharge Survey
(NHDS) (392,393).

Figures 5-7 and 5-8 each show two graphs used in the recalibration of the male and female
microsimulation models. On the vertical axes are incidence rates of CHD and stroke,
respectively, and on the horizontal axes are the age of the simulated cohort. As mentioned
previously, both simulations begin with a cohort of 40-year-old individuals. In each figure, the
red and blue line represent rates derived from the FORTRAN and TreeAge models, respectively.
FORTRAN output for a cohort appears step-wise because predictions are made for 10-year age
categories, not by continuous (single-year) age. The black line represents the exponential trend
observed in the step function produced by the FORTRAN model. These charts suggest that the

TreeAge model is well calibrated, as the red and blue lines do not differ substantially.

Figure 5-9 shows two graphs which demonstrate the performance CVD Policy Model
Microsimulation’s cumulative mortality rates compared to Centers for Disease Control and
Prevention’s Wide-ranging ONline Data for Epidemiologic Research (CDC-WONDER) data,
shown in red and blue, respectively. The vertical and horizontal axes represent all-cause
mortality rate and age of cohort, respectively. By visual inspection, the model was judged to

adequately reflect national-level U.S. all-cause mortality data.

5.5 Examples: Epidemiologic Studies Using CVD Policy Models

The following short studies provide examples of the Scottish CVD Policy Model and the CVD
Microsimulation model. These models have been developed with the primary aim of performing
cost-effectiveness analyses. However, they can be modified and intermediate outcomes (e.g.
event rates, life expectancies) can be reported. This enables the models to address questions
related to the epidemiologic concepts raised in Chapter 4.
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Figure 5-7: CHD incidence rate for men (left) and women (right) according to TreeAge
and FORTRAN models
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5.5.1 CVD Microsim Model: Cumulative Exposure to Risk Factors

As discussed in Section 4.5.1, cumulative exposure to CVD risk factors in young adulthood can
lead to later life events. This is because atherosclerotic build-up develops over a lengthy period

of time.

What follows is a description of two simulation studies which were performed to estimate the
benefits associated with reducing cumulative exposure to CVD risk factors in young adulthood.

These studies focused on the prevention of CVD in the U.S. using the CVD Microsim Model.

This work utilised risk functions developed by Pletcher et al. (325) which predicted CHD risk
based on cumulative exposure to LDL-C and SBP, adjusted for traditional risk factors. Hence,

CHD rather than CVD (CHD and stroke) outcomes were the primary outcome of concern.

Background

Hypercholesterolaemia and hypertension are highly prevalent during young adulthood in the
U.S. population, but have low levels of awareness, treatment, and control. Based on the 2011-
2012 U.S. NHANES, over six million young adults (18-39 years) have hypertension (7.3%)
(437). Hypertension awareness (75%), treatment amongst those aware of their condition (50%)
and control (40%) are all substantially lower in young adults compared with middle-aged adults
(30-49 years) and older adults (>60 years). Similarly, data from NHANES 2011-14 show that
hypercholesterolaemia awareness is low in young adults (57%) (438).

Obijective

The objective of this study was to quantify the opportunity cost associated with failing to control
hypertension and hypercholesterolaemia in young adulthood. Opportunity cost is quantified in
terms of later life CHD events that could have been prevented. The CVD Microsimulation was

employed to estimate CHD outcomes.
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Population, Intervention, Comparator, Qutcome(s), Setting, Study Design (PICOSS)

Two separate analyses were performed: (i) analysis of hypertension control and (ii) analysis of
hypercholesterolaemia control, both in young adulthood. The intervention and comparator for
these studies did not aim to replicate the effects of a given treatment but rather a hypothetical

scenario where elevated risk factors received a moderate level of control.

Population: The population of interest for the first analysis was any U.S. individual with DBP
greater than 85 mmHg in young adulthood. The population of interest for the second analysis
was any U.S. individual with LDL-C greater than 160 mg/dL (4.1 mmol/L) in young adulthood
(aged 20-39).

Intervention: The intervention considered in the first analysis was a 5 mmHg reduction in DBP
in young adults with DBP greater than 85 mmHg. The intervention considered in the second
analysis was a 50 mg/dL (1.29 mmol/L) reduction in LDL-C in young adults with LDL-C greater
than 160 mg/dL (4.14 mmol/L).

Comparator: The comparators for each of the analyses were no treatment and later life control
of hypertension and hypercholesterolaemia, respectively. Later life was defined as 40 years of
age and above. In the hypertension analysis, later life hypertension control was simulated by a
10 mmHg reduction in SBP. In the hypercholesterolaemia analysis, later life

hypercholesterolaemia control was simulated by a 50 mg/dL reduction in LDL-C.

Outcomes: Later life CHD events prevented was the primary measure of outcome. These events
were separated into primary and total events. Further reported were lifetime absolute CHD risk
reduction, lifetime CHD relative risk, and person years of treatment.

Setting: Primary care in the U.S.

Study Design: Microsimulation.
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Methodology

The CVD Microsim Model estimated individual-level CHD outcomes for individuals,
dependent on risk factors exposures and accounting for competing risk of stroke or non-CVD
mortality.

Cross-sectional CVD risk factor data were obtained from NHANES 1999-2010. The variables
obtained were: age, sex, diabetes, LDL-C, HDL-C, smoking, SBP, DBP, BMI. Individuals were
dropped from the dataset if they had heart failure or had experienced a CVD event. Forward and
backwards trajectories were fitted using predictive equations, so a risk factor value was available

for every individual from the ages 20-89.

NHANES data were obtained for 7,435 females and 6,439 males. In this population, 168 (2.3%)
females and 619 (9.6%) males had elevated DBP in young adulthood. Additionally, 356 (4.8%)
females and 494 (7.7%) males had elevated LDL-C in young adulthood. A cohort of 20,000
males and 20,000 females was produced using the NHANES dataset. This cohort was made
representative of the U.S. population by selecting individuals from the original dataset for
simulation based upon an NHANES-specific probability sampling weight.

Every individual in the cohort was simulated through the model from ages 20-70. From the age
of 20 to 39, a time weighted average of DBP and LDL-C was estimated, and it was assumed

that no CVD events would occur before the age of 40.

When this analysis was completed, the CU-NHLBI Pooled Cohorts dataset had not yet been
fully cleaned. Risk functions that determine primary transition within the model were therefore
taken from the Framingham Offspring Study (404). These risk functions take the same logistic
form as the previously-discussed Pooled Cohort risk functions. However, they were updated to
account for an individual’s cumulative exposure to LDL-C and SBP between the ages of 20 and
39. Risk of first CHD event after age 40 was conditioned on both time-weighted average of
early adult (ages 20-39) DBP and elevated DBP or SBP at age 40 and above. These new risk
functions were derived from logistic regression analysis of the Framingham Offspring Study
performed by Pletcher et al. (325).
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The results from the Pletcher analysis are presented in Table 5-8. Increases in time-weighted
average DBP (dbptwa23) and LDL-C (Idltwa23) were significantly associated with risk of CHD
in later life.

Before simulation analysis was undertaken, risk functions were recalibrated to ensure that event

rates observed in the model’s runs were comparable to event rates produced by the FORTRAN

CVD Policy Model.

Logistic Regression Number of obs = 118971
Log pseudolikelihood = -2942.0756 Wald chi2(12) = 708.79
Prob > chi2 = 0.00000
Psuedo R2 = 0.1056

Covariate Odds Ratio P>|Z| [95% Conf. Interval]
SBP (lvcf) 1.156026] 0.063360 2.65 0.008] 1.038281| 1.287124
LDL-C (lvcf)| 1.105461] 0.066135 1.68 0.094] 0.983151| 1.242988
HDL-C (lvef)] 0.756097| 0.048637 -4.35 0.000] 0.666534] 0.857694
LDL-C (twa)| 1.428349| 0.137747 3.70 0.000] 1.182395] 1.725574
DBP (twa) 1.253343| 0.125270| 2.26 0.024] 1.030212] 1.524803
Male 1.906012| 0.227689 5.40 0.000] 1.508143| 2.408844
Diabetes 1.882810] 0.225214 5.29 0.000] 1.489324| 2.380257
Smoker 2.603872| 0.263688 9.45 0.000] 2.135111] 3.175549
BP Meds 1.906012| 0.239475 5.67 0.000] 1.565245| 2.512759
Lipid Meds 0.814329( 0.133595 -1.25 0.211] 0.590412| 1.123166
Age 1.053910] 0.006974 7.93 0.000] 1.040329] 1.067668
Age”2 0.998715( 0.000375 -3.43 0.001] 0.997981] 0.999450|
Constant 0.000031f 0.000022 -14.73 0.000] 7.83E-06] 0.000124

Table 5-8: Cox regression estimating effect of various covariates on risk of primary
CHD event, accounting for young adulthood risk factor exposure. lvcf - last value
carried forward, twa - time weighted average value aged 20-39

In the hypertension analysis, CHD outcomes were simulated in cohort of U.S. adults with DBP
>85 mmHg any time in young adulthood in 3 scenarios: no treatment, later life SBP control
alone, or early DBP control plus later life SBP control. In the hypercholesterolaemia analysis,
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CHD outcomes were simulated in cohort of U.S. adults with LDL-C >160 mg/dL at any time in
young adulthood in 3 scenarios: no treatment, later life LDL-C control alone, or early and later
life LDL-C control.

Results

In the hypertension analysis, in a cohort of 20,000 males and 20,000 females with elevated DBP
during young adulthood, treating DBP early in life led to large reductions in CHD events.
Compared to waiting to treat DBP in later life, around 400 primary and 450 total CHD events
could be averted by controlling DBP in early adulthood. Treating early life hypertension would
result in around 290,000 extra years of treatment in the cohort compared to later life control.
Results from the hypertension analysis are presented in Table 5-9. Absolute CHD risk reduction
was 1.58% in the group treated in both early and later adulthood, and 0.92% in the group with
later life treatment alone. Relative risk in those who received early adulthood treatment was

0.93, compared to 0.95 in the comparator arm.

In the hypercholesterolaemia analysis, early plus later adulthood treatment prevented
approximately 1,900 and 2,800 additional primary and total CHD events in the cohort compared
with later life treatment alone, respectively. More than 400,000 additional patient years of
treatment would be required to achieve these benefits. Results from the hypercholesterolaemia
analysis are presented in Table 5-10. Absolute CHD risk reduction was 11.85% in the group
treated in both early and later adulthood, and 7.19% in the group with later life treatment alone.
Relative risk in those who received early adulthood treatment was 0.65, compared to 0.78 for

those who received later adulthood treatment alone.

Discussion and Limitations

This study showed that existing CVD policy models can be adapted to answer novel research
questions. By altering the risk functions within this model and recalibrating these functions to
contemporary event rates, it was possible to predict the benefits associated with early life

intervention on modifiable risk factors.
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This study highlights the benefit of early preventive intervention for CHD. In terms of
preventable CHD events, there is a large opportunity cost associated with waiting to commence
preventive blood pressure- and LDL-C-lowering treatment. The effect of intervening from age
20 onwards was investigated. While this may not be considered a viable, clinically feasible
treatment strategy, the results presented suggest any reduction in the age at which treatment
commences may improve health outcomes for individuals. Age-stratified risk thresholds for

treatment initiation may help address this issue.

Monetary costs are notably missing from this analysis. The cost of treating and monitoring an
individual from young adulthood until death may be large. Moreover, the cost of screening all
young adults for elevated DBP and LDL-C is likely to be substantial. Further research should

include a full health economic evaluation of the proposed intervention.

5.5.2 Scottish CVD Policy Model: Predicting Treatment-Related Health Outcomes

It is possible to predict the benefits associated with different treatment strategies using decision-
analytic models. Moreover, the differential benefits associated with patient subgroups can be
estimated. This can help guide research into which groups of patients should receive a treatment,

and highlight issues with existing clinical practice.

Background

Lewsey et al. previously employed the Scottish CVD Policy Model to estimate life expectancy
(LE) for a range of individuals in the Scottish population (7). Adapting their results, Figure 5-
10 was developed to assess the benefit of preventive intervention in individuals with differing
risk factor profiles. As with the risk charts presented in Chapter 4, each cell represents a distinct

combination of risk factors. Diabetes and FH values were set to the SHHEC average.
The number within each box in Figure 5-10 represents the increase in quality-adjusted life years,

discounted 3.5% annually, that an individual with this risk factor profile would experience if
their SBP and TC to HDL-C ratio were reduced to 100 mmHg and 3, respectively. The boxes
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CHD

Treatment Scenario . CHD Events Absolute C]-ID Person
cohort of 20,000 men 20,00 women with Prevented Risk Relatl.ve Years of
DBP 285 mmHg between ages 20-39 Primary Total Reduction Risk Treatment

No treatment 0 0 0 1 0

Treat > 40 years old

Age 20-39: if DBP =85, no treatment

Age > 40: if SBP >140 or DBP> 90, treat BP <140/90 246 476 0.92% 0.95 525,000

Treat > 20 years old

Age 20-39: if DBP =85, treat to DBP <85

Age > 40: if SBP >140 or DBP> 90, treat BP <140/90 630 926 1.58% 0.93 815,000

Table 5-9: CHD outcomes associated with different blood pressure control scenarios in a cohort of hypertensive young

adults. All comparisons are with no treatment.

CHD

Treatment Scenario . CHD Events Absolute CHD Person
cohort of 20,000 men 20,00 women with Prevented Risk Relative Years of
LDL-C 2160 mmol/L between ages 20-39 Primary Total Reduction Risk Treatment

No treatment 0 0 0 1 0

Treat > 40 years old

Age 20-39: if DBP =85, no treatment

Age > 40: if SBP >140 or DBP> 90, treat BP <140/90 2,850 3,940 7.19% 0.78 944,000

Treat > 20 years old

Age 20-39: if DBP >85, treat to DBP <85

Age > 40: if SBP >140 or DBP> 90, treat BP <140/90 4,740 6,770 11.85% 0.65 1,355,000

Table 5-10: CHD outcomes associated with different LDL cholesterol control scenarios in a cohort of hypercholesterolaemic

young adults. All comparisons are with no treatment.
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are colour-coded based on life years gained. Red represents life year gains less than 1 year,
orange represents gains between 1-2 years, and green represents gains greater than 2 years.

Results for women followed a similar pattern.
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Figure 5-10: Discounted QALY gains from reducing SBP, TC:HDL-C ratio, and smoking
in men in the least and most deprived SIMD quintiles, adapted from Lewsey et al.
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Figure 5-10 suggests that primary prevention is more effective at increasing QALE in
individuals with unhealthy levels of modifiable risk factors like SBP, cholesterol, and cigarettes
smoked per day. Conversely, ‘high-risk’ individuals whose risk is driven by a non-modifiable
risk factor like age gain less from treatment. These results support the implementation of age-
stratified risk threshold approach to prevention, as this would target treatment at individuals

with unhealthy modifiable risk factor values within their age-group.

The analysis described predicts health gains associated with multifactorial interventions that
return modifiable risk factors to healthy levels. In clinical practice no silver bullet treatment
exists which will return every patient’s risk factors to the healthy levels assumed in the figures.

Patterns in health gains associated with individual preventive policies may be different.
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Objective

The objective of this analysis was to quantify the effect of a cholesterol-reducing intervention

on discounted QALE for individuals with a range of CVD risk factor profiles.

PICOSS

Population: The population of interest was men living in Scotland aged 40, 50, 60, and 70 years
with no established CVD. The effect of the intervention on individuals with a range of different

CVD risk factors was assessed.

Intervention: The intervention considered was a 32% reduction in TC. This represents an upper
estimate of the expected reduction in LDL-C achievable with intermediate-intensity statin
therapy. No pill-taking decrement to quality of life and no treatment-related side effects (e.g.

increase in risk of diabetes) were applied.

Comparator: The comparator for this analysis was no treatment.

Outcome: The outcome recorded was increase in discounted QALE attributable to the

intervention.

Setting: Primary care in the Scottish NHS.

Study Design: Cohort simulation.

Methodology

Risk factors were inputted into the male version of the Scottish CVD Policy Model to estimate
intervention-related benefits associated with LDL-C-reduction for individuals with a range of
risk factor profiles.

Risk factor profiles were developed which varied by age (40, 50, 60, and 70), SBP (100, 120,

140, 160, and 180 mmHg), TC:HDL-C (4.5:1.5, 6.0:1.2, 6.3:0.9, 6.8:0.8, and 7.0:0.7 mmol/L),
163



SIMD (4.085 and 60.775), and cigarettes per day (0 and 20). Individual’s diabetes and FH values
were set to 1.49% and 26.3%, respectively, the average values in the SHHEC population. Given
the range of dimensions considered, n=4*5*5*2*2=400 profiles were simulated. Discounted
QALE was recorded for each profile. This value will be referred to as the ‘baseline QALE’

associated with each risk factor profile.

Next, each of the 400 profiles was re-simulated. However, in this simulation, TC was reduced
by 32% at baseline. Again, discounted QALE was recorded for each individual. This value will
be referred to as the ‘treated QALE’ associated with each risk factor profile. Finally, the
difference between baseline and treated QALE was estimated for each risk factor. This was

presented graphically, in a manner that would facilitate comparison with Figure 5-10.

Results

Cholesterol treatment was simulated for a range of male Scottish risk profiles. Figure 5-11
estimates discounted QALY gains attributable to a 32% TC reduction for a number of risk factor
profiles. The gains are colour-coded whereby blue, red, orange, and green cells represent 0-0.15,

0.15-0.3, 0.3-0.45, and >0.45 discounted QALY gains, respectively.
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Figure 5-11: Discounted QALY gains from reducing TC by 32% in men in the least and
most deprived SIMD quintiles
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Discussion and Limitations

This study paints a more nuanced picture of capacity-to-benefit than the results presented in
Figure 5-10. A more realistic simulation of univariate preventive intervention showed that it is

difficult to define a function that maps 10-year risk to capacity-to-benefit from statin therapy.

Some relationships do emerge in Figure 5-11. Individuals with high levels of cholesterol achieve
the most benefit from cholesterol reduction. However, unlike in Figure 5-10, non-smokers gain
many more QALY than smokers. Capacity-to-benefit is also highest in 50 and 60 year olds,
suggesting a non-linear age-based trend. A corollary to these observations is that, even within
age-groups, risk is not a singular predictor of capacity-to-benefit. The specific factors that drive

risk matter.

The reason that 10-year risk is a poor predictor of capacity-to-benefit can be explained by a
multiplicity of factors. Competing risks are an important consideration. Age, SBP, and smoking
are strong predictors of non-CVD mortality. These factors increase CVD risk but also increase
risk of a censoring event which may negate the need for CVD prevention. Optimal treatment
strategies for patients depends on their individual profile of risk factors, not just the combinatory

measure of 10-year risk.

Risk driven by modifiable risk factors may require alternative treatments alongside or in place
of statin therapy. When an individual’s risk is driven by smoking, a primary stage in prevention
should be to address this risk factor. Reducing cigarettes smoked per day will reduce both the
individual’s risk of CVD and their risk of non-CVD mortality. Indeed, this analysis suggests
that reducing smoking will likely improve their capacity-to-benefit from cholesterol reduction.

Shared decision-making (439) is an important tool for individuals with risk driven by non-
modifiable risk factors. When an individual’s risk is driven by age, alternative treatment options
are limited. In this case, a physician and patient must discuss the potential benefits of treatment

alongside the reality of the individual’s life expectancy.
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Ultimately, the only way to account for the multiplicity of factors that determine an individual’s
capacity-to-benefit from treatment is to directly employ decision-analytic models in the

decision-making process. Such a policy is assessed in Chapter 9.

This study is limited by the simplicity of the intervention that was modelled and lack of
sensitivity analysis. The study explicitly aimed to represent capacity-to-benefit from
cholesterol-reducing treatment. Studies have shown a variety of small but significant side effects
and disutilities associated with cholesterol-reducing treatments (36,440,441). This likely means
the predicted QALY gains are overstated. The study also employs a combinatory index to
capture the effect of TC and HDL-C on CVD risk. It would be clinically more useful to consider
these risk factors separately. Finally, traditional and probabilistic sensitivity analysis were not
completed. While the study quantifies variability in outcome related to patient characteristics, it
does not reflect uncertainty related to model or treatment parameters.

5.6 Chapter Summary

This chapter has provided an introduction to policy models. Additionally, it has introduced, two
existing CVD policy models which will be used throughout the remainder of this thesis to assess
preventive interventions for cardiovascular disease. It was shown that these models can be
updated with external data and can output intermediate outcomes to help answer questions
regarding the benefits associated with preventive intervention.

The specific type of preventive intervention that will be modelled in later chapters are
cholesterol-reducing medications. These are treated as a cornerstone of CVD prevention
strategies in high-income countries. The principle cholesterol-reducing treatment that will be
considered is statin therapy. The proceeding chapter will establish the validity of statins as an
efficacious and safe preventive medicine. This will enable the thesis to proceed with cost-
effectiveness analyses of statin prioritisation policies which aim to address heterogeneity in
cost-effectiveness of the treatment.
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Chapter 6
Statins

6.1 Purpose

Many of the cost-effectiveness analyses in the remainder of this thesis will focus on statins and
their role in the primary prevention of CVD. Although widely prescribed in high-income
countries, statins are a controversial treatment. It is therefore important to justify their use in
clinical practice. It is particularly important to prove that statins are safe, effective, and maintain
efficacy in low- and intermediate-risk populations. This chapter will explore the validity of such

assumptions.
6.2 Efficacy of Statins in Low- and Intermediate-Risk Populations

Evidence in Favour

The efficacy of statin therapy for the primary prevention of CVD has been established in low-
and intermediate-risk populations. In a 2011 meta-analysis, Tonelli et al. considered the efficacy
of statin therapy in CVVD-free intermediate-risk patients (442). Intermediate risk was defined as
10-year risk less than 20% and was estimated by extrapolating CVD event rates in the control
arm of analysed trials. It was found that in intermediate-risk populations, statins reduced risk of
all-cause mortality (relative risk [RR] 0.90, 95% confidence interval [CI] 0.84-0.97), non-fatal
myocardial infarction (RR 0.64, 95% CI 0.49-0.84), and non-fatal stroke (RR 0.81, 95% ClI
0.68-0.96). Similar results were reported by Navarese et al. in 2018 (339).

The Cholesterol Treatment Trialists’ (CTT) collaborators also performed a meta-analysis of
statin efficacy in low- and intermediate- risk populations (251). They considered the efficacy of
statin therapy in five categories of 5-year major vascular risk: <5%, 5-10%, 10-20%, 20-30%,
and >30%). Relative risk of major vascular event per 1.0 mmol/L LDL-C reduction was found
to be consistent across risk groups, ranging from a relative risk of 0.62 (95% CI 0.47-0.81) to

0.79 (95% CI 0.74-0.84) in the lowest and highest risk groups, respectively. Individuals in the
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lowest two risk categories also experienced clinically and statistically significant reductions in

major coronary events and stroke.

Criticisms

There is some controversy surrounding the evidence in favour of statin efficacy. Abramson et
al. critique the analyses mentioned in the two preceding paragraphs (250). They argue that there
is no hard evidence that statins reduce all-cause mortality in low-risk individuals, the endpoints
used to describe CVD in studies of statin efficacy are too broad, and that side effects have been
understated. Furthermore, they point out that low-risk individuals achieve a small 10-year
absolute risk reduction from statin therapy and therefore a greater number of individuals must

be treated to prevent one adverse event in a low-risk population.

Other academics have expressed concern about the statistical methodology commonly applied
to quantify statin benefits. Redberg and Katz (443) and Diamond and Ravnskov (444) argue that
absolute rather than relative risk should be the measure employed to quantify benefit. Relative
risk (RR) is equal to the ratio of event incidence in the treatment and control groups of a trial.
Absolute risk reduction (ARR) is the absolute change in risk between arms. The number needed
to treat to prevent an event in a population (NNT) is the inverse of ARR. Some argue that ARR
better reflects a patient’s capacity-to-benefit from preventive treatment as it highlights the fact

that many people will gain nothing from treatment.

6.3 Safety of Statin Therapy

Evidence in Favour

Several side effects are commonly associated with statin therapy. These include: increased risk
of diabetes, muscle pain (myalgia), muscle weakness (myopathy), cognitive dysfunction, and
renal disorder. The evidence concerning such side effects overwhelmingly suggests that the
benefits of the treatment outweigh the disadvantages.

Many randomised clinical trials have been completed to assess the safety and efficacy of statin

therapy. Reimold et al. highlight that more than 170,000 people who take statins have been
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studied with considerable follow-up, and posit that “statins have been studied more than nearly

any other drug that people take” (445).

Meta-analyses largely confirm the safety profile of statin therapy. Finegold et al. considered the
safety profile of statins in a 2014 meta-analysis which included data from 46,262 patients
receiving statins for the primary prevention of CVD (446). Their study found that statins slightly
increase an individual’s risk of two adverse events: new diabetes diagnosis (absolute risk
increase [ARI] 0.5%, 95% CI 0.1%-1.0%) and elevated enzyme levels which may lead to liver
damage (ARI 0.4%, 95% CI1 0.2%-0.6%). The study rejected the hypothesis that statins increase
likelihood of myalgia (p-value 0.407), myopathy (p-value 0.905), renal disorder (p-value 0.092),
and ten other commonly attributed side effects. Taylor et al. (447) found no evidence of serious

harm caused by statin treatment.

Meta-analyses have also shown that statins have no deleterious effect on cognition. While the
Finegold et al. study did not focus extensively on cognitive dysfunction, a separate meta-
analysis by Swiger et al. examined the short- and long-term cognitive effects of statins in
patients with no baseline cognitive dysfunction (448). This study rejected the hypothesis that
statins affect short-term cognition (p-value 0.050). Moreover, analysis of long-term data found
that statins may play a statistically and clinically significant role in reducing incident dementia
(hazard ratio 0.71, 95% CI 0.61-0.82).

The link between statins and incident diabetes has been analysed in a meta-analysis of
randomised controlled endpoint trials. Sattar et al. (440) found that statin therapy is associated
with a statistically significant increase in incident diabetes (odds ratio 1.09; 95% CI 1.02-1.17).
The authors of this study concluded that the increased risk of diabetes attributable to statins is
offset by the treatment’s benefits. This sentiment has been echoed by the ACC and AHA, the
U.S. Preventive Services Task Force, the Royal College of General Practitioners in the U.K.,

the British Heart Foundation, and a wide range of clinical experts (349,449-452).

Criticism

Despite strong clinical trial evidence for their safety, statins remain a subject of considerable

controversy. Dr. Ben Goldacre was co-author of a previously cited meta-analysis on statin safety
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(446) but urges caution on its findings. He argues that the methodology used in this trial is
correct but the analysed data were flawed (453). He states that public reporting of side effects

in clinical trials is very poor.

Goldacre cites a study from Germany’s cost-effectiveness agency, the Institute for Quality and
Efficiency in Health Care (IQWiG) to support his claim of flawed data (454). Researchers at
IQWIG obtained access to unpublished clinical study reports (CSRs) for a range of different
treatments. These are documents produced by pharmaceutical companies which extensively
detail the methodology and outcomes of clinical trials. CSRs are generally not made public
though are provided to regulatory agencies like the FDA in the U.S. and the EMA in the E.U.
The IQWIG study revealed that CSRs provided complete information on 84% of benefits and
87% of harms, while publicly available data only provided complete information on 35% of
benefits and 43% of harms. A further 18% of benefits and 8% of harms were found to be

‘reported partly’ in the publicly available data.

Other researchers have questioned the reliability of evidence regarding statin safety. Yebyo et
al. question whether the benefits of statins outweigh their harms over a 10-year time period,
finding probability of net benefit is low when 10-year risk is low (455). In a cross-sectional
analysis of 1999-2002 NHANES data, Buettner et al. (456) found that taking statins significantly
increased risk of musculoskeletal pain. Abramson et al. argue that meta-analyses underestimate
the risk of diabetes associated with statin therapy, noting that the increase in diabetes incidence
observed in women taking statins in the JUPITER trial was more than five times the increase
predicted by a 2012 CTT meta-analysis (250). Redberg and Katz (443) also discuss
underreporting and misreporting of side effects in clinical trials, arguing that anecdotal evidence
and results of a small clinical trial (457,458) suggest that statins may cause cognitive
impairment. Including data from primary prevention trials, a preference study, and selected

observational studies.

6.4 Response to Criticism of Statin Safety and Efficacy

It is important to ensure that statins are safe and efficacious in the patients for whom they are
recommended. Placebo-controlled randomised clinical trials represent the gold standard for

establishing these factors for a treatment. Meta-analyses of these trials suggest that statins are
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safe and efficacious. Decision modelling techniques allow researchers to account for uncertainty

inherent in these findings when assessing the cost-effectiveness of statins.

Efficacy

The benefits of statins are well-established. Greenhalgh provides a hierarchy for the reliability,
validity, and generalisability of data (72). In descending order, this hierarchy consists of:
systematic reviews and meta-analyses of randomised controlled trials, randomised controlled
trials with definitive results, randomised controlled trials with non-definitive results, cohort
studies, case-control studies, cross-sectional surveys, and case reports. Evidence from the
multiple meta-analyses described above firmly suggests that statins are efficacious and safe in

low- and intermediate-risk individuals.

Common criticisms of evidence regarding statin efficacy are: statins do not show improvement
in all-cause mortality and relative risk overstates the benefits of statin therapy. With regards to
all-cause mortality, it is true that a meta-analysis of relevant trials studies failed to show a
statistically significant reduction in all-cause mortality attributable to statin therapy in CVD-
free individuals (459). The results from this study, however, also show a strong relative risk for
all-cause mortality which is marginally insignificant. Given existing debate regarding statistical
significance (460-462), and the fact that average follow-up for individuals in this meta-analysis
was 3.74 years, it is not surprising that it was difficult to establish a statistically significant
relationship between the treatment and mortality - a rare event in CVD-free individuals. In
addition, two separate contemporary analyses have shown a statistically significant effect of

statins on all-cause mortality (251,442).

A further consideration must be made explicit: even if statins do not reduce all-cause mortality,
they have been shown to reduce cardiovascular events. Such events are extremely debilitating

and it is of societal interest to reduce rates of CVD.

The use of relative as opposed to absolute risk reduction in measuring statin efficacy must be
considered. Redberg and Katz (443) and Diamond and Ravnskov (444) argue that the latter
gives patients a better concept of their potential to benefit from treatment. Both articles note that

statins have a high 10-year NNT to prevent one event for low-risk individuals. However, CVD
171



rates have dropped greatly in recent decades. Intuitively, as baseline event risk falls in a
population, the NNT to prevent one event increases. As with all preventive interventions, the
benefits accrued through treatment should be weighed against the costs of providing treatment

to many people. Cost-effectiveness analysis explicitly undertakes such calculus.

Safety

Criticism regarding statin safety should be considered. Goldacre highlights the issue of trial
reporting, while Abramson et al. and Redberg and Katz, and others question the interpretation
and results of randomised clinical trials (250,443,453). Ultimately, statins are a widely studied

treatment and their safety profile and benefit-harm ratio are well-established (463).

Goldacre’s criticism of existing evidence for statin safety largely centres on clinical trial
reporting. The IQWIG study cited (454) certainly provides evidence that the benefits and harms
of pharmacological treatments are underreported in publicly-available resources. However,
interpretation of this study could be more nuanced. The primary outcome measure employed in
the study is completeness of outcome reporting. For a given treatment, some outcomes are less
important than others and it is conceivable that publicly available resources deliberately
document those outcomes considered to be clinically important. A larger proportion of studies
were found to have incomplete reporting of benefits than harms. This suggests that selective
reporting was employed, at least partly, to provide a concise summation of treatment outcomes
rather than to conceal useful information. Furthermore, CSRs are made available to regulatory
bodies. It is therefore likely that any serious adverse outcomes would be highlighted in approval

documentation.

Abramson et al. (250) argue that the rate of statin-related myopathy experienced by individuals
in clinical practice is much larger than the rate observed in clinical trials. The cite a cross-
sectional study that shows statistically significant increase in ‘musculoskeletal pain’
experienced by individuals on statins (456). This study has some methodological limitations.
Due to its cross-sectional nature, the study cannot account for the fact that patients can switch
statins when they encounter side effects. Indeed, it has been shown that most patients who
experience side effects can continue on the therapy without issue if they switch statin or dosage

(464).
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Both Abramson et al. (250) and Redberg and Katz (443) compare meta-analysis results to results
from individual studies. With regards to diabetes risk, the former highlight that relative risk for
development of diabetes was much greater for CVD-free women than the central estimate for
increased diabetes risk produced by meta-analyses. This argument indeed highlights the need
for better reflection of heterogeneity in treatment side effects in the literature. However, a post-
hoc analysis of an individual trial provides much less reliable information than a meta-analysis.
This is especially true for outcomes which have a very low prevalence like statin-induced
diabetes. Redberg and Katz cite anecdotal evidence and one small trial which found statin-
related side effects to be much greater than those observed in clinical trials. These sources
provide useful information. However, meta-analyses provide much more reliable data than

individual clinical trials, narrative reviews, or anecdotal evidence.

The Role of Decision-Analytic Modelling

The decision modelling process explicitly accounts for many of the issues raised by researchers
who question evidence regarding statin safety and efficacy. Many researchers who are opposed
to the expansion of statin eligibility for primary prevention argue that both the benefits and
harms of statins must be considered. Of course, this is true. Decision-analytic modelling is a

statistical methodology that was developed to perform such analysis.

Goldacre states that statins, and other preventive interventions, need “perfect information”
because their benefits and disadvantages are often closely balanced (465). Perfect information
will never be available for any treatment. However, it is important to consider the effect that
modelling assumptions and the inherent uncertainty in their estimation have on health and cost

outcomes. Traditional and probabilistic sensitivity analysis can be employed to do this.

6.5 Consequence of Statin Criticism in the Media

Despite the strong evidence in favour of the safety and efficacy of statins, they continue to be
one of the most controversial treatments available to a widespread population. Some of this

controversy is expressed in the clinical literature, as presented in Sections 6.2 and 6.3. Criticism
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of statin policy is regularly presented in much less academically rigorous outlets including

newspapers, websites, magazines, and television programmes (466).

It is possible that statins induce the nocebo effect, a phenomenon that occurs when patients
anticipate side effects from a treatment. This anticipation manifests itself with the patient
believing that they have experienced the expected side effect. Several researchers have
attributed statin-induced muscle pains and other side effects to the nocebo effect (467-469).
Indeed, a recent study found excess rates of adverse events in a trial of statin efficacy when
patients and physicians were aware that statin therapy, and not placebo, was being administered
(470). The authors suggested that this proved many of the side effects experienced by patients
may not be causally linked to statins themselves, but rather to patient and physician perception

of the treatment’s side effect profile.

Additional consequences have been associated with continued adverse media coverage of
statins. The ACC notes the strong relationship between adverse media coverage of statins and
reduction in statin guideline uptake and adherence (471). Matthews et al. (472) performed an
interrupted time series analysis of statin initiation and continuation. They analysed data
collected in routine clinical practice in the U.K. to quantify the effect of an intense period of
media criticism of the treatment on statin-taking behaviour. For the primary prevention
population, they found no statistical difference in rates of statin initiation after such periods
(odds ratio [OR] 0.99, 95% CI 0.87-1.13). However, they did find a significant proportion of
those already taking statins stopped the treatment during these periods (OR 1.11, 95% CI 1.05-
1.18). Intense media scrutiny of statin safety and efficacy, they conclude, could lead to an extra
2,000 CVD events in the U.K. over 10 years. Studies in Australia, Denmark, France, Turkey,
and the Netherlands have also found a direct relationship between negative media attention and
statin discontinuation (466,473-476).

6.6 Imperfect Evidence, Manufacturer Incentives, and Statins

Perfect evidence for the safety and efficacy of statin therapy will never exist. Researchers and
decision-makers will always face data limitations. Given this reality and the low likelihood of

further largescale statin trials, Goldacre is correct to argue that all available evidence regarding
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statins should be made publicly available. Nonetheless, there is currently no great incentive for

pharmaceutical companies to withhold information regarding statin safety and efficacy.

As a proponent of increased transparency in clinical trials, Goldacre founded the AllTrials
campaign. The aim of AllTrials is to register all clinical trials, and subsequently report on the
methodology and results of these trials. An intermediate step towards achieving this is the
publication of each study’s CSR. It is true that a large amount of medical research is
unpublished. This was noted in the IQWIG study of CSRs versus publicly available resources
(454). Pharmaceutical companies have a clear incentive to avoid publication of negative
findings, even if doing so is detrimental to patient and population health. They may wish to
suppress data on a treatment with regulatory approval but spurious efficacy, as demonstrated by
Lee et al. (477). In addition, they may wish to avoid publishing negative results from trials of
treatments discarded early in the development cycle (478).

Underreporting of trials may occur due to the nature of academic medicine. Journals are more
likely to publish articles which show a clear effect of a treatment. Due to this publication bias,
studies which show no statistical benefit or harm are largely underreported (479). Studies which

show the largest effect size are over-reported and this may lead to bias in their favour.

An additional concern is that, without pre-specification of study methodology, pharmaceutical
companies can benefit from the principle of multiple testing and undertake post-hoc analysis
which favours their intervention. The incentive for pharmaceutical companies to apply a
methodology which overstates the benefits or understates the harms of their intervention is clear.
Constraints on publication, discussion, and analysis of data are common for researchers
undertaking industry-funded clinical trials (480). Goldacre is correct to challenge the
pharmaceutical industry and the way in which it withholds clinical trial data from researchers

and decision-makers.

With regards to statins, it is unlikely that complete publication of trial methodology and
outcomes would lead to a radical reassessment of the treatment’s safety or efficacy. Statins are
one of the most studied drugs in history. As the number of observations included in a meta-
analysis increases, the confidence interval around effect estimates generally shrinks. Data on

more than 180,000 patients, representing several hundred thousand life years of follow-up, are
175



included in statin treatment arms of recent meta-analyses (251). It is therefore unlikely that there

will be a great change in point estimates for the treatment’s benefits or harms.

Pharmaceutical companies may be jointly withholding important side effect information
regarding statins, but this is unlikely. A sentiment often proved wrong in healthcare might well
stand in the case of statins. Consider Adam Smith’s famous quote about the invisible hand of
the free market: “It is not from the benevolence of the butcher, the brewer, or the baker that we
expect our dinner, but from their regard to their own interest” (481). The incentives for major
pharmaceutical companies to shield side effect information is not clear now that all statin patents
have expired. Regeneron, Sanofi, Amgen, and Merck & Co. are among the companies that
currently have patent protection for non-statin cholesterol-reducing drugs including PCSK9
inhibitors and ezetimibe (215,223,224). The target demographic for these drugs is typically
patients with statin intolerance. It is therefore in the interest of these companies to emphasise
the rate of side effects attributable to statin therapy. Indeed, the U.S. National Library of
Medicine’s Clinical Trials database shows a large increase in trials focused on statin intolerance

in recent years (482).

6.7 Chapter Summary

This chapter set out to justify the use of statins in primary CVD prevention. Widespread
prescription of statins has been criticised in academic literature and other media. Critics have
questioned the efficacy of statin therapy and have highlighted potential side effects associated
with the treatment. Proceeding chapters in this thesis will analyse the cost-effectiveness of
different decision mechanisms to prioritise patients for preventive statin therapy. It was
therefore necessary to establish that statins are both efficacious and safe in primary prevention.

Questions regarding statin efficacy often centre around their ability to reduce all-cause mortality
and the weakness of relative risk reduction as a measure of benefit. Meta-analyses suggest that
statins do reduce all-cause mortality. Moreover, a treatment need not reduce mortality to
improve population health. Concern regarding the use of absolute versus relative risk reduction
in reporting of trial evidence is valid. However, as rates of CVD fall in high-income countries,

continued reduction in CVD incidence will only occur if more intermediate- and low-risk
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patients are treated. Decision-analytic modelling offers a systematic means of performing the

calculus necessary to determine whether it is worthwhile treating more patients.

Concern regarding the safety of statins was also addressed. Meta-analysis evidence firmly
supports the safety profile of statin therapy. However, statins are associated with a marginal
increase in diabetes. Decision-analytic modelling can be employed to weigh this absolute risk

increase for diabetes against the benefits provided by the treatment.

Prescribing statins to a large number of people will entail screening, treatment, and monitoring
costs and some side effects. The following three chapters consist of a series of cost-effectiveness
analyses. These analyses aim to establish the costs and health benefits associated with different

approaches to prioritising patients for preventive statin therapy.
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Chapter 7

Continued Use of 10-Year Risk Scores

7.1 Purpose

The following three chapters will discuss alternative approaches to the prioritisation of patients
for preventive statin therapy. Cost-effectiveness analyses of different policies will be conducted.
Each of these policies addresses heterogeneity in cost-effectiveness in the patient population to

some extent, representing novel means of patient prioritisation.

Continued use of 10-year risk scores is one approach to the prevention of CVD. Risk scores are
used to prioritise individuals for preventive therapy for CVD in a range of high-income
countries. As these thresholds apply to all individuals, regardless of any other source of patient-
level heterogeneity, hereafter this will be referred to as the ‘blanket’ risk threshold approach to

prevention.

The purpose of this chapter is to analyse two policies which involve the continued use of 10-
year risk scoring and aim to create more health than current standard of care. These policies are:
» Reducing the risk threshold (treating more individuals).

» Improving risk scores with novel biomarker data.

The epidemiologic bases for the two policies proposed were presented in Sections 4.4.2 and
4.4.3, respectively. Reducing the risk threshold will increase the sensitivity and reduce the
specificity of the risk score. More cases and non-cases will be treated. Gaining novel biomarker
data for will lead to an increase in testing costs but should target treatment at patients more
likely to experience an event. Theoretically, both of these treatment strategies will improve
population health outcomes but will lead to an increase in direct costs incurred by the healthcare

system.

Sections 7.2 and 7.3 will discuss reducing the risk threshold and updating risk scores with novel

biomarker data, respectively. They will relate these policy changes to heterogeneity in cost-
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effectiveness analysis and estimate their cost-effectiveness in the setting of primary care in the
Scottish NHS.

7.2 Cost-Effectiveness Analysis: Threshold Reduction in Scotland

7.2.1 Background

In recent years, several healthcare bodies have issued guidelines proposing a reduction in the
blanket risk threshold at which individuals are prioritised for preventive CVD therapy
(25,27,28,173). In turn, millions more CVD-free individuals have become eligible to receive
statins. Moves towards threshold reduction have occurred largely because the price of statins
has dropped dramatically. This has heralded in a new age of cheap and effective generic
cholesterol-reducing therapy.

Analyses have been performed to estimate the cost-effectiveness of reducing the risk threshold
for statin initiation in the U.S. and England and Wales (25,37,350). These analyses found that
reducing the ACC/AHA Pooled Cohorts risk score threshold from 15% to 7.5% in the U.S. and
QRISK?2 risk threshold from 20% to 10% in England and Wales were cost-effective policies.
No similar study has estimated the cost-effectiveness of reducing the threshold for statin

initiation in Scotland.

7.2.2 Objective

The objective of this study was to estimate the cost-effectiveness of reducing the risk threshold
for statin initiation in Scotland to 10%. Given that the focus of this study is to quantify the
benefit of risk-based stratification, the comparator strategy was statins only for individuals with
familial hypercholesterolaemia. This is a condition which SIGN and several other healthcare

organisations recommend be treated with statin therapy.

7.2.3 PPICOSS

Population: The Scottish CVD-free population, aged 40 years and above.
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Perspective: Scottish health sector decision-maker. All healthcare costs accrued by the Scottish

NHS and health gains in treated patients are considered.

Intervention: Intermediate-intensity statin therapy (Atorvastatin 20mg/daily or similar). Two
treatment prioritisation criteria are considered: (i) blanket 20% risk threshold and (ii) blanket
10% risk threshold.

Comparator: Statin therapy for individuals with familial hypercholesterolaemia.

Outcome: Lifetime cost-per-QALY, with both costs and QALY's discounted at 3.5% annually.
Intermediate outcomes reported are: disaggregated healthcare costs, primary CVD events
prevented, and CVD-free life years.

Setting: Primary care in the Scottish NHS.

Study Design: Cohort simulation.

7.2.4 Methodology

Scottish CVVD Policy Model

The Scottish CVD Policy model was employed to estimate the cost-effectiveness of different
methods of statin prioritisation. This decision-analytic model predicts life expectancy, quality-
adjusted life expectancy, and cost outcomes for individuals based on their ASSIGN risk factors
and was discussed in depth in Chapter 5.

Treatment Strategies

Three different treatment strategies were considered in the analysis. These were statin therapy
initiation for individuals with familial hypercholesterolaemia, individuals with an ASSIGN
score greater than 20% (ASSIGN 20), and individuals with an ASSIGN score greater than 10%
(ASSIGN 10).
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Statins for individuals with familial hypercholesterolaemia was included as a base case for the
analysis as it was assumed that, regardless of risk threshold for statin initiation, these individuals
would always receive statin therapy. Familial hypercholesterolaemia was defined as TC
>7.5mmol/L and a family history of CVD or TC >8.0 mmol/L, as per SIGN’s guideline for the
primary prevention of CVD (26).

Scottish Health Survey and Census Data

All analysis was completed using a combination of the Scottish Health Survey 2011 (310) and
the Scottish Census 2011 (483).

SHeS is a study of public health which was commissioned by the Scottish Government Health
Directorates (484). It was conducted face-to-face with trained interviewers, contains
information on many health indicators, and is principally focused on CVD. Values for all
ASSIGN risk factors can be derived for all survey respondents from SHeS data. Access to SHeS

database was available through the U.K. Data Service website (347).

The survey used a multi-stage stratified probability sampling design (485). Data were obtained
from twenty-five strata. These divided Scotland into twenty-five distinct groups: the three island
Health Boards (Orkney, Shetland, and Western Isles), along with 22 other groups constructed
by dividing the remaining 11 Scottish Health Boards into data zones containing “deprived” and
“non-deprived” populations. Areas were deemed to be deprived if they were in the top 15% of
deprived areas according to SIMD. Stratification allowed for the oversampling of deprived
areas. This was to ensure the survey gave a representative sample of the Scottish population, as
response rates for surveys are typically lower in deprived areas.

SHeS 2011 consisted of two stages. All respondents completed an initial interview which
obtained information on core topics including: household information, general health, general
CVD, use of health services, lifestyle factors, economic activity, education, ethnic background,
national identity and origin, family health background, and height and weight.
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The second stage was a nurse interview, in which blood samples were obtained. A subsample
of those interviewed in stage 1 was offered nurse interviews. These were important with regards

to this analysis, as they obtained information on patients’ cholesterol levels and blood pressure.

In total, 10,431 addresses were selected for initial sample. Interviews were conducted with 7,544
adults and the estimated response rate was approximately 56%. 4,644 of these adults were aged
40 and above and CVD free. Of those interviewed, 2,224 were eligible for a nurse visit, and 725
gave a blood sample. These low response rates are of some concern. However, the probability
sampling approach accounted for the likelihood of non-response based on demographic

predictors.
Additional data were needed to project results onto the Scottish population. The 2011 Scottish
Census (483) provided information on the Scottish population, and the distribution of age-

groups within it.

Multiple Imputation

A key issue with the SHeS data is the relatively small number of respondents for whom nurse
interviews were performed. This means that data are sparse for three important modifiable risk
factors: TC, HDL-C, and SBP.

Typically, one would carry out an analysis with the subset of respondents for whom blood
samples were available when so many data are missing. However, the results from such an
analysis would not be particularly useful. Despite the probabilistic sampling techniques
employed by SHeS administrators to determine which individuals received a nurse interview,

the small number of people with full risk factor profiles will likely lead to small sample bias.

The problem of small sample bias is exacerbated because this analysis was in part stratified by
age-group. In the older age-groups, CVVD was widespread. For example, CVD prevalence in the
dataset for over 80s was 48%. Blood sample information was available for only 25 individuals
older than 80 with no established CVD.
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Almost complete information was available for respondent’s age, sex, SIMD score, diabetes,
and family history of CVD. Data on hours exercised per week was available for all of these
individuals. Evidence suggests that exercise has strong relationships with TC, HDL-C, and SBP
(486). For all individuals who were not offered a nurse visit and therefore did not have complete
cholesterol or blood pressure data, SBP, TC, HDL-C was imputed using all available ASSIGN

variables plus weekly hours of exercise as predictors.

It was determined that the best way to utilise the data available was to multiply impute missing
SBP, TC, and HDL-C values for individuals who refused nurse visits (n=306) (487). Janssen et
al. (488) show that imputing missing data is a more reliable means of obtaining unbiased
estimates than removing variables with missing data or performing a complete case analysis in
medical research. This result was validated even with 90% missing data in some variables, but
strictly relied on the assumption that data were missing at random.

For the 306 individuals who refused a nurse visit, SBP, TC, and HDL-C, ten imputed risk
profiles were created by with Stata 12.1 (489). Non-missing ASSIGN variables were employed
in the imputation process along with the individual’s weekly hours of exercise. During the
simulation process, each of the ten imputed risk factor profiles was inputted into the model to
simulate statin therapy, and the outcomes from these simulations were averaged to determine a

central estimate of the treatment’s effect on the individual’s health and cost outcomes.

Descriptive statistics of the final dataset are displayed in Table 7-1. The descriptive statistics of
the subset of the data for individuals who were offered but refused a nurse visit are included in
Table 7-2. FH, Diabetes, and Male are binary variables. All other variables are continuous.
Individual SIMD scores were not available in the dataset, instead SIMD quintiles were available

and individuals were assigned the median SIMD of their recorded quintile.
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Std.

Max

Risk Factor Obs  Mean
Dev

0.49 0 1

Male 4,644 0.42

Age 4,644 | 58.51 12.30 40 103
SIMD 4,644 | 19.51 13.39 5.18 45.62
Diabetes 4,644 0.07 0.25 0 1
FH 4,644 0.46 0.50 0 1
CPD 4,644 7 7.05 0 39
SBP (mmHg) 4,644 131 8.81 90 203
TC (mmol/L) 4,644 5.8 0.50 3.0 10.5
HDL-C (mmol/L) 4,644 1.5 0.22 0.6 3.3
ASSIGN Score 4,644 19.6 17.5 1.0 98.5

Table 7-1: Descriptive statistics of SHeS 2011 dataset

Risk Factor Obs Mean Std. Min Max
Dev.

Male 306 0.39 0.49 0 1
Age 306 | 60.44 12.92 40 103
SIMD 306 | 22.07 14.65 5.18 45.62
Diabetes 306 0.09 0.29 0 1
Family History 306 0.48 0.50 0 1
CPD 306 7 3.77 0 39
SBP (mmHg) 306 133 8.83 110 159
TC (mmol/L) 306 5.6 0.53 3.8 6.9
HDL-C (mmol/L) 306 1.5 0.23 0.9 2.0
ASSIGN Score 306 23.1 20.1 2.0 98.5

Table 7-2: Descriptive statistics of SHeS 2011 participants who refused a
nurse visit; SBP, TC, and HDL-C multiply imputed

Simulation

The Scottish CVD Policy Model simulated the effect that giving statins to different groups of
people. Two macros for Microsoft Excel were written using Microsoft Visual Basic (490). These
are included in the appendix (Al). Macro One created a ‘Do Nothing’ scenario. This macro
inserted the risk factor information for each individual from the dataset into the Scottish CVD
Policy Model. It then recorded this individual’s life expectancy, quality-adjusted life

expectancy, and lifetime health costs, as determined by the model.
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Macro Two simulated the impact of giving statins to everyone in the dataset. Again, it inserted
each individual’s risk factor information into the model systematically. However, this time

several parameters were altered before outcomes were recorded, to simulate statin therapy.

Treatment Parameters

Parameters were altered in Macro Two to simulate the benefits, side effects, and cost of statin
therapy. Intermediate-intensity statin therapy was simulated, in line with SIGN guidelines. The
treatment simulated was Atorvastatin 20mg daily, again in accordance with SIGN guidelines.
However, it was assumed that an individual could switch to a statin of similar potency if they

experienced intolerance to the treatment.

Treatment effect on cholesterol levels: Baseline cholesterol values were altered for individuals
to simulate the effect of statins of CVD risk factors. Meta-analysis evidence suggests that statins
produce a 29% reduction in LDL-C and a smaller 20% reduction in triglycerides
(37,284,491,492). Meta-analyses additionally show that intermediate-intensity statins increase
HDL-C by approximately 4-7% (493).

The Scottish CVD Policy Model employs TC rather than LDL-C as a predictor of CVD risk.
Moreover, SHeS 2011 only collected data on individual’s TC and HDL-C due complexity in
LDL-C measurement (494). According to Friedewald’s equation, which has been extensively

validated, LDL-C can be approximated by the following equation:
triglycerides)
0 :
In this equation, k=5 when cholesterol is measured in mg/dL and k=2.17 when cholesterol is

LDL=TC—HDL—(

measured in mmol/L (495,496). Hence non-HDL cholesterol is predominantly a combination of
LDL-C and triglycerides. Conservatively assuming that LDL-C accounts for 80% of total non-
HDL cholesterol (284), the net effect of statins on non-HDL cholesterol was estimated to be
27.2% (80%%*0.29+20%*0.20).

Side effects and treatment disutility: Statins are a relatively safe treatment with a well-
established side effect profile (446). They have, however, been shown to increase absolute risk

of developing diabetes by 0.39% and 0.5% in two meta-analyses (440,446). The larger of these
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estimates was employed in the base case statin analysis by increasing risk of diabetes

development for on-treatment patients.

An annual pill-taking disutility of 0.0011 QALY's was also applied. This value was derived from
the willingness-to-pay to avoid daily pill-taking for CVD prevention in a cross-sectional cohort
of 708 healthcare employees in Central North Carolina (497). As presented in Chapter 6, no
meta-analysis provides statistically significant or positive point estimates for statin-induced

myopathy. Therefore, no disutility or costs were applied for this perceived side effect.

Treatment costs: Statin costs were obtained from the British National Formulary (213). An
annual cost of £13 was applied for every year on statin therapy, representing the annual NHS
indicative price for generic Atorvastatin 20mg. Several cheaper intermediate-intensity generic
statins are also available in case of the need for statin switching. It was, however, assumed that
patients would not switch to a more expensive or most effective statin, namely higher doses of

Atorvastatin or Rosuvastatin.

Risk assessment, monitoring, and side effect costs: Monitoring costs were also applied in the
analysis. These costs were predominantly obtained from a cost-effectiveness analysis of risk
thresholds for statin prioritisation included in NICE Clinical Guideline 181 (25).

The NICE analysis assumed that statin patients will have two additional general practitioner
(GP) visits in years subsequent to treatment initiation when compared with individuals not
receiving treatment. This represents a conservative assumption in terms of treatment cost-
effectiveness, as one additional GP appointment was recommended by the NICE Guideline
Development Group (GDG) (25). In this analysis it was assumed that all patients would attend
one additional GP visit in subsequent years and one quarter of patients would have a further
visit. This decision conservatively assumed resource use in excess of that suggested by the
GDG, without overestimating the impact of costly GP appointments on the cost-effectiveness

of statins.

Additional costs were added to each individual attributable to the small increase in diabetes
expected in the statin-taking population. These costs were also obtained from NICE CG181

(25), and were weighted by the probability of statin-induced diabetes. These costs include the
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annual cost of diabetes-related medication, four annual GP appointments, four annual nurse
appointments, and a dietary management programme. These utilisation rates and costs are
described in Table 7-3.

During Risk Utilisation Utilisation

Resource Price Source
Assessment year 1 year 2+

Appointments

Appointment to take

blood sample (with 1 2 1 £6.46

healthcare assistant)

Appointment with 1 0 0 £13.43

nurse

Appointment with GP 0 2.25 1.25 £45.00

Blood tests (25)

Total cholesterol 0 2 1 £1.00

HDL cholesterol 0 2 1 £1.00

Triglycerides 0 0 0 £1.00

Combined lipid profile 1 0 0 £3.00

Liver transaminase

(ALT or AST) 1 2 1 £1.00

Creatine kinase 0.1 0 0 £2.00

HbA1c 1 1 £2.25

Annual cost of early

stage 2 diabetes

4x500mg metformin, 1x10mg ramipril 1x10mg amlodipine all  £314.33 (25)

daily, 4xGP appointments yearly, 5x nurse appointments

yearly, 1 diet management programme every 4 years

Total costs

Annual. monitoring £120.17

cost, first year

Annual monitoring (25)

cost, subsequent £67.96

years

Table 7-3: Monitoring price, utilisation, and cost of statin therapy in Scotland

Discounting: All costs and health benefits were discounted at a rate of 3.5% annually, the U.K.

public service discount rate, as suggested by NICE (40).

Adherence: Adherence was not directly modelled but assumed to be reflected in the estimate for
cholesterol modification. As all studies included in the meta-analyses to determine treatment

parameters were conducted under the principle of ‘intention to treat’, it was assumed that
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adherence was accounted for in the estimates of treatment effect. No costs, side effects, or
treatment-related disutility values were modified by an adherence factor, representing a

conservative assumption with regards to the cost-effectiveness of statin therapy.

Table 7-4 presents the range of treatment parameters employed in the simulation.

Base Distribution
Parameter Case f Lower Upper Source
or PSA
Value
Change in cholesterol levels (%)
Non-HDL cholesterol -27.2 Beta -15.0 -40.0 (284,491)
HDL cholesterol +4.0 Beta 0.0 +9.0 (493)
Statin-induced
diabetes, absolute risk +5.0 Log normal +0.1 +1.0 (446)

increase (%)
Annual pill-taking

disutility 0.0011 Beta 0.005 0 (497)
Annual treatment costs

Atorvastatin 20mg/daily £13.00 Gamma £6.50 £19.50 (213)
Annual risk assessment, monitoring, and side effect costs

Risk assessment £26.34 Gamma £19.76 £32.93

Monitoring, first year £120.17 Gamma £75.17 £165.17 (25)
Monitoring, subsequent £67.96 Gamma £22.96 £112.96

Weighted cost, type 2 £1.57 Gamma ) )

diabetes treatment
Table 7-4: Intermediate-intensity statin treatment parameters

Estimating Outcomes

Simulation results were stratified by prioritisation method. The policies considered were a
blanket 20% risk threshold and blanket 10% risk threshold for prioritising preventive statin

therapy, with statins for FH as a comparator.

Health and cost outcomes were estimated for individuals with a combination of the output from
Macro 1 and Macro 2. If an individual met eligibility criteria, their outcome value was obtained
from the output of Macro 2. Otherwise, outcomes were obtained from the output from Macro 1:
their baseline outcomes. Gains in outcome i, for individual j, under prioritisation method Kk,

Gi jx,» Was computed as follow:
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Gijk = 0ijx — Oijpasetine

i € {LE,QALE, costs}

j€{1,23,..,4644}

k € {Familial hypercholesterolaemia,20% threshold, 10% threshold}.
In these equations, O; ;. represents the simulated value of outcome i for individual j under
prioritisation method k, and O; ; paseiine represents the simulated value of outcome i for
individual j at baseline. Hence Goark 5200 threshota 1S €qual to the QALY's gained by individual
number 5 under the 20% blanket threshold compared to receiving no treatment. If individual 5
has an ASSIGN score greater than 20%, they will receive treatment and this value will be non-
zero. If individual 5 has an ASSIGN score less than 20%, Ogape 5,20% threshota 1S €qual to
OqaLE,5 Baseline- 1heYy Will receive no treatment effects and Goarg s 209 thresnota Will be equal

to zero. More generally, for individuals who do not meet a prioritisation criterion k:

Gijkx = O0ijk — Oipasetine = 0.

The results were stratified by age-group to facilitate projection of results onto the Scottish
population. The sum of outcome gains was calculated for each prioritisation method for
individuals in 5-year age bands from 40 to 79 and individuals aged above 80 years. This value

will be referred to as the sample outcome gain (SG). SG was calculated within each age-group

SGikage = z Gijk

jEAge
Age € {40 — 44,45 — 49,50 — 54,55 — 59,

60 — 64,65 — 69,70 — 74,75 — 79,80+}.

as follows:

Age refers to the subset of respondents in the dataset who fall into a given age-group. Hence,
SGeosts10% threshold,s5—59 1S equal to the simulated sum of cost differentials attributable to a
10% risk threshold compared to no active treatment across all individuals aged 55-59 included

in the SHeS sample.

Next, the average sample age-group outcome gain, SG,  44¢, Was estimated for strategy, k, in
each age-group. This value was estimated as follows:

SGi,k,Age
|Agel|

SGl,k,Age -
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In the equation above, |Age| represents the number of people in the SHeS dataset within the

age-group Age. Hence, SGk 109 risk threshola,go+ €4uals the average life years gained under the
10% risk threshold compared to receiving no treatment for individuals aged 80 and above in the
SHeS dataset.

Projecting Results

Data from the Scottish Census of 2011 was used to project the results onto the Scottish
population (483). The objective of this analysis was to estimate the number of people who would
be recommended statins and the outcome gains that would be achieved under each method of

prioritisation.

The number of people in each age-group was obtained from the census data. As this study
focused on statins for primary prevention of CVD, it was necessary to scale the number of
people in each age-group down, to ensure the analysis related only to the CVVD-free population.
This was calculated by multiplying the number of people in each age-group according to the
census by the percentage of CVD-free individuals in that age-group in the SHeS cohort. Table
7-5 presents the estimated Scottish population and Scottish CVVD-free population for each age

group employed in this analysis.

CVD-Free

Age Males Female Population

Population

40-44 191,440 203,258 394,698 387,199
45-49 200,319 210,610 410,929 394,903
50-54 184,198 191,629 375,827 355,532
55-59 162,197 168,694 330,891 307,729
60-64 164,725 171,797 336,522 297,149
65-69 124,671 136,527 261,198 223,585
70-74 100,691 119,903 220,594 178,019
75-79 76,818 101,296 178,114 134,120
80+ 81,559 148,869 230,428 143,557
Sum 1,286,618 | 1,452,583 | 2,739,201 | 2,421,793

Table 7-5: Scottish Census population and estimated CVD-free
populations, stratified by 5-year age-group
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After obtaining the census-level age distributions, it was possible to estimate population-level
absolute outcome gains in the different age-groups attributable to statin prioritisation strategies,
denoted hereafter by PG ag. Multiplying SG, a5 by the number of people within the
respective age-group in the Scottish population gave an estimate of the absolute outcome gains
that would be achieved in age-group Age under prioritisation method k in the Scottish
population. The number of people treated in each age-group was estimated by multiplying the
percentage of people treated in the dataset by the number of CVD-free people in that age-group.

This value will be denoted by PTy, 44e-

Finally, an estimate of the total outcome gains, G;, and number of people treated for each
prioritisation policy, Treatedy, was obtained. This was achieved by summing PG,y 4. and
PTy 44 across all the different age-groups:

G = ) PGisage

Age

Treated; = Z PTy age-
AGE

Inflation

All chronic health and monitoring costs were inflated by 3.3%, accounting for annual inflation
from 2014 to 2017. Values for the annual rate of inflation were derived from the U.K.
Department of Health’s Hospital and Community Health Services Pay and Price Inflation index
(498). Costs in the model have not been updated since 2014, so this allowed the analysis to

account for upwards trends in fees paid by the NHS to healthcare providers.

Cost-Effectiveness Analysis

Cost-effectiveness analysis was performed using traditional cost-effectiveness decision rules
(43,354). Three policies were considered: treatment for familial hypercholesterolaemia, a 20%
risk threshold, and a 10% risk threshold. These policies were ranked in terms of increasing
health benefits. After accounting for the possibility of strict domination (a policy which incurs

more costs and gains less health than a competitor), the ICER was estimated. Each policy was
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incrementally compared to the next most expensive non-dominated policy. The possibility of

extended domination was also considered at this point.

A willingness-to-pay threshold was defined for the cost-effectiveness analysis. The SMC and
SIGN typically defer willingness-to-pay determination and cost-effectiveness analysis to NICE
(499). A strategy was determined to be cost-effective if its ICER was below £20,000/QALY.
This is the lower bound applied by NICE in their assessment of health technologies. The lower
bound was selected for this analysis with consideration for analysis by researchers at the
University of York which suggests that the willingness-to-pay threshold is presently set too high
in the NHS (500)

Inequality

A final piece of analysis considered the consequences of different treatment strategies on health
inequalities. Discounted QALY gains per 1,000 individuals were presented, disaggregated by
SIMD quintile. The proportion of total QALYs gained by each SIMD quintile was also
presented. A policy was considered progressive if more discounted QALY's were produced in
the two most deprived compared to the two least deprived quintiles of the CVD-free Scottish

population.

Sensitivity Analyses

One-way sensitivity analyses were undertaken to assess the impact of key modelling parameters
on predicted cost-effectiveness outcomes. Table 7-4 describes the parameters and specific
values altered in these analyses. Results from these sensitivity analyses were synthesised in a

tornado diagram.

The parameters included in sensitivity analyses were: pill-taking disutility, non-HDL
cholesterol reduction and HDL cholesterol increase, monitoring costs in the first year of
treatment, monitoring costs in subsequent years of treatment, cost of risk assessment, and price

of statins.
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Few studies exist which estimate the disutility associated with daily pill-taking. Moreover,
existing studies predict large and inconceivable ranges of potential disutility. For example, in
an internet survey of disutility associated with daily pill-taking for cardiovascular prevention,
Hutchins et al. (36) found that 62% of respondents would experience no disutility from pill-
taking but 9% were willing to accept a 10% risk of immediate death to avoid daily pill-taking.
It is very unlikely that such individuals would take statins if prescribed, and would therefore not
encounter the costs or benefits of treatment. Sensitivity analyses considered the effect of

nullifying and largely increasing the base case pill-taking disutility.

Properly defining monitoring costs in cost-effectiveness analyses of statin therapy is very
important. As seen in Table 7-4, annual monitoring costs are indeed much more expensive than
the therapy itself. Moreover, SIGN provides little guidance on patient monitoring. GP visits are
the key driver of monitoring costs and are also an area of considerable uncertainty. Sensitivity
analysis focused specifically on GP visits in first and subsequent years of treatment, considering

the effect of increasing and reducing visits by one appointment per year, respectively.

Level of cholesterol modification was also varied in one-way sensitivity analyses. A relatively
conservative estimate of the non-HDL cholesterol reducing effect of statins was applied in the
base case analysis. Many studies have found non-HDL cholesterol reduction of more than 40%
for intermediate-intensity statins (284). A 15% reduction was applied in a separate analysis,
which conservatively reflects the non-HDL cholesterol reduction observed in trials of low-
intensity statin therapy (284). The HDL-C-increasing effect of statins has been widely observed,
but scholars debate the importance of HDL-C in cardiovascular prevention (501,502).
Therefore, HDL-C increase was varied from zero to 9%, a central estimate of HDL-C increase

from a meta-analysis of statins efficacy (493).

Probabilistic sensitivity analysis stochastically sampled Table 7-4 input distributions and Tables
5-1 and 5-2 risk factor hazard ratios in 500 independent iterations. The Microsoft Visual Basic
code used for this analysis is included in the appendix (A2). Correlation between risk factor
hazard ratios was accounted for through the Cholesky decomposition method (309,503). Using
the cost and QALY results from probabilistic analyses, a cost-effectiveness acceptability curve
was produced which shows the probability of each treatment strategy being the most cost-

effective option for decision-makers at a range of willingness-to-pay thresholds.
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7.2.5 Results

Demographics of Treated Patients

Table 7-6 provides descriptive statistics for the overall population and subpopulations treated
under ASSIGN 20 and ASSIGN 10. It details the percentage of different age-groups treated
under the different prioritisation strategies alongside the treated population’s average risk factor

values.

Overall ASSIGN ASSIGN

Population 20 10

40-44 n/a 0 3

(Ol 45-49 n/a 2 14
S 50-54 n/a 5 38
LE-M 55-59 n/a 15 74
I 60-64 n/a 41 94
Sl 65-69 n/a 75 100
3 4 7/0-74 n/a 92 100
ol 75-79 n/a 100 100
80+ n/a 100 100

Male (%) 42 45 47

TR SIMD 19.5 21.2 20.5
I Diabetes (%) 7 15 11
A FH (%) 46 68 62
- CPD 7 8 7
§ SBP (mmHg) 131 134 133
S 3l TC (mmol/L) 5.8 5.8 5.8
HDL (mmol/L) 1.5 1.5 1.5

Table 7-6: Descriptive statistics of ASSIGN 20 and ASSIGN 10
treated populations

Compared to the general population, the treated populations include more men than women,
have greater levels of social deprivation, and include a greater proportion of individuals with
diabetes and family history of CVD. Risk factors levels are similar between the ASSIGN 20 and
ASSIGN 10 subpopulations. However, more individuals aged 40-75 are treated under this

strategy.

194



Base Case Cost-Effectiveness Analysis

Results for the base case cost-effectiveness analysis are presented in Table 7-7, with number

treated, QALYs, and costs incremental to a policy which treats only familial

hypercholesterolaemia. No strategy was strictly or extendedly dominated. These results are

presented on the cost-effectiveness plane in Figure 7-1.

- De D o e D o =Je
0
- ~Ye ()A 0 0]0]0 QA
Familial Hyp. Reference
ASSIGN 20 794,000 92,300 636,000 6,900
ASSIGN 10 1,381,000 164,000 1,596,000 13,500

Table 7-7: Base-case cost-effectiveness results, ASSIGN 20 and ASSIGN 10
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Figure 7-1: Base case cost-effectiveness plane, ASSIGN 20 and ASSIGN 10

The ASSIGN 20 strategy was estimated to treat around 794,000 individuals more than treatment
for familial hypercholesterolaemia. The ICER of implementing ASSIGN 20 was estimated to
be around £6,900/QALY. ASSIGN 10 required treating approximately 588,000 additional
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individuals incremental to ASSIGN 20. The ICER of implementing ASSIGN 10 incremental to
ASSIGN 20 was around £13,500/QALY. Therefore, with a willingness-to-pay threshold of
£20,000/QALY, ASSIGN 10 is cost-effective and should be implemented.

Intermediate Outcomes

Tables 7-8 and 7-9 present intermediate outcomes for the base case. The former presents the
primary CVD events prevented and life years gained estimated by the respective policies, and

the latter presents an estimation of disaggregated costs.

Primary CVD
Events
Prevented

Life Years

Gained

Familial Hyp. Reference
ASSIGN 20 27,000 170,000
ASSIGN 10 49,000 351,000

Table 7-8: Base case CVD events prevented and
life years gained, ASSIGN 20 and ASSIGN 10

Incremental to statins for familial hypercholesterolaemia, ASSIGN 20 would prevent around
27,000 additional events, producing around 170,000 life years in the Scottish population.
Incremental to ASSIGN 20, ASSIGN 10 would prevent around 22,000 additional events,
producing around 181,000 additional life years in the Scottish population.

i Disc. Costs (£E1000’s)

0 D ) % 0 0
Familial Hyp. Reference
ASSIGN 20 720,000 -718,000 84,000 550,000
ASSIGN 10 1,562,000 -1,322,000 190,000 1,166,000

Table 7-9: Base case disaggregated costs, ASSIGN 20 and ASSIGN 10

Both ASSIGN 20 and ASSIGN 10 lead to CVD-related cost savings compared to treating
familial hypercholesterolaemia alone. These cost savings are likely attributable to prevention of
CVD events. Statin costs represent around 7% of cost increases attributable to treatment for both
ASSIGN 20 and ASSIGN 10. Monitoring and non-CVD costs represent around 38-40% and 53-

55% of these costs, respectively.
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Inequality Analysis

Results were disaggregated to estimate the effect of threshold reduction on health inequalities.
Figure 7-2 shows the discounted QALY gains achieved per 1,000 individuals in the population,
disaggregated by SIMD quintile. The darkest bars represent the most deprived quintile (SIMD5)
while the lightest bars represent the least deprived quintile (SIMD1). In absolute terms, all
SIMD quintiles gained more discounted QALY under Blanket 10 than Blanket 20. Absolute

health gains continuously increased with level of social deprivation.

Blanket 20

Blanket 10

c 4 & ] 10 12 14 16 18 0
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Figure 7-2: Discounted QALY gains for blanket risk threshold strategies per 1,000
individuals, disaggregated by SIMD quintile

The proportion of health gains achieved per quintile of social deprivation was also estimated.
These results are displayed in Figure 7-3. The distribution of discounted QALY gains was
similar for the two policies. Both policies were progressive: they led to a greater proportion of
health gains being achieved in the two most deprived SIMD quintiles compared with the two

least deprived quintiles.
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Figure 7-3: Proportion of discounted QALY gains achieved by different SIMD
quintiles, blanket risk threshold strategies

Sensitivity Analyses

Figures 7-4 and 7-5 present the results of sensitivity analyses in the form of tornado diagrams.
Tornado diagrams show the range of ICER estimates achieved by employing different parameter

values in the decision modelling process, centred on the ICER estimated in the base case.

Figure 7-4 presents the different ICERs attributable to implementing ASSIGN 20 over statins
only for familial hypercholesterolaemia. Figure 7-5 presents the ICERs of moving from
ASSIGN 20 to ASSIGN 10. These charts show that there is considerably more uncertainty in
deciding to move from ASSIGN 20 to ASSIGN 10 compared with instituting the ASSIGN 20
strategy. However, all sensitivity analyses produced ICERs less than £30,000/QALY for the
transition from ASSIGN 20 to ASSIGN 10, suggesting the cost-effectiveness of extending statin

eligibility is robust to changes in modelling assumptions.
The largest areas of uncertainty for Scottish decision-makers deciding whether to reduce the

risk threshold for statin initiation are the non-HDL cholesterol-reducing effect of statins, pill-

taking disutility, and monitoring costs in years subsequent to treatment initiation.
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Figure 7-4: Tornado diagram, one-way sensitivity analysis of key parameters and

their effect on ICER of implementing ASSIGN 20 over statins for only familial
hypercholesterolaemia
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Figure 7-5: Tornado diagram, one-way sensitivity analysis of key parameters and
their effect on ICER of implementing ASSIGN 10 over ASSIGN 20

Probabilistic sensitivity analysis provides more in-depth information regarding the total
uncertainty inherent in the modelling process. Results from the PSA are presented in a cost-
effectiveness acceptability curve in Figure 7-6. The red curve shows the proportion of
simulations in which Blanket 20 was optimal at a range of cost-effectiveness thresholds and the
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green curve represents Blanket 10. The black dashed line indicates a cost-effectiveness threshold
of £20,000/QALY. At this threshold, Blanket 10 was optimal in 76% of simulations.
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Figure 7-6: Cost-effectiveness acceptability curve, ASSIGN 20 versus ASSIGN 10

7.2.6 Discussion and Limitations

Discussion

Results from the preceding analysis suggest that reducing the ASSIGN risk threshold for statin
initiation in Scotland to 10% would be cost-effective. Based on the willingness-to-pay threshold
for NICE, the SMC, and SIGN, this policy should be enacted even under conservative modelling

assumptions.

The disaggregated costs presented in Table 7-9 show that statins prescriptions contribute a small
percentage of the costs attributable to increasing statin availability. The key drivers of increased
costs are those associated with extended life expectancy and monitoring. The cost of non-CVD
health care treatment cannot be altered with ease. However, this analysis highlights that reducing
monitoring costs for statins could make the treatment much more cost-effectiveness and
facilitate the expansion of treatment eligibility. This may be achieved through reducing GP
appointments in years following treatment initiation and increasing the role of nurses,

pharmacists, and other healthcare professionals in the monitoring process.
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The sensitivity analysis regarding monitoring costs in years subsequent to treatment initiation
produced important results. When lower monitoring costs were applied, the ICER of expanding
treatment eligibility from those with familial hypercholesterolaemia to those with ASSIGN
score >20% was around £3,800/QALY. Incrementally moving from ASSIGN 20 to ASSIGN 10
then produced an ICER of approximately £8,700/QALY. In this analysis it was assumed that
patients would receive annual appointments with a healthcare assistant and have blood
measurements recorded but that only 25% of patients would attend a GP appointment in years
subsequent to treatment initiation. SIGN, NICE, and ACC/AHA guidelines do not explicitly
specify a need for recurrent GP appointments in subsequent years of treatment. Therefore, the
lower ICERs presented in this analysis may better represent the cost-effectiveness of expanding

statin eligibility than base case estimates.

Throughout the rest of this thesis, alternative approaches to traditional risk scoring for statin
prioritisation will be considered. While ASSIGN 10 is likely more cost-effective than ASSIGN
20, approaches which better represent patient-level heterogeneity in outcome may produce more
health than a blanket risk threshold approach.

Limitations

While SHeS is an extensive survey which focuses on CVD in Scotland, it has many issues. Poor
response rates are one issue that must be considered. It is possible that healthier people are more
open to discussing the state of their health. This could introduce a bias in results, as the sample
used for analysis may have been healthier than the general population. Consequently, the
number of high-risk individuals in the Scottish population may have been underestimated.

Another notable issue with the SHeS dataset is the small number of individuals who completed
the nurse interview. This resulted in the imputation of TC, HDL-C, and SBP values for many
individuals, and multiple imputation of these values for 306 individuals who refused the nurse
visit. Sterne et al. (504) note that multiple imputation can lead to biased results when a large

amount of data are missing not completely at random.
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It was necessary to make assumptions regarding some parameters in the model which may have
biased results. No rate of adherence was applied in the analysis. The implicit assumption was
that the effectiveness of the treatment would be similar to that observed in intention-to-treat
analyses of clinical trials. In real-world clinical practice, as opposed to clinical trials, it is likely
that there would be lower adherence to recommended treatment regimens, and some physicians
would not follow guideline recommendations. Therefore, estimated population health benefits
may be overstated. However, it can be assumed that patients who do not take the treatment will
not incur the costs or the benefits associated with treatment. They will therefore not contribute

to average incremental outcomes.

Some patients may fill their statin prescription but not consume the medication as scheduled
(505). Table 7-9 showed that treatment monitoring and non-CVD costs accounted for a large
proportion of cost increases associated with expanding statin eligibility. Hence, these patients
will likely not incur the totality of incremental costs associated with statin therapy. Nonetheless
they will achieve no health benefits from treatment while incurring costs. Results from this
analysis will be significantly biased if this group represents a large proportion of the patient
population. Non-compliance to preventive medication is poorly-defined in biomedical literature
and data regarding the prevalence of different types of non-compliance are sparse (506,507).
Further research should look to better explain non-compliance with statin therapy and its impact

on cost-effectiveness.

7.3 Cost-Effectiveness Analysis: Updating Current Risk Scores

The following analysis will consider an alternative policy for preventive statin prioritisation
which aims to better represent heterogeneity in decision-making while continuing to use 10-
year risk scores to make treatment decisions. This policy is prioritisation of patients with an
updated risk score. Specifically, risk scores can be updated by including additional covariates

which better identify individuals at elevated risk of experiencing a CVD event.

Medical understanding of chronic diseases has advanced dramatically in recent decades. Such
advancement can be attributed to many factors. These include: the exponential growth function
of scientific knowledge, the availability of ‘big’ health data, increased computational power,

new technology, and increased health research funding. Mannino and Buist note that
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understanding of the combination of environmental and genetic factors along with comorbidities
has drastically improved etiological understanding of COPD in recent years (508) and Beasley
et al. (509) highlight the evolving role of novel factors in explaining asthma risk. In CVD,
research led by Seidah and Boileau published in the early 2000s helped to establish the link
between the PCSK9 gene in humans and familial hypercholesterolaemia (510). This work led
directly to the development of a new class of drugs which inhibit PCSK9 with the aim of
reducing LDL-C and CVD events.

With regards to prevention, increased understanding of a disease’s risk factors and causes is
clinically beneficial for two reasons: (i) it can help clinicians determine which asymptomatic
individuals are at heightened risk of developing a disease, and (ii) new treatments can be
developed which target the causes of a condition. This chapter will focus on the former. It will
examine whether testing for novel CVD biomarkers will increase the cost-effectiveness of CVD

risk diagnosis and subsequent treatment in the asymptomatic adult population.

Section 4.4.3 showed that adding a covariate to a risk score for CVD is unlikely to reclassify
many patients. However, the greatest degree of clinical uncertainty for physicians will always
exist in those patients with intermediate risk scores. Obtaining additional information on these
patients can help to solidify the physician’s treatment decision.

7.3.1 Background

Cost-Effectiveness of Novel Biomarker Testing in CVD

Several studies have addressed the cost-effectiveness of testing for novel CVD-related serum
biomarkers in an asymptomatic population (283,511-514). Most have assessed the cost-
effectiveness of screening for high-sensitivity C-reactive protein, a marker of inflammation.
Estimates of the cost-effectiveness of hs-CRP testing have varied substantially, as have the

structure of the economic evaluations.

The cost-effectiveness of novel serum biomarker screening for preventive CVD interventions
was discussed at length in a systematic review produced by the Belgian Health Care Knowledge

Centre (BHCKC) (515). Five papers were identified in this review. Of these papers, only one,
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authored by Lee et al., compares hs-CRP testing to traditional risk scoring (511). The rest
compare hs-CRP testing to prioritisation of individuals based on elevated lipid levels and, in

some cases, the presence of additional risk factors.

The approach adopted in previous cost-effectiveness analyses likely biased their results.
Omission of relevant comparators can bias ICER estimations, overstating the cost-effectiveness
of expensive interventions (516). Given that most high-income countries employ 10-year risk
scoring to prioritise individuals for primary CVD intervention, this approach should be treated
as the primary comparator in any biomarker testing analysis.

The cost-effectiveness of hs-CRP screening compared to traditional risk scoring has not been
established. Lee et al. (511) considered the cost-effectiveness of hs-CRP testing in U.S. adults
deemed to be at intermediate- and low-risk of CVD according to the Framingham Risk Score.
A lifetime horizon and a U.S. health sector perspective were adopted for the analysis. Risk
scoring without hs-CRP screening was estimated to be more cost-effective than risk scoring
with hs-CRP screening of intermediate-risk individuals. These findings relied on three
assumptions: statins are safe to use over an extended time horizon, they will remain inexpensive,

and they provide benefit to low-risk individuals with normal hs-CRP levels.

Novel Biomarkers for CVD

Large amounts of money and effort has been invested in identifying novel biomarkers for CVD
in recent years. A 2017 systematic review identified at least 21 studies of novel biomarkers
which may be involved in “pathophysiological processes” associated with cardiovascular
disease (299). These include markers of myocardial necrosis (cTn, hs-cTn, H-FABP), cardiac
inflammation (hs-CRP, GDF-15, fibrinogen, urinary acid), plaque instability (PAPP-A, MPO,
MMPs), platelet activation (Lp-PLA2, sSPLA2, sCD40L), neurohormonal activation (Copeptin,
MR-proADM), and myocardial stress (NPs, ST2, ET-1, Gal-3, NRG-1, and MicroRNAS).

The European Union-funded Markers for Sub-clinical Cardiovascular Risk Assessment (EU-
MASCARA) project is a collaborative effort by universities from 15 European countries that
aims to improve understanding and diagnosis of sub-clinical CVD. This project involved the

evaluation of numerous potential CVD biomarkers.
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One novel biomarker for CVD which has been identified as part of the EU-MASCARA project
is the 85-peptide urinary proteomic biomarker HF1 (517-519). HF1 is an established risk factor
for left ventricular dysfunction (520). In recent years, researchers at KU Leuven in Belgium
have shown that HF1 is also significant predictor of primary non-fatal CHD events, when
controlling for traditional CVD risk factors (518). They have additionally shown that adding
HF1 to ‘basic’ models of cardiovascular risk prediction leads to significant net reclassification

improvement in CVD-free individuals [NRI: 63.8%, p-value <0.001].

7.3.2 Assessing Novel Biomarker Cost-Effectiveness: The Role of Decision Modelling

Section 4.4.3 discussed how traditional measures of statistical validity do not fully capture the
costs and benefits of obtaining novel risk factor information from an individual. They often
deliberately focus on epidemiologic ‘event counting’ and operate outside of the value system
applied in health economic evaluation. Decision-analytic modelling, on the other hand, can be
employed to assess the cost-effectiveness of introducing additional covariates to existing risk
scores. Using decision models allows researchers to consider the long-term health and cost
outcomes associated with preventive therapy in a range of individuals, accounting for

heterogeneity in a way that other statistical techniques cannot.

Some researchers have argued against using decision-analytic models in the analysis of novel
biomarkers. Vickers et al. (296) argue that decision-analytic techniques are often difficult to
implement in the research of novel biomarkers and risk scoring. They state that such an approach
is difficult to adopt due to lack of data. While this is true, the same can be said of any approach
for evaluating novel risk factors. Indeed, a defining feature of research into novel therapies is

lack of data availability.

Decision-analytic modelling enables the systematic combination of data from multiple sources.
It therefore helps to overcome issues related to data availability. As with all studies, it is
important to acknowledge and quantify the uncertainty inherent in the modelling process.
Decision-analytic modellers have been proactive in developing methodology for the assessment

of uncertainty (521).
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Vickers et al. also argue that decision-analytic methodology is not of particular use in assessing
novel risk scores as it requires dichotomising risk score results at a treatment initiation threshold
(296). This is true of other methodologies developed to assess novel risk scores including the
most widely used versions of NRI and wNRI. Moreover, health economic evaluations aim to
assess implementable health policies. Such policies require a decision rule which allocates

individuals to specific treatment strategies.

7.3.3 Objectives

The objective of this study was to develop a pragmatic methodological framework to assess the
cost-effectiveness of novel biomarkers and their role in the primary prevention of CVD. This

approach considers the inherent lack of data availability for such biomarkers.

A secondary objective was to apply the framework in the cost-effectiveness analysis of a novel
biomarker for CVD. The novel biomarker analysed was the 85-peptide urinary proteomic
biomarker HF1.

7.3.4 PPICOSS

Population: The Scottish CVVD-free population, aged 40 years and above.

Perspective: Scottish health sector decision-maker. All healthcare costs accrued by the Scottish

NHS and population-level health gains are considered.

Intervention: Intermediate-intensity statin therapy (Atorvastatin 20mg/daily). Two treatment
prioritisation criteria are considered: (i) blanket 10% risk threshold measured with traditional
ASSIGN score (treating n=B10 individuals), (ii) blanket 10% risk threshold measured with
updated ASSIGN risk score, and (iii) blanket risk threshold measured with updated ASSIGN
score setting threshold such that n~B10 individuals treated.

Comparator: Statin therapy for individuals with familial hypercholesterolaemia.

Outcome: Lifetime cost-per-QALY, with both costs and QALY discounted at 3.5% annually.
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Setting: Primary care in the Scottish NHS.

Study Design: Cohort simulation.

7.3.5 Methodology

A Framework for the Cost-Effectiveness Analysis of Novel Biomarker Testing in CVD

A framework was established, defining a series of steps required to assess the cost-effectiveness
of novel CVD biomarkers. This framework provides a roadmap of the analysis required to take
(often limited) data regarding a potential CVD biomarker and predict the long-term cost-
effectiveness of testing for this biomarker. The framework is predicated on the assumption that
the researcher has access to data which can be analysed to predict the independent contribution
of the biomarker to CVD risk.

The framework comprised of five steps. These were:

1. Estimate relationship between novel biomarker and risk of CVD, independent of any other
relevant covariates.

2. Update an existing risk score to account for the novel biomarker.

3. Develop or update a decision-analytic model, using the novel biomarker information to
inform CVD outcomes.

4. Define testing and treatment strategies.

5. Simulate the different strategies in a representative cohort of the population of interest.

Overview of Case Study

A case study was conducted which utilised the framework for cost-effectiveness analysis of
novel biomarkers in CVD risk scoring. This case study examined the cost-effectiveness of
testing for HF1 to prioritise patients for statin therapy in the Scottish NHS.

The Scottish CVD Policy Model (7,309) was adapted to compare population-level health and

cost outcomes attributable to different prioritisation and treatment strategies in the Scottish
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population. Both the model and the ASSIGN score were updated to include HF1 as an
independent covariate. Next, the effect of different prioritisation and treatment combinations
were simulated in a hypothetical cohort of the Scottish population and results were projected

onto the Scottish population.

Step 1 - Estimating Relationship between HF1 and CVD Risk

Katholieke Universiteit (KU) Leuven, an EU-MASCARA research partner, provided access to
the FLEMish Study on ENvironment, Genes and Health Outcome (FLEMENGHO) (518).
FLEMENGHO recruited participants across Northern Belgium from 1985-2004. Individuals
were contacted for follow-up examinations between 2005-2010. A sample of urinary proteomic
data were obtained from study participants (520). At annual intervals until October 2014,
information on individual’s health status was obtained through the Belgian Population Registry

and the Flemish Registry of Death Certificates.

In order to update risk scores and decision-analytic models with the novel biomarker data,
competing risk regressions were run to estimate hazard ratios associated with HF1 and two
clinical endpoints: non-fatal CHD and combined CVD events. The parametric regression model
chosen was the Gompertz model as this was the model employed in the estimation of the risk
functions which underlie the Scottish CVD Policy Model.

An attempt was made to control for all risk factors included in the Scottish CVD Policy Model
(and ASSIGN score). This was carried out to ensure that the hazard ratios obtained for HF1

were as transferable as possible between the Scottish and Flemish populations.

It was not possible to include all covariates from the Scottish CVD Policy Model’s cause-
specific hazard functions. Baseline SIMD and FH values were not available in the
FLEMENGHO dataset. The KU Leuven classification of social class was included as a covariate
in the regressions. This is a rather limited and outdated index, which was developed at KU
Leuven. It measures an individual’s social class in accordance with the ‘head’ of their family’s
profession, ranked as: 0 — no profession, 1 — workers, housewives, and pensioners, 2 — middle
class and small farmers, 3 — higher professions and big farmers. This score was specifically

developed for the Belgian population. It was determined that using this local index would
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maximise the potential for comparison between results derived from SHHEC and
FLEMENGHO. Despite its limitations, it was assumed that the KU Leuven classification of
social class would capture a similar effect to SIMD when controlling for all other ASSIGN risk

factors for which data were available.

The impact of sex on CVD risk factors was accounted for differently in the FLEMENGHO and
original SHHEC analysis. Regressions were run separately for men and women when deriving
the ASSIGN score and constructing the Scottish CVD Policy Model. This allowed the
magnitude of the association between the risk factors and outcomes to be different between the
sexes. Due to the relatively small sample size and short follow-up of the FLEMENGHO dataset,
sex was included as an independent covariate in the hazard function regressions; this approach
was selected instead of modelling hazard functions for men and women separately. Hence it was
assumed that the hazard ratio associated with HF1 and each of the respective endpoints did not

differ between sexes.

Step 2 - Updating the ASSIGN Risk Score

The ASSIGN score was updated using data from the HF1 analysis. The score is calculated
separately for men and women, but takes the same form for each sex:

ASSIGN =100 % (1 — UB). (7-1)
In Equation (7-1), U represents the underlying 10-year survival rate from CVD in the SHHEC
population for men and women respectively. B is a measure of the extent to which an
individual’s risk factor values differ from the SHHEC averages, accounting for the log hazard

ratio associated with that risk factor and 10-year combined CVD events.

The ASSIGN score was updated using the hazard ratio obtained for HF1 from the cause-specific
hazard regression for combined CVD events in the FLEMENGHO dataset. It was assumed that
the updated ASSIGN score was the same as the traditional score for individuals with population

mean HF1 scores and increased or decreased based on variation around this mean.

Step 3 - Updating the Scottish CVD Policy Model
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Hazard ratios from the FLEMENGHO analysis were also used to update the Scottish CVVD
Policy Model. Transition to each primary event, k, in the Scottish CVD Policy Model is
determined by cumulative incidence, linked to a cause-specific hazard function estimated using

Gompertz regression. Each of these functions can be described by the following equation:
hy (t) = exp(xb) exp(yt). (7-2)

In Equation 7-2, xb is the linear predictor from the regression, and y is an ancillary parameter
which specifies an underlying event rate in the population. Notably, the second half of this

equation, exp(yt), should be unchanged by the addition of a new covariate to the model.

The linear predictor takes the form:

xb = Bro+ Braxs + -+ BrnXn- (7-3)
In Equation (7-3), x is a vector containing an individual’s risk factor values, and b is a vector
which defines log hazard ratios associated with these values and event k. Hence the cause-
specific hazard for an individual for each event is either greater than or less than the population’s

underlying hazard based on the value of exp(xb).

Equation (7-4) shows the example of the linear predictor with the n ASSIGN risk factors
included as covariates. In order to account for hazard related to HF1, the linear predictor was

updated to take the form:

xb" = Bros + Br1X1 + - + BinXn + Br HFXHE- (7-4)

The key differences between Equations (7-3) and (7-4) are the inclusion of an HF1 log hazard
ratio in the linear predictor and the updating of constant 3, to 3, in Equation (7-4).

It was assumed that the cause-specific hazard for an individual with a mean HF1 score would
be equal whether or not the covariate was included in the model. This hazard would then
increase or decrease in accordance with hazard ratios associated with HF1 obtained from the
Gompertz regressions run on the FLEMENGHO dataset. Substituting Equation (7-3) into (7-4)
allows for the derivation of a linear predictor which accounts for HF. This is shown in Figure

7-7. It starts with the assumption that, at the average value of HF, HF, in a population, P, cause-
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specific hazard (and therefore the linear predictor) is equal for an individual, i, whether or not

the covariate HF is included in the cause-specific hazard equation.

Vi € P,(HF = HF) - xb' = xb
= Bk,OI + Bk,l_Xl + -+ Bk,nxn + Bk,HFHF = Bo + B1X1 + - + BnXn
= Bor + BurHF = Bo
= Bo = Bo — BurHF
Now, substitute value for 3, into equation for xb
= xb" = By + B1Xy + - + BuXn + PurHF
= (Bo — BurHF) + B1x1 + -+ + BnXn + BurXur
= Bo + B1xy + =+ BuXn + Bur(Xur — HF)
Figure 7-7: Defining linear predictor in biomarker model

In order to ensure outcomes were consistent for patients with average HF value in the simulated
populations, event rates in the model were recalibrated. Recalibration was achieved by
simulating individuals with mean risk factors profiles for a range of different age-, diabetes-,
and sex-defined subgroups using hazard functions which contain HF1. Different multiplicative
factors were systematically applied to the constant in the linear predictors for each primary event
in the model. The root mean square error between non-fatal CBVD, fatal CVD, and fatal no-
CVD primary event rates with and without HF1 included in the hazard ratios were then
computed. The multiplicative factor which minimised the RMSE between these values was

included in the updated version of the model.

Step 4 - Defining Testing and Treatment Strategies

The updated risk score, which accounts for an individual’s HF1 value, will hereafter be referred
to as ASSIGNgio. Four strategies for prioritising individuals for preventive statin therapy were
considered. These were:

1. Treatment for familial hypercholesterolaemia.

2. The traditional ASSIGN score, with blanket risk threshold of 10%.

3. An updated ASSIGNBg|o score, with blanket risk threshold of 10%.

4. The updated ASSIGNg|o score with a different blanket risk threshold dependent on the

number of individuals treated under ASSIGN 10.
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Strategy 1 was included because there is no clinical debate regarding the necessity of statins for
people with very elevated LDL-C. Strategy 2 represents standard of care. Despite the fact that
Scotland currently utilises a 20% risk threshold for treatment eligibility, guideline bodies in
England and Wales and the U.S. have reduced their risk thresholds in recent years (25,27).
Therefore, due to prevailing international guidelines, the 10% risk threshold employed in

England and Wales was treated as the standard of care in this analysis.

Under Strategy 4, the ASSIGNgio blanket risk threshold was permitted to deviate from 10%. A
threshold was determined which would lead to an approximately equal number of people being
treated under screening Strategy 3 and using the traditional ASSIGN 10 risk threshold. Keeping
the number of people treated equal allowed for a more thorough investigation of the implications

of using an updated risk score.

HF1 is unlikely to change treatment decisions in the vast majority of individuals. This is because
additional risk factors in regression models offer diminishing returns in terms of predictive
capability. It was therefore decided that, in testing strategies that employed the ASSIGNg|o risk
score, HF1 testing would only occur in a group with intermediate risk that may potentially be
reclassified due to the biomarker. The specific intermediate-risk group was defined using a
Scottish dataset, based on the range of traditional ASSIGN scores of patients who were upwards

or downwards reclassified when their risk was calculated with ASSIGNg|o.

Step 5 - Simulation and Projection

The updated Scottish CVD Policy Model was used to simulate the effect that giving statins to
different groups of people within this cohort would have on population life expectancy. Two
Macros for Microsoft Excel were written using Microsoft Visual Basic and were explained in
detail in Section 7.2.4.

The first macro created a base case. This macro inserted the risk factor information for each
individual from the dataset into the Scottish CVD Policy Model. It then recorded this
individual’s health and cost outcomes, as determined by the model. The second macro estimated

the impact of treating the patient with statin therapy for life.
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Next, results were stratified by the prioritisation methods discussed, showing the incremental
differences in health and cost outcomes for the individuals prioritised for treatment. Finally,
these results were projected onto the Scottish population as a whole, using data from the Scottish

Census of 2011, and employing the approach described in Section 7.2.4.

Simulation Parameters

The key parametric inputs for model costs and treatment effects were previously described in
Table 7-4. The treatment provided to eligible patients was the same as the analysis in Section
7.2.

A cost of £419 for HF1 testing was applied for every individual who was judged to be eligible
for urinary proteomic risk. Little evidence exists for the cost of urinary proteomic tests, and the
HF1 test is provided by one laboratory, Mosaiques Diagnostics, which does not publicly disclose
its price (522). The cost of HF1 testing in this analysis was therefore derived from a 2012 study
of the cost-effectiveness of urinary proteomic testing for prostate cancer diagnosis (523) whose
authors included several employees of Mosaiques Diagnostics. This study adopted a German
health sector perspective, and reported the cost of a urinary proteomic test for prostate cancer as
being €443. The value of €443 was inflated from EUR 2012 to EUR 2018, using European
Commission data on inflation in the Euro area (524). The January 2018 exchange rate of EUR
to GBP was then used to estimate the cost of testing in GBP 2018 (525).

One-way sensitivity analyses employed the upper and lower parameter values described in

Table 7-4. The cost of HF1 testing was increased and decreased by 50% in this analysis.

Probabilistic sensitivity analysis stochastically sampled Table 7-4 input distributions, Tables 5-
1 and 5-2 risk factor hazard ratios, and the hazard ratio associated with HF1 and non-fatal CHD
in 500 independent iterations. Correlation between most risk factor hazard ratios was accounted
for with the Cholesky decomposition method (309,503). However, the hazard ratio for HF1 was
varied independently. Cost and QALY results from the probabilistic analyses were used to

produce a cost-effectiveness acceptability curve.
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Hypothetical Cohort

A hypothetical cohort of individuals from the Scottish population was created using data from
the 2011 Scottish Health Survey (347). This was the same dataset employed for previously
discussed analysis and therefore also included data for 4,644 CVD-free individuals. This dataset
included values for all the Scottish CVD Policy Model and ASSIGN score inputs. Multiple
imputation of variables was performed (487) for individuals who had missing variables and

refused the nurse interview.

HF1 information was not available in the SHeS dataset. A value for HF1 was estimated for each
individual. This estimation was derived by considering the covariance between HF1 and other
variables in the dataset while allowing some random variation. Linear regression was performed
on the FLEMENGHO dataset to determine the relationship between HF1 and other ASSIGN
risk factors. HF1 values were assigned to each individual in accordance with the derived linear
regression equation. The intercept of this equation was allowed to vary randomly for each
individual. This produced a hypothetical cohort of individuals with complete ASSIGN and HF1
profiles.

Descriptive statistics for the hypothetical SHeS dataset are shown in Table 7-10.

Risk Factor Obs Mean gte(\]/ Min Max
Male 4,644 0.42 0.49 0.00 1.00
Age 4,644 58.49 12.28 40.00 | 103.00
SIMD 4,644 20.11 14.47 5.21 48.89
Diabetes 4,644 0.07 0.25 0 1.00
Family History 4,644 0.45 0.50 0 1.00
CPD 4,644 7 7.05 0 39
SBP (mmHg) 4,644 | 131.12 8.58 89.50 | 202.50
TC (mmol/L) 4,644 5.78 0.48 3.20 10.50
HDL-C (mmol/L) 4,644 1.53 0.21 0.60 3.30
HF1 4,644 -0.94 0.48 -2.45 0.68
ASSIGN 4,644 20.23 18.71 0.77 99.69
ASSIGN Bio 4,644 21.43 21.16 0.61 99.98

Table 7-10: Descriptive statistics of hypothetical SHeS dataset,
containing imputed HF1 values
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7.3.6 Results

Relationship between HF1 and primary CVD outcomes

The hazard ratios associated with HF1 and five primary CVD outcomes were estimated using
Gompertz regressions, performed on the FLEMENGHO dataset. The outcomes considered were
non-fatal CHD and a combined CVD events. The Stata code used in this analysis is included in
the appendix (A3).

As shown in Tables 7-11 and 7-12, HF1 was estimated to have a significant hazard ratio
associated with non-fatal CHD and the combined CVD events. The predicted hazard ratios for

HF1 and these outcomes were 1.69 and 1.48, respectively.

The hazard ratio associated with HF1 and three other outcomes were also estimated. These were
non-fatal CBVD, fatal CVD, and fatal non-CVD events. It was assumed that HF1 had no effect
on these outcomes, as there existed no published evidence suggesting this was the case. The
effect of HF1 on these endpoints varied, and these risk models produced generally less reliable

results, as shown in Tables 7-13 to 7-15.

No. of subjects = 570 Number of obs = 570
No. of failures =25
Time at risk = 2684.01
LR chi2(9) = 30.70
Log likelihood =-104.87 Prob > chi2 = 0.003
. Hazard Std.
Covariate . P>|Z| [95% Conf. Interval]
Ratio Err.
Age 1.067856] 0.025436 2.76 0.006] 1.019149| 1.118892
Male 1.592539] 0.722201 1.03 0.305] 0.654754| 3.873485
Social Status 1.150799] 0.586987 0.28 0.783| 0.423476| 3.127310
HDL-C 1.518323] 0.946809 0.67| 0.503] 0.447265| 5.154228
TC 1.096418] 0.269381 0.37] 0.708] 0.677396| 1.774635
SBP 1.000397] 0.012499 0.03 0.975| 0.976198] 1.025197|
Diabetes 0.866543| 0.701941 -0.18 0.860] 0.177124] 4.239392
CPD 1.048265| 0.027452 1.80 0.072] 0.995817] 1.103475
HF1 1.686700] 0.363188 2.43 0.015] 1.105995| 2.572306
Constant 0.000017] 0.000038 -4.85 0.000] 2.00E-07| 0.001432
Gamma 0.355861] 0.132823 2.68 0.007] 9.55E-02] 0.616190

Table 7-11: Gompertz regression analysis of FLEMENGHO, endpoint:

non-fatal CHD
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No. of subjects = 570

No. of failures

Time at risk

Log likelihood

=35
= 2684.01

=-129.42

Number of obs =

LR chi2(9)
Prob > chi2

570

46.98
0.000

. Hazard
Covariate ] [95% Conf. Interval]
Ratio
Age 1.083021] 0.021692 3.98 0] 1.041330] 1.126381
Male 2.044032] 0.775555 1.88 0.06] 0.971676 4.299856
Social Status 0.864835] 0.393940 -0.32 0.750[ 0.354163] 2.111850
HDL-C 1.789390] 0.921629 1.13 0.259| 0.652066] 4.910415
TC 1.234855 0.256811 1.01 0.310] 0.821472] 1.856263
SBP 0.990378] 0.010475 -0.91 0.361| 0.970058| 1.011124
Diabetes 1.702969] 0.983439 0.92 0.357| 0.549099| 5.281567
CPD 1.052059| 0.023616 2.26 0.024] 1.006776] 1.099378
HF1 1.475500] 0.269969 2.13 0.033] 1.030853] 2.111941
Constant 0.000016/ 0.000032 -5.68 0.000] 3.60E-07] 0.000731
Gamma 0.364783] 0.112312 3.25 0.001| 1.45E-01] 0.584911

Table 7-12: Gompertz regression analysis of FLEMENGHO, endpoint: combined CVD

No. of subjects = 570
No. of failures =4
Time at risk = 2684.01

Log likelihood

=-23.62

Number of obs = 570
LR chi2(9) = 7.04
Prob > chi2 = 0.633

. Hazard Std.
Covariate ] [95% Conf. Interval]

Ratio Err.
Age 1.090398| 0.066605 1.42 0.157] 0.967367| 1.229077
Male 0.391354] 0.503030 -0.73 0.465] 0.031512| 4.860357
Social Status 1.524187] 1.849668 0.35 0.728] 0.141276| 16.444060
HDL-C 0.593889] 1.029332 -0.30 0.764 0.019879| 17.742450
TC 0.941828| 0.610821 -0.09 0.926| 0.264196] 3.357510
SBP 0.930173] 0.038300 -1.76 0.079| 0.858056] 1.008352
Diabetes 9.744097] 14.500740 1.53 0.126] 0.527255|180.078700
CPD 1.046633] 0.068037 0.70 0.483] 0.921428 1.188851
HF1 0.794405] 0.474932 -0.38 0.700] 0.246124| 2.564070
Constant 0.132330] 0.840595 -0.32 0.750[ 5.18E-07| 33784.730
Gamma -0.075865| 0.340944 -0.22 0.824] -7.44E-01| 0.592374

Table 7-13: Gompertz regression analysis of FLEMENGHO, endpoint: non-fatal CBVD
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No. of subjects = 570 Number of obs = 570
No. of failures =3
Time at risk = 2684.01

LR chi2(9) = 25.30
Log likelihood =-4.66 Prob > chi2 = 0.003

. Hazard Std.
Covariate ] [95% Conf. Interval]

Ratio Err.
Age 1.432695| 0.215155| 2.390000f 0.017000{ 1.067394] 1.923017
Male 1.51E+11 | 8.59E+14 | 0.000000] 0.996000] 0.000000 .
Social Status 0.051866] 0.290179] -0.530000f 0.597000] 0.000001| 3000.2230
HDL-C 1.281408| 2.363558| 0.130000f 0.893000( 0.034486| 47.613420
TC 7.867397| 10.119860] 1.600000] 0.109000] 0.632307| 97.889060
SBP 0.998430] 0.043429] -0.040000f 0.971000] 0.916839| 1.087282
Diabetes 0.000000] 0.000941] 0.000000f 0.999000f 0.000000 .
CPD 1.350495| 0.177687| 2.280000f 0.022000( 1.043516] 1.747780
HF1 0.342228| 0.443316] -0.830000f 0.408000| 0.027020 4.334564
Constant 0.000000] 0.000000{ -0.010000f 0.990000f 0.000000 .
Gamma 1.862044] 0.953737 1.95 0.051 -7.25E-03| 3.731334

Table 7-14: Gompertz regression analysis of FLEMENGHO, endpoint: fatal CVD

Mo. of subjects = 570 Mumber of obs = 570
Mo. of failures =10
Time at risk = 2684.01

LR chiz(9) = 23.26
Log likelihood =-37.24 Prob > chi2 = 0.006

Covariate [95% Conf. Interval]

Age 1.102375( 0.03%9860( 2.700000] 0.007000] 1.026954] 1.183334
Male 0.317867 | 0.2779947 | -1.310000] 0.1920000) 0.057255] 1.764715
Social Status 5195993 3943201 -0.860000] 0.388000( O0.117408 2.2995
HDL-C 0.156504 0.190903 -1.520000] 0.1280000 0.014330] 1.709300
TC 0.945642( 0.36929%4| -0.140000] 0.886000) 0.439859] 2.033009
SBP 0.942947 0.025199 -2.200000| 0.0280001 0.894828 0.993653
Diabetes 10.249480( 10.672890) 2.230000] 0.025000] 1.331488] 78.8%98170
CPD 1.070733( 0.048053 1.5200001 0.1280001 0.980575 1.169180
HF1 0.470196( 0.194878( -1.820000] 0.069000) 0.208684] 1.059420
Constant 0.051990( 0.213437 -0.720000] 0.4710000 0.000017] 162.33130
Gamma 0.559165( 0.196203 2.85 0.004 1.75E-01] 0.943716

Table 7-15: Gompertz regression analysis of FLEMENGHO, endpoint: fatal non-CVD
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The effects of HF1 on non-fatal CBVD, fatal CVD, and fatal non-CVD outcomes were not
accounted for in further analysis. There was a relatively short follow-up time in the
FLEMENGHO dataset, and a restricted number of individuals were included in the study.
Therefore, a small number of non-fatal CBVD, fatal CVD, and fatal non-CVD events were
observed (n=4, 3, and 10, respectively). The assumption that HF1 is not related with these
outcomes may be considered conservative, especially for fatal CVD events. It is very likely that
a risk factor which significantly and independently predicts non-fatal CHD risk in study with a
relatively small number of participants and short time horizon will predict risk of fatal CVD in
longer-term studies. This has been seen with TC, LDL-C, CPD, SBP, and other established CVD
risk factors (152,231,233). Further research may identify such a relationship.

Constant Risk Threshold

Tables 7-16 and 7-17 describe the subpopulations reclassified above and below a risk score of
10% through introduction of the updated ASSIGN score, respectively. While all other risk
factors are similar in the upwards classified group, HF1 is significantly higher (suggesting a
higher risk of non-fatal CHD). Hence, the adapted ASSIGN score has successfully targeted

individuals with a previously disregarded increased risk of CHD in the population.

The ASSIGN score range of upwards reclassified individuals is 9.30 to 9.90, while the ASSIGN
score range of downwards reclassified individuals is 10.01 to 11.39 individuals. The age of
reclassified individuals ranged from 43 to 64. These values can be employed to determine the
individuals that should have their HF1 tested in the analysis. In this situation, a logical testing
population would be individuals aged 40 to 65 with traditional ASSIGN score between 9.25 and
11.40. The Scottish Health Survey, combined with census data, can then be utilised to estimate

the number of people in the Scottish population indicated for testing.

The ASSIGN and ASSIGNgio scores from Scottish Health Survey dataset were projected onto
the Scottish population by 5-year age group using census data. This made it possible to
determine the distribution of each of these scores in the Scottish population. Hence, the number

of people treated under each of the risk scores could be calculated.
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Variable | Obs Mean Std. Dev. Min Max

Male 11 0.00 0.00 0 0
Age 11 58.73 6.83 46 64
SIMD 11 14.28 13.42 5.21 48.89
Diabetes 11 0 0 0 1
FH 11 0.09 0.30 0 1
CPD 11 2 4.96 0 14
SBP 11 128.98 2.06 124.39 131.44
TC 11 5.74 0.54 4.66 6.08
HDL 11 1.59 0.13 1.31 1.7
HF1 11 -0.95 0.27 -1.60 -0.64
ASSIGN 11 9.69 0.15 9.30 9.90
ASSIGNgio 11 10.21 0.17 10.02 10.57

Table 7-16: Characteristics of individuals ‘upwards’ reclassified above 10% risk

Variable Obs Mean Std. Dev. Min Max
Male 77 0.61 0.49 0 1
Age 77 51.26 4.02 43 60
SIMD 77 21.74 15.12 5.21 48.89
Diabetes 77 0 0 0 0
FH 77 0.65 0.48 0 1
CPD 77 10 6.54 0 21
SBP 77 128.72 2.58 116 133.5
TC 77 5.68 0.36 5.00 7.60
HDL 77 1.51 0.26 1.1 3.1
HF 77 -1.11 0.32 -2.24 -0.44
ASSIGN 77 10.46 0.34 10.01 11.39
ASSIGNgio 77 9.46 0.45 8.15 9.99

Table 7-17: Characteristics of individuals ‘downwards’ reclassified below 10% risk

It was assumed reclassification would only occur in individuals aged 40-65 with traditional
ASSIGN score between 9.25 and 11.40. Table 7-18 presents the estimated number of people
eligible for treatment under each risk score and the estimated number of individuals who would
require biomarker testing, given these criteria. Fewer individuals were estimated to be eligible
for treatment with the ASSIGNgio score. This suggests that the current ASSIGN score

overpredicts risk in the population constructed for this analysis.

N N Eligible for

Tested Treatment
ASSIGN 10 0 1,371,231
ASSIGNgio 10 179,217 1,335,207

Table 7-18: Number eligible for testing and
treatment under ASSIGN 10 and ASSIGNgio 10
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Table 7-19 displays the population-level outcomes associated with implementing biomarker
testing and treating to the ASSIGNgio score compared with using the traditional ASSIGN score.
At a testing cost of £419, this policy would be dominated by current practice. ASSIGNgio 10
would incur additional costs while leading to a reduction in QALYS, and is therefore said to be
dominated and should not be implemented. Table 7-20 lists the disaggregated costs associated

with this strategy.

- De ) ) 0
. cated o). 000 o).
Familial Hyp. Reference
ASSIGN 10 1,371,231 176,000 | 1,508,000 8,600
ASSIGNgi0 10 1,335,207 173,000 | 1,522,000 | Dominated

Table 7-19: Base case cost-effectiveness results, ASSIGN 10 and ASSIGNgio 10

) O ed Co 000
) :
Familial Hyp Reference
ASSIGN 10 1,375,000 | -1,125,000 | 180,000 1,078,000 0
ASSIGNgio 10 | 1,323,000 | -1,087,000 | 173,000 1,037,000 | 75,000

Table 7-20: Base case disaggregated costs, ASSIGN 10 and ASSIGNgio 10

While the ASSIGNg|o strategy is less cost-effective than current practice, the QALY gain per
individual treated was greater in this group. This suggests that ASSIGNgio was more effective

at determining which individuals had the greatest capacity-to-benefit from treatment.

Constant Number Treated

The results above show that when a 10% risk threshold is employed, treating to the traditional
ASSIGN score is more cost-effective than using ASSIGNgio 10% This is driven by the fact that
using an updated score would lead to less individuals receiving treatment. Restricting the use of
statins is not advisable even in low-risk individuals. They are cheap and effective preventive

interventions which are well tolerated by the vast majority of users.

ASSIGNBgio highlighted a group of patients with greater capacity-to-benefit than the traditional

ASSIGN score. It was determined that a reasonable comparison between the traditional and
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updated risk scores would consider them at differential 10-year risk thresholds. A value for
ASSIGNgio was calculated which would lead to similarly-sized population being eligible for
preventive therapy. Analysis suggested that a score of 9.56% would lead to a similar number of
individuals being prioritized for preventive therapy as ASSIGN 10. Cost-effectiveness analysis
was therefore conducted to assess the comparative cost-effectiveness of ASSIGN 10 versus
ASSIGNg|o0 9.56.

Tables 7-21 and 7-22 describe the subpopulations reclassified to receive and not receive
treatment through introduction of ASSIGNgi0 9.56, respectively. It was assumed reclassification
would only occur in individuals aged 40-65 with traditional ASSIGN score between 8.90 and
11.40. Table 7-23 presents the estimated number of people eligible for treatment under each risk
score and the estimated number of individuals who would require biomarker testing, given these

criteria.

Table 7-24 presents population-level results from the differential threshold analysis. Treating to
ASSIGNBio 9.56 produces more than 300 discounted QALY's compared to ASSIGN 10, at a
cost of around £93,000,000. The ICER of implementing this strategy is £230,000/QALY. This
ICER is much greater than the cost-effectiveness threshold in most high-income countries and

therefore HF1 testing should not be implemented.

Variable | Obs. Mean Std. Dev. Min Max
Male 36 0.25 0.44 0 1
Age 36 56.2 6.56 43 64
SIMD 36 16.97 14.89 5.21 48.89
Diabetes 36 0.11 0.32 0 1
FH 36 0.25 0.44 0 1
CPD 36 2 4.78 0 16
SBP 36 129 4 111 143
TC 36 5.7 0.46 4.4 6.5
HDL 36 1.5 0.22 1.0 1.8
HF 36 -1.01 0.28 -1.78 -0.45
ASSIGN 36 9.91 0.24 8.99 9.95
ASSIGNBio 36 9.68 0.23 9.57 10.57

Table 7-21: Characteristics of individuals reclassified upwards above

ASSIGNgi0 9.56
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Variable | Obs. Mean Std. Dev. Min Max

Male 35 0.68 0.47 0 1
Age 35 50.5 3.76 43 59
SIMD 35 20.33 13.53 5.21 48.89
Diabetes 35 0 0 0 0
FH 35 0.60 0.59 0 1
CPD 35 12 5.47 0 21
SBP 35 129 2 121 133
TC 35 5.7 0.48 5.0 7.6
HDL 35 1.5 0.34 1.1 3.1
HF 35 -1.13 0.39 -2.10 -0.31
ASSIGN 35 10.32 0.28 10.01 11.39
ASSIGNgio 35 9.08 0.35 8.15 9.56

Table 7-22: Characteristics of individuals reclassified downwards
below ASSIGNgi0 9.56

N N Eligible for

Tested Treatment
ASSIGN 10 0 1,371,231
ASSIGNgi0 9.56 215,660 1,371,261

Table 7-23: Number of individuals tested and eligible
for treatment under ASSIGN 10 and ASSIGNgi0 9.56

Much of the total cost of this strategy is driven by the high cost of testing, as shown in Table 7-
25. This suggests that urinary proteomic testing could be cost-effective if the cost of testing

were to fall dramatically.

Number Disc. | Disc. Cost ICER
Treated QALE (E1000's) (E/QALY)
Familial Hyp. Reference
ASSIGN 10 1,452,094 187,000 | 1,579,000 8,500

ASSIGNBgio 9.56 1,452,110 187,300 | 1,649,000 230,000
Table 7-24: Population-level outcomes for ASSIGN 10 and ASSIGNgio 9.56

- ) 0 ed Co 0]0]0
- 0 ) ) a 0 O e
Familial Hyp. Reference
ASSIGN 10 1,375,000 | -1,125,000 | 180,000 | 1,078,000 0
ASSIGNgi0 9.56 | 1,371,000 | -1,118,000 | 180,000 | 1,077,000 90,000

Table 7-25: Disaggregated costs for ASSIGN 10 and ASSIGNgio 9.56
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Figure 7-8 quantifies uncertainty related to the cost-effectiveness estimates for ASSIGN 10
compared to ASSIGNBgio 9.56. Figure 7-8 is a tornado diagram representing changes in the ICER
of transitioning from ASSIGN 10 to ASSIGNgio 9.56 associated with increasing and decreasing
key parametric inputs in the modelling process. Results were most sensitive to changes in the
cost of HF1 testing, follow by the effect of statins on cholesterol levels and the disutility

associated with daily pill-taking.

ASSIGN 10 to ASSIGNg,, 9.56

Cost of HF1 test

Non-HDL-C reduction

HDL-C increase

Pill-taking disutility
Monitoring costs in years 2+
Annual cost of statin therapy

Monitoring costs in year 1

Cost of risk assessment (minus HF1)

0 100,000 200,000 300,000 400,000 500,000
ICER (£/QALY)

Figure 7-8: Tornado diagram, one-way sensitivity analysis of key parameters and their
effect on ICER of ASSIGNgio 9.56 versus ASSIGN 10

Figure 7-9 presents results from the probabilistic sensitivity analysis in a cost-effectiveness
acceptability curve. The dashed line represents a cost-effectiveness threshold of
£20,000/QALY. At this threshold, it is highly probable that ASSIGN 10 is the most cost-
effective strategy for the decision-maker. As the threshold increases to very high levels, the
proportion of iterations of the model that showed ASSIGNgio 9.56 to be optimal grows.
However, the majority of iterations do not favour this strategy until a threshold of approximately
£250,000/QALY. This is well in advance of the threshold employed in all high-income
countries. At very high thresholds ASSIGN 10 remained optimal in a significant proportion of
iteration, suggesting considerable uncertainty in the ability of ASSIGNgio 9.56 to increase

QALYs in the population.
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Figure 7-9: Cost-effectiveness acceptability curve, ASSIGNgi0 9.56 versus ASSIGN 10

Cost-Effective Test Pricing

It was possible to determine the cost-effectiveness of implementing the two strategies at a range
of testing costs. Table 7-26 presents the costs at which the ASSIGNgio 10 and ASSIGNgi0 9.56

strategies would be considered cost-effective compared to ASSIGN 10.

When comparing ASSIGNgio 9.56 to ASSIGN 10, the price of testing was selected that brought
the ICER below the willingness-to-pay threshold. Depending on the cost-effectiveness threshold
adopted, an 89-94% reduction in HF1 testing costs (from £419) would be required to make
ASSIGN gio 9.56 more cost-effective than ASSIGN 10.

ASSIGNBgio 10 produces less QALYs than ASSIGN 10. Therefore, the maximum acceptable
testing price should lead the ICER to be greater than the cost-effectiveness threshold, based on
traditional health economic decision rules (43). This testing price ensures that adequate cost
savings are achieved to justify the loss in QALYSs. At a testing price of £18, HF1 testing would
save more than £20,000 per QALY lost and the updated risk score is therefore cost-effective.

However, at a testing price of zero, the ICER associated with implementing ASSIGNgio 10 is
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less than £25,000/QALY. Hence, no testing price exists at which ASSIGNgio 10 should be
implemented given a cost-effectiveness threshold >£25,000/QALY.

Cost Effectiveness
Threshold (E/QALY)

20,000 | 25,000 | 30,000
ASSIGNgi0 10 £18 DNE* DNE
ASSIGNgio 9.56 £26 £35 £44

*Does not exist
Table 7-26: Maximum acceptable testing price for different
cost-effectiveness thresholds
300,000 -
250,000 -

200,000 -

150,000 -

ICER (£/QALY)

100,000 -

50,000 H

0 . . T T .
£0 £100 £200 £300 £400 £500

Cost of HF1 Test
Figure 7-10: ICER and cost of HF1 test, ASSIGNgio 9.56 versus ASSIGN 10

Figure 7-10 presents the ICER associated with transitioning from ASSIGN 10 to ASSIGNBIO
9.56 at a range of different test costs. As the cost of testing decreases, ASSIGNBIO becomes

more cost-effective.
7.3.7 Discussion and Limitations

Discussion

Few reliable cost-effectiveness analyses of novel biomarker testing for CVD prevention have

been conducted. A review of relevant literature highlighted deficiencies in previously published

225



cost-effectiveness analyses. In particular, the choice of comparator in the majority of identified
articles failed to truly represent the decision problem under consideration. In most high-income
countries, standard practice involves prioritising individuals for statins based on their 10-year
risk of developing CVD. Omitting this intervention from cost-effectiveness analyses will
produce biased results that overestimate the cost-effectiveness of biomarker testing.

Lee et al. (511) have assessed the cost-effectiveness of hs-CRP testing plus risk scoring with an
adequate comparator. However, hs-CRP has been considered a viable biomarker for CVD for a
long time. This research focused more specifically on novel biomarkers which inherently suffer
from a lack of data availability. Hence, methods were developed which would allow the
updating of a 10-year CVD risk score and a decision-analytic model without a comprehensive

dataset with which all analysis could be performed.

The framework developed allows for the estimation of cost-effectiveness at a population level.
AUROC, NRI, and wNRI analyses are limited by the fact that they can only assess the internal
validity and significance of adding novel risk factors to traditional CVD risk scores. Estimating
costs and health benefits with a decision-analytic model and a representative population dataset

provides decision-makers with more policy-relevant information.

Using the framework developed to assess a urinary proteomic biomarker, it was established that
testing prices for HF1 are currently too high. This is not surprising given that statin therapy is
cheap and effective with a low side effect rate. Hence, the benefits outweigh the costs of

initiating treatment in many untested patients and stratification is unnecessary.

Sensitivity analysis showed that a large reduction in price of test and a restricted testing strategy
would lead HF1 testing to become cost-effective. Currently HF1 tests are produced and
processed by one manufacturer with one laboratory. A large and consistent demand for this
product might lead to an increase in test production. Economies of scale may then drive down
the price of the test. As the NHS buyer’s guide report for cholesterol measurement notes, “large-
scale laboratory testing incurs minimal cost per test” (526). However, there is a large degree of

unresolved uncertainty regarding the treatment’s ability to improve population health.
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An important distinction exists between diagnostic biomarkers and treatment effect modifiers.
This modelling exercise assumed that HF1 was a diagnostic biomarker. Patients’ HF1 levels did
not modify the treatment’s efficacy. Lee et al. (511) showed that if low hs-CRP reduces an
individual’s capacity-to-benefit from preventive therapy, then the cost-effectiveness of testing
for hs-CRP increases. There is no area of literature which describes HF1 as a treatment effect

modifier for preventive interventions in CVD.

Limitations

Uncertainty in the effect estimate of HF1 on CHD risk is a limitation to this analysis. One issue
with novel biomarkers is lack of data. It is possible to obtain a ‘statistically significant’ estimate
for the effect of HF1 on CHD risk with relatively little data. However, a low p-value is arguably
not a sufficient marker of estimative precision (527). Univariate probabilistic sensitivity analysis
would help to better quantify the effect of the relationship between HF and CVD risk on health
economic outcomes. This would involve allowing the HF1 beta in the CHD risk equation to
vary in some pre-assigned distribution, while all other variables were kept constant, and
recording health and cost outcomes. Development of such methods for the quantification of
uncertainty in novel biomarker testing cost-effectiveness was beyond the scope of this thesis,

but should be addressed in further work.

An additional limitation with this analysis relates to the approach adopted when establishing
how many individuals should receive an HF1 test. Testing as small a subset of the population
as possible will increase the probability that HF1 testing is cost-effective. ASSIGN score and
age-based cut-offs for testing were derived by examining descriptive statistics of patients
reclassified in the SHHEC cohort. While such work was beyond the scope of this analysis,

further research should consider optimal strategies for patient testing.

The construction of the hypothetical cohort is a limitation of this study. The approach used to
assign HF1 values to every individual in the SHES dataset ensures that a conceivable population
was constructed for the simulation. However, it also limited the applicability of this study to the
population of interest. A preferable option would have been to simulate individuals from a large
cross-sectional dataset which includes information on the novel biomarker. In the case of HF1

and the Scottish population, such data were not available.
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7.4 Chapter Summary

The purpose of this chapter was to analyse policies which involve the continued use of 10-year
risk scoring but which aim to create more health than standard care. The cost-effectiveness of
reducing the risk threshold for statin initiation in Scotland from 20% to 10% was estimated.
Next, a framework was established for the cost-effectiveness analysis of risk scoring with novel
biomarkers. This framework was employed in a case study of HF1, a urinary proteomic
biomarker for CHD.

The framework developed for the cost-effectiveness analysis of novel CVD biomarkers was
employed in the assessment of HF1. This analysis found that testing for HF1 would only be
cost-effective if prices reduced dramatically and testing were restricted to a small group of
individuals with intermediate risk. Nonetheless, if a cheap biomarker does exist which
independently predicts CVD risk, there may be a clinical role for this marker in helping

physicians discriminate between intermediate-risk patients.

Because statins are very cheap, have a relatively strong safety profile, and achieve benefit in
low- and intermediate-risk patients, increasing the number of people receiving statins will be
cost-effective in most cases. However, it is possible that a policy could be defined which treats
the same number of individuals as ASSIGN 10 but leads to greater health outcomes in a
population by better reflecting heterogeneity in cost-effectiveness of the treatment. Proceeding

chapters will consider this possibility.
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Chapter 8

Novel Decision Mechanisms Which Incorporate 10-Year Risk

8.1 Purpose

Chapter 4 showed that 10-year risk scoring is not necessarily the most effective way to establish
which CVD-free individuals in a population have the highest capacity-to-benefit from
preventive statin therapy. Individuals can experience different outcomes from the same
treatment for a variety of reasons. Alternative treatment strategies which are not fully reliant 10-
year risk which better represent heterogeneity in cost-effectiveness should be considered by

decision-makers.

A conservative reformation of current practice may look to retain a role for 10-year risk scoring
in prioritisation for preventive therapy while modulating treatment decisions along some other
parameter. Age-stratification of risk thresholds and the absolute risk reduction approach to
prevention are two alternative policies which could be employed to prioritize statin therapy. The

purpose of this chapter is to estimate the cost-effectiveness of these two policies.

Section 8.2 considers the cost-effectiveness of age-stratified risk thresholds for statin
prioritisation in Scotland. Section 8.3 considers the health benefits and cost-effectiveness of
extending preventive statin therapy eligibility to U.S. adults with a combination of elevated 10-

year risk and elevated baseline LDL-C.
8.2 Cost-Effectiveness Analysis: Age-Stratified Risk Thresholds

There is considerable variability in outcome for statin therapy between patients of different age-
groups. Accounting for this variability should theoretically lead to population-level health gains.

Age-stratification of risk thresholds can be justified on the premise that younger individuals
often gain more from preventive statin therapy. Younger individuals face fewer competing risks
and restraining atherosclerotic build-up in young adulthood provides greater benefit than
treating subclinical atherosclerotic CVD in later life. While the age distribution of individuals
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prioritised for treatment under the age-stratified risk threshold approach will be different from

current practice, risk will remain a key determinant of who receives statins within age-groups.

8.2.1 Background

Epidemiology and Simulation Analysis

Simulation analysis was presented in Chapter 5 that explored the epidemiology of CVD
prevention. The results from this analysis showed that age is an independent predictor of
capacity-to-benefit from preventive therapy for CVD, regardless of absolute risk. Section 5.5.1
showed that extended exposure to DBP and LDL-C in young adulthood is associated with
increased risk of CHD, and addressing these risk factors early would lead to large reductions
rates of CHD. Section 5.5.2 showed that younger individuals can achieve much more health
benefits from preventive therapy than older individuals, even when they are at lower 10-year

risk of experiencing a primary CVD event.

Current policy fails to account for the benefit offered by intervening on modifiable risk factors
early in adulthood. Employing 10-year risk alone to determine an individual’s eligibility to
receive preventive therapy for CVD likely leads to a waste of health service resources. The age-
stratified risk threshold approach to statin prioritisation is one policy which may lead to a more
cost-effective distribution of resources.

The age-stratified risk threshold policy requires setting separate treatment initiation thresholds
for different age-groups. Younger individuals with elevated modifiable risk factors but low 10-
year risk are likely to gain most from such a policy. Therefore, age-stratification of risk
thresholds will improve the effectiveness of statin prioritisation if the threshold is reduced for

younger and increased for older people.

Age-Stratified Risk Thresholds in Norway

In 2009, Norway published and implemented its new guidelines for the prevention of CVD
(303). The group of clinicians and academics tasked with developing these guidelines did not

follow the European Society for Cardiology’s guidelines which focus preventive efforts on
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individuals with elevated 10-year risk. Instead, the new guidelines involved the implementation
of age-stratified risk thresholds. These are described in guideline documents as ‘age-
differentiated’ thresholds.

The guideline development process in Norway was threefold: a systematic review of clinical
evidence for preventive interventions was conducted, cost-effectiveness analyses were reviewed
and a CVD policy model was developed, and guidelines were produced by an interdisciplinary

working group.

The systematic review of clinical literature was conducted by the Norwegian Knowledge Centre
for the Health Services (NKCHS) and found that several treatments were effective for the
prevention of CVD (528). High quality evidence was identified showing that blood pressure-
and cholesterol-reducing medications reduce risk of disease-free individuals developing CVD.
Amongst cholesterol-reducing medications, statins were assessed to have the strongest evidence

base and efficacy.

Review of existing cost-effectiveness analyses and development of a Norwegian CVD policy
model was also conducted by the NKCHS. This analysis found strong evidence in favour the

cost-effectiveness of statins in individuals as young as 40 years old (529).

To estimate the benefits associated with age-stratified risk thresholds compared with blanket
risk thresholds, a Markov model was developed (530). The Norwegian Cardiovascular Disease
(NorCaD) Model was built with data on Norwegian CVD prevalence and healthcare costs. It
predicts health and cost outcomes in the Norwegian population, moderated by the occurrence of
CVD events.

Using the NorCaD model, researchers estimated the distribution of health gains in the
Norwegian population associated with age-stratification of risk thresholds (303). They looked
at the effect of a reduction in the recommended 5% blanket risk threshold for younger
individuals (aged 40-49) and an increase for older individuals (aged 60-69).

Age-stratification of risk thresholds was estimated to reduce the number of individuals eligible

for treatment by around 20% compared to the blanket threshold (198,100 versus 247,100). This
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policy would lead to a disproportionately small 4% reduction in undiscounted life year gains
(531,000 versus 539,000). Moreover, it would lead to a large increase in life expectancy for
treated 40-49 year-olds and marginal reductions in life expectancy for treated individuals aged
60-69.

There were key limitations to this analysis. Primarily, this was not a cost-effectiveness analysis.
Treating younger individuals with statins will require increased patient years of treatment and
monitoring costs. Even if younger patients gain a lot of health from a preventive treatment, they
are not necessarily cost-effective to treat. The analysis additionally did not account for health-
related quality of life, but rather looked at the effect of interventions on life years. It therefore
fails to account for the fact that CVD prevention can avert non-fatal events that lead to patient
morbidity. Finally, future health benefits were not discounted. Section 2.7 established the
validity and necessity of discounting in health technology assessment. Failing to discount future
health benefits and costs ignores the opportunity cost associated with waiting to invest in an

intervention and social time preference for health.

The Norwegian cardiovascular prevention guidelines group reviewed the NKCHS research,
including the Norheim et al.’s novel analysis of age-stratified risk thresholds. In contrast to the
5% blanket risk threshold recommended by the European Cardiovascular Society, the guideline
group determined that the new guidelines for cardiovascular prevention would involve age-
stratification of risk thresholds. These thresholds were as follows:

*  >1% for individuals aged 40-49

= >5% for individuals aged 50-59,

»  >10% for individuals aged 60-69.

The guideline recommended that CVD risk is estimated using the NORRISK score (531) which
was developed with Norwegian data. Unlike the ASSIGN, QRISK2, Framingham, and
ACC/AHA ASCVD Risk Calculator, NORRISK estimates 10-year risk of cardiovascular
mortality. This explains why these thresholds were generally lower than U.K. and U.S.
thresholds for intervention which use risk scores which incorporate a broader range of clinical

endpoints. Statin therapy was also indicated for patients with TC >8.0 mmol/L.
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In 2017, new Norwegian guidelines for cardiovascular prevention were released (532). These
guidelines retained the role of age-stratified risk thresholds in determining who receives statin
therapy. The guideline did, however, make recommendations for treatment based on the
NORRISK2 risk score (533). NORRISK?2 estimates 10-year risk of both CVD mortality and
morbidity, and therefore closer reflects risk scores like ASSIGN, QRISK2, and the ACC/AHA
ASCVD Risk Calculator. The new thresholds for treatment initiation are as follows:

= >5% for individuals aged 45-54,

=  >10% for individuals aged 55-64,

= >15% for individuals aged 65-74.

Norway’s 2008 and 2017 guidelines both state that elderly patients should be treated on a case-
by-case basis, considering “utility and risk” (532). Therefore, change in the upper age limit for
treatment is not likely to greatly affect clinical practice. The new guidelines increased the age
at which risk-based treatment is initiated. The guideline’s authors note, however, that very few
individuals aged 40-44 met the previous age-stratified threshold for treatment initiation. The
new guideline additionally recommends treatment of all patients aged 70 and below with TC
>7.0 mmol/L or LDL-C >5.0 mmol/L.

Further Evidence for Age-Stratified Risk Thresholds

Further research has been conducted which considers heterogeneity in outcome associated with
CVD prevention driven by age. The results of these studies vary. Two studies support the
implementation of age-stratification while one casts doubt on its capacity to produce long-term

benefit when discounting is applied.

Ngalesoni et al. consider the health, cost, and equity outcomes associated with employing age-
stratified risk thresholds to prioritise patients for preventive pharmacologic interventions for
CVD (534). A Markov model simulated CVD outcomes in a closed, hypothetical cohort
representative of the Tanzanian population. The cohort was assumed to have no history of Ml
or stroke at baseline. Compared to the WHO’s recommended blanket risk threshold of 10%,
they found that age-stratification of risk thresholds would lead to improvements in treated
patients’ life expectancy (1.7 years) and a more equitable distribution of health (0.02 reduction

in Gini coefficient). Moreover, they found that these improvements in health and equity
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outcomes could be achieved without a corresponding increase in healthcare expenditure. As
with the previously-described analysis by Norheim et al. (303), a key limitation of this study

was the fact that future health and cost outcomes were not discounted.

Navar-Boggan et al. (535) adopt a different approach to assessing the benefit of age-
stratification of risk thresholds. Analysing data from the Framingham Offspring Study, they
estimated the sensitivity and specificity of 10-year CVD risk scores for adults stratified into
three age-groups. It was found that the ACC/AAH guideline-recommended threshold of 7.5%
for statin initiation had low sensitivity for people aged 40-55 years. These values were 36% and
48% respectively. On the other hand, the 7.5% threshold would lead to drastic overtreatment of
patients aged 66-75 years, with specificities of 17% and 3% in women and men, respectively. It
is concluded that lowering the risk threshold for treatment initiation in younger adults to 5%
while increasing it to 10-15% in older adults would significantly improve the predictive ability

of risk scoring.

Not all analysis regarding age-stratification of risk thresholds has produced positive results.
Liew et al. estimate potential years of life lost (PYLL) for patients in 5-year age-bands (536).
PYLL is calculated as the life years gained from five years of total CVD risk elimination.
Inasmuch, it represents the life years gained from a hypothetical, fully-effective but time-limited
intervention. The effect of such an intervention was calculated separately with a simplistic age-
based residual risk model and a Markov cohort model. PYLL and discounted PYLL are

estimated in both analyses.

Liew et al.’s study addresses the lack of discounting in other modelling studies which consider
age-stratified risk thresholds. Results show that undiscounted PYLL is much greater for younger
individuals. However, when a 3.0% discount rate is applied, the age gradient in PYLL greatly

reduces.

It is likely that Liew et al. understate the benefits associated with early prevention of
atherosclerotic build-up in the arteries. They presume that the intervention stops producing
benefits in patients after five years. In addition, patients are analysed based on age and risk score

alone. The analysis may therefore fail to identify subgroups of patients that may gain from the
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hypothetical treatment. As discussed in Chapter 4, the covariates that combine to produce a risk

score often independently predict capacity-to-benefit from a given treatment.

No analysis of age-stratified risk thresholds has been conducted which specifically focuses on
statin initiation in Scotland. Indeed, no such analysis has been conducted with regards to the rest
of the U.K.

8.2.2 Objective

The objective of this analysis was to quantify the health and cost consequences associated with
employing age-stratified risk thresholds to prioritise patients for preventive statin therapy in the
Scottish NHS. This work aimed to build on previous analyses of age-stratified risk thresholds

by performing a complete, discounted economic evaluation of the policy.

8.2.3 PPICOSS

Population: The Scottish CVVD-free population, aged 40 years and above.

Perspective: Scottish health sector decision-maker. All healthcare costs accrued by the Scottish

NHS and population-level health gains are considered.

Intervention: Intermediate-intensity statin therapy (Atorvastatin 20mg/daily). Four treatment
prioritisation criteria are considered: (i) blanket 20% risk threshold (treating n=B20 individuals),
(i) blanket 10% risk threshold (treating n=B10 individuals), (iii) age-stratified risk threshold
strategy (treating n~B20 individuals), and (iv) age-stratified risk threshold strategy (treating
n~B10 individuals).

Comparator: Statin therapy for individuals with familial hypercholesterolaemia.

Outcome: Lifetime cost-per-QALY, with both costs and QALY's discounted at 3.5% annually.
Intermediate outcomes reported are: disaggregated healthcare costs, primary CVD events

prevented, and CVD-free life years.
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Setting: Primary care in the Scottish NHS.

Study Design: Cohort simulation.

8.2.4 Methodology

The methodology adopted to estimate the cost-effectiveness of age-stratified risk thresholds was
the same as the methodology employed to estimate the cost-effectiveness of risk threshold

reduction in Chapter 7. This allowed for comparison between results in these chapters.

Scottish CVVD Policy Model

The Scottish CVD Policy model was employed to estimate the cost-effectiveness of different

methods of statin prioritisation. This model was discussed in depth in Chapter 5.

Treatment Strateqgies

The analysis aimed to compare absolute risk-based blanket 20% and blanket 10% risk threshold
strategies to comparable age-stratified strategies. It was assumed that intermediate-intensity
statin therapy would always be provided to individuals with familial hypercholesterolaemia (as
defined according to SIGN’s definition of elevated TC (>7.5 mmol/L) and family history of
premature CVD or TC >8.0 mmol/L.

The four remaining strategies considered were intermediate-intensity statins for: individuals
with an ASSIGN score greater than 20% (treating n=B20 individuals), individuals with an
ASSIGN score greater than 10% (treating n=B10 individuals), and individuals who met
eligibility criteria based on age-stratified risk thresholds which treat B20 and B10 individuals,

respectively.

The number treated in each case was kept approximately constant as this analysis aimed to
estimate the cost-effectiveness of age-stratified risk thresholds. When comparing two strategies
which treat different numbers of patients, it would be difficult to disaggregate the benefits

accrued due to age-stratification and those accrued due to treating additional patients.
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Defining Age-Stratified Risk Thresholds

Many combinations of age-groups and thresholds can be chosen when defining an age-stratified
risk threshold requirement rule for statins. A systematic approach was adopted in this analysis.

Thresholds were changed per 5-year age group. Based on previously discussed assumptions, the
threshold was reduced for younger and increased for older individuals. Two policies which
would result in a similar number of people being treated to the two respective blanket thresholds
were selected. These will hereafter be referred to as Age-Strat 20 (treating approximately B20

individuals) and Age-Strat 10 (treating approximately B10 individuals).

The process to determine age-stratified risk thresholds involved systematically lowering
thresholds for younger individuals and increasing them for older individuals in a manner that
led to a constant number of patients being treated. The specific age-stratified policies are shown
in Table 8-1.

Age-Strat 20 would result in elderly individuals (aged >80 years) not receiving treatment.
SIGN’s guideline for CVD prevention states: “In the elderly, the decision to start statin therapy
should be based on 10-year cardiovascular risk estimation, life expectancy, and quality of life.
Age alone is not a contraindication to drug therapy" (26). Hence, it was generally presumed that

older individuals receive treatment under standard of care.

Statin Treatment Eligibility Thresholds

Age ASSIGN ASSIGN | Age-Strat| Age-Strat

20 10 20 10
40-44 20% 10% 8.5% 7%
45-49 20% 10% 10% 8%
50-54 20% 10% 1% 9%
55-59 20% 10% 13% 10%
60-64 20% 10% 19% 12%
65-69 20% 10% 24% 18%
70-74 20% 10% 29% 25%
75-79 20% 10% 34% 30%
80+ 20% 10% n/a 45%

Table 8-1: Blanket and age-stratified risk thresholds policies
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Scottish Health Survey, Census Data, and Multiple Imputation

As with the analyses in Chapter 7, all analysis was completed using a combination of the
Scottish Health Survey 2011 and the Scottish Census 2011. The same dataset and imputation
process was employed in this analysis as was employed in Section 7.2. The descriptive statistics

for this dataset are described in Table 7-1.

Simulation

The Scottish CVD Policy Model simulated the effect of giving statins to different groups of
people. The same approach to simulation was adopted as described in Section 7.2.4. This
involved developing two Macros for Excel using Microsoft Visual Basic to estimate lifetime
incremental health and cost outcomes attributable to intermediate-intensity statin therapy for all

individuals in the dataset.

Treatment Parameters

The base case treatment parameters employed in this analysis were the same as the treatment
parameters used to estimate cost-effectiveness of risk threshold reduction in Chapter 7. These

parameters are presented in Table 7-4.

Estimating Outcomes and Projecting Results

Incremental costs and outcomes were simulated for all individuals in the SHeS dataset. The
population was stratified by risk score, and only individuals meeting treatment criteria were
assigned the incremental outcomes. Results were averaged across 5-year age-groups and
projected onto the Scottish population with census data. Again, this process was described

extensively in Chapter 7.
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Cost-Effectiveness Analysis

Cost-effectiveness analysis was performed using traditional cost-effectiveness decision rules
(43,354). A willingness-to-pay of £20,000/QALY was adopted for this analysis.

Sensitivity Analysis

One-way sensitivity analyses were undertaken to assess the impact of parametric assumptions
on cost-effectiveness. The parameters included in sensitivity analyses were: pill-taking
disutility, non-HDL cholesterol reduction and HDL cholesterol increase, monitoring costs in the
first year of treatment, monitoring costs in subsequent years of treatment, cost of risk

assessment, and price of statins.

Probabilistic sensitivity analysis stochastically sampled Table 7-4 input distributions and Tables
5-1 and 5-2 risk factor hazard ratios in 500 independent iterations. Correlation between risk
factor hazard ratios was accounted for with the Cholesky decomposition method (309,503).
Cost-effectiveness results from probabilistic analyses were used to produce a cost-effectiveness

acceptability curve.

Inequality

A final piece of analysis considered the consequences of different treatment strategies on health
inequalities. Discounted QALY gains per 1,000 individuals were presented, disaggregated by
SIMD quintile. The proportion of total QALYs gained by each SIMD quintile was also
presented.

8.2.5 Results

Demographics of Treated Patients

Table 8-2 provides descriptive statistics for the overall population and subpopulations treated
under ASSIGN 20, Age-Strat 20, ASSIGN 10, and Age-Strat 10. It details the percentage of
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population’s average risk factor values.

different age-groups treated under the different prioritisation strategies alongside the treated

Overall  ASSIGN Age-Strat ASSIGN  Age-Strat

Population 20 20 10 10

40-44 n/a 0 5 3 12

B 45-49 n/a 2 14 14 29
S 50-54 n/a 5 30 38 49
-8 55-59 n/a 15 50 74 74
[l 60-64 n/a 41 45 94 86
g'; 65-69 n/a 75 52 100 85
=3 70-74 n/a 92 65 100 80
Lol 75-79 n/a 100 74 100 88
80+ n/a 100 0 100 81
Male (%) 42 45 53 47 51

B SIMD 19.5 21.2 23.5 20.5 21.4
G Diabetes (%) 7 15 17 11 11
o FH (%) 46 68 73 62 65
=N CPD 7 8 10 7 7
§ SBP (mmHg) 131 134 134 133 133
S TC (mmol/L) 5.8 5.8 5.8 5.8 5.8
HDL (mmol/L) 1.5 1.5 1.5 1.5 1.5

Table 8-2: Descriptive statistics of treated populations for ASSIGN 20, Age-Strat 20,
ASSIGN 10, and Age-Strat 10

As expected, a much larger proportion of young individuals were treated with age-stratified risk
thresholds compared to the blankets approach. Age-stratification additionally increased the
proportion of men and individuals with family history of CVD who were eligible for treatment.
The average index of social deprivation for treatment eligible patients was marginally greater
when age-stratified risk thresholds were applied, suggesting the treated population was from a

more socially deprived background.

Base Case Cost-Effectiveness Analysis

The results from the base case cost-effectiveness analysis are presented in Table 8-3. These
results are also shown on the cost-effectiveness plane in Figure 8-1 incremental to ASSIGN 20.
Age-Strat 20 and Age-Strat 10 produced more discounted QALY's than their respective blanket

threshold comparators.
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=aLed A 000 ¥
Familial Hyp. Reference
ASSIGN 20 793,559 92,300 636,000 6,900
Age-Strat 20 793,596 99,500 882,000 | Ext. Dominated
ASSIGN 10 1,381,059 164,000 1,596,000 13,500
Age-Strat 10 1,381,054 168,000 1,719,000 27,400

Ext. - extendedly

Table 8-3: Base case cost-effectiveness results, ASSIGN 20, Age-Strat 20, ASSIGN 10,
Age-Strat 10

The additional health benefits offered by age-stratification of thresholds are purchased at a high
cost. Age-Strat 20 is extendedly dominated by ASSIGN 10. The ICER associated with
transitioning from ASSIGN 10 to Age-Strat 10 is around £27,400/QALY. This is in excess of
the cost-effectiveness threshold adopted for this analysis. Therefore, given the policies
considered and the base case assumptions, ASSIGN 10 is the optimal strategy for a decision-
maker.

80,000 -
A R
70,000 - @ ASSIGN 20 ®
A Age-Strat ,-"
w 60,000 - 20
> L
—g" @ASSIGN 10
50,000 - L
b A Age-Strat
c -
3 40,000
g _*" A=£20,000/QALY
30,000 -
20,000 —~
10,000 -
A
0 o" . . .
£0 £500,000 £1,000,000 £1,500,000

Discounted Costs (£000's)

Figure 8-1: Base case cost-effectiveness plane, ASSIGN 20, Age-Strat 20, ASSIGN 10,
and Age-Strat 10
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Intermediate Outcomes

Tables 8-4 and 8-5 present intermediate outcomes from the base case analysis. The former
presents the primary CVD events prevented and life years gained for the respective policies, and

the latter presents their disaggregated costs.

Primary

Life Years

Policy CVD Events Gained

Prevented

Familial Hyp. Reference

ASSIGN 20 27,000 170,000
Age-Strat 20 29,000 198,000
ASSIGN 10 49,000 351,000
Age-Strat 10 50,000 368,000

Table 8-4: Base case CVD events prevented and life years gained

Implementing age-stratified risk thresholds would prevent more than 1,500 primary CVD events
when compared with ASSIGN 20. This would be achieved while treating the same number of
individuals. In turn, this would lead to an approximately 28,000 additional undiscounted life
years in the Scottish population. Implementing Age-Strat 10 over ASSIGN 10 would prevent
approximately 1,200 additional primary CVD events, producing around 16,500 undiscounted

life years.
) 0 D00
° 0 ) ) 0 0
Familial Hyp. Reference
ASSIGN 20 720,000 -718,000 84,000 550,000
Age-Strat 20 986,000 -889,000 108,000 678,000
ASSIGN 10 1,562,000 -1,322,000 190,000 1,167,000
Age-Strat 10 1,707,000 -1,408,000 200,000 1,220,000

Table 8-5: Base case disaggregated costs

All strategies led to a decrease in CVD-related healthcare costs and increases in non-CVD-
related healthcare costs. The age-stratified risk threshold strategies incurred greater non-CVD-
related, statin, and monitoring costs than comparable blanket risk threshold strategies. This

suggests that increased costs for age-stratified policies are incurred through extension of life
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expectancy and associated costs, increased patient years of treatment, and an increased period

of patient monitoring.

Inequality Analysis

Results were disaggregated to estimate the effect of threshold reduction on health inequalities.
Figure 8-2 shows the discounted QALY gains achieved per 1,000 individuals in the population,
disaggregated by SIMD quintile. In absolute terms, all SIMD quintiles achieved greater health
gains under Age-Strat 10 when compared with Age-Strat 20. In both treatment scenarios,

absolute health gains continuously increased with level of social deprivation.

Age-Strat 20

Age-Strat 10

Blanket 20

2 4 6 8 10 12 14 16 18 0

O ] ] = ]
g3iMD1  55MD2  =5IMD3  HS5IMD4  SIMDS3

Figure 8-2: Discounted QALY gains for age-stratified and blanket risk threshold
strategies per 1,000 individuals, disaggregated by SIMD quintile

The proportion of health gains achieved per quintile of social deprivation was also estimated
and these results are presented in Figure 8-3. The distribution of discounted QALY gains was
similar for both age-stratified risk threshold policies. The two most deprived quintiles of the
Scottish population each achieved greater than 20% of all health gains. Both policies were
progressive: they led to a greater proportion of health gains being achieved in the two most

deprived SIMD quintiles compared with the two least deprived quintiles.

Age-Strat 20 was more progressive than Blanket 20. The two most deprived SIMD quintiles
combined gained 53% of all health benefits under Age-Strat 20, compared to 30% of health
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gains achieved by the two least deprived quintiles — a 23% difference. For Blanket 20 this
difference was 11%. Age-Strat 10 was more progressive than Blanket 10. The difference in
proportion of QALY gains between the two most deprived and least deprived quintiles for Age-
Strat 10 and Blanket 10 were 12% and 7%, respectively.

Age-Strat 20 14% 16%

Age-Strat 10 17% 18%

Blanket 20 17% 18%

Blanket 10 18% 19%

0% 10% 20% 30% 40% 50% 60% 70% B80% 90% 100%
[m] ] ] o
I:|5|.f\|"|.D‘1 EIS[.I'\'\DZ II]Slr\|“-D3 .SLMD4 .SIM[)5

Figure 8-3: Proportion of discounted QALY gains achieved by different SIMD
quintiles, age-stratified and blanket risk threshold strategies

Sensitivity Analyses

Results from the sensitivity analyses are presented in Figures 8-4 and 8-5. These tornado
diagrams show the sensitivity of ICER estimates to univariate changes in model parameters.
They present the ICERs associated with moving from ASSIGN 20 to Age-Strat 20 and ASSIGN
10 to Age-Strat 10, respectively. Age-Strat 20 remained extendedly dominated by ASSIGN 10
in all sensitivity analyses. The base case ICER of implementing Age-Strat 20 over ASSIGN 20
was approximately £34,700/QALY.

The three areas of greatest uncertainty highlighted by these analyses are pill-taking disutility,
non-HDL cholesterol reduction, and monitoring costs. Pill-taking disutility and monitoring costs
are particularly important when transitioning from a blanket threshold strategy to an age-
stratified risk threshold strategy because the latter approach will involve treating a younger
group of individuals. These younger individuals will receive the treatment for an extended

period of time, accumulating costs and pill-taking utility decrements.
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ASSIGN 20 to Age-Strat 20

Pill-taking disutility I
|
Mon-HDL-C reduction I
|
Monitoring costs in years 2+ 1l
|
HDL-C increase 0]
|
Monitoring costs in year 1

Annual cost of statin therapy Ii}
|
|
|
[

Cost of risk assessment
| i | i

0 20,000 40,000 60,000 80,000 100,000120,000
ICER (£/QALY)

Figure 8-4: Tornado diagram, one-way sensitivity analysis of key parameters and
their effect on ICER of implementing Age-Strat 20 over ASSIGN 20

ASSIGN 10 to Age-Strat 10

Pill-taking disutility

Mon-HDL-C reduction

Monitoring costs in years 2+

HDL-C increase

Annual cost of statin therapy

Monitoring costs in year 1
Cost of risk assessment . { { .

0 20,000 40,000 60,000 80,000 100,000120,000
ICER (E/QALY)

Figure 8-5: Tornado diagram, one-way sensitivity analysis of key parameters and
their effect on ICER of implementing Age-Strat 10 over ASSIGN 10

Results from the PSA are presented in a cost-effectiveness acceptability curve in Figure 8-6.
The red, black, blue, and green curves show the proportion of simulations in which Blanket 20,
Age-Strat 20, Blanket 10, and Age-Strat 10 were optimal at a range of cost-effectiveness
thresholds. The black dashed line indicates a cost-effectiveness threshold of £20,000/QALY. At
this threshold, Age-Strat 10 was optimal in 45% of simulations. This analysis suggests some
uncertainty regarding the cost-effective of Age-Strat 10, which may be the optimal treatment

strategy.
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Figure 8-6: Cost-effectiveness acceptability curve, ASSIGN 20, Age-Strat 20, ASSIGN
10, and Age-Strat 10

8.2.6 Discussion and Limitations

Discussion

This analysis suggests that age-stratification of risk thresholds would produce considerable
health benefits in the Scottish population. This result is in agreement with analyses by Norheim
et al. (303) and Ngalesoni et al. (534) which emphasise the benefits offered by age-stratification
of risk thresholds. It is not in line with results from Liew et al. (536) who predict that discounting
of future health outcomes limits capacity-to-benefit from preventive treatment in younger

individuals.

While the age-stratified approach to prevention leads to an increase in health outcomes, this
improvement in population health was estimated to be too expensive for a Scottish NHS
decision-maker. The ICER associated with transitioning from ASSIGN 20 to Age-Strat 20 and
from ASSIGN 10 to Age-Strat 10 are both in excess of £20,000/QALY .

The ICER associated with transitioning from ASSIGN 10 to Age-Strat 10 is within the £20,000-

30,000/QALY threshold range adopted by NICE in health technology assessment. However,
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recent analysis suggests that the marginal cost of health production in the NHS is far below even
£20,000/QALY (500). The optimality of ASSIGN 10 under base case assumptions may

therefore be assumed robust.

Age-Strat 20 may be extendedly dominated by ASSIGN 10 due to the fact that statins are cheap
and effective. Reducing the blanket risk threshold means that a large number of younger
individuals with high capacity-to-benefit from treatment receive treatment. Nonetheless, it is
surprising that the ICER associated with treating this group is lower than the ICER associated
with Age-Strat 20. A possible explanation is that the blanket threshold approach treats a greater
number of older individuals, who gain less from the treatment but have a higher tendency to be

cost-saving.

Sensitivity analysis suggests that there may be a scenario in which the age-stratified approach
to prevention would be the optimal choice for a Scottish NHS decision-maker. Two key factors
which drive the high ICER for the age-stratified approach are cumulative pill-taking disutility
and monitoring costs. Younger individuals are likely to spend longer receiving preventive
treatment before the occurrence of a primary event and therefore accumulate much greater costs.
Post-hoc analysis was performed to consider the circumstance in which ongoing monitoring
costs and pill-taking disutility are completely nullified. In this situation, the ICER of instituting
Age-Strat 10 would be around £13,500/QALY.

Limitations

Uptake and adherence are two aspects missing from this analysis. Clinical buy-in is important
for preventive pharmacologic interventions. It is conceivable that medical providers look
unfavourably on the concept treating elderly individuals with healthy risk factors. If this carries
into clinical practice, then age-stratification may be a preferable strategy as it targets treatment

at individuals who are unhealthy compared to their peers.

Further work should consider potential variation in uptake and adherence to statin
recommendations, stratified by different patient populations. Value of implementation analysis
may be performed to assess the costs and benefits of interventions aimed at improving these

factors (537).
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Another limitation of this analysis is the fact that the effect of cumulative exposure to LDL-C
is not accounted for. As demonstrated in Chapter 4, lowering LDL-C at an early stage in life
reduces atherosclerotic build-up and intervening early to stop this build-up can therefore have a
large impact on later life CVD risk. This analysis, however, assumes that the relative risk
reduction from statin therapy is not predicated on the age that an individual initiates treatment.
This analysis therefore likely underestimates the benefit of statin therapy for younger

individuals.

Further research could also focus on the cost-effectiveness analysis of reducing cumulative
exposure to LDL-C. This analysis could consider the benefit of reducing the age at which annual
risk assessment is currently recommended. This age limit is currently set at 40, but based on the
cumulative exposure hypothesis, benefit can be accrued due to LDL-C-reduction at much earlier

stages in life.

8.3 Cost-Effectiveness Analysis: Absolute Risk Reduction

A second policy which incorporates 10-year risk alongside some other covariate to prioritise
statin therapy is the absolute risk reduction approach to prevention. Section 4.5.2 showed that
baseline LDL-C is a predictor of absolute risk reduction from statin therapy. Individuals with
higher baseline LDL-C may gain more health from LDL-C-reducing therapies than their peers.
Employing a metric which accounts for both absolute 10-year risk and baseline LDL-C to

determine who receives statins may lead to improvements in population-level health outcomes.

The following study considers the health benefits and cost-effectiveness of statin therapy in
different subgroups of the U.S. CVD-free population. The population is stratified by baseline
absolute risk and LDL-C. Health and cost outcomes associated with statin therapy are then

estimated.

This study also considers the cost-effectiveness of a statin prioritisation policy based on both
absolute risk and baseline LDL-C. Unlike the analysis of age-stratified risk thresholds, this
analysis considers the cost-effectiveness of extending eligibility beyond current standard of

care. There is considerable uncertainty in current U.S. guidelines regarding treatment of
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individuals with risk scores between 5.0-7.5%. Rather than advocating a large change in clinical
practice in the U.S., this study rather focuses on this area of existing uncertainty. Secondary
analysis was conducted with the Scottish CVD Policy Model to enable comparison with other

policies analysed in the thesis.

8.3.1 Background

The ACC and AHA have issued joint guidelines for the management of cholesterol with statins
in CVD-free individuals. They recommend that primary prevention patients should be
prescribed statin-therapy using a blanket risk threshold of 7.5%, estimated with the ACC/AHA
ASCVD Risk Calculator. The guidelines additionally state that statins should be considered for
CVD-free patients with ‘borderline’ risk scores between 5.0-7.5% (27). In 2018 guidelines,
borderline-risk patients with a variety of ‘risk-enhancing factors’ were also recommended

statins.

The blanket risk threshold approach to prevention is predicated on the assumption that
treatments produce consistent benefit across heterogeneous patient subgroups. In other words,
this approach assumes the relative risk associated with statins is equal in all subsets of the patient
population, regardless of baseline LDL-C. If this assumption holds, then individuals with greater

absolute risk will always achieve greater absolute risk reduction from the preventive treatment.

Several major clinical trials have analysed the effect of statins on CVD risk. Meta-analyses of
data from more than 90,000 individuals, synthesizing more than 400,000 years of follow-up,
has been conducted by the Cholesterol Treatment Trialists’ collaboration (284,538). The large
sample size of these studies has allowed for inference of statin effectiveness and the moderating

impact of patients’ covariates on effectiveness.

A key finding from the CTT meta-analysis was that an ‘approximately linear relationship’ exists
between absolute reductions in LDL-C achieved by statin therapy and the proportional
reductions in incidence of CVD (538). Further, it has been shown in large randomised controlled
trials that statin efficacy, represented by reduction in LDL-C, is directly proportional to baseline
LDL-C (339). Combining these two findings suggests that individuals with higher baseline

LDL-C achieve greater absolute risk reduction attributable to statin therapy.
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Navarese et al. performed meta-regression on longitudinal studies of cardiovascular health
comprising of a combined 136,299 patients (339). Their study further supports the hypothesis
that baseline LDL-C is a predictor of relative benefit from LDL-C-reducing therapy. The
primary endpoint for this analysis was all-cause mortality. Multivariable meta-regression
models found that every 40 mg/dL (1.03 mmol/L) increase in baseline LDL-C was associated
with a relative risk of 0.91 (95% CI: 0.85-0.98) for all-cause mortality. This value was adjusted
for magnitude of LDL-C reduction, baseline risk profile, type of cholesterol-reducing agent, and
age. Secondary endpoints in the analysis included cardiovascular mortality and major adverse
cardiovascular events (MACE) as clinical endpoints. The adjusted relative risk per 40 mg/dL
increase in baseline LDL-C for these events were 0.88 (95% CI: 0.80-0.97) and 0.91 (95% CI:
0.85-0.98), respectively. Relative risks were similar for myocardial infarction and coronary

revascularization. However, no significant effect was found on cerebrovascular outcomes.

Soran et al. (340) acknowledge the direct relationship between baseline LDL-C and CVD risk
reduction from cholesterol-reducing therapy. They show that the number needed to treat with
statins to prevent one CVD event is often lower in low- and intermediate-risk individuals with
high baseline LDL-C compared with high-risk, low LDL-C individuals.

Based on the analysis presented above, Thanassoulis et al. developed an equation to predict 10-
year absolute benefit (ARR1o), specifically 10-year absolute risk reduction, attributable to statin
therapy (341). This equation accounts for both absolute 10-year risk (AR10) and baseline LDL-
C:
ARRy = ARygun — AR1o4r

In this equation ARy, and ARy, represent treated and untreated absolute 10-year risk of
CVD, respectively. ARy, is a product of both untreated risk and baseline LDL-C. Therefore,
ARRois also a product of these factors. Thanassoulis et al. estimated that the minimum ARR1o

expected in a population with AR10>7.5% is approximately 2.3%.

Previous studies estimated the potential health benefits associated with prioritizing patients for
statin therapy based on ARRyp rather than AR (340,341,539). Each study found that adding

statin treatment based on ARR1 to standard ARio-based treatment would lead to considerable
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health gains in the U.S. population. However, these studies all adopted a short, 10-year time

horizon and did not consider the economic costs of statin treatment strategies.

8.3.2 Objective

The objective of this study was to establish the relationships between baseline 10-year risk,
baseline LDL-C, and long-term benefits from preventive statin therapy. In addition, this study
aimed to quantify the cost-effectiveness of extending preventive statin therapy eligibility based
on ARRyg in the U.S. ARR1o was assumed to correspond directly with both AR10 and LDL-C.
This stratified approach to statin eligibility expansion was compared to lowering the blanket
risk threshold to 5.0%.

To appeal to a clinical audience, while also establishing the economic benefits associated with
different strategies of prevention, both the clinical- and cost-effectiveness of changing standard

of care were considered.

8.3.3 PPICOSS

Population: The U.S. CVD-free population, aged 40 years and above.

Perspective: Health sector decision-maker. All healthcare costs accrued and population-level

health gains are considered.

Intervention: Intermediate-intensity statin therapy. In health benefit analysis, the discounted
QALYSs gained from statin treatment are considered, stratified by age of treatment initiation,
sex, baseline risk, and baseline LDL-C. In population-level cost-effectiveness analysis, two
treatment eligibility expansions to standard of care were considered:
(1) expanding treatment to individuals with the lowest ARRyo in the AR1o >7.5%
population (ARR10>2.3%)
(i)  expanding treatment further to individuals with ARz >5.0%.

Comparator: Intermediate-intensity statins for individuals with AR19 >7.5% or diabetes, high-

intensity statins for individuals with AR10>7.5% and diabetes or LDL-C >190 mg/dL.
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Outcome: Health benefit analysis — long-term QALY gains from preventive statin therapy,
discounted 3% annually. Health economic analysis — long-term cost-per-QALY associated with
statin therapy, with both costs and QALY discounted 3% annually.

Setting: Primary care in the U.S.

Study Design: Microsimulation.

8.3.4 Methodology

CVD Microsim Model

The Cardiovascular Disease (CVD) Microsimulation Model, which was discussed in Chapter 5,
evaluated the cost-effectiveness of different statin prioritisation policies. Survival time, health-
related quality of life, and healthcare costs are assigned to health states in the model (ASCVD-
free, coronary heart disease, stroke, combined coronary heart disease and stroke, or dead)

Simulation Cohort

A cohort of U.S. adults aged 40 years at baseline was assembled by repeatedly sampling pooled
1999-2014 National Health and Nutrition Examination Surveys guided by survey sampling
weights. Adult lifetime risk factor trajectories were selected to intersect with cohort members’
cross-sectional NHANES characteristics. These trajectories were estimated in the CU-NHLBI
Pooled Cohorts Study dataset to predict individual-level lifetime trends in CVD risk factors,

conditioned on age, sex, race, body mass index, and other covariates.

ASCVD risk prediction and model validation

Risk functions for incident CHD, stroke, and non-cardiovascular mortality were estimated in
the Columbia University NHLBI (CU-NHLBI) Pooled Cohorts dataset. C-statistics for these
risk functions were 0.84, 0.85, and 0.87, respectively. The CVD Microsim Model was

recalibrated to match outcomes from the previously published and extensively validated
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FORTRAN model that shares the same input data. Simulation model predictions were also
validated by comparing simulation output with cumulative CHD and stroke incidence from
individual cohort studies and cumulative survival curves derived from U.S. life tables. Chapter

5 discusses the validation and recalibration process for the model in more depth.

Simulation Parameters

The main health outcome in lifetime statin treatment simulations was lifetime QALY's gained.
Lifetime ASCVD events prevented was a secondary outcome. ASCVD and non-CVD
healthcare costs were estimated for economic evaluations. Future QALYs and costs were
discounted at a rate of 3% annually (54). Simulation parameters are shown in Table 8-6 and

reflected current knowledge about the costs, benefits, and risks associated with statin therapy.

Intermediate-intensity statin therapy reduced baseline LDL-C by 29% and high-intensity statin
therapy reduced baseline LDL-C by 43% (284). Individuals on statins experienced a slightly
increased diabetes risk and incurred annual QALY decrements attributable to the inconvenience
of daily pill-taking (440,497). A proportion of statin users may suffer from myalgias and other
minor medication side effects. Meta-analysis evidence firmly rejects the hypothesis that
persistent statin use induces such adverse effects and these were therefore not modelled (446).
These effects were accounted for in the rate of medication discontinuation and rate of follow up
office visits, but no disutility was assumed. In a sensitivity analysis, 4.7% and 0.006% of

persistent statin users experienced mild and major adverse events (37).

Adherence to treatment (proportion persisting in taking statin beyond persistence observed in
clinical trials) was assumed to be 67%, 53%, and 50% in the first, second, and subsequent years
of treatment, respectively (540). These adherence factors attenuated LDL-C reduction, side
effect risks, and treatment-related costs. Annual costs of medications and treatment monitoring

were also included.

253



Base Distribution

Parameter Case for PSA Lower Upper Source
Statin LDL-C reduction (% change from baseline)

Intermediate-intensity 29 Beta 14 38 (284)
High-intensity 43 Beta 39 46  (284)
RR per 1.0 mmol/L LDL-C reduction

CHD 0.76 Beta 0.73 0.79  (251)
Stroke 0.85 Beta 0.80 0.89 (251)
gtbzgl"ugzc'r‘]’scff’ng‘;';‘;ef/) 0.50 Lognormal  0.00  0.01 (440
Pill-taking disutility 0.0011 Beta 0.0000 0.0055  (497)
Treatment adherence*

Year 1 67% Beta 50% 84%  (540)
Year 2 53% Beta 40% 66%  (540)
Subsequent Years 50% Beta 38% 63% (540)
Statin costs

Intermediate-intensity $24.16 Gamma $18.12 S$30.20 (541)
High-intensity $55.22 Gamma $41.42 $69.03  (541)
Check-up and screening visit

costs

Check-up visit, on treatment  $77.19 Gamma $57.89 $96.49  (542)
Screening visit, no treatment  $77.19 Gamma $57.89 $96.49  (542)
Other costs

Lipid panel test $19.00 Gamma $14.25 $23.75  (350)
Liver panel test $1.17 Gamma  $0.88 $1.46  (350)
yyeighted statin-induced $7.75  Gamma $5.81 $9.69  (350)
Annual number of visits

Years between screening visits 5 ND** 4 6 (27)
Primary care check up on

treatment (yearly or more) 1.25 Gamma 0 2.5 (27)
Discount Rates

Health 3.00% ND 6% 0 (54)
Costs 3.00% ND 6% 0 (54)

*Adherence represents adherence rate beyond observed adherence in clinical trials,
reduces LDL-C, treatment-related disutility and treatment-related costs in
simulation. **No distributional assumptions in probabilistic sensitivity analysis.

Table 8-6: Simulation parameters for study of AR1o and ARR1g-based statin therapy
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Health Outcomes Analysis

A health outcomes analysis evaluated the lifetime discounted QALYs gained from initiating
preventive statin therapy in U.S adults without ASCVD at age 40, 50, or 60 years. Lifetime
statin health outcomes were stratified by baseline AR1o, baseline LDL-C, sex, and age at

treatment initiation.

Population Health Economic Analysis

Health economic analyses evaluated lifetime cost-effectiveness associated with prioritizing a
range of ASCVD risk groups for preventive statin therapy. In all health economic analyses, a
U.S. health sector perspective was adopted. Therefore, all formal healthcare costs were included
in the analysis, regardless of payer (54).

Treatment groups included treat if AR10>7.5%, (current standard of care; Group A); treat ARR10
>2.3% but AR1o <7.5% (Group B); and treat the remainder of AR1o >5.0% (Group C). The
ARR1o threshold of 2.3% represents the minimum expected benefit in individuals eligible for
statins under the 2013 ACC/AHA guidelines (that is, the minimum expected ARR1g at the lowest
AR10) (341). The treatment groups are presented graphically in Figure 8-7, with each scatterplot
point representing one-person year of treatment eligibility over the collective lifetime of the
NHANES cohort and pie chart wedge areas representing the proportion of total person-years
falling within the treatment group categories. Treatment strategies added these treatment groups
sequentially and compared the outcomes associated with adding each new treatment group to
the prior strategy incrementally: Group A was treated first, and then A+B, followed by A+B+C.
Group A is currently strongly recommended for statin treatment in the 2013 ACC/AHA
guideline. No specific guideline relates to Group B, but most of these individuals fall into the
5.0-7.4% AR1g range. Group C is a large group for which treatment initiation recommendations

are unclear.

Following the ACC/AHA guidelines, in all treatment scenarios, patients with diabetes but AR1o
<7.5% were treated with intermediate-intensity statins (27). Similarly, in all treatment scenarios,
patients with LDL-C >190 mg/dL and patients with diabetes and AR19 >7.5% received high-
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intensity statins. These groups were treated along with Group A and in all subsequent
incremental strategies.

A new wave of individuals became statin treatment eligible every five years, based on these
treatment strategies and determined by sex and dynamic changes in age and risk factor levels.

Women Men
10.0% , 10.0% .t
B

9.0%
8.0%
7.0%
6.0%

5.0%

4.0%

Absolute Benefit

3.0%

2.0%

1.0%

0.0%
0.0% 50% 10.0% 15.0% 20.0% 25.0% 30.0% 35.0% 40.0% 450% 0.0% 50% 10.0% 15.0% 20.0% 25.09% 30.0% 350% 40.0% 45.0%

Absclute Risk

Figure 8-7: Treatment subgroups in population-level analysis. Each point represents
estimated AR1o and ARR1o for one life year of an individual in NHANES 1999-2014.
Underlying pie chart represents relative size of each treatment group.

Stratified Health Economic Analysis

Additional stratified analysis estimated ICERs associated with initiating statin therapy at age 40
in male and female subgroups of the U.S. population, according to combinations of baseline
AR10 and ARR1o, each compared with no treatment. Statin treatment benefit was classified as
very cost-effective (ICER <$10,000/QALY or cost-saving), moderately cost-effective (ICER
>$10,000/QALY but <$50,000/QALY), borderline cost-effective (ICER >$50,000/QALY but
<$150,000/QALY), or not cost-effective (ICER >$150,000/QALY) (543).
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Sensitivity Analyses

Sensitivity analysis quantified uncertainty inherent in population-level cost-effectiveness
modelling. One-way sensitivity analyses explored the results of the health economic analysis at

upper and lower uncertainty bounds of treatment parameters described in Table 8-6.

Probabilistic sensitivity analyses stochastically sampled Table 8-6 input distributions in 500
independent iterations. Using the cost and QALY results from probabilistic analyses, a cost-
effectiveness acceptability curve was produced to describe the probability of each treatment
strategy being the most cost-effective option for decision-makers at a range of willingness-to-

pay thresholds.

Secondary Analysis: Cost-Effectiveness of ARR in Scottish Population

The objective of this study was to estimate the health benefits and cost-effectiveness of
prioritising patients with a combination of elevated LDL-C and 10-year risk for preventive statin
therapy. This analysis adopted a U.S. health sector perspective, with the U.S-based CVD
Microsim Model. Conducting the analysis from a U.S. perspective allowed for collaboration
with U.S. researchers, leading to ongoing work on a research paper that aims to influence clinical
practice in the U.S. However, the results cannot be compared to previous results in this thesis;
CVD event risk, risk scores used in clinical practice, and costs of health services vary between
Scotland and the U.S. A secondary analysis was therefore conducted using the Scottish CVD
Policy Model to allow comparison of the costs and benefits associated with ARR compared to
other prioritisation strategies considered in this thesis.

In the secondar