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Abstract  

Postmortem blood drug concentrations change over time as a consequence of 

postmortem changes and therefore may not reflect the drug concentration at 

the time of death. In order to reduce the effect of postmortem redistribution on 

drug concentrations, early collection of samples for analysis is preferable. In 

addition, many other factors should be considered in the evaluation of drug 

concentrations in postmortem samples, such as stability of drugs during sample 

storage as this may be an additional source of variation.  

The aim of this study was to develop a method for quantifying drug 

concentrations in postmortem blood samples taken in drug-related deaths. A gas 

chromatography mass spectrometry (GC-MS) method with solid phase extraction 

(SPE) was developed and validated for the simultaneous determination of opioids 

and antidepressant drugs in whole blood. In addition, a liquid chromatography 

tandem mass spectrometry (LC-MS/MS) method with protein precipitation was 

developed and validated for simple and accurate analysis of gabapentin, 

morphine, morphine 3-glucuronide (M3G) and morphine 6-glucuronide (M6G) in 

whole blood samples. The methods were successfully verified using authentic 

postmortem blood samples.   

This study was designed to understand the stability of morphine and its 

glucuronides, in real postmortem blood samples, after storage in different 

conditions for short and long periods of time. The stability study revealed that, 

the concentrations of free and total morphine were stable during storage in the 

freezer for ~10 years and no significant losses were observed. The stability study 

of authentic case samples with and without preservative stored in the freezer 

for three years revealed that, sodium fluoride and potassium oxalate as a 

preservative for postmortem blood samples does not affect morphine, M3G and 

M6G stability under storage temperatures of -20°C for three years. 

This study also aimed to investigate morphine and morphine metabolites, 

together with their ratios, in order to achieve a comprehensive interpretation of 

time since death. The investigation of morphine to the respective glucuronide 

concentration ratio to estimate the survival times after administration of heroin 

revealed that, the lower ratios of these conjugates to total morphine (TM), are 

suggestive of a more rapid death, as there has been less time for the metabolism 
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of morphine to occur. Similarly, the presence of 6MAM in the blood of a heroin 

toxicity death suggests a more rapid death. More specifically, when M3G/TM is 

less than 0.40 could show a quick death in the absence of 6MAM in the blood.  

The purpose of this study was to investigate changes in the concentration of 

specific drugs (gabapentin, morphine, M3G and M6G) in postmortem blood 

samples between death and autopsy, and to identify any patterns of these 

changes. The sampling technique and site of sampling (peripheral and central) 

were considered to further define the extent of PMR of drugs and identify a 

possible mechanism of PMR. Concerning sampling site, for all substances, 

femoral blood concentrations were significantly lower than those found in 

cardiac blood, indicating that femoral blood is probably less prone to PMR. In 

addition, the evaluation of drug concentrations in postmortem samples collected 

using different techniques of blood sampling revealed that, needle puncture in 

the upper thigh (blind stick) as opposed to dissection of the same vein, also 

appeared to have an effect on femoral drug concentrations, since femoral 

concentrations tended to be closer to cardiac concentrations with the dissection 

sampling than the blind stick sampling technique. Finally, the analytical results 

derived from sampling (blind stick) as soon as possible to assess whether it is 

necessary to obtain blood samples prior to autopsy and prevent contamination 

by PMR, suggest that PMR is a continuous phenomenon in central as well as in 

peripheral compartments, but also that femoral blood appears more resistant to 

it. 

Generally, the results conclude that PMR is an ongoing phenomenon in central as 

well as in peripheral compartments, but also that femoral blood seems more 

resistant to it. Therefore, to avoid the effect of the pre-autopsy interval on drug 

concentrations it is always preferable for early collection of samples for 

analysis, which are collected closer to the time of death, and would enable a 

better assessment of the likely contribution of drugs to the death.  
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Chapter 1 Introduction  

Opioids are one of the most widely abused drug groups in the world. The 

majority of drug related deaths in the UK relate to opiate use, chiefly 

heroin/morphine [1]. The acute toxicity of heroin, especially after intravenous 

administration, is high compared with other drugs of abuse [2]. There is 

considerable evidence that many instances of drug related deaths are due to the 

combined effects of opioids with other respiratory depressants drugs [3-10] and 

this kind of poly-drug use is highly prevalent among illicit drug users in the UK 

[11, 12].  

―Drug-related death‖ means deaths happening shortly after consumption of one 

or more psychoactive drugs, and directly related to this consumption. The 

National Records of Scotland‘s National Statistics on DRDs show that, almost all 

(97% in 2016) DRDs occurred after the consumption of multiple substances. In 

Scotland 2016, opioids (methadone, diamorphine/ morphine or buprenorphine) 

were implicated in over three quarters of DRDs. Morphine, alcohol, anti-

depressants, diazepam, etizolam and gabapentin were the most common 

substances found at post mortem in Scotland 2016 – all have increased in 

prevalence since 2011, with the exception of diazepam replaced by etizolam [1, 

13].  

There are a number of challenges in the interpretation of drug and metabolite 

blood concentrations. Drug concentrations vary greatly depending on the dosage, 

route of administration, individual tolerance, age, state of health, concomitant 

use of other drugs, the period of survival after drug intake [14], and the manner 

of sample storage [15]. Correlating a specific drug concentration in blood to 

toxicity is difficult, even in a living individual [16, 17]. The situation after death 

is even more complex because the concentrations determined in samples 

collected at autopsy do not necessarily, accurately reflect those at the time of 

death.  

In general, the large variability and lack of appreciable patterns in opioid 

related death data may be due to inherent properties of the postmortem 

material. It may also possibly be due to variable toxicological significance of 

opioid intake and bioconversion to active metabolites in these materials. A 

significant amount of data suggests that the bioconversion of morphine 
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glucuronides to morphine is responsible, but the precise mechanism behind the 

bioconversion is not known. Residual metabolic enzyme activity, known to occur 

in the early postmortem period, can contribute significantly to changes in drug 

concentration.  

It is known that weakly basic drugs (e.g. antidepressant drugs) may be subject to 

a process known as postmortem redistribution (PMR), where drugs move from 

areas of high concentration in the central viscera to areas of lower 

concentration after death [18]. Residual metabolic enzyme activity, known to 

occur in the early postmortem period, can contribute significantly to changes in 

drug concentrations [19]. As time between death and sampling increases so does 

the likelihood that site- and time-dependent changes in blood drug 

concentrations will have occurred [14, 20].    

It is widely recognised that PMR is particularly important for drugs with high lipid 

solubility or high tissue concentrations relative to blood. Particular drug groups 

such as tricyclic antidepressants have been reported to be subject to PMR [21-

25]. When comparing concentrations of drugs in central samples to peripheral 

samples, a significant PMR has been reported for blood sertraline [26] and 

amitriptyline [27] indicating that dependence on the site of sampling was an 

important factor. Another study showed that some drugs exhibit particularly 

large changes in drug concentration when femoral blood was collected on 

mortuary admission compared to similar blood taken in autopsy a few days later 

[28].  

The pre-autopsy interval while storing bodies for long periods of time can cause 

greater changes in blood drug concentrations [14]. Therefore, to avoid the 

effect of the pre-autopsy interval on drug concentrations early collection of 

specimens for analysis is preferable, to enable a better assessment of the likely 

contribution of drugs to the death [28-30].  Many other factors must be 

considered in the evaluation of drug concentrations in a postmortem sample, 

such as techniques of blood sampling [31-33]. A limited number of studies have 

shown that needle puncture in the upper thigh (blind stick) did not affect the 

blood concentration as opposed to blood samples during autopsy from upper 

thigh [28, 34]. Therefore, it is important to not only understand the effect of 

how they are stored, but also how postmortem blood samples are collected at 
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autopsy and what interpretative value the measurements of drugs and their 

metabolites have on the circumstances of death. 

After administration, diamorphine is rapidly converted to its proximate 

metabolite 6-monoacetylmorphine (6MAM), which is quickly transformed into 

morphine, which is the target analyte when diamorphine-related deaths are 

investigated [35, 36]. The presence of 6MAM in blood and its short elimination 

half-life (15–30 min) suggest that the individual has died within 1–2 h after they 

last used diamorphine [7, 37]. In addition, some laboratories analyse further 

conjugated metabolites of morphine, reporting either a ―total morphine‖ 

concentration or identifying the specific metabolite, for example morphine-3-

glucuronide or morphine-6-glucuronide [36, 38, 39]. 

Several analytical methods for morphine and its glucuronide metabolites have 

enabled the direct and specific analysis of opioids and their glucuronide 

metabolites [40-64]. These metabolites potentially play an important role in the 

interpretation of deaths involving diamorphine, for at least two reasons: first, 

morphine-6-glucuronide (M6G) is pharmacologically active and has even been 

advocated to have a slightly different, and maybe more respiratory depressant 

action than morphine; secondly, the ratio of free morphine over its metabolites 

can help evaluate the time elapsed between diamorphine injection and death 

[65-67]. Therefore, investigations of opioid-related deaths should include 

quantification of morphine and morphine metabolites together, in order to 

achieve a comprehensive interpretation of postmortem opioid findings.   

As previously mentioned, a great majority of drug related deaths involving 

diamorphine, also include other respiratory depressant drugs, one of these is 

gabapentin.  Mao et al. (2011) have reported that gabapentin had analgesic and 

opioid pairing effects when used in conjunction with opioids in pre- or 

postoperative pain management, thus improving the analgesic efficacy of opioids 

and decreasing cumulative morphine consumption. Information on the 

synergistic effects of gabapentin and opioids and the increased risk for addiction 

and overdose has recently emerged in the literature [68].  

Knowledge of the stability of drugs in biological samples is of great importance 

in interpreting results of analysis after a significant time delay. It may be 

necessary to re-analyse forensic samples in criminal cases months/years after 
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initial analysis (for example, when new evidence emerges, or defence legal 

teams challenge original results). It is therefore important to know to what 

extent the concentration of the drug changes when blood is stored for very long 

periods of time. A decrease in drug concentration would follow drug 

degradation, which could be spontaneous, caused by endogenous enzymes 

present in or released into blood, or happen as a consequence of microbial 

activity. In the latter case, a more general decomposition of the sample would 

be expected with degradation of most, if not all drugs present. Increased free 

drug concentrations can also occur as a consequence of deconjugation of 

conjugated drug metabolites (e.g. morphine glucuronides hydrolysed to 

morphine) [69]. In addition, the differences between the initial and subsequent 

drug analyses could be due to the heterogeneous nature of postmortem blood 

samples due to clotting and separation of components following cell lysis.  

Whereas limited attention has been paid to the influence of the pre-analytical 

factors on the analysis of opioids, some data has been reported on the thermal 

stability of morphine in blood [70, 71]. An additional determination of morphine-

3-glucuronide (M3G) and morphine-6-glucuronide (M6G) was published in a 

number of studies [72-75]. Even less attention has been paid to the stability of 

morphine metabolites especially long-term storage real-life (not spiked), 

although conclusions may be drawn from parent drug concentrations in forensic 

cases.  

The modern analytical instrument has made reliable and highly sensitive systems 

for determinations based on individual analyte parameters. Among these 

characteristic parameters of the compound is its mass spectrum, which can be 

used for its identification. Combining various versions of chromatography with 

the mass-selective detection of the separated components is one of the 

promising trends in the analysis of composite mixtures of unknown composition.  

Several analytical methods for opioids and antidepressant drugs have been 

reported [40-51, 53-64, 76-90]. The use of GC–MS for the identification and 

measurement of drugs of abuse is currently believed to be crucial to acceptance 

of evidence in legal proceedings because of its sensitivity and specificity. In 

recent years, the coupling of liquid chromatography with mass spectrometry (LC-

MS) and atmospheric pressure ionisation (ESI) has enabled the direct and specific 
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analysis of opioids and their glucuronide metabolites [40-51, 53-64, 76-85, 91-

101]. Consequently, the evaluation of this analytical technique in the 

determination of morphine, M3G, and M6G has been pushed forward.  

The previously published methods were primarily intended for plasma or serum 

matrix solely, and the extraction techniques were mostly focused on solid‐phase 

extraction, which contained multiple steps of sample extraction and were time‐

consuming. There is, until now, a lack of an analytical method for the 

simultaneous extraction of opioids and antidepressants in biological samples.  
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Chapter 2 Literature review 

2.1 Drug Related Death 

The National Records of Scotland‘s National Statistics on DRDs show that, in each 

year since 2014, the numbers of both drug-related and opioid-related deaths 

were at their highest recorded levels in Scotland. Opioids were implicated in 77% 

of deaths and an increasing percentage of those who died from opioid-related 

death were prescribed an Opioid Substitution Treatment (OST) at the time of 

death (46% in 2016). Drug-related deaths in Scotland, 3- and 5-year moving 

averages, and likely range of values around 5-year moving average are 

illustrated in Figure 2-1 below [13]. ` 

 

Figure  2-1: Drug-related deaths in Scotland, 3- and 5-year moving averages, and likely range 
of values around 5-year moving average 
 

In 2016, almost all (796, 97%) DRDs occurred after the consumption of multiple 

substances. Opioids (methadone, diamorphine/morphine or buprenorphine) were 
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implicated in over three quarters (632,77%) of DRDs. Diamorphine/morphine 

(502, 61%), alcohol (398, 49%) anti-depressants (385, 47%), diazepam (376, 46%), 

etizolam ((269, 33%) and gabapentin (117, 15%) were the most common 

substances found at post mortem in 2016 – all have increased in prevalence since 

2011, except diazepam [102].   

In 2016, antidepressants were prescribed in the three months prior to death. 

Although there was an overall increasing trend from 2009 (27%) onwards, recent 

anti-depressant prescribing appears to have peaked in 2013 (44%). Around three-

quarters (238/328, 73%) of those recently prescribed anti-depressants had them 

present at post mortem. Among individuals prescribed an anti-depressant in the 

90 days before death, mirtazapine (145, 44%) was the most commonly prescribed 

drug, followed by sertraline (49, 15%) and amitriptyline (33, 10%). For other 

antidepressant drugs there was no clear trend over this time period [102].   

The report on 2015 and 2016 DRDs highlights some new findings and emerging 

trends. High levels of diamorphine/morphine presence among individuals on OST 

demonstrated the extent of non-compliance with specialist drug treatment using 

methadone, antidepressants and gabapentin. These specific drugs consumed 

alongside opioids increase risk of overdose and (at high dose) are associated with 

respiratory depression. Further research on the effects of these substances in 

such circumstances would be beneficial [102].  

Complex analgesic regimens pose risks for adverse drug interactions, since they 

frequently include different classes of analgesics, such as non-opioids, opioids, 

and/or adjuvants (antidepressants, anticonvulsants, etc.). On the one hand, 

medications modulating serotonergic or noradrenergic pathways, such as 

tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs) 

or serotonin–noradrenaline reuptake inhibitors (SNRIs), are frequently used both 

in the treatment of depression [68, 103] and of pain [104]. However, it is less 

well known that opioids may significantly affect serotonin kinetics in the 

presence of other serotonergic agents, causing increased intra-synaptic 

serotonin levels [105]. On the other hand, some antidepressant medications have 

been shown to augment and prolong the effects of opioids [106-109].  
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2.2 Opioids  

2.2.1 Background  

The term opioid refers to all natural and synthetic drugs with morphine-like 

properties and they are one of the largest of the drug families, consisting of 

more than 30 drugs. Opioids are defined as compounds which have similar 

pharmacological effects to those of morphine, and they can be divided into 

three main groups: naturally occurring (morphine and codeine); semi-synthetic 

or derived from morphine by chemical modification (dihydrocodeine); and 

obtained synthetically (methadone) [110]. 

Diamorphine (Aceto-morphine; Diacetylmorphine) is a semisynthetic morphine 

derivative [111, 112]. It was synthesised for the first time in 1874 by the simple 

modification of morphine - acetylation of the hydroxyl groups at positions 3- and 

6- of the phenanthrene ring of morphine using acetic anhydride [113]. It was 

intended to be used in medication as an antitussive agent, but unfortunately, 

the misuse of diamorphine has become a major cause of death in the world 

today [114, 115].  

Morphine, the first ―alkaloid‖ isolated from the opium poppy (Papaver 

somniferum), is well‐known and an indispensable pain‐relief medication. In 

addition to the distinctive pharmacological features, morphine has a unique 

pentacyclic skeleton, including a benzylic quaternary carbon. Over the years, 

extensive synthetic studies of morphine and related natural products have been 

conducted and more than 30 products as well as formal syntheses have been 

reported to date.  

Codeine (Codeinum; Methylmorphine; Metilmorfina; Morphine Methyl Ether) is 

another natural opioid obtained from opium. This naturally occurring opioid can 

also be prepared by methylation of morphine. It has been prescribed widely for 

the relief of mild to moderate acute pain as an analgesic and antitussive agent. 

Codeine is often combined with non-opioid painkillers such as acetaminophen 

(paracetamol) and aspirin. Although codeine has been extensively used as a 

medication, illicit use of codeine has been reported [98, 116].  
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Dihydrocodeine (Dihydroneopine, Drocode, hydrocodeine, 6- α-hydrocodol, 

drocol, DHC-plus, Synalgos-DC) is a semisynthetic analgesic opioid [117]. DHC 

was prepared for the first time in 1920 by hydrogenating the double bond 

between carbon atoms 7 and 8 in codeine. It has been used for the relief of 

moderate to severe pain and has also been commonly used as an antitussive and 

analgesic [118]. Since 1961, it has been widely used in some countries for the 

treatment of opiate addicts as an alternative to methadone. However, the use of 

DHC has increased sharply in recent years and fatal poisoning has been reported 

due to the abuse of DHC [119].   

2.2.2 Pharmacokinetics and Metabolism 

Analysis of drugs of abuse is a common feature of forensic investigations and 

correct interpretation of the measured concentrations is important in both 

postmortem and human performance toxicology. Accurate estimation of the 

time of drug intake and expected drug effects from a certain dose or 

concentration are also frequent issues in drug-facilitated crimes. The four 

fundamental processes which influence the in vivo pharmacokinetics of a 

compound are absorption, distribution, metabolism and excretion (ADME). These 

are distinct, although in many respects, interrelated processes which occur 

between the administration and elimination of a compound from the body.  

The proportion of active drug—whether given intravenously or absorbed from the 

gastrointestinal, respiratory, or cutaneous system—that enters the systemic 

circulation is defined as bioavailability. Wide bioavailability range among 

different opioids is partially attributable to differences in first-pass metabolism, 

when the drug is metabolized directly by the liver from the gastrointestinal tract 

before it reaches systemic circulation.  

The interpretation of the concentration of a drug measured in the post-mortem 

period also needs to take into account the drug volume of distribution (Vd) 

which will have an influence on its post-mortem redistribution. The volume of 

distribution of a drug is the proportionality constant between the amount of 

drug in the body and the plasma concentration of the drug.  It can be calculated 

by Equation 2-1 [120]. 



10 
 
Equation  2-1 Volume of distribution 

                             
                                               

                                      
 

 

The total body water volume is approximately 0.55 L/kg. Therefore, drugs that 

have Vd of 0.55 L/kg or less are only distributed in the body fluids [121]. In 

general, drugs with high Vd >1 L/kg tend to be distributed in the body tissue e.g. 

body fat as well as in body fluids. In other words, lipophilic drugs tend to have a 

high Vd. Therefore, drugs with a high Vd tend to be highly lipid soluble and can 

penetrate the blood-brain barrier [BBB] [122]. Those opioids with a higher Vd are 

usually more lipophilic, and more likely to distribute faster and more strongly 

both into and out of the blood-brain barrier.  

After oral administration, morphine and codeine are rapidly and almost 

completely absorbed. The bioavailability of morphine and codeine are (<40 % 

and 53%, respectively) with Vd of (2 – 5 L/kg and 3 – 6 L/kg, respectively). The 

vast majority of opioids are excreted as metabolites through the kidneys [119, 

123, 124], morphine and codeine are mainly excreted through the kidneys 90%, 

as summarised in Table 2-1.  

The most important area of opioid pharmacokinetics is metabolism, which 

converts the parent drug to a metabolite via phase I reactions, eg, oxidation, 

reduction, hydrolysis, and/or phase II reactions, eg, glucuronidation, 

methylation, acetylation, or sulfonation [124, 125]. The metabolism process may 

involve the cytochrome P-450 (CYP) enzymes, particularly CYP 2D6 and CYP 3A4, 

or other enzymes, such as UDP-glucuronyl transferase [123].  

After administration, diamorphine is rapidly converted to its proximate 

metabolite 6-monoacetylmorphine (6MAM), which is quickly transformed into 

morphine. Through hepatic metabolism, morphine undergoes extensive hepatic 

first-pass metabolism, and is predominantly metabolised through glucuronidation 

in the liver into the conjugates morphine-3-glucuronide (M3G; 45–55%) and 

morphine-6- glucuronide (M6G; 10–15%) [124-127]. The biotransformation of 

diamorphine is illustrated in Figure 2-2.   

6MAM is the target analyte when diamorphine-related deaths are interpreted 

[128]. In this case series, the presence of 6MAM in blood and its short elimination 

half-life (15–30 min) means that the individuals died within 1–2 h after they last 
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used diamorphine [129-131]. When 6MAM is detected in another matrix (e.g. 

urine or vitreous humour), but not in blood, a longer time span between 

diamorphine intake and death is likely [67, 132-135]. The plasma half-life of free 

morphine has been reported to be between 2 to 4 hours, but its glucuronide can 

be determined in urine more than 5 days after diamorphine use [136].  

Codeine is mainly metabolised in the liver, although some intestinal and CNS 

metabolism probably occurs. A major part (50–70%) of a codeine dose is 

glucuronidated to codeine-6-glucuronide (C6G), while 10–15% is N-demethylated 

to norcodeine via the cytochrome P450 isoenzyme 3A4 (CYP3A4) [137]. 

Norcodeine is in turn glucuronidated to norcodeine-6-glucuronide (N6G), and a 

minor part is O-demethylated to normorphine [138]. Of an ingested codeine 

dose, 0–15% is O-demethylated to morphine by the polymorphic cytochrome P450 

isoenzyme 2D6 (CYP2D6), and further glucuronidated to the inactive metabolite 

morphine3-glucuronide (M3G; approximately 45-55% of morphine formed) and 

the active metabolite morphine-6-glucuronide (M6G; 10–15%) [139].  
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Figure  2-2: The biotransformation of Diamorphine 

DHC is metabolised by N-and O-demethylation, and it is conjugated with 

glucuronic acid at the 6-hydroxy group to produce dihydrocodeine-6-glucuronide 

(DHC6G). O-demethylation is responsible for metabolising DHC to its active 

metabolite dihydromorphone (DHM) which is then conjugated with glucuronic 

acid to form dihydromorphine 3- and 6-glucuronide. Cytochrome P-450 enzyme 

CYP2D6 has been found responsible for O-demethylation of DHC [119]. 
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2.2.3 Mechanism of action 

Opioids produce their analgesic effects through activity at three major receptor 

subtypes: mu (µ), kappa (κ) and delta (δ). Morphine and most other clinically 

significant opioids produce their effects primarily at µ receptors which are 

widely distributed throughout the CNS and also in the gastrointestinal tract. Of 

all the opioid agonists, µ receptor agonists display the strongest analgesic action 

and have the highest abuse liability [140-142].  

Diamorphine is two to three times more potent than morphine, although it 

exhibits relatively low affinity for µ receptors [143, 144]. Binding to µ receptors 

requires a free phenolic hydroxyl group in the morphinian structure (3-OH) which 

diamorphine does not possess. Thus, diamorphine is considered to be a pro-drug 

with its prolonged effects mediated by its more stable agonistic metabolites, 

6MAM and morphine [145]. 6MAM has been found to be more potent at the µ 

receptor than morphine [146]. Morphine‘s major metabolite, M3G is a highly 

water-soluble metabolite and the predominant metabolite. M3G has a low 

affinity to opioid receptors; thus, no opioid reaction will be produced, but it 

seems to produce the side effects of morphine. On the other hand, M6G is a 

pharmacologically active metabolite being an agonist at µ and δ receptors. It has 

also been shown to have greater analgesic potency than morphine in humans 

[147, 148].  

Codeine is also considered a prodrug, it binds weakly to μ-opioid receptors and 

exerts its clinical effect by conversion to morphine which has a much higher 

affinity for the μ-receptor [149]. 

2.2.4 Drug Interaction 

Opioids undergo phase 1 metabolism by the CYP pathway, phase 2 metabolism 

by conjugation, or both. Phase 1 metabolism of opioids mainly involves the 

CYP3A4 and CYP2D6 enzymes. The CYP3A4 enzyme metabolises more than 50% of 

all drugs; consequently, opioids metabolised by this enzyme have a high risk of 

drug-drug interactions. The CYP2D6 enzyme metabolises fewer drugs and 

therefore is associated with an intermediate risk of drug-drug interactions. Drugs 

that undergo phase 2 conjugation, and therefore have little or no involvement 

with the CYP system, have minimal interaction potential [150].  
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2.2.5 Toxicity 

Diamorphine is known as the drug most likely to kill as a result of an overdose 

and is two times more potent than its precursor morphine. Death attributed to 

diamorphine may occur with a dosage as low as 200 mg but also highly depends 

on the tolerance of the deceased. The fatal dose of diamorphine may be much 

more, up to ten-fold, for chronic drug abusers. However, deaths attributed to 

diamorphine have been reported following doses of 10 mg [143].  

There are several reasons why diamorphine addicts overdose. Some may simply 

take too much drug, especially when the heroin is particularly high purity 

diamorphine, or it is enriched with further potent opioids [151]. Others may 

suffer from synergism between the opiate and other, concomitantly 

administered depressive drugs (e.g., alcohol). Another risk factor is the drug-

administration environment. Addicts are at risk of overdose if they take the drug 

when they have no tolerance. On the occasion of the overdose, such victims do 

not make the preparatory conditional responses that mediate chronic tolerance, 

and thus are not sufficiently tolerant to the drug to survive [152].  

As indicated earlier, diamorphine has a very short half-life and is rarely detected 

in post mortem blood samples. As a result, concentrations of its active 

metabolite morphine have been employed for the interpretation of cause of 

death and elapsed time after diamorphine administration. The presence of 6MAM 

in blood has been used as death occurring shortly after the administration of 

heroin because 6MAM has a short half-life of less than 40 minutes after 

administration [7]. Morphine concentrations determined in diamorphine 

fatalities vary between cases and there is a large overlap between deaths 

attributed and not attributed to diamorphine [153, 154]. The effects of 

diamorphine toxicity is not fully understood, and many deaths are attributed to 

respiratory depression [155].  

The typical triad of opioid intoxication consists of coma, pinpoint pupils and 

respiratory depression [156]. Additional toxic effects of morphine include 

apathy, cold and clammy skin, confusion, constipation, dizziness, drowsiness, 

hypotension, hypothermia, nausea, urinary retention and vomiting [157, 158]. In 

healthy volunteers, impairment of cognition and motor control was observable at 

plasma morphine concentrations at or above 0.04 mg/L [159]. While small doses 
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of morphine merely depress the respiratory rate, large doses cause respiratory 

arrest. Profound respiratory depression and the need for assisted ventilation 

corresponded with peak plasma concentrations of 0.8 – 2.6 mg/L following the 

intravenous infusion of 55 - 66 mg/kg of morphine in surgical patients [160]. 

Suppression of respiratory drive accounts for the mechanism of death in most 

instances of opiate overdose [161]. 

Deaths involving diamorphine can be classified in three categories: intoxication 

with diamorphine alone, in combination with other centrally acting drugs and 

non-diamorphine related. Diamorphine users are known to build their tolerance 

with chronic use and can administer high doses without leading to fatal toxic 

effects. Diamorphine overdose deaths due to high doses would be expected to 

result in high concentrations of diamorphine metabolites such as morphine in 

postmortem blood. However, relatively low concentrations of morphine are 

observed in many diamorphine deaths.  These can be explained due to a lack of 

or loss of tolerance or a long time may have elapsed between injection and 

death (delayed death). However, low concentrations of morphine can still be 

considered toxic, especially in the presence of other centrally-acting drugs and 

may contribute to death [153, 154, 162-164].   

Overdose of codeine leads to unconsciousness and convulsions, with death likely 

to happen as a result of respiratory failure within 2-4 hours. A single dose of 

120mg of codeine in an adult produced a peak codeine concentration averaging 

0.47 mg/L [165]. A detailed Australian study on codeine related deaths 

considered free codeine concentrations >0.4 mg/L and a total codeine 

concentration of >2.0 mg/L sufficient to cause death in the absence of other 

contributing factors [166]. Other compilations of toxic and fatal concentrations 

of drugs in blood indicate codeine concentrations of 0.5 – 1.0 mg/L as potentially 

toxic and concentrations of 0.6 – 2.1 mg/L as potentially fatal [167]. However, 

codeine deaths are dependent upon the tolerance of users in which fatal 

concentrations can be detected in living subjects after codeine administration 

[168].   

DHC toxicity involves dizziness, drowsiness, light-headedness, nausea and 

constipation. In severe exposure respiratory depression occurs followed by coma, 

convulsion, cardiovascular collapse and death [169]. Concentrations found at 
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autopsy overlapped between toxic and therapeutic concentrations due to the 

presence of other harmful substances while death can occur with concentrations 

below fatal concentrations [170]. Toxic concentrations reported were 0.8 mg/L 

or higher, and therapeutic concentrations were suggested to be 0.03–0.25 mg/L. 

In a previous study in 54 living subjects involving DHC, the mean concentration 

was 0.7 mg/L (range 0.1–3.3 mg/L). However, concentrations of DHC that caused 

death may be lower in polydrug intoxication, as reported below 1.0 mg/L, 

whereas most cases involving DHC alone have DHC concentrations higher than 

1.0 mg/L, with the exception of naive users who had no tolerance to DHC, or in 

the case of delayed death [119].  

2.3 Tramadol  

2.3.1 Background 

Tramadol is a synthetic analogue of codeine and it is a widely used therapeutic 

alternative to other opioid analgesics [171]. Like other opioids it can be liable to 

misuse. Therefore, the number of cases reporting dependence, abuse, 

intentional overdose or intoxication by tramadol is increasing. The 

administration of toxic doses of tramadol concomitantly with other central 

nervous system depressants is one of the most common causes of severe or fatal 

acute intoxication [172, 173]. In 2014, The Advisory Council on the Misuse of 

Drugs recommended that tramadol should be re-classified as a Class C Schedule 

3 drug; prompted by increasing reports of misuse and harm. However, changes in 

the classification of drugs that occurred in the years up to and including 2013 

had little effect on the figures [174].  

2.3.2 Pharmacokinetics and Metabolism 

After oral administration, tramadol is rapidly and almost completely absorbed. 

Plasma protein binding is ~20% and is rapidly distributed in the body with 

distribution volume of 3 L/kg. Tramadol is mainly excreted through the kidneys 

(90%) [123, 172, 175]. Pharmacokinetic properties are summarized in Table 2-1 

and the chemical structure is shown in Figure 2-3.  
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Figure  2-3 Chemical Structure of Tramadol  

Tramadol is mainly metabolised in the liver by O- and N-demethylation, 

catalysed by the cytochrome P450 (mainly isoenzyme CYP2D6) and followed by 

conjugation with glucuronic acid and sulfate. O-demethylation of tramadol to O-

desmethyltramadol (M1) is mediated by cytochrome P450 (CYP) 2D6 and possibly 

by 2B6 enzymes [176-178]. N-demethylation via CYP3A4 and CYP2B6 yields N-

desmethyltramadol (M2) [179, 180]. Tramadol may be further metabolised to 

three additional secondary metabolites (M3, M4 and M5) [176, 181, 182].  

2.3.3 Mechanism of action  

Tramadol is a centrally acting opioid analgesic. It has a dual mechanism of 

action, which is a partial agonist of µ-opioid receptors and inhibits serotonin and 

noradrenaline reuptake at the synapses of the spinal cord, acting on the pain 

transmission mechanism [172].  

2.3.4 Drug Interaction  

The risk of interactions is elevated in patients who use multiple medications for 

pain control or antidepressants for the treatment of comorbid depression. These 

interactions increase the risk of serotonin syndrome, which may occur with a 

high dose of a single drug but appears more common when serotonergic agents 

are used together. Serotonin syndrome results from excessive central nervous 

system and peripheral serotonergic activity [183].  

In a Finnish study, every fifth inpatient using tramadol took concomitant 

medication with potential to inhibit the conversion of tramadol to its 

pharmacologically active O-desmethyl metabolite [184], which may therefore 

increase blood concentrations and in turn increase risk of adverse effects.    
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2.3.5 Toxicity 

Tramadol is a widely used therapeutic alternative to other opioid analgesics 

since it was thought to have a low potential for abuse, dependence and 

tolerance, and low probability to cause adverse effects, including respiratory 

depression. However, the number of cases reporting dependence, abuse, 

intentional overdose or intoxication by tramadol is increasing. Fatal intoxications 

due to tramadol alone also exist but are not common. The administration of 

toxic doses of tramadol concomitantly with other central nervous system 

depressants is one of the most common causes of severe or fatal acute 

intoxication [172].  

2.4 Methadone 

2.4.1 Background 

Methadone, a very useful analgesic and the most utilised drug for replacement 

therapy in patients with opioid-related addiction, is now also widely used for the 

management of chronic pain. Methadone was synthesized in Germany before 

World War 2 and imported to the USA by Lilly after the war and was utilised for 

several years as an opioid analgesic but lost popularity in the 1950s. In the early 

1960s, Dole and Nyswander proposed that patients abused opioids to compensate 

for an endogenous opioid deficiency, and it was introduced as a maintenance 

medication to control craving in patients treated for drug addiction [185, 186].   

2.4.2 Pharmacokinetics and Metabolism 

After oral administration, methadone is rapidly and almost completely absorbed 

and distributed in the body with distribution volume (Vd) of 1 - 8 L/kg. The 

bioavailability of methadone is 36 – 100 % and it is primarily excreted via bile. 

Pharmacokinetic properties are illustrated in Table 2-1. [123, 187] 

Methadone is extensively metabolised in the liver, methadone is converted into 

its primary metabolites 2-ethylidene-1, 5-dimethyl-3, 3 diphenylpyrrolidine 

(EDDP) and 2-ethyl-5-methyl-3, 3-diphenyl-1-pyrrolidine (EMDP) by the 

cytochrome P450 enzymes CYP3A4, CYP2B6 and to a lesser extent CYP2D6 [188, 

189]. The biotransformation of methadone to EDDP is illustrated in Figure 2-4.   
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Figure  2-4: The biotransformation of methadone to EDDP 
 

2.4.3 Mechanism of action  

Methadone has a number of unique characteristics when compared to other 

opioids. It has agonist affinity for both the µ and δ opioid receptors, it acts as an 

inhibitor at the presynaptic N-methyl-D-aspartate (NMDA) receptors, and it 

blocks the reuptake of noradrenaline and serotonin in the peri-aqua-ductal grey 

matter [190].  

2.4.4 Drug Interaction 

Combined methadone and antidepressants are frequently prescribed in different 

settings, and data on possible interactions of different regimens of methadone 

with different antidepressant drugs are sparse. The interaction of acute and 

chronic methadone with antidepressants is a complex phenomenon, and further 

studies are needed in order to assess the interactions of chronic antidepressant 

medications with single-dose and chronically administered methadone in greater 

depth. See also section 2.5.4.  

2.4.5 Toxicity 

A recommended serum therapeutic range of between 0.15 and 0.6 mg/L has 

been reported when monitoring methadone maintenance patients [191] and a 

therapeutic window for dosage ranging from 60 mg to 120 mg suggested [192]. In 

methadone toxicity, respiratory depression after treatment with methadone and 

other µ opioid agonists results from decreased chemoreceptor sensitivity to 

circulating CO2 concentrations in the medullary brain stem. Thus, relatively low 

doses of methadone in opiate-naive individuals and sufficiently high doses of 

methadone in opioid-tolerant individuals can lead to fatal overdose consequent 

to respiratory depression and cardiopulmonary failure. Of 176 methadone-
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related fatalities, methadone was the only drug detected in postmortem blood 

and urine toxicological analyses in 11 (6.25%) cases. The mean methadone blood 

concentration of all 176 cases was 0.535 mg⁄L (0.02–4.0 mg/L) [193]. There is 

large overlap between therapeutic concentrations and concentrations reported 

in fatal methadone cases. The risk for methadone (and opioid) overdose is 

exacerbated when used in combination with other opioids and/or sedatives, 

including alcohol and benzodiazepines [194].  

2.5 Antidepressants  

2.5.1 Background 

Over the past three decades, tricyclic antidepressants (TCAs) were the first line 

agents to treat depression such as amitriptyline introduced in the 1960s as a 

tricyclic compound [195, 196]. On the other hand, selective serotonin reuptake 

inhibitors (SSRIs) are the most widely prescribed antidepressants worldwide. By 

the early 1990s, the SSRIs became first-line antidepressants in clinical practice 

and accounted for more than half of all antidepressant prescriptions such as 

sertraline and citalopram [197, 198]. Among the antidepressants of the newer 

generations, mirtazapine is one antidepressant which is used mainly in the 

treatment of depression and sometimes used in the treatment of anxiety 

disorders, insomnia, nausea, and vomiting, and to produce weight gain when 

desirable [199].  

2.5.2 Pharmacokinetics and Metabolism 

Amitriptyline is completely but slowly absorbed from the gastrointestinal tract 

after its oral uptake such that the peak plasma concentrations are achieved 

within 4 to 8 h of its administration with distribution volume of 6-10 L/kg. It has 

a systemic bioavailability ranging from 33 to 62% and is subject to extensive 

hepatic pre-systemic elimination [200, 201].  

After oral administration, citalopram is rapidly absorbed, with peak plasma 

levels observed approximately after 1–4 h and it has a plasma half-life of 

approximately 35h. Citalopram is highly lipophilic and has one chiral centre, its 

lipophilicity results in high bioavailability (approximately 80%) after oral 

administration. Approximately 12–23% of orally dosed citalopram is excreted 
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unchanged in the urine, and approximately 10% is excreted in the faeces [28, 

201, 202].  

Sertraline is slowly absorbed from the gastrointestinal tract after its oral uptake 

such that the peak plasma concentrations are achieved within 4.5 to 8.4 h of its 

administration. It distributed in the body with distribution volume of 20-50 L/kg, 

and protein binding 98% [201, 203, 204].  

After oral administration, mirtazapine is rapidly and completely absorbed with 

peak plasma concentrations achieved within 2 h of dosing, and distribution 

volume of 10-14 L/kg. Mirtazapine has an elimination half-life of 20-40 h, is 

approximately 85% plasma protein bound, and is 75% excreted in the urine [201, 

205, 206].  

Antidepressants are primarily metabolised through the hepatic isoenzyme 

CYP2D6 with 1A2 and 3A4 as secondary routes [201]. Pharmacokinetic properties 

are illustrated in Table 2-1 and chemical structures in Figure 2-5.  

 
 

 

 

Figure  2-5 Chemical Structures of Mirtazapine, Amitriptyline, Citalopram and Sertraline. 

 

2.5.3 Mechanism of action  

The antidepressant action of TCAs is thought to be due to their inhibition of 

norepinephrine (NE) and serotonin (5-HT) reuptake, thus leading to increased 
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concentrations of these monoamines in the synaptic cleft, down-regulation of 

postsynaptic receptors and subsequent changes in gene expression [207].  

All SSRIs, although differ structurally, have the same mechanisms of action: as 

the name implies, these compounds selectively inhibit the serotonin transporter, 

all agents are potent inhibitors of the serotonin reuptake transporter. In 

addition, sertraline may have relatively greater inhibitory potential at the 

dopamine transporter [208].  

Mirtazapine is a postsynaptic drug which enhances noradrenergic and 5-HT1A-

mediated serotonergic neurotransmission via antagonism of central α2-auto- and 

hetero-adrenoreceptors [209].  

2.5.4 Drug Interaction 

TCAs, the majority of significant pharmacokinetic interactions with 

antidepressants involve drug induced changes in hepatic metabolism, which 

predominantly involve the cytochrome P450 isoenzymes. In some cases, 

increased TCA toxicity with methadone co-administration have been reported 

[210, 211]. In a retrospective study, decreased methadone clearance was found 

in patients receiving amitriptyline [212]. Further studies are required to better 

understand the underlying mechanism of these interactions. 

SSRIs that inhibit the CYP 450 systems will impair metabolism of other 

medications (P450 enzyme substrates). Enzyme inhibition occurs within two to 

three days, due to the offending drug binding to the metabolising enzyme 

preventing it functioning [213], thus prolonging their elimination half-life and 

increasing their blood concentration. The SSRI inhibition of cytochrome P450 

activity may lead to elevated concentrations of concurrently administered TCAs 

which are metabolised by CYP 2D6 and 3A4 isoenzymes. This may lead to adverse 

effects such as seizure and death [214, 215].  

The interaction of mirtazapine with opioid, noradrenergic and serotonergic 

agonists and antagonists found that, the antinociceptive effect of mirtazapine 

mainly involves µ- and κ3-opioid mechanisms. This opioid profile of mirtazapine 

may be one of the explanations to its efficacy in severe depression, unlike the 

SSRIs and other antidepressants which lack opioid activity [209]. 
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2.5.5 Toxicity 

TCAs have a relatively low therapeutic index and serious consequences in 

overdose. For most TCAs, the therapeutic dose is about 3–4 mg/kg/day and a 

potentially fatal dose is 15–20 mg/kg/day. Postmortem femoral blood levels of 

mirtazapine concentration ranged from 0.01-2.7 mg/L [206, 216], citalopram in 

the range of 0.014 – 11.6 mg/L, sertraline in the range of 0.09 – 0.88 mg/L [217] 

and amitriptyline in the range of 1.0 – 39 mg/L [218]. Several studies have 

published maximum toxic serum concentrations for amitriptyline <0.6 mg/L, 

citalopram <0.4 mg/L, sertraline <0.6 mg/L and mirtazapine <0.3 mg/L [219].  

TCAs have strong anticholinergic (antimuscarinic) activity, which may cause 

constipation, dry mouth, urinary hesitancy/retention, blurred vision, dyspepsia, 

and confusion [198, 220]. In elderly patients, more severe side effects, such as 

tachycardia, confusion, agitation, or even delirium may occur at therapeutic 

doses [221]. Although rare, these severe complications may occur when a 

patient has been taking another anticholinergic drug concomitantly with a TCA; 

neuroleptics, anti-Parkinsonian agents, antihistamines, antispasmodics and over 

the counter sleeping pills are commonly involved.  

SSRIs, although generally well tolerated, may produce anxiety, sleep 

disturbances, and gastrointestinal discomfort, especially at the initiation of 

therapy. There have been fatalities with overdoses of more than 150 times the 

usual daily dose. Almost all fatalities occurred in patients who took SSRIs and 

other substances, usually alcohol, benzodiazepines, morphine or other drugs 

[222, 223].  

Mirtazapine in a study of 30 patients found that, a patient developed slurred 

speech, mood swings, depression, drowsiness and fatigue during treatment for 

gastroparesis with oral mirtazapine 15mg once a day [224].  

2.6 Gabapentin  

2.6.1 Background 

Gabapentin is an antiepileptic drug shown to be effective as add-on therapy for 

patients with drug-resistant partial seizures with or without secondary 

generalization [225, 226]. Due to its tolerability, and its broad and complex 
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mode of action, gabapentin has also been studied for other indications. The 

largest area of nonepileptic use of gabapentin is neuropathic pain [227], but it 

appears to be effective in other types of pain as well. In addition, it has been 

reported to be a useful pharmacological agent for several psychiatric disorders, 

such as bipolar disorder, social phobia and other anxiety disorders [228, 229]. A 

number of studies have also suggested the potential effectiveness of gabapentin 

in the treatment of alcohol withdrawal [230, 231], and cocaine dependence 

[232].  

2.6.2 Pharmacokinetics and Metabolism 

Gabapentin is a gamma amino butyric acid (GABA) analogue, 1- (amino methyl) 

cyclohexane acetic acid. It is absorbed from the gastrointestinal tract through an 

active transport system whose efficiency decreases at higher doses. Gabapentin 

is distributed in the body with distribution volume of 0.8–1.3 L/kg. The time to 

reach peak concentration in blood is 4–5 hrs. The drug does not bind to plasma 

proteins and is not metabolized and eliminated unchanged. Elimination is solely 

by renal excretion (76 – 81%) [117, 233, 234]. Pharmacokinetic properties are 

illustrated in Table 2-1 and chemical structure in Figure 2-6.  

              

Figure  2-6 Chemical structure of Gabapentin  

 

2.6.3 Mechanism of action  

Gabapentin interacts at binding site of alpha2 delta subunit of voltage-dependent 

Ca 2+ channels, correlates with decreased Ca 2+ channel function and release of 

neurotransmitters and decreased neurotransmitter release is associated with 

reduced neuronal hyperexcitability [225].  
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2.6.4 Drug interaction  

The mechanism by which gabapentin may increase the risk of death in opioid 

users likely reflects both a pharmacodynamic and pharmacokinetic interaction 

[235]. More specifically, it likely reflects additive respiratory depression as well 

as increased gabapentin concentrations with concomitant opioid use [236]. A 

pharmacokinetic interaction most likely reflects increased gabapentin 

absorption, which occurs primarily in the upper small intestine [235]. Thus, 

opioid induced slowing of gastrointestinal transit could prolong the time spent 

within this narrow absorption window and increase gabapentin bioavailability 

[235]. 

2.6.5 Toxicity 

The therapeutic range for gabapentin in blood is about 2 to 20 mg/L, with 

toxicity at >25 mg/L, but toxicity has been reported at concentrations as low as 

15 mg/L, and many patients with concentrations >25 mg/L have no 

manifestations of toxicity [237, 238]. To date, reported cases of death 

attributed to self-poisoning with gabapentin have been associated with 

postmortem peripheral blood concentrations of 37 to 88 mg/L [239]. In another 

study (n=14), blood concentrations ranged from 30 to 82 mg/L in cases of mixed 

drug toxicity as the cause of death [240]. Manifestations of toxicity include 

dizziness, confusion, lethargy, myoclonus, ataxia, and tremulousness [237]. 

Although gabapentin is widely perceived as safe, drug-induced respiratory 

depression has been described when gabapentin is used alone or in combination 

with other medications. Because gabapentin and opioids are both commonly 

prescribed for pain, the likelihood of co-prescription is high, concomitant 

treatment with gabapentin was associated with a substantial increase in the risk 

of opioid-related death [241-243].    
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Table  2-1: Pharmacokinetic parameters  

Analytes Ref. 
T½ 

(hours) 

Bioavail-
ability 

(%) 

Vd 
(L/kg) 

Protein 
Binding 

(%) 

Time to 
peak 

conc. in 
bl. (Hrs) 

Blood conc. 
in chronic 
therapy 
(mg/L) 

Major 
metabolic 
enzyme(s) 

Active metabolite (s) 
Main organ 
excretion 

(%) 

Diamorphine [123] >0.1 <1% - - - 0.01-0.1 
CYP 2D6, 
3A4, UGT  

Morphine &  
6-monoacetyl -

morphine 
- 

MOR 
[123, 
124] 

2–4 <40% 2-5 - - 0.01-0.1 UGT M6G 
Urine 90% 
Feces 10% 

COD [123] 3 53% 3–6 - - 0.01-0.25 
CYP 3A4, 

2D6 
Morphine & 

Hydrocodone 
Urine 90% 

DHC [119] 2-4 High - - - - 
UGT CYP 

2D6 
- - 

Tramadol 
[123, 

172, 175] 
6.3 - 7.4 75% 2.6- 3 20% - - 

CYP 3A4, 
2D6,  

M1, (ODT) O-
desmethyltramadol  

Urine 90% 
Feces 10% 

Methadone 
[123, 
187] 

7–59 36–100% 1–8 - - 0.1-0.5 
CYP 3A4, 
2D6, 2B6, 

2C19 
None Bile 

Sertraline 
[201, 

203, 204] 
22–36 - 20–50 98% 4.5 - 8.4 20 - 309 

CYP 2D6, 
1A2, 3A4 

Desmethylsertraline - 

Citalopram 
[28, 201, 

202] 
33 80% 12-16 50% 

2 - 4 or  
4 - 8 

- 
CYP 2D6, 
1A2, 3A4 

Desmethylcitalopram 
Urine 12–

23 % 

Mirtazapine 
[201, 

205, 206] 
20-40 - 10-14 85% 2 0.02 - 0.075  

CYP 2D6, 
1A2, 3A4 

Desmethylmirtazapine Urine 75% 

Amitriptyline 
[200, 
201] 

9–25 33 - 62% 6-10 95% - - 
CYP 2D6, 
1A2, 3A4 

Nortriptyline,  
10-OH nortriptyline,  
10-OH amitriptyline 

- 

GBP 
[117, 

233, 234] 
5-9 - 

0.8-
1.3 

<0.03% 4 - 5 1.9-2.6 - - 

Urine  
76-81%, 
Feces  
10-32% 
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2.7 Interpreting postmortem drug and 
metabolite concentrations    

There are several challenges in the interpretation of postmortem drug and 

metabolite concentrations. The difficulty associated with correlating a specific 

blood concentration with toxicity is well known. In the first instance, drugs may 

affect different people in different ways and may even affect the same person 

differently on different occasions. The existence of tolerance introduces further 

complications in the interpretation of blood drug concentrations because a 

particular drug concentration may be associated with death in a naive user yet 

produce minimal symptoms in a tolerant individual. In addition, changes in drug 

concentration occurring during the postmortem interval can grossly complicate 

the interpretation of toxicology findings [244].  

In the determination of cause of death and likely level of drug impairment prior 

to death, toxicological measurements can never be considered in isolation. 

Autopsy findings and additional information such as that obtained from the 

scene, eye witness reports and the individuals medical/drug history, where 

available, must also be taken into consideration.   

2.7.1 Relating postmortem blood morphine concentrations to 
toxicity   

One of the major problems in the interpretation of morphine concentrations is 

that the fatal concentrations reported in the literature often overlap with the 

stated therapeutic (0.0003 – 0.73 mg/L) and toxic concentrations (0.001 – 15.7 

mg/L) [245]. Tolerance to both the pharmacological and respiratory depressant 

effects of morphine occurs rapidly, and morphine concentrations obtained at 

autopsy may be misinterpreted if concentrations presumed to be fatal in non-

tolerant individuals are applied to active diamorphine or morphine users or to 

individuals undergoing chronic pain treatment with opioids who have built up 

tolerance to the drug [245]. In cases of acute overdose, blood morphine 

concentrations have ranged anywhere between 0.02 to 3.7 mg/L [245-257]. 

However, blood morphine concentrations in excess of 1 mg/L have been 

reported in drug impaired drivers apprehended in Sweden [258]. In patients 

receiving adequate opiate therapy for chronic pain, morphine concentrations as 

high as 2.1 mg/L have been observed [259].  
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Heroin overdose as the cause of death may be evident in cases involving heroin 

body packing, where blood morphine concentrations as high as 120 mg/L have 

been reported [260]. In a great majority of heroin overdose cases the morphine 

concentrations recorded at autopsy are, in fact, lower than or similar to those 

recorded in living intoxicated addicts or heroin users who have died of causes 

other than overdose [3, 5]. Darke et al. (1997) observed substantial overlap in 

the blood morphine concentrations measured in heroin overdose fatalities 

(averaged: 0.35 mg/L; ranged: 0.08 – 3.2 mg/L; n = 39) with those measured in 

living addicts receiving maintenance diamorphine (averaged: 0.09 mg/L; ranged: 

0. 05 – 1.45 mg/L; n = 100). Only four of the 39 heroin fatalities had morphine 

concentrations exceeding the highest concentration measured in the current 

users. Low blood morphine concentrations in cases of heroin overdose has been 

largely attributed to periods of abstinence resulting in loss of tolerance, delayed 

death and/or the concomitant use of other drugs [163].     

2.7.2 Estimating survival time in diamorphine fatalities  

The interpretation of toxicological analyses in diamorphine-related deaths is 

complicated because many factors affect the concentration of morphine 

measured following autopsy, and its potential significance, including [261] the 

time interval between last dose and death, [135] the postmortem interval, [262] 

an individual‘s drug tolerance level, [254] the concomitant use of other drugs 

and [263] the site of sampling. As a consequence of the rapid metabolism of 

diamorphine and its unique metabolic marker 6-monoacetylmorphine (6MAM), 

distinguishing diamorphine from morphine use may be difficult. Esterase 

mediated conversion of 6MAM to morphine occurs quickly in blood (T1/2 circa 15 

min) and 6MAM may only be detectable in this matrix for 2–3 h following 

diamorphine exposure [261]. Urine is generally thought to be the best specimen 

for 6MAM detection owing to its limited esterase activity and comparatively high 

6MAM concentrations [135]. One advantage of 6MAM‘s rapid metabolism in blood 

is that its detection in this matrix provides an indicator of very recent 

diamorphine exposure [145, 254, 264].  

Some toxicology laboratories report the concentration of free-morphine in blood 

when investigating heroin-related deaths whereas others report total-morphine 

(free + conjugated), which is the sum of free-morphine along with the amounts 
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released after hydrolysis of the morphine-3-glucuronide and morphine-6-

glucuronide metabolites [254, 258]. The use of free morphine (FM) to total 

morphine (TM) concentration ratios as a means of evaluating the time of survival 

following heroin or morphine injection has been advocated in several studies 

[134, 250, 254, 256, 264-267] and may be of use in cases in which 6MAM is not 

detectable in the blood (a high FM/TM ratio is thought to reflect insufficient 

time for morphine metabolism to occur and thus be indicative of a relatively 

rapid death) [135, 268, 269]. 

In an examination of 57 medical examiner cases Burt et al. (2001) [36] reported 

lower femoral blood TM and FM concentrations in cases where 6MAM was 

detectable in the blood. Comparing blood concentrations for cases with (n = 23) 

and without (n = 34) detectable 6MAM demonstrated a mean TM concentration of 

0.9 and 2.1 mg/L respectively with higher FM/TM ratios in individuals with 

detectable 6MAM (0.35 mg/L) compared to cases where the metabolite could not 

be detected (0.14 mg/L) [36].  

The relative amount of FM to TM in blood was suggested as a way to distinguish a 

rapid heroin death from a delayed death [256, 267]. The ratio of FM/TM should 

be closer to unity (1.0) in a rapid death because less time is available for 

transformation of morphine into its glucuronide conjugates. However, this rests 

on the assumption that these metabolites were not measurable in blood before 

the fatal dose of heroin was taken, which is potentially not the case in a chronic 

heroin user. Morphine and its metabolites undergo enterohepatic recirculation 

and after chronic usage the glucuronide metabolites might persist in the body 

for a long time [270]. Moreover, the analytical conditions used to cleave the 

glucuronides, whether by enzymes or acid, and the relative rates of conversion 

back to morphine might differ between laboratories [69]. Another aspect to 

consider is the stability of morphine glucuronides in blood after death and the 

possibility that they undergo re-distribution and conversion in storage [50, 147, 

161, 271-275].   

2.7.3 Postmortem change and redistribution 

In addition to tolerance and poly-drug use, the interpretation of postmortem 

blood concentrations is further complicated by the fact that drug concentrations 

measured at autopsy do not necessarily reflect the concentration at the time of 
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death. It is known that after death there is a movement of drugs around the 

body which takes place via a process known as postmortem redistribution (PMR) 

[67, 276, 277]. These changes are still not entirely understood but a large 

volume of distribution (Vd), pH of the blood and/or pka of the drug, protein 

binding, how lipophilic the compound is, as well as putrefactive processes and 

bacterial breakdown, all seem to play a role. [19, 278] 

PMR has been most associated with a large volume of distribution (Vd) >3 L/kg 

and a high degree of lipophilicity [25, 172, 276, 279, 280]. Basic drugs are more 

susceptible to PMR as their ionised fraction increases with the mainly aqueous 

content of cells as they become more acidic postmortem. During postmortem 

lysis of cells basic drugs diffuse more easily into hydrophilic body fluids, which 

can potentially cause increases in drug concentrations in blood [281]. Since 

opioids and antidepressant drugs are basic and generally lipophilic with a large 

Vd they are likely to be susceptible to PMR, however, this has not been studied 

in detail. The high Vd of morphine (3 – 5 L/kg) would indicate that it undergoes 

PMR and it has been shown to do so in animal models [20, 251, 282]. There are, 

however, conflicting reports on its redistribution in humans and PMR was found 

not to be a factor in diamorphine fatalities [255]. Considering the low Vd of M3G 

(0.14 L/kg) and M6G (0.15 L/kg) (Hunt et al. 1999), these metabolites would not 

necessarily be expected to undergo PMR. However, Skopp (1996) [273] observed 

two to three folds differences in the molar concentrations of both glucuronides 

in blood sampled from different sites in four diamorphine overdose deaths. Some 

of the variation was attributed to variations in water content (65 - 83%) and 

haematocrit (25 – 75%). According to Carrupt et al. (1991), morphine 

glucuronides can exist in two conformational forms, the folded one being more 

lipophilic than the unfolded one. The site- to site-variations in the 

concentrations of these metabolites could be associated with this peculiarity. 

Frost et al [238] investigated the postmortem redistribution of morphine, M3G, 

M6G, codeine, nor-codeine and C6G in different biological matrices. Principal 

component analysis was used to investigate possible correlations between free 

morphine in the various tissue samples and to compare ante-mortem with 

postmortem samples. Some correlations were observed but gave poor 

predictions (>20 % error) when back calculating. In matrices other than blood, 

the concentration pattern was similar, although in a less systematic fashion. The 
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different blood/tissue concentration ratios showed no systematic relationship 

with the postmortem interval. No coherent degradation or formation patterns 

for codeine, morphine, M3G and M6G were observed upon reanalysis in 

peripheral blood after storage. [282, 283] 

Earlier studies have proved that for some, but not all drugs, there are significant 

differences in concentrations between peripheral and corresponding heart 

blood. The drug concentrations in the heart blood are often higher than in the 

peripheral blood [284] and do not reflect concentration at the time of death 

[276]. The underlying mechanisms include passive drug release from drug 

reservoirs such as the gastrointestinal tract, liver, lungs, and myocardium at 

once after death and, later, cell autolysis and the putrefactive process [285]. In 

general, PM blood from a femoral vein, showing less PMR than central blood, 

should be used for quantitative determinations on a routine basis. 

Logan and Smirnow examined 40 heroin-related deaths where the mean 

postmortem interval was 59 hours and found no significant difference between 

morphine concentrations in admission and autopsy blood. The cardiac to femoral 

blood concentration ratios averaged 1.1 for morphine, 1.3 for M6G and 1.1 for 

M3G. They found no evidence of time-dependent changes in morphine 

concentrations at either central or peripheral blood sites in 32 cases. They did, 

however, report consistently higher morphine concentrations in ventricular 

compared with femoral blood, with the greatest differences observed in cases 

where the ventricular morphine concentration exceeded 0.3 mg/L [249]. In ten 

deaths involving morphine, Dalpe-Scott et al (1995) found central to peripheral 

blood morphine concentration ratios ranging from 1.0 – 5.8 with a mean of 2.2. 

Other authors have also reported obvious differences between central and 

peripheral blood concentrations of morphine, M3G and M6G in humans [25, 60, 

61, 273, 274]. Concentration differences within the heart have also been 

reported for morphine with left ventricle concentrations two to three times 

higher than in the right ventricle [274]. It is thought that PMR from tissue to 

blood may easily double the morphine concentration in the latter [60, 61, 273] 

and since the glucuronides are predominantly distributed in plasma this 

occurrence would invalidate the use of morphine to metabolite ratios in 

estimating survival time [161, 273].     
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The liver to peripheral blood (L/PB) ratio, based upon review of previously 

published works, was evaluated as a marker of PMR. Literature supported the 

proposed model that drugs exhibiting an L/PB ratio of less than 5 are prone to 

little or no PMR, while those with an L/PB ratio greater than 20–30 have 

propensity for significant redistribution. Many antidepressants, including both 

tricyclic antidepressants and selective serotonin re-uptake inhibitors, were 

markedly differentiated from drugs previously verified to be free from, or 

exhibit little, PMR. The magnitude of the liver to blood concentrations also 

appeared to provide an advantage over the conventional central to peripheral 

blood ratio model of PMR by demonstrating a wide range of values (1.6–97) for 

interpretation of drugs‘ potential for, and variations in, redistribution [286]. The 

average HB/PB and L/PB ratios that were generated from previously published 

data are listed in Table 2-2 [25, 167, 203, 206, 216, 240, 249, 287-292].   

Table  2-2: Central to peripheral blood (HB/PB) and liver to peripheral blood (L/PB) ratios  

Drug HB/PB L/PB References 

Morphine 
1.8 (n=44)  

(range 0.1-11.0)  
- [167, 249, 287] 

M3G 
2.7 (n = 44)  

(range 0.0-8.7)  
- [167, 287] 

M6G 
2.6 (n = 44)  

(range 0.5-8.8)  
- [167, 287] 

Codeine 1.0 - [167] 

DHC No data available 

Tramadol 1.1 ± 0.3, (n = 6) 1.6 ± 1.3, (n = 8) [288] 

Methadone 1.3 ± 0.2, (n = 6) 6.8 ± 0.9, (n = 5) [25] 

Amitriptyline 3.0 ± 2.8, (n = 30) 25 ± 18, (n = 8) [289] 

Citalopram 1.2 ± 0.5, (n = 20) 9.9 ± 5.9, (n= 22) [290] 

Sertraline 1.3 ± 0.3, (n = 11) 97 ± 40, (n = 10) [203, 291] 

Mirtazapine 1.1 ± 0.3, (n = 19) 5.8 ± 2.4, (n= 19) [206, 216, 292] 

Gabapentin 0.84 ± 0.25 (n=14) 0.61 ± 0.19 (n=14)  [240] 

 

Currently published data on the PMR for drugs of interest has been obtained 

from animal studies, targeting one or a few analytes [20, 282], or from human 

tissue distribution studies in postmortem cases. These studies focused 

predominantly on the impact of sampling site on a postmortem drug 

concentration, rather than the influence of the postmortem time interval (PMI). 

This is probably due to the difficulty in obtaining relevant specimens for testing 

and ethical restrictions on human experimentation on deceased persons. Since 
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an autopsy is unlikely to be carried out immediately following admission of a 

body to a mortuary, a PMI of several days is common, increasing the likelihood of 

substantial postmortem changes in concentrations. The Victorian Institute of 

Forensic Medicine was able to obtain a peripheral blood specimen on admission 

to the mortuary as part of its ability to conduct preliminary examinations prior 

to a coroner order on whether an autopsy should be conducted. The order to 

conduct an autopsy can take several days. This allows an opportunity to compare 

the blood concentrations on admission and the subsequent concentrations [255]. 

The postmortem phenomena of pre-autopsy interval during storing bodies for 

long periods of time will cause greater changes in blood drug concentrations 

[14]. Therefore, to avoid the effect of the pre-autopsy interval on drug 

concentrations it is always preferable for early collection of specimens for 

analysis, which are collected closer to the time of death, and would enable a 

better assessment of the likely contribution of drugs to the death [28-30].   

However, many other factors must be considered in the evaluation of drug 

concentrations in a postmortem sample, such as techniques of blood sampling 

[31-33]. Several reviews have considered the factors that can influence the 

concentration of drugs measured postmortem including techniques of blood 

sampling. However, this may not be consistent for all techniques, a limited 

number of studies have shown that needle puncture in the upper thigh (blind 

stick) did not affect the blood concentration compared to dissection of the vein 

in the upper thigh [28, 34]. 

Further, residual metabolic enzyme activity, variable with the nature of the 

enzyme involved, occurs in the early postmortem period [19]. Continuing drug 

metabolism and metabolite deconjugation during the postmortem interval is an 

important consideration when interpreting parent drug to metabolite ratios. The 

concentrations of free morphine can increase significantly in the postmortem 

period due to hydrolysis of the morphine glucuronides [274]. Escherichia coli, 

one of the most predominant bacteria present in intestinal flora, is an important 

source of β-glucuronidase [293], a hydrolase known to deconjugate morphine 

glucuronides, particularly M3G [271], in putrefying blood and tissues [262, 274, 

294]. The hydrolysis of morphine glucuronides back to free morphine during the 

postmortem interval can alter the ratios significantly as a function of time. 
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2.7.4 Diamorphine stability during sample storage  

Degradation of diamorphine to 6-monoacetylmorphine (6MAM) and then 

morphine happens rapidly in vivo and in vitro. The rates of diamorphine and 

6MAM degradation depends on the type of biological samples, and the duration 

and conditions of storage. Thus, the potential for drug concentrations to change 

following specimen collection is a further factor to be considered when 

interpreting results.  

In whole blood, plasma Butyryl-cholinesterase (BuChE), as well as erythrocyte 

Acetylcholinesterase (AChE), has been shown to hydrolyse diamorphine to 6MAM 

with further hydrolysis to morphine mediated by AChE but not BuChE [204, 295]. 

Owing to the absence of AChE in plasma, deacetylation of 6MAM to morphine is 

not observed in this matrix [296-299]. It is known that 6MAM degrades in a blood 

sample at room temperature with a half-life of 8 hours [300]. At 4°C, 6MAM was 

reported to be unstable in blood with only 20% of the initial concentration 

detected after storage for 7 days [301].  

Regarding spiked samples from living subjects, three separate studies found that 

morphine with their metabolites remained stable at least 6 days at room 

temperature (n = 6, n = 5 and n = 10, respectively) [72-74]. In another separate 

study (n = 5), they found excellent stability for morphine and their metabolites 

during 6 months of storage at 4oC and -20oC in blood and plasma samples. On the 

other hand, blood samples from living subjects (not spiked) showed morphine 

concentrations decreased significantly after two years of storage in tubes 

containing sodium fluoride and potassium oxalate; the tubes were stored at 

ambient temperature, but with further storage, increased concentrations were 

observed [75].   

The stability of morphine, codeine, and 6MAM in blood was studied after 

different sampling conditions: (i) in glass, polypropylene or polystyrene tubes, 

(ii) with addition of dipotassium ethylene diamine tetra-acetic acid (K2EDTA) or 

sodium oxalate (Na2C2O4), and (iii) with or without the addition of sodium 

fluoride (NaF). Spiked blood samples were stored at two different temperatures 

(4 and -20°C), analysed after different storage times and after three freeze–

thaw cycles. Opiate concentrations decreased in all conditions, with the most 

unstable being 6MAM. The addition of NaF as preservative improved the stability 
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of opioids at all conditions studied, whereas the type of anticoagulant did not 

affect the stability of opioids. It was concluded that blood samples should be 

stored at -20°C in glass tubes containing oxalate and NaF for maximum stability 

[302]. Inconsistent with other studies, Rees, K.A., et al. (2011) reported that the 

addition of NaF slowed but did not prevent the breakdown of 6MAM in blood 

stored at room temperature for 84 days [262]. Other studies have shown a 

considerable decrease in 6MAM concentrations, even with the addition of NaF, 

hydrolytic activity may persist for months [294, 303].  

In a previous study, total morphine, total codeine, free morphine, and free 

codeine were stored in glass culture tubes without preservatives at room, 

refrigerator, and freezer. They were then analysed each month for 11 months. 

Total morphine and total codeine concentration decreases (10 to 40%) were 

observed for all specimens in all storage conditions. Free morphine and free 

codeine showed slight but steady increases [70]. Another separate study showed 

increased stability of opioids (morphine, codeine, oxycodone, hydrocodone) in 

dried blood spot (DBS) matrix compared to blood/plasma. This method was 

successfully used to measure hydrocodone and its major metabolite nor-

hydrocodone [71].  

It has been documented that the rate of deacetylation of diamorphine to 6MAM 

in aqueous solution is dependent on pH and temperature, increasing with higher 

pH and temperature. The breakdown of the drug is significantly inhibited in 

aqueous solution at pH 4 and at a temperature of 4°C. 6MAM is also unstable in 

aqueous solutions, but its degradation to morphine is limited under acidic 

conditions [299]. The rate of deacetylation of diamorphine and 6MAM has been 

shown to be pH and temperature dependent in aqueous solution with the rate of 

degradation substantially increased at higher pH, oxygen and temperature [296, 

299, 304-307].  

The stability profile of morphine across the physiologically relevant pH range of 

1.2–7.4 was studied in rat plasma and rat brain homogenate, or in simulated rat 

gastric and intestinal fluids. This study demonstrated that, morphine is highly 

stable and resilient to either enzymatic‐ or pH‐dependent hydrolysis in vitro 

[308]. Another separate study investigated the stability of morphine in saline at 

pH 5.5-7.5 over a period of 4 days. This showed that, at a clinically relevant 
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concentration it seems to be stable at room temperature at a wide range of pH 

values for at least 4 days [309].  

The stability of total morphine in urine stored under various conditions was 

studied using the pH adjusted to 5.5, 6.5, and 7.5. Samples were stored for 6, 

12, 18, and 24 months following storage at −20, 4, 25, and 35°C. Effects of 

sample treatment (azide addition and precipitate removal), pH, and storage 

temperature and length were evaluated by examining the percentage of total 

morphine remaining at the four-time intervals following the initial 

determination. Major findings were total morphine decomposition was minimal 

when stored for 12 months at −20°C, which is a common current practice; 

moreover, samples with lower initial sample pH had slower total morphine 

decomposition rates; and azide addition appeared to have no detectable effect, 

whereas precipitate removal appeared to marginally reduce the decomposition 

rate, especially for samples with lower pH [310].  

It may be speculated that, the increase in pH value with increasing storage time 

and temperature might have promoted the pH-dependent degradation of 

morphine. It is known that the two glucuronide metabolites are hydrolysed back 

to morphine in unpreserved tissues, and that this is expedited by factors such as 

temperature and bacterial contamination of the specimens.  

It has been reported that morphine can undergo oxidative degradation when 

exposed to light for lengthy periods of time. The deterioration of the analytes in 

plasma samples exposed to light through window glass suggests that an oxidation 

reaction was involved in their degradation. As there was no gain in the 

concentration of free morphine resulting from the hydrolysis of M3G and M6G, 

photodegradation of M3G and oxidation may be the rate-limiting step in the 

decomposition of morphine glucuronides. This assumption was supported by the 

investigations on the stability of the analytes in whole blood and plasma [69].  

Holmgren et al. have investigated long-time storage in post mortem blood 

samples (not spiked). They found excellent stability both for morphine (n = 12) 

and codeine (n = 5) during 12 months of storage at -20°C [268]. Two other 

separate studies found that morphine remained stable at -20°C for three months 

(n = 2 and n = 4, respectively) [69, 311]. Another separate study found that, in 

spiked post mortem samples (n = 25) analytes were stable for 11 months of 
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storage in both 4oC and -20oC, some decrease in the concentration of M3G and 

M6G and an apparent increase in morphine concentration was observed at room 

temperature which could be the breakdown of M3G and M6G to morphine over 

time.[312]  

The long-term stability of opioids in authentic postmortem blood samples was 

studied. 73 samples were reanalysed after storage at -20°C for 16-18 years, 

samples containing morphine and codeine showed the results within acceptance 

criteria ±30% of the initial concentration [313]. In addition, in spiked post 

mortem samples (n = 4), the analytes were stable only when stored at -20oC 

[69]. In highly putrefied blood samples, hydrolysis of morphine glucuronides may 

occur during sample storage due to residual glucuronidase (GCR) activity 

following postmortem bacterial invasion. The residual activity of endogenous 

GCR over time has been demonstrated in serum and plasma [314]. GCR still had 

approximately 100% activity in serum and plasma following storage at -20°C and 

4°C for 20 and 2 days respectively. The postmortem stability of this enzyme may 

account for increases in the concentration of free morphine observed in blood 

and tissues in vitro [274, 294, 315].   

Carroll et al. have demonstrated further that the hydrolysis of M3G to free 

morphine in vitro occurs and may persist for months in antemortem and 

postmortem specimens (n=9) under various conditions, despite using  tubes 

containing EDTA and other tubes containing sodium fluoride and potassium 

oxalate for inhibition of bacterial growth [294]. In another study, they 

investigated the time course of degradation of diamorphine, 6MAM, and 

morphine in four biological matrices: rat blood, rat brain homogenate, bovine 

serum, and human plasma under various conditions, which were ice-cold 

solvents, sodium fluoride (NaF) and a low pH (3.0) maintained sample stability. 

Diamorphine degradation to 6MAM was faster in rat whole blood than in plasma, 

and faster in rat plasma than in rat brain homogenate. Maintaining NaF at 4 

mg/mL throughout processing enhanced stability; higher NaF concentrations 

added to whole blood caused haemolysis. Samples processed through solid phase 

extraction and stored as dried pellets at – 80°C constituted the most stable 

environment for diamorphine and was superior to the storing of samples in 

solution prior to or after extraction [316].  
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One study highlighted the importance of preserving postmortem blood samples 

to inhibit bacterial growth. Spiehler and Brown (1987) found the ratio of free 

morphine to total morphine to be stable in postmortem blood preserved with 1% 

NaF and potassium oxalate after more than a year of storage at room 

temperature [250]. In another study, the long-time stability of real-life post 

mortem blood samples (n = 37) and living person blood samples (n = 22) was 

investigated. All samples contained fluoride and were initially analysed and 

stored in normal conditions (-20oC) for 4–9 years. This study showed that, the 

concentrations of morphine and codeine are relatively stable during long-term 

storage at -20oC [303]. Low pH, addition of NaF and freezing at -20°C is only 

partially effective in stabilising diamorphine in blood [317]. 

The method of sample storage and preservation is vital, particularly when 

analyses cannot be performed promptly. Very little data on the stability of 

morphine glucuronide in blood has been reported. The stability of morphine, 

M3G and M6G in blood constitutes a major gap in the published literature. Where 

information is available, it is based on small sample numbers and limited study 

conditions. To date, there is no data pertaining to the stability of morphine, 

M3G and M6G in real postmortem blood samples (not spiked). Further 

investigations in this area are thus required.  

2.8 Analytical Methodology  

A variety of analytical methods for the quantification of opioids and other basic 

drugs have been reported, including gas chromatography–mass spectrometry and 

liquid chromatography–tandem mass spectrometry.  

GC–MS is the reference technique for the determination of opioids and other 

basic drugs in different biological samples [76-87]. Considering that routine 

analytical applications must be less expensive, and since GC is, in fact, less 

expensive than LC coupled to mass spectrometry, GC methods seem more 

suitable within the forensic/clinical toxicology context, however, there is still a 

concern over the direct determination of morphine glucuronides. It is not 

possible to measure glucuronides directly with GCMS, which is why classically, 

glucuronides have been hydrolysed to morphine and the term ―total morphine‖ 

used to describe the morphine plus the conjugated metabolites.  Clearly there is 

error involved in this analysis, not least in postmortem samples when the 



39 
 
heterogeneous nature of the blood makes it difficult to analyse precise aliquots. 

In this way, LC–MS/MS has become the technique of choice for simultaneous 

analysis of MOR, M3G and M6G because of its greater sensitivity and selectivity 

as previously published in literature [40-51, 53-64, 76-85, 91-101]. 

2.8.1 Sample Preparation and Extraction Techniques 

Before introducing any samples to chromatographic techniques such as gas 

chromatography-mass spectrometry (GC-MS) or liquid chromatography-tandem 

mass spectrometry (LCMS/MS), the analytes first need to be extracted from 

either the product or matrix and concentrated.   

Sample preparation is an essential stage of the analytical process to convert the 

biological specimen into a form that is suitable for analytical investigation. The 

extraction step is the main part of the procedure of sample preparation and 

presents two major advantages for the analysis process. Firstly, it removes 

interfering matrix compounds (such as proteins, salts and phospholipids) which 

reduces background noise. Secondly, it concentrates the target drugs, increasing 

sensitivity and achieving lower limits of detection [318].  

Protein precipitation (PPT), solid phase extraction (SPE) and liquid-liquid 

extraction (LLE) have been used for the extraction of opioids and other basic 

drugs [43, 56, 77, 79-82, 84, 95, 319-321]. Protein precipitation has been found 

to be more useful when analysing protein rich matrices, such as serum, plasma 

and whole blood. An organic solvent, commonly acetonitrile or methanol, is 

added to the specimen to reduce the solubility of the solute and precipitate the 

protein, and then it can be removed from the specimen by centrifugation or 

filtration. Protein precipitation is a rapid and simple extraction technique; 

however, it does not remove many of the matrix interferences [321].  

A review of the most recent literature has revealed an increasing trend towards 

using SPE in place of LLE. The advantages of using SPE include increased 

selectivity, cleaner extracts, reduced volume of solvent used, and better 

reproducibility. On the other hand, LLE has been used for the extraction of 

opioids in the following matrices: blood [81, 319], plasma [94], urine [81], bile 

[319], cerebrospinal fluid [94], and vitreous humour [81]. The extraction of 

analytes from the aqueous phase depends on several factors including solubility 
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of the analyte in the organic solvent, pH of the aqueous phase and polarity of 

the organic solvent. The ideal solvent should be, highly selective and allow only 

the active agent to be extracted, have a high capacity in order to reduce the 

amount of solvent necessary, and a high positive difference in density. There are 

also practical concerns when selecting extraction solvents.  

In recent years, SPE has become more popular as an extraction technique for the 

analysis of illicit drugs. Different types of SPE columns can be used depending on 

the cost, availability and the nature of the analytes of interest. The sample 

matrix is allowed to pass via the sorbent to waste, with the target analytes 

being retained. A series of washing steps is essential to remove matrix 

interferences, and then target analytes are eluted off the sorbent and collected 

in a clean vial [322]. There are several published methods detailing the 

extraction of opioids using SPE on a variety of body fluids including whole blood 

[43, 56, 77, 79, 80, 82, 84, 95, 320], plasma [40-42, 44, 46, 47, 49-51, 54, 56, 

58, 64, 77-79, 95, 98, 99, 298, 323, 324], serum [53, 59, 80], urine [50, 64, 78, 

83, 93, 95, 325], cerebrospinal fluid [41, 47, 64], and oral fluid [78, 326].  

The isolation of substances from postmortem matrices is in general more 

difficult than that from clinical specimens primarily owing to the range of 

specimens encountered and the inferior quality of many specimens received in 

the laboratory resulting from putrefaction or trauma of the body during the 

death process, or both. For example, it is almost impossible to obtain serum or 

plasma because of postmortem haemolysis; therefore, whole blood is the most 

common specimen. SPE offers better clean up than PPT because SPE removes 

many of the matrix interferences. In addition, it can be optimised for different 

compound classes. In addition, mixed-mode SPE columns have been used 

successfully for the analysis of different illicit drugs. Some published procedures 

adopt extraction methods that enable acidic, neutral, and basic drugs to be 

present in one chromatograph. This can occur most economically by combining 

two SPE-based eluates [327] or using polar solvents such as ethyl acetate at pH 

4.6 [328] or acetone precipitation [329]. Clearly chromatography of separate 

extracts can also be performed, but this lengthens the analysis time for the case 

[330].   



41 
 
Following extraction, and when using GC, derivatisation is often necessary to 

achieve satisfactory chromatography and to improve detection of an analyte. 

Polar analytes are generally derivatised to improve chromatographic properties. 

Compounds containing hydroxyl groups are not usually amenable to GC because 

of their polarity.  Three of the fourteen analytes studied (morphine, codeine and 

6MAM) contain hydroxyl groups and thus required derivatisation. The most 

commonly used derivatisation method for opioids and their respective 

metabolites is via silylation, where OH groups are replaced by a trimethylsilyl 

(TMS) group. Silylation can be achieved by addition of bis(trimethylsilyl)-

trifluoroacetamide (BSTFA), either alone or with 1% trimethylchlorosilane (TMCS) 

added as catalyst, or N-methyl-N-(trimethylsilyl)- trifluoroacetamide (MSTFA), 

each followed by heating. The addition of BSTFA+ 1% TMCS followed by heating 

at 90°C for 15 minutes is commonly used for the drugs of interest [331, 332] and 

thus was chosen for use in the current method.  

2.8.2 Principles and Applications of Gas chromatography-mass 
spectrometry (GC-MS) 

Gas chromatography-mass spectrometry is an analytical procedure that 

separates and identifies different components within a given sample. Because of 

its high reliability and versatility, GC-MS is applied in the analysis of various 

classes of compounds (combined, if necessary, with derivatisation), to identify 

and quantitatively determine different compounds in a wide range of 

concentrations. 

GC-MS analyses gas-phase ions formed from a sample in terms of their mass-to-

charge ratios (m/z) and their relative abundances in the resulting spectra. The 

mass spectrum is a graphical representation of the ion intensities versus the 

m/z. Under constant, hard electron ionisation conditions (typically 70eV) a 

sample molecule will fragment into smaller ions of characteristic and highly 

reproducible m/z values and relative abundances. This fragmentation pattern is 

a molecular fingerprint for a given analyte, which can be compared to the mass 

spectra of drug standards for ultimate identification. Identification of a 

compound is also achieved by retention time data. The separation of a mixture 

of compounds in a sample is based on 1) the affinity of the molecules for the 

column stationary phase and; 2) the boiling point of the molecule. Molecules 

having a greater affinity for the stationary phase will spend more time on the 
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column and finally elute when the oven temperature reaches the molecules 

boiling point. Oven temperature is often gradually increased throughout the 

analysis so that compounds may be separated and elute in order of increasing 

boiling point.   

2.8.2.1 Analyte identification and confirmation  

Analyte identification in full scan mode and in SIM is achieved by comparison of 

retention times and by comparison of the relative abundance of major fragment 

ions to those values obtained for standards assayed in the same run. Typically, 

three ions are monitored and utilised in the confirmation of compound identity. 

As a result of matrix interferences, ion ratios are necessary for analyte 

confirmation in full scan analysis. They are also necessary in SIM with quadrupole 

instruments because only a few ions are monitored at one time and thus a full 

MS profile is not available. Then its confirmation is based on the MS spectrum 

and the retention time matched to that of the reference standards.   

2.8.2.2 Analyte quantification  

Analyte quantification is often achieved by means of an internal standard (IS) 

calibration graph plotting analyte response divided by IS response versus 

concentration in calibration standards. Because of the degree of ionisation in MS 

and the potential for drug loss during sample preparation, the use of an internal 

standard is vital when performing quantitative measurements. Even with analyte 

losses during sample preparation the ratio of the sample to the IS will remain 

constant and the measured concentration should reflect more accurately that of 

the original biological sample. The concentration of an analyte in an unknown 

sample may be calculated against the corresponding calibration curve providing 

the detector response is proportional to analyte concentration in the calibration 

standards.  

2.8.2.3 Optimising GC-MS Parameters 

Several software and dissociation parameters have to be optimised so that 

suitable MS product ion spectra can be obtained for each analyte. Prior to MS 

method development the oven temperature programme has to be optimised to 

obtain the best analyte separation possible within an acceptable run time.  
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2.8.3 Principles and Applications of Liquid Chromatography- 
Mass Spectrometry 

In recent years, liquid chromatography– tandem mass spectrometry (LC–MS/MS) 

has largely supplanted GC–MS as the gold standard for opioid confirmatory 

testing [88, 89]. Unlike LC–MS/MS, GC–MS is not amenable to the detection of 

polar and non-volatile compounds without performing a time-consuming sample 

preparation, including hydrolysis, derivatisation and sample clean-up. Moreover, 

LC–MS/MS has enabled the direct and specific analysis of opioids and their 

glucuronide metabolites [40-51, 53-64, 90].  

2.8.3.1 Mass Spectrometry Instrumentation 

Coupling of MS to chromatographic techniques has always been desirable due to 

the sensitive and highly specific nature of MS compared to other 

chromatographic detectors. Mass spectrometers operate by converting the 

analyte molecules to a charged (ionised) state, with subsequent analysis of the 

ions and any fragment ions that are produced during the ionisation process, on 

the basis of their mass to charge ratio (m/z). Several different technologies are 

available for both ionisation and ion analysis, resulting in many different types 

of mass spectrometers with different combinations of these two processes. In 

practice, some configurations are far more versatile than others and the 

following descriptions focus on the common type of ion source and mass analyser 

likely to be used in LC-MS systems within toxicological laboratories. 

2.8.3.2 Electrospray Ionisation Source  

Liquid samples are pumped through a metal capillary maintained at 3 to 5 kV 

and nebulised at the tip of the capillary to form a fine spray of charged droplets. 

The capillary is usually orthogonal to, or off-axis from, the entrance to the mass 

spectrometer in order to minimise contamination. The ionised analytes are then 

transferred into the high vacuum of the mass spectrometer via a series of small 

apertures and focusing voltages. The ion source and subsequent ion optics can 

be operated to detect positive or negative ions and switching between these two 

modes within an analytical run can be performed. 
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2.8.3.3 Quadrupole Mass Analysers   

The quadrupole analyser consists of a set of four parallel metal rods. A 

combination of constant and varying (radio frequency) voltages allows the 

transmission of a narrow band of m/z values along the axis of the rods. By 

varying the voltages with time, it is possible to scan across a range of m/z 

values, resulting in a mass spectrum. Most quadrupole analysers operate at 

<4000 m/z and scan speed up to 1000 m/z per sec or more are common. They 

usually operate at unit mass resolution meaning that the mass accuracy is 

seldom better than 0.1 m/z [333]. 

As an alternative to scanning, the quadrupoles can be set to monitor a specific 

m/z value, then set to monitor another m/z value, and so on. This is achieved by 

stepping the voltages. This technique is useful in improving the detection limits 

of targeted analytes because more detector time can be devoted to detecting 

specific ions instead of scanning across ions that are not produced by the 

analyte. Stepping can be carried out in a few milliseconds and a panel of m/z 

values can be stepped through for the detection of several analytes [334]. 

Ions can be induced to undergo fragmentation by collisions with an inert gas such 

as nitrogen or argon, a process called collision induced dissociation. One type of 

collision cell is a quadrupole that has been designed to maintain the low 

pressure of the collision gas required for dissociation and transmit most of the 

fragment ions that are produced. A particularly useful mass spectrometer 

configuration is obtained by placing a collision cell between two quadrupole 

mass analysers. This combination is called a triple quadrupole mass 

spectrometer and is an example of tandem MS in which two stages of mass 

analysis are independently applied [335].  

The first and third quadrupoles can also be simultaneously stepped to different 

m/z values, and panels of precursor/ product ion pairs can be created to 

specifically detect a large number of targeted analytes. This process, called 

multiple reaction monitoring (MRM), is commonly used in LC-MS assays [335]. 

2.8.3.4 Liquid Chromatography Considerations  

Current ion sources are capable of handling a wide range of flow rates and 

mobile phase compositions so existing LC separations can often be directly 
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coupled to the mass spectrometer. However, a number of factors can affect the 

quality of MS data and some modification of the LC separation may be desirable 

to improve assay performance. 

1) Flow Rate  

While standard Electron Spray Ionisation (ESI) sources can generally handle flow 

rates up to 1 mL/min, lower flow rates in the range 0.05 to 0.2 mL/min result in 

improved sensitivity. The ideal is to have a small drop that forms over a relative 

long period of time. This will ensure that the droplet contains many charged 

species and it will allow optimal sampling of gas phase analyte ions.  

Columns with 1.0 or 2.1 mm diameters are therefore well suited to direct 

coupling with these ion sources. The conversion from 4.6 mm to 1.0 or 2.1 mm 

columns is generally easily managed and predictable, and the resulting decrease 

in mobile phase consumption is a useful side benefit. Even higher sensitivities 

and resolutions can be obtained with capillary columns and sub μL/min flow 

rates. These separations are generally more demanding as different ion sources 

and LC pumps are required, and care is required in making column connections. 

These separations are useful in the proteomics area where high sensitivity and 

resolution are required to identify as many components as possible [336].  

2) Mobile Phase  

Typical solvents used in reverse and normal phase LC (e.g. water, acetonitrile, 

methanol, ethanol) are compatible with ESI. It should be noted that a grade of 

solvent (including water) that is suitable for a conventional LC separation may 

not always be suitable for an LC-MS based separation. A good electrospray 

solvent will easily support ions in solution; this generally requires that the 

solvent has some dipole moment (polarity).  Although water is an excellent 

solvent for ions its high surface tension makes de-solvation and ion desorption 

more difficult often requiring higher drying gas temperatures, higher nebulising 

gas flow rates and/or higher nebulising voltages [337].  

The use of buffers containing inorganic ions such as phosphate and sodium 

acetate should be avoided. They cause significant ion suppression, can create MS 

adducts of sodium and potassium, and can quickly contaminate the ion source. 

Substitution of buffers that are more compatible with MS such as those based on 



46 
 
ammonium acetate, ammonium formate or ammonium bicarbonate is generally 

possible. Even so, these buffers still cause ion suppression, so the concentration 

of buffer used should be the minimum required to produce satisfactory 

chromatography. Ion pairing reagents, such as trifluoroacetic acid and other 

fluorinated carboxylic acids, also result in ion suppression so their 

concentrations should also be minimised as much as is practical [338]. 

Higher organic content of the mobile phase can result in improvements in 

ionisation efficiency in ESI, and this may affect the choice of separation mode. 

For example, polar molecules are poorly retained on reverse phase columns and 

elute at the beginning of the chromatogram with a low organic content. This will 

result in relatively poor ionisation efficiency, and polar interferences are more 

likely to co-elute in this region causing ion suppression [339, 340].  

3) Resolution and Throughput  

Baseline separation of peaks, if the peaks have independent MS signals, is not 

required in LC-MS. Therefore, lower resolution, shorter columns are often used 

in LC-MS assays with consequently shorter run times, although ion suppression 

effects may be a limitation. Guard columns can sometimes help to provide 

sufficient separation from interferences. Another approach used to speed up the 

analytical process is to use short columns with small particle sizes (<2 μm) and 

consequently even higher pressures, (so-called ultrahigh performance LC) [341-

343]. These columns are also capable of generating highly resolved 

chromatograms with better signal: noise ratios than columns with larger particle 

sizes [344]. 

Chromatographic resolution also impacts on the scanning speed of the mass 

spectrometer. To achieve accurate integration, it is desirable to have at least 10 

scans across the chromatographic peak. It may therefore be necessary to use 

fast scan speeds with highly resolved peaks, and this may compromise sensitivity 

when several ions are being monitored. It is possible to minimise this to some 

extent by dividing the chromatogram into smaller windows and using smaller 

panels of ions specific for the analytes eluting within these windows.   
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2.9 Project Aims and Objectives     

2.9.1 The aims were: 

The aims of this study were chosen to help investigate the distribution of drugs 

(mainly opioids) after death. 

1) To investigate if there is a change in the concentration of opioids, 

antidepressants and gabapentin in blood samples over time in bodies stored prior 

to autopsy and if this change is consistent. 

2) To determine how the sampling technique and site affect the measured drug 

concentration. 

3) To investigate the stability of drugs within postmortem samples and how 

storage conditions affect this.  

2.9.2 The objectives were: 

1) To review relevant published scientific literature to assist in the 

interpretation of the toxicological findings (Chapter 2), including: 

- the pharmacokinetic properties of the investigated drugs, 

- factors affecting postmortem drug concentrations and their subsequent 

interpretation, 

- the current utility of pre-autopsy blood sampling in toxicological 

determinations 

- and the stability of the drugs of interest in blood during sample storage. 

2) To develop and validate analytical procedures for the simultaneous 

extraction, confirmation and quantification of investigated drugs and their 

respective metabolites (Chapters 3, 4 and 5).   

3) To examine the stability of morphine and its conjugated metabolites in real 

postmortem blood stored in both short and long-term storage conditions as an 

aid to the interpretation of free and total morphine blood concentrations. And, 

to examine the effect of storage temperature, different sampling tubes and 
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preservation on drug stability in the various samples with the aim of making 

recommendations for optimal storage conditions for postmortem blood (Chapters 

3, 4, 5 and 6).   

4) To examine the ratio between the blood morphine concentration and the 

respective glucuronide concentrations in addition to the presence of 6MAM 

following heroin administration - in order to achieve a comprehensive 

interpretation of time since death (Chapter 6).     

5) To examine the analytical findings derived from new techniques (needle 

puncture in the upper thigh) for blood collection before autopsy to prevent 

contamination by PMR - determining the correlation between drugs 

concentration from blood drawn on the day prior to autopsy and in blood drawn 

at the time of autopsy. To compare peripheral and central blood samples - 

comparing drug to drug metabolite ratios in different samples over a period of 

time after death with particular focus on survival time (Chapter 7).   
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Chapter 3 Method Development and Validation 
for Opioids and Antidepressant Drugs in Whole 
Blood using GC/MS  

3.1 Introduction 

Considering the increasing occurrence of polydrug deaths involving both, drugs 

of abuse and medications, and given that the available sample volume is usually 

small in forensic cases it is important to maximise the information gained from 

any test. Therefore, a method for the simultaneous extraction and 

quantification of opioids and antidepressant drugs in biological matrices was 

developed. The optimised assay involved solid phase extraction of the analytes 

from whole blood followed by derivatisation and quantification using GC/MS. 

This chapter discusses the principals and the development of the analytical 

methods used to test the drugs of interest. It will begin by giving a description of 

the method used to obtain mass spectrometric data and a brief overview of 

analyte confirmation and quantification. The optimisation of the mass 

spectrometric assay is also discussed followed by an assessment of instrument 

performance using the optimised MS assay. Development of sample preparation 

procedures is discussed thereafter.  

Full details of the final optimised assay and its validation are discussed 

thereafter. In order to determine whether an analytical method is fit for 

purpose, it should be thoroughly tested and validated. This is extremely 

important in the context of forensic toxicology where the results will have 

significant impact on individuals coming into contact with the criminal justice 

system.   

The performance parameters and statistical protocols followed throughout a 

validation study vary with the source of guidelines. A number of guidelines to 

validate the new method developed are, for example, published by the FDA 

Guidance for industry-bioanalytical method validation (2001)[345], SOFT/AAFS 

forensic toxicology laboratory guidelines (2006)[346], the United Kingdom and 

Ireland Association of Forensic Toxicologist‘s forensic toxicology laboratory 

guidelines (2018) [347] and the standard practices for method validation in 

forensic toxicology which was published by the Scientific Working Group for 
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Forensic Toxicology (SWGTOX) in May 2013 [348]. All these protocols and many 

others aim to improve method development and validation procedures.  

Method validation of the following studies were performed using the ‗SWGTOX 

Standard Practices for Method Validation in Forensic Toxicology‘ revision draft 

003 (32) as a guide: selectivity, calibration model, precision and accuracy, limit 

of quantification (LOQ), limit of detection (LOD), carryover and stability study of 

analytes during specimen processing. 

3.2 Aim and Objectives 

The aim of this study was to develop a method for quantitation of morphine, 

codeine, dihydrocodeine, 6-monocetylmorphine, tramadol, methadone, EDDP, 

amitriptyline, citalopram, sertraline and mirtazapine in biological matrices 

collected postmortem. The focus was development of a single extraction method 

for all these compounds of interest, and a chromatographic system for 

separation and detection of all the targets with acceptable recoveries and 

accuracies. A gas chromatography-mass spectrometry method with solid-phase 

extraction (SPE) that accomplishes these goals is reported.  

The goal of validation is to confirm by examination and the provision of 

objective evidence that the method developed for a specific intended use is 

fulfilled. It is important as it defines whether it will produce reliable results and 

identifies the method's limitations under normal operating conditions. 

3.3 Chemicals and Reagents 

Standard solutions of morphine, codeine and dihydrocodeine, 6-

monocetylmorphine, tramadol, methadone, EDDP, amitriptyline, citalopram, 

sertraline and mirtazapine were manufactured by Cerilliant (Texas, USA) and 

purchased as solutions with the concentration of 1 mg/mL from Sigma Aldrich 

(Basingstoke, UK). Deuterated standards; morphine-d3, codeine-d3, 6-

monocetylmorphine-d3 and methadone-d3 were manufactured by Cerilliant 

(Texas, USA) and purchased as solutions with the concentration of 1 mg/mL from 

Sigma Aldrich (Basingstoke, UK). 

UCT® Clean Screen ZSDAU020 cartridges were purchased from Chromatography 

Direct (Cheshire, UK). N, O-Bis (trimethylsilyl) trifluoroacetamide containing 1% 
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trimethylchlorosilane (BSTFA + 1 % TMCS) was manufactured by Cerilliant (Texas, 

USA) and purchased from Sigma Aldrich (Basingstoke, UK). Methanol (MeOH), 

ethyl acetate, acetic acid, acetonitrile (ACN), isopropanol and dichloromethane 

(DCM) were obtained from VWR International Ltd, (Lutterworth, UK). Disodium 

hydrogen orthophosphate anhydrous and sodium dihydrogen orthophosphate 

monohydrate were supplied by Sigma Aldrich (Basingstoke, UK). Deionised water 

was obtained from the in-house Merck Millipore system.  

The two types of sampling tubes used were separator clot activator tubes (SCAT) 

and plain tubes (PT), purchased from Goods Wagon (Glasgow/Scotland) and VWR 

(Glasgow/Scotland), respectively.  

3.4 Preparation of Materials and Solutions 

3.4.1 Preparation of Drug Standard and Internal Standard 
Solutions 

3.4.1.1 Preparation of Stock Solutions  

Stock solutions were prepared in methanol for each standard and internal 

standard individually giving a concentration of 100 g/mL. This was achieved by 

transferring 1 mL of each drug standard solution (1mg/mL) into a single 10 mL 

volumetric flask and making up to the mark with methanol. The entire amount 

was transferred to individual amber glass bottles and stored at −20°C for 6 

months. 

3.4.1.2 Preparation of Mixed Standard Solutions 

Three different working solutions were prepared by dilution of stock solutions in 

methanol, then transferring to individual amber glass bottles and storing at 

−20°C for 6 months.  

1) Opioids Working Solution 

Firstly, to obtain 5 μg/mL mixture solution containing (Morphine, Codeine, DHC) 

was prepared in methanol by adding 500 μL of each drug solution (stock solution 

at 100 g/mL) to a 10 mL volumetric flask and making up to volume with 

methanol.   
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2) 6MAM Working Solution 

Secondly, to obtain 1 μg/mL for 6MAM. This was achieved by adding 100 μL of 

the stock solution to a 10 mL volumetric flask and making up to volume with 

methanol.  

3) Basic Drug Working Solution 

Lastly, 100μL of mirtazapine and EDDP stock solutions (100g/mL) and 1mL of 

amitriptyline, citalopram, sertraline, tramadol and methadone stock solutions 

(100g/mL) were all added to a 10mL volumetric flask and made up to volume 

with methanol to obtain a mixture containing 1μg/mL (mirtazapine and EDDP) 

and 10μg/mL (amitriptyline, citalopram, sertraline, tramadol and methadone).  

3.4.1.3 Preparation of Mixed Internal Standard Solutions 

Two different internal standard solutions in methanol were prepared which were 

transferred to individual amber glass bottles and stored at −20°C for 6 months. 

Firstly, to obtain 10 μg/mL for Methadone-d3. This was achieved by adding 1 mL 

of the stock solution (100 μg/mL) to a 10 mL volumetric flask and making up to 

volume with methanol. 

Secondly, to obtain 1 μg/mL for each drug (Morphine-d3, Codeine-d3 and 6-

monocetylmorphine-d3). This was achieved by adding 100 μL of the stock 

solution (100 μg/mL) to a 10 mL volumetric flask and making up to volume with 

methanol. 

3.4.1.4 Preparation of Quality Control Samples 

Quality control samples (QCs) were prepared at 3 concentrations for each drug 

in whole blood. The working solutions used for preparation of the QCs were 

prepared as in section 3.4.1.2 but using different lot numbers (or prepared on 

different days).  The QCs were made in 50 mL volumetric flasks, after addition 

of drug standard solutions detailed in Table 3-1, and evaporation of solvent, 

these were made up to the mark with appropriate blank matrix. 

For each QC, 1mL aliquots were placed into cap tubes. All QCs were stored at -

20°C for 12 months.  
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Table  3-1 Preparation of QCs in biological matrices 

Drugs 
Amount Added (mL) 

QC1 QC2 QC3 

Opioids Working Solution 0.5 1.0 4.0 

6MAM Working Solution 0.5 2.5 8.0 

Antidepressant Working Solution 1.25 5.0 17.5 

Drugs 
QC Concentration (mg/L) 

QC1 QC2 QC3 

Morphine, Codeine and DHC. 0.05 0.1 0.4 

6MAM 0.01 0.05 0.16 

Mirtazapine and EDDP 0.025 0.1 0.35 

Methadone, Amitriptyline, Citalopram, Sertraline and 
Tramadol. 

0.25 1.0 3.5 

 

3.4.1.5 LOD & LOQ Solutions 

In order to assess the methods LOD and LOQ further solutions were made.  

1) Opioids Solution 

To a new 10 mL volumetric flask, 1 mL of opioids working solution in 

section 1)3.4.1 was added. This was then made up to the mark using MeOH and 

inverted several times producing a final concentration of 0.5 mg/L.  

2) 6MAM Solution 

To another clean 10 mL volumetric flask, 1 mL of 6MAM working solution in 

section 3.4.1 was added. This was again made up to the mark using MeOH and 

inverted several times producing a final concentration of 0.1mg/L.  

3) Basic drug Solution 

1 mL of antidepressant working solution in section 3.4.1 was added to another 

clean 10 mL volumetric flask. This was again made up to the mark using MeOH 

and inverted several times to give a final concentration of 1 mg/L (methadone, 

amitriptyline, citalopram, sertraline and tramadol) and 0.1 mg/L (mirtazapine 

and EDDP).  
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3.4.2 Preparation of Buffers 

3.4.2.1 0.1 M, pH 6.0 Phosphate Buffer 

1.7 g of disodium hydrogen orthophosphate anhydrous (Na2HPO4; MW 141.96) was 

weighed accurately into a 1 L beaker. 12.14 g of sodium dihydrogen 

orthophosphate monohydrate (NaH2PO4.H2O; MW 137.99) was then added and 

this was dissolved in 800 mL of deionised water and the pH was adjusted to 6 

with 0.1 M dibasic sodium phosphate (raises pH) or 0.1 M monobasic sodium 

phosphate (lowers pH). The entire amount was placed in a 1 L volumetric flask 

and made up to volume with deionised water. Mixed well and stored at 4°C for 

up to 1 month. 

3.4.2.2 pH6 Buffer/deionised water (1:2) 

200 mL of pH 6 Buffer and 100 mL of deionised water was measured and 

transferred to a reagent bottle. This was sonicated for 5 minutes to mix and 

prepared daily. 

3.4.2.3 Acetate buffer 0.1M pH 4.5 

5.86 g of sodium acetate tri-hydrate was weighed into a beaker and dissolved in 

800 mL of DI water. 3.24 mL of glacial acetic acid was then added, and pH 

adjusted to 4.5 with 0.1 M acetic acid (lowers pH) or 0.1 M sodium acetate 

(raises pH).  The buffer was transferred to a 1 L volumetric flask with DI water, 

made up to volume with DI water, mixed well and stored at room temperature 

for up to 1 month. 

3.4.2.4 1M Acetic acid 

Pipette 28.6mL of glacial acetic acid into a 500mL volumetric flask that is 

approximately half filled with deionised water Mix, and then bring the total 

volume up to 500mL with deionised water. Store at room temperature, discard 

after two months.  

3.4.2.5 Dichloromethane: isopropanol: ammonia (78:20:2) 

Measure 78ml of dichloromethane, 20ml of isopropanol and transfer to a reagent 

bottle. Add 2mL of concentrated ammonia. Sonicate for 5 minutes or shake 

vigorously to mix. Prepare fresh daily. 
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3.4.3 Blank Blood 

Expired packed red blood cell pouches are used in toxicology laboratories for 

preparing matrix-matched biological standards. Cell pouches were provided from 

the Scottish National Blood Transfusion Service (SNBTS) (submission reference 

number 14-07) based at Gartnaval General Hospital (Glasgow, UK). They were 

stored at −20°C on receipt within Forensic Medicine and Science. To prepare 

blank blood, packed red blood cells were defrosted and suspended in a ratio of 

1:1 with 1% saline solution which was prepared by dissolving 9.5 g of sodium 

chloride in 1 L of deionised water.  

3.5 Gas chromatography-mass spectrometry 

GCMS method optimisation was carried out on an Agilent Technologies 7890 GC 

System with 5975C inert XL MSD Triple-Axis Detector equipped with an 

equivalent stationary phase capillary column (Agilent 19091S-

433:325C:30m×250μm×0.25μm) using an automatic injector in split mode. Pure 

helium (99.9999%) was used as the carrier gas at a flow rate of 1.5 mL/min.  

The mass spectrometer was initially operated in the full mass scanning mode, 

however this proved problematic when analysing postmortem biological samples 

because of endogenous compounds interfering with the identification and 

quantification of the analytes of interest. SIM mode was then used as this 

effectively removed matrix interference by isolating a single ion.   

3.6 Optimisation of the GC-MS assays 

Several tests were performed to optimise the chromatographic separation of the 

peaks to obtain six-time windows based on the retention time of each 

compound. Within the windows, the mass spectrometer identified and selected 

only the specified ions, thus reducing the background noise and increasing 

sensitivity.  

Table 3-2 summarises the final GC-MS procedure which included 2 injections, 

one to analyse opioids and a second for the antidepressant drugs.  
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Table  3-2 GC-MS Procedure for Opioids and Basic Drugs 

GC-MS Parameters Setting for Opioids Setting for Basic drugs 

Inlet temperature 225 oC 250 oC 

Injection volume 1 μL 

Injection port type Split less mode 

Septum purge flow 3 mL/min 

Column HP-1 30 m x 0.25 mm id x 0.25 μm 

Oven programme 
150 oC initial & ramped to 300 

oC @ 10 oC/min. Hold 5 
minutes 

100 °C initial for 1 min & 
ramped to 240 °C @ 10 oC/min. 
Hold 10 minutes, then ramped 
to 300 °C @ 10 oC/min. Hold 5 

minutes 

Interface 
temperature 

230 oC 200 oC 

Ionisation mode EI mode, ionisation energy 70 eV. 

Detection mode Full Scan over the range m/z 40-600 

Run time 20 minutes 36 minutes 

 

3.6.1 Analyte identification and confirmation 

The identification of compounds was performed using the full scan acquisition 

mode, which allowed the analysis of the total ion chromatogram (TIC), 

extrapolating retention times and characteristic ions. Quantifier and qualifier 

ions used for each analyte were selected based on their abundance and m/z 

values. Because of their reproducibility and lack of interference, high mass ions 

were selected when possible. This was not possible when there were ions in 

common with those of the deuterium labelled internal standard. Upon selection 

of unique ions as detailed in Table 3-5 the MS was run in selected ion monitoring 

(SIM) mode due to the high sensitivity required with the low concentrations 

used.  

Firstly, identification and confirmation experiments of opioids were carried out 

using unextracted standards of each analyte (morphine, codeine, DHC, 6MAM, 

morphine-d3, codeine-d3 and 6MAM-d3). 100 L of standard at concentration 50 

mg/L was pipetted into a glass vial, evaporated under nitrogen at ≤ 37 oC until 

dry and derivatised with 50 μL BSTFA+1% TMCS at 90 oC for 15±2 min. After 

cooling to room temperature, this was transferred to a clean GC autosampler 

vial and 1 L was injected on to the GC-MS to identify and confirm each drug 

individually.  
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Secondly, identification and confirmation experiments of antidepressants and 

other opioid drugs were carried out using unextracted standards of each analyte 

(amitriptyline, citalopram, sertraline, tramadol, methadone, mirtazapine, EDDP 

and methadone-d3). 100 L of standard at concentration 50 mg/L was pipetted 

into a glass vial and evaporated under nitrogen at room temperature until dry. 

Then 50 μL of ethyl acetate was added to each tube, the tubes were vortex 

mixed for 5 s and the mixture transferred to clean GC auto-sampler vials and 1 

L injected on to the GC-MS to identify and confirm each drug individually.  

3.6.2 Initial Sensitivity and Linearity Assessments 

Following development of the instrument method, sensitivity and linearity 

assessments were carried out to evaluate the suitability of the analytical method 

before starting the development of sample preparation. The Limit of Detection 

(LOD) of a method is considered the lowest concentration of analyte that gives a 

reproducible instrument response with a signal greater than or equal to three 

times the noise level of the background signal from the negative samples [348]. 

Acceptable LODs should achieve the purpose of the method.  

The linearity of the method was evaluated by preparing calibration curves for all 

compounds. The range considered was established to include values from the 

therapeutic and toxic levels of each compound. The calibration curves were 

plotted using the ratio of the observed peak areas of reference standards and 

internal standards against concentration. Linear regression analysis of the 

calibration data was performed using the equation y = mx + c without weighting, 

where y is the peak area ratio, x is the concentration of calibrators and m and c 

are constants. The linearity of extracted calibrators investigated in this study 

was evaluated over the concentration range for both opioid and basic drug 

groups.   

Firstly, for linearity experiments of opioids, five calibrators of each analyte were 

prepared at the following concentrations as detailed in Table 3-3.  
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Table  3-3: Standard Calibrators Preparation of opioids   

Calibrator 
levels 

Opioids working 
solution 

Volume(μL) 

Morphine, 
Codeine, 

Dihydrocodeine 
Conc. (mg/L) 

6MAM working 
solution 

Volume(μL) 

6MAM Conc. 
(mg/L) 

Cal. 1 5 0.025 5 0.005 

Cal. 2 10 0.050 10 0.010 

Cal. 3 20 0.100 50 0.050 

Cal. 4 40 0.200 100 0.100 

Cal. 5 100 0.500 200 0.200 

 

After addition of standard solutions to all calibrator tubes, 100 μL of deuterated 

internal standard mix (IS) at 1 μg/mL (morphine-d3, codeine-d3 and 6-

monocetylmorphine-d3) was added to each calibrator. All calibrators were 

evaporated under nitrogen at ≤ 37 oC until dry and derivatised with 50 μL 

BSTFA+1% TMCS at 90 oC for 15±2 min. After cooling at room temperature, these 

were transferred to clean GC autosampler vials and analysed to establish a linear 

calibration model for each drug individually. 

Lastly, for linearity experiments of antidepressant and other opioid drugs, seven 

concentration points of each analyte were prepared at the following 

concentrations as detailed in Table 3-4.   

Table  3-4: Standard Calibrators Preparation of antidepressant and other opioid drugs  

Calibrator levels 

Antidepressant 
and another 

Opioids working 
solution 

Volume(μL) 

Amitriptyline, 
Citalopram, 

Sertraline, Tramadol, 
and Methadone Conc. 

(mg/L) 

Mirtazapine and 
EDDP Conc. (mg/L) 

Cal. 1 5 0.05 0.005 

Cal. 2 10 0.10 0.010 

Cal. 3 25 0.25 0.025 

Cal. 4 50 0.50 0.050 

Cal. 5 100 1.0 0.100 

Cal. 6 200 2.0 0.200 

Cal. 7 400 4.0 0.400 

After addition of standard solutions to all calibrator tubes, 100 μL of deuterated 

internal standard of 10 μg/mL methadone-d3 was added to each calibrator. All 

calibrators were evaporated under nitrogen at room temperature until dry then 

50 μL of ethyl acetate was added to each tube, the tubes were vortex mixed for 
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5 s and the mixture was transferred to clean GC auto-sampler vials and analysed 

to establish a linear calibration model for each drug individually. 

3.7 Optimisation of Analyte Extraction 

Following the optimisation of the GC-MS method, extraction experiments were 

performed to develop and optimise the best conditions and best possible drug 

recovery. Additionally, the LOD and linearity range were evaluated when the 

extraction methods were optimised. Two in-house FMS extraction methods were 

evaluated; an opioids extraction method and basic drugs extraction method. The 

focus was the development of a single extraction method for all the compounds 

of interest. After deciding to use SPE as a method of choice to extract all 

analytes simultaneously, further investigation was conducted on different types 

of pH adjustment used for washing in SPE. Both 1M Acetic acid and 0.1 M acetate 

buffer were tested for the simultaneous extraction. The opioids extraction 

method uses an acetate buffer 0.1 M pH 4.5 during wash stages; whereas the 

basic drugs extraction method uses 1M acetic acid. However, the literature 

reported that the sample and column may also be adjusted to pH 4.5 with 0.1 M 

acetate buffer for basic drugs extraction [349, 350]. Therefore, steps evaluated 

in this study are the pH adjustment during wash stages used for extraction.  

3.7.1 Recovery of drugs using Acetate Buffer or Acetic Acid as a 
wash step  

Two sets of 3 replicates of spiked whole blood were prepared as follows; all 

drugs of interest were added using working solutions prepared as in 

section 3.4.1.2. Volumes of 80, 160 and 350 μL were added for opioids, 6MAM 

and antidepressant working solutions, respectively to obtain concentrations 0.4 

mg/L for morphine, codeine and DHC; 0.16 mg/L for 6MAM; 0.35 mg/L for 

mirtazapine and EDDP and 3.5 mg/L for methadone, amitriptyline, citalopram, 

sertraline and tramadol. After addition of drug standard solutions to tubes, the 

solvent was evaporated, and 1 mL of blank whole blood was added and diluted in 

5 mL of pH 6 Buffer/deionised water (1:2) mixed solution. The tubes were vortex 

mixed for 5 s and centrifuged for 10 min at 2500 to 3000 rpm. Each set was 

extracted identically except the one wash stage which was either pH 4.5, 0.1 M 

acetate buffer or 1M Acetic acid as shown in Figure 3-1.  
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Figure  3-1: Flow chart of extraction using Acetate Buffer or Acetic Acid as a wash step  

 

After extraction, 100 μL of deuterated internal standard mix (IS) [10 μg/mL 

(Methadone-d3) and 1 μg/mL (Morphine-d3, Codeine-d3 and 6-

monocetylmorphine-d3)] was added to each sample. Each replicate was then 

split in 2 to test for opioids in one and basic drugs in the other. The first group 

were evaporated under nitrogen at ≤ 37 oC until dry and derivatised with 50 μL 

BSTFA+1% TMCS at 90 oC for 15±2 min. After cooling at room temperature, they 

were transferred to clean GC autosampler vials. The second set were evaporated 

under nitrogen at room temperature until dry then 50 μL of ethyl acetate was 

added to each tube, the tubes were mixed with vortex mixing for 5 second and 

the mixture transferred to clean GC auto-sampler vials. 

In order to calculate the recovery, an unextracted standard at the same 

concentration was also prepared at the same time in triplicate. Internal 

standard solution was added to the unextracted standard at the same time as 

the extracted samples. The peak area ratio of the analyte to its respective 

deuterated IS was calculated. This method can calculate recovery (RE) according 

to the equation below (Equation 3-1).   

Equation  3-1 Recovery 
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3.8 Method Validation  

3.8.1 Selectivity and Specificity   

Selectivity is the ability of the bioanalytical method to determine the analyte(s) 

in the analysed matrices without interference. Specificity is the ability of the 

bioanalytical method to differentiate the analyte(s) in the presence of other 

components, which may be expected to be present. Typically, these might 

include metabolites, impurities, degradants and matrix components. [351, 352]  

The selectivity of the method was carried out by comparing the chromatograms 

of potential interferences from blank matrix (n = 10) with those of corresponding 

standards spiked at a concentration of 1 mg/L. Whereas, specificity was assessed 

by spiking a number of analytes, at a concentration of 10 mg/L, which not 

included in the method to evaluate the extent to which the method is specific 

for each drug and whether there is any interference. Interferences from common 

drugs of abuse and common prescription medication were assessed as detailed in 

Appendix 1.  

3.8.2 Limits of Detection and Limits of Quantification  

The limit of detection (LOD) was assessed by determining the lowest 

concentration at which the drug could be detected with a signal to noise (S/N) 

ratio greater than 3. The concentrations that yielded a reproducible instrument 

response with S/N ratio ≥ 3, was selected as LOD.  

The LOD was determined by spiking pooled blank blood with decreasing 

concentrations of mixed working solution within the expected range of LODs; 

over the concentration range 0.0025, 0.0050, 0.0100, 0.0250 and 0.0500 mg/L 

for Amitriptyline, Citalopram, Sertraline, Tramadol and Methadone; and 

0.00025, 0.0005, 0.0010, 0.0025 and 0.0050 mg/L for Mirtazapine and EDDP. 

Similarly, LOD was determined over the range; 0.0010, 0.0025, 0.0050, 0.0100 

and 0.0250 mg/L for Morphine, Codeine and DHC and; 0.00025, 0.00050, 

0.00100, 0.00250 and 0.00500 mg/L for 6MAM. All LODs were extracted in 

duplicate using three different sources of fortified matrix and then analysed in 

three separate runs. These were run alongside a set of calibrators and QC‘s. The 
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signal to noise was calculated manually using the following equation 

(Equation 3-2). 

The lower limit of quantification (LLOQ) has been assigned as the lower 

concentration of calibrator and should have a %CV less than 20% and S/N ≥ 10. 

The LLOQ was verified by spiking three samples per run of a fortified matrix at 

the concentration of the decision point and analysed over three runs to 

demonstrate that all detection, identification, bias, and precision criteria are 

met.  

Equation  3-2 Signal to Noise Ratio Calculation. 

                 
                 

               
 

3.8.3 Linearity 

For this method, linearity was assessed using 7 points on the curve over the 

concentration range 0.05, 0.10, 0.25, 0.50, 1.00, 2.00 and 4.00 mg/L for 

Amitriptyline, Citalopram, Sertraline, Tramadol and Methadone; and 0.005, 

0.010, 0.025, 0.050, 0.100, 0.200 and 0.400 mg/L for Mirtazapine and EDDP. On 

the other hand, five calibrators were prepared and analysed over the 

concentration range 0.025, 0.050, 0.100, 0.200 and 0.500 mg/L for Morphine, 

Codeine and DHC and; 0.005, 0.010, 0.050, 0.100 and 0.200 mg/L for 6MAM.  

All calibrators were prepared freshly every day in duplicate over 5 different 

days. The calibrations were prepared by spiking blank biological samples with 

working mixture solutions and extracted in accordance with the method 

reported in section 3.7.1. A blank extract containing internal standard only was 

ran with each batch but not included in the calibration curve. Calibration curves 

were obtained by plotting SIM PAR of analyte to internal standard (calculated as 

per Equation 3-3) against concentration using the linear regression model.  

Equation  3-3 Peak Area Ratio Equation 
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In order for calibration curves to comply with SWGTOX guidelines, R2 values must 

be greater than 0.99 and QCs when plotted should not give accuracy values more 

than ±20%.  

Although it has become widespread practice, it is emphasized that a calibration 

model cannot be evaluated simply via its correlation coefficient (r). Instead, a 

calibration model shall be visually evaluated using standardized residual plots. 

These allow one to check for outliers that must be eliminated if found to be 

statistically significant (outside ±3 standard deviations).  

3.8.4 Precision and accuracy  

Precision and accuracy for intra-day and inter-day assay were examined by 

analysing blood quality control samples (QCs) containing the analytes at three 

concentrations; low (QC1), medium (QC2) and high (QC3). A calibration curve 

was prepared with each batch of QCs using the optimised method to calculate 

the concentrations. Intra-day (within) precision and accuracy were calculated 

from 6 replicates per QC in one batch. Inter-day precision and bias were 

determined from 3 replicates per QC over 5 different runs.   

Accuracy (Bias) was assessed as a percentage of the nominal concentration to 

determine how close the measured concentration was to the accepted reference 

value. To follow SWGTOX guidelines the mean value should not deviate by more 

than 20% from the true value (±20%). Their values were calculated using the 

following equations (Equation 3-4, Equation 3-5).  

Equation  3-4 Mean Measured Concentration 

                                ̅  
   

 ⁄   

                                         

                 

Equation  3-5 Bias 

          
 ̅
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The precision of the method was assessed as the percentage of the coefficient of 

variation (%CV) to express the degree of scatter between a series of 

measurements. This was obtained from multiple sampling of the same 

homogeneous samples under the prescribed conditions. Their values were 

calculated using the following equations (Equation 3-6, Equation 3-7, 

Equation 3-8). The results are considered acceptable if %CV is less than 20% 

[348].  

Equation  3-6 Standard deviation 

                        
 √       ̅  

    
  

Equation  3-7 Intra-day run  

                      
                            

 ̅                          
        

Equation  3-8 Inter-day run  

                       
                                     

 ̅                       
        

3.8.5 Recoveries 

Recovery is defined as ‗the extraction efficiency of an analytical process, 

reported as percentages of the known amount of analytes of interest which are 

extracted and analysed by an optimised method‘ [353]. The loss of analyte 

during extraction should be investigated with at least three replicates at two 

quality control (QC) levels. This method can calculate recovery (RE) according to 

Equation 3-1.   

3.8.6 Carryover  

As part of method validation requirements, carryover has to be investigated 

under analysis conditions. Carryover can be defined as the appearance of 

unintended analyte signal in samples transferred from a previously run positive 

sample. This signal will, subsequently, lead to inaccurate quantitation.[348] 

Analyte carryover was assessed for 2 different batches by injecting three blank 

controls after two injections of an extract of blood containing all analytes at a 

high concentration (QC4) double the upper limit of quantification in the 

calibration curve. To establish if there is carryover, the chromatograms were 
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analysed visually. The method was considered free of carryover if no interfering 

signal for all analytes was observed in the blank solution.  

3.8.7 Stability  

The validation of the analytical method should demonstrate the extent to which 

the analytes in a given matrix under specific conditions are stable for certain 

periods of time in order to ensure accurate quantitative results, particularly if 

no information is available from previous work [30]. Therefore, the assessment 

of analyte stability in matrix during the validation process is required for reliable 

quantification. Storage conditions evaluated were: auto sampler temperature 

stability, fridge stability and stability after 3 freeze-thaw cycles at -20±2 ºC.  

In order to evaluate auto sampler, the HQC samples were prepared and then 

divided into three different autosampler vials. The first vials were immediately 

analysed in triplicate to establish the time zero responses. All remaining vials 

were stored at room temperature on autosampler, then analysed in triplicate at 

three different time intervals. 

In order to evaluate fridge stability, the (low and high) QC samples were 

prepared and then divided into three different fridge stability vials. The first 

(low and high) QC vials were immediately analysed in triplicate to establish the 

time zero responses. All remaining vials were stored at -20 ºC, then analysed in 

triplicate at three different time intervals. 

It is part of a laboratory‘s standard practice to freeze samples prior to analysis, 

analyte stability was determined after three freeze and thaw cycles. The 

prepared (low and high) QC samples were aliquoted into three separate storage 

containers per concentration and then frozen at -20±2 ºC for 24 hours. This was 

followed by an unassisted thaw at room temperature. When completely thawed, 

the first set of samples was analysed in triplicate, while the others were 

refrozen for 24 hours under the same conditions. The freeze/thaw cycle and 

analysis were repeated three more times.  

Subsequently, samples were extracted and processed in triplicate along with 

freshly spiked calibration standards and analysed using the regression equation 

obtained. The recovery of each analyte was then calculated using Equation 3-9.  
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Equation  3-9 Stability recovery equation 

          
                         

                           
        

Analytes were identified as being unstable if their recovery fell out with the 

acceptable criteria of ±20%.  
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3.9 Stability study of drugs stored in different 
tubes 

The present study was designed to determine the stability of opioids and 

antidepressant drugs in spiked blood stored in two types of sampling tubes at -20 

oC, 4 oC and 20 oC for a time interval of up to three months. The two types of 

sampling tubes used were separator clot activator tubes (SCAT) and plain tubes 

(PT).  

Opioids and antidepressant drugs were subjected to stability experiments in 

order to investigate the effect of the sampling tubes and the storage 

temperature. The analytes of interest were spiked at low and high 

concentrations for each analyte (0.05 and 0.4mg/L for Morphine, Codeine and 

DHC; 0.01 and 0.16mg/L for 6MAM; 0.025 and 0.35mg/L for Mirtazapine and 

EDDP; and 0.25 and 3.5mg/L for Methadone, Amitriptyline, Citalopram, 

Sertraline and Tramadol), respectively. All samples were stored at three 

different storage temperatures (-20 °C, 4 °C and 20 oC), as well as being 

subjected to three freeze–thaw cycles (-20 °C for 24 h/room temperature for 4 

h). The time points selected for -20 oC and 4 oC were day 1 (day zero), 7, 14, 21, 

30, 60 and 90 days and room temperature at day 1 (day zero), 2 and 14 days.  

One set of spiked blood was stored in separator clot activator tubes, 

which contain a separation gel in the base of the tube; during centrifugation, 

this gel forms a stable barrier between the serum and the blood cells. The inner 

wall of the tube is also coated with microscopic silica particles, which activate 

the coagulation process.  The other set of spiked blood was stored in plain 

tubes. The method used for extraction and analysis was the SPE and GC-MS 

validated method for extraction of opioid and antidepressant drugs from blood 

as detailed in section 3.6 and 3.7. Determination of each analyte concentration 

was based on the calibration curve of each day of analysis. The concentration 

found was compared with the expected concentration, with the latter 

determined by analysing freshly prepared blood spiked samples at the same 

concentration using the GC/MS method on the same day. The percent 

concentration change in each analyte concentration was calculated. In addition, 

differences with respect to the reference value (percentage change) were 

determined for each storage condition. 
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3.10 Results and Discussion  

3.10.1 Results of Method Development and Optimisation  

3.10.1.1 Analyte identification and confirmation 

Unextracted standards of each analyte were used for injection on to the GC-MS 

to obtain their mass spectra.; Table 3-5 shows the selected ions and retention 

times for morphine, codeine, DHC and 6MAM. 

Table  3-5 Selected Ions and Retention Times for Opioids  

Drug 
Quantitative 

Ion (m/z) 
Qualitative 
Ion 1 (m/z) 

Qualitative 
Ion 2 (m/z) 

Retention 
Time (min) 

Morphine 429 414 236 13.8 

Morphine-d3 432 - - 13.6 

6-monocetylmorphine 399 340 287 14.4 

6-monocetylmorphine-d3 402 - - 14.2 

Codeine 371 196 146 13.4 

Codeine-d3* 374 - - 13.2 

Dihydrocodeine 373 236 178 12.9 

* Codeine-d3 is used as the internal standard for codeine and dihydrocodeine quantitation. 

 

Table 3-6 shows the selected ions and retention times for tramadol, methadone, 

EDDP, amitriptyline, citalopram, sertraline and mirtazapine. 

Table  3-6 Selected Ions and Retention Times for Opioids and Antidepressant Drugs 

Drug 
Quantitative 

Ion (m/z) 
Qualitative 
Ion 1 (m/z) 

Qualitative 
Ion 2 (m/z) 

Retention 
Time (min) 

Tramadol 58 263 135 16.0 

Methadone 223 165 294 18.4 

EDDP 277 262 220 17.0 

Amitriptyline 232 217 202 19.4 

Mirtazapine 195 208 180 20.6 

Sertraline 274 159 262 23.19 

Citalopram 58 324 208 24.12 

Methadone-d3* 226 - - 18.2 

*Methadone-d3 is used as the internal standard for all analytes.  

 

3.10.1.2 Initial Sensitivity and Linearity Assessments  

The assay can quantify Morphine, Codeine and DHC over a range of 0.025–0.5 

mg/L, 6MAM over a range of 0.005–0.2 mg/L, Amitriptyline, Citalopram, 

Sertraline, Tramadol, and Methadone over a range of 0.05–4.0 mg/L, and 
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Mirtazapine and EDDP over a range of 0.005–0.4 mg/L in a single run achieving 

good linearity and sensitivity based on correlation coefficients (R2) higher than 

0.995 and acceptable LODs for all substances.  

3.10.1.3 Optimisation of Analyte Extraction 

When choosing extraction methods analyte recovery and cleanliness of extract 

must be weighed against sample preparation time and cost. Although the SPE 

methods involve many steps and this technique takes time from start to finish, 

the focus was on developing one extraction method for all compounds of 

interest.  

Opioid extraction method usually uses 0.1 M acetate buffer during pH 

adjustment, however, during the method development for the current assay in 

recovery experiments comparing the use of Acetate buffer 0.1M pH 4.5 and 1M 

Acetic acid, Acetate buffer gave consistently better results, particularly for 

Morphine and 6MAM where recovery was 25 - 40% greater for Acetate buffer as 

seen in Figure 3-2.  

 

Figure  3-2 Recovery of Opiates in blood using Acetate Buffer or Acetic Acid as a wash step 

 

Typically, the antidepressant drug extraction method uses 1M Acetic acid. For 

recovery experiments comparing the use of 1M Acetic acid and Acetate buffer 

0.1M pH 4.5, acetate buffer consistently gave similar results, particularly for 

Methadone, EDDP, Citalopram, Amitriptyline and Mirtazapine as seen in 

Figure 3-3.  
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Figure  3-3 Recovery of Antidepressant drugs in blood using Acetate Buffer or Acetic Acid 
as a wash step 

 

Based on these results, it was decided to use the Acetate buffer 0.1M (pH 4.5) 

method because it gave higher recoveries for most of the analytes compared 

with the other methods and for its ease in practice.   
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3.10.2 Results of Method validation 

3.10.2.1 Selectivity and Specificity  

No inferences were found from assessed common drugs of abuse and common 

prescription medications in Appendix 1. Clean baselines with negligible matrix 

components were found. No interfering peaks were detected at the retention 

times of any of the analytes used.   

3.10.2.2 LOD and LLOQ  

Table 3-7 shows (LOD and LLOQ) results.  

Table  3-7 LOD and LOQ of drugs of interest in whole blood samples 

Drugs LOD (mg/L) LLOQ (mg/L) 

Methadone 0.005 0.05 

Amitriptyline 0.005 0.05 

Citalopram 0.010 0.05 

Tramadol 0.005 0.05 

Sertraline 0.005 0.05 

Mirtazapine 0.001  0.005 

EDDP 0.001  0.005 

Morphine 0.005 0.025 

Codeine 0.005 0.025 

DHC 0.005 0.025 

6MAM 0.001  0.005 

 

The lowest calibrator chosen for each analyte was verified, and therefore can be 

quantified with the greatest confidence. 

3.10.2.3 Linearity  

All analytes followed an unweighted linear calibration model with R2 values 

greater than 0.996 over 5 days as shown in (Table 3-8, Figure 3-4, Figure 3-5 and 

Figure 3-6).  

All the calibration points presented accuracy in the range of 90 to 110% for all 

runs. Further, residual plots to determine if the variances appear to be equal 

across the calibration range had a similar degree of scatter at each 

concentration. They also give an indication that, the chosen model adequately 

fits the data and random distribution of individual residuals around the zero line 
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(homoscedasticity) suggests that a linear model is appropriate for all analytes, 

as shown in Figure 3-7, Figure 3-8 and Figure 3-9.   

Table  3-8 Calibration range and average R
2
 of Opioids and Antidepressants in Whole Blood 

Drugs 
Calibration 

Range (mg/L) 
R² (n=5) Internal Standard 

Methadone 0.05-4.0 0.999 Methadone-d3 

Amitriptyline 0.05-4.0 0.999 Methadone-d3 

Citalopram 0.05-4.0 0.999 Methadone-d3 

Tramadol 0.05-4.0 0.999 Methadone-d3 

Sertraline 0.05-4.0 0.999 Methadone-d3 

Mirtazapine 0.005-0.4 0.999 Methadone-d3 

EDDP 0.005-0.4 0.999 Methadone-d3 

Morphine 0.025-0.5 0.999 Morphine- D3 

Codeine 0.025-0.5 0.997 Codeine-d3 

DHC 0.025-0.5 0.997 Codeine-d3 

6MAM 0.005-0.2 0.999 6MAM-d3 
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Figure  3-4 Linearity Graphs of Amitriptyline, Citalopram, Tramadol and Sertraline  
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Figure  3-5 Linearity Graphs of Methadone, EDDP and Mirtazapine 

y = 1.8058x - 0.0755 
R² = 0.9995 

0.0000

2.0000

4.0000

6.0000

8.0000

10.0000

0.000 1.000 2.000 3.000 4.000 5.000

A
ve

ra
ge

 P
A

R
 (

n
=5

) 

Conc. mg/L 

Methadone 

y = 5.4165x + 0.0195 
R² = 0.9999 

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

0.000 0.100 0.200 0.300 0.400 0.500A
ve

ra
ge

 P
A

R
 (

n
=5

) 

Conc. mg/L 

EDDP 

y = 5.2383x - 0.0134 
R² = 0.9996 

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

0.000 0.100 0.200 0.300 0.400 0.500

A
ve

ra
ge

 P
A

R
 (

n
=5

) 

Conc. mg/L 

Mirtazapine 



75 
 

 Figure  3-6 Linearity Graphs of Morphine Codeine, DHC and 6MAM  
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Figure  3-7 Standardised Residual Plot Graphs of Amitriptyline, Citalopram, Tramadol and Sertraline 
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Figure  3-8 Standardised Residual Plot Graphs of Methadone, EDDP and Mirtazapine  
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Figure  3-9 Standardised Residual Plot Graphs of Morphine Codeine, DHC and 6MAM 
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3.10.2.4 Bias and Precision  

The average accuracy (Bias) for the analytes across all analytes for the low, 

medium and high QCs (as detailed in Table 3-1) were within the acceptable 

range of ± 20% of the nominal concentrations. The intra-day accuracy was from 

80.27- 114.07%. The inter-day accuracy ranged from 84.02 - 110.24%. The intra-

day precision values were less than 19%. The inter-day precision values were less 

than 20%. Accuracy and precision results for all analytes are listed in Table 3-9 

and Table 3-10.  
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Table  3-9 Intra-Day Assay Precision and Accuracy 

 
LQC MQC HQC 

 

Expected 
Conc. 
mg/L 

Average 
Conc. 
mg/L 
(n=6) 

SD % CV Bias 
Expected 

Conc. 
mg/L 

Average 
Conc. 
mg/L 
(n=6) 

SD % CV Bias 
Expected 

Conc. 
mg/L 

Average 
Conc. 
mg/L 
(n=6) 

SD % CV Bias 

Methadone 0.25 0.24 0.03 11.2 -4.3 1.00 1.06 0.1 9.1 6.3 3.50 3.79 0.33 8.6 8.3 

EDDP 0.025 0.02 0 17.0 -14.1 0.10 0.08 0.01 11.2 -18.0 0.35 0.31 0.02 7.7 -10.9 

Amitriptyline 0.25 0.18 0.01 7.8 -6.9 1.00 1.03 0.07 6.9 2.6 3.50 3.52 0.14 4.1 0.6 

Mirtazapine 0.025 0.02 0 8.2 -9.0 0.10 0.1 0.01 9.7 -1.4 0.35 0.36 0.02 4.9 2.1 

Sertraline 0.25 0.19 0.03 14.7 -3.3 1.00 0.94 0.11 11.2 -5.9 3.50 2.66 0.11 4.2 -8.9 

Tramadol 0.25 0.24 0.03 11.2 -4.3 1.00 1.06 0.1 9.1 6.3 3.50 3.79 0.33 8.6 8.3 

Citalopram 0.25 0.15 0.03 17.5 -4.5 1.00 0.94 0.07 8.0 -6.0 3.50 3.99 0.18 4.6 14.1 

MOR 0.05 0.052 0.003 5.8 3.4 0.10 0.11 0.01 5.4 10.9 0.40 0.44 0.01 1.7 9.0 

COD 0.05 0.05 0.009 19.0 -0.8 0.10 0.08 0.01 15.0 -16.6 0.40 0.3 0.04 13.1 -19.8 

DHC 0.05 0.05 0.009 18.7 -0.4 0.10 0.08 0.01 14.2 -18.7 0.40 0.31 0.03 9.0 -19.8 

6MAM 0.010 0.011 0 4.0 6.1 0.05 0.05 0 1.0 4.3 0.16 0.17 0 1.0 6.5 
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Table  3-10 Inter-Day Assay Precision and Accuracy 

 
LQC MQC HQC 

 

Expected 
Conc. 
mg/L 

Average 
Conc. 
mg/L 
(n=5) 

SD % CV Bias 

Average 
Conc. 
mg/L 
(n=5) 

Expected 
Conc. 
mg/L 

SD % CV Bias 
Expected 

Conc. 
mg/L 

Average 
Conc. 
mg/L 
(n=5) 

SD % CV Bias 

Methadone 0.25 0.25 0.01 5.8 1.1 0.93 1.00 0.02 6.1 -5.9 3.50 0.93 0.09 10.2 -7.5 

EDDP 0.025 0.02 0 6.2 -4.2 0.33 0.10 0.01 7.6 -6.9 0.35 0.33 0.03 8.3 -5.7 

Amitriptyline 0.25 0.24 0.05 3.2 -5.9 3.7 1.00 0.13 12.2 6.1 3.50 3.7 0.72 19.4 5.8 

Mirtazapine 0.025 0.02 0 15.0 -15.9 0.34 0.10 0.01 11.7 -9.7 0.35 0.34 0.02 7.2 -2.4 

Sertraline 0.25 0.21 0.07 3.6 -14.9 3.4 1.00 0.3 19.1 -4.8 3.50 3.4 0.95 18.0 -2.9 

Tramadol 0.25 0.23 0.02 8.1 -8.8 3.41 1.00 0.1 10.0 -1.5 3.50 3.41 0.33 9.8 -2.6 

Citalopram 0.25 0.15 0.05 3.7 -4.3 3.59 1.00 0.1 11.6 -12.7 3.50 3.59 0.34 9.5 2.6 

MOR 0.05 0.05 0.01 13.1 7.5 0.42 0.10 0 4.5 10.2 0.40 0.42 0.02 5.7 3.9 

COD 0.05 0.05 0.01 19.5 -1.9 0.42 0.10 0.03 19.8 4.3 0.40 0.42 0.17 19.2 3.8 

DHC 0.05 0.05 0.01 19.9 -4.0 0.42 0.10 0.03 19.6 2.7 0.40 0.42 0.16 18.6 4.8 

6MAM 0.010 0.01 0 8.6 0.4 0.17 0.05 0 3.5 1.2 0.16 0.17 0.01 3.4 3.3 
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3.10.2.5 Recoveries  

Recovery (%) is shown below in Figure 3-10. From this information it can be 

shown that the solid phase extraction of 11 analytes from whole blood was 

extremely efficient with percentage recoveries ranging from 80 – 118 %.  

 

Figure  3-10 Recovery Values for LQCs & HQCs from Whole Blood.   

 

3.10.2.6 Carryover  
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3.10.2.7 Stability study   

1) Autosampler stability:  

Table 3-11 showed that all the drugs were stable in the whole blood samples in 

the autosampler temperature for up to 5 days. This is further illustrated by the 

number of QC‘s which had recovery results ranging ±20%, except for 6MAM which 

was less stable (-21%).  

Table  3-11 Autosampler Stability of drugs of interest for 5 Days  

 % Recovery of QC3 (n=3) 

 *D0 *D3 *D4 *D5 

Amitriptyline 100 102 101 101 

Sertraline 100 104 101 103 

Tramadol 100 97 96 98 

Citalopram 100 94 95 96 

Methadone 100 102 100 98 

EDDP 100 99 97 98 

Mirtazapine 100 100 101 104 

MOR 100 113 108 121 

COD 100 98 102 102 

DHC 100 87 104 100 

6MAM 100 79 84 79 

*D refers to time in days.   
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2) Refrigerator stability:   

Refrigerator stability results for each analyte are shown in Table 3-12. The 

extracted samples were stable at 4ºC for 5 days. All analytes tested had % 

recoveries within the acceptable criteria of ±20%, except for mirtazapine (+22%) 

and 6MAM (+27%), this may be because of analytical variation/error.  

Table  3-12 Refrigerator stability of drugs of interest for 5 Days 

 % Recovery of QC1 (n=3) % Recovery of QC3 (n=3) 

 *D0 *D3 *D4 *D5 *D0 *D3 *D4 *D5 

Tramadol 100 92 82 92 100 98 99 99 

Amitriptyline 100 104 115 103 100 96 99 98 

Sertraline 100 83 91 100 100 103 101 99 

Citalopram 100 84 82 92 100 106 102 101 

Methadone 100 90 90 89 100 98 97 99 

EDDP 100 83 108 100 100 101 100 98 

Mirtazapine 100 100 122 112 100 100 104 101 

MOR 100 97 99 119 100 89 107 95 

COD 100 85 85 92 100 102 105 105 

DHC 100 109 90 90 100 115 115 119 

6MAM 100 106 104 100 100 127 100 107 

*D = refers to time in days.   
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3) Freeze-thaw cycles stability:  

Table 3-13 shows that, drugs of interest were stable in whole blood after 3 

freeze-thaw cycles at - 20ºC for 5 days. All analytes tested had % recoveries 

within the acceptable criteria of ±20%, apart from 6MAM (+27%), this may be 

because of analytical variation/error.  

Table  3-13 Freezer-Thaw Stability of drugs of interest for 25 days  

 % Recovery of QC1 (n=3) % Recovery of QC3 (n=3) 

 *D0 *D3 *D4 *D5 *D0 *D3 *D4 *D5 

Methadone 100 100 89 109 100 101 100 99 

Tramadol 100 101 121 97 100 101 99 97 

Amitriptyline 100 83 92 100 100 99 98 102 

Mirtazapine 100 91 89 108 100 97 99 104 

Sertraline 100 101 101 112 100 103 102 102 

EDDP 100 83 108 100 100 100 97 100 

Citalopram 100 89 109 89 100 97 100 97 

MOR 100 80 82 83 100 94 89 83 

COD 100 92 92 108 100 95 100 98 

DHC 100 120 100 110 100 87 104 100 

6MAM 100 106 104 100 100 100 107 127 

*D refers to time in days. **% R refers to percent recovery    
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3.10.3 Stability study of Drugs in Different Tubes  

A) The stability results of opioids  

The stability results from the experiments for morphine, codeine, DHC and 6MAM 

are shown in Figure 3-11. All analytes in two types of sampling tube were found 

to be stable up to 3 months at -20°C. The percentage change after 3 months of 

storage at -20°C was less than 20 % for all analytes in both sampling tubes. The 

percentage of the concentration changes for morphine, codeine, DHC and 6MAM 

after three Freeze–thaw cycles were found to be -1.5%, -8.9%, -8.9% and -19.8% 

in separated clot activator tubes, and -20%, -14.0%, 19% and -9% in plain tubes, 

respectively.  

In plain tubes, 6MAM was stable when stored in all conditions. While in 

separated clot activator tubes, the 6MAM concentration was significantly 

decreased when stored at refrigerator and room temperature. In separated clot 

activator tubes, the 6MAM was decreased not only after 14 days of storage at 

room temperature (64%) but also at 4°C (26% decreased) and continuously 

decreased up to 78.5% during 3 months of storage at 4°C.   

In summary, morphine, codeine, and DHC concentrations were stable in all 

conditions, while, 6-monoacetylmorphine was unstable under certain conditions. 

The separated clot activator tube affected the stability of 6MAM, especially 

when it was stored in room and refrigerator temperature. It may be the gel in 

the tubes absorbed 6MAM preferentially compared to other tubes. 

The results of our stability study are in agreement with those reported by other 

respective studies of morphine and codeine [69, 302, 311] in blood. Some 

limited data concerning the stability of these four opiates in blood are also 

published, but during a method validation process [354-356]. Specifically, 

published stability studies of 6MAM (not in the framework of a method 

validation) were referred only in other biological matrices such as urine [274], 

hair [357], and oral fluid [358]. To our knowledge, it is the first stability study of 

morphine, codeine, DHC and 6MAM in blood concerning the effect of the type of 

sampling tubes.  
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Figure  3-11: Stability of Morphine, Codeine, DHC and 6MAM by using separated clot activator tubes versus plain tubes 
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B) The stability results of antidepressant drugs  

Figure 3-12 and Figure 3-13 show that, all analytes appeared to be stable in both 

type of sampling tubes at -20 oC, 4 oC and 20 oC for a minimum of 30 days. 

Methadone and tramadol were found to be the most stable analyte throughout 

the observation period under all conditions. In plain tubes, all analytes were 

found to be stable up to 3 months at -20°C and 4 oC storage, except mirtazapine 

concentrations decreased 25 % of the initial concentrations in fridge.  

In separated clot activator tubes, the stability pattern totally differed from that 

of plain tubes.  After one-month storage at -20 oC and 4 oC changes in analyte 

concentrations were observed for all analytes except methadone and tramadol. 

In separated clot activator tubes, a strong influence of the sampling tube on 

EDDP was obvious under all conditions. However, the concentrations of 

mirtazapine and citalopram decreased after 30 days of storage at -20 oC and 4 

oC. The decrease in mirtazapine and citalopram concentration was smaller 

compared to amitriptyline or sertraline. Amitriptyline was found to be the most 

unstable analyte in separated clot activator tubes, at a storage temperature of 4 

oC, its concentration decreased by as much as 60% from the initial concentration.  

In summary, methadone and tramadol concentrations were stable under all 

conditions in both tubes. While, EDDP was less stable in separated clot activator 

tubes than in plain tubes under all conditions. The separated clot activator tube 

affected the stability of citalopram, sertraline, amitriptyline and mirtazapine 

especially when they were stored more than one-month in the fridge and 

freezer. It may be the gel in the tubes absorbed these analytes preferentially 

compared to other tubes.  
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Figure  3-12: Stability of Tramadol, Methadone, EDDP and Mirtazapine by using separated clot activator tubes versus plain tubes.  
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Figure  3-13: Stability of Citalopram, Amitriptyline and Sertraline by using separated clot activator tubes versus plain tubes.  
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3.11 Conclusions 

The GC- MS method with SPE has been successfully developed and validated 

according to Standard Practices for Method Validation in Forensic Toxicology 

(SWGTOX) guidelines [348] for the simultaneous determination of Morphine, 

Codeine, DHC, 6MAM , Tramadol, Methadone, EDDP, Amitriptyline, Citalopram, 

Sertraline and Mirtazapine in whole blood. Although a large number of analytes 

were included in the method, acceptance criteria for linearity, accuracy, 

precision, and recovery were achieved for all analytes. There were no 

endogenous or exogenous interferences and all analytes showed satisfactory 

stability in freezer as well as fridge and autosampler. 

The stability of opioids and antidepressant drugs in spiked blood was studied 

under different sampling and storage conditions. In both separated clot activator 

tubes and plain tubes, morphine, codeine, and DHC concentrations were stable 

under all conditions, while, 6MAM was unstable under certain conditions. The 

separated clot activator tube affected the stability of 6MAM, especially when it 

was stored in room and refrigerator temperature. It may be the gel in the tubes 

absorbed 6-monoacetylmorphine preferentially compared to the other tubes. On 

the other hand, methadone and tramadol concentrations were stable under all 

conditions in both separated clot activator tubes and plain tubes. While, EDDP 

was less stable in separated clot activator tubes than in plain tubes under all 

conditions. The separated clot activator tube also affected the stability of 

citalopram, sertraline, amitriptyline and mirtazapine especially when they were 

stored more than one-month in fridge and freezer. This is possibly due to 

absorption of the drugs to the gel. 

The stability of drugs in different tubes is vital, particularly when analyses 

cannot be performed promptly. Also, forensic laboratories are required to store 

biological samples for months or years and re-testing or further analysis may be 

necessary after a period of time. Following the results of this study, it is 

recommended that, biological samples collected for the analysis of drugs are 

collected in plain tubes. Furthermore, stability of other drugs, especially stored 

in separated clot activator tube, requires further investigation under different 

storage conditions and time periods to ensure quantitative analysis reflects the 

actual drug concentration in the biological matrix.   
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Chapter 4 Method Development for Testing of 
Morphine, its glucuronides and Gabapentin in 
Whole Blood Using LC-MS/MS  

4.1 Introduction  

Considering the increasing occurrence of poly-drug deaths involving both, drugs 

of abuse and medications, and given that the available sample volume is usually 

small in forensic cases it is important to maximise the information gained from 

any test. Therefore, a method for the simultaneous extraction and 

quantification of Gabapentin and Morphine, as well as the detection of M3G and 

M6G was developed.  

In addition, morphine metabolites detection is an important issue in forensic 

toxicology and a number of specific reviews describing analytical methodologies 

for its detection in blood have been published [359-361]. Gas chromatography-

mass spectrometry (GC–MS) has been widely used for the quantification of 

morphine in biological samples [362, 363]. Despite its excellent sensitivity and 

selectivity, the major drawbacks related to this technique are the required de-

conjugation step of the glucuronides and extraction and derivatisation prior to 

analysis. Additionally, enzymatic hydrolysis of morphine glucuronides has been 

shown to be problematic.[364-366] Liquid chromatography-mass spectrometry 

has advantages over gas chromatography-mass spectrometry as the conjugated 

metabolites can be measured directly without the required hydrolysis and 

derivatization [72, 367, 368].  

4.2 Aims and Objectives  

The purpose of this study was to develop and validate a quantitative method for 

the analysis of morphine, M3G, M6G and gabapentin in postmortem blood. This 

would be appropriate to determine the correlation ratios between morphine, 

M3G and M6G concentrations measured in these samples; and to evaluate the 

patterns of gabapentin prescribing, misuse, and diversion among opioids user, as 

well as among the general population to inform prescribing practices and 

policies.  
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4.3 Materials and Methods  

4.3.1 Materials  

Morphine, morphine-3-glucuronide and morphine-6-glucuronide and gabapentin 

and their corresponding deuterates (MOR-d3, M3G-d3, M6G-d3 and GBP-d10) 

were purchased from Sigma Aldrich (Basingstoke, UK). All of these drugs were 

purchased as solutions at 1mg/mL in methanol, except Gabapentin which was a 

99% pure powder. 

Methanol (HPLC Grade), acetonitrile (HPLC LC-MS Grade) and isopropanol (HPLC 

Grade) were supplied by VWR International Ltd, (Lutterworth, UK). Sodium 

dihydrogen orthophosphate, disodium hydrogen orthophosphate, formic acid 

(reagent grade ≥95%), ammonium acetate and glacial acetic acid (HPLC LC-MS 

Grade), and ammonium acetate (reagent grade ≥98%) were purchased from 

Sigma Aldrich (Basingstoke, UK). Deionised water was obtained from a Millipore® 

system (Direct-Q®3UV-R).   

The two sampling tubes used were separated clot activator tubes (SCAT) and 

Eppendorf tubes (EPNT), purchased from Goods Wagon (Glasgow/Scotland) and 

VWR (Glasgow/Scotland), respectively. 

4.3.2 Solutions Preparation  

4.3.2.1 Preparation of Stock Solutions  

All stock solutions were prepared in methanol and stored at -20°C for 6 months.  

1) Gabapentin Stock Solution  

GBP stock solution was prepared at 1000 mg/L by adding 5000 mg drug powder 

to a 5 mL volumetric flask and making up to volume with methanol.  

2) Opioids Stock Solutions  

For MOR, M3G and M6G stock solutions, each drug was prepared individually at 

100 mg/L by adding 1mL drug at concentration 1mg/mL to a 10mL volumetric 

flask and making up to volume with methanol.   
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4.3.2.2 Preparation of 10 mg/L Standard Solutions for Method Development  

All 10 mg/L standard solutions were prepared and stored at 4°C.  

1) Gabapentin 10 mg/L Solution 

A 10 mg/L GBP solution was achieved by adding 100 µL of GBP stock solution 

(1000 mg/L) to a 10 mL volumetric flask and making up to volume with mobile 

phase mixture (deionised water/ methanol: 50/50).   

2) Opioids 10 mg/L Solution  

For MOR, M3G and M6G solutions, each drug was prepared individually at 10 

mg/L by adding 1mL of stock solutions (100 mg/L) of each drug to a 10 mL 

volumetric flask and made up to volume with mobile phase mixture (deionised 

water/ methanol: 50/50).  

4.3.2.3 Preparation of Working Solutions for Analysis 

All working solutions were prepared in methanol and stored at 4°C for 6 months. 

1) Gabapentin Working Solution  

A 100 mg/L GBP working solution was achieved by adding a 1 mL of GBP stock 

solutions (1000 mg/L) to a 10 mL volumetric flask and making up to volume with 

methanol.  

2) Opioids Working Solution  

Opioids working solution containing MOR and M3G at 1 mg/L and M6G at 0.4 

mg/L was prepared. This was achieved by adding stock solutions (100 mg/L) of 

each drug (100 µL for MOR and M3G and 40 µL for M6G) into one 10 mL 

volumetric flask and making up to volume with methanol.   
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4.3.2.4 LOD and LLOQ Solution 

In order to evaluate the LOD and LLOQ 10 times more dilute solutions were 

prepared as follows: 

1) Gabapentin Solution  

A 10 mg/L GBP solution was achieved by adding a 1 mL of GBP working solution 

to a 10 mL volumetric flask and making up to volume with methanol.  

2) Opioids Solution  

LOD & LLOQ opioids (MOR, M3G and M6G) solution was achieved by adding 1 mL 

of mixed opioids working solution to a 10 mL volumetric flask and making up to 

volume with methanol to give a final concentration of 0.1, 0.1 and 0.04 mg/L for 

MOR, M3G and M6G, respectively.  

4.3.2.5 Preparation of Internal Standards  

Stock solutions were prepared for each internal standard individually in 

methanol. For GBP-d10, the stock was prepared at 1000 mg/L by dissolving 1 mg 

drug powder in 1 mL methanol. For all other stock solutions, MOR-d3, M3G-d3 

and M6G-d3 were individually prepared at 100 mg/L by adding 1mL of drugs at a 

concentration 1mg/mL to a 10mL volumetric flask and made up to volume with 

methanol. All internal standard stock solutions were stored at -20°C for 6 

months.  

Four internal standards, GBP-d10, MOR-d3, M3G-d3 and M6G-d3 were prepared in 

a mixed working solution. This was achieved by adding varying amounts of each 

internal standard stock solution to a 10 mL volumetric flask and making up to 

volume with methanol as outlined in Table 4-1. The working solution was stored 

at 4°C for no longer than 6 months. 

Table  4-1: Internal Standard Working Solution Preparation 

Internal Standard Abbreviations 
Stock 
Conc. 
(mg/L) 

Amount 
Added (µL) 

Final 
Conc. 
mg/L 

Gabapentin-d10 GBP-d10 1000 100 10.0 

Morphine-d3 MOR-d3 100 100 1.0 

Morphine -3-Glucuronide-d3 M3G-d3 100 40 0.4 

Morphine -6-Glucuronide-d3 M6G-d3 100 40 0.4 
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4.3.2.6 Preparation of Calibrators  

The concentration range for calibration curves was chosen to include 

therapeutic and toxic concentrations of each compound. Two working solutions 

as previously described in section 4.3.2.3 were used to prepare calibrators. A 

seven-point calibration curve was prepared by combining certain volumes of the 

two working solutions in test tube of each calibrator as illustrated in Table 4-2 

and Table 4-3. To this, 50 µL of combined internal standard solution and 800 µL 

of methanol were added. A 200 µL aliquot of the blood sample was transferred, 

vortex mixed for 30 seconds and centrifuged for 10 minutes at 3000 rpm. 

Following centrifugation, the supernatant was transferred to a 3.5 mL vial using 

a glass pasteur pipette. Samples were evaporated under nitrogen gas, with the 

heating block set at 25°C. Once the samples had been evaporated, these were 

reconstituted with 200 µL mobile phase (90/10: A/B). This was then transferred 

into correctly labelled LC autosampler vials and then a 10 µL volume was 

injected into LC/MS/MS.  

Table  4-2 Preparation of GBP Calibration curve  

 
Amount Added (µL) of 
Gabapentin Working 

Solution 

Final Concentration of GBP 
(mg/L) 

Cal 1 5 2.5 

Cal 2 10 5 

Cal 3 15 7.5 

Cal 4 20 10 

Cal 5 25 12.5 

Cal 6 50 25 

Cal 7 100 50 

 

Table  4-3 Preparation of MOR, M3G and M6G Calibration curve  

 
Amount Added (µL) 
of Opioids Working 

Solution  

Final Concentration of 
MOR & M3G (mg/L) 

Final Concentration 
of M6G (mg/L) 

Cal 1 10 0.050 0.020 

Cal 2 15 0.075 0.030 

Cal 3 20 0.100 0.040 

Cal 4 25 0.125 0.050 

Cal 5 50 0.250 0.100 

Cal 6 100 0.500 0.200 

Cal 7 150 0.750 0.300 
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4.3.2.7 Preparation of Quality Controls  

Quality control standards (QCs) have been prepared and analysed in addition to 

the calibration curves and samples to ensure accurate sample results. Four 

quality control samples (QC1, QC2, QC3 and QC4) were prepared in whole blank 

blood to examine the analytes of interest. Two solutions were prepared using 

the same method as previously described in section 4.3.2.2.  

Four QCs were prepared in whole blood by adding the appropriate volume of the 

stock solutions into 10 mL volumetric flasks. Then, to avoid precipitation in the 

blood, the methanol solvent was evaporated under nitrogen at room 

temperature. The dry volumetric flasks were then made up to volume with blank 

blood as mentioned in section 3.4.3 to achieve target concentrations as detailed 

in Table 4-4.  Aliquots of 0.2mL were stored in the freezer for use individually. 

Table  4-4 Preparation of QCs in Whole Blood  

 Amount Added (µL) Final Concentration (mg/L) 

QC No. GBP 
MOR & 
M3G 

M6G GBP 
MOR & 
M3G 

M6G 

QC 1 40 6 2.5 4 0.06 0.025 

QC 2 200 30 12.5 20 0.30 0.125 

QC 3 400 60 25.0 40 0.60 0.250 

QC 4 1000 150 60.0 100 1.50 0.600 

 

4.3.2.8 Preparation of Blank Blood  

The preparation of blank blood was described in section 3.4.3 

4.3.2.9 Preparation of Formic Acid 0.1%  

900 mL of deionised water was transferred to a 1 L volumetric flask, then 1 mL 

of concentrated formic acid was added, made up to the mark with deionised 

water and stored at 4°C for up to 1 month.  

4.3.2.10 Preparation of Formic Acid 0.01%  

900 mL of deionised water was transferred to a 1 L volumetric flask, then 100 µL 

of concentrated formic acid was added, made up to the mark with deionised 

water and stored at 4°C for up to 1 month.  
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4.3.2.11 Preparation of 10 mM Ammonium Formate (pH 3)  

Ammonium formate (0.631g) was transferred to a 1 L volumetric flask and made 

up to the mark with deionised water, then mixed and stored at 4°C for up to 1 

month.  

4.3.2.12 Preparation of 10 mM Ammonium Acetate (pH 5)  

900 mL deionised water was transferred to a 1 L volumetric flask, then 

ammonium acetate (0.77g) and 200 µL of concentrated acetic acid were added, 

made up to the mark with deionised water and stored at 4°C for up to 1 month.  

4.3.2.13 Preparation of 10 mM Ammonium Carbonate (pH 9.3)  

Ammonium carbonate (0.48 g) was added to a 500 mL volumetric flask and made 

up to the mark with deionised water, mixed well and stored at 4°C for up to 1 

month.  

4.3.2.14 Preparation of 2 M Ammonium Acetate  

15.42 g of ammonium acetate was weighed out into a 100 mL volumetric flask 

and made up to the mark with deionised water and stored at 4°C for up to 1 

month.  

4.3.2.15 Preparation of 2 mM Ammonium Acetate (pH = 6.8) 

1 mL of 2 M ammonium acetate was added to a 1 L volumetric flask and made up 

to the mark with deionised water and stored at 4°C for up to 1 month.  

4.3.2.16 Preparation of 0.5 mM Ammonium Acetate (pH = 6.8) 

250 µL of 2 M ammonium acetate was added to a 1 L volumetric flask and made 

up to the mark with deionised water and stored at 4°C for up to 1 month.  

4.3.2.17 Preparation of Infusion Solution  

100 mL of methanol, 0.25 mL of 2 mM ammonium acetate and 0.1 mL of formic 

acid were added to a 1 L volumetric flask and made up to the mark with 

deionised water.   
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4.3.2.18 Preparation of 0.1 M monobasic sodium phosphate 

Weigh 2.76 g of sodium dihydrogen orthophosphate in a beaker and dissolved in 

100 mL of dH2O. Transfer to a 200 mL volumetric flask and make up to the mark 

with dH2O. Mix well. Store in the fridge and discard after 6 months.  

4.3.2.19 Preparation of 0.1 M dibasic sodium phosphate 

Weigh 2.76 g of disodium hydrogen orthophosphate in a beaker and dissolved in 

100 mL of dH2O. Transfer to a 200 mL volumetric flask and make up to the mark 

with dH2O. Mix well. Store in the fridge and discard after 6 months.  

4.3.2.20 Preparation of 0.1 M, pH 6.0 Phosphate Buffer  

0.1 M phosphate buffer was prepared by weighing 1.7 g of Na2HPO4 into a 1 L 

beaker. To that, 12.14 g of NaH2PO4•H2O was added. The mixture was dissolved 

in 800 mL of dH2O. The pH was adjusted to 6 (± 0.1) with 0.1 M monobasic 

sodium or 0.1 M dibasic sodium to lower or raise the pH, respectively. This was 

then transferred to a 1 L volumetric flask, then made up to the mark with 

deionised water and mixed thoroughly. The buffer was then stored at approx. 

4°C for a maximum of 6 months. 

4.3.2.21 0.1 M Acetate buffer pH 4.5  

2.93 mg of sodium acetate trihydrate was dissolved in 400 mL of deionised water 

in a 500 mL volumetric flask. In addition, 1.62 mL of glacial acetic acid was 

added and diluted to 500 mL with deionised water. The buffer was adjusted to 

pH 4.5 with acetic acid (to lower pH) or sodium acetate (to lower pH). This was 

stored at approx. 4°C and discarded after 30 days. 

4.3.3 Instrumentation  

The analysis was carried out using an Agilent LC-MS/MS triple quadruple G6420A 

mass spectrometer equipped with an Agilent 1200 Series Auto sampler SL, 

Agilent 1200 Series Binary Pump SL with degasser and Agilent 1200 Series 

Thermo-Statted Column Compartment SL. Positive electrospray ionisation (+ESI) 

was used and the MS operated in multiple reaction monitoring mode (MRM). The 

turbo ion-spray interface was operated in positive-ion mode with nitrogen as the 

collision gas. The Agilent Mass-Hunter Workstation software (version: B.01.05) 
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was used for system control and data acquisition. Optimiser software was used 

to optimise the product ions and their fragmentor voltages and collision 

energies.  

4.3.4 Optimisation of the Fragmentor Voltage and Collision 
Energy 

All compounds of interest and internal standards were individually tuned using 

an optimiser software for detecting the precursor ions and optimising their 

product ions, fragmentor voltage and collision energy. The solutions were 

prepared for each drug at concentration 10 mg/L as detailed in section 4.3.2.2, 

and directly infused in the mass spectrometer at a flow rate of 1800-3000 

µL/hour (30-50 µL/min). The ions were continuously monitored in the scanning, 

SIM and MRM modes using Agilent Mass-Hunter Acquisition software.  

The tunings were performed using the MS1 scan method to determine the 

precursor ions for each analyte. The second step, after identifying the precursor 

ions, the fragmentor voltages (V) were optimised by altering the voltage over 40-

400V using step sizes of 5V. This was achieved by building 7 individual methods 

with different values of fragmentor. After that, the fragmentation of the 

precursor ions was investigated by altering the collision energies (eV) from 0-

240eV using a step size of 5eV.  

Finally, for each analyte, the MS2 scan method was used to determine the 

product ion profiles using the results from steps 1 and 2; two MRM transitions 

were identified and optimised for each drug and one for the IS. One of the ion 

transitions was selected as the quantifier and the other as the qualifier. 

4.3.5 Optimisation of Nebuliser Gas Pressure, Temperature and 
flow  

Nebuliser pressure (15, 20, 25, and 30psi), drying gas temperature (300, 310, 

320, 330, 340 and 350°C) and flow (8, 9, 10 and 11L/min) were optimised by 

measuring drug and IS peak areas produced for each MRM transition after the 

injection of a standard solution with all the analytes and IS at 1mg/L in mobile 

phase (MeOH:dH2O 1:1 (v/v)) and transferred to an LC vial. Preliminary LC 

conditions were used to perform these tests: mobile phases A and B 50:50 (v/v) 

at a flow rate of 0.3mL/min in isocratic elution mode. The column initially used 
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to perform these tests was a Gemini C18 column (150 x 2.1 mm, 5 μm) with 

guard column of the same packing material.  

The results of this method were saved as data files as shown in Table 4-5 and 

Table 4-6 and were processed using the Mass-Hunter Qualitative program by 

overlapping analyte chromatograms to compare peak height and area.  

Table  4-5 Summary of LC and Ion Source Parameters Used During Method Development  

LC Parameters 

Column 
Gemini C18 column (150 x 2.1 mm, 5 μm) with guard 

column of the same packing material 

Mobile phase 
50:50 A/B  A: dH2O with 0.1% FA and B: methanol with 

0.1% FA. 

Column temperature 25 ºC 

Flow rate 0.3 mL/min 

Run Time 30 minutes 

Mass Spectrometry Parameters 

Operating mode ESI-in positive and negative mode 

Gas temperature 300 ºC 

Gas flow 11 L/min 

Nebuliser pressure 15 PSI 

Capillary voltage 4000 V 

Scan mode MRM 

 

Table  4-6 MRM transitions of MOR, M3G, M6G and GBP  

Drugs 
Precursor 

(m/z) 

Optimiser Software 

Quantifier 
(m/z) 

Qualifier 
(m/z) 

Fragmentor 
voltage 

Collision 
energy 

MOR 286 201.1 229 200 25 

M3G 462.4 286 268 160 30 

M6G 462.4 286 268 160 30 

GBP 172.1 154.1 137 160 30 

Internal Standards 

MOR-d3 289.3 201 n/a 140 25 

M3G-d3 465.4 289.1 n/a 200 30 

M6G-d3 465.4 289.1 n/a 200 30 

GBP-d10 164.3 147.2 n/a 175 10 
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4.3.6 Optimisation of Mobile Phase   

The mobile phase is an important component for both the separation and 

ionisation of compounds. It often consists of two parts, the aqueous phase and 

the organic phase. The optimal conditions were achieved using an organic 

modifier (acetonitrile or methanol) and a volatile buffer [71, 72, 354]. To 

determine the most suitable mobile phase composition for drugs of interest, an 

investigation into its aqueous and organic components was carried out. The 

concentration of which can be critical; concentrations that are too high may 

result in the suppression of the analyte signal, while concentrations that are too 

low may lead to poor peak shape and efficiency.  

4.3.6.1 Organic Phase   

In morphine, M3G, M6G and gabapentin analysis, as with most LC-MS methods, 

methanol or acetonitrile are commonly used for the organic solvent of the 

mobile phase [71, 72, 354]. A comparison was carried out between methanol and 

acetonitrile to investigate their effects on the chromatograms of the analytes, 

their ion abundances and peak shape.  

4.3.6.2 Aqueous Phase Additives  

Chromatography analysis has been reported with the addition of volatile buffers, 

which are commonly used in the mobile phase to improve the ionisation of 

compounds as well as the separation of molecules and the peak shape of the 

chromatograms. It can also stabilise pH in the mobile phase, which in turn helps 

to develop reproducible chromatography. However, the pH of the mobile phase 

should be at least two units below the pKa. This was a bit challenging to apply 

because of a wide range of drugs of interest. Morphine has a pKa from 9 to 10, 

and its glucuronides have a pKa ranging from 3 to 4. Large differences in pK 

values of morphine and its glucuronides often cause difficulties in developing a 

combined method [369, 370].  

For this investigation, four buffers with different additives were tested for each 

drug separately under the same operating conditions to select the buffer that 

produced good chromatograms and high abundances for all the analytes. The 

four buffers were tested each time; 0.1% Formic acid (pH=2.8), 10mM 
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Ammonium formate (pH=3.0), 10mM Ammonium acetate (pH=5.0) and 10mM 

Ammonium carbonate (pH=9.3).  

Four separate unextracted standards of each analyte were prepared using 200 µL 

aliquot of the 10 mg/L working solution, dried under nitrogen. Each sample was 

reconstituted with 100 µL of one selected mobile phase (buffer/methanol, 

80:20). A 10 µL volume was injected in triplicate for each mobile phase.  

4.3.6.3 Formic Acid addition  

Formic acid is volatile organic acid. It is mainly chosen as a buffer additive, 

which are often added to mobile phases, and will evaporate readily in the LC 

interphase [312]. Formic acid acts as a stabilising buffer and aids the 

chromatographic resolution. Due to its nature, it also donates protons during 

positive ionisation mode, as well as non-suppression of ionisation in the mass 

spectrometer [371]. In order to determine which concentration of formic acid 

gave the best results, ten concentrations from 0.0% to 0.2% were investigated by 

altering formic acid from 0 to 2000 µL in 1 L using a step size of 200 µL in 1 L. 

Ionisation and resolution were evaluated for each analyte. 

4.3.6.4 Molarity of Ammonium Acetate  

The reports published in the literature use a range of molarities, and it has been 

reported that increased concentration of the additive leads to a significant 

reduction in the sensitivity of the analyte due to its suppressive effect on 

electrospray ionisation [372]. In order to investigate the various molarity that 

gives the best overall chromatography molarities investigated were: 0.5, 2, 3, 4, 

and 5 mM of ammonium acetate.  

4.3.7 Optimisation of Stationary Phase  

4.3.7.1 Optimisation of LC Column  

Due to the wide range of pKa and different polarities of the analytes of interest 

a simple and general column which can tolerate a wide range of pH in order to 

elute all the compounds was needed. In addition, small particle size columns are 

not recommended for postmortem blood analysis because of the complex nature 

of the sample and clotted sample that can cause a rapid accumulation in the 

column if the extraction procedure is not sufficiently clean. A typical C18 
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column was used as a starting point [373]. In order to determine the best 

chromatographic performance, two different columns were compared with the 

previous Gemini C18 column, Synergi Fusion-RP column and Synergi Polar-RP 

Phenomenex [354] were used, details of which are below in Table 4-7.  

Table  4-7 Chromatographic Column Properties  

Column 
Length 
(mm) 

Internal 
Diameter 

(mm) 

Particle 
Size 
(μm) Recommended Use 

Gemini C18 
Pheomenex 

150 2.0 5 
multiple separation modes (ion 

exchange, reverse and normal phase) 

Synergi Fusion-
RP Pheomenex 

150 2.0 4 
Separation of mixtures with both polar 

and non-polar compounds 

Synergi Polar-RP 
Pheomenex 

150 2.0 4 
Separation of polar and aromatic 

compounds 
 

4.3.7.2 Optimisation of LC Column Temperature 

After choosing the best mobile phase and column system to analyse all the 

analytes simultaneously, the column temperature was tested at 25, 30, 35, 40, 

45 and 50˚C.   

4.3.8 Optimisation of Chromatographic Separation   

The separation of the sample components is greatly enhanced by the use of a 

gradient system, which changes the mobile phase composition during the 

chromatographic run [374, 375]. Reflecting the large polarity range of the major 

opium alkaloids, most applications apply reversed-phase liquid chromatography 

with gradient elution and ion-pairing agents. Such methods can be very sensitive 

to minor changes in chromatographic conditions, contribute to prolonged 

duration of analysis, and narrow the columns lifetime [376]. As a result, the 

gradient was employed using a mobile phase consisting of 0.01% formic acid (FA) 

and 0.5mM of ammonium acetate in both (A: deionised water and B: Methanol). 

In order to achieve optimal separation of all analytes, ten experiments were 

performed by changing the mobile phase gradient system.  

In system (9) for instance, the gradient mobile phase system started at 90:10 

A/B and maintained for 5 minutes before the organic content was increased to 

10:90 A/B for 2 minutes. The organic percentage was decreased finally to 90:10 

A/B for 5 minutes in order to condition the column before the next injection as 

illustrated in Table 4-8.   
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Table  4-8: Gradient System Used to Improve the Separation of 4 Drugs of interest 

Tim 
(min) 

System 

1 2 3 4 5 6 7 8 9 10 

*B% *B% *B% *B% *B% *B% *B% *B% *B% *B% 

0.00 90 80 70 60 50 40 30 20 10 5 

5.00 90 80 70 60 50 40 30 20 10 5 

6.00 90 90 90 90 90 90 90 90 90 90 

8.00 90 90 90 90 90 90 90 90 90 90 

8.10 90 80 70 60 50 40 30 20 10 5 

13.00 90 80 70 60 50 40 30 20 10 5 

*B: Methanol.  

After choosing the best gradient system to analyse all drugs of interest 

simultaneously, the flow rate was optimised at 0.1, 0.2 and 0.3 mL/min.  

4.3.9 Extraction Optimisation - Solid Phase Extraction vs Protein 
Precipitation:  

Following the development of the LC-MS/MS method, extraction experiments 

were performed to optimise the best conditions and best possible drug recovery. 

At the same time as investigating the extraction efficiencies as different 

extraction methods, the Effect of the Matrix (ME) was also assessed. 

Additionally, the linearity range, the cleanliness of the extracts and extraction 

time were evaluated when the extraction methods were optimised. It has been 

decided to evaluate two extraction methods; solid phase extraction (SPE) and 

protein precipitation (PP). 

4.3.9.1 Solid Phase Extraction 

Two types of SPE cartridge were evaluated to determine which cartridges would 

have an advantageous effect on the recovery; type I (Bond Elut C18 cartridge) 

and type II (DAU® CleanScreen cartridge). Type I, Bond Elut C18 cartridge has 

been used for opioids in previous studies [71, 359, 377-382]. Type II, the DAU® 

CleanScreen cartridge used in this study is currently used for routine analysis of 

postmortem blood samples in-house. This extraction is validated for the analysis 

of morphine and other opioids but does not currently include M3G, M6G and 

gabapentin. Drug recovery was assessed for each cartridge to determine which 

was most effective for extracting drugs from whole blood. 
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To achieve this, spiked whole blood samples were extracted using the two sets 

of cartridges, 3 replicates each. The samples were prepared as follow; 1 mL of 

blank whole blood was diluted in 5 mL of pH 6 Buffer/deionised water (1:2) 

mixed solution and spiked with all drugs in different concentration ranges. 

Deuterated internal standards were used by adding 100 μL of 1 μg/mL solution to 

all the samples examined. The tubes were vortexed for 5 s and centrifuged for 

10 min at 2500 to 3000 rpm.  

After SPE columns were conditioned by sequentially adding 3 mL methanol, 3 mL 

water and 1 mL pH6 phosphate buffer, the prepared samples were poured onto 

the conditioned column and allowed to drain. Each column was then washed by 

the sequential addition and elution of 3 mL deionised water, 2 mL acetate buffer 

0.1M pH 4.5 and 3 mL methanol and dried under full vacuum for 10 minutes. 

Elution was performed by adding 3 mL dichloromethane: isopropanol: ammonia 

(78:20:2) to collect the compounds. After solvent evaporation by using nitrogen 

evaporator at ≤ 37 oC until dry, the residue was reconstituted with 200 µL mobile 

phase (90/10: A/B) and transferred to a LC vial. A 10 µL volume was injected 

into the LC/MS/MS.  

In order to calculate the recovery, another set of unextracted samples with the 

same concentration were prepared at the same time in triplicate as 

follows; 100 μL of the standard solution and 100 µL of internal standard 

evaporated under nitrogen gas at 37 oC, then reconstituted with 200 µL mobile 

phase (90/10: A/B) and transferred to LC autosampler vials.  

The internal standard was added to the extracted and unextracted samples at 

the same time after extraction. Drug recoveries were calculated as described in 

Equation 4-1.  

4.3.9.2 Protein Precipitation Extraction  

Protein precipitation was used in literature [72, 381, 383-385]; therefore, it was 

chosen as a sample preparation method for comparison with SPE. The length of 

time spent on SPE development was kept to a minimum and only more promising 

results pursued. Although protein precipitation would have led to the 

simultaneous detection of all the analytes due to its nonselective nature.  



107 
 
Protein precipitation extraction was evaluated to optimise the effect of sample 

preparation steps on the extraction and to create an efficient method. Steps 

evaluated in this study are the solvents used for extraction. Methanol and 

acetonitrile were evaluated for the reference method, as both of these solvents 

were used in the literature.[72, 381, 383-386] Drug recoveries were assessed for 

both sets of solvents to determine which was the most effective at extracting 

drug of interesting from the blood.   

Two sets; 3 samples each, of spiked whole blood samples were prepared. Each 

set was extracted with one of the two solvents as follows; 800 µL of solvent was 

added to 200 µL of blood spiked with 100 µL of 10 mg/L standard working 

solution. Samples were vortex mixed before being centrifuged at 2000-3000 rpm 

for 10 minutes. Following centrifugation, the supernatant was transferred to a 

3.5 mL vial using a glass pasteur pipette, spiked with 100 µL of the internal 

standard. Samples were evaporated under nitrogen gas, with the heating block 

set at 25 °C. Once the samples had been evaporated they were reconstituted 

with 200 µL mobile phase (90/10: A/B). This was then transferred into correctly 

labelled LC autosampler vials and 10 µL injected into LC/MS/MS.     

In order to calculate the recovery, two sets of unextracted samples at the same 

concentration were also prepared at the same time in triplicate as 

follows; 100μL of 10 mg/L standard solution and 100 µL of 10 mg/L internal 

standard were evaporated under nitrogen gas at 25°C. Then reconstituted with 

200 µL mobile phase (90/10: A/B) and transferred to LC autosampler vials.  

Finally, after analysing the samples, the peak area was used to calculate the 

recovery using the Equation 4-1 to determine whether methanol or acetonitrile 

would have an advantageous effect.  

4.3.9.3 Matrix Effect Evaluation  

The change in response observed for a given concentration of a target analyte in 

the presence of other sample components can be defined as matrix effect. 

These sample components can cause suppression or enhancement of the target 

analyte response [386-388].  

The matrix effects were evaluated for all the drugs and the internal standards 

using the post-extraction addition approach, which was achieved as follows; 
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three sets of QCs at low and high concentrations were used. The concentrations 

are detailed in section 4.3.2.7 and the 3 sets will now be referred to as ―neat‖, 

―post‖ and ―pre‖.  Six sources of blank blood were used.   

Set one ―neat‖: Unextracted standards (QCs) and internal standards injected six 

times to establish a mean peak area for each concentration.  

Set two ―post‖: Blank blood was extracted and spiked with QC solutions and 

internal standards after extraction.   

Set three ―pre‖: Blank blood was spiked with QC solutions and internal standards 

before extraction and extracted.  

Finally, different extraction approaches were compared regarding matrix effect, 

which was achieved as follows; each matrix source was extracted in triplicate 

and the extract spiked with either methanol or acetonitrile. After analysing the 

samples, the peak area was used to calculate the recovery, process efficiency 

and matrix effect using the following Equation 4-1, Equation 4-2 and 

Equation 4-3.   

Equation  4-1 Equation of Recovery 

                                            
 

Equation  4-2 Equation of Process Efficiency 

                                                      
 

Equation  4-3 Equation of Matrix Factor 

                                          
 

MF is acceptable if the value is within 1±0.25.   

If MF = 1, there is no matrix effects.   

If MF <1, there is an ionisation suppression effect.   

If MF >1, there is ionisation enhancement and/or analyte loss in the absence of matrix.   

 



109 
 

4.4 Results and Discussion  

4.4.1 Optimisation of the Fragmentor Voltage and Collision 
Energy  

The fragmentor voltage, parent and product ions, and subsequently the collision 

energies for each individual analyte were determined using the sample injection 

program. All the analytes investigated in this study generated the prominent 

protonated molecular ion in positive-ion mode. All drugs had an optimum 

fragmentor voltage in the range of 160–200 V, except M3G-d3 and M6G-d3 as 

illustrated in Figure 4-1 and Figure 4-2. The optimum collision energy for most of 

the product ions is 20 eV as illustrated in Figure 4-3 and Figure 4-4. The optimum 

fragmentor voltages, collision energies as well as the ions monitored for each of 

the analytes are summarised in Table 4-9. 

 

Figure  4-1 Fragmentor Voltage Optimisation for all internal standards  

0

50000

100000

150000

200000

250000

300000

350000

20V 80V 100V 140V 160V 200V

A
b

u
n

d
an

ce
 (

n
=3

) 

Fragmentor voltage 

Fragmentors 

M3G d3

M6G d3

Md3_185

Md3_201

GBP d3



110 
 

 

Figure  4-2 Fragmentor Voltage Optimisation for all standards and their transitions 
 

 

Figure  4-3 Collision Energy Optimisation for all internal standards  

 

Figure  4-4 Collision Energy Optimisation for all standards and their transitions  
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Table  4-9 Summarises the Optimisation Parameters of Tune Method 

Drugs 
Precursor 

(m/z) 

Optimizer Software 

Quantifier 
(m/z) 

Qualifier 
(m/z) 

Fragmentor 
voltage 

Collision 
energy 

MOR 286 201.1 229 200 25 

M3G 462.4 286 268 160 30 

M6G 462.4 286 268 160 30 

GBP 172.1 154.1 137 160 30 

Internal Standards 

MOR-d3 289.3 201 N/A 140 25 

M3G-d3 465.4 289.1 N/A 200 30 

M6G-d3 465.4 289.1 N/A 200 30 

GBP-d3 164.3 147.2 N/A 175 10 

N/A: Not Available 

 

4.4.2 Optimisation of Nebuliser Gas Pressure, Temperature and 
Flow Rate 

4.4.2.1 Optimisation of Nebuliser Gas Pressure 

Based on the results obtained from varying the ion source nebuliser gas pressure 

showed an increase in abundance response when increasing the nebuliser 

pressure from 15 to 35, the optimum condition adopted for all analytes was 35 

psi as illustrated in Figure 4-5 and Figure 4-6.  

 

Figure  4-5 Nebuliser Gas Pressure Optimisation of MOR-d3, M3G-d3, M6G-d3 and GBP-d3 
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Figure  4-6 Nebuliser Gas Pressure Optimisation of Morphine, M3G M6G and Gabapentin 
 

During the development period of the method, the 30 psi gas pressure was used, 

in order to obtain a good sensitivity to all drugs. However, at a later stage, 

nebuliser pressure dropped to 25 psi, which helped to prevent MS source 

saturation due to the high concentration of gabapentin calibrator. 

4.4.2.2 Optimisation of Gas Temperature   

Figure 4-7 and Figure 4-8 show a slight increase in analytes abundance when 

increasing the nebuliser temperature from 300 to 350 °C, the optimum condition 

adopted for all analytes was 350 °C. 

 

Figure  4-7 Nebuliser Gas Temperature Optimisation for Internal Standards 
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Figure  4-8 Nebuliser Gas Temperature Optimisation for Analytes of Interest 
 

4.4.2.3 Optimisation of Nebuliser Gas Flow 

Figure 4-9 and Figure 4-10 show a slight increase in analytes abundance when 

increasing the nebuliser pressure from 8 to 11 L/min, the optimum condition 

adopted for all analytes was 11 L/min.  

 

Figure  4-9 Nebuliser Gas Flow Optimisation of Internal Standards 
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Figure  4-10 Nebuliser Gas Flow Optimisation of Analytes of Interest 
 

4.4.3 Optimisation of Mobile Phase   

4.4.3.1 Organic Phase   

It has been shown that the substitution of methanol to acetonitrile in the LC 

mobile phase leads to a significant difference in electrospray ionisation for a 

variety of compounds. Figure 4-11 and Figure 4-12 show the effect of methanol 

and acetonitrile on the abundance of all drugs with their internal standards. 

Methanol gives greater abundance and gives a better peak shape compared to 

acetonitrile. Therefore, MeOH was used as an organic phase for all the 

investigations. 

  

Figure  4-11 Response of Internal Standards with varying organic solvent in Mobile Phase 
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Figure  4-12 Response of analytes with varying organic solvent in Mobile Phase 
 

4.4.3.2 Aqueous Phase Additives  

The composition of the mobile phase additives was investigated with four 

different buffers and pH ranging from 2.8 to 9 as illustrated in Figure 4-13 and 

Figure 4-14. The resulting chromatographic peak shape and abundance was 

considered when assessing suitability. It was clear that all additives with mobile 

phase had a suppression effect on product ion formation of all analytes. 

However, formic acid (pH= 2.8) and ammonium acetate (pH= 5) gave the 

optimum resolution for most of the drugs and their internal standards under the 

same conditions.  

The concentrations of the buffer are very important because concentrations that 

are too low could lead to poor efficiency and peak shape, while concentrations 

that are too high could cause ion suppression of the compound. The pH of the 

additives is an important factor that must be considered as well. The pH 

measured for 0.1 % formic acid was 2.8 and 10 mM ammonium acetate was 5.0, 

compared to a pH of 3 for 10mM ammonium formate and a pH of 9.3 for 10 mM 

ammonium carbonate. When considering the pKa values of the analytes, it is 

understandable that a lower pH would help the ionisation of the molecules and 

helps to explain why relative peak shapes were better with the addition of 

formic acid and ammonium acetate. Therefore, formic acid and ammonium 

acetate were the additives of choice for future work. 
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Figure  4-13 Effect of Mobile Phase Additives on internal standard Abundance 
 

 

Figure  4-14 Effect of Mobile Phase Additives on Analyte Abundance 
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evaluated and a concentration of 0.01% formic acid gave a better resolution with 

the highest responses for all analytes, except M3G. Therefore, this concentration 

was chosen for future work.  

  

Figure  4-15 Effect of Formic Acid as an Additive in Mobile Phase on Analytes Response 
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Figure  4-16 Effect of Ammonium Acetate Concentration on Morphine, M3G, M6G and 
Gabapentin Responses  

Finally, combined 0.01% formic acid and 0.5mM ammonium acetate in aqueous 

mobile phase were evaluated and gave a better response with a good resolution 

for all analytes. Therefore, they were used as the mobile phase of choice for all 

drugs of interest and their internal standards. 

4.4.4 Optimisation of Stationary Phase  

4.4.4.1 Optimisation of LC Column  

Method development started by using a reversed-phase (RP) Phenomenex Gemini 

C18 (150 x 2 mm, 5 µm) column as it is one of the most commonly employed 

separation columns in forensic toxicology. An isocratic system with a high 

organic solvent mobile phase content (90%B) was used first. The aim of this was 

to check how long the analytes would be retained on the column. As the organic 

solvent-rich mobile phase has high elution strength, all drugs were eluted less 

than one minute after injection. A better retention time was obtained when a 

higher aqueous mobile phase content was used (90%A). This is because the 
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mobile phase with higher organic content, analytes would elute more quickly. 
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broadening was a problem and the column was unable to achieve acceptable 

chromatographic separation as illustrated in Figure 4-17 (A).   

Synergi Fusion-RP column (150 x 2 mm, 4 µm) also failed to achieve the 

minimally acceptable criteria for the peak shape chromatography. Furthermore, 

did not give good separation results with morphine, M3G and M6G. The same 

issue was seen when using C18 column due to its a non-polar stationary phase as 

well shown in Figure 4-17 (B).   

As the drugs of interest are basic polar drugs, the Synergi Polar-RP Phenomenex 

(150 x 2 mm, 4 µm) was installed and tested. Column testing was started using 

an isocratic system with a high aqueous content (90% A). The goal of this was to 

assess the ability of the column to retain the drugs. It was found that all drugs 

were interacting with the stationary phase and eluted 2 minutes (M3G), 3 

minutes (morphine), 3.75 minutes (M6G) and 3.75 min (GBP) after injection. The 

observed improvement in the retention time when using this column compared 

to a C18 column is believed to be due to the elution using a low percentage of 

solvent. Thus, it is compatible with a wide range of buffers and organic solvents 

for injection. It was clear that using the Synergi Polar-RP column offers 

additional retention, better peak shape and a greater separation for every 

analyte with a run time of 13 min as illustrated in Figure 4-17 (C).   
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 M3G-d3 (465 289)         M6G-d3 (465 289)    

 M3G (462 268)              M6G (462 268)    

 M3G (462 286)              M6G (462 286)    

             MOR-d3 (289 201) 

          MOR (286 201) 

          MOR (286 211) 

          MOR (286 229) 

                                GBP-d10 (182 164) 

                                GBP (172 137) 

                                GBP (172 154) 

 
(A) C18 Column effect on Analyte Peak Shape, Retention and Separation 
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                      MOR (286 201) 
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                             GBP (172 137) 

                             GBP (172 154) 

 
(B) Fusion Column effect on Analyte Peak Shape, Retention and Separation 

        M3G (462 268)                        M6G (462 268)    

        M3G (462 286)                        M6G (462 286)    

                                       MOR-d3 (289 201) 

                              MOR (286 201) 

                              MOR (286 211) 
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                                  GBP (172 137) 

                                  GBP (172 154) 

 
(C) Polar Column effect on Analyte Peak Shape, Retention and Separation 

Figure  4-17 Stationary Phase Effect on Analyte Peak Shape, Retention and separation
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4.4.4.2 Optimisation of LC Column Temperature   

The optimal conditions were achieved using a Synergi Polar-RP column (150 mm 

x 2.0 mm, 4 µm) and an isocratic system with a high aqueous mobile phase 

content (90% A) mixed with 0.01% formic acid and 0.5mM ammonium acetate at 

a flow rate of 0.3 mL/min. It was found that increasing the column temperature 

from 25 to 50°C showed no significant change in chromatography resolution. 

While, a slight decrease in the method sensitivity by increasing the temperature 

at 30 °C (Figure 4-18).  

 

Figure  4-18 Effect of Chromatographic Column Temperature on Standards and Internal 
Standards Sensitivity 
 

Finally, the column temperature was maintained at 40 °C to obtain optimum 

sensitivity and decreasing the turbo pump pressure as a result of decreasing the 

mobile phase viscosity.   
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4.4.5 Optimisation of Chromatographic Separation   

Error! Reference source not found. shows the M3G and M6G are structurally 

imilar and have identical fragmentation patterns, their product ions are 286 and 

268 m/z.  

(A) M3G (B) M6G 

 

 

Figure  4-19 (A) M3G and (B) M6G Chemical Structure  

 

Although the Synergi Polar-RP column provided a good separation between these 

two metabolites, the separation was very sensitive to any change in the 

composition of the mobile phase or the flow rate, resulting in the merging of the 

peaks again.  

Decreasing the flow rate from 0.3 to 0.1 mL/min gave a partial separation of 

M3G and M6G. On the other hand, reducing the flow reduced resolution and 

increased the run time of the method from 13 to 20 minutes in order to elute all 

drugs as shown in Error! Reference source not found..  
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(A) Flow Rate (0.1ml/min) effect on Separation and Resolution 
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(B) Flow Rate (0.2ml/min) effect on Separation and Resolution 

 
    M3G-d3 (465 289)                   M6G-d3 (465 289)    

   M3G (462 268)                        M6G (462 268)    

    M3G (462 286)                        M6G (462 286)    

         MOR-d3 (289 201) 

         MOR (286 201) 

         MOR (286 211) 

       MOR (286 229) 

   GBP-d10 (182 164) 

   GBP (172 137) 

   GBP (172 154) 
 

(C) Flow Rate (0.3ml/min) effect on Separation and Resolution 

 

Figure  4-20 Flow Rate Effect on Gabapentin and morphine Derivatives Separation and 
resolution 
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It was decided to use flow rate 0.3 mL/min to achieve a balance between the 

analytes separation and good chromatography.  

Several gradient systems were applied to obtain better separation and improve 

resolution for all analytes with a satisfactory runtime in a single analysis. This 

was achieved by adjusting the aqueous/organic ratio, which was tested in 10 

different systems ranging from 10% A to 95% A, as shown in Table 4-8. As a 

result, the increase of the aqueous mobile phase to 90% showed a good 

separation between the two morphine glucuronides as shown in Figure 4-21.  
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Aqueous mobile phase (10%) to separate 

M3G from M6G 
Aqueous mobile phase (20%) to separate 

M3G from M6G 

  
Aqueous mobile phase (30%) to separate 

M3G from M6G 
Aqueous mobile phase (40%) to separate 

M3G from M6G 

  
Aqueous mobile phase (50%) to separate 

M3G from M6G 
Aqueous mobile phase (60%) to separate 

M3G from M6G 

  
Aqueous mobile phase (70%) to separate 

M3G from M6G 
Aqueous mobile phase (80%) to separate 

M3G from M6G 

           M3G             M6G  

 
Aqueous mobile phase (90%) to separate 

M3G from M6G 
Aqueous mobile phase (95%) to separate 

M3G from M6G 

Figure  4-21 The aqueous/organic phase percentage tested at 10 different gradient systems 
ranged from (10% A to 95% A) to separate M3G from M6G 
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Finally, it was decided to use the aqueous mobile phase to 90% to achieve a good 

separation.  

Figure 4-22 illustrates the chromatogram with all analytes obtained using 

dynamic multiple reaction monitoring mode and using a mixture of unextracted 

standards at a concentration of 10 mg / L. 

      M3G-d3 (465 289)                      M6G-d3 (465 289)    

      M3G (462 268)                           M6G (462 268)    

      M3G (462 286)                           M6G (462 286)    

            MOR-d3 (289 201) 

             MOR (286 201) 

             MOR (286 211) 

             MOR (286 229) 

             GBP-d10 (182 164) 

             GBP (172 137) 

             GBP (172 154) 

 

Figure  4-22 The Chromatogram of 4 drugs and 4 Internal Standards 
 

4.4.6 Extraction Optimisation - Solid Phase Extraction V's Protein 
Precipitation   

A commercial cartridge was evaluated for use in a method for the quantitation 

of morphine, M3G, M6G and GBP in postmortem blood based on SPE and LC-

MS/MS analysis.  
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The following cartridges were evaluated: UCT‘s Clean Screen® DAU and Bond 

Elut C18, where the cartridges used to extract opioids and gabapentin mixtures 

were designed. Clean Screen® cartridge showed poor recovery for GBP, while 

Bond Elut C18 cartridge showed poor recovery for all the analytes compared to 

protein precipitation which gave higher recoveries for all analytes as illustrated 

in Figure 4-23. The R2 values were not acceptable for some drugs using SPE due 

to their poor recoveries as illustrated in Table 4-10. Moreover, achieving the 

upper limit of quantification was not acceptable for some drugs using SPE 

compared to protein precipitation. Furthermore, SPE was found to be time-

consuming due to the number of steps involved in sample preparation. 

  

Figure  4-23 Recovery for SPE (UCT’s Clean Screen® DAU and Bond Elut C18) V’s Protein 
Precipitation (P.P). 
 

Therefore, the protein precipitation method was suitable for routine 

application. The recovery (>95%) and R2 values (> 0.997) are detailed in 

(Table 4-10).  

Table  4-10 Recoveries, Calibration Ranges and Linearity Values for Protein Precipitation 
(P.P) V’s Two Cartridges of SPE (Clean Screen® and Bond Elut C18) 

Analytes 
Recovery (%) (n=3) 

Calibration 
Range (mg/L) 

R² (n=3) 

SPE 
(C18) 

SPE 
(CS) 

PP 
SPE 

(C18) 
SPE 
(CS) 

PP 

MOR 164.3 94.8 104.7 0.05-0.75 0.966 0.999 0.999 

M3G 1.0 99.0 102.6 0.05-0.75 0.939 0.994 0.997 

M6G 1.2 86.2 105.5 0.02-0.30 0.958 0.730 0.999 

GBP 4.5 8.1 105.2 2.5-50 0.919 0.937 0.999 
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The sample preparation of the protein precipitation compared with the SPE 

method was faster since it contained fewer and shorter steps and used less 

solvent. Thus, it was decided to use protein precipitation as the method of 

choice to extract all the analytes simultaneously. 

4.4.7 Investigation into Protein Precipitation Extraction 
Conditions  

4.4.7.1 Effect of Extraction Solvent   

Two solvents were evaluated in order to determine which one gave the best 

extraction for all analytes. Acetonitrile gave recoveries ranging from 73-87% for 

all analytes. While methanol achieved recoveries ranging from 89-104% for all 

the analytes as illustrated in Figure 4-24.  

 

Figure  4-24 Comparison of the Recovery for Methanol and Acetonitrile Extractions 
 

Extraction recovery was also calculated using the Matuszewski strategy, which 

uses the mean peak area only, while the recovery was calculated previously 

using the analyte/internal peak area ratios. Both methods presented equivalent 

results as shown in Figure 4-25.  
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Figure  4-25 Recovery Comparison for Analyte/IS Peak Area Ratio and Matuszewski Strategy 
 

4.4.7.2 Matrix Effect Evaluation    

The matrix effect was assessed for both methanol and acetonitrile extraction. 

No significant ion suppression or enhancement was observed for both extraction 

methods. Figure 4-26 shows an acceptable matrix effect with both extractions 

(within ± 25%). However, the matrix effect is slightly better with MeOH 

extraction. 

 

Figure  4-26 Comparison of the Matrix Effect for Methanol and Acetonitrile Extractions 
 

98 
91 89 

104 
96 

89 87 

106 

0

20

40

60

80

100

120

Morph M3G M6G GBP

%
 r

ec
o

ve
ry

 (
n

=3
) 

Analytes 

Recovery (PAR V's Matuszewski) 

PA ratio

Matuszewski

-8 
-7 

22 

-6 -7 -7 

16 

-5 
-10

-5

0

5

10

15

20

25

Mrphine >201 M3G >286.1 M6G >286.1 Gabap >154.1

%
 r

ec
o

ve
ry

 (
n

=3
) 

Analytes  

Matrix Effect (MeOH V's ACN) 

ME% (ACN)

ME% (MeOH)



130 
 

4.5 Conclusion  

A sensitive method for the simultaneous detection and quantification of 

Morphine, Morphine-3-glucuronide, Morphine-6-glucuronide, Gabapentin was 

developed using an Agilent LC-MS/MS triple quadruple coupled with a Synergi 

Polar-RP column (150 mm x 2.0 mm, 4µm) maintained at 40°C. Electrospray 

ionisation was used, and the MS operated in multiple reaction monitoring mode 

(MRM) with ion mode switching. The optimal MS conditions were achieved using 

a nebuliser pressure of 30 psi, a capillary voltage of 4,000 V, nitrogen gas heated 

to 350 °C and delivered at 11 mL/min.   

The mobile phase system was developed and optimised using a mobile phase 

consisting of A: 0.01 % formic acid and 0.5 mM ammonium acetate in water, and 

methanol at a rate of 0.3 mL/min. The total run time was 13 minutes.  

Protein precipitation with methanol was the most suitable extraction protocol 

for routine application as recovery >95% and R2 values > 0.997 were achieved. 

Moreover, the sample preparation of protein precipitation compared with the 

SPE method was faster since it contained fewer and shorter steps and used less 

solvent.  
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Chapter 5 Method Validation of GBP, MOR, M3G 
and M6G in Whole Blood Using LC-MS/MS  

5.1 Introduction 

The validation of new analytical methods prior to their use in casework is a 

prerequisite to prove that an accurate, precise and rugged method has been 

developed to yield reliable results which can be satisfactorily interpreted.[348, 

389].  

The method validation was conducted using the Standard Practices for Method 

Validation in Forensic Toxicology (SWGTOX), revision draft 003 (32) as a guide: 

selectivity, calibration model, precision and accuracy, limit of quantification 

(LOQ), limit of detection (LOD), carryover, a matrix effect assessment and 

stability study of analytics during specimen processing.  

The purpose of validation is to confirm through the examination and provide 

objective evidence that the method developed in chapter 4 for a specific 

intended use are fulfilled. It is important as it defines whether it will produce 

reliable results and to identify the method's limitations under normal operating 

conditions.  

5.2 Materials and Methods  

5.2.1 Materials  

5.2.2 Chemicals & Reagents 

All reference standards, blood and other analytical grade chemicals were 

purchased from the same suppliers as listed in section 4.3.1.  

5.2.3 Solution preparation  

All reference for solutions preparation were the same as those described in 

Section 4.3.2.  

5.2.4 Instrumentation  

An Agilent LC-MS/MS triple quadruple G6420A mass spectrometer equipped with 

an electrospray ionisation (ESI) source, Agilent 1200 Series Auto sampler SL, 
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Agilent 1200 Series Binary Pump SL with degasser and Agilent 1200 Series 

Thermostatted Column Compartment SL was used. The turbo ion-spray interface 

was operated in positive-ion mode with nitrogen as the collision gas. The Agilent 

Mass-Hunter Workstation software (version: B.01.05) was used for system control 

and data acquisition. A Synergi Polar-RP column (150 mm x 2.0 mm, 4µm) 

maintained at 25°C. The MS was operated in multiple reaction monitoring mode 

(MRM) with ion mode switching. A nebuliser pressure of 30 psi, a capillary 

voltage of 4,000 V, nitrogen gas heated to 350 °C and delivered at 11 mL/min 

was used.  

Gradient elution was employed using a mobile phase consisting of 0.01% Formic 

acid and 0.5 mM ammonium acetate in water / methanol at a flow rate of 0.3 

mL/min. The total run time was 13 min in Figure 5-1. The gradient mobile phase 

system started at 90:10 A/B and this percentage was maintained for 5 min 

before being increased to 10:90 A/B within 1 min and maintained for 2 min. The 

percentage was finally decreased to 90:10 A/B for 5 min in order to condition the 

column before the next injection.  

5.2.5 Sample Preparation  

The samples were extracted using the protein precipitation as follows; 800 µL of 

MeOH was added to 200 µL of blood and spiked with 50 μl of internal standard 

solution. Samples were vortex mixed before being centrifuged at 2000-3000 rpm 

for 10 minutes. Following centrifugation, the supernatant was transferred to a 

3.5 mL vial using a glass pasteur pipette. The supernatant was evaporated under 

nitrogen gas, with the heating block set at 25°C. Once the samples were dried, 

they were reconstituted in 200 μL of mobile phase (90/10: A / B). This was then 

transferred to the LC autosampler vials and 10 μL volume was injected into LC- 

MS/MS.  

5.2.6 Selectivity and Specificity   

Method validation acceptability criteria for selectivity and specificity were the 

same as those described in section 3.8.1.  
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5.2.7 Limits of Detection and Limits of Quantification   

In order to determine LODs for each compound, blood was spiked with 

decreasing concentrations of mixed working solution within the expected range 

of LODs; over the concentration range 0.05, 0.10, 0.25, 0.50, 1.0 and 2.5 mg/L 

for GBP; 0.0025, 0.0050, 0.0100, 0.0250, and 0.0500 mg/L for MOR and M3G; and 

0.0025, 0.0050, 0.0075, 0.0100, 0.0200 mg/L for M6G. All LODs were extracted 

as detailed in section 5.2.5 and analysed in duplicate in three separate runs 

using three different sources (donors) of blood. These were run alongside a set 

of calibrators and QC‘s. Mass-Hunter Workstation program was used to calculate 

the S/N ratio. The acceptability criteria of the limits of detection and limits of 

quantification were the same as those described in section 3.8.2. 

5.2.8 Linearity 

Linearity was determined by preparation and analysis of seven calibrator points 

over the concentration range 2.5, 5.0, 7.5, 10, 12.5, 25 and 50 mg/L for 

gabapentin; 0.05, 0.075, 0.100, 0.125, 0.250, 0.500 and 0.750 mg/L for 

Morphine and M3G and; 0.02, 0.03, 0.04, 0.5, 0.10, 0.20 and  0.30 mg/L for 

M6G. 

Five fresh calibrations were prepared in duplicate by spiking blank blood with 

different volumes of working solutions 1 and 2 as detailed in Section 4.3.2 and 

extracted according to the method reported in Section 5.2.5 over 5 different 

days. The acceptability criteria for linearity were the same as those described in 

section 3.8.3.  

5.2.9 Accuracy and Precision  

Accuracy (Bias) and precision were calculated by running 3 replicates for each 

quality control sample (LQC, MQC and HQC). A calibration curve was prepared 

with each batch to calculate the concentrations.  

Intra-day (within) precision and bias were calculated from 6 replicates per QC in 

one batch. Inter-day precision and bias were determined over 5 different runs. 

Their values were calculated using equations (Equation 3-4 to Equation 3-8). The 

acceptability criteria for accuracy and precision were the same as those 

described in section 3.8.3 3.8.4.  
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5.2.10 Recoveries and Matrix Effects 

Recoveries and matrix effects for all drugs of interest and internal standards 

were evaluated using the post-extraction addition approach. This method 

examined the peak areas of analyte in three different sets of samples as 

described previously in (section 4.3.9).  

5.2.11 Carryover  

Analyte carryover was assessed by injecting three blank blood extracts after two 

injections of QC4 over different batches. QC4 was double the upper limit of 

quantification in the calibration curve (100 mg/L for GBP; 1.5 mg/L for Morphine 

and M3G, and 0.6 mg/L for M6G), as detailed in section 4.3.2.7. Carryover was 

evaluated by examining the chromatograms visually. 

5.2.12 Stability  

For reliable quantitation, the analytes stability in the matrix over different 

storage conditions was required during the validation process. The storage 

conditions were evaluated: room temperature stability, auto-sampler stability 

and stability after 3 freeze-thaw cycles at -20±2 ºC.  

In order to evaluate this, the same protocol described in section 3.8.7 was 

followed. Subsequently, samples were extracted and processed in triplicate 

along with freshly spiked calibration standards and analysed using the regression 

equation obtained. The recovery of each analyte was then calculated using 

Equation 3-9. Analytes were identified as being unstable if their recovery fell out 

with the acceptable criteria of ±20%.  

5.2.13 Stability study using Separated Clot Activator tubes 
and Eppendorf tubes    

The present study was designed to determine the stability of morphine and its 

glucuronides, and gabapentin in spiked blood by using two types of sampling 

tube. The two sampling tubes used were separated clot activator tubes (SCAT) 

and Eppendorf tubes (EPNT).  

The present study was designed to investigate the effect of the sampling tubes 

and storage temperature during the period between sampling and analysis. The 
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samples were stored at -20°C, 4°C and 20°C for a time interval of up to four 

months. Blank blood was spiked at low and high concentrations of each analyte 

separately (0.06 and 0.60 mg/L for morphine, 0.06 and 0.60 mg/L for M3G, 0.025 

and 0.25 mg/L for M6G and 4 and 40 mg/L for gabapentin, respectively), and 

then mixed on a roller for 1 hour to ensure that all compounds were distributed 

equally in the blood. The prepared samples were divided into three groups and 

were then stored at three different temperatures (-20 ºC, 4 ºC, and 20 ºC). The 

times selected for analysis were at day 1 (day zero), 3, 7, 14, 21 and 28 for 20oC 

and day zero, 7, 14, 21, 28 and 120 for -20oC and 4oC. 

Three samples from the prepared blood of each group (SCAT and EPNT) were 

analysed and found to be homogeneous, and the mean concentration of each 

analyte was considered to be the day zero concentration. Each time point 

samples were analysed; three replicates were taken for analysis from the 

storage racks for each of the different storage conditions. The internal standards 

were added into each sample and then extracted by protein precipitation as 

detailed in section 5.2.5.  A calibration curve and QCs were extracted with each 

set of samples.   
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5.3 Results and Discussion   

5.3.1 Chromatography  

Good chromatography was achieved for all analytes  

Figure 5-1 shows an example of the chromatographic profiles of gabapentin, 

morphine, M3G and M6G and the four internal standards in whole blood.  

      M3G-d3 (465 289)                       M6G-d3 (465 289)    

      M3G (462 268)                       M6G (462 268)    

      M3G (462 286)                       M6G (462 286)    

            MOR-d3 (289 201) 

             MOR (286 201) 

             MOR (286 211) 

             MOR (286 229) 

             GBP-d10 (182 164) 

             GBP (172 137) 

             GBP (172 154) 

 

Figure  5-1 Chromatographic profiles of analytes in whole blood at concentration 10 mg/L.  

 

5.3.2 Selectivity and Specificity  

There were no endogenous interferences identified at the GBP, MOR, M3G and 

M6G retention times. Therefore, the results of selectivity confirmed the ability 

of the method to distinguish target analytes in a complex matrix without any 

potential interference from other matrix components of similar behaviour.  
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There were no exogenous interferences identified at the analyte retention times 

from structurally-related analytes as detailed in Appendix 1. In addition, no 

contribution was observed from the internal standards to the analytes or vice 

versa.  

5.3.3 LOD and LLOQ  

Table 5-1 shows the results of LOD and LLOQ. In general, the lowest calibrator 

chosen for each analyte was verified, and therefore can be quantified with the 

greatest confidence.  

5.3.4 Linearity  

All analytes followed an unweighted calibration model and were linear for all 

analytes over the wide range of concentrations in blood; all the calibration 

graphs passed all the acceptance criteria and R2 was greater than 0.995 in the 5 

validations as shown in Table 5-1 and Figure 5-2.   

Table  5-1 LOD, LOQ, Calibration Model and Linearity of GBP, MOR, M3G and M6G in Blood 

Drugs 
LOD 

(mg/L) 
LLOQ 

(mg/L) 
Calibration Range 

(mg/L) 
Internal 
Standard 

Blood R² 
(n=5) 

GBP 0.10 2.50 2.5-50 MOR-d3 0.999 

MOR 0.01 0.05 0.05-0.75 MOR-d3 0.998 

M3G 0.01 0.05 0.05-0.75 M3G-d3 0.999 

M6G 0.005 0.02 0.02-0.30 M6G-d3 0.995 

 

Residual plots were used to determine the variance across the calibration range. 

They show random variance across the target values and also give an indication 

that the chosen model adequately fits the data. Plots are displayed in Figure 5-3 

below.  
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Figure  5-2 Linearity Graphs of Drugs of interest  
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Figure  5-3 Standardised Residual Plot Graphs of Drugs of interest  
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5.3.5 Bias and Precision  

The accuracy (bias) of each analyte in blood fell within the SWGTOX criteria. 

The average accuracy for the analytes across all QCs was within the acceptable 

range of ± 20 % of the nominal concentrations. The intra-day accuracy was from 

84-118 %. The inter-day accuracy ranged from 83-115 %. 

Intra-day and inter-day precision results of all analytes fell within the <20% 

criteria across all control samples of low, medium and high. The intra-day 

precision values were less than 19 %. The inter-day precision values were less 

than 19 %. Accuracy and precision results for all drugs of interest are presented 

in Table 5-2.  

Table  5-2 Intra- and Inter-Day Accuracy Results of GBP, MOR, M3G and M6G Results 

Analyte 
Expected 

conc. 
(mg/L) 

Intra-assay (n = 6) Inter-assay (n = 5) 

Mean Conc. 
(mg/L) 

Std. Dev 
(mg/L) 

Bias 
(%) 

CV (%) 
Mean Conc. 

(mg/L) 
Std. Dev 
(mg/L) 

Bias 
(%) 

CV (%) 

GBP 

4 4.7 0.555 17.5 11.8 4.6 0.437 15.0 9.5 

20 19.5 0.663 -2.5 3.4 20.5 0.554 2.5 2.7 

40 42.9 3.604 7.3 8.4 44.2 2.033 10.5 4.6 

MOR 

0.06 0.070 0.008 16.7 11.9 0.067 0.011 11.7 16.4 

0.30 0.273 0.009 -9.0 3.4 0.297 0.007 -0.9 2.3 

0.60 0.690 0.089 15.0 12.9 0.512 0.073 -14.7 14.2 

M3G 

0.06 0.069 0.009 14.8 13.5 0.052 0.010 -13.3 18.6 

0.30 0.313 0.022 4.3 6.9 0.310 0.026 3.3 8.3 

0.60 0.690 0.101 15.0 14.6 0.500 0.067 -16.7 13.4 

M6G 

0.025 0.021 0.004 -16.0 18.7 0.022 0.004 -12.8 17.8 

0.125 0.128 0.005 2.4 3.6 0.124 0.009 -0.8 6.9 

0.250 0.222 0.038 -11.2 16.9 0.278 0.026 11.2 9.4 

 

5.3.6 Recoveries and Matrix Effects  

Extraction of all drugs from whole blood by using protein precipitation was 

highly effective with recovery ranging from 102.6 to 109 %. The matrix factor 

values for all drugs were within the acceptable range of 1± 0.25 and standard 

deviations were less than 10%. From this information, it was observed that there 

is no significant ion suppression or enhancement of the matrix. Table 5-3 below 

shows the recovery and matrix effect values for drugs of interest using Low and 

High QCs and 6 different whole blood sources (n=6 per QC per Matrix).  
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Table  5-3: Recovery and Matrix Factor Values 

 QC1 (n=3) QC3 (n=3) 

Drugs Recovery (%) Matrix Factor Recovery (%) Matrix Factor 

GBP 109.0±3.6 0.99±0.08 105.0±8.2 1.01±0.03 

MOR 107.4±2.2 0.97±0.09 104.7±0.08 1.07±0.02 

M3G 105.3±3.25 0.87±0.05 102.6±1.25 1.06±0.06 

M6G 108.2±6.02 0.92±0.05 105.5±4.12 1.09±0.07 

 

5.3.7 Carryover  

No carry over was observed in the blank samples after two injections of the 

highest standards for MOR, M3G, M6G and GBP in whole blood. Carryover after 

first blank injection was lower than the LOD for all drugs.  

5.3.8 Stability study   

5.3.8.1 Room temperature stability:  

The results showed that all the drugs were stable in the whole blood at room 

temperature for up to 5 days. This indicates no significant decomposition of 

drugs of interest. This is further illustrated by the number of QC‘s which had 

recovery results ranging ±20% in Table 5-4. 

Table  5-4 Room temperature Stability of Drugs of Interest for 5 Days  

 % Recovery of QC1 (n=3) % Recovery of QC3 (n=3) 

 *D0 *D3 *D4 *D5 *D0 *D3 *D4 *D5 

GBP 100 93 93 93 100 95 95 104 

MOR 100 97 96 94 100 108 107 104 

M3G 100 91 88 90 100 98 89 91 

M6G 100 88 84 108 100 94 81 83 

*D refers to time in days.   
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5.3.8.2 Autosampler stability  

Autosampler stability results for each analyte are shown in Table 5-5. The 

extracted samples were stable in the autosampler (approximately 20ºC) for up to 

5 days. All analytes tested had % recoveries within the acceptable criteria of 

±20%.  

Table  5-5 Autosampler Stability of drugs of interest for 5 Days 

 % Recovery of QC3 (n=3) 

 D 0 D 3 D 4 D 5 

GBP 100 98 96 94 

MOR 100 104 108 106 

M3G 100 94 90 90 

M6G 100 86 83 105 

 

5.3.8.3 Freeze-thaw cycles stability:  

All drugs of interest were stable in whole blood after 3 freeze-thaw cycles at –20 

ºC as shown in Table 5-6.  

Table  5-6 Freezer-Thaw Stability of drugs of interest  

 % Recovery of QC1 (n=3) % Recovery of QC3 (n=3) 

 *D0 *D3 *D4 *D5 *D0 *D3 *D4 *D5 

GBP 100 96 96 96 100 94 85 93 

MOR 100 102 113 99 100 119 102 107 

M3G 100 103 97 93 100 85 85 92 

M6G 100 86 89 84 100 88 89 85 

* D refers to time in days.  
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5.3.9 Stability results of Separated Clot Activator tubes and 
Eppendorf tubes   

The stability results for M, M3G, M6G and GBP in spiked blood stored at different 

conditions using separated clot activator tubes (SCAT) and eppendorf tubes 

(EPNT) are presented as percentage concentration change from day zero 

concentrations.  

A) Morphine 

In all three storage temperatures and both tubes, morphine showed no 

statistically significant change over the time period, as illustrated in Figure 5-4.  

 

Figure  5-4: Stability of morphine by using SCAT and EPNT tubes. 

 

B) M3G  

In all three storage temperatures and in both tubes, M3G showed no significant 

changes over the time period studied, as illustrated in Figure 5-5. 

 

Figure  5-5: Stability of M3G by using SCAT and EPNT tubes. 
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C) M6G  

In all three storage temperatures and in both tubes, M6G showed no significant 

changes over the time period studied, as illustrated in Figure 5-6 

 

Figure  5-6: Stability of M6G by using SCAT and EPNT tubes. 

 

D) Gabapentin  

In all three storage temperatures and in SCAT, gabapentin showed significant 

decreases in concentration (23 %) after one month at 20 oC and decreases in 

concentration of 34 % and 47 % after four months at -20 oC and 4 oC, 

respectively. However, in EPNT, gabapentin showed no significant changes over 

the time period studied, as illustrated in Figure 5-7. 

 

Figure  5-7: Stability of Gabapentin stored in SCAT and EPNT tubes. 
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In summary, the stability of morphine, M3G, M6G, and gabapentin in blood was 

studied after different storage conditions in the SCAT and EPNT. In both tubes, 

the results for all drugs present were within our acceptance criteria ±20% of the 

initial concentration except gabapentin.  The stability of gabapentin stored in 

SCAT was significantly adversely affected even when stored in the fridge and 

freezer. It may be the gel in the tubes absorbed gabapentin preferentially 

compared to morphine and its glucuronides, this might be to do with the relative 

concentrations. The summary of stability data of morphine, M3G, M6G and 

gabapentin under different storage conditions is summarised Table 5-7.  

Table  5-7: Summary of stability data of separated clot activator tubes and Eppendorf tubes. 

Compound Storage conditions Tubes Results 

Morphine 

-20 ºC, 4 Months 
SCAT 1% decreased 

EPNT 15% increased 

4 ºC, 4 Months 
SCAT 9% increased 

EPNT 20% increased 

Room temperature, 1 
Month 

SCAT 14% increased 

EPNT 6% increased 

M3G 

-20 ºC, 4 Months 
SCAT 1% decreased 

EPNT 11% decreased 

4 ºC, 4 Months 
SCAT 7% increased 

EPNT 3% decreased 

Room temperature, 1 
Month 

SCAT 18% decreased 

EPNT 10% increased 

M6G 

-20 ºC, 4 Months 
SCAT 3% increased 

EPNT 19% increased 

4 ºC, 4 Months 
SCAT 12% increased 

EPNT 17% increased 

Room temperature, 1 
Month 

SCAT 20% increased 

EPNT 12% increased 

Gabapentin 

-20 ºC, 4 Months 
SCAT 34% decreased 

EPNT 2% decreased 

4 ºC, 4 Months 
SCAT 47% decreased 

EPNT 4% decreased 

Room temperature, 1 
Month 

SCAT 23% decreased 

EPNT 3% decreased 
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5.4 Conclusion   

The LC-MS / MS with protein precipitation method was developed and validated 

according to SWGTOX guidelines for simple and accurate analysis of gabapentin, 

morphine, M3G and M6G in whole blood samples. The developed method 

achieved recovery rates greater than 95% for all drugs with acceptable matrix 

effect (± 25%). Good precision, accuracy and linearity were obtained for all 

drugs. On a long-term basis, the method would save on the cost of consumables 

and analyst time as it requires small volumes of solvent and sample. The 

simultaneous analysis of morphine, M3G and M6G in whole blood samples can be 

a great advantage for forensic cases as a complementary test to estimate time 

since death, especially in the cases of heroin intoxication with no 6MAM 

detection.  

The stability of morphine, M3G, M6G, and gabapentin in spiked blood using 

separated clot activator tubes and Eppendorf tubes was studied after different 

storage conditions for 4-months. Overall in Eppendorf tubes, the results 

demonstrated that morphine, M3G, M6G and gabapentin are very stable under 

all conditions of storage. While in separated clot activator tubes, gabapentin 

tended to decrease under all conditions especially when the sample was stored 

for more than one-month. In comparison to morphine, M3G and M6G were stable 

under all conditions of storage.  
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Chapter 6 Stability of Opioids in Postmortem 
Blood Samples    

6.1 Introduction  

The stability of drugs in biological specimens is a major concern for forensic 

toxicology laboratories [75]. Frequently, there is a delay of days between 

sampling and drug testing in biological samples [311]. In forensic circumstances, 

it is further complicated by the possibility of more than one laboratory doing 

testing at different times and on different aliquots of the same sample. The 

knowledge of the stability of a drug assists in the evaluation of the veracity of 

the toxicological result [75] and helps to define the optimal sampling and 

storage conditions [69, 70, 358]. This is of particular significance to forensic 

laboratories who are required to keep all biological samples for a time period of 

months or years (depending on the relevant law) to enable re-analysis if 

requested.   

The changes in drug concentrations can be caused by diverse mechanisms, such 

as substance degradation, adsorption to the collection tubes and desiccation 

[390]. As a result, re-analysis of drug concentrations may differ from the initial 

results, and sometimes the validity of toxicological test results may be disputed 

by interested parties [75, 391].  

As indicated earlier, diamorphine has a very short half-life and is rarely 

detected. As a result, concentrations of its active metabolite morphine have 

been employed for the interpretation of cause of death and elapsed time after 

diamorphine administration. The presence of 6MAM in blood has been used as 

evidence of a short-elapsed time after administration because 6MAM has a short 

half-life of less than 40 minutes after administration. However, monitoring blood 

concentrations of morphine and its metabolites is important for the 

understanding of time since death.  

The purpose of this study was to evaluate the stability of opioids in blood 

samples after storage.     
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6.2 Comparing GCMS analysis with LC-MS/MS 
analysis of Morphine and its Glucuronides 

6.2.1 Introduction 

This study involved the re-analysis of blood samples, taken at autopsy, from 

cases previously investigated by the Procurator Fiscal as a potential ―drug-

related death‖. These samples were originally analysed by the Forensic 

Toxicology Service laboratory within FMS at the University of Glasgow and stored 

in the freezer until authorisation for destruction had been obtained.  The 

laboratory is accredited by UKAS to the international standard ISO/IEC 17025 and 

the analysis of opiates is within their scope of accreditation.  

In order to establish that the LC-MS/MS method described in sections 5.2.4 

and 5.2.5 was comparable to the method used by the FMS laboratory, blood 

samples of current cases were selected for analysis, before being put into long 

term storage. The same sample was analysed by the accredited FMS 

labora4.5tory method using GCMS and the previously described LC-MS/MS 

method.  

6.2.2 Ethical Considerations 

For this study it was vital that real postmortem blood samples were used.  

Therefore, consideration was given to the ethics surrounding testing individual 

samples which were taken for the purposes of determining the cause of death.  

The Head of the Scottish Fatalities Investigation Unit at the Crown Office and 

Procurator Fiscal Service gave approval in principle, assuming the case was 

either closed or there was sufficient sample to complete all potential 

investigations. 

The study protocol was approved by the West of Scotland Research Ethics 

Service (WoSRES), (reference: 17/WS/0102) in Appendix 2.  

6.2.3 Methodology   

During the period from July 2017 to June 2018, thirty-one postmortem femoral 

blood samples were analysed by both methods. The FMS laboratory GC-MS 

method analysed for free morphine and total morphine, after hydrolysis. The LC-
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MS/MS method detected morphine, M3G and M6G without hydrolysis. Samples 

were extracted in batches with appropriate QCs, blanks and calibrators. 

A) GC-MS method: 

The FMS laboratory GC-MS method analysed for free morphine and total 

morphine, after using a hydrolysis step. Total opiates (TM) hydrolysis step was 

achieved as follows; 0.4 ml ß-glucuronidase was added to 0.5 mL of each blood 

sample, the test-tube capped and vortex mixed for at least 5 seconds and then 

placed in the incubator oven at 37±2 °C overnight (15-24 hours).  

The blood samples were extracted using SPE. To achieve this; all samples were 

diluted in 5 mL of pH 6 Buffer/deionised water (1:2) mixed solution. Opiate 

internal standards were used by adding 100 μL of 1 μg/mL solution to all the 

samples examined. The tubes were vortexed for 5 s and centrifuged for 10 min 

at 2500 to 3000 rpm.  

SPE columns (UCT® Clean Screen ZSDAU020 cartridges) were conditioned by 

sequentially adding 3 mL methanol, 3 mL water and 1 mL pH6 phosphate buffer. 

The prepared samples were poured onto the conditioned column and allowed to 

drain. Each column was then washed by the sequential addition and elution of 3 

mL deionised water, 2 mL acetate buffer 0.1M pH 4.5, and 3 mL methanol and 

dried under full vacuum for 10 minutes. Elution was performed by adding 3 mL 

dichloromethane: isopropanol: ammonia (78:20:2). 

The solvent was evaporated under nitrogen at ≤ 37 oC until dry and the residue 

was derivatised with 50 μL BSTFA+1% TMCS at 90 oC for 15±2 min. After cooling 

at room temperature, they were transferred to clean GC autosampler vials.  

B) LC-MS/MS method:  

The LC-MS/MS method detected morphine, M3G and M6G without hydrolysis. To 

achieve this, whole blood samples were extracted using protein precipitation as 

follows; 800 µL of methanol was added to 200 µL of blood spiked with 100 µL of 

mixed internal standard solution, as detailed in section 4.3.2.5. Samples were 

vortex mixed before being centrifuged at 2000-3000 rpm for 10 minutes. 

Following centrifugation, the supernatant was transferred to a 3.5 mL vial using 

a glass pasteur pipette. Samples were evaporated under nitrogen gas, with the 
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heating block set at 25 °C. Once the samples had been evaporated they were 

reconstituted with 200 µL mobile phase (90/10: DH2O/Methanol). This was then 

transferred into correctly labelled LC autosampler vials and 10 µL injected into 

LC/MS/MS.     

6.2.3.1 Statistical Method Comparison  

Free morphine concentrations from the original FMS results were compared to 

the free morphine concentrations of the repeat analyses. 

Since the true concentrations of each morphine glucuronide were not known by 

the FMS method, the total morphine concentrations from the original FMS results 

were compared to the calculated total morphine concentrations of the repeat 

results (Morphine + M3G + M6G).  

The comparative data was used to evaluate the performance of the transferred 

LC/MS/MS method. Pearson correlation, an estimated 95% confidence interval 

and a regression equation (Equation 6-1) describing the line of best fit between 

the results of two methods was calculated and the standard error of this 

regression slope determined for each drug.  

Several authors have agreed that the Pearson correlation and the test of 

significance (95% confidence interval) may be misleading and do not reflect the 

actual agreement between two methods. In the case of the Pearson correlation, 

the results obtained by the two labs could be highly correlated with a systematic 

difference between them. It has also been discussed how a high correlation may 

be associated with a considerable lack of agreement between two instruments. 

In addition, the range of the results significantly affects the value of the 

correlation coefficient: the higher the range, the higher the value of the 

correlation coefficient [392-397]. 

Equation  6-1: Pearson's correlation coefficients (r) 

      
              

√                                 
 

Bland and Altman suggested using a plot, with bias and precision statistics, to 

determine agreement between methods. The Bland-Altman plot considers the 

proportion between the magnitude of measurements and the error graphically, 
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but not quantitatively. The plot uses the difference between the two methods 

against their means. This allows investigation of any possible relationship 

between the measurement error and the true value. Since the true value is not 

known, the mean of the two measurements is the best estimate available. 

Consequently, agreement between the two measurements was tested by 

calculating the systemic error (bias), and the 95% limits of agreement as bias ± 2 

SD, as described by Bland and Altman (2010) [395].   

6.2.4 Results and Discussion 

A summary comparing the two methods used by the FMS laboratory GC-MS 

method and the repeat LC-MS/MS method are given in Table 6-1.    

Table  6-1: Method parameters used by the FMS Lab and the new LC-MS/MS Method. 

Drugs 
FMS Lab LC-MS/MS Method 

LOD 
mg/L 

LLOQ 
mg/L 

Calibration 
Ranges (mg/L) 

LOD 
(mg/L) 

LLOQ 
(mg/L) 

Calibration 
Ranges (mg/L) 

Free 
Morphine 

0.010 0.025 0.025 – 0.50 0.010 0.050 0.05 – 0.75 

Total 
Morphine 

0.010 0.025 0.025 – 0.50 - - - 

M3G - - - 0.010 0.050 0.05 – 0.75 

M6G - - - 0.005 0.020 0.02 – 0.30 

Medians, means, standard deviations, Pearson correlations and regression 

equations were calculated for free and total morphine, these are shown in the 

table below Table 6-2.  

Table  6-2: Overall comparison of results for both methods on 31 samples. 

 

Free Morphine Total Morphine 

FMS Results LC-MS/MS Results FMS Results LC-MS/MS Results 

Conc. Range (mg/L) 0.040-0.500 0.048-0.485 0.060-0.950 0.088-0.955 

Median (mg/L) 0.230 0.181 0.510 0.459 

Mean (mg/L) 0.255 0.211 0.531 0.494 

SD (mg/L) 0.114 0.111 0.204 0.219 

In Figure 6-1, paired results of current cases (n=31) were used to create a 

regression equation describing the line of best fit between two methods. The 

correlation coefficient for comparison of the quantitation results with the FMS 

laboratory methods was good, giving an R2 of >0.92 and >0.88 for FM and TM, 

respectively.    
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Moreover, Bland-Altman plots in the current study showed that the mean 

difference between free morphine of the transferred method and the reference 

laboratory was 0.043 ± 0.032 mg/L indicating that the transferred method 

measured slightly higher concentrations than the reference lab method. The lower 

and upper levels of agreement were -0.019 and 0.107. Out of 31 samples, only 2 

samples were considered outliers. The mean difference between total morphine 

of the transferred method and the reference laboratory was 0.037 ± 0.068 mg/L 

indicating that the transferred method measured slightly higher concentrations than 

the reference lab method and that the scatter increases when the concentration is 

greater than 0.5 mg/L. The lower and upper levels of agreement were -0.097 and 

0.171. Out of 31 samples, only 1 sample was considered an outlier.  

Direct comparisons of the two technologies have hitherto not been performed in 

previous studies. However, Bland-Altman plots in the current study indicated 

that, the results were very similar for both methods; there was an agreement 

between the morphine concentrations measured by the new LC-MS/MS method 

and the FMS laboratory GC-MS method. The results were very similar for both 

concentrations values; there was an agreement between the initial 

concentration values and the current concentration values. No differences in the 

morphine concentrations were observed between samples with low (0.06 mg/L) 

and high (0.60 mg/L) morphine concentrations, after reanalysis. Bland-Altman 

Plots for free and total morphine are illustrated in Figure 6-1.  
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Figure  6-1: Correlation and Bland-Altman plots evaluation of the Validated method versus the Reference method of analysis for FM and TM  
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6.2.5 Conclusion 

The statistical evaluation of these two methods of analysis for morphine and its 

glucuronides show that they are comparable.  There is no difference statistically 

between the methods of measurement and consequently the LC-MS/MS method 

described in Chapter 4.5 can be used to analyse samples in long-term storage 

and these results can be compared to the original FMS laboratory results.   
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6.3 Stability of Morphine and its Glucuronides 
in Samples Stored Long-Term 

6.3.1 Introduction  

Postmortem examinations carried out in the West of Scotland requiring 

toxicological investigation are routinely tested for illicit drugs and stored in the 

refrigerator for approximately 3 months while investigations are on-going before 

being moved to long-term storage at less than -8oC. This study was designed to 

understand the stability of morphine and its glucuronides, in real postmortem 

blood samples, after storage in the freezer for a long period of time.   

6.3.2 Ethical Considerations 

The same ethical considerations were given as in section 6.2.2 and was approved 

by the West of Scotland Research Ethics Service (WoSRES), (reference: 

17/WS/0102) in Appendix 2. The only difference to this study was the length of 

time the samples have been in storage, however the ethical considerations 

concerning testing were the same. 

6.3.3 Methodology  

Two hundred and twenty-six postmortem femoral blood samples were selected 

for analysis. They all had to be positive for 6MAM either in the blood and/or 

urine to make sure of heroin use.  Although the use of additional codeine or 

morphine could not be excluded. This is significant when talking about the ratio 

of free/total morphine and suggesting a timescale between injection and death. 

These were all currently being stored in the freezer over a period of 1-8.5 years. 

The initial analysis was carried out by FMS laboratory using their accredited GC-

MS method. The reanalysis of the blood was carried out using the validated LC-

MS/MS method described in Chapter 4.  

Free morphine concentrations from the original FMS results were compared to 

the free morphine concentrations of the repeat analyses. Since the true 

concentrations of each morphine glucuronide were not known by the FMS 

method, the total morphine concentrations from the original FMS results were 

compared to the calculated total morphine concentrations of the repeat results 

(Morphine + M3G + M6G).  
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The statistical data of Pearson correlations and regression equations were 

calculated for both free and total morphine and their ratio. The closeness of 

agreement between the initial analysis and the reanalysis in the present study 

was examined in each case by comparison of the free and total morphine 

concentrations measured at each time. The agreement between the two groups 

was tested by calculating the systemic error (bias), and the 95% limits of 

agreement as bias ± 2 SD, as described by Bland and Altman.  

For analyte stability compared to time scale, stability of the analytes was 

measured as change in concentration from the time of the original analysis to 

the time of the reanalysis and expressed as the concentrations were within 

upper and lower limit of agreement. Changes within upper and lower limit of 

agreement were considered to be within the analytical variation for any of the 

analytes.  

6.3.4 Results and Discussion  

The range of storage time for the 226 femoral blood samples analysed was 666 

to 3092 days with a median of 1160 days. The statistical analysis of Pearson 

correlations and closeness of agreement between the initial analysis and the 

reanalysis were calculated for both free and total morphine and their ratio as 

follows:  

A) Free and Total Morphine  

Paired results of historical cases were used to create a regression equation 

describing the line of best fit between initial analysis and reanalysis. The 

correlation coefficient comparing these 2 results was R2 = 0.38 and 0.22 for free 

and total morphine, respectively in Figure 6-2 below.  

The closeness of agreement between the morphine concentrations of the initial 

test results and the re-test results were examined in each case and Bland-

Altman plots were used. For free morphine, the mean difference between the 

transferred method and the reference laboratory was -0.018 ± 0.153 mg/L 

indicating that the concentration of free morphine is relatively unstable during 

long-term storage at -20oC. The lower and upper levels of agreement were -

0.318 and 0.282. Out of 226 samples, only 16 samples were considered outliers.  
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For total morphine, the mean difference between the transferred method and 

the reference laboratory was -0.057 ± 0.195 mg/L indicating that the 

concentration of total morphine is relatively unstable during long-term storage 

at -20oC. The lower and upper levels of agreement were -0.326 and 0.441. Out 

of 132 samples, only 6 samples were considered outliers. The difference from 

the initial concentrations given in Bland-Altman plots, are also shown in 

Figure 6-2.  



  158 

Figure  6-2: Correlation and Bland- Altman plots of the initial analysis versus the reanalysis of FM and TM concentrations of all historical cases. 
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Figure 6-3 shows the stability of FM compared to the time scale, no trend was 

observed over time. Moreover, in 94.2% (213 of the 226) of free morphine 

samples re-analysed, the concentrations were within upper and lower limits of 

agreement. Decreased concentrations were found in 2.6% (6 of the 226) of the 

samples and increased in 3.0% (7 of the 226).  

 

Figure  6-3 Percentage concentration changes in FM of 274 historical cases after storage at -
20°C for a period time ranged from 1 – 10 years  

Figure 6-4 shows the stability of TM compared to the time scale, no trend was 

observed over time. Moreover, in 92.4% (122 of the 132) of total morphine 

samples re-analysed, the concentrations were within upper and lower limits of 

agreement. Decreased concentrations were found in 3.0% (4 of the 132) of the 

samples and increased in 4.5% (6 of the 132).  

 

Figure  6-4: Percentage concentration changes in TM of 274 historical cases after storage at 
-20°C for a period time ranged from 1 – 8.5 years 
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The results were very similar for both concentration values; there was an 

agreement between the initial concentrations and the re-test concentrations. No 

differences in the morphine concentrations were observed between samples 

with low (0.06 mg/L) and high (0.60 mg/L) morphine concentrations, after 

storage. Overall the differences were not considered to be marked enough to 

invalidate any statistical significance derived from, or interpretations based on, 

the re-test data.  

B) Free / Total morphine ratio  

The correlation coefficient for free to total morphine ratio between the two 

groups gave an R2 of 0.54. The mean difference between the initial test results 

and the re-test results was -0.072± 0.139. The lower and upper levels of 

agreement were -0.345 and 0.202. Out of 132 samples, only 10 samples were 

considered outliers, as shown in Figure 6-5 and Figure 6-6.  

 

Figure  6-5 Correlation of the initial analysis versus the reanalysis of FM and TM 
concentrations of all historical cases. 

 

Figure  6-6: Bland- Altman plot of the initial analysis versus the reanalysis of FM and TM 
concentrations of all historical cases. 
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Bland-Altman plots in the current study showed that, the results were very 

similar for both groups, there was an agreement between all analytes and their 

ratio values in the initial test results and the re-test results, the results reflect 

the agreement betw een them.   

Altogether, 226 authentic, postmortem samples positive for FM and TM were 

reanalysed after 1–8.5-year storage at less than -8 ºC. It appeared that for most 

of the drugs no significant change in concentration takes place during storage at 

-20 oC. Therefore, in 92 % of the samples reanalysed, the results for all drugs 

present were within upper and lower limit of agreement of the initial 

concentration.  

These results are in concordance with previous studies in blood [70, 303, 313]. 

The long-term stability of opioids in authentic postmortem blood samples was 

previously studied. 73 samples were reanalysed after storage at -20°C for 16-18 

years. Samples containing morphine showed the results within acceptance 

criteria ±30% of the initial concentration [313]. Also, in another separate study, 

total morphine and free morphine were stored in glass culture tubes (without 

preservatives) and stored at room, refrigerator, and freezer temperatures and 

analysed at 30-day intervals for an 11-month period. Total morphine 

concentration decreases (10 to 40%) were observed for all specimens in all 

storage conditions, whereas free morphine showed slight but steady increases 

[70].  

In a previous study, the long-time stability of real-life postmortem blood samples 

(n = 37) and living person blood samples (n = 22) was investigated. All samples 

contained fluoride and were initially analysed and stored in normal conditions (-

20oC) for 4–9 years. The results showed that, the concentrations of morphine are 

relatively stable during long-term storage at -20oC [303]. However, Giorgi and 

Meeker found that, blood samples from living subjects (not spiked) showed 

morphine concentrations decreased significantly after two years of storage in 

tubes containing sodium fluoride and potassium oxalate; the tubes were stored 

at ambient temperature, but with further storage, increased concentrations 

were observed [75].   
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6.4 Stability of Morphine and its glucuronides 
in Paired Preserved and Unpreserved 
Postmortem Blood Samples  

6.4.1 Introduction 

Postmortem examinations carried out in the West of Scotland requiring 

toxicological investigation are routinely tested for drugs. Femoral blood samples 

are collected and submitted as preserved and unpreserved samples. The 

preserved samples stored within blood collection tubes contain chemical 

additives (screw cap vials containing 0.2% sodium fluoride and potassium 

oxalate), which in combination with the pre-determined vacuum guarantee the 

correct mixing ratio for the blood sample.  

Following submission to the toxicology laboratory within FMS, the preserved 

sample is reserved for alcohol testing and may also be tested for known labile 

drugs e.g. cocaine, the unpreserved blood sample is tested for a wide range of 

prescription and illicit drugs including opiates. All blood samples are stored in 

the refrigerator for approximately 3 months while investigations are on-going 

before being moved to a freezer for long-term storage.   

For this reason, the stability of morphine, M3G and M6G in blood was carried out 

by studying the effect of the preservative (sodium fluoride and potassium 

oxalate) in sample tubes and the storage temperature.  

6.4.2 Ethical Considerations 

The same ethical considerations were given as in section 6.2.2 and was approved 

by the West of Scotland Research Ethics Service (WoSRES), (reference: 

17/WS/0102) in Appendix 2. The only difference to this study was the effect of 

the preservative in sample tubes and the storage temperature, however the 

ethical considerations concerning testing were the same. 

6.4.3 Methodology  

Twenty-eight paired preserved and unpreserved blood samples were analysed 

after being stored in the refrigerator for three months and a further ~2 years 

following storage at -20ºC. The initial analysis of unpreserved blood samples was 

carried out by FMS using the accredited method (GC-MS). The reanalysis of the 



  163 

paired unpreserved and preserved blood was carried out using the validated 

method described in Chapter 4. FM, M3G and M6G were quantified in these cases 

using a calibration curve which was linear over the range of 0.02-0.30 mg/L for 

M6G and 0.05-0.75 mg/L for M3G and FM.  

6.4.4 Results and Discussion 

Medians, means, standard deviations, Pearson correlations and regression 

equations were calculated for free and total morphine, these are shown in the 

Table 6-3.   

Table  6-3: Overall comparison of results for both methods. 

  
Conc. Range (mg/L) Mean ± SD (mg/L) Median (mg/L) 

FM 
 

Preserved 0.054-0.720 0.231 ± 0.18 0.161 

Unpreserved 0.050-0.555 0.25 ± 0.163 0.215 

M3G 
 

Preserved 0.010-0.980 0.243 ± 0.221 0.166 

Unpreserved 0.000-0.917 0.243 ± 0.225 0.162 

M6G 
 

Preserved 0.013-0.324 0.061 ± 0.063 0.037 

Unpreserved 0.015-0.223 0.064 ± 0.057 0.038 

 

Paired results of both groups were used to create a regression equation 

describing the line of best fit between two groups. Pearson correlations and 

Bland-Altman Plots of (FM, M3G and M6G) concentration were calculated.  The 

closeness of agreement between the preserved and unpreserved in the present 

study was examined in each case by comparison of all the analyte concentrations 

measured at each time. The agreement between the two groups was tested by 

calculating the systemic error (bias), and the 95% limits of agreement as bias ± 2 

SD.  

A) Free morphine 

The correlation coefficient for comparison of the quantitation results between 

two groups was good, giving an R2 of >0.73. The mean difference between the 

preserved and unpreserved was -0.019 ± 0.094mg/L indicating that the 

concentrations of free morphine is relatively unstable during long-term storage 

of unpreserved samples at -20oC. The lower and upper levels of agreement were 

-0.203 and 0.165. Out of 28 samples, only 3 samples were outliers (~11% of the 

total number of compared tests), as shown in Figure 6-7 and Figure 6-8.  
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Figure  6-7 Pearson correlations of preserved and paired unpreserved historical samples 

 

Figure  6-8: Bland and Altman Plot of preserved and paired unpreserved historical samples 
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Figure  6-9 Pearson correlations of preserved and paired unpreserved historical samples 

 

Figure  6-10: Bland and Altman Plot of preserved and paired unpreserved historical samples 
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Figure  6-11 Pearson correlations of preserved and paired unpreserved historical samples 

 

Figure  6-12: Bland and Altman Plot of preserved and paired unpreserved historical samples 
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However, Carroll et al. have demonstrated further that the hydrolysis of M3G to 

free morphine in vitro occurs and may persist for months in antemortem and 

postmortem specimens under various conditions, despite using  tubes containing 

sodium fluoride and potassium oxalate for inhibition of bacterial growth [294]. 

Rees, K.A., et al. (2011) reported that the addition of NaF slowed but did not 

prevent the breakdown of 6MAM in blood stored at room temperature for 84 days 

[262]. Other studies have shown a considerable decrease in 6MAM 

concentrations, even with the addition of NaF, hydrolytic activity may persist for 

months [294, 303]. 

However, other studies have highlighted the importance of preserving 

postmortem blood samples to inhibit bacterial growth. The stability of morphine 

and 6MAM in blood was studied after different sampling conditions with or 

without the addition of sodium fluoride (NaF). Spiked blood samples were stored 

at two different temperatures (4 and -20°C) for 3 months. The addition of NaF 

as preservative improved the stability of opioids at all conditions studied [302]. 

Spiehler and Brown (1987) found the ratio of free morphine to total morphine to 

be stable in postmortem blood preserved with 1% NaF and potassium oxalate 

after more than a year of storage at room temperature [250].   

6.4.5 Conclusions 

From the parameters studied, under storage temperatures of -20°C, there were 

statistically no significant differences (p < 0.05), between the same blood 

samples with and without sodium fluoride and potassium oxalate. When sodium 

fluoride and potassium oxalate were added to the samples, the addition of 

preservative did not influence significantly the stability of FM, M3G and M6G 

over different storage periods.   
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6.5 Study the effect of femoral blood sampling 
on drug concentration  

6.5.1 Introduction  

When investigating drug-related deaths, it is routine practice within the 

mortuary at the Queen Elizabeth University Hospital, Glasgow to collect two 

unpreserved blood samples. The second unpreserved blood sample is retained 

for analysis by any potential defence representation.  It is unclear if all the 

femoral blood is collected in one container initially, and then poured into 

separate vials, or if they are taken sequentially directly into each vial. The 

purpose of this study was to assess the homogeneity of these two unpreserved 

samples.   

6.5.2 Methodology  

The study was approved by the West of Scotland Research Ethics Service 

(WoSRES), (reference: 17/WS/0102) in Appendix 2. During the period from Jul 

2017 to Jun 2018, one hundred and twenty paired unpreserved femoral blood 

samples were analysed after being stored at -20ºC up to 10 years using the 

validated method described in Chapter 4 and 5. Of the one hundred and twenty 

postmortem femoral blood samples analysed not all had concentrations of the 3 

analytes which were within the calibration range.  58, 72 and 73 results were 

statistically analysed because they fall within the concentration range of the 

validated method of each analyte FM, M3G and M6G, respectively.  

The closeness of agreement between the paired samples in the present study 

was examined in each case by comparison of the FM, M3G, and M6G 

concentration measured at each time. The agreement between the two groups 

was tested by calculating the systemic error (bias), and the 95% limits of 

agreement as bias ± 2 SD, as described by Bland and Altman. The statistical data 

of Pearson correlations and regression equations were calculated for all 

analytes.  

6.5.3 Results and Discussion 

Paired results of both groups were used to create a regression equation 

describing the line of best fit between two groups. Moreover, the closeness of 
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agreement between the paired samples in the present study was examined in 

each case by comparison of all analyte concentrations measured at each time. 

The agreement between the two groups was tested by calculating the systemic 

error (bias), and the 95% limits of agreement as bias ± 2 SD.  

A) Free Morphine 

The correlation coefficient for comparison of the quantitation results between 

two groups was 42%. Bland-Altman plots in the current study showed that the 

mean difference between both groups was 0.012 ± 0.151 mg/L indicating that the 

first unpreserved group measured slightly higher concentrations than second 

unpreserved group and that the scatter increases when the concentration is greater 

than 0.4 mg/L. The lower and upper levels of agreement were -0.284 and 0.308 

mg/L. Out of 58 samples, 3 samples were considered outliers ~5% as shown in 

Figure 6-13 and Figure 6-14. The current study showed that, there was some 

variation between the FM value in the paired samples from both groups.  

 

Figure  6-13 Correlation Plot of group-1 Vs group-2 
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Figure  6-14 Bland-Altman Plot of group-1 Vs group-2 
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Figure  6-15 Correlation of group-1 Vs group-2 

 

Figure  6-16: Bland-Altman Plot of group-1 Vs group-2  
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Figure  6-17 Correlation of group-1 Vs group-2 

 

Figure  6-18: Bland-Altman Plot of group-1 Vs group-2 
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6.6 Stability of Opioids in Authentic and Spiked 
Blood 

6.6.1 Introduction 

The present study was designed to determine the stability of morphine and its 

glucuronides in three authentic postmortem blood specimens as well as in spiked 

fresh blood for a time interval of up to one month. The samples were stored in 

glass vials at 4oC and 25oC. Samples were analysed using a protein precipitation 

extraction and liquid chromatography mass spectrometry for isolation and 

quantitation, providing a sensitive and specific detection method for the parent 

drug in the presence of its glucuronide metabolites as detailed in sections 5.2.4 

and 5.2.5. It is the first stability study of FM, M3G and M6G, comparing spiked 

blank blood and authentic post mortem blood samples.   

6.6.2 Methodology  

The validated method was applied on real postmortem femoural blood samples 

and additional spiked blood samples.  These samples had been kept at less than -

8oC after they were originally received and analysed. Ethical issues surrounding 

the use of blood samples specifically for this project has been mentioned in 

(section 6.2.2) and (Appendix 2). Three groups of spiked blank blood samples 

were prepared using the method of extraction and analysis mentioned in 

sections 5.2.5 and 4.5. The first group was spiked with only morphine, the 

second group spiked with only M3G and the last group was spiked with only M6G. 

In order to achieve that, the drug working solution was prepared fresh and blood 

samples were spiked with high concentration (QC3) of each analyte as detailed 

in section 4.3.2.7.  

All prepared samples were divided into two groups and were then stored at 4 oC 

and 20 oC. The times selected for analysis were at day 0, 1, 2, 3, 4 and 5 for 

room temperature and day 0, 7, 14, 21 and 30 for refrigerator. All blood samples 

were tested in duplicate and the mean concentration of two replicates of each 

analyte was considered to be the day zero concentration. They were analysed in 

two replicates with freshly prepared calibrators and QCs run in the same batch. 

Each time point samples were analysed, two replicates were taken for analysis 

from the storage racks for each of the different storage conditions, extracted by 
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protein precipitation within the day and left to run on the LC-MS/MS instrument 

overnight as detailed in chapter 4.  

6.6.3 Results and Discussion  

The stability results from the experiments of FM, M3G and M6G in 3 historical 

cases and spiked blood sample after storage at 4°C and 20°C are presented in 

percentage concentration changes.  

A) Morphine  

At room temperature, morphine in both real case samples (1, 2 and 3), and 

spiked blood was stable for 5 days with insignificant changes (12%, 11%, 3% and 

4%) of the original concentrations, respectively.  

In the refrigerator (4oC), morphine in both real case samples (1, 2 and 3), and 

spiked blood was stable for 30 days with insignificant changes (6.1%, 3.2%, 12.9% 

and 16.1%) of the original concentrations, respectively. All results shown in 

Figure 6-19 and Figure 6-20.  

 

Figure  6-19 Percentage concentration changes in FM of 3 historical cases and spiked blood 
sample after storage at room temperature. 
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Figure  6-20 Percentage concentration changes in FM of 3 historical cases and spiked blood 
sample after storage at 4°C. 

 

B) M3G  
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Figure 6-21 and Figure 6-22.  
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Figure  6-22 Percentage concentration changes in M3G of 3 historical cases and spiked 
blood sample after storage at 4°C  

 

C) M6G  

At room temperature, M6G concentration was stable for 5 days in both real case 

samples (case 1, 2 and 3), and spiked blood with insignificant changes (4%, 13%, 

13% and 1%) of the original concentrations, respectively.  

In the fridge, M6G concentration was stable for 30 days in both real case samples 

(case 1, 2, and 3), and spiked blood with insignificant changes (2, 2.7, 10.7% and 

16.7) of the original concentrations, respectively. All results shown in 

Figure 6-23 and Figure 6-24.  

 

Figure  6-23 Percentage concentration changes in FM, M3G and M6G of 3 historical cases 
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Figure  6-24: Percentage concentration changes in FM, M3G and M6G of 3 historical cases 
and spiked blood sample after storage at 4°C. 
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stability for morphine and their metabolites during 6 months of storage at 4oC 

and -20oC in blood [75]. Several studies have also found that, morphine with 

their metabolites remained stable at least 6 days at room temperature [72-74] 

Inconsistent with other studies, in spiked post mortem samples analytes were 

stable for 11 months of storage in both 4oC and -20oC, some decrease in the 

concentration of M3G and M6G and an apparent increase in morphine 

concentration was observed at room temperature which could be the breakdown 

of M3G and M6G to morphine over time [312]. Skopp et al. (2001) also found 

that, in spiked post mortem samples, the analytes were stable only when stored 

at -20oC [69].  
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6.7 Morphine Ratios and Survival Time since 
Death 

6.7.1 Introduction  

Monitoring blood concentrations of morphine and its metabolites is important for 

the understanding of time between last injection of heroin and death. The ratio 

between the blood morphine concentration and the respective glucuronide 

concentrations, in addition to the presence of 6MAM in the blood is suggestive of 

survival times following heroin administration. In this chapter, we investigate 

the morphine and morphine metabolites, together with their ratios, in order to 

achieve a comprehensive interpretation of time since death.  

Some toxicology laboratories report the concentration of free-morphine in blood 

when investigating heroin-related deaths whereas others report total-morphine 

(free + conjugated), which is the sum of free-morphine along with the amounts 

released after hydrolysis of the morphine-3-glucuronide and morphine-6-

glucuronide metabolites [254, 258]. The use of free morphine (FM) to total 

morphine (TM) concentration ratios as a means of evaluating the time of survival 

following heroin or morphine injection has been advocated in several studies 

[134, 250, 254, 256, 264-267] and may be of use in cases in which 6MAM is not 

detectable in the blood (a high FM/TM ratio is thought to reflect insufficient 

time for morphine metabolism to occur and thus be indicative of a relatively 

rapid death) [135, 268, 269]. 

6.7.2 Methodology  

The study was approved by the West of Scotland Research Ethics Service 

(WoSRES), (reference: 17/WS/0102) in Appendix 2. During the period from July 

2017 to June 2018, two hundred and forty-six postmortem femoral blood 

samples were analysed for free morphine, M3G and M6G using the validated LC-

MS/MS method described in Chapter 4 and 5. All of these samples had previously 

been analysed for free morphine, total morphine and 6MAM by FMS using an 

accredited GC-MS method and then stored at -20 oC over a period of 1-8.5 years 

until re-analysed.   

All cases were selected if they had 6MAM positive in the blood and/or urine to 

confirm the samples were from heroin users. The samples were classified into 
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two groups; the first group (n=36) was positive for 6MAM in the blood and the 

second group (n=210) was positive for 6MAM in the urine only. Both groups were 

further divided into two subgroups: first subgroup was FM/TM ratio greater than 

or equal to 0.5 (suggesting quick death) and second subgroup was FM/TM ratio 

lesser than 0.5 (suggesting delayed death), as illustrated in Figure 6-25.  

 

Figure  6-25: Distribution of all postmortem blood samples according to 6MAM  and FM/TM 
ratios  

 

6.7.3 Results and Discussion 

Looking at the range for the different parameters that we have investigated in 

246 postmortem blood samples, we found that, FM concentration ranged from 

0.051 – 0.740 mg/L and mean 0.252 mg/L, M3G ranged from 0.058 – 0.738 mg/L 

and mean 0.255 mg/L, and M6G ranged from 0.020 – 0.206 mg/L and mean 0.056 

mg/L. Distribution of Morphine, M3G and M6G in 6MAM positive and negative 

cases are detailed in Table 6-4.   
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(≥0.5)(n = 18) 
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Table  6-4: Distribution of Morphine, M3G and M6G in 6MAM blood positive and negative 
cases 

 
6MAM Present in blood (n=36) 6MAM Absent in blood (n=210) 

FM/TM ratio (≥0.5) 
(n = 18) 

FM/TM ratio 
(<0.5) (n = 18) 

FM/TM ratio 
(≥0.5) (n = 73) 

FM/TM ratio 
(<0.5) (n = 137) 

 
Median,  

(Range) mg/L 
Median,  

(Range) mg/L 
Median, 

(Range) mg/L 
Median,  

(Range) mg/L 

FM 
0.494 

(0.239 - 0.671) 
0.297 

(0.070 - 0.639) 
0.624 

(0.135 - 0.740) 
0.380 

(0.051 - 0.467) 

M3G 
0.178 

(0.063 - 0.330) 
0.340 

(0.105 - 0.575) 
0.309 

(0.058 - 0.487) 
0.602 

(0.062 - 0.738) 

M6G 
0.052 

(0.022 - 0.154) 
0.069 

(0.021 - 0.175) 
0.088 

(0.020 - 0.121) 
0.134 

(0.020 - 0.206) 

TM 
0.724 

(0.402 - 1.142) 
0.705 

(0.197 - 1.362) 
0.983 

(0.258 - 1.215) 
1.044 

(0.175 - 1.286) 

 

6.7.3.1 6MAM blood positive heroin cases 

6MAM was detected in 14.6% (n = 36) of all cases. All 6MAM positive cases were 

divided into two groups; in first group, 6MAM-positive cases with a higher FM/TM 

ratio, and in second group, 6MAM-positive cases with a lower FM/TM ratio.  

A) First group (6MAM positive with FM/TM ratio ≥0.5)    

According to FM/TM ratios, 50% (n=18) of 6MAM positive cases was detected with 

higher FM/TM ratio (≥0.5). This group was characterised by low M3G/TM and 

M6G/TM ratios; 100% of this group had lower M3G/TM ratio (≤0.4). Also, this 

group was characterised by low M6G/TM ratio; 83.3% of this group had a lower 

M6G/TM ratio (≤0.09). Further details are displayed in Figure 6-27 and Table 6-5.  

B) Second group (6MAM positive with FM/TM ratio <0.5)   

According to FM/TM ratios, 50% (n=18) of 6MAM positive cases was detected with 

lower FM/TM ratio (<0.5). This group was characterised by high M3G/TM and 

M6G/TM ratios; 100% of this group had higher M3G/TM ratio (>0.4). While, 55.6% 

of this group had higher M6G/TM ratio (>0.09). Further details are displayed in 

Figure 6-26 and Figure 6-27 and Table 6-5.  
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Figure  6-26 M3G/TM ratio in 6MAM blood positive cases 

 

Figure  6-27: M6G/TM ratio in 6MAM blood positive cases 
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M3G/TM and M6G/TM ratios; 93.5% of this group had lower M3G/TM ratio (≤0.4). 

In addition, 69.8% of this group had lower M6G/TM ratio (≤0.09). As shown in 

Figure 6-29 and Table 6-5.  

B) Second group (6MAM negative with FM/TM ratio <0.5)   

According to the FM/TM ratio, 65.2% (n=137) of 6MAM negative cases was 

detected with lower FM/TM ratio (<0.5). This group characterised by high 

M3G/TM and M6G/TM ratios; 97.3% of this group had higher M3G/TM ratio (>0.4). 

In addition, 72.5% of this group had higher M6G/TM ratio (>0.09).  As shown in 

Figure 6-28 and Figure 6-29 and Table 6-5.  

 

Figure  6-28 M3G/TM ratio in 6MAM blood negative cases 

 

Figure  6-29: M6G/TM ratio in 6MAM blood negative cases 
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Firstly, in comparing the 6MAM positive-cases (rapid death) with FM/TM ratio in 

blood, 50% (n=18) of 6MAM-positive cases had a higher FM/TM ratio (≥0.5) and 

the other 50% (n=18) of 6MAM-positive cases had a lower FM/TM ratio (<0.5), 

thus a large overlap was observed. While, in comparing the 6MAM negative-cases 

with FM/TM ratio in blood, more than 65 % (n=137) of 6MAMnegative cases had a 

lower FM/TM ratio (<0.5) and less than 35% (n=73) of 6MAM-negative cases had a 

higher FM/TM ratio (≥0.5), some overlap was observed, as illustrated previously 

in Table 6-5.  

Secondly, in comparing the M3G/TM with FM/TM ratio in all cases, cases with 

higher FM/TM ratio had significantly lower M3G/TM ratio, which is consistent 

with morphine metabolism. Similarly, cases with lower FM/TM ratio had 

significantly higher M3G/TM ratio. No significant overlap was observed between 

this two groups, as illustrated previously in Table 6-5.  

Lastly, in comparing the M6G/TM with FM/TM ratio in all cases, cases with 

higher FM/TM ratio had lower M6G/TM ratio, which is consistent with morphine 

metabolism. Similarly, cases with lower FM/TM ratio had higher M6G/TM ratio. 

Some overlap was observed between these two groups, as illustrated previously 

in Table 6-5.  

Table  6-5: Distribution of Morphine, M3G and M6G in 6MAM positive and negative cases 

 

6MAM Present in blood (n=36) 6MAM Absent in blood (n=210) 

FM/TM ratio 
(≥0.5) (n = 18) 

FM/TM ratio 
(<0.5) (n = 18) 

FM/TM ratio 
(≥0.5) (n = 73) 

FM/TM ratio 
(<0.5) (n = 137) 

M3G/TM 
Ratio (>0.4) 

0 % (n=0) 100 % (n=18) 2.7 % (n=2) 93.5 % (n=128) 

M3G/TM 
(≤0.4) 

100 % (n=18) 0 % (n=0) 97.3 % (n=71) 6.5 % (n=9) 

M6G/TM 
(>0.09) 

16.7 % (n=3) 55.6 % (n=10) 30.2 % (n=22) 72.5 % (n=98) 

M6G/TM 
(≤0.09) 

83.3% (n=15) 44.4 % (n=8) 69.8 % (n=51) 28.5 % (n=39) 

 

In this study, we divided morphine-positive cases into rapid heroin deaths, based 

on the detection of 6MAM in blood, and delayed heroin deaths, if 6MAM was 

detected in matrices other than blood. Several studies have also found higher 

free morphine/total morphine ratios in blood in rapid deaths compared with the 
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more delayed deaths [67, 250, 254], which also indicates less glucuronidation in 

the rapid death cases.   

In the present study, we found significantly lower M3G/TM ratios in the rapid 

compared with the delayed death group, which is in concordance with previous 

studies in blood [61, 399]. Thus, our results indicate that the M3G/TM ratios 

generally show the same differences between rapid and delayed deaths as those 

of FM/TM ratio and could be useful when assessing whether death occurred 

rapidly or more delayed after intake of heroin. 

Regarding the M6G/TM ratios, our findings were less clear than the M3G/TM 

ratios, where considerable overlap in the ratios was observed, but this could 

perhaps be caused by the generally lower concentrations of M6G compared with 

M3G. The strength of using ratios between metabolite and parent drug depends 

on the administered dose of heroin [400]. However, it must be noted that 

morphine glucuronides can accumulate in blood with repeated use of heroin or 

morphine [67, 250, 254], particularly in those with renal failure [148, 401], and 

the concentrations can also change after death [69, 273]. In this work, it has 

been assumed that morphine glucuronide accumulation was roughly the same 

between rapid and delayed deaths, but accumulation could perhaps explain the 

high morphine glucuronide/total morphine ratios found in some of the rapid 

death cases.  

The toxicological data on morphine and its major metabolites supported 6MAM 

as a measure of survival times. Consistent with the few studies that have 

compared apparent rapid and delayed overdose deaths cases in which 6MAM was 

present had higher free morphine concentrations and lower concentrations of 

M3G and M6G than other cases [60, 254, 399]. Moreover, both M3G and M6G 

concentrations were independent correlates of the presence of 6MAM. Overall, 

the morphine ratio results were consistent with the designation as rapid or 

delayed death.  
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6.8 Conclusion  

The developed and validated LC/MS/MS method for the simultaneous 

quantification of morphine, M3G and M6G was verified on postmortem blood 

which made it suitable for routine forensic toxicology. It was successfully 

verified using 31 authentic case samples with a correlation higher than 92 %. 

Bland-Altman plots showed good agreement between both methods with a mean 

difference of 0.043 ± 0.032 mg/L and limits of agreement were -0.019 – 0.107, 

95% CI. Moreover, the study of current postmortem case samples reveals that, 

the concentrations of FM and TM were stable during storage in fridge for six 

months and no significant losses were noted.  

Ideally, analyses should be performed as soon as samples are received, and the 

samples should be stored at -20 °C or lower to keep the drugs stable for as long 

as possible. 226 authentic, postmortem samples positive for FM and TM were 

reanalysed during 8.5-year storage at -20 ºC. In 92 % of the samples reanalysed, 

the concentrations of FM and TM were within ±2 SD of the initial concentration. 

The result reveals that, the concentrations of FM and TM were stable during 

storage in freezer for 10 years and no significant losses were observed.    

In comparing current cases with historical cases, the most strongly correlated 

values were those between paired samples of current cases. Analytes 

concentrations of historical samples stored for long periods of time were not as 

strongly correlated as current case samples.   

The preservative should be carefully selected according to the analyte. Sodium 

fluoride and potassium oxalate as a preservative to blood samples does not 

affect morphine, M3G and M6G stability stored in the freezer. However, if 

samples are stored in other conditions, the effect of the additives on the 

stability of these compounds may be greater. From the parameters studied in 

postmortem samples, under storage temperatures of -20 °C for two years, there 

were statistically no significant differences (p < 0.05), between the same blood 

samples with and without sodium fluoride and potassium oxalate.  

However, many other factors must be considered in the evaluation of drug 

concentrations in a postmortem sample, such as techniques of blood sampling. It 

is routine practice to collect two unpreserved blood samples, the second 
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unpreserved blood sample is retained for analysis by any potential defence 

representation. This study showed that femoral blood sampling had an effect on 

the blood concentration when we compared two groups of paired unpreserved 

blood samples. There was significant variation in drug concentration between 2 

unpreserved blood samples, even when both samples were collected and 

analysed at the same time by same validated method in chapter 4 and 5. 

In postmortem and spiked blood samples stored in glass vials at 4oC and 25oC, 

Morphine, M3G and M6G concentrations did not change significantly in samples 

stored under different storage conditions when expressed as a percentage of the 

initial concentration throughout one-month observation period. 

The current study provides data on survival times in heroin users. Of primary 

importance, 6MAM was present in the blood in less than 15% of cases.  Using 

6MAM as a proxy for rapid death, this suggests that a minority of cases had 

survival times after administration of less than 20–30 minutes. The metabolism 

of heroin offers a potential means of estimating the proportions of rapid and 

delayed deaths in fatal overdoses The presence of 6MAM in the blood of a heroin 

toxicity death suggests a more rapid death, while its absence suggests a more 

prolonged survival time. Similarly, lower blood concentrations of M3G and M6G, 

and lower ratios of these conjugates to total morphine, are suggestive of a more 

rapid death, as there has been less time for the metabolism of morphine to 

occur. Conversely, higher concentrations and ratios to total morphine are 

indicative of longer survival times. The concentration ratios selected in this 

study represent cases where there have been difficulties with the interpretation 

of the findings, with respect to heroin ingestion. However, the determination of 

morphine glucuronide ratios with the ratio of free to total morphine, in parallel 

with 6MAM, is of relevant value in forensic cases. The knowledge from this study 

provides important information that can be applied to other cases, where such a 

conclusion is challenging.  
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Chapter 7 A comparison of mortuary admission 
and autopsy blood specimens 

7.1 Introduction 

Postmortem redistribution (PMR) is a well-known toxicological phenomenon 

which affects the interpretation of postmortem (PM) blood concentrations. The 

process of redistribution can affect the concentration of drugs in postmortem 

blood as a result of a disruption of cellular membranes, causing alterations of 

drug concentrations within tissue elements and diffusion from one tissue to 

another [402]. This process is particularly significant for drugs with high lipid 

solubility or high tissue concentrations relative to blood [16, 19, 281]. The 

degree of redistribution cannot be accurately assessed for any particular drug. 

All drugs will undergo some type of redistribution depending upon a number of 

factors; these include, but are not limited to, the physiochemical properties of 

the drug (i.e. volume of distribution) and the site of sampling (i.e. central vs 

peripheral). The time between death and sampling, and the conditions in which 

the deceased body is found, transported, and stored, also have considerable 

impact on subsequent toxicological analyses [403].  

The time between death and sampling (pre-autopsy interval) should be 

considered in the evaluation of drug concentrations in the postmortem sample, 

the storage of bodies for long periods of time may cause greater changes in 

blood drug concentrations. Therefore, in order to avoid the effect of the pre- 

autopsy interval on drug concentrations, early collection of samples for analysis 

is preferable. For this reason, this study was carried out to evaluate the effect 

of early collection of blood samples by using needle puncture in the upper thigh 

as opposed to blood samples during autopsy from upper thigh.  

There can often be a number of days between discovering the body of the 

deceased and the autopsy taking place. Usually the body is stored in the 

refrigerator at the mortuary. This study was designed to evaluate the impact this 

delay has on the drug concentrations found and to assess whether it is necessary 

to obtain blood specimens as they are received at the mortuary, before autopsy, 

for drugs analysis. In addition, we also sought to compare peripheral and central 
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blood over a period of time after death to further define the extent of PMR of 

drugs and identify a possible mechanism of PMR.  

7.2 Ethical considerations  

Ethical approval to obtain postmortem samples in drug-related deaths, with the 

reference number 17/WS/0026 was obtained from NHS West of Scotland 

Research Ethics Committee and number 200150153 from the Research Ethics 

Committee within the College of Medical, Veterinary and Life Sciences (MVLS), 

University of Glasgow. Copies of ethical approval letters from both authorities, 

the participant information sheet and the consent form are attached in the 

Appendix 3, Appendix 4, Appendix 5, Appendix 6.  

7.3 Methodology 

All cases were selected from adult deaths falling under the Scottish Fatalities 

Investigation Unit, Crown Office and Procurator Fiscal Service, which are being 

investigated as drug related deaths. There is likely to be a range of combinations 

of drugs, drug concentrations, interval between death and arrival at mortuary, 

and interval between arrival at mortuary and autopsy.  

The participant was identified by a pathologist carrying out the autopsy who 

would decide whether the samples could be available and if they were likely to 

be positive for the drugs. The next of kin were approached after identifying the 

body on the same day of identification. They were asked whether they would 

consider additional samples from the deceased being collected to be part of the 

research. The researcher would then explain the nature of the research. Only 

when the next of kin gave their consent would pathologists collect additional 

blood samples. As detailed in participant information sheet in Appendix 4.  

Informed consent from next of kin to obtain additional samples was sought 

during the period from June 2017 to April 2018. As detailed in participant 

information sheet in Appendix 5. Sample collection took place within the 

mortuary at the Queen Elizabeth University Hospital, Glasgow. The samples were 

taken by experienced pathologists and mortuary technicians. Routine blood 

samples taken for toxicological examination were taken during the autopsy from 

the right femoral vein by dissection of the vein in the upper thigh (PB3).  
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Additional samples for this study were taken by needle puncture in the upper 

thigh (blind stick) at a time close to when the body was received in the mortuary 

(PB1) and again at the autopsy (PB2). Lastly, a heart blood sample was taken by 

dissection of the heart during autopsy (HB). 4 mL blood were collected in plain 

tubes for each blood sample.     

All blood specimens were labelled and identified as PB1, PB2, PB3 and HB as 

shown in Figure 7-1. The times and dates of the blood draws were noted and 

sent for toxicological analysis.  

On the receipt of the samples at Forensic Medicine and Science, the samples 

were stored at -20 oC until analysis. The samples were then analysed using 

validated methods as described in (sections 5.2.45.2.5) and the data analysis 

was performed using Excel (Microsoft 2016).  

 

Figure  7-1: Flow chart of blood sampling 
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7.4 Case History and Background:    

A) Case sample (1) 

The deceased was a 54 year old male with a history of misuse of drugs including 

alcohol dependency and was previously prescribed 40 mL of methadone a day. In 

the month prior to death a urine screening test using the LC/MS/MS screening 

method showed opiates and cocaine. He was not on any prescribed medication 

at time of death. In the afternoon, a person was returning to their home and 

upon entering the close observed the deceased slumped on the stairs with a 

needle in his hand. Police and ambulance were contacted, and loss of life was 

confirmed. The postmortem interval between death and sampling was 7 days. 

The blood sample tested positive for morphine, codeine and alcohol using FMS 

routine laboratory methods.  

B) Case sample (2)  

The deceased was a 56-year-old man who had a history of chronic alcoholism, 

and previous intravenous drug misuse. He had been last seen by his own doctor 

in the last month in relation to longstanding right-hand pain – his thumb had 

been amputated some time before, but he had been complaining of pain in the 

scars – longstanding right knee pain and bleeding from his back passage for which 

he refused further investigation. At the time of his death he was prescribed 

thiamine, ibuprofen gel and buprenorphine tablets. The day before he died, the 

deceased met a male who supplied gabapentin tablets. A witness saw him take 

ten tablets and consume alcohol before falling asleep on the sofa with his 

partner. His partner awoke at 0100hrs and found that he was leaning against her 

and cold to touch with no signs of life. The postmortem interval between death 

and sampling was 8 days. The blood and urine samples tested positive for 

morphine, alcohol and buprenorphine, and blood samples were positive for 

gabapentin, desmethyldiazepam, phenazepam and etizolam using FMS routine 

laboratory methods. 
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C) Case sample (3) 

The deceased was a 37 year old man who had a medical history of post-

traumatic stress disorder, depression and anxiety and alcohol dependency. He 

had previously overdosed on sertraline, fluoxetine, alcohol and heroin, and was 

admitted to hospital and referred to mental health services. At the time of his 

death he was prescribed sertraline, zopiclone, naproxen, and omeprazole. At 

around 2200hrs, the witness noted he was safe and well and around 1000hrs the 

following day, he was found lying unresponsive in the kitchen area with a belt 

around his arm, his trouser leg rolled up, and a used syringe next to his left leg. 

The postmortem interval between death and sampling was 9 days. The blood 

samples tested positive for morphine, sertraline, etizolam, phenazepam and 

alcohol. The urine sample was positive for morphine, codeine, 6MAM and alcohol 

using FMS routine laboratory methods.  

D) Case sample (4) 

The deceased was a 27 year old man who had a past medical history of alcohol 

abuse, controlled drug use including use of injected heroin, and possible cocaine 

use. On the day of his death around 1900hrs, he was believed to be under the 

influence of alcohol or possibly drugs, but thereafter watched TV for a period of 

time before falling asleep on the sofa with witness. The witness thereafter heard 

a gurgling noise coming from the deceased and became concerned and then 

called the ambulance. Despite cardiopulmonary resuscitation (CPR) life was 

pronounced extinct at 2218hrs. The witness confirmed that he was on a 

methadone programme, but also took heroin. Within the locus, police noticed 

cannabis (THC) smoking paraphernalia. The postmortem interval between death 

and sampling was 11 days. The blood samples tested positive for morphine, 

codeine, citalopram, and alcohol. The urine sample was positive for morphine, 

codeine, 6MAM and alcohol using FMS routine laboratory method.   
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7.5 Results and discussion  

A total of 5 informed consent forms were signed. All cases were men with the 

mean age of the decedents 42 years, with a range from 27 to 54 years. However, 

of the five sets of samples collected, one of the sets was not positive with the 

drugs of interest. Moreover, morphine and its glucuronides in cases 3 and 4 were 

below the LLOQ, and gabapentin in case 2 was over the ULOQ of the validated 

method. The results of analyses are detailed in Table 7-1.   

Table  7-1: Distribution of Gabapentin, Morphine, M3G and M6G in the Cases Studied 

 Sample no. 
Number of days 
after 1st blood 
sample taken 

FM 
(mg/L) 

M3G 
(mg/L) 

M6G 
(mg/L) 

GBP 
(mg/L) 

Case 1 

PB1 0 0.339 0.191 0.021 0.0 

PB2 1 0.597 0.405 0.069 0.0 

PB3 1 0.615 0.568 0.099 0.0 

HB Not available 

Case 2 

PB1 0 <0.05 <0.05 <0.02 91 

PB2 2 <0.05 <0.05 <0.02 139 

PB3 2 0.039 0.090 <0.02 338 

HB Not available 

Case 3 

PB1 0 <0.05 <0.05 0.034 0.0 

PB2 Not available 

PB3 4 <0.05 0.060 <0.02 0.0 

HB 4 <0.05 <0.05 <0.02 0.0 

Case 4 

PB1 0 0.137 0.123 0.022 0.0 

PB2 6 0.190 0.152 0.027 0.0 

PB3 6 0.225 0.226 0.046 0.0 

HB 6 0.267 0.224 0.054 0.0 

  

A) Comparing admission (PB1) and pre-autopsy (PB2) drug concentrations 

in peripheral blood samples  

This study focused predominantly on the impact of postmortem time interval 

(PMI) on a postmortem drug concentration, rather than the influence of the 

sampling site. The first (PB1) and second (PB2) vein puncture were available for 

cases 1, 2 and 4 where the postmortem interval was 2 to 11 days. The drug 

concentration ratios (PB1/PB2) and time interval between PB1 and PB2 for each 

case are detailed in Table 7-2.  
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Table  7-2: Comparing pre-autopsy and admission needle puncture (PB2/ PB1) ratio 

Cases Postmortem interval (Days) 
PB1/PB2 ratio 

FM M3G M6G GBP 

CASE 1 7 0.57 0.47 0.31 - 

CASE 4 11 0.72 0.80 0.81 - 

CASE 2 2 - - - 0.65 

 

Comparing pre-autopsy and admission needle puncture in both cases found that, 

FM, M3G and M6G concentrations at time of admission were lower than at pre-

autopsy. It was not surprising to see FM, M3G and M6G concentrations increase 

substantially from mortuary admission to autopsy, presumably due to PMR. In 

contrast to the previous study, morphine and its metabolite concentrations 

showed little or no potential for PMR [404]. Similarly, in cases of gabapentin, a 

significant difference was observed between the two samples.  

In Table 7-3, comparing pre-autopsy and admission needle puncture in cases 1 

and 4 found that, the changes in (FM/TM), (M3G/TM) and (M6G/TM) ratio were 

negligible and did not result in any significant changes from mortuary admission 

to autopsy in both cases.  

Table  7-3: Morphine and its glucuronide ratios in all cases 

 Sample no. FM/TM M3G/TM M6G/TM 

Case 1 
PB1 0.61 0.34 0.04 

PB2 0.56 0.38 0.06 

Case 4 
PB1 0.48 0.43 0.07 

PB2 0.52 0.41 0.07 

 

Overall this study shows that morphine, M3G, M6G and gabapentin exhibit 

significant increases in drug concentration when femoral blood was collected at 

autopsy compared to similar blood taken at the time of mortuary admission 

about 2–11 days later. It may have been expected from previous studies that 

morphine and its glucuronides would show some redistribution [404], and this 

was also the case for gabapentin [240]. However, as there has been no 

assessment in previous studies of the potential for gabapentin postmortem 

redistribution, a comparison of this was not possible.  

In general, this study suggests minimal potential for morphine, M3G, M6G and 

gabapentin PMR. This interpretation is also consistent with the concept that 
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compounds with a low volume of distribution show minimum PMR or are not 

prone to PMR. As this deduction results from a single observation, however, it 

should be viewed with caution.  

In previous studies, Logan and Smirnow found an agreement between morphine 

concentrations in admission and autopsy blood [249]. While, Saar et al found 

that storing bodies for long periods of time will cause greater changes in blood 

drug concentrations [14].  

On the other hand, it was expected to see the glucuronide concentrations 

decrease substantially from mortuary admission to autopsy and subsequently 

morphine levels increase. It has been known that during life conjugated drugs 

can revert to their free form from the effects of bacteria  and also during the 

postmortem period [294, 405] although it may be that longer time frames are 

required to deconjugate significant amounts of morphine glucuronides. However, 

this study found that the changes in free morphine and glucuronide ratios are 

negligible and did not result in any significant changes from mortuary admission 

to autopsy in both cases. The concentrations of morphine glucuronides giving 

rise to morphine are negligible and did not result in any changes to morphine 

from mortuary admission to autopsy. Compared to the findings of recent study, 

the investigation of underlying redistribution mechanisms indicated that 

concentration change (i.e., increase) of morphine in femoral blood resulted from 

diffusion processes rather than from release of morphine from its conjugates 

[404].  

Overall, the current study is not without limitations, which include a small case 

number per analyte and slightly varying sampling time points across cases. By 

evaluating the data in a time-dependent manner, the latter was attempted to be 

corrected. Further a limitation of this study is the degree to which postmortem 

redistribution may have already taken place prior to the mortuary admission 

specimen being collected. This may affect the magnitude of change during the 

postmortem interval. Indeed, the study of Hilberg showed that much 

redistribution occurs in the first 2 h following death, although changes can 

continue to occur after that time [406]. It is not possible to perform dissections 

on bodies or vein puncture prior to formal orders by Procurator Fiscal in Scotland 

to conduct dissections including orders to conduct vein puncture. This may 

affect the magnitude of change during the postmortem interval. Nevertheless, 
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the presented results provide valuable information that aid in the understanding 

of PMR of opioids and are a unique possibility to study time-dependency of 

redistribution mechanisms with in the human body.  

B) Comparing vein puncture (PB2) and dissection (PB3) 

The other factor which must be considered in the evaluation of drug 

concentrations in a postmortem sample, is blood sampling techniques. We 

compared needle puncture in the upper thigh (blind stick) with dissection of the 

vein in the upper thigh. The drug concentration ratios between vein dissection 

and needle puncture were available for three cases.  

Firstly, (PB2/PB3) ratios for the FM concentration were 0.97 and 0.84 (averaged 

0.90) for case 1 and 4, respectively. Secondly, the M3G concentration ratios 

were 0.71 and 0.67 for cases 1 and 4, respectively. Thirdly, the M6G 

concentration ratios were 0.69 and 0.58 for cases 1 and 4, respectively. Lastly, 

the GBP concentration ratios were 0.41 for case 2. As detailed in Table 7-4.  

Table  7-4: PB2/PB3 ratios of gabapentin, morphine and its glucuronides 

Cases Postmortem interval (Days) 
PB2/PB3 ratio 

FM M3G M6G GBP 

CASE 1 7 0.97 0.71 0.69 - 

CASE 4 11 0.84 0.67 0.58 - 

CASE 2 2 - - - 0.41 

 

We compared needle puncture in the upper thigh (PB2) and dissection of the 

vein in the upper thigh (PB3) with central blood (HB). The drug concentration 

ratios between vein dissection, needle puncture and central blood were 

available only for case 4. Table 7-5 shows HB/PB2 and HB/PB3 ratios for 

morphine and its glucuronides, the FM concentrations were 1.40 and 1.18, 

respectively, the M3G concentration ratios were 1.47 and 0.99, respectively, and 

the M6G concentration ratios were 2.00 and 1.17, respectively.  

Table  7-5: HB/PB2 and HB/PB3 ratios  

 Sample no. FM M3G M6G 

Case 4 
HB/PB2 1.40 1.47 2.00 

HB/PB3 1.18 0.99 1.17 
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For all analytes at femoral sites (blind stick and dissection sampling), cardiac 

concentrations are greater than those at the femoral site, whereas femoral 

concentrations tend to be closer to cardiac concentrations with the dissection 

(PB3) sampling, even though this is more marked for M6G with the blind stick 

than with the dissection sampling.  

In Table 7-6, comparing needle puncture and vein dissection in both cases found 

that, the changes in (FM/TM), (M3G/TM) and (M6G/TM) ratios are negligible and 

did not result in any significant changes from mortuary admission to autopsy in 

both cases.  

Table  7-6: Morphine and their glucuronide ratios in PB2 and PB3 

 Sample no. FM/TM M3G/TM M6G/TM 

Case-1 
PB2 0.56 0.38 0.06 

PB3 0.48 0.44 0.08 

Case-4 
PB2 0.52 0.41 0.07 

PB3 0.45 0.45 0.09 

  

How blood is sampled may also affect the measurement of drug concentrations. 

In this study, the effect of the femoral blood sampling protocol (needle 

puncture) could account for some variation in drug concentrations in blood. 

Similarly, several reviews have considered the factors that can influence the 

concentration of drugs measured postmortem including techniques of blood 

sampling [31-33]. While, a limited study has shown that needle puncture in the 

upper thigh did not affect the blood concentration as opposed to dissection of 

the vein in the upper thigh [28, 34], this may not be consistent for all drugs.  

It has been suggested that clamping the femoral vessel before sampling may 

prevent possible contamination from more central sites due to the retrograde 

flow of blood as can happen with a blind stick sampling. Therefore, femoral 

sampling done after dissection and clamping of the vein is currently considered 

the method of choice since it prevents the caudal flow of blood from more 

central sources such as iliac vessels and the inferior vena cava [19, 281, 407]. 

However, this procedure results in added time to the external examination as 

well as additional incisions, and some medico-legal offices simply perform a 

blind stick femoral sample without tying off the femoral vein. 
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There are only few references comparing techniques: some authors used 

dissection and clamping of the vein, others did a blind stick method, and some 

did not mention which sampling method they used. Hargrove et al. concluded 

that the blind stick method of drawing femoral blood, the easiest, least invasive 

as well as least time-consuming procedure did not have significant redistribution 

from central sites and was of equivalent quality to a clamped femoral sample for 

opiates, for sampling volumes up to 30 mL [408]. The same authors did not 

observe significant changes in either clamped or unclamped femoral vein 

morphine concentrations over time either as well as at any period of sampling 

within the first 24 h after death in bodies kept refrigerated at 4°C.  

C) Comparing central (HB) to peripheral (PB3) drug concentration 

(HB/PB3) ratio  

This study focused predominantly on the impact of sampling site on a 

postmortem drug concentration, rather than the influence of the sampling 

techniques. In this study, the investigated heart (HB) to femoral (PB3) drug 

concentration (HB/PB3) ratio was available in one case; firstly, (HB/PB3) ratios 

for FM concentration was 1.19, M3G concentration was 0.99, and M6G 

concentration was 1.17.   

Earlier studies have proved that for some, but not all drugs, there are significant 

differences in concentrations between peripheral and corresponding heart 

blood. The drug concentrations in the heart blood are often higher than in the 

peripheral blood [284] and do not reflect concentration at the time of death 

[276]. However, Logan and Smirnow examined 40 heroin-related deaths where 

the mean postmortem interval was 59 hours and found the cardiac to femoral 

blood concentration ratios averaged 1.1 for morphine, 1.3 for M6G and 1.1 for 

M3G. They found no evidence of time-dependent changes in morphine 

concentrations at either central or peripheral blood sites in 32 cases. They did, 

however, report consistently higher morphine concentrations in ventricular 

compared with femoral blood, with the greatest differences observed in cases 

where the ventricular morphine concentration exceeded 0.3 mg/L [249]. Other 

authors have also reported obvious differences between central and peripheral 

blood concentrations of morphine, M3G and M6G in humans [25, 60, 61, 273, 

274].  
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The high Vd of morphine (3 – 5 L/kg) would indicate that it undergoes PMR and it 

has been shown to do so in animal models [20, 251, 282]. There are, however, 

conflicting reports on its redistribution in humans and PMR was found not to be a 

factor in diamorphine fatalities [255]. Considering the low Vd of M3G (0.14 L/kg) 

and M6G (0.15 L/kg) (Hunt et al. 1999), these metabolites would not necessarily 

be expected to undergo PMR.  

In this study, morphine and its metabolites exhibited no significant changes in 

drug concentration when femoral blood was collected compared to similar blood 

taken from central samples. It is generally accepted that drugs, such as 

morphine, with a central to peripheral ratio of less than (or about) 1.0 are not 

prone to redistribution. It may have been expected from previous studies that 

morphine and its glucuronides would show no significant redistribution [404].  

Although the results of this study are promising, the small sample size for each 

drug and the limited number of drugs tested limit the utility of this study. 

Additional peripheral blood versus central blood sample studies with larger 

sample size and more drugs being compared are needed to fully evaluate 

potential drug redistribution to peripheral blood vessels.   
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7.6 Conclusions  

This study is the first to concurrently evaluate three aspects of PMR of 

gabapentin, morphine and its glucuronides. The first aspect, concerning 

sampling site for all substances, femoral blood concentrations were significantly 

lower than those found in cardiac blood, a site commonly used for peripheral 

sampling, indicating that femoral blood is probably less prone to PMR. Although 

the current study shows that this is true for selected drugs, further research is 

needed for other drugs, especially those with higher volume of distribution, as 

refrigeration may not be sufficient to prevent postmortem redistribution to 

femoral vessels. 

Secondly, sampling method also appears to have an effect on femoral drug 

concentrations depending on the substance considered, since femoral 

concentrations tend to be closer to cardiac concentrations with the dissection 

sampling than blind stick sampling technique.  

Finally, the analytical results derived from sampling (blind stick) as soon as 

possible to assess whether it is necessary to obtain blood samples prior to 

autopsy and prevent contamination of PMR, suggest that PMR is a continuous 

phenomenon in central as well as in peripheral compartments, but also that the 

femoral blood appears more resistant to it. Therefore, to avoid the effect of the 

pre-autopsy interval on drug concentrations it is always preferable for early 

collection of specimens for analysis, which are collected closer to the time of 

death, and would enable a better assessment of the likely contribution of drugs 

to the death.   
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Chapter 8 General Conclusions, Limitations and 
Future Work 

8.1 General Conclusions  

Opioids are one of the most widely abused drug groups in the world. The 

majority of drug related deaths in the UK relate to opiate use, chiefly 

heroin/morphine. There is considerable evidence that many instances of opioid 

overdose are due to the combined effects of opioids with other drugs and this 

kind of poly-drug use is highly prevalent among illicit drug users in the UK. 

Almost all DRDs occurred after the consumption of multiple substances. Opioids 

(methadone, diamorphine/ morphine or buprenorphine) were implicated in over 

three quarters of DRDs. Diamorphine/morphine, alcohol, anti-depressants, 

diazepam, etizolam and gabapentin were the most common substances found at 

post mortem, all have increased in prevalence since 2011, except diazepam.  

The use of GC–MS and LC-MSMS for the identification and measurement of drugs 

of abuse and medication is crucial to the acceptance of evidence in legal 

proceedings because of its sensitivity and specificity. Analytical methods were 

developed and validated to measure drug concentrations in the blood of drug 

related death cases. A GC-MS method with SPE was developed and validated for 

the simultaneous determination of opioids and antidepressant drugs in whole 

blood. In addition, a LC-MS/MS with protein precipitation method was developed 

and validated for simple and accurate analysis of the gabapentin, morphine, 

M3G and M6G in whole blood samples. The methods were successfully verified 

using authentic postmortem blood samples. The concurrent method is used to 

confirm the toxicity of diamorphine and antidepressants drugs simultaneously, 

especially in the case of multidrug detection, it can be a major advantage in 

routine procedure to save time and cost .  

The stability of drugs in different collection tubes is vital, particularly when 

analyses cannot be performed promptly. The stability of opioids, gabapentin and 

antidepressant drugs in spiked blood was studied after different sampling and 

storage conditions. In both separated clot activator tubes and plain tubes, all 

analytes were stable under all conditions. While, the separated clot activator 

tube affected the stability of gabapentin, 6MAM, EDDP, citalopram, sertraline, 
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amitriptyline and mirtazapine especially when they were stored more than one-

month in fridge or freezer. It may be the gel in the tubes absorbed these 

analytes preferentially compared to other. The results of this study show that, 

forensic laboratories that are required to store biological samples for long 

periods should collect these in plain tubes. Furthermore, the stability of other 

drugs, especially stored in separated clot activator tubes, requires further 

investigation under different storage conditions and time periods to ensure 

accurate quantitative analysis that reflect the drug concentrations in actual 

biological matrices.  

In authentic postmortem samples, a stability study of current and historical case 

samples was carried out. The FM and TM concentrations and their ratio were not 

affected after incubation of current cases sample stored in the fridge for six 

months. Moreover, 92% of the historical postmortem blood samples stored long-

term at -20°C were within acceptable criteria of the initial concentration. The 

result reveals that, the concentrations of FM and TM were stable during storage 

in the freezer for ~10 years and no significant losses were observed 

The stability study of authentic case samples with and without preservative, 

stored in the freezer for three years was carried out. There were no significant 

differences between paired preserved and unpreserved blood samples. Sodium 

fluoride and potassium oxalate as a preservative to postmortem blood samples 

does not affect MOR, M3G and M6G stability under storage temperatures of -

20°C for three years.  

In authentic postmortem samples, the degradation pattern was similar to that of 

spiked blood specimens. Morphine and its metabolite concentrations did not 

change significantly in samples stored under different storage conditions when 

expressed as a percentage of the initial concentration.  

In this study, the investigation revealed that the ratio of morphine to the 

respective glucuronide concentration predicts survival times after the 

administration of heroin. The presence of 6MAM in the blood of a heroin toxicity 

death suggests a more rapid death. Similarly, lower blood concentrations of M3G 

and M6G, and lower ratios of these conjugates to total morphine, are suggestive 

of a more rapid death, as there has been less time for the metabolism of 

morphine to occur. More specifically, when M3G/TM is less than 0.40 could show 
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a quick death in the absence of 6MAM. Conversely, higher concentrations and 

ratios to total morphine are indicative of longer survival times. Moreover, both 

M3G and M6G concentrations were independent correlates of the presence of 

6MAM.  

This study is the first to evaluate concurrently three aspects of PMR. Concerning 

sampling site, for all substances, femoral blood concentrations are significantly 

lower than those found in cardiac blood, a site commonly used for peripheral 

sampling, indicating that femoral blood is probably less prone to PMR. Sampling 

method also appears to have an effect on femoral drug concentrations, since 

femoral concentrations tend to be closer to cardiac concentrations with the 

dissection sampling than blind stick sampling technique. Finally, the analytical 

findings derived from techniques for specimen collection (blind stick) as soon as 

possible to assess whether it is necessary to obtain blood specimens before 

autopsy and prevent contamination by PMR. This study shows that morphine, 

M3G, M6G and gabapentin exhibit a significant increase in drug concentration 

when femoral blood was collected at autopsy compared to similar blood taken at 

the time of mortuary admission. 

Generally, our results conclude that PMR is an ongoing phenomenon in central as 

well as in peripheral compartments, but also that femoral blood seems more 

resistant to it. Therefore, to avoid the effect of the pre-autopsy interval on drug 

concentrations it is always preferable for early collection of specimens for 

analysis, which are collected closer to the time of death, and would enable a 

better assessment of the likely contribution of drugs to the death. 
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8.2 Limitations and Future work  

The present study had several limitations. The major one is that the GC-MS and 

LC-MSMS method were developed and validated to test drugs in blood only. It is 

recommended to develop a method that can be used to analyse different 

matrices such as liver and muscle, which would provide greater insight and 

better understanding of postmortem redistribution.  

The LC-MSMS method was only looking for a limited number of drugs 

(gabapentin, morphine, M3G and M6G). It is necessary in forensic toxicology to 

develop sensitive and selective methods to identify new drugs and their 

metabolites for the increasing scope of analyses and increasing numbers of drug 

of abuse cases submitted to the laboratory.   

The evaluation of the stability of morphine, M3G and M6G in blood in paired 

preserved and unpreserved samples when stored at different temperatures and 

concentrations of preservative would provide an insight into the presence of 

these substances at the time of death versus the time of collection.  

The limitation of this study was that there were only a few samples analysed. 

Even though there were many drug-related deaths within this period, it was 

clearly a very difficult time to ask the next of kin for consent. At the beginning 

of the study, the next of kin was notified about the research before they came 

to the mortuary to identify the deceased. However, this strategy was not the 

best strategy to obtain enough samples. 

Although the current study shows an effect of PMR on gabapentin, morphine and 

its glucuronides, more research needs to be done for other drugs, specifically 

those with higher volumes of distribution, because refrigeration may not be 

enough to prevent postmortem redistribution to femoral vessels. Also, the 

present study of postmortem redistribution was conducted on a small number of 

samples. Therefore, more samples, as well as testing more drugs to confirm the 

results of this study is required to achieve a better understanding of this 

phenomenon.  
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