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Abstract 
 

Introduction 
Positron emission tomography (PET) is a molecular imaging technique; three-dimensional 

images of functional processes within the body are typically produced using iterative 

reconstruction methods. Image optimisation is a significant challenge, as the optimal 

combination of acquisition and reconstruction parameters is dependent upon image context 

and the clinical task, and there are thousands of possible combinations of selectable 

parameters. Furthermore, as PET technology continues to evolve, advances need to be 

optimised for different clinical indications. Manufacturers of PET imaging systems often 

suggest generic reconstruction strategies for tumour imaging of standard patients; however, 

imaging departments should validate and optimise reconstruction strategies for clinical 

applications of interest. This is particularly true when the use of such advances prove to be 

controversial, as remains the case for Point Spread Function (PSF) modelling. 

 

Whilst many publications have assessed the effects of various reconstruction parameters, 

there is no established methodology for the assessment and optimisation of clinical 

reconstruction parameters. The primary aim of this thesis is therefore to develop a generic 

methodology to assess and optimise PET image reconstruction that can be applied to any 

clinical application.  

 

The ability to detect small, low intensity lesions within the liver is critical for effective patient 

management; however, such lesions are challenging to identify in Fluorine-18 

Fluorodeoxyglucose (18F-FDG) PET imaging due to the relatively high liver background 

activity. Despite its clinical importance, there is no established optimal method for PET liver 

reconstruction. The secondary aim of this thesis is therefore to optimise image 

reconstruction for small liver lesion detection in 18F-FDG-PET imaging for a specific PET 

system: the General Electric Medical Systems (GEMS) Discovery 690 PET-CT system. 

 

Methods 
Phantom studies were undertaken to assess the effects of varying acquisition and 

reconstruction parameters upon image noise, spatial resolution and lesion detection. The 

effects of slice overlap upon image quality were assessed to determine if the GEMS 

recommended setting was appropriate. The effects of Time of Flight (TOF), PSF, effective 

iterations, post-reconstruction filtering and voxel size on image quality were then assessed. 

A human observer study using patient data was also undertaken to determine if 

recommendations based on phantom data were applicable to clinical liver imaging. Different 

phantom acquisition and analysis techniques were compared and used to develop a generic 
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methodology that can be used to optimise PET acquisition and reconstruction for different 

clinical tasks. This methodology includes instructions for a patient observer study.  

 

Phantom image acquisitions were largely designed to reflect liver imaging but can be 

adapted to other clinical scenarios. Phantom and patient work therefore led to the 

recommendation of a specific reconstruction strategy to optimise liver lesion detection.  

 

Results 
The use of a 23% slice overlap between image acquisition frames, as recommended by 

GEMS, was shown to produce acceptable image quality under routine clinical practice. An 

amendment to European guidelines was proposed to better reflect the relationship between 

image noise and slice overlap when calculating minimum patient injection activities.  

 

A clinically relevant methodology for spatial resolution measurement was developed using 

activity concentrations and voxel values that reflect clinical imaging. Full width half 

maximum (FWHM) measurements were shown to be reliable and the use of a simplistic 

background activity correction method was assessed and justified.  

 

The effects of reconstruction parameters upon image noise and clinical spatial resolution 

were assessed using phantom data. PSF was shown to degrade spatial resolution at low 

iterations (<180) when applied without TOF. Furthermore, noise analyses revealed the 

GEMS Gaussian filter implementation did not function as intended at certain filter widths; 

larger voxels demonstrated greater noise levels than smaller voxels. This was unknown to 

GEMS engineers and was a novel finding.   

 

Qualitative phantom assessments concluded applying TOF and PSF together, with no 

filtering and approximately 108 iterations, was optimal for small lesion detection. Joint 

analysis of Hot Contrast Recovery Coefficient (HCRC) and noise were shown to be a better 

predictor of observer lesion detection preferences than signal-to-noise ratios (SNR). 

Furthermore, a novel SNR calculation (based on region-to-region noise) was shown to be 

a better predictor of human observer preference than traditional SNR calculations (based 

on voxel-to-voxel noise).  

 

Reassuringly, reconstruction parameters suggested by GEMS (54 iterations, 4mm filter, 

3.65mm voxels) were found to be close to optimal. The patient observer study (n = 30) did 

not demonstrate any statistically significant differences in lesion detection between the 

GEMS suggested reconstruction and three progressively sharper reconstructions based on 

the phantom results. However, results did suggest the use of a sharper reconstruction (54 

iterations, no filtering, 2.73mm voxels) may improve lesion detection. 
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Conclusions 

A four-step generic methodology for optimising PET acquisition and reconstruction is 

proposed by this thesis. This methodology includes instructions for selecting an appropriate 

slice overlap for image acquisition. Phantom acquisition and analysis techniques are 

included for assessing spatial resolution, image noise and lesion detection in a clinically 

relevant manner. Recommendations are also made for conducting a patient observer study. 

 

This thesis further concludes that all 18F-FDG oncology patient images acquired using the 

GEMS Discovery 690 PET-CT system should be reported using two reconstructions in 

tandem. The GEMS suggested reconstruction should be used for general image 

interpretation. The sharper reconstruction should be used for liver lesion detection.  
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DOI Depth of Interaction 

EANM European Association of Nuclear Medicine 
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FBP Filtered Back Projection 

FDG Fluorodeoxyglucose 

FN False Negative 
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HCC Hepatocellular Carcinoma 
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LSO Lutetium Orthosilicate 

LYSO Lutetium Orthosilicate doped with Yttrium 
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MRI Magnetic Resonance Imaging 
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NAC Non Attenuation Correction 
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NECR Noise Equivalent Count Rate 
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NLF Non-Lesion Location Fraction 
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OSEM Ordered Subsets Expectation Maximisation 

PERCIST Positron Emission tomography Response Criteria in Solid Tumours 

PET Positron Emission Tomography 

PHA Pulse Height Analysis 

PMT Photomultiplier Tube 
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PPV Positive Prediction Value 

PSF Point Spread Function 

PV Partial Volume 
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QIBA Quantitative Imaging Biomarkers Alliance 
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ROI Region of Interest 
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SharpIR Sharp Iterative Reconstruction 
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SUV Standardised Uptake Value 
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TN True Negative 

TOF Time of Flight 
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VPHD Vue Point High Definition 

wAFROC Weighted Alternative Free Response Receiver Operator Characteristic 
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Chapter 1 : Introduction 
 

1.1 Cancer 
 

Cancer is a disease characterised by mutations that disrupt the control mechanisms for cell 

division, growth and death. These abnormal cells typically have the ability to sustain 

uncontrolled proliferation and can form malignant tumours [1]. As the disease progresses, 

primary tumours can invade surrounding tissues and metastasise to other sites in the body, 

causing secondary tumours. Malignant tumours can grow at the expense of healthy cells 

by depriving them of essential nutrients, and vital organs can be prevented from functioning 

properly. Eventually, this may lead to death [2]. In 2012, there were approximately 8.2 

million deaths from cancer worldwide (representing one in every six deaths)  with 14.1 

million new cancer diagnoses [3]. By 2018, these numbers had risen to approximately 9.6 

million deaths (17% increase in six years) and 18.1 million new diagnoses (28% increase) 

[4]. Global cancer incidence is expected to continue to increase due to population growth 

and aging [5], and will soon become the most common cause of death worldwide [6]. 

 

Cancer is more likely to respond to treatment when it is detected early, resulting in increased 

probability of survival and reduced treatment costs [7]. The ability to detect small lesions 

during the early stages of disease is therefore critically important [8]. Imaging has a key role 

in lesion detection and is widely used for assessing prognosis and determining the most 

appropriate course of treatment [9]. Imaging also has significant roles in determining 

whether to continue, change or abandon treatment for individual patients, and in clinical 

trials assessing the efficacy of new treatment strategies [6].  
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1.2 Positron Emission Tomography in Cancer Management 
 

Positron emission tomography (PET) is a nuclear, molecular imaging technique that 

produces three-dimensional images of functional processes within the body. By identifying 

changes in the body at a molecular level, PET imaging may detect the early onset of disease 

before it is evident on structural imaging modalities, such as Computed Tomography (CT) 

or Magnetic Resonance Imaging (MRI) [10]. The use of short-lived positron-emitting 

radiopharmaceuticals allows biologically important molecules to be labelled without 

significantly changing their behaviour [11]. These radiolabelled ‘tracers’ are typically 

introduced into the patient’s body by intravenous injection.  

 

The ability to measure cellular glucose metabolism is important in oncology because many 

types of cancer cells have an abnormally high dependence on glucose, known as the 

‘Warburg effect’ [12], [13]. Fluorine-18 coupled to a glucose analogue (18F-

Fluorodeoxyglucose, commonly abbreviated to 18F-FDG) is therefore one of the most 

commonly used PET tracers. 18F-FDG follows a similar metabolic pathway to glucose, 

except it is retained in the cells in proportion to the rate of glycolysis [10]. This tracer 

accumulation allows localisation of these cells in the PET images. 18F-FDG PET has been 

shown to be a sensitive imaging modality for a variety of cancers [14].  

 

The development of hybrid PET-CT clinical systems in the early 2000’s, combined with the 

availability of commercial 18F-FDG supplies, led to the rapid establishment of PET-CT in 

clinical cancer management [15]. FDG-PET is now routinely used in the diagnosis, staging, 

response evaluation, restaging, follow-up and radiotherapy treatment planning of many 

types of cancers [16]. However, PET imaging has its limitations; e.g. PET images have 

poorer spatial resolution than anatomical imaging techniques such as MRI and CT, which 

can make the detection of small lesions challenging. Consequently, PET technology has 

evolved rapidly in recent years as new hardware and software solutions have been 

developed. 

 

1.3 Basic Principles of Positron Emission Tomography 
 

The basic principles of PET data acquisition and storage, as illustrated in Figure 1.1, are 

well known in the field and are therefore only briefly summarised in this thesis.   
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Figure 1.1: Basic principles of PET data acquisition and storage 
 
1.3.1 Positron Emission and Annihilation  
An unstable nucleus in a proton-rich radionuclide converts a proton into a neutron as it 

decays to a stable state and releases surplus positive charge by ejecting a positron (a 

neutrino is also ejected but is not of use in PET imaging). The positron travels a short 

distance through tissue, losing kinetic energy as it collides with surrounding atoms. Once it 

has lost almost all of its kinetic energy, the positron undergoes mutual annihilation with an 
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electron and their rest masses are converted into a pair of annihilation photons. To conserve 

energy, each photon has energy equal to the rest mass of the positron/electron, which is 

511keV. To conserve momentum, the photons are emitted at almost 180° to each other. 

Detection of these anti-parallel 511keV annihilation photons is used to construct the PET 

images.  

 

1.3.2 Detection System 
PET detectors use scintillation crystals such as bismuth germanate (BGO) or lutetium 

Orthosilicate (LSO) to convert incident annihilation photons into light photons. 

Photomultiplier tubes (PMTs) are typically used to convert these light photons into electrical 

pulses, with heights proportional to the energy of the incident annihilation photons. 

However, the advent of integrated PET and MRI systems has seen the development of 

alternatives to PMTs (as they are susceptible to magnetic fields and therefore incompatible 

with MRI). Such alternatives include avalanche photo detectors (APDs) and silicon 

photomultipliers (SiPMs).  

 

PET gantries generally comprise rings of detector blocks, which surround the patient. An 

example detector block is shown in Figure 1.1 and consists of a crystal array coupled to 

four PMTs. The magnitude of the output pulses from each of the four PMTs are used to 

calculate which crystal in the array detected the annihilation photon. Clinical whole-body 

PET scanners have ring diameters (transaxial Field of View, FOV) of approximately 70 – 

80cm. Multiple detector rings are used to create gantries with axial FOVs of approximately 

15cm to 25cm. 

 

Whole-body PET scans are typically acquired with overlapping acquisition frames (or beds) 

to account for reduced sensitivity at axial FOV edges. Data in overlapped regions can then 

be combined to improve the statistics. This improves quantitative accuracy but increases 

the required scan time [17]. Sensitivity and overlapping frames are discussed in more detail 

in Chapter 4, which also includes an investigation into how overlap size affects image 

quality.  

 

1.3.3 Coincidence Detection 
Electrical pulses from the detection system are fed into Pulse Height Analysis (PHA) 

circuitry. If the PHA determines the detected photon’s energy is within the energy 

acceptance window for 511keV, a timing pulse is generated; otherwise, the detected event 

is rejected. The energy acceptance window is largely dictated by the energy resolution of 

the crystal: the better the energy resolution, the narrower the accepted range of photon 

energies.  
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Two detected photons are considered to be coincident (i.e. from the same annihilation 

event) if their timing pulses are both generated within a Coincidence-Timing Window (CTW). 

The size of this timing window is dependent on the decay time of the crystal. BGO crystals 

typically have CTWs of 10-12ns, while faster LSO crystals typically have CTWs of 4-6ns 

[18]–[20].  

 

The location of the detected annihilation event is known to lie somewhere along the line 

between the two detection crystals, known as a Line of Response (LOR) (sometimes 

referred to as a Tube of Response [21] or a Volume of Response [28]).  

 

1.3.4 Sinograms 
Raw PET data are stored in two-dimensional arrays known as sinograms. Each sinogram 

bin represents a LOR between two crystals and the value of each bin represents the number 

of events detected along the LOR. Each row in a sinogram represents the data collected 

from parallel LORs at a given radial offset angle. A simple sinogram example is shown in 

Figure 1.2: four LORs with different offset angles originate from an off-centre point source 

and are stored in the corresponding sinogram bins. When more radial angles contribute to 

the sinogram, the offset point source produces a sinusoidal pattern (shown in grey).  

 

Figure 1.2: Simple sinogram explanation 
 

LORs are typically defined by two coordinates: the transaxial angle between the LOR and 

the x-axis (q) and the radial distance of the LOR from the centre axis of the detector ring (r). 

In 3D PET, LORs are also defined by coordinates that account for the axial angle between 

the LOR and the z-axis (f) and the distance of the LOR from the centre of the z-axis (z) 

[23].  
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1.4 PET Image Reconstruction 
 

The aim of PET image reconstruction is to produce quantitatively accurate cross-sectional 

images of the radiotracer’s distribution within the FOV using the detected LORs. This is 

challenging because the acquired PET data is inherently noisy: 

• The amount of radioactivity that may be injected into the patient is subject to restrictions 

which limit the risks of radiation exposure: for example, the maximum activity of 18F-

FDG that may be injected for whole-body oncology exams in the UK is 400MBq [24].  

• The length of acquisition time is limited: current PET systems can only image 15-25cm 

sections of the patient at a time (multiple bed positions are required for whole-body 

scans), and the possibility of patient motion increases with acquisition time (which may 

cause motion artefacts).  

These restrictions limit the number of annihilation events available for detection, leading to 

increased statistical noise. Furthermore, the sensitivity of PET systems is inherently poor 

due to the limited axial detector coverage and isotropic nature of the emissions; less than 

1% of coincidence effects are detected [25].  

 

Image reconstruction in PET is an ‘inverse problem’: measured LORs are used to calculate 

the radioactivity distribution from which the LORs arose. Image reconstruction in PET is 

also an ‘ill-posed problem’. A problem is ill-posed if at least one of the following conditions 

are met [26]: 

1. Solution does not exist (not an issue in practical applications), or 

2. There is no unique solution, or 

3. The solution is unstable: small errors in the measurement data may lead to large errors 

in the solutions (also known as an ‘ill-conditioned problem’). 

The PET image reconstruction problem meets conditions 2 and 3. The uniqueness of the 

solution may fail due to the low-count, noisy nature of clinical PET data. Small changes in 

the measured data can be propagated through reconstruction operations to become larger 

changes in the final image [27]. 

 

There are two basic approaches to image reconstruction: analytical methods and iterative 

methods [28]. Analytical methods typically assume there is a unique solution to the 

measured projections; however, the presence of noise in the measured data means that 

there are normally a number of possible solutions. Iterative reconstruction techniques 

determine the ‘most likely’ solution by using a feedback loop. 
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1.4.1 Filtered Back Projection  
Analytic methods use the mathematics originally developed for Computed Tomography 

(CT) that relate measured projections to the object’s activity distribution. They offer a direct 

mathematical solution for the formation of an image [22]. The most common analytical 

technique is filtered back projection (FBP).  

 

Simple backprojection is shown in Figure 1.3 (A). A set of projections are measured from 

an object in the FOV (each projection angle forms a line in the sinogram). Each measured 

projection is back projected along the image matrix. Counts are spread along the path from 

which they were originally acquired, resulting in a blurry version of the ideal image. Such 

artefacts are known as ‘star’ artefacts [29], [30], and can be reduced by applying a ramp 

filter to each projection prior to back projection. Ramp filters amplify high frequency noise 

and are therefore typically combined with low-pass smoothing filters. This filtered back 

projection reduces the noise in the final image at the expense of spatial resolution (Figure 

1.3 (B)) [30]. Different degrees of filtering lead to different noise and resolution image 

characteristics.  

 

Figure 1.3: Simple example of filtered back projection 
 

1.4.2 Iterative Reconstruction 
Iterative reconstruction methods offer improvements over analytical methods because they 

can account for the noise structure in the measured projections and can use a more realistic 

model of the imaging system [22]. Such methods model the data collection process in the 

PET scanner and attempt to find the image that is most consistent with the measured 

projection data [31]. Iterative methods are computationally more intensive than analytical 

methods; however, advances in computation speed and the availability of faster algorithms 

has enabled these techniques to be used clinically.  
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To determine the ‘best’ solution, criteria are defined to measure the goodness of fit between 

an estimated image and the measured data. A feedback loop allows sequential adjustments 

to be made to the estimated image to improve the fit with the measured data [32]. The most 

common iterative reconstruction method used in today’s clinical PET systems is the 

Ordered Subsets Expectation Maximisation (OSEM) algorithm [17], which is based upon 

the Maximum Likelihood Expectation Maximisation (MLEM) algorithm.  

 

1.4.2.1 Maximum Likelihood Expectation Maximisation 
MLEM is a statistical reconstruction method that uses a model of the imaging system, 

known as a system matrix, to define the relationship between image space and sinogram 

space [22], [33]. The system matrix describes the set of probabilities, based on Poisson 

statistics, that a pair of annihilation photons emitted from image voxel j will be detected in 

the sinogram bin i, for all (i, j) pairs [34]. This conditional probability is referred to as 

likelihood, which is a general statistical measure that is maximised when the difference 

between the measured and estimated sinograms is minimised [28], [35]. The system matrix 

should account for physical factors which affect the probability of an annihilation pair being 

detected in a particular sinogram bin; for example, the uneven spacing of the projections 

due to curved detector geometry and the crystal block design [36]. Other factors considered 

by the system matrix, such as positron range, photon non-colinearity and data corrections 

are discussed later in this chapter. The quality of reconstructed images is critically 

dependent upon the accuracy of the system matrix [37]. 

 

Figure 1.4 outlines the basic principles of MLEM reconstruction. An initial estimated image 

of radioactivity distribution is provided to begin the iteration sequence. This may be a blank 

image, a uniform image or a simple FBP reconstruction [28], [38]. The algorithm forward 

projects this estimated image to produce a set of estimated projections. Forward projection 

is the inverse of back projection: all voxels that are intersected by a particular LOR are 

summed to fill the corresponding sinogram element. These estimated projections represent 

the data that would have been acquired had the estimated image been a true representation 

of the radioactivity distribution. The estimated projections are then compared with the 

measured projections and the initial estimated image is adjusted based on these 

differences. The new estimated image is then forward projected, and the full process is 

reiterated. Each successive iteration should produce an image which represents the true 

activity distribution more closely than the previous iteration: i.e. the estimated image should 

converge towards the true image [35]. However, the ill-posed nature of the reconstruction 

problem, combined with limitations in the system matrix’s accuracy, means a fully 

converged image is likely to have excessively high noise [39]. Such algorithms are typically 

stopped after a specified number of iterations to achieve an acceptable trade-off between 
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accuracy and noise. Post-reconstruction filtering may also be employed to reduce the noise, 

as discussed later in this chapter.  

 

 

Figure 1.4: Principles of MLEM algorithm 
 
A major disadvantage of MLEM reconstruction is the computation time required, as each 

iteration requires a forward and backward projection operation, and many iterations are 

required to reach convergence. Fifty MLEM iterations takes approximately 100 times as 

long as a FBP reconstruction [32].  
 

1.4.2.2 Ordered Subsets Expectation Maximisation 
OSEM is a variant of MLEM that accelerates the reconstruction process by grouping the 

projection data into blocks, called subsets, within each iteration. Forward projection and 

back projection are performed on each subset in turn. The resultant reconstruction for one 

subset is used as the starting estimate for the next subset. One full OSEM iteration is 

complete once all subsets have been through the forward/back projection step. Subsequent 

OSEM iterations can then be performed using the end result of the previous OSEM iteration. 
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This approach was shown to accelerate convergence by a factor proportional to the number 

of subsets [40]. Effective iterations in OSEM are the product of subsets and iterations [41]: 

for example, three OSEM iterations using 18 subsets is virtually equivalent to performing 

54 MLEM iterations, whilst taking the same amount of time as only three MLEM iterations. 

OSEM is typically applied with small numbers of iterations (e.g. less than five) with a higher 

number of subsets (e.g. more than ten).  

 

The number of effective OSEM iterations applied affects the degree of convergence and 

the noise level in the image: an increased number of iterations achieves better convergence 

and contrast recovery, but at the cost of a higher level of noise. Convergence rates are also 

affected by the image distribution, and smaller objects require more iterations to reach 

convergence than larger objects [42]. The number of subsets/iterations used should 

therefore be tailored to the desired convergence/noise level and the specific diagnostic task 

[43].  

 

1.4.3 Matrices and Voxel Sizes 
PET image reconstruction can be performed with different matrix sizes, which determine 

the size of the voxels that make up the reconstructed image. The frame length and the 

number of transverse image slices in the frame, both of which are typically fixed, determine 

the size of the voxel in the z-direction. Smaller voxel sizes can be achieved by increasing 

the matrix size in the transaxial plane and/or reducing the transaxial FOV. This may be 

desirable, for example, in head and neck imaging, where both the area of interest and the 

potential lesions may be small. Smaller voxel sizes can improve PET spatial resolution; 

however, as voxel size decreases, the number of reconstructed events that contribute to 

each voxel also decreases, and hence the statistical noise in each voxel increases [17]. 

Therefore, a trade-off exists between spatial resolution and image noise when considering 

voxel sizes.  

 

1.4.4 Post Reconstruction Filtering 
Post reconstruction image filtering, or smoothing, is used to reduce the effects of noise on 

image interpretation and analysis [44]. Smoothing operations average local voxel values to 

reduce the effect of voxel-to-voxel variations in the reconstructed image [45]. This has the 

same effect as a low-pass filter, which removes high frequencies from the data. Smoothing 

reduces noise but this is at the expense of spatial resolution; high frequency detail is lost to 

the ‘blurring’. 

 

Post-filtering reconstructed images with a Gaussian kernel is the most common filtering 

method in PET clinical practice [17], [46]. This type of filter produces a weighted-average of 
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each voxel’s neighbourhood, with the average value weighted towards the central voxel 

values. Post reconstruction Gaussian filters are described in more detail in Chapter 6.  

 

1.4.5 Data Corrections 
The following corrections are typically performed within the iterative reconstruction loop in 

order to improve overall accuracy, uniformity of convergence [36] and preserve Poisson 

statistics  [47]–[49].  

 

1.4.5.1 Scatter Correction  
511keV photons are likely to undergo Compton scattering, which can change their direction 

without significantly reducing their energy [50]. The limited energy resolution of PET crystals 

means that some scattered photons will be accepted. Incorrect LORs can therefore be 

assigned, and true points of annihilation are lost. The number of scattered events registered 

depends on the size of the object being imaged (larger objects cause more photons to be 

scattered) and the width of the energy acceptance window. The proportion of accepted 

scatter coincidences is known as the scatter fraction, and can be as high as 50% in 3D-

mode acquisition [51].  

 

Scatter correction techniques include empirical measurement, subtraction using multiple 

energy windows, convolution, and scatter distribution modelling during iterative 

reconstruction techniques [29], [50]. Model-based scatter correction techniques, such as 

Monte Carlo simulations and Klein-Nishina formula-based corrections, are computationally 

intensive but are widely used in modern PET systems [30].  

 

1.4.5.2 Randoms Correction  
A random coincidence may be registered as a result of single photons from two separate 

annihilation events arriving at detectors within the CTW.  The true LORs are missed, and 

an incorrect LOR is registered instead. The rate of randoms increases with the square of 

the activity and is directly proportional to the size of the CTW.  

 

Random event rates can be estimated by using a second coincidence window, which delays 

the input from one of the detectors by a time period that is greater than the true coincidence 

window. Random correction is achieved by subtracting the counts measured in the delayed 

window from those measured in the true window [52]; however, this increases statistical 

noise in the subtracted data [53]–[55]. Another correction method is singles-based randoms 

correction, where the number of random events is estimated using the number of single 

events detected. This method has been shown to yield substantial improvements over the 

delayed-window method [53]–[55]. 
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1.4.5.3 Attenuation Correction  
Photon attenuation is the most significant cause of PET image quality degradation and 

affects both visual interpretation and quantitative accuracy. The degree of attenuation 

experienced by annihilation photons depends on the depth of the annihilation event within 

the attenuating structure and the linear attenuation coefficient (LAC) of the surrounding 

tissue. Activity at the periphery of an object is subjected to less attenuation than activity at 

depth. This can artificially reduce the detected counts for deep lesions.  

 

Attenuation of a particular LOR is independent of the position of the annihilation event along 

the LOR. Attenuation can therefore be corrected by creating an attenuation map, based on 

LACs along each LOR, and using it to correct the detected counts. Dual modality PET-CT 

scanners perform CT imaging of the patient to obtain an attenuation map. This also provides 

reporting clinicians with high-resolution structural data that can be used in conjunction with 

the functional PET data for anatomical localisation. CT data must be processed prior to 

attenuation correction, as the CT photons (typically 70keV→120keV) experience greater 

attenuation than 511keV photons. CT Hounsfield units are translated into 511keV LACs, 

typically using a combination of segmentation and scaling [56]–[58]. Spatial resolution of 

the CT attenuation correction (CTAC) map is then smoothed to a resolution that matches 

the PET data [59]. Attenuation correction factors are generated by forward projecting along 

the LORs through the CTAC map and applied to acquired data during the reconstruction 

process.  

 

1.4.5.4 Normalisation Correction 
Thousands of scintillation crystals are used in PET detection systems. Non-uniformities in 

individual crystals, geometric variations and detector electronics contribute to variations in 

the efficiency of the system LORs [28], [59]. Normalisation is performed by exposing every 

possible LOR to a uniform positron-emitting source, for example by rotating a positron-

emitting rod source around the detector ring or by placing a uniform cylindrical phantom at 

the centre of the FOV [60]. Correction factors, or normalisation coefficients, are calculated 

for each individual LOR and applied to acquired PET data. Normalisation data is often 

incorporated into the system matrix [36].  

 

1.4.5.5 Dead Time Correction  
The ‘dead time’ of a system describes total time taken to detect a photon, generate an 

electronic pulse, determine the energy and spatial position of the photon, record a count 

and determine that a coincidence event has occurred [30], [61]. During this time, the 

detection system is unable to process subsequent events. The detection system therefore 

has a limit to the rate at which events may be processed [29]. ‘Dead time losses’ describes 
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the count losses experienced due to scintillation decay time and the limited speed of 

processing electronics. The effects of these limitations intensify as the count-rate increases. 

Mathematical corrections can be used to compensate for dead time effects by applying 

multiplicative factors to the measured counts [30]. However, using crystals with faster decay 

times and using faster electronics can reduce the system’s dead time directly. Dead time 

data is often incorporated into the system matrix [36]. 

 

1.4.5.6 Decay Correction  
A whole-body scan may take over 30 minutes to acquire. The radionuclides used in PET 

have short half-lives and therefore counts acquired in each bed position must be corrected 

for radioactive decay.  

 

1.5 Quantitative PET 
 

A major advantage of PET imaging is the ability to quantify the accumulated 

radiopharmaceutical within tissue, provided that the corrections described in the previous 

section are performed correctly, allowing lesions to be classified according to their metabolic 

rate [28]. Although visual inspection of PET images is very important for diagnosis and 

response assessment, many studies have shown that quantification allows objective 

assessment of lesion characterisation, prognosis and response to treatment [62]. 

 

1.5.1 Well Counter Calibration 
The PET imaging system must be calibrated to convert measured count densities into 

activity concentrations. Well Counter Calibration (WCC) matches the radioactivity 

measured by the radionuclide calibrator (used to measure patient injections) to the 

radioactivity measured by the PET scanner [63], [64]. WCC correction factors are used to 

convert image voxel values into a measure of absolute activity concentration per voxel (e.g. 

Becquerels per millilitre, Bq/ml) [65]. Accurate WCC is crucial to ensure the accuracy of the 

PET data. WCC is discussed in more detail in Chapter 5, which also examines the effects 

of reconstruction parameters on voxel values.  

 

1.5.2 Standardised Uptake Values 
Absolute quantification is complex and therefore is difficult to achieve in routine clininal 

imaging. However, a semi-quantitative measurement known as the Standardised Uptake 

Value (SUV) is widely used: 
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𝑆𝑈𝑉 = 	
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝑖𝑛	𝑇𝑖𝑠𝑠𝑢𝑒	

𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑	𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦
𝐵𝑜𝑑𝑦	𝑆𝑖𝑧𝑒;

 Equation 1.1 

 

SUVs are measured by drawing a region around the tissue of interest (e.g. tumour) using 

image analysis software. The measured radioactivity within the region is then normalised to 

the average radioactivity concentration throughout the patient’s body. Measurements can 

be based on body weight, lean body mass or body surface area, with body weight the most 

frequently used [66]. 

 

There are a number of different parameters used for expressing SUVs: 

• SUVmax: based on the maximum voxel value within the defined region  

• SUVmean: based on the average voxel value within the defined region 

• SUVpeak: based on the local average of a small, fixed area of voxels which surround the 

voxel with the highest activity [6] 

SUVmax is currently the most commonly used SUV measurement because it is less observer 

dependent and more reproducible than the other measurements [66], [67]. However, the 

‘single voxel’ nature of SUVmax makes it vulnerable to statistical noise in the image data [68].  

 

The following factors can introduce variability into SUV measurements in 18F-FDG studies: 

• Region of interest (ROI) placement, shape and size (i.e. selected by visual judgement) 

• Partial volume effects (discussed later in this chapter) 

• Image reconstruction parameters 

• Uptake period between radiopharmaceutical administration and image acquisition  

• Blood glucose level 

• Patient size 

SUVs should therefore be used with caution when assessing malignancy [14], [59]. 

 

1.6 PET Spatial Resolution Limitations 
 

Spatial resolution is a measure of an imaging system’s ability to accurately distinguish 

between two close together objects and observe their details [69]. The point spread function 

(PSF) is used to describe the response of the imaging system to a point source. Spatial 

resolution is typically described by the full width half maximum (FWHM) of the PSF at 

various positions within the FOV [70]. Figure 1.5 shows an ideal point source and its 

frequency spectrum (green lines): all spatial frequencies are required for an accurate point 

source representation [71]. A detection system with a typical Gaussian PSF would produce 

the PSF shown by the red lines in Figure 1.5. Its frequency spectrum shows the loss of high 

frequency components, which results in the loss of fine detail in the reconstructed images. 
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Figure 1.5: Point source in spatial and frequency domains 
 

There are a number of factors that affect the spatial resolution of PET images. 

 

1.6.1 Emission Process 
The distance travelled by a positron prior to annihilation introduces an inherent spatial 

resolution limitation. Coincidence detection relates to the site of annihilation rather than the 

site of the positron’s parent nucleus. Higher energy radionuclides have greater positron 

ranges in tissue than lower energy radionuclides. For example, 18F (0.6mm mean positron 

range) will produce images with better spatial resolution than 15O (1.5mm mean positron 

range).  

 

A second inherent spatial resolution limitation results from non-colinearity of the annihilation 

photons. Positrons typically have some residual momentum at the point of annihilation. This 

causes a small deviation from 180° between the anti-parallel annihilation photons, which in 

turn causes the LOR between the two detectors to be slightly displaced from the point of 

annihilation. The maximum deviation from 180° is ±0.25° [72]. The effect of non-colinearity 

worsens as the size of the detector ring increases. For an 80cm FOV, non-colinearity 

amounts to ≈ 1.8mm [61].  

 

1.6.2 Detection Process 
The size of the scintillation detector elements has a major impact on spatial resolution: 

smaller detectors create thinner, more precise and more numerous LORs, improving 

sampling of the object in the imaging FOV. Smaller detectors can therefore increase spatial 

resolution [73]; however, this must be optimised with respect to sensitivity [74]. Furthermore, 

detector response to a point source is dependent on the source’s position within the FOV, 

as shown in Figure 1.6 (A). The response to a point source mid-way between two detectors 

is triangular, with a FWHM equal to half of the detector width. The response worsens as the 

point source moves towards either of the two detectors (i.e. closer to the FOV edge) and 

becomes trapezoidal in shape, with a FWHM matching the detector width [29], [75]. 

Therefore, for a detector width d, resolution is ≈ d/2 at the centre of the FOV and ≈ d at the 

face of the detectors.  
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Figure 1.6: Detector effects on spatial resolution 
 

Parallax effects, or radial elongation, also contribute to spatial resolution variability 

throughout the FOV, as shown in Figure 1.6 (B). Photons incident perpendicularly on a 

particular crystal are more likely to be absorbed within that crystal (shown in green), 

producing a true LOR. However, photons that enter a particular crystal at an acute angle 

are more likely to penetrate into the neighbouring crystal(s) before being absorbed (shown 

in pink). The depth-of-interaction (DOI) within the crystals is unknown and is not accounted 

for, resulting in an incorrect LOR (dotted line). The FWHM of point sources located nearer 

the FOV edges are therefore broadened.  

 

1.6.3 Partial Volume Effects 
Partial Volume (PV) effects refer to phenomena that cause voxel intensities to differ from 

what they should be: smaller objects can appear to have lower activity concentrations than 

larger objects with equal activity concentrations [28]. PV effects lead to underestimation of 

the activity concentration of lesions smaller than twice the system spatial resolution FWHM 

[17], [32]. The extent of PV effects depend on the lesion size, the contrast between the 

lesion and its background, and the system spatial resolution [76]. The term ‘partial volume 

effect’ typically refers to two distinct phenomena [77]:  

1. Three-dimensional image blurring introduced by the finite spatial resolution of the 

imaging system 

2. Sampling effect of voxel sizes (tissue fraction effect) 
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Image blurring as a result of limited spatial resolution causes ‘spillover’ between regions, 

which in turn causes small sources to appear larger and less intense.  As spatial resolution 

degrades towards the edges of the FOV, PV effects also become more significant at FOV 

edges [17].  

 

Sampling the radiotracer distribution onto a voxel grid also causes PV effects. Most voxels 

will contain different types of tissues (tissue fraction effect [77]). Each voxel’s signal intensity 

is the average of all underlying tissues within the voxel. Voxels around the edge of a source 

will contain both source and background tissue. Large voxels are more likely to contain a 

mixture of different tissue types than small voxels. Averaging source and background tissue 

signals causes the source to appear larger and less intense than it should be, which 

contributes to the ‘spilling out’ effect. Activity from background tissue can also ‘spill in’ to 

the source tissue, which may partially compensate for the ‘spill out’ effect, depending on 

the background activity concentration.  

 

The use of smaller voxels reduces the tissue fraction effect, and therefore minimises PV 

effects; however, this must be balanced with the associated increase in statistical noise. 

Motion correction techniques, such as respiratory and cardiac gating, can be used during 

acquisition to minimise blurring caused by physiological movement. There are many 

methods for PV correction currently under investigation, but these are yet to gain 

widespread acceptance in clinical PET imaging. PV correction can be applied as part of the 

reconstruction algorithm: for example, the detector PSF response can be modelled and 

incorporated into the reconstruction algorithm. This type of correction is described in more 

detail later in this chapter. Alternatively, PV correction can be applied as a post-

reconstruction technique: for example, high-resolution structural images (such as CT 

images) can be used to transfer high frequency information [78]. 

 

1.7 Developments of New PET-CT Technology 
 

There have been many technological advances made in commercially available, clinical 

PET-CT systems in recent years. Some of these advances are beyond the scope of this 

thesis; for example, the use of solid state photodetectors instead of PMTs [79], [80] and 

regularised reconstruction algorithms that incorporate penalty terms to suppress noise while 

reaching convergence [81]. However, there are two major developments that are of 

particular interest to this thesis: Time of Flight imaging and Point Spread Function 

modelling. 

 

 



Chapter 1   38 

1.7.1 Time of Flight  
In conventional PET imaging, a LOR contains no positional information for location of the 

annihilation event along the line: the event may have occurred at any point along the LOR. 

Time of Flight (TOF) techniques attempt to localise the annihilation event along the LOR 

using the difference in photon arrival times at the detectors [47], [59]. The difference in 

photon arrival times must be measured accurately, and therefore TOF-PET requires better 

timing resolution than non-TOF PET. Fast crystals, such as LSO, and faster electronics 

have enabled TOF to be used clinically in recent years. Figure 1.7 illustrates the principle 

of TOF-PET. 

 

Figure 1.7: Principles of Time of Flight 
 

An annihilation event originates at a distance Δd from the midpoint between two detectors, 

which are separated by distance D (d1 + d2). Photon 1 (red) travels distance d1 before 

being detected by Detector 1 and Photon 2 (green) travels distance d2 before being 

detected by Detector 2. Photon 1 therefore travels 2Δd further than Photon 2. If the 

difference in arrival times (Δt) can be measured, the distance Δd can be calculated: 

 

 
Equation 1.2 

With a fast enough detection system, TOF-PET could theoretically localise annihilation 

events to within a single image voxel: timing resolution of 10ps could isolate events to within 

a 3mm voxel. However, limitations in timing resolution introduce blurring in the estimation 

of Δd [59], and hence uncertainty of the position of the annihilation event. Modern LSO 

crystal-based PET scanners are currently capable of timing resolutions of between 500ps 

and 600ps [82], [83], giving a positional uncertainty of between 7.5cm and 9cm.  

 

TOF restricts the backprojection of an acquired event to a small segment of the LOR, 

instead of blurring the event over the entire LOR, as illustrated in Figure 1.8. This reduces 

the statistical noise in the reconstructed image if the LOR segment is shorter than the size 

of the emission source [27]. The benefits of TOF-PET are increased Signal to Noise Ratios 

2
tcd D

=D
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(SNR), lower random coincidence rates and the ability to handle higher count rates [84]. 

TOF is of particular benefit when imaging larger patients, whose increased attenuation 

properties adversely affect image quality when conventional PET is used. TOF information 

can be used to improve image quality with standard acquisition times, or to achieve the 

same image quality with reduced acquisition times [85].  

 

Figure 1.8: Positional uncertainty improved by TOF 
 

The use of TOF means timing information is applied to each correction step within the 

iterative reconstruction loop (e.g. normalisation, randoms, deadtime, scatter, attenuation). 

As a result, TOF sinogram datasets are approximately 60 times larger than those containing 

non-TOF data [47]. The use of TOF data in clinical PET therefore requires significant 

storage space and processing power compared to non-TOF PET. 

 

1.7.2 Point Spread Function Modelling  
Techniques to correct for limitations in spatial resolution arising from the emission/detection 

process have been developed in recent years. A model of the system’s PSF can be used 

by the reconstruction algorithm for such corrections. This requires knowledge of the PSF at 

every point throughout the FOV, as PSF is spatially dependent. The PSF model can be 

constructed using analytical calculations, Monte Carlo simulations or experimental 

measurement using point sources [19], [49]. The model can be applied in image space [86], 

[87], but is more commonly applied in sinogram space [49], [88] by incorporating PSF 

information into the system matrix. Such corrections should improve the uniformity of spatial 

resolution throughout the FOV [89] and reduce partial volume effects [37].  

 

A PSF system matrix relates each voxel to more LORs than a non-PSF system matrix. 

Consequently, the reconstruction problem becomes even more ill-posed and requires more 
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iterations to reach convergence [90] [91]. Furthermore, neighbouring voxels in PSF-

corrected images demonstrate greater correlations than uncorrected images, which 

changes the noise texture of the images [49], [92], [93]. At early iterations the benefit of 

PSF modelling is noise reduction, and not increased resolution [94]. 

 

A significant disadvantage of PSF correction is the introduction of artefactual edge 

enhancements known as Gibbs artefacts, visualised at the borders of tissues with large 

differences in intensity. Such artefacts may be caused by imperfections in the system matrix 

[95] and/or recovery of frequencies attenuated by the initial blurring process [71]. High 

frequency data lost in the initial detector blurring process cannot be recovered by PSF 

correction; however, the amplitude of the retained frequency content can be corrected. This 

produces a ‘deblurred’ PSF, which is closer to the ideal point source response, and 

improves the resolution of the reconstructed images. However, a steep cut-off in the 

frequency domain creates oscillating tails (ringing artefacts) in the spatial domain, as shown 

in Figure 1.9.  

 

Figure 1.9: PSF correction with steep frequency domain cut-off 
 

The effect of Gibbs artefacts is dependent upon the size of the lesion being considered. 

Enhanced edges may cause lesions to have apparent reduced activity at their centre. 

Sufficiently small lesions may have overestimated activity concentrations, caused by the 

summation of edge artefacts from opposing lesion boundaries [37]. Post-reconstruction 

filtering can mitigate these artefacts; however, care must be taken when selecting the filter 

width, as excessive smoothing will negate any advantage gained from PSF modelling. 

 

1.8 Optimisation of PET Reconstruction 
 

The West of Scotland PET Centre in Glasgow opened in 2007 with a General Electric 

Medical Systems (GEMS) Discovery STE PET-CT system. This system used BGO crystals, 

and therefore had no TOF capability. The reconstruction software included OSEM iterative 

reconstruction, although PSF modelling was not available clinically at that time. In 2011, a 

second PET-CT system was installed in Glasgow: the GEMS Discovery 690. This new 
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system used lutetium-based crystals instead of BGO, and the reconstruction software had 

optional TOF capability. Furthermore, the Discovery 690 OSEM reconstruction algorithm 

had the ability to apply PSF corrections, if desired. This new PET-CT system therefore 

presented Glasgow with significant advancements in technology. GEMS suggested both 

TOF and PSF corrections should be applied for general whole-body 18F-FDG oncology 

imaging, in combination with a specific post-reconstruction filtering strategy, matrix size and 

number of effective iterations. However, the reconstruction parameters suggested by 

GEMS had not been widely accepted by the PET-CT imaging community and lacked 

justification through independent peer-reviewed studies. The use of PSF in particular was 

controversial as it was known to overestimate the activity in small lesions. There was, 

therefore, a requirement for the West of Scotland PET Centre to assess the effects of the 

newly available technology in order to select the optimum strategy for image reconstruction.  

 

OSEM iterative reconstruction techniques are widely used in clinical PET practice. 

However, many thousands of different combinations of the selectable reconstruction 

parameters are possible, which makes their effects on reconstructed images challenging to 

assess. The optimal combination of such reconstruction parameters is dependent upon the 

clinical task being undertaken [96]: for example, the detection of small lesions for staging 

disease is likely to require a different combination of reconstruction parameters to the 

accurate quantification of lesion activity to assess treatment response. Furthermore, 

different areas of the human body have different attenuation and scatter properties, as well 

as variable 18F-FDG physiological uptake: abdominal imaging presents different challenges 

to head and neck imaging. Image optimisation is, therefore, a significant challenge. 

Furthermore, whilst there have been many publications assessing the effects of various 

reconstruction parameters, there is no standardised methodology accepted by the PET-CT 

community for the assessment and optimisation of reconstruction parameters.  

 

1.9 Liver Imaging in Cancer Patient Management 
 

The liver is the most common site of haematogenous metastatic spread due to its rich blood 

supply [97], [98], most commonly from colorectal cancer (CRC), but also from cancers 

elsewhere in the GI tract, breast, lung and lymphomas. Globally, CRC is the third most 

common type of cancer and the fourth most common cause of cancer-related death [99]. 

1.4 million new cases were diagnosed globally in 2012, which is projected to rise to 2.2 

million new cases by the year 2030 [100]. Approximately 50-60% of CRC patients will 

develop liver metastases at some point in their disease [97]. Early diagnosis of liver 

metastases is crucial to effective patient management, as aggressive resection of liver 

metastases has been shown to improve survival. The only curative treatment for CRC liver 
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metastases is surgery, which can increase 5-year survival rates by up to 50% [101]. 

However, only approximately 20% of these patients will be suitable for resection (typically 

when patients have a solitary liver lesion, or a small number of lesions confined to a single 

lobe [102]). Incomplete resection does not improve patient survival, so knowledge of the full 

extent of liver disease is of vital importance when determining the most appropriate course 

of patient management [103]. Patients who are not suitable for resection may benefit from 

other treatment strategies, such as chemoembolization, radiofrequency ablation or system 

chemotherapy [104]. The ability to detect small, low intensity lesions is therefore critical [8]. 

 

MRI is well established as the gold standard for evaluating hepatic lesions [98]. However, 

the value of PET-CT in the management of hepatic metastases has also been recognised. 

A study by Yang et al [105] demonstrated that although MRI has superior spatial resolution, 
18F-FDG PET and MRI had similar performance in terms of liver lesion detection. A study 

by Kinkel et al [106] demonstrated that 18F-FDG PET was, in fact, more sensitive than 

ultrasound, CT or MRI for detecting liver metastases from colorectal, gastric and 

oesophageal cancer. PET imaging currently plays an important role in determining a 

patient’s eligibility for surgery (for example, to determine the number and resectability of 

lesions and to rule out extra-hepatic disease) and has been shown to influence patient 

management by multiple studies [107], [108].  

 
Normal liver tissue tends to have a uniformly mottled appearance in 18F-FDG imaging [109], 

with mild to moderate uptake (typical SUVmean 1.3 – 3.0, SUVmax 3.0 – 4.0) [14]. Increased 
18F-FDG uptake in focal liver lesions may therefore be difficult to distinguish from healthy 

liver tissue due to this relatively high background activity. The detection of small lesions 

within the liver therefore requires a well-chosen balance between spatial resolution and 

image noise. The clinical importance of liver lesion detection, combined with the challenging 

nature of liver image interpretation, provided the motivation for selecting liver lesion 

detection as the clinical focus of the reconstruction optimisation project undertaken in this 

thesis. 

 

1.10 Aims of Thesis 
 

The overall aim of this thesis is to establish techniques which will facilitate image 

optimisation whilst considering clinical image context.  

 

The primary aim is to develop a generic methodology to assess and optimise PET image 

reconstruction that can be applied to any clinical application.  
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The secondary aim is to optimise image reconstruction using the GEMS Discovery 690 

PET-CT system, with respect to the detection of small liver lesions in 18F-FDG-PET 

oncology imaging. 

 

1.11 Organisation of Thesis 

 

Chapter 2 reviews the literature on PET reconstruction optimisation and demonstrates the 

lack of consensus in the field. This chapter highlights that the optimum choices of 

reconstruction parameters for different clinical scenarios have yet to be established. 

Furthermore, this chapter highlights that there is no universally accepted approach to 

optimising PET reconstruction for a given clinical application.  

 

Chapter 3 outlines the materials and methods used throughout this thesis. This describes 

the GEMS Discovery 690 system and the phantoms used to assess reconstruction image 

quality. The methods of image analysis common to many of the subsequent chapters are 

also described here.   

 

Chapters 4 – 11 outline the practical work undertaken for this thesis. Each of these chapters 

begins with short background section and literature review specifically focussing on the 

topics being addressed in that chapter. 

 

Chapter 4 investigates the effects overlapping image frames have upon image quality and 

justifies the choice of overlap size used for subsequent phantom and patient acquisitions. 

This chapter also proposes an amendment to European guidelines to account for the 

relationship between image noise and slice overlap when calculating minimum 18F-FDG 

injection activities. Chapter 5 assesses how different combinations of reconstruction 

parameters affect the quantitative accuracy of reconstructed voxels and aims to validate 

the choice of reconstruction parameters recommended by GEMS for WCC. Chapter 6 

assesses how different combinations of reconstruction parameters affect different metrics 

of image noise and presents a novel finding regarding the GEMS post reconstruction 

Gaussian filter implementation.  

 

Chapter 7 develops a methodology for assessing spatial resolution in a clinically relevant 

manner. Chapter 8 then uses this methodology to assess how different combinations of 

reconstruction parameters affect spatial resolution.  

 

Chapter 9 uses a phantom containing simulated lesions to assess how different 

combinations of reconstruction parameters affect lesion recovery. The experimental set-up 
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was designed to replicate the activity concentrations typically measured within patient livers. 

The findings of this chapter, combined with those of the preceding chapters, were used to 

select two reconstruction strategies which merited assessment using patient data. This 

chapter also recommends the use of specific image quality metrics to predict human 

observer preferences for lesion detection. Chapter 10 then compares the lesion phantom 

to patients with varying body sizes to predict which patients the recommended 

reconstructions will be most applicable to.  

 

An observer study using patient data is performed in Chapter 11. Experienced PET 

reporting clinicians were involved in image assessment which compared different 

reconstruction strategies. Image quality, reporting confidence and lesion detection are all 

evaluated. The results of this study are used to recommend a particular reconstruction 

strategy to optimise small liver lesion detection. 

 

Finally, Chapter 12 discusses the major findings of the thesis and draws relevant 

conclusions. It presents a generic methodology for assessing and optimising reconstruction 

techniques, which can be followed for any clinical scenario. Furthermore, it presents an 

optimised reconstruction strategy for liver lesion detection. Chapter 12 also outlines further 

work to be undertaken in the continuation of this research. 

 



 

 

 

 

 

 

 

 

Chapter 2 : Literature Review 
 

Image reconstruction parameters affect the noise, spatial resolution, lesion-to-background 

contrast and quantitative accuracy of PET images. This in turn affects the ability of an 

observer to detect true lesions whilst minimising false positives. Convergence can vary as 

a function of patient size, lesion size and uptake, and image reconstruction algorithm. 

Theoretically, each lesion within a patient could have a different optimal reconstruction; 

however, clinical reconstruction strategies often use a fixed reconstruction method that 

provides reasonable images over a range of imaging scenarios [110], [111]. Many studies 

have investigated the effects of various reconstruction parameters upon image quality: 

however, there is no consensus in the literature as to which reconstruction parameters 

optimise lesion detection. 

 

This chapter provides an overview of the major themes and discusses publications of 

significant relevance to this thesis. Subsequent experimental chapters include further 

literature reviews that specifically target the particular topic being addressed.  

 

2.1 International Guidance for 18F-FDG PET Reconstruction  
 

The European Association of Nuclear Medicine (EANM) published updated guidelines for 
18F-FDG tumour imaging in 2015 [14], which have also been adopted by the United States’ 

Society of Nuclear Medicine and Molecular Imaging (SNMMI). These guidelines aim to 

standardise image quality for oncology between centres taking part in multicentre trials, 

rather than optimise reconstruction on specific PET-CT systems for specific clinical tasks. 

The guidelines make the following image reconstruction recommendations:  
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• Reconstructed voxel sizes should be within 3.0 – 4.0mm in any direction 

• TOF should be used, when available 

• PSF may be applied, but may require additional filtering for multicentre studies 

• The FWHM of post reconstruction filters should not exceed 7mm 

No specific guidance is included for z-axis filtering or for the number of reconstruction 

iterations.  

 

These recommended reconstruction parameters originate in part from a 2013 report by the 

Quantitative Imaging Biomarkers Alliance (QIBA) [112], which stated that voxels sizes 

should be between 3mm and 4mm in all three dimensions for whole body imaging. 

However, a subsequent QIBA report in 2014 [113] stated that voxels of between 2mm and 

3mm in all three dimensions should be achievable with current technology (as long as the 

smaller voxels do not introduce artefacts). The 2014 QIBA voxel size recommendation was 

not adopted by the 2015 EANM guidelines.  

 

To the author’s knowledge, there are no other published guidelines which specify 

reconstruction parameters to be used for 18F-FDG tumour imaging. In particular, there are 

no accepted guidelines for liver imaging or for maximising small lesion detection. 

 

2.1.1 Accreditation for Multi-Centre Clinical Trials 
Visual assessment of PET images may be sufficient for staging and restaging patients 

[114]–[116]. However, the accuracy of visual interpretation is user-dependent, and therefore 

difficult to use in multi-centre clinical trials. Evaluation of solid tumour response to therapy 

is challenging and requires some form of quantification [114]. Diffuse increased liver uptake, 

which could represent a variety of conditions, could be overlooked when relying on visual 

interpretation only [117]. Quantitative analysis provides objective and more accurate 

measurements with less user-dependence than visual assessment alone. Applying such 

analyses to baseline and early response-to-treatment scans can potentially identify 

responding and non-responding patients more accurately and improve the prognostic value 

of early scans [118]. SUVs are the most commonly used semi-quantitative parameter for 

analysis of 18F-FDG uptake [14]. Current recommendations are that tumour SUVs should 

be reported, and that sources of SUV bias and variance should be well understood and 

controlled [119]. The EANM tumour imaging guidelines recommend that SUVmax is reported 

for each lesion, when deemed clinically relevant [14]. However, other metrics such as total 

lesion glycolysis (TLG) and metabolic tumour volume (MTV) are now being increasingly 

used [120].  
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EANM guidelines refer to EANM Research Ltd (EARL) guidelines for scanner accreditation, 

which are followed by imaging centres that wish to participate in multi-centre clinical trials 

[121], [122]. The EARL guidelines outline a specific quality control phantom acquisition 

using a National Electrical Manufacturers Association (NEMA) International 

Electrotechnical Commission (IEC) Body Phantom. This phantom is a fillable torso-sized 

shell containing six fillable spheres of varying diameters and is widely used to assess PET 

image quality. This phantom is discussed in more detail in Chapter 3. Centres seeking 

EARL accreditation must ensure their image reconstruction methodology produces images 

that meet EARL specifications in terms of SUV recovery and noise measurements.  

 

Other accreditation programmes include those of the National Cancer Research Institute 

(NCRI) in the UK and the SNMMI Clinical Trials Network in the United States. NCRI 

accreditation closely follows EARL procedures, while SNMMI accreditation uses a novel 

anthropomorphic chest phantom [123]. Glasgow’s Discovery 690 PET-CT system 

successfully received accreditation from both NCRI and SNMMI; however, PSF corrections 

had to be switched off to pass both accreditations. NCRI accreditation initially failed when 

PSF was applied, as the recovered SUVmax of the spheres exceeded the maximum limits; 

this was particularly true for the smaller spheres (it should be noted that the acceptable 

range of results for NCRI are within two standard deviations of the ‘average’ accredited 

scanner result). SNMMI requested PSF to be switched off at the outset.  

  

Accreditation programmes assess areas of background activity as well as lesion recovery. 

Both SNMMI and NCRI measure SUVmean in an area of uniform background activity within 

the phantom. The scanner’s calibrations are acceptable if the measured SUVmean equals 

1.0 ± 10% (i.e. within 10% of the expected SUVmean value when radioactivity is uniformly 

distributed throughout the object in the FOV). This is a widely accepted technique for 

assessing the quantitative accuracy of background voxel values [124], but it does not 

quantify noise within the image. EARL accreditation assesses image noise by measuring 

the coefficient of variation (COV) of background voxel values. Their upper COV limit for 

acceptable image noise is 15% (when background activity concentration is chosen to be 

similar to that of a typical patient). However, this singular method of noise measurement 

does not fully assess the noise characteristics of PET images, as will be discussed. 

 

Guidelines and publications focussing on multi-centre trials prioritise consistency amongst 

participating centres over the optimisation of any particular PET-CT system for any 

particular clinical application. Centres which adopt new technology as it emerges may find 

themselves unable to fully utilise these new techniques for clinical trial patients if their 

optimised reconstructions, though improved, are inconsistent with current trial standards. 
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As new technologies become more widely adopted (following thorough evaluation in peer-

reviewed literature), accreditation programmes should re-evaluate their standards to 

account for such advancements. The work undertaken in this thesis will contribute to the 

evidence-based evaluation of reconstruction methods.  

 

2.2 Assessment of PET System Performance 
 

All newly installed PET systems undergo a set of acceptance testing procedures. These 

procedures evaluate different aspects of the system’s performance and compare the results 

against the manufacturer’s specifications. Acceptance tests are typically repeated as part 

of the system’s routine quality control procedures [125]; for example, manufacturers may 

recommend repeating these tests on an annual basis. Standard procedures for acceptance 

testing are outlined by NEMA documentation [70] and use a specific set of phantoms. Tests 

include spatial resolution, scatter fraction, sensitivity and image quality. It should be noted 

that while the 2012 version of the NEMA acceptance testing standards applies to this thesis, 

the standards were updated in 2018. 

 

Whilst NEMA style tests are useful for comparing an individual system’s performance 

against its specifications, and for comparing systems produced by different manufacturers, 

many aspects of the tests do not reflect clinical imaging conditions. For example, the NEMA 

test for spatial resolution uses point sources in air, which are reconstructed using filtered 

back projection. Typical NEMA point source FWHM results are in the order of between 3mm 

and 5mm; however, this methodology does not represent a clinical scenario.  

 

A similar disconnect between NEMA acceptance testing protocols and clinically realistic 

imaging conditions exists for conventional gamma cameras [126]. An attempt was made to 

address this by the Gamma Camera Assessment Team (GCAT), established by the Medical 

Devices Agency (MDA) [127], [128]. GCAT evaluated and compared different gamma 

camera systems using a more clinically-orientated protocol; for example, scatter media was 

used in their assessments of spatial resolution. To the author’s knowledge, there has been 

no comparable attempt to standardise the assessment of PET system performance in a 

clinically relevant manner.  

 

2.3 Optimisation of PET Reconstruction Parameters 
 

Many studies have investigated the effects of various combinations of reconstruction 

parameters upon different aspects of image quality. Qualitative and quantitative analysis 

has been undertaken on both phantom studies and patient studies. Although there are some 
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commonly used methodologies in the literature, as shall be demonstrated in this chapter, 

there is no universally accepted approach to assessing and optimising reconstruction 

parameters for a particular clinical task.  

 

Various image metrics have been used by quantitative assessments in the literature. 

Phantom studies with known sphere and background activity concentrations often use 

recovery coefficients to assess image convergence and the accuracy of voxel values within 

lesions (100% recovery indicates voxel values exactly match the known activity 

concentration). Image noise is typically assessed using ROIs in regions of background 

activity to calculate either voxel-to-voxel noise metrics (such as COV or standard deviation) 

or region-to-region noise metrics (such as background variability). Lesion detection is often 

assessed using contrast and SNR, as well as observer studies using both human or 

mathematical observers. SUVs are frequently used in both phantom and patient studies. 

The metrics used in this thesis are discussed in more detail in the following chapter.  

 

2.3.1 TOF, PSF and Effective Iterations 
The effects of TOF and PSF corrections have been assessed by many studies. As these 

corrections affect image convergence, they are often studied in conjunction with the number 

of effective iterations.  

 

Several studies have demonstrated TOF reconstructions require fewer effective iterations 

to reach convergence than non-TOF reconstructions. For example, a study by Bettinardi et 

al using the Discovery 690 [19] found that TOF required between 54 and 90 effective 

iterations to reach convergence, while the non-TOF reconstructions typically required > 90 

effective iterations. This study also demonstrated that lesions in TOF reconstructions 

converged to more accurate values than the non-TOF reconstructions. Studies by Jakoby 

et al [111], Surti et al [129], Karp et al [130], Kadrmas et al [131], Lois et al [18], Akamatsu 

et al [132] and Schaefferkoetter et al [8], using a variety of PET-CT systems, all 

demonstrated similar results when TOF was applied with increasing iterations.  

 

Karp et al [130] and Lois et al [18] noted that, for the same number of effective iterations, 

the voxel-to-voxel noise in the TOF reconstructions was greater than that of the non-TOF 

reconstructions. This is as a result of TOF’s faster convergence. Wilson and Turkington 

[133] advise that when comparing TOF and non-TOF image quality, the number of effective 

iterations is a poor choice to equalise. However, even when effective iterations are 

equalised, studies show the increase in noise as a result of applying TOF is typically offset 

by the improvement in the lesion signal, leading to improved lesion signal-to-noise ratios 

[18], [43], [134].   
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Several studies report that TOF is of particular advantage when imaging large objects. 

Bettinardi’s study [19] compared large (27cm x 39cm x 30cm) and small (24cm x 30cm x 

24cm) torso phantoms and observed that TOF produced a greater improvement in lesion 

detection in the larger phantom compared to the smaller phantom. A patient study by Surti 

et al [110] found that TOF imaging led to improvements in both liver and lung lesion 

detection, and the extent of the improvement increased as the patient size increased. 

Similar findings were observed by Jakoby et al [111], Karp et al [130], Lois et al [18] and 

Schaefferkoetter et al [8]. However, a phantom study by Wilson and Turkington [133] 

assessed the impact of TOF on the SNR of small spheres in a range of phantom sizes and 

concluded that no TOF image quality improvement is expected for activity diameters of ≤ 

17.5cm. Prieto et al [135] and Bettinardi et al [19] assessed images of a brain phantom 

(18cm diameter) and found that TOF reconstruction results were similar to those of non-

TOF reconstructions, both quantitatively and qualitatively.  

 

In contrast to TOF, PSF modelling has been shown to increase the number of effective 

iterations required to reach convergence. Studies by Rapisarda et al [86], Akamatsu et al 

[132], [134], Bettinardi et al [19] and Kenny and McGowan [136] demonstrated PSF 

algorithms require high numbers of effective iterations to reach convergence (e.g. >180 

effective iterations on the Discovery 690). At these high numbers of effective iterations, the 

recovery of hot lesions exceeded that of the TOF-only reconstruction; however, some 

studies noted the time taken to perform the required effective iterations may be impractical 

in the clinical setting. Patient studies by Andersen et al [137], Kawashima et al [138] and 

Sheikhbahaei et al [139] did not investigate the effect of varying effective iterations, but did 

demonstrate PSF increased lesion SUVs (both mean and maximum). 

 

Several studies have assessed qualitatively the noise in PSF reconstructions and 

concluded the noise has a more ‘correlated’ appearance than non-PSF reconstructions [19], 

[49], [92], [93]. Noise has been assessed quantitatively by several studies, and the 

conclusions drawn depend upon the method of noise measurement. Akamatsu et al [134], 

Prieto et al [135], Rapisarda et al [86] and Panin et al [140] all used voxel-to-voxel 

measurements and concluded that PSF improves image noise. Sureau et al [87] noted that 

PSF increased correlations between adjacent voxels, and therefore increased spatial 

homogeneity within uniform background regions. A study by Tong et al [92] found that PSF 

reduced noise when measured by voxel-to-voxel techniques; however, PSF did not improve 

noise measured using region-to-region techniques. Rahmim and Tang [93] state that the 

use of voxel-to-voxel noise measurements may overstate image improvements as a result 

of PSF: for example, human observers may not agree that correlated background activity 

improves image quality.  
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Studies have also shown that PSF has led to increased recovery of small objects. Lasnon 

et al [141] noted that the most pronounced PSF advantage in clinical scans was on the 

quantitative values of sub-centimetre nodes. Bellevre et al [142] assessed the use of PSF 

in staging the axilla in breast cancer patients and found that PSF performed better than 

non-PSF in detecting nodes < 7mm. Rapisarda et al [86] and Sureau et al [87] found that 

PSF increased contrast recovery, especially for the smallest lesions, when compared to 

non-PSF. Kenny and McGowan [136] assessed PSF on a Discovery 690 using a NEMA 

phantom and observed significant increases in contrast recovery for the smaller spheres. 

They also observed small lesion SUVmax increases of up to 78% in patient data. 

 

However, there are concerns about PSF edge artefacts that may cause over/undershoots 

in voxel values near sharp boundaries in the reconstructed images. These artefacts can 

cause hot structures within an image to have enhanced edges and colder centres. Nagaki 

et al [143], Bettinardi et al [19] and Rapisarda et al [86] all observed overemphasis of voxel 

values at high contrast boundaries when PSF was applied. When the hot structure/lesion is 

sufficiently small, edge artefacts can merge which can lead to overshoots in voxel values 

[37]. This may cast doubt on some clinical studies that claim PSF improved small lesion 

contrast recovery; some of the improvement may in fact be artefactual. A phantom study by 

Kidera et al [144] found that in lesion spheres smaller than 17mm diameter, edge artefacts 

appeared as a sharp peak at the centre of the sphere, resulting in overestimation of the 

sphere radioactivity. Spheres of 22mm diameter or greater demonstrated the artefact as 

edge enhancement. These artefacts increased as the number of iterations increased and 

as the sphere-to-background ratio increased.  

 

Several studies have evaluated both PSF and TOF together and compared the results to 

those obtained using each correction on its own, or when neither correction is used. 

Bettinardi et al [19] stated that TOF improves SNR and acts as a convergence ‘accelerator’ 

which allows PSF to recover a better signal at lower iterations and reduce the image noise. 

Schaefferkoetter et al [8] concluded applying TOF and PSF together was particularly 

beneficial when imaging low intensity lesions in larger patients. Taniguchi et al [145] 

concluded that PSF and TOF together produced the best SNR and contrast recovery 

results. Akamatsu et al [134], [146] Kadrmas et al [131] and Matheoud et al [147] found that 

the combination of PSF and TOF provided better image quality than using either PSF or 

TOF alone, in both phantom and patient studies.  

 

Rogasch et al [148] concluded that applying PSF and TOF together significantly improved 

spatial resolution; however, they also stated that the effects of PSF edge effects require 

further investigation as it caused substantial overestimations of SUVmax. Kuhnert [149] 

recommended that two reconstructions should be performed in routine clinical practice: 
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TOF and PSF should be used together to produce a data set for optimum visual 

assessment, while a second data set should be used for quantification (e.g. additional 

filtering applied to the TOF + PSF reconstruction).  

 

PSF corrections have therefore not been universally applied in routine clinical imaging, 

particularly when quantification is important. Kenny and McGowan [136] concluded that 

PSF should be used with caution when comparing longitudinal studies; later publications by 

this group confirmed they did not use PSF in their standard of care GEMS Discovery 690 

reconstructions [150], [151]. A study by Nakamura et al [152] stated that PSF 

reconstructions are not appropriate for SUV evaluation, as small lesion SUVs were 

overestimated by up to 50%. Alessio and Rahmim [153] state that some imaging sites, 

including theirs, do not use PSF when performing quantitative pharmacokinetic imaging. 

Munk et al [154] concluded it is safer not to use PSF for quantitative purposes, as they 

found the expected monotonic relationship between sphere size and recovery coefficients 

was broken in an unreproducible manner.  

 

2.3.2 Post Reconstruction Filters 
GEMS PET-CT systems typically employ two independent methods of filtering: a Gaussian 

filter that acts upon voxels within each transaxial slice and an axial filter that acts upon 

voxels in adjacent transaxial slices (also referred to as a ‘z-axis filter’). The use of a 

Gaussian transaxial filter is common to most commercial PET-CT systems; however, the 

use of an independent z-axis filter hasn’t been universally adopted by all vendors. As a 

result, many studies have assessed the effects of post-reconstruction transaxial filters in 

combination with PSF and TOF techniques, while few publications have even mentioned z-

axis filtering in their methodologies.  

 

Most studies assessing GEMS PET-CT reconstruction methods do not include any details 

of the z-axis filtering strategy. Studies by Bettinardi et al [19] and Kawashima at al [138] 

assessed the effects of altering other reconstruction parameters but simply stated a 

‘standard’ z-axis filter was used for all reconstructions. De Ponti et al [155] stated a 

‘standard’ z-axis filter was used in their NEMA image quality assessment of the GEMS 

Discovery 600 PET-CT system.  Wilson and Turkington [133] state that z-axis smoothing 

was applied in their comparison of TOF and non-TOF images, but no more details are 

provided. The GEMS White Paper on their implementation of PSF [89] includes examples 

of whole body patient images acquired using both ‘light’ and ‘standard’ z-axis filtering; 

however, the effects of these filters are not assessed in this paper. To the author’s 

knowledge, there are no publications which specifically assess the effects of different z-axis 

filtering strategies. 
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Kadrmas et al [131] investigated the use of different post reconstruction transaxial Gaussian 

filter widths with TOF and PSF in whole body imaging. They concluded that little or no 

filtering should be used with PSF reconstructions in order to maximise lesion detection, as 

voxel correlations introduced by PSF produce a similar effect to a smoothing filter. They 

concluded a filter with FWHM ≈ 5mm achieved the best results for plain OSEM and TOF 

reconstructions. This filter strategy was also adopted by Bellevre et al [142] and 

Sheikhbahaei [139].  

 

Akamatsu et al [134] also assessed different Gaussian filter FWHMs (0mm à 10mm) with 

TOF and PSF in whole body imaging. They found that PSF reconstructions achieved their 

optimal SNR when <2mm FWHM filters were used, whilst non-PSF required a filter FWHM 

between 4mm and 6mm. Subsequent studies by this group [132], [146] used a 2mm FWHM 

Gaussian filter for PSF reconstructions and a 4mm FWHM Gaussian filter for non-PSF 

reconstructions. This filter strategy was also adopted by Andersen et al [137] and Taniguchi 

et al [145].  Schaefferkoetter [8] also looked at different filter FWHM in conjunction with TOF 

and PSF in whole body imaging. Whilst most studies recommend a choice of two filtering 

strategies based upon whether or not PSF is applied, this study recommended three filtering 

strategies to maximise SNR: 6mm FWHM filters for plain OSEM and TOF, 4mm FWHM 

filter for PSF-only and no filtering at all when both TOF and PSF are applied.  

 

In contrast to the limited PSF filtering strategies of the above studies, Panin et al [88] used 

a 7mm filter for PSF reconstructions to produce ‘clinically acceptable’ whole body images. 

However, they also suggested unsmoothed PSF reconstruction may provide more precise 

structural information. A study by Lasnon et al [67] also suggests a 7mm FWHM filter can 

be used on PSF images to mitigate Gibbs effects and produce recovery coefficients 

comparable to non-PSF reconstructions. Munk et al [154] found combining PSF with a post-

reconstruction filter of 3-4mm could restore the expected monotonic relationship between 

sphere size and recovery coefficient and still maintain some of the PSF recovery 

improvements. 

 

2.3.3 Voxel Sizes 
Current practice for whole body FDG scanning uses voxels of approximately 4mm3 [14], 

[156]–[158], which is of the order of the NEMA spatial resolution [159]. However, smaller 

voxels can be achieved by increasing the matrix size and/or reducing the transaxial FOV. It 

should be noted that the GEMS Discovery 690 has a fixed z-axis voxel dimension of 

3.34mm, due to the physical configuration of the system.  
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A phantom study by Morey et al [157] compared two different voxel sizes: 4mm3 and 2mm3. 

Although background noise was increased as a result of using smaller voxels, they 

concluded that 2mm3 voxels significantly improved lesion detection performance for focal 

lesions in noisy backgrounds. Furthermore, they demonstrated the smaller voxels improved 

lesion detection in whole body scanning to a greater extent than the application of PSF. 

They also noted that the use of the smaller voxels significantly increased reconstruction 

time and storage requirements. 

 

Adams et al [66] assessed the effects of different voxel sizes and filter FWHMs upon small 

object SUVmean in a phantom using a Discovery 690. Adjusting both the matrix size and 

transaxial FOV created the following transaxial plane voxel dimensions:  5.47mm2, 

3.90mm2, 3.65mm2 and 2.73mm2. Gaussian Filter FWHMs were varied between 0mm and 

5mm. The smallest voxels combined with no Gaussian filtering were shown to produce the 

most accurate SUVmean results, as the smaller voxels are more likely to sample the peak of 

the lesion. This study did not discuss the impact of voxel size on image noise.  

 

A study by Zhang et al [160] using both phantoms and patients compared three different 

voxel sizes: 1mm3, 2mm3 and 4mm3. They found that using smaller voxels improved lesion 

detection and contrast recovery; however, it should be noted that this study was conducted 

on a solid-state PET detection system capable of greater spatial resolution than traditional 

PMT-based detection systems. This study did not specifically discuss the impact of voxel 

size on image noise. 

 

Koopman et al [158] compared 4mm3 voxels with 2mm3 voxels using phantoms and 

patients. Qualitative and quantitative analysis of the phantoms demonstrated that, although 

smaller voxels produced higher background noise, they also improved small lesion 

detection, contrast recovery and SNR for lesions smaller than 2cm. The study noted voxel 

size had little effect on lesions of 2cm or greater.  

 

2.4 18F-FDG Liver Imaging 
 

2.4.1 Healthy Liver as an Internal Reference 
Normal liver tends to have a uniformly mottled appearance in 18F-FDG imaging [109], with 

mild to moderate uptake (typical SUVmean 1.3 – 3.0, SUVmax 3.0 – 4.0) [14]. As the uptake is 

relatively uniform, clinical image quality is often assessed by placing ROIs over the liver to 

measure voxel-to-voxel noise or SNR [6], [161]. Liver uptake can also be used as an internal 

reference uptake for comparison with lesion uptake, providing a semi-quantitative 

estimation of tumour metabolism [162]. The Deauville 5-point scale is used to assess 
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lymphoma scans by comparing the most active lesion uptake with liver uptake [163]. 

Positron Emission tomography Response Criteria In Solid Tumours (PERCIST) also use 

liver uptake as reference for comparison with lesion uptake [6]. Alternative reference sites 

must be used, however, when the liver contains widespread abnormalities; for example, 

blood pool, mediastinum and cerebellum. 

 

2.4.2 Liver Reconstruction Studies 
Many studies have assessed the performance of different reconstruction strategies by 

measuring noise within healthy liver images. Studies by Yan et al [164] and Taniguchi et al 

[145]  investigated the effects of TOF and PSF in patient data and measured SNR and COV 

respectively in liver tissue. Both studies concluded using PSF and TOF together produced 

the best noise results. Akamatsu et al [134] also measured liver SNR to assess the effects 

of PSF and TOF, concluding optimum results were obtained using both corrections 

together. A later study by the same group [146] reached the same conclusion when using 

liver COV to assess the use of PSF and TOF in patients of varying weight. Armstrong et al 

[165] used liver SNR to demonstrate TOF could be used to reduce scan times and/or 

injected activities without compromising image quality.  

 

Fewer studies have assessed the effects of reconstruction parameters specifically upon 

liver lesion detection. Surti et al [110] added 1cm diameter spherical lesions to healthy 

patient liver data by combining patient and lesion-only sinogram datasets. This study used 

a Philips Gemini PET-CT system. Reconstructions were then performed with and without 

TOF (this study did not assess other reconstruction parameters). TOF was shown to 

improve lesion detection and localisation. A similar approach to simulating lesions in healthy 

liver data was taken by Schaefferkoetter et al [8] using a Siemens Biograph PET-CT 

system. This study concluded the combination of PSF and TOF produced optimum lesion 

detectability when used with no post-reconstruction filtering and 24 effective iterations.  

Rogasch et al [166] assessed the effects of TOF and PSF on liver lesion SUVmax results 

(other reconstruction parameters were not investigated). This study also used a Siemens 

Biograph PET-CT system. TOF was found to produce the greatest SUVmax in low contrast 

lesions (tumour to background ratio of <5:1), while PSF was shown to produce the greatest 

SUVmax in higher contrast lesions. The PSF effect was likely related to Gibbs artefacts, 

which are more likely to occur in higher contrast objects. The application of both PSF and 

TOF together increased SUVmax across all lesion-to-background contrast levels. To the 

author’s knowledge, there has been no similar study conducted using the GEMS Discovery 

690 PET-CT system. 
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2.5 Conclusions 
 

This review has demonstrated that, although reconstruction guidelines and accreditation 

programmes exist to ensure consistent image quality in clinical trials, there is no established 

guidance for optimising image reconstruction for specific clinical tasks. Such guidance 

would be particularly useful when new technological advancements, such as TOF and PSF, 

become available. Additionally, there are no universally agreed methods for assessing 

different aspects of PET image quality in a clinically relevant manner. 

 

The review has also demonstrated a lack of consensus regarding the application of PSF 

modelling techniques. Some studies concluded no post-reconstruction filtering is required 

when PSF is applied, whilst others recommended the use of filters to mitigate potential 

Gibbs artefacts. Some studies have recommended PSF should not be used at all, 

particularly for quantitative studies.  

 

Furthermore, there is no established optimum reconstruction method for detecting small 

lesions within the liver in 18F-FDG PET imaging. A small number of studies have assessed 

the use of both PSF and TOF in liver lesion detection and concluded applying TOF and 

PSF yields optimum results. However, none of these studies used the GEMS Discovery 

690 PET-CT system.  

 

This thesis therefore aims to develop a methodology to assess different aspects of PET 

image quality in a clinically relevant manner. These methods will be used to assess the 

effects of different combinations of reconstruction parameters upon image quality, with a 

view to optimising the detection of small lesions within the liver using the GEMS Discovery 

690 PET-CT system.  

 

 

 

 



 
 
 
 
 
 
 
 
Chapter 3 : Materials and Methods 
 

This chapter describes the materials and methods which underpin most, if not all, of the 

practical chapters in this thesis. Each practical chapter has its own section that covers the 

materials and methods specific to each individual chapter.  

 

3.1 GEMS Discovery 690 PET-CT System 
 

The PET tomograph used in this investigation was the GEMS Discovery 690 PET-CT 

system, which combines a lutetium-yttrium orthosilicate (LYSO) PET tomograph with a 64-

slice CT scanner. The system is shown in Figure 3.1. 

 

 

Figure 3.1: GEMS Discovery 690 PET-CT system 
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3.1.1 Hardware 
Figure 3.2 illustrates the crystal arrangement of the Discovery 690 PET system. Each 

individual LYSO crystal has dimensions 6.3mm (axial) x 4.2mm (transaxial) x 25mm (radial). 

54 crystals in a 9x6 arrangement form a detection block. The dimensions of this square 

block of crystals are marginally increased by the use of reflective material between crystals 

to prevent optical spillover. The block of crystals is optically coupled to a four-anode PMT 

(Figure 3.2 (B)) to complete a detector block.  

 

 

Figure 3.2: GEMS Discovery 690 crystal arrangement 
 

The PET tomograph consists of four rings of 64 detector blocks (or 24 rings of 576 crystals). 

This creates a crystal ring diameter of 810mm (Figure 3.2 (C)), which provides an imaging 

FOV of 700mm [167]. The axial FOV created by the 24 crystal rings is 157mm (Figure 3.2 

(D)). The PET tomograph has 256 detector blocks in total, containing 13,824 crystals. It 

operates only in 3D acquisition mode: all 24 crystal rings are able to form LORs with each 

other.  
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The Discovery 690 is equipped with a powerful processing system (IBM BladeCentre), 

designed to accelerate image reconstruction and data processing.  

 

3.1.2 Reconstruction Software 
 

3.1.2.1 OSEM Algorithm 
The standard reconstruction method used by the Discovery 690 is a fully 3D OSEM 

reconstruction, known as VUE Point HD (VPHD). This algorithm includes corrections for 

scatter, randoms, and attenuation inside the iterative loop [36]. The VPHD algorithm uses 

a system matrix that accounts for the system’s geometry (block-based crystal distribution 

and detector curvature), normalisation and dead time.  

 

3.1.2.2 TOF and PSF 
TOF data can be included in the reconstruction process by selecting the VUE Point FX 

(VPFX) algorithm. This applies timing information to each correction step within the iterative 

loop [47]. The Discovery 690 uses a timing kernel of 650ps in the reconstruction process 

[168]. Applying this to Equation 1.2 translates to a positional uncertainty of 9.75cm.  

 

The reconstruction can also include PSF modelling by selecting the SharpIR option. This 

PSF model was developed by measuring the detector response to a point source placed at 

discrete locations throughout the radial and axial directions in the FOV [49], [89]. The 

detector response was then incorporated into the system matrix used by the OSEM 

reconstruction algorithm. 

 

Table 3.1 summarises the four reconstruction methods used in this thesis. The 

abbreviations in the right-hand column are used throughout this thesis.  

 

GEMS Notation Description Thesis Notation 
VPHD OSEM Algorithm HD 

VPHD-S OSEM plus SharpIR PSF 

VPFX OSEM plus TOF TOF 

VPFX-S OSEM plus TOF and SharpIR PSF+TOF 

Table 3.1: Thesis notation for reconstruction methods 
 

3.1.2.3 Effective Iterations 
The OSEM algorithm allows the user to select the number of subsets and iterations used 

for reconstruction. The maximum permitted number of subsets is 48, whilst the maximum 

permitted iterations is 200; the maximum number of effective iterations is therefore 9,600. 
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In this thesis, the number of subsets was fixed at 18, while the number of iterations was 

varied. This follows the methodology used by Bettinardi et al [19] in their assessment of the 

Discovery 690’s performance. Most experiments in this thesis used between 18 and 540 

effective iterations. This range of effective iterations was chosen to provide a reasonable 

spread of results and should demonstrate convergence under most circumstances (this 

goes beyond the range used by Bettinardi et al, who stopped at 360 iterations). The 

remainder of this thesis describes reconstructions in terms of the effective iterations 

employed, instead of subsets and iterations. 

 

3.1.2.4 Voxel sizes 
The Discovery 690 has unevenly sampled projections due to the system geometry (block-

based crystal distribution and detector curvature). The OSEM algorithm uses this projection 

data to reconstruct an image volume consisting of cuboid voxels. Distance driven projectors 

use the known detector boundaries and the position of voxels within the FOV to determine 

a detector’s contribution to a particular voxel in the forward projection process, and a voxel’s 

contribution to a particular detector during the back projection process [169].  

 

The dimensions of the reconstructed voxels depend on both selected matrix size and 

transaxial FOV. Three matrix sizes can be selected for the transaxial images: 128*128, 

192*192 and 256*256. The maximum possible transaxial FOV is 700mm, which is used for 

whole-body imaging. This can be reduced, e.g. for paediatrics or brain imaging, which in 

turn reduces the voxel dimensions in the x & y planes. The minimum possible FOV is 64mm; 

selectable voxel sizes therefore range from 0.25mm up to 5.47mm. The axial FOV is fixed 

at 157mm, and the axial sampling (z-axis voxel size) is fixed at 3.34mm. This produces 47 

transaxial image slices for a single frame acquisition and cannot be altered by the user. 

 

3.1.2.5 Post-Reconstruction Filtering 
The Discovery 690 has two separate filter options that can be applied to the OSEM 

reconstructed data: one that is applied transaxially (x & y axes) and one that is applied 

axially (z-axis).  

 

The transaxial filter is a two-dimensional Gaussian filter, which is defined by selecting the 

filter’s FWHM in millimetres. As the filter is Gaussian, the standard deviation, σ, can be 

calculated for a given FWHM as follows:  

 

𝐹𝑊𝐻𝑀 = 2.35 ∗ 𝜎 Equation 3.1 
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The GEMS filter design is truncated to ± 4σ, and therefore the full width of the filter is 8σ. 

As the truncation of the filter is minimal, it is assumed that the filter closely approximates a 

Gaussian curve in the frequency domain. The two-dimensional filter is implemented as a 

one-dimensional filter over the transaxial image rows and a one-dimensional filter over the 

transaxial image columns (Dr Charles Stearns, personal correspondence, 21st July 2014). 

 

The z-axis filter is a 3-point average filter with four possible weight settings, as shown in 

Table 3.2. This filter is applied to the corresponding voxels in three contiguous transaxial 

image slices. The ‘heavier’ the filter weighting, the more smoothing is applied between 

slices.  

Z-Axis Filter Filter Coefficients 
None n/a 

Light [1 – 6 – 1] ÷ 8 

Standard [1 – 4 – 1] ÷ 6 

Heavy [1 – 2 – 1] ÷ 4 

Table 3.2: GEMS Discovery 690 z-axis filter weights 
 

3.1.2.6 Vendor Suggested Reconstruction Parameters 

The following combination of reconstruction parameters was suggested by GEMS for 

whole-body 18F-FDG imaging upon the system’s installation:  

• Both TOF and PSF applied (VPFX-S algorithm) 

• OSEM reconstruction with 18 subsets and 3 iterations (54 effective iterations) 

• 700mm FOV with 192*192 matrix (3.65mm voxel size in transaxial plane) 

• Post-reconstruction Gaussian filter with 4mm FWHM 

• Standard z-axis filter 

 

The time taken to reconstruct a single frame acquisition using this combination of 

parameters is 1 minute and 46 seconds. 

 

3.1.3 Quality Control and System Calibration 
The Discovery 690 is subject to a robust quality control program to ensure consistent 

quantitative accuracy of reconstructed images over the system’s life cycle. Detector 

performance is assessed daily by uniformly exposing the crystals to a long-lived 68Ge rod 

source and comparing measurements against expected values. Weekly image quality tests 

are performed by acquiring, reconstructing and analysing images of a uniform phantom. 

WCC is performed on a quarterly basis, as advised by GEMS, to ensure accurate 

quantification in the reconstructed images. Annual quality control tests involve repeating the 
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acceptance tests performed at system installation and comparing with baseline values to 

ensure there is no degradation in system performance over time.  

 

All experiments undertaken during this study were performed after verifying all appropriate 

quality assurance (QA) tests had been performed successfully, registration between 

corresponding PET and CT image volumes was satisfactory and WCC was up-to-date.  

 

3.2 Phantoms 
 

3.2.1 68Ge Cylindrical Phantom 
Many clinical PET departments use a long-lived phantom to perform regular quality control 

procedures. As they are long-lived, these phantoms can be calibrated to national standards.  
68Ge has a half-life of 271 days and decays by electron capture in equilibrium with its short-

lived daughter product 68Ga (68 minute half-life), which is a positron emitter. Table 3.3 

summarises the differences between 68Ge/68Ga and 18F. 

 

 68Ge/68Ga 18F 
Half-Life 271 days 109.5 minutes 

Branching Factor 89% 97% 

Maximum Positron Energy  1.90MeV 0.65MeV 

Mean Positron Range in water [170] 2.24mm 0.64mm 

Calibrated to National Standards Yes No 

Table 3.3: Comparison between 68Ge/68Ga and 18F 
 

A uniform, cylindrical 68Ge phantom (Figure 3.3) with 20cm diameter and 20cm length is 

used in Chapters 4, 5 and 6 of this thesis. The phantom’s radioactivity concentration was 

calibrated to national standards with a stated uncertainty of ± 3% (the phantom supplier 

participates in the National Institute of Standards and Technology (NIST) measurement 

assurance program, which ensures traceability to standard reference materials). The 

relevant chapters state the phantom’s radioactivity concentration at the time the 

experiments were performed.   
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Figure 3.3: 68Ge cylindrical phantom 
 
3.2.2 NEMA IEC Body Phantom 
The National Electrical Manufacturers Association (NEMA) International Electrotechnical 

Commission (IEC) body phantom (Figure 3.4) is used in Chapters 4, 9 and 10. This phantom 

is a fillable torso-sized shell, which optionally contains up to six fillable spheres with varying 

diameters. This phantom is used to assess PET image quality when performing acceptance 

tests on newly installed PET systems; image quality must exceed the minimum performance 

specifications provided by the system manufacturer. This phantom has also been widely 

used in the literature when assessing PET image quality. Figure 3.4 shows the phantom 

annotated with the dimensions (spheres are filled with green dye to enhance their visibility). 

The sphere inner diameters are shown in Table 3.4. An optional ‘lung’ insert was not used 

in this study. The background chamber of this phantom was found to contain approximately 

10,100ml of water with the spheres in situ.  

 

 

Figure 3.4: NEMA IEC body phantom 
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Sphere Number Inner Diameter 
1 37mm 

2 28mm 

3 22mm 

4 17mm 

5 13mm 

6 10mm 

Table 3.4: NEMA IEC body phantom sphere diameters 
 

The phantom was used to simulate both ‘hot’ and ‘cold’ lesions within background 

radioactivity. The specific radioactivity concentrations used to fill the phantom are described 

in each of the relevant chapters. 

 

3.2.3 Spatial Resolution Phantoms 
Spatial resolution measurement for iterative reconstruction is not straightforward. Two 

phantoms were used to evaluate methods of assessing spatial resolution. Both phantoms 

are assessed and compared in Chapter 7.  

 

3.2.3.1 22Na Point Source Phantom 
A long-lived 22Na spherical point source (0.25mm diameter) embedded in 1cm3 Lucite was 

suspended inside the empty shell of the NEMA torso phantom (spheres removed) using a 

plastic rod. The phantom was then filled with plain water to provide attenuation and scatter 

material. 18F was also added to the water to provide background activity. To the author’s 

knowledge, no study has attempted to assess spatial resolution by placing a 22Na source 

inside 18F background activity.  

 

 

Figure 3.5: 22Na point source inside NEMA IEC body phantom 
 

The following table summarises the differences between 22Na (embedded in Lucite) and 18F 

(in water). 
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 22Na (in Lucite) 18F (in water) 
Half-Life 2.6 years 109.5 minutes 

Branching Factor 90% 97% 

Maximum Positron Energy  0.55MeV 0.65MeV 

Mean Positron Range in water  Similar to 18F [49] 0.64mm [170] 

Calibrated to National Standards Yes No 

Table 3.5: Comparison between 22Na and 18F 
 

The advantages of placing a 22Na point source inside an 18F phantom are as follows:  

• Reproducible point source of known activity, can be used to compare spatial resolution 

in different parts of the FOV 

• Allows spatial resolution to be measured in x, y and z directions using a single 

acquisition 

• Long-lived source placed within a decaying 18F background activity allows different 

source-to-background measurements to be made without moving the phantom. 

 

However, there are disadvantages to this phantom set-up:  

• The point source is separated from the background activity by the cold Lucite casing 

• The activity of the point source could not be significantly changed (if required) during 

the timescale of this thesis. 

• The point source and the warm background activity consist of different isotopes. The 

acquisition system can only use one isotope setting for quantitative corrections. When 

an 18F background activity was used, the 18F setting was used to correct both the 18F 

and the 22Na activity, despite the different half-life and branching factors (see Table 3.5).  

 

It was not known if any of these disadvantages would affect the relative differences in spatial 

resolution as a result of altering the iterative reconstruction parameters prior to 

experimentation. This is investigated in Chapter 7. 

 

3.2.3.2 Fillable Line Source Phantom 
The NEMA 1994 PET image quality phantom contains two line sources and was formerly 

used for transverse spatial resolution acceptance testing [171]; subsequent versions of 

NEMA guidelines recommended the use of point sources instead. The stainless-steel line 

sources have a 1.2mm inner diameter, hold approximately 0.3ml of liquid each, and run the 

full length of the main phantom chamber (19.6cm diameter cylinder with 20cm length). One 

line source is positioned at the centre of the phantom and the other is positioned 75mm 

radially. The NEMA 1994 spatial resolution methodology required that the line source 
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resolution be measured in air; however, the background chamber of this phantom can be 

filled with plain water or background activity. The phantom is shown in Figure 3.6 below.  

 

 

Figure 3.6: NEMA 1994 PET line source phantom 
 

The advantages of this phantom are as follows: 

• 18F is used for both the line source and the background activity, so quantitative 

corrections should be accurate 

• The width of the metal line source rods (0.45mm) are less than that of the Lucite 

surrounding the point source (≈ 5mm), meaning there is less separation between the 

line source activity and the background activity 

 

However, there are also disadvantages to this phantom set-up: 

• The line sources must be refilled for each acquisition, and are therefore not reproducible 

• Only one source-to-background ratio can be acquired with each positioning of the 

phantom (activity can be incrementally added to the background chamber, but the 

phantom must be moved to achieve this) 

• Spatial resolution can only be measured along two of the three image axes using a 

single acquisition; i.e. in the x and y directions, but not the z direction 

• The effect of the stainless-steel rods on spatial resolution is uncertain 

• The line source positions are limited to the phantom centre and 75mm offset.  

 

As with the 22Na point source phantom, it was not known if any of these disadvantages 

would affect the relative differences in spatial resolution as a result of altering the iterative 

reconstruction parameters prior to experimentation. This is investigated in Chapter 7. 
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3.3 Image Analysis 
 
Images were analysed primarily using Hermes Medical Systems’ commercially available 

Hybrid Viewer software; however, Matlab was also used to verify some unexpected results 

in Chapter 6. ROIs were placed on images and used to extract data from specific areas of 

interest; for example, background radioactivity, simulated lesions in phantom data and 

areas of interest in patient data. The method and location of ROI placement for each 

experiment is described in more detail in each of the appropriate chapters. 

 

The use of ROIs in Hybrid Viewer software allowed the extraction of the following statistics: 

• Mean – the mean voxel value within the ROI 

• Maximum – the maximum voxel value within the ROI 

• Standard Deviation (SD) – the standard deviation of all voxels within the ROI 

• SUVmean – the mean SUV result of all voxels within the ROI 

• SUVmax – The SUV calculated using maximum voxel value within the ROI  
 

3.4 Image Quality Metrics 
 

Extracted ROI statistics were used to calculate the following image quality metrics. 

 

3.4.1 Quantitative Accuracy 
As described in Chapter 1, voxel values in reconstructed PET images are presented as 

radioactivity concentrations (Bq/ml). The ROI Mean and Maximum values therefore 

represent the average and maximum radioactivity concentrations within the ROI 

respectively. ROI Mean and Maximum values were used as indications of the quantitative 

accuracy of PET image data.  

 

3.4.2 Image Noise  
Four metrics were used to measure noise within PET images. COV was used to calculate 

noise when a single large ROI was used. Image Roughness is a variation on COV and was 

used when multiple ROIs were available. Both COV and Image Roughness measure the 

voxel-to-voxel variability in the image, i.e. the noise perceived when viewing an individual 

image [90].  

 

COV of an individual ROI: 

 

𝐶𝑂𝑉FGH	(%) = 100	 ×	O	
𝑆𝐷FGH
𝑀𝑒𝑎𝑛FGH

	Q Equation 3.2 
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Image Roughness (IR) for n background ROIs is calculated as the average of n COVs: 

𝐼𝑅	(%) =	
1
𝑛	
S𝐶𝑂𝑉T

U

TVW

 
 

Equation 3.3 [37] 

 

Background Variation was also measured when multiple ROIs were available. Background 

Variation measures region-to-region variations throughout the image, which may arise if 

there are non-uniformities (for example, caused by inaccurate corrections or voxel 

correlations) [90].  

 

Background Variability (BV) for n background ROIs is calculated as the COV of n ROI 

means: 

 

𝐵𝑉	(%) = 100	 ×	O	
𝑆𝐷XYY	FGH	Z[\U]
𝑀𝑒𝑎𝑛XYY	FGH	Z[\U]

	Q  

Equation 3.4 [70] 

 

3.4.3 Lesion Detection 
Contrast recovery coefficients (CRCs) were used to measure how well the reconstructed 

image ‘recovers’ the expected contrast between the sphere and the background activity, 

when the actual radioactivity concentrations in both the sphere and background are known. 

Accurate radioactivity concentrations can only be calculated in well-controlled phantom 

experiments. Radioactivity concentrations within patients cannot be known exactly, and so 

CRCs were not used in patient studies. CRCs were calculated for both ‘hot’ and ‘cold’ 

spheres.  

 

Hot Contrast Recovery Coefficients (HCRCs) were calculated using either the sphere ROI’s 

Mean value (HCRCmean) or Maximum value (HCRCmax): 

 

𝐻𝐶𝑅𝐶	(%) = 100	 ×	
O	^𝐶_`a 𝐶bcde f − 1	Q

hi𝑎_`a 𝑎bcd; j − 1k
 

 

Equation 3.5 [70] 

 

Where:  

Chot is the Mean (or Maximum) voxel value in the hot sphere ROI 

Cbgd is the mean background voxel value 

ahot is the true radioactivity concentration in the hot sphere 

abgd is the true radioactivity concentration in the background 
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Cold Contrast Recovery Coefficient (CCRCs) were calculated using either the lesion/sphere 

ROI’s Mean value (CCRCmean) or Maximum value (CCRCmax): 

 

𝐶𝐶𝑅𝐶	(%) = 100	 ×	l1 −	m
𝐶n`Yd
𝐶bcd

op 
Equation 3.6 [70] 

 

Where:  

Ccold is the Mean (or Maximum) voxel value in the cold lesion/sphere ROI 

Cbgd is the mean background voxel value 

 

SUVs, described in Chapter 1, do not require knowledge of the exact radioactivity 

concentrations within an ROI and can therefore be used in both phantoms and patients. 

They do, however, require an accurate record of the activity injected into the patient (minus 

any post-injection residual) and the patient’s body weight (SUVs in the West of Scotland 

PET Centre are normalised by body weight). Both GEMS and Hermes Medical Systems 

analysis software automatically calculate SUVmean and SUVmax when used to draw ROIs.  

 

𝑆𝑈𝑉 = 	
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝑖𝑛	𝑅𝑂𝐼	(𝑘𝐵𝑞/𝑚𝑙)

𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑	𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦	(𝑘𝐵𝑞)
𝐵𝑜𝑑𝑦	𝑊𝑒𝑖𝑔ℎ𝑡	(𝑔)e

 Equation 3.7 

 

Where:  

Measured Activity Concentration in ROI is based on either Mean or Maximum voxel values 

(for SUVmean or SUVmax respectively). Activity concentrations are decay-corrected back to 

the time of injection. 

Injected activity is the total amount of radioactivity injected into the patient (or phantom) 

Body Weight is the patient/phantom weight in grams 

 

Finally, the SNR of lesions/spheres were calculated using either the lesion/sphere ROI’s 

Mean (SNRmean) or Maximum (SNRmax) value: 

 

𝑆𝑁𝑅 = 100	 ×	l
y𝑐_`a − 	𝑐bcdz

𝑆𝐷bcd
p 

Equation 3.8 [134] 

 

Where:  

Chot is the Mean (or Maximum) voxel value in the hot lesion/sphere ROI 

Cbgd is the mean background voxel value 

SDbgd is the Standard Deviation of the background ROI; when more than one background 

ROI is used, the average SD of the background ROIs is used. 
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3.5 Statistics 
 

All graphical and statistical analyses in this thesis were performed using RStudio [172] 

(version 1.0.143). This graphical user interface was used to run ‘R’ version 3.3.3. Specific 

statistical analysis techniques used for each experiment are described in more detail in 

each of the appropriate chapters.  

 

 

 

 

 

 



 

 
 
 
 
 
 
 
 
Chapter 4 : Slice Overlap 
 

Although the primary focus of this thesis is image reconstruction, there were acquisition 

issues that merited attention; GEMS recommendations were not backed up by evidence. 

The acquisition issues are therefore addressed before the reconstruction questions are 

investigated. 

 

A significant aspect of PET data acquisition is the use of overlapping image beds. GEMS 

recommend a 23% overlap for the Discovery 690 PET-CT system, corresponding to 11 

transaxial image slices, for whole-body imaging; however, this recommendation was not 

supported by the literature. The work in this chapter was therefore undertaken to evaluate 

the GEMS overlap recommendation by investigating the effect of slice overlap on PET 

image quality, and to determine an appropriate approach for data acquisition for the 

remainder of this thesis.  

 

4.1 Introduction 
 

The sensitivity of a PET system, expressed as counts per second per MBq (cps/MBq), 

represents its ability to detect annihilation radiation. The z-axis sensitivity profile of a 

scanner operating in 3D mode is triangularly shaped and peaks in the FOV centre.  

Sensitivity is therefore lower at the edges of the acquired bed position. Whole-body PET 

scans are typically acquired with overlapping bed positions to compensate for the sensitivity 

reduction at FOV edges. Data in overlapped regions can then be combined to improve the 

statistics [173]; however, this increases the required scan time [17]. Overlaps are often 

quoted as a number of slices or as a percentage of the total bed length. For example, the 
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GEMS Discovery 690 PET-CT system has 47 slices per bed position. A 23-slice overlap 

would therefore represent a 49% overlap. 

 

Figure 4.1 shows a simplified schematic of how the z-axis sensitivity profiles of a 6-bed 

acquisition on the Discovery 690 PET-CT system are altered when different slice overlaps 

are employed. When no overlap is employed (Figure 4.1(A)), the result is a saw-tooth 

sensitivity profile with areas of very low sensitivity at the edges of bed positions 

(approximately 5% of peak sensitivity). A 23%, or 11-slice, overlap (Figure 4.1(B)) improves 

the relative sensitivity of the overlap areas to ≈ 48% of the maximum. A 49%, or 23-slice, 

overlap (Figure 4.1(C)) produces an almost uniform sensitivity profile; sensitivity in the 

overlap areas are ≈ 99% of the maximum. Figure 4.1 also demonstrates that as the overlap 

size increases, z-axis coverage reduces. This in turn increases the required acquisition time 

for a given patient length, as more bed positions are required. 

 

 

Figure 4.1: Theoretical sensitivity profiles for different overlap settings 
Illustration is based upon the GEMS Discovery 690 PET-CT system, which has 
an axial coverage of 157mm per bed position.  
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Although the effect of slice overlap on image quality is recognised, the optimal slice overlap 

has not yet been established. The overlap size that should be employed in 3D PET scanning 

has been discussed in the literature and the resultant advice varies between studies. A 

2005 study by Visvikas et al [174] concluded that altering the size of 3D PET overlaps 

between 14% and 26% had no effect on image quality. This study, however, had several 

limitations: the image quality of the 3D patient scans was assessed by comparing them with 

2D patient images, no lesion detection gold standard was provided and overlaps larger than 

26% were not assessed. A review paper by Humm et al [72] stated an overlap 

corresponding to between 10% and 20% is necessary for 3D scanning. However, a 2008 

study by Tout et al [175] assessed the effects of overlap size upon image noise using a 

GEMS Discovery STE PET-CT system, and suggested that a minimum overlap of 36% 

should be used for 3D scanning, with 50% being the optimum overlap size. This study did 

not assess the effects of overlap upon lesion detection. 

 

The main vendors of clinical PET-CT systems (GEMS, Philips and Siemens) have different 

approaches to slice overlap. The Siemens Biograph mCT has a fixed overlap of 45% whilst 

the Philips Gemini has a fixed overlap of 50%. GEMS systems allow operator control of 

slice overlap; however, the ideal overlap has not been established for GEMS systems. 

Different overlap sizes are applied among GEMS users, e.g. the Discovery 690 has been 

used with 15% overlap for whole-body scans [176], 32% overlap for quality control studies 

[19] and 49% overlap for head and neck scans [176]. It should be noted that the Siemens 

Biograph mCT Flow introduced the option for continuous bed motion as an alternative to 

traditional overlapping step-and-shoot bed positions; however, this PET acquisition method 

is not available to the GEMS Discovery 690 and is therefore not included in this thesis.  

 

Furthermore, overlap size can influence patient injected activities. EANM guidelines for 

FDG PET-CT imaging [14] can be used to calculate the minimum required radioactivity for 

patient injections by considering the patient’s weight, frame acquisition time and size of 

overlap employed. A 30% overlap ‘cut-off’ value is recommended by these guidelines when 

calculating patient activities: patients being scanned on systems using ≤ 30% overlap would 

receive double the activity of patients being scanned on systems using > 30% overlap 

(where patient weight and frame acquisition time are equal). The issues associated with the 

use of an arbitrary and discrete overlap cut-off are addressed in this chapter.  

 

EANM guidelines also refer to EARL procedures for assessing PET-CT system specific 

patient FDG activities with respect to image quality [121]. These state that image noise, as 

measured by the COV in a volume of uniform activity, should not exceed 15%, and that 

lesion recovery coefficients should remain unbiased as a result of radioactivity reduction. 
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4.2 Aims 
 

To the author’s knowledge, no studies have performed an assessment of the effects of 

overlap size on image quality on a GEMS Discovery 690 PET-CT system. Furthermore, no 

studies have assessed the effects of slice overlap on voxel accuracy or lesion detection 

using phantom studies with known activity concentrations. This chapter therefore aims to 

assess how the following image parameters are affected by overlap size when the 

Discovery 690 PET-CT system is used:  

1. Image noise (Section 4.4.1) 

2. Quantitative accuracy of image activity concentrations (Section 4.4.2) 

3. Contrast Recovery Coefficients for hot and cold lesions of varying diameters and 

varying lesion-to-background ratios (Section 4.5.1) 

4. Signal to Noise ratios for low contrast hot lesions of varying diameters (Section 

4.5.2) 

 

In particular, this chapter aims to determine if the overlap size recommended by GEMS for 

the Discovery 690 is sufficient in terms of image quality, by comparing the results obtained 

using a 23% overlap with those obtained using the maximum possible overlap (49%). 

Results are discussed with reference to EANM and EARL guidelines.  

 

Finally, an amendment to the EANM guidelines for calculating minimum injected activities 

is also proposed, based on the findings presented in this chapter. 

 

4.3 Materials and Methods 
 

All acquisitions were performed on the GEMS Discovery 690 PET-CT system. A detailed 

description of this system is included in Chapter 3.  

 

4.3.1 Phantoms 
Two phantom studies were performed. 

 

4.3.1.1 Experiment 1: Uniform 68Ge Phantom 
The 68Ge cylindrical phantom described in Section 3.2.1 was used in the first experiment.  

The phantom’s activity was 20.2MBq (3,313Bq/ml in the active volume) at the time of 

scanning. The phantom was placed in the centre of the FOV. One single-bed PET 

acquisition was obtained, followed by 23 two-bed PET acquisitions with overlaps varying 

from one slice (2% overlap) to 23 slices (49% overlap), in one-slice increments. The centre 

of the overlap was positioned in the middle of the phantom. 
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4.3.1.2 Experiment 2: 18F Body Phantom with Fillable Spheres 
The second phantom study was performed using the NEMA IEC body phantom, which is 

described in Section 3.2.2. A 4:1 sphere-to-background ratio was used as this is suggested 

by the NEMA guidelines for assessing image quality [177]. A 2:1 sphere-to-background ratio 

was also used to simulate lesions of reduced intensity relative to surrounding tissue. Finally, 

cold lesions were simulated by filling the spheres with plain water. The following acquisitions 

were performed for each version of the phantom: 

• Single-bed acquisition, spheres in FOV centre 

• Two-bed, 23% (11-slice) overlap acquisition, spheres in overlap centre 

• Two-bed, 49% (23-slice) overlap acquisition, spheres in overlap centre 

 

This sequence of three acquisitions was repeated six times for each phantom as the 

phantom activity decayed (each phantom was scanned 18 times). Table 4.1 details the 

measured phantom activity concentrations at the time of the first and last acquisitions (all 

three phantoms decayed to ≈45% of their original activity during the experiment), as well as 

the actual sphere-to-background ratios achieved. Initial background activity concentrations 

were chosen to be similar to that typically found within livers of patients undergoing 400MBq 
18F-FDG imaging. 

 

 Background Activity 
Concentration (Bq/ml) 

Sphere Activity 
Concentration (Bq/ml) 

Sphere-to-
Background 

Ratio Start End Start End 
Hot Sphere 

Phantom (4:1) 7,864 3,526 30,622 13,733 3.89:1 

Hot Sphere 
Phantom (2:1) 

7,500 3,449 14,899 6,852 1.99:1 

Cold Sphere 
Phantom 9,452 4,133 0 0 N/A 

Table 4.1: Body phantom activity concentrations and sphere-to-background 
ratios 

 

4.3.2 Image Acquisition and Reconstruction Protocol 
Four-minute acquisition frames were used for all phantom experiments. Images were 

reconstructed using the parameters suggested by GEMS: TOF and PSF were both enabled, 

18 subsets and 3 iterations, 4mm post-reconstruction filter and Standard z-axis filter. This 

ensured the only differences between reconstructed image sets was the number of overlap 

slices (and hence sensitivity profiles) and, in the case of the 18F phantom, the total activity 

in the phantom.  

 

4.3.3 Image Analysis 
All ROI analysis was performed using Hermes Medical Systems’ Hybrid Viewer software. 
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4.3.3.1 Experiment 1: Uniform 68Ge Phantom 
The single-bed, 47-slice PET image was used to obtain a reference noise value. The central 

transaxial slice (Slice 24) corresponded to the centre of the axial FOV, where sensitivity is 

at its maximum, and was therefore used as reference. A 12cm diameter ROI was drawn on 

this slice and used to measure the mean voxel value, the maximum voxel value and the 

standard deviation. The mean and maximum voxel values represent activity concentrations 

in Bq/ml. The mean voxel value and standard deviation were used to calculate the COV of 

the slice, using Equation 3.2. The 12cm ROI was transferred exactly to the central slice of 

all 23 two-bed acquisitions with varying overlaps (i.e. in the centre of the overlap area) and 

used to record/calculate the same data. Figure 4.2 (a) shows the ROI placement. 

 

  
(a) (b) 

Figure 4.2: ROI positioning for phantom analyses 
(a) 12cm ROI placed on central transaxial slice of 68Ge uniform phantom. (b) Circular 
sphere ROIs and annular background ROI placed on transaxial slice of body phantom 
showing centre of spheres. 
 

4.3.3.2 Experiment 2: 18F Body Phantom with Fillable Spheres 
The slice containing the centre of the spheres was selected. This slice was at the axial FOV 

centre for the single-bed scan, and at the overlap centre for the two-bed scans. Data were 

analysed by drawing ROIs over the largest (37mm diameter) and smallest (10mm diameter) 

lesion spheres, matching the maximum visible inner diameters on the CT. A large annular 

ROI was also drawn on this slice to measure the background: this ROI was copied to two 

adjacent slices either side of the central slice to provide an average background 

measurement. Mean and maximum voxel values were recorded for the spheres and mean 

voxel values were recorded for the background. Figure 4.2 (b) shows the ROI placement. 

 

HCRC and CCRC were calculated for all spheres using Equations 3.5 and 3.6 respectively. 

SNR was also calculated for selected spheres using Equation 3.8. 
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4.4 Results: Experiment 1 
 

4.4.1 Noise in Uniform 68Ge Phantom 
Figure 4.3 shows the central coronal and transaxial slices of a selection of the 68Ge phantom 

scans. COVs of transaxial slices are also presented. 

 

  
2% Overlap: COV = 36% 15% Overlap: COV = 17% 

  
23% Overlap:  COV = 13% 36% Overlap: COV = 11% 

  
49% Overlap: COV = 9% Reference Single Bed: COV = 10% 

Figure 4.3: Central image slices for 68Ge phantom using different overlaps 
Both coronal and transaxial slices are shown for each overlap setting.  

 

Figure 4.3 demonstrates the overlap region is clearly visible on the coronal slice when a 2% 

overlap was used. The overlap is also visible on the 15% overlap coronal slice, but it is not 

on the 23% overlap. The 2% overlap’s transaxial slice is the noisiest both qualitatively and 

quantitatively (COV = 36%). As the overlap size increases, both coronal and transaxial 

slices become visibly more homogeneous, with decreasing transaxial COVs.  

 

The 49% overlap central transaxial slice produces similar results to that of the reference 

single-bed acquisition. The 23% overlap produces COV = 13%, which is 3% greater than 

the single-bed COV. Applying 23% overlaps would therefore result in a z-axis noise profile 
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that cycles between a maximum ≈13% and a minimum ≈10% COV. Applying 49% overlaps 

would result in a consistent noise profile of ≈10% COV.  

 

Qualitative assessment suggests that the 23% overlap has a slightly less homogeneous 

central transaxial slice than the single-bed or 49% overlap, but it is difficult to visualise the 

overlap region on the coronal images. This suggests the 23% overlap may be sufficient in 

terms of image noise, and any noise inconsistencies across the FOV are unlikely to be 

visualised. The 23% overlap also produces a COV below EARL’s 15% limit when four-

minute frames are used at these activity concentration levels. 

 

Figure 4.4 plots central transaxial slice COV against overlap size. Single-bed COV (10%) 

is presented as a local reference and the upper COV limit suggested by EARL (15%) is also 

included. Finally, the EANM guidelines 30% slice overlap threshold is also indicated.  

 

 

Figure 4.4: Central transaxial slice COV versus overlap size 
Local reference COV (10%) and EARL recommended upper limit (15%) are 
included for comparison. COV Trendline, with associated R2 value, and EANM 
slice overlap threshold are also shown.  

 

As overlap size increases the COV initially falls sharply, before a more gradual decrease is 

observed. There is a clear correlation between central transaxial slice COV and overlap 

size (offset exponential trendline R2 = 0.992). Noise exceeds the EARL limit when an 

overlap of 17% or less is used. The EANM 30% overlap threshold does not appear to 

correlate with a noticeable watershed in COV performance with respect to overlap size. 
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The count density of the phantom was then compared to that of patient liver images to 

determine if these findings were valid for clinical acquisitions. A random group of ten 

patients undergoing 400MBq 18F-FDG imaging (scanned using the same 4-minute frame 

times as the phantom study) was found to have an average liver concentration of 

9,222Bq/ml (minimum was 6,433Bq/ml). The activity concentration in the phantom 

(3,313Bq/ml) therefore represents an administered clinical activity of approximately 

200MBq, and as such, provides a conservative image noise estimate of not only the West 

of Scotland PET Centre’s routine 400MBq practice, but most other weight-based FDG 

administration schemes. The 3% COV difference between the 23% and 49% overlaps when 

four-minute frames are used is therefore unlikely to be clinically significant. Furthermore, 

the GEMS recommended 23% overlap complies with EARL’s 15% COV limit.  

 

4.4.2 Quantification Accuracy of Uniform 68Ge Phantom 
Figure 4.5 plots mean and maximum activity concentration measurements against overlap 

size. Each plot includes the corresponding reference result from the single-bed central 

transaxial slice (mean 3,328Bq/ml; maximum 4,594Bq/ml). This mean activity concentration 

measurement was within 0.5% of the known phantom activity concentration at the time of 

scanning.  

 

Altering overlap size leads to limited variations in mean activity concentrations, which do 

not appear to correlate with overlap size. The linear trend line demonstrates a poor fit (R2 = 

0.003) and is not statistically significantly different to a zero gradient (p = 0.791 from linear 

regression significance test). There is no positive or negative bias with respect to the 

reference value (runs test p = 0.285).  

 

One may expect the pattern of the maximum voxel values to parallel that of image noise. 

Figure 4.5 shows that the maximum activity concentrations display a very similar pattern 

and similar dependence on overlap size as the COV in Figure 4.3, with a similar trendline 

(R2 = 0.926). As overlap size increases, the maximum voxel value approaches the reference 

value. 
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Figure 4.5: Central slice activity concentrations versus overlap size 
Dashed lines show local reference values. Trend lines, with associated R2 values, 
and EANM slice overlap threshold are also shown. 

 

 

4.5 Results: Experiment 2 
 

4.5.1 Contrast Recovery for Hot and Cold Spheres 
Figure 4.6 shows example hot phantom (≈ 4:1 sphere-to-background ratio) and cold 

phantom images. Single-bed reference images (spheres positioned at axial FOV centre) 

are compared with 23% and 49% overlap images (sphere positioned in overlap centre). 
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Figure 4.6: Hot and cold sphere phantom images 
Images acquired using (a) single-bed acquisition with spheres in FOV centre, 
(b) two-bed, 23% slice overlap acquisition with spheres in overlap centre, and 
(c) two-bed, 49% slice overlap acquisition with spheres in overlap centre. Hot 
phantom has a ≈ 4:1 sphere-to-background activity ratio. 

 
Qualitative assessment of these phantom images indicates that background activity at the 

overlap centre of the 23% overlap images appears slightly less homogenous than that of 

the single-bed and 49% overlap acquisitions. However, all six hot and cold spheres are 

clearly visible for all three overlap settings. This remained the case for all 18 hot phantom 

and 18 cold phantom acquisitions as the phantom activity decayed.  

 

Average HCRC and CCRC results were calculated for the six spheres for each overlap 

setting. Table 4.2 compares the average mean and maximum CRCs for the hot and cold 

spheres for all three overlap settings. Standard Deviations are shown in brackets. Average 

background region COVs are also presented. As the results are small in number and in 

multiple, unmatched groups, a Kruskal-Wallis test was applied to determine if there were 

any statistically significant differences between the three overlap data sets. The resultant 

p-values are also included in Table 4.2. Finally, the magnitude of the difference in average 

SUV values is presented to provide some clinical perspective. SUVmean was used for the 

Mean CRC results, and SUVmax was used for the Maximum CRC results. The ΔSUV values 
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presented in Table 4.2 are the greatest of the three ΔSUV’s for each set of results (i.e. the 

difference between 23% Overlap and 49% Overlap is shown if its magnitude is greater than 

the difference between either of those results and the Single Bed result).  

 

 Hot Spheres (≈ 4:1 Ratio) 
 Large Mean 

HCRC 
Large Max 

HCRC 
Small Mean 

HCRC 
Small Max 

HCRC 
Background 

COV 
Single  
Bed 

85.2% 
(0.016) 

110.8% 
(0.060) 

43.0% 
(0.058) 

65.2% 
(0.090) 8.0% 

23% 
Overlap 

87.0% 
(0.011) 

118.8% 
(0.055) 

39.0% 
(0.037) 

60.8% 
(0.106) 10.3% 

49% 
Overlap 

84.8% 
(0.008) 

105.5% 
(0.046) 

39.3% 
(0.036) 

57.4% 
(0.048) 7.4% 

K-W  
p-value 0.014 0.008 0.421 0.244 0.004 
|ΔSUV| 0.06 0.38 0.11 0.22 0.01 

  

Cold Spheres 
 Large Mean 

CCRC 
Large Max 

CCRC 
Small Mean 

CCRC 
Small Max 

CCRC 
Background 

COV 
Single  
Bed 

83.4% 
(0.007) 

61.9% 
(0.017) 

46.8% 
(0.061) 

38.6% 
(0.057) 7.8% 

23% 
Overlap 

84.1% 
(0.003) 

63.9% 
(0.040) 

51.8% 
(0.039) 

46.3% 
(0.044) 9.3% 

49% 
Overlap 

83.4% 
(0.005) 

64.5% 
(0.013) 

49.9% 
(0.036) 

43.3% 
(0.031) 6.9% 

K-W  
p-value 0.080 0.117 0.319 0.061 0.006 
|ΔSUV| 0.01 0.03 0.05 0.08 0.01 

Table 4.2: Contrast recovery coefficients for hot and cold phantoms 
Results shown for single-bed, 23% and 49% overlaps. Standard Deviations are 
included in brackets. Kruskal-Wallis p-values and the difference in SUVmean 
values are also shown. Background COVs are included for reference.  

 

The Kruskal-Wallis analysis of the contrast recovery results demonstrates only two of the 

eight sphere result sets had statistically significant differences in contrast recovery between 

overlap sizes (at the 5% level of significance):  

• Large hot sphere’s mean HCRC (ΔSUVmean = 0.06) 

• Large hot sphere’s maximum HCRC (ΔSUVmean = 0.38) 

 

One of these statistically significant results is for the maximum HCRC, which is based on 

the ROI’s maximum voxel value and inherently noisy; it is therefore not surprising that the 

small increase in noise associated with the smaller overlap has an effect on maximum 

contrast recovery. The other statistically significant difference was observed in the mean 
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HCRC of the large sphere: this difference corresponds to a ΔSUV of only 0.06 and is 

therefore of no clinical significance.   

 

Table 4.2 also includes average background region COV. The 23% overlap has the greatest 

COV and the 49% overlap has the lowest for both hot and cold phantoms. This is consistent 

with the uniform phantom COV analysis shown in Figure 4.4. Although the differences in 

COV for the different overlap settings were statistically significant, the corresponding 

differences in SUVmean were small (ΔSUV = 0.01 for both hot and cold phantoms). All 

phantom COVs remained below EARL’s 15% limit.  

 

Background activity concentrations for both hot and cold phantoms (Table 4.1) are similar, 

but generally lower, than those found in patient livers. It is therefore reasonable to consider 

these results as being applicable to clinical imaging. The maximum observed sphere ΔSUV 

caused by a change in overlap size was 0.38, whilst the maximum background ΔSUV was 

0.01. The effects of slice overlap on CRCs are therefore of no clinical significance for either 

the ≈ 4:1 sphere-to-background ratio or for the cold spheres. 

 

The ≈ 2:1 sphere-to-background ratio phantom was then analysed. Figure 4.7 shows two 

example images from each overlap setting. Qualitative assessment suggests the four larger 

spheres are easily visualised on all acquisitions for all three overlap settings. The smallest 

sphere is not easily visualised on any overlap setting. Visualisation of the second smallest 

sphere (13mm diameter), Sphere 5, was inconsistent. When the 49% overlap was used, 

Sphere 5 was easily visualised on five of the six acquisitions. Sphere 5 was easily visualised 

on four of the six single-bed acquisitions, and on three of the six 23% overlap acquisitions. 

It should again be emphasised, however, that these findings only apply to the centre of the 

overlap region. 
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Figure 4.7: Low contrast hot sphere phantom images 
Images acquired using (a) single-bed acquisition with spheres in FOV centre, 
(b) two-bed, 23% slice overlap acquisition with spheres in overlap centre, and 
(c) two-bed, 49% slice overlap acquisition with spheres in overlap centre. Hot 
phantom has a ≈ 2:1 sphere-to-background activity ratio. 

 

HCRCs were calculated for Sphere 5 and compared to those of the largest and smallest 

sphere. Average results are shown in Table 4.3. Standard Deviations are shown in brackets 

and background COVs are also included. As with the previous data, Kruskal-Wallis p-values 

and the magnitude of SUV differences are presented. 
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  Mean HCRC   

 Large  
(37mm diameter) 

Sphere 5  
(13mm diameter) 

Small  
(10mm diameter) 

Background 
COV 

Single 
Bed 

77.5% 
(0.011) 

41.4% 
(0.084) 

16.3% 
(0.094) 

8.2% 
 

23% 
Overlap 

76.2% 
(0.050) 

39.1% 
(0.089) 

24.1% 
(0.138) 

10.6% 
 

49% 
Overlap 

78.5% 
(0.017) 

48.5% 
(0.095) 

18.0% 
(0.056) 

7.6% 
 

K-W 
p-value 0.612 0.236 0.423 0.007 
|ΔSUV| 0.01 0.08 0.10 0.01 

  

Max HCRC 
 

 Large 
(37mm diameter) 

Sphere 5 
(13mm diameter) 

Small 
(10mm diameter) 

 

Single 
Bed 

120.9% 
(0.090) 

58.6% 
(0.126) 

21.9% 
(0.117) 

 

23% 
Overlap 

130.4% 
(0.078) 

66.7% 
(0.137) 

29.7% 
(0.130) 

 

49% 
Overlap 

115.9% 
(0.044) 

69.0% 
(0.132) 

25.6% 
(0.064) 

 

K-W 
p-value 0.019 0.278 0.331  

|ΔSUV| 0.16 0.11 0.09  

Table 4.3: Contrast recovery coefficients for low contrast hot phantom 
Results shown for single-bed, 23% and 49% overlaps. Standard Deviations are 
included in brackets. Kruskal-Wallis p-values and the difference in SUVmean 
values are also shown. Background COVs are included for reference.  

 

Kruskal-Wallis analysis showed only one of the six HCRC result sets had a statistically 

significant difference between overlap sizes (at the 5% level of significance):  

• Large hot sphere’s maximum HCRC (ΔSUVmean = 0.16) 

 

As stated previously, it is not surprising that the small increase in noise associated with the 

smaller overlap has an effect on maximum contrast recovery. The difference in SUVmax is 

small, and therefore unlikely to be clinically significant. The background COV results are 

consistent with both the 4:1 ratio hot phantom and the cold phantom. As before, the 

phantom background activity concentrations are similar, but generally lower, than those 

found in patient livers. It is therefore reasonable to consider these results as also being 

applicable to clinical imaging. The results in Table 4.3 therefore demonstrate that the effects 

of slice overlap on HCRCs are of no clinical significance for the ≈ 2:1 sphere-to-background 

ratio. 

 
 



Chapter 4 

 

86 

 

4.5.2 Signal to Noise Ratios of Low Contrast Spheres 
The previous section demonstrated there were no clinically significant differences between 

contrast recovery coefficients produced using 23% or 49% overlaps. However, qualitative 

analysis of the low contrast 2:1 ratio phantom suggested that Sphere 5 may be harder to 

visualise when a 23% overlap is used. Tables 4.2 and 4.3 demonstrated that background 

noise, as measured by COV, was greatest in the 23% overlap images, as expected; 

however, image noise also increased as the phantom’s activity decayed throughout the 

course of the experiment. Image noise is known to affect an observer’s ability to detect 

lesions; however, the effects of image noise are not accounted for by contrast recovery 

coefficients. Signal-to-noise ratios (SNRs), as the name suggests, do account for the effects 

of image noise and can be considered a more direct measurement of lesion detectability. 

This section therefore assesses the effects of both slice overlap and phantom decay on 

SNRs of the low contrast phantom spheres, which are the most challenging to detect. 

 

Figure 4.8 plots SNR of the largest and two smallest spheres in the 2:1 sphere-to-

background phantom against phantom activity. Crosses indicate the spheres that could not 

be visualised (ROIs were positioned based on known sphere locations). Dashed lines show 

linear regression trend lines, which reflect the relationship between SNR and phantom 

activity. The gradients of the trend lines, their correlation coefficients and linear regression 

significance p-values are shown in Table 4.4.  
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Figure 4.8: SNR results for low contrast spheres 

SNR mean and maximum results for largest and two smallest spheres. 
Phantom acquired with ≈ 2:1 sphere-to-background ratio. Crosses indicate 
spheres that were difficult to visualise.  

 

One would expect each sphere’s SNR to decrease as the phantom activity decreases, due 

to the associated increase in statistical noise. Figure 4.8 demonstrates the Large Sphere 

follows this expected pattern, confirmed by the linear regression analysis: all Large Sphere 

trend lines have reasonable fits (minimum R2 = 0.746) and gradients that are statistically 

significantly different to zero (maximum p-value = 0.027). The smallest sphere, however, 

does not demonstrate any correlation between SNR and phantom activity: no Small Sphere 

trend lines are significantly different to a zero gradient. Small Sphere measurements are 

inherently noisier than those of the Large Sphere due to its smaller size; this increased 

noise, combined with the low sphere contrast ratio, is likely to mask any underlying trend in 

the data. Sphere 5 appears to largely demonstrate the expected relationship between SNR 

and phantom activity, as all six data series produce positive linear gradients. However, only 

one series, 23% Overlap Maximum SNR, produces a gradient that is statistically 

significantly different to a zero gradient (p-value = 0.033). Sphere 5 measurements are also 

inherently noisier than those of the Large Sphere, which may explain why the underlying 

trends are not statistically significant. 
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 Single Bed 23% Overlap 49% Overlap 
R2 Grad p R2 Grad p R2 Grad p 

Large 
Mean 0.982 0.083 <0.001 0.839 0.078 0.010 0.936 0.083 0.002 

Large  
Max 0.746 0.129 0.027 0.864 0.133 0.007 0.926 0.110 0.002 

Sphere 5 
Mean 0.544 0.087 0.094 0.619 0.074 0.063 0.060 0.020 0.640 

Sphere 5 
Max 0.589 0.131 0.075 0.718 0.130 0.033 0.201 0.060 0.373 

Small  
Mean 0.005 -0.006 0.890 0.215 0.047 0.354 0.243 0.032 0.320 

Small  
Max 0.055 -0.023 0.655 0.379 0.060 0.194 0.066 0.017 0.623 

Table 4.4: Linear regression results for low contrast phantom SNR 
Correlation coefficients, gradients and p-values of a significance test for linear 
regression are shown. Phantom acquired with 2:1 ratio.  

 

With respect to overlap size, both Mean and Maximum SNR results for the Large Sphere in 

Figure 4.8 demonstrate clear differences between the 23% Overlap and those of the 49% 

Overlap and Single Bed: the 23% Overlap produces the lowest results while the 49% 

Overlap largely produces the greatest results. Figure 4.8 also suggests there are 

differences in Sphere 5’s SNR as a result of overlap size; however, the differences are not 

as apparent as they are for the Large Sphere (23% Overlap results are generally the lowest, 

while 49% Overlap results are generally the greatest). Slice overlap does not appear to 

have any obvious effect on the Small Sphere results.  

  

Kruskal-Wallis analysis was applied to the data to determine if overlap size had any 

statistically significant effect upon SNR. The resultant p-values are shown in Table 4.5, 

which also includes average SNR results. The magnitude of SUVmean differences are once 

again presented.  
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Mean SNR 

Large 
(37mm diameter) 

Sphere 5  
(13mm diameter) 

Small  
(10mm diameter) 

Single 
Bed 

9.51 
(1.04) 

5.14 
(1.46) 

1.96 
(1.00) 

23% 
Overlap 

7.47 
(1.18) 

3.88 
(1.30) 

2.40 
(1.40) 

49% 
Overlap 

10.45 
(1.13) 

6.41 
(1.10) 

2.42 
(0.86) 

K-W 
p-value 0.007 0.022 0.700 

|ΔSUV| 0.01 0.08 0.10 
  

Max SNR 
 Large 

(37mm diameter) 
Sphere 5 

(13mm diameter) 
Small 

(10mm diameter) 
Single 
Bed 

14.81 
(1.85) 

7.27 
(2.12) 

2.61 
(1.23) 

23% 
Overlap 

12.79 
(1.98) 

6.63 
(2.12) 

2.96 
(1.34) 

49% 
Overlap 

15.42 
(1.52) 

9.17 
(1.78) 

3.40 
(0.89) 

K-W 
p-value 0.064 0.128 0.523 

|ΔSUV| 0.16 0.11 0.09 

Table 4.5: Average SNR results for low contrast phantom 
Results are shown for the largest and two smallest spheres acquired using single-
bed, 23% and 49% overlaps. Standard Deviations are included in brackets. 
Kruskal-Wallis p-values and the difference in SUVmean values are also shown. 
Average background COVs are also included. Phantom acquired with 2:1 ratio. 

 

Kruskal-Wallis analysis demonstrates two of the six SNR result sets have statistically 

significant differences between overlap sizes (at the 5% level of significance).  

• Large Sphere’s mean SNR (ΔSUVmean = 0.01) 

• Sphere 5’s mean SNR (ΔSUVmean = 0.08) 

These correspond to very small differences in sphere SUVmean; however, sphere SUVmean 

values do not reflect the effects of noise.  

 

The 23% overlap has been shown to have the greatest noise, as measured by background 

COV, whilst the 49% overlap has the lowest noise. One would therefore expect the 23% 

overlap to have the lowest SNR and the 49% overlap to have the greatest SNR. The results 

in Table 4.5 largely confirm this theory: the 49% overlap has the greatest SNR for all six 

result sets, whilst the 23% overlap has the lowest SNR for 4 of the 6 result sets. The smallest 

sphere results were too noisy to demonstrate any relationship between SNR and slice 

overlap.  
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The crosses in Figure 4.8 indicate spheres that were difficult to visualise qualitatively. The 

largest sphere was visible on every acquisition, while the smallest sphere wasn’t visualised 

on any of the acquisitions. The size of the overlap therefore did not affect the visualisation 

of the Large or Small Sphere.  

 

Sphere 5 was not visualised on six of the eighteen acquisitions. The 23% Overlap 

accounted for three of the six non-visualised spheres, while Single Bed accounted for two 

and 49% Overlap accounted for only one. There was a statistically significant difference in 

overlap performance for the mean SNRs. However, it should be noted that Sphere 5’s 

detectability was only compromised once the phantom background activity had decayed to 

approximately 5,700Bq/ml (lower than typically found in patient livers). As with the Small 

Sphere, the results appear to suggest that to visualise a small lesion (13mm diameter), the 

mean SNR greater must exceed approximately 5 (if not greater).  

 

4.6 Discussion 
 

Figures 4.3 and 4.4 compared the single-bed reference noise level (COV ≈ 10%) to noise 

levels achieved when overlap size varies. These figures demonstrate that as overlap size 

increased, noise in the overlap region decreased. Noise in the 49% overlap (COV ≈ 10%) 

was similar to the single-bed reference, while the 23% overlap (COV ≈ 13%) had greater 

noise. This illustrates the theoretical advantage of using larger overlaps. However, it was 

difficult to visualise the increase in noise when assessing the images qualitatively. This 

suggests that the 23% overlap is sufficient in terms of image noise when this particular 

combination of acquisition time, reconstruction parameters and activity concentration is 

used, as any noise inconsistencies across the z-axis FOV are unlikely to be visualised. 

Additionally, the 23% overlap COV did not exceed the 15% COV limit recommended by 

EARL.  

 

A comparable study by Tout et al [175] used a similar 68Ge phantom (activity concentration 

approximately 5,161Bq/ml) to assess COV on the GEMS Discovery STE scanner (an older 

PET-CT model that used BGO crystals and had no TOF or PSF capabilities). Coronal 

phantom images demonstrated increased noise in the overlap region for overlaps of 32% 

or less, which led the authors to conclude a minimum 36% overlap should be used (with 

50% overlap being the optimal choice). However, the authors also stated slice overlap 

should be matched to the capabilities of each system in question. The work undertaken in 

this chapter demonstrated that the overlap region was not visible on coronal phantom 

images when a 23% overlap was used on the Discovery 690, and this was assessed using 

phantom images with a » 35% lower count density than the Discovery STE study. 
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Standardised Uptake Values (SUVs) are used in clinical PET to characterise lesion uptake 

and are based upon voxel values. Figure 4.5 illustrates the effect overlap size has on activity 

concentration accuracy for both mean and maximum voxel values. As mean voxel values 

were not affected by overlap size, a smaller overlap can be used without penalty with 

respect to mean voxel values or SUVmean measurements.  

 

However, maximum voxel values, and therefore SUVmax, in the overlap area are affected 

by overlap size, as they are directly affected by image noise. The 49% overlap maximum 

voxel value was similar to that of the single-bed reference, while the 23% overlap maximum 

voxel value was 19% greater than that of the single-bed reference (for the particular 

combination of phantom activity and acquisition time used). Maximum voxel values and 

SUVmax measurements should always be used with caution regardless of overlap size, as 

this type of measurement is directly affected by image noise [178].  

 

Contrast Recovery Coefficients (CRCs) for different sized spheres and different sphere-to-

background ratios were also analysed. EARL guidelines state that lesion recovery 

coefficients should remain unbiased. Overlap size was found to have no clinically significant 

effect on any of the CRCs. However, as with SUVmax measurements, maximum CRCs 

should be used with caution.  

 

CRCs alone are not a reliable measure of lesion detectability, as demonstrated by the low 

contrast 2:1 sphere-to-background phantom results. The HCRC calculations suggested 

there was no clinically significant difference between the 23% and 49% overlap results; 

however, qualitative analysis demonstrated a difference between 23% and 49% overlaps 

when visualising Sphere 5. This was confirmed by the SNR calculations. It is important to 

note that Sphere 5’s visibility was only compromised on the 23% overlap images when the 

phantom’s background activity concentration had decayed below 5,700Bq/ml. The resultant 

noise increase made the sphere difficult to visualise. 

 

Phantom experiments in this chapter were performed using four-minute frames and were 

compared with activity concentrations within patients injected with 400MBq18F-FDG. 

Reducing frame times or injected activities may further compromise lesion detectability. 

However, the count density of the 68Ge phantom was shown to be representative of patients 

receiving 200MBq injections; the experiment therefore provided a conservative image noise 

estimate for a wider range of FDG administration schemes. Furthermore, the visualisation 

of the low contrast Sphere 5 was only compromised when the phantom activity 

concentration fell below 5,700Bq/ml. This is 11% lower than the lowest observed patient 

liver activity concentration for a 400MBq 18F-FDG scan, and 37% lower than the average 

patient liver activity concentration. This suggests frame times may be reduced below 4 
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minutes (or injected activities could be reduced below 400MBq) whilst using a 23% overlap 

without compromising the visualisation of low contrast lesions; however, further work should 

be undertaken to justify any protocol changes.   

 

There are practical reasons that favour the use of smaller overlaps to maximise image 

quality. A typical scan length of 900mm on the GEMS Discovery 690 requires 8 bed 

positions when a 23% overlap is used. This increases to 11 bed positions if the overlap is 

increased to 49%. Increasing the number of bed positions, and hence scan duration, has 

practical implications: 

• Patients would have to lie still for a longer period of time. This increases the risk of 

physical and physiological movement, which can degrade image quality. Severe motion 

leads to repeated imaging and additional CT exposure, which would increase the total 

radiation dose burden to the patient. 

• The daily patient throughput of the imaging centre would be reduced. Although total 

imaging time for a particular patient depends on the prescribed imaging extent (and 

hence the patient’s height), each planned patient time-slot would need to be increased 

to account for this extra imaging time. 

 

A 23% overlap, with four-minute frames, has been employed in the West of Scotland PET 

Centre since the Discovery 690 system was installed in 2011, as per manufacturer guidance 

at that time. No overlap-related artefacts have ever been reported. Figure 4.9 shows coronal 

images of three patients with varying BMI who were all imaged under the same conditions: 

no overlap regions are visible on any of these images.  
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Figure 4.9: Coronal slices of three PET patients with varying BMI 
All three patients were injected with 400MBq 18F-FDG and scanned at 60 minutes 
post-injection. PET acquisitions obtained using four-minute frames with 23% 
slice overlap.  
 

4.7 Proposed Amendment to European Guidelines 
 

The 2014 EANM guidelines outline specifications for calculating weight-based injected 

activities, which take frame time and overlap size into consideration. Both linear and 

quadratic schemes are outlined in Equations 4.1, 4.2, 4.3 and 4.4.  

 

𝐸𝐴𝑁𝑀	𝑀𝑖𝑛	𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦	(𝐿𝑖𝑛𝑒𝑎𝑟) = 14	 ∗ 	
𝑃𝑎𝑡𝑖𝑒𝑛𝑡	𝑊𝑒𝑖𝑔ℎ𝑡	(𝑘𝑔)
𝐹𝑟𝑎𝑚𝑒	𝑇𝑖𝑚𝑒	(𝑚𝑖𝑛𝑠) , 𝑂𝑣𝑒𝑟𝑙𝑎𝑝	 ≤ 30% Equation 4.1 

 

 

 = 	7	 ∗ 	
𝑃𝑎𝑡𝑖𝑒𝑛𝑡	𝑊𝑒𝑖𝑔ℎ𝑡	(𝑘𝑔)
𝐹𝑟𝑎𝑚𝑒	𝑇𝑖𝑚𝑒	(𝑚𝑖𝑛𝑠) , 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 > 30% Equation 4.2 

 

 

𝐸𝐴𝑁𝑀	𝑀𝑖𝑛	𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦	(𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐) = 1,050	 ∗	
i𝑃𝑎𝑡𝑖𝑒𝑛𝑡	𝑊𝑒𝑖𝑔ℎ𝑡	(𝑘𝑔) 75; j

�

𝐹𝑟𝑎𝑚𝑒	𝑇𝑖𝑚𝑒	(𝑚𝑖𝑛𝑠) , 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 ≤ 30% 
Equation 4.3 

 

 

 
= 	525	 ∗	

i𝑃𝑎𝑡𝑖𝑒𝑛𝑡	𝑊𝑒𝑖𝑔ℎ𝑡	(𝑘𝑔) 75; j
�

𝐹𝑟𝑎𝑚𝑒	𝑇𝑖𝑚𝑒	(𝑚𝑖𝑛𝑠) , 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 > 30% 
Equation 4.4 

 

 

According to these guidelines, an average 70kg patient to be imaged using four-minute 

frames and <30% overlap would require a minimum injected activity of 245MBq using the 

linear model, or 228MBq using the quadratic model. If the overlap was increased >30%, the 

minimum injected activity would be halved to 122.5MBq (linear) or 114MBq (quadratic). The 
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work undertaken in this chapter demonstrated this 30% EANM overlap threshold does not 

correlate with a noticeable watershed in COV performance. Figure 4.4 also demonstrated 

the relationship between COV and overlap size can be modelled as an offset exponential 

relationship. 

 

An alternative calculation scheme is therefore proposed which accounts for the measured 

relationship between image noise and slice overlap:  

 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚	𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝐿𝑖𝑛𝑒𝑎𝑟	𝑀𝑜𝑑𝑒𝑙	 = −10	𝑙𝑛(𝑥) 	∗ 	
𝑃𝑎𝑡𝑖𝑒𝑛𝑡	𝑊𝑒𝑖𝑔ℎ𝑡	(𝑘𝑔)
𝐹𝑟𝑎𝑚𝑒	𝑇𝑖𝑚𝑒	(𝑚𝑖𝑛𝑠)  Equation 4.5 

 

 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚	𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑄𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐	𝑀𝑜𝑑𝑒𝑙	

= −750	𝑙𝑛(𝑥) 	 ∗ 	
i𝑃𝑎𝑡𝑖𝑒𝑛𝑡	𝑊𝑒𝑖𝑔ℎ𝑡	(𝑘𝑔) 75; j

�

𝐹𝑟𝑎𝑚𝑒	𝑇𝑖𝑚𝑒	(𝑚𝑖𝑛𝑠)  

Equation 4.6 

 

 

where x is the percentage overlap size expressed as a decimal (e.g. x = 0.23 for 23% 

overlap). 

 

Although the relationship between COV and overlap size was modelled using an offset 

exponential in Figure 4.4, the application of the COV/overlap relationship has been 

simplified in the above equations for clinical use by using the natural log of the overlap and 

a single multiplicative constant (the use of an offset exponential with three constant terms 

may be impractical in the clinical setting). Departments using a single fixed overlap for all 

scanning can simplify these equations further by pre-calculating the ‘-10ln(x)’ and/or ‘-

750ln(x)’ terms and substituting them as replacement constants to the current EANM 

calculation scheme. 

 

The multiplicative constants in these equations were chosen to produce values within 1% 

of the EANM models at the maximum possible overlap (50%). This reduces the impact of 

the proposed guidance change on centres with scanners that employ large fixed overlaps. 

As the overlap size decreases, the minimum activity increases according to the logarithmic 

model to account for the associated increase in image noise. 

 

Furthermore, a minimum overlap of 23% for the GEMS Discovery 690 is also proposed in 

these models for the following reasons: 

• The 23% overlap is recommended by GEMS 

• This study has demonstrated that a 23% overlap is safe for clinical use 
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• Detectability of small lesions in low count studies may be compromised when 

overlaps less than 23% are used, as demonstrated in Section 4.5 (smaller overlaps 

would further degrade the SNR) 

• With respect to the proposed models for calculating minimum injected activities, this 

overlap restriction also prevents the use of large injected activities to compensate 

for the increased noise levels associated with smaller overlaps.  

 

Figure 4.10 illustrates the effect these amendments would have on the calculated minimum 

injected activities for a 70kg patient to be imaged using 4-minute acquisition frames. When 

overlaps of between 30% and approximately 40% are used under the current guidelines, 

reduced image quality in overlap areas may compromise lesion detectability.  

 

Figure 4.10: Illustration of proposed EANM amendment 
Comparison of proposed weight-based injected activity models with current 
EANM models, for a 70kg patient imaged using 4-minute acquisition frames. 
Proposed models are restricted to a minimum overlap of 23%. 
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4.8 Conclusions 
 

A review of the literature revealed a paucity of studies assessing the effects of slice overlap 

on PET image quality. Furthermore, the GEMS recommended 23% overlap for the 

Discovery 690 was not supported by any peer reviewed studies. This chapter therefore 

aimed to characterise the effect of overlap size on image quality, in terms of image noise, 

voxel accuracy, lesion contrast recovery and detectability. In particular, this chapter aimed 

to determine if there was evidence to justify the use of a 23% overlap using the Discovery 

690 by comparing 23% overlap results with those obtained by the maximum possible 

overlap (49%).  

 

When 23% overlap images are compared to 49% overlap images:  

• There is minimal detectable influence on clinical image quality in terms of noise, 

mean activity concentrations or mean contrast recovery of lesions 

• There is no detectable influence on SUVmean values 

• Detectability of small, low contrast lesions may be affected in low count studies, not 

typically seen in local routine clinical practice, when a 23% overlap is used 

o This is a worst-case scenario, which applies only when lesions are 

located in the overlap area 

• Maximum contrast recovery and SUVmax values should be used with caution 

 

The marginal discernible benefits of increasing the slice overlap from 23% to 49% would 

likely be offset by the disadvantages of increasing clinical scan times. No overlap-related 

artefacts have been reported to date when 23% overlaps have been employed locally for 

clinical scans. Therefore, this chapter concludes a 23% overlap may be used on the GEMS 

Discovery 690 without detriment to clinical imaging, unless the combination of administered 

activity and frame time is unusually low. All practical work undertaken throughout the 

remainder of this thesis therefore used an overlap of 23%. 

 

This chapter also proposes an amendment to the EANM guidelines which accounts for the 

relationship between image noise and slice overlap when calculating minimum patient 

injection activities. 

 

Some of the work performed in this chapter was published in the Physics in Medicine and 

Biology Journal in January 2016 [179].  

 
 



 

 
 
 
 
 
 
 
 
Chapter 5 : Quantitative Accuracy in Reconstructed 
Images of a Uniform Phantom 
 

Quantitative image metrics used throughout this thesis, and for PET imaging in general, are 

calculated using reconstructed voxel activity concentrations, the accuracy of which are 

dependent upon appropriate calibration of the PET system. The GEMS procedure for 

calibrating the Discovery 690 uses a combination of reconstruction parameters which differ 

from their suggested clinical reconstruction parameters; the implications of this are not 

discussed in GEMS documentation. Furthermore, there is little discussion of the importance 

of reconstruction parameters used in PET calibration procedures in the wider literature. 

Surprisingly, there is also no consideration of the effects of fundamental changes to 

reconstruction algorithms associated with TOF and PSF corrections. This chapter therefore 

investigates the effects of reconstruction parameters upon data used for PET calibration.  

 

5.1 Introduction 
 

Voxel values in reconstructed PET images are the result of a complex reconstruction 

process with many user-defined parameters, as described in Chapter 1. Voxel values are 

presented as radioactivity concentrations, as described in Section 1.5.1; Well Counter 

Calibration (WCC), or absolute activity calibration (AAC), is used to convert image voxel 

values into activity concentrations [65], [76]. Whilst qualitative analysis of clinical PET 

images is common practice, quantitative analysis has also been shown to be useful in the 

evaluation of tumour response to treatment, as discussed in Chapter 2. Regions of interest 

(ROIs) are often used to produce quantitative analysis of reconstructed images, for both 

clinical and research purposes; for example, to measure uptake within a lesion or noise 

within background activity.  
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Although voxel activity concentrations are not typically quoted directly in clinical PET 

reports, they are used to calculate clinical metrics such as SUV, TLG and MTV [141], [180], 

[181]. Both mean and maximum voxel values within ROIs are of clinical relevance, as both 

can be used to calculate these clinical metrics. For example, as described in Section 1.5.2, 

maximum voxel values are used to calculate SUVmax measurements, while SUVmean and 

SUVpeak use averaging of voxel values in the relevant region.  

 

Accurate WCC is therefore of critical importance to the clinical interpretation of PET images. 

The American College Radiology Network (ACRIN) Centre of Quantitative Imaging 

Excellence (CQIE) Manual of Procedures [182] states that WCC should be performed at 

least every three months, after scanner upgrades, after new set-ups, and after modifications 

to the radionuclide calibrator. EANM quality control guidelines [125] state that WCC should 

be performed as per manufacturer’s procedures. GEMS guidelines for the Discovery 690 

PET-CT system state that WCC should be performed every three months and following any 

upgrades, as per the ACRIN procedures.   

 

The GEMS procedure for WCC involves filling a 20cm uniform phantom with a known 18F 

activity concentration of approximately 3,500Bq/ml, performing a WCC phantom 

acquisition/reconstruction and generating correction factors based on the measured data. 

Verification of the new correction factors involves performing and analysing a clinical 

acquisition/reconstruction of the same phantom; mean voxel values should be within ±10% 

of the expected value (given the known decay-corrected phantom activity concentration). 

The GEMS WCC protocol uses different reconstruction parameters from those suggested 

by GEMS for clinical reconstructions, as summarised in Table 5.1. 

 

 GEMS Recommendations 
WCC Clinical 

Effective Iterations 48 54 

FOV 250mm 700mm 

Voxel Size (x & y axes) 1.95mm 3.65mm 

Post-Reconstruction Gaussian filter 6.4mm 4mm 

Z-Axis Filter None Standard 

TOF No Yes 

PSF No Yes 

Table 5.1: GEMS reconstruction parameters for WCC and clinical imaging 
  

The rationale for using this particular combination of reconstruction parameters for WCC is 

not explained in GEMS documentation. GEMS were therefore contacted directly for more 
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information about the Discovery 690’s WCC protocol, and in particular, for an explanation 

as to why different reconstruction parameters are used for WCC and clinical scans. Dr 

Charles Stearns, principle engineer at GEMS (personal communication, 21st July 2014) 

stated that quantitative values produced by the Discovery 690 for large, uniform objects, 

like the 20cm diameter uniform phantom used for WCC, are insensitive to the following 

reconstruction parameters, provided the relevant conditions are met:  

• Effective iterations (provided ‘enough’ iterations are performed to obtain ‘decent’ 

image quality) 

• Filtering (unless at the very edge of the field of view) 

• Voxel size  

Dr Stearns also stated that the algorithm type (which determines if TOF or PSF are applied) 

is ‘calibrated out’ by a correction factor in the WCC reconstruction, which makes the output 

constant across all algorithm types. 

 

The impact of using different combinations of reconstruction parameters for WCC and 

clinical acquisitions has not been widely discussed in the scientific literature. A 2013 

textbook by Prekeges [35] states that separate WCC correction factors are required for 

different reconstruction algorithms, which appears to contradict the advice given by GEMS. 

Other textbooks and publications that explain the basic principles of WCC do not discuss 

the impact of reconstruction parameters [60], [125], [183]. There appears to be a 

widespread assumption that using different reconstruction parameters for WCC and clinical 

scans has no detrimental impact upon quantitative accuracy; however, there is no published 

evidence explicitly stating this is the case. This is surprising when one considers how critical 

accurate WCC is to quantitative accuracy of PET images. 

 

5.2 Aims 
 

The first aim of this chapter is to assess the differences in voxel values between 

reconstructions produced using the WCC parameters and the GEMS suggested clinical 

parameters, outlined in Table 5.1, for a uniform phantom. This will test the GEMS assertion 

that the current WCC reconstruction protocol is suitable for use with the GEMS suggested 

clinical reconstruction parameters.  

 

The second aim of this chapter is to characterise the effects of altering each of the 

reconstruction parameters in Table 5.1 upon voxel accuracy in a uniform phantom. This will 

test the wider GEMS assertion regarding the insensitivity of voxel values to effective 

iterations, filtering and voxel size (within the limits stated by GEMS). The effects of TOF and 

PSF will also be assessed, for completeness.  
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5.3 Materials and Methods 
 

All acquisitions and reconstructions were performed on the Discovery 690 PET-CT system. 

A detailed description of this system is included in Chapter 3. 

 

5.3.1 Phantom 
Although a uniform 18F phantom is used for performing WCC on the Discovery 690, this 

chapter used the uniform 68Ge phantom described in Section 3.2.1 for two main reasons:  

• This chapter assesses voxel accuracy of reconstructed images in lieu of performing 

WCC calibrations with different reconstructions. The 68Ge phantom is calibrated to NIST 

standards and so provides an accurate standard to within ±3% tolerance. An 18F 

phantom would introduce measurement errors of up to ±5% associated with the 

radionuclide calibrator [184] with both the pre-injection and post-injection syringe 

measurements. 

• The 68Ge phantom is known to have a uniform activity distribution with no air bubbles. 

The 18F water phantom is subject to potential air bubbles and non-uniform mixing of the 

activity throughout the phantom volume. 

 

The characteristics of 18F and 68Ge are compared in Section 3.2.1. Differences in half-life 

and branching factors between are accounted for by applying the appropriate corrections 

when acquiring data. The mean positron range in water of 68Ge (2.24mm) is longer than 

that of 18F (0.64mm); whilst this may have implications for a small lesion study, this is highly 

unlikely to be of any disadvantage in the analysis of a relatively large uniform object.  

 

The phantom’s radioactivity concentration at the time of scanning was 3,631Bq/ml 

(±108Bq/ml) in the active volume (total activity 22.12MBq ± 0.66MBq). This total activity and 

activity concentration was similar to that recommended by GEMS for WCC using 18F 

(approximately 20MBq into a 5,640ml volume, giving an approximate activity concentration 

of 3,546Bq/ml).  

 

5.3.2 Image Acquisition and Reconstruction Protocols 
The phantom was placed in the centre of the FOV. One single-bed, 4-minute PET 

acquisition was obtained. This phantom position ensured the central transaxial slice of the 

single bed acquisition (maximum sensitivity) coincided with the centre of the phantom. 

Correction factors for 68Ge (half-life and branching factor) were applied to the acquired data.  
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In order to compare the quantitative accuracy of the WCC and clinical reconstructions, as 

per the first aim of this chapter, the phantom acquisition was reconstructed using the two 

sets of reconstruction parameters outlined in Table 5.1.  

 

In order to characterise the effects of varying the reconstruction parameters, as per the 

second aim of this chapter, a wide range of parameters were examined. The transaxial FOV 

was fixed at 700mm, which is used for whole-body imaging. All possible settings for 

reconstruction method, matrix size and z-axis filter were assessed. The number of effective 

iterations and the Gaussian filter width, however, both have wide ranges of possible values, 

as described in Sections 3.1.2.3 and 3.1.2.5 respectively. A subset of the possible values 

for each of these parameters was chosen in order to effectively demonstrate the effect of 

each parameter, whilst keeping the size of the data set manageable. The Gaussian filter 

width was extended from 0mm to 10mm in steps of 1mm. The number of effective iterations 

ranged from 18 to 540. Both parameters were therefore extended beyond typical clinical 

settings to better evaluate their effects under extreme circumstances. Table 5.2 

summarises the reconstruction parameters used.  

 

Reconstruction  
Parameter 

Settings  
Used 

Number of  
Result Groups 

Reconstruction Method HD, PSF, TOF, PSF+TOF 4 

Effective Iterations 18, 54, 90, 180, 540 5 

Gaussian Filter (FWHM) 0 à10mm, in 
1mm increments 

11 

Z-Axis Filter None, Light, 
Standard, Heavy 

4 

Matrix Size 128*128, 192*192, 256*256 3 

Table 5.2: Reconstruction parameters used for 68Ge phantom 
 

All possible combinations of the reconstruction parameters shown in Table 5.2 were used. 

2,640 reconstructions were therefore performed in total. 

 

5.3.3 Image Analysis 
All ROI analysis was performed using Hermes Medical Systems’ Hybrid Viewer software. 

 

A large ROI (diameter 12cm) was positioned on the central PET slice and on two slices 

either side (5 ROIs in total). The mean and maximum voxel values were recorded for each 

ROI. The mean of the 5 mean ROI values was taken to be the mean activity concentration. 

The maximum voxel value across all 5 ROIs was taken to be the maximum activity 

concentration. This analysis was repeated for all reconstructions performed. 
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As all measurements were taken from the centre of the FOV, and not the FOV edges, 

quantitative values should be insensitive to filter settings according to the GEMS assertion 

being assessed by the second aim in this chapter.   

 

5.4 Results 
 

5.4.1 Comparison between WCC and Clinical Reconstructions 
Figure 5.1 compares the central transaxial slices from the GEMS recommended WCC and 

clinical reconstructions, as defined in Table 5.1.  

 

  
‘GEMS WCC’ Reconstruction ‘GEMS Clinical’ Reconstruction 

Figure 5.1: Central transaxial slices of WCC and clinical reconstructions 
 

Qualitative analysis of the ‘GEMS WCC’ and ‘GEMS Clinical’ reconstructions demonstrates 

little difference between the two images.  Table 5.3 compares the mean and maximum voxel 

values for the ‘GEMS WCC’ and ‘GEMS Clinical’ reconstructions, and also compares them 

to the expected (reference) phantom activity concentration (3,631Bq/ml).  

 

 GEMS WCC GEMS Clinical 
Mean Voxel Value 3,666Bq/ml 3,657Bq/ml 

Difference from Reference +35Bq/ml (+0.96%) +26Bq/ml (+0.72%) 

Maximum Voxel Value 5,132Bq/ml 5,074Bq/ml 

Difference from Reference +1,501Bq/ml (+41.3%) +1,443Bq/ml (+39.74%) 

Table 5.3: WCC and Clinical reconstruction voxel values 
 

The difference between the mean voxel values for the ‘GEMS WCC’ and ‘GEMS Clinical’ 

images is small (9Bq/ml, 0.25% of expected activity concentration). The difference between 

the maximum voxel values is also small (58Bq/ml, 1.6% of expected activity concentration). 

The differences in quantitative voxel accuracy between the ‘GEMS WCC’ and ‘GEMS 

Clinical’ reconstructions for the 20cm uniform phantom are therefore highly unlikely to be of 

clinical significance. 
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The mean voxel values of the ‘GEMS WCC’ and ‘GEMS Clinical’ images are within 1% of 

the expected phantom activity concentration, and therefore within the phantom’s ±3% 

tolerance. However, the maximum voxel values of both data sets are approximately 40% 

greater than the expected activity concentration. Maximum voxel values are ‘single voxel’ 

measurements and are therefore vulnerable to statistical noise; it is therefore expected that 

the maximum voxel values exceed the expected activity concentration. 

 

The first aim of this chapter is therefore fulfilled: differences between the ‘GEMS WCC’ and 

‘GEMS Clinical’ are minimal, and the current WCC protocol is therefore valid. The rest of 

this chapter will address the second aim of this chapter and characterise the effects of each 

reconstruction parameter upon voxel accuracy.  

 

5.4.2 Effects of Reconstruction Parameters on Quantitative Accuracy 
Before the effects of each reconstruction parameter are investigated in turn, the distribution 

of the full result set (all 2,640 reconstructions) for both mean and maximum activity 

concentrations are briefly examined. This is to inform an appropriate choice of statistical 

analyses when assessing the effects of each of the reconstruction parameters.   

 

Figure 5.2 shows a histogram of all 2,640 mean activity concentration results, with a bin 

width of 1Bq/ml. The reference phantom activity and its ± 3% tolerance range are also 

shown. The histogram demonstrates all 2,640 mean activity concentration results are above 

the reference activity concentration, but within the stated ± 3% uncertainty of the calibrated 

phantom’s activity concentration. The minimum result (3,647Bq/ml) is 0.44% above 

reference and the maximum result (3,700Bq/ml) is 1.9% above reference. The following 

factors may have contributed to this small positive offset, with respect to the reference 

value:  

• Measurement error in the phantom’s calibration at the time of manufacture 

• Measurement error in the 18F phantom used in the most recent WCC, used to generate 

the voxel values in the reconstructions performed in this chapter 

 

A visual inspection of the histogram clearly demonstrates the mean activity concentration 

results from the full data set do not follow a normal distribution; this was confirmed by a 

Shapiro-Wilk test of normality (p-value <0.001). Non-parametric statistical tests are 

therefore used in this chapter to determine if there are any statistically significant differences 

in mean activity concentrations as a result of changes to the reconstruction algorithm. 

Furthermore, the full result set appears to demonstrate four distinct peaks. This is a result 

of the differences between the four reconstruction methods (HD, PSF, TOF and PSF+TOF), 

as will be demonstrated later in this chapter. 
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Figure 5.2: Histogram of all 2,640 mean activity concentration results 
Bin width is 1Bq/ml. 

 

Figure 5.3 shows a histogram of all 2,640 maximum activity concentration results. The 

reference phantom activity and its ± 3% tolerance range are also shown. It should be noted 

that the y-axis range is much shorter than that of the mean activity concentrations, while 

the x-axis range is much greater (reference activity and tolerance limits shown at the 

extreme left of the graph).  

 

Figure 5.3 demonstrates that all 2,640 maximum activity concentration results are above 

the upper bound of the phantom’s calibrated activity concentration uncertainty. The 

minimum result (3,915Bq/ml) is 7.8% above reference and the maximum result, 

(27,300Bq/ml) is 652% above reference. As stated previously, maximum voxel values are 

vulnerable to statistical noise. The deviations from the reference phantom activity 

concentration depend on the statistical noise in the reconstructed image, which in turn 

depends on the reconstruction parameters used.  

 

A visual inspection of maximum activity concentration histogram demonstrates that the 

results for the full data set do not demonstrate a normal distribution (Shapiro-Wilk p-value 

<0.001). Non-parametric statistical tests are therefore used for both mean and maximum 

activity concentration analysis in this chapter. 
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Figure 5.3: Histogram of all 2,640 maximum activity concentrations results 
Bin width is 1Bq/ml. 

 

The remainder of the results section examines the effects of each of the reconstruction 

parameters in turn on both mean and maximum activity concentrations, in accordance with 

the second aim of this chapter. However, it should be noted that Figure 5.2 has already 

demonstrated the reconstruction parameters assessed in this chapter are unlikely to have 

any clinically significant impact upon mean activity concentrations in the uniform phantom, 

as the results for all 2,640 reconstructions are within 2% of the expected phantom activity 

concentration. Figure 5.3 demonstrates the reconstruction parameters do have a significant 

effect upon the maximum activity concentrations, as one would expect for ‘single voxel’ 

measurements that are vulnerable to image noise.  

 

5.4.2.1 Effects of TOF and PSF 
Figure 5.4 splits the mean activity concentration histogram data by reconstruction method. 

Comparing Figure 5.4 with Figure 5.2 confirms each of the four reconstruction methods 

accounts for a different peak in the histogram of the full result set.  

 



Chapter 5 

 

106 

 

 

Figure 5.4: Mean activity concentrations histograms by reconstruction method 
Bin width is 1Bq/ml. 

 

Figure 5.5 plots mean activity concentrations against reconstruction method in order to 

better visualise the differences between each method. The results are presented as box 

plots (shaded grey): the boxes show the first and third quartiles and the median value, the 

lower whiskers represent data within 1.5 of the inter-quartile range of the lower quartile, the 

upper whiskers represent data within 1.5 of the inter-quartile range of the upper quartile, 

and dots represent outliers. Violin plots (red lines) are overlaid onto the box plots and 

illustrate the distribution of results for each effective iteration setting.  

 

Figure 5.5 demonstrates the reconstruction method has a clear effect on mean voxel values, 

in spite of the very small differences in activity concentrations. PSF-only appears to reduce 

voxel values when compared to HD. TOF-only reduces the voxel sizes below that of PSF-

only. Applying both PSF and TOF together produces the lowest mean voxel values. 

However, all four median results are within 36Bq/ml (approximately 1%) of each other: 

3,694Bq/ml (HD), 3,678Bq/ml (PSF), 3,672Bq/ml (TOF) and 3,658Bq/ml (PSF+TOF). The 

violin plot also demonstrates TOF-only produces the most consistent results, while the PSF 

reconstructions produce the least consistent results. This is confirmed by the differences 

between the maximum and minimum results for each method: TOF = 8Bq/ml; HD = 9Bq/ml; 

PSF+TOF = 17Bq/ml; PSF = 18Bq/ml. 
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Figure 5.5: Mean activity concentrations versus reconstruction method 
Results shown as box and violin plots. Whiskers in box-plots represent 1.5 inter-
quartile ranges and dots represent outliers. 

 

A Friedman’s test confirmed there are statistically significant differences between the 

reconstruction methods (p-value <0.001). Pairwise Wilcoxon signed-ranks tests with 

Bonferroni multiple comparison corrections were therefore performed on each possible pair 

of reconstruction methods. The p-value in each case was <0.001, indicating each 

reconstruction method produces statistically significantly different results to the others. 

However, as stated previously, these differences are highly unlikely to be clinically 

significant given the small magnitude of differences in the activity concentrations. 

 

Figure 5.6 plots maximum activity concentrations against reconstruction method. The 

results are presented as box and violin plots, in the same manner as Figure 5.5.   

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

 

108 

 

 

Figure 5.6: Maximum activity concentrations versus reconstruction method 
Results shown as box and violin plots. Whiskers in box-plots represent 1.5 inter-
quartile ranges and dots represent outliers. 

 

Figure 5.6 demonstrates that reconstruction method has an effect on the outlying results. 

PSF produces the greatest outliers: maximum results were 27,300Bq/ml for PSF and 

22,698Bq/ml for PSF+TOF. TOF-only produces the narrowest range of results: the 

maximum value for TOF (17,859Bq/ml) is less than that of the HD reconstruction 

(21,121Bq/ml). However, all four median results are within 174Bq/ml (approximately 3.3%) 

of each other: 5,304Bq/ml (HD), 5,326Bq/ml (PSF), 5,295Bq/ml (TOF) and 5,152Bq/ml 

(PSF+TOF).  

 

The Friedman test returned a p-value of <0.001; Pairwise Wilcoxon signed-ranks 

(Bonferroni) tests were therefore performed. The p-value in each case was <0.05, indicating 

that each reconstruction method produces significantly different results to the others. Unlike 

the mean activity concentration results, these differences may be of clinical significance, 

particularly for the outliers. 

 

5.4.2.2 Effects of Effective Iterations 
Figure 5.7 plots mean activity concentrations against the number of effective iterations. 

Results are presented as box and violin plots.  
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Figure 5.7: Mean activity concentrations versus effective iterations 
Results shown as box and violin plots. Whiskers in box-plots represent maximum 
and minimum values (no outliers are present). 

 

Figure 5.7 demonstrates that the range of results increases as more effective iterations are 

applied: the difference between the maximum and minimum result increases from 37Bq/ml 

(18 effective iterations) to 53Bq/ml (540 effective iterations). However, all 5 median results 

are within 2Bq/ml (0.05%) of each other (3,673Bq/ml for 180 and 540 iterations, 3,674Bq/ml 

for 18 and 90 iterations, and 3,675Bq/ml for 54 iterations).   

 

The Friedman test returned a p-value of <0.001; Pairwise Wilcoxon signed-ranks 

(Bonferroni) tests were therefore performed. Only one result pair did not demonstrate a 

statistically significant difference (18 effective iterations versus 90 effective iterations 

returned a p-value of 0.789). However, as all results were within the narrow ranges 

discussed above, with very similar median results, these differences are highly unlikely to 

be clinically significant. 

 

Figure 5.8 plots the maximum activity concentrations against the number of effective 

iterations. Results are presented as box and violin plots. 
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Figure 5.8: Maximum activity concentrations versus effective iterations 
Results shown as box and violin plots. Whiskers in box-plots represent 1.5 
inter-quartile ranges and dots represent outliers. 

 

Figure 5.8 clearly demonstrates that as the number of effective iterations increases, the 

median result increases (from 4,269Bq/ml at 18 effective iterations to 7,189Bq/ml at 540 

effective iterations). The ranges of results also increase with effective iterations. At 18 

effective iterations, results range from 3,915Bq/ml to 5,695Bq/ml (difference of 1,780Bq/ml). 

At 540 effective iterations, results range from 4,259Bq/ml to 27,300Bq/ml (difference of 

23,041Bq/ml).  

 

The Friedman test returned a p-value of <0.001; Pairwise Wilcoxon signed-ranks 

(Bonferroni) tests were therefore performed. Each pair produced p-values <0.001, 

indicating each iteration setting produces statistically significantly different maximum results 

to the others. Unlike the mean voxel values, these differences are likely to be clinically 

significant, as the effect upon voxel values is large.  

  

5.4.2.3 Effects of Matrix Size 
Figure 5.9 plots mean activity concentrations against matrix size. Results are presented as 

box and violin plots.  
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Figure 5.9: Mean activity concentrations versus matrix 
Results shown as box and violin plots. Whiskers in box-plots represent maximum 
and minimum values (no outliers are present). 

 

Figure 5.9 demonstrates that matrix size has little effect on mean voxel values. All three 

median values are within 1Bq/ml (0.03%) of each other: 3,673Bq/ml for the 128 and 256 

matrices, and 3,674Bq/ml for the 192 matrix. The ranges of results for each matrix size are 

also very similar (48Bq/ml for both the 128 and 256 matrices and 51Bq/ml for the 192 

matrix). 

 

However, the Friedman test returned a p-value of < 0.001, indicating there are statistically 

significant differences in the mean voxel values caused by the choice of matrix size. This is 

not immediately obvious from Figure 5.9; however, upon closer inspection, the violin plots 

demonstrate different result distributions for each matrix setting. The 128 matrix distribution 

appears to be more focussed around the median result; however, as the matrix size 

increases, results appears to become more evenly distributed. Pairwise Wilcoxon signed-

ranks (Bonferroni) tests produced p-values <0.001 for each pair, indicating each matrix size 

produces statistically significantly different results to the others. However, these differences 

are highly unlikely to be clinically significant, as the differences between the three sets of 

results are small. 

 

Figure 5.10 plots maximum activity concentrations against matrix size. Results are 

presented as box and violin plots.   
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Figure 5.10: Maximum activity concentrations versus matrix size 
Results shown as box and violin plots. Whiskers in box-plots represent 1.5 inter-
quartile ranges and dots represent outliers. 

 

In contrast to the mean activity concentration results, Figure 5.12 demonstrates that matrix 

size has a clear effect on the maximum activity concentrations. Median results for all three 

matrix sizes are within 105Bq/ml (2%) of each other: 5,176Bq/ml for the 128 matrix, 

5,281Bq/ml for the 192 matrix and 5,263Bq/ml for the 256 matrix. However, the maximum 

outliers increase as the matrix size increases: 11,512Bq/ml (128 matrix), 20,209Bq/ml (192 

matrix) and 27,300Bq/ml (256 matrix). 

 

The Friedman test returned a p-value of <0.001; Pairwise Wilcoxon signed-ranks 

(Bonferroni) tests were therefore performed. Each pair produced p-values <0.001, 

indicating that each matrix size produces statistically significantly different results to the 

others. These differences may be of clinical significance as the effects upon voxel values 

are large.  

 

5.4.2.4 Effects of Gaussian Filter Width 
Figure 5.11 plots the mean activity concentrations against the post reconstruction filter 

FWHM.  
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Figure 5.11: Mean activity concentrations versus Gaussian filter width 
Results shown as box and violin plots. Whiskers in box-plots represent maximum 
and minimum values (no outliers are present). 

 

The plots demonstrate that filter FWHM has very little effect on mean voxel values. The 

median result is almost identical for all eleven filter widths (3,673Bq/ml for filter widths 0mm 

through to 8mm, and 3674Bq/ml for filter widths 9mm and 10mm). The ranges of results 

are also almost identical (between 49Bq/ml and 51Bq/ml for all filter widths).  

 

However, the Friedman test returned a p-value of <0.001, indicating there are statistically 

significant differences in mean voxel values caused by the filter FWHM. This is not 

immediately obvious from Figure 5.11; however, upon closer inspection, the violin plots 

demonstrate the distribution of results begin to change once the FWHM exceeds 3mm. As 

the filter width increases, results become increasingly distributed around the median result. 

Pairwise Wilcoxon signed-ranks (Bonferroni) tests were performed on each possible pair of 

filter widths (55 pairs possible from the eleven different filter widths). There are no 

statistically significant differences, at the 5% level of significance, between the following 

sets of results:  

• 0mm, 1mm, 2mm and 3mm 

• 6mm, 7mm and 8mm 

All other result pairings demonstrated statistically significant differences. However, these 

differences are highly unlikely to be clinically significant, as the differences between the 

eleven result sets are small. 
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Figure 5.12 plots the maximum activity concentrations against the post reconstruction filter 

FWHM.  

 

 

Figure 5.12: Maximum activity concentrations versus Gaussian filter width 
Results shown as box and violin plots. Whiskers in box-plots represent 1.5 inter-
quartile ranges and dots represent outliers. 

 

Figure 5.12 demonstrates that filter FWHM has a clear effect on the maximum voxel values. 

The median value decreases with increasing filter width: from 6,803Bq/ml at FWHM = 0mm 

to 4,470Bq/ml at FWHM = 10mm. The result ranges also decrease with increasing filter 

width:  from 23,120Bq/ml at 0mm to 1,959Bq/ml at FWHM = 10mm. Comparing Figure 5.11 

with Figure 5.12 demonstrates that filter FWHM has a much greater effect on the maximum 

voxel values than the mean voxel values. 

 

The Friedman test returned a p-value of <0.001; Pairwise Wilcoxon signed-ranks 

(Bonferroni) tests were therefore performed. The only results that did not demonstrate a 

statistically significant difference to each other were the results for 0mm and 1mm, whose 

distributions appear to be identical on Figure 5.12. All other pairs of results retuned p-values 

< 0.001. These differences are likely to be of clinical significance.  

 

5.4.2.5 Effects of Z-Axis Filter Setting 
Figure 5.13 plots the mean activity concentrations against the z-axis filter setting.  
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Figure 5.13: Mean activity concentrations versus z-axis filter 
Results shown as box and violin plots. Whiskers in box-plots represent maximum 
and minimum values (no outliers are present). 

 

Figure 5.13 demonstrates the z-axis filter has little effect on mean activity concentrations. 

Median results for all four filter weights are within 3Bq/ml (0.1%) of each other: 3,672Bq/ml 

(none), 3,673Bq/ml (light), 3,674Bq/ml (standard) and 3,675Bq/ml (heavy). However, the 

difference between maximum and minimum decreases as the filter weight increases: 

51Bq/ml (none), 46Bq/ml (light), 44Bq/ml (standard) and 42Bq/ml (heavy).  

 

The Friedman test returned a p-value of <0.001, indicating there are statistically significant 

differences in mean voxel values caused by the z-axis filter. This is not immediately obvious 

from Figure 5.13; however, upon closer inspection, the violin plots demonstrate that voxel 

values become increasingly distributed around the median result as the filter weight 

increases. Pairwise Wilcoxon signed-ranks (Bonferroni) tests were performed; the p-value 

in each case was <0.001, indicating each z-axis filter setting produces statistically 

significantly different results to the others. However, these differences are highly unlikely to 

be clinically significant, as the differences between the three sets of results are small. 

 

Figure 5.14 plots the maximum activity concentrations against the z-axis filter setting. 
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Figure 5.14: Maximum activity concentrations versus z-axis filter 
Results shown as box and violin plots. Whiskers in box-plots represent 1.5 inter-
quartile ranges and dots represent outliers. 

 

Figure 5.14 demonstrates the z-axis filter does have an effect on maximum voxel values. 

Median results decrease as the weight of the z-axis filter increases: 5,784Bq/ml (none), 

5,282Bq/ml (light), 5,114Bq/ml (standard) and 4,842Bq/ml (heavy). Maximum outliers also 

decrease as the z-axis filter weight increases: 27,300Bq/ml (none), 22,713Bq/ml (light), 

21,182Bq/ml (standard) and 18,123Bq/ml (heavy). 

 

The Friedman test returned a p-value of <0.001; Pairwise Wilcoxon signed-ranks 

(Bonferroni) tests were therefore performed. The p-value in each case was <0.001, 

indicating each z-axis filter setting produces statistically significantly different results to the 

others. These differences are likely to be of clinical significance.  

 

5.5 Discussion 
 

The first aim of this chapter was to assess the differences in the quantitative accuracy of 

uniform phantom images produced using the GEMS recommended WCC reconstruction 

parameters (‘GEMS WCC’) and the GEMS suggested reconstruction parameters for clinical 

imaging (‘GEMS Clinical’). This was to test the GEMS assertion that the current Discovery 

690 WCC protocol is suitable for use with the ‘GEMS Clinical’ reconstruction protocol. This 

assessment was made using a uniform cylindrical phantom with a similar size (20cm 
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diameter and 20cm length) and activity concentration (approximately 3,500Bq/ml) as the 

phantoms used to perform WCC.  

 

Figure 5.1 and Table 5.3 demonstrated no clinically significant differences between the 

‘GEMS WCC’ and ‘GEMS Clinical’ reconstructions, both qualitatively and quantitatively, for 

the uniform phantom. The mean voxels differed by 0.25% of the reference value, while the 

maximum voxels differed by 1.6%. As there were no clinically significant differences 

between the two reconstructions, it is therefore reasonable to conclude that performing 

WCC using either the ‘GEMS WCC’ or the ‘GEMS Clinical’ would produce clinically 

equivalent correction factors. The current GEMS protocol for the Discovery 690 WCC is 

therefore suitable for use with the ‘GEMS Clinical’ reconstruction parameters.  

 

The second aim of this chapter was to determine if the quantitative accuracy of voxel values 

produced for a uniform phantom is insensitive to a wider range of reconstruction 

parameters, as stated by GEMS. In order to do this, the effects of each reconstruction 

parameter on both mean and maximum voxel values were characterised in turn. The effects 

of each of the reconstruction parameters upon both mean and maximum voxel values were 

largely as one would expect, given their known effects upon reconstructed images 

(described in Chapters 1 and 2), and are summarised in the following paragraphs.  

 

Although there were statistically significant differences in mean voxel values as a result of 

altering each of the five reconstruction variables, the magnitudes of the differences were 

small in each case: mean voxel results ranged from 3,647Bq/ml (0.4% above phantom 

reference) to 3,700Bq/ml (1.9% above phantom reference). All mean activity concentration 

measurements were therefore within the phantom’s ±3% tolerance. These differences are 

therefore highly unlikely to be of any clinical significance. However, the analysis did highlight 

the following effects: 

• Increasing the number of effective iterations reduced the consistency of mean voxel 

values, as a result of increased image noise (Figure 5.7) 

• Increasing the matrix size, and therefore decreasing the voxel size, marginally reduced 

the consistency of mean voxel values, as a result of increased image noise (Figure 5.9) 

• Increasing the Gaussian filter FWHM marginally improved the consistency of mean 

voxel values as a result of reduced image noise (Figure 5.11) 

• Increasing the weight of the z-axis filter marginally improved the consistency of mean 

voxel values, as a result of reduced image noise (Figure 5.13) 

• Applying PSF reduced mean voxel values when compared with the HD reconstruction, 

which were closer to the reference value, and produced the least consistent results 

(Figure 5.5) 
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• Applying TOF reduced the mean voxel values compared to both HD and PSF, which 

were closer to the reference value, and produced the most consistent results of all four 

reconstruction methods (Figure 5.5) 

• Applying both PSF and TOF together produced mean voxels closer to the reference 

value than the other three reconstruction methods (Figure 5.5) 

 

Most of the above effects are as one would expect. Increasing the number of effective 

iterations, reducing voxel sizes and reducing the degree of filtering are all known to increase 

noise within the reconstructed images, as discussed in Chapters 1 and 2. Noise has a 

greater effect on maximum voxels than mean voxels; however, these results demonstrate 

corresponding measurable, but clinically insignificant, effects on mean voxels. The effects 

of PSF and TOF are more challenging to interpret. One would expect both of these 

corrections to reduce image noise when compared to the HD reconstruction. This may 

explain why both PSF and TOF produced mean voxel values which were closer to the 

reference value. However, as all mean voxel results were within the stated ± 3% uncertainty 

of the calibrated phantom’s activity concentration, it is impossible to say which 

reconstruction produced the most accurate results. It may also be counter-intuitive that PSF 

produced less consistent results than HD, which may indicate greater noise levels than HD; 

this is addressed later in this chapter.  

 

Overall, the mean voxel results are consistent with the GEMS assertion regarding the 

insensitivity of quantitative values for large, uniform objects to the reconstruction 

parameters. 

 

Analysis of the maximum voxel values, however, demonstrated the effects of altering each 

of the reconstruction parameters are not only statistically significant, but are likely to be 

clinically significant, as the magnitude of the effects were large in relation to the reference 

voxel value. The following effects were observed: 

• Increasing the number of effective iterations increased both the range, and the median, 

of the maximum voxel results, as a result of increased image noise (Figure 5.8) 

• Increasing the matrix size, and therefore decreasing the voxel size, increased the range 

of maximum voxel results, as a result of increased image noise; however, the median 

results remained similar for all three matrix sizes. The main differences between the 

three matrix sizes were with the outlying results. (Figure 5.10) 

• Increasing the Gaussian filter FWHM decreased both the range, and the median, of the 

maximum voxel results (Figure 5.12) 

• Increasing the weight of the z-axis filter decreased the range, and the median, of the 

maximum voxel results (Figure 5.14) 
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• Applying PSF increased the range of maximum voxel results, while TOF reduced the 

range of maximum voxel results. However, the median results remained similar for all 

four reconstruction methods. The main differences between the four reconstruction 

methods are with the outlying results (Figure 5.6) 

 

As with the mean results, the application of PSF appears to have increased image noise for 

both mean and maximum voxel values; however, one would expect both PSF and TOF to 

reduce image noise, as discussed in Chapters 1 and 2. As the performance of both PSF 

and TOF are dependent upon effective iterations, a second plot of maximum voxel values 

against reconstruction method is now presented in Figure 5.15: effective iterations have 

been restricted to the typical clinical range (the results for 180 and 540 effective iterations 

have been removed from the dataset).  

 

 

Figure 5.15: Maximum activity concentrations versus reconstruction method 
(effective iterations restricted to < 100) 

Results shown as box and violin plots. Whiskers in box-plots represent 1.5 inter-
quartile ranges and dots represent outliers.  

 

Figure 5.15 demonstrates that when effective iterations are limited to <100, TOF continues 

to produce more consistent results than HD; however, PSF now produces the most 

consistent maximum voxel values. Figures 5.6 and 5.15 demonstrate that PSF is particularly 

vulnerable to noise when large numbers of effective iterations are applied but reduces noise 
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at clinically relevant levels of effective iterations. The effects of reconstruction parameters 

on image noise are investigated in more detail in the next chapter. 

 

Maximum voxel results are therefore not consistent with the GEMS statement regarding the 

insensitivity of quantitative values for large, uniform objects to the reconstruction 

parameters.  

 

With regards to WCC, one can infer from the personal communications with GEMS, 

combined with the results in this chapter, that only the mean voxel values from the WCC 

reconstruction are applicable to the correction factors used for quantitative PET data.  

 

With regards to the interpretation of clinical data, the effects of reconstruction parameters 

upon maximum voxel values are likely to be clinically significant. SUVmax, as described in 

Section 1.5.2, is calculated using the maximum voxel within a ROI, and remains widely used 

in clinical PET. However, as demonstrated in this chapter, any measurement based upon 

maximum voxels are vulnerable to noise introduced by the reconstruction process. The 

effects of reconstruction parameters upon clinical data interpretation are investigated in 

more detail later in this thesis.  

 

Finally, this chapter assessed the effects of reconstruction parameters using a single 

phantom: a 20cm diameter cylindrical uniform phantom. One would expect similar results 

for mean voxel values with any uniform phantom large enough to prevent partial volume 

effects; however, larger phantoms would be inherently noisier due to increased scatter and 

attenuation. Maximum voxel values would therefore likely increase as the size of the 

phantom increases. The ability of TOF to restrict noise, and therefore improve the accuracy 

of voxel values, would be better demonstrated by larger phantoms, as discussed in Section 

1.7.1.  Furthermore, it is of interest that mean voxel values within the 20cm uniform phantom 

reached convergence after only 18 effective iterations. Smaller objects within a non-uniform 

phantom would require more iterations to converge to accurate voxel values. Non-uniform 

phantoms, by definition, would not be used for WCC purposes, as a mean voxel value 

corresponding to a known activity concentration is required to generate the WCC correction 

factors. The convergence of smaller objects is assessed in Chapter 9 of this thesis.  

 

A limitation of this study was that a single acquisition of the 68Ge phantom was used for 

analysis. The methodology could be repeated multiple times using a 18F phantom to 

demonstrate the results in this chapter are reproducible. However, one would not expect 

the overall findings of this chapter to be altered by the repeated measurements, as the 

observed effects of each reconstruction parameter were as expected.  
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5.6 Conclusions 
 

This chapter concludes that the WCC reconstruction methodology employed by GEMS for 

the Discovery 690 is compatible with their suggested clinical reconstruction parameters.  

 

Furthermore, this chapter concludes that the GEMS assertion regarding the insensitivity of 

quantitative values of large, uniform objects to reconstruction parameters is valid for mean 

voxel values, for the range of reconstruction parameters assessed in this chapter when a 

20cm cylindrical phantom is used. One would expect this assertion to hold for any uniform 

object large enough to prevent partial volume effects.  

 

Further work in this area could involve a more direct assessment of the effects of 

reconstruction parameters upon WCC. WCC calibrations could be performed using a range 

of different reconstructions. Correction factors generated by each reconstruction could be 

recorded and compared. Each set of WCC correction factors could be applied to phantom 

acquisitions, followed by analysis of the effects on quantitative voxel values. However, 

experimentation involving WCC factors on clinical PET-CT systems should be conducted 

with care to prevent any inappropriate correction factors being applied to clinical scans.  

 
 
 



 

 
 
 
 
 
 
 
 
Chapter 6 : Assessment of Image Noise in Reconstructed 
Images of a Uniform Phantom 
 

The previous chapter assessed the effects of varying reconstruction parameters upon voxel 

accuracy within a uniform phantom. The chapter concluded that mean voxel values were 

insensitive to changes in reconstruction parameters, as per the GEMS assertion. However, 

maximum voxel values, which are ‘single voxel’ measurements and therefore vulnerable to 

statistical noise, were shown to be significantly affected by reconstruction parameters. 

Whilst maximum voxel values reflect the effects of noise upon voxel accuracy, they cannot 

be used to directly quantify image noise itself.  

 

Noise Equivalent Count Rate (NECR) tests are performed to NEMA standards during 

acceptance testing of new PET-CT systems (and are typically performed on an annual basis 

thereafter). These tests are well known in the field and provide a global noise assessment 

that allows PET system performance to be compared against manufacturer specifications 

and other PET systems. Some studies have performed NECR-style measurements from 

patient data when assessing the effects of reducing injected activities or increasing patient 

body mass index (BMI) [185], [186] (for example, using the DICOM image header to extract 

true, random and scatter data [185]). However, NECR is a raw data metric that does not 

account for variations within the FOV or the effects of reconstruction algorithms [187].  

 

As discussed in Chapter 2, reconstructed image noise is typically assessed using voxel-to-

voxel noise metrics (such as image roughness and COV) and region-to-region metrics (such 

as background variation, used by NEMA image quality assessment). Voxel-to-voxel noise 

metrics are generally taken to represent the noise perceived when viewing an individual 

image, while region-to-region metrics assess non-uniformities throughout the image [90]. 
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Chapter 2 also demonstrated that several studies have assessed the effects of various 

reconstruction parameters upon both voxel-to-voxel and region-to-region noise. However, 

to the authors knowledge, no study has fully assessed the combined effects of effective 

iterations, filtering and matrix sizes when used with PSF and/or TOF. Furthermore, there is 

no universally agreed approach to clinically relevant noise assessment in PET imaging.  

 

The primary aim of this thesis is to develop a generic methodology to assess and optimise 

PET image reconstruction whilst considering clinical context. This chapter uses the large 

reconstruction set produced in Chapter 5 to assess the effects of the various reconstruction 

parameters upon image noise. The use of the widely available 68Ge cylindrical uniform 

phantom will therefore be investigated for clinically relevant noise assessment.   

 

In order to optimise PET reconstruction on the GEMS Discovery 690 PET-CT system with 

respect to the detection of liver lesions, and therefore fulfil the secondary aim of this thesis, 

it is important to fully characterise the effects various reconstruction parameters have upon 

image noise. When combined with assessments of spatial resolution and lesion detection, 

which are explored in subsequent chapters, this will enable the selection of a combination 

of reconstruction parameters that produce the optimal trade-off between image noise and 

other aspects of image quality, in order to maximise lesion detection within the liver. 

 

6.1 Introduction 
 

Different methods for measuring PET image noise have been discussed in the literature. 

The NEMA Standards Publication for PET performance measurements [70] describes the 

use of Background Variability. This metric measures region-to-region variability within the 

image. Twelve non-overlapping ROIs of diameter 3.7cm are placed within the uniform 

background activity on the central slice of the NEMA torso phantom. These spheres are 

copied to 2 slices either side of the central slice, giving 60 ROIs in total. The mean voxel 

value for each of the 60 ROIs are recorded. Background Variability is then defined as the 

COV of these 60 ROI means (see Section 3.4 for full equation). This method has been 

widely used in the literature for assessing noise in PET phantom studies [19], [43], [90], 

[92], [188].  

 

Image Roughness measures voxel-to-voxel variability within a PET image and is similar to 

the basic COV method. Its use in the literature is often based upon the same 60 ROIs 

described by NEMA Background Variation [43], [90], [92], [146], although larger/fewer ROIs 

have also been used [134], [189]. A COV is calculated for each of the 60 ROIs, and Image 

Roughness is taken to be the average of the 60 COVs (see Section 3.4 for full equation). 
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The use of Image Roughness is also common in 18F-FDG patient studies, using a small 

number of ROIs placed over the relatively uniform distribution within the liver [189]–[191]. 

 

Both Background Variability and Image Roughness can be calculated for a single 

realisation/acquisition or for multiple realisations/acquisitions [92]. The use of multiple 

realisations has often been considered to be more closely related to the true noise in an 

image because single realisation measurements can be affected by correlations between 

adjacent voxels [189]. However, multiple realisations are not practical for patient studies 

due to the relatively low clinical acquisition times: rebinning clinically acquired patient 

studies into multiple realisations would result in unrealistically low-count, high noise images.  

 

The use of single realisation measurements has therefore been justified by previous studies 

by comparing measurements of long-lived phantoms using both single realisation and 

multiple realisations. Studies by Tong et al [90], [92] concluded that NEMA Background 

Variation using a single realisation is a reasonable surrogate for noise measurements using 

multiple realisations. Mettivier et al [43] compared the use of multiple slices within a single 

realisation with the use of multiple realisations and concluded that Image Roughness 

analysis using multiple slices within a uniform phantom was comparable to that of using 

multiple realisations. 

 

The effects of effective OSEM iterations, filtering, voxel size, PSF and TOF upon PET image 

noise have been widely assessed in the literature, as described in Chapter 2. However, to 

the authors’ knowledge, no single study has examined the effects of all of these parameters 

in combination. In particular, the combined effect of matrix size and filters on PET image 

noise has not yet been evaluated fully. Furthermore, there is no universally agreed 

approach to clinically relevant noise assessment in PET imaging. 

 

6.2 Aims 
 

This chapter aims to characterise the combined effects of the following reconstruction 

parameters on both Image Roughness and Background Variation within images of a 20cm 

diameter uniform 68Ge phantom: 

a. Effective iterations 

b. Gaussian Filter Width 

c. Z-Axis Filter Setting 

d. Matrix size (and hence voxel size) 

e. Reconstruction method (TOF and PSF) 
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In particular, this chapter aims to examine the combined effect of matrix size and filters on 

image noise, with a view to assessing how the use of a 256 matrix (instead of the GEMS 

suggested 192 matrix) to improve image resolution may impact the noise in the images.  

 

This chapter will also discuss the effectiveness of the 20cm diameter uniform 68Ge phantom 

for clinically relevant noise assessment.  

 

Results will also be discussed with respect to the European guidelines for reconstruction 

parameters, as discussed in Section 2.1.  

 

6.3 Materials and Methods 
 

All acquisitions and reconstructions were performed on the GEMS Discovery 690 PET-CT 

system. A detailed description of this system is included in Chapter 3.  

 

6.3.1 Phantom 
This experiment uses the same uniform 68Ge 20cm diameter cylindrical phantom as Chapter 

5. The phantom’s radioactivity concentration was 3,631Bq/ml at the time of scanning. This 

provides a conservative estimate of 400MBq 18F-FDG patient liver count density, as 

previously described in Chapter 4.  

 

6.3.2 Image Acquisition and Reconstruction Protocols 
This chapter uses the same single-bed acquisition and 2,640 reconstructions as Chapter 5. 

The reconstruction parameter settings are shown in Table 6.1.  

 

Reconstruction  
Parameter 

Settings  
Used 

Number of  
Result Groups 

Reconstruction Method HD, PSF, TOF, PSF+TOF 5 

Effective Iterations 18, 54, 90, 180, 540 4 

Gaussian Filter (FWHM) 0 à10mm, in 
1mm increments 

11 

Z-Axis Filter None, Light, 
Standard, Heavy 

4 

Matrix Size 128*128, 192*192, 256*256 3 

Table 6.1: Reconstruction parameters used for 68Ge phantom 
 

Although 540 effective iterations are unlikely to be used clinically and were shown to 

significantly affect maximum voxel values in the previous chapter, several studies have 

shown that PSF requires more than 180 effective iterations to reach full convergence for 
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small objects when the GEMS Discovery 690 PET-CT system is used (discussed in Chapter 

2). It is therefore prudent to include 540 effective iterations in this chapter, as high numbers 

of effective iterations may be relevant to later chapters investigating spatial resolution and 

contrast recovery.  

 

6.3.3 Image Analysis 
All ROI analysis was performed using Hermes Medical Systems’ Hybrid Viewer software. 

Twelve non-overlapping ROIs of diameter 3.7cm were positioned on the central PET slice 

and on two slices either side (60 ROIs in total). ROI placement for the phantom’s central 

slice is illustrated in Figure 6.1. The mean voxel value and standard deviation were recorded 

for each of the 60 ROIs. The following metrics were then calculated for each reconstruction: 

• Image Roughness (IR): COV was calculated for each of the 60 individual ROIs and then 

averaged over the 60 ROIs to produce the IR measurement (Equation 3.3) 

• Background Variability (BV): COV of the 60 ROI mean values was calculated to produce 

the BV measurement (Equation 3.4).  

 

 

Figure 6.1: ROI Placement on central slice of uniform phantom 
 

The EANM guidelines refer to the EARL procedure for assessing PET-CT system specific 

patient FDG activities with respect to image quality [121]. Both the EARL and QIBA 

publications specify that image noise, as measured by the COV in a volume of uniform 

activity, should not exceed 15%. As Image Roughness is similar to COV (Image Roughness 

is the average of multiple ROI COVs), Image Roughness results are compared to this 15% 

noise limit. As the phantom count density is lower than that observed in 18F-FDG patient 

livers, this chapter provides a conservative assessment of clinical image quality.  
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6.4 Results 
 
The first part of the results section assesses the impact of each reconstruction parameter 

in turn upon both Image Roughness and Background Variation. The second part of the 

results section explores an unexpected relationship between image noise, matrix size and 

Gaussian filter width that has not yet been discussed in the literature.  

 
6.4.1 Impact of Reconstruction Parameters on Image Noise 
6.4.1.1 Effects of Effective Iterations 

Figure 6.2 illustrates the effects of effective iterations on both Image Roughness and 

Background Variation for the full result set (all 2,640 results are included in Figure 6.2). The 

results are presented as box and violin plots, in the same manner as the results in the 

previous chapter. Each box plot is annotated with the median value.  

 

Figure 6.2: Image Roughness and Background Variation versus effective iterations 
Results shown as box and violin plots. Whiskers in box-plots represent 1.5 inter-
quartile ranges and dots represent outliers. Dashed line on Image Roughness plot 
represents 15% COV limit suggested by guidelines. Annotations show median result 
for each iteration setting. 
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Figure 6.2 clearly demonstrates that as the number of effective iterations increases, the 

median results and outliers for Image Roughness increase: 540 effective iterations produce 

a median result almost six times greater than that of 18 effective iterations, and a maximum 

result over 7 times greater. This is as one would expect, as image noise is known to increase 

as the number of effective iterations are increased [43], (discussed in Chapters 1 and 2). 

The Image Roughness results also mirror those of the maximum voxels in the previous 

chapter (Figure 5.8). All results at 18 effective iterations are below the 15% EARL limit, 

while the median results for 54 and 90 effective iterations are below 15%. The median result 

for 180 effective iterations slightly exceeds the limit (15.6%), while the majority of results for 

540 effective iterations exceed the limit.  

 

Figure 6.2 also demonstrates that Background Variation results increase as the number of 

effective iterations increase; however, these increases are to a lesser degree than those 

observed for Image Roughness. 540 effective iterations produce a median result less than 

double that of 18 effective iterations, and a maximum result less than 3 times greater. 

 

Statistical tests were performed on both the Image Roughness and Background Variation 

results. In both cases, the Friedman test returned a p-value of < 0.001, confirming 

statistically significant differences in both Image Roughness and Background Variation are 

caused by the number of effective iterations. Pairwise Wilcoxon signed-ranks (Bonferroni) 

tests were then performed on each possible pair of effective iterations settings. The p-value 

in each case was < 0.001, indicating that each effective iteration setting produces 

statistically significantly different Image Roughness and Background Variation results to the 

others at the 1% level of significance.  

 

The differences in both noise metrics caused by increasing effective iterations could be of 

clinical significance, as the effects upon each metric’s median values are proportionally 

large. The increase in noise may affect observer confidence in reporting clinical images, or 

make it increasingly difficult to visualise small, low intensity lesions within a noisy 

background activity. Furthermore, using more than 200 effective iterations is likely to 

produce images with Image Roughness exceeding the 15% EANM guideline, depending 

on the particular combination of parameters used. 

 

Figure 6.2 demonstrates that effective iterations have a significant effect upon image noise. 

In order to prevent the effects of effective iterations from masking the subtler effects of the 

other reconstruction parameters, the remainder of this section splits each result set by 

effective iterations.  
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6.4.1.2 Effects of Gaussian Filter Width 
Figure 6.3 illustrates the effects of the Gaussian filter FWHM on both Image Roughness 

and Background Variation for the full result set. Results are presented as box and violin 

plots. Each row represents a different number of effective iterations. Different y-axis limits 

are used for each row to better illustrate the effects of the Gaussian filter at each iteration 

setting.  

 

Figure 6.3: Image Roughness and Background Variation versus Gaussian filter 
Results shown as box and violin plots. Whiskers in box-plots represent 1.5 inter-
quartile ranges and dots represent outliers. Each row represents a different number 
of effective iterations, with different y-axis limits. Dashed lines on Image Roughness 
plot represents 15% COV limit suggested by guidelines.  
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Figure 6.3 clearly demonstrates that as the Gaussian filter width increases, both the median 

and maximum results for Image Roughness decrease. This is as one would expect, as 

filtering is known to reduce image noise [44] (discussed in Chapter 1); however, it is of 

interest that the results for the 0mm and 1mm filters are identical. Figure 6.3 also 

demonstrates that the proportional decrease in Image Roughness as a result of filtering 

increases as the number of effective iterations increases. For example, when 18 effective 

iterations are applied (top row), the 10mm filter median Image Roughness is 43% of that of 

the 0mm filter. When 540 effective iterations are applied (bottom row), the 10mm filter 

median Image Roughness is only 15% of that of the 0mm filter. Figure 6.3 also 

demonstrates which filter settings are required to achieve the 15% EARL noise limit for each 

effective iteration setting. All results for 18 effective iterations are below the threshold. When 

54 effective iterations are applied, all filter settings produce median results below the 

threshold; however, a filter width of at least 5mm is required to prevent any outlying results 

breaching the threshold. A 4mm filter is required for median results to achieve the 15% 

threshold when 90 effective iterations are applied, rising to 6mm for 180 effective iterations 

and 7mm for 540 effective iterations.  

 

Figure 6.3 also demonstrates that Background Variation results decrease as the Gaussian 

filter width increases; however, as with the effective iterations results, the decreases in 

Background Variation as a result of the Gaussian filter are to a lesser degree than those 

observed for Image Roughness. For example, when 18 effective iterations are applied, the 

10mm filter median Background Variation is 89% of that of the 0mm filter. When 540 

effective iterations are applied, the 10mm filter median Background Variation is 68% of that 

of the 0mm filter.  

 

The Friedman test returned a p-value of < 0.001 for both Image Roughness and 

Background Variation; pairwise Wilcoxon signed-ranks (Bonferroni) tests were therefore 

performed on each possible pair of filter widths at each iteration setting. As expected, no 

significant differences were found between the 0mm and 1mm filters for either Image 

Roughness or Background Variation. However, all other filter widths were found to be 

statistically significantly different to each other (p < 0.01 in each case). These differences 

may be of clinical significance. For example, an image produced using a 10mm Gaussian 

filter will have a fraction of the noise found in an image produced without any Gaussian 

filtering: this is highly likely to affect image interpretation. However, while images produced 

using 1mm and 2mm filters demonstrated statistically significant differences in median 

values, their differences are highly unlikely to be clinically significant due to their small 

magnitude.  
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6.4.1.3 Effects of Z-Axis Filter 
Figure 6.4 illustrates the effects of the Z-axis filter setting on both Image Roughness and 

Background Variation for the full result set. Results are presented as box and violin plots. 

Each row represents a different number of effective iterations. Different y-axis limits are 

used for each row to better illustrate the effects of the z-axis filter at each iteration setting. 

Each box plot is annotated with the median value.  

 

Figure 6.4: Image Roughness and Background Variation versus z-axis filter 
Results shown as box and violin plots. Whiskers in box-plots represent 1.5 inter-
quartile ranges and dots represent outliers. Each row represents a different number 
of effective iterations, with different y-axis limits. Dashed lines on Image Roughness 
plot represents 15% COV limit suggested by guidelines. Annotations show median 
result for each z-filter setting. 
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Figure 6.4 demonstrates that as the z-axis weighting increases, both the median and 

maximum results for Image Roughness decrease. As with increasing Gaussian filter 

FWHMs, this is as one would expect, as filtering is known to reduce image noise [44] 

(discussed in Chapter 1). The ‘light’, ‘standard’ and ‘heavy’ median Image Roughness 

results are reasonably similar to each other at lower iterations but begin to diverge when 

greater numbers of iterations are applied; for example, all three filter settings have median 

results within 12% of each other when 18 effective iterations are applied, which rises to 33% 

at 540 effective iterations. With respect to the 15% COV limit specified by the guidance, all 

four median Image Roughness results fall below this limit when up to 90 effective iterations 

are used. When 180 effective iterations are applied, the ’none’ and ‘light’ filter median values 

exceed 15%, and when 540 effective filters are applied, all median values exceed 15%. 

 

Figure 6.4 also demonstrates that Background Variation results decrease as the z-axis filter 

weight increases. As with Image Roughness, the ‘light’, ‘standard’ and ‘heavy’ median 

results are reasonably similar to each other at lower iterations but begin to diverge when 

greater numbers of iterations are applied; for example, all three filter settings have median 

results within 14% of each other when 18 effective iterations are applied, which rises to 29% 

at 540 effective iterations.  

 

The Friedman test returned a p-value of < 0.001 for both Image Roughness and 

Background Variation; pairwise Wilcoxon signed-ranks (Bonferroni) tests were therefore 

performed on each possible pair of z-axis filter weights at each iteration setting. The p-value 

in each case was < 0.001, indicating each Z-axis filter setting produces statistically 

significantly different Image Roughness and Background Variation results to the others at 

the 1% level of significance. However, it appears the differences between each filter setting 

are small when less than 100 effective iterations are used: these differences may not be 

clinically significant. Comparing Figures 6.3 and 6.4 demonstrates the Gaussian filter has a 

more significant effect upon Image Roughness than the z-axis filter, while the z-axis filter 

has a more significant effect on Background Variation than the Gaussian filter.  

 

6.4.1.4 Effects of Matrix Size 
Figure 6.5 illustrates the effects of matrix size on both Image Roughness and Background 

Variation for the full result set. Results are presented as box and violin plots and each row 

represents a different number of effective iterations. Different y-axis limits are used for each 

row to better illustrate the effects of each matrix setting. Each box plot is annotated with the 

median value.  

 



Chapter 6 

 

133 

 

 

Figure 6.5: Image Roughness and Background Variation versus matrix size 
Results shown as box and violin plots. Whiskers in box-plots represent 1.5 inter-
quartile ranges and dots represent outliers. Each row represents a different number 
of effective iterations, with different y-axis limits. Dashed lines on Image Roughness 
plot represents 15% COV limit suggested by guidelines. Annotations show median 
result for each matrix setting. 

 

As discussed in Chapter 1, the use of larger matrix sizes (and hence smaller voxels) 

reduces the number of detected events that contribute to each voxel in the reconstructed 

image; the statistical noise in each voxel therefore increases as the matrix size increases. 

One would therefore expect Figure 6.5 to demonstrate that Image Roughness increases as 

the matrix size increases. Whilst this is true for the outlying results, the median values do 

not follow the expected pattern: when 180 effective iterations or less are applied, the largest 

matrix produces the lowest median results and the smallest matrix produces the greatest 
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median results. With respect to the 15% COV limit specified by the guidance, the median 

Image Roughness results for all three matrix sizes fall below this limit when up to 90 

effective iterations are applied.  

 

Figure 6.5 also demonstrates that the largest matrix size produces the lowest Background 

Variation results; however, the effects of matrix size upon Background Variation are minimal 

(maximum discrepancy between median values is only 8% when 540 effective iterations 

are applied). One would not expect the matrix size to have a significant impact upon region-

to-region noise measurements, as the mean value of each ROI is unlikely to significantly 

change as a result of the change in voxel size.  

 

The Friedman test returned a p-value of < 0.001 for both Image Roughness and 

Background Variation; pairwise Wilcoxon signed-ranks (Bonferroni) tests were therefore 

performed on each possible pair of matrix settings at each iteration setting. Only two of the 

15 pairs of Image Roughness results demonstrated statistically significant differences (at 

the 5% level of significance): 

• 128 and 192 matrices when 180 effective iterations applied 

• 128 and 192 matrices when 540 effective iterations applied 

Conversely, only four of the 15 pairs of Background Variation results did not demonstrate 

statistically significant differences (at the 5% level of significance): 

• 128 and 256 matrices when 18 effective iterations applied 

• 128 and 192 matrices when 54 effective iterations applied 

• 128 and 192 matrices when 90 effective iterations applied 

• 128 and 192 matrices when 180 effective iterations applied 

  

Any clinically significant differences as a result of altering the matrix size are likely to result 

only from outliers at higher iterations, i.e. when no filtering is applied to control the noise. 

However, the surprising Image Roughness results in Figure 6.5 are investigated in more 

detail later in this Results section.  

 

6.4.1.5 Effects of TOF and PSF 
TOF and PSF reconstructions are known to produce different noise patterns, as discussed 

in Chapters 1 and 2: TOF produces a random noise pattern, similar to that of HD, while PSF 

produces a more correlated appearance in background activity [19], [86], [134], [135], [140]. 

A brief qualitative comparison between the four reconstruction methods is shown in Figure 

6.6, while the full quantitative comparison is shown in Figure 6.7. Figure 6.6 compares the 

central phantom slice from all four reconstruction methods. The remaining reconstruction 

parameters were kept constant in each case, and match the GEMS suggested settings for 
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clinical reconstructions (54 iterations, 4mm FWHM Gaussian filter, 192 matrix and the 

Standard z-axis filter). Image Roughness and Background Variation results for each 

reconstruction are also included. 

 

  
HD Reconstruction 

IR = 11.45%; BV = 2.10% 
PSF Reconstruction 

IR = 7.84%; BV = 2.22% 

  
TOF Reconstruction 

IR = 12.30%; BV = 1.91% 
PSF+TOF Reconstruction 
IR = 8.82%; BV = 1.95% 

Figure 6.6: Qualitative and quantitative comparisons of phantom images using 
different reconstruction methods 

All four reconstructions used 54 effective iterations, 4mm FWHM Gaussian filter, 192 
matrix and Standard z-axis filter (as per GEMS suggestion). Image Roughness (IR) 
and Background Variation (BV) results shown for all images. 
 

Figure 6.6 demonstrates that, as expected, both PSF reconstructions have smoother, more 

correlated appearances than the non-PSF reconstructions, which appear to demonstrate a 

more random noise pattern. This is confirmed by the Image Roughness results which, as 

expected, are lower for the PSF reconstructions than the non-PSF reconstructions [19], 

[86], [134], [135], [140]. The TOF-only reconstruction has a greater Image Roughness than 

the HD reconstruction. As discussed in Chapter 2, TOF is known to reach convergence 

after fewer iterations than non-TOF reconstructions. This means that when TOF and non-

TOF reconstructions using the same number of iterations are compared, the TOF 

reconstruction may demonstrate greater voxel-to-voxel noise. Furthermore, the phantom 

size is unlikely to be large enough to fully demonstrate the advantages of using TOF. 

Studies have shown only minimal TOF noise improvements for phantoms with diameters of 

approximately 18cm [19], [133]; the phantom used in this chapter has a 20cm diameter.  
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Figure 6.7 illustrates the effects of TOF and PSF on both Image Roughness and 

Background Variation for the full result set. Results are presented as box and violin plots 

and each row represents a different number of effective iterations. Different y-axis limits are 

used for each row to better illustrate the effects of each reconstruction method. Each box 

plot is annotated with the median value.  

 

Figure 6.7: Image Roughness and Background Variation versus reconstruction 
method 

Results shown as box and violin plots. Whiskers in box-plots represent 1.5 inter-
quartile ranges and dots represent outliers. Each row represents a different number 
of effective iterations, with different y-axis limits. Dashed lines on Image Roughness 
plot represents 15% COV limit suggested by guidelines. Annotations show median 
result for each reconstruction method. 
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Figure 6.7 demonstrates that at lower iterations (less than 100), PSF clearly reduces Image 

Roughness relative to HD in terms of both median and maximum values and produces 

much more consistent results than HD or TOF, as expected. Conversely, the application of 

TOF increases both median and maximum results relative to HD when up to 54 iterations 

are applied, also as expected. However, as the number of effective iterations increases, the 

relative effects of TOF and PSF upon Image Roughness change: at 540 iterations, TOF 

produces the lowest median result whilst PSF produces the greatest median result. With 

respect to the 15% COV limit specified by the guidance, all Image Roughness results 

produced using PSF fall below this limit when up to 54 effective iterations are applied. 

Median results for all four reconstruction methods are below the 15% limit when up to 90 

effective iterations are applied. Applying PSF and TOF together produce similar result 

distributions to PSF-only, with marginally increased median results as a result of TOF’s 

inclusion at lower iterations. As iterations increase, the effect of TOF upon the combined 

reconstruction appears to become more significant as it reduces the median value: at 540 

iterations, PSF+TOF produces a lower median value than PSF-only.  

 

In contrast to the Image Roughness results, Figure 6.7 demonstrates that PSF produces 

the greatest median Background Variation result regardless of how many iterations are 

applied. This is not unexpected; increased inter-voxel correlations caused by PSF may lead 

to greater differences between ROI mean values, and hence increased Background 

Variation [19], [92]. TOF produces the lowest median Background Variation when at least 

54 iterations are applied. As TOF effectively shortens LORs, noise correlations throughout 

the FOV are reduced, so this is also as expected [192]. Applying PSF and TOF together 

largely produces median results between the PSF-only and TOF-only median results. At 

higher iterations, the PSF+TOF median Background Variation exceed that of HD.  

 

The Friedman test returned a p-value of < 0.001 for both Image Roughness and 

Background Variation; pairwise Wilcoxon signed-ranks (Bonferroni) tests were therefore 

performed on each possible pair of reconstruction methods at each iteration setting. All 

Background Variation pairs demonstrated statistically significant differences, while only one 

of the 30 Image Roughness result pairs did not demonstrate statistically significant 

differences (at the 5% level of significance): 

• HD and TOF when 90 effective iterations applied  

Noise differences between the four reconstruction methods may be clinically significant, 

particularly at the outlying results where little or no filtering is applied. Although the 

differences between median results are small, particularly at lower iterations, changes in 

the appearance of noise may affect an observer’s ability to differentiate between lesion and 

background activity.  
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6.4.2 Unexpected Relationship between Noise, Matrix Size and Gaussian 
Filter Width 
Conventional wisdom dictates that, when all other reconstruction parameters are kept 

constant, noise in the 256 matrix images should exceed that of the 192 matrix, which should 

in turn exceed that of the 128 matrix, because smaller voxels have increased statistical 

noise (as discussed in Chapter 1). However, the previous section demonstrated that Image 

Roughness appeared to decrease as the matrix size increased. These results were 

therefore analysed further to determine if there were any confounding effects caused by 

combinations of reconstruction parameters. 

 

Figure 6.8 illustrates the relationship between matrix size and Gaussian filter FWHM for 

Image Roughness. Each row in Figure 6.8 represents a different combination of the 

remaining reconstruction parameters (reconstruction method, z-axis filter weight and 

effective iterations). There are 80 different combinations of reconstruction method, z-axis 

filter and effective iterations in the dataset used for this chapter. All 80 combinations were 

produced; while only four of these plots (selected at random) are presented in this chapter 

for brevity, all 80 plots demonstrated the same pattern of results shown in Figure 6.8.  The 

dotted line on the plots indicates the 4mm Gaussian filter width, which is suggested by 

GEMS for clinical imaging.  

 

At low filter widths (up to approximately 2mm FWHM), Image Roughness results are as one 

would expect: the 256 matrix produces the greatest Image Roughness whilst the 128 matrix 

produces the lowest Image Roughness. As the filter width increases, Image Roughness of 

the larger matrices begin to reduce at a lower filter FWHM than the smaller matrices: 

• 256 matrix requires FWHM > 1mm to reduce Image Roughness 

• 192 matrix requires FWHM ≈ 2mm to reduce Image Roughness 

• 128 matrix requires FWHM ≈ 3mm to reduce Image Roughness 

 

One would expect this to be the case; wider Gaussian filter widths are required to impact 

the filtered values of larger voxels. One would also expect the smallest voxels to continue 

to produce the greatest noise levels regardless of the filter applied, until such point that the 

filter width is large enough to produce similar results for all matrix sizes. However, as the 

filter width increases beyond approximately 3mm, the relative Image Roughness pattern of 

the three matrix sizes begins to follow an unexpected pattern:  

• 256 matrix Image Roughness falls below 192 matrix at FWHM ≈ 3mm 

• 256 matrix Image Roughness falls below 128 matrix at FWHM ≈ 4mm 

• 192 matrix Image Roughness falls below 128 matrix at FWHM ≈ 4.5mm 
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Figure 6.8: Unexpected relationship between Image Roughness, Gaussian filter 
width and matrix size 

Each row represents a different combination of remaining reconstruction 
parameters. Dotted lines indicate GEMS recommended Gaussian filter width for 
clinical imaging.  

 

At filter widths greater than ≈ 4.5mm, the expected Image Roughness noise pattern is 

entirely reversed: the smallest voxels produce the lowest Image Roughness, while the 

largest voxels produce the greatest Image Roughness. At larger filter widths (≈ 9mm), all 

three matrix sizes produce very similar results.  
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As this relationship between Image Roughness, matrix size and filter width was an 

unexpected finding, an additional analysis was performed on a subset of the reconstruction 

using Matlab instead of Hermes Hybrid Viewer, in order to rule out any problem with the 

measurement technique. The Matlab analysis produced the same relationship between 

noise, matrix size and Gaussian filter width.  

 

6.4.2.1 18F-FDG Patient Liver Noise Analysis 
A small retrospective patient study was performed to verify this unexpected relationship 

between noise, matrix size and Gaussian filter width wasn’t limited to the 68Ge cylindrical 

phantom experiment. Ten consecutive patients reported to have no liver abnormalities were 

selected. All patients were fasted for at least 6 hours and received intravenous injections of 

400MBq +/- 10%. Imaging was performed 60 minutes post-injection. Patient BMIs ranged 

from 20.6 to 35.4. Each set of patient data was retro-reconstructed 33 times, as follows: 

• Gaussian filter FWHM: varied from 0mm to 10mm, in 1mm increments  

• All three matrix sizes: 128, 192, 256 

• Remaining reconstruction parameters kept constant: HD reconstruction, 54 effective 

iterations, and no z-axis filter applied. Transaxial FOV kept constant at 700mm. These 

reconstruction parameters matched those of the first graph in Figure 6.8.  

 

Image Roughness for each patient liver was analysed by placing three 3cm diameter ROIs 

on three consecutive transaxial slices of the liver. The ROIs were positioned in visibly 

uniform areas of the liver, avoiding major blood vessels. This method of liver noise analysis 

has previously been used in studies by Akamatsu et al [132], [134], [146] and Taniguchi et 

al [145].  

 

Figure 6.9 shows a transaxial liver slice from the patients with the smallest and largest BMI, 

as well as their Image Roughness versus Gaussian FWHM plots. All ten patient analyses 

demonstrated similar findings: the unexpected relationship between noise, matrix size and 

Gaussian filter width is also observed for patient data. As one would expect, Figure 6.9 also 

demonstrates the noise in the larger patient is greater than that of the smaller patient, both 

qualitatively and quantitatively. 
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Small Patient 
BMI = 20.6 

Large Patient 
BMI = 35.4 

 
 

 

Figure 6.9: Patient liver images and Image Roughness results 
Example reconstruction images used 4mm FWHM Gaussian filter and 192 
matrix. 

 

6.4.2.2 Correspondence with GEMS Engineers 
Dr Charles Stearns, the senior engineer at GEMS, was contacted directly about these 

unexpected findings (personal correspondence, 1st August 2016). As Dr Stearns had not 

encountered this phenomenon before, he performed his own simulation of the GEMS 

Gaussian filter operation for different matrix sizes and filter FWHMs, and produced the same 

unexpected relationship between noise, matrix size and filter FWHM demonstrated by the 

work in this chapter.   

 

Dr Stearns explained the Discovery 690’s Gaussian filter is implemented by creating a 

Gaussian curve of the specified FWHM and selecting samples from the curve at intervals 

that correspond to the voxel widths. The filter is truncated to ± 4σ, where σ is the standard 

deviation, with a minimum of three points in the kernel, normalised to give a total of 1.0. As 

a result of this implementation method, the filter is close to [0 1 0] at lower filter widths. As 

the filter width increases, it operates more like a three-point averaging filter instead of a true 
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Gaussian. The Gaussian filter is therefore not a true Gaussian. The sampling of the 

Gaussian curve using the voxel width causes the unexpected relationship between noise, 

matrix size and filter FWHM.  

 

Dr Stearns simulated the Image Roughness results that would be obtained using an ideal 

Gaussian filter, shown in Figure 6.10 below. The ideal filter is designed as the integral under 

the Gaussian for each voxel, instead of simply sampling a point from the Gaussian curve 

for each voxel. This implementation produced the expected relationship between different 

matrix sizes; noise in the larger matrices always exceeded that of the smaller matrices until 

such point that the filter width is large enough to produce similar noise results for all 

matrices.  

 

Figure 6.10: GEMS sampled Gaussian filter versus ideal Gaussian filter 
Adapted from simulations provided by Dr Charles Stearns (personal 
communications, 1st August 2016). 

 

6.5 Discussion 
 

Although the effects of effective OSEM iterations, filtering, voxel size, PSF and TOF upon 

PET image noise had been widely assessed in the literature, no single study had examined 

the effects of all of these parameters in combination. In particular, the combined effect of 

matrix size and filters on PET image noise had not yet been evaluated fully. Furthermore, 

there remains no universally agreed approach to clinically relevant noise assessment in 

PET imaging. This chapter therefore aimed to characterise the combined effects of these 

reconstruction parameters on both pixel-to-pixel noise (Image Roughness) and region-to-

region noise (Background Variation) in a clinically relevant manner and assessed the use 

of the widely available 20cm diameter uniform 68Ge phantom for this purpose.  

 

PSF was found to improve Image Roughness but had a small detrimental effect upon 

Background Variation, similar to results from previous studies [19], [86], [134], [135], [140]. 
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This remained the case even when combined with TOF, when at least 54 effective iterations 

were applied. The clinical implications of this finding are difficult to determine by assessing 

noise in isolation; the effects of PSF noise characteristics upon lesion detection are 

examined later in this thesis. For example, human observers may not agree that the 

correlated background activity produced by PSF improves image quality with respect to 

lesion detection, even though the Image Roughness metric suggests an improvement. TOF 

was shown to produce similar, but increased, Image Roughness results to the HD 

reconstruction when up to 180 effective iterations were applied. While this effect is partly 

caused by the early convergence of TOF, the 20cm diameter of the uniform phantom is not 

large enough to fully demonstrate the advantages of using TOF [19], [133]. 

 

The assessment of the remaining reconstruction parameters largely agreed with previously 

published studies. The number of applied effective iterations had a significant effect upon 

both Image Roughness and Background Variability: both noise metrics increased as the 

number of effective iterations increased, as expected [43]. Both the Gaussian filter and the 

z-axis filter were shown to reduce image noise, also as one would expect [44]. Z-axis 

filtering was shown to have a greater effect on Background Variation than the Gaussian 

filter, while the Gaussian filter was shown to have a greater effect on Image Roughness 

than the Z-axis filter. This suggests the Z-axis filter should be given greater consideration 

in mitigating the detrimental effects of PSF on Background Variation. As discussed in 

Chapter 2, the effect of Z-axis filtering is not as widely discussed in the literature as filtering 

in the transaxial plane, as z-axis filtering has not been adopted by all vendors. 

 

One would expect the use of larger matrices, and hence smaller voxels, to result in 

increased image noise, as discussed in Chapters 1 and 2. However, the effects of matrix 

size were not as expected; the larger matrix produced the smallest median results for Image 

Roughness. Only the outlying results, corresponding to reconstructions which used little or 

no filtering, followed the expected noise pattern as the matrix size increased. An unexpected 

relationship, previously unknown to even GEMS, was therefore identified after further 

analysis. At certain filter widths (between approximately 3mm and 9mm FWHM), Image 

Roughness in the larger voxels exceeds that of the smaller voxels. This may have clinical 

relevance as GEMS suggest using a 4mm filter with a 192 matrix for clinical image 

reconstruction. If an imaging centre who initially followed the GEMS suggested 

reconstruction strategy wished to increase the matrix size from 192 to 256, e.g. with a view 

to improving the spatial resolution of their images, they would expect the image noise to 

increase. The work in this chapter has shown that, in fact, the measured noise would 

decrease. This raises questions as to how the change in matrix size would affect spatial 

resolution: if using smaller voxels unexpectedly improves the noise, could spatial resolution 

be unexpectedly worsened? Spatial resolution is investigated over the next two chapters.  
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All Image Roughness results were compared with the 15% COV limit recommended by 

European guidance. The results in this chapter demonstrated that the number of effective 

iterations, the Gaussian filter width and the use of PSF were the dominant parameters in 

terms of achieving this limit. At 54 effective iterations, as suggested by GEMS for clinical 

reconstructions, all Image Roughness results were below the 15% limit when PSF was 

used, even when no filtering was applied. The majority of PSF results at 90 effective 

iterations were also below this 15% limit (the limit was only breached when a Gaussian filter 

width of less than 4mm was combined with no z-axis filtering for PSF-only). The GEMS 

suggested reconstruction parameters for clinical imaging (54 effective iterations, PSF+TOF, 

4mm Gaussian, “standard” z-axis filter and 192 matrix) produced 8.8% Image Roughness, 

below the 15% limit; this fell to 8.4% when a 256 matrix was used instead.  

 

European guidance on 18F-FDG imaging, discussed in Section 2.1, state that matrix sizes 

and zoom factors should be chosen such that reconstructed voxel sizes should be between 

3mm and 4mm in any direction. The reason for this is not explicitly stated but is presumably 

to achieve acceptable spatial resolution whilst suppressing noise in the reconstructed 

images. Whole-body imaging on the GEMS Discovery 690 typically requires a 700mm 

transaxial FOV (the z-axis FOV is fixed at 157mm, with axial sampling fixed at 3.34mm). 

This means that only the 192 matrix complies with this voxel size recommendation: 

• 128 matrix produces voxel sizes 5.47mm x 5.47mm x 3.34mm 

• 192 matrix produces voxel sizes 3.65mm x 3.65mm x 3.34mm 

• 256 matrix produces voxel sizes 2.73mm x 2.73mm x 3.34mm 

The EANM guidelines also state that the maximum Gaussian filter width should be 7mm; 

however, no recommendations are made in terms of combinations of filters and matrix size. 

The guidelines may therefore merit review as a result of the unexpected relationship 

between noise, filters and matrix size, particularly if the motivation for restricting voxel size 

was to limit image noise rather than reconstruction time. The use of the 256 matrix, and 

hence sub 3mm voxel sizes, may be more appropriate for whole-body imaging using the 

GEMS Discovery 690.  

 

The major limitation of this study was the use of a single, relatively small phantom. A larger 

phantom is required to fully assess the effects of TOF upon image noise; larger phantoms 

would also provide more realistic representations of patient body habitus for whole-body 

PET imaging. A larger phantom will be inherently noisier; this will therefore also affect which 

reconstruction parameters achieve the 15% EANM noise limit. However, it should be noted 

that the count density of the phantom used in this chapter was conservative when compared 

to that of 18F-FDG patient livers, as discussed in Chapter 4; statistical noise levels within 

the phantom were therefore clinically relevant, in spite of its relatively small size.  
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Furthermore, the results of this phantom may be applicable to other clinical applications, for 

example paediatric or head and neck imaging. Both Image Roughness and Background 

Variation are assessed using a larger phantom in Chapter 9 (alongside other image quality 

metrics). Patient data is also used to assess noise later in this thesis.  

 

6.6 Conclusions 
 

This chapter concludes that, with the exception of matrix size, the effects of the 

reconstruction parameters upon both Image Roughness and Background Variation were as 

expected, and consistent with the literature.  

 

This chapter further concludes that an unexpected relationship exists between matrix size, 

Gaussian filter width and noise measurements on the GEMS Discovery 690 PET-CT 

imaging system. Although the effect is small, it may cause confusion when assessing the 

effects of increasing matrix sizes; for example, when attempting to improve spatial 

resolution of reconstructed images. Furthermore, this effect may be of clinical interest as it 

applies to the GEMS suggested Gaussian filter width (4mm). The reasons for this 

phenomenon, previously unknown to even the GEMS engineers, were confirmed by GEMS 

as being a result of the sampled Gaussian filter implementation.  

 

Furthermore, this chapter concludes that the EANM guidelines for voxel sizes may merit 

review. To achieve the recommended voxel size of between 3mm and 4mm on the GEMS 

Discovery 690 when the full 700mm FOV is used requires the use of the 192 matrix, which 

can produce greater noise than the 256 matrix when combined with specific Gaussian filter 

widths. The effects of the GEMS Gaussian filter implementation discovered in this chapter 

may therefore undermine the intentions of this voxel size guideline.  

 

Finally, this chapter concludes that the 20cm diameter cylindrical phantom is not large 

enough to fully demonstrate the effects of TOF when assessing image noise; however, the 

results remain applicable to imaging of smaller structures (e.g. head and neck or 

paediatrics). A larger phantom is used in the latter chapters of this thesis to assess noise in 

a manner which is more clinically relevant to liver imaging.  

 

Further work should involve assessing the relationship between matrix size, filtering and 

image noise measurements using PET systems from other vendors. This would determine 

if the unexpected relationship observed in this chapter is unique to GEMS or more 

widespread throughout the PET imaging community. 
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It should also be noted the analysis in this chapter focussed on five image slices at the 

centre of the axial FOV, where sensitivity is at its maximum. Further assessment of the z-

axis filter should involve assessing its effects within the low-sensitivity, higher-noise overlap 

area between bed positions.  

 

An abstract based on some of this chapter’s work was accepted for a poster presentation 

at the 2016 Institute of Electrical and Electronic Engineers (IEEE) Medical Imaging 

Conference.  

 
 



 

 
 
 
 
 
 
 
 
Chapter 7 : Development of Methodology for Clinical 
Spatial Resolution Assessment 
 

Spatial resolution is a measure of an imaging system’s ability to accurately distinguish 

between two close together objects and observe their details [69]. The FWHM of the PSF 

is generally taken as a measure of spatial resolution [32]. Spatial resolution tests are 

performed to NEMA standards during acceptance testing of new PET-CT systems (and are 

typically performed on an annual basis thereafter): point sources are imaged in air at 

different positions within the FOV and reconstructed using FBP.  The point source response 

FWHM is then measured in the x, y and z directions [177]. This standardised approach to 

spatial resolution measurement allows the comparison of a system’s performance against 

manufacturer’s specifications and other different imaging systems, and has been used by 

several studies to assess spatial resolution [19], [111], [155], [193], [194]. However, NEMA 

methodology does not provide a clinically relevant assessment of spatial resolution, for 

reasons outlined in this chapter.  

 

Measuring spatial resolution in a clinically relevant manner is challenging. Measurements 

should be able to incorporate scatter material and differing source-to-background ratios, 

use iterative reconstruction parameters to reconstruct the images, and use a clinically 

realistic FOV. As the capillary tubes used to create NEMA point sources are difficult to place 

inside background activity, many studies have used alternative methods to assess clinical 

spatial resolution. However, a review of the literature demonstrated there is no established 

method for assessing spatial resolution in a clinically relevant manner.  

 

The primary aim of this thesis is to develop a generic methodology to assess and optimise 

PET image reconstruction whilst considering clinical context, whilst the secondary aim is to 
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use this methodology to optimise reconstruction on the GEMS Discovery 690 for the 

detection of small liver lesions. As the assessment of clinical spatial resolution is particularly 

challenging, two chapters in this thesis have been dedicated to it: 

• This chapter investigates methodologies for assessing spatial resolution in a clinically 

relevant manner, and concludes by recommending the use of a particular methodology 

• The next chapter (Chapter 8) uses the methodology developed in this chapter to assess 

the effects of reconstruction parameters upon spatial resolution when a GEMS 

Discovery 690 is used for clinical imaging.  

 

7.1 Introduction 
 
The current NEMA methodology does not provide a clinically relevant assessment of spatial 

resolution for the following reasons:  

• Point sources (£ 1mm diameter) are in air without scatter material or background 

activity, which is clinically unrealistic in terms of activity distribution, attenuation and 

scatter. Spatial resolution can be contrast dependent so measured spatial resolution 

may also vary as the source-to-background ratio varies [94].  

• FBP reconstructions used for point source images are not used clinically; the effects of 

clinical reconstruction parameters are therefore not assessed by the NEMA method. 

OSEM reconstruction methods should not be used to reconstruct point sources in air 

because they are known to produce very small, clinically unrealistic results (OSEM 

convergence is affected by the activity distribution, count rate and spatial frequencies 

within the FOV) [36], [195], [196]. Spatial resolution in FBP images is also independent 

of any activity distribution in the background, while iterative reconstruction spatial 

resolution is dependent upon other objects within the FOV [94].  

• The NEMA method stipulates that voxel sizes should be no more than one third of the 

expected spatial resolution in all three dimensions [70]. The GEMS Discovery 690 

protocol for NEMA spatial resolution measurement uses a 200mm transaxial FOV with 

a 256 matrix to achieve voxel dimensions of 0.78mm in the x and y directions (the z-

direction voxel dimensions, however, remain fixed at 3.34mm). A 200mm FOV is not 

practical for adult whole-body imaging, so these voxel sizes are highly unlikely to be 

used for clinical liver imaging. 

 

Several studies have attempted to address the challenges of measuring spatial resolution 

in a clinically relevant manner. Some studies have used long-lived 22Na point sources 

encased in small volumes of Lucite (typically ≈ 1cm3), without background activity or scatter 

material [33], [49], [86], [197]. The point source’s FWHM is then measured in the x, y and z 

directions. This type of source has been shown to approximate an 18F point source in water 
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[49], so the point source is not strictly ‘in air’. This may improve the 22Na point source’s 

clinical relevance compared to 18F capillary tubes in air; however, scatter material is limited 

to ≈ 1cm3, and therefore remains clinically unrealistic. One study placed the 22Na source 

inside a water-filled phantom to provide scatter material [198]. To the author’s knowledge, 

no study has placed a 22Na point source within 18F background activity. 

 

Line sources have also been used in the literature to assess spatial resolution. The older 

NEMA 1994 standard specified that spatial resolution should be measured using a stainless 

steel line source phantom, with the line sources suspended in air [69], [171]. However, later 

NEMA standards moved on to using point sources, as slight misalignments of the line 

sources within the image matrix could have degrading results [195]. A further disadvantage 

of using line sources is that FWHM can only be measured in the x and y directions. 18F line 

sources surrounded by air [199]–[201], water [200] or background radioactivity [49], [142], 

[195] have all been used to assess spatial resolution. Another study used a long-lived 68Ge 

line source, which was imaged in both air and within a water-filled Jaszczak phantom [198]. 

 

Perturbation methods for measuring spatial resolution of iterative reconstruction SPECT 

images have been used in the literature [202]–[204]. This method is used to minimise the 

distortions that would be introduced by iterative techniques if point/line sources were 

imaged in air. The term ‘perturbation’ refers to the fact that the line/point sources are 

‘perturbed’ by the presence of background activity. Placing line sources within a background 

activity instead of placing them in air mitigates the context-dependent problems associated 

with iterative reconstruction. Such methods typically involve producing ‘unperturbed’ data 

sets (line/point source only) and adding background activity either through simulations [202] 

or by manipulating the projection data of separate source and background acquisitions prior 

to reconstruction [203], [204]. This creates a ‘perturbed’ data set (sources in the presence 

of background activity). Subtracting the background activity from the ‘perturbed’ data set 

produces a background-corrected, source-only data set which can then be used for 

analysis. More recently, a study by Brown et al [205] used a modified version of the 

perturbation technique for SPECT imaging. A line source phantom containing 99mTc was 

scanned twice. For the first acquisition, the phantom contained ‘background’ activity that 

surrounded empty line sources. The line sources were then filled in situ and the phantom 

was scanned again to produce the ‘perturbed’ data set. The reconstructed images of the 

first scan (surrounding activity only) were then subtracted from the second scan (‘perturbed’ 

line sources) to produce a source-only data set, which was then used for analysis. 

 

To the author’s knowledge, no study has applied the perturbation method to PET data. Each 

of the three papers mentioned earlier in this chapter that placed line sources within 

surrounding radioactivity used the term ‘background activity’ to describe the surrounding 
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activity; however, this may not be technically correct. The ‘background’ activity in each of 

these papers appears to surround the line sources, but is not co-located with the line 

sources, and is therefore not true background activity (the line source is not superimposed 

on top of a background activity). Analysis of planar nuclear medicine images of such a 

phantom may be correct to use the term ‘background’ activity, depending on the phantom’s 

orientation; however, both SPECT and PET imaging produce cross-sectional images. 

‘Surrounding activity’ is therefore a more accurate term to describe these line source 

phantoms when cross-sectional images are involved. Two of these papers briefly discuss 

performing ‘background subtraction’, as follows: 

• “…resolutions were determined taking the background of the warm cylinder into 

account” – de Jong et al [195] 

• “For the profiles through the warm background images, we subtract the baseline 

background activity.” – Alessio et al [49] 

Neither paper discusses how this ‘background subtraction’ was performed or describes any 

additional acquisitions of the phantom without line source activity that could be subtracted 

from the perturbed data.  

  

Analysis methods in the literature for both point and line sources invariably involve drawing 

line profiles through the point or line sources, fitting the profiles to Gaussian functions, and 

measuring the FWHM of the fitted Gaussian curves [53], [206]–[208]. Figure 7.1 compares 

the theoretical effects of ‘simplistic background subtraction’ (right-hand column) with 

subtraction of surrounding activity (left-hand column) upon the measured FWHM when a 

line source phantom is used (‘perturbation method’). 

 

Figure 7.1 demonstrates that in a zero-noise, high spatial resolution scenario, the 

perturbation method should result in a line-source-only image in which the line source peak 

and FWHM are unaffected by the subtraction of the surrounding activity. However, when 

simplistic background subtraction is used, the maximum point of the fitted Gaussian is 

reduced by an amount that is dependent on the ‘background’ activity being subtracted. This 

in turn reduces the ‘half maximum’ point in the curve at which the FWHM is measured. 

Simplistic background subtraction may therefore cause the FWHM to be measured at a 

position that is closer to the fitted Gaussian’s peak, which in turn may produce a narrower 

FWHM result than the perturbation method for the same line source acquisition. The 

difference between the perturbation method and simplistic background subtraction results 

will be more apparent when low line-to-background ratios are used. However, it is not clear 

if any FWHM discrepancies between the two methods would be affected by alterations in 

the reconstruction algorithm.  
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Figure 7.1: Illustration of perturbation and simplistic background subtractions 
 

Nyquist theory states that as an absolute minimum for sampling, voxel sizes must be no 

greater than half the size of the smallest object to be detected. Clinical liver imaging on the 

GEMS Discovery 690 typically requires the largest possible (700mm) transaxial FOV 

(although this may be reduced for smaller patients). The smallest possible voxel dimension 

in the transaxial plane is therefore 2.73mm (when the 256 matrix is used). This implies that 

objects less than 5.46mm will be under-sampled. As voxel sizes increase, the size of the 

smallest detectable object also increases, leading to a loss of high frequency information in 

the reconstructed images (previously discussed in Chapter 1). Voxel size becomes the 

major limiting factor for spatial resolution once they are increased above a certain threshold. 

To the author’s knowledge, nobody has assessed the effects of increasing voxel sizes from 

the minimum to maximum possible sizes in order to determine the threshold where voxel 

size itself becomes the main spatial resolution limitation. It is therefore unclear from the 

literature where this voxel size threshold is for the GEMS Discovery 690.  

 
7.2 Aims 
 

The literature review demonstrated there is no established method of measuring PET 

spatial resolution in a clinically relevant manner. This chapter therefore aims to determine 

an appropriate phantom measurement technique to allow assessments of the relative 

differences in clinical spatial resolution resulting from the use of different iterative 
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reconstruction parameters. It should be noted that this chapter does not aim to produce a 

definitive numerical value to describe the clinical spatial resolution of PET images; the 

following chapter will use the methodology developed in this chapter to assess clinical 

spatial resolution. 

 

Firstly, a 22Na point source and an 18F line source will be used to assess the effects of voxel 

size on spatial resolution measurements. Specifically, this experiment aims to demonstrate 

the point at which voxel size becomes a limiting factor on FWHM measurement using each 

source. Results will be discussed with respect to voxel sizes used for clinical liver imaging 

and used to determine which matrix sizes are appropriate for clinical spatial resolution 

measurement.  

 

The remainder of this chapter will then assess two different phantoms, and three different 

methods, for spatial resolution measurement. 

 

A 22Na point source surrounded by 18F activity will be assessed: 

1. The effects of using 18F correction factors upon the 22Na point source will be assessed, 

to justify the use of two different radioisotopes within a single phantom. 

2. The effects of increasing the activity concentration of surrounding 18F activity upon the 

measured FWHM will be assessed, to determine if clinically relevant background 

activities have an effect upon spatial resolution measurement. 

3. A comparison between ‘uncorrected’ and ‘simplistic’ corrections (see Figure 7.1) for 

surrounding activity will be made, to assess if the correction is necessary for spatial 

resolution measurement. 

• The ‘perturbation’ method will not be assessed for this phantom, for reasons 

described in the following section. 

4. The ability of the phantom to demonstrate the effects of altering reconstruction 

parameters will be assessed briefly; FWHM measurements from high, medium and low 

resolution reconstructions will be compared. 

 

An 18F line source phantom with surrounding 18F activity will then be assessed: 

1. A comparison between ‘uncorrected’, ‘perturbation’ and ‘simplistic’ corrections for 

surrounding activity will be made, to assess if corrections are necessary for spatial 

resolution measurement. 

2. The ability of the phantom to demonstrate the effects of altering reconstruction 

parameters will be assessed briefly; FWHM measurements from high, medium and low 

resolution reconstructions will be compared. 
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3. Two different line-to-background ratios will be compared to determine if the use of a 

single ratio could be sufficient to assess the effects of reconstruction parameters on 

spatial resolution. 

 

Finally, the results from both phantoms and the different corrections for surrounding activity 

will be compared. A recommended methodology for spatial resolution measurement will 

then be made. This method will then be used to conduct an assessment of the effects of 

reconstruction parameters upon spatial resolution, which forms the next chapter of this 

thesis.  

 

7.3 Materials and Methods 
 

All acquisitions and reconstructions were performed on the GEMS Discovery 690 PET-CT 

system. A detailed description of this system is included in Chapter 3.  

 

7.3.1 Phantoms 
Two phantoms were assessed: a line source phantom and a point source phantom.  

 

7.3.1.1 Point Source Phantom 
As demonstrated in the literature review, no study has placed a long-lived point source 

within surrounding 18F activity. A long-lived point source phantom was therefore created by 

placing a 22Na point source inside the NEMA body phantom, allowing the point source to 

be surrounded by plain water or radioactivity. This phantom is described in more detail in 

Section 3.2.3.1. The 22Na source activity was 0.525MBq at the time of scanning (activity 

concentration of the 0.25mm diameter sphere was therefore approximately 64GBq/ml). 

 

The perturbation method was not attempted with the point source phantom: this would 

require removal of the phantom’s lid to substitute the 22Na for a space-saver of equivalent 

dimensions and positioning (thus preserving the ‘surrounding activity’ nature of the 

phantom). The phantom would have to be removed from the scan room for the adjustment 

and then repositioned on the scanner, which could introduce alignment issues. Removing 

the phantom’s lid whilst it contained radioactivity would also have radiation protection 

implications and could cause the loss of some of the radioactivity. It was therefore not 

practical to perform the perturbation method on this particular phantom; only the 

uncorrected data and the simplistic background correction data were assessed.  
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7.3.1.2 Line Source Phantom 
The NEMA 1994 line source phantom contains two fillable line sources (diameter 1.2mm) 

within a fillable cylindrical cavity. One source is positioned at the phantom centre, while the 

other is positioned 75mm radially (near the phantom periphery). This phantom is described 

in more detail in Section 3.2.3.2.  Both line sources were filled for this chapter’s experiments.  

  

7.3.2 Image Acquisition Protocols 
7.3.2.1 Point Source Phantom 
The phantom was filled with plain water and positioned with the point source at the FOV 

centre. The phantom was acquired twice without moving the phantom: once using 22Na 

correction settings and once using 18F correction settings. A single acquisition frame and 4-

minute bed-times were used for both scans. 18F was then added incrementally to the 

phantom to produce five different source-to-background ratios, detailed in Table 7.1. 

Approximate source-to-background ratios ranged from 7,500,000:1 to 31,000,000:1. For 

clinical relevance, the final two surrounding activity concentrations were chosen to be 

similar to that found within healthy livers of patients undergoing 400MBq 18F-FDG scans, 

while first three activity concentrations were chosen to provide a range of source-to-

background ratios. 

 

Surrounding  
Activity  

Concentration 

Point Source 
Activity  

Concentration 

Ratio 
(approx) 

 

Point Image 
Maximum Activity 

Concentration 

 
SUVmax 

2,050Bq/ml 64GBq/ml 31M:1 4,261,905Bq/ml 2,236 

3,969Bq/ml 64GBq/ml 16M:1 3,379,326Bq/ml 923 

5,462Bq/ml 64GBq/ml 12M:1 4,304,010Bq/ml 845 

7,237Bq/ml 64GBq/ml 9M:1 4,365,974Bq/ml 643 

8,548Bq/ml 64GBq/ml 7.5M:1 4,191,521Bq/ml 524 

Table 7.1: Point source phantom activity concentrations 

Resultant SUVmax values when GEMS’ suggested reconstruction parameters are 
applied are also included.  

 

Each acquisition was performed using 18F correction factors, a single acquisition frame and 

4-minute bed-times. It should be noted that while the source-to-background ratios described 

here appear unrealistically high with respect to clinical imaging, it was anticipated that, 

following convolution with the imaging system’s PSF and post-reconstruction filtering, the 

reconstructed images would produce much lower effective source-to-background ratios. 

Preliminary reconstructions using GEMS’ suggested clinical parameters demonstrated the 

point source SUVmax values were much lower than the true ratios suggested but were still 

greater than one would expect to find clinically: this was a result of the high point source 
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activity concentration. Maximum activity concentrations and SUVmax measured from the 

point source images are also included in Table 7.1.  

 

7.3.2.2 Line Source Phantom 
The phantom’s main chamber was filled with an activity concentration similar to that found 

in 400MBq 18F-FDG patient liver images. A first scan was performed with empty line sources 

to produce an image of the surrounding activity only. A second scan was then performed 

after filling the line sources in situ, producing a perturbed line source image (the phantom 

was not moved between scans and identical axial FOV coverage was used for both scans). 

This set-up was repeated on two separate days with two different line-to-background ratios. 

A single acquisition frame and 4-minute bed-times were used for all scans. Table 7.2 details 

the activity concentrations used: ratios were approximately 200:1 and 100:1 respectively. 

Preliminary reconstructions using GEMS’ suggested clinical reconstruction parameters 

verified the line source SUVmax values were similar to what one would expect to observe in 

a liver lesion. Maximum activity concentrations and SUVmax measured from the line source 

images are also included in Table 7.2. 

 

Surrounding  
Activity  

Concentration 

Line Source 
Activity  

Concentration 

 
Ratio 

Line Image 
Maximum Activity 

Concentration 

 
SUVmax 

8,316Bq/ml 1,609,575Bq/ml 194:1 53,124Bq/ml 7.23 

8,163Bq/ml 850,996Bq/ml 104:1 30,249Bq/ml 4.22 

Table 7.2: Line source phantom activity concentrations 

Resultant SUVmax values when GEMS’ suggested reconstruction parameters are 
applied are also included. 

 
7.3.3 Image Reconstruction Protocols 
The 22Na plain-water phantom and the 200:1 18F line source phantom were used to 

determine the voxel size threshold for spatial resolution limitation. High-resolution 

reconstructions were performed (PSF with no filtering) with voxel sizes ranging from 

0.25mm (minimum possible) up to 5.47mm (maximum possible) in 0.25mm increments. 

Voxel sizes were achieved by varying matrix size and transaxial FOV. Effective iterations 

were varied from 18 up to 540, as spatial resolution is known to improve with increased 

iterations [53].  

 

All remaining reconstructions in this chapter were performed using a 700mm FOV and a 

256 matrix (voxel dimensions were 2.73mm x 2.73mm x 3.34mm): the reasons for this will 

be justified in Section 7.4.1. 
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The 22Na plain-water phantom acquisitions used to compare the use of 22Na and 18F 

correction factors were reconstructed using GEMS’ suggested clinical reconstruction 

parameters (PSF+TOF, 54 effective iterations, 4mm Gaussian filter, Standard z-axis filter). 

 

A limited set of reconstructions was then performed on both the point and line source 

phantoms, with the aim of producing images with varying spatial resolution. This will assess 

each phantom’s ability to demonstrate the effects of altering reconstruction parameters. 

Table 7.3 details the parameters used in each case.  

 

Reconstruction Name Reconstruction Parameters 
Low Resolution Plain HD, 18 effective iterations,  

10mm Gaussian filter, Heavy z-axis filter 
Medium Resolution TOF+PSF, 54 effective iterations,  

4mm Gaussian filter, Standard z-axis filter 
High Resolution PSF, 90 effective iterations,  

0mm Gaussian filter, No z-axis filter 

Table 7.3: Reconstruction parameters used to vary spatial resolution 
 

7.3.4 Image Analysis 
All line profile and ROI measurements were performed using Hermes Medical Systems’ 

Hybrid Viewer software. Line profiles were fitted to Gaussian functions using ImageJ curve-

fitting software, and the FWHM of the Gaussian fit was measured [53], [206]–[208]. It is 

generally accepted that a source should be sampled by at least three voxels in order to 

produce reliable Gaussian curve fitting: FWHM results obtained when less than three voxels 

sampled the sources are indicated where applicable, as these results may be unreliable.   

 

7.3.4.1 Line Source Phantom  
Figure 7.2 illustrates the perturbation subtraction process used to isolate line sources from 

the surrounding activity. Hermes Medical Systems’ Hybrid Viewer software was used to 

subtract Scan 1’s reconstructed images (surrounding activity only) from Scan 2’s 

reconstructed images (line sources plus surrounding activity). Line profiles were analysed 

using both the Scan 2 images (lines in surrounding activity) and the subtraction images (line 

sources in near-zero surrounding activity). Profiles were positioned using CT data, and then 

copied across to the PET data sets as shown in Figure 7.3(a). Both horizontal and vertical 

profiles were drawn through both line sources using transaxial images. As the line sources 

ran parallel to the z direction, spatial resolution in the z direction was not assessed. 

Measurements were made on the central transaxial slice and four slices either side (9 

neighbouring transaxial slices in total) to provide an estimate of the mean and error of the 

measurement method (this method was previously used by Alessio et al [49]). 
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Figure 7.2: Perturbation method subtraction for line source’s surrounding activity 
 

Simplistic background correction was then applied to Scan 2’s line profiles. A background 

value was obtained by placing a large ROI over an area of uniform surrounding activity, as 

shown in Figure 7.3(b). The ROI’s mean voxel value was taken to be the ‘background’ 

activity concentration and subtracted from Scan 2’s line profile data to produce simplistic 

background-corrected line profiles. 

 

  
(a) (b) 

Figure 7.3: Line source phantom (a) line profiles and (b) background ROI 
 

Three horizontal (x-axis) and three vertical (y-axis) line profile data sets were therefore 

produced for both line sources within the phantom:  

• Uncorrected Method: Line sources profiles in surrounding activity 

• Perturbation Correction Method: Isolated line source profiles produced using 

perturbation subtraction 
• Simplistic Correction Method: Line source profiles in surrounding activity corrected 

using simplistic background subtraction 
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7.3.4.2 Point Source Phantom 
Point sources were analysed by drawing line profiles in the x, y and z directions, as shown 

in Figure 7.4. Line profile analysis was performed using the same methodology as the line 

source phantom, creating the following data sets: 

• Uncorrected Method: Point source profiles in surrounding activity 

• Simplistic Correction Method: Point source profiles in surrounding activity corrected 

using simplistic background subtraction.  

 

 

 

 

(a) (b) 

Figure 7.4: Point source phantom line profiles 
Line profiles are positioned on (a) transaxial and (b) coronal PET images 

 

7.3.4.3 Voxel Size Assessment 
Horizontal line profiles were drawn through the 22N point source (water phantom) and the 

central 18F line source (200:1 phantom). Corrections for the surrounding activity in the 18F 

line source phantom were performed using simplistic background subtraction only (this will 

be justified in the Results section on this chapter).  

 

7.4 Results 
 

7.4.1 Effects of Voxel Size on Spatial Resolution Measurement 
The first aim of this chapter was to assess how spatial resolution measurement is affected 

by voxel size; in particular, to demonstrate at which point voxel size becomes a limiting 

factor upon FWHM measurement. Figure 7.5 plots FWHM measurements against voxel 

size for both the 22Na point source (0.25mm diameter) and the 18F line source (1.2mm 

diameter), when different effective iterations are applied.  
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Figure 7.5: Spatial resolution versus voxel size as effective iterations vary 
Both 200:1 18F line source and 22Na point source in water results are shown. 
Crosses indicate where Gaussian curve fitting was unreliable due to inadequate 
source sampling. Dashed lines indicate voxel sizes achievable with full 700mm 
transaxial FOV.  

 

The 22Na point source FWHM results are much lower than those of the 18F line source. One 

would expect this to be the case because of the point source’s smaller size and much higher 

activity concentration. Both sets of results demonstrate that spatial resolution improves with 

increasing effective iterations, which is also as one would expect. Figure 7.5 also 

demonstrates that resolution measurements of both sources worsen as voxel size 

increases, which is also as expected. 

 

The 22Na point source resolution doesn’t appear to degrade until the voxel size reaches 

approximately 3mm, when between 54 and 180 effective iterations are applied. However, 

the point source was sampled by less than three voxels (indicated by crosses in Figure 7.5) 

when the following conditions were met: 

• Voxel size at least 4.75mm when 54 effective iterations are applied 

• Voxel size at least 2.75mm when 90 effective iterations are applied 

• Voxel size at least 2.50mm when 180 effective iterations are applied 

• Voxel size at least 2.25mm when 540 effective iterations are applied 

With respect to the 700mm FOV used for whole-body imaging, the 256 matrix achieved 

adequate sampling of the 22Na point source when up to 90 effective iterations were applied.  
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The 192 matrix failed to achieve adequate sampling when more than 54 effective iterations 

were applied. The 128 matrix only achieved adequate sampling at the lowest iteration 

setting.  

 

It should be noted, however, that three of the voxel sizes which provided inadequate 

sampling of the 22Na source are smaller than the GEMS Discovery 690’s z-direction voxel 

dimension, which is fixed at 3.34mm. This z-axis voxel sampling is used successfully in 

NEMA-style FWHM measurements, which use point sources with larger physical 

dimensions and smaller activity concentrations than the 22Na source used in this 

experiment. This implies the 22Na point source presents a greater challenge in terms of the 

voxel size required for adequate sampling. This is as expected: smaller objects require 

smaller voxels for adequate sampling (Nyquist Theorem). 

 

The 18F line source resolution doesn’t appear to degrade until voxel size reaches 

approximately 2mm (for all effective iterations settings). However, the line source was 

sampled by less than three voxels when the following conditions were met: 

• Voxel size at least 3.00mm when 180 effective iterations are applied 

• Voxel size at least 2.75mm when 540 effective iterations are applied 

The 256 matrix therefore achieved adequate sampling of the 18F line source, even at high 

iterations. The 128 and 192 matrices failed to achieve adequate sampling once 180 

effective iterations were applied.  

 

One would expect the smaller 22Na point source to achieve a smaller FWHM than the larger 
18F line source, and Figure 7.5 shows this is indeed the case for all voxel sizes. However, 

one would also expect that the voxel size required to degrade FWHM measurements would 

be smaller for the smaller source, due to Nyquist sampling theory. This is not the case for 

the results in Figure 7.5: the 18F line source FWHM is degraded once voxels exceed 

approximately 2mm, whereas the 22Na source FWHM is only degraded once voxels reach 

approximately 3mm. It is important to note the differences between the two phantoms 

extend beyond the physical size of the point/line source:  

• The 22Na point source activity was 0.525MBq, while the line source activity was 

0.48MBq distributed along the full 20cm length of the line. The images of the line source 

therefore had greater statistical noise than the images of the point source.   

• The 18F line source was placed inside a background activity (200:1 line to background 

ratio), whereas the point source was placed within plain water. Reconstruction of the 

point source was therefore unaffected by the presence of any background activity.  
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It is therefore difficult to make a meaningful comparison between the two sets of results 

shown in Figure 7.5; the difference in critical voxels sizes may not be as pronounced in 

reality as it appears in these experimental results. However, the results indicate the use of 

the full 700mm FOV with 192 or 128 matrices (i.e. 3.65mm or 5.47mm voxels respectively) 

will compromise the reliability of Gaussian curve fitting, particularly for the smaller 22Na 

source.  

 

To ensure adequate sampling in a manner that is clinically relevant to liver imaging, the 

remainder of this chapter will use the full 700mm FOV with only the 256 matrix. This will 

provide reliable measurements for the 18F line phantom at all effective iterations. FWHM 

measurements of the 22Na source may be less reliable at higher iterations (180 and above) 

but are included for completeness. 

 

7.4.2 Point Source Phantom 
7.4.2.1 Effect of 18F Correction Factors  
The first aim of the 22Na point source work was to determine if the use of 18F correction 

factors affected FWHM measurements. Figure 7.6 shows medium resolution PET 

reconstructions of the 22Na point source within a plain water background, using (a) 22Na and 

(b) 18F correction factors, with 1-voxel-wide horizontal line profiles. Images are zoomed to 

better visualise the point sources. Maximum voxel values are also included.  

 

 
(a) 

22Na Correction Factors  
Max Voxel = 3,874,468Bq/ml 

 
(b) 

18F Correction Factors 
Max Voxel = 3,618,722Bq/ml  

Figure 7.6: Comparison of point source images acquired using (a) 22Na and (b) 18F 
correction settings 

Images have been zoomed to better visualise point source (identical zoom factors 
applied to each acquisition). Images are scaled to maximum voxel values. Line profile 
width is 1 voxel. 
 

A qualitative comparison of the 22Na and 18F corrected point source images demonstrates 

little difference between the two reconstructions. Maximum voxel values were within 6.6% 

of each other. Line profiles were then used to calculate the FWHMs: Figure 7.7 compares 

the raw line profiles (left) and the Gaussian fit (right) of both the 22Na-corrected and 18F-

corrected line profiles (R2 > 0.99 in both cases).  
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Figure 7.7: Raw line profile data and Gaussian fit data for point source phantom 
Data acquired using both 22Na and 18F correction settings. 

 

Figure 7.7 demonstrates that both the raw data and the Gaussian fit data are similar for 

both isotope correction methods. Maximum values of the line profile data are consistent 

with maximum image voxels shown in Figure 7.6, demonstrating that both line profiles 

successfully sampled the maximum voxel. Furthermore, the measured FWHM of the 

Gaussian fit data are almost identical: 4.89mm for the 22Na corrected data and 4.91mm for 

the 18F corrected data (0.41% difference). This data suggests the use of 18F correction 

factors for 22Na point source reconstructions does not affect the point source FWHM. The 

assessment was then extended to include measurements of the x, y and z-axes for low, 

medium and high resolution reconstructions, as summarised in Table 7.4.  

 

 x-axis y-axis z-axis 
22Na 18F Diff 22Na 18F Diff 22Na 18F Diff 

Low-Res 10.17 10.18 0.01 
(0.1%) 

10.38 10.39 0.01 
(0.1%) 

7.51 7.49 0.02 
(0.27%) 

Med-Res 4.89 4.91 0.02 
(0.41%) 

4.26 4.26 0.0 
(0.00%) 

4.90 4.89 0.01 
(0.20%) 

High-Res 1.67 1.67 0.00 
(0.00%) 

1.79 1.79 0.00 
(0.00%) 

2.18 2.21 0.03 
(1.38%) 

Table 7.4: Point source spatial resolution measurements using 22Na and 18F 
correction factors 

Low, medium and high resolution reconstructions were analysed. Magnitudes of the 
differences between 22Na and 18F corrections results are shown. Percentage 
differences with respect to 22Na results are also shown. 
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Table 7.4 further demonstrates there is little difference in FWHM measurements when 

comparing 22Na and 18F correction factors: all 9 pairs of results are within 1.4% of each 

other, with 8 of the pairs within 0.5% of each other. Although a limited range of 

reconstructions was assessed, this experiment indicates the use of 18F correction factors 

does not affect the measured FWHM of a 22Na point source, and therefore fulfils the first 

aim of the 22Na phantom work. Further phantom work was therefore undertaken by placing 

the 22Na point source within a background volume of 18F activity, and reconstructing the 

data using 18F correction factors.  

 

7.4.2.2 Effect of Increasing Background Activity 
The second aim of the 22Na point source phantom work was to determine if placing the 

source within clinically relevant activity concentrations of 18F had any effect on FWHM 

measurements. The phantom background chamber was filled with five different 18F activity 

concentrations, as described in Table 7.1. Phantom images are shown in Figure 7.8: the 

top row shows images scaled to a maximum SUV of 7 (threshold used routinely for viewing 

clinical images). The bottom row images are scaled to each image’s maximum voxel value 

with a zoom factor applied to better visualise the point source.  

 

     
BG 2,050Bq/ml BG 3,969Bq/ml BG 5,462Bq/ml BG 7,237Bq/ml BG 8,548Bq/ml 

     

SUVmax 2,236 SUVmax 922 SUVmax 845 SUVmax 643 SUVmax 524 

Figure 7.8: Point source phantom images with different source-to-background 
ratios 

Medium resolution reconstruction parameters. Images on top row are scaled to 
maximum SUVmax = 7, as used for clinical image viewing. Images on bottom row are 
scaled to maximum voxel value and zoomed to better visualise point source. 
 

Background activity is not visualised in the bottom row images because of the very high 

source-to-background ratios. It is difficult to visualise any differences in background activity 

in the top row images for the same reason. These images also appear to demonstrate some 

ringing artefacts in the immediate vicinity of the point source, although this may also be a 

result of the ‘cold’ Lucite surrounding the point source. 
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Figure 7.8 demonstrates qualitatively that there is little effect on the point source width as a 

result of increasing background radioactivity. The second point source measurement 

(SUVmax = 922) appears to have an elongated width along the x-axis, but as this effect is 

not observed on any of the other acquisitions, it is likely to be caused by a positioning error. 

Point source FWHMs in all three planes were then measured quantitatively using line 

profiles. Simplistic background correction was performed for each acquisition to correct for 

the different surrounding activity concentrations (the use of the simplistic background 

correction will be justified later in this chapter). Figure 7.9 plots the measured FWHM in all 

three directions against increasing background radioactivity concentration. Both 

uncorrected and simplistic corrected results are shown. Linear trendlines with R2 values are 

also shown for each set of measurements.   

 

 

Figure 7.9: Spatial resolution versus background activity concentration 
Results are shown for x, y and z directions. Both uncorrected (red) and simplistic 
corrected (blue) data are shown. Analysis was performed on medium resolution 
reconstruction images.  

 

Figure 7.9 demonstrates that increasing background activity has little effect on FWHM. 

Linear trendlines demonstrate a poor fit and are not statistically significantly different to a 



Chapter 7 

 

165 

 

zero gradient (p-values from linear regression significance tests are above 0.05 in each 

case). These results therefore do not demonstrate any correlation between FWHM 

measurements and background activity. Furthermore, the Uncorrected and Simple results 

are almost identical; any discrepancies between the two correction methods are highly 

unlikely to be of clinically significance. One may therefore conclude that background 

correction is not required for the particular combination of point source and background 

activity concentrations used in this experiment. Background correction may be required at 

lower activity concentration ratios, but ratios in the order of 100:1 are unachievable with this 

particular point source activity (a 100:1 ratio would require approximately 6,400GBq in the 

background volume, which is both clinically and physically unrealistic).  

 

This experiment therefore fulfils the second aim of the 22Na phantom work. The activity 

concentration of the surrounding activity does not affect the FWHM measurements of the 

high activity point source when clinically relevant activity concentrations are used. 

Therefore, this phantom is not useful for assessing the effects of different lesion-to-

background ratios due to the very high activity concentration of the point source. 

Furthermore, simplistic background correction did not affect the FWHM results, suggesting 

that background correction is not required for the range of background activities examined 

in this experiment: this is also due to the high activity of the point source. This partially fulfils 

the third aim of the 22Na phantom experiment, which is to assess the requirement for 

background correction.   

 

7.4.2.3 Effect of Altering Reconstruction Resolution 
The fourth and final aim of the 22Na phantom work was to assess the phantom’s ability to 

demonstrate the effects of altering reconstruction parameters. Three different resolution 

reconstructions were performed for the 22Na phantom with the highest 18F background 

activity, as shown in Figure 7.10. Images are shown on two image scales as before, with 

images zoomed to better visualise the point source.  

 

Qualitative image analysis demonstrates obvious differences in resolution, as one would 

expect. The point source appears large in size and is surrounded by a more homogenous 

background activity region on the low resolution reconstruction. The medium resolution 

reconstruction has a less homogenous background activity but has a sharper point source 

image. The high resolution phantom has the sharpest point source and the most 

heterogeneous surrounding activity of the three reconstructions. On the images scaled to a 

maximum SUV of 7, the high resolution phantom has a more pronounced ‘cold’ area 

surrounding the point source than the medium resolution phantom. Cold voxels on the 

medium and high resolution reconstructions are only visualised here because the maximum 
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scaling factor is relatively low compared to the maximum SUVs in the images. These cold 

voxels have no measurable effect upon FWHM analysis. 

 

Low Resolution Medium Resolution High Resolution 

   

   

SUVmax = 61 SUVmax = 606 SUVmax = 2,101 

Figure 7.10: Low, medium and high resolution reconstructions of point source 
phantom within surrounding activity 

Images on top row are scaled to maximum SUVmax = 7, as used for clinical image 
viewing. Images on bottom row are scaled to maximum voxel value and zoomed to 
better visualise point source. Surrounding activity concentration is 8,548Bq/ml. 
 

Line profile analysis results (both Uncorrected and Simplistic Correction) for x, y and z axes 

are shown in Table 7.5.  

 

  x-axis y-axis z-axis 
Uncor Simple Diff Uncor Simple Diff Uncor Simple Diff 

Low 
Res 

10.733 10.578 0.155 
(1.44%) 

10.959 10.808 0.151 
(1.38%) 

7.545 7.442 0.103 
(1.37%) 

Med 
Res 

4.342 4.334 0.008 
(0.18%) 

4.149 4.146 0.003 
(0.07%) 

4.819 4.811 0.008 
(0.16%) 

High 
Res 

2.086 2.084 0.002 
(0.10%) 

2.262 2.261 0.001 
(0.04%) 

2.641 2.639 0.002 
(0.08%) 

Table 7.5: Spatial resolution measurements of point source surrounded by 
activity 

Low, medium and high resolution reconstructions were analysed. Results are shown 
for x, y and z directions. Magnitudes of the differences between uncorrected (‘Uncor’) 
and simplistic (‘Simple’) corrections results are shown. Percentage differences with 
respect to uncorrected results are also shown. 
 

As with the results in the previous section, differences between Uncorrected and Simple 

data are small. The magnitudes of these differences are dependent upon image resolution: 

maximum differences were 0.1% for high resolution, 0.18% for medium resolution and 

1.44% for low resolution. These small differences are unlikely to be of clinical significance. 

This experiment therefore fulfils the third aim of the 22Na phantom work: simplistic 

background correction does not have a clinically significant effect on FWHM results, 
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suggesting that background correction is not required for the combination of 22Na source 

activity and background activities examined in this experiment.  

 

Table 7.5 also demonstrates clear differences in FWHMs achieved by the three different 

resolutions, as one would expect from the qualitative assessment. Medium resolution 

FWHMs are approximately double those of the high resolution, while the low resolution 

FWHMs are approximately double those of the medium resolution. This therefore fulfils the 

fourth and final aim of the 22Na phantom experiment. The 22Na phantom can be used to 

demonstrate the relative effects of altering reconstruction parameters, both qualitatively and 

quantitatively.  

 

7.4.3 Line Source Phantom 
The line source phantom was used to assess ‘uncorrected’, ‘perturbation’ and ‘simplistic’ 

corrections for surrounding activity, as well as the phantom’s ability to demonstrate the 

effects of altering reconstruction parameters. The effects of two different source-to-

background ratios were also assessed.  

 

7.4.3.1 Qualitative Comparison of Corrected and Uncorrected Phantoms 
Figure 7.11 shows transverse and sagittal images of both the 200:1 and 100:1 phantoms 

reconstructed with low, medium and high resolution. Images acquired before and after the 

line sources were filled are shown. Perturbation subtraction images are also shown. 

Qualitative image analysis demonstrates the relative spatial resolution performance of each 

reconstruction is as expected for both the 200:1 and 100:1 phantoms: as resolution 

increases, line sources appear sharper and surrounding activity appears less homogenous. 

Line sources are still visible following subtraction of surrounding activity for all three 

reconstructions; however, they appear to have reduced intensity following the subtraction. 

This was verified by performing a brief quantitative analysis of the line sources’ maximum 

activity concentrations on the central transaxial slice before and after perturbation 

subtraction, as shown in Table 7.6. It should also be noted that the empty line sources are 

not visualised on the images showing surrounding activity only: there are no visible ‘cold’ 

areas coinciding with the positions of the empty line sources.  
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200:1 Phantom 
 Empty Line Sources Full Line Sources Perturbation Subtraction 

Low 
Resolution 

 

Medium 
Resolution 

High 
Resolution 

100:1 Phantom 
 Empty Line Sources Full Line Sources Perturbation Subtraction 

Low 
Resolution 

 

Medium 
Resolution 

High 
Resolution 

Figure 7.11: Low, medium and high resolution reconstructions of line source 
phantoms 

Both 200:1 (top) and 100:1 (bottom) ratio phantoms shown. Surrounding activity with 
empty line sources (left), uncorrected line sources within surrounding activity 
(centre) and line sources following perturbation method subtraction of surrounding 
activity (right). Images scaled to maximum SUV = 7.0, as used for clinical image 
viewing. 
 

Table 7.6 confirms the perturbation method produces line sources of reduced intensity. 

Lower resolution images demonstrated the greatest reduction in maximum activity 

concentrations, while the 100:1 phantom demonstrated greater reductions in maximum 

activity concentrations than the 200:1 phantom. Furthermore, the peripheral line source 

demonstrated a smaller percentage reduction than the central line source as a result of the 

perturbation subtraction.  
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 Maximum Activity Concentration (Bq/ml) 
Low 

Resolution 
Medium 

Resolution 
High 

Resolution 
Before After Before After Before After 

200:1 
Ratio 

Periphery 16,069 8,005 
(-50%) 

53,027 46,352 
(-13%) 

76,020 69,702 
(-8%) 

Central 16,159 7,799 
(-52%) 

53,125 45,373 
(-15%) 

74,270 64,847 
(-13%) 

100:1 
Ratio 

Periphery 11,952 4,004 
(-66%) 

29,760 22,445 
(-25%) 

39,483 31,572 
(-20%) 

Central 12,161 3,819 
(-69%) 

30,249 21,027 
(-30%) 

42,011 29,486 
(-30%) 

Table 7.6: Maximum activity concentration measurements of line sources 
Results shown for both 100:1 and 200:1 phantoms, and for both uncorrected images 
(‘Before’) and perturbation images (‘After’). Measurements made using central 
transaxial slice. Percentage reductions as a result of subtraction are shown in 
parentheses. 
 

7.4.3.2 Quantitative Comparisons of Contrast Ratios and Corrections 
Quantitative line profile analysis was then performed on the Uncorrected, Perturbation and 

Simplistic correction data sets, for all three resolution reconstructions and for both 200:1 

and 100:1 phantoms. Results for the central line source using horizontal profiles are shown 

in Figure 7.12 (all plots use the same x and y axes scales to aid comparison between 

different contrast ratios and resolutions). No FWHM measurement could be obtained for the 

uncorrected low-resolution data, as the surrounding activity voxel values exceed half of the 

line source maximum voxel. Perturbation and simplistic correction methods produce similar 

line profiles and FWHM measurements. This is in contrast to what one may have expected, 

as illustrated by Figure 7.1: the simplistic correction was expected to produce narrower 

FWHM results than the perturbation method. However, Figure 7.1 assumes the data has 

greater spatial resolution than observed in the reconstructed images. As the empty line 

sources are not visualised on the images, even on the high resolution reconstruction, the 

perturbation correction method is in fact similar to the simplistic correction method at 

clinically available levels of image resolution.    

 

Figure 7.12 also demonstrates that as resolution increases, peak values increase and the 

FWHMs decrease for all three correction methods, as one would expect. Peak values for 

the 200:1 phantom are greater than those of the 100:1 phantom, which is also as expected. 

The plots also demonstrate that as resolution improves, line profiles and FWHM results of 

all three correction methods become more similar to each other. For all three resolutions, 

and for both contrast ratios, the ‘Perturb’ and ‘Simple’ results are similar in terms of both 



Chapter 7 

 

170 

 

peak values and FWHMs, although this limited data suggests that the perturbation method 

produces marginally narrower FWHM results.   

 

Figure 7.12: Gaussian fit data for line source phantoms (x-axis only) 
Results are shown for uncorrected, perturbation corrections and simplistic 
corrections, and for both 100:1 and 200:1 phantoms. Results for all three 
resolutions are shown. Data is for horizontal profile through central line source 
on the central transaxial slice. Dashed lines denote half maximum values; crosses 
denote FWHM measurement points (where possible). FWHM results for Gaussian 
fit data are also shown (where possible).  

 

FWHM analysis of the centre and peripheral line sources, using nine consecutive transaxial 

slices for each phantom reconstruction was then performed. Figure 7.13 shows the mean 

FWHM results and their 95% confidence intervals. 
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Figure 7.13: Mean spatial resolution results for line source phantoms 
Results for uncorrected, perturbation correction and simplistic correction, for 
100:1 and 200:1 phantoms, for all three reconstruction resolutions. Mean 
resolution results for both central and peripheral line sources are shown for both 
x and y axes. Error bars represent 95% confidence intervals. 

 

Figure 7.13 confirms the observations made from Figure 7.12 apply to both the centre and 

peripheral line source, and both x and y axis directions: 

• The 200:1 ratio phantom produces smaller FWHMs than the 100:1 phantom when the 

same reconstruction and correction methods are applied 

• No FWHMS could be measured for uncorrected low resolution data: this demonstrates 

that the ‘Uncorrected’ method is not a valid approach to FWHM measurement.  

• ‘Perturb’ and ‘Simple’ results appear to be similar for each measurement. Paired t-tests 

were performed on each set of results. 17 out of the 24 sets of measurements had p-

values below 0.05, indicating that the differences between the two correction methods 

are statistically significant; however, as the differences are small in magnitude and do 

not alter the relative effects of the reconstruction resolution, these differences are highly 

unlikely to be of clinical significance.  

• The centrally positioned line source has similar FWHMs in both the x and y axis 

directions, for all three resolutions 
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• The peripheral line source has greater FWHMs along the x-axis than the y-axis for all 

three correction methods and for both contrast ratios. This effect will be analysed in 

more detail in the next chapter.  

 

The first aim of the line source phantom experiment was to compare the three methods 

used to correct for surrounding activity and determine which method should be used when 

performing comprehensive spatial resolution analyses. Figures 7.12 and 7.13 demonstrate 

the ‘Uncorrected’ method is not suitable for assessing low resolution reconstructions and 

can therefore be excluded from any further work. This therefore fulfils the first aim of the 

line source experiment: corrections for surrounding activity are required for spatial 

resolution measurement as ‘Uncorrected’ results cannot provide FWHM measurements for 

low resolution reconstructions. Furthermore, ‘Perturb’ and ‘Simple’ correction techniques 

produced similar FWHM results.  

 

The second aim of the line source phantom experiment was to determine if the line phantom 

was able to demonstrate the effects of altering various reconstruction parameters. Figures 

7.12 and 7.13 demonstrate that both ‘Perturb’ and ‘Simple’ methods differentiate between 

different levels of image resolution. The second aim of the line source experiment is 

therefore fulfilled: this phantom methodology can be used to assess the effects of altering 

reconstruction parameters.  

 

The third aim of the line source phantom experiment was to determine if the use of a single 

contrast ratio could be sufficient to assess the effects of reconstruction parameters on 

spatial resolution. The 200:1 profiles have higher peak values than the 100:1 profiles, as 

one would expect from the higher activity concentration. The 200:1 profiles therefore 

produced FWHMs that were consistently smaller than those of the 100:1 phantom (average 

difference was 0.71mm). However, both contrast ratios clearly demonstrated the effects of 

reconstruction parameters, as shown in Figures 7.12 and 7.13. The third aim of the line 

source experiment is therefore fulfilled: whilst the contrast ratio has been shown to have an 

effect on the measured spatial resolution, a single ratio should be sufficient to demonstrate 

the effects of reconstruction parameters upon spatial resolution.  

 

7.5 Discussion  
 

The first experiment performed in this chapter assessed the effects of increasing voxel size 

upon FWHM measurements using both an 22Na source in water and 18F line sources within 

background activity. Results demonstrated that, for the particular imaging conditions used 

in this experiment, voxel sizes of up to 2mm for the 18F line source and 3mm for the 22Na 
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source could be used without degrading the FWHM measurements. In terms of devising a 

method to measure clinical spatial resolution when the full 700mm FOV is used, the results 

demonstrated that 128 and 192 matrices did not provide adequate sampling of either 

source, particularly at higher iterations. The remainder of spatial resolution measurements 

performed in this chapter therefore used the 256 matrix with the 700mm FOV; this provided 

reliable FWHM measurement of the line source phantom at all effective iterations assessed 

in this chapter. However, the results also indicated that even the 256 matrix did not provide 

adequate sampling of the 22Na source when 180 effective iterations or more were applied.  

 

The use of the 22Na point source and 18F line source phantoms for measuring spatial 

resolution in a clinically relevant manner were then assessed. Both phantoms had 

advantages and disadvantages.  

 

The 22Na point source phantom provides a long-lived reproducible point source that allows 

FWHM measurements to be made in all three planes. As demonstrated by Section 7.4.2.3, 

the phantom can be used to assess the effects of altering reconstruction parameters upon 

spatial resolution. However, the point source is a 0.25mm diameter, 0.525MBq 22Na 

spherical point source. The activity concentration within the sphere was therefore 

approximately 64GBq/ml. Considering the limit for a whole-body 18F-FDG scan in the UK 

(as defined by the Administration of Radioactive Substances Advisory Committee 

(ARSAC)) is 400MBq, the activity concentration of this point source is likely to be many 

orders of magnitude greater than one would expect to observe within a patient. 

Furthermore, a consequence of the high activity concentration of the point source was that 

a clinically relevant source-to-background ratio could not be achieved realistically (a 100:1 

ratio would require approximately 6,400GBq in the background volume). When the 

surrounding activity concentration was similar to that found within the liver of patients 

injected with 400MBq 18F-FDG, the theoretical source-to-background ratio was 

approximately 7,500,000:1. The high activity concentration of the point source therefore 

eliminated the effects of the surrounding activity  in the background cavity. The high activity 

of the point source is also likely to have caused Gibbs artefacts, although these are unlikely 

to have affected the FWHM measurements. Additionally, as only one point source was 

available, spatial resolution could only be measured in a single position for each phantom 

acquisition.  

 

However, it should be noted that images of the 7,500,000:1 source-to-background ratio, 

reconstructed using typical clinical parameters, produced a voxel ratio in the order of 500:1. 

The 22Na phantom method using 18F surrounding activity may therefore be worth revisiting 

when the long-lived point source has decayed to a lower activity. Furthermore, the point 

source phantom could be improved by obtaining multiple point sources so resolution can 
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be measured at different positions within the FOV in a single acquisition. NEMA spheres 

could be filled and added to the phantom to assess how resolution is affected by the 

presence of additional objects within the FOV with activity concentrations greater than 

background.  

 

There are several advantages of the line source phantom. The line sources and background 

cavity can be filled to achieve a range of clinically relevant contrast ratios. The phantom 

includes two line sources, which allows resolution to be measured in two physical positions 

for each phantom acquisition. Furthermore, the presence of two sources within the phantom 

also provides a slightly more complex imaging scenario, which is closer to the clinical 

situation, than a phantom containing a single source within background activity.  

 

However, the line source phantom has disadvantages. Line sources cannot be used to 

assess spatial resolution in all three planes simultaneously: only the x and y directions were 

assessed in this chapter. Furthermore, fillable line sources are not as reproducible as the 

point source phantom, due to potential measurement, filling and positioning errors. The 

finite size of the line source (1.2mm diameter) was relatively large compared to the point 

source used in this chapter (0.25mm). Smaller diameter sources provide more accurate 

measurement of the imaging system’s point source response function. 

  

Three different methods of correcting for the surrounding activity were also assessed in this 

chapter. No corrections were required for the point source phantom, as the high contrast 

ratio rendered the surrounding activity effectively absent. However, corrections were 

required for the line source phantoms as these used lower, clinically relevant contrast ratios: 

this was demonstrated by the low-resolution phantom having no measurable FWHM when 

no corrections were applied.  

 

The line source phantom results were used to compare the perturbation method with the 

simplistic correction method (the perturbation method was not used with the point source 

phantom, as explained in Section 7.3.1.1). Both correction methods provided a set of results 

that were not only similar, but clearly demonstrated the differences between the different 

reconstruction resolutions and the differences in contrast ratios.  

 

The overall aim of this chapter was to recommend a methodology for measuring the relative 

effects of altering reconstruction parameters upon spatial resolution in a clinically relevant 

manner. Analysis has demonstrated the line source phantom to be the most appropriate 

phantom as it can be filled with clinically relevant contrast ratios and can measure resolution 

in two locations simultaneously. Although the line source can be filled with different contrast 

ratios, Figure 7.13 demonstrated that the use of a single contrast ratio is sufficient for 
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assessing the relative effects of altering reconstruction parameters. The perturbation and 

simplistic corrections produced similar results which are unlikely to demonstrate any 

clinically significant differences. As the simplistic correction method doesn’t require 

additional acquisitions with empty line sources, it is less labour intensive than the 

perturbation method: the simplistic correction method is therefore more compatible with a 

large-scale analysis of spatial resolution. 

 

7.6 Conclusions 
 

The following phantom method is proposed for measuring the relative effects of altering 

reconstruction parameters in a clinically relevant manner:  

• Line phantom with 200:1 ratio 

o This provides a clinically relevant contrast ratio, with easily visualised line source 

images (even at low resolution reconstructions).  

• Simplistic corrections applied to account for surrounding activity 

o This technique is the fastest to implement as background-only acquisitions, 

reconstructions and subtractions are not required. A wider range of 

reconstructions can therefore be examined in the limited time available for this 

study. 

• 700mm FOV, 256 matrix, 2.73mm voxel sizes in x and y directions 

o Using the maximum FOV means results will be applicable to liver imaging of 

larger patients. This also ensures line sources will be sufficiently sampled to 

allow reliable Gaussian curve fitting and FWHM measurement.  

 

The next chapter will therefore use this methodology to assess how spatial resolution is 

affected when the various reconstruction parameters are altered. 

 
 



 

 
 
 
 
 
 
 
 
Chapter 8 : Assessment of Spatial Resolution in 
Reconstructed Images of a Line Source Phantom 
 

Whilst 18F-FDG PET has high sensitivity and high accuracy for diagnosing hepatic and 

extrahepatic metastases, it has limited spatial resolution when compared to high-resolution 

modalities such as CT and MRI [209]. Limited spatial resolution, and the associated partial 

volume effects, is particularly disadvantageous when attempting to identify small lesions 

within the liver [210], as it causes blurring in reconstructed images (as discussed in Chapter 

1). Small lesions appear larger in size and lower in intensity, causing SUVs to be 

underestimated [76]. Small, low contrast lesions within the liver are also challenging to 

identify due to the mottled, moderate uptake within the surrounding liver tissue.  

 

The primary aim of this thesis is to develop a generic methodology to assess and optimise 

PET image reconstruction whilst considering clinical context, whilst the secondary aim is to 

use this methodology to optimise reconstruction on the GEMS Discovery 690 for the 

detection of small liver lesions. In order to optimise PET reconstruction for this purpose, it 

is important to characterise the effects of the various reconstruction parameters upon spatial 

resolution. When combined with the assessments of noise (Chapter 6) and lesion detection 

(Chapter 9), this will enable the selection of a combination of reconstruction parameters to 

produce the optimal trade-off between spatial resolution and other aspects of image quality, 

in order to maximise the accuracy of liver lesion detection.  

 

The previous chapter demonstrated that clinical spatial resolution is challenging to assess, 

and as a result, there is no established method for its assessment in the literature. The 

chapter therefore evaluated different phantom and analysis techniques to assess spatial 

resolution in a clinically relevant manner. The chapter concluded by recommending the use 
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of a line source phantom and applying a simplistic correction method to account for the 

background activity. This methodology was shown to demonstrate how different 

reconstruction parameters affected clinical spatial resolution when a single source-to-

background ratio was used. This chapter uses this methodology to perform a more 

comprehensive assessment of how clinical spatial resolution is affected by different 

combinations of reconstruction parameters.  

 

8.1 Introduction 
 

The effects of both reconstruction iterations and post reconstruction filtering upon spatial 

resolution have been well reported in isolation: increasing effective iterations improves 

spatial resolution (at the expense of increased noise) and increased filtering degrades 

spatial resolution (while reducing image noise). However, the effects on clinical spatial 

resolution as a result of PSF and TOF (in combination with effective iterations and filtering) 

are less certain, despite several studies undertaking investigations. This is partly due to the 

difficulties, and inter-study inconsistencies, of measuring spatial resolution in a clinically 

relevant manner, as discussed in the previous chapter.  

 

The GEMS White Paper on ‘SharpIR’ [89], the GEMS implementation of PSF modelling, 

concluded that PSF modelling improves spatial resolution for a line source in air. Their 

methodology involved imaging an 18F capillary tube in air at varying distances from the FOV 

centre. Four reconstructions were assessed: HD, PSF, TOF and PSF+TOF. Two PET-CT 

systems were used in this study: a GEMS Discovery 600 was used to compare HD and 

PSF, while a GEMS Discovery 690 was used to compare TOF and PSF+TOF. PSF 

reconstructions used 2.5 times more effective iterations than the non-PSF reconstructions, 

as PSF modelling is known to require more iterations to reach convergence. PSF effects 

were demonstrated by comparing HD against PSF results (Discovery 600), and TOF 

against PSF+TOF (Discovery 690). PSF and PSF+TOF FWHM measurements were 

approximately 2mm throughout the FOV, while HD and TOF worsened with increasing 

distance from the FOV centre. PSF improved spatial resolution by approximately 2mm (50% 

improvement) at the FOV centre, and by 4mm (67% improvement) at a distance of 250mm.  

 

The GEMS White Paper therefore appears to suggest PSF modelling significantly improves 

spatial resolution performance, as measured by the FWHM of a line source throughout the 

FOV, when compared with HD and TOF reconstructions. However, there were major 

limitations to this study. The most significant limitation was the absence of scatter material 

and background activity (the importance of which was discussed in Chapter 7); results 

cannot be considered clinically relevant. Furthermore, PSF reconstructions used smaller 
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voxel sizes (0.65mm) than non-PSF reconstructions (0.98mm), which would likely result in 

lower FWHM results (particularly for sources in air [49]), and only the non-PSF 

reconstructions were subject to filtering (Gaussian 2mm FWHM filter).  

 

The White Paper references a 2010 study by Alessio et al [49] as the publication that 

developed the ‘SharpIR’ PSF algorithm. The Alessio study assessed the effects of the PSF 

algorithm using multiple line sources both within air and within background radioactivity 

throughout the FOV. It should be noted that this study used an older PET-CT system 

(GEMS Discovery STE) that was not capable of TOF. The ‘line source within air’ results 

were similar to those reported in the GEMS White Paper: PSF produced significantly lower 

FWHM values than non-PSF reconstructions and were more consistent throughout the 

FOV. The ‘line source within background radioactivity’ results, however, demonstrated PSF 

FWHM values were in fact dependent upon the position within the FOV, although to a lesser 

extent than the non-PSF reconstruction. PSF demonstrated minor improvements over non-

PSF at the FOV centre (approximately 3% FWHM reduction) but demonstrated greater 

improvements for the peripheral line source (approximately 12.5% FWHM reduction). The 

benefit of PSF was improved when the number of effective iterations was increased; 

however, this study noted that the PSF algorithm had not yet converged at FOV edges even 

after 2,800 effective iterations were applied. Almost 200 effective iterations were required 

to observe any improvement in FWHM as a result of PSF modelling for a line source 

positioned 5.1cm from the FOV centre, which are more effective iterations than typically 

used clinically. However, this study concluded that PSF improves spatial resolution when 

typical clinical levels of effective iterations are used (between 50 and 160 effective 

iterations), when the effects of image noise are also taken into account: PSF improved 

spatial resolution by approximately 15% at matched noise levels. 

 

Despite Alessio’s findings on the use of background radioactivity when assessing PSF, 

several more recent studies have drawn conclusions on PSF performance using point/line 

sources in air. A 2016 study by Murata et al [197] used an 22Na source positioned at multiple 

points within the FOV to quantify the effects of PSF on two different PET-CT systems. No 

scatter material or background radioactivity was used, and no corrections for scatter or 

attenuation were applied during reconstruction. PSF on both scanners was relatively 

uniform throughout the FOV and demonstrated improvements over non-PSF 

reconstructions, particularly at the FOV edges. The study acknowledged that the lack of 

background radioactivity may have caused the PSF algorithm to over-correct the point 

source resolution. A 2015 study by Suljic et al [201] used three 18F line sources in air to 

assess the impact of TOF and PSF on a Siemens Biograph PET-CT scanner. PSF was 

found to improve spatial resolution within 10cm of the FOV centre by up to 43%, whereas 

TOF was found to have a negligible effect on spatial resolution. They also concluded PSF 
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achieves uniform spatial resolution throughout the FOV. They state their results are in line 

with the results of other studies using similar methodology, and the limitations caused by 

the omission of background radioactivity are not discussed.  

 

8.2 Aims 
 

The literature review demonstrated few studies have assessed the effects of reconstruction 

parameters upon spatial resolution using clinically relevant methodology. In particular, the 

use of sources in air as opposed to background activity may have led studies to exaggerate 

the clinical benefits of PSF modelling.  

 

The aims of this chapter are to characterise the effects of the following reconstruction 

parameters upon clinical spatial resolution, using the line source phantom methodology 

developed in the previous chapter:  

a. Gaussian filter width 

b. Effective iterations 

c. Reconstruction method (TOF and PSF) 

d. Consistency of resolution at different positions within the FOV 

 

The effects of the z-axis filter are not explicitly assessed in this chapter, as the line source 

phantom is only used to assess resolution in the x and y axes directions.  

 

The effects of varying voxel sizes on spatial resolution were assessed in the previous 

chapter. As a result, this chapter exclusively uses a 700mm FOV with a 256 matrix. This 

preserves the maximum FOV so results are applicable to larger patients, whilst ensuring 

adequate sampling of the line sources for reliable FWHM measurements.  

 

Spatial resolution will be assessed both qualitatively and quantitatively. However, this 

chapter does not aim to assign a numerical value to the spatial resolution of the system, in 

a similar manner to NEMA spatial resolution tests. Instead, the qualitative and quantitative 

assessments will be used to assess the relative performance of different combinations of 

the reconstruction parameters. When combined with the assessments of noise (Chapter 6) 

and lesion detection (Chapter 9), this will enable the selection of a combination of 

reconstruction parameters to produce the optimal trade-off between spatial resolution and 

other aspects of image quality, in order to maximise the accuracy of liver lesion detection.  
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8.3 Materials and Methods 
 

This chapter uses the methodology for assessing spatial resolution recommended by the 

previous chapter: 

• Line phantom with 200:1 line-to-background ratio 

• Simplistic correction applied to account for surrounding activity 

 

8.3.1 Line Source Phantom and Acquisition Protocol 
The NEMA 1994 line source phantom, containing two fillable line sources (diameter 1.2mm) 

within a 20cm diameter fillable cavity, was used in this chapter. This phantom is described 

in more detail in Section 3.2.3.2, and the acquisition used in this chapter is described in 

Section 7.3.2.2. The 200:1 source-to-background ratio, detailed in Table 8.1, was shown to 

clearly demonstrate the effects of varying reconstruction parameters on spatial resolution. 

 

Surrounding  
Activity  

Concentration 

Line Source 
Activity  

Concentration 

 
Ratio 

Line Image 
Maximum Activity 

Concentration 

 
SUVmax 

8,316Bq/ml 1,609,575Bq/ml 194:1 53,124Bq/ml 7.23 

Table 8.1: Line phantom activity concentrations 

Resultant SUVmax values when GEMS’ suggested reconstruction parameters are 
applied are also included.  

 

The phantom has one line source positioned centrally and one line source positioned 7.5cm 

radially (near the phantom’s periphery).  

 

8.3.2 Image Reconstruction Protocols 
Table 8.2 summarises the reconstruction parameters used in this chapter. All possible 

combinations of the reconstruction parameters shown in Table 8.2 were used: 120 

reconstructions were therefore performed in total. 

 

Reconstruction  
Parameter 

Settings  
Used 

Number of  
Result Groups 

Effective OSEM Iterations 18, 54, 90, 180, 540 5 
Reconstruction Method HD, PSF, TOF, PSF+TOF 4 
Gaussian Filter (FWHM) 0 à10mm, in  

2mm increments 
6 

Z-Axis Filter None 1 
Matrix Size 256*256 1 

Table 8.2: Reconstruction parameters used for line source phantom 
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All reconstructions in this chapter were performed using the full 700mm transaxial FOV and 

a 256 matrix (voxel dimensions 2.73mm x 2.73mm x 3.34mm). This ensures results are 

applicable to larger patients, whilst providing adequate sampling of the line sources for 

reliable FWHM measurements (as demonstrated in the previous chapter).  

 

As the phantom does not facilitate measurement of z-axis resolution simultaneously with x 

and y axes resolution, and the analysis required for each reconstruction was relatively time-

intensive, only a single z-axis filter setting (no filter) was assessed in this chapter.  

 

Although 540 effective iterations are unlikely to be used clinically (GEMS suggest using only 

54 effective iterations), several studies have shown PSF requires more than 180 effective 

iterations to reach full convergence. Furthermore, Alessio et al [49] demonstrated 

approximately 200 effective iterations were required for PSF to improve resolution 5cm from 

the FOV centre; the phantom used in this chapter measures resolution at a distance of 

7.5cm from the FOV centre. It is therefore prudent to include 540 effective iterations in this 

chapter in order to fully evaluate the effects of PSF upon spatial resolution.  

 

8.3.3 Image Analysis 
All line profile and ROI measurements were performed using Hermes Medical Systems’ 

Hybrid Viewer software. Horizontal and vertical profiles were drawn through both the central 

and peripheral line sources on the central 9 transaxial slices. Background ROIs were also 

drawn on each of these slices and used to perform simplistic background correction (as 

described in the previous chapter). Corrected line profiles were then fitted to a Gaussian 

function using ImageJ curve-fitting software, and the FWHM of the Gaussian fit was 

calculated [53], [206]–[208]. 

 

  
(a) (b) 

Figure 8.1: Line source phantom (a) line profiles and (b) background ROI 
 

The nine FWHM results for each reconstruction were then used to calculate the mean result 

and 95% confidence intervals.  
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8.4 Results 
 
8.4.1 Qualitative Analysis of Phantom Images 
Figure 8.2 compares the effects of Gaussian filter width and effective iterations. All images 

shown were produced using the HD reconstruction method. Each row shows the results for 

a different Gaussian filter width, while each column shows the results for a different number 

of effective iterations (for brevity, only three of the iteration settings used are shown).  

 

Figure 8.2: HD reconstruction images with varying filter width and effective 
iterations 

 

Figure 8.2 generally demonstrates the expected trade-off between spatial resolution and 

image noise. Increasing filter widths degrade spatial resolution by introducing blurring, while 
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increasing effective iterations improves spatial resolution by producing noisier, sharper 

images. Figure 8.2 further demonstrates differences in resolution between the central and 

peripheral line sources. The peripheral line source in the 0mm, 18 iterations image appears 

to be blurred to a greater extent than the central line source, particularly in the horizontal 

direction (along the x-axis). This differential effect appears to be mitigated by both 

increasing effective iterations and increasing filter widths.  

 

Figure 8.3 compares the effects of increasing effective iterations and altering the 

reconstruction method. For brevity, only images produced using a 0mm Gaussian filter are 

shown.  

 

Figure 8.3: Effects of varying reconstruction method and effective iterations 
0mm Gaussian filter used for each image. 

 

Figure 8.3 demonstrates that spatial resolution is dependent upon the application of PSF 

and/or TOF. When TOF-only is applied with 18 iterations, both line sources appear to be 

sharper and more intense than the HD reconstruction with 18 effective iterations. TOF also 

appears to produce reasonably consistent resolution for both the central and peripheral line 

sources, even at low iterations, unlike the HD reconstruction. TOF is known to require less 

effective iterations to reach convergence, so it is expected to improve image quality at lower 

iterations. However, TOF is not traditionally reported as directly improving spatial resolution 

[131], [201].  
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When PSF-only is applied with 18 iterations, spatial resolution appears to be degraded in 

comparison with the HD reconstruction, particularly for the peripheral line source along the 

x-axis. This is not unexpected, as PSF is known to require more effective iterations to reach 

convergence (as discussed earlier in this thesis). As effective iterations are increased, line 

sources appear to be sharper and more intense as a result of PSF. There may be a subtle 

ringing artefact around the peripheral line source when 90 iterations are applied. Ringing 

artefacts are present around both line sources when 540 iterations are applied but appear 

more pronounced around the peripheral line source.  

 

PSF+TOF combines the effects of both correction methods. At low iterations, the line 

sources are not as sharp as those produced by TOF-only, but the resolution of both the 

central and peripheral line sources appear to be reasonably consistent, unlike PSF-only. At 

high iterations, ringing artefacts are observed around both line sources, caused by PSF.  

 

8.4.2 Quantitative Analysis of Phantom Images 
For brevity and clarity, the effects of Gaussian filter width, effective iterations and 

reconstruction method will be assessed using only the horizontal profile (x-axis) from the 

central line source in the first instance. The effects of profile direction (x or y axis) and the 

line source’s position within the FOV will then be assessed.  

 

8.4.2.1 Effects of Gaussian Filter, Effective Iterations, PSF and TOF 
Figure 8.4 plots the mean FWHM results for the central source horizontal (x-axis) line profile 

against effective iterations for each reconstruction method. Results are split into separate 

plots for each Gaussian filter width setting, with the red box denoting the GEMS suggested 

clinical filter width (4mm). Figure 8.4 therefore demonstrates the combined effects of the 

Gaussian filter width, effective iterations and reconstruction method. The dashed red lines 

in each plot denote the 54 effective iterations suggested by GEMS for clinical imaging.  

 

Figure 8.4 demonstrates that FWHM increases as filter width increases, as one would 

expect. There is very little difference between the 0mm and 2mm results. Once the filter 

width is increased beyond 2mm, there appears to be a linear relationship between filter 

width and FWHM, for all iteration settings and reconstruction methods. Chapter 6 

demonstrated that, when a 2.73mm voxel size is used, the Gaussian filter only began to 

affect image noise when its width exceeded approximately 2mm (see Figure 6.8). Figure 

8.4 is therefore consistent with the previous chapter’s findings. Figure 8.4 also 

demonstrates that FWHM decreases as the number of iterations increases in each plot. 

This is also as one would expect, as increasing effective iterations is known to improve 
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resolution (and was demonstrated in the previous chapter); however, only minimal FWHM 

improvements are achieved beyond 180 effective iterations.  

 

 

Figure 8.4: Spatial resolution measurements for central line source 
Measurements made using a horizontal profile. Data points represent average 
result over 9 slices. Error bars denote 95% confidence intervals. Dashed red lines 
and the red box denote the 54 effective iterations and 4mm Gaussian filter 
suggested by GEMS for clinical reconstructions. 

 

Figure 8.4 also demonstrates that the relative performance of each of the reconstruction 

methods is dependent upon both effective iterations and Gaussian filter width. At 18 

effective iterations, the relative performance of all 4 reconstruction methods remains the 

same for all filter widths: TOF produces the smallest FWHM values (4.7mm for 0mm filter), 

followed by HD (5.1mm for 0mm filter) and then PSF+TOF (5.7mm for 0mm filter), while 

PSF produces the largest FWHM values (6.3mm for 0mm filter). These results are 

consistent with the qualitative analysis of Figure 8.3, which showed the TOF reconstruction 
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produced the sharpest images, while the PSF reconstruction produced the blurriest images, 

when only 18 effective iterations were applied.  

 

When 54 effective iterations are applied, as suggested by GEMS, the relative performance 

of the reconstruction methods is dependent upon filter width. When the filter width ≤ 4mm, 

the relative performance remains the same as that of 18 iterations. However, when the filter 

width exceeds 4mm, the relative performance of PSF+TOF and HD are swapped: TOF 

FWHM values remain the smallest, followed by PSF+TOF and then HD, with PSF remaining 

the largest. Although PSF-only continued to produce the poorest resolution at 54 iterations, 

the improvement PSF+TOF relative to HD-only indicates the increase in iterations, 

combined with increased filtering, resulted in some relative PSF improvement (6mm filter 

FWHM results: HD = 7.7mm, PSF = 8.0mm, TOF = 7.4mm, PSF+TOF = 7.6mm). 

 

All 4 reconstructions become more similar at 90 effective iterations, particularly at larger 

Gaussian filter widths. However, the results still demonstrate some relative differences. 

When the filter width ≤ 4mm, TOF remains the smallest, followed by PSF+TOF and then 

HD, with PSF remaining the largest. Once the filter FWHM ≥ 6mm, the relative performance 

of TOF and PSF+TOF are swapped; PSF+TOF reconstruction now produces the smallest 

values. When the filter width = 10mm, the relative performances of PSF and HD are 

swapped: HD now produces the largest values. Both PSF reconstructions therefore 

demonstrated further improvements as a result of increased iterations and filtering (10mm 

filter FWHM results: HD = 11.1mm, PSF = 11.0mm, TOF = 10.9mm, PSF+TOF = 10.7mm). 

 

When 180 effective iterations are applied with a filter ≤ 2mm, PSF+TOF produces the 

smallest FWHM values, followed by TOF, then HD, with PSF producing the largest values. 

When a 4mm filter is applied, the HD reconstruction produces the largest values, swapping 

its relative position with PSF. When the filter is ≥ 6mm, the PSF produces smaller values 

than both HD and TOF, with PSF+TOF producing the smallest values. Again, this illustrates 

the progressive improvement of PSF as a result of increasing iterations (6mm filter FWHM 

results: HD = 7.3mm, PSF = 7.0mm, TOF = 7.1mm, PSF+TOF = 6.8mm). 

 

Finally, when 540 effective iterations are applied with a filter width of at least 4mm, one can 

observe a clear divergence in performance between the reconstructions that use PSF and 

the reconstructions that do not use PSF. HD and TOF appear to have reached convergence 

after 180 iterations; extra iterations do not result in further spatial resolution improvements. 

In contrast, PSF and PSF+TOF demonstrate some further improvements at 540 effective 

iterations and may improve further with additional iterations.  However, these improvements 

are relatively minor compared to the improvements achieved by increments at lower 

iterations; any spatial resolution improvements achieved by applying more than 180 
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effective iterations are unlikely to be clinically significant. The 4mm filter results were as 

follows: HD = 5.2mm, PSF = 4.6mm, TOF = 5.2mm, PSF+TOF = 4.6mm.  

 

The observations made from the horizontal profile through the central source were mirrored 

by the other three result sets (vertical profile through central source; horizontal profile 

through peripheral source; vertical profile through peripheral source).  

 

8.4.2.2 Consistency of Central and Peripheral Resolution 

Figure 8.5 compares central and peripheral FWHM measurements made using horizontal 

profiles. Results are represented as line plots drawn between pairs of results for both line 

source positions. Non-zero line gradients indicate FWHM discrepancies between the two 

positions. Each plot within Figure 8.5 compares the measurements made for a particular 

combination of Gaussian filter width and effective iterations; only three filter widths and three 

iteration settings are shown for brevity but are sufficient to demonstrate result trends. 

 

 

Figure 8.5: Spatial resolution measurements for both line sources, measured 
using horizontal profiles 

Data points represent average result over 9 slices (error bars omitted for clarity).  
 

The HD reconstruction demonstrates poorer peripheral resolution along the x-axis when 

low iterations are combined with low filtering, as demonstrated by the non-zero line 
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gradients (HD FWHM discrepancy is 0.76mm when 18 iterations and 0mm filter applied). 

HD discrepancies reduce as both filtering and iterations are increased, falling to 0.02mm 

when 540 iterations are combined with a 10mm filter. PSF-only demonstrates similar FWHM 

worsening with distance from the FOV centre as HD, as demonstrated by their similar, non-

zero line gradients (PSF discrepancy is 0.85mm when 18 iterations and 0mm filter applied). 

As with the HD results, PSF discrepancies reduce as both filtering and iterations are 

increased, falling to 0.13mm when 540 iterations are combined with a 10mm filter. 

 

In contrast, both TOF reconstructions produce reasonably consistent FWHM results at all 

iterations and filter combinations, as indicated by the near-zero line gradients. When 18 

iterations are combined with 0mm filter, FWHM discrepancies are 0.14mm (TOF) and 

0.15mm (PSF+TOF); approximately 20% of the equivalent HD and PSF discrepancies.   

 

Figure 8.6 compares central and peripheral FWHM measurements made using vertical 

profiles. 

 

Figure 8.6: Spatial resolution measurements for both line sources, measured 
using vertical profiles 

Data points represent average result over 9 slices (error bars omitted for clarity). 
 

Central and peripheral FWHM results along the y-axis are generally more consistent than 

those of the x-axis. However, the peripheral line source achieves lower FWHMs than the 
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central line source for many of the reconstructions used; this is in contrast to the x-axis 

results. 

 

HD demonstrates marginally poorer central resolution along the y-axis when low iterations 

are applied, as demonstrated by the non-zero line gradients (HD discrepancy is 0.45mm 

when 18 iterations and 0mm filter applied). As with the x-axis results, FWHM discrepancies 

reduce as both filtering and iterations are increased, falling to 0.22mm when 540 iterations 

are combined with a 10mm filter.  

 

TOF-only also demonstrates marginally poorer central resolution along the y-axis when low 

iterations are applied (TOF discrepancy is 0.25mm when 18 iterations and 0mm filter 

applied). TOF discrepancies also reduce as both filtering and iterations are increased, 

falling to 0.16mm when 540 iterations are combined with a 10mm filter. TOF results are 

generally more consistent than those of HD for all combinations of filters and iterations.  

 

PSF-only demonstrates similar patterns to HD at lower iterations as demonstrated by their 

similar, non-zero line gradients (PSF FWHM discrepancy is 0.30mm when 18 iterations and 

0mm filter applied). However, the PSF discrepancies remain apparent after 540 iterations, 

particularly when combined with filtering (PSF FWHM discrepancy is 0.58mm when 540 

iterations and 10mm filter applied). 

 

PSF+TOF FOV discrepancies mirror those of TOF at lower iterations (discrepancy is 

0.10mm when 18 iterations applied with 0mm filter), and those of PSF at higher iterations 

(discrepancy is 0.38mm when 540 iterations applied with 10mm filter).  

 

These quantitative results are consistent with the qualitative analysis of Figure 8.3: 

• PSF appeared to cause increased peripheral source blurring along the x-axis at low 

iterations, confirmed by the 0.85mm discrepancy in x-axis FWHMs when 18 iterations 

were applied (compared with 0.76mm for HD) 

• TOF-only appeared to produce the most consistent central/peripheral x-axis FWHMs at 

low iterations, confirmed by the 0.14mm discrepancy in x-axis FWHMs when 18 

iterations were applied.  

• Peripheral x-axis blurring was reduced by increasing iterations and was not visualised 

after 540 iterations for any reconstruction (HD and PSF discrepancies fell to 0.02mm 

and 0.13mm respectively when a 10mm filter was applied) 

 

FWHM discrepancies along the y-axis were difficult to visualise in Figure 8.3, which only 

included reconstructions produced with a 0mm filter. Figure 8.6 confirms that FWHM 
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discrepancies along the y-axis were minimal at all iterations when no filter was applied. 

Larger discrepancies were demonstrated along the y-axis for the PSF and PSF+TOF 

reconstructions when 540 iterations were combined with wider Gaussian filters (0.58mm 

and 0.38mm respectively when a 10mm filter was applied); however, these are equivalent 

to approximately 5% discrepancies between central and peripheral FWHMs and are 

therefore unlikely to be clinically significant. 

  

8.5 Discussion 
 

Previous studies that assessed spatial resolution using FBP point/line sources in air 

demonstrated that PSF significantly improved spatial resolution, and equalised resolution 

throughout the FOV, when compared with non-PSF reconstructions. However, the absence 

of surrounding activity makes these experimental scenarios clinically unrealistic: they 

cannot facilitate a valid assessment of iterative reconstruction techniques (and of PSF in 

particular). This was demonstrated by the Alessio paper [49], which compared 

measurements of line sources in both air and water for a Discovery STE PET-CT system 

(which had BGO crystals and therefore no TOF capability). This chapter aimed to assess 

the relative effects of reconstruction parameters upon spatial resolution in a clinically 

relevant manner for the Discovery 690 PET-CT system, which has both PSF and TOF 

capabilities. Line sources within background radioactivity were acquired and reconstructed 

using 120 combinations of reconstruction parameters (effective iterations, post-

reconstruction filter widths, TOF and PSF) and FWHM measurements from the resultant 

images were used to assess the effects of the reconstruction parameters.  

 

Both qualitative and quantitative analysis demonstrated that effective iterations and post 

reconstruction filtering impacted spatial resolution in an expected manner: resolution 

improved when more effective iterations were applied and degraded when the extent of 

post-reconstruction filtering was increased.  

 

TOF was shown to improve resolution of both the central and peripheral line sources, and 

improved the consistency between them, when compared to HD after only 18 iterations. 

TOF is known to reach convergence after fewer iterations than plain OSEM [211] so an 

early improvement in image quality is not unexpected. However, it has been published that 

TOF “does not improve spatial resolution” [19], so these low-iteration TOF findings may, at 

first glance, appear to be unexpected. Figure 8.4 plotted FWHM versus effective iterations 

for various filter widths: for each filter width, TOF appeared to be the first of the four 

reconstruction methods to converge to a final resolution measurement, and there was 

minimal FWHM improvements once 90 effective iterations are exceeded. TOF converged 
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to similar values as the HD reconstruction, so it is not unreasonable to state “TOF does not 

improve spatial resolution”; however, it does converge faster than HD, which means at low 

matched iterations it appears to improve spatial resolution.  

 

When low numbers of effective iterations were used, PSF degraded spatial resolution 

throughout the image, and worsened FWHM discrepancies along the x-axis between 

central and peripheral line sources when compared to HD. PSF is known to require more 

iterations to reach convergence, as the system matrix incorporates more information into 

the reconstruction algorithm [89], so it is not unexpected PSF image quality is poorer than 

that of HD at low iterations. Increased peripheral horizontal blurring as a result of using PSF 

with low iterations is also consistent with that observed in Alessio’s study [49]. However, 

when effective iterations were increased beyond approximately 150, PSF produced better 

spatial resolution than HD, and produced reasonably consistent FWHM results at both FOV 

positions. Figure 8.4 also demonstrated PSF does not appear to reach convergence after 

540 effective iterations, indicating that further improvements in spatial resolution could be 

achieved if more iterations were applied.  

 

Applying both PSF and TOF together was shown to combine the characteristics of the TOF 

and PSF, as one would expect. While resolution remained poorer than HD after 18 iterations 

as a result of PSF, the central and peripheral line sources produced reasonably consistent 

FWHMs, as a result of TOF.  PSF+TOF produced superior resolution measurements when 

over 90 iterations were applied, and appeared to converge to lower FWHM values than 

either HD or TOF-only. Furthermore, PSF+TOF converges faster than PSF-only.  

 

Although they did not perform quantitative spatial resolution assessments, Bettinardi et al 

[19] found that the best overall image quality results on the GEMS Discovery 690 were 

obtained by applying both TOF and PSF together, stating “…if TOF acts as an accelerator 

for signal convergence, PSF can recover a better signal at a lower number of iterations…”. 

The results of this chapter appear to indicate this is also the case for when considering 

quantitative spatial resolution measurements, provided enough effective iterations are 

applied. However, the final choice of reconstruction parameters will not be solely dependent 

upon spatial resolution, as discussed elsewhere in this thesis. 

 

Finally, the purpose of PSF modelling is often described in the literature as ‘to improve 

spatial resolution’ [19], [137], [138], [146], [212]. The results of this chapter demonstrate 

that this is not necessarily the case; at low iterations, PSF was shown to degrade resolution. 

Any statement regarding the use of PSF to improve spatial resolution must account for 

effective iterations: up to 180 iterations may be required for this to be true. This is 

significantly more effective iterations than used by papers that concluded PSF improved 
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resolution after assessing sources in air (Murata et al [197] used up to 54 effective iterations; 

Suljic et al [201] used 84 effective iterations). One must conclude these studies would have 

drawn different conclusions had their sources been assessed under more clinically realistic 

conditions. It is of interest the GEMS’ White Paper describes the purpose of their ‘SharpIR’ 

algorithm as “…to improve PET image contrast to noise…” [89] rather than explicitly stating 

it improves spatial resolution. The work in this chapter suggests that, although PSF can 

improve spatial resolution when enough effective iterations are applied, the number of 

required effective iterations are higher than typically used clinically. It may therefore be 

misleading to describe the main benefit of PSF modelling as “improving spatial resolution”.  

 

A limitation of this study was that a single phantom size and only two FOV positions were 

assessed. Future work could involve a larger phantom containing several line sources at 

different positions throughout the FOV. The use of perpendicular line source positioning 

within the phantom would allow FWHM measurements along the x, y and z axes from a 

single acquisition.  

 

8.6 Conclusions 
 

This chapter demonstrated that the use of PSF with very high effective iterations (>540) 

and no filtering produced the optimal clinical resolution measurements. However, such high 

iterations are unlikely to be used clinically due to unacceptable image noise, as previously 

discussed in Chapter 6. 

 

This chapter also demonstrated that, contrary to what has been reported in some 

publications, PSF-only reconstructions degrade clinical spatial resolution at lower iterations 

(<180), which are more likely to be used clinically. Therefore, the use of either TOF-only 

(up to approximately 90 iterations), or PSF and TOF together (between approximately 90 

and 180 iterations), are more appropriate for maximising spatial resolution.  

 

The results of this chapter will be combined with the assessments of noise and contrast 

recovery, in order to select the optimal reconstruction parameters for detecting small lesions 

within the liver. Contrast recovery is investigated in the following chapter.  

 

 
 



 

 
 
 
 
 
 
 
 
Chapter 9 : Assessment of Lesion Detection in 
Reconstructed Images of a Body Phantom 
 

The primary aim of this thesis is to develop a generic methodology to assess and optimise 

PET image reconstruction whilst considering clinical context. The effects of reconstruction 

parameters upon noise and spatial resolution were assessed in previous chapters; this 

chapter builds on that work with a view to optimising the detection of simulated lesions of 

varying sizes within a body phantom. The use of different image quality metrics will also be 

assessed, with a view to making recommendations for generic optimisation tasks. 

 

The secondary aim of this thesis is to optimise PET image reconstruction on the GEMS 

Discovery 690 for the detection of small liver lesions. This chapter therefore uses the body 

phantom to represent 18F-FDG liver imaging and determine which combinations of 

reconstruction parameters are likely to optimise small liver lesion detection.  

 

9.1 Introduction 
 

Lesion detectability has been assessed by multiple studies using different methodologies. 

Mathematical observers have been designed to predict human observer performance in 

lesion detection tasks when the number of images to be assessed is very large, and 

therefore beyond what human observers could realistically assess (tens/hundreds of 

thousands of images) [213]. Such observers have typically been used to calculate lesion 

SNR in both phantom and patient images [8], [157], [213]–[220]. However, lesion detection 

performance of human observers is best assessed using human observers, as opposed to 

mathematical observers [214]; studies using mathematical observers are often validated by 

subsequent human observer studies of smaller data sets. As mathematical observers are 



Chapter 9 

 

194 

 

complex to develop, and the number of reconstructions to be compared in this thesis was 

small (in relative terms), they were not considered appropriate for this work and are 

therefore beyond the scope of this thesis. However, the fact that many mathematical 

observers perform SNR calculations when assessing lesion detection is of interest. SNR 

reflects the relative signal level with respect to noise in the reconstructed image, and is 

therefore a widely accepted metric for lesion detection [221], [222]. SNR has also been 

used in many conventional studies performing quantitative analyses of image quality [18], 

[111], [134], [158], [223].  

 

The relationship between image noise and contrast recovery has a direct impact on lesion 

detection [192]. Contrast recovery measurements of simulated hot lesions within 

background activity, where the radioactivity concentrations of both the simulated lesions 

and the background are known exactly, are widely used in phantom studies assessing 

image quality. Contrast recovery analyses using lesions of varying sizes can also 

demonstrate the impact of partial volume effects, caused by limitations in PET spatial 

resolution (as discussed in Chapter 1) [77], [159].  

 

Dual-metric trade-off curve analysis, e.g. plotting noise against lesion metrics such as 

contrast recovery [49], [90], [130], [133], [169], [189], [224]–[227], SNR [92], resolution [15], 

[16] or contrast [18], [134], [145], have been described as a useful first step when comparing 

different reconstruction techniques; they can be used to narrow down the range of 

parameters to be used in subsequent observer studies [37].   

 

Several publications have assessed hot sphere contrast recovery by following NEMA’s 

image quality assessment methodology, using the NEMA IEC Body phantom (described in 

Section 3.2.2). This methodology also involves measuring Background Variability 

(described in Section 3.4.2) using ROIs size-matched to each sphere. NEMA image quality 

assessment results are typically compared with manufacturer specifications; however, 

many studies have extended the methodology to assess the effects of reconstruction 

parameters, incorporating other image quality metrics such as SNR, SUVs etc.  

 

A 2011 study by Bettinardi et al [19] used the NEMA body phantom and methodology to 

assess contrast recovery produced by a GEMS Discovery 690 PET-CT system. They 

assessed four different reconstruction methods (HD, PSF, TOF and PSF+TOF) as effective 

iterations were increased from 18 to 360 (the effects of altering filters or voxel sizes were 

not assessed). Background COV was used as a noise metric. Hot contrast recovery 

coefficients (HCRCs, defined by NEMA) were plotted against effective iterations and 

against COV. The study concluded that applying PSF and TOF together achieved the best 

image quality results. They did not make a specific recommendation for effective iterations, 
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only stating that approximately 54 effective iterations are used clinically to restrict 

reconstruction times. They also stated the differences in noise characteristics caused by 

TOF and PSF could play an important role in terms of lesion detectability and requires 

further work. SNR was not assessed in this study.  

 

Jakoby et al [111] focussed on the effects of adding TOF to PSF reconstructions, also 

performing NEMA style lesion detection assessments on a Siemens Biograph PET-CT 

system. The effects of adjusting filters were not assessed by this study. PSF-only and 

PSF+TOF reconstructions used 63 and 42 effective iterations respectively; these produced 

similar background variation results, with TOF producing greater sphere contrast results. 

This study included SNR measurements for patient reconstructions, which used Standard 

Deviation of a large background region (i.e. a voxel-to-voxel noise measurement). TOF was 

shown to improve SNR by a factor of 1.2 for a small patient (BMI = 21.6) and by a factor of 

1.7 for a larger patient (BMI = 31.6).  

 

Lois et al [18] also used the NEMA phantom to assess the impact of adding TOF to PSF 

reconstructions for lesion detectability. TOF maximised SNR after 28 effective iterations 

when compared to 56 effective iterations for non-TOF. These quantitative results were 

confirmed by qualitative analysis. No other reconstruction parameters were assessed by 

this study.  

 

Kuhnert et al [149] used the NEMA phantom to measure the effect TOF and PSF had upon 

SUVmax measurements using a Siemens Biograph mCT PET-CT system. This study only 

compared two reconstruction methods: the first reconstruction applied both PSF and TOF 

with 63 effective iterations and a 2mm FWHM Gaussian filter (following the manufacturer’s 

recommendations), and the second reconstruction applied OSEM without TOF or PSF, 

using 48 effective iterations and a 5mm FWHM Gaussian filter (following clinical trial 

certification criteria). The study found statistically significant differences in SUVmax 

measurements between both reconstructions, particularly for the smaller sphere: the 

PSF+TOF reconstruction SUVmax results approximately doubled for the smallest two 

spheres, due to the known Gibbs artefacts caused by PSF. This improved small sphere 

detectability but compromised quantitative accuracy. The study recommended the use of 

two data sets for image interpretation: one set to optimise visual assessment (using TOF 

and PSF) and one set for standardised quantitative image interpretation (e.g. without PSF, 

or PSF applied with extra filtering). 

 

Schaefferkoetter et al [8] added artificial liver lesions to 40 sets of patient images and 

assessed the effects of PSF, TOF, effective iterations and Gaussian filtering. A Siemens 

Biograph PET-CT system was used in this study. Lesion SNR was primarily assessed using 
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a mathematical observer, with a restricted reconstruction set assessed by human 

observers. They concluded lesion detection was optimised when both PSF and TOF were 

applied together, with 24 effective iterations and no Gaussian filter applied. Other studies 

using mathematical observers to assess PSF and TOF, whilst not making specific 

recommendations for effective iterations or Gaussian filtering, also concluded that applying 

both PSF and TOF together maximised lesion SNR, and therefore maximised lesion 

detection [157], [215], [217], [220].  

 

This literature review demonstrates that the optimal reconstruction parameters for the 

GEMS Discovery 690 have not been established; in particular, no recommendations have 

been made to optimise liver lesion detection on the GEMS Discovery 690. Furthermore, 

SNR analysis in the literature appears to be exclusively based upon voxel-to-voxel 

measurements; to the authors knowledge, the use of SNR based on region-to-region noise 

measurements has not been assessed.  

 

9.2 Aims 
 

This chapter aims to characterise the effects of the following reconstruction parameters 

upon clinical lesion detection within a body phantom, with a view to identifying the 

combination of parameters that maximise small sphere detection: 

a. Reconstruction method (TOF and PSF) 

b. Effective iterations 

c. Gaussian filter width 

 

Lesion detection will be assessed qualitatively and quantitatively. As previously discussed, 

the relationship between image noise and contrast recovery has a direct impact on lesion 

detection in PET images [192]. HCRC and noise measurements (both voxel-to-voxel Image 

Roughness and region-to-region Background Variation) will therefore be assessed. HCRC 

measurements will also provide an indication of spatial resolution: partial volume effects will 

be more apparent as the spheres decrease in size.  Finally, SNR will be assessed for the 

spheres. A novel method of SNR calculation will also be assessed: Background Variation 

will be used to represent image noise. 

 

The work in this chapter will be performed in three parts:  

• Part 1: a single phantom acquisition will be used to assess a similar, but slightly 

reduced, range of reconstruction parameters evaluated by previous chapters (as 

justified in the Materials and Methods section of this chapter). The aim of Part 1 is to 

further narrow down the range of relevant values for each reconstruction parameter and 
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exclude parameter combinations that are not appropriate for maximising small lesion 

detection.  

• Part 2: A narrowed-down range of values for each reconstruction parameter, using finer 

increments where appropriate, will be assessed for the same single phantom acquisition 

used in Part 1. The aim of Part 2 is to determine the optimum combination of 

reconstruction parameters for small sphere detection.  

• Part 3: The reconstructions used in Part 2 will be applied to multiple phantom 

acquisitions to assess the reproducibility of this chapter’s methodology.  

 

This chapter will conclude by recommending a combination of reconstruction parameters to 

be used for detecting small lesions within the liver.  

 

9.3 Materials and Methods 
 
9.3.1 Body Phantom and Acquisition Protocol 
The NEMA IEC body phantom (described in Section 3.2.2) was used in this chapter. A 

sphere-to-background ratio of approximately 4:1 was used as this is suggested by the 

NEMA guidelines for assessing image quality [177]. Table 9.1 summarises the phantom 

activity concentration at the time of acquisition and the sphere-to-background ratio used in 

Parts 1 and 2 of this chapter. The activity concentration in the background chamber was 

chosen to be similar to that found within the livers of patients undergoing 18F-FDG imaging 

(discussed in Chapter 4).  Activity concentrations used for Part 3 are detailed later in this 

chapter. 

Background Activity  
Concentration 

Sphere Activity  
Concentration 

Ratio 

5,346Bq/ml 24,830Bq/ml 4.64:1 

Table 9.1: Body phantom activity concentrations 

Phantom used in Parts 1 and 2 of this chapter. Resultant sphere-to-background ratio 
is also shown.  

 

The phantom was acquired using two four-minute bed positions with a 23% overlap (as 

justified by Chapter 4). Spheres were positioned within the overlap region in order to assess 

lesion detection in the area of lowest sensitivity (and therefore the most challenging area 

for lesion detection, as described in Chapter 4).  

 

9.3.2 Image Reconstruction Protocols 
Reconstruction parameters used in Part 1 of this chapter were partly informed by the 

findings of previous chapters. As one would expect, Chapter 6 demonstrated applying low 

iterations with heavy filters and large voxels minimised image noise, while Chapters 7 and 
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8 demonstrated applying very high numbers of iterations in combination with minimal 

filtering and small voxel sizes optimised spatial resolution. It was therefore not possible to 

choose optimum voxel sizes, filter widths or effective iterations based only on these 

conflicting requirements. However, as the secondary aim of this thesis is to optimise the 

detection of small liver lesions, this chapter uses only the 256 matrix combined with the full 

700mm transaxial FOV. This will ensure results are applicable to larger patients, whilst 

minimising partial volume effects between liver lesions and the surrounding tissue.  

 

The axial voxel size (z-axis direction) for the GEMS Discovery 690 is fixed at 3.34mm, which 

is relatively large in comparison to the chosen transaxial voxel size (2.73mm). Furthermore, 

Chapter 6 demonstrated the z-axis filter had minimal effects upon image noise when 

compared to the transaxial Gaussian filter. This chapter therefore does not assess the 

effects of the z-axis filter upon lesion detection; no z-axis filter is applied.  

 

Both noise and spatial resolution assessments concluded PSF should be applied; however, 

the spatial resolution chapter also concluded PSF-only should be used to maximise spatial 

resolution only if ³ 180 effective iterations were applied (PSF-only was found to degrade 

resolution at low iterations). This conflicts with the low iteration requirement for optimising 

image noise. It is therefore difficult to narrow down the approach to reconstruction 

methodology (PSF and/or TOF) without further assessment. The literature demonstrates 

that more than 180 effective iterations are unlikely to be used clinically due to the high noise 

and increased reconstruction times; however, as PSF is known to require higher number of 

iterations to improve spatial resolution, 540 effective iterations were included in this chapter 

to fully demonstrate the effects of PSF upon contrast recovery.  

 

Table 9.2 summarises the reconstruction parameters used in Part 1 of this chapter. 

Parameters used for Parts 2 and 3 are detailed, and justified, later in this chapter. 

 

Reconstruction 
Parameter 

Settings  
Used 

Number of 
Result Groups 

Reconstruction Method HD, PSF, TOF, PSF+TOF 4 

Effective OSEM Iterations 18, 54, 90, 180, 540 5 

Gaussian Filter (FWHM) 0 à10mm, 
in 1mm increments 11 

Z-Axis Filter None 1 

Matrix Size 256*256 only 1 

Table 9.2: Reconstruction parameters used for body phantom (Part 1 only) 
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9.3.3 Image Analysis 
All ROI measurements were performed using Hermes Medical Systems’ Hybrid Viewer 

software. Two ROI templates were used: the first one was used for the sphere analysis and 

the second one was used for background noise analysis, as shown in Figure 9.1.  

 

  
(a)  (b) 

Figure 9.1: ROI profiles on PET images for (a) HCRC analysis and (b) noise analysis 
Slice showing maximum extent of spheres chosen for sphere ROIs. Background 
ROIs were also drawn on two slices either side of this slice. 
 

The first ROI template (Figure 9.1 (a)) follows the same methodology used in Chapter 4 to 

calculate contrast recovery coefficients [179]. The second ROI template (Figure 9.1 (b)) is 

based upon the NEMA image quality assessment [70]: twelve ROIs matching each of the 

six sphere sizes are drawn on the central slice, and copied to two slices either side (360 

background ROIs in total). This enables separate Image Roughness and Background 

Variation calculations to be made for each sphere; each calculation uses the 60 ROIs which 

match the sphere’s diameter.  

 

ROIs from both templates were then copied to all PET reconstructions and used to extract 

the following data:  

• Mean Activity Concentration for all six spheres 

• Maximum Activity Concentration for all six spheres 

• Mean Activity Concentration for all background ROIs 

• Standard Deviation for all background ROIs 

 

The following image metrics were then calculated using the extracted data:  

• COV of the annular background regions (Equation 3.2) 

• Image Roughness (six different results obtained, one for each sphere size) (Equation 

3.3) 

• Background Variation (six different results obtained, one for each sphere size) (Equation 

3.4) 
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• Mean and Maximum HCRC for each sphere (Equation 3.5) 

• Mean and Maximum SNR for each sphere (Equation 3.8), using two different noise 

metrics: 

o Standard deviation of annular ROIs, i.e. voxel-to-voxel noise measurement 

widely used in the literature for SNR analysis, and 

o Background Variation, i.e. region-to-region noise measurement, using ROIs 

matched to the sphere size 

 

9.4 Part 1 Results: Lesion Detection Assessment 
 

This section aims to narrow down the range of reconstruction parameters under 

consideration and exclude parameter combinations that are not appropriate for maximising 

small lesion detection. Qualitative analysis of phantom images will determine which 

combination(s) of effective iterations, Gaussian filtering and reconstruction method (PSF 

and/or TOF) are preferred by experienced observers when attempting to visualise the 

smallest sphere in the phantom. These results will then be compared with quantitative 

analysis to determine which image metrics best correlate with the qualitative observer study.  

 

9.4.1 Qualitative Analysis of Phantom Images 
Figures 9.2 to 9.5 show reconstructed phantom images from Part 1 of this chapter. Figure 

9.2 shows the HD images, followed by the PSF-only images (Figure 9.3), TOF-only images 

(Figure 9.4) and finally PSF+TOF images (Figure 9.5). Each figure illustrates the effects of 

increasing effective iterations and Gaussian filter width (for brevity, not all Gaussian filter 

results are shown in these figures). All four figures demonstrate that as the filter width 

increases, image noise decreases and spatial resolution degrades, and that as the number 

of effective iterations increases, image noise increases and spatial resolution improves. 

These findings are in accordance with the results of previous chapters and are as one would 

expect. Additionally, all four figures demonstrate that any differences between the 0mm and 

2mm Gaussian filter images are difficult to visualise. This is in agreement with the findings 

of Chapter 6: when 2.73mm voxels are used, the Gaussian filter width had no effect until it 

is increased to at least approximately 2mm. Finally, the background noise appears to be of 

a random nature in both the HD (Figure 9.2) and TOF-only (Figure 9.4) images, and of a 

correlated nature in the PSF-only (Figure 9.3) and PSF+TOF (Figure 9.5) images. This is 

consistent with the results in Chapter 6, which discussed this finding in more detail.  

 

Figures 9.2 to 9.5 were qualitatively assessed by four experienced PET physicists in terms 

of their ability to visualise the smallest sphere (120 images in total). Each of these observers 

selected the reconstruction they judged to maximise the smallest sphere’s visibility.  
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Figure 9.2 below shows the HD reconstruction images. Each row shows a different 

Gaussian filter width, while each column shows a different number of effective iterations. 

 

 

Figure 9.2:HD reconstructed images with varying Gaussian filter widths and 
effective iterations 

 

The smallest sphere appears to be most easily visualised when between 54 and 90 effective 

iterations are applied with little or no filtering, when the HD reconstruction method is used: 

however, none of the HD reconstructions were considered to be optimal by any of the 

observers. 

 

Figure 9.3 shows the PSF-only reconstruction images. 
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Figure 9.3: PSF-only reconstructed images with varying Gaussian filter widths 
and effective iterations 

 
The smallest sphere appears to be most easily visualised when between 90 and 180 

effective iterations are applied with no filtering, when the PSF-only reconstruction method 

is used. PSF-only reconstructions appear to offer superior small lesion detection than HD 

reconstructions; however, PSF-only reconstructions were also not considered to be optimal 

by any of the observers. 

 

Figure 9.4 shows the TOF-only reconstruction images. 
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Figure 9.4: TOF-only reconstructed images with varying Gaussian filter width 
and effective iterations 

 
The smallest sphere appears to be most easily visualised when between 54 and 180 

effective iterations are applied with little or no filtering, when the TOF-only reconstruction is 

used. TOF-only reconstructions appear to offer superior small lesion detection than HD 

reconstructions, particularly at low iterations; however, it is difficult to determine how its 

performance compares to that of PSF-only, as the noise characteristics are markedly 

different. Again, none of the TOF-only reconstructions were considered optimal by any of 

the observers. 

 

Finally, Figure 9.5 shows the PSF+TOF reconstruction images. All four observers agreed 

that PSF+TOF image quality was superior to that of the other three reconstruction methods 

with respect to visibility of the smallest sphere. Three observers preferred the use of 90 

effective iterations, with 0mm or 2mm Gaussian filtering. It is of interest that when presented 

with a total of 120 images, three observers selected the same two images as being optimal. 

The fourth observer preferred the use of 180 effective iterations, with 0mm or 2mm 

Gaussian filtering. It is also of interest that no observers selected the reconstruction which 

most closely followed the GEMS suggestion for clinical reconstructions.  
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Figure 9.5: TOF+PSF reconstructed images with varying Gaussian filter width 
and effective iterations 

Red box denotes the 54 effective iterations and 4mm Gaussian filter, suggested 
by GEMS for clinical reconstructions. Green boxes denote reconstructions 
favoured by observers. 

 

9.4.2 Quantitative Analysis of Phantom Images 
This section details the quantitative analysis performed on the phantom images. Firstly, 

image noise (both Image Roughness and Background Variation) will be discussed briefly, 

followed by sphere SNR and HCRC as a measure of lesion detection.  

 

9.4.2.1 Noise Results 
Voxel-to-voxel noise (Image Roughness) and region-to-region noise (Background 

Variation) were calculated for all phantom reconstructions undertaken for this chapter. Both 

of these measurements were previously assessed in Chapter 6; however, only a single ROI 

size (37mm diameter) was used in that chapter, as the aim was to assess the overall noise 

within the reconstruction. This chapter aims to relate noise to the detection of small spheres; 

both Image Roughness and Background Variation are therefore related to each sphere size 

by using ROIs that match inner sphere diameters, as discussed in Section 9.3.3. This is 

consistent with the NEMA image quality assessment for Background Variation [70]; 

however, this technique is not generally used for Image Roughness, or other methods of 
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voxel-to-voxel noise measurements, as smaller ROIs are known to underestimate voxel-to-

voxel noise.  

 

Figure 9.6 plots Image Roughness against effective iterations for all six ROI sizes. Two sets 

of results are shown: the top row used no Gaussian filter, while the bottom row used a 

10mm Gaussian filter.   

 

Figure 9.6: Image Roughness (IR) versus effective iterations 
Top row uses no Gaussian filter, bottom row uses 10mm Gaussian filter. Results 
are split by ROI size (which are matched to sphere sizes). Dashed red lines indicate 
the 54 effective iterations suggested by GEMS. Each row has different maximum 
y-axis scaling to better illustrate the differences between results for different 
sphere sizes. 

 

Figure 9.6 demonstrates voxel-to-voxel noise is largely independent of ROI size when no 

filtering is applied (top row) but is dependent on ROI size when Gaussian filtering is 

employed (bottom row). This is not an unexpected result for this type of noise measurement 

(Image Roughness is the average of the 60 ROI COVs): if a combination of filter width and 

ROI size is chosen such that the filter width is very large with respect to the ROI, one would 

expect little or no deviation amongst the filtered voxels inside the ROI.  Voxel-to-voxel noise 

within each ROI would therefore be null. The use of small ROIs to measure voxel-to-voxel 

noise are therefore likely to underestimate the true voxel-to-voxel noise characteristics of 
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the image, particularly when heavy filtering has been applied, rendering the use of ROIs 

size-matched to each of the spheres inappropriate. Consequently, the remainder of this 

chapter will only use the large annular background ROIs to calculate voxel-to-voxel noise.  

 

Figure 9.7 plots Background Variation against effective iterations for all six ROI sizes. As 

with the Image Roughness results, two sets of results are shown: the top row used no 

Gaussian filter, while the bottom row used a 10mm Gaussian filter.  

 

Figure 9.7: Background Variation (BV) versus effective iterations 
Top row has no Gaussian filter applied, bottom row has 10mm Gaussian filter 
applied. Results are split by ROI size (which are matched to sphere sizes). Dashed 
red lines indicate the 54 effective iterations suggested by GEMS. Each row has 
different maximum y-axis scaling to better illustrate the differences between 
results for different sphere sizes. 

 

Background Variation results are in contrast to the Image Roughness results. Background 

Variation is affected by ROI size for all filter widths; as ROI size decreases, Background 

Variation increases. This is as expected for this type of noise measurement, which is 

calculated by taking the COV of all 60 ROI means. As the ROI size is reduced, there is likely 

to be more variation among the means of different ROIs throughout the image, causing 

region-to-region noise to increase. The use of larger ROIs may therefore underestimate the 

true effects of region-to-region noise upon visualisation of smaller lesions, regardless of 
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image filtering. The use of ROIs size-matched to each of the spheres is therefore 

appropriate for region-to-region noise measurements.   

 

The difference in behaviour between Image Roughness and Background Variation with 

respect to ROI size raises the following question: which noise metric is more appropriate to 

consider when assessing lesion detection? The literature shows that studies performing 

SNR analysis favour voxel-to-voxel noise measurements (using large ROIs) instead of 

region-to-region measurements; the standard deviation of large background ROIs are 

typically used, regardless of sphere/lesion size [18], [111], [134], [158], [223]. However, this 

may not fully illustrate the effects of background noise upon lesion detection, particularly 

when PSF corrections are applied during reconstruction.  

 

9.4.2.2 SNR Results 
This section will therefore assess SNRmean and SNRmax using both voxel-to-voxel noise 

(standard deviation of annular background regions) and region-to-region noise (Background 

Variation calculated using ROIs matched to sphere size); to the author’s knowledge, the 

use of Background Variation in SNR calculations is a novel approach. This section will focus 

on the smallest sphere results; however, largest sphere results will be included for 

comparison. Correlation between SNR results and the human observer study will also be 

assessed.  

 

Figure 9.8 plots voxel-to-voxel based SNRmean against effective iterations for the largest (top 

row) and smallest (bottom row) spheres. Each column in Figure 9.8 represents a different 

Gaussian filter width.  
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Figure 9.8: SNRmean results (using voxel-to-voxel noise measurements) for largest 

and smallest spheres, versus effective iterations 
Each column represents a different filter width, increasing from left to right. Dashed 
red line denotes 54 effective iterations and red arrows denote PSF+TOF and 4mm 
filter, suggested by GEMS for clinical reconstructions. Black circles indicate 
maximised SNR results. 

 

Figure 9.8 demonstrates the smallest sphere’s SNRmean, when calculated using a voxel-to-

voxel noise metric, is maximised by using PSF+TOF with 54 effective iterations and 6mm 

filter (SNRmean = 14.3), as indicated by the black circle. In contrast, the largest sphere 

SNRmean is maximised when PSF+TOF is applied with 18 effective iterations and a 10mm 

filter (SNRmean = 70.8).  

 
Figure 9.9 plots voxel-to-voxel based SNRmax against effective iterations for the largest and 

smallest spheres.  
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Figure 9.9: SNRmax results (using voxel-to-voxel noise measurements) for largest 
and smallest spheres, versus effective iterations 

Each column represents a different filter width, increasing from left to right. 
Dashed red line denotes 54 effective iterations and red arrows denote PSF+TOF 
and 4mm filter, suggested by GEMS for clinical reconstructions. Black circles 
indicate maximised SNR results. 

 
Figure 9.9 demonstrates the smallest sphere’s SNRmax is maximised by using PSF-only with 

180 effective iterations and no Gaussian filter (SNRmax = 20.8).  This is in contrast with the 

SNRmean results, which required a different combination of reconstruction parameters for the 

maximum result. SNRmax of the largest sphere is maximised when PSF+TOF is applied with 

18 effective iterations and a 10mm filter (SNRmax = 98.6). The same combination of 

reconstruction parameters therefore maximises both SNRmean and SNRmax of the largest 

sphere.  

 
Figure 9.10 plots region-to-region based SNRmean against effective iterations for the largest 

(top row) and smallest (bottom row) spheres.  
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Figure 9.10: SNRmean results (using region-to-region noise measurements) for 
largest and smallest spheres, versus effective iterations 

Each column represents a different filter width, increasing from left to right. Dashed 
red line denotes 54 effective iterations and red arrows denote PSF+TOF and 4mm 
filter, suggested by GEMS for clinical reconstructions. Black circles indicate 
maximised SNR results. 

 
Figure 9.10 demonstrates the smallest sphere’s SNRmean, when calculated using a region-

to-region noise metric, is maximised by using PSF+TOF with 54 effective iterations and no 

Gaussian filter (SNRmean = 1,078). The largest sphere SNRmean is maximised when 

PSF+TOF is applied with 18 effective iterations and no Gaussian filter (SNRmean = 7,759).  

 
Finally, Figure 9.11 plots region-to-region based SNRmax against effective iterations for the 

largest (top row) and smallest (bottom row) spheres.  
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Figure 9.11: SNRmax results (using region-to-region noise measurements) for 
largest and smallest spheres, versus effective iterations   

Each column represents a different filter width, increasing from left to right. Dashed 
red line denotes 54 effective iterations and red arrows denote PSF+TOF and 4mm 
filter, suggested by GEMS for clinical reconstructions. Black circles indicate 
maximised SNR results. 

 
Figure 9.11 demonstrates the smallest sphere’s SNRmax is maximised when using PSF-only 

with 540 effective iterations and no Gaussian filter (SNRmax = 2,010). As with the voxel-to-

voxel SNR results, the SNRmean and SNRmax results require different combinations of 

reconstruction parameters to achieve the maximum result.  SNRmax of the largest sphere is 

maximised when PSF+TOF is applied with 540 effective iterations and no Gaussian filter 

(SNRmax = 20,201). The graph suggests the SNRmax would increase further if more effective 

iterations were applied. In contrast to the voxel-to-voxel SNR results, SNRmean and SNRmax 

results based on region-to-region noise require different combinations of reconstruction 

parameters to achieve the maximum result.  

 

Figure 9.12 compares phantom images of the four reconstructions found to maximise the 

four different SNR measurements for the smallest sphere.  
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Figure 9.12: Phantom images with maximised small sphere SNR 

 Voxel-to-Voxel Noise Region-to-Region Noise 
 
 
 
 
 
 

SNRmean   
SNRmean (voxel-to-voxel noise): 
PSF+TOF, 6mm FWHM Filter, 

54 Effective Iterations 

SNRmean (region-to-region noise): 
PSF+TOF, no Gaussian Filter,  

54 Effective Iterations 
 
 
 
 
 
 
SNRmax   

SNRmax (voxel-to-voxel noise): 
PSF-only, no Gaussian Filter, 

180 Effective Iterations  

SNRmax (region-to-region noise): 
PSF-only, no Gaussian Filter, 

540 Effective Iterations 

 

Both SNRmean results for the smallest sphere were maximised when PSF+TOF was applied 

with 54 effective iterations. These results are reasonably close to the parameters suggested 

by GEMS for clinical imaging (same reconstruction method and effective iterations, with a 

4mm filter instead of 0mm/6mm shown here). However, these results are not consistent 

with the qualitative results from the observer study (Section 9.4.1).  

 

Both SNRmax results appear to be dominated by the effect of PSF upon the maximum voxel 

in the smallest sphere, which has allowed a greater level of background noise to be present. 

One can see that some voxels in the background of these phantom images appear to have 

similar activity concentrations to voxels within the spheres; this is most evident for 540 

effective iterations. Noise within the image therefore increases the risk of false positive 

lesions being identified within the uniform background.  

 

The phantom images in Figure 9.12 can be compared with each other and with those in 

Figure 9.13, which shows the subset of reconstructions judged to maximise smallest sphere 

detectability by the qualitative analysis. The results for 54 effective iterations are also 

included in Figure 9.13 to aid comparison with the SNR results. Only one reconstruction 

combination appears in both Figure 9.12 and Figure 9.13: PSF+TOF applied with 54 

effective iterations and no Gaussian filter maximised SNRmean when region-to-region noise 

was considered. However, of the nine images shown in Figure 9.13, this reconstruction 

does not maximise detection of the smallest sphere from a qualitative viewpoint. This 
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suggests that SNR results do not necessarily correlate with human observer assessments 

of small lesion detection.  

 

 54 iterations 90 iterations 180 iterations 
 

 
0mm 

   
 
 

2mm 

   
 
 

4mm 

   
Figure 9.13: PSF+TOF phantom images judged to maximise small sphere 

detections 
Red box denotes 54 effective iterations and 4mm Gaussian filter, suggested by 
GEMS for clinical reconstruction. Green boxes denote reconstructions favoured 
by observers. 

 

The relationship between HCRC and noise was then assessed to determine if it had a better 

correlation with the human observer preferences than the SNR results.  

 

9.4.2.3 HCRC Results 
This section plots HCRCmean and HCRCmax against both voxel-to-voxel and region-to-region 

noise. This type of dual-metric trade-off curve analysis is widely used in the literature when 

comparing different reconstruction techniques [15], [16], [25], [26], [49], [90], [227], [92], 

[130], [133], [169], [189], [224]–[226], [43], [37].  As with the SNR section, this section 

focuses on the smallest sphere results; however, largest sphere results are included for 

comparison. Curves in these plots demonstrate the increase in both HCRC and noise for 

each effective iteration increment. In each plot, one can attempt to select the data point that 

demonstrates the optimal balance of HCRC on the y-axis (as large as possible) and noise 

on the x-axis (as low as possible). Ideally, one would select a combination that produces a 

data point as close as possible to the top-left corner of the plot (maximising HCRC while 

minimising noise).  
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Figure 9.14 plots HCRCmean against voxel-to-voxel noise for the largest (top row) and 

smallest (bottom row) spheres. Each point in the graph represents a different number of 

applied effective iterations (corresponding to 18, 54, 90, 180 and 540 effective iterations 

when viewed left to right).  

 

 

Figure 9.14: HCRCmean versus voxel-to-voxel noise for largest and smallest spheres 
Each column represents a different filter width, increasing from left to right. Points 
in graph correspond to 18, 54, 90, 180 and 540 effective iterations when viewed left 
to right. Red arrows denote PSF+TOF with 54 effective iterations and 4mm filter, 
suggested by GEMS for clinical reconstructions. Black circles indicate optimal 
results. 

 
Figure 9.14 suggests the optimal reconstruction for the smallest sphere appears to be 

PSF+TOF when approximately 90 effective iterations are applied without any filtering (black 

circle on graph): HCRCmean = 67.3%; standard deviation in the background ROIs = 1,250.3 

(this level of voxel-to-voxel noise appears to be acceptable, based on the qualitative 

results). Non-PSF reconstructions converge to lower HCRCmean results with greater voxel-

to-voxel noise levels. PSF+TOF generally produces lower voxel-to-voxel noise results than 

PSF-only, with greater corresponding HCRCmean results. Large sphere HCRCmean also 
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appears to be maximised by PSF+TOF when approximately 90 effective iterations are 

applied without any filtering. 

 

Figure 9.15 plots HCRCmax against voxel-to-voxel noise for the largest and smallest 

spheres. It should be noted that while the ideal HCRC result is 100%, HCRCmax often 

exceeds this, particularly when image noise is high and partial volume effects are limited 

(i.e. the sphere/lesion is large).   

 

 

Figure 9.15: HCRCmax versus voxel-to-voxel noise for largest and smallest spheres 
Each column represents a different filter width, increasing from left to right. Points 
in graph correspond to 18, 54, 90, 180 and 540 effective iterations when viewed left 
to right. Red arrows denote PSF+TOF with 54 effective iterations and 4mm filter, 
suggested by GEMS for clinical reconstructions. 

 
There appears to be almost linear relationships between voxel-to-voxel noise and HCRCmax, 

particularly at lower iterations; this is not surprising, as results based on a single, maximum 

voxel will be inherently dependent upon image noise, as discussed previously in this thesis. 

It is difficult to use HCRCmax to suggest the optimum reconstruction parameter combination.  
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Figure 9.16 plots HCRCmean against region-to-region noise for the largest and smallest 

spheres.  

 

Figure 9.16: HCRCmean versus region-to-region noise for largest and smallest 
spheres 

Each column represents a different filter width, increasing from left to right. Points 
in graph correspond to 18, 54, 90, 180 and 540 effective iterations when viewed left 
to right. Red arrow denotes PSF+TOF with 54 effective iterations and 4mm filter, 
suggested by GEMS for clinical reconstructions. Black circles indicate optimal 
results. 

 
As with the voxel-to-voxel noise results, Figure 9.16 suggests the optimal reconstruction for 

the smallest sphere appears to be PSF+TOF when approximately 90 effective iterations are 

applied without any filtering (black circle): HCRCmean = 67.3%; BV = 13.7% (again, this level 

of region-to-region noise appears to be acceptable, based on the qualitative results). Non-

PSF reconstructions converge to lower HCRCmean results, with generally lower region-to-

region noise levels. PSF+TOF generally produces lower region-to-region noise results than 

PSF-only, with greater corresponding HCRCmean results. As with the voxel-to-voxel noise 

results, large sphere HCRCmean also appears to be maximised by PSF+TOF when 

approximately 90 effective iterations are applied without any filtering. 
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Finally, Figure 9.17 plots HCRCmax against region-to-region noise for the largest and 

smallest spheres. 

 

Figure 9.17: HCRCmax versus region-to-region noise for largest and smallest 
spheres 

Each column represents a different filter width, increasing from left to right. 
Points in graph correspond to 18, 54, 90, 180 and 540 effective iterations when 
viewed left to right. Red arrow denotes PSF+TOF with 54 effective iterations and 
4mm filter, suggested by GEMS for clinical reconstructions. 

 
As with the voxel-to-voxel noise results, relationships between region-to-region noise and 

HCRCmax appear to be approximately linear. It is difficult to use HCRCmax to suggest the 

optimum reconstruction parameter combination. 

 

Figure 9.18 compares images of the PSF+TOF reconstructions likely to provide the 

optimum trade-off between HCRCmean and image noise (both voxel to voxel and region-to-

region) for the smallest sphere. The images in Figure 9.18 are in close agreement with the 

qualitative observer study (preferences indicated by the green boxes).  

 

 

 



Chapter 9 

 

218 

 

 54 iterations 90 iterations 180 iterations 
 
 

0mm 

   
 
 

2mm 

   
Figure 9.18: Phantom images that appeared to produce optimum small sphere 

HCRCmean and noise trade-off 
Green boxes denote reconstructions favoured by observers. 

 

In summary, HCRCmean versus noise analysis appears to provide a better prediction of the 

human observer preferences than SNR analysis when detection of the smallest sphere is 

the primary consideration. Part 1 of this chapter therefore concludes the following 

reconstruction parameters should be applied in order to maximise detection of the smallest 

sphere within the body phantom:  

• PSF+TOF reconstruction 

• Little or no filtering  

• Approximately 90 effective iterations, but potentially as many as 180 effective 

iterations 

 

9.5: Part 2 Results: Narrowing the Range of Clinically Relevant 
Parameter Combinations 
 

The qualitative human observer preferences and the quantitative HCRCmean versus noise 

analysis in the previous section clearly demonstrated certain choices of parameters are 

unsuitable for use when attempting to maximise small sphere detection. However, the 

incremental increases in both the Gaussian filter width and, more particularly, the number 

of effective iterations, were relatively coarse; the optimal combination of reconstruction 

parameters for small sphere detection may not yet have been examined. A second group 

of reconstructions were therefore assessed briefly, as detailed in Table 9.3. Only PSF+TOF 

is used, as this was shown in Part 1 to demonstrate superior performance. Effective 

iterations are varied from 54 up to 180 in increments of 18: i.e. 18 OSEM subsets were used 

with between 3 and 10 iterations. Finer increments (0.5mm) in the Gaussian filter are also 

used, with a maximum of 4mm. No finer increments are used between 0mm and 2mm: 

Chapter 6 demonstrated a filter width of at least approximately 2mm is required to affect 
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voxel values when 2.73mm voxel were used. Images are assessed using HCRCmean versus 

noise analysis for the smallest sphere only. 

 

Reconstruction 
Parameter 

Settings  
Used 

Number of 
Result Groups 

Reconstruction Method PSF+TOF 1 

Effective OSEM Iterations 54, 72, 90, 108, 126, 144, 162, 180 8 

Gaussian Filter (FWHM) 0mm, then 2 à 4mm 
in 0.5mm increments 6 

Z-Axis Filter None 1 

Matrix Size 256*256 1 

Table 9.3: Clinically relevant parameter combinations used for body phantom 
reconstructions 

 

Table 9.19 shows the central slice of all reconstructions produced in this section. 

 

 

Figure 9.19: PSF+ TOF images with narrowed range of Gaussian filter widths and 
effective iterations 

Green boxes indicate observer preferences. 
 



Chapter 9 

 

220 

 

Three of the four observers preferred images produced using between 90 and 126 effective 

iterations with no Gaussian filtering. The fourth observer preferred the images produced 

when 180 effective iterations were used with a 2.5mm filter.  

 

Figure 9.20 plots HCRCmean versus noise for the smallest sphere only. Two different plots 

are shown: HCRCmean is plotted against both voxel-to-voxel and region-to-region noise. As 

before, each point in the graphs represents a different number of applied effective iterations 

(corresponding to 54, 72, 90, 108, 126, 144, 162 and 180 effective iterations when viewed 

left to right).  

 

Figure 9.20: HCRCmean versus noise plots for smallest sphere only 
Both voxel-to-voxel (top) and region-to-region (bottom) noise results are shown. 
Red arrows indicate likely optimal trade-off between noise and HCRCmean. 

 

With respect to voxel-to-voxel noise, there appears to be a diminishing HCRCmean return 

when applying more than approximately 108 effective iterations; after this, the increase in 

noise appears to be more significant than the increase in HCRCmean (particularly when 

little/no Gaussian filtering is applied). A similar effect is observed for the region-to-region 

noise results. The results in Figure 9.20 therefore suggest approximately 108 effective 

iterations combined with no Gaussian filter may produce the optimal HCRCmean results for 

the smallest sphere. This is in broad agreement with three of the observers, who preferred 

images reconstructed with between 90 and 126 effective iterations.  
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The use of finer effective iteration increments in this section has therefore revised the 

apparent optimum number of effective iterations for HCRCmean from 90 to 108. 

 

9.6 Part 3 Results: Reproducibility Study 
 

Analyses performed in Part 1 and Part 2 of this chapter were based on a single phantom 

acquisition; a small study was therefore undertaken to assess the reproducibility of these 

findings. Five separate acquisitions of the phantom, filled with similar activities and sphere-

to-background ratios (as detailed in Table 9.4) were undertaken on five separate days. A 

single operator filled and positioned the phantom for all five acquisitions, which were then 

reconstructed using the same set of reconstruction parameters used in Part 2 of this chapter 

(detailed in Table 9.3). This ensured reproducibility was assessed over a clinically relevant 

range of reconstruction parameters.  

 

 Background Activity  
Concentration 

Sphere Activity  
Concentration 

Ratio 

Phantom 1 5,263Bq/ml 24,188Bq/ml 4.60:1 

Phantom 2 5,297Bq/ml 25,100Bq/ml 4.74:1 

Phantom 3 5,346Bq/ml 24,830Bq/ml 4.64:1 

Phantom 4 5,290Bq/ml 21,601Bq/ml 4.08:1 

Phantom 5 5,296Bq/ml 20,750Bq/ml 3.92:1 

Table 9.4: Body phantom activity concentrations for reproducibility study 
 

Background activity concentrations at the time of scanning were similar for all five 

phantoms: the difference between the maximum and minimum background activity 

concentrations was 83Bq/ml (1.6%). Noise measurements should therefore be comparable 

across all five phantoms, as all phantoms were acquired using four-minute bed-times. There 

was more variation amongst the sphere activity concentrations, and therefore in the sphere-

to-background ratios: the difference between the maximum and minimum background 

activity concentrations was 4,350Bq/ml (18.7% of average sphere activity concentration). 

Only HCRCmean results were used to assess sphere reproducibility: these have been shown 

to be the most relevant quantitative result for small sphere detection and should still be 

comparable in spite of absolute differences in sphere activity concentrations.  

 

Figure 9.21 shows the voxel-to-voxel noise reproducibility results. As discussed previously, 

this type of noise measurement is not related to sphere size. Error bars denote 95% 

confidence intervals.  

 



Chapter 9 

 

222 

 

 

Figure 9.21: Voxel-to-voxel noise reproducibility results 
Error bars show 95% confidence intervals. 

 

Error bars are small in proportion to result magnitudes, even for the noisiest reconstruction; 

when 180 effective iterations are applied with no filtering, the result is 1,938 ± 82 (i.e. ± 

4.2%). This demonstrates that voxel-to-voxel noise results are consistent across the five 

phantoms acquisitions, as expected. ROIs used to measure voxel-to-voxel noise are small 

in comparison to the phantom’s background volume; small inconsistencies in ROI 

placement between the phantoms are therefore highly unlikely to influence the results. 

 

Figure 9.22 shows the region-to-region noise reproducibility results for the largest and 

smallest spheres.  

 

Figure 9.22: Region-to-region noise reproducibility results for largest and 
smallest spheres 

Error bars show 95% confidence intervals. 
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The largest errors for both spheres are produced when 180 effective iterations are used 

with no filtering, as one would expect: largest sphere result is 4.44 ± 0.54 (i.e. ± 12.2%) and 

the smallest sphere result is 19.33 ± 2.87 (i.e. ± 14.8%). Region-to-region noise of smaller 

spheres are inherently greater than that of larger spheres, as demonstrated earlier in this 

chapter; however, confidence intervals for both spheres are similar when considered as a 

proportion of the measured noise for each reconstruction. Region-to-region noise 

measurements are also more likely to be affected by inconsistencies in ROI placement due 

to the smaller size of ROIs used and variations in the background caused by the 

reconstruction process [90], [92].  

 
Finally, Figure 9.23 shows the HCRCmean results for the largest and smallest spheres.  

 

Figure 9.23: HCRCmean reproducibility results for largest and smallest spheres 
Error bars show 95% confidence intervals. 

 

One would expect large sphere HCRCmean results to be reasonably consistent across the 5 

phantoms as they are less sensitive to positioning inconsistencies than the small sphere 

(both of the phantom and of the ROIs). Figure 9.23 demonstrates this is indeed the case: 

for the noisiest reconstruction (180 effective iterations, no filtering), the largest sphere’s 

result was 91.3 ± 5.0 (± 5.49% of mean value), whilst the smallest sphere’s result was 70.1 

± 9.4 (± 13.4% of mean value). 

 

All five phantom acquisition demonstrated similar noise and HCRCmean trends, and the 

observed errors are as one would expect given the nature of the measurements. The 

reproducibility study demonstrated that errors associated with the phantom analysis do not 

affect any of the conclusions reached in Parts 1 and 2 of this chapter.  
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9.7 Discussion 
 

This chapter aimed to determine the optimum combination of reconstruction parameters for 

detecting small liver lesions. A body phantom was used to mimic lesions of varying sizes 

within a patient liver and the effects of varying reconstruction parameters (effective 

iterations, Gaussian filter width, PSF and/or TOF) were assessed qualitatively and 

quantitatively. Part 1 assessed a wide range of these reconstruction parameters using 

relatively course increments for effective iterations and Gaussian filter width, and the results 

were used to narrow down the range of reconstruction parameters likely to optimise small 

lesion detection. Part 2 assessed this narrower range of reconstruction parameters, using 

finer increments for effective iterations and Gaussian filter width.  

 

Four experienced PET observers assessed qualitatively Part 1 phantom images, and all 

concluded the use of PSF+TOF with little or no filtering produced superior smallest sphere 

detectability. Observers disagreed on the optimum number of effective iterations to apply; 

three observers preferred 90 effective iterations while one preferred 180 effective iterations. 

Quantitative analysis was then performed, assessing background both voxel-to-voxel and 

region-to-region noise in the background, and SNR and HCRC of the spheres. Both types 

of noise measurement were used to calculate SNRmean and SNRmax and plotted against both 

HCRCmean and HCRCmax results. To the author’s knowledge, the use of region-to-region 

noise in SNR calculations was a novel approach.  

 

Reconstructions which were shown to maximise SNR of the smallest sphere did not agree 

with the phantom images preferred by the observers; however, it is of interest that SNRmean 

calculated using region-to-region noise was closer to matching the observer preferences 

than traditional SNRmean calculated using voxel-to-voxel noise (PSF+TOF with no filtering, 

but only 54 effective iterations).  

 

HCRC results were plotted against both noise measurements and used to determine the 

optimum trade-off between HCRC and noise for the smallest sphere. HCRCmax results were 

not useful for this purpose as they tended to demonstrate linear relationships with noise. 

The HCRCmean versus noise results, however, appeared to be optimal when PSF+TOF was 

combined with approximately 90 effective iterations and no filtering, for both voxel-to-voxel 

and region-to-region noise. This combination of reconstruction parameters was in 

agreement with three of the four PET observers.   

 

Part 1 therefore concluded PSF+TOF combined with little/no filtering and approximately 90 

effective iterations optimised small sphere detection, both qualitatively and quantitatively. 
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Furthermore, this section concluded HCRCmean versus noise analysis closely predicted the 

human observer assessment, although SNRmean (when calculated using region-to-region 

noise) was reasonably close to the human observer results. The recommendation to use 

PSF+TOF is consistent with several publications discussed earlier in this chapter [8], [18], 

[19], [111], [149], [157], [215], [217], [220]; however, these publications all recommended 

fewer than 90 iteration effective iterations.  

 

As Part 1 used relatively coarse increments for both effective iterations and Gaussian filter 

width, it was possible the optimum reconstruction method could have been refined further. 

Part 2 therefore used finer increments over the range of parameters identified by Part 1 as 

being most useful clinically. Only PSF+TOF was used, as Part 1 ruled out the other three 

methods. Effective iterations were varied between 54 and 180 in finer increments (although 

54 effective iterations were considered to be too few in Part 1, it was included here as it’s 

suggested by GEMS for clinical reconstructions). The Gaussian filter was capped at 4mm; 

again, this was included as it’s suggested by GEMS for clinical reconstructions (despite the 

previous section suggesting little or no filtering should be employed).  

 

Qualitative assessment of Part 2’s images demonstrated a similar difference in opinion 

amongst the PET observers as Part 1. Three of the four observers preferred images 

produced using between 90 and 126 effective iterations with no Gaussian filtering. The 

fourth observer preferred the images produced when 180 effective iterations were used with 

a 2.5mm filter. However, the differences between these chosen images are minimal; the 

application of the 2.5mm filter may have compensated for the additional noise and 

sharpness associated with the use of 180 effective iterations.  

 

Quantitative analysis for Part 2 focussed on small sphere HCRCmean, as Part 1 had shown 

this to be most useful. Results suggested that when more than 108 effective iterations were 

applied, the increase in noise was greater than the increase in HCRCmean. This in turn 

suggested 108 effective iterations combined with no filtering may be the optimum 

combination of parameters. This was in broad agreement with three of the four observer’s 

choices. 

 

A major limitation of these observer studies is the known sphere positions within the 

phantom: observers know where to look for the smallest sphere in each phantom image, 

which introduces a source of bias to the results. Further work should use a phantom with 

unpredictable sphere numbers, sizes and positions. This would also provide a measure of 

false positives within the background activity, particularly when noisier reconstructions are 

used in an attempt to improve spatial resolution. A further limitation of this study is that 
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phantom results may only be applicable to patients of a similar size to the phantom: this is 

investigated in the next chapter. 

 

Finally, Part 3 assessed the reproducibility of noise and HCRCmean results over a range of 

clinically relevant reconstruction combinations. Whilst the error analysis demonstrated 

some variability in the measurements across five similar phantom acquisitions, the 

variations were as expected for experiments of this nature: there was nothing to suggest 

the quantitative results or conclusions in Parts 1 and 2 in this chapter were not valid.  

 

9.8 Conclusions 
 

Quantitative analysis of NEMA body phantom reconstructions suggests small sphere 

detection was maximised when both PSF and TOF were applied together, with 108 effective 

iterations and with no filtering applied. The results of an informal observer study largely 

agreed with this conclusion; however, one observer preferred the use of 180 effective 

iterations with a 2.5mm Gaussian filter. This chapter therefore concludes the following two 

reconstruction strategies should be applied to clinical liver data and assessed in a formal 

patient observer lesion detection study:  

 

 Reconstruction 
Method 

Effective 
Iterations 

Gaussian 
filter FWHM 

Z-axis 
Filter 

Voxel 
Size 

Recon 1 PSF+TOF 108 0mm None 2.73mm 

Recon 2 PSF+TOF 180 2.5mm None 2.73mm 

Table 9.5: Recommended reconstruction strategies for small lesion detection 
 

This chapter further concludes that dual metric HCRCmean and noise analysis provided the 

best prediction of human observer preferences for small lesion detection. Furthermore, a 

novel method of calculating SNR using region-to-region noise was found to provide a better 

prediction of human observer preferences than traditional SNR measurements using voxel-

to-voxel noise. These methods of quantitative assessments should be included when 

optimising PET reconstruction techniques for other clinical applications.  

 

 
 



 

 
 
 
 
 
 
 
 
Chapter 10 : Comparison of NEMA Body Phantom with 
Patient Liver Data 
 

The previous chapter performed multiple reconstructions of the NEMA IEC body phantom 

using different combinations of reconstruction parameters. Qualitative and quantitative 

analyses were performed with a view to identifying which combinations of parameters 

optimised the detection of the smallest sphere within the phantom. Two specific 

combinations of reconstruction parameters were identified as meriting further evaluation in 

a patient liver lesion detection study. However, a limitation of Chapter 9 was that results 

may only be applicable to patients of a similar size to the phantom. A brief study was 

therefore undertaken to compare the phantom to a range of patient sizes in order to predict 

how well the results of Chapter 9 would apply to patient liver data.  

 

10.1 Introduction  
 

The NEMA IEC body phantom, used throughout this thesis and described in detail in 

Chapter 3, is recommended for use in the evaluation of reconstructed image quality in 

whole-body PET imaging [228]; for example, when acceptance testing new PET imaging 

systems [70]. It has also been widely used by publications assessing various aspects of 

PET image acquisition and reconstruction, many of which have been referenced throughout 

this thesis. However, a single phantom can only represent a limited range of imaging 

situations. Patients undergoing 18F-FDG imaging come in a range of weights and sizes, and 

therefore cannot be fully represented by the NEMA phantom. 

 

The phantom data sheet provides the physical dimensions of the phantom, and the 

circumference of the phantom measures 86cm. Whilst this information is useful, it would be 
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more clinically relevant to describe the phantom in terms of patient BMI, as this information 

is more readily available for patients and gives an indication as to how large the patient is 

likely to be (patient weight is not necessarily a good indicator of patient habitus).  

 

Studies from Japan [145], [229] state the NEMA body phantom represents a 60kg patient, 

but do not specify height or BMI. Some studies have adapted the phantom in order to 

represent larger patients: e.g. patients larger than 70kg [145] or patients with BMI > 30 [19]. 

These studies therefore implicitly suggest the phantom represents a patient of less than 

70kg, or a patient with BMI less than 30.  

 

According to the National Office for Statistics in 2010 [230], the average BMI in the UK for 

both males and females was approximately 27. It would therefore be useful to determine if 

the NEMA body phantom can be reliably used to represent PET imaging of an average 

patient. To the author’s knowledge, there is no published work explicitly comparing the 

NEMA body phantom to a range of patient sizes in order to determine which patient sizes 

can be usefully represented by the phantom.  

 

10.2 Aims 
 

The aim of this chapter is to determine how well the NEMA IEC body phantom represents 

patient liver imaging. More specifically, the chapter aims to determine how applicable the 

phantom results of Chapter 9 are likely to be to clinical liver imaging. Phantom images will 

be compared with liver images from patients with varying BMI. The following comparisons 

will be made in this chapter: 

1. Physical dimensions in the transaxial plane 

2. Mean activity concentration in liver versus phantom background chamber 

3. Image noise in liver versus phantom background chamber 

 

10.3 Materials and Methods 
 

10.3.1 Patient Selection 
Patients reported as having normal liver uptake and a range of different weights/BMIs at 

the time of their PET scans were selected for this study. Weights ranged from 41kg to 

141kg, with BMI ranging from 19.5 to 52. Ten patients were identified for each of the three 

following BMI categories: 

• BMI £ 25 

• 25 < BMI £ 35 

• BMI > 35 
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10.3.2 Image Acquisition and Reconstruction Protocol 
The same preparation, acquisition and scanning protocol was followed for all thirty patients. 

Approximately 400MBq 18F-FDG was administered following a 6-hour fast. Once residual 

activities were taken into account, actual injected activities ranged from 344MBq to 419MBq 

(average 375MBq). PET imaging was performed following a 60-minute uptake period using 

4-minute acquisition beds. Patients were scanned with their arms above their heads when 

possible (14 patients). When this was not possible, arms were placed by their sides, and 

were therefore in the liver FOV (16 patients).  

 

The phantom acquisition used in this study was the same acquisition used in Part 1 of 

Chapter 9: activity concentration at scan time was 5,346Bq/ml in the background chamber 

and 24,830Bq/ml in the spheres (4.64:1 ratio). Images were acquired using 4-minute beds 

(two bed positions were acquired with the spheres in the FOV centre).  

 

All patient and phantom images were reconstructed using the parameters suggested by 

GEMS for clinical imaging: TOF and PSF were both applied with 54 effective iterations, 192 

matrix, standard z-axis filter and 4mm Gaussian filter.  

 

10.3.3 Image Analysis 
A single transverse slice showing the largest cross section of the liver was selected for 

patient analysis, as shown in Figure 10.1 (top row). CT images were used to measure 

patients’ dimensions in the horizontal (right-left) and vertical (anterior-posterior) directions. 

Arms were not included in these measurements if they were in the FOV. A 5cm ROI was 

placed on the liver on the PET images. This was used to record the mean and standard 

deviation of the voxels. These were used to calculate COV (as per Equation 3.2). The same 

measurements were made using the body phantom (also shown in Figure 10.1, bottom 

row).  
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Figure 10.1: Patient (top row) and phantom (bottom row) image measurements 
Physical dimensions were measured on CT data (left). Mean activity concentrations 
and image noise were measured on PET data (right). 
 

10.4 Results 
 

10.4.1 Physical Dimensions 
The measured physical dimensions of the phantom matched its published dimensions: 

300mm at the maximum horizontal width (right/left direction on images) and 230mm at the 

maximum vertical height (anterior/posterior direction on images).  

 

A scatter plot of the patient torso measurements is shown in Figure 10.2. The x-axis shows 

the measurement in the right/left plane while the y-axis shows the measurement in the 

anterior/posterior plane. Each data point represents a single patient, colour coded by BMI 

category. Dashed lines represent the phantom dimensions, while the shaded boxes 

represent ± 10% of the phantom dimensions. 
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Figure 10.2: Comparison between patient measurements and phantom 
dimensions 

Dashed lines represent phantom dimensions. Shaded areas represent ± 10% of 
phantom dimensions. 

 

Figure 10.2 demonstrates that nine of the thirty patients had both R/L and A/P 

measurements within 10% of those of the phantom (these data points lie within the 

intersection of the two shaded areas). A further five patients’ R/L measurements (orange 

shaded area) and three patient’s A/P measurements (purple shaded area) were within 10% 

of the corresponding phantom dimension. The remaining thirteen patients’ measurements 

fell outside ± 10% of the phantom dimensions. 

 

With respect to BMI, Figure 10.2 demonstrates all ten patients with BMI £ 25 had at least 

one measurement within 10% of the phantom dimensions. Conversely, none of the patients 

with BMI > 35 were within 10% of either of the phantom dimensions. Seven of the 25 < BMI  

£ 35 patients had at least one measurement within 10% of the phantom dimensions. 

 

10.4.2 Mean Activity Concentrations 
Figure 10.3 plots mean patient liver activity concentrations against injected activities 

(corrected for residual syringe measurements). The dashed reference line corresponds to 

the phantom’s background activity concentration measurement (5,569Bq/ml), whilst the 

grey shaded area corresponds to the phantom measurement ± 10%. 
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Figure 10.3: Patient liver activity concentrations versus injected activity 
Dashed line represents phantom background mean activity concentration. Shaded 
region represents ± 10% of phantom measurement. 

 

The choice of phantom background activity used in this thesis, previously discussed in 

Chapter 4, was designed to be conservative with respect to typical patient liver activity 

concentrations when 400MBq 18F-FDG is administered and a sixty-minute uptake period is 

observed prior to imaging. Figure 10.3 demonstrates that twenty-nine of the thirty patients 

had a mean liver activity concentration equal to or greater than that of the phantom. Nine 

patients (all BMI £ 35) had mean liver activity concentrations more than double that of the 

phantom. The only patient in Figure 10.3 with a liver activity concentration lower than that 

of the phantom was a particularly heavy patient (136kg, BMI = 41.5) who received a lower 

than intended injection activity (357MBq).   

 

As the activity concentration results are small in number and in multiple, unmatched groups, 

a Kruskal Wallis test was applied to determine if there were any statistically significant 

differences between the three BMI categories.  The resultant p-value of 0.002 indicated a 

significant difference was present. Pairwise Wilcoxon rank sum tests with Bonferroni 

multiple comparison corrections were therefore performed on the three BMI categories. This 

test demonstrated no significant difference between the two lower BMI categories (p = 

0.945), whereas the ‘BMI > 35’ category was significantly different to both ‘BMI £ 25’ (p = 

0.002) and ‘25 < BMI £ 35’ (p = 0.016) categories.  
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10.4.3 Image Noise 
Figure 10.4 plots patient liver noise against patient BMI. Data is presented as two groups 

by arm position, with linear trendlines included. The dashed reference line corresponds to 

the phantom’s background noise (10.4%), whilst the grey shaded area corresponds to the 

phantom noise measurement ± 10%. 

 

 

Figure 10.4: Patient liver noise versus patient BMI 
Dashed line represents noise in phantom background. Shaded region represents 
± 10% of phantom noise measurement. Linear trendlines are presented for different 
arm positions. 

 

Figure 10.4 demonstrates liver noise tends to increase as patient BMI increases for both 

arm positions, as one would expect: linear regression significance tests yielded p = 0.0004 

for ‘Arms Up’ and p = 0.0189 for ‘Arms Down’. Furthermore, the linear trendlines suggest 

that patients scanned with their arms up (and therefore out of the liver FOV) demonstrate 

lower liver noise than patients scanned with their arms down by their sides, which is also 

as one would expect; however, there was no statistically significant difference in noise 

between the ‘arms up’ and ‘arms down’ result groups (Wilcoxon rank sum test p = 0.854). 

 

Figure 10.4 also demonstrates that sixteen of the thirty patients had noise measurements 

lower than the phantom, with a further four patients within 10% of the phantom noise 

measurement. Of the ten patients who exceeded the phantom noise by more than 10%, 

eight had BMI > 35. The remaining two patients were scanned with their arms down by their 

sides.  
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Seven of the eight patients with BMI £ 35 who were scanned with their arms up had a noise 

measurement less than that of the phantom, while the ninth patient’s noise measurement 

was within 10% of the phantom noise.  

 

A Kruskal Wallis test indicated significant differences in noise measurements between the 

three BMI categories, regardless of arm position (p = 0.0006). Pairwise Wilcoxon rank sum 

(Bonferroni) tests demonstrated no significant difference between the two lower BMI 

categories (p = 0.653), whereas the ‘BMI > 35’ category was significantly different to both 

‘BMI £ 25’ (p = 0.001) and ‘25 < BMI £ 35’ (p = 0.002) categories.  

 

10.5 Discussion 
 
The physical comparisons between the phantom and patients demonstrate the phantom’s 

limitations as a liver surrogate. The dimensions of the phantom appear to be a reasonable 

match for patient torsos when BMI £ 25 and may also be considered representative of 

patients with BMI between 25 and 35. However, the phantom appears to be too small to 

represent patients with BMI > 35. One would therefore expect that, with the use of 

appropriate activity concentrations and counting statistics, the NEMA body phantom is a 

useful representation of patients with BMI £ 25, and may also be useful for patients with 

BMI between 25 and 35. This finding appears to be consistent with studies that adapted the 

phantom for larger patients [19], [145].  However, the liver occupies approximately 25% of 

the patients’ torso images, whereas 100% of the body phantom has been taken to represent 

the liver in this thesis. Additionally, the phantom on its own does not simulate the effects of 

a patient with their arms by their sides or having breast tissue in the FOV. Comparisons of 

PET data measurements were therefore required to determine how the phantom’s physical 

limitations affected the clinical relevance of the phantom analysis undertaken in this thesis 

so far.  

 

The activity concentration in the phantom’s background chamber was deliberately chosen 

to be lower than that typically observed in patient livers in order to provide conservative 

counting statistics (as discussed in Chapter 4). Figure 10.3 demonstrated the background 

activity concentration used in this chapter was particularly conservative for patients with 

BMI £ 35. Larger patients (BMI > 35) had lower liver activity concentrations than smaller 

patients, as one would expect when patients of all sizes are injected with the same activity. 

There were no statistically significant differences in activity concentrations between the ‘BMI 

£ 25’ and ’25 < BMI £ 35’ patients; however, the ‘BMI > 35’ activity concentrations were 

significantly lower than both other BMI categories. The phantom therefore did not provide a 
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conservative estimate of larger patients’ liver counting statistics; one patient with BMI > 35 

demonstrated a lower activity concentration than the phantom.  

 

Finally, patient noise measurements were compared with those from the phantom. The 

conservative choice of phantom activity concentration and hence counting statistics would 

ideally result in the phantom having greater noise levels than the patient population. This 

was the case for all but one of the eight patients with BMI < 35 who were scanned with their 

arms out of the liver FOV (the eighth patient’s noise was within 10% of the phantom). 

Furthermore, only two of the 12 patients with BMI £ 35 and arms down had noise levels that 

exceeded phantom noise by more than 10%. There were no statistically significant 

differences in noise levels between the ‘BMI £ 25’ and ’25 < BMI £ 35’ patients; however, 

the ‘BMI > 35’ noise results were significantly greater than both other BMI categories. 

 

One may have expected the conservative choice of phantom activity concentration to 

provide a more conservative noise estimate than that demonstrated in Figure 10.4; 

however, the phantom noise measurement appears to be more representative of the clinical 

scenario than the phantom activity concentration. The reason for this discrepancy is likely 

to be caused by the inherent difference in uptake patterns between a water phantom and a 

patient liver. The phantom’s background chamber is filled only with liquid and results in 

homogenous activity concentrations throughout the volume, provided the 18F-FDG is 

sufficiently mixed: there is no tissue-like substance placed inside the phantom chamber to 

mimic the heterogenous composition (and therefore heterogenous 18F-FDG uptake) of the 

human liver. This means that if the same count density was used for both phantom and 

patient liver imaging, the resultant images would likely produce similar activity 

concentrations, but the liver images would have greater noise measurements than the 

phantom images. This chapter therefore demonstrates a conservative choice of phantom 

background activity is required when using the NEMA body phantom to represent liver 

imaging, in order to produce clinically relevant noise measurements.  

 

As one would expect, this section also demonstrates that noise increased as BMI increased, 

as all patients studied in this chapter were prepared and scanned using the same protocol 

regardless of size. It should be noted that weight-based 18F-FDG administration and 

scanning protocols can be used to produce more consistent noise results amongst patients 

of different sizes [14], [179], [186].  
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10.6 Conclusions 
 
The aim of this chapter was to determine how well the NEMA body phantom represents the 

patient liver, and therefore predict how applicable the reconstruction recommendations 

made by Chapter 9 would be to clinical liver imaging. Although the phantom has physical 

limitations as a liver surrogate, it appears to provide a good representation, in terms of 

image noise, for livers in patients with BMI £ 25. Furthermore, the phantom also appears to 

provide a reasonable representation of livers in patients with BMI £ 35, particularly when 

the patients’ arms are not placed in the liver FOV. As the average UK BMI is approximately 

27, the phantom is therefore expected to provide good representation of the average UK 

patient liver when a suitably conservative activity concentration is used.  

 

The phantom work undertaken in Chapter 9 is therefore expected to provide reasonable 

predictions for image quality, and hence lesion detection, in patients with BMI < 35. It may 

not be as accurate for patients with BMI > 35; the reconstruction strategies recommended 

by Chapter 9 are unlikely to be optimal for these larger patients. The lesion detection 

performance of the recommended reconstructions will be tested using patient data in the 

following chapter.  

 

The BMI range represented by the phantom could be determined more accurately by 

repeating this work with a greater number of patients and smaller BMI category ranges. The 

NEMA body phantom could be improved in future work by including scatter material round 

the phantom to simulate patients with higher BMIs, in a similar manner to studies that 

adapted the phantom for larger patients [19], [145]. Furthermore, the use of phantom ‘arms’ 

and ‘breasts’ could be used to improve the phantom’s relevance to different clinical imaging 

scenarios.  

 
 

 

 
 
 



 

 
 
 
 
 
 
 
 
Chapter 11 : Qualitative Observer Study of Patient Data 
 

In Chapter 9, multiple reconstructions of a body phantom were performed using different 

combinations of reconstruction parameters. Qualitative and quantitative analyses were 

undertaken to identify which combinations of reconstruction parameters optimised detection 

of the smallest sphere within the phantom. An informal observer study, combined with 

quantitative analysis, concluded that two specific combinations of reconstruction 

parameters in particular merited further evaluation in a patient study.  

 

Furthermore, Chapter 10 concluded that the body phantom was a good representation of 

patients with BMI < 25, in terms of image noise. The phantom was also found to be a 

reasonable representation of patients with BMI between 25 and 35. It is therefore expected 

that the body phantom work undertaken in Chapter 9 should provide reasonable predictions 

for image quality in patients with BMI < 35. 

 

A major limitation of Chapter 9’s observer study was the spheres’ fixed sizes, positions and 

sphere-to-background ratio. Furthermore, the activity concentration within the phantom’s 

background chamber is more homogenous than liver background activity in clinical 18F-FDG 

scans; it is therefore less challenging to identify a small lesion within the phantom’s 

background than it is within a liver. A patient study is therefore required to assess 

reconstruction performance in a clinically relevant manner.   

 

11.1 Introduction  
 

This chapter conducts a formal human observer study of patient data using the two 

reconstruction methods identified by Chapter 9’s phantom analyses. The clinical 



Chapter 11 

 

238 

 

reconstruction protocol suggested by GEMS is also included. The inclusion of a fourth 

reconstruction method, designed to bridge the gap between the GEMS reconstruction and 

Chapter 9’s recommended reconstructions, is also justified later in this chapter. The results 

of this observer study will be used to make recommendations for clinical liver image 

reconstruction when using the GEMS Discovery 690 PET-CT system, thus fulfilling the 

secondary aim of this thesis.  

 

11.1.1 Review of the Literature 
Receiver Operator Characteristic (ROC) analysis is a well-established method for 

statistically quantifying differences between the detection performance of observers for 

different imaging modalities, where the known truth is available [32], [231]. Observers 

indicate whether each case is normal or diseased, and state how confident they are in their 

decision using a rating scale. Observer results are then compared to the known truth for 

each patient. Figure 11.1 illustrates the principles of ROC plots: True Positive Fraction 

(TPF) is plotted against False Positive Fraction (FPF) as the decision criterion is varied from 

strict (high confidence) to lenient (lower confidence). The Area under the Curve (AUC) is 

an objective figure of merit (0 £ AUC £ 1) and is the probability that an abnormal (diseased) 

image will be rated higher than a normal (non-diseased) image. Any diagnostic test with an 

AUC £ 0.5 is a poor test, as any results occur by chance [231]: this is represented by the 

‘guessing line’ and the grey shaded area in Figure 11.1. 

 

   

Figure 11.1: Principles of Receiver Operator Characteristic (ROC) plots 
Green curve represents a good diagnostic test, orange represents a fair diagnostic 
test, red represents a poor diagnostic test. Dashed line represents a test that relies 
on chance. Plot adapted from [231].   
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ROC analysis has been used in many PET imaging studies [150], [151], [180], [219], [232]–

[236]; however, it has limitations. This type of analysis can only be used for binary tasks 

(i.e. the image is either normal or abnormal) and does not account for the position of the 

identified lesion. Furthermore, it cannot use all diagnostic information potentially available 

from the observers as it ignores the presence of multiple lesions.  

 

An improved version of ROC is Localisation ROC (LROC). This method informs the 

observer there can be at most one lesion per image and requires the observer to record the 

location of the detected lesion, which is then taken into consideration by the analysis. The 

observer also records their confidence in the decision. Plots of TPF versus FPF, and AUC, 

are produced in a similar manner to ROC analysis. Although LROC analysis is a widely 

accepted technique for measuring the performance of imaging tasks, and has been used in 

several PET studies comparing different reconstruction methods [8], [110], [157], [213], 

[215], [217], [218], [220], it remains limited to the use of one lesion per image/patient. In 

PET clinical liver imaging, the ‘truth’ within the liver could be ‘multifocal’; i.e. there could be 

more than one lesion in the liver, and the detection of all lesions could be crucial to patient 

management (curative surgical resection versus palliative treatment).  

 

A further variant of ROC analysis, known as Free Response ROC (FROC), allows a 

reporting clinician to mark multiple suspicious locations on patient images and rate their 

confidence in each marked location being a lesion [237]. These ‘mark-rating’ pairs are used 

to compare different imaging methods or modalities (for example, different methods of PET 

reconstruction). The analysis requires the ‘truth’ to be known to the study coordinator, while 

the observers should be blinded: they are given no prior information regarding the number 

of lesions in the image. FROC analysis enables more precise evaluation of imaging systems 

as the location of each marked lesion is accounted for in the analysis [238].  

 

FROC curves differ from ROC curves: the fraction of lesions located correctly (LLF) (0 £ 

LLF £ 1) are plotted against the number of false locations per image (NLF) (0 £ NLF £ ¥).  

The resultant FROC plot visualises the comparative performance for each 

reconstruction/observer and provides an indication of how fully the observers used the 

reporting scale. For example, an observer who is more likely to report low confidence 

lesions will produce a FROC curve that extends further to the right than an observer who 

only reports high confidence lesions. This is illustrated by a simple example in Figure 11.2 

(a), based on two fictional observers who applied different confidence thresholds when 

reporting lesions. Observer 1 applied a lower minimum confidence threshold than Observer 

2. As a result, Observer 1 was able to identify more true lesions than Observer 2 (71% 

versus 60%), but at the expense of detecting more false positives (4 versus none, over a 
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total of 30 images). Observer 2’s FROC curve is a simple vertical line at x = 0 (no false 

positives) which ends at y = 0.6 (60% of lesions identified). Observer 1’s curve is more 

complex; it terminates at x = 0.13 (4 false positives divided by 30 images) and y = 0.71 

(71% of lesions identified). The various points on the curve between the origin and the 

terminal point represent the cumulative fraction of lesions identified at progressively lower 

confidence levels (moving from left to right).  

 

  

Figure 11.2: Example illustration of (a) FROC and (b) wAFROC curves 
Observer 1 detected more challenging lesions with higher weightings by applying a 
lower confidence threshold. 
 

FROC curves have several limitations. They don’t account for correctly unmarked non-

disease cases. Furthermore, it is difficult to use them to produce a meaningful quantitative 

figure of merit (e.g. AUC) as they are unconstrained on the x-axis. Alternative FROC 

(AFROC) plots are therefore used to perform AUC analyses. The most widely used method  

for statistically analysing such data is Jackknife AFROC (JAFROC), which has undergone 

extensive validation [239]. A full explanation of such analysis is beyond the scope of this 

thesis; briefly, AFROC plots the fraction of true lesions identified correctly (0 £ LLF £ 1) 

against the inferred false positive fraction (0 £ FPF £ 1). Weighted AFROC (wAFROC) 

analyses allow weightings to be assigned to individual lesions in the study; for example, 

smaller lesions which are challenging to identify may be assigned a greater weighting than 

larger lesions which are less challenging to identify. AUCs generated from wAFROC 

analyses are the recommended figure of merit for FROC style observer studies [240]. Figure 

11.2 (b) demonstrates that Observer 1 produced a greater AUC than Observer 2 once lesion 

weightings and confidence levels were fully accounted for. FROC-style analyses have been 
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performed in several PET observer studies [241]–[244]; however, none of these studies 

assessed liver lesion detection using TOF and PSF reconstructions.  

 

All ROC variants require the ‘truth’ to be known. The PET studies considered in this 

literature review achieved this using both phantom and patient studies. Phantom studies, 

by definition, have a known truth to compare against human observer assessments. 

However, knowledge of the truth within patient studies can be more challenging. Several 

publications used sinogram manipulation to combine healthy patient data with separately 

acquired lesion data  [8], [110], [241], [242], [245]. The number and location of lesions were 

therefore known to the study supervisors. Other studies used diseased patient data in their 

observer studies: appropriate correlative imaging (CT/MRI), clinical follow-up and/or 

histopathology were used as gold standards [243], [246], [247]. 

 

11.2 Aims 
 

This patient observer study aims to evaluate and compare the lesion detection capabilities 

of four different combinations of reconstruction parameters using a liver lesion detection 

assessment. Observers will attempt to correctly determine both the presence and absence 

of liver lesions using a group of anonymised patient studies. Observers will also assess 

overall image quality and state their confidence in their normal/abnormal liver diagnosis.   

 

The aim of this chapter is to recommend one of the four reconstruction methods for clinical 

liver imaging in order to optimise small lesion detection within the liver. Results will be 

discussed with reference to patient BMI, as this is likely to affect the observers’ assessment 

of the images. 

 

Furthermore, this chapter aims to establish a generic methodology for conducting clinical 

observer studies for a wider range of clinical applications.  

 

11.3 Materials and Methods 
 

11.3.1 Patient Selection 
PET reporting clinicians were asked to record details of potential patients of interest for a 

liver reconstruction study, scanned on the GEMS Discovery 690 PET-CT system, over a 

period of 12 months in 2013/2014. Fifty-six patients were identified in this manner, the 

majority of whom had a history of colorectal cancer. Sinogram data for these patients were 

stored to enable retrospective reconstructions at a later date. A group of patients reported 

to have healthy livers over the same time period were also identified for this study.  
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Patient records were checked for correlative imaging, resections, pathology results and 

follow-up imaging. MRI is considered to be the gold standard for the evaluation of hepatic 

lesions [98], while pathology can provide definitive answers to the nature of lesions (where 

available). 36 of the 56 patients identified by the clinicians did not have an appropriate gold 

standard available to verify the true/false nature of identified lesions and were therefore 

eliminated from the study.  

 

All remaining twenty patients had a history of colorectal cancer. As discussed in Chapter 1, 

up to 70% of patients with colorectal cancer will develop liver metastases at some point 

[248]. The observer study was therefore designed to have approximately 70% diseased 

liver patients and 30% healthy liver patients. Ten patients with no liver disease (confirmed 

by follow-up) were added to the study, creating a patient group with 67% disease 

prevalence. 

 

Patient weights ranged from 42kg à 115kg (average 75.8kg), with a BMI range 16.4 à 

43.8 (average 27.9). Patients were split into the same three BMI categories used in Chapter 

10: BMI £ 25 (9 patients), 25 < BMI £ 35 (18 patients) and BMI > 35 (3 patients). The 

numbers of patients in the BMI > 35 category is particularly low; results are included for 

completeness but cannot be used to draw any meaningful conclusions.  

 

A ‘true’ lesion database for all thirty patients was created with the assistance of an 

experienced PET reporting clinician and the available gold standard data. An MRI reporting 

clinician was consulted for some of the more challenging cases. The location of each 

confirmed lesion was recorded using Hermes Hybrid Viewer software. The centre of each 

lesion was selected with a triangulation tool and the transverse, coronal and sagittal 

locations were recorded. Three patients had additional lesions confirmed by MRI that were 

not visible on the original clinical PET reconstruction: in these cases, the lesion location on 

the PET data was estimated using the MRI data. In total, 45 ‘true’ lesions were identified 

across all twenty diseased patients. The ten ‘normal’ patients were confirmed to have no 

liver disease.  

 

11.3.2 Acquisition Protocol 
The same preparation, acquisition and scanning protocol was followed for all thirty patients. 

Approximately 400MBq 18F-FDG was administered following a 6-hour fast. Once residual 

activities were taken into account, injected activities ranged from 303MBq to 425MBq 

(average 369MBq). PET imaging was performed following a 60-minute uptake period using 

4-minute acquisition frames. Patients were scanned with their arms above their heads when 
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possible (n = 17). When this was not possible, arms were placed by their sides, and were 

therefore in the liver FOV (n = 13). 

 

11.3.3 Reconstruction Protocols 
This chapter compares four different combinations of reconstruction parameters, as 

detailed in Table 11.1. 

 

 
Reconstruction 

Name 

Reconstruction Parameters 
Method Effective 

Iterations 
Gaussian 

Filter (FWHM) 
Z-axis 
Filter 

Matrix 

‘GE Clin’ PSF+TOF 54 4mm Standard 192*192 

‘Sharp 1’ PSF+TOF 54 0mm None 256*256 

‘Sharp 2’ PSF+TOF 108 0mm None 256*256 

‘Sharp 3’ PSF+TOF 180 2.5mm None 256*256 

Table 11.1: Patient observer study reconstruction parameters 
 

The following summarises the justification for including each of these four reconstructions 

in the patient observer study:  

• ‘GE Clin’: These are the reconstruction parameters suggested by GEMS for routine 

clinical whole-body imaging. This reconstruction has the lowest resolution and the 

lowest noise of the four reconstructions. Local clinicians currently use this reconstruction 

when reporting PET images.  

• ‘Sharp 1’: This is a ‘sharper’ version of the GEMS suggested reconstruction: filtering is 

removed, and the matrix size is increased. The number of effective iterations remains 

the same as the GEMS suggested parameters. This reconstruction was chosen to 

bridge the gap in noise/resolution between ‘GE Clin’ and ‘Sharp 2’.  

• ‘Sharp 2’: This reconstruction was shown to provide the optimal quantitative trade-off 

between small sphere HCRCmean and image noise in Chapter 9. This reconstruction was 

also preferred qualitatively by three of the four Chapter 9 observers in terms of small 

sphere detection. 

• ‘Sharp 3’: This reconstruction was preferred qualitatively by one of the four observers 

in Chapter 9 in terms of small sphere detection. It has the highest resolution and the 

greatest noise of the four reconstructions. 

 

All thirty patients were reconstructed using each of the four reconstructions outlined in Table 

11.1, producing a total of 120 image volumes.  
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11.3.4 Observer Evaluation of Reconstructed Patient Images 
The patient observer study was performed by two experienced PET-CT reporting clinicians 

using Hermes Hybrid Viewer software. All 120 patient image volumes were anonymised 

such that observers were blinded to both patient identifiers and the reconstruction method. 

Image volumes were divided into four batches of 30. Batches were designed such that no 

patient appeared twice in any batch, and each batch contained an approximately even mix 

of all four reconstruction methods. Observers were asked to wait at least one week after 

completing one batch before beginning the next batch.  

 

Observers were asked to record the following data, using only the liver images: 

1. Image Quality: Observers were asked to rate the quality of the images, in their personal 

opinion, using a 5-point ordinal scale: ‘1’ signified ‘very poor’ image quality and ‘5’ 

signified ‘excellent’ image quality.  

2. Overall Diagnosis: Normal or Abnormal Liver: Observers were asked to state if the 

liver was normal or abnormal. They were also asked to state how confident they were 

with their diagnoses as a percentage, with 100% signifying absolute certainty. 
3. Location of Lesions: Locations of any identified lesions were ‘marked’ by triangulating 

to the lesion centre and recording the transverse, sagittal and coronal image slice 

numbers.  A percentage confidence rating was also recorded for each lesion, with 100% 

signifying absolute certainty a lesion was present at the identified location. Data for this 

section was therefore collected in ‘mark-rating pairs’. 
 

11.3.5 Analysis of Observer Study 
11.3.5.1 Image Quality 
The median image quality score for each reconstruction method was calculated as a 

comparative measure. As the data are non-parametric and in matched groups 

(reconstructions are matched by patient), a Friedman’s test was performed to determine if 

there were any statistically significant differences between the scores for the four different 

reconstruction methods. In the event that the Friedman’s test found there were significant 

differences, pair-wise Wilcoxon’s signed rank tests with Bonferroni multiple comparison 

corrections were performed to determine where the significant differences lay. Agreement 

between both observers’ image quality scores was assessed using Cohen’s Kappa test. 

Table 11.2 outlines how the resultant Kappa coefficient, k, should be interpreted. Each 

observers’ image quality results were assessed separately. The effects of patient BMI upon 

image quality results were also assessed. 
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k Interpretation 

< 0 Poor Agreement 

0.01 à 0.20 Slight Agreement 

0.21 à 0.40 Fair Agreement 

0.41 à 0.60 Moderate Agreement 

0.61 à 0.80 Substantial Agreement 

0.81 à 1.00 Almost Perfect Agreement 

Table 11.2: Kappa agreement measures for categorical data [249] 
 

11.3.5.2 Overall Diagnosis  
Average confidence in reporting each reconstruction method were calculated with 95% 

confidence intervals. Any statistical differences between reconstruction methods were 

confirmed using Friedman ± Wilcoxon/Bonferroni tests. Each observers’ confidence results 

were assessed separately. The effects of patient BMI upon diagnostic confidence were also 

assessed. 

 

Cohen’s Kappa test was again used to determine observer agreement for the 

normal/abnormal diagnosis. The overall normal/abnormal diagnosis results were compared 

with the gold standard data to determine the following metrics for each of the four 

reconstructions: 

• Sensitivity: % abnormal patients identified correctly 

• Specificity: % normal patients identified correctly 

• Diagnostic Accuracy: % correct overall diagnoses 

• Positive Predictive Value (PPV): % abnormal diagnoses correct 

• Negative Predictive Value (NPV): % normal diagnoses correct 

 

The effects of patient BMI upon the above metrics were also assessed. 

 

11.3.5.3 Location of Lesions 
A FROC/wAFROC analysis was performed on the mark-rating pairs. Each potential lesion 

identified in the observer study was compared to the ‘true’ lesion database and categorised 

as being either a True Positive or a False Positive. Marked lesions were classed as True 

Positives if their location coincided with that of the ‘true’ lesion. All other marked lesions 

were classed as False Positives. The ‘RJafroc’ package for ‘R’ was then used to produce 

the following analyses: 
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• FROC curves for each reconstruction method (split by observer)  

• wAFROC curves for each reconstruction method (split by observer) 

o smaller lesions were assigned greater weightings than larger lesions, as they 

are more challenging to detect 

• AUC figures of merit for each reconstruction method.  

 

11.4 Results 
 

Figure 11.3 shows reconstructed images for three example patients, one from each BMI 

category.  

 

Figure 11.3: Image quality comparisons for different patient BMI categories 
 

The effects of BMI on image quality are demonstrated by the patient images in Figure 11.3.  
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All three patients demonstrate increased image noise as reconstruction sharpness is 

increased. Lesions also appear to demonstrate increased intensity. The smallest patient’s 

(BMI = 19.4) image quality appears to be reasonable when the sharpest reconstruction is 

used: the lesion is easily identifiable within the liver. However, the largest patient’s (BMI = 

43.8) image quality is poor when both ‘Sharp 2’ and ‘Sharp 3’ are used: it is difficult to 

visualise the lesion in either of these reconstructions. One would therefore expect observers 

to prefer the smoother reconstructions (‘GE Clin’ and ‘Sharp 1’) for the larger patients. The 

sharper reconstructions may demonstrate increased lesion detection for smaller patients.  

 

11.4.1 Image Quality Results 
Table 11.3 shows the median image quality scores for each of the reconstruction methods.  

 

 ‘GE Clin’ ‘Sharp 1’ ‘Sharp 2’ ‘Sharp 3’ 

Median Image Quality Scores: 4 3 2 2 

Table 11.3: Overall median image quality scores 
 

The Friedman test result returned a p-value of <0.001, indicating there are statistically 

significant differences between the four reconstruction methods. Pair-wise Wilcoxon signed 

ranks (Bonferroni) tests were then performed between each possible pair of 

reconstructions. The p-value in each case was <0.01, indicating each of the four 

reconstruction methods produces statistically significantly different results to each of the 

others (at the 5% significance level). The median results may therefore be viewed as 

ranking the image quality; ‘GE Clin’ was the preferred reconstruction, while ‘Sharp 3’ was 

the least preferred reconstruction (although the median results were the same for ‘Sharp 2’ 

and ‘Sharp 3’, ‘Sharp 2’ received more ranks above the median result).  

 

Both observers assigned the same image quality score to 61 of the 120 reconstructions 

(50.8% agreement), while 114 (95.0%) of the reconstructions were scored within 1 mark of 

each other. The Kappa coefficient was calculated to be 0.376, which corresponds to “fair 

agreement” between the observers. The disparity between the two observers was therefore 

investigated further. Table 11.4 below compares the median image quality results and the 

results of pairwise Wilcoxon signed rank (Bonferroni) tests for each observer. 
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 ‘GE Clin’ ‘Sharp 1’ ‘Sharp 2’ ‘Sharp 3’ 

Median Image  
Quality Scores: 

Observer 1 4 3 2 2 

Observer 2 4 4 2 2 
 

 Observer 1: p-values  Observer 2: p-values 

 GE Clin Sharp 1 Sharp 2 

Sharp 1 0.5566   

Sharp 2 0.0001 < 0.0001  

Sharp 3 < 0.0001 < 0.0001 0.131 
 

 GE Clin Sharp 1 Sharp 2 

Sharp 1 0.0072   

Sharp 2 < 0.0001 < 0.0001  

Sharp 3 < 0.0001 < 0.0001 0.0006 
 

  

Table 11.4: Median image quality scores, per observer 

Pairwise Wilcoxon signed rank test p-values are also included. 
 

Table 11.4 demonstrates some discrepancies between the two observers. Whilst both 

observers produced the same median image quality scores for ‘GE Clin’, ‘Sharp 2’ and 

‘Sharp 3’, ‘Sharp 1’ received a higher median score from Observer 2 than Observer 1. 

Statistical testing demonstrated that Observer 1 saw no significant difference between ‘GE 

Clin’ and ‘Sharp 1’, or between ‘Sharp 2’ and ‘Sharp 3’, while all other pairs of 

reconstructions produced significantly different image quality scores. In contrast, statistical 

testing demonstrated significant differences between Observer 2’s scores for all four 

reconstruction methods.   

 

The effects of patient BMI upon image quality scores were then assessed. Table 11.5 shows 

the median image quality scores for each reconstruction method and BMI category. 

Pairwise Wilcoxon signed rank (Bonferroni) tests are also shown (no statistical testing was 

performed on the BMI > 35 category as the numbers are too small). 
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 ‘GE Clin’ ‘Sharp 1’ ‘Sharp 2’ ‘Sharp 3’ 

Median Image 
Quality Scores: 

BMI £ 25 4 4 3 3 

25 < BMI £ 35 4 3 2 2 

BMI > 35 4 3 2 1 
 

 BMI £ 25: p-values  25 < BMI £ 35: p-values 

 GE Clin Sharp 1 Sharp 2 

Sharp 1 1.0000   

Sharp 2 0.0679 0.0069  

Sharp 3 0.0065 0.0018 0.0805 
 

 GE Clin Sharp 1 Sharp 2 

Sharp 1 0.1697   

Sharp 2 0.0014 0.0021  

Sharp 3 0.0015 0.0008 0.0269 
 

  

Table 11.5: Median image quality scores, per BMI category 

Pairwise Wilcoxon signed rank test p-values are also included. 
 

Table 11.5 demonstrates that median image quality scores for each of the ‘Sharp’ 

reconstructions was dependent upon patient size. This is particularly true for ‘Sharp 3’: the 

median score falls from 3 (BMI £ 25) to 1 (BMI > 35). It is of interest that there are no 

statistically significant differences in image quality, at the 5% level of significance, between 

the ‘GE Clin’ and ‘Sharp 1’ reconstructions when patients have BMI < 35. This suggests 

that, for smaller patients, the noise increase associated with the increase in spatial 

resolution does not alter the observers’ overall perception of image quality when compared 

to ‘GE Clin’. Furthermore, smaller patients (BMI £ 25) demonstrated no significant difference 

between ‘GE Clin’ and ‘Sharp 2’.  

 

11.4.2 Overall Diagnosis Results  
11.4.2.1 Reporting Confidence 
Figure 11.4 compares the mean confidence score for each of the four reconstructions, for 

each observer. 95% confidence intervals are shown. The graphs demonstrate differences 

between each observers’ confidence in the four reconstruction methods. Observer 1’s 

confidence clearly decreases as the reconstruction sharpness increases (‘GE Clin’ = 97.5%; 

‘Sharp 1’ = 92.8%; ‘Sharp 2’ = 85.0%; ‘Sharp 3’ = 77.8%). Observer 2’s confidence also 

decreases as the reconstruction sharpness increases, but to a lesser extent than Observer 

1, with all four reconstructions averaging over 90% confidence (‘GE Clin’ = 99.1%; ‘Sharp 

1’ = 98.4%; ‘Sharp 2’ = 94.6%; ‘Sharp 3’ = 90.8%). The difference between ‘GE Clin’ and 

‘Sharp 1’ is less than 1%.  
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Figure 11.4: Reporting confidence, per observer 
 

Pairwise Wilcoxon signed rank (Bonferroni) tests were applied to the individual observer 

confidence results.  Results are shown in Table 11.6. Neither observer demonstrated any 

significant differences in confidence between ‘GE Clin’ and ‘Sharp 1’, or between ‘Sharp 2’ 

and ‘Sharp 3’. Furthermore, Observer 2 demonstrated no significant difference between 

‘Sharp 1’ and ‘Sharp 2’ (i.e. Observer 2 demonstrated no significant confidence differences 

in any combination of ‘adjacent’ reconstructions).  

 

 Observer 1: p-values  Observer 2: p-values 

 GE Clin Sharp 1 Sharp 2 

Sharp 1 0.8959   

Sharp 2 0.0041 0.0274  

Sharp 3 0.0041 0.0377 0.3840 
 

 GE Clin Sharp 1 Sharp 2 

Sharp 1 1.0000   

Sharp 2 0.0131 0.2505  

Sharp 3 0.0008 0.0080 0.1724 
 

Table 11.6: Observer confidence significance test results 
 

 

The effects of BMI upon reporting confidence are illustrated in Figure 11.5.  
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Figure 11.5: Reporting confidence, per BMI category 
 

When BMI £ 25, the average confidence for all four reconstructions are similar (only 4.2% 

separates the highest and lowest average confidence rating) with no significant differences 

between any two pairs of reconstructions within this BMI category.  

 

Conversely, the 25 < BMI £ 35 category demonstrates average confidence decreases as 

reconstruction sharpness increases. Pairs of reconstructions within this BMI category are 

significantly different to each other, with one exception: ‘GE Clin’ and ‘Sharp 1’ demonstrate 

no significant difference.  

 

Results for BMI > 35 were not analysed for statistical significance as the numbers are too 

small. Figure 11.4 doesn’t appear to demonstrate any meaningful data for this category.  

 

11.4.2.2 Diagnosis Results 
Observer 1 correctly diagnosed the liver as being normal or abnormal for 97 of the 120 

reconstructions (80.8%), while Observer 2 was correct for 111 reconstructions (92.5%). The 

two observers agreed on the overall diagnosis for 104 of the 120 reconstructions (86.7%), 

yielding a Kappa value of 0.716 (substantial agreement).  

 

Table 11.7 summarises the overall diagnosis results for each of the four reconstruction 

methods. Results are presented for each individual observer.    
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 ‘GE Clin’ ‘Sharp 1’ ‘Sharp 2’ ‘Sharp 3’ 

Sensitivity 
Ob 1 95.0% 85.0% 80.0% 75.0% 

Ob 2 90.0% 90.0% 90.0% 90.0% 

Specificity 
Ob 1 80.0% 70.0% 60.0% 90.0% 

Ob 2 100% 90.0% 100% 100% 

Diagnostic 

Accuracy 

Ob 1 90.0% 80.0% 73.3% 80.0% 

Ob 2 93.3% 90.0% 93.3% 93.3% 

PPV 
Ob 1 90.5% 85.0% 80.0% 93.8% 

Ob 2 100% 94.7% 100% 100% 

NPV 
Ob 1 88.9% 70.0% 60.0% 64.3% 

Ob 2 83.3% 81.8% 83.3% 83.3% 

Table 11.7: Summary of overall diagnosis results, per observer 
 

Observer 2 had almost identical diagnosis results for all four reconstruction methods; the 

discrepancies resulted from a single false positive result for ‘Sharp 1’ that was not repeated 

for the other reconstructions. It is therefore reasonable to state that Observer 2’s overall 

diagnosis results were independent of the reconstruction method.  

 

In contrast, Observer 1‘s results appeared to have some dependency on reconstruction 

method, with each of the 5 metrics largely worsening as the sharpness of the reconstruction 

increased. The results for ‘Sharp 3’, however, are an exception for all metrics except 

sensitivity.  The sharpest reconstruction produced the greatest specificity and PPV results 

of all four reconstructions and produced greater diagnostic accuracy and NPV results than 

‘Sharp 2’.  

 

The effects of BMI on diagnostic results are summarised in Table 11.8. As there are only 3 

patients in the largest BMI category (and all three were diseased patients), the metrics for 

BMI > 35 are of limited value (specificity, PPV and NPV are omitted from the table). It should 

also be noted that direct comparisons between the different weight categories should be 

made with caution, as their patient numbers and disease prevalence are different:  

• BMI £ 25:  N = 9; Normal = 3; Abnormal = 6; Prevalence = 66.7% 

• 25 < BMI £ 35: N = 18; Normal = 7; Abnormal = 11; Prevalence = 61.1% 

• BMI > 35: N = 3; Normal = 0; Abnormal = 3; Prevalence = 100% 
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 ‘GE Clin’ ‘Sharp 1’ ‘Sharp 2’ ‘Sharp 3’ 

Sensitivity 

BMI £ 25 100% 100% 100% 100% 

25 < BMI £ 35 91.9% 86.4% 81.8% 77.3% 

BMI > 35 83.3% 66.7% 66.7% 66.7% 

Specificity 

BMI £ 25 83.3% 66.7% 83.3% 83.3% 

25 < BMI £ 35 92.9% 85.7% 78.6% 100% 

BMI > 35 N/A N/A N/A N/A 

Diagnostic 
Accuracy 

BMI £ 25 94.4% 88.9% 94.4% 94.4% 

25 < BMI £ 35 91.7% 86.1% 80.6% 86.1% 

BMI > 35 83.3% 66.7% 66.7% 66.7% 

PPV 

BMI £ 25 92.3% 85.7% 92.3% 92.3% 

25 < BMI £ 35 95.2% 90.5% 85.7% 100% 

BMI > 35 N/A N/A N/A N/A 

NPV 

BMI £ 25 100% 100% 100% 100% 

25 < BMI £ 35 86.7% 80.0% 73.3% 73.7% 

BMI > 35 N/A N/A N/A N/A 
 

Table 11.8: Summary of overall diagnosis results, per BMI category 

 
The results for the smallest weight category are largely independent of reconstruction 

method. The only discrepancy between the four reconstructions was one extra false positive 

result for the ‘Sharp 1’ reconstruction (the relatively large resultant 16.6% drop in specificity 

is caused by the low number of patients in this category). It is therefore reasonable to state 

that the overall diagnosis results for the smallest weight category were independent of the 

reconstruction method. 

 

The ‘25 < BMI £ 35’ weight category results follow a similar pattern as those noted for 

Observer 1: all 5 metrics largely worsen as the reconstruction sharpness increases, with 

‘Sharp 3’ being an exception for all but sensitivity.  

 

Whilst the results for the ‘BMI > 35’ category are of limited value, it is of interest that ‘GE 

Clin’ produced the greatest sensitivity and diagnostic accuracy results.  
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11.4.3 Lesion Detection Results 
Table 11.9 summarises each observers’ lesion detection performance for each 

reconstruction method. It should be noted that this table does not account for observer 

confidence in individual lesion marks. 

 

 ‘GE Clin’ ‘Sharp 1’ ‘Sharp 2’ ‘Sharp 3’ 

Observer 1 
True 

31/45 

(68.9%) 

32/45 

(71.1%) 

29/45 

(64.4%) 

23/45 

(51.1%) 

False 9 14 15 4 

Observer 2 
True 

 27/45 

(60.0%) 

29/45 

(64.4%) 

29/45 

(64.4%) 

28/45 

(62.2%) 

False 0 3 3 0 

Total 
True 

58/90 

(64.4%) 

61/90 

(67.8%) 

58/90 

(64.4%) 

51/90 

(56.7%) 

False 9 17 18 4 

Table 11.9: Summary of lesion detection performance, per observer 
 

The ‘Total’ results in Table 11.9 demonstrate that ‘Sharp 1’ produced the greatest proportion 

of correctly identified lesions (67.8%), while ‘Sharp 3’ produced the least (56.7%). However, 

‘Sharp 1’ produced 17 false positive lesions (second only to ‘Sharp 2’), while ‘Sharp 3’ 

produced the lowest number of false positive lesions.  

 

Observer 1’s lesion detection performance varied with reconstruction sharpness. ‘Sharp 1’ 

produced the greatest number of correctly identified lesions, but this was at the expense of 

the second largest number of false positive lesions. ‘Sharp 3’ produced the lowest number 

of both correctly identified lesions and false positive lesions.   

  

In contrast to Observer 1, Observer 2 correctly identified similar numbers of lesions for all 

four reconstruction methods; however, it is of interest that fewer lesions were seen on ‘GE 

Clin’ than any of the sharper reconstructions. ‘Sharp 1’ and ‘Sharp 2’ produced the greatest 

number of correctly identified lesions, but also produced the greatest number of false 

positive lesions (no false positives were seen on either ‘GE Clin’ or ‘Sharp 3’). 

Figure 11.6 plots separate FROC curves for both observers.  
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Figure 11.6: FROC curves for lesion detection task, per observer 
 

Observer 1’s curves for all four reconstructions reach a greater point on the x-axis than 

Observer 2’s curves as a result of the greater number of false positives reported by 

Observer 1. Observer 1’s results for ‘Sharp 1’ reach a greater point on the y-axis than any 

other result set, reflecting the superior fraction of true lesions found. The increased number 

of data points on Observer 1’s curves for ‘Sharp 1’ and ‘Sharp 2’ indicate that Observer 1 

was more willing to report lesions with a wider range of confidence scores when these 

reconstructions were used.  

 

Observer 2’s results for all four reconstructions appear to be reasonably similar, reflecting 

the results in Table 11.9. The relatively small number of data points in each of Observer 2’s 

curves demonstrates Observer 2 did not report lesions over as wide a range of confidence 

levels as Observer 1. 

 

Figure 11.7 plots separate wAFROC curves for both observers, whilst Table 11.10 

compares the wAFROC AUC for each reconstruction. 
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Figure 11.7: wAFROC curves for lesion detection task, per observer 
 

 ‘GE Clin’ ‘Sharp 1’ ‘Sharp 2’ ‘Sharp 3’ 

AUC 
Observer 1 0.788 0.818 0.716 0.734 

Observer 2 0.830 0.825 0.829 0.821 

Average  0.809 0.822 0.773 0.778 

Table 11.10: AUC figures of merit from wAFROC curves 
 

Observer 1’s wAFROC curves appear to show that ‘Sharp 1’ is the superior reconstruction 

method, with ‘GE Clin’ in second place. This is confirmed by the AUC results: ‘Sharp 1’ has 

the greatest AUC (0.818). ‘Sharp 2’ is the inferior reconstruction, with AUC = 0.716.  

 

Observer 2’s wAFROC curves for all four reconstructions appear to be very similar. This is 

confirmed by the AUC results (all four AUCs are within 0.01 of each other). ‘GE Clin’ has 

the largest AUC by a margin of 0.001, with ‘Sharp 2’ in second place.  

 

AUCs from the combined observer data sets confirm that ‘Sharp 1’ had the largest AUC, 

followed by ‘GE Clin’, ‘Sharp 3’ and finally ‘Sharp 2’. However, statistical significance testing 

on the wAFROC data demonstrated there are no significant differences between the 

reconstruction methods. This remains the case when assessing each observer individually.  
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11.5 Discussion 
  

The ‘GE Clin’ reconstruction was the preferred reconstruction in terms of both image quality 

and reporting confidence scores for both observers. Both image quality and confidence 

scores generally decreased as image sharpness increased. This was an expected result: 

the resultant increase in image noise reduced the observers’ perception of image quality, 

and therefore decreased their confidence in using the image for diagnosis. Furthermore, 

both observers had only used the ‘GE Clin’ reconstruction in clinical reporting prior to their 

participation in this study and had no experience of any of the sharper reconstructions. This 

may have introduced some preferential bias into their qualitative image quality 

assessments. It is of interest, however, that there were no statistically significant differences 

in confidence scores between ‘GE Clin’ and ‘Sharp 1’ for either observer. These results 

suggest that ‘Sharp 1’ could be used instead of ‘GE Clin’ without significantly affecting the 

observers’ perception of image quality or their confidence in using the reconstruction for 

liver diagnosis.   

 

Patient BMI was shown to influence the relative performance of each reconstruction in terms 

of both image quality and reporting confidence. The ‘BMI £ 25’ category demonstrated no 

significant differences in image quality between ‘GE Clin’ and either ‘Sharp1’ or ‘Sharp 2’. 

Furthermore, the confidence results for the BMI £ 25 appeared to be unaffected by the 

choice of reconstruction; there were no significant differences between any of the 

reconstructions. These results suggest that for the smallest patients (BMI £ 25), ‘Sharp 1’ 

or ‘Sharp 2’ could be used instead of ‘GE Clin’ without significantly affecting the observers’ 

image perception.  In contrast, the ‘25 < BMI £ 35’ category demonstrated a clear reduction 

in confidence as a result of increasing reconstruction sharpness. It is of interest, however, 

that ‘25 < BMI £ 35’ demonstrated no significant differences between ‘GE Clin’ and ‘Sharp 

1’ in either image quality or reporting confidence. This suggests that ‘Sharp 1’ could be used 

instead of ‘GE Clin’ for patients with BMI £ 35 without significantly affecting the observers’ 

image perception.   

 

The overall diagnosis results (normal versus abnormal liver) for each observer are 

summarised in Table 11.7. Given that Observer 1’s image quality and reporting confidence 

decreased as reconstruction sharpness increased, one would expect a corresponding 

degradation in diagnosis metrics. Whilst this was largely the case for Observer 1, there was 

a paradoxical increase in the ‘Sharp 3’ diagnosis metrics for all but sensitivity. Furthermore, 

‘Sharp 3’ produced greater specificity and NPV than all other reconstructions. One would 

expect that increased image noise may increase the risk of false positives, which would in 

turn cause a decrease in both specificity and NPV. A likely reason for the paradox in 
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Observer 1’s results is that they found the ‘Sharp 3’ reconstructions to be of such low quality, 

they became less likely to attempt to identify potential low-confidence lesions, thus reducing 

the false positive rate (hence increasing specificity and NPV) but also reducing the true 

positive rate (hence reducing sensitivity).  

 

Table 11.7 demonstrated very little difference in Observer 2’s diagnostic performance 

between the four reconstructions: a single false positive in a ‘Sharp 2’ reconstruction caused 

the only discrepancies. This was consistent with Observer 2’s confidence results, which 

were very similar for all four reconstruction methods (no statistically significant differences).  

 

Diagnosis results were also analysed for different BMI categories. When considering all 

diagnosis results together (Tables 11.7 and 11.8), one can infer the following:  

• Observer 2’s overall diagnosis results were independent of reconstruction method 

(regardless of patient BMI) 

• Observer 1’s results for patients with BMI £ 25 were independent of reconstruction 

method 

• Observer 1’s results for patients with BMI > 25 generally worsened with increasing 

reconstruction sharpness, with the exception of the paradoxical ‘Sharp 3’ results.   

 

The overall diagnosis results (normal versus abnormal) did not provide any evidence to 

justify the use of a sharper reconstruction then ‘GE Clin’. In particular, ‘GE Clin’ appeared 

to produce the best results for patients with BMI > 25 (allowing for the paradoxical ‘Sharp 

3’ results). However, this type of analysis does not consider decision-making at the level of 

individual lesions. Furthermore, it does not take into consideration the confidence level of 

individual false positive lesions that resulted in overall false positive diagnoses; a clinician 

applying a lower confidence threshold in order to maximise lesion detection would risk an 

increased level of overall diagnosis false positives in this particular analysis.  

 

The final part of the analysis assessed lesion detection. This analysis was not broken down 

into the different BMI categories due to the small number of patients in each category. Both 

observers identified almost the same number of true lesions but had different numbers of 

false positives: Observer 1 identified 42 false positives, while Observer 2 identified only 6 

false positives. This suggests the observers had different approaches to identifying lesions. 

The confidence scores assigned to false positive lesions were interrogated and 

demonstrated Observer 1 was more likely to identify lesions with low confidence than 

Observer 2. For example, Observer 1 identified 18 false positive lesions with confidence 

levels of 50% or below (median false positive confidence was 60%) while Observer 2 

identified only one false positive with 50% confidence (median false positive confidence 
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was 85%). This explains why Observer 1 had lower specificity results than Observer 2 in 

the previous section. 

 

Table 11.9 summarises the true and false positive lesions identified by each observer, for 

each reconstruction (lesion confidence was not accounted for in this table). Taking the 

previous reporting confidence results into account, one would expect Observer 1’s results 

to have some dependence upon reconstruction, with Observer 2’s results being more 

consistent across all reconstructions. This is largely the case for the true positives: Observer 

2’s results were reasonably consistent (maximum discrepancy of 2 lesions), while Observer 

1 typically detected fewer true lesions using the sharper reconstructions (maximum 

discrepancy of 9 lesions). Interestingly, while both observers rated ‘GE Clin’ highest in terms 

of image quality and reporting confidence, this reconstruction did not provide the optimum 

true positive detection rate for either observer:  

• Observer 1 detected most true positive lesions using ‘Sharp 1’, with ‘GE Clin’ in 

second place 

• Observer 2 detected most true positive lesions using both ‘Sharp 1’ and ‘Sharp 2’, 

with ‘GE Clin’ producing the lowest detection rate.  

 

As stated previously in the discussion, one may have expected the false positive detection 

rate to increase as reconstruction sharpness, and hence image noise, increased. This was 

largely the case for both observers, with the exception of ‘Sharp 3’. The effects of BMI on 

image quality were demonstrated by the patient images in Figure 11.3. Noise within the 

largest patient’s ‘Sharp 3’ reconstruction makes it difficult to identify the relatively large 

confirmed lesion which is more easily visualised on the ‘GE Clin’ reconstruction. The same 

may be true to a lesser degree for the medium sized patient’s liver lesion. It is likely that 

both observers found ‘Sharp 3’ to be of such low quality for the larger patients, they were 

unable to identify the same false lesions due to the increased noise levels. Furthermore, 

the increased noise in ‘Sharp 3’ disproportionately affected Observer 1’s true positive rate 

compared to Observer 2 (Observer 1 had lower confidence in ‘Sharp 3’ compared to 

Observer 2).  

 

Although the FROC curves produced a useful visual representation of each observers’ 

lesion detection performance (largely confirming the results in Table 11.9 whilst partially 

taking lesion confidence into account), the wAFROC curves and AUCs produced a more 

complete analysis of the available data (true negatives were taken into account, as well as 

individual lesion confidence and true lesion weightings). The wAFROC AUCs for the 

complete data set confirmed that ‘Sharp 1’ had the superior lesion detection performance 

of the four reconstructions; however, there were no statistically significant differences 
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between the four reconstruction methods (even when each observer was assessed 

individually).  

 

When deciding which reconstruction is optimal, one must take into consideration the 

specific aims of the clinical task. For example, is maximising the detection of true positive 

lesions more important than minimising the number of false positive lesions detected? In 

liver imaging, a missed lesion may result in a patient missing out on appropriate treatment 

at an earlier stage in their disease or potentially cause them to undergo painful and 

expensive curative treatment which would ultimately prove to be futile. On the other hand, 

a false positive lesion in the liver could cause a patient to be denied potential curative 

surgery or to undergo unnecessary surgical or ablative procedures.   

 

Colorectal cancer patients typically undergo MRI scans as well as PET scans. Other 

oncology patients whose PET scans reveal previously unknown liver metastases are highly 

likely to be scheduled for an MRI as a result of the PET findings, prior to any change in 

clinical management. It is therefore unlikely a false positive liver lesion on a PET scan would 

directly lead to an inappropriate change in patient management. One may therefore justify 

the increased risk of false positives if the number of true positives can be improved. With 

this in mind, the results of this observer study suggest that the ’Sharp 1’ reconstruction may 

be more appropriate than the currently used ‘GE Clin’ for lesion detection.  

 

Both observers preferred the ‘GE Clin’ reconstruction in terms of image quality and reporting 

confidence despite detecting more true lesions using ‘Sharp 1’. Whilst the differences in 

reporting confidence between these two reconstructions were not statistically significant, it 

may be useful to present both reconstructions to reporting clinicians for a period of time to 

build up their confidence in the sharper reconstruction. Viewing both reconstructions 

together may even prove to be a useful long-term solution if clinicians find the combination 

to be beneficial.  

 

Phantom studies in Chapters 9 and 10 suggested that ‘Sharp 2’ would maximise 

detectability of small liver lesions within smaller patients. This chapter found that the use of 

‘Sharp 2’ would have no significant effect upon perceived image quality or reporting 

confidence for patients with BMI < 25. Whilst the lesion detection study appeared to favour 

‘Sharp 1’ (albeit with no statistical significance), the patient data set was dominated by larger 

patients (70% of the patients had BMI > 25). It is therefore possible that smaller patients 

may benefit from a further increase in image sharpness than that offered by ‘Sharp 1’.  

 

Studies by Schaefferkoetter et al  [8], Morey et al  [157] and Kadrmas et al [220] assessed 

general oncology lesion detection using Siemens Biograph PET-CT systems and 
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mathematical observers. All three studies used slightly different combinations of post-

reconstruction filtering and effective iterations to maximise lesion detection using TOF+PSF 

algorithms; respectively, the combinations were as follows: 24 effective iterations with no 

filtering, 90 effective iterations with 3mm filter (2mm voxels) and 84 effective iterations with 

2.4mm filter (2mm voxels). None of these studies specifically targeted liver lesion detection 

or assessed the GEMS Discovery PET-CT system, and so are not directly comparable to 

the results of this study.  

 

A 2017 study by Adler et al [223] evaluated a novel phantom developed for assessing 

minimum lesion detectability. Several different PET-CT systems were used in the study, 

including the GEMS Discovery 710 (similar to the Discovery 690 in terms of OSEM 

performance). The authors state they used the manufacturers’ recommended 

reconstruction settings for each system, which were as follows for the GEMS Discovery 

710: TOF+PSF, 120 effective iterations, 2mm transaxial filter (no z-axis filter or voxel size 

specified). It is of interest that these settings are more similar to the ‘Sharp 1’ reconstruction 

(108 effective iterations, no filtering) recommended by this chapter than the ‘GE Clin’ 

reconstruction (54 effective iterations, 4mm filter).  

 

The main limitation of this study was the absence of a true gold standard. Best endeavours 

were made with the available correlative imaging (using MRI in particular, as this is the 

current imaging gold standard for liver lesions), pathology and follow-up data to determine 

the absolute truth for each patient used in this study. This methodology has been used by 

several studies [243], [246], [247]. However, unlike phantom data, the absolute truth within 

a patient study can never be fully known. It is even possible, if unlikely, that some of the 

false positive lesions identified may in fact have represented true lesions at the time of the 

PET scan.  
 

Another limitation of this study was the relatively small number of patients: the potential for 

demonstrating a statistically significant difference between the four reconstructions, in terms 

of lesion detection performance, would be improved by undertaking a study with a larger 

sample size. This study demonstrated the effects of patient BMI upon relative reconstruction 

performance; a larger study should therefore include larger numbers of patients in all BMI 

categories to provide more meaningful analysis (e.g. wAFROC analysis could be performed 

on each BMI category individually). Based on the initial findings presented in this chapter, 

it is likely such a study would indicate different reconstructions are optimal for different BMI 

categories, with smaller patients being potentially more amenable to sharper 

reconstructions.  
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A further limitation in this study was the small number of observers, and their bias. It is of 

note that there appeared to be a bigger difference between the two observers than the 

reconstruction algorithms: this may be a result of the inclusion of low confidence lesions. 

Furthermore, this study did not perform any analysis of intra-observer reliability. Any future 

studies should incorporate more observers and assess each observers’ reliability for each 

reconstruction method.  

 

Patient data used in this study also demonstrated a limited number of small, challenging 

lesions. Ideally, a larger patient study would include a larger number of lesions that, though 

detectable, would provide a challenge to the observers in order to better differentiate the 

reconstructions in terms of lesion detection performance. Future analysis could also directly 

relate lesion detection performance to lesion size measurements (e.g. measured using MRI 

data), lesion SUV measurements and background liver noise measurements (e.g. image 

roughness).  

 

11.6 Conclusions 

 

The patient observer study has demonstrated liver lesion detection may be improved by 

using the ‘Sharp 1’ reconstruction instead of the reconstruction parameters suggested by 

GEMS (the ‘GE Clin’ reconstruction’), which are currently in clinical use. This would not 

result in a significant change in reporting confidence, although there may be a perceptible 

reduction in image quality for patients with BMI > 25. It may therefore be useful to present 

both reconstructions to reporting clinicians for a period of time to build up reporting 

confidence in the sharper reconstruction. This chapter therefore concludes that both ‘GE 

Clin’ and ‘Sharp 1’ reconstructions should be used together when interpreting 18F-FDG liver 

images, to improve small lesion detection. 

 

Although the liver lesion detection analysis in this chapter did not directly assess the effects 

of patient BMI, this chapter has demonstrated it is reasonable to suggest that PET 

reconstruction could be further optimised by tailoring the reconstruction to patient BMI. A 

larger patient study involving larger numbers of patients in each relevant BMI category 

would be required to optimise liver lesion detection for each BMI category. 

 

Whilst this chapter has assessed lesion detection within the liver, the observer study 

methodology used in this chapter can be followed for different clinical applications with 

multifocal truth; for example, optimising lesion detection in lung or head and neck imaging 

studies. PET reconstructions may therefore be tailored to different clinical tasks and 

different patient groups (e.g. BMI categories).  
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All patients included in this study followed the same 18F-FDG injection protocol, regardless 

of patient weight. The resultant inconsistency in patient activity concentrations therefore 

contributed to the relative noise increase as patient BMI increased. As many imaging 

centres now use weight-based injection protocols [14], [186], future lesion detection studies 

should account for this. This may affect the potential for increasing the sharpness for smaller 

patients, as a reduction in activity concentrations for these patients will lead to increased 

image noise.  Furthermore, all patients were reconstructed using the same transaxial FOV, 

regardless of size. Further work should investigate the effects of reducing the FOV for 

smaller patients, thus reducing voxel sizes. The resultant increase in both spatial resolution 

and image noise would likely influence the optimum combinations of reconstruction 

parameters for specific clinical tasks. 

 
 



 

 
 
 
 
 
 
 
 
Chapter 12 : Conclusions 
 

The primary aim of this thesis was to develop a generic methodology to assess and optimise 

PET image acquisition and reconstruction that can be applied to any clinical application. 

Although a GEMS Discovery 690 PET-CT system was used for all practical work in this 

thesis, the generic methodology was intended to be useful for all PET-CT systems. The 

secondary aim was to optimise image reconstruction using the GEMS Discovery 690 PET-

CT system, specifically for the detection of small liver lesions in 18F-FDG-PET oncology 

imaging. 

 

12.1 Implications for the Development of a Generic Methodology 
for Assessment and Optimisation of Clinical PET Image 
Reconstruction 
 

To the author’s knowledge, there is no established methodology for the assessment and 

optimisation of PET system performance in a clinically relevant manner. Such a 

methodology would be particularly useful when new technological advancements become 

available. For example, the use of PSF remains controversial in clinical imaging: some 

studies have concluded no post-reconstruction filtering is required when PSF is applied, 

whilst others recommended the use of filters to mitigate potential Gibbs artefacts. Some 

studies have recommended PSF should not be used at all, particularly for quantitative 

studies. This thesis has assessed the effects of various reconstruction parameters upon 

noise, spatial resolution and lesion detection using clinically relevant phantom techniques, 

with a particular focus upon liver imaging; e.g. the activity concentrations used in the spatial 

resolution and body phantoms were chosen to be representative of clinical liver imaging 
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with 400MBq 18F-FDG. A patient observer study was then undertaken to clinically assess 

the recommendations made based on the phantom data.  

 

Although the primary focus of this thesis was image reconstruction, there were acquisition 

issues that also merited attention. GEMS recommend the use of 23% slice overlaps 

between acquisition frames; however, this had not been justified by independent peer-

review studies. Chapter 4 compared image quality obtained using a 23% overlap with that 

of the maximum 49% overlap. This chapter concluded there was minimal detectable 

influence on clinical image quality in terms of noise, mean activity concentrations or lesion 

contrast recovery. All subsequent imaging work undertaken throughout this thesis therefore 

used a 23% overlap. Furthermore, this chapter proposed an amendment to the EANM 

guidelines to account for the relationship between image noise and slice overlap when 

calculating minimum patient 18F-FDG injection activities,  which has been published in a 

peer-reviewed journal [179]. The GEMS suggested overlap recommendations were 

therefore found to be satisfactory for lesion detection under current clinical conditions 

(400MBq 18F-FDG imaging with four-minute acquisition frames). Slice overlap would, 

however, require reassessment for different clinical imaging scenarios.  

 

Image noise was assessed using two phantoms: 20cm diameter 68Ge uniform phantom 

(Chapter 6) and the NEMA body phantom containing simulated lesions (Chapter 9). Whilst 

both phantoms demonstrated the effects of altering reconstruction parameters, the uniform 

phantom was too small to demonstrate the advantages of TOF in whole-body liver imaging 

(although results were relevant for e.g. head and neck or paediatric imaging). Furthermore, 

the use of a uniform phantom provides an over-simplistic imaging scenario that is not 

representative of clinical imaging. Phantoms containing simulated lesions, like the NEMA 

body phantom, provide a more complex imaging scenario closer to that of clinical imaging. 

This thesis therefore recommends that image noise should be assessed using the 

background chambers of phantoms containing simulated lesions, and background 

chambers should be size-matched to the clinical task in question. Furthermore, this thesis 

recommends assessing both voxel-to-voxel and region-to-region noise where possible.  

 

No technique is established for the measurement of clinical spatial resolution, yet this is 

critical to image optimisation. Spatial resolution is challenging to assess in a clinically 

relevant manner, particularly when iterative reconstruction methods are used. Chapter 7 

developed a methodology for measuring spatial resolution in a clinically relevant manner. 

This chapter concluded by recommending the use of line sources within a background 

activity. Furthermore, this chapter demonstrated complex corrections for the background 

activity were not required due to the inherent limitations of PET spatial resolution; a 

relatively simple method of background subtraction was sufficient. Additionally, the 



Chapter 12 

 

266 

 

assessment technique allowed reliable FWHM measurement using the full transaxial FOV 

when a 256 matrix was used; results were therefore relevant to clinical liver imaging.  

 

This thesis has also shown that vendor implementations of reconstruction parameters may 

not always function as intended. An unexpected relationship (unknown to even senior 

GEMS engineers) was discovered between matrix size, Gaussian filter width and image 

noise: at filter widths between approximately 3mm and 9mm, smaller voxels produced less 

image noise than larger voxels. Communications with GEMS established this was caused 

by their Gaussian filter implementation. This may be of clinical relevance, as GEMS suggest 

using a 4mm Gaussian filter for clinical reconstructions. This thesis therefore recommends 

that the effects of reconstruction parameters should not be assessed in isolation; in 

particular, the effects of Gaussian filtering and voxel sizes on image quality should be 

assessed together.  

 

Chapter 9 assessed the effects of reconstruction parameters upon lesion detection using 

the widely available NEMA body phantom. This phantom was shown to be a reasonable 

representation of smaller patients; however, larger background chambers should be used 

to represent larger patients. A novel SNR methodology, based upon region-to-region noise 

instead of the widely-used voxel-to-voxel noise, was also assessed and was shown to be a 

better predictor of observer preference than the traditional SNR method. However, the 

chapter concluded that dual metric HCRCmean and noise analysis provided the best 

predictions of human observer preferences for small lesion detection. These methods of 

quantitative assessments should be included when optimising PET reconstruction 

techniques for other clinical applications 

 

Whilst this thesis has assessed lesion detection within the liver, the observer study 

methodology used in Chapter 11 can be followed for different clinical applications with 

multifocal truths; for example, optimising lesion detection in lung or head and neck imaging 

studies. PET reconstructions may therefore be tailored to different clinical tasks and 

different patient groups (e.g. BMI categories). This thesis therefore recommends the use of 

FROC and wAFROC analysis to compare lesion detection performance of different 

reconstructions; such analyses allow observers to identify an unrestricted number of lesions 

for each patient and is therefore more clinically relevant than conventional LROC studies.  

However, a larger number of patients than used in this thesis would be required to 

demonstrate statistically significant differences between different reconstruction methods. 
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12.1.1 Recommended Methodology for Assessment and Optimisation of 
Clinical PET Reconstruction  
This thesis therefore concludes the following evidence-based approach should be taken to 

optimising PET clinical reconstruction:  

 

Step1: Slice Overlap (if user selectable option on PET system model):  

• A complex phantom simulating lesions within a background activity (for example, 

the NEMA IEC body phantom) should be filled with activity concentrations 

relevant to both the clinical task and local injection activity protocol (total 

phantom activity should be chosen to be conservative). Spheres should be used 

to represent low contrast lesions, e.g. 2:1 ratio. The phantom should be acquired 

with spheres in the overlap area. The following overlap sizes should be 

assessed (at a minimum): 

o Maximum possible overlap (likely to be approximately 50%) 

o 23% overlap (shown to be the minimum acceptable in this thesis) 

o Manufacturer recommended overlap (if different from those above) 

• Phantoms should be reconstructed using manufacturer’s suggested parameters 

• Qualitative assessment should compare sphere detectability for different overlap 

settings. This may be sufficient to determine if the lower overlap settings are 

acceptable. 

• Quantitative assessment of image quality should follow the analysis procedure 

detailed in Step 3. This may be used as evidence to show the chosen overlap 

setting meets international guidance requirements for image noise and lesion 

recovery. 

 
Step 2: Spatial resolution:  

• A line source phantom within a background activity should be used, similar to 

the NEMA 1994 line source phantom (phantom should ideally have at least two 

line sources). The background chamber should be filled with an activity 

concentration relevant to the clinical task. Line sources should be filled with an 

approximate 200:1 line-to-background ratio. The phantom should be positioned 

such that one point source is central and one point source is peripheral, to 

provide an indication of resolution uniformity throughout the FOV. 

• Phantom data should be reconstructed using the maximum transaxial FOV 

relevant to the clinical task. Transaxial voxel sizes of 2.73mm or less should 

provide adequate sampling for reliable FWHM measurement.  

• Reconstructed images should be analysed by drawing line profiles through the 

line source images and extracting the voxel values. A background ROI should 
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be used to extract the mean background voxel value. Line profile voxel values 

should then be corrected for background activity by subtracting the mean 

background voxel value.  

• Corrected line profiles should be fitted to Gaussian functions, and the FWHM of 

the Gaussian function should then be calculated.  

• FWHM at both FOV positions should be compared as reconstruction parameters 

vary; differences in FWHM at both FOV positions should be minimised.  

 
Step 3: Image Noise and Lesion Detection (and/or Quantitative Accuracy): 

• A complex phantom simulating lesions within a background activity (for example 

the NEMA IEC body phantom) should be filled with activity concentrations 

relevant to the clinical task and local injection activity protocol (total phantom 

activity should be chosen to be conservative). The phantom should be acquired 

with spheres in the overlap area, using the overlap size determined in Step 1.  

• Phantom data should be reconstructed using a range of parameter 

combinations. The total number of reconstructions to be assessed may be 

narrowed down based on spatial resolution results, e.g. using only parameter 

combinations that produced uniform spatial resolution at the different FOV 

positions.  

• Qualitative assessment should compare image quality of the overlap slices 

containing simulated lesions: this may be sufficient to rule out further parameter 

combinations if the clinical task is lesion detection (for example high noise 

reconstructions when high numbers of iterations are applied, or low resolution 

reconstructions when greater filtering is applied).  

• The following image metrics should be analysed to further aid selection of 

reconstruction parameters and to provide quantitative evidence justifying the 

final reconstruction choice(s): 

o Coefficient of Variation: voxel-to-voxel noise, using large ROIs (allows 

comparison with EANM/EARL noise guidelines) 

o Background Variation: region-to-region noise, using ROIs matched to 

each of the lesion spheres used in the phantom 

o HCRCs of spheres (allows comparison with EANM/EARL guidelines; 

provides a measure of quantitative accuracy of lesions) 

o SNR of spheres, using sphere-matched Background Variation results 

as the noise metric 

• Dual metric HCRC versus noise (using both COV or Background Variation) and 

SNR should provide a reasonable prediction for human observer preference. 
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Step 4: Patient Observer Study  
• Reconstruction strategies identified by the preceding steps as providing optimal 

image quality should ideally be assessed using patient data; parameters 

suggested by the manufacturers should be included for comparison. This 

methodology can be followed to assess patients with potentially multifocal 

disease and available gold standard data.  

o Observers should record scores for image quality and reporting 

confidence 

o Observers should report the patient images (or organ of interest) as 

being normal or abnormal) 

o Observers should identify all lesions they observe, recording their 

positions and stating their confidence in each individual lesion 

• FROC and wAFROC analysis should be undertaken to establish which 

reconstruction method provided the optimal lesion detection performance. This 

should be compared with the observer image quality and confidence results.  

• It may be appropriate to use two reconstruction parameters when reporting 

clinical data; one reconstruction to aid general image interpretation and one to 

optimise the particular task being assessed (e.g. lesion detection or quantitative 

accuracy).  

 

12.1.2 Further work 
As PET hardware and software both continue to evolve (e.g. digital PET detectors, larger 

axial imaging FOVs and the development of more sophisticated reconstruction techniques), 

the small lesion detection performance of PET-CT imaging systems will improve. The 

smallest sphere in the current NEMA body phantom has an inner diameter of 9.9mm; 

however, a smaller set of spheres compatible with the NEMA phantom are available 

commercially, with inner diameters as small as 3.95mm. The use of these sub-centimetre 

spheres would provide a more challenging lesion detection task. Furthermore, the 

introduction of unpredictable sphere positioning within the phantom would further improve 

the phantom’s relevance to clinical imaging. Work is therefore ongoing to produce a novel 

lesion detection phantom where the sizes, numbers and positions of spheres can be altered, 

and remain unknown to human observers assessing the images. The use of different 

background chambers will also be investigated, to better represent whole-body imaging of 

patients with varying BMI.  

 

The spatial resolution phantom could also be improved. The use of more lines sources at 

different positions within a background chamber will also be investigated. Furthermore, the 

use of the 22Na point source will be revisited; this may provide a more reproducible 
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methodology when the point source activity concentration has decayed to a more clinically 

relevant level.  

 

12.2 Implications for Liver Lesion Detection on the GEMS 
Discovery 690 PET-CT System 
 

There is no established optimum reconstruction method for detecting small lesions within 

the liver in 18F-FDG PET imaging. The secondary aim of this thesis was therefore to 

recommend an optimised reconstruction strategy for small liver lesion detection. Phantom 

experiments were designed to be representative of liver imaging. Patient liver data were 

then used to clinically assess lesion detection performance of four different reconstruction 

strategies, chosen as a result of the phantom work.  

 

Spatial resolution analysis demonstrated that, contrary to recent published data using non-

clinical measurement techniques (e.g. using sources in air instead of background activity), 

PSF was shown to degrade resolution at lower iterations, and required over 180 iterations 

to improve spatial resolution. TOF-only produced superior spatial resolution when up to 90 

iterations were applied. Applying PSF and TOF together produced superior spatial 

resolution when between 90 and 180 iterations were applied. Lesion detection and noise 

analysis then demonstrated that applying both PSF and TOF together with 108 iterations 

and no filtering appeared to optimise detection of the smallest sphere. A comparison 

between the phantom’s dimensions and those of patients with a range of body habitus 

demonstrated that the NEMA phantom was a reasonable approximation for liver imaging in 

patients with BMI < 35; larger patients would be better represented by a phantom with a 

larger background chamber.  

 

An observer study was conducted to assess three different reconstruction strategies 

selected using the phantom data, together with the GEMS suggested reconstruction 

strategy. Reassuringly, the parameters suggested by GEMS were shown to be close to 

optimal for liver lesion detection. However, while both observers preferred the GEMS 

suggested reconstruction in terms of reporting confidence and perceived image quality, 

results demonstrated a sharper reconstruction (‘Sharp 1’) may improve the detection of liver 

lesions. This chapter concluded that to improve lesion detection and maintain reporting 

confidence, both the GEMS suggested reconstruction and ‘Sharp 1’ reconstructions should 

be used together when interpreting 18F-FDG liver images. 
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12.2.1 Recommended Reconstruction Strategy for 18F-FDG Liver Imaging 
This thesis therefore recommends the following reconstruction strategies are used together 

for all patients undergoing 400MBq 18F-FDG whole-body imaging on the GEMS Discovery 

690 PET-CT system: 

 

• The GEMS suggested reconstruction parameters, for general image interpretation:  

o PSF+TOF, 54 effective iterations, 4mm Gaussian filter, Standard z-axis filter, 

192 matrix with 700mm FOV (3.65mm voxel size) 

 

• The ‘Sharp 1’ reconstruction parameters, for optimal liver lesion detection:  

o PSF+TOF, 54 effective iterations, no filtering, 256 matrix with 700mm FOV 

(2.73mm voxel size) 

 

12.2.2 Further work 
Results in this thesis suggest that, under the current injected activity protocol, lesion 

detection in smaller patients (BMI < 35) may benefit from even sharper reconstructions. 

Reconstruction protocols could therefore be optimised further by tailoring to patient BMI.  

 

Weight-based 18F-FDG injection protocols are now commonly used. Future studies should 

therefore account for reduced activity concentrations in smaller patients. This may affect 

the potential for increasing reconstruction sharpness for smaller patients, as a reduction in 

activity concentrations for these patients will lead to increased image noise.  

 

Reconstructions could also be improved by tailoring the transaxial FOV to patient size. The 

resultant increase in both spatial resolution and image noise would likely influence the 

optimum combinations of reconstruction parameters for specific clinical tasks. 

 

The work performed in this thesis has demonstrated that there is no single method for 

optimum image acquisition and reconstruction across the board; many external factors 

influence image quality, making it challenging to decide how to approach patient imaging. 

It is therefore hoped that the findings presented here will assist those creating PET 

acquisition and reconstruction protocols to accomplish what can appear to be be a daunting 

task.  
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