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Abstract

It is well established now that light carries both spin and orbital angular momentum which are
associated with circular polarisation and helical phase fronts. Orbital angular momentum degrees
of freedom recently have been used frequently in quantum information processing as their states
are described by vectors in a higher-dimensional Hilbert space which enhances the possibility of
realising superior quantum information protocols. On the other hand, quantum coherence, which
arises from the superposition principle, is a distinct feature of quantum mechanics that cannot be
satisfactorily described by classical physics. Coherence is also identified as essential ingredient for
applications of quantum information, computation, and quantum thermodynamics. Three research
projects, with their related background information, are presented in this thesis. In the first one,
we design a linear optical system to transform the maximally entangled state of a down-converted
photon pair into a genuine entangled χ-type state, as this class of genuine entangled states has been
showed to have many interesting entanglement properties and can be employed in several quantum
information protocols. In the second project, we study the mechanism of angular momentum transfer
from light to a dielectric medium when it undergoes total internal reflection. The result shows that
the torque associated with angular momentum transfer appears shortly, when the light pulse hits
the interface. Finally, we study quantum coherence transfer from a coherence resource initialised
in a coherence state to an atomic state by the Jaynes-Cummings model, and we compare it to the
coherent operation that uses a resource prepared in a ladder state described by Åberg’s model. We
found that a resource in a coherent state is more robust against failures.
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Overview

We provide this overview chapter in order to give the reader the guideline of the information men-
tioned in each chapter. The reader who already has some background in the field then can skip
some introduction chapters. The original work that I have done with Stephen M. Barnett and Sarah
Croke, my supervisors, and Annette Messinger and Frances Crimin, my collegues, is given in chapters
4, 6 and 7. The other chapters are dedicated to give some background information to help the reader
understand the original work.

In chapter 1, we provide an introduction to optical angular momentum and show that even though
neither spin or orbital angular momentum is a true angular momentum, both of them are measurable
and meaningful. We then review several methods that are popularly used in laboratories to generate
and measure orbital angular momentum. At the end of the chapter, we review the correlation of
orbital angular momentum of the two down-converted photons.

In chapter 2, we show examples of quantum information protocols that employ orbital angular
momentum states. Orbital angular momentum which is realised as a higher-dimensional quantum
system can be used to improve the performance of some qubit protocols.

In chapter 3, we introduce the χ-type states and review some of their rich entanglement properties
and novel applications in quantum communication. This set of the states has been proven to be a
new class of genuine multipartite entangled states.

In chapter 4, we give the transformation that changes the two-photon maximally entangled state,
obtained from a spontaneous parametric down-conversion process, into any χ-type state. We then
demonstrate our proposed linear optical system as the implementation of the transformation. The
effect of each optical element used in the optical system on a composite state of a photon is reviewed
and discussed. The work given in this chapter is an original contribution and was published in J.
Opt. [1].

In chapter 5, we introduce background theories for studying the mechanism of angular momentum
transfer, presented in chapter 6. We review Maxwell’s equations and the boundary conditions.
Optical force and torque on dielectric media are discussed in detail. We end this chapter by reviewing
electromagnetic field quantisation and the quantisation of paraxial light.

In chapter 6, we study the mechanism of angular momentum transfer from light to a dielectric
medium when it undergoes total internal reflection with the dipole-based forms of optical force and
torque given in chapter 5. By applying the physical boundary conditions, we show that the Lorentz
force gives us a manifestation of Newton’s third law of motion. We then use the form of optical
torque to study the angular momentum transfer from a single-photon pulse to an M-shaped Dove
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prism. The research given in this chapter was published in J. Opt. Soc. Am. B [2].
We begin chapter 7 by reviewing Åberg’s scheme and show that it can be used to perform a

coherent operation. The problem is that in this scheme a coherence resource in a ladder state is very
fragile. A single failure of a coherent operation gives rise the complete destruction of the coherence
resource. We then study the Jaynes-Cummings model with a resource in a coherent state and use it
to perform a coherent operation. We analyse the reason why a resource in a coherent state is more
robust to a single error than one in a ladder state. The time evolution of the resource is discussed.
The manuscript of this work is in preparation [3].
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Chapter 1

Optical Angular Momentum

1.1 Introduction

The suggestion that light can have mechanical properties has been noticed or at least suspected in
the science community since Kepler tried to explain the observation that the tails of comets always
point away from the sun because of the radiation pressure from the sun. These mechanical properties
become clear later when Maxwell unified the theory of electricity and magnetism [4]. Even though it
was Maxwell who suggested how to quantify the radiation pressure, it was Poynting who quantified
the momentum of an electromagnetic field [5]. The momentum density of an electromagnetic wave
in vacuum is given by

p = ε0E×B. (1.1)

where E and B are the electric field and magnetic flux density respectively. The angular momentum
density is straightforwardly the vector product of the position and the momentum density

j = r× (ε0E×B). (1.2)

By using the analogy of the rotating cylindrical shaft, Poynting suggested that circularly polarised
light should carry angular momentum of Eλ/2π passing through a plane per unit time, per unit area
when E and λ denote the energy density and wavelength of the light [6].

The term photon is nowadays well established to be an elementary particle associated with the
quantum of an electromagnetic field so that a photon carries energy ~ω when ω is the frequency of
the electromagnetic wave. Therefore, right and left circularly polarised photons must carry ~ and −~
angular momentum respectively. This idea was confirmed experimentally when Beth measured the
torque exerted by photons on a single quarter-wave plate which was enhanced by using a mirror for
double reflection [7]. This type of angular momentum is now recognised as spin angular momentum
S.

Polarisation cannot cover all the angular momentum that light can carry. After the invention of
lasers, it was proved that light can have orbital angular momentum as well. A Laguerre-Gaussian
laser mode which contains the azimuthal phase dependent term exp(ilφ) is now known to carry
~l orbital angular momentum per photon [8], where l is an arbitrary integer, which is called the
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Chapter 1: Optical Angular Momentum 2

topological charge of the beam. The identification of the orbital angular momentum is suggested
by the analogy of paraxial optics and the time-dependent Schrödinger’s equation [9]. The angular
momentum in the propagation direction can then be represented by the operator Lz = −i~∂/∂φ, and
obviously, a function with the term exp(ilφ) is an eigenfunction of the operator with the eigenvalue
l~.

This chapter is organised as follows. In the following section, section 1.2, we discuss the analogy
between the forms of the local energy flux of an electromagnetic wave and the momentum density of a
superfluid as it explicitly suggests the form of light that can carry orbital angular momentum. Then,
we show that an optical beam in a Laguerre-Gaussian mode carries an orbital angular momentum of
~l for each photon where l is the topological charge of the beam. We then discuss the validity of the
separation between spin and optical angular momentum in section 1.3. Section 1.4 gives some exam-
ples of technologies that are currently used to generate a laser beam with orbital angular momentum.
Then, we discuss ways to measure the orbital angular momentum. Lastly, we review Ref. [10], which
shows that the correlation between the orbital angular momentum and the conservation of orbital
angular momentum of the idler and signal photons in a spontaneous parametric down-conversion
process is the result of the phase-matching condition.

1.2 Orbital angular momentum of light

Let us consider the local energy flux of a monochromatic optical scalar wave with a complex amplitude
function u, in the eikonal approximation, given by the Poynting vector, which is [11]

g ∝ Im(u∗∇u). (1.3)

This means that in the eikonal approximation the direction of the local energy flux is perpendicular
to the local phase front. This form of the local energy flux is reminiscent of the momentum density of
a superfluid [12,13]. The orbital angular momentum density of the superfluid along the propagation
direction, the z-component, in the cylindrical coordinate is in the form [14]

Lz(r) = ~Im

(
ψ∗(r)

∂

∂φ
ψ(r)

)
, (1.4)

where ψ is the superfluid wave function and φ is the azimuthal coordinate. It is apparent that if
the wave function has the phase dependence term exp(ilφ) then it implies that each quantum of
the superfluid will have an orbital angular momentum of ~l. This analogy between the form of the
approximated Poynting vector and the momentum density of a superfluid leads to the idea that if the
complex amplitude function u of the electromagnetic wave has the azimuthal dependence exp(ilφ)

that each photon should have an orbital angular momentum of ~l in the direction of propagation as
well. Nowadays, optical fields in Laguerre-Gaussian modes with the desired azimuthal dependence
can be prepared, and the motivation that photons in these spatial modes carry orbital angular
momentum originates from the explained analogy.

Reconsidering Eqs.(1.2) and (1.3), we can see that transverse plane waves cannot have angular
momentum in the direction of propagation because the direction of the Poynting vector is in the
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direction of the wave propagation and the angular momentum density r× (ε0E×B) then definitely
is in the direction perpendicular to the direction of propagation. However, this is not the case
for optical beams as they actually have components of their Poynting vectors perpendicular to
the propagation direction. The representation of a monochromatic polarised paraxial laser beam
propagating in the z-direction is conventionally obtained by the vector potential [8],

A(r, t) = u(r, φ, z)ei(kz−ωt)ẽ, (1.5)

where ẽ represents the complex polarisation, ω is the angular frequency which relates to the wavenum-
ber by ω = kc, and u(r, φ, z) is a complex function which satisfies the paraxial wave equation and
is slowly varying in the z-direction. The complex amplitude u in a normalised Laguerre-Gaussian
mode is given by [8]

ul,p(r, φ, z) =

√
2p!

π(p+ |l|)!
1

w(z)

(
r
√

2

w(z)

)|l|

× exp

[
−
(

1

w(z)2
− ikz

2(z2
R + z2)

)
r2

]
L|l|p

(
2r2

w(z)2

)
eilφ

× exp(−i(2p+ |l|+ 1) tan−1(z/zR)), (1.6)

where w0 is the beamwidth at the focus point, zR = kw2
0/2 is the Rayleigh range, w(z) = w0

√
1 + z2/z2

R

is the beamwidth at the positions ±z from the focus point, and L|l|p is an associated Laguerre poly-
nomial. The radial index number p indicates that there are p + 1 nodes in the radial intensity
distribution of the beam. The topological charge of the beam is given by the azimuthal index l.

By considering the form of Eq.(1.6) together with Eq.(1.3), we then can notice that the azimuthal
component gφ of the Poynting vector is nonzero. With the vector potential A, we can determine the
complex electric and magnetic fields via the Lorenz gauge:

E = iω

(
A +

1

k2
∇(∇ ·A)

)
, (1.7a)

B = ∇×A, (1.7b)

where the space and time dependence is omitted for brevity. In the paraxial regime, the Poynting
vector of a linearly polarised beam is directly given by [8]

g = Re(E∗ ×B) = ωIm(u∗∇u). (1.8)

Substituting the complex functions u from Eq.(1.6), the azimuthal component of the Poynting vector
is

gφ =
ωl

kr
|u|2 . (1.9)

We can notice that once we multiply this momentum density by the distance from the z-axis we
obtain the angular momentum density in the propagation of direction, which has been set to be
the z-axis. The integration over the beam then gives non-zero total angular momentum. The ratio
between the angular momentum and energy of the beam then turns out to be l/ω. On the other
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hand, we can include the spin angular momentum by considering the Poynting vector of a circularly
polarised beam:

g = ωIm(u∗∇u)− ωσz
2

∂ |u|2
∂r

φ̂ (1.10)

where σz = ±1 for the right-handed or left-handed circular polarisation and φ̂ is the unit vector in
the azimuthal direction. The component of angular momentum density per unit power in the z-axis
is straightforwardly obtained:

Mz =
l

ω
|u|2 − σzr

2ω

∂ |u|2
∂r

. (1.11)

After integration over the beam, the ratio of angular momentum in the z-direction and the energy
becomes (l+σz)/ω. The ratio between angular momentum and energy of the optical beams suggests
that each photon in a Laguerre-Gaussian mode carries orbital angular momentum ~l and its spin
part which originates from the polarisation state [8].

1.3 Validity of the separation between orbital and spin angular

momentum

We know that in the case of electrons, which are described by Dirac’s equation, we can separate
the angular momentum of the free electrons into two different parts, orbital and spin parts. As we
found that paraxial light can carry both orbital and spin angular momentum as discussed, it seems
that angular momentum of light can also be separated. Darwin proposed the separation of angular
momentum of light into spin and orbital parts [15]. If the electric and magnetic fields fall off rapidly
at a large distance so that they can be contained within a large finite volume and there is no field at
the surface of the volume, the integration over the volume of Eq.(1.2), with the fact that B = ∇×A,
gives

J =

∫ 
∑

j

Ej(r×∇)Aj + E×A


 dV, (1.12)

where the integration by parts has been applied. It seems to be apparent from the form of the
equation that the angular momentum J can be separated and the orbital and spin parts are of the
forms:

L =

∫ ∑

j

Ej(r×∇)AjdV, (1.13a)

S =

∫
E×AdV. (1.13b)

However, there are some problems with the validity of the separation and we will discuss these
problems in depth below.

First of all, let us consider the gauge transformation: A → A′ = A − ∇λ where λ represents
a complex scalar potential. Replacing the new vector potential into the forms of the previously
assigned orbital and spin angular momentum in the previous equations, we obtain

L =

∫ ∑

j

Ej(r×∇)AjdV +

∫
ḂλdV, (1.14a)
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S =

∫
E×AdV −

∫
ḂλdV. (1.14b)

This indicates automatically that both quantities L and S are not gauge invariant. If we use
different gauge conditions, they will give different quantities. Only the total angular momentum,
J = L + S, is the gauge-independent quantity. With this result and the fact that there is no rest
frame for photons, the validity of the separation is questionable. As the Helmholtz decomposition
states that a smooth vector field, which is twice continuously differentiable and bounded, can be
decomposed into a curl-free component and a divergence-free component [16,17], our vector potential
can also be decomposed in this way: A = A⊥+A‖, where A⊥ and A‖ represent the divergence-free
and curl-free parts respectively, such that ∇ · A⊥ = 0 and ∇ × A‖ = 0. Further, we know that
the divergence-free part of the vector potential A⊥ is gauge invariant [18]. Replacing the vector
potential in Eqs.(1.13a) and (1.13b) with its divergenceless component, we can then obtain the new
assigned orbital and spin angular momentum that are independent of the choice of gauge:

L =

∫ ∑

j

Ej(r×∇)A⊥j dV, (1.15a)

S =

∫
E×A⊥dV. (1.15b)

Applying this form of orbital and spin angular momentum to the beam in the Laguerre-Gaussian
modes, we obtain the orbital and spin angular momenta of ~l and ~σz respectively.

The gauge dependence is not the only question for the validity of the separation. The angular
momentum operators of matter obey the commutation relations

[
Ŝi, Ŝj

]
=
∑

k

i~εijkŜk, (1.16a)

[
L̂i, L̂j

]
=
∑

k

i~εijkL̂k, (1.16b)

[
Ĵi, Ĵj

]
=
∑

k

i~εijkĴk, (1.16c)

where Ŝi, L̂i and Ĵi are the ith components of spin, orbital and total angular momentum operators
respectively. After quantisation of the divergence-free part of the vector potential A⊥, van Enk and
Nienhuis found that the components of the assigned spin angular momentum mutually commute [19],

[
Ŝi, Ŝj

]
= 0. (1.17)

This is also the case for the components of the operator L̂. This implies directly that neither the
operators Ŝ or L̂ can be interpreted as a true angular momentum. They also show that the operators
L̂ and Ŝ do not commute to each other, which is unlike the case of orbital and spin angular momentum
of matter particles. The total angular momentum Ĵ is the sum of L̂ and Ŝ. However, the components
of the operator Ĵ obey the commutation relation given in Eq.(1.16c). Therefore, it is only the total
angular momentum that is a true angular momentum of light.

Another way to test whether L̂ and Ŝ are true angular momenta is to test whether they are
rotational generators. The spin angular momentum is expected to be the generator that rotates
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the orientations of the fields but does not change the field amplitudes, while the orbital angular
momentum rotates the amplitudes but has no effect on the field orientations. By introducing a
vector θ, the direction of which is the same as the rotation axis and the magnitude of which is
the angle of rotation and assumed to be very small (|θ| � 1), if L̂ and Ŝ are rotational generators
that correspond to orbital and angular momentum operators the transformation of the electric field
generated by θ · L and θ · S are respectively expected to be [20]

E→ E
′

= E− θ · (r×∇)E, (1.18a)

E→ E
′

= E + θ ×E. (1.18b)

However, it is straightforward to verify that the transformed electric fields are unphysical by showing
that they are not divergence-free:

∇ · (E− θ · (r×∇)E) = −θ · Ḃ, (1.19a)

∇ · (E + θ ×E) = θ · Ḃ. (1.19b)

In general, the scalar product θ · Ḃ is not zero, which violates the transverseness of free electro-
magnetic fields. In the same manner, the transformed magnetic fields violate the second Maxwell
equation, ∇ · B′ 6= 0. This means it is impossible to only rotate the coordinates without rotating
the direction of the electromagnetic field by the same angle or vice versa. In other words, it also
indicates that the true rotation generator is the operator Ĵ. However, this result does not mean
that the assigned orbital and spin angular momenta, L̂ and Ŝ, in Eqs.(1.15), are unphysical as the
transformed electric fields they generate are

E→ E
′

= E− [θ · (r×∇)E]
⊥
, (1.20a)

E→ E
′

= E + [θ ×E]
⊥
, (1.20b)

which are physical and satisfy Maxwell equations.
To summarise this section, even though neither assigned orbital L nor spin S in Eq.(1.15) is a true

angular momentum, they are measurable and meaningful as confirmed by many experiments [21–25].
For example, in optical tweezers, a trapped object is rotated about the optical axis if the focused
beam having nonzero orbital angular momentum and also rotated about its own axis if the beam is
circularly polarised as depicted in figure 1.1 [24, 25]. They also correspond to two different distinct
symmetries for free electromagnetic fields. This indicates that they are separately conserved [14,26].

1.4 Optical vortex generation

In this section, we will review the technologies that have been used to generate laser beams that
carry orbital angular momentum. There are several approaches that have been proposed [27–35],
but we will focus on the approaches that are popularly employed in experiments.
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Figure 1.1: An optical tweezer uses a highly focused Laguerre-Gaussian beam to trap an object. The
object is rotated about the beam axis due to transfer of orbital angular momentum (OAM), while
the spin angular momentum transfer causes the rotation about its own axis.

s

h0

↵

✓

Figure 1.2: The figure shows the spiral phaseplate. At the radius r, the local slope is θ, and it
deflects an incident light ray at this radius by an angle α.

1.4.1 Spiral phaseplates

A spiral phaseplate is an optical element that adds an azimuthal term exp(ilφ) to the transmitted
beam of an incident Gaussian beam [27,28]. The structure of spiral phaseplates is given in figure 1.2.
Its thickness depends on the azimuthal position φ so that their relation can be written as

Thickness = h0 +
sφ

2π
, (1.21)
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where the step height is given by s = lλ/(n−1) when λ is the wavelength of the incident beam and l is
the desired topological charge of the transmitted beam. With simple geometrical optics analysis, we
can straightforwardly show that the phase plate can give us the transmitted photons with an orbital
angular momentum of ~l per photon as follows. Considering the ring of radius r, as depicted in the
figure, the local slope of the spiral surface of the phase plate given by θ ≈ (sδφ/2π)/(rδφ) = s/(2πr),
where θ is small. We can then use Snell’s law for small angles to calculate the deflected angle α of
the incident ray at the distance r from the optical axis, which is

(θ + α) ≈ nθ, (1.22)

where n represents the refractive index of the phaseplate. The deflected angle of the transmitted light
ray at the distance r is approximately α ≈ (n − 1)s/2πr. This result indicates that if the incident
beam has a linear momentum of p = h/λ per photon, after refraction, the linear momentum is then
deflected to the azimuthal direction by pφ ≈ hα/λ. This means the orbital angular momentum of
the transmitted beam per photon is

L = rpφ ≈ ~
s(n− 1)

λ
= l~. (1.23)

With the structure of the spiral phase plate, we can see that the optical path length of each inci-
dent ray increases with the azimuthal position. Therefore, the path difference introduces the phase
difference, and the transmitted beam has the helical wavefront with the phase structure exp(ilφ).

1.4.2 Computer generated hologram

Figure 1.3: The pattern of a binary hologram for generating a light beam with l = ±1 from a
Gaussian beam.

The other familiar method to produce a light beam possessing orbital angular momentum is
to use a computer generated hologram. The main idea of this method is simple as demonstrated
below. The hologram is the recording of the interference pattern between the field of interest and
a simple reference field such as the interference pattern of a Laguerre-Gaussian beam and a plane
electromagnetic wave [29]. A Laguerre-Gaussian mode, from Eqs.(1.5) and (1.6), when p index is set
to be zero, traveling along the z axis, can be approximately expressed as

E0l = E0(r/w(z))n exp[−r2/w(z)2]eilφeikzr
2/2Rei(kz+Φ). (1.24)
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where R = (z2
R + z2) and Φ = (2p+ |l|+ 1) tan−1(z/zR). Then, we suppose that the reference field

is a plane wave with its wave vector lying in the xz-plane

Eref = R0eikxx+ikzz, (1.25)

and we let these two fields interfere on a screen in the xy-plane. The intensity profile on the screen
at z = 0 becomes

I =
∣∣R0eikxx + E0(r/w0)n exp[−r2/w2

0]eilφ
∣∣2

=R2
0 + E0(r/w0)2ne−2r2/w2

0 + 2R0E0(r/w0)ne−r
2/w2

0 cos(kxx− lφ). (1.26)

The last term exhibits the interference pattern on the screen. Then, a hologram that records this
pattern can reconstruct the original beam and its complex conjugate when illuminated by a plane
wave or a Gaussian beam. To show how this works, we simplify the pattern by neglecting the
variation of the amplitudes of these fields but still keep the feature of the interference pattern. The
hologram then has the spatially varying transmissivity described by

T =
1

2
(1− cos(kxx− lφ)). (1.27)

If a Gaussian beam propagating along the z-axis illuminates the hologram, the transmitted field will
be

ET = TA0e−r
2/Ω2

0 , (1.28)

where A0 is the central amplitude of the beam and Ω0 is the size of the spot on the screen. The
transmissivity in Eq.(1.27) then gives

ET = (A0/2)e−r
2/Ω2

0 − (A0/4)e−r
2/Ω2

0ei(kxx−lφ) − (A0/4)e−r
2/Ω2

0e−i(kxx−lφ). (1.29)

This means we will obtain a field with the azimuthal phase dependent term exp(ilφ) and its complex
conjugate at the first order diffraction angles θ = ± sin−1(kx/k), when k is the amplitude of the
wave vector of the incident beam that illuminates the hologram. This indicates that the beams at
the first order of diffraction possess orbital angular momentum of ±~l per photon. The problem is
that it is not practical to create a hologram with a sinusoidal pattern of the transmissivity. A binary
hologram with square-wave variation of transmissivity, however, can still produce the transmitted
beams which have the azimuthal phase dependent terms. The transmissivity function of the binary
hologram can be expressed as

T =
1

2
−
∞∑

n=1

sinc(nπ/2) cos[n(kxx− lφ)]. (1.30)

The appearance of the hologram is similar to a grating with a defect in the shape of a fork as
illustrated in figure 1.3. This type of binary holograms sometimes is called a fork hologram. The
transmissivity function implies that the output field will contain terms of the following form

En = (A0/4)sinc(nπ/2)e−r
2/Ω2

0ein(kxx−lφ), (1.31)

and their complex conjugates. Each nth term corresponds to the nth-order diffracted beam which
has orbital angular momentum of n~l per photon.
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1.4.3 Mode converter

Normal laser light usually has the transverse amplitude distribution described by a product of Her-
mite polynomials Hn(x)Hm(y), which implies that a conventional laser is normally in Hermite-
Gaussian modes instead of Laguerre-Gaussian ones [8]. The mode converter scheme is used to
convert a Hermite-Gaussian mode into a Laguerre-Gaussian mode by using the strong relation be-
tween these two modes. A Laguerre-Gaussian can be decomposed into a superposition of a set of
Hermite-Gaussian modes of the same order as [8, 30]

uLG
nm(x, y, z) =

N∑

k=0

ikb(n,m, k)uHG
N−k,k(x, y, z). (1.32)

with

b(n,m, k) =

(
(N − k)!k!

2Nn!m!

)1/2
1

k!

dk

dtk
[(1− t)n(1 + t)m]

∣∣∣∣
t=0

,

where the radial index p and the topological charge l of a Laguerre polynomial Llp is obtained by
p = min(n,m) and l = m − n. On the other hand, a Hermite-Gaussian mode whose principal axes
are rotated by π/4 with respect to the (x, y) axes can be decomposed in the same way as

uHG
nm

(
x+ y√

2
,
x− y√

2
, z

)
=

N∑

k=0

b(n,m, k)uHG
N−k,k(x, y, z). (1.33)

For example, we find

uLG
01 (x, y, z) =

uHG
10 + iuHG

01√
2

,

uHG
01

(
x+ y√

2
,
x− y√

2
, z

)
=
uHG

10 + uHG
01√

2
. (1.34)

These two decompositions have exactly the same coefficients b(n,m, k) but different internal phases.
To convert them from one to the other, we need to rephase the terms in the decomposition, which
could be done using the fact that the Gouy phase, ψ(z) = tan−1(z/zR), of each Hermite-Gaussian
mode in the decomposition changes differently when the beam is focused. This means there is a way
to arrange cylindrical lenses to achieve this goal. With the calculation given in [30], two cylindrical
lenses separated by f

√
2, where f is the focal length of the two lenses, as shown in figure 1.4, will add

a relative phase difference between two components of the diagonal Hermite-Gaussian or Laguerre-
Gaussian mode of π/2. Therefore, the diagonal HG mode will be converted into the LG mode when
it goes through the two cylindrical lenses. As the orbital angular momentum of the beam changes,
the mode converter should feel a torque acting on it when the photons pass through so that the total
angular momentum of the light and the converter is conserved.

1.5 Measurement of orbital angular momentum

As mentioned, the orbital angular momentum of light is measurable, and there are several schemes
to do so [36–42]. However, we will focus on two commonly employed schemes whose underlying ideas
are clear and simple to understand as follows.
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Figure 1.4: This arrangement of two cylindrical lenses can be used to convert a diagonal HG beam
into an LG beam or vice versa. The dashed line represents the propagation of the beam in the other
transverse direction.

1.5.1 Computer generated hologram

The generated hologram we discussed previously can be used not only to generate an optical beam
with orbital angular momentum but also to measure it. The idea is simple and straightforward.
Let us consider again Eq.(1.27). When we illuminate the hologram with a beam with a topological
charge l′, the transmitted field will be

ET =
1

2
(1− cos(kxx− lφ))A0e−r

2/Ω2
0eil

′φ

=(A0/2)e−r
2/Ω2

0eil
′φ − (A0/4)e−r

2/Ω2
0ei(kxx−(l−l′)φ)

− (A0/4)e−r
2/Ω2

0ei(kxx−(l+l′)φ). (1.35)

This means by picking up the right hologram such that l = l′ we will observe the fundamental
Gaussian beam at the first order diffraction. We note that it is only the fundamental Gaussian mode
that can be coupled with a mono mode optical fibre [36]. We can see that even though the hologram
can be used to measure orbital angular momentum of individual photons it can only test whether
the beam is in a particular Laguerre-Gaussian mode or not [36,37].

Moreover, a hologram can also be used to measure a superposition of orbital angular momentum
states between l = 0 and l an arbitrary integer. The idea actually begins from the fact that we can
use a hologram to create such a state as well. Recall that in the previous discussion, we can use a
hologram to generate a beam with orbital angular momentum from a Gaussian beam if we illuminate
the hologram in the way that the dislocation of the hologram is at the center of the beam waist.
Vaziri and colleagues found that by displacing the dislocation of the hologram from the center of
the beam a superposition state is created [43]. The reverse process is also realisable and practical.
The displaced hologram can also be used to measure a superposition state in that it converts the
superposition state into a Gaussian beam, which can be coupled with an optical fibre and detected.
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Figure 1.5: The Mach-Zehnder interferometer with a Dove prism in each arm, such that one Dove
prism is rotated with respect to the other. Optical beams with odd and even topological charge are
sorted to emit into different ports.

1.5.2 Interferometric mode sorter

The main idea relies on the phase shift of a Laguerre-Gaussian mode when a beam is rotated so that
the beam with azimuthal term eilφ will be changed to be eil(φ+α) when it is rotated by α [44]. While
a non-rotated Dove prism gives a non-rotated, reflected image, a Dove prism rotated by an angle
of α/2 gives an α-rotated, reflected image. This means we can use rotated Dove prisms to rotate
our outgoing beam. With this fact, we use a Mach-Zehnder interferometer such that there is a Dove
prism in each arm of the interferometer, and one of the Dove prisms is rotated by an angle of α/2
with respect to the other. The relative phase difference of the beams in these two arms becomes
∆ψ = lα. This means ∆ψ = lπ when the Dove prism in one arm is rotated by an angle α/2 = π/2

with respect to the other arm. By correctly adjusting the path length of the interferometer, the
beams with odd and even values of the topological charge l go to different ports [38]. As shown in
figure 1.5, if the input beam has even (odd) l it will go to the port A1 (B1). After the port A1, we
add another interferometer in which the angle between the Dove prisms is α/2 = π/4 so that the
relative phase difference between each arm in the second stage is ∆ψ = lπ/2. Thus, the photons in
with l = 4n and l = 4n + 2, where n is an integer, go into the port A2 and B2 respectively. On
the other hand, after the port B1, we introduce a hologram to increase the topological charge of the
odd-l photons by 1 and add the second stage interferometer with the angle α/2 = π/4 so that we
can sort the odd-l photons in the same way as the even-l photons. With cascading Mach-Zehnder
interferometers with different relative rotation angles of the Dove prisms, as shown in figure 1.6, we
can measure the angular momentum of a given beam.
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Figure 1.6: A cascade of interferometers can be used to measure the orbital angular momentum of
a given beam. The boxes with different colours represent the interferometers of the form shown in
figure 1.5 with different relative angles between the Dove prisms. In the first stage, we use the phase
shift of α = π in order to sort the beams with even ls into port A1 and odd ls into port B1. The odd-l
photons then travel through a ∆l = 1 hologram, and this make their topological charges increase by
1 become even-l photons. In the second stage, we introduce a phase shift of α = π/2, in order that
it sorts even photons into even and odd multiples of 2. The ∆l = 2 holograms are introduced before
the third stage in order to sort the photons further. In this figure we use the solid black lines to
represent generated holograms. We also show the paths that the photons with different ls take. For
example, for the beam with l = 8n, where n is an integer, is sorted into port A3.

1.6 Orbital angular momentum and spontaneous parametric

down conversion

Entanglement is one of the most important properties of quantum theory as it cannot be described
classically. For example, the experimental tests of Bell’s inequality prove that nature is fundamentally
quantum and does not obey local realism. There are still many aspects of entanglement that we do
not yet understand. It also plays an important role in several applications of quantum information
and quantum imaging, such as quantum cryptography, teleportation, and ghost imaging [45–54].

Spontaneous parametric down-conversion (SPDC) is a nonlinear interaction between light and
matter that converts one photon with higher energy into a pair of photons with lower energy in
accordance with energy and momentum conservation. The output photons are spatially separated
and are usually called the signal and idler. They are entangled in their transverse positions, time
of arrival at the respective detector, and polarisation states [55–59]. There are several experiments
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showing that they are also entangled in their orbital angular momentum [36,60,61]. We will review
Ref. [10] which theoretically shows that the correlation of orbital angular momentum of a photon
pair and the conservation of the orbital angular momentum in an SPDC process arise from phase
matching in the nonlinear crystal.

Let Φ0,1,2(x) be normalised transverse mode functions where x is a transverse position vector.
The subscripts 0, 1 and 2 indicate quantities and operators of the pump, signal and idler photons
respectively. The two-photon states of the signal and idler are created by applying the creation
operators â†1(k1)â†2(k2) to the vacuum state |0〉. The transverse components of the wave vector of
the signal, idler, and pump photons are denoted by k1, k2, and k0 respectively. The polarisations of
the signal and idler photons are determined by the nonlinear electric susceptibility of the crystal. In
the case of type I down-conversion, the polarisations of the signal and idler photons will be identical,
where their direction is determined by the polarisation of the pump. For type II down-conversion,
the polarisations of the two down-converted photons are perpendicular to each other. With specific
setups, this can give polarisation entanglement in each pair of signal and idler photons. Assuming
that the polarisation states satisfy the condition indicated by the nonlinear susceptibility of the
nonlinear crystal, the phase matching between the pump and the emitted photons is described by a
sinc function of the transverse wave vectors Πj=x,ysinc [(k0 − k1 − k2)Lj/2], where Lj is the length of
the crystal in the transverse direction of propagation. Supposing that the transverse dimension of the
crystal is sufficiently large, much larger than the photon wavelengths, the phase-matching condition
then can be approximated by a two-dimensional delta function δ2(k0 − k1 − k2). Moreover, the
absolute difference of the transverse wave vectors of the signal and idler photons, |k1 − k2|, cannot
be arbitrarily large. This is because a large value of |k1 − k2| results from large values of k1 and/or
k2 which are proportional to the signal and idler frequencies, ω1 and ω2. These two frequencies
are constrained by conservation of energy ω0 ' ω1 + ω2. This means the constraint of the absolute
difference of the transverse wave vectors is |k1 − k2| ≤ 2π/λ, where λ is the wavelength of the
pump photon. We can then define ∆(k1 − k2) as a geometric function such that it is normalised,∫
dk∆(k) = 1, and vanishes for large values of its argument so that it is in agreement with the

energy conservation.
The two-photon state of the signal and idler then can be expressed as

|Ψ〉 =

∫
dk0

∫
dk1

∫
dk2Φ0(k0)â†1(k1)â†2(k2)

×∆(k1 − k2)δ2(k0 − k1 − k2)|0〉. (1.36)

We omit the polarisation states of the two down-converted photons in order to focus only on their
transverse modes. As the polarisation states are omitted and this equation describe the phase-
matching condition, this equation holds for both type I and type II down-conversions. With Fourier
transformation, the two-photon state in the position representation is

|Ψ〉 =

∫
dx1

∫
dx2Φ0

(
x1 + x2

2

)
∆(x1 − x2)â†1(x1)â†2(x2)|0〉. (1.37)

The normalised photon states of the signal and idler, in modes Φ1 and Φ2 are given by

|Ψ1,2〉 =

∫
dx1,2Φ1,2(x1,2)â†1,2(x1,2)|0〉. (1.38)
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In each photon pair, the probability of detecting the signal photon in the mode Φ1 and the idler
photon in the mode Φ2 is

P (Φ1,Φ2) = |〈Ψ1,Ψ2|Ψ〉|2

=

∣∣∣∣
∫
dx1

∫
dx2Φ∗1(x1)Φ∗2(x2)Φ0

(
x1 + x2

2

)
∆(x1 − x2)

∣∣∣∣
2

. (1.39)

By averaging this expression over all possible signal modes, the probability that the idler photon is
in the mode Φ2 is given by

P (Φ2) = |〈Ψ2|Ψ〉|2

=

∫
dx1

∫
dx2

∫
dx′2Φ2(x′2)Φ∗2(x2)Φ∗0

(
x1 + x′2

2

)

× Φ0

(
x1 + x2

2

)
∆∗(x1 − x′2)∆(x1 − x2), (1.40)

A similar expression for the probability to find the signal photon in the mode Φ1 is obtained in the
same way.

The function ∆(k) is a very broad and it follows that the function ∆(x) is very narrow as it is
the Fourier transform of ∆(k). Therefore, the mode functions in Eqs.(1.39) and (1.40) vary very
little in the region that the function ∆(x) does not vanish. We can then approximate Eqs.(1.39) and
(1.40) as

P (Φ1,Φ2) =

∣∣∣∣
∫
dy∆(y)

∣∣∣∣
2 ∣∣∣∣
∫
dxΦ∗1(x)Φ∗2(x)Φ0(x)

∣∣∣∣
2

(1.41)

P (Φ2) =

∣∣∣∣
∫
dy∆(y)

∣∣∣∣
2 ∫

dx |Φ∗2(x)Φ0(x)|2 (1.42)

The state of the idler photon in the mode Φ2 for a given pump mode Φ0 and detected signal mode
Φ1 is

|Ψ2〉 =〈Ψ1|Ψ〉

=

∫
dy∆(y)

∫
dx2Φ∗1(x2)Φ0(x2)â†2(x2)|0〉, (1.43)

where we use |Ψ〉 and |Ψ1〉 from Eqs.(1.36) and (1.37) and the fact that the function ∆(x) is very
narrow. Comparing Eqs.(1.38) and (1.43), we find that the mode function of the idler photon can
be expressed as the product of the pump mode and the signal mode:

Φ2 =

(∫
dy∆(y)

)
Φ0Φ∗1. (1.44)

We substitute the mode functions Φ0,1,2 in the form of Laguerre-Gaussian modes given in Eq.(1.6)
and compare the azimuthal phase dependent terms. We find that

l0 = l1 + l2, (1.45)

where li are the topological charges of the beams. This automatically indicates the correlation of the
orbital angular momentum of the signal and idler photons and ensures the conservation of angular
momentum. The coincidence probability is found to be proportional to a sinc function

P (Φ1,Φ2) ∝ sinc2 [(l1 + l2 − l0)π] , (1.46)
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which arises from the integration of the product of the transverse Laguerre-Gaussian modes, which
are substituted as Φ0,1,2 in Eq.(1.41), over the azimuthal phase φ. The probability P (Φ1,Φ2) is then
maximal when the orbital angular momentum is conserved and vanishes when (l1+l2−l0) is a nonzero
integer. We note that there exist optical beams with fractional values of l. However, they are not
structurally stable and cannot maintain their amplitude distributions while they are propagating.
The relation of the orbital angular momentum of the pump, signal and idler photon, which is shown
in Eq.(1.45), is solely obtained by the phase-matching condition for the Laguerre-Gaussian modes.



Chapter 2

Orbital angular momentum in

quantum communication and

processing

2.1 Introduction

Light has been used for communication for a long time. For example, signal lamps are visual
signalling devices to produce the Morse code, and photophones (radiophones) encode the sound of
the speakers with light beams and transmitted to the receivers’ phone. Nowadays, we use optical
fibres to transmit information from one to another distant place. In quantum information, light is
used as an information carrier between quantum communication systems [49, 62]. Its polarisation
state can be encoded as one bit of information. For example, horizontal and vertical polarisations
traditionally represent 0 and 1 of digital information respectively. The polarisation of light does not
need to be horizontal or vertical only. It can be left or right circular polarisation or a superposition
of any two orthogonal polarisation states. This means a polarisation state also serves as a qubit in
quantum communication. There are various alternative competing physical systems that nowadays
have been used as qubits, such as superconducting Josephson junctions [63], quantum dots [64], and
trapped cold ions [65], which provide many feasible quantum information applications. However, the
generation, manipulation and detection of polarisation states are simple and inexpensive compared
to the other physical system. A well-known quantum communication protocol that used polarised
light as the information carrier is BB84 which is a quantum key distribution scheme proposed by
Bennett and Brassard [62].

As discussed in the previous chapter, orbital angular momentum (OAM) of light is the component
of angular momentum depending on the beam profile which is characterised by the azimuthal phase
dependence exp(ilφ). This phase dependence is founded in Laguerre-Gaussian or Bessel modes of
optical beams, and each of these mode families is an infinite and orthogonal basis set. Therefore,
OAMs can be realised as higher-dimensional quantum systems: so-called qunits or qudits. Higher-

17
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dimensional systems can provide some applications of quantum information that are superior to
two-dimensionals such as an increase of coding density and higher security margin [66]. With higher
dimensions, more information can be encoded in each system. For example, for binary systems, we
need 8 bits of information to encode the standard ASCII characters, while we only use 5.048 trits to
do so in trinary systems. In this chapter, we continue from the previous chapter by showing some
examples of quantum information protocols that employ OAM degrees of freedom.

The structure of this chapter is given as follows. In section 2.2, we give a brief discussion on
a secret key algorithm in cryptography. Then, we review three quantum information protocols in
sections 2.3-2.5.

2.2 Information security and cryptography

The main purpose of cryptography is to prevent unpermitted parties to access secret information.
Secure communication is very important in recent days. A leaking trade secret, for example, may
lead to the collapse of a big company. In wartime, this could decide the results of battles or even the
future of a kingdom. Even in our everyday life, cryptography is used to protect our money in the
banks, to shop online and to protect our data in social media. While information is more important
nowadays, in the modern computer age, the classical algorithm-based cryptography could be broken
more easily than ever. It is probably a matter of time before we need to employ a new scheme to
protect our precious information.

The simplest cipher that one might think of is the transposition, the so-called Caesarean cipher,
where all letters are shifted by a known (but secret) number of places in the alphabet [49]. For
example, if we decide the shift to be 1, then the letter A will be replaced by B, B→C, C→D,...,
Z→A in the message. With this cipher, the word PHYSICS is then replaced by a nonsense word
QIZTJET. However, it is fairly easy to decipher if the receivers know the amount and direction of
the shift as they just need to shift the letters back to the original. This cipher is really weak and
can be cracked by trying all 25 possible shifts until obtaining a readable and sensible message, but
it is the simplest cipher that uses a private-key cryptography system, a cryptographic algorithm
being used today. Its idea is as shown below. Alice wants to send a plaintext message (the secret
information) P to Bob. Both of them need to share a secret key K which is known to Alice and Bob
only. Alice then is able to use this key to generate a ciphertext C and sends it to Bob, and he can
use the same key to decipher the ciphertext into the original plaintext P. In this way, we can think
of the ciphertext C as a function of the plaintext and the key,

C = C(P,K), (2.1)

and the plaintext as the function of the ciphertext and the key,

P = P(C,K). (2.2)

In the transposition cipher that we have reviewed the key is the number of the shift. One can improve
this cipher by using a substitution cipher when a letter is randomly replaced by another letter so
that the secret key is rather difficult to find out as it has 26! ≈ 4 × 1026 possible keys. However, it
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A 8.2% J 0.1% S 6.3%
B 1.5% K 0.8% T 9.0%
C 2.8% L 4.0% U 2.8%
D 4.2% M 2.4% V 1.0%
E 12.7% N 6.7% W 2.4%
F 2.2% O 7.5% X 0.1%
G 2.0% P 1.9% Y 2.0%
H 6.1% Q 0.1% Z 0.1%
I 7.0% R 6.0%

Table 2.1: The approximate relative frequencies of the letter in English-language messages [49].

is still not sufficiently secure as each letter in the English language normally appears in a text with
different frequencies and some of them often come together such as "LL", "SS". The approximate
relative frequencies of English letters in the majority of messages are shown in table 2.1. This means
by checking the frequency of the letters appearing in the ciphertext together with the knowledge of
the English language, part of the secret message can be read.

As we are now living in the digital age, in which all the messages written in our computers or
digital gadgets are represented by strings of binary digits. The message may be encoded in a string
of bits by using the American Standard Code for Information Interchange, the so-called ASCII code.

Let us assume that the plaintext which Alice wants to send to Bob is encoded by the following
string of binary digits:

P = 1001110010110, (2.3)

and the secret key that Alice and Bob possess is

K = 1101001001110. (2.4)

Alice can then produce the ciphertext by modulo 2 addition and performing this addition bit by bit
between the given plaintext and the key as

P = 1001110010110, (2.5)

K = 1101001001110,

C = P ⊕K = 0100111011000.

She then can send this binary string to Bob. As Bob already has the secret key K, he can retrieve
Alice’s message perfectly by performing the modulo 2 addition between the obtained ciphertext and
the secret key as

C = 0100111011000, (2.6)

K = 1101001001110,

P = C ⊕ K = 1001110010110.
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C = 0100111011000

?

Alice Bob

Eve

C =0100111011000,

K =1101001001110,

P = C � K =1001110010110.

C =1001110010110,

K =1101001001110,

P = C � K =0100111011000.

Figure 2.1: The figure shows how Alice and Bob communicate securely by sharing a secret key, which
is a random binary string. In the figure, Alice sends a ciphertext to Bob with a mobile phone, and
Bob retrieves the original message with the secret key. Eve, on the other hand, cannot gain any
information from the sent message, if she does not have any information about the secret key.

In this way, Alice can send the message P to Bob securely by sending the ciphertext via a classical
communication channel as long as Eve, an eavesdropper, on the network does not have the secret key
K. This is because even if Eve is able to access the ciphertext C, she still cannot retrieve any sensible
information of the plaintext P without the key. The secret key K should be a random binary string
in the way that the digits 0 and 1 randomly appear in the string with the probability of 0.5. In this
case, the ciphertext C will directly inherit the randomness of the secret key, and, therefore, contain
no information about the plaintext unless the listener has the secret key K. This means to send the
messages securely, Alice and Bob need to be only two persons who have the key. The problem is
now changed from how to send a message securely to how to send the secret key securely or how to
produce the key that can only be accessed by the authorised parties and how we can employ the laws
of nature to do so. In the next sections, we will review some work that employs quantum mechanics
of OAMs to send or produce the secret key between two parties securely.
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2.3 Quantum key distribution with 3-state systems

This protocol is an extension to BB84 for three dimensional systems proposed by Bechmann-
Pasquinucci and Peres [67]. They introduced four mutually unbiased bases as follows. The first
basis is a set of three orthogonal unit vectors: |α〉, |β〉 and |γ〉. The second basis is a discrete Fourier
transform of the first basis,

|α2〉 = (|α〉+ |β〉+ |γ〉)/
√

3, (2.7)

|β2〉 = (|α〉+ e2πi/3|β〉+ e−2πi/3|γ〉)/
√

3, (2.8)

|γ2〉 = (|α〉+ e−2πi/3|β〉+ e2πi/3|γ〉)/
√

3 (2.9)

Two remaining bases are of the forms

|α3〉 = (e2πi/3|α〉+ |β〉+ |γ〉)/
√

3, (2.10)

|β3〉 = (|α〉+ e2πi/3|β〉+ |γ〉)/
√

3, (2.11)

|γ3〉 = (|α〉+ |β〉+ e2πi/3|γ〉)/
√

3, (2.12)

and

|α4〉 = (e−2πi/3|α〉+ |β〉+ |γ〉)/
√

3, (2.13)

|β4〉 = (|α〉+ e−2πi/3|β〉+ |γ〉)/
√

3, (2.14)

|γ4〉 = (|α〉+ |β〉+ e−2πi/3|γ〉)/
√

3. (2.15)

This means if unit vectors |ej〉 and |eµ〉 belong to different bases the modulus of their inner product
satisfies |〈ej |eµ〉|2 = 1/3.

Similar to BB84, this protocol is given as follows. Alice randomly prepares one of these 12 states
and sends the quantum state to Bob. Bob then randomly picks one of the four bases to measure
the state. After that, Bob announces the basis he used, but not the result he obtained. Alice then
reveals whether the choice of bases that he used is correct or not. If Bob used the right basis, then
they share one trit of information: the information that is encoded by ternary digits (or trits) 0, 1
and 2. They discard the transmitted result if Bob chose an incorrect basis. The process is repeated
until Alice and Bob share long enough key. Then, they can sacrifice some of their shared trits to
check the security of their protocol. If the error rate is lower than the security threshold they can
keep the remaining key for their communication, otherwise they discard all the key and postpone
the protocol.

In the intercept/resend attack, Eve intercepts Alice’s particle, measures its state and resends it
to Bob. The probability that she picks the correct basis and does not disturb the state of the particle
is only 1/4, while she is more likely to pick the wrong basis and causes the maximal disturbance
to the transmission with the probability of 3/4. This disturbance produces Bob’s error rate of 2/3

(the probability that Bob chooses the correct basis but obtains wrong outcomes) in the identification
stage. This means, with 3-state systems, Eve obtains less information and produces a higher error
rate. Thus, it is easier for Alice and Bob to detect the existence of Eve.

The three orthogonal states, |α〉, |β〉 and |γ〉 can be realised by the OAM states with different
orbital angular momentum such as l = 0, l = 1 and l = −1.
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2.4 Quantum key distribution with entangled qutrits

In this section, we review the work of Gröblacher et al. [68]. They use three OAM states of photons
with the radial index p = 0 to encode qutrits. The maximally entangled state of down-converted
photons is used as the entangled resource of the protocol,

|Ψ〉 =
1√
3

(|0〉|0〉+ |1〉|2〉+ |2〉|1〉), (2.16)

where |0〉, |1〉 and |2〉 represent the states of the down-converted photons in the Laguerre-Gaussian
modes with l = 0, l = 1 and l = −1 respectively. This maximally entangled state can violate the
following three-dimensional Bell inequality [69,70],

S3 = P (A1 = B1) + P (A2 = B1 − 1) + P (A2 = B2) + P (A1 = B2)

− P (A1 = B1 − 1)− P (A2 = B1)− P (A2 = B2 − 1)

− P (A1 = B2 + 1) ≤ 2, (2.17)

with

P (Aa = Bb + k) =

3∑

j=1

P (Aa = j, Bb = (j + k) mod 3) (2.18)

being the probabilities that the measurement results Aa and Bb of two different observers Alice (A)
and Bob (B) are different by k mod 3. The observables A1 and A2 (B1 and B2) represent two
different measurements of the observer A (B). Different measurements can be realised by displacing
the centres of holograms differently to measure different superpositions of OAM states. The maximal
violation for the maximally entangled state |Ψ〉 is 4/(6

√
3− 9) ≈ 2.873.

The scheme of the protocol is as follows. Alice and Bob perform their measurements randomly
and independently so that A1, A2, B1 and B2 are the settings that maximise the violation of the
given inequality whereas A3 and B3 are the settings used to produce the secret key from the perfect
correlations. After obtaining a sufficiently long string of outcomes, Alice and Bob compare their
hologram settings. A part of the obtained data is used to check the violation of the Bell inequality
to examine the existence of Eve, an eavesdropper. Bob then announces his data publicly for the
Bell inequality check, and A determines the value of S3. In the case that S3 > 2, the key is secure
enough as an eavesdropper does not have enough useful information, and they can use a part of the
remaining data as the secret key. The experimental set up of the protocol is given in figure 2.2.

In the experiment, they used step motors to displace the individual holograms to measure super-
positions of the three OAM states. Their result shows that the Bell parameter S3 = 2.688 ± 0.171,
which is significantly larger than two. This implies the violation of local realism. The data of 150
trits were produced as the secret key with 14 trits as errors which correspond to the quantum trit
error rate of 9.3%. This indicates the possibility to have secure communication between two distant
parties. It is worthwhile to note that the state they used as the entanglement resource of the protocol
is not even maximally entangled.
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Figure 2.2: The diagram represents the experimental set up of the key-distribution protocol of
Gröblacher and colleagues [68]. An Ar+ laser pumps a BBO crystal in order to produce down
converted photons in the state given in Eq.(2.16). Two phase holograms in each down-conversion
path, mounted on step motors controlled by Alice’s and Bob’s computers, are used to transform
the maximally entangled qutrit state. After that, the photons then travel to the probabilistic mode
analyser consisting of beam splitters (BSs), analyser holograms, represented by green lines, single
mode fibres (SMFs) which are coupled with photon detectors (Ds). The probabilistic mode analysers
can distinguish among the three different OAM states. The detection signals are processed in two
logic units belonging to Bob and Alice. The cross-sync signals are used to identify the coincidences.
The processed value, being either 0, 1 or 2, is passed to the logics first-in-first-out buffer (FIFO)
before being read out by a computer.

2.5 Quantum Coin Tossing

The motivation for this protocol is that Alice and Bob have divorced, and they do not want to meet
each other. However, they need to make a decision on who can keep the dog, but they do not trust
each other and any third party to interfere. Thus, they decided to toss a coin and used telephones to
communicate the result. If the result is heads then Alice can keep the dog, otherwise, it will belong
to Bob. The problem is that how can Bob trust Alice’s result of tossing as Alice can always say that
the result is heads to win the game and he cannot even check that Alice says the truth.
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The coin tossing protocol is one of the novel cryptographic challenges where the problem is not
detecting or ruling out an eavesdropper but to communicate with a distant partner that cannot
be trusted. The applications of this protocol, for example, are mail certification, remote contract
signing, mental poker, etc. The classical version of this protocol is that Alice tosses a coin and then
locks it in a suitcase and sends it to Bob. After he receives the suitcase, he can somehow prove that
the coin has been tossed without seeing it and makes his bet. Alice then sends the key to Bob to
unlock the suitcase and check the result. In fact, however, there is no such classical protocol that is
secure against unrestricted cheating schemes if one of them is dishonest [71].

However, with the help of quantum mechanics in a three-dimensional Hilbert space, this type of
protocol is possible and has some security. Even though the following protocol is still not perfectly
secure, it limits the possibility that the cheater can win the game for certain without any risk of
being detected.

In the quantum coin tossing scheme [71,72], the classical suitcase is replaced by a three-dimensional
state. For Alice and Bob, the result of coin tossing is replaced by the random choice of one of two
orthogonal bases where each element of one basis is nonorthogonal to any state from the other. Alice
randomly selects a state from these two bases and send it to Bob. Once Bob receives the state, he
then makes his bet. At this stage, Bob can cheat by measuring the state. However, the measurement
result cannot tell him which state he possesses for sure. Once Alice announces her result and Bob
has not cheated, he can then check Alice’s honesty by measuring the state. Alice can lie, but there
is a reliable possibility that her cheat can be detected. This protocol has been proposed by Ambai-
nis [72] and implemented by Molina-Terriza et al [71]. Two sets of the four states that Alice can only
randomly pick up and send to Bob are given in table 2.2. Each set represents a different coin tossing
result. A state vector in one set is nonorthogonal to a state vector in the other set. This provides
the security against Bob’s dishonesty as, even he performs a measurement on the state he obtains,
his outcome cannot help him to decide which set that the state belongs to. On the other hand, each
of Bob’s bases comprises of three orthogonal states. The additional states in these bases are required
so that Bob can be able to detect Alice’s dishonesty with a reliable amount of probability.

The realisation of this protocol is given as follows. Alice produces a three-dimensional maximally
entangled state by a parametric down conversion process as given in Eq.(2.16). With different
encoding, the state is given by

|Ψ〉 =
1√
3

(|0〉A|0〉B + |1〉A|1〉B + |2〉A|2〉B), (2.19)

where, in this case, the states |1〉A and |1〉B represent the Laguerre-Gaussian beams with l = 1 and
l = −1 respectively. On the other hand, the states |2〉A and |2〉B are the Laguerre-Gaussians with
l = −1 and l = 1. The subscripts A and B identify the states of two entangled photons: the former
is kept by Alice and the latter is sent to Bob. Alice then makes a projection measurement on her
photon state. With the entanglement of the photon pair, she non-locally projects Bob’s state into
a particular state. She contacts Bob with a classical communication channel so that he can make a
bet. Alice then announces which state is the result of her measurement. Bob can measure his state
to verify her honesty. The coincidence measurement of the electronic signals from Alice and Bob is
required to check that they are working on the same pair of photons.
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Set Label Alice’s states Coin Bob’s bases Label

1

A11 (|0〉+ |1〉)/
√

2 Heads
(|0〉+ |1〉)/

√
2 B11

(|0〉 − |1〉)/
√

2 B12

A12 (|0〉 − |1〉)/
√

2 Heads
|2〉 B13

2

A21 (|0〉+ |2〉)/
√

2 Tails
(|0〉+ |2〉)/

√
2 B21

(|0〉 − |2〉)/
√

2 B22

A22 (|0〉 − |2〉)/
√

2 Tails
|1〉 B23

Table 2.2: The table shows Alice’s four possible states, and one of them is randomly chosen and
sent to Bob. These states are divided into two different sets, called 1 and 2. Each set represents a
different coin tossing result. Bob’s two bases of measurement for checking Alice honesty are shown.

BBO

Bob

Alice

Set 1 Set 2

A11

A12

A21

A22

B13

B12

B11
B23

B22

B21

Figure 2.3: The experimental realisation of the coin tossing protocol given in [71]. In front of all
detectors, there are displaced holograms that are used to measure the OAM states of the down-
converted photons in the bases given in table 2.2.

The experimental set up of this protocol is shown in figure 2.3. The experiment reports that Bob
wins in half of the throws. The failures are only around 6% of the throws due to misalignments.
With this 6% noise, the protocol is proved to be more secure than qubit protocols, even if they are
noiseless [71,73], where the level of security is quantified by the trace distance D and the fidelity F
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between the density matrices of the heads and tails states: D + F 2.
If Alice just lies, for example, she knows that the state (|0〉 + |2〉)/

√
2 is sent and Bob bet on

tail, which is correct answer, but she still insists that it is head with the state (|0〉 + |1〉)/
√

2, then
the probability that Bob can detect Alice’s lie is 75%. The possible way that Alice can cheat with a
higher probability of not being detected is as follows. She prepares a classical mixture between the
states (|0〉 − |1〉)/

√
2 and (|0〉 + |2〉)/

√
2 which represent the classical mixture of head and tail and

sends it to Bob. Once Bob makes his bet, she can always say that it is the opposite. For example, if
Bob says it is head, she may say that the answer is tail (|0〉+ |2〉)/

√
2. Bob then checks in the tail

basis. The probability that her dishonesty is not be detected is 62.5%. However, it is really difficult
for her to win without being detected in a row. As we can see, the protocol is not perfectly secure,
but it limits the ability of the two involved parties to cheat.
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The χ states

3.1 Introduction

As we know, entanglement is one of the fundamental features that distinguish between classical
and quantum theories. It is also the main resource of various quantum computation and quantum
information processing tasks including quantum dense coding, quantum cryptography and quantum
teleportation [45–52]. The bipartite entanglement is the obvious example used to demonstrate the
nonclassical effects and simple quantum information protocols as it is simple and well understood.
However, for multipartite entanglement, there are many aspects that are still unclear as there is no
trivial way to extend our understanding of the bipartite case to this case directly [74–77]. It is still
one of the active areas of research in the field. Even though we do not understand it well yet, there is
a lot of research proposing quantum information protocols that employ the entanglement properties
of such states, such as universal error correction [78], quantum secret sharing [79], telecloning [80],
and deterministic secure quantum communication [81].

Assume that there are two N -qubit states |ψ〉 and |φ〉 shared among N parties, and each party
can only access one qubit. A local protocol can be defined as a series of rounds of local operations and
communication such that, in each round, an involved party can locally manipulate its local subsystem
and classically communicate the result of its operation, if the operation includes a measurement, to
the rest of the parties. The decision about the operations in the subsequent rounds depends on
the previous announced results. This means the protocol splits into several branches. We then say
the states |ψ〉 and |φ〉 are equivalent under stochastic local operations and classical communication
(SLOCC) if and only if there exists a local protocol that least one of its branches can convert one
of these states into another [82]. Any two entangled states are different classes, if they cannot
be converted from one to the other via SLOCC protocols or we can say that they are SLOCC
inequivalent.

There are two classes of well-known genuine multipartite entangled states: the Greenberger-
Horne-Zeilinger (GHZ) state

|GHZ〉N =
1√
2

(
|0〉⊗N + |1〉⊗N

)
, (3.1)

27
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and the Werner (W) state

|W〉N =
1√
N

N∑

i=1

|0〉⊗(i−1)|1〉|0〉⊗(N−i), (3.2)

where we use the short hand of the tensor product, for example |0〉⊗3 = |000〉 = |0〉 ⊗ |0〉 ⊗ |0〉 [49].
In the case of four-qubit states, these two states can be written explicitly as

|GHZ〉 =
1√
2

(|0000〉+ |1111〉)abcd , (3.3)

and

|W〉 =
1

2
(|0001〉+ |0010〉+ |0100〉+ |1000〉)abcd . (3.4)

As the GHZ and W states are SLOCC inequivalent [77, 82], it means they undoubtedly have dif-
ferent entanglement properties. For example, the Bell-type inequality is maximally violated if the
system is in the GHZ state [83,84]. A. Karlsson and M. Bourennane proposed the open-destination-
teleportation protocol by using the GHZ state as the entanglement resource [85]. On the other hand,
the entanglement of the W state is robust against a particle loss as its reduced state is not separable
and this property is not valid for the GHZ state [86].

A new type of four-qubit entangled states has been introduced by Yeo and Chua in 2006 [87]. It
is called χ-type states which have the following forms:

|χ00〉 =
1√
2

(|ζ0〉+ |ζ1〉)abcd, (3.5)

|χij〉 = σi ⊗ σj ⊗ I ⊗ I|χ00〉, (3.6)

where

|ζ0〉 ≡ 1

2
(|0000〉 − |0011〉 − |0101〉+ |0110〉), (3.7)

|ζ1〉 ≡ 1

2
(|1001〉+ |1010〉+ |1100〉+ |1111〉). (3.8)

We use σj to represent the Pauli matrices such that σ1 = σx, σ2 = σy, and σ3 = σz. The two-
dimensional identity operator is denoted by I = σ0. These states cannot be transformed into the
GHZ and W states or the other classes of four-qubit genuine entangled states via SLOCC. However,
to the best of our knowledge, these states have been first introduced publicly in 2002 by Lee et al. [88],
but at that time they did not report that these states are a new type of genuine entangled states. In
the work of Lee et al, they show that these states can be obtained by a nonlocal transformation of
the tensor product of the EPR states: |Φ+〉a′b′ ⊗ |Φ+〉c′d′ , where |Φ+〉 = (|00〉+ |11〉)/

√
2, and can

be used as a teleportation channel. The properties of this type of states and its application will be
discussed in the following sections.

We summarise this introduction as follows. The χ-type states are proved to be a new class of
four-qubit genuine entangled states. Their entanglement properties are distinct from that of the
GHZ and W states as discussed in the following section.

The structure of this chapter is as follows. We discuss the entanglement properties of the χ-type
states compared to that of the GHZ and W states in section 3.2. We evaluate the von Neumann
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mutual information between two pairs of particles in the states and then demonstrate the violation
of Bell inequalities. The entanglement robustness against a particle loss is discussed at the end of
section 3.2. In section 3.3, we give some examples of quantum information protocols that employ the
χ-type states: faithful quantum teleportation of two-qubit states, quantum dense coding, quantum-
information splitting, and deterministic secure quantum communication.

3.2 Entanglement properties of χ states

This section is devoted to discussions about the entanglement properties of the χ states when com-
paring this class of states with the other well-known four-qubit genuine entangled states. Some
properties that have been briefly discussed in the introduction are shown explicitly in this section.

3.2.1 How much entanglement do the χ-type states have?

As mentioned, the entanglement measure of multipartite states is not trivial as the knowledge that we
have for the case of bipartite entanglement cannot be applied directly to the multipartite case. One
of the standard ways to measure the entanglement of a multipartite system is to bisect the particles
in the state into two subsystems and using the entanglement measure to quantify the entanglement
between these two subsystems [75, 89]. In the case of a four-qubit system, there are three different
ways to equally bisect the involved particles. We use the von Neumann mutual information to
quantify the entanglement between each pair of particles with von Neumann entropy [49]:

I(X : Y ) = EA + EB − EAB, (3.9)

where EA, EB and EAB are the entropy of the subsystems A and B and the total entropy of the
system, and the von Neumann entropy is of the form

E = −Tr (ρ log2 ρ) . (3.10)

For example, the two-qubit reduced states of the four-qubit GHZ state, given in Eq.(3.3), are

ρxy =
1

2
(|00〉〈00|+ |11〉〈11|), (3.11)

where the subscripts x and y represent all possible pairs of particles in the state. As the state is
pure, the last term in Eq.(3.9) does not contribute. Therefore, the mutual information of each pair
in the GHZ state is given by

I(ab : cd) = I(ac : bd) = I(ad : bc) = Eab + Ecd = log2 2 + log2 2 = 2. (3.12)

In the case of the W state, the two-qubit reduced states are of the form

ρxy =
1

4
(|10〉+ |01〉) (〈10|+ 〈01|) +

1

2
|00〉〈00|. (3.13)

This form of the density matrices is diagonal in the following orthonormal basis:

DW ∈
{
|00〉, (|10〉+ |01〉)/

√
2, (|10〉 − |01〉)/

√
2, |11〉

}
. (3.14)
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The two nonzero diagonal elements of the density matrices in this basis are equal with the value of
1/2. The mutual information of each pair in the W state is then exactly the same as the case of the
GHZ state as

I(ab : cd) = I(ac : bd) = I(ad : bc) = Eab + Ecd = log2 2 + log2 2 = 2. (3.15)

In the case of the χ-type states, the reduced states of the state |χ00〉 are

ρab = ρcd = ρac = ρbd =
1

4
I, (3.16)

and

ρad =
1

2
|Φ+〉〈Φ+|+ 1

2
|Ψ−〉〈Ψ−|, (3.17)

ρbc =
1

2
|Φ+〉〈Φ+|+ 1

2
|Ψ+〉〈Ψ+|, (3.18)

where |Φ+〉 = (|00〉+ |11〉)/
√

2, |Ψ+〉 = (|01〉+ |10〉)/
√

2 and |Ψ−〉 = (|01〉 − |10〉)/
√

2 are the states
in the Bell’s basis. The entanglement of each pair of the particles in this state then given by

I(ab : cd) = I(ac : bd) = Eab + Ecd = log2 4 + log2 4 = 4, (3.19)

and

I(ad : bc) = Ead + Ebc = log2 2 + log2 2 = 2. (3.20)

The mutual information of each pair in the other states of the χ-type states is the same as the result
given above as the von Neumann entropy is invariant under local unitary transformation. Unlike
the case of the W and GHZ states, we can notice from the forms of the χ-type states given in
Eqs.(3.5), (3.6), (3.7), (3.8) that there is no entanglement between any one particle in the state and
any other. The information obtained by measuring the state of a particle in these χ states cannot
be used to refer to the state of another particle. With the result of entanglement measure given
above, this means the entanglement of this class of genuine entangled states purely originates from
the entanglement between pairs of particles in the states so that the pairs (a,b) and (c,d), and (a,c)
and (b,d) are maximally entangled while there is some entanglement between the pairs (a,d) and
(b,c) as shown in the above equations.

With the mutual information given above, we can see that the value of the summation of the
mutual information over all possible pairs in the case of the χ-type states is higher than that of the
GHZ and W states. This then raises the further questions of whether there is any state in which
all possible pairs are maximally entangled, and in the case that the answer is no, then what is the
state that can give the highest value of the summation of mutual information. The answer to the
first question is given in the work of Higuchi and Sudbery where they give a proof that there is
no such state in theorem 1 of their paper [75]. The paper shows that it is impossible to express
any four-qubit state in terms of rank four Schmidt decomposition for all possible pairs by using the
method of proof by contradiction. The answer to the second problem is still unclear, even though it
has been suggested that the states of the forms [75,90]

|M4〉 =
1√
6

(
|0011〉+ |1100〉+ ω(|1010〉+ |0101〉) + ω2(|1001〉+ |0110〉)

)
, (3.21)
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where ω = e2πi/3, or the complex conjugate of this forms, |M4〉, give the local maximal entropy, but
to the best of my knowledge, there is still no mathematical proof that this state can give the global
maximal entropy. The reduced states of the state |M4〉 are given as

ρab = ρac = ρad =
1

6

(
|00〉〈00|+ |11〉〈11|+ |Ψ+〉〈Ψ+|

)
+

1

2
|Ψ−〉〈Ψ−|. (3.22)

The entanglement entropies then are

Eab = Eac = Ead = 1 +
1

2
log2 3. (3.23)

We note that in Eqs.(3.22) and (3.23) we do not show the reduced states and the entropy of the pairs
(c,d), (b,d) and (b,c) because complementary pairs have equal entropy: Eab = Ecd, Eac = Ebd and
Ead = Ebc. The value of the summation of the mutual information of this state is higher than the
one obtained from the χ-type states. Like in the case of the χ states, we notice that the entanglement
of this class of states also originates from the entanglement between pairs of particles in the states,
and there is no entanglement between any particle and any others. However, because there is no pair
of particles in these states that is maximally entangled with the other, we found that it is difficult
to find a quantum information protocol that uses the entanglement of these states.

3.2.2 Nonlocality of the χ states

This subsection is devoted to giving a brief review of the nonlocality properties of the χ-type states.
First, we begin with the entanglement filters which Yeo and Chua used to identify that the χ-type
states are SLOCC independent to the GHZ and W states. Osterloh and Siewert have introduced
the third-, fourth-, and sixth-order four-qubit filters, which are denoted by F (4)

1 , F (4)
2 , and F (4)

3

respectively, to study the classes of entangled states [91]. In the case of the χ-type states, these
filters give the following expectation values [92]:

〈χ|F (4)
1 |χ〉 ≡

3∑

α,β,γ=0

δα1β1
δα2γ1δβ2γ2Eα1α2

Eβ1

β2
Eγ1γ2 = 0, (3.24)

〈χ|F (4)
2 |χ〉 ≡

3∑

α,β,λ,ε=0

δα1β1
δα2λ1

δβ2ε1δλ2ε2Eα1α2
Eβ1

β2
Eλ1

λ2
Eε1ε2 = 1, (3.25)

〈χ|F (4)
3 |χ〉 ≡

1

2

3∑

α,β,γ=0

Eα1α2Eα1α2
Eβ1β2Eβ1β2

Eγ1γ2Eγ1γ2 = 1, (3.26)

with

Eα1α2 ≡ 〈χ|σα1 ⊗ σα2 ⊗ σ2 ⊗ σ2|χ〉, (3.27)

Eβ1β2 ≡ 〈χ|σβ1 ⊗ σ2 ⊗ σβ2 ⊗ σ2|χ〉, (3.28)

Eγ1γ2 ≡ 〈χ|σ2 ⊗ σγ1 ⊗ σγ2 ⊗ σ2|χ〉, (3.29)

Eλ1λ2 ≡ 〈χ|σ2 ⊗ σλ1 ⊗ σ2 ⊗ σλ2 |χ〉, (3.30)

Eε1ε2 ≡ 〈χ|σ2 ⊗ σ2 ⊗ σε1 ⊗ σε2 |χ〉. (3.31)
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The tensor components satisfy the index lowering with the matrix tensor gµν = diag{−1, 1, 0, 1} as

Eκλ = gκµgλνE
µν , (3.32)

where the Einstein summation convention is used such that the indices that appear twice represent
the summation over four components of the involved tensors. The expectation values of these filters
for the GHZ states are F (4)

1 = 1, F (4)
2 = 1 and F (4)

3 = 1/2, and, for the case of the W state, these
expectation values are identically zero [92]. A state with a finite expectation value for one of the
above filters cannot be transformed into a state with zero expectation value for the same filter by
SLOCC transformations [92]. This identifies that the χ-type states are SLOCC inequivalent to the
GHZ and W states and become a new type of genuine entangled states as mentioned.

Next, Mermin, Ardehali, Belinskii, and Klyshko have reported the first Bell inequality for four-
qubit states [83, 93, 94]. We then call this inequality the MABK inequality. We consider four
observers, Alice (A), Bob (B), Charles (C) and Diana (D). Each of them possesses one qubit. In the
MABK inequality, every observer can choose between two dichotomic observables. The outcomes
of the four observers are denoted by Xi (X=A, B, C, D) where the subscripts i = 1, 2 indicate the
observables that the observers choose. The correlation of the outcomes of the four observers can be
represented by the product of the outcomes: AiBjCkDl where i, j, k, l = 1, 2. The expectation value
of the product is given as

Q(AiBjCkDl) = 〈AiBjCkDl〉. (3.33)

In local realism, the MABK inequality is [83,92–94]

Q1111 −Q1112 −Q1121 −Q1211 −Q2111 −Q1122 −Q1212 −Q2112 −Q1221 −Q2121

−Q2211 +Q2222 +Q2221 +Q2212 +Q2122 +Q1222 ≤ 4, (3.34)

where we use Qijkl as the short forms of Q(AiBjCkDl). We suppose that the two possible observables
are the measurement of the spin of qubit X in the n̂X

1 or n̂ X
2 directions. For the χ-type states the

correlation functions then are given by

Q(AiBjCkDl) = 〈χ|n̂ A
i · σ ⊗ n̂ B

j · σ ⊗ n̂ C
k · σ ⊗ n̂ D

l · σ|χ〉, (3.35)

where σ = σxx̂ + σy ŷ + σz ẑ and σi are the Pauli matrices. With the experimental settings that
n̂ A

1 = x̂, n̂ A
2 = ẑ; n̂ B

1 = ŷ, n̂ B
2 = ẑ; n̂ C

1 = ŷ, n̂ C
2 = ẑ; and n̂ D

1 = (ẑ − x̂)/
√

2, n̂ D
2 = (ẑ + x̂)/

√
2,

the value of the left-hand side of Eq.(3.34) is 4
√

2. This means the χ-type states violate the MABK
inequality. However, it is still not the optimal violation for the inequality.

C. Wu and et al. introduced a new Bell inequality as follows [92]. Instead of the four observers
freely picking one of the two possible dichotomic observables, Alice is allowed to measure the spin
of her qubit only in a single direction n̂ A

1 . The other observers can still freely pick one of the two
dichotomic observables as in the previous case. We then find that

Q(A1B1C1D1) +Q(B1C2D2) +Q(B2C1D2)−Q(A1B2C2D1) ≤ 2. (3.36)
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We call this new Bell inequality the WYKO inequality to honour the people who introduced it. With
the following measurement settings,

n̂ A
1 = x̂

n̂ B
1 = ẑ, n̂ B

2 = ŷ,

n̂ C
1 = ẑ, n̂ C

2 = ŷ,

n̂ D
1 = x̂, n̂ D

2 = ŷ, (3.37)

the left-hand side of the WYKO inequality in Eq.(3.36) is 4. The correlation functions Q(A1BjCkDl)

and Q(BjCkDl) can be either +1 or −1. Therefore, the maximum possible value of the ineqaulity
is 4. This inequality is optimally violated by the χ-type states. On the other hand, the inequality is
not violated by the GHZ state as

QGHZ(BjCkDl) = 〈GHZ|IA ⊗ n̂ B
j · σ ⊗ n̂ C

k · σ ⊗ n̂ D
l · σ|GHZ〉 = 0, (3.38)

and QGHZ(A1BjCkDl) can only be ±1 which makes the left-hand side of the inequality never greater
than 2.

3.2.3 Robustness of mutual information against a particle loss

Let us compare the robustness of mutual information against a particle loss of the GHZ, W and the
χ-type states. Let us start with the GHZ state. Four particles a, b, c and d are entangled and their
state is described by the four-qubit GHZ state. The reduced three-qubit state of the state is

σGHZ =
1

2
(|000〉〈000|+ |111〉〈111|)bcd. (3.39)

The von Nuemann entropy of this reduced state is S(σGHZ) = log2 2 = 1. Notice that the reduced
state is now in the form of a convex combination of two three-qubit separable states. The reduced
state then becomes separable. We can study the correlation between a particle and the other two
particles in this state by determining the mutual information. It is straightforward that the state
of a particle in this reduced state is maximally mixed: ρb = (|0〉〈0| + |1〉〈1|)b/2 while the state of
the other two is ρcd = (|00〉〈00|+ |11〉〈11|)cd/2. The mutual information between a particle and the
other two is given as

I(b : cd) = S(ρb) + S(ρcd)− S(σGHZ) = log2 2 + log2 2− log2 2 = 1. (3.40)

Note that we begin by assuming that particle a is lost and study the entanglement of its reduced state.
However, as the GHZ state is invariant under qubit permutations, the mutual informations for any
other case of a particle loss for the GHZ state are identical to I(b : cd), or in other words I(i : jk) = 1

where i, j, k ∈ {a,b, c,d}. Similarly, the W state is also invariant under qubit permutations. This
means the same holds for the case of W state as well: the mutual informations for all one-particle-loss
cases are identical. The reduced state of the W state is given by

σW =
3

4
|W3〉〈W3|bcd +

1

4
|000〉〈000|bcd, (3.41)
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where |W3〉 = (|001〉 + |010〉 + |100〉)/
√

3 is the three-qubit W state. As the states |W3〉 and |000〉
are orthonormal to each other, these two vectors together with additional two mutual orthogonal
vectors can form a basis and in this basis the reduced W state is diagonal. This means the entropy
of the reduced state is

S(σW) = −3

4
log2

3

4
− 1

4
log2

1

4
= 0.811. (3.42)

The entropy is lower than the case of the GHZ state. Notice that unlike the case of the GHZ
state the reduced state of the W state is not a separable state. The state of particle b is given by

ρb =
3

4
|0〉〈0|+ 1

4
|1〉〈1|, (3.43)

which is not a maximally mixed state. The state of the other two particles is

ρcd =
1

2

( |01〉+ |10〉√
2

)( 〈01|+ 〈10|√
2

)
+

1

2
|00〉〈00|. (3.44)

The mutual information between particle b and the other two particles in the reduced state straight-
forwardly is

I(b : cd) = S(ρb) + S(ρcd)− S(σW) = 0.811 + 1− 0.811 = 1. (3.45)

For the case of the χ states, it is slightly different. As the states of this type are not invariant
under qubit permutations, the three-qubit reduced state after particle a is lost is not the same as
the reduced states for any other particle is lost instead. However, by studying this case we can still
see some physics underly it. The reduced state of the |χ00〉 state is

σχ00 =
1

2
|η0〉〈η0|bcd +

1

2
|η1〉〈η1|bcd, (3.46)

where |η0〉 = (|000〉 − |011〉 − |101〉 + |110〉)/2 and |η1〉 = (|001〉 + |010〉 + |100〉 + |111〉)/2. As the
states |η0〉 and |η1〉 are orthonormal to each other, these two state vectors are eigenvectors of the
reduced state. The entropy of the reduced state in this case is then the same as the case of the GHZ
state as

S(σχ00) = 1. (3.47)

However, the reduced state of the χ-type states is not separable, even though the origin of the
entanglement of these states comes from the entanglement between pair of particles rather than
the entanglement between a particle and any other particle in the states. In this case, the state of
particle b, ρb, and the state of the other two particles, c and d, are maximally mixed:

ρb =
1

2
|0〉〈0|+ 1

2
|1〉〈1|, (3.48)

ρcd =
1

4
|Φ+〉〈Φ+|+ 1

4
|Ψ+〉〈Ψ+|+ 1

4
|Φ−〉〈Φ−|+ 1

4
|Ψ−〉〈Ψ−|. (3.49)

The entanglement between particle b and the other two particles is given by the mutual information:

I(b : cd) = S(ρb) + S(ρcd)− S(σχ00) = 1 + 2− 1 = 2. (3.50)
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The other cases of mutual information between one particle and the other two particles are given as

I(c : bd) = 2, (3.51)

I(d : bc) = 1. (3.52)

This means even though one particle in the state is lost, one particle in the reduced state is still
entangled with the remaining pair of particles. Notice that the mutual information I(d : bc) is lower
than the other two. This is because pairs (a,d) and (b,c) are the only particle pairs that are not
maximally entangled, and the entanglement between pairs of particles passes to the entanglement
between one particle and the remaining pair in the scenario of a particle loss.

3.3 Examples of quantum information protocols

In this section, we review several quantum information protocols that use the χ-type states as the
entanglement resource. We start with the faithful teleportation and quantum dense coding protocol
given by Yeo and Chua that makes this group of states known as a new type of genuine entangled
states [87]. Then, a number of other distinct protocols are discussed to demonstrate how we can
employ the entanglement of these states.

3.3.1 Faithful quantum teleportation of two-qubit states

The χ-type states have been noticed to be a set of genuine entangled states that can give faithful
teleportation of an arbitrary two qubits [87]. Let us first review the principles of quantum telepor-
tation. The main idea of quantum teleportation is that we use an entangled state as a quantum
channel together with a classical communication channel to teleport an arbitrary quantum state from
one place to another distant place [52]. The well-known example of quantum teleportation is given
as follows. We suppose that two parties, Alice and Bob, share a pair of particles that are maximally
entangled, in one of the EPR states: |Ψ0

EPR〉AB. Alice also possesses a particle in an unknown state,
|φ〉a, and she wants to send this state to Bob. At the moment, the state of these three particles is
given as

|φ〉a〈φ| ⊗ |Ψ0
EPR〉AB〈Ψ0

EPR|. (3.53)

Then, Alice can send the quantum part of the information about her |φ〉a state with the quantum
channel by performing the von Neumann measurement in the well-known Bell basis (or EPR basis),

|Ψi
EPR〉aA = (σia ⊗ σ0

A)|Ψ0
EPR〉aA, (3.54)

where σi are Pauli matrices and σ0 is the identity as previously denoted, on both of her particles, a
and A. Notice that this equation shows that other maximally entangled EPR states can be obtained
by performing two dimensional local Pauli rotations on an EPR state. The state of Bob’s particle
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after Alice performing her measurement is given by

1

pi
TraA

[(
|φ〉a〈φ| ⊗ |Ψ0

EPR〉AB〈Ψ0
EPR|

) (
|Ψi

EPR〉aA〈Ψi
EPR| ⊗ IB

)]

=
1

pi
aA〈Ψ0

EPR|
(
σia|φ〉a ⊗ |Ψ0

AB〉
) (

a〈φ|σia ⊗ AB〈Ψ0
EPR|

)
|Ψ0

EPR〉aA

=
1

4pi
σiB|φ〉B〈φ|σiB, (3.55)

where the factor pi = Tr[(|φ〉a〈φ| ⊗ |Ψ0
EPR〉AB〈Ψ0

EPR|)(|Ψi
EPR〉aA〈Ψi

EPR| ⊗ IB)] = 1/4, is the normal-
isation factor of the post-measurement state. Notice that, in the second line of the equation, there
is the following term which, after expanding it, we can recognise as the so-called transfer operator:

aA〈Ψ0
EPR|Ψ0

EPR〉AB =
1

2

1∑

i,j=0

(a〈i| ⊗ A〈i|)(|j〉A ⊗ |j〉B)

=
1

2

1∑

i=0

|i〉B ⊗ a〈i|. (3.56)

As a result, this operator transfers an arbitrary state in vector space a to vector space B and that is
the reason why the last line of Eq.(3.55) is obtained. Notice that the result of Eq.(3.55) is already in
the form of the state |φ〉, so after he obtains the two bits of information about Alice’s measurement
result Bob can operate the specific Pauli rotation on his particle to obtain the |φ〉B state.

Now, we move to the teleportation of an arbitrary two-qubit state: |ψ〉a1a2
=
∑1
i,j=0 aij |ij〉a1a2

. In
2005, Rigolin showed that the tensor product of two EPR states can be used as the quantum channel
for teleportation of such a state [95]. Similar to the previous example of quantum transportation, he
defined the basis of 16 G states: |Gij〉A1B1A2B2

= [(σiA1
⊗ σ0

B1
)⊗ (σjA2

⊗ σ0
B2)]|G00〉A1B1A2B2

, where

|G00〉A1B1A2B2
= |Ψ0

EPR〉A1B1
⊗ |Ψ0

EPR〉A2B2
, (3.57)

as the basis for Alice’s measurement. Therefore, we can see that the transfer operator in this case is

a1A1a2A2
〈G00|G00〉A1B1A2B2

=

1∑

i,j,k,l=0

[(a1
〈i| ⊗ A1

〈i|)⊗ (a2
〈j| ⊗ A2

〈j|)]

× [(|k〉A1 ⊗ |k〉B1)⊗ (|l〉A2 ⊗ |l〉B2)]

=

1∑

i,j=0

|ij〉B1B2
⊗ a1a2

〈ij|, (3.58)

which is the operator that transfers a two arbitrary qubit state in a1 ⊗ a2 space to B1 ⊗ B2. This
means by analogy with the teleportation of a qubit state the state |G00〉 can be used as the quantum
channel for teleporting an arbitrary two-qubit state.

In the case of the χ-type states, we can easily verify that these states can be used as a quantum
channel to teleport an arbitrary two-qubit state by examining whether these states can form the
transfer operators. As the forms of the states in the χ basis given in Eqs.(3.5), (3.6), (3.7) and (3.8),
the protocol that we use to teleport a two-qubit state is as follows. Alice and Bob share a χ-type
entangled state. For simplicity, we suppose that they share the |χ00〉A1A2B1B2

state. Alice can send a
state |ψ〉a1a2

=
∑1
i,j=0 aij |ij〉a1a2

to Bob by performing a measurement on her qubits in the χ basis.
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Then, she sends four bits of information corresponding to her measurement result to Bob so that
Bob can retrieve Alice’s state by performing a local unitary transformation. We note that the state
|χ00〉A1A2B1B2 can be rewritten in the following form:

|χ00〉A1A2B1B2
=

1

2

(
|00〉

( |00〉 − |11〉√
2

)
+ |01〉

( |10〉 − |01〉√
2

)
+ |10〉

( |10〉+ |01〉√
2

)

+|11〉
( |00〉+ |11〉√

2

))

A1A2B1B2

=
1

2

(
|00〉A1A2

|Φ−〉B1B2
− |01〉A1A2

|Ψ−〉B1B2
+ |10〉A1A2

|Ψ+〉B1B2

+|11〉A1A2
|Φ+〉B1B2

)

=
1

2
(|00〉A1A2 |J0〉B1B2 + |01〉A1A2 |J1〉B1B2 + |10〉A1A2|J2〉B1B2

+|11〉A1A2 |J3〉B1B2) , (3.59)

where we define

|J0〉 ≡ |Φ−〉, (3.60)

|J1〉 ≡ −|Ψ−〉, (3.61)

|J2〉 ≡ |Ψ+〉, (3.62)

|J3〉 ≡ |Φ+〉. (3.63)

This set of Bell states forms an orthogonal basis for two dimensional Hilbert space. We can also
rewrite the state in another form as

|χ00〉 =
1

2

(( |00〉+ |11〉√
2

)
|00〉 −

( |00〉 − |11〉√
2

)
|11〉+

( |10〉 − |01〉√
2

)
|01〉

+

( |10〉+ |01〉√
2

)
|10〉

)

=
1

2

(
|Φ+〉|00〉 − |Ψ−〉|01〉+ |Ψ+〉|10〉 − |Φ−〉|11〉

)

=
1

2
(|J ′0〉|00〉+ |J ′1〉|01〉+ |J ′2〉|10〉+ |J ′3〉|11〉) , (3.64)

where

|J ′0〉 ≡ |Φ+〉, (3.65)

|J ′1〉 ≡ −|Ψ−〉, (3.66)

|J ′2〉 ≡ |Ψ+〉, (3.67)

|J ′3〉 ≡ −|Φ−〉. (3.68)

This set of states is also an orthogonal basis for two dimensional Hilbert space. By using two forms
of the state |χ00〉 given above, the transfer operator for this case is then given as

a1a2A1A2
〈χ00|χ00〉A1A2B1B2

=
1

4

3∑

i=0

|Ji〉B1B2
⊗ a1a2〈J ′i |. (3.69)
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Two bits of information Alice’s transformation Bob’s obtained state

00 IA ⊗ IB|Ψ−〉AB = |Ψ−〉AB |Ψ−〉AB

01 σxA ⊗ IB|Ψ−〉AB = −|Φ−〉AB −|Φ−〉AB

10 σyA ⊗ IB|Ψ−〉AB = i|Φ+〉AB i|Φ+〉AB

11 σzA ⊗ IB|Ψ−〉AB = |Ψ+〉AB |Ψ+〉AB

Table 3.1: The table shows the encoding scheme for Alice and Bob. The first column shows the
two-bit string of information that Alice wants to send to Bob. The middle column shows the local
unitary operators that Alice uses to perform her encoding. The last column gives the possible states
that Bob will possess after receiving Alice’s qubit. By performing a measurement in the Bell basis
he then perceives the information that Alice intends to send.

This means this type of entangled states can be used as a quantum channel for faithful teleportation
of an arbitrary two-qubit state. However, only the pairs that are maximally entangled that can be
used as a faithful teleportation channel. In the case of (a, d) and (b, c) pairs in the Eqs.(3.5) and (3.6)
which are not maximally entangled, we can still form an orthonormal basis for an eight-dimensional
subspace as,

{(
Ia ⊗ Ib ⊗ Ic ⊗ σid

)
|χ00〉abcd,

(
σ3

a ⊗ Ib ⊗ Ic ⊗ σid
)
|χ00〉abcd

}
. (3.70)

Using the non-maximally entangled pairs as the quantum channel with the same protocol given
above, the transfer operator is in the form of

a1a2A1B2
〈χ00|χ00〉A1A2B1B2

=
1

4
(|J3〉A2B1

⊗ a1a2 (〈J ′0|+ 〈J ′3|)

+|J2〉A2B1
⊗ a1a2 (−〈J ′1|+ 〈J ′2|)) . (3.71)

This means by using the non-maximally entangled pairs, we can see that the protocol cannot be
used to teleport an arbitrary two-qubit state but can still faithfully teleport some forms of states,
for example, the state that is in the following form: |φ〉 = α1|Φ+〉 + α2|Ψ+〉, where α1 and α2 are
arbitrary complex numbers that satisfy the normalisation condition |α1|2 + |α2|2 = 1.

3.3.2 Quantum dense coding

The χ-type states can also be used as the entanglement resource for the quantum dense coding
protocol as mentioned in [87]. Before demonstrating this fact explicitly, we will first review the
basics of the protocol with the well-known and simplest example. The idea of quantum dense coding
was first mentioned by Bennett and Wiesner [50]. The scenario is that Alice and Bob share an
entangled state, and for this simple example case, we suppose that the state is |Ψ−〉AB. Alice and
Bob want to communicate two bits of information securely, so they make an agreement about their
encoding scheme as shown in table 3.1. Alice then applies a local unitary transformation to her
qubit that corresponding to the information she wants to send. Then, she sends her qubit to Bob.
In order that Bob can recieve the message from Alice, he needs to perform the Bell measurement
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on both qubits. The result of his measurement reflects the unitary transformation that Alice has
applied to her qubit and he then can know the message.

Suppose Eve, an eavesdropper, attacks this protocol by intercepting the particle that Alice is
sending to Bob. She can perform the measurement on the stolen qubit and gain one bit of information.
However, she also destroys the entanglement between the intercepted qubit and Bob’s qubit. This
means that, before performing the protocol, Alice and Bob can verify the existence of Eve by running
some irrelevant messages and checking whether Bob obtains the correct information. After that, they
can perform the usual protocol. We can notice easily that from the above protocol, we can also send
four bits of information by using two Bell states as well. In the case that there are two message
receivers, Bob (B1) and Blair (B2), Alice can also use two Bell states to send her two-bit message to
each of them independently. There is no requirement that Bob and Blair need to cooperate to read
the message.

If she wants Bob and Blair to read the message together, she needs to use a new entanglement
resource, and the χ-type states can help her to do so as follows. Suppose that Alice, Bob and Blair
share the state |χ00〉A1A2B1B2 . Alice possesses two particles which are denoted by A1 and A2, while
Bob and Blair have particles B1 and B2 respectively. With Eq.(3.6), Alice can transform the state
|χ00〉A1A2B1B2

to be one of the other χ-type states by performing a local unitary transformation on
her particles. With all possible local transformations given in Eq.(3.6), she can encode her four-bit
message to the shared state. Then, she sends each of her particles to Bob and Blair respectively.
Bob and Blair can read the message by performing a measurement in the χ basis. Bob or Blair alone
cannot read the message without help from the other. This means by using this type of states as
the resource, Alice can make sure that Bob and Blair can only read her message when they read the
message together.

3.3.3 Quantum-information splitting

This is another example of quantum information protocols demonstrating the utility of the entangle-
ment of the χ-type states. The protocol has been proposed by X-W Wang et al. [96]. The situation is
that Alice (A) wants to send her unknown qubit |ξ〉a to a group of people including Bob (B), Charles
(C) and Diana (D) so that one of them can retrieve the secret state with help from the other two,
or at least one of them. Alice then can use the χ-type state to perform the following protocol. We
suppose that Alice, Bob, Charles, and Diana share four entangled particles in the state |χ00〉ABCD.
The state can be rewritten as

|χ00〉ABCD =
1√
2

(
|0〉A|ϕ0〉BCD + |1〉A|ϕ1〉BCD

)
, (3.72)

with

|ϕ0〉BCD =
1

2
(|000〉 − |011〉 − |101〉+ |110〉)BCD , (3.73)

|ϕ1〉BCD =
1

2
(|001〉+ |010〉+ |100〉+ |111〉)BCD . (3.74)



Chapter 3: The χ states 40

We suppose that Alice’s unknown qubit is of the form

|ξ〉a =
1√

1 + |λ|2
(|0〉+ λ|1〉)a , (3.75)

where λ is an arbitrary complex number. The total state of all particle, including the one that Alice
wants to send, is

|ξ〉a|χ00〉ABCD =
1√

2(1 + |λ|2)

(
|00〉aA|ϕ0〉BCD + |01〉aA|ϕ1〉BCD

)

+
λ√

2(1 + |λ|2)

(
|10〉aA|ϕ0〉BCD + |11〉aA|ϕ1〉BCD

)
. (3.76)

Alice then performs a joint measurement on her two particles a and A in the Bell basis {|Φ±〉, |Ψ±〉}.
Each of Alice’s four possible outcomes causes the state of particles held by Bob, Charles, and Diana
to collapse as follows,

|Φ±〉 =
1√
2

(|00〉 ± |11〉)aA →|φ±〉BCD =
1√

1 + |λ|2
(
|ϕ0〉 ± λ|ϕ1〉

)
BCD

, (3.77)

|Ψ±〉 =
1√
2

(|01〉 ± |10〉)aA →|ψ±〉BCD =
1√

1 + |λ|2
(
|ϕ1〉 ± λ|ϕ0〉

)
BCD

. (3.78)

As the no-cloning theorem states that it is impossible to clone an unknown state, this means only
one of the receivers can have the secret state, not all of them, and in order to do so, they need to
cooperate with each other. The single-particle states of particles held by Bob, Charles, and Diana
after Alice’s measurement are

ρB(C) =
1

2
(|0〉〈0|+ |1〉〈1|)B(C) , (3.79)

ρ±D =
1

2
(|0〉〈0|+ |1〉〈1|)D ± i

Im(λ)(
1 + |λ|2

) (|1〉〈0| − |0〉〈1|)D . (3.80)

Diana’s particle state will be either ρ+
D, when Alice’s measurement outcome is |Φ+〉 or |Ψ+〉, or ρ−D,

when the outcome is |Φ−〉 or |Ψ−〉. We can see that with the form of the single-particle states
Bob and Charles have been sealed perfectly from the secret qubit if they do not cooperate with the
others. However, Diana has the potential to gain some information on the secret state, but she cannot
retrieve the state perfectly without help from Bob or Charles. This means Alice has distributed her
quantum secret asymmetrically. We can show that Diana can retrieve the state perfectly with help
from one of the others. Bob and Charles, on the other hand, need to cooperate with both of the
other two in order to retrieve the state.

We first consider the case that the three partners agree to let Diana possess the secret state. The
shared entangled state of these three after Alice’s measurement can be written as

|φ±〉BCD =
1√

2(1 + |λ|2)
[|++〉BC (|−〉 ± λ|+〉)D + |−−〉BC (|+〉 ∓ λ|−〉)D] , (3.81)

|ψ±〉BCD =
1√

2(1 + |λ|2)
[|++〉BC (|+〉 ± λ|−〉)D − |−−〉BC (|−〉 ∓ λ|+〉)D] , (3.82)
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where |±〉 = (|0〉 ± |1〉)/
√

2. The above equations show explicitly the following. If Bob and Charles
measure their qubits in the basis {|+〉, |−〉}, then their measurement results are perfectly correlated
and only one of Bob’s or Charles’s result, together with the outcome of Alice’s measurement, is
enough for Diana to retrieve the secret state. For example, if Alice’s result is announced to be |Φ+〉
and Bob’s (Charles’s) outcome is |+〉 and being told to Diana, Diana then know that her state is

|ξ′〉D =
1√

(1 + |λ|2)
(|−〉+ λ|+〉) . (3.83)

The secret state can be retrieved if she performs the unitary operation σxĤ on her qubit, where Ĥ
is the Hadamard transformation. On the other hand, if Bob wants to retrieve the secret state he
needs the assistance from both Charles and Diana. The shared entangled state of the three partners
after Alice’s measurement can also be written as

|φ±〉BCD =
1

2

√
1 + |λ|2

[(|0〉 ± λ|1〉)B |00〉CD − (|1〉 ∓ λ|0〉)B |01〉CD + (|1〉 ± λ|0〉)B |10〉CD

− (|0〉 ∓ λ|1〉) |11〉CD] , (3.84)

|ψ±〉BCD =
1

2

√
1 + |λ|2

[(|1〉 ± λ|0〉) |00〉CD + (|0〉 ∓ λ|1〉)B |01〉CD + (|0〉 ± λ|1〉)B |10〉CD

+ (|1〉 ∓ λ|0〉)B |11〉CD] . (3.85)

This means, if Charles and Diana measure their states in the logical basis {|0〉, |1〉}, Bob can re-
construct the secret state |ξ〉 only if he uses the information of the measurement results from Alice,
Charles, and Diana. After he has known the results of the other parties, he can then just apply a
local unitary transformation to recover the secret state |ξ〉.

3.3.4 Deterministic secure quantum communication

This protocol, proposed by X-M Xiu and et al, uses the idea of entanglement swapping to perform
a deterministic secure communication [81]. Let us start by reviewing the basic idea of entanglement
swapping. The original concept of entanglement swapping is given in [97]. The first experimental
realisation has been done by Pan and his collegues [98]. Suppose that Alice and Bob share two pairs
of EPR states: |Φ+〉A1B1

⊗|Φ+〉A2B2
. Alice owns particles A1 and A2, while particles B1 and B2 are

Bob’s. The state of these particles is rewritten as

|Φ+〉A1B1
⊗ |Φ+〉A2B2

=
1

2

(
|Φ+〉A1A2

|Φ+〉B1B2
+ |Φ−〉A1A2

|Φ−〉B1B2

+|Ψ+〉A1A2
|Ψ+〉B1B2

+ |Ψ−〉A1A2
|Ψ−〉B1B2

)
, (3.86)

where the definition of these EPR states is as given previously. From this equation, we can see that
if Alice performs a Bell-basis measurement on her own particles, this measurement will project Bob’s
particles into one of the EPR states. This means the two particles owned by Bob are not entangled in
the first place, but the entanglement of these two particles is created after Alice’s measurement even
though they have never interacted with each other. This is what we call entanglement swapping.
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The protocol that we can use the χ-type states as the entanglement resource for secure com-
munication is given as follows. Alice prepares a group of four particles that are in the entangled
state:

|χ̄00〉A1A2B1B2
= IA1

⊗ IA2
⊗ CZB1B2

|χ00〉A1A2B1B2
(3.87)

where |χ00〉 is as given in Eq (3.5). The two-dimensional identity and the controlled Z gate are
denoted by I and CZ respectively. Other fifteen states that orthogonal to this state are given
straightforwardly as,

|χ̄ij〉A1A2B1B2
= IA1

⊗ IA2
⊗ CZB1B2

|χij〉A1A2B1B2
(3.88)

After that, she sends two particles, B1 and B2, to Bob. After he received the particles, he then tells
Alice via a classical communication channel that the particles have arrived. To test the existence
of an eavesdropper (Eve), Bob decides to sacrifice a sufficiently large group of particles he possesses
and uses the remaining particles as the communication channel. Bob then performs measurements
on the test particles in the two-qubit computational basis {|00〉, |01〉, |10〉, |11〉}, and the Bell-basis
{|Φ±, |Ψ±〉〉}. He then tells Alice which particles are selected as the test group together with his
measurement bases and outcomes. With the form of Eq.(3.87) together with Eqs.(3.59) and (3.64),
we find [81]

|χ̄00〉 =
1

2
(|Φ+〉|00〉+ |Φ−〉|11〉 − |Ψ−〉|01〉+ |Ψ+〉|10〉)

1

2
(|00〉|Φ+〉+ |11〉|Φ−〉 − |01〉|Ψ−〉+ |10〉|Ψ+〉)

we can see that once Alice knows Bob’s bases of measurement and his results she then can deduce
her two-qubit state. To check the existence of Eve, she measures her state in the opposite bases
from Bob. Therefore, if Eve does gain some information, it will be most likely that she destroys the
entanglement between the particles and can be detected. We will discuss the security against this
and other attacks later.

We can rewrite the tensor product of the two |χ̄00〉A1A2B1B2 states prepared by Alice as follows,

|ξ〉 = |χ̄00〉A1A2B1B2
|χ̄00〉A3A4B3B4

1

4

(
|χ̄00〉A1A2A3A4

|χ̄00〉B1B2B3B4
+ |χ̄01〉A1A2A3A4

|χ̄12〉B1B2B3B4

+ |χ̄02〉A1A2A3A4
|χ̄11〉B1B2B3B4

+ |χ̄03〉A1A2A3A4
|χ̄03〉B1B2B3B4

+ |χ̄10〉A1A2A3A4
|χ̄10〉B1B2B3B4

+ |χ̄11〉A1A2A3A4
|χ̄02〉B1B2B3B4

+ |χ̄12〉A1A2A3A4 |χ̄01〉B1B2B3B4 + |χ̄13〉A1A2A3A4 |χ̄13〉B1B2B3B4

+ |χ̄20〉A1A2A3A4
|χ̄33〉B1B2B3B4

+ |χ̄21〉A1A2A3A4
|χ̄21〉B1B2B3B4

+ |χ̄22〉A1A2A3A4 |χ̄22〉B1B2B3B4 + |χ̄23〉A1A2A3A4 |χ̄30〉B1B2B3B4

+ |χ̄30〉A1A2A3A4
|χ̄23〉B1B2B3B4

+ |χ̄31〉A1A2A3A4
|χ̄31〉B1B2B3B4

+|χ̄32〉A1A2A3A4
|χ̄32〉B1B2B3B4

+ |χ̄33〉A1A2A3A4
|χ̄20〉B1B2B3B4

)
(3.89)

Particles Bi are sent to Bob. Alice has agreed with Bob to encode two bits of classical information
with the superscripts so that 00 → 0, 01 → 1, 10 → 2 and 11 → 3. Alice makes a measurement in
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the χ̄ basis, {|χ̄ij〉}. She can create a public message by binary addition between the secret message
and her measurement result. For example, if her measurement result is |χ̄11〉 which corresponds
to the binary information 0101 and her secret message is 1010, the message she sends to Bob then
becomes 0101+1010=1111. After Bob has obtained the classical information from Alice, he then
makes a measurement in the same basis. His result then tells him that what is Alice’s key. He then
can reverse the operation and obtain the secret message. With the form of Eq.(3.89), we can see
that Bob can also use this quantum channel to send his secret message to Alice as well.

Themeasure-resend attack: Eve intercepts particles Bi that Alice sends to Bob. She then performs
the χ̄ basis measurement on these particles and sends it to Bob. Eve can deduce the secret message
if Alice announces her ciphered message publicly as the measurement results that she has obtained
are correlated with Alice’s. However, in the check process, as there is no entanglement between
Alice’s and Bob’s particles after Eve measurement, this attack can be detected with the probability
75% [81].

The intercept-resend attack: Eve prepares particles in |χ̄00〉E1E2B′1B′2
. She then intercepts the

particles that Alice sends to Bob and sends particles B′1 and B′2 that she has prepared to Bob.
As the intercepted particles are entangled with Alice’s particles she can then deduce the secret
information when Alice announce the public message to Bob via a classical channel. However, as
particles B′1 and B′2 that Eve has sent are not entangled with Alice’s particles this attack will create
errors that can be detected with 75% [81].

The entangle-measure attack: Eve intercepts the particles in transmission and then performs a
unitary operation on both the intercepted particles and her auxiliary particles. She thus sends the
intercepted particles to Bob. Her auxiliary particles are then entangled with Alice and Bob particles
as [81]

|ξ′〉 =
1

2
√

2

[
|Φ+〉A (|00〉Bα1|εΦ+00〉+ |01〉Bβ1|εΦ+01〉+ |10〉Bγ1|εΦ+10〉+ |11〉Bδ1|εΦ+11〉)

+ |Φ−〉A (|00〉Bα2|εΦ−00〉+ |01〉Bβ2|εΦ−01〉+ |10〉Bγ2|εΦ−10〉+ |11〉Bδ2|εΦ−11〉)
− |Ψ−〉A (|00〉Bα3|εΨ−00〉+ |01〉Bβ3|εΨ−01〉+ |10〉Bγ3|εΨ−10〉+ |11〉Bδ3|εΨ−11〉)
+|Ψ+〉A (|00〉Bα4|εΨ+00〉+ |01〉Bβ4|εΨ+01〉+ |10〉Bγ4|εΨ+10〉+ |11〉Bδ4|εΨ+11〉)

]
, (3.90)

where Eve’s auxiliary state is represented by |εi〉. The complex numbers αi, βi, γi and δi satisfy the
normalization condition: |αi|2 + |βi|2 + |γi|2 + |δi|2 = 1. From this form of the equation, we can see
that this attacking strategy will induce the error rate of

ε = 1− |α1|2 = 1− |δ2|2 = 1− |β3|2 = 1− |γ4|2 . (3.91)

This means that the more information she gains from this attack the higher probability her existence
will be detected.
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Two-photon, four-qubit χ state

realisation

As discussed in the previous chapter, the so-called χ-type entangled states have interesting entangle-
ment properties and can be used as an entanglement resource for several novel quantum information
protocols [81,87,92,96,99–101]. This gives rise to an interest, in the field of quantum information and
quantum cryptography, in how we can prepare these states effectively. There are several schemes
proposed to generate these states [102–108]. For example, Liu and Kuang proposed a scheme to
prepare these states by utilising the interaction between light and four atoms in four separate optical
cavities [106].

In this chapter, we show an alternative scheme to prepare these states, |χij〉. The overview
of our proposed scheme is given as follows. Two hyper-entangled photons, which are maximally
entangled in both polarisation and orbital angular momentum degrees of freedom, can be obtained
by spontaneous parametric down-conversion (SPDC). We present a linear optical system that can
then transform the initial state of these two photons into the state |χ00〉. The further transformations
required in order to obtain the other χ-type states from |χ00〉 may also be achieved through linear
optical elements and are also given. This work given in this chapter is an original contribution and
was published in J. Opt. [1].

The structure of this chapter is given as follows. In section 4.1, we will briefly review the
experiment in [109] which gives hyper-entangled photons and the quantum circuit that can transform
the initial state of the photon pairs into the desired state. Section 4.2 reviews the effects of some
particular optical elements and interferometers on the photon state. The proposed optical system
is then given and explained in the following section. In the last section, we discuss the further
transformation that transforms the state |χ00〉 into any other states of this class.

4.1 Transformation of two entangled photons

From [109], photon pairs which are maximally entangled in their polarisation and orbital angular
momentum can be produced as follows. Barreiro and colleagues used a 351 nm Argon ion laser with

44



Chapter 4: Two-photon, four-qubit χ state realisation 45

 

Photon A

Photon B

Figure 4.1: The signal and idler photons which are maximally entangled in their polarisation
and orbital angular momentum are obtained by coherent sequential spontaneous parametric down-
conversion. The two connected BBO crystals are pumped by the argon ion laser. One of the
down-converted photons, photon B, is sent to our designed optical system given in figure 4.5.

120 mW power pumping into two connected β-barium borate (BBO) crystals, as shown in figure 4.1.
The optical axes of these two BBO crystals are set to be perpendicular to each other. If the pumping
photons interact with the first crystal, the two generated photons, signal and idler, will be either
horizontally or vertically polarised. In the case that interaction takes place in the second crystal, on
the other hand, the vertically polarised photons are produced. As the crystals are in close proximity,
we cannot distinguish the interaction place of the generated photon pairs. Hence, the unnormalised
states of the emitted photon pairs can be written as

(|HH〉+ |VV〉)p
AB ⊗ (|RL〉+ α|GG〉+ |LR〉)o

AB , (4.1)

where H and V represent horizontal and vertical polarisation states. We use R, L and G to denote
the orbital angular momentum modes of +~, −~ and 0 respectively for each photon. We note that
there is also a possibility that the emitted photons have higher orbital angular momentum, but
the relative sizes of the probability amplitudes can be controlled [110, 111]. The state given in this
equation obeys the conservation of OAM [10] as reviewed in chapter 1. The superscripts p and o

indicate the polarisation and orbital angular momentum states respectively, while the subscripts A

and B are used to indicate whether it is the state of photon A or B. The complex amplitude α is
determined by mode-matching conditions [10, 112]. As mentioned previously, the photon pairs are
also entangled in their emission times and frequencies, but in this work, it is only important in the
way that the arrival time of one entangled photon at a detector can be used to determine that of its
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partner at the other separated detector. At this point, we can see that the state of the photon pairs
will be maximally entangled if we omit the state |GG〉 in the superposition. This can be done by
spatial filtering to remove the beam centre or using a mode-sorter [38], which is discussed previously,
to select only the odd values of the orbital angular momentum. The normalised state of the two
photons then becomes

|Φ+〉pAB ⊗ |Ψ+〉oAB =
1

2
(|HH〉+ |VV〉)p

AB ⊗ (|RL〉+ |LR〉)o
AB

=
1

2
(|00〉+ |11〉)p

AB ⊗ (|01〉+ |10〉)o
AB. (4.2)

In the second line of Eq.(4.2), we identify the horizontal and vertical polarisation states, |H〉p and
|V〉p, with the computational states |0〉p and |1〉p respectively. Similarly, the OAM states |R〉o and
|L〉o are encoded with the states |0〉o and |1〉o. We can then rewrite the state as a superposition of
computational basis states of photon A and B as

|X〉AB =
1

2
(|00〉A|01〉B + |01〉A|00〉B + |10〉A|11〉B + |11〉A|10〉B), (4.3)

where the first qubits of photons A and B are the polarisation states of the photons while the second
qubits represent the OAM states. For example, the state |00〉A of photon A in the first term of the
superposition represents the composite state |H〉p|R〉o.

At this point, we find that the state |χ00〉 is obtained if we can transform the initial state of
photon B as

|00〉B →
1√
2

(|10〉 − |01〉)B,

|01〉B →
1√
2

(|00〉 − |11〉)B,

|10〉B →
1√
2

(|00〉+ |11〉)B,

|11〉B →
1√
2

(|10〉+ |01〉)B. (4.4)

As the states of photons A and B in Eq.(4.3) are identical, this task can alternatively be achieved
by applying this transformation to the state of photon A. The transformation is described by the
quantum circuit given in figure 4.2. The first operation in the circuit is the controlled NOT (CNOT)
gate which applies the Pauli X gate to the target qubit if the associated control qubit is in the state
|0〉 or does nothing if the control qubit is |1〉. The second CNOT gate, on the other hand, does the
opposite: It applies the Pauli X gate to the target qubit if the control qubit is |1〉 or leaves the target
qubit unchanged if the control qubit is |0〉 instead. We denote by H and Z in the quantum circuit
the Hadamard and Pauli Z gates respectively. The two-photon state after this transformation can
be expressed as

|X〉AB → |χ00〉AB =
1√
2

(
|ζ0〉+ |ζ1〉

)
AB

(4.5)

with

|ζ0〉 ≡ 1

2
(|0000〉 − |0011〉 − |0101〉+ |0110〉), (4.6)

|ζ1〉 ≡ 1

2
(|1001〉+ |1010〉+ |1100〉+ |1111〉). (4.7)
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|p〉B H Z • ×

|o〉B ×

Figure 4.2: The quantum circuit to achieve the transformation given in Eq.(4.4), where |p〉B and
|o〉B are the polarisation and OAM parts of the composite state of photon B.

The swap gate at the end of the quantum circuit can be realised easily as the OAM state of photon B
is recognised as the third qubit while its polarisation becomes the last qubit. We note that without
the swap gate, the state of the photon pair becomes the entangled state |χ00

Lee〉,

|χ00
Lee〉 =

1√
2

(|λ0〉+ |λ1〉)AB, (4.8)

with

|λ0〉 ≡ 1

2
(|0000〉 − |0011〉 − |0110〉+ |0101〉), (4.9)

|λ1〉 ≡ 1

2
(|1001〉+ |1010〉+ |1100〉+ |1111〉) = |ζ1〉, (4.10)

proposed by Lee et al to be a quantum channel for teleportation [88].

4.2 Optical realisation

4.2.1 Polarisation gates

In this section, we discuss how each optical element included in our proposed optical system affects
and alters the composite state of the incident photon. First, we start with birefringent waveplates.
Their effects on the polarisation states of the input photons are well-known. In quantum optics,
they are usually utilised as single-qubit gates for polarisation qubits of photons as the following
demonstrates. The function of birefringent waveplates is to realise a different optical path length
and therefore phase delay for polarisation components perpendicular to or parallel to their optical
axis differently. There are two well-known birefringent waveplates: half- and quarter- wave plates. A
half-wave plate delays the phase of the polarisation component that is parallel to its optical axes by π
with respect to the perpendicular component. A quarter-wave plate, on the other hand, introduces a
relative phase between these two components of π/2. These effects of half- and quarter- wave plates
with their fast axes horizontal can be described by the following Jones matrices [113,114]:

Jh =

(
1 0

0 −1

)
, (4.11)

and

Jq =

(
1 0

0 i

)
, (4.12)
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respectively, where we denote

~p⊥ =

(
1

0

)
and ~p‖ =

(
0

1

)
, (4.13)

as unit vectors that are perpendicular and parallel to the optical axis, respectively. In the case that
the optical axis is aligned vertically, this automatically implies that

|H〉 = ~p⊥ and |V〉 = ~p‖. (4.14)

For example, with this set up, if the incoming photon is right-circularly polarised, described by the
state (|H〉+ i|V〉)/2, the polarisation state of the outgoing photon will be left-circular polarisation,
(|H〉 − i|V〉)/2, if it passes through a half-wave plate, or linear polarisation, (|H〉 − |V〉)/2, if the
waveplate is a quarter-wave plate instead.

The effects of half- and quarter- wave plates on the horizontal and vertical polarisation are, of
course, changed if they are rotated. The Jones matrices of half- and quarter- wave plates which are
rotated by an angle θ with respect to the horizontal axis are [115]

Jh(θ) =

(
cos θ − sin θ

sin θ cos θ

)(
1 0

0 −1

)(
cos θ sin θ

− sin θ cos θ

)

=

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
. (4.15)

Jq(θ) =

(
cos θ − sin θ

sin θ cos θ

)(
1 0

0 i

)(
cos θ sin θ

− sin θ cos θ

)

=

(
cos2 θ + i sin2 θ (1− i) sin θ cos θ

(1− i) sin θ cos θ sin2 θ + i cos2 θ

)
, (4.16)

respectively. These two types of birefringent waveplates affect only the polarisation state of the input
photon but do not change the amplitude profile. The OAM state of the input photon is not altered
after it passes the waveplates. The total effect of these waveplates on the composite state is given
by

|p′, o′〉 = Ji ⊗ I|p, o〉 with i = h, q, (4.17)

where we denote by |p′, o′〉 and |p, o〉 the composite states before and after the photon passes through
the waveplate.

According to the Jones matrix of oriented half-wave plates given in Eq.(4.15), many single-qubit
gates for polarisation qubits can be realised by appropriately oriented half-wave plates. For example,
the Pauli Z- and X- gates can be realised as half-wave plates with their fast axes parallel to and
rotated by an angle π/4 with respect to the horizontal plane: Jh(θ = 0) = σz and Jh(θ = π/4) = σx.
As σzσx = iσy, the realisation of the Pauli Y-gate for polarisation qubits is obtained by using two
half-wave plates with different orientations. On the other hand, if we rotate a half-wave plate such
that its fast axis is at an angle π/8 with respect to the horizontal plane, the Jones matrix of the
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rotated half-wave plate then becomes,

Jh(θ = π/8) =

(
1√
2

1√
2

1√
2
− 1√

2

)
. (4.18)

This is the matrix representation of the Hadamard transformation. A π/8-oriented half-wave plate
thus is the realisation of the Hadamard gate.

4.2.2 OAM gates

A Dove prism is an optical element frequently employed for changing the sign of the orbital angular
momentum of the incoming photon in various OAM experiments [38, 44, 116–118]. For our case, a
Dove prism converts the topological charge of the photon from l = 1 to l = −1 or vice versa. In
other words, with our encoding, it changes the state |0〉o into the state |1〉o or the other way round.
Therefore, Dove prisms act as the Pauli X gates for OAM qubits. In general, when a light beam
passes through the Dove prism it encounters at least one total internal reflection, as it was originally
invented to invert the input image. This means a Dove prism, in whatever shape it is, changes
both the polarisation and OAM states of the input photons. The effect on polarisation qubits is
determined by the shape of the Dove prism as its shape determines how the light beam refracts and
reflects within it. In our case, for simplicity, we will consider M-shaped Dove prisms, as illustrated
in figure 4.4, as their Jones matrix is simpler than that of a trapezoid Dove prism. M-shaped Dove
prisms were originally invented to be quarter-wave retarders [119]. The effect on polarisation is thus
the same as a quarter-wave plate. The total effect on the composite state is then given by

|p′, o′〉 = JD ⊗ σx|p, o〉, (4.19)

where

JD =

(
1 0

0 i

)
. (4.20)

Next, let us consider the interferometer depicted in figure 4.3. The incoming beam that enters
this interferometer is split into two different paths at the first polarising beam splitter. In this
work, we appoint all polarising beam splitters to transmit horizontally and reflect vertically polarised
beams. Therefore, this interferometer allows us to apply different transformations to the OAM qubit,
conditioned on the polarisation state of the incoming photon. In this way, the controlled gates in
which the control and target qubits are the polarisation and OAM states respectively are realisable.
For example, for the interferometer given in figure 4.3, a vertically polarised beam is reflected from
the polarising beam splitter and travels in path 2 in which an M-shaped Dove prism and a π/2

rotated quarter-wave plate are introduced. The OAM state of the vertically polarised beam in this
path is flipped by the Dove prism and the polarisation effect from the Dove prism is cancelled by the
rotated quarter-wave plate. On the other hand, the horizontally polarised part travels along path 1
where there is no optical element that changes its polarisation or OAM states in this path. These
two beams with different polarisations are then recombined at the second polarising beam splitter.
Alternatively, without the quarter-wave plate, the same physical result can be obtained by carefully
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adjusting the internal paths of the interferometer such that the relative phase shift between two
different polarisations becomes a global phase shift of the outgoing photons. We can then summarise
the total effect of this interferometer on the composite state of the incident photons as follows. The
interferometer flips the OAM state if the incoming photon is vertically polarised or does nothing if
it is horizontally polarised. As we encode the horizontal and vertical polarisation states to be |0〉p
and |1〉p respectively, this interferometer is then realised as the second CNOT gate in the quantum
circuit, in figure 4.2, and the control and target qubits are polarisation and OAM states respectively.
On the other hand, the first CNOT gate of the quantum circuit (the one that changes the target
qubit when the control qubit is in the state |0〉) can also be realised by introducing an M-shaped Dove
prism and a π/2-rotated quarter-wave plate in path 1 of the interferometer instead of path 2. Then,
the OAM state is flipped when the incoming beam is horizontally polarised, which is encoded by |0〉p,
and left unchanged if the beam is vertically polarised, |1〉p. We note that an interferometer built on
this principle (sending differently polarised light into different paths) have been used successfully to
measure both spin and OAM states of light at the single photon level [38, 120,121].

Figure 4.3: The interferometer which is realised as the second CNOT gate of the quantum circuit in
figure 4.2. An M-shaped Dove prism and a quarter-wave plate (QW) with its fast axis at angle π/2
with respect to the horizontal plane are introduced to path 2.

Recall that the complex amplitude of a beam in a Laguerre-Gaussian mode contains an azimuthal
phase dependence exp(ilφ), where l is the topological charge or orbital angular momentum quantum
number of the beam [8]. If the beam is rotated by an angle α the azimuthal term then becomes
exp(il(φ + α)) [38, 44]. In other words, this rotation of the Laguerre-Gaussian beam contributes to
a phase shift of ∆ψ = lα. We can rotate an optical beam by using suitably oriented Dove prisms as
follows. A non-rotated Dove prisms gives a non-rotated, reflected image, while a Dove prism which
is oriented by an angle β gives an image that is rotated by an angle 2β. As discussed previously,
non-rotated Dove prisms are realised as the Pauli X-gate for OAM qubits as it changes the OAM
state of the input beam from |l〉 to |−l〉 or vice versa. The Pauli Y- and Z- gates for OAM qubits can
be implemented by rotated M-shaped Dove prisms as described in the following detail. An M-shaped
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Dove prism which is rotated by π/4 with respect to the vertical plane transforms an OAM qubit as

|0〉o → e−iπ/2|1〉o, (4.21)

|1〉o → eiπ/2|0〉o, (4.22)

for the case that l = ±1. This is the transformation when we apply the Pauli-Y gate on a qubit. At
this point, we can implement both the X- and Y- gates for OAM qubits. As σxσy = iσz, the Pauli
Z-gate can be implemented by using two Dove prisms where the first one is oriented by π/4 with
respect to the vertical plane and the second is non-oriented. As mentioned earlier, M-shaped Dove
prisms also have an effect on the polarisation of photons. The total effect of a rotated Dove prism
at an angle θ on a composite state can be summed up as

|p′, o′〉 = Jq(θ)⊗
(

0 e2iθ

e−2iθ 0

)
|p, o〉. (4.23)

We summarise the effect of all optical elements discussed above on a composite state in table 4.1.

Table 4.1: Summary of the effects of optical elements on composite qubits
Optical Elements Effects on composite qubits

Quarter-wave plate fast axis at angle θ Uq(θ) = Jq(θ)⊗ I
Half-wave plate with fast axis at angle θ Uh(θ) = Jh(θ)⊗ I

Rotated M-shaped Dove prism at angle θ UD(θ) = Jq(θ)⊗
(

0 e2iθ

e−2iθ 0

)

4.3 Proposed optical system

In this section, we use the information given in the previous section to design an optical system that
can transform the composite state of photon B so that the two-photon state is in any one of the
χ-type states. This can be done by considering the quantum circuit in figure 4.2 and implementing
each quantum gate that appears in the circuit.

We start with the two CNOT gates of the quantum circuit. Some detail has been given in
the previous section, but in this section, we give the complete picture of its use in the optical
network implementing the circuit. The first CNOT gate, as mentioned, transforms the target qubit
by applying the Pauli X-gate to it if the control qubit is in the state |0〉p or does nothing if the
control qubit is |1〉p. Recall that we identify the horizontal and vertical polarisation states, |H〉p and
|V〉p, with the computational qubit states |0〉p and |1〉p respectively. This CNOT gate then can be
implemented by an interferometer similar to the one given in figure 4.4, but in which the Dove prism
and the quarter-wave plate are in path 1. The implementation of the first CNOT gate is illustrated
by the first interferometer in figure 4.5. If the incoming beam is horizontally polarised, it then goes
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Figure 4.4: The particular alignments of M-shaped Dove prisms with quarter-wave plates, in order
to compensate the polarisation effect of the Dove prisms, provide us with the physical realisations
of the Pauli gates for OAM qubits when l = ±1.

to path 1 and passes through the Dove prism. The OAM state of the horizontally polarised beam is
then flipped. On the other hand, the vertically polarised light goes to path 2 and its composite state
is left unchanged. The effect of the first interferometer on the composite state can be written as

|0〉p ⊗ |s〉o → |0〉p ⊗ σx|s〉o,
|1〉p ⊗ |s〉o → |1〉p ⊗ |s〉o. (4.24)

The second CNOT gate is different to the first one as it changes the target qubit when the control
qubit is in the state |1〉p and leaves the target qubit untouched if the control qubit is |0〉p. The
realisation of this gate is exactly as the interferometer in figure 4.3 and the second interferometer in
figure 4.5. The interferometer forces the horizontally polarised component to travel along internal
path 1 where there is no optical element that can change the composite state of the beam. On the
other hand, the vertically polarised component goes to the other internal path and encounters both
the M-shaped Dove prism and the rotated quarter-wave plate. Its OAM state is changed to the
opposite sign. The effect on the composite state of the second interferometer can then be expressed
explicitly as

|0〉p ⊗ |s〉o → |0〉p ⊗ |s〉o,
|1〉p ⊗ |s〉o → |1〉p ⊗ σx|s〉o. (4.25)

For the single-qubit gates in the quantum circuit, the Hadamard and Z- gates of the polarisation
state in the quantum circuit can be realised by two half-wave plates with different orientation. The
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half-wave plate with its fast axis at an angle π/8 with respect to the horizontal plane is the realisation
of the Hadamard gate. The other with its fast axis is aligned horizontally is the realisation of the
Z-gate. These two half-wave plates are placed between the first and the second interferometers as
suggested in the quantum circuit and are depicted in figure 4.5. The swap gate at the end of the
quantum circuit, as mentioned, can be achieved easily by relabelling the composite state of photon
B. With the proposed optical system given in figure 4.5, we can transform the state of two entangled
photons obtained from SPDC into the state |χ00〉.

4.4 Further transformation

Once the state |χ00〉 is obtained, any other χ-type state can also be obtained by applying local Pauli
operations to the state |χ00〉 as

|χij〉AB = σi ⊗ σj ⊗ I ⊗ I|χ00〉AB. (4.26)

To achieve this task, we need to implement the Pauli gates for both polarisation and OAM states. As
mentioned previously, the Pauli gates for polarisation can be realised by oriented half-wave plate. For
the OAM states, these gates are implemented by oriented Dove prisms, together with quarter-wave
plates to compensate the polarisation effect of the Dove prisms as discussed. For example, in order
to realise the product of the Pauli X and Y operators for polarisation and OAM qubits, σxp ⊗ σyo ,
we use a half-wave plate with its fast axis at an angle π/4 to the horizontal plane and an M-shaped
Dove prism together with a quarter-wave plate that are rotated by π/4 with respect to the vertical
plane.

To summarise this section, an arbitrary χ-type state, |χij〉 can be achieved by applying birefrin-
gent wave plate and M-shaped Dove prisms with specific orientations after the optical network of
figure 4.5.

4.5 Conclusion

We have presented the transformation required to convert the maximally-entangled state of a down-
converted photon pair to the state |χ00〉, a state in the χ state basis, in terms of a quantum circuit.
The effects of each optical element on the composite state have been given, and the optical system
which is a realisation of the quantum circuit has been proposed. The other χ -type states can be
obtained by further transformations which are realised by birefringent wave plates and M-shaped
Dove prisms.

All optical elements in the proposed optical system are linear optical components that are readily
available in optical laboratories. As a result, preparation of the desired states is practically achievable
with current technology. In contrast to some previous work, our proposed operation does not have any
post selection process which means the efficiency of successful transformation does not depend on the
efficiency of photon detectors. We expect that the proposed scheme may be realised experimentally
to produce this class of multipartite genuine entangled states so that we can gain a better insight of
their entanglement, and enable the demonstration of novel quantum information protocols.
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HW = a non rotated half-      

   wave plate.

HW = a π/8 rotated half- 

   wave plate.

22.5°

QW = a π/2 rotated quarter-      

   wave plate.

90°

Figure 4.5: The proposed optical system which transforms the composite qubits as the quantum
circuit given in figure 4.2. We introduce the pieces of glass in the two interferometers in order to
compensate for the delay associated with propagation through the Dove prism and quarter wave
plate in the other internal paths. The two interferometers in the figure are the implementations of
the two CNOT gates of the quantum circuit. The two half-wave plates are introduced between the
two interferometers. The first half-wave plate is rotated by π/8 or 22.5 degrees, while the second is
nonrotated. These two half-wave plates are the implementations of the Hadamard and Pauli Z gates
of the quantum circuit. The quarter-wave plate in the second interferometer is rotated by π/2 or 90
degrees in order to compensate the polarisation effect of the Dove prism.



Chapter 5

Electromagnetics

We do not know for sure when humanity’s interest in light begun. One of the first studies of light
was done by Euclid when he wrote the law of reflection mathematically in his Optica in about 300
BC [122]. Isaac Newton presented in his book, Opticks, that white light could be disassembled into
different colours of light by using a prism [123]. The idea that light is an electromagnetic wave
was first suggested by Maxwell in his Dynamical Theory of the Electromagnetic Field published in
1865 [124], and experimentally confirmed by Hertz by designing an electromagnetic wave receptor to
prove Maxwell’s hypothesis of the existence of electromagnetic wave [125]. Like the other waves, light
carries its energy along its propagation direction. However, in contrast to many types of waves, light
does not need a medium to propagate from one point to another, and it can propagate in vacuum
with a constant speed c, a universal physical constant. In relativity, the speed of light is the same
for all observers.

In modern days, light has been used in many different ways. For example, we use radio waves
to broadcast TV shows. We use it as an information carrier in communications. As discussed in
the previous chapters, the quantum states of light can also be used for quantum information and
computation. Despite a long history of studies, there are also many aspects that we do not yet fully
understand, and of course the more we understand light, the better we may make use of it.

This chapter is organised as follows. We begin this chapter by reviewing Maxwell’s equations
and the plane wave solutions in the case when there is no free charge and current. We then use
Maxwell’s equations to derive the boundary conditions of electromagnetic fields in section 5.2. The
laws of reflection and refraction of plane electromagnetic waves are presented in section 5.3. In
section 5.4, the two competing forms of the Lorentz force density, which have been shown to give
identical total force and torque, are reviewed. Section 5.5 demonstrates the quantisation process of
electromagnetic fields. The paraxial approximation and quantisation of paraxial light are given in
sections 5.6 and 5.7 respectively.

55
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5.1 Maxwell equations and plane-wave solutions

Before giving a discussion of the boundary conditions, let us review Maxwell equations for electro-
magnetic fields in nonconducting media. Electromagnetic fields are perfectly described by Maxwell’s
equations for observers in any inertial reference frame. The derivative forms of Maxwell’s equations
are given as [18]

∇ ·D = ρfree, (5.1)

∇ ·B = 0, (5.2)

∇×E = −∂B
∂t
, (5.3)

∇×H = Jfree +
∂D

∂t
, (5.4)

where D, B, E and H are the electric displacement, magnetic and electric fields, and the magnetic
field strength respectively. The sources of electric and magnetic fields, the free charge and current
densities, are denoted by ρfree and Jfree. The relation between electric displacement D and electric
field E is D = ε0E + P, where P is a polarisation field. On the other hand, the magnetic field and
the magnetic field strength are related by B = µ0H + M, where M is the magnetisation field.

In the source free case, the two of these equations that contain the source terms are simply
reduced to

∇ ·D = 0, (5.5)

∇×H =
∂D

∂t
. (5.6)

This implicitly implies the existence of travelling electromagnetic waves. As we know, an electromag-
netic wave represents the transfer of electromagnetic energy from one point to another. The wave
solutions can be obtained straightforwardly as follows. Assuming that these fields have harmonic
time dependence exp(−iωt) with the frequency ω, the two equations that contain the time derivative
become

∇×E = iωB, (5.7)

∇×H = −iωD. (5.8)

For a uniform isotropic linear medium, the polarisation and the magnetisation of the medium are
proportional to the electric field and magnetic field respectively. We, therefore, can express the
electric displacement and the magnetic field strength in terms of the electric and magnetic fields
as D = εE and B = µH, where the permittivity ε and the permeability µ are in general complex
functions of the frequency ω. In the case of a lossless medium, where both ε and µ are real numbers,
the equations for the electric and magnetic fields are

∇×E = iωB, (5.9)

∇×B = −iωµεE. (5.10)
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The combination of the above equations gives the so-called Helmholtz equation [18]:

(∇2 + µεω2)

[
E

B

]
= 0. (5.11)

The divergence-free equations, Eqs.(5.2) and (5.5), indicate that the electromagnetic wave must be
transverse. The simplest solution of Eq.(5.11) is the plane-wave solution, which gives the electric
and magnetic fields in the following forms,

E(r, t) = E0ei(k·r±ωt), (5.12)

B(r, t) = B0ei(k·r±ωt), (5.13)

where E0 andB0 are constant vectors representing the initial electric and magnetic fields at the origin
of the coordinate system. The wave vector k indicates the propagation direction of the travelling
wave. From Eq.(5.11), its magnitude is related to the frequency ω as |k| = k =

√
µεω. The relative

sign of the terms in the exponential indicates whether the wave propagates in the same direction as
the wave vector k or in the opposite direction. Conventionally, if the relative sign is negative, then
the wave travels in the same direction as k [18].

5.2 Boundary conditions

In the presence of a boundary between two different nonconducting media, the fields are in general
neither smooth nor continuous if there exist free charge and current at the interface. However, they
still obey Maxwell’s equations. Let us consider a closed cylindrical volume, as illustrated in figure 5.1.
The volume integration over the closed volume of the first Maxwell equation, Eq.(5.1), gives

∫

V

∇ ·DdV =

∮

S

D · dS =

∫

V

ρfreedV, (5.14)

where the divergence theorem has been used to make a volume integral V into a surface integral.
The height δh of the cylindrical volume is assumed to be small, and the electromagnetic fields vary
slowly across the surface δA. Then, the left-hand side of the equation becomes

D1 · nδA−D2 · nδA+ flux through the side surface =

∫

V

ρfreedV, (5.15)

where the subscripts identify the fields near the interface in each medium and n is a unit vector normal
to the interface. In the case that the height δh approaches zero, the terms that are associated with
the flux through the side surface then vanish. We then have

(D1 −D2) · n = ρfreeδh. (5.16)

On the other hand, with the same derivation, a divergence-free magnetic field gives rise to the
following boundary condition,

(B1 −B2) · n = 0. (5.17)
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Figure 5.1: The integration volume of Eq.(5.14) is the closed cylindrical box on the interface of the
two media.

The above two equations describe how the normal components of these fields on one side of the
interface are related to that of the fields on the other side. In the case of no free electric charge on
the interface, we can write these boundary conditions as

D⊥1 = D⊥2 , (5.18)

B⊥1 = B⊥2 . (5.19)

Next, let us consider the last Maxwell equation. Integrating both sides of the equation over
surface abcd, shown in figure 5.2, gives

∫

abcd

(∇×H) · bdS =

∫

abcd

[
Jfree +

∂D

∂t

]
· bdS. (5.20)

According to Stokes’ theorem, the left hand side of the equation becomes a closed line integral as
∫

abcd

(∇×H) · bdS =

∮

abcd

H · dr,

= −H1 · tL+ H2 · tL+ contributions from ac and bd lines, (5.21)

where t is a unit vector parallel to both the interface and surface abcd as depicted in the figure.
The unit vector b is parallel to the interface but normal to the plane abcd, and the lengths of lines
ab and cd are L. As the lengths of the lines ac and bd approach zero, the contributions from these
lines are suppressed and become negligible. Only the first two terms of the above equation remain.
Once the lengths of the short sides approach zero, the magnetic flux through the plane abcd vanishes.
However, the right-hand side of Eq.(5.20) does not all disappear if there is free surface current density
K flowing exactly on the interface. Under the circumstances, we then have,

(H2 −H1) · t = K. (5.22)

With the same idea, Eq.(5.3) gives the following boundary condition

(E2 −E1) · t = 0. (5.23)

In the case that there is no free current density and the media have low magnetic susceptibilities
such that µ = µ0, the magnetic field and magnetic field strength are related as µ0H = B. In this
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case, the boundary conditions for the fields can be summarised as follows,

D⊥1 = D⊥2 , (5.24)

E
‖
1 = E

‖
2 , (5.25)

B1 = B2, (5.26)

a b

c d

n

tmedium 1

medium 2

b

Figure 5.2: The surface is bounded by the closed line abcd at the interface between the two media.

5.3 Reflection and refraction of plane electromagnetic waves

With the boundary conditions given in the previous section, for a given incident plane wave, the
reflected and transmitted wave can be determined straightforwardly as follows. Let us consider
the following situation. A generic incident plane wave with the wave vector k whose electric and
magnetic fields are written as [18]

E = E0ei(k·r−ωt), (5.27)

B =
√
µ1ε1

k×E

k
, (5.28)

is travelling from one dielectric medium toward another as depicted in figure 5.3. The permeabilities
and permittivities of these media are µ1, ε1 and µ2, ε2 respectively. The transmitted and reflected
fields then are of the forms

Et = Et
0ei(k

t·r−ωt), (5.29)

Bt =
√
µ2ε2

kt ×Et

kt
, (5.30)

and

Er = Er
0ei(k

r·r−ωt), (5.31)

Br =
√
µ1ε1

kr ×Er

k
, (5.32)

respectively. The wave number magnitudes satisfy
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Figure 5.3: The initial plane wave travelling in the direction of propagation k/k from medium 1 with
refractive index n1 toward medium 2 with reflective index n2. The plane wave is then transmitted
and reflected as shown.

|k| = |kr| = k = ω
√
µ1ε1, (5.33)

|kt| = kt = ω
√
µ2ε2. (5.34)

The refractive indices of medium 1 and medium 2 are defined as n1 =
√
µ1ε1/µ0ε0 and n2 =√

µ2ε2/µ0ε0 respectively. We assume that the interface is at the plane z = 0. As these three plane
waves meet at the interface, the boundary conditions enforce a phase matching condition such that
the spatial variation of all fields must have the same phase at the interface, z = 0:

k · r|z=0 = kr · r|z=0 = kt · r
∣∣
z=0

. (5.35)

In other words, it means the components of the incident, reflected and transmitted wave vectors
parallel to the interfaces are identical. This phase matching condition gives rise to the so-called
Snell’s law [18] as

k sin θi = kt sin θt = kr sin θr, (5.36)

which determines the propagation directions of the reflected and transmitted plane waves. Applying
the boundary conditions discussed previously, the electric and magnetic fields of these plane waves
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at the plane z = 0 satisfy

ε1 (E0 + Er
0) · n = ε2E

t
0 · n, (5.37)

(k×E0 + kr ×Er
0) · n =

(
kt ×Et

0

)
· n, (5.38)

(E0 + Er
0) · t = Et

0 · t, (5.39)
1

µ1
(k×E0 + kr ×Er

0) · t =
1

µ2

(
kt ×Et

0

)
· t. (5.40)

By decomposing the electric fields to be in the directions perpendicular and parallel to the plane of
incidence respectively, we then find the Fresnel coefficients as [18]

ts =
Et

0 · es

E0 · es
=

2k · n
k · n + µ1

µ2
kt · n , (5.41)

rs =
Er

0 · es

E0 · es
=

k · n− µ1

µ2
kt · n

k · n + µ1

µ2
kt · n , (5.42)

tp =
Et

0 · ep(kt)

E0 · ep(k)
=

2nk · n
µ1

µ2
k · n + n2kt · n , (5.43)

rp =
Er

0 · ep(kr)

E0 · ep(k)
=

µ1

µ2
k · n− n2kt · n

µ1

µ2
k · n + n2kt · n , (5.44)

where we denote by es and ep(k) the unit vectors perpendicular and parallel to the plane of incidence,
given by

es =
n× k

k
, (5.45)

ep(kj) =
es × kj

kj
; j = r, t (5.46)

We note that for each given plane of incidence the unit vector es is a constant vector while the
direction of ep(kj) depends on the propagation direction of the wave of interest. We also denote
the relative index of refraction with n ≡ n1/n2. Since the directions of propagation of the reflected
and transmitted fields are determined by Snell’s law, and their amplitudes are given by Fresnel
coefficients, for a given incident plane wave, the reflected and transmitted electric and magnetic
fields given from Eq.(5.29) to Eq.(5.32) are obtained.

5.4 Optical force and torque

Optical force and torque have been studied for a long time to understand the physical interaction
between light and media. They were first mentioned by Kepler who tried to explain the reason
why a comet’s tail always points away from the sun. There are several experimental and theoretical
studies of this topic in the literature, which over time, successively clarified the picture [126–137].
However, there remain aspects to be explored. Additionally, the study of radiation pressure not
only gives us a physical understanding of light-matter interaction but also guides us to its noble
applications especially in optical tweezers, which play a vital part of various biological studies in
recent years, including studies of bacterial flagella, DNA structure and mechanical properties of
macromolecules [138].
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Recall that light is a propagating wave of an electromagnetic field that carries its energy along
the propagation direction. The optical force acting on a medium is described by the Lorentz force.
The Lorentz force tells us how charged particles, or indeed neutral composite particles made up of
charged particles, react to external electric and magnetic fields. Interestingly, in the case of dielectric
media, there are actually two distinct competing forms of the Lorentz force density [131,132]. Each
of them originates from different microscopic models of the medium. If we think of the medium as
formed from individual charges, the optical force density then will have the form [130]

f c = −(∇ ·P)E + Ṗ×B, (5.47)

where we use the dot sign above vector fields to represent their time derivative. On the other hand,
in the case that the medium is thought of as being formed by individual electric dipoles, its form
then becomes [129]

fd = (P · ∇)E + Ṗ×B. (5.48)

Only the first terms of these two forms are different. In the charge-based form, the idea of the first
term is that when an external field is present, the points in the medium where the polarisation is
not divergenceless corresponding to the locations of bound charges. These bound charges then are
pushed or pulled by the external electric field. In the second form, the first term is the result of the
net force that the external electric field exerts on each individual charge of the electric dipoles.

It has been proved that these two forms give rise to an equivalent total optical force and
torque [131]. We will review the derivation of each form in detail and show that they actually
give the same total force and torque. Let us begin with the Lorentz force density. The force per unit
volume of electric and magnetic fields acting on charged particles is given by

fL = ρE + J×B. (5.49)

From the first Maxwell equation, Eq.(5.1), as the dielectric medium is electrically neutral, there
is no free charge, only bound charges, and the electric displacement is thus divergenceless. Recall
that in free space, the first Maxwell equation is ∇ · E = ρ, when ρ is the total charge density
including both free and bound charge densities so that ρ = ρfree + ρbound. The relation between the
electric displacement and the polarisation fields is given by D = ε0E + P, as previously mentioned,
and in neutral media such as dielectrics, we have ∇ · D = ρfree = 0. The divergenceless electric
displacement therefore gives rise to the following relation between the polarisation field and the
bound charge density:

∇ ·P = −ρbound. (5.50)

Applying the time derivative on both sides of the equation and the continuity equation, we find

∇ · Ṗ = −ρ̇bound = ∇ · JP. (5.51)

The movement of bound charges creates the current density JP. This equation, however, gives us
the relation between the longitudinal parts of the polarisation field and the current density. Without
loss of generality, we can define the current JP in such a way that it is the result of the change in
the polarisation field per unit time so that

Ṗ = JP. (5.52)
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Substituting these results back to the Lorentz force density, we then obtain the charge-based form
of the force density.

Let us consider the case of the second form of the force density. The total Lorentz force acting
on a single point dipole is given by

Fspd = (d · ∇)E + ḋ×B, (5.53)

Consequently, the force density is

f spd = ((d · ∇)E(r) + ḋ×B(r))δ(r−R), (5.54)

where R is the location of the dipole. The integration over a volume including the dipole then gives
back the total force on the dipole. Recall that the polarisation is the dipole density,

P =
∑

i

diδ(r−Ri). (5.55)

where the sum runs over all dipoles in a unit volume. Then, the total force on the unit volume
becomes the second form of the force density, fd.

5.4.1 Microscopic scale

At the microscopic scale, we consider a single point dipole at position R. We then can show that the
total forces acting on the dipole obtained from both forms are identical as follows. The polarisation
field of the dipole is given by

P(r) = dδ(r−R). (5.56)

Substituting this into the two force density forms, we then have

f c = −(d · ∇δ(r−R))E + ḋ×Bδ(r−R),

fd = ((d · ∇)E + ḋ×B)δ(r−R). (5.57)

Integration over a volume containing the dipole gives us the total force acting on the dipole from
these two forms, and we find

Fd =

∫
fddV = (d · ∇)E + ḋ×B,

Fc =

∫
f cdV = −

∫
E(d · ∇δ(r−R))dV + ḋ×B

= (d · ∇)E + ḋ×B

= Fd, (5.58)

where we have used integration by parts to evaluate the term containing the derivatives of the delta
function. As we can see that both force densities give the same total force, both forms of force
density are equivalent at the microscopic scale.
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5.4.2 Macroscopic scale

In this case, we consider the electromagnetic force acting on a macroscopic medium. In order to
calculate the total force on the medium by volume integration, we need to choose the integration
volume carefully. The integration volume V , which is bounded by the surface S, must contain the
entire medium and a thin layer of vacuum inside it so that the dielectric-vacuum surface is fully
contained inside the volume. Since there is no polarisation field in vacuum, there is no force density
in the vacuum region. The volume integral of the difference between these two forms is

F d
i − F c

i =

∫

V

(Pj∇j + (∇jPj))EidV,

=

∫

V

∇j(PjEi)dV, (5.59)

where the subscripts identify the ith components of these vector fields in a Cartesian coordinate
system. The Einstein summation convention has been used such that each index appearing twice
implies a summation over the three values of the Cartesian components. With Gauss’s theorem, the
volume integration can be reexpressed as a surface integral,

F d
i − F c

i =

∫

S

PjEidSj = 0, (5.60)

as there is no polarisation field at the surface of the volume. Therefore, the two distinct forms of
the force density still give the same prediction at the macroscopic scale. We note that even though
we are working at the macroscopic scale, the electromagnetic fields involved are the microscopic
versions. The equivalence of these two forms implies that there is no difference between the net force
obtained by the summation of the forces acting on each charge directly, Fc, and that obtained by
the summation of the net force acting on each dipole, Fd.

5.4.3 Macroscopic fields

As discussed in the preceding subsection, the two force density forms give identical predictions if the
fields are microscopic. However, working with microscopic fields is not practical. In this section, we
calculate the Lorentz force with macroscopic fields and observe the form of the force density. Let
us consider the electric part of the Lorentz force acting on a volume v containing charged particles
with charge density ρ(r):

FL
E =

∫

v

ρ(r)E(r)dV. (5.61)

The electric field arising from the sources within the volume v cannot contribute to the net force as
they cancel each other in accordance with Newton’s third law of motion. Only the external electric
fields can affect the motion of the centre of mass. We assume that the volume v is small and the
electric field does not change much over the dimension of the volume v. The microscopic electric
field then can be replaced by the local macroscopic field Ē [131]. Supposing r0 is a position vector
inside the volume v, the electric field at any point inside the volume can then be approximated by
using the Taylor expansion

E(r) ≈ Ē(r0) + ((r− r0) · ∇)Ē(r0), (5.62)
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where ∇Ē(r0) represents the derivative of the local average field Ē(r) evaluated at the position r0.
Substituting back into the electric force, we then have

FL
E ≈

(∫

v

ρ(r)dV

)
Ē(r0) +

∫

v

ρ(r)((r− r0))dV · ∇Ē(r0). (5.63)

As we are considering the case of dielectric media which are electrically neutral, the first term
vanishes, ∫

v

ρ(r)dV = 0. (5.64)

The second integration term reminds us of the form of the macroscopic polarisation field,

P̄(r0) =
1

v

∫

v

ρ(r)(r− r0)dV. (5.65)

The electric force acting on this small volume v then becomes

FL
E = v(P̄(r0) · ∇)Ē(r0) (5.66)

Therefore, by dividing this with the volume v, the macroscopic force density acting on the dielectric
at a general point r in the medium is

fL
E = (P̄(r) · ∇)Ē(r). (5.67)

This form of force density is the same as the form of the dipole-based force density. This means in the
case of macroscopic fields the dipole-based form is preferable to the charge-based one. The problem
for the charge-based form when using macroscopic fields comes from the fact that the average of the
field derivatives is not the same as the derivatives of the average of the fields [131],

∇ ·P 6= ∇ · P̄. (5.68)

This is because, in general, averaging and differentiation do not commute. If the boundary of the
volume v is in the region of that the polarisation field P is non-zero, the boundary term then is not
necessarily zero. This fact can be shown explicitly as [139]

∇ ·P(r) = ∇ · P̄(r) +

∫

s

dS′ ·P(r′)w(r− r′), (5.69)

where w(r) is the averaging kernel, which is a real, non-negative and continuous function normalised
to unity:

∫
v

dV w(r) = 1, and we have defined s to be the surface of the volume v. The last term
then represents the average of the polarisation field P over the surface s.

5.4.4 Optical torque

An electromagnetic field can also exert torque on a dielectric medium, and indeed it is this torque that
is used to prove the existence of optical spin and orbital angular momentum [140]. For example, in
optical tweezer experiments, dielectric objects rotate around the optical axis if they are illuminated
by a light beam with orbital angular momentum [23–25]. Another example is Beth’s experiment
where the spin angular momentum transferred from circularly polarised light to a birefringent wave
plate was observed [7].
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Recall that the dipole-based force density is obtained from the summation of all forces acting on
the centres of mass of electric dipoles in a unit volume. To obtain the complete torque density, the
internal torque P × E which acts to align the electric dipole parallel to the external electric field
must be added. The form of the dipole-based torque density then becomes

td = r× fd + P×E. (5.70)

On the other hand, since the charge-based force density originates from the electromagnetic force
acting on each individual charge in a unit volume, the form of the charge-based torque density can
be obtained directly as

tc = r× f c. (5.71)

In order to calculate the total torque on the medium, we perform the volume integration of these
forms of the torque density. The volume of integration once again must contain the entire medium
and a thin layer of vacuum within it, and there is no polarisation field at its surface S. We then find

Td =

∫

V

dV
(
r× ((P · ∇)E + Ṗ×B) + P×E

)
,

Tc =

∫

V

dV
(
r× ((−∇ ·P)E + Ṗ×B)

)

= −
∫

S

(r×E)P · dS +

∫

V

dV ((P · ∇)(r×E) + r× (Ṗ×B))

=

∫

V

dV
(
r× ((P · ∇)E + Ṗ×B) + P×E

)
= Td. (5.72)

In the above expression, we have used integration by parts and the fact that there is no polarisation
field at the surface of the integration volume. The first term in the last line then disappears. This
indicates that both of the forms of torque density give identical total torque.

5.5 Field quantisation

In this section, we review and discuss the processes that are required to quantise electromagnetic
fields. The key idea of the field quantisation is that the classical fields are replaced by their corre-
sponding field operators [141]. The equation of motion of these fields must be in the same form as
the classical equation of motion, or, in our case, the electromagnetic field operators must still obey
Maxwell’s equations. It is easier and more straightforward to quantise the classical fields if we write
the classical equation in the form of a classical harmonic oscillator. Then, we can replace it with its
quantum version.

5.5.1 Electromagnetic scalar and vector potentials

Before demonstrating the quantisation process explicitly, let us review the process to obtain the
classical electric and magnetic fields from the scalar and vector potentials: φ and A. For a given
scalar potential φ and a vector potentialA, we can determine the corresponding electric and magnetic
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fields as [18]

B = ∇×A, (5.73)

E = −∇φ− ∂A

∂t
. (5.74)

In free space, Maxwell’s equations are reduced to

∇ ·E = ρ, (5.75)

∇ ·B = 0, (5.76)

∇×E = −∂B
∂t
, (5.77)

∇×B = ε0µ0
∂E

∂t
+ J. (5.78)

These four equations can be represented in terms of the scalar and vector potentials and may be
rewritten as two coupled differential equations:

∇(∇ ·A)−∇2A +
1

c2
∂

∂t
∇φ+

1

c2
∂2A

∂t2
= µ0J, (5.79)

and

−ε0∇2φ− ε0∇ ·
∂A

∂t
= ρ, (5.80)

where we have used the following vector identity

∇×∇×A = ∇(∇ ·A)−∇2A. (5.81)

The current and charge densities, J and ρ, are the source terms of these two coupled differential
equations, which can be used to determine the fields. As we know, for given electric and magnetic
fields, there are multiple choices of pairs of the corresponding vector and scalar potentials. Two pairs
of potentials, (φ,A) and (φ′,A′), that give the same electromagnetic fields are related by a gauge
transformation [18,141]:

A′ = A +∇λ, (5.82)

φ′ = φ− ∂λ

∂t
. (5.83)

A gauge in electromagnetics then means a specific relation between the vector and scalar potentials.
Generally, to simplify the problem, the Coulomb gauge is used:

∇ ·A = 0. (5.84)

In this gauge, the vector potential is transverse. One gauge can be transformed to another gauge by
using the above gauge transformation. With the Coulomb gauge, the two differential equations then
become

−∇2A +
1

c2
∂

∂t
∇φ+

1

c2
∂2A

∂t2
= µ0J, (5.85)

−∇2φ = ρ/ε0. (5.86)
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The second equation then is in the form of Poisson’s equation of electrostatics whose solution is
the Coulomb potential between charged particles. The first equation can be simplified further by
using Helmholtz’s theorem such that a vector field can be decomposed as a sum of transverse and
longitudinal parts of the field [142]:

J = JT + JL, (5.87)

where

∇ · JT = 0, (5.88)

∇× JL = 0. (5.89)

Eq.(5.85) then can be separated as

−∇2A +
1

c2
∂2A

∂t2
= µ0JT, (5.90)

and

1

c2
∂

∂t
∇φ = µ0JL. (5.91)

The first equation is the equation of motion of the vector potential in the Coulomb gauge. The
second equation together with Eq.(5.86) give the equation of charge conservation:

∇ · JL = −∂ρ
∂t
. (5.92)

The electric field can be separated accordingly as

E = ET + EL, (5.93)

where

ET = −∂A
∂t

, (5.94)

EL = −∇φ. (5.95)

The benefit of using the Coulomb gauge is that, as we can see, it offers a clean separation of the field
equations into two different and independent sets so that the transverse equations describe electro-
magnetic waves and the longitudinal equations describe the fields given by the charge density [141].

5.5.2 Free field quantisation

In this case, we consider a region in which the transverse current density JT vanishes and the equation
of motion of the vector potential then becomes

−∇2A +
1

c2
∂2A

∂t2
= 0. (5.96)

We then consider a cubic cavity of space where the length of each side is L. This is not a real cavity
but the quantisation cavity, and the electromagnetic waves contained within are not standing waves
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but running waves with periodic boundary conditions [141]. The vector potential in this scenario
can consequently be written in terms of a superposition of the allowed modes in the cavity:

A(r, t) =
∑

k

∑

σ=1,2

ek,σAk,σ(r, t), (5.97)

where

Ak,σ(r, t) = Ak,σ(t)eik·r +A∗k,σ(t)e−ik·r, (5.98)

and the components of the wave vectors satisfy

kx = 2πνx/L, ky = 2πνy/L, kz = 2πνz/L, (5.99)

where νx, νy, νz are arbitrary integers. The wave vector k and the unit polarisation vectors, ek,1 and
ek,2 form a Cartesian coordinate system, as the Coulomb gauge constrains the wave vector to be
normal to the polarisation:

k · ek,σ = 0, (5.100)

and the polarization vectors can be chosen such that they are orthogonal to each other:

ek,σ · ek,σ′ = δσ,σ′ , (5.101)

where the Kronecker delta is unity when its two indices are identical and zero otherwise. This means
each mode component Ak,σ(t) (and its complex conjugate) is independent of other modes. These
cavity modes independently satisfy Eq.(5.96),

k2Ak,σ(t) +
1

c2
∂2Ak,σ(t)

∂t2
= 0. (5.102)

Noticeably, this equation is already in the form of the equation of motion of a classical simple
harmonic oscillator:

∂2Ak,σ(t)

∂t2
+ ω2

kAk,σ(t) = 0, (5.103)

when the mode angular frequency ωk is related to the magnitude of the wave vector by ωk = kc.
The solution of a simple harmonic oscillator then gives us the time dependence of the components
as

Ak,σ(t) = Ak,σe−iωkt. (5.104)

Eq.(5.98) then becomes

Ak,σ(r, t) = Ak,σei(k·r−ωkt) +A∗k,σe−i(k·r−ωkt). (5.105)

From this equation, the transverse electric and magnetic fields are given as,

ET(r, t) =
∑

k

∑

σ=1,2

ek,σEk,σ(r, t), (5.106)
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where

Ek,σ(r, t) = iωk

(
Ak,σei(k·r−ωkt) −A∗k,σe−i(k·r−ωkt)

)
, (5.107)

and

B(r, t) =
∑

k

∑

σ=1,2

k× ek,σ
k

Bk,σ(r, t), (5.108)

with

Bk,σ(r, t) = ik
(
Ak,σei(k·r−ωkt) −A∗k,σe−i(k·r−ωkt)

)
. (5.109)

The ratio of the magnitudes of the electric and magnetic fields is equal to the velocity of light in free
space as expected. The total energy of the electromagnetic waves inside the cavity is given by [141]

E =
1

2

∫

cavity

dV

(
ε0ET ·ET +

1

µ0
B ·B

)
. (5.110)

With Eq.(5.99), we find
∫

cavity

dV exp [±i(k− k′) · r] = V δk,k′ , (5.111)

where V = L3 is the volume of the cavity. Substituting the electric and magnetic fields given in
Eqs.(5.107) and (5.109) into Eq.(5.110) and using the above spatial integration, the total radiation
energy within the cavity can be written as

E =
V

2

∑

k

∑

σ,σ′

{(
Ak,σA

∗
k,σ′ +A∗k,σAk,σ′

) (
ε0ω

2
kek,σ · ek,σ′ + µ−1

0 (k× ek,σ) · (k× ek,σ′)
)

−
(
Ak,σA−k,σ′e

−2iωkt +A∗k,σA
∗
−k,σ′e

2iωkt
) (
ε0ω

2
kek,σ · e−k,σ′ − µ−1

0 (k× ek,σ) · (k× e−k,σ′)
)}

(5.112)

We note that (k× ek,σ) · (k× e±k,σ′) = k2ek,σ · e±k,σ′ . Therefore, with ω = kc, the second term in
the summation, the time dependent term, vanishes. Finally, the total radiative energy in the cavity
is then time-independent and can be expressed as

E =
∑

k

∑

σ

Ek,σ, (5.113)

with

Ek,σ = ε0V
(
Ak,σA

∗
k,σ +A∗k,σAk,σ

)
. (5.114)

Let us briefly review the quantum mechanics of a harmonic oscillator system. The Hamiltonian
of a one-dimensional harmonic oscillator is of the form

Ĥ =
p̂2

2m
+

1

2
mω2q̂2, (5.115)

where the position q̂ and momentum p̂ operators satisfy the well-known commutation relation

[q̂, p̂] = i~. (5.116)
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On the other hand, one can also express the Hamiltonian in terms of a pair of dimensionless operators
as

Ĥ =
1

2
~ω
(
ââ† + â†â

)
, (5.117)

where â and â† are the annihilation and creation operators which obey the following commutation
relation:

[
â, â†

]
= ââ† − â†â = 1. (5.118)

The relations between the annihilation and creation operators and the position and momentum
operators are given by

â =

√
1

2m~ω
(mωq̂ + ip̂), (5.119)

â† =

√
1

2m~ω
(mωq̂ − ip̂). (5.120)

The effect of the annihilation operator on the eigenstates of the Hamiltonian operator is to shift the
energy eigenstate down by one level as

√
n|n− 1〉 = â|n〉, (5.121)

where we define |n〉 to be the energy eigenstate associated with the energy eigenvalue ~ω(n+ 1/2).
In the case of the ground state, as the energy of the system cannot be negative and there is no energy
level to go down, the result of applying the annihilation operator to the ground state is zero:

â|0〉 = 0. (5.122)

In contrast, the creation operator causes the energy eigenstate go up by one as
√
n+ 1|n+ 1〉 = â†|n〉. (5.123)

To quantise the electromagnetic fields, we treat each mode in the cavity as an independent
quantum harmonic oscillator. This may be achieved by promoting the energy of each mode to the
corresponding quantum harmonic oscillator Hamiltonian. For example, from Eq.(5.114), for the
mode (k, σ):

Ek,σ = ε0V
(
Ak,σA

∗
k,σ +A∗k,σAk,σ

)
→ Ĥk,σ =

~ωk
2

(
âk,σâ

†
k,σ + â†k,σâk,σ

)
, (5.124)

The total Hamiltonian then becomes

Ĥ =
∑

k

∑

σ

Ĥk,σ =
∑

k

∑

σ

~ωk
2

(
âk,σâ

†
k,σ + â†k,σâk,σ

)
. (5.125)

This means the conversions from the classical amplitudes Ak,σ of the vector potential to the corre-
sponding quantum mechanical mode operators are

Ak,σ →
√

~
2εV ωk

âk,σ, (5.126)

A∗k,σ →
√

~
2εV ωk

â†k,σ. (5.127)
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The commutation relation between the creation and annihilation operators becomes
[
âk,σ, â

†
k′,σ′

]
= δk,k′δσ,σ′ . (5.128)

Substituting this back into the classical vector potential, the quantum version of the vector potential
therefore becomes

Â(r, t) =
∑

k

∑

σ

ek,σÂk,σ(r, t), (5.129)

with

Âk,σ(r, t) =

√
~

2ε0V ωk

(
âk,σei(k·r−ωkt) + â†k,σe−i(k·r−ωkt)

)
. (5.130)

The electric field are replaced by their associated quantum operator accordingly as

ÊT(r, t) = Ê+
T(r, t) + Ê−T(r, t), (5.131)

where

Ê+
T(r, t) = i

∑

k

∑

σ

√
~ωk

2ε0V
ek,σâk,σei(k·r−ωkt), (5.132)

Ê−T(r, t) = −i
∑

k

∑

σ

√
~ωk

2ε0V
ek,σâ

†
k,σe−i(k·r−ωkt). (5.133)

These two parts of the electric field operator are known as the positive and negative frequency parts
respectively according to the sign of the frequencies in the exponential arguments [141]. On the
other hand, the magnetic field operator becomes

B̂(r, t) = B̂+(r, t) + B̂−(r, t), (5.134)

with

B̂+(r, t) = i
∑

k

∑

σ

√
~

2ε0V ωk
k× ek,σâk,σei(k·r−ωkt), (5.135)

B̂−(r, t) = −i
∑

k

∑

σ

√
~

2ε0V ωk
k× ek,σâ

†
k,σe−i(k·r−ωkt). (5.136)

At this point we can define a single photon state in the mode (k, σ) as the first energy state of
the corresponding harmonic oscillator Hamiltonian:

|1〉k,σ = â†k,σ|0〉k,σ. (5.137)

In the general case, a single photon state can be a superposition of multiple modes with amplitudes
described by ξk,σ as [141]

|1〉ξ =
∑

k

∑

σ

ξk,σâ
†
k,σ|0〉, (5.138)
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where we represent the ground state or the vacuum state as the tensor product of the ground states
of all possible modes [143]

|0〉 =
∏

k,σ

⊗|0〉k,σ, (5.139)

and the probability amplitudes satisfy the normalisation condition:
∑

k

∑

σ

|ξk,σ|2 = 1. (5.140)

The field quantisation inside the cavity can be extended into real free space by taking the limit in
which the length of the cavity goes to infinity. In this limit, the discrete set of the allowed wave
vectors k becomes a continuous set as the components of the allowed wave vector kx, ky and kz can
be arbitrary. The summation over all possible wave vectors is changed to be a continuous integral as

∑

k

→ V

(2π)3

∫
d3k. (5.141)

The commutation relation in Eq.(5.128) becomes [144]
[
âσ(k), â†σ′(k

′)
]

= δ3(k− k′)δσ,σ′ , (5.142)

where the Kronecker delta is now replaced by the Dirac delta function. The annihilation operator in
the discrete regime does not have the same dimension as its continuous version as they are related
by [144]

âk,σ =

√
(2π)3

V
âσ(k). (5.143)

Therefore, we can use the results of the field quantisation in the cavity so far to obtain the quan-
tisation in free space straightforwardly. In the continuous limit, the positive frequency part of the
vector potential in Eq.(5.130) becomes

Â+(r, t) =
∑

σ

∫
d3k

√
~

16π3ε0ω
êσ(k)âσ(k)ei(k·r−ωt). (5.144)

Using the Coulomb gauge, the electric and magnetic field operators can be obtained directly.

5.6 Paraxial approximation

The paraxial approximation is normally used in Gaussian optics to describe an electromagnetic wave
in the form of an optical beam when the rays propagating through lenses only make small angles
with the optical axis, and spherical aberration is suppressed [145]. Normally, it is used to describe
a laser beam which has finite cross section [146, 147]. In this section, we focus on an optical beam
propagating along the positive z-axis. We factorise the vector potential into the product of a complex
function U(r) and the solution of a plane wave propagating in the z-direction as follows:

A(r, t) = U(r)ei(kz−ωt)x, (5.145)
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where k is the magnitude of the wave vector and x is the polarisation unit vector. We normally call
U(r) the complex envelope as it is the function that describes the shape of the beam [115]. The
envelope is a slowly varying function of z compared to the scale of the wavelength λ [115,147]:

∂U

∂z
� U

λ
∼ kU, (5.146)

in other words,

∂2U

∂z2
� k

∂U

∂z
� k2U. (5.147)

The exponential term in Eq.(5.145) is then the main part that describes the z dependence of the
vector potential. Substituting this form of the vector potential to Eq.(5.96), we have

∇2
⊥U − 2ik∂zU = 0, (5.148)

where we have used the dispersion relation, ω = kc, and ∇⊥ is the derivatives with respect to the
transverse directions. We have dropped the second derivative with respect to z of the function U

as it is much smaller than the remaining terms. The above equation is called the paraxial wave
equation [147]. The vector polarisation x has been omitted as each term in Eq.(5.96) has the same
unit vector. We can, therefore, fully concentrate on the components of the vector field. We notice
that, in contrast to plane electromagnetic waves, the derivative of a paraxial wave in the transverse
direction is nonzero, which indicates that the wavefront of a paraxial wave is different to that of
plane waves. The local wave vectors which are normal to the wavefront locally are not necessarily
parallel to the propagation direction. However, this does not contradict Maxwell’s equations as the
corresponding electric and magnetic fields are still divergenceless [146, 148]. The local polarisation
of the electric field is perpendicular to the local wave vector and tangential to the local wavefront as
depicted in figure 5.4. The modes of light that satisfy the paraxial wave equation are, for example,
Laguerre-Gaussian and Hermite-Gaussianetc [147].

Paraxial light can be written as a superposition of plane waves that propagate nearly parallel to
the z-axis: k⊥ � k, where k⊥ is the transverse component of the wave vector [147]. The z component
of the waves vector of these plane wave can be approximated as

kz =
√
k2 − k2

x − k2
y ≈ k −

(k2
x + k2

y)

2k
. (5.149)

The amplitudes of those plane waves for which the wave vector significantly diverges from the z-axis
are suppressed.

5.7 Quantisation of paraxial light

In this section, we use information discussed in this chapter so far to derive the form of electric
and magnetic field operators for paraxial beams. We start by changing the integration variables in
Eq.(5.144) as, with the paraxial approximation,

∫
d3k ≈ 1

c

∫
dω

∫
d2k⊥, (5.150)
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z

x

êlocal

klocal

Figure 5.4: The wavefront of the Gaussian beam travelling in the positive z-direction has nonzero
curvature. In the figure the local polarisation unit vector êlocal is perpendicular and tangential to
the local wave vector klocal and the local wavefront respectively. The direction of the polarisation
vector depends on the location in the beam.

because kz ≈ k = ω/c. As we consider a beam propagating in the positive z-direction, we then take
the integration from ω = 0 to ω =∞. Applying Eq.(5.149), the positive electric field operator then
becomes

Ê+(r, t) = i

∫ ∞

0

dω

∫
d2k⊥

√
~ω

16π3ε0c
exp[i(kz − ωt)]

∑

σ

êσ(k⊥, ω)âσ(k⊥, ω)

× exp

[
ik⊥ · x⊥ − iz

k2
⊥

2k

]
, (5.151)

where x⊥ = (x, y). The annihilation operator âσ(k⊥, ω) in Eq.(5.144) has been replaced by the new
operator

√
câσ(k⊥, ω). The commutation relation for this annihilation operator is

[
âσ(k⊥, ω), â†σ′(k

′
⊥, ω

′)
]

= δσ,σ′δ
2(k⊥ − k′⊥)δ(ω − ω′). (5.152)

This electric field is in the form of a superposition of electric field operators of plane waves, prop-
agating nearly parallel to the z-axis, as depicted in figure 5.5. For a plane wave component of the
superposition with local wave vector klocal = (kx, ky, k − k2

⊥/2k), we can set the local polarisation
unit vectors to be

ê1(k⊥, ω) ≈ x̂− ẑkx/k, (5.153)

ê2(k⊥, ω) ≈ ŷ − ẑky/k, (5.154)

which are perpendicular to each other and to the local wave vector klocal. We define x̂, ŷ and ẑ to
be unit vectors in the x-, y- and z-directions. We find that

ix̂σ · ∇⊥ exp(ik⊥ · x⊥) = −kxσ exp(ik⊥ · x⊥), (5.155)
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kz ẑ

ê1
ê2

klocal
k̂local

y
x

z

Figure 5.5: The wave vector klocal of a local plane wave component of the superposition is nearly
parallel to the propagation direction . The polarisation unit vectors of the plane wave are illustrated
by the arrows ê1 and ê2.

where x̂σ = x̂, ŷ. The electric field operator becomes

Ê+(r, t) =
i

c

∫ ∞

0

dω

∫
d2k⊥

√
~ω

16π3ε0c
exp[i(kz − ωt)]

∑

σ

âσ(k⊥, ω)

×
(
x̂σ +

i

k
ẑ(x̂σ · ∇⊥)

)
exp

[
ik⊥ · x⊥ − iz

k2
⊥

2k

]
, (5.156)

We then define a new annihilation operator as

âσ(x⊥, z, ω) ≡ 1

2π

∫
dk⊥âσ(k⊥, ω) exp

[
ik⊥ · x⊥ − iz

k2
⊥

2k

]
. (5.157)

The commutation relation for the new operators is inherited from the commutation relation in
Eq.(5.152) as

[
âσ(x⊥, z, ω), â†σ′(x

′
⊥, z, ω

′)
]

= δσ,σ′δ(x⊥ − x′⊥)δ(ω − ω′). (5.158)

We can use the following relation to evaluate the integration in Eq.(5.157) [149,150]:

1

2π
exp

[
ik⊥ · x⊥ − iz

k2
⊥

2k

]
=
∑

n.m

ψ̃∗nm(k⊥, ω)ψnm(x⊥, z, ω), (5.159)

where ψnm(x⊥, z, ω) is a complete orthonormal set of functions
∫
ψ∗nm(x⊥, z, ω)ψn′m′(x⊥, z, ω)d2x = δn,n′δm,m′ , (5.160)
∑

n,m

ψ∗nm(x⊥, z, ω)ψnm(x′⊥, z, ω) = δ(x− x′), (5.161)
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and n andm are integers. The complex function ψ̃nm(k⊥, ω) is the two dimensional Fourier transform
of the function ψnm(x⊥, z = 0, ω):

ψ̃nm(k⊥, ω) =
1

2π

∫
ψnm(x⊥, z = 0, ω) exp(−ix⊥ · k⊥)d2x. (5.162)

The set of the functions ψnm(x⊥, z, ω) can be either Hermite-Gaussian or Laguerre-Gaussian which
are two different sets of the paraxial solutions [149,150]. The integration of Eq.(5.157) becomes

âσ(x⊥, z, ω) =
∑

n,m

âσnm(ω)ψnm(x⊥, z, ω), (5.163)

where we have define the operator âσnm(ω) as

âσnm(ω) =

∫
d2k⊥ψ̃

∗
nm(k⊥, ω)âσ(k⊥, ω). (5.164)

The new defined operator âσnm(ω) obeys the following commutation relation:
[
âσnm(ω), â†σ′n′m′(ω

′)
]

= δσ,σ′δn,n′δm,m′δ(ω − ω′). (5.165)

Therefore, the positive-frequency part of the electric field can be written as

Ê+(r, t) = i

∫ ∞

0

dω

√
~ω

4πε0c
exp[i(kz − ωt)]

∑

σ,n,m

âσnm

(
x̂σ +

i

k
ẑ(x̂σ · ∇⊥)

)
ψnm(x⊥, z, ω). (5.166)

The corresponding magnetic field operator can be obtained by the third Maxwell equation. For
an optical beam in a particular mode, we can obtain its electric field operator by replacing the
superposition over all possible modes in the equation by the desired mode.

We can summarise this chapter as follows. We have reviewed the Maxwell equations and showed
how plane wave solutions and boundary conditions are obtained from them. The optical force and
torque which are the main ingredient of the next chapter, to describe the mechanism of angular
momentum transfer from light to a dielectric medium, have been discussed and carefully explained.
The conventional quantisation of free electromagnetic fields have been given, and from that the
quantisation of paraxial light is obtained.



Chapter 6

Angular momentum transfer from

light to a dielectric medium by total

internal reflection

In this chapter, we study the mechanism of angular momentum transfer from light to a lossless
dielectric medium when the light undergoes total internal reflection. We use the dipole-based force
density fd to calculate the total force and torque acting on the dielectric [131]. For definiteness, we
consider the light beam to be in a Laguerre-Gaussian mode with a zero radial index, p = 0. The
incident beam is assumed to be a paraxial single-photon pulse with a narrow-bandwidth spectrum.
Every quantity given in this chapter is normalised for one photon. The size of the dielectric is
assumed to be very large compared to the pulse length. This assumption allows us to treat reflection
and transmission at each interface of the dielectric separately. The central wavelength of the photon
pulses is taken to be much smaller than the beam waist. We consider the case that the refractive
index, n(ω), of the medium varies insignificantly in the range of the allowed bandwidth of single-
photon pulses. We can, therefore, think of the medium to be nondispersive. The shape of the
pulses is constant along its propagation. The physical results given in this chapter may also be
obtained equivalently by classical electrodynamics. The quantum picture, however, gives us the
key advantage so that we can eliminate the complications arising from the coexistence of reflection
and transmission at each interface by conditioning the calculation results on the transmission or
reflection of the photon, which helps us simplify the analysis and also give a clear picture of the
physical interaction between the dielectric and photons. This work presented in this chapter is an
original contribution and was published in J. Opt. Soc. Am. B [2].

This chapter consists of 8 sections. We start by introducing the angular spectrum representation
of Laguerre-Gaussian beams, which is the main ingredient of the rest of the chapter, in the first
section. We then use the angular spectrum representation together with the law of reflection to
determine the form of the reflected beams in section 6.2. In section 6.3, we quantise both the
incident and reflected beams. The optical force and torque on the dielectric with the presence of

78
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the boundary are analysed in section 6.4, and we identify the torque that contributes to the change
of the angular momentum of the dielectric and evaluate its quantity in section 6.5. The beam shift
effect is analysed and evaluated in section 6.6 to verify that there is a part of the effective torque
associated with the change of the extrinsic angular momentum of the photon pulse. In section 6.7,
we use the part of effective torque associated with the change of intrinsic angular momentum of a
single photon to analyse the mechanism of the angular momentum transfer between a photon and
an M-shaped Dove prism. The paradoxical of expressing optical force and torque densities in terms
of polarisation P and using its conventional form: P = ε0(n2 − 1)E when the boundary is present,
is explicitly demonstrated in section 6.8.

6.1 Angular spectrum representation of a Laguerre-Gaussian

beam

We start this chapter by reviewing the angular representation as it is a key material we use in this
chapter. A paraxial light beam in a Laguerre-Gaussian mode with a frequency ω traveling along the
z-axis in a dielectric with a refractive index n(ω) has a Lorenz-gauge vector potential that is of the
form [8,134]:

A(r, t) = A0(αx + βy)uk,l(x, y, z)e
−iωt+ikz, (6.1)

where A0 is a complex constant, x and y are unit vectors in positive x- and y-directions respectively,
k = n(ω)ω/c is the wave vector. The complex constants α and β satisfy the normalisation condition:
|α|2 + |β|2 = 1 and they determine the polarisation of the beam. As mentioned, we study the
case that our medium is lossless, its refractive index is a real number. To simplify the problem, we
consider only the case of the radial index p = 0. In such a mode, the complex scalar function given
in the above equation is given by [8,134]

uk,l(x, y, z) =

√
2

π |l|!w2(z)

(√
2(x+ sign(l)iy)

w(z)

)|l|

× exp

[
−
(

1

w2(z)
− ikz

2(z2 + z2
R)

)
(x2 + y2)

]

× exp[−i(|l|+ 1) tan−1(z/zR)]

≈ 1√
π|l|!

(√
2

w0

)|l|+1

(x+ isign(l)y)|l|

× exp

[
−
(

1

w2
0

− ikz

2z2
R

)
(x2 + y2)− i(|l|+ 1)

z

zR

]
. (6.2)

This is the complex function given in Eq.(1.6) of chapter 1, but it is expressed in a Cartesian
coordinate system. The meaning and definition of each parameter are already given in chapter 1.
In this work, we only focus in the region within the Rayleigh range of the beam such that z � zR.
We can, therefore, approximate the complex function, uk,l, as given in the last line of the above
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equation. The complex function is normalised so that its integration over the xy-plane is unity:
∫ ∞

−∞

∫ ∞

−∞
dxdy |uk,l(x, y, z)|2 = 1, (6.3)

where

|uk,l(x, y, z)|2 =
2|l|+1

π|l|!w2(|l|+1)
0

(x2 + y2)|l| exp(−2(x2 + y2)/w2
0). (6.4)

As the beam is paraxial light, the wavelength is much smaller than its beam waist, in other words,
kw0 � 1. The spin angular momentum quantum number is denoted by σ and can be calculated
from the polarisation coefficients as [7]

σ = i(αβ∗ − α∗β). (6.5)

We can see that σ = ±1 for right- and left-circularly polarised beams respectively and σ = 0 for
linearly polarised beams.

The reason that we need to review the angular spectrum representation is that it is a tool that
helps us to determine the reflected beam. According to Fourier optics, an electromagnetic beam is
actually a superposition of plane electromagnetic waves whose amplitudes and propagation directions
are varied. This means when the beam undergoes total internal reflection each plane wave hits the
dielectric interface with a different incident angle and has its own plane of incidence. The physics of
reflection is applied to each plane wave component of the superposition to determine its corresponding
reflected plane wave. The superposition of the reflected plane waves gives the form of the reflected
beam. With the paraxial approximation, we can rewrite the vector potential field in terms of its two
dimensional Fourier transform as

A(r, t) = (αx + βy)e−iωt+ikz
A0

(2π)2

×
∫ ∞

−∞

∫ ∞

−∞
dkxdkyũl(kx, ky)e−iz(k

2
x+k2y)/2kei(kxx+kyy), (6.6)

where

ũl(kx, ky) ∝ (sign(l)ikx − ky)|l| exp

[
− (k2

x + k2
y)w2

0

4

]
, (6.7)

and we have applied the paraxial approximation kz ≈ k− (k2
x +k2

y)/2k. The transverse components,
kx and ky, of the wave vector are much smaller than the wave vector magnitude: k⊥ � k, where k⊥
represents the transverse components. With the Lorenz gauge, the paraxial electric and magnetic
fields with the positive frequency ω can be determined by the vector potential A as [147,151]

E(r, t) = −∇φ(r, t)− ∂A(r, t)

∂t
,

= i
c2

ωn2
∇(∇ ·A(r, t)) + iωA(r, t)

= ei(kz−ωt)
A0

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dkxdkyũl(kx, ky)e−iz(k

2
x+k2y)/2k

×
{
iω(αx + βy)− ic

n
(αkx + βky)z

}
ei(kxx+kyy),

≈ A0

{
iω(αx + βy)uk,l −

c

n
z

(
α
∂uk,l
∂x

+ β
∂uk,l
∂y

)}
ei(kz−ωt), (6.8)
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B(r, t) = ∇×A(r, t),

= ei(kz−ωt)
A0

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dkxdkyũl(kx, ky)e−iz(k

2
x+k2y)/2k

×
{−iωn

c
(βx− αy) + i(βkx − αky)z

}
ei(kxx+kyy),

≈ A0

{
−ik(βx− αy)uk,l + z

(
β
∂uk,l
∂x
− α∂uk,l

∂y

)}
ei(kz−ωt). (6.9)

We have omitted the terms that are of order (k⊥)2/k or higher as their contributions are extremely
small compared to the remaining terms. We notice that the electric and magnetic fields in the above
equations have components in the longitudinal direction which is in contrast to the case of plane
waves as we have discussed paraxial quantisation in the previous chapter. These two fields still obey
the Maxwell first and second equations for the free-source case as they are divergenceless fields,
∇ ·E = 0 = ∇ ·B. Thus, the electric and magnetic fields given above are physical. The longitudinal
components of the electric and magnetic fields are much smaller than the transverse components.
It is these longitudinal components that make a Laguerre-Gaussian beam have ~l orbital angular
momentum per photon as the azimuthal part of the Poynting vector is the result of the vector product
between the transverse and longitudinal components of the electric and magnetic fields [134,148,152].

6.2 Reflected beam

The aim of this section is to demonstrate explicitly how the form of the reflected beam is obtained
via angular spectrum representation and the physics of reflection. The incident beam is assigned to
be in a Laguerre-Gaussian mode with the radial index p = 0 as discussed in the previous section.
As mentioned, in the angular spectrum representation, the incident beam is a superposition of plane
waves. We treat each component of the superposition as an independent plane wave. The physics of
transmission and reflection of a plane wave, which is given in the following detail, is used to determine
the transmitted and reflected plane waves of each superposition component. The superposition of
these transmitted and reflected plane waves then give us the form of the transmitted and reflected
beams as desired.

We define three different coordinate systems: incident, reflection and interface coordinates which
are denoted by (xi, yi, zi), (xr, yr, zr) and (x, y, z) respectively as shown in figure 6.1. We set the
xy-plane of the interface coordinates to be at the interface between air and the dielectric medium,
so that the dielectric occupies the region z > 0. The y-axes of these three coordinates are assigned
to point in the same direction: yi = yr = y. The origins of these coordinate systems are defined to
be at the location where the centre of the incident beam hits the interface.

Let us start with the incident beam. As shown in figure 6.1, the incident beam propagates in the
direction with the angle of incidence θ. The forms of electric and magnetic fields of the beam are the
same as the previous section when they are written in terms of the incident coordinates (xi, yi, zi).
The beam waist is located at the origin of the coordinates. However, in order to apply the laws of
reflection and transmission, it is more convenient to do so in the interface coordinates (x, y, z). The
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Figure 6.1: The figure shows the geometrical alignment of the incident, reflected and interface
coordinate systems. The red line shows the propagation path of a superposition component, a local
plane wave, with its incident wave vector ki. The local polarisations of the local incident and reflected
plane waves are illustrated with the red arrow. The directions of the axes of these three coordinates,
(xi, yi, zi), (xr, yr, zr) and (x, y, z), are as shown in the figure. The three coordinate systems, however,
share the same origin, at the location where the centre of the incident beam hits the interface.

coordinate transformation between the incident and interface coordinates is given by

xi = x cos θ − z sin θ,

yi = y,

zi = z cos θ + x sin θ. (6.10)

We then apply this coordinate transformation to the angular spectrum representation of the incident
electric field. The form of the field in the interface coordinates is expressed as

Ei(x, y, z, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dkxdkyEi(kx, ky, t), (6.11)

with

Ei(kx, ky, t) ≡ A0e−iωt
{(

iωα cos θ − ic

n
(αkx + βky) sin θ

)
x + iωβy

−
(
iωα sin θ +

ic

n
(αkx + βky) cos θ

)
z

}
ũl(kx, ky)

× exp [i((k − κ) sin θ + kx cos θ)x+ kyy + ((k − κ) cos θ − kx sin θ)z] , (6.12)

where κ is the shorthand for the term (k2
x + k2

y)/2k. We note that Ei(kx, ky, t) is in the form of a
plane wave with the propagation direction described by its own wave vector ki = ((k − κ) sin θ +
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kx cos θ, ky, (k − κ) cos θ − kx sin θ). The form of the incident beam is now written explicitly as
a superposition of plane waves in the interface coordinates. From now on, we call a component
of the superposition, Ei(kx, ky, t), an incident local plane wave. We note that, kx and ky in the
incident coordinates are the transverse component of the local wave vector ki in the positive xi- and
yi-directions respectively. Their physical meanings in the interface coordinates, however, is rather
complicated. We thus treat them as transform variables.

At this point, we can treat each of the local plane waves independently. Every local plane wave
in the superposition has its own plane of incidence. For the local plane wave Ei(kx, ky, t), its own
plane of incidence is defined as a plane in which both its wave vector ki and the normal vector n

which is perpendicular to the interface, in our case it is equal to the unit vector z of the interface
coordinates, lie. We can then decompose the vector of the local electric field into the directions
perpendicular and parallel to its plane of incidence. As discussed in the previous chapter, we define
es(ki) and ep(ki) as unit vectors that are perpendicular and parallel to the plane of incidence for
the local plane wave Ei(kx, ky, t) respectively as

es(ki) =
z× ki

|z× ki|
, (6.13)

and

ep(ki) =
es(ki)× ki

k
. (6.14)

The local plane wave Ei(kx, ky, t) can thus be expressed in terms of these unit vectors as

Ei(kx, ky, t) = {Es
i (ki)e

s(ki) + Ep
i (ki)e

p(ki)} e−iωt+iki·r, (6.15)

where Es
i (ki) = Ei(kx, ky, t) · es(ki)e

iωt−iki·r and Ep
i (ki) = Ei(kx, ky, t) · ep(ki)e

iωt−iki·r and r is the
position vector in the interface coordinates (x, y, z). The unit vector es(ki) and ep(ki) are also known
as the eigenpolarisations of the local plane wave. At this point, we are ready to apply the physics
of reflection and transmission discussed in the previous chapter to the local plane wave Ei(kx, ky, t).
The directions of propagation of the local transmitted and reflected plane waves are determined by
Snell’s law given in the Eqs.(5.33), (5.34) and (5.35). On the other hand, the amplitudes of the local
transmitted and reflected plane waves in the s- and p-directions can be obtained through the Fresnel
coefficients given in Eqs.(5.41)- (5.44). As the local plane waves in the superposition have different
propagation directions, their Fresnel coefficients are different. With the conditions given above, the
reflected and transmitted beams can be determined straightforwardly.

As our study focuses only on total internal reflection, only the reflected beam is enough to
analyse the mechanism of momentum and angular momentum transfer. We will show later that the
transmitted evanescent field does not have an influence on the angular momentum exchange. The
Taylor expansion of the reflection coefficients around kx = ky = 0 gives

rs(kx) ≈ r̄s + r̄′skx = r̄s(1 + ikxD
s), (6.16)

rp(kx) ≈ r̄p + r̄′pkx = r̄p(1 + ikxD
p), (6.17)

where r̄s and r̄p are the reflection coefficients evaluated at kx = ky = 0 while r̄′s and r̄′p are their first
derivatives. The paraxial approximation has been applied. The terms including ky are negligible as
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their contributions are much smaller than the mentioned terms. We have defined r̄′s/r̄s and r̄′p/r̄p

to be iDs and iDp respectively, as we will show later that Ds and Dp correspond to the amount of
longitudinal beam shifts. The reflected plane wave of the local plane wave Ei(kx, ky, t) is then given
by

Er(kx, ky, t) = {rs(kx)Es
i (ki)e

s(kr) + rp(kx)Ep
i (ki)e

p(kr)} e−iωt+ikr·r. (6.18)

We note that es(kr) = es(ki) as the local incident and reflected plane waves share the same plane of
incidence. The superposition of every reflected plane wave then gives the form of the reflected beam:

Er(x, y, z, t) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
dkxdkyEr(kx, ky, t), (6.19)

with

Er(kx, ky, t) = A0e−iωt
{(
−irpωα cos θ +

irpc

n
(αkx sin θ − βky cot θ cos θ)− irscβky

n sin θ

)
x

+

(
irsωβ − icαky cot θ

n
(rs + rp)

)
y

−rp

(
iωα sin θ +

ic

n
(αkx cos θ + βky cot θ sin θ)

)
z

}
ũl(kx, ky)

× exp [i((kx cos θ + (k − κ) sin θ)x+ kyy − ((k − κ) cos θ − kx sin θ)z] . (6.20)

The form of the reflected beam is significantly simplified when it is expressed in terms of the re-
flection coordinates (xr, yr, zr). The coordinate transformation between the interface and reflection
coordinates is given as

xr = −x cos θ − z sin θ,

yr = y,

zr = −z cos θ + x sin θ. (6.21)

Applying this transformation and performing the integration over kx and ky, we obtain

Er(xr, yr, zr, t) = A0 {χxxr + χyyr + χzzr} e−iω(t−nzr/c), (6.22)

with

χx = iωαr̄p

(
uk,l −Dp

∂uk,l
∂xr

)
+
c

n
β cot θ(r̄p + r̄s)

∂uk,l
∂yr

, (6.23)

χy = iωβr̄s

(
uk,l −Ds

∂uk,l
∂xr

)
− c

n
α cot θ(r̄p + r̄s)

∂uk,l
∂yr

, (6.24)

χz = − c
n

(
αr̄p

∂uk,l
∂xr

+ βr̄s
∂uk,l
∂yr

)
. (6.25)

We have defined uk,l = uk,l(−xr, yr, zr), where uk,l(x, y, z) is the complex function given in Eq.(6.2),
where the minus sign in front of xr indicates that the topological charge of the beam is changed after
reflection from l to −l. The magnetic field of the reflected beam can be obtained by using the third
Maxwell’s equation as

Br(xr, yr, zr, t) =
1

iω
∇× Er(xr, yr, zr, t),

=
A0

c

{
nχxyr − nχyxr + c

(
βr̄s

∂uk,l
∂xr

− αr̄p
∂uk,l
∂yr

)
zr

}
e−iω(t−nzr/c). (6.26)
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Within the paraxial approximation, the obtained reflected electric and magnetic fields are transverse
as ∇ · Er = 0 and ∇ ·Br = 0. At this point, one might think that we can avoid the mathematical
complexity by treating the whole beam as a plane wave with the wave vector k pointing in the
direction of propagation of the incident beam. The approximated amplitudes of the reflected and
transmitted beams should be then obtained by multiplication of the Fresnel coefficients and the
approximated incident plane wave, while their propagation directions are given by geometrical optics.
Even though it is a good approximation, the approximated electric and magnetic fields of the reflected
and transmitted beams are not transverse: ∇·Er 6= 0 and ∇·Br 6= 0. This approximation, therefore,
is not good enough for our analysis.

6.3 Quantisation of the incident and reflected fields

With the forms of the incident and reflected electric and magnetic fields given in the previous section,
we can obtain their corresponding quantum operators by using the forms of electric and magnetic
field operators in the paraxial regime given in the previous chapter. The classical fields in their own
frames of reference are promoted to the corresponding field operators as [134]

Ê+
i (xi, yi, zi, t) =

∫ ∞

0

dω

(
~

4πε0cnω

)1/2

â(ω)e−iω(t−nzi/c)

×
{
iω(αxi + βyi)u

i
k,l −

c

n

(
α
∂ui

k,l

∂xi
+ β

∂ui
k,l

∂yi

)
zi

}
, (6.27)

B̂+
i (xi, yi, zi, t) =

∫ ∞

0

dω

(
~

4πε0c3nω

)1/2

â(ω)e−iω(t−nzi/c)

×
{
−inω(βxi − αyi)u

i
k,l + c

(
β
∂ui

k,l

∂xi
− α

∂ui
k,l

∂yi

)
zi

}
, (6.28)

Ê+
r (xr, yr, zr, t) =

∫ ∞

0

dω

(
~

4πε0cnω

)1/2

â(ω)e−iω(t−nzr/c) {χxxr + χyyr + χzzr} , (6.29)

B̂+
r (xr, yr, zr, t) =

∫ ∞

0

dω

(
~

4πε0c3nω

)1/2

â(ω)e−iω(t−nzr/c)

×
{
nχxyr − nχyxr + c

(
βr̄s

∂uk,l
∂xr

− αr̄p
∂uk,l
∂yr

)
zr

}
, (6.30)

where we define ui
k,l ≡ uk,l(xi, yi, zi). The annihilation operators â(ω) are the same annihilation

operator that defined in Eq.(5.164) in the previous chapter. Their subscripts have been omitted for
brevity. The commutation relation of the annihilation and creation operators is as already given.
The space and time dependence of the electric and magnetic field operators is exactly the same as
their classical version in order to satisfy Maxwell’s equations.

We note that in the preceding chapter we used the Coulomb gauge when we quantise an elec-
tromagnetic field, and finally the paraxial quantisation is obtained. In this chapter, in contrast, we
use the Lorenz gauge to determine the electric and magnetic fields and quantise them accordingly.
Both ways of quantisation are correct and sensible, even though the gauge conditions are different.
This is because for a given electric field the corresponding vector potential is not unique, and this
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nonuniqueness leads to a gauge freedom. We can see that both gauges we have chosen give the same
incident electric field. The reason we use the Lorenz gauge in this chapter because it is easier and
more straightforward to obtain the paraxial electric field, while in the previous chapter the Coulomb
gauge has been reviewed because it is the conventional way to quantise an electromagnetic field.

As we discussed in the previous chapter, the state of a single-photon pulse is given as [141,153]

|1〉 =

∫
dωξ(ω)â†(ω)|0〉, (6.31)

where the state |0〉 is the vacuum state. The function ξ(ω) describes the distribution of the probability
amplitude in the frequency domain. In this case, we take it to be a narrowband Gaussian distribution
as [134,137]

ξ(ω) =

(
L2

2πc2

)1/4

exp

[
−L

2(ω − ω0)2

4c2

]
, (6.32)

where L is the spatial length of the pulse and c/L � ω0. The peak of the frequency spectrum is
at the central frequency ω0 and the magnitude of the distribution function ξ(ω) is very small in the
regions far from the peak. The function ξ(ω) given in the above equation is normalised:

∫
dω |ξ(ω)|2 = 1. (6.33)

In quantum mechanics, we cannot predict the outcome of a measurement deterministically, but it only
gives us the probability distribution which tells us how likely a given outcome is obtained. For a large
number of the same measurements on an identical state, the average value of an observable approaches
the quantum expectation value. Therefore, we can extract physical quantities by evaluating the
expectation values of the given operators.

6.4 Optical force and torque

In this section, we are interested in the interaction between light and the dielectric medium with
the presence of the boundary between two dielectric media, air and the dielectric. There is no free
charge and current present in our this case. The problem is that when the boundary is included the
component of the electric field perpendicular to the boundary is neither smooth nor continuous at
the boundary. The magnetic field, on the other hand, is continuous but not smooth. Recall that the
vector calculus identities rely on both smoothness and continuity. Without them, the calculus we
know is ill-defined. We need to deal with this problem cautiously.

In this work, we use the dipole-based force density to study the interaction between light and the
dielectric. Instead of expressing the force density in terms of polarisation P(r), we replaced it with
the dielectric displacement and the electric field: P = D− ε0E. Unlike the electric and polarisation
fields, the component of the electric displacement perpendicular to the interface is continuous over
the boundary. We then can use Maxwell’s equations to transform the form of the dipole-based force
density into [131]

f = (D · ∇)E− ε0(E · ∇)E− ε0E× (∇×E)−B×
(
∇× B

µ0

)
− ∂

∂t
(ε0E×B). (6.34)
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The space and time dependence of these fields is omitted for brevity. There are two terms that lack
continuity across an interface: the first and second. In physics, we generally introduce a distribution
function to deal with discontinuity. The distribution function for a function with a jump is normally
expressed in terms of the Heaviside function [154]:

H(z) =

{
0 z < 0

1 z > 0
, (6.35)

Recall that we suppose that the dielectric occupies in the region z > 0 and the boundary is at
z = 0. We exclude z = 0 in our definition of the Heaviside function as the fields in Eq.(6.34) are not
well-defined in the boundary plane. The ith component of the electric field with the discontinuity
at the boundary can be expressed as

Ei = E
(in)
i + (E

(out)
i − E(in)

i )H(z), (6.36)

where i can take one of three possible values: x, y and z and E
(in)
i and E

(out)
i represent the ith

component of the electric field inside and outside the medium respectively. The electric field on the
left-hand side of the equation is now defined everywhere except at the boundary plane. The other
fields, D and B are expressed in the same way as the electric field in Eq.(6.36). The derivative of
the Heaviside function gives the well-known Dirac delta function,

∂H(z)

∂z
= δ(z). (6.37)

The integration of the product between the Dirac delta function and the Heaviside function is
equivalent to the integration of half of the delta function as only the region z > 0 that contribute to
the integration:

∫
H(z)δ(z)dz =

∫
δ(z)

2
dz. (6.38)

As we aim to evaluate the total force and torque, the integration over a volume will take place.
We can then replace the product of these two function with half of the delta function without loss
of precision at the end of the calculation: H(z)δ(z) → δ(z)/2. From Eq.(6.34) and the boundary
condition for the electric displacement, we can express the ith component of the force density as

fi = D(in)
z (E(out)

z − E(in)
z )δ(z)δiz − ε0

((E
(out)
z )2 − (E

(in)
z )2)

2
δ(z)δiz

+ ∂l(D
(in)
l E

(in)
i +

B
(in)
l B

(in)
i

µ0
)H(−z) + ∂l(D

(out)
l E

(out)
i +

B
(out)
l B

(out)
i

µ0
)H(z)

− ∂i
(
ε0
E

(in)
l E

(in)
l

2
+
B

(in)
l B

(in)
l

2µ0

)
H(−z)− ∂i

(
ε0
E

(out)
l E

(out)
l

2
+
B

(out)
l B

(out)
l

2µ0

)
H(z)

− ∂t(ε0E×B)i, (6.39)

where we have used the fact that 1−H(z) = H(−z). The summation convention is used such that
the indices repeated twice imply the summation over x, y and z indices. The derivative operators
with respect to the coordinate variables xi, where xi is x, y or z, are denoted by ∂i. The first
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and second terms are obtained by using the boundary condition which state that the electric field
components parallel to the interface are continuous: E(out)

j

∣∣∣
z=0+

= E
(in)
j

∣∣∣
z=0−

where j = x, y, which

gives (E
(out)
i − E

(in)
i )δ(z) = (E

(out)
z − E

(in)
z )δ(z)δiz. The boundary conditions of electromagnetic

fields given in the previous chapter can be written explicitly for this case as

E
(out)
j

∣∣∣
z=0+

= E
(in)
j

∣∣∣
z=0−

; j = x, y, (6.40)

B(out)
∣∣∣
z=0+

= B(in)
∣∣∣
z=0−

, (6.41)

D(out)
z

∣∣∣
z=0+

= D(in)
z

∣∣∣
z=0−

. (6.42)

Figure 6.2: The vector field of the dipole-based force density acts on the dielectric medium inside it
when the single-photon pulse reaches the interface. The interface plane is at z = 0, and the dielectric
is in the region z < 0. We enhance the azimuthal part of the force density, which is contained only in
∂t(P×B), as it is the part that gives rise the angular momentum transfer from light to the dielectric.
The coordinates (x, y, z) in this figure is the interface coordinates (x, y, z) given in figure 6.1 in a
different perspective.

The detailed vector field of the force density when the pulse reaches the interface is illustrated
in figure 6.2. In the figure, the azimuthal component circulates around the optical axis of the beam.
The part of the force density proportional to the delta function is depicted in figure 6.3.

We suppose that the observation begins at the time t = −T , at this time the single-photon pulse
is far away from the interface. Then, the single-photon pulse reaches the interface around t = 0,
and we finish our observation at t = T . We assign the interval time 2T to be very large so that
there is no field at the interface at the beginning and the end of the observation. Therefore, in our
calculation, we can take the limit of the time T to be infinity. Next, we define a volume V in such
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Figure 6.3: The part of the force density that is proportional to the delta function is normal to the
interface.

a way that it is very large compared to the volume of the single-photon pulse so that it can contain
the single-photon pulse within it during the observation, and there is no field at its surface. Some
part of the interface and the region z > 0 are included in the volume V . With this definition of
the volume V , after we perform the volume integrations of the force and torque densities over the
volume, the terms which are in the form of derivatives of x and y in Eq.(6.39) do not contribute
as their integrations give the electromagnetic fields at the surface of the volume V . For the other
terms, the volume integrations are given as follows. As our integration volume is really large, we can
take its limit to be infinity without losing the precision of the calculation. The Heaviside functions
in the integrands change the integration limit of integration over z as

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dz∂zf(x, y, z)H(−z) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ 0−

−∞
dz∂zf(x, y, z)

=

∫ ∞

−∞
dx

∫ ∞

−∞
dyf(x, y, z)

∣∣∣∣
z=0−

z=−∞
, (6.43)
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where f(x, y, z) is an arbitrary complex field. Therefore, the volume integration of Eq.(6.39) gives

∫

V

fidV =

∫ ∞

−∞

∫ ∞

−∞
dxdy

{
D(in)
z (E(out)

z − E(in)
z )δiz

∣∣∣∣∣
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− ε0
((E
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z )2 − (E
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z ))

2
δiz

∣∣∣∣∣
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z E
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z B
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i
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z=−∞
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z E
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i +
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z B
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i
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∣∣∣∣∣
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− δiz
(
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l E
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l

2
+
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(in)
l

2µ0

) ∣∣∣∣∣
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−δiz
(
ε0
E
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l E

(out)
l

2
+
B
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l B

(out)
l

2µ0

) ∣∣∣∣∣

z=∞

z=0+

}
−
∫

V

dV ∂t(ε0E×B)i, (6.44)

where the terms in the curly bracket have been integrated over z already. These terms in the curly
bracket cancel each other perfectly as demonstrated in the following detail. We begin by considering
the integration of the third and fourth terms in the curly bracket:

∫

V

dV
{
f third
i + f fourth

i

}
=

∫ ∞

−∞

∫ ∞

−∞
dxdy



D

(in)
z E

(in)
i

∣∣∣
z=0−

z=−∞
+ D(out)

z E
(out)
i

∣∣∣
z=∞

z=0+
+
B

(in)
z B

(in)
i

µ0

∣∣∣∣∣

z=0−

z=−∞

B
(out)
z B

(out)
i

µ0

∣∣∣∣∣

z=∞

z=0+

}

=

∫ ∞

−∞

∫ ∞

−∞
dxdy

{
D(in)
z (E

(in)
i − E(out)

i )
∣∣∣
z=0

+
B

(in)
z

µ0
(B

(in)
i −B(out)

i )

∣∣∣∣∣
z=0

}

=

∫ ∞

−∞

∫ ∞

−∞
dxdy D(in)

z (E(in)
z − E(out)

z )δiz

∣∣∣
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, (6.45)

where we have used the boundary conditions: Eqs.(6.40) and (6.41), and the fact that there is no
field at |z| = ∞, the surface of the volume V . This means the integrations of the third and fourth
terms perfectly cancel the first term in the curly bracket. The integrations of the fifth and sixth
terms, on the other hand, give

∫

V

dV
{
ffifth
i + f sixth

i

}
=

∫ ∞

−∞

∫ ∞
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dxdy
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∣∣∣∣∣∣∣
z=0




, (6.46)

where we again have used the boundary conditions, Eqs. (6.40) and (6.41), and only the z-component
of electric fields inside and outside the medium that do not perfectly cancel each other in the above
equation. Similarly, it means the integrations of the fifth and sixth terms in the curly bracket of
Eq.(6.44) cancel the second term perfectly. Therefore, the only term that contributes to the volume
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integration of the ith force density is the time derivative of the vector product between electric and
magnetic fields, the last term:

∫

V

fdV = −
∫

V

dV ∂t(ε0E×B) = −∂t
∫

V

dV (ε0E×B). (6.47)

This equation is a manifestation of Newton’s third law: for every action force, there is an equal
and opposite reaction acting on a different object, when the kinetic momentum of light being in its
Abraham form: E×H/c2 [155–157] as follows. The left-hand side of the equation is the force that
light acting on the dielectric which is equal to the change rate of the dielectric momentum, while the
right-hand side is the negative of the change rate of the momentum of the light pulse. This means the
force that the photon acting on the dielectric is of the same magnitude as the force that the dielectric
acting back to the photon but in the opposite direction. This equation ensures the conservation of
momentum. At this point, we can see that, when the physical boundary conditions are applied, the
third law of motion is reproduced from the Lorentz force straightforwardly. On the other hand, with
this equation, in the case of total internal reflection with a glass-air interface, we can see that the
evanescent field also contribute some force to the dielectric, but this interpretation cannot be realised
directly from the form of the dipole-based force density because there is no polarisation outside the
dielectric, which means no force density outside the medium. However, as the evanescent field is not
long-lasting, the effect of this force on the medium cancel itself when time evolves. In other words,
it does not have any influence on the momentum transfer.

Using Eq.(6.39) and the chain rule, the ith component of the torque density is expressed by

τi = εijkxjD
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k
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H(z)− ∂t(r× (ε0E×B))i, (6.48)

where εijk is the Levi-Civita symbol. As our medium is linear, homogeneous, isotropic and lossless,
the refractive index is a real number. The electric field E and the electric displacement D thus are
parallel to each other, the vector product of these two fields vanishes: D × E = 0, and has been
omitted from the right-hand side of the above equation. The volume integration then gives the total
torque exerted by the light pulse on the dielectric. Evaluating the volume integration in the same
manner as the integration of the force density, the total torque is

T =

∫

V

τdV = −∂t
∫

V

dV (r× (ε0E×B)). (6.49)

The term on the left-hand side of the equation is the total torque acting on the dielectric which is
equal to the change rate of the angular momentum. The terms on the right-hand side have the same
magnitude as the change rate of the kinetic angular momentum of the photon but in the opposite
direction, which is indicated by the minus sign in front of it. This implies the conservation of the
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total kinetic angular momentum. The evanescent field provides some torque to the dielectric as well
when the pulse hit the interface, but again its effect cancels itself when time evolves.

At this point, one might think that it is not necessary to express the polarisation field P in terms
of the electric displacement D and the electric field E and by expressing the polarisation field P in
the same way as Eq.(6.36) the physical force and torque can also be obtained. However, there is no
natural boundary condition for this field, and applying the conventional form of the polarisation field,
P = ε0(n2−1)E, directly into the dipole-based form before considering the boundary conditions can
lead to a paradoxical result. We will discuss this problem later in this chapter.

6.5 Effective torque and angular momentum transfer

As discussed, Eq.(6.49) contains some parts of it that do not contribute to angular momentum
transfer, such as the part that is written in terms of the evanescent field. In this section, we try to
extract only the parts associated with the angular momentum transfer so that we can understand
its mechanism. We call these parts of torque as effective torques. The expectation value of the total
torque that a single-photon pulse acting on the dielectric medium can be calculated with the electric
and magnetic field operators and the state of a single-photon pulse given in section 6.3 as

〈T 〉 = −ε0
∂

∂t

∫

V

dV
(
r×

(
〈1| : Ê− × B̂+ + Ê+ × B̂− : |1〉

))
, (6.50)

where

Ê− × B̂+ =
(
Ê−i × B̂+

i + Ê−r × B̂+
r + Ê−i × B̂+

r + Ê−r × B̂+
i

)
H(−z) +

(
Ê−t × B̂+

t

)
H(z). (6.51)

The spatial and time dependence of these field operators is again omitted for brevity. The subscripts
i, r and t are used to indicate the incident, reflected and transmitted fields respectively. We have
omitted the terms containing two annihilation and creation operators as their expectation values
for the single-photon state vanish. For general photon states that the expectation values of these
terms do not vanish, their contributions oscillate at optical frequency, and they, therefore, can
be neglected [141]. We use colons to notify that the operators between two colons are in normal
order [158]. As the form of the total torque given in Eq.(6.50), its time integration suggests that the
terms that only exist shortly when the single-photon pulse reaches the interface do not contribute to
angular momentum change of the dielectric, so they are not effective. The examples of the ineffective
terms are the contributions from the evanescent field and the following cross terms:

〈T ineff〉 =− ε0
∂

∂t

∫

V

dV r×
(
〈1| : (Ê−i × B̂+

r + Ê−r × B̂+
i )H(−z)

+ (Ê−t × B̂+
t )H(z) + h.c. : |1〉

)
, (6.52)

where h.c. denotes the Hermitian conjugate of the preceding terms. After we omit the ineffective
part, we then have

〈T eff〉 = −ε0
∂

∂t

∫

V

dV
(
r×

(
〈1| : Ê−i × B̂+

i + Ê−r × B̂+
r + h.c. : |1〉

))
H(−z)

= 〈T eff
i 〉+ 〈T eff

r 〉, (6.53)
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where
〈T eff

i(r)〉 = −ε0
∂

∂t

∫

V

dV
(
r×

(
〈1| : Ê−i(r) × B̂+

i(r) + h.c. : |1〉
))

H(−z). (6.54)

Recall that the electric and magnetic fields of the incident and reflected beams are in the simplest
form when they are written in terms of their own coordinate systems. As torques are vectors, or more
precisely pseudovectors, and rotations of coordinate systems are passive transformations for vectors.
It means only their descriptions that are changed. Therefore, the form in the second line of Eq.(6.53)
allows us to calculate the torques from the incident and reflected fields in their own coordinates
independently, and add them together later after applying the coordinate transformations to express
them in terms of the interface coordinates. With the coordinate transformations given previously,
we can write the step function H(−z) in terms of the incident and reflection coordinates as

H(−z) = H(xi tan θ − zi) = H(zr + xr tan θ). (6.55)

the effective torque given by the incident beam is

〈T eff
i 〉 = −ε0

∂

∂t

∫ ∞

−∞

∫ ∞

−∞
dxidyi

∫ 0

−∞
dzi

(
r×

(
〈1| : Ê−i × B̂+

i + h.c. : |1〉
))

− ε0
∂

∂t

∫ ∞

−∞

∫ ∞

−∞
dxidyi

∫ xi tan θ

0

dzi

(
r×

(
〈1| : Ê−i × B̂+

i + h.c. : |1〉
))

. (6.56)

The integration over the observation time of the last term on the right-hand side of the equation
vanishes. This means it does not give any contribution to the net angular momentum transfer. It
can be verified easily as there is no incident field in the region between zi = 0 and zi = xi tan θ at
the times when we begin and finish the observation. At the time t = −T , the incident pulse does
not enter the region yet, while at the time t = T it has left the region already. The same holds for
the contribution from the reflected field:

〈T eff
r 〉 = −ε0

∂

∂t

∫ ∞

−∞

∫ ∞

−∞
dxrdyr

∫ ∞

0

dzr

(
r×

(
〈1| : Ê−r × B̂+

r + h.c. : |1〉
))

. (6.57)

We assume that the refractive index n(ω) of the medium does not vary significantly with the wave
frequency: n(ω) ≈ n(ω′) = n. Using the forms of the incident electric and magnetic field operators
given in Eqs.(6.27) and (6.28), the normal ordered Poynting vector operator of the incident beam
may be written as

(ε0c
2)−1Ŝi =: Ê−i × B̂+

i + Ê+
i × B̂−i :

=
~

4πε0c2n

∫ ∞

0

∫ ∞

0

dωdω′
1√
ωω′

â†(ω)â(ω′)ei(ω−ω
′)(t−nzi/c) {Sxi xi + Syi yi + Szi zi} ,

(6.58)

with

Sxi = −iωc(ui
k,l)
∗∂xi

ui
k′,l + iω′cui

k′,l∂xi
(ui
k,l)
∗ + cσi

(
ω(ui

k,l)
∗∂yiu

i
k′,l + ω′ui

k′,l∂yi(u
i
k,l)
∗) , (6.59)

Syi = −iωc(ui
k,l)
∗∂yiu

i
k′,l + iω′cui

k′,l∂yi(u
i
k,l)
∗ − cσi

(
ω(ui

k,l)
∗∂xiu

i
k′,l + ω′ui

k′,l∂xi(u
i
k,l)
∗) , (6.60)

Szi = 2nωω′(ui
k,l)
∗ui
k′,l, (6.61)
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where σi = i (αβ∗ − α∗β) is the spin angular momentum quantum number of the incident beam.
The expectation value of the Poynting vector can be obtained by replacing annihilation and creation
operators with the function ξ(ω′) and its complex conjugate ξ∗(ω). The narrowband wave packet
state of the single-photon pulse allows us to approximately replace the frequencies ω and ω′ in the
integrand with the central frequency ω0, unless they are in the subtraction form: ω−ω′. Substituting
the expectation value of the Poynting vector of the incident beam into Eq.(6.56), the expectation of
the effective torque from the incident beam is

〈T eff
i 〉 = − ~

4πcn
(2l + 2σi)zi

∫ 0

−∞
dzi

∫ ∞

0

∫ ∞

0

dωdω′ξ∗(ω)ξ(ω′)i(ω − ω′)ei(ω−ω′)(t−nzi/c)

=
~
n2

(
c2

2πL2

)1/2

(2l + 2σi)zie
−2t2c2/L2

. (6.62)

The angular momentum transfer due to this torque becomes

lim
T→∞

∫ T

−T
dt〈T eff

i 〉 =
~
n2

(l + σi)zi. (6.63)

Notice that there is no contribution in xi- and yi-directions. This is because these contributions are
in the form of xiS

z
i and yiS

z
i , and, when we apply the narrowband approximation, the z-component

of the Poynting vector is symmetric about xi- and yi-axes. The integrations over the xiyi-plane of
these contributions then vanish as they are the integration of odd functions of xi and yi.

As we have shown, the forms of the reflected fields are more complicated than that of the incident
fields, even in the reflection coordinates. The torque from the reflected fields inarguably contains a
lot of terms. However, with the help of the symmetry in the xryr-plane of

∣∣uk,l
∣∣2, some of them do

not give contribution to the total torque as their integrations over the xryr-plane vanish. We can
then omit these terms. The expectation value of the torque from the reflected field is given as

〈T eff
r 〉 = − ~

4πc2n

∫ ∞

0

dzr

∫ ∞

0

∫ ∞

0

dωdω′ξ∗(ω)ξ(ω′)i(ω − ω′)ei(ω−ω′)(t−nzr/c)

×
∫ ∞

−∞

∫ ∞

−∞
dxrdyr {J xr xr + J yr yr + J zr zr} , (6.64)

with

J xr = 2c(σi + σr)yr cot θ∂yr
∣∣uk0,l

∣∣2 , (6.65)

J yr = 2ω0n
(
|α|2Dp + |β|2Ds

)
xr∂xr

∣∣uk0,l
∣∣2 , (6.66)

J zr = icxr(uk0,l∂yru
∗
k0,l
− u∗k0,l∂yruk0,l)− cσrxr∂xr

∣∣uk0,l
∣∣2

− icyr(uk0,l∂xru
∗
k0,l − u∗k0,l∂xruk0,l) + cσrxr∂xr

∣∣uk0,l
∣∣2 , (6.67)

where we have defined α′ = r̄pα and β′ = r̄sβ which can be thought of as the polarisation of the
reflected beam, and the spin angular momentum quantum number of the reflected beam is defined
as σr = i(α′β′∗ − α′∗β′). With the help from the symmetry of

∣∣uk,l
∣∣2, the effective torque of the

reflected field is given as,

〈T eff
r 〉 =

~
n2c

(
c2

2πL2

)1/2

e−2t2c2/L2 {c(2l − 2σr)zr + 2ω0n(|α
∣∣∣2Dp + |β|2Ds)yr

+2c(σi + σr) cot θxr} . (6.68)
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Notice that for this case there are the components of the effective torque in xr- and yr-directions.
They originate from the fact that the reflected beam is shifted in both longitudinal and transverse
directions. The beam shift will be discussed in more detail in the next section.

With the results from Eqs.(6.62) and (6.68), we then express the effective torques 〈T eff
i 〉 and

〈T eff
r 〉 in terms of the interface coordinates and add them together to obtain the total effective

torque:

〈T eff〉 = 〈T eff
i 〉+ 〈T eff

r 〉

=
~
n2

(
c2

2πL2

)1/2

e−2t2c2/L2

{[
(4l sin θ + 2(σi − σr) sin θ)x + 2(σi + σr) cos θz

]

+

(
2ω0n

c
(|α|2Dp + |β|2Ds)

)
y − 2(σi + σr) cos θz

− 2(σi + σr) cot θ cos θx

}
. (6.69)

The exponential term indicates that this toque occurs only when the photon pulse hits the interface,
and there is no torque elsewhere during the photon pulse propagating inside the dielectric. We
decompose the total effective torque into two different parts: the torque that is the result of the
beam shift effect and the one that associated with the change of the intrinsic angular momentum
(spin and orbital angular momentum) of the photon [24]. The later part is separated from the other
by the square bracket in the second line of the equation.

6.6 Beam shift analysis

In this section, we show explicitly that the reflected beam is shifted in both longitudinal and trans-
verse directions, and it is this effect that causes the effective torque in xr- and yr-directions. We
start by evaluating the centre of gravity of the reflected beam. We use the reflection coordinates to
demonstrate this effect. There are two reasons that we use the reflection coordinates: 1. the reflected
fields are in the simplest form in this coordinate, 2. the zr-axis is defined to be the direction of prop-
agation in the geometrical description, so if the centre of gravity of the reflected beam is deviated
from the zr-axis, it means the reflected beam is shifted. The centre of gravity in an xryr-plane is
(〈xr〉, 〈yr〉) such that

〈xjr〉 =

∫∞
−∞

∫∞
−∞ dxrdyrx

j
r〈1| : Ê−r · Ê+

r + Ê+
r · Ê−r : |1〉

∫∞
−∞

∫∞
−∞ dxrdyr〈1| : Ê−r · Ê+

r + Ê+
r · Ê−r : |1〉

, (6.70)

where we have defined xjr to be xr or yr. The position of the centre of gravity shows that the reflected
beam is shifted in both transverse and longitudinal directions:

〈xr〉 = (|α|2Dp + |β|2Ds), (6.71)

〈yr〉 = −c(σi + σr)

ω0n
cot θ, (6.72)

as shown in figure 6.4. We note that the sizes of 〈xr〉 and 〈yr〉 are in the scale of the central
wavelength, which are much smaller than the size of the beam waist.
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Figure 6.4: The reflected beam is shifted in both transverse and longitudinal directions. The amount
of the beam shift depends on the polarisation of the incident beam and the angle of incidence θ. The
black and the green points at the centres of the beam waists are the centres of gravity of the incident
and reflected beams. The picture around the beam waists of the incident and reflected beams is
magnified in the dashed pink circle so that we can see the amount of the beam shift on the interface
plane clearly.

To understand this result in more detail, let us consider the following situation. If we assume
that the incident beam is linearly polarised such that |α|2 = 1 (|β|2 = 1). As the polarisation of the
incident beam is linear for this case, the transverse shift given in Eq.(6.72) vanish. We then can see
that the reflected beam is shifted only in the longitudinal direction by Dp (Ds). With Eqs.(6.16) and
(6.17), both Ds and Dp are negative which implies directly that the beam is shifted in the negative
xr-direction. We recognise this longitudinal shift as the familiar Goos-Hänchen (G-H) shift [159,160].
From the definition of Ds and Dp, they are proportional to r̄′p and r̄′s. This means there will be
no longitudinal shift if we treat all the plane wave components of the superposition of the incident
beam, given in Eq.(6.11), with the same Fresnel reflective coefficients: r̄′p = 0 = r̄′s. Therefore,
we can summarise the longitudinal shift or the G-H shift arises from the fact that each plane wave
component experiences a different Fresnel coefficient. On the other hand, this means the transverse
shift which is proportional to the summation of the spin angular momentum of the incident and
reflected photons is the result of each plane wave component has its own plane of incidence. The
transverse shift is known as the Imbert-Fedorov shift [161–163]. These shifts are related to the
components of the effective torque in the xr- and yr-directions in Eq.(6.68). Let us determine the
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Figure 6.5: The figure shows the propagation path of a single photon when it passing through an
M-shaped Dove prism.

Abraham linear momentum of the photon pulse after it has been reflected from the interface:

〈p〉 =

∫

V

dV 〈1| : ε0Êr × B̂r : |1〉
∣∣∣∣
t=T

=
~ω0

nc
zr. (6.73)

The angular momentum of the photon pulse due to the beam shift after reflection with respect to
the origin of the reflection coordinates is

〈Lshift〉 = 〈p〉 × (〈xr〉xr + 〈yr〉yr)

= −
(
~ω0

nc
(|α|2Dp + |β|2Ds)

)
yr −

~(σi + σr)

n2
cot θxr

= −
∫ ∞

−∞
dt(〈T eff

r 〉 · yr)yr + (〈T eff
r 〉 · xr)xr. (6.74)

Without the beam shift, this part of angular momentum of the photon disappears. With Newton’s
third law of motion, the torque that produces this angular momentum of the photon has the same
magnitude as the corresponding torque that exerts on the dielectric medium but in the opposite
direction as shown in the third line of the equation. We can, therefore, conclude that the beam shift
gives rise the change of the extrinsic angular momentum of the photon, and this change of angular
momentum causes the effective torque in the xr- and yr-directions.

6.7 M-shaped Dove prism

This section is devoted to evaluating the angular momentum transfer from the single-photon pulse
to an M-shaped Dove prism, as depicted in figure 6.5, on the condition that the photon pulse passes
through the Dove prism. First of all, let us recall the effect of this type of Dove prisms on a composite
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state of photons. As discussed in chapter 3, M-shaped Dove prisms are designed in order to convert
the polarisation of photons in the same manner as a quarter-wave plate [119] and invert the orbital
angular momentum of the incident photon as other Dove prisms.

As discussed in the previous section, the shift of the reflected beam causes the contributions of
the effective torque in the xr- and yr-directions. The effect of the beam shift is depicted in figure 6.6.
From the figure, we can see that the beam shifts alter the propagation path of the single photon,
which changes the extrinsic angular momentum of the photon in the directions parallel to y0 and z0

after the single photon leaves the Dove prism. These shifts alter the exit point of the photon from its
geometrical expectation. With the conservation of angular momentum, the Dove prism then gains
angular momentum with the same amount but in the opposite direction to the photon.

However, in this work, we aim to account for the observation of the intrinsic angular momentum
change of the light, −(2l+∆σ)~x0, where ∆σ is the change of the spin angular momentum quantum
number, when the single photon passing through the Dove prism and the angular momentum transfer
according to this change. The definition of intrinsic and extrinsic angular momentum are given in [24].
The intrinsic part includes spin and orbital angular momentum. The effective torque associated with
the intrinsic angular momentum exchange is given in the square bracket of Eq.(6.69):

〈T eff
intrinsic〉 =

~
n2

(
c2

2πL2

)1/2

e−2t2c2/L2[
(4l sin θ + 2(σi − σr) sin θ)x + 2(σi + σr) cos θz

]
. (6.75)

The angular momentum change of the dielectric caused by this torque is

〈∆Ldielectric〉 =

∫ ∞

−∞
dt〈T eff

intrinsic〉 =
~
n2

((2l sin θ + (σi − σr) sin θ)x + (σi + σr) cos θz). (6.76)

With the geometric shape of the M-shaped Dove prism, in order that the single-photon pulse
passes through it, the photon has to encounter three total internal reflections at interface 1, 0 and
2 respectively. According to Loudon’s work [134], the photon also exchanges its angular momentum
with the dielectric when it enters and leaves the dielectric. Therefore, there are five different positions
at which the photon transfers its angular momentum to the M-shaped Dove prism, and all of them
are the points where the photon hits the interfaces. We can calculate the total intrinsic angular
momentum that transfer to the Dove if the single-photon pulse passes through it as follows. We
define three different coordinates as given in figure 6.5. The relations between the unit vectors of
these coordinates are given as

x1 = x0 sinφ0 − z0 cosφ0, (6.77)

z1 = z0 sinφ0 + x0 cosφ0, (6.78)

x2 = x0 sinφ0 + z0 cosφ0, (6.79)

z2 = z0 sinφ0 − x0 cosφ0. (6.80)

We assume that the incoming single photon initially carries spin angular momentum ~σin and orbital
angular momentum ~l in the positive x0-direction. Recall that the direction of the polarisation of a
single photon is not changed if the photon normally passes through a dielectric interface. The spin
angular momentum quantum number thus is conserved after the single photon passes the entrance
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Figure 6.6: In this figure, we compare the difference between the photon paths in the geometrical
description and in the actual situation when beam shifts take place. The upper picture is the picture
of the Dove prism from the side view, while the lower one is the Dove prism viewed from the upper
aspect. The solid lines are the actual propagation path when both longitudinal and transverse shifts
occur, while the dashed lines are the geometrical path. These shifts are exaggerated in the picture
so that we can see the difference between these two paths. The actual sizes of the beam shifts in
Eqs.(6.71) and (6.72) are in the order of the wavelength of the beam, which are much smaller than
the beam waist w0.
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surface. With the given coordinate transformations, the total angular momentum change of the Dove
prism acquired from total internal reflections may be written as

〈∆Lreflections〉 = 〈∆L1〉+ 〈∆L0〉+ 〈∆L2〉

=
~
n2
{(2l sinφ0 + (σin − σ1) sinφ0)x1 + (σin + σ1) cosφ0z1

+(−2l sin(2φ0 − π/2) + (σ1 − σ2) sin(2φ0 − π/2))x0

−(σ1 + σ2) cos(2φ0 − π/2)z0 + (2l sinφ0 + (σ2 − σout) sinφ0)x2

(σ2 + σout) cosφ0z2}

=
~
n2

(2l + (σin − σout))x0, (6.81)

where σ1, σ2 and σout are the spin angular-momentum quantum number of the single-photon pulse
after it has reflected from interfaces 1, 0 and 2 respectively. We have denoted the angular momentum
change of the Dove prism after the photon has reflected from interface j as 〈∆Lj〉. As we discussed
previously, after each reflection the topological charge of the photon is changed from l to −l or vice
versa. The amounts of angular momentum that the Dove prism has gained when the photon passes
through the entrance and exit surfaces are given in [134]:

〈∆Lentrance〉 = ~(lin + σin)

(
1− 1

n2

)
x0, (6.82)

〈∆Lexit〉 = −~(lout + σout)

(
1− 1

n2

)
x0. (6.83)

where we denote lin and lout as the topological charges of the incoming and outgoing beams. Recall
that we have assumed that the incoming photon carries an orbital angular momentum of ~lin = ~l,
while the orbital angular momentum of the outgoing photon is ~lout = −~l, since the Dove prism
inverts its topological charge. Combining these angular momentum changes with the ones previously
obtained in Eq.(6.81), the angular momentum that the Dove prism obtains when the photon pass
through it is

〈∆LDove〉 = ~(l + σin)

(
1− 1

n2

)
x0 +

~
n2

(2l + (σin − σout))x0

− ~(−l + σout)

(
1− 1

n2

)
x0,

= ~(2l + (σin − σout))x0. (6.84)

As we have mentioned, the M-shaped Dove prism is designed to change the polarisation of photons
in the same manner as a quarter wave plate [119], if the incoming photon is circularly polarised,
σin = ±1, the outgoing photon will become linearly polarised, σout = 0. Therefore, the angular
momentum that the M-shaped Dove prism gains, if a circularly polarised single-photon pulse passes
through it, is

〈∆LDove〉 = (2l ± 1)~x0. (6.85)

The angular momentum change of the photon, on the other hand, is 〈∆Lphoton〉 = −(2l ± 1)~x0 in
the direction of its propagation. The total angular momentum of the system, the single photon and
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the Dove prism, is conserved as expected. Figure 6.7 shows the torque exerts on the Dove prism and
its angular momentum change, while the force and linear momentum exchange between light and the
Dove prism given in figure 6.8. The first picture illustrates the asymmetry of the torque which is not
apparent in the longitudinal force in the second picture. The asymmetry of torque arises because of
the change of polarisation of light on reflection, which affects the spin angular momentum but not
the linear momentum.

6.8 Paradox of conservation of angular momentum

From the given discussion so far in the preceding section, one might think that expressing polarisation
P as electric displacement D and electric field E is not necessary and the same physics would be
reproduced. However, it can lead us to the paradox of conservation of angular momentum. In this
section, we will discuss how this paradox might appear in the calculation, if we evaluate force and
torque densities in terms of polarisation P and apply it conventional form: P = ε0(n2 − 1)E. In the
dipole-based force density form, if we write the polarisation and the other fields in the same way as
we did for the electric field in Eq.(6.36), we will find the ith component of the force density is

fi = P
(in)
l ∂iE

(in)
l H(−z) + ∂t(P

(in) ×B(in))iH(−z) + δizδ(z)
P

(in)
z

2
(E(out)

z − E(in)
z ), (6.86)

where the summation convention is implied for the first term. There is nothing wrong with this
equation as we can still recover Eq.(6.39) from this point by writing the polarisation P in terms of
the electric field E and electric displacement D.

On the other hand, if we use the conventional form of polarisation of dielectric media, P =

ε0(n2 − 1)E, and directly substitute it into Eq.(6.86), the force and torque densities due to total
internal reflection should become

fi = ε0(n2 − 1)∂i

(
E

(in)
l E

(in)
l

2

)
H(−z) + ε0(n2 − 1)∂t(E

(in) ×B(in))iH(−z)

+ δizδ(z)ε0(n2 − 1)
E

(in)
z

2
(E(out)

z − E(in)
z ), (6.87)

and

τi = ε0(n2 − 1)∂k

{
εijkxj

E
(in)
l E

(in)
l

2

}
H(−z) + ε0(n2 − 1)∂t(r× (E(in) ×B(in)))i

+ εijkδkzδ(z)xj
E

(in)
z

2
(E(out)

z − E(in)
z ). (6.88)

It is straightforward to show, however, that these two equations may lead to the paradox by consid-
ering the following case. The incident beam with the topological charge l is linearly polarised such
that its vector potential A is parallel to the interface, so that |α|2 = 0 and |β|2 = 1 in Eqs.(6.27)
and (6.28). As we are focusing on the effective torque associated with the transfer of the intrinsic
angular momentum of the photon, the term related to the shift of the reflected beam can be ignored.
As the cross section of the beam is finite, the area where the beam hits the interface is also finite,
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Figure 6.7: The figure shows the torque exerted on the Dove prism by a single-photon pulse that
carries orbital angular momentum l = 1 and spin angular momentum σi = 1 and the angular
momentum change of the Dove prism. We assume that the pulse hit the interfaces of the Dove prism
at the times t1, t2, t3, t4 and t5.
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Figure 6.8: The figure shows the force that the single photon pulse exerts on the Dove prism and
the linear momentum change at the times t1, t2, t3, t4 and t5.
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unless the angle of incidence is π/2. This implies that after integration over the large volume V , as
defined previously, the terms being in the forms of the derivatives with respect to x and y vanish
because there is no polarisation field at the surface of the volume V . Within the paraxial regime,
the term that is proportional to the delta function in Eq.(6.88) is negligible after integration over
the volume. After cutting out the mentioned non-contributing terms, the total torque then becomes

Ti = εijzε0(n2 − 1)

∫ ∞

−∞

∫ ∞

−∞
dxdy xj

E
(in)
l E

(in)
l

2

∣∣∣∣∣
z=0−

+ ε0(n2 − 1)

∫

V

dV ∂t(r× (E(in) ×B(in)))iH(−z), (6.89)

where we have used the fact that the step function changes the integration limit as shown in Eq.(6.43).
With the coordinate transformation previously given in Eq.(6.10) and (6.21), one can write the
incident and reflected electric fields in terms of the interface coordinates (x, y, z) explicitly. At z = 0−,
the expectation value of the electric field strength, with paraxial approximation is proportional to
the following function:

〈1| : Ê− · Ê+ + Ê+ · Ê− : |1〉
∣∣∣
z=0−

∝ |uk0,l(x cos θ, y, x sin θ)|2 e−2c2(t−nx sin θ/c)2/L2

. (6.90)

This quantity is finite everywhere and localised in a space-time volume, so according to the Fubini’s
theorem [164,165], its integration over space and time then is invariant under switching the order of
integration. The angular momentum change of dielectric due to the gradient of intensity, the first
term in Eq.(6.89), becomes

〈∆Lgradient〉 = ε0(n2 − 1)x

∫ ∞

−∞
dt

∫ ∞

∞
y
〈1| : Ê− · Ê+ + Ê+ · Ê− : |1〉

2

∣∣∣∣∣
z=0−

dxdy

− ε0(n2 − 1)y

∫ ∞

−∞
dt

∫ ∞

∞
x
〈1| : Ê− · Ê+ + Ê+ · Ê− : |1〉

2

∣∣∣∣∣
z=0−

dxdy

∝ ε0(n2 − 1)x

∫ ∞

−∞

∫ ∞

−∞
y |uk0,l(x cos θ, y, x sin θ)|2 dxdy

∫ ∞

−∞
dte−2c2(t−nx sin θ/c)2/L2

− ε0(n2 − 1)y

∫ ∞

−∞

∫ ∞

−∞
x |uk0,l(x cos θ, y, x sin θ)|2 dxdy

∫ ∞

−∞
dte−2c2(t−nx sin θ/c)2/L2

= 0. (6.91)

Because from Eq.(6.4), the strength of the complex function |uk0,l(x cos θ, y, x sin θ)|2 is symmetric
about the x- and y-axes, this gives rise the result that the gradient intensity does not cause the
change of angular momentum of the dielectric. The effective torque due to total internal reflection
then becomes

〈T 〉 = ε0(n2 − 1)

∫

V

dV ∂t(r× (〈1| : Ê(in) × B̂(in) : |1〉))H(−z)

=

∫

V

dV ∂t(r× (〈1| : P̂× B̂ : |1〉)). (6.92)

This is the same form of torque for the normally incident case [134], in which only the cross product
of the polarisation and magnetic field contributes to the effective torque. This automatically implies
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Figure 6.9: The solid wave packet represents the position of the single-photon pulse at the time
Tstart, so there is no field inside the Dove prism yet at that time. The dashed wave packets represent
two possibilities that the outgoing photon will appear at the time Tfinal after being reflected back
and forth inside the Dove prism, so at that time the electric field already left the Dove prism, and
there is no field inside it again. The polarisation of the photon is linear and pointing outward from
the paper. The dashed line represents the surface of the integral volume V ′ which can keep the single
photon inside it during the observation time.

that when the polarisation of the beam is parallel to every interface of the M-shaped Dove prism,
the total effective torque, after summing over all interfaces involved, is then given by

〈T Dove〉 =

∫

V ′
dV ∂t(r× (〈1| : P̂× B̂ : |1〉)) = ∂t

∫

V ′
dV (r× (〈1| : P̂× B̂ : |1〉)). (6.93)

The integral volume V ′ with the Dove prism inside is assumed to be extremely large so that every
event happens inside it and there is no field at its surface during the observation as illustrated in the
figure 6.9. The problem is that Eq.(6.93) implies the angular momentum of the Dove prism in the
x0-direction is unchanged even though the orbital angular momentum of the photon is inverted from
~l to −~l, as we will demonstrate it explicitly as follows. Let us suppose that at the beginning of the
observation, t = Tstart, no field has entered the Dove prism yet, and at the end of the observation,
t = Tfinal, all of the fields have already left the Dove prism. Therefore, after integrating both sides
of Eq.(6.93) over the observation time, the expectation value of the angular momentum change is

〈LDove〉 =

∫ Tfinal

Tstart

dt∂t

∫

V ′
dV (r× (〈1| : P̂× B̂ : |1〉))

=

∫

V ′
dV (r× (〈1| : P̂× B̂ : |1〉))

∣∣∣∣
t=Tfinal

−
∫

V ′
dV (r× (〈1| : P̂× B̂ : |1〉))

∣∣∣∣
t=Tstart

= 0− 0 = 0. (6.94)

There is no angular momentum transfer to the Dove prism in the x0-direction even if there is a
significant possibility that the pulse passes through the Dove prism and its orbital angular momentum
is changed! This result absolutely conflicts with the conservation of angular momentum, as the
intrinsic angular momentum of the photon has changed but has not been transferred to the medium.
The reason this paradox appears is because of the subtlety of the order of the calculation given in
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this section: we apply the conventional form of polarisation P = ε0(n2 − 1)E before considering
the physical boundary conditions. As we have shown, once the physical boundary conditions are
applied first, the physical results then are straightforwardly obtained. However, according to our
knowledge so far, it is only in the case of angular momentum transfer from light to dielectric via total
internal reflection that this subtlety appears. For example, in the electrostatic case [131] and the case
of linear momentum transfer, both normally incident [137] and total internal reflection cases, the
subtlety does not show up, as physically sensible results are still obtained, without any contradiction,
even though we use the conventional form of polarisation before we consider the boundary conditions.
It is clear, however, that using E and D rather than P produces sensible and physical results. The
reason for this is that the boundary conditions on E and D are well-defined and fundamental, being
consequences of the form of Maxwell’s equations, while there is no correspondingly fundamental
boundary condition on P.

6.9 Conclusion

We have shown how to use the angular spectrum method to determine transverse reflected fields. The
physical boundary conditions on E, B and D, which are direct consequences of Maxwell’s equations,
are used in order to evaluate a net optical force acting on a dielectric. The obtained form of the net
force is a manifestation of Newton’s third law of motion: the force that photons exert on a dielectric
is equal and opposite to the force that the dielectric exerts on the photons. The third law ensures
the conservation of both linear and angular momentum. The discussion on the torque exerted on the
dielectric via total internal reflection has been given, and the result shows that a net torque on the
dielectric medium exerted by photons only appears shortly when these photons reach the interface.
We then analysed the shifting effect and showed that it also produces an effective torque on the
dielectric, but this torque is not related to the transfer of intrinsic angular momentum of light to
the dielectric medium. The mechanism of angular momentum transfer to an M-shaped Dove prism
has been fully analysed. The paradox of conservation of angular momentum has been demonstrated.
We believe this paradox arises because the conventional form of polarisation is applied before the
physical boundary conditions are carefully considered,

We also expect the appearance of similar torques in other optical components that are frequently
used to transform the angular momentum of light in optical laboratories. For example, astigmatic
mode converters have been reported to transform the orbital angular momentum of the light beam
propagating through the lenses [30,166].



Chapter 7

Coherent operation with the

Jaynes-Cummings model

In previous chapters, we have mentioned that entanglement is a distinct nonclassical property of
quantum mechanics. However, quantum coherence is another feature of quantum mechanics that
cannot be satisfactorily described by the classical theory. It is an essential key to describe the
difference between a quantum superposition and a statistical mixture. It has been discovered to be
closely related to almost all the notable quantum phenomena such as quantum entanglement [167,168]
and quantum discord [169, 170]. It is also an important resource for various remarkable tasks in
several fields such as quantum biology [171–173], quantum thermodynamics [174,175] and quantum
transport [176]. It is, of course, essential to understand and have a reliable account of it as a resource.
Otherwise, the misunderstanding of it could possibly lead to inaccuracy or even break fundamental
laws of physics as shown in [177].

Åberg suggested that quantum coherence is catalytic, or more precisely it is a catalytic resource
which can be used repeatedly without degradation in its performance [178]. The idea of catalytic
coherence has been extended and applied in several topics [179–181]. Until recently, Vaccaro et
al. have tested Åberg’s proposal and found that quantum coherence is indeed neither catalytic nor
repeatable. They report that coherence is a finite resource and can be exhausted at some point [177].
The sign of degradation can be noticed by considering the correlation between two qubits that interact
with the resource. It is also demonstrated explicitly that if coherence were really catalytic it would
lead to unphysical state discrimination such that one can discriminate between two non-orthogonal
states [177], which is impossible even in principle [182].

The motivation for this work is as follows. In [177], it has been shown that the Åberg model with
a resource in a ladder state is very fragile. A single error in transferring of the phase reference to a
qubit gives rise to the complete destruction of the resource. However, we know that an optical field
in a coherent state is robust to environmental decoherence [183]. We then expect that if the resource
is in a coherent state then it should be more robust to a single error than if it is in a ladder state.

In this work, we use the Jaynes-Cummings model to describe the interaction between a resource
in a coherent state and an atom. We assume that the atom is in an excited state, denoted by |e〉,
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initially. We then let the atom interact with the resource for a specific time such that the atom is
more likely to be found in the superposition state:

|+〉 =
1√
2

(|e〉+ |g〉) , (7.1)

where |g〉 is the atomic ground state. We then examine the robustness of the coherence resource.
This chapter is organised as follows. In the first section, we review the work of J. A. Vaccaro et al.

to understand how quantum coherence transfers from a coherence resource to an atom and induces
correlations between two atoms after they have interacted with the resource. These correlations
confirm that quantum coherence is not catalytic. We then demonstrate the fragility of a resource
in a ladder state of Åberg’s model. In section 7.2, we review the Jaynes-Cummings model and
show that a resource, a cavity field, that is initially in a coherent state can be used to perform a
similar coherent operation. Section 7.3 explicitly demonstrates that two atoms that independently
and consecutively interact with the cavity field also become correlated. We analyse the robustness
property of a coherent state against failures of coherent operations in section 7.4. The discussion of
the evolution of the cavity field is given in section 7.5. In section 7.6, we show that the performance
of coherent operations can be improved if we adjust the interaction times in accordance with the
expectation of increasing average photon numbers. The quasiprobability distribution of the cavity
field is shown in section 7.8. In the last section, we discuss and show that the squeezing of the photon
number distribution is also a factor that gives rise to an increase in the success probability if the
interaction time is adjusted properly.

7.1 Is coherence catalytic?

7.1.1 Åberg’s scheme

We devote this section to review the analysis in [177] and [178] to introduce some background infor-
mation and the research problem. Åberg’s proposal of catalytic coherence is as given follows. There
is a resource in the form of a multilevel quantum system, and its state is a coherent superposition
of the energy eigenstates:

|ηL,l0〉 =
1√
L

L−1∑

l=0

eilθ|l0 + l〉, (7.2)

where |l0 + l〉 are energy eigenstates when l is an integer and L is the number of energy eigenstates
in the superposition. This state is an eigenstate of the Hermitian optical phase operator [158]. From
now on a state in this form will be called a ladder state, and for simplicity, we can set the relative
phase of each energy eigenstate in the superposition to be zero, θ = 0, without loss of generality
for our main purpose. The main task is to use this resource to prepare repeatedly a coherent
superposition of two atomic energy states, corresponding to, at least approximately, the operation

Û |e〉 = |+〉 =
1√
2

(|e〉+ |g〉) , (7.3)
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where we denote |e〉 and |g〉 as the excited and ground states of the atom and Û is a unitary operator.
The interaction between the resource and the atom is described by an operator V̂ (Û) which can be
written as

V̂ (Û) =
∑

|n〉,|n′〉∈{|g〉,|e〉}
|n〉〈n|Û |n′〉〈n′| ⊗ ∆̂n′−n, (7.4)

where n and n′ are the numbers of excitations of the states |n〉 and |n′〉 respectively. To be clear,
the sum in Eq.(7.4) is run over the atomic energy basis: |n〉, |n′〉 ∈ {|g〉, |e〉}, but n and n′ in the
exponent of the operator ∆̂ are numbers, and the operator has been defined as

∆̂ =
∑

j∈Z

|j + 1〉〈j|. (7.5)

This is the operator that shifts energy eigenstates up by one energy level, and its inverse is given by

∆̂−1 =
∑

j∈Z

|j − 1〉〈j|. (7.6)

We denote the multiplications of k coppies of the operator ∆̂ and its inverse ∆̂−1 as ∆̂k and ∆̂−k

respectively. The interaction between the atom and the resource then can be expressed as

V̂ (Û)|e〉 ⊗ |ηL,l0〉 =
1√
2

(
|e〉 ⊗ |ηL,l0〉+ |g〉 ⊗ ∆̂|ηL,l0〉

)
. (7.7)

From this equation, we can see that the total number of excitations after the interaction is preserved.
This means the total energy of the atom and the resource is conserved after the interaction. The form
on the right-hand side of the equation implies that after the interaction the atom is then entangled
with the resource. At this point, we can define the quantum channels for the atom and the resource
as

Φσ,Û (ρ0) = TrR

[
V̂ (Û)ρ0 ⊗ σV̂ (Û)†

]
, (7.8)

Λρ0,Û (σ) = TrA

[
V̂ (Û)ρ0 ⊗ σV̂ (Û)†

]
, (7.9)

where ρ0 = |e〉〈e| is the density matrix of the atomic initial state and σ is the state of the resource.
The subscripts R and A of the trace operators are used to identify that the Hilbert space of either
the resource or that of the atom is traced over. At this point, we can easily see the first key result,
that for large L we obtain TrR

[
∆̂aσ

]
≈ 1 for −2 ≤ a ≤ 2 [177,178], and Eq.(7.8) gives

Φσ,U (ρ0) =
∑
|n〉〈m|Un,n′〈n′|ρ0|m′〉U∗m,m′ ⊗ Tr

[
∆̂(n′+m−n−m′)σ

]

≈
∑
|n〉〈m|Un,n′〈n′|ρ0|m′〉U∗m,m′

= Ûρ0Û
†, (7.10)

where Un,n′ are matrix elements of the unitary operator Û : Un,n′ = 〈n|Û |n′〉, and we note that
|n′ +m− n−m′| ≤ 2. Another key point is that the expectation value of the operator ∆̂a is
invariant under the action of the quantum channel Λρ0,Û [177,178]:

〈∆̂a〉 = Tr
[
∆̂aσ

]
= Tr

[
∆̂aΛρ,Û (σ)

]
, (7.11)
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for every value of a. To see the importance of this key point, let us consider the following scenario.
After the interaction, the reduced state of the resource is described by its own quantum channel:
Λρ0,Û (σ). If we use the same resource to perform the same coherent operation on another atom, the
quantum channel for this atom becomes

ΦΛ(σ),U (ρ0) =
∑
|n〉〈m|Un,n′〈n′|ρ0|m′〉U∗m,m′ ⊗ Tr

[
∆̂(n′+m−n−m′)Λρ0,Û (σ)

]
. (7.12)

This seems to imply that the same quantum channel can be used again to perform the same coherent
operation:

ΦΛ(σ),Û = Φσ,Û . (7.13)

It leads to the conclusion that the resource is not degraded after each coherent operation and can
be infinitely used.

However, we need to be aware that the state of the resource is changed each time we use it for
the operation i.e. Λρ0,Û (σ) 6= σ. This can be noticed easily by looking at Eq.(7.7). The atomic state
after the interaction in the basis of |±〉 = (|e〉 ± |g〉)/

√
2 is

ρA = (1− 1

2L
)|+〉〈+|+ 1

2L
|−〉〈−|. (7.14)

The state of the resource, on the other hand, becomes

ρR =
1

2

(
|ηL,l0〉〈ηL,l0 |+ ∆|ηL,l0〉〈ηL,l0 |∆−1

)
. (7.15)

The fidelity of the state of the resource before and after the interaction is close to unity for large L:

〈ηL,l0 |ρR|ηL,l0〉 = 1− 1

L
(1− 1

2L
) ≈ 1. (7.16)

This confirms that the resource state has changed. Even though the change is really small for large
values of L, it still indicates that the process is not catalytic, or it will reach the point where we
cannot use it as a resource anymore.

In the next subsection, we consider the situation that two atoms independently interact with the
resource, and we then note that, if the idea of catalytic coherence were correct, we should not see
correlations between these two atoms.

7.1.2 Quantum correlations

The aim of this subsection is to examine the idea of catalytic coherence by considering the correlations
between two atomic qubits that independently interact with the coherence resource. We assume that
these two atoms are initially in the excited state |e〉. The interaction between these the two atoms
and the coherence resource can be described by [177]

V (U)⊗ V (U)|e〉|e〉|η〉 =
1

4

[
|+〉|+〉(1 + ∆)2|η〉+ (|+〉|−〉+ |−〉|+〉)(1−∆2)|η〉

+|−〉|−〉(1−∆)2|η〉
]
, (7.17)
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where we have written the atomic qubits on the right-hand side in terms of the |±〉 basis. The joint
measurement probabilities in this basis are given as

P (+,+) = 1− 3

4L
, (7.18)

P (+,−) =
1

4L
= P (−,+), (7.19)

P (−,−) =
1

4L
. (7.20)

These joint probabilities demonstrate correlations between the two atomic qubits. They are not
equal to the products of the single-qubit probabilities as they would be if quantum coherence were
catalytic. The products of the single-qubit probabilities are given as

P (+)× P (+) = 1− 1

L
+

1

4L2
, (7.21)

P (+)× P (−) =
1

2L
− 1

4L2
= P (−)× P (+), (7.22)

P (−)× P (−) =
1

4L2
. (7.23)

We do not review the derivation for the case of N qubits here but give some aspects that related
to our work. In the N -qubit case, the probability that the outcome is found in a particular tensor
product of one qubit in the state |−〉 and the rest of them in the state |+〉 is equal to the probability
that all N qubits are found in the state |−〉 [177]:

Pseq(N − 1) = P (0). (7.24)

This is the result of the fact that, if there is a single qubit found in the state |−〉, the resource is
projected into a state that is devoid of its initial coherence, and the next qubit is equally likely to
be found in the state |+〉 as the state |−〉 [177]. This means a single error leads to the complete
destruction of the initial coherence and the resource can no longer be used to perform a reliable
coherent operation. Let us consider the following example. If the first qubit is found to be in the
state |−〉, the unnormalised state of the resource then becomes

(1−∆)|η〉 =
1√
L

(|l0〉 − |l0 + L〉) , (7.25)

from which we can see that the resource has lost almost all of its initial coherence and cannot be a
source of coherence anymore.

7.2 Jaynes-Cummings model

At this point let us briefly review the idea of the Jaynes-Cummings model and demonstrate how
we can use it to perform a coherent operation. The Jaynes-Cummings model normally describes
the interaction between an atomic two-level system and a single-mode field [158]. In this case, we
consider the field to be an electromagnetic field in a cavity that is prepared in a coherent state
initially. On resonance, the interaction Hamiltonian may be written as

Ĥ = −i~λ(âσ̂+ − â†σ̂−), (7.26)
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where â and â† are the annihilation and creation operators for the cavity field, σ̂+ = |e〉〈g| and
σ̂− = |g〉〈e| are raising and lowering operators respectively, and λ is the coupling strength. The
unitary operator for this interaction is given by

Û(t) = exp

(
−i Ĥt

~

)
= exp

[
−λt

(
âσ̂+ − â†σ̂−

)]
. (7.27)

An optical coherent state may be expressed as

|α〉 =

∞∑

n=0

an|n〉, (7.28)

where an = e−|α|
2/2αn/

√
n!. This coherent state has average photon number n̄ = |α|2. We consider

the case that α is a real number. Similar to Åberg’s model, we assume that the atomic state is
initially in the excited state |e〉, and we aim to prepare the state |+〉. After the atom interacts with
the cavity field for time t the composite system is changed to be

|φ(t)〉 =

∞∑

n=0

anÛ(t)|e〉|n〉 =

∞∑

n=0

[
an cos(λt

√
n+ 1)|e〉+ an−1 sin(λt

√
n)|g〉

]
|n〉

=
1√
2
|+〉

∞∑

n=0

[
an cos(λt

√
n+ 1) + an−1 sin(λt

√
n)
]
|n〉

+
1√
2
|−〉

∞∑

n=0

[
an cos(λt

√
n+ 1)− an−1 sin(λt

√
n)
]
|n〉 (7.29)

We call the value of the interaction time t that maximises the probability of getting the state |+〉
the optimal time. In order to obtain the optimal time, we need to perform a projective measurement
on the atomic state to evaluate the probability that the state is found in |+〉, which is a function of
the interaction time t, and we then can determine the first and second derivatives of the successful
probability with respect to t and find the optimal time. However, we can easily estimate that it
should be around τ0 where λτ0

√
n̄ = π/4. For example, in the case of α = 10, the optimal time is

numerically found to be τ ′ such that λτ ′
√
n̄+ 1.5726 = π/4. The value of the optimal time depends

on the average photon number of a given coherent state. We, therefore, define λτζ
√
n̄+ ζ = π/4,

where ζ is an arbitrary real number that makes τζ the optimal time and ζ � n̄. We note that, for
a large average photon number, the optimal time defined above is much less than half of the revival
time, T1/2 = Trevival/2 ≈ π

√
n̄/λ � τζ , at which the atomic qubit becomes a particular pure state

and disentangled with the cavity state, independent of initial conditions [184].
The probability to find the qubit in the desired state is given by

P (+) = Tr [|+〉〈+||φ(τζ)〉〈φ(τζ)|]

=
1

2

∞∑

n=0

∣∣[an cos(λτζ
√
n+ 1) + an−1 sin(λτζ

√
n)
]∣∣2 . (7.30)

This summation, however, is difficult to calculate analytically. We assume that the average photon
number is large: n̄ � 1; with this condition, we can approximate the Poisson distribution with a
Gaussian as [158]

exp [−n̄]
n̄n

n!
≈ 1√

2πn̄
exp

[
− (n− n̄)2

2n̄

]
. (7.31)
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The summation in Eq.(7.30) is then replaced by an integration:
∑∞
n=0 →

∫∞
0

dn. As the centre
of the Gaussian distribution is far away from the point n = 0, the integral limit can be extended
to be from −∞ to ∞. The probability that the qubit is found in the desired state can then be
approximated as

P (+) ≈
∞∫

−∞

dn√
8πn̄

∣∣∣∣∣e
−(∆n)2/4n̄ cos

(
π

4

√
1 +

(∆n+ 1− ζ)

n̄+ ζ

)
+ e−(∆n−1)2/4n̄ sin

(
π

4

√
1 +

(∆n− ζ)

n̄+ ζ

)∣∣∣∣∣

2

=
1

2
+

e−1/8n̄

√
2πn̄

∞∫

−∞

dµ e−µ
2/2n̄ cos

(
π

4

√
1 +

(µ− ζ + 3/2)

n̄+ ζ

)
sin

(
π

4

√
1 +

(µ− ζ + 1/2)

n̄+ ζ

)
,

(7.32)

where we have defined ∆n ≡ n − n̄ and µ ≡ n − n̄ − 1/2. We can calculate the second term of the
second line in Eq.(7.32) by using the Taylor expansions of the trigonometric functions. After that
we can employ the following integration formula to calculate the second term:

∞∫

−∞

xne−αx
2

dx =
(1 + (−1)n)

2

1 · 3 · 5...(n− 1)
√
π

2n/2α(n+1)/2
; n > 0. (7.33)

The probability of getting the state |+〉 is approximately given as

P (+) ≈ 1− (π + 2)2

64n̄
+
π4 − 4(5− 40ζ + 16ζ2)π2 + 64(1 + 2ζ)π + 16

4096n̄2
+O

(
1

n̄3

)
. (7.34)

The probability that the qubit is in the undesired state, the state |−〉, on the other hand, is directly
obtained as

P (−) = 1− P (+) ≈ (π + 2)2

64n̄
− π4 − 4(5− 40ζ + 16ζ2)π2 + 64(1 + 2ζ)π + 16

4096n̄2
+O

(
1

n̄3

)
. (7.35)

7.3 Two qubits

In this section, we study the case that two atoms consecutively and independently interact with the
cavity field and show the correlations between these two atoms. The scenario is as follows. We let the
first atom interact with the cavity field for time τζ , and then after that, we stop the interaction by
removing it from the cavity and replace it by the second atom. The second atom then interacts with
the cavity for the same amount of time τζ . We then stop the interaction and perform measurements.
At this point, we can calculate the joint probabilities of the states of the first and second atoms in
the basis |±〉.

As previously discussed, the two atoms are initially prepared in the excited state and the cavity
field is in a coherent state. The composite state is then given by

|Ψ(t = 0)〉 = |e〉a1
|e〉a2

∞∑

n=0

an|n〉, (7.36)

where the subscriptions a1 and a2 identify the states of the first and second atoms respectively. The
interaction of these two atoms and the optical field is described by the evolution operators Ûai(t),
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which has the same form as the operator given in Eq.(7.27):

Ûai(t) = exp
[
−λt

(
âσ̂+

ai − â†σ̂−ai
)]

; i = 1, 2. (7.37)

The unitary operator Ûai(t) operates on the Hilbert spaces of the ith atom and the optical field only.
As we have done in the previous section the total state after the first atom has interacted with the
optical field is given by

|Ψ(t = τζ)〉 = Ûa1(τζ)|Ψ(t = 0)〉,

=
1√
2
|+〉a1 |e〉a2

∞∑

n=0

(
an cos (λτζ

√
n+ 1) + an−1 sin (λτζ

√
n)
)
|n〉

+
1√
2
|−〉a1

|e〉a2

∞∑

n=0

(
an cos (λτζ

√
n+ 1)− an−1 sin (λτζ

√
n)
)
|n〉. (7.38)

We then remove the first atom from the cavity and replace it by the second atom. After the second
atom has interacted with the field for the time τζ , the total state becomes

|Ψ(t = 2τζ)〉 = Ûa2(τζ)|Ψ(τζ)〉

=
1

2
|+〉a1 |+〉a2

∞∑

n=0

(
b+n cos (λτζ

√
n+ 1) + b+n−1 sin(λτζ

√
n)
)
|n〉

+
1

2
|−〉a1

|+〉a2

∞∑

n=0

(
b−n cos (λτζ

√
n+ 1) + b−n−1 sin(λτζ

√
n)
)
|n〉

+
1

2
|+〉a1

|−〉a2

∞∑

n=0

(
b+n cos (λτζ

√
n+ 1)− b+n−1 sin(λτζ

√
n)
)
|n〉

+
1

2
|−〉a1

|−〉a2

∞∑

n=0

(
b−n cos (λτζ

√
n+ 1)− b−n−1 sin(λτζ

√
n)
)
|n〉, (7.39)

where we have defined

b±n = an cos (λτζ
√
n+ 1)± an−1 sin (λτζ

√
n). (7.40)

To write Eq.(7.39) in a shorter form, we define the coefficients of energy eigenstates to be

Ci,±n = bin cos (λτζ
√
n+ 1)± bin−1 sin(λτζ

√
n), (7.41)

The form of the equation is reduced to be

|Ψ(t = 2τζ)〉 =
1

2
|+〉a1

|+〉a2

∞∑

n=0

C+,+
n |n〉 +

1

2
|−〉a1

|+〉a2

∞∑

n=0

C−,+n |n〉

+
1

2
|+〉a1

|−〉a2

∞∑

n=0

C+,−
n |n〉 +

1

2
|−〉a1

|−〉a2

∞∑

n=0

C−,−n |n〉. (7.42)

At this point, we can calculate the joint probabilities straightforwardly. For example, the probability
that these two atoms end up in the state |+〉 after measurement are

P (+ ∩+) = TrF

[
|a1, a2

〈++|Ψ(t = 2τζ)〉|2
]

=
1

4

∞∑

n=0

∣∣C+,+
n

∣∣2 . (7.43)
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Jaynes-Cummings Åberg’s scheme

P (+) 1− (π+2)2

64n̄ + π4−4(5−40ζ+16ζ2)π2+64(1+2ζ)π+16
4096n̄2 1− 1

2L

P (−) (π+2)2

64n̄ − π4−4(5−40ζ+16ζ2)π2+64(1+2ζ)π+16
4096n̄2

1
2L

P (+)× P (+) 1− (π+2)2

32n̄ +
(

(π+2)4

4096 + π4−4(5−40ζ+16ζ2)π2+64(1+2ζ)π+16
2048

)
1
n̄2 1− 1

L + 1
4L2

P (+)× P (−) (π+2)2

64n̄ − π4+4π3−(32ζ2−80ζ−2)π2+16(4ζ+3)π+16
2048n̄2

1
2L − 1

4L2

P (−)× P (−) (π+2)4

4096n̄2
1

4L2

P (+ ∩+) 1− (π+2)2

32n̄ + 5π4−64(1−6ζ+2ζ2)π2+256(1+ζ)π+80
4096n̄2 1− 3

4L

P (− ∩+) (π+2)2

64n̄ − π4−(11−56ζ+16ζ2)π2+16(3+2ζ)π+16
1024n̄2

1
4L

P (+ ∩ −) (π+2)2

64n̄ − π4+4π3+(5+40ζ−16ζ2)π2+32(1+ζ)π+16
1024n̄2

1
4L

P (− ∩−) (π+2)2(3π2+4π+12)
4096n̄2

1
4L

Table 7.1: The table shows the probabilities and joint probabilities in both models.

We then evaluate the joint probabilities with the approximation method given previously. The joint
probabilities are shown in table 7.1.

At this point, we can obviously see that there are correlations between these two atoms. However,
the correlations can be noticed in the second order of the approximation while in Åberg’s model the
correlations can be seen in the order of L−1. Unlike Åberg’s model, this model with the cavity field
initially being in a coherent state is more robust against failure. Even when the measurement of
the first qubit gives the undesired state the probability that the second qubit is found in the desired
state is still significantly larger than 1/2 and almost unity for n̄� 1. This is because the state of the
cavity field still has a significant amount of coherence after a single failure, which will be discussed
in the next section.

7.4 Robustness analysis

In this section, we compare the coherent operations in the Jaynes-Cummings model and Åberg’s
scheme and analyse the reason that makes the first model more robust against failures than the
latter. First of all, let us consider the form of the total state of the atoms and the resource after N
rounds of interaction. For both models, we can see that the total state is of the form

|Ψ〉total =
∑

i

√
P (i)|SN−1

i 〉 ⊗
(
|e〉aN |F ie〉+ |g〉aN |F ig〉

)
, (7.44)
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where |SN−1
i 〉 is a tensor product state of the previous N − 1 qubits, expressed as a sequence of the

states |+〉 and |−〉:

|SN−1
i 〉 = |m1〉a1

⊗ |m2〉a2
⊗ |m3〉a3

...|mj〉aj ...|mN−1〉aN−1
; |mj〉aj ∈

{
|+〉aj , |−〉aj

}
,

the subscript i is used to identify a string of outcomes associated with the state |SN−1
i 〉:

i = (m1,m2,m3, ...,mj , ...,mN−1),

P (i) is the probability that the previous N − 1 atoms are found in the state |SN−1
i 〉, and |F ie〉 and

|F ig〉 are (unnormalised) states of the resource coupled with the atomic excited and ground states of
the Nth atom. For example, in Eq.(7.7), we have |F 0

e 〉 = |ηL,l0〉 and |F 0
g 〉 = ∆|ηL,l0〉. The density

matrix of the Nth atom given that the other N − 1 atoms are found in |Si〉 is written as

ρiaN = 〈F ie |F ie〉|e〉〈e|+ 〈F ig|F ig〉|g〉〈g|+ 〈F ie |F ig〉|g〉〈e|+ 〈F ig|F ie〉|e〉〈g|. (7.45)

At this point, we can analyse how the atomic qubit is rotated in the Bloch sphere after interaction.
The probability that the Nth atom is in the state |+〉 depends mainly on the inner product 〈F ie |F ig〉.
We then consider all possible values of this inner product case by case as follows. If the real part of
the inner product, Re

[
〈F ie |F ig〉

]
, is a positive number, then then there is a component of the qubit

in the positive x direction of the Bloch sphere. This means the probability of getting the state |+〉
is higher than 1/2. The larger the positive real part, the greater the probability to get the desired
state. In the case that the real part of the inner product is negative, Re

[
〈F ie |F ig〉

]
< 0, the qubit is

rotated towards the negative x direction. It is more likely to obtain the undesired state, |−〉, in this
case. If the real part of the inner product is zero, Re

[
〈F ie |F ig〉

]
= 0, the qubit is in the y − z plane

of the Bloch sphere, and thus the measurement outcome in the |±〉 basis is random. The density
matrix of the atom in each case is displayed in the Bloch sphere as shown in figure 7.1.

In both models, the states |F ie〉 and |F ig〉 can be written in terms of superpositions of energy
eigenstates as

|F i〉 =

∞∑

n=0

din|n〉. (7.46)

The overlap between the states |F ie〉 and |F ig〉 for both models are shown in figure 7.2. We consider
only the case that the coefficients, din, are real numbers in both models.

The first column displays the overlaps of the states |F ie〉 and |F ig〉 for the Jaynes-Cummings model
with a resource initially in a coherent state with the average photon number of n̄ = 5. The second
column, on the other hand, shows the overlaps of the states, |F ie〉 and |F ig〉, in Åberg’s model using
a resource initially in a ladder state with L = 5. The first row of the figure, for both columns,
shows the overlaps of the resource states |F 0

e 〉 and |F 0
g 〉 after the resource has interacted with the

first atom. We can see that the coefficient distributions d0
n of the states |F 0

e 〉 and |F 0
g 〉 are almost

coincident:〈F 0
e |F 0

g 〉 ≈ 1. This means in both models after the first-round interaction the first atom
is more likely to be found in the desired state |+〉 with the nearly-unity probability. The second row
of the picture shows the graphs of coefficients for both models after the second atom has interacted
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hFe |Fgi > 0 hFe |Fgi = 0 hFe |Fgi < 0

Figure 7.1: The atomic state ρ after the interaction is illustrated by the red arrows and the red
dot for three different values of the inner product: 〈Fe |Fg〉. We consider only the case that the
coefficients din are real.

with the resource given that the first atomic qubit is found in |−〉. We can see that for the Jaynes-
Cummings case the graphs of coefficients are still almost coincident with each other, but there is no
overlap between |F−e 〉 and |F−g 〉 in Åberg’s model. This means the resource in the Jaynes-Cummings
case can still be used further as a resource after a failure, and the probability of being successful is
still very high. However, for Åberg’s model, if the first atom is instead found in the undesired state,
the second atom is equally likely to be in either |+〉a2

or |−〉a2
. The coefficient distributions of the

states|F−−e 〉 and |F−−g 〉 after the third interaction, given that the first two atoms are in the state
|−〉a1 ⊗ |−〉a2 , are displayed in the third row of the figure. For the Jaynes-Cummings model, it is
similar to the previous case: 〈F−−e |F−−g 〉 ∼ 1. Interestingly, for Åberg’s model the inner product of
|F−−e 〉 and |F−−g 〉 is negative: 〈F−−e |F−−g 〉 < 0. This means in this model if the earlier operations
have failed the resource becomes more likely to produce the undesired state.

Notice that in both models the shapes of the coefficient distributions of the states |F ie〉 and |F ig〉
are similar but slightly shifted apart from each other. At this point, one may realise the reason that
makes a resource initially in a coherent state of the Jaynes-Cummings model is more robust against
a single error. This is because no matter how many times we have failed earlier the inner product
between the states |F ie〉 and |F ig〉 is still positive, while this is not the case when the resource is in a
ladder state in Åberg’s model.

7.5 The state of the cavity field

As we can see in section 7.3, the cavity field is changed each time it interacts with an atom. The
interaction entangles the states of the field and the atom. The cavity state then becomes a mixed
quantum state. For example, in Eq.(7.38), after the first atom interacts with the optical field, the
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Figure 7.2: This figure shows the overlaps of the states |F ie〉 and |F ig〉. The blue graphs are the
coefficient distributions of the state |F ie〉, while the orange ones are that of the state |F ig〉. The first
and second columns are given to display the coefficient distributions din for the Jaynes-Cummings
model and Åberg’s scheme respectively. The first row of both columns are the coefficient distributions
after the first-round interaction. The second row shows that for the second round if the first qubit
is found in |−〉. If the first two operations fail, the coefficient distributions of the states |F−−e 〉 and
|F−−g 〉 are shown in the third row.

normalised cavity state associated with the first atom in the state |+〉a1
is

|F̃+〉 =
1√

2P (+)

∞∑

n=0

(
an cos (λτζ

√
n+ 1) + an−1 sin (λτζ

√
n)
)
|n〉, (7.47)

but, if the atom is in the state |−〉a1
instead, its normalised state then becomes

|F̃−〉 =
1√

2P (−)

∞∑

n=0

(
an cos (λτζ

√
n+ 1)− an−1 sin (λτζ

√
n)
)
|n〉. (7.48)
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Even though these two states of the cavity field look similar, their corresponding photon number
distributions are completely different, as displayed in figure 7.3.

At the optimal time τζ , the shape of the photon number distribution of the state |F̃+〉 is almost
the same as that of the initial coherent state for a large average photon number n̄ � 1, but their
distribution peaks are different. While the peak of the photon number distribution of the coherent
state is at n = n̄, the peak of the distribution for the state |F̃+〉 is approximately at n = n̄ +

1/2. This means, after measuring the first atom and obtain the desired result, the average photon
number increases approximately by 1/2. We can confirm this increase in the average photon number
numerically. The numerical result shows that for an initial coherent state with average photon
number n̄ = 100, after a successful measurement, the average photon number becomes n̄+ = 100.502.

The photon distribution for the state |F̃−〉, on the other hand, has two distinct peaks. The mean
photon number is difficult to evaluate analytically. However, the numerical result shows that it in
fact decreases. For an initial coherent state with n̄ = 100, after a failure, the mean photon number
drops slightly to be n̄− = 99.812. At this point, one might think that this could contradict the law
of conservation of energy as the total energy of the atom and the optical field decreases after the
unsuccessful measurement. However, we need to consider the measurement device and its energy as
well. The measurement device can absorb the energy from and as well as release it to the atom and
the cavity field.

The state of the cavity field after the first interaction is a mixed state:

ρF = P (+)|F̃+〉〈F̃+|+ P (−)|F̃−〉〈F̃−|. (7.49)

The photon number distribution of this state is given as

Pn = 〈n|ρF|n〉 = P (+)
∣∣∣〈n|F̃+〉

∣∣∣
2

+ P (−)
∣∣∣〈n|F̃−〉

∣∣∣
2

= P (+)P+
n + P (−)P−n ,

=
1√
2πn̄

e−(n−n̄)2/2n̄ cos2

(
π

4

√
1 +

(n− n̄+ 1− ζ)

n̄+ ζ

)

+
1√
2πn̄

e−(n−n̄−1)2/2n̄ sin2

(
π

4

√
1 +

(n− n̄− ζ)

n̄+ ζ

)
. (7.50)

We have defined P+
n ( P−n ) to be the photon number distribution for the state |F̃+〉 (|F̃−〉). For

n̄ � 1, this distribution is approximately the same as the distribution of the coherent state with
the average photon number of n̄ + 1/2. The shape of the distribution P−n , the dashed black graph
shown in figure 7.3, and the second line of the above equation suggest that the distribution P+

n

may be narrower than that of a coherent state with the same average photon number. The variance
of the photon number of the coherent state with n̄ = 100.5 is (∆n)

2
= n̄ = 100.5, while the

variance of P+
n , for the initial coherent state with α = 10, is (∆n+)

2
= 100.211 numerically. This

numerical result confirms that at the same average photon number the amplitude uncertainty for
the state |F̃+〉becomes sub-Poissonian. The phase uncertainty, on the other hand, increases and the
uncertainty relation of the amplitude and phase numerically becomes (∆n+)

2
(∆φ+)2 = 1

4 × 1.0050.
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Figure 7.3: The dotted blue, solid red and dashed black graphs are the normalised photon number
distributions of the cavity field in a coherent state, the state |F̃+〉 and the state |F̃−〉 respectively.
We can see that the shapes of the distributions for the initial coherent state and the state |F̃+〉
almost coincide.

7.6 Multiple uses

Before jumping into the aim and detail of this section let us begin with summarising the aims of the
previous section. In the first section, we briefly reviewed [177] and discussed why quantum coherence
is not catalytic, and the fragility of the resource in a ladder state. In the second section, we gave a
brief review of the Jaynes-Cummings model and showed how it could be used to perform a coherent
operation. In the following section, we then derived that the cavity field initially prepared in a
coherent state of the Jaynes-Cummings model also produces correlations between two atoms that
consecutively and independently interact with the cavity field, and we showed that its coherence
is more robust to an error than that of a ladder state in Åberg’s scheme. Then, we analysed the
robustness property of the cavity field in a coherent state. In section 7.5, we showed that the cavity
field is changed after we have performed a coherent operation. As we know that a resource of
coherence is finite and the state of the cavity is changed every time we use it, our next question is
how we can make the best use of it.

Recall that even though the aim of our coherent operation is to repeatedly prepare atomic qubits
in the superposition state |+〉, after the operations, these atoms are not exactly in the desired state,
but their states are really close to it. There is still a possibility that these atoms end up being in the
state |−〉, even though it is very unlikely. We can make a measurement in the |±〉 basis to test the
performance of the operation in each round. However, if we aim to use our coherent operations to
prepare an ensemble of the state |+〉 for a quantum computing task instead, the measurement then
should be done at the end of the protocol, so that the correct answer of the computation is given by
the likely outcome of the measurement. Thus, in this case, as no measurement is performed on the
qubit right after each round of interaction, in return, we do not know for certain whether the cavity’s
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average photon number increases by 1/2 or decreases slightly in each round. It is true that one can
determine the average photon number from the reduced density matrix of the cavity field directly.
However, it is really difficult to do so, because the number of involved terms in the calculation grows
exponentially when the number of rounds increases. For example, as one can notice in Eq.(7.38), in
the first round, the reduced density matrix of the cavity field is a mixture of two pure states, while in
Eq.(7.42), the second round, it becomes a convex combination of four pure states. Even though the
exact average photon number cannot be obtained easily, its approximation can be calculated more
simply. This is because the probability of success is almost unity when n� 1. The average photon
number approximately increases by 1/2 in each round if the number of rounds N is much less than
the initial average photon number: N � n̄. In order to maintain the performance of the operation,
in each round of operation, the interaction time needs to be updated in accordance with the new
mean photon number of the cavity field.

After the Nth round of operations, we can rewrite Eq.(7.44) as

|Ψtotal〉 =
∑

i

|SNi 〉|F̃ i〉 (7.51)

where we once again denote

|SNi 〉 = |m1〉a1 ⊗ |m2〉a2 ⊗ |m3〉a3 ...|mj〉aj ...|mN 〉aN ,

with |mj〉aj ∈
{
|+〉aj , |−〉aj

}
, the subscript i represents the outcomes associated with |SNi 〉: i =

(m1,m2,m3, ...,mj , ...,mN ), and |F̃ i〉 is an unnormalised state of the cavity field when all atoms are
in the state |SNi 〉. We can express the state of the cavity field |F̃ i〉 if the string of outcomes i is
found as

|F̃ i〉 = e−|α|
2/2

∞∑

n=0

αn√
n!
f iN (n), (7.52)

with

f iN (n) =
1√
2

(
f iN−1(n) cos

(
λτN
√
n+ 1)

)
+mNf

i
N−1(n− 1)

√
n

α
sin
(
λτN
√
n
))

,

f ij(n) =
1√
2

(
f ij−1(n) cos

(
λτj
√
n+ 1)

)
+mjf

i
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))

,

f i0(n) = 1,

where mj is the sign associated with the state of the jth atom in the state |SNi 〉 such that if it is
the state |+〉aj then mj = +1, and mj = −1 for the undesired state |−〉aj . The interaction time
τj needs to be updated in each round of interactions in order to cope with the increasing average
photon number. An example of the case of N = 2, without adjusting the interaction time, is given
in section 7.3. The probability that all atoms are found in the state |SNi 〉 is given by

P (i) = 〈F̃ i|F̃ i〉. (7.53)

We note that as we do not measure the qubit state each time we perform the operation and do
not know the state of the cavity in the previous rounds the interaction time τj then is independent
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Figure 7.4: The dotted orange graph shows the probability of success for the Nth atom if all other
atoms are in the desired state with adjusted interaction times. The dotted blue graph represents
the probability of success for the Nth atom if the desired outcomes have been obtained for the other
N − 1 atoms, but the interaction time is not updated. The dotted green graph gives the probability
of success if a coherent state with |α|2 = n̄+N/2 is the state of the cavity field.

of measuring previous copies. It depends only on how many coherent operations have been done
previously.

Figure 7.4 shows the conditional probability that the Nth atom is found in the state |+〉aN if
all other atoms are in the desired state. We can see that if we do not update the interaction time
the conditional probability rises slightly for a few rounds and then continuously drops after the 4th
round. For the case that the interaction time is adjusted for each round, the conditional probability
then continuously increases. One factor that causes the increase is that each successful operation
increases the average photon number of the cavity approximately by 1/2. However, it is not the
only factor here. As shown in the figure, the probability that the qubit is in the desired state when
the resource is in a coherent state with an average photon number of n̄ + N/2 is lower than the
conditional probability when the interaction time of each round has been adjusted. The other factor
is that the photon number distribution of the cavity field is squeezed when the atoms are in the
desired state: it becomes sub-Poissonian. As the complexity of the field state given in Eq.(7.52)
grows exponentially when the number of rounds increases, it takes a long time to get the numerical
results after the 8th round.

On the other hand, the situation turns around if we update the interaction time for each round of
operations, but all N − 1 previous qubits are in the undesired state. The conditional probability of
success for this case is lower than the case of using the same interaction time, as shown in figure 7.5.
This is reasonable because if the previous operations turn out to be failures the average photon then
decreases instead, and it means the interaction time has been taken away from the optimal time. As
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Figure 7.5: The graphs of the conditional probabilities of success for the Nth atom if all other N −1

atoms are found in the undesired state when all N interaction times are constant (blue dots) and
adjusted in accordance with the expectancy of increasing average photon number.

expected, in the graph, the conditional probabilities show that the probability of being successful
in the next round decreases if the previous operations have failed. This is because a failure result
consumes a larger amount of coherence than a successful one, but multiple errors cannot completely
destroy the resource.

7.7 Quasiprobability distribution

In this section, we use the Husimi Q-function to represent the state of the cavity field after interaction
with the string of atomic states being measured. The quasiprobability distribution is useful to
visualise the change in the cavity state. We then can examine the shift of the mean photon number
of the optical field if the operations turn out to be perfectly successful or if all operations fail, that
is all qubits are found in the desired or undesired state respectively. The Q-function of a state ρ is
defined as

Q(β) =
1

π
〈β|ρF|β〉.
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Thus, the Q-function of the normalised state |F̃ inorm〉 of the cavity field when the outcome i is found
is given by

Qi(β) =
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Figure 7.6: The figure compares the Q-functions of the states of the cavity field in phase space.
Diagram A illustrates the quasiprobability distribution of an initial coherent state. The Q-function
of the cavity field after the 12th round of operations, each of which succeeds, is given in diagram B.
The peak of the distribution is squeezed and shifted in the positive q direction.

In figure 7.6, we compare the Q-functions of the initial coherent state and the cavity state after 12
rounds of successful coherent operations. It is clear that the peak of the photon number distribution
is shifted, reflecting the increase in the average photon number. The shape of the Q-function shows
squeezing in the q direction. The amplitude standard deviation σ|α| is also smaller than that of a
coherent state. This infers that the photon number distribution of the field is sub-Poissonian as
mentioned as [158,185]

σ2
n ≈ 2n̄σ2

|α|. (7.55)

Figure 7.7 shows the Q-functions of the states after we have completely failed to prepare our two-
level atoms in the desired state. We can see that the mean photon number, in this case, decreases if
all operations have failed. It moves toward a state resembling the squeezed vacuum state.
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Figure 7.7: The figure shows the quasiprobability distributions of the field states after the first
operation turned out to be unsuccessful in diagram A. Diagram B shows the Q-function of the cavity
state after the ninth operations given that all nine atoms are found in the undesired state.

7.8 Coherent squeezed states

As we mentioned earlier in section 7.6, the increase of average photon number, if successful coherent
operations take place, is not the only reason why the conditional probability in figure 7.4 gets higher
when all operations are perfectly successful. The squeezing of the photon number distribution is
another factor. In this section, we examine how this factor affects the successful probability by
analysing the use of a coherent squeezed state as the initial state of the cavity field. Even though it
cannot exactly represent the state of the cavity field following perfectly successful operations, it still
helps us to understand why the conditional probability of success in the next operation increases.

A coherent squeezed state is generally defined to be generated by a squeezing operator and a
displacement operator acting on the vacuum state consecutively:

|α, γ〉 = D̂(α)Ŝ(γ)|0〉, (7.56)

where

Ŝ (γ) = exp

(
−γ

2

(
â†
)2

+
γ∗

2
â2

)
, (7.57)

D̂(α) = exp
(
αâ† − α∗â

)
, (7.58)

are the squeezing and displacement operators respectively, and γ = r exp(iφ) is an arbitrary complex
number with modulus r and argument φ. The modulus r is also known as the squeezing parameter.
However, this state can be written in terms of a superposition of energy eigenstates as

|α, γ〉 =
1

coshr
exp

[
−|α|

2

2
− (α∗)2eiφ

2
tanhr
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)−1/2
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|n〉 (7.59)
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where χ = αcoshr + α∗eiφsinhr and Hn(x) is the nth-order Hermite polynomial of the variable
x. This form of superposition is really difficult to work with, but we can use the fact that if the
squeezing parameter, r, becomes zero, this state will just be the coherent state |α〉. That means at
small r and large |α| its photon number distribution should look like that of the coherent state. We
consider an amplitude squeezed state here as its photon number uncertainty is lower than that of a
coherent state, which is given by

σ2
n = 〈n̂2〉 − 〈n̂〉2

= |α|2e−2r + 2sinh2rcosh2r, (7.60)

where n̂ = â†â is the photon number operator. The average photon number of this state is

n̄ = 〈n̂〉 = |α|2 + sinh2r. (7.61)

At this point, we can see that for large |α| and small r, the average photon number and the photon
number uncertainty can be approximated as

n̄ ≈ |α|2, (7.62)

σ2
n ≈ n̄e−2r. (7.63)

At this limit, the photon number distribution of the amplitude squeezed state may be approximated
as

Pn ≈
1√

2πn̄e−2r
exp

[
− (n− n̄)2

2n̄e−2r

]
. (7.64)

With this distribution, we then redo the derivation given in section 7.2 and find that the probability
of success is

P (+) = 1−
(
e−2rπ + 2

)2

64n̄e−2r
+O

(
n̄−2

)
, (7.65)

which is larger than the probability of success when the resource is in a coherent state having the
same average photon number. It will be maximised if e−2r = 2/π, which gives P (+) = 1− π/(8n̄).
This implies that the squeezing of the photon number distributions is another factor that makes the
probability of success increase after being perfectly successful previously: P (+|+N−1) > P (+|+N−2).
It also suggests that, if the state of the cavity reaches a certain level of squeezing equivalent to
r ≈ ln(

√
π/2), this effect is then saturated, and it yet contributes an additional increase to the

conditional probabilities of success in the next round, but it is smaller than its previous contributions.
However, the effect of squeezing then no longer gives any contribution when the squeezing level
reaches r = ln(π/2), the intersection point of the two graphs, between r = 0.4 and r = 0.5, in
figure 7.9. After it meets this level, the conditional probability then starts to become lower than the
probability of success given by using a coherent state with the same average photon number: the
orange dots in figure 7.4 start to go under the green dots.

7.9 Conclusion

We introduced Åberg’s scheme and showed how a coherence resource can be used to perform a
coherent operation. It appears that there are correlations between atoms that have independently
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Figure 7.8: In this figure, the solid blue line and dashed red line are the exact and approximated
photon number distributions of an amplitude squeezed state with α = 10 and r = 0.4, respectively.
The black dash-dotted line, on the other hand, is the distribution for a coherent state with the
same magnitude of α . We can see that the approximated distribution can be used to describe the
sub-Poisson distribution of the amplitude squeezed state effectively.
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Figure 7.9: The solid blue line represents the relation of the probability of success P (+) and the
squeezing parameter r when n̄ = 100. The dashed black line is the probability of success when a
coherent state with the same average photon number is used. In the figure, we can see that, if the
squeezing parameter r is non-zero and smaller than 0.4, squeezed states with the squeezing parameter
in that range are better than coherent states at the same average photon number.

interacted with the resource. These correlations affirm that quantum coherence is not catalytic. We
then showed that with the Jaynes-Cummings model an optical cavity field initialised in a coherent
state can also be considered as a coherence resource for a coherent operation, and correlations
between atoms that independently and consecutively interact with the cavity field also show up
in the second order of the approximation. We analysed the robustness property against failures
of coherent operations of the coherent resource for both models. As expected, it turns out that a
resource in a coherent state of the Jaynes-Cummings model is more robust against failures, as, no
matter what the previous outcomes are, the inner product is still larger than zero: 〈F ie |F ig〉 > 0,
which gives rise to a probability of success larger than 0.5. Its coherence can be repeatedly used for
coherent operations. This is in contrast to the case of a coherence resource in a ladder state of Åberg’s
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model as a single error leads to the complete destruction of the coherence resource. We have studied
the change of the cavity state and its corresponding photon distribution after the first operation.
This shows that the distribution becomes sub-Poissonian, and the distribution gets more squeezed
if the coherent operations are successful in a row. The increase of average photon numbers and the
squeezed distribution are the two factors give rise to the increase in the conditional probability.
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