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Abstract

Simulations of Lattice QCD at non-zero chemical potential (finite baryon density) 

have been performed with the inclusion of dynamical fermions. The fundamental 

difficulty in simulating QCD at finite density and investigating the colour deconfine­

ment and chiral transitions quantitatively is th a t the Grassmann integration over 

the fermion fields is complex as a result of the introduction of the chemical potential 

in the Dirac m atrix. The complex nature of the QCD finite density action prohibits 

the use of naive probabilistic methods in evaluating the functional integral. Early 

simulations which avoided the problem of the complex action by looking at the 

theory in the quenched approximation where the determinant is set to a constant 

value gave unphysical results. In the quenched theory the onset of chiral symmetry 

restoration which should be determined by the mass of the lightest particle with 

non-zero baryon number, did not occur at a chemical potential equal to one third of 

the proton mass (/i =  m p/ 3) as expected, but appeared to occur at one half of the 

pion mass (/i =  m n/2) - a value which would extrapolate to zero in the chiral limit. 

The accepted explanation for the pathologies of the quenched theory is th a t the 

inclusion of the complex fermion determinant in the theory is essential. This thesis 

describes unquenched simulations of Lattice QCD at finite baryon density on 64 and 

84 lattices. The problem caused by the non-Hermitian nature of the fermion m atrix 

a t n  7̂  0 is circumvented by a method first proposed by Barbour and collaborators 

[1] which involves expressing the Grand Canonical Partition Function (GCPF) as 

an ensemble average of the fermion determinant a t zero chemical potential. The 

GCPF is expanded in powers of the fugacity variable eM/ T (where T is the physical 

tem perature). The method is an example of a rew e ig h tin g  technique. The Lee- 

Yang zeros of the partition function are analysed to probe the phase structure of 

the theory.

The method is applied at infinite gauge coupling (ft = 0) where analytic results 

from the strong coupling expansion and from mean-field theory are available as



well as numerical results from the monomer-dimer algorithm. The analytical ar­

guments of Gibbs which pertain to the quenched theory are further developed and 

applied to give an improved Lee-Yang zeros analysis which allows determination 

of a critical point, fic, in agreement with th a t predicted by strong coupling expan­

sions and monomer-dimer simulations. We do observe, however, two unphysical 

critical points:- /z0, the onset for the free quark number density and the saturation 

threshold, /zs , both of which are coincident with pathological onsets observed in the 

quenched QCD simulations. An analysis of the probability distributions for particle 

number supports our physical interpretation of the critical point /ic, and offers a 

new interpretation of n 0 which confirms its unphysical nature.

The method is also applied at intermediate gauge coupling (3 =  5.1. For these 

simulations S q ^  0 so th a t the gauge fields are no longer random (as they were in 

the strong coupling simulations). We present evidence for Z {3) tunnelling which 

confirms th a t our system is in the confined phase a t /j, — 0. The'onset in 'the fermion 

number density and energy density is investigated. The zeros analysis developed 

for the strong coupling simulations is applied here also. The dependence of the 

onset on the bare quark mass is investigated to determine whether the scaling can 

be associated with a Goldstone pion. We demonstrate for the first time th a t the 

pathological onset first observed in the quenched theory persists when dynamical 

fermions are implemented using the Glasgow re weighting method.

To address the question of whether the reweighting procedure is sufficiently 

effective in its implementation of dynamical fermions an exploratory study of the 3 

dimensional Gross-Neveu model at fi ^  0 was performed. Although this model does 

not confine it does exhibit chiral symmetry restoration and has a massless pion in 

the chiral limit. This model does not have a complex fermion determinant when 

H ^  0 (it is actually positive definite) therefore exact simulations are possible and 

have been performed by Hands et. al. [2] Thus it was possible to provide a direct 

comparison between fermion number densities obtained using the exact method with 

those obtained using our reweighting method with a statistical ensemble generated 

a t zero chemical potential. This is analogous to the procedure we adopt in QCD. In 

the Gross-Neveu model is was also possible to choose an update chemical potential 

(at which the ensemble is generated) which is non-zero therefore we performed 

simulations for update chemical potentials both above and below the known critical 

value. An independent estimate of the critical chemical potential was obtained 

from the Lee-Yang zeros. The simulations were repeated for two different four- 

fermi couplings and comparison was made with the published exact results.



Having established the persistence of the early onset of the chiral/deconfinement 

transition in full QCD which we associate with the mass poles of the fermion prop­

agator on isolated configurations a new approach to finite density lattice QCD 

simulations has been investigated. This approach involves adding a perturbatively 

irrelevant four-fermion interaction term to the lattice QCD Lagrangian. This theory 

which we call xQCD has the advantage th a t chiral symmetry breaking and the gen­

eration of a dynamical quark mass occurs co n fig u ra tio n -b y -co n fig u ra tio n  and 

the pion and sigma excitations are explicitly free of fi dependence. In addition it 

is possible in xQCD to simulate directly in the chiral limit (zero bare quark mass). 

xQCD simulations were performed on a 44 lattice a t (3 = 0.5, on a 64 lattice at 

(3 = 5.0 and on an 84 lattice a t (3 = 4.0. The onset in the fermion number density 

for a range of four-fermion couplings was determined. The Lee-Yang zeros have also 

been analysed. We have seen that for the range of four-fermi couplings explored, 

xQCD simulations do not appear to suffer from the severe /i0 pathologies Seen in 

standard QCD. Certainly additional analytical and numerical work is required to 

see if xQCD really produces only physical results. In particular, it will be neces­

sary in future work to explore the interplay between the gauge coupling and the 

four-fermi coupling in order to determine the range of couplings for which QCD 

dynamics is dominant.

The computations were performed on the C90 machines at the Pittsburgh Super­

computing Centre (PSC) and the National Energy Research Scientific Computing 

Centre (NERSC) which is located a t Ernest Orlando Lawrence Berkeley Laboratory.
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Chapter 1

Introduction

1.1 M otivation

The principal motivation for simulations of QCD at finite density is to confirm th a t 

QCD is the correct theory of the strong interactions. Although there is strong evi­

dence th a t this is the case certain outstanding questions remain, as yet, unanswered. 

For example does QCD predict the pattern of chiral symmetry breaking observed 

in nature?

On the basis of elementary physics arguments we should be able to demonstrate 

th a t there is a chiral phase transition which is directly related to the mass of the 

lightest baryon. Although colour confinement is strongly inferred from the scaling 

of the strong coupling constant we still await a rigorous proof of confinement which 

generalises to the continuum limit. We also await numerical evidence for colour 

deconfinement a t finite baryon density for non-vanishing chemical potential in the 

chiral limit (m —> 0). We would also like to understand the interplay of chiral 

symmetry breaking and deconfinement.

Aside from fundamental physics considerations the study of the phase structure 

of QCD has a wide range of applicability as explained below and illustrated in Fig. 

1 .1 .

Simulations of the QCD phase transition at fin ite  te m p e ra tu re  are relevant

to

• C o sm ology  -  the existing theories of the early universe suggest th a t the 

latest phase transition since the big bang was the one of confinement of quarks 

and spontaneous breaking of the chiral symmetry. Possible effects associated 

with this phase transition are baryon creation and fluctuations in the baryon

4
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Figure 1.1: Phase diagram illustrating the tem perature and density regimes where 

we expect the quark-gluon plasma to be found.

density, which could be the seeds of galaxy formation. Possible consequences 

of a strongly first-order transition are the generation of additional entropy 

and increased expansion in the supercooled phase of the universe due to the 

release of latent heat. This phase transition could also induce perturbations 

in the cosmic microwave background radiation which is the photon spectrum 

produced due to the recombination radiation em itted when hadrons are first 

formed [3, 4],

• H eavy ion collisions -  the experimental evidence for a formation of the 

quark-gluon plasma is expected from the BNL Relativistic Heavy Ion Collider 

and CERN Large Hadron Collider. The energy densities of (2 — 10 GeV/fm 3) 

th a t can be reached in these experiments may be sufficient to create, for a 

short time, the energy per nucleon and the densities sufficient to probe the 

transition into the deconfined phase [5]. Zero or vanishing net quark number 

densities occur in the central rapidity region of heavy ion collisions. Therefore 

finite tem perature studies (p = 0 axis of the phase diagram) can make useful 

predictions of thermodynamic quantities and other observables here.

The QCD phase transition at fin ite baryon d en sity  is applicable to:



1. H eav y  io n  collisions -  the baryon-rich fragmentation region of these ex­

periments requires a knowledge of the equation of state in the tem perature- 

chemical potential plane (i.e. fi ^  0).

2. N e u tro n  s ta rs  -  the density of nucleons in the interior of a neutron star is 

much higher than ordinary nuclear density, and it is approaching the value 

a t which the restoration of the chiral symmetry may occur [6 , 3]. This is an 

example of a “cold” highly dense nucleon m atter, which is the most challenging 

for a theoretical investigation. A knowledge of the equation of state for a 

neutron star would be useful for models of stellar structure.

1.1.1 Introduction

QCD is the S U (3) non-abelian gauge theory of the strong interactions. The basic 

degrees of freedom are quarks and gluons, which both qarry polpui; charge.. The 

quarks come in 6 flavours and three colours , but only the colour index participates 

in the local gauge symmetry. The most im portant feature of QCD is a sy m p to tic  

freed o m . A rigorous proof th a t the Yang-Mills theory confines quarks and gluons 

has still to be found but using the renormalization group it can be demonstrated th a t 

the strong coupling constant, a 8, varies with energy. At high energies a s C  1 so 

quarks behave like free particles and perturbation theory can be applied. However 

for low energy processes a s —> 1, quarks and gluons are confined to hadrons and 

non-perturbative methods are required. The param eter Aqcd  ~  200 — 500 MeV 

is the confinement scale and defines the crossover between the two regimes. For 

processes with a typical momentum scale p IS Aqcd  non-perturbative techniques 

are required in order to calculate observables.

1.1.2 Lattice QCD

The Lattice formulation of QCD introduced by Wilson in 1974 provides us with a 

framework to study QCD non-perturbatively. It provides a renormalization scheme 

for Quantum Field Theory where gauge invariance is ensured for an y  finite lattice 

spacing and enables systematic calculation without the aid of Feynman diagrams. 

Lattice field theory is essentially a means of defining the Feynman path  integral. 

The lattice renormalisation program on Feynman integrals in momentum space 

consists of

• R e g u la r iz a tio n :-  the infinities in Feynman integrals are due to  UV diver­

gence. Expression of the path  integral in terms of a sp ac e tim e  la tt ic e  ren­

6



ders the momentum integration in the Feynman integrals finite by providing 

a natural cut-off a t a momentum of the order of the inverse lattice spacing.

• R e n o rm a lis a tio n :-  the lattice structure is removed by going to the contin­

uum limit where we let the lattice spacing tend to zero, keeping the physical 

quantities independent of the lattice structure by tuning bare parameters in 

a definite way.

Continuum Yang-Mills theory is defined on the Lie algebra of the gauge group 

and is unique. A distinctive feature of lattice gauge theory essential to its conceptual 

simplicity is the fact th a t the basic building blocks are the elements of the Lie group 

themselves. The group elements are assigned to  the links of a hypercubic lattice 

(3 dimensions in space and one in time). In the path  integral formulation of the 

model the group elements are freely integrated over. Since the group volumes 

are finite, path  integrals are welhdefined and have simple invariance properties. 

This allows gauge invariance to  be stated precisely in the full fluctuating theory. 

In this respect the lattice model is conceptually simpler than the weak-coupling 

perturbative formulation based on the Lie algebra of the group. As in classical 

continuum theory, local gauge invariance on the lattice dictates the form of the 

interactions. By applying local gauge invariance and by insisting on the locality of 

interactions, lattice actions can be formulated which:

• have classical continuum limits which reproduce the Yang-Mills theory.

• have strong coupling limits for which quark confinement can be demonstrated 

explicitly.

1.2 Lattice Discretization

There are many different ways of discretizing a given continuum action for the 

lattice. It is im portant for universality th a t they do not lead to different continuum 

theories in the limit of the lattice spacing going to zero. In addition it is desirable 

to retain the symmetries of the continuum action in the lattice discretization.

The continuum action of QCD in Euclidean space is = s ^ ont^ + S p 0nt'̂

where the Yang-Mills gauge action is given by

( 1 .1)

where

L'fiu — d(/,Al/(x') dt i g^A^ (x), A v (x)] (1.2 )

7



A ^ x )  = f ^ A ^ x ) ^ -  (1.3)
B =1

An (x) is an element of the Lie algebra of S U (3) and the Ab  are the 3 x 3  Gell-Mann 

matrices which are the SU(3) group generators.

The Dirac fermionic action is

s (cont.) _  J  d*x ^(x)('Y lll(dll + igoAli) + rn0)il}(X) (1.4)

lu l v  +  I v in  = 25nV ; l l  = In

In the Feynman path  integral formulation the QCD partition function is given by

/
_ r.(cont.)

Dip Dip D A e ~  Q°D (1.5)

where the functional integration DipDipDA  takes account of all possible quantum 

fluctuations of the fields.

■ In lattice theory the gauge field is represented by the group' element' connecting 

neighbouring lattice sites

Un(x) = exp ( igAn(x)a)  (1.6)

Our choice of lattice gauge action is dictated by the requirement of local gauge 

invariance under the transformation

Un{x) —> fl(x)[/M(a;)n- 1 (x +  a/t) (1-7)

where D £ SU{3) and is defined independently on each lattice site.

The simplest possible gauge invariant action is defined in terms of the elementary 

p laq u ette variable U ^ i x )  which is the trace of a directed product of gauge links 

around a closed loop joining a sequence of nearest neighbour sites.

u nvix ) =  Unix) Uv{x +  apt) U\{x  +  av) t/J(a?) (1.8)

The Wilson gauge action for SU {N C) where N c is the number of colours is defined 

to be

Sg =  H £  f1 -  Y  +  (£ £ )* (* ))I (!-9)
x/x; v > n  *■

It can be shown th a t by taking the naive continuum limit of the lattice gauge action 

we recover the Yang-Mills action. The matrix-valued lattice field tensor can be 

defined as

U^vix ) = exP {i9oa2Fnv(x )) C1-10)

and one finds th a t in the continuum limit (a -)• 0) the continuum field tensor is well 

approximated by the lattice field tensor F ^ i x )  —> F^vix) -I- 0{a) and the lattice

8



gauge action, So  is equivalent to the continuum gauge action, 5 ^ ont ) provided we 

make the identification j3 =

1.2.1 Fermions on the Lattice

The fermion fields are associated with lattice sites and the continuum Dirac action 

is discretized by approximating the partial derivative by a finite difference:

d ^ a i x )  =  [lpa{x +  ap,) -  1pa (x -  dp)] (1.11)

where ipa is a single component of the four component field ip. The lattice form of 

the fermion action is

S f  = ^ a (x )M ap (x }y)ipp{y) (1.12)
x ,y ,a ,0

where in the interacting case, the fermion Dirac m atrix M  is given b y .....................

M ap(x ,y)  — ^ \Pp{x)$y,x+a£i ~  Uy(x)5y^x—a/i] "b fd8yX50tp (1.13)

so the d im en sio n le ss  quark propagator is

(ipa (x ) ,$ p {y)^ = [MaP(x,y)]~l (1.14)

After Fourier transforming to momentum space and taking the continuum limit we 

obtain the following expression for the physical quark propagator (in the free field 

case) the poles of which correspond to physical particles.

( M * ) M v ) )  =  lim / _ i/o  ^  P l + m 2  e'P(x~v) (1.15)

where Pn = -  sin(pMa). The zeros of this sine function at the edges of the first Bril- 

louin zone destroy the correct continuum limit -  they give rise to fermion species 

doubling [7]. This fermion doubling is clearly seen by inspecting the inverse propa­

gator for a massless free fermion

S _ 1 (p) =  i ^ 7 M- s i n ( p Ma) ; - 7 r /a  <  p^ <  7r/a (1-16)

The periodicity of the sine function means th a t we have not one but sixteen poles in 

every Brillouin zone. This is illustrated in Fig. 1.2. Nielsen and Ninomiya [8 , 9, 10] 

showed th a t the fermion doubling problem cannot be eliminated without breaking 

the chiral symmetry in the limit m  —> 0 .

9
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Figure 1.2: The origin of the fermionic doublers is clear from this plot of the inverse 

fermion propagator for the case of a massless free fermion.

1.2.2 Kogut-Susskind Fermions

whereby an irrelevant term  is added to the action which gives an effective mass of 

0 (  1/a) to the 15 unwanted fermion doublers . Wilson fermions have the disadvan­

tage th a t the irrelevant term explicitly breaks the chiral symmetry of the original 

lattice action. Since we are interested in the chiral phase transition we will use 

Kogut-Susskind staggered fermions which preserve a non-trivial piece of the full 

chiral symmetry.

The Kogut-Suskind fermion action eliminates the unwanted fermion modes by 

doubling the effective lattice spacing thereby reducing the Brillouin zone.

By making a local change of variables we arrive at an action which is diagonal 

in the Dirac indices thus the different fermion field components are decoupled and 

we keep only a single field component per site.

Starting with the naive fermion action with spin indices a , 0  shown explicitly 

(and where the lattice spacing, a = l ,  where not explicitly stated) :

The reduction of degrees of freedom is achieved by sp in  d iag o n a liz a tio n  where 

we perform a local change of fermionic variables

where in d spacetime dimensions r(x ) are diagonal 2d/ 2 x 2d/ 2 unitary matrices

A popular scheme for dealing with fermion doubling is “Wilson lattice fermions”

X

%l)a {x) = r af3(x)xp(x)  ; ipa (x) = Xp{x)rjjaOc) (1.18)
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subject to the constraint

r +(a:)7 Mr(x  +  A) =  A M(x) (1.19)

where A /i(x) =  r j^x )  1. Note th a t A should not be confused with any derivative 

operator. If we choose

I 'M  =  7 f ‘7 f27 f !T4* (1-20)

where (x \ ,X 2 ,X 3 ,Xi)  are the components of the lattice site four-vector x, then the 

appropriate phases are

m(x) = 1; .,„(*) =  (1.21)

The above choice is not unique and there are a number of equivalent spin diagonal-

ization prescriptions with different choices of r(x ), but due to the anti-commutation 

of the 7  matrices (7M7 „7M7„ =  — 1 for /z ^  u) the product of signs around any pla- 

quette must satisfy the relation: ........................................................................................

Am(x)A„(x +  A) A* (a: +  u )A l(x )  = - 1  (1.22)

After spin diagonalization and inclusion of gauge interactions the action reads

S {fK'S ) =  i  ^ (* )  [Xa(x)Uv(x)xa(x + A) -  Xa(x)U*(x -  p)Xa{x ~  A)]

+  m  E Xa{x)x{x) (1.23)
x ,a

By eliminating the Dirac m atrix 7M we have decoupled the fermion field components 

thus we can reduce the number of fermion field components to a single one per site. 

Since the above action is diagonal in Xa(x ) and is thus simply four copies of the 

same action written in terms of a one-component Grassmann variable Xa (x ) and a 

space dependent sign ^M(x).

The remaining four fermion species are interpreted as physical flavours in the 

continuum limit. Thus the lattice action reduces in the naive continuum limit to a 

sum of free fermion actions, one for each of the quark flavours:

s (k .s .) f  ^  ^ / ( x ) ( i . 2 4 )

J ot,0, f

where /  is the flavour index which ranges from 1 to 4 and a, (3 are the spinor in­

dices. Note th a t the staggered formulation has the disadvantage th a t in d spacetime 

dimensions it is restricted to a description of 2rf/ 2 degenerate quark flavours.

The staggered fermion action (Eqn. 1.23) is local, Hermitian and invariant under 

the global U ( l) i  rotation:

X(x) -> etax(x)  ; x(x) x (x)e~ ta. (1.25)
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In the massless case (m =  0) this symmetry becomes extended and we have the 

additional U( l ) e symmetry defined by the transformations

X(x) -> ; x(x)  ->• x (z )e ^ e(x) (1.26)

where e(x) = (—l ) Zl+Z2+:C3+a:4. The f / ( l ) e invariance is a continuous remnant of 

the full chiral symmetry of the naive action and in the continuum limit, the full 

chiral symmetry of the free theory is restored.

The full U( 1)£ ® U ( l) i  symmetry can be re-expressed in terms of independent 

rotations on odd and even lattice sites U0{ 1) ® Ue( 1). In the (m =  0) case the even 

sites will be rotated by the angle a  +  while the odd sites will be rotated by a — fi.

The spin and flavour quantum number assignments which have been suggested 

for the interpretation of the staggered fermion action in the continuum limit can 

be identified locally, in configuration space by assigning quantum numbers to the 

16 degrees of freedom at the corners of unit hypercubes on the lattice [11]. We 

introduce the following formalism whereby we double the effective lattice spacing. 

We introduce a new field variable x a (v ) defined in terms of x(x)  by

X A { y )  = x i^ x  + A) (1.27)

where y is a four component site index on a  la tt ic e  o f sp ac in g  2a and A is one 

of 16 four-vectors with each component either zero or one. If we define the sixteen 

4 x 4  matrices by

I T ( z )  =  t ' Y "  (1-28)

which form a basis for the linear vector space of 4 x 4 matrices. We can now define 

the quark fields associated with the hypercube identified with spatial coordinate y 

by

r M  =  [ E r “ » w  ; «°a (») =  | E ^ ( » ) r i “  (L29)
A A

where a  is a spin index and a is a flavour index. Both indices range from 1 to 4. 

By exploiting the orthogonality of the T^:

r<xar * fb = 4 saP6ab (1.30)
A

and defining the finite difference operators:



it is now possible to write the staggered action in the free field case in terms of the 

q variables on the lattice of spacing 2a.

5  =  ^ ( 2 a ) 4 [g(y)(7M<g>l)AMg(y) +  a^y)(75<8> V5)<W ?/)]

+ m  E q(y)(l 0  l)q(y) (1.32)
v

where =  7 *. The t matrices act only on flavour indices while the 7  matrices act

only on spin indices (essentially in the above Eqn. the matrices to the left of the 

direct product act on spin while those to the right act on flavour). Transforming to 

momentum space we obtain the following expression for the free quark propagator

The fermion doubling problem has been circumvented since in this basis the mo­

mentum variable is only defined over the range (—7r /2a, n/2a)  since the effective 

lattice spacing is how 2a. In this case the only pole that occurs for the case m =0 

is the physical one near =  0 and the doubled species which previously appeared 

implicitly as extra poles near the edge of the Brillouin zone are now explicitly de­

scribed by the t algebra acting on the flavour indices.

1.2.3 Numerical Computations for Fermions

Since they anti-commute, we cannot calculate numerically, using statistical meth­

ods, ensemble averages of products of fermion fields sis we can for bose fields. How­

ever since the fermionic contributions to the action in QCD are b ilin e a r  in ip and 

ip, we can use the identities below to perform the Grassmann integrals analytically:

S(p) =

J  Dip Dip e ^ iMi^ )  =  det M  

J  Dip Dip 1P1 ipk =  (M ~ l ) lk det M

where i, j  represent space, spin and colour indices and

J  Dip Dip =  n  d tp a W Y ld ip p iy )
x >a y,P

(1.36)

It follows th a t the partition function in the interacting case is given by

DU  det M{U)  e (1.37)
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Thus we obtain a new expression for the path integral formula for the euclidean 

correlation functions which is a simple statistical mechanical ensemble average with 

an effective action S ef f ( U ) =  S g (U)  — Indet M(U).

$(x)ij)(y))  =  J  D U M ~ l det M  e~Sa (1.38)

The expectation value of the operator O is given by

<0> =  I  JlDU][Di>][D^] 0 ( V ,$ ,  (1.39)

and integrating out the fermionic fields gives

=  J[DU] Q(U) det M e ~ So 
'  '  J[DU) d e t M e - s o 1 '

Many Lattice QCD calculations use the q u en ch ed  ap p ro x im a tio n  which involves 

neglecting vacuum polarization i.e., ignoring the feedback from the quark field to 

the gluon field. This corresponds to setting det M  =  1 so that

f [ P U ] 6 { U ) e - s °
\ u ) q u e n . &_Sg

1.3 The Phases of QCD

The simplest possible phase diagram of QCD is shown in Fig. 1.3. The two ther­

modynamical variables which we control are the physical tem perature, T, and the 

chemical potential, fi. The tem perature controls the average kinetic energy of the 

quarks and gluons whilst the chemical potential controls the net quark number 

density, which is a measure of the excess of quarks over anti-quarks in the system, 

(rid = Tiq— n §). In the confined phase the quark number density is simply related to 

the baryon number density, n s , by tib = n<t/Nc where N c is the number of colour 

degrees of freedom.

It is believed th a t at high tem perature and/or high density nuclear m atter should 

undergo a phase transition into a new state, the quark-gluon plasma. Thus we 

expect QCD to exhibit two distinct phases:

1. H a d ro n  gas p h a se  — a low tem perature, low density phase where quarks 

and gluons are confined to hadrons.

2 . q u a rk -g lu o n  p la s m a  p h ase  — a high tem perature, high density phase where 

the quarks and gluons behave almost like free particles.
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Figure 1.3: The simplest possible QCD phase diagram in the tem perature - chemical 

potential plane. The critical tem perature is Tc and the critical chemical potential 

is labelled m u c.

A phase transition from the hadronic phase to the quark-gluon plasma phase 

can be induced by either adding thermal energy to the system or by squeezing 

nucleons together in a finite volume until a critical baryon density is reached. The 

question of whether there exists a sharp boundary between the above two phases 

is an open one. Lattice QCD simulations can be used to attack this question 

theoretically and relativistic heavy ion collision experiments offer the possibility of 

creating extremely hot and dense m atter in the laboratory. From a theoretical point 

of view we would like to be able to predict both the order of the phase transition and 

the location of the phase boundary. Knowledge of the full equation of state for QCD 

in the tem perature -  chemical potential plane would allow us to make quantitative 

predictions for critical baryon densities and energy densities for the creation of the 

quark-gluon plasma in experiments. Moreover, studies of the phase structure of 

QCD are of fundamental importance in verifying th a t QCD is the correct theory of 

the strong interactions.

Considerable progress has been made in simulating lattice QCD at non-zero 

tem perature and zero chemical potential [12]. We have learned th a t at vanishing 

tem perature hadronic m atter is characterized by two order parameters:

1. C o lo u r C o n fin em en t -  When colour deconfinement occurs the spectrum of 

states goes from the low tem perature hadronic phase where colour is an exact 

bu t confined quantum number to a phase where coloured asymptotic states 

are possible
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2. C h ira l S y m m e try  B reak in g  -  Chiral symmetry breaking in the hadronic 

phase is believed to  be responsible for the vanishing mass of pions (which are 

identified as the Goldstone bosons of the chiral symmetry breaking) and the 

finite mass of baryons in the chiral limit (m —> 0). When chiral symmetry 

restoration occurs, the chiral condensate and the theory’s mass gap vanishes.

At very high tem peratures the asymptotic freedom of QCD implies th a t the 

theory becomes well approximated by free, fundamental quarks over ever-growing 

length and time scales.

Simulations of lattice QCD at fin ite  te m p e r a tu re  indicate th a t the two phase 

transitions, colour deconfinement and chiral symmetry restoration are coincident 

i.e., both occur a t the same physical tem perature Tc [12]. It seems th a t when the 

tem perature is increased to the point where confinement is lost, the thermal fluctu­

ations are sufficiently strong to evaporate the chiral condensate and eliminate the 

theory’s dynamically generated mass gap. This is seen in both quenched simula­

tions, which neglect vacuum polarization effects due to light quarks , and in exact 

simulations which include dynamical fermions.

Statistical QCD, as evaluated on a spacetime lattice is perhaps the only case 

in statistical physics where critical behaviour can be calculated from first princi­

ples dynamics without having to resort to an intermediate effective theory. The 

principal limitation of lattice QCD simulations is computer performance. Consid­

erable progress has been made in finite tem perature QCD simulations. Significant 

advances have resulted from finite size scaling methods and improved actions as 

well as improved computing power. The pure gluon theory with valence quarks 

(quenched theory) is close to being completely solved. The main features consid­

ered here are the deconfinement transition and the properties of the quark-gluon 

plasma. Below the deconfinement tem perature Tc, the constituents of this system 

are colourless gluonium states (i.e. glueballs) but above Tc free coloured gluons 

are permitted. The equation of state for the S U (3) pure gluon theory has been 

reliably extrapolated to the continuum (vanishing lattice spacing) using finite size 

scaling. The equation of state gives the energy density, e, the pressure P and 

the interaction measure (e — 3P)  as functions of T. The phase transition is pre­

dicted to be weakly first order and the latent heat of deconfinement is found to be 

A e /T * = 1.40 ±  0.09 [13]. A critical tem perature (in units of the string tension) cr 

of Tc/y /a  =  0.629 ±  0.003 has been estimated, which corresponds to Tc ~  260 MeV 

for the quarkonium string tension value a ~  420 MeV . It has emerged th a t even at 

tem peratures as high a s T ~  5TC, the thermodynamic variables are 10 — 15% below
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the ideal gluon gas (Stefan-Boltzmann) limit. These high tem perature deviations 

cannot be accounted for by higher order perturbative corrections.

Despite the successes of the finite tem perature studies of the quenched theory, 

the first simulations of full QCD which include the effects of dynamical light quarks 

have revealed significant differences from the predictions of the quenched theory. 

Although the equation of state for the full theory [14] is similar in form to th a t of 

the quenched theory with a large change in entropy density at the phase transition 

the critical tem perature is Tc ~  150 — 200 MeV, which is a t least 30% lower than the 

quenched prediction. As mentioned above both quenched and full theories predict 

th a t at finite tem perature and zero chemical potential the chiral symmetry restora­

tion coincides with deconfinement, and th a t for non-zero bare quark masses used 

in simulations the sharpness of the two transitions is comparable. It remains to 

be confirmed whether in the limit of zero bare quark mass (which gives a massless 

Goldstone pion) the chiral transition is in the same universality Cla&s as the 0(4)' 

spin model [15], as expected. The unquenched simulations are currently restricted 

to small lattices and we await additional computer power to allow a reliable ex­

trapolation to the continuum limit comparable to th a t achieved in the quenched 

theory.

One of the main challenges for lattice QCD is to demonstrate a viable numerical 

approach for studying the phase structure at non-vanishing baryon density. Simu­

lations a t finite baryon density are complicated by the fact th a t the effective action 

resulting from the Grassmann integration over the fermions is complex for // ^  0. 

In fact little progress has been made since a self-consistent lattice formulation for 

the theory was first proposed in 1983 [6], [16]. Early quenched simulations led to 

unphysical results whereby an infinitesimal chemical potential led to chiral symme­

try  restoration in the theory with massless quarks. The expectation was th a t the 

chiral symmetry should be restored a t fi = iZ| a- where m s  is the mass of the lightest 

particle with non-zero baryon number in the mass spectrum (the proton). Thus it 

is believed th a t a correct implementation of dynamical quarks in the simulations 

is essential to probe the true physics. In QCD at non-zero chemical potential it is 

possible th a t colour deconfinement and chiral symmetry restoration are separate. 

In fact many phenomenological nuclear models support this conjecture. If the de­

confinement and chiral symmetry restoration were to be separated at finite density 

then we must consider the possibility of an intermediate phase characterised by de­

confinement but where the chiral symmetry remains broken. Two popular examples 

of such phases include
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• c o n s ti tu e n t q u a rk  p h a s e -  in naive quark models constituent quarks have 

masses close to one third of the nucleon mass and radii of around 0.3 fermi. It 

may be thermodynamically favourable for a constituent quark phase to form 

because the large nucleon-nucleon repulsion of the dense hadronic phase is 

eliminated by dissociation of nucleons into free smaller constituent quarks. 

This scenario is disfavoured by the presence of unconfined colour which would 

presumably be screened. From the ideas of percolation theory we might ex­

pect th a t as we increase the chemical potential thereby squeeze progressively 

more baryons into the system a first percolation threshold is reached when 

an infinite network of touching nucleons first appears so th a t a quark need 

not belong to a particular nucleon and the colour-colour correlation functions 

become long ranged. A second percolation threshold (at a larger fi) is reached 

when the constituent quarks themselves begin to overlap giving rise to chiral

' symmetry re s to ra tio n ....................................................................................................

• d iq u a rk  p h ase  a transition from nucleons to diquarks may occur because the 

diquarks have a relatively strong, attractive short-range spin-spin interaction 

which lowers their energy and holds them together in clusters significantly 

smaller than conventional nucleons. The diquarks are analogous to Cooper 

pairs in the BCS theory of superconductivity. The diquark model is motivated 

by hyperfine splitting patterns in hadronic spectroscopy. Perturbation theory 

and phenomenological arguments suggest a spin-spin interaction energy

H . =  - A ^ b \ < j a\ Bbib)aa\ Bbj (1.42)

where i, j labels the interacting quark, b\ is the quark creation operator, aa 

are the Pauli spin matrices and XB are the S U (3) colour matrices. States of 

two diquarks can have colour 6 or 3 and spin zero or one. The most attractive 

diquark state of a u and d quark is the colour triplet spin zero combination 

(3,0). In the proposed diquark phase where colour deconfinement has occurred 

there is still an energy gap and chiral symmetry breaking.

1.3.1 Approximate Chiral Symmetries of QCD

Spontaneous chiral symmetry breaking is one of the most fascinating features of 

the strong interactions. We know from a rich phenomenology in soft pion physics 

th a t chiral 517(2) ® S U (2) is slightly intrinsically broken and, more importantly, 

spontaneously broken a t zero tem perature. Chiral symmetry is expected to be
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restored both a t high tem peratures and at high nuclear densities ( 5 to 10 times the 

density of ordinary nuclear m atter).

If QCD is to be a viable theory of strong interactions then it is imperative th a t 

it must reproduce the phenomenon of spontaneous chiral symmetry breaking. If it 

fails to do so then the consequences are serious since the spectrum predicted by QCD 

would possess p a r ity  d o u b lin g  and no very light pions. This would contradict the 

experimental evidence. At present there is no rigorous proof th a t QCD does exhibit 

dynamical symmetry breaking with the pattern  observed in nature but lattice Monte 

Carlo techniques give us the means to explore this scenario.

1.4 Spontaneously Broken Global Symmetries and 

Goldstone Bosons

Spontaneous breakdown of a continuous symmetry implies the existence of massless 

spinless particles [17]. Such scalar particles are known as Goldstone bosons. The 

work leading to the association of the pion as the Goldstone boson of spontaneously 

broken SU(2) ® S U (2) chiral symmetry was completed prior to the existence of 

a specific theory of the strong interactions. The study of this phenomenon was 

initiated by Nambu [18, 19]. Further work by Goldstone, Salam and Weinberg 

[20, 21] provided proofs of the postulates. A deciding factor in the rapid acceptance 

of QCD as a theory of the strong interactions in 1973 was the fact th a t it explained 

the S U (2) ® S U (2) symmetry as a direct consequence of the smallness of the up 

and down quark masses.

The importance of broken symmetries in particle physics began in 1957 when the 

Goldberger-Trieman relation was derived on the basis of a dynamical calculation of 

p io n  d ecay  (n  — > fi + v). Nambu’s paper of 1960 pointed out th a t the axial-vector 

current is exactly conserved in the limit of zero pion mass. To take account of the 

fact th a t pions decay the initial assumption of model had to be modified to  partial 

conservation of axial current (PCAC) whereby the divergence of the axial-vector 

current is small (of order m,r2), except where a pion pole gives it a large m atrix 

element. The spontaneous breaking of this approximate symmetry is associated with 

the appearance of an approximately massless pion. The fact th a t the particular 

broken symmetry involved is 51/(2) ® S U (2) was revealed only when processes 

involving more than one pion were modelled successfully by the Adler-Weisberger 

sum rule in 1965.
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1.4.1 Chiral Symmetry in QCD

If the quarks were all massless there would be a very high degree of symmetry as­

sociated with QCD, but even for m  ^  0 symmetries are possible if two or more 

quark masses are equal. Three of the six quarks (c,b,t) are heavy in relation to the 

confinement scale Aq c d  but the (u,d,s) quarks are light enough to have useful sym­

metries. In the chiral limit m q —> 0, the left-handed and right-handed components 

of the quark fields decouple and have separate invariances.

Consider the Dirac equation for a massless particle i^ d ^x p  — 0. We can multiply 

by 75 from the left and use the anti-comutativity of 75 with 7 ^ to obtain another 

solution which obeys = 0. These two solutions are superposed to form

solutions, ipL and t p R  of definite chirality. The right/left-handed fermion has spin 

aligned/anti-aligned relative to the momentum.

............................................... t p t  =  TlV’ ■; ' ^ r  =■ rj?V>.............................................. (i.43>

where the matrices T l  = and T r  = are chirality projection operators. 

This can be translated to the Lagrangian formalism:

L q c d  |m = 0  =  -  +  4>L r D ^ L  +  (1.44)

for massless u and d chiral quarks with i p i  and i p L  chiral projections of the doublet
( u \

ip = \ the appropriate symmetry operations are
\ d )

ipL ->  e(- *e *'-r )x/>L ; ipR  -» e ^ ~ lQR-T^tpR (1-45)

where r l (i =  1,2,3) are the 517(2) Pauli matrices and {6%} are the components of

an arbitrary constant vector. Alternatively these can be expressed as vector and 

axial-vector isospin transformations

^ e H e v -r)^  ; ip -> e {~ i e A -T'r5'>ip (1.46)

where Q y =  and ©a =

This SU (2)l ® SU (2)r  or SJJ(2)y  ® 517(2)a  symmetry in QCD is broken by 

quark mass terms

L m a s s  =  — m u u u  -  m d d d  =  - m u ( u L U R  -I- u r u l )  -  m d ( d L d R  -I- d R d L ) (1-47)

so if m u = m d ^  0 separate left and right handed invariances no longer exist al­

though the vector isospin symmetry remains. In nature the fact th a t we do not 

observe parity doubling in the particle spectrum suggests th a t the axial symmetry
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is a hidden symmetry (dynamically broken). The pion is the (approximate) Gold­

stone boson associated with the symmetry breaking SU(2)l 0  SU(2)r  -4  SU{2)y.  

Vectorial isospin symmetry involving simultaneous 517(2) transformations of ipL 

and 'ipR remain an approximate symmetry of the particle spectrum as evidenced by 

the near equality in the masses of multiplets (tt^ , tt0), (p,n), (K + ,K ° )  etc.

Note th a t these concepts can be extended by including the strange quark to 

give three massless quarks and an approximate S U (3)l  0  517(3)r  global symmetry. 

The dynamical breaking of this symmetry to vector 51/(3) would produce eight 

Goldstone bosons: 7r°, K ± , K °,  K °  plus a neutral particle with the quantum

numbers of the eighth component of the octet.

1.4.2 PCAC Relation

From a theory of chiral symmetry breaking which makes the simple assumption 

th a t the chiral symmetry is broken by the quark mass term only the following form 

of the PCAC relation can be derived (see for example [22])

f n2m ^ 2 =  (0|mt 4- dd\Q) (1-48)

where f n is the pion decay constant measured in 7r+ —> l+ 4- m  and the experimental 

value is f n — 93 MeV. The point to note about this continuum relation is th a t it 

implies th a t the mass of the Goldstone pion is proportional to the square root of 

the bare quark mass. We will make use of this relation in lattice simulations when 

investigating the scaling of the onset of non-zero quark number density with the 

bare quark mass. Note th a t the scaling of the nucleon mass is assumed to have a 

linear dependence on the bare quark mass.

1.4.3 Chiral Symmetry Breaking and Quark Confinement on 

the Lattice

An explicit demonstration of quark-confinement c a n n o t b e  g e n e ra te d  w ith in  

p e r tu r b a t io n  th e o ry  since perturbation theory is only applicable in the weak 

coupling (g -4 0) limit. However in lattice theory the form of the static qq poten­

tial, V(R)  can be studied using the expectation value of the Wilson loop for large 

Euclidean times. The phenomenon of quark-confinement in QCD suggests th a t for 

large separations of the quark-antiquark pair, V (R ) should have a linear R  depen­

dence up to distances where colour-screening due to  vacuum polarization effects 

becomes dominant. In 1974 Wilson provided a lattice proof of confinement in the
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strong coupling limit by studying the behaviour of a static quark and antiquark in a 

background field without dynamical fermions. Unfortunately his derivation was n o t 

specific  to  th e  S U ( N ) gauge g ro u p  and therefore also implied confinement for 

the JJ{ 1) gauge theory of compact QED. Since for physical couplings we know th a t 

QED has a 1/i? Coulomb potential it was deduced that there exists a QED phase 

transition between strong and weak couplings. Clearly Wilson’s proof th a t QCD is 

confining in the strong coupling sector does not automatically prove confinement 

for physical (weak) couplings. It must therefore be demonstrated th a t there is no 

QCD phase transition to a weak coupling regime.

It can be demonstrated using lattice QCD in the large N c and large d limit 

th a t chiral symmetry is spontaneously broken. However such proofs only apply to 

the strong coupling (g »  1 ) limit where the gauge action does not contribute and 

therefore they depend on non-universal features of the lattice QCD action. The 

N f  > 0 limit (quenched approximation) is also' implicitly taken in mbst 'of'these' 

calculations and this approximation has clear limitations since it neglects colour 

dynamical fermions (colour screening) and probably overestimates the tendency for 

chiral condensates to form. To provide a more accurate picture of the underlying 

physics it is necessary to investigate the chiral phase transition in the scaling region 

g2 —>■ 0 and to include dynamical fermions in the simulations. It is instructive to 

note th a t in these strong coupling calculations it is the d iso rd e re d  U —m a tric e s  

and not confinement th a t causes the chiral condensate to be non-zero (indicating 

chiral symmetry breaking). This can be demonstrated explicitly by repeating the 

strong coupling calculation using quarks in the adjoint representation of the gauge 

group and demonstrating th a t a non-zero chiral condensate still develops. In the 

adjoint representation the quarks are screened but n o t confined  since a gluon can 

bind to an adjoint quark and make a colour singlet locally.

Chiral symmetry breaking has also been studied in the context of fo u r-fe rm io n  

in te ra c t io n  m o d e ls  where the chiral symmetry breaking is achieved via a  short 

range interaction. In the Nambu-Jona Lasinio model the interaction is attractive 

and has zero range. If the strength of the four-fermion interaction is above a critical 

value then a chiral condensate forms and the fermions develop a d y n am ica l m ass  

(due to the interaction) non-perturbatively and a triplet of massless pions emerge 

as the Goldstone bosons of the spontaneously broken symmetry operators. Lattice 

studies of the Gross-Neveu model in three dimensions have demonstrated th a t the 

chiral symmetry transition predicted by mean-field theory can be successfully re­

produced using lattice Monte-Carlo techniques. The principal feature of four-fermi
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interaction models is th a t a short range interaction is sufficient for chiral symmetry 

breaking.

The coincidence of the deconfinement and chiral transitions a t finite tem perature 

is well established. However it is not a strict requirement that confinement implies 

chiral symmetry breaking. One argument which does claim th a t confinement im­

plies chiral symmetry breaking is due to Casher [23]. He presents a mechanism 

which breaks chiral symmetry in a confining theory. Casher considers a state which 

consists of an isolated (massless) qq pair on top of the free Dirac vacuum. There 

exists a long  ra n g e  strong attractive force which forbids states where the quark 

and anti-quark are arbitrarily far apart. The following conditions of the confining 

force are assumed:

1. the attraction is spin independent.

■ 2-. the interaction energy is sufficiently strong to produce'a bound qq pair'in  an 

s-wave.

Now consider a semi-classical description of a bound state which is formed by super­

posing paths in which the bound fermion must reverse its direction of motion. Since 

chirality is conserved, while the force cannot flip the spin the bound-state formation 

cannot be achieved because the attractive force cannot tu rn  the fermion back. We 

must therefore reject the first assumption above and conclude th a t a chirally in­

variant spin independent interaction cannot bind an isolated massless fermion pair. 

Thus bound states imply chiral symmetry breaking.

1.4.4 Chiral Symmetry remnants in the Staggered Fermion 

Lattice Action

In the naive continuum limit the staggered fermion action Eqn. 1.32 possesses a 

U(4) ® U (4) chiral symmetry for m =  0 since the first part of the kinetic term  which 

involves <g> 1) is diagonal in flavour and tends to the usual kinetic term  of four 

Dirac fermion flavours while the second part is a lattice artifact involving (75 ® £ ^ 5) 

(which vanishes in the continuum limit). This second part is troublesome since it 

departs from the desired continuum form at 0{a) breaking both Lorentz and flavour 

symmetries. However the staggered fermion action does preserve a non-trivial piece 

of the full axial symmetry (involving the generator 75 in Dirac space) where the 

U(4) ® U (4) continuous chiral symmetry of four massless flavours is broken down to 

U (l)0 <8> U ( l ) e. The symmetry generator is 75 <8> £5 under which the fields transform
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as

(1.49)

where a  is a param eter independent of y. Note th a t near the continuum limit 

(a —»• 0) or equivalently on a sufficiently large lattice we might expect the full 

flavour symmetry to be restored ie. the C/(l) <g> U ( l ) e symmetry of the action would 

be extended to an effective 51/(4) L <g> SU(4)R (or U{4)L <8> U(4)R in the quenched

massless Goldstone pions in the continuum limit.

It follows from Eqn. 1.32 th a t there is a conserved axial current 5 <z(7/x75 ®

t<$)q and the Goldstone pion which transforms as a pseudoscalar flavour non-singlet 

is associated with q{75 <8> t$)q. In the chiral basis

so th a t we have two fermions with positive axial charge and two with negative axial 

charge. The resulting continuum theory contains no anomaly in this current.

1.5 Chemical Potential on the Lattice

Introduction of the lattice regularization of QCD and the Monte Carlo methods 

to simulate it have proved very successful in exploring finite tem perature QCD 

including the prediction of a phase transition at Tc ~  200 — 250 MeV. Although 

there is a straightforward way of introducing finite tem perature in lattice gauge 

theory calculations obtaining nonperturbative results in QCD at finite density is 

non-trivial. The problems stem from the introduction of the chemical potential on 

the lattice. As will be demonstrated below, the appropriate choice of action for 

H 7̂  0 gives rise, in general, to a complex fermion determinant whereas Monte Carlo 

numerical simulations require a real determinant.

In direct analogy to classical statistical mechanics, non-vanishing quark number 

(baryon number) density (nq 7̂  0) can be described by the introduction of a non-zero 

quark chemical potential (/i 7̂  0) in the grand canonical partition function

theory) and this would be evidenced by the appearance of not one but TV/ 2 — 1 =  15

(  1 0 0 0 \

0 1 0  0
h  =

0 0 - 1 0

y 0 0 0 - 1

(1.50)
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where H  is the Hamiltonian and N q is the quark number operator. The temporal 

extent of the lattice corresponds to inverse temperature i.e. ntat ~  where n* is 

the number of lattice sites and at is the lattice spacing in the temporal direction. 

The thermodynamic observables are calculated from the logarithmic derivatives of 

Z.  At finite density we are interested in exploring the zero-temperature axis of 

the phase diagram hence we use symmetric, isotropic lattices where n s =  n* and 

as = at = a. For example the fermion number density is given by

A fundamental requirement which we insist must be satisfied by our QCD ac­

tion with p ^  0 is th a t for free quarks (without the colour gauge interaction) we 

should recover the continuum expressions for the thermodynamical quantities such 

as fermion energy density and number density when we consider the limit a —>■ 0 for 

T  — 0.' The expected' continuum results for a free’ Fermi gas of massless particles' at'

Experience from finite tem perature studies suggests th a t one should also study the 

ideal fermi gas on a lattice at p  ^  0 to get an idea of finite size effects. This also 

serves as a check th a t the chosen form of the lattice action ( part of the regularization 

scheme) gives sensible answers in the continuum limit.

Using the continuum scheme based on the Feynman path-integral formulation 

the partition function is given by

Introducing a spacetime lattice with the anticommuting spinor variables ip defined 

on the sites gives the corresponding lattice partition function

The naive form of the lattice action, S, for p  ^  0, obtained by following the same 

procedure on the lattice as used in the continuum case is:

_  T d \ n Z  _  q~3 d l n Z  
Uq V  dp n s3nt d(ap)

(1.51)

T =  0 are:

(1.52)

(1.53)

n
(1.54)

S =  a3 £  Imaipxipx + p.aipx'i,‘iiix +  1 ^  (V’zTpV’z+A -  I (1.55)

where the spinor field ip is antiperiodic along the imaginary time axis.
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The energy density can be calculated from the lattice partition function using 

the definition
1 d in  Z ,

e = --- — _______ (1.56)
( n / T ) = f i x e dn s3a3 0(1 /T )

After subtracting the vacuum contribution and taking the zero tem perature limit 

we obtain the following lattice expression for the energy density:

£ - =i sm2pj 4- (m a)2 \
-  a {p = 0}

sinp4 -  ipa) +  £ ,=1 sin pj  +  (ma)"
(1.57)

One can check th a t this expression is quadratically divergent [ (p /a )2] in the contin­

uum limit. Thus the action Eqn. 1.55 leads to quadratic divergences even for free 

fermions. In the continuum limit the energy density, e is found to be proportional to 

( ^ ) 2 instead of the correct finite result e ~  p 4 (for massless fermions). The number 

density is also found to be inconsistent with the canonical p 3 form.

The solution to this problem was first proposed by Hasenfratz and Karsch [16]. 

The correct lattice action is obtained by following the euclidean formulation of 

thermodynamics where the chemical potential acts like the fourth component of an 

imaginary, constant vector potential. They proposed an alternative form for the 

lattice action

( -  1 3
S  =  0,3 m a ^ V ’x + 2 ^ 2  ( ^ x 7 j ^ x+j ~  *)

* \  j=i

+  \  (eM> x T 4 ^ + 4  - e _/xa^ a.+474V;x)^ (1-58)

This results in the term (sinp4 — ipa)2 in Eqn. 1.57 being replaced by sin2(p4 — ipa ), 

as in the continuum theory. The correct continuum p A scaling is obtained, although 

due to  fermion doubling the resulting energy density is 16 times the usual finite 

energy density of free fermions at zero temperature.

Note th a t the observed quadratic divergence discussed above is not a  lattice ar­

tifact. It is, in fact, present in the continuum theory itself. In the continuum theory 

there are a number of procedures which can be used to get rid of the divergence 

e.g. disregarding the contributions of the contour integrals at infinity. As we have 

seen, the problem is tackled in lattice theory by making appropriate modifications 

to the action.

Gavai [24] started from a general form for the lattice action and obtained spe­

cific constraints for the class of actions which yield well-behaved thermodynamic 

observables in the continuum limit. He considered the free energy density of a quark 

gas in the absence of gauge interactions (U = 1). Consider the following general
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Euclidean naive fermionic action where F(fxa) and G(/ia) are arbitrary functions of 

the chemical potential which we aim to determine

1  -  f  3
S f  — \  ^  ' l-T/x̂ s.x—A ~

+  ^  [lotix>i- d F (vat) -  T o ^ ^ + o ^ ^ a t) ]  +  2mas8x>i} i/>(x). (1.59)
at

The energy density is calculated from Eqn. 1.56 by performing the contour integra­

tion in Eqn. 1.54 analytically and transferring to momentum space using

** _cPp_
U  (2tt)4

and the corresponding expression for ip(x). Thus we obtain the following expression 

for In Z  in momentum space

,tpz (1.60)

In Z  == ^  In det A p .............................................. (1.61)

where A p is given by

Ap =  i Y ]  7m sin (Pnas) +  ~  * Tocsin (p0at +  id) +  m as 
—\ at(JL= 1

and we have introduced R  and 6 which are defined by 

R  = (FG )1/2 ; tanh<? =  | ^ |  

using the above we obtain for the energy density (as = at = a)

e —

n s3n ta4 E R 2 sin2(poa +  id)

(1.62)

(1.63)

(1.64)
R 2 sin (p0a + id) + £ M=1 sin Pna

The T  = 0 limit is obtained by letting nt —> oo and by subtracting the vacuum 

(fi = 0) contribution. The final expression for the energy density (after performing 

a contour integral) is

1 /2

ea =  — Yn  3 A -
E O * Ij sin PfJLa

R 2 +  ^ P n a_
0

+

F(fia) — G(fia)

1 / 2 '

'  3 1 / 2 -

Y  s i n 2Pi*a
.M = l

v—\3 • 2
E m= i  S ln  P n a

1/2 V~v3 . 2
£ # , = 1 s in  p » a

. 1 +  E j U i  s in 2 ^ a . _ R 2 +  E j U i  s in 2P/xa .
(1.65)

Now consider taking the limit a -> 0, n s —> oo (keeping the volume (ans)3 fixed). 

The first term  in Eqn. 1.65 contributes to the energy density if and only if

F (Pa) — G(Pa) oc fia for small fia ( 1.66)
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However the second and third terms always contribute in the given limit and lead 

to unwanted divergences unless R  = 1. Thus the constraints on the general form 

of the action derived from the requirement that we should recover the appropriate

continuum expression e =  16^4/47t2 for a massless free fermion gas in the non­

interacting case in the a —> 0 limit are:

F(fia)G(fia) = 1 (1-67)

F(fj,a) — G(fia) = 2/ia -I- O (/x2a2) (1.68)

The second condition is equivalent to | ^ 0 .  The naive choice for intro­

ducing the chemical potential (based on the continuum prescription) is equivalent 

to F(fia) = 1 -I- f ia ; G(fjiat) =  1 — fiat and clearly does not satisfy Eqns. 1.68 which

is as we would expect since we have shown that this choice leads to divergences.

The most straightforward choice which does satisfy our two conditions is

F{nat) =

G(fj,at) =  e_M<x (1.69)

This choice is not unique, indeed Bilic and Gavai [25] have implemented an action 

with

F(mo<) = ----- 1 +  ^g , ;.  ; G(jiat) = -(1.70)
(1 -M 2a2) 1/2 ( l - j » 2a2) 1/2

which gives results consistent with Eqn. 1.69.

As a consequence of the first of Eqns. 1.68 we see th a t for (fi ^  0) forward prop­

agation of quarks is enhanced by the factor F(fia) while the forward propagation 

of anti-quarks is suppressed by the factor 1 /F(fia).

Let us now consider reintroducing the SU(N) gauge interactions in Eqn. 1.59. 

In this case we have S f  = M Xx where

M Xx — 1 ' y  ] $ x , x —p. ^X.X+A
I M=1

+  ^  ^ o U X ,* - i> n n a t )  ~  + 2 ™ ..^ ,* }  (1.71)

For the interacting theory with S U ( N ) ,N  > 3, n o n e  of the actions which satisfy 

Eqns. 1.68 lead to a real positive-definite fermion determinant (det M ).(Note that 

for S U (2) , det M  is real because the condition a \U <7i =  W  holds). The fact that 

det M  is non-Hermitian for /i 7̂  0 makes numerical simulation of QCD at finite 

density extremely difficult. The standard hybrid Monte Carlo algorithm requires a 

positive definite fermion determinant because e~s ‘ff  = e - ( s '<3[c /] - ln d e t  Mlu]) serves
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as a transition probability in the updating process. In fact, det M  can be made 

real and positive definite for F(pa) complex by insisting th a t \F(pa)\ = 1 for all pa  

bu t this leads to a complex chemical potential. One therefore needs an innovative 

m ethod in order to perform numerical simulations a t p  ^  0 .

Simulations using the S U (2) colour group a t finite baryon density where the 

action is still real have been performed in the strong coupling limit (g2 =  oo) and 

compared with analytical predictions obtained from a 1/d  expansion combined with 

a mean field analysis. In the S U (2) theory (where the fundamental representation 

is pseudoreal) the baryons are bosons in the same multiplet as the Goldstone boson 

and a t p  =  0 the theory has a U (27V) chiral symmetry which is expected to break 

to S p (N ). The analytic calculations [26] predicted a second-order chiral transition 

for S U (2) (first-order transition for S U (3)) in the strong coupling, zero tem pera­

ture limit. This prediction did not agree with the Monte-Carlo data  but a more 

refined' 1 /d ,  mean field analysis [27] which handled the me'soriic and b'aryoriic sector' 

of the effective action more carefully and took into account the spacetime asym­

metry introduced by a non-vanishing chemical potential gave results which were 

consistent with the Monte-Carlo data. In fact for the S U (2) theory at g2 = oo, 

T  =  0, /x /  0 there is no ch ira l sy m m e try  re s to r in g  tra n s it io n . Although 

the chiral condensate (ifr'ip) actually vanishes for all /x ^  0 in the limit m  -» 0 , the 

chiral symmetry remains unbroken due to the presence of non-vanishing b a ry o n ic  

co n d e n sa te s . Considering the Ua { 1) <8> Uy{ 1) symmetry for staggered fermions 

note th a t the baryonic condensate breaks Ua(1) <S> Uy{ 1) completely whereas (tptfi) 

breaks only U a ( 1)- The spontaneous breakdown of the Uy{ 1) symmetry is believed 

to be a direct consequence of the introduction of a chemical potential.

The complex Langevin algorithm is, in principle, capable of dealing with a com­

plex probability measure such as th a t appearing in the SU(3) theory but its con­

vergence properties are poor and attem pts to implement this algorithm have been 

unsuccessful to date.
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Chapter 2

Lattice QCD at Non-Zero  

Quark D ensity

As outlined in Chapter 1 the fundamental difficulty in simulating QCD a t finite 

density and investigating the transition quantitatively is that the effective action 

resulting from the Grassmann integration over the fermions is complex due to the 

introduction of the chemical potential in the Dirac matrix.

The complex nature of the QCD finite density action [6 , 16] prohibits the use 

of naive probabilistic methods in evaluating the functional integral. Thus the stan­

dard simulation algorithms [28, 29, 30] for lattice QCD with dynamical fermions 

are inappropriate in this context. Exact studies are undesirable because they are 

extremely computationally intensive. Early simulations avoided the problem of the 

complex action by looking at the theory in the quenched approximation where the 

determinant is set to a constant value hence the effects of dynamical fermions are 

neglected. This approximation has problems in the chiral limit because it ignores 

the axial anomaly, but it is satisfactory for many practical calculations.

2.1 Overview of the Unphysical Results of Quenched 

Theory Simulations

Serious problems were first reported in quenched simulations of finite density QCD 

in 1986 [31] and the physical and mathematical reasons for this failure have been 

the focus of considerable debate ever since [32, 33].

In these early simulations the behaviour of the chiral condensate was studied at
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fixed quark mass for various different values of the chemical potential, fi. At zero 

tem perature we expect the deconfinement transition to occur at fi ~  ^ , where /i is 

the chemical potential and m p is the proton mass [6]. This value corresponds to the 

lowest lying state with non-zero baryon number. The chiral condensate should serve 

as an order param eter for the transition. The behaviour was initially as expected 

viz. the chiral condensate remained constant up until a certain value of p  and then 

tended to zero as the chemical potential was increased.

We would expect th a t physical observables are p  independent up to some p c 

which is related to the threshold for baryon production. The problem encountered 

was th a t as the bare quark mass was decreased the p  at which the chiral condensate 

began to change also decreased towards zero.

In fact, the onset of chiral symmetry restoration appeared to occur a t a chemical 

potential of half the pion mass, which would extrapolate to zero in the chiral limit 

(fn -=->■ 0). A study'of the distribution Of the eigenvalues'of the lattice Dirac operator' 

confirmed th a t the lowest mass state containing a net number of fermions (i.e. a 

quark or a baryon but not a meson which does not see p) became massless as the 

bare quark mass was reduced to zero. The interpretation was that there existed 

either baryonic states which became massless in the chiral limit and had an energy 

equal to § m n or stable quark m atter with low mass per baryon.

The result th a t p c is proportional to the pion mass is clearly unphysical. We 

expect p c ~  ^  because the proton is the lightest state with non-zero baryon 

number. From this we are drawn to two possible conclusions:

• The quenched approximation is at fault implying it is strictly necessary to 

consider the complex action of full QCD at finite chemical potential.

• There could be intrinsic problems in the lattice formulation of fermions (pos­

sibly associated with fermion doubling) and chemical potential which would 

survive an unquenched treatm ent.

Further studies [34] of the quenched theory on larger lattices found similar be­

haviour. However, a recent study [32, 33] of the quenched theory which measured 

the condensate and the pion and nucleon masses, did find that, at intermediate and 

strong coupling, the theory is sensitive to the baryon mass but th a t it is pathological 

for p > ^ .

From an analytical study of the eigenvalues of the fermionic propagator matrix 

Gibbs [35] provided an argument explaining why, in the quenched theory, ('ijnp) is 

controlled by the pion mass. He showed th a t the eigenvalue spectrum calculated
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on isolated configurations should contain poles in correspondence to the physical 

particle masses. In particular, the smallest mass state can be associated with the 

lowest eigenvalues. This state is obtained by squaring the propagator matrix, and 

defines the pion mass in QCD. The lowest eigenvalue of the propagator m atrix 

appears to  trigger the fall in ('ip'ip) signalling the onset of the chiral transition. We 

shall return to this argument in Chapter 3.

It has also been suggested by several authors th a t the coincidence of the onset 

of the chiral symmetry restoration with one half of the pion mass might only have 

been a numerical accident, the correct relationship being fi0nset =  ^  — A where A 

is the contribution of the nuclear binding energy. If this scenario were true then the 

problems with finite density simulations would not be too serious. This conjecture 

has been tested by Kogut et. al. [33] but unfortunately their work confirmed the 

onset a t fi =

2.1.1 Random Matrix Models

In relation to the claim th a t the quenched approximation is responsible for the 

unphysical results for the chiral transition in QCD at finite density it was first sug­

gested by Gocksch [36] th a t the quenched approximation is obtained as the limit of 

the number of flavours going to zero with an equal number of quarks and conjugate 

quarks i.e.., the limit of a partition function in which only the absolute value of 

the determ inant enters. Recent work by Stephanov [37] within the framework of 

a random m atrix model which incorporated the chiral and flavour structure of the 

Dirac operator has made this suggestion more explicit. He showed analytically th a t 

the quenched Dirac spectrum is obtained in the limit as both the number of quarks 

and conjugate quarks tend to zero. Since QCD does not have such conjugate quarks 

it seems th a t simulations of the quenched theory are inappropriate to QCD in this 

context. According to this scenario, in the quenched model the ’’early” onset for the 

number density would also correspond to the restoration of chiral symmetry because 

of the simultaneous occurrence of quarks and conjugate quarks in the system. It is 

predicted th a t the inclusion of dynamical fermions will result in a rearrangement 

of the eigenvalues such th a t the chiral symmetry will be restored a t fic ~  as 

expected.
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2.2 Lattice QCD at Non-Zero Chemical Potential 

with Dynam ical Fermions

A method which circumvents the difficulty of investigating the finite density tran­

sition for dynamical fermions was proposed by Barbour and collaborators [1]. The 

m ethod draws upon the classic work of Yang and Lee who showed th a t the dis­

tribution of the zeros of a partition function determines the equation of state for 

a many-body system. Our study of lattice QCD at finite density is based on ex­

panding the Grand Canonical Partition Function (GCPF) as a polynomial in the 

fugacity variable (e^/T).

2.2.1 Formulation of GCPF for a Statistical System

We shall consider the construction of the Grand Canonical Partition Function (Z ) 

from its constituent Canonical Partition Functions (Z n). The GCPF is formulated 

as follows
Z(fj) = T r  (e~P(n-n-N)v ^ ^

where V  is a projection onto gauge invariant states, H is the Hamiltonian and N is 

the fermion number given by

N  = J  d3x  (x)ip(x) (2 .2)

We re-express this by making use of use the following relation involving the Delta 

function
OO

eP»N =  ePlinS ( N - n ) (2.3)
71— — OO

so that
OO

Z { n ) =  e ^ n T r ( e - pHS(N  - n ) V )  (2.4)
71 =  — OO

We define a canonical partition function for an n  fermion system as follows

Zn =  T r  (e -pH S(N  -  n )V )  (2.5)

so th a t the GCPF is
OO

Z ( p ) =  (2.6)
7 1=  — OO

for a lattice of size n s3 by nt and for N c colours the maximum possible number of

fermions in the system is N max = N cn s3 so that

N max

z i p )  = y .  (2-7)
7 1=  N m a x
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The GCPF is represented on the lattice as a functional integration

Z  = J[dU][dj][dil>] exp (SG(U) -  $M (U ,  //)</>) (2.8)

Where So  is the standard Wilson gauge action. The fermion fields are integrated 

out using the standard Gaussian integration technique to give

Z  = J[dU] det (M (n, U)) e~SG (2.9)

The fermion determinant, det M ,  can be expressed as a finite sum of gauge invariant 

loops of link fields, some of which wind around the lattice many times. We collect 

together all terms which contain the same number of loops, I , in the tem poral 

direction
^ma* Imam

det M  = co +  ci e*Mant +  c - t e ~ ^ an* (2.10)
i=i i=i

where an* is the temporal extent of the lattice and for an SU(N) gauge theory 

I m a x  =  JVna3 where n 8 is the spatial dimension of the lattice. Note th a t cjT =  c-i  

because the loops which pick up a factor eI/xant are the complex conjugates of the 

loops which pick up a factor e~l(iant. Only those quark loops which wind completely 

around the lattice will pick up factors of en‘aM and e_n‘aM and these correspond to  

particles which propagate infinitely in time i.e. real particles. The quarks which 

double back in time forming closed loops which do not wind around the lattice pick 

up e±ntfi factors which cancel and these correspond to quark/antiquark creation 

and annihilation.

The Cn's are directly related to the canonical partition functions so that

Z n cx J [d U ]cn e~SG (2 .11)

The coefficient cimax = 1 due to  a gauge integral property on a product of gauge 

links. This coefficient corresponds to the Polyakov loop which is an order param eter 

for deconfinement in the case of the quenched theory.

2.3 Expansion of the Grand Canonical Partition  

Function

2.3.1 The Glasgow M ethod

The problem caused by the non-Hermitian nature of the fermion matrix a t p  0 can 

be circumvented by a method which involves the expansion of the grand-canonical 

partition function (GCPF) in powers of the fugacity variable .
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Consider the expression for the GCPF of lattice QCD 

Z ~  J[dU]  det (M {U ,n ,m )) e~Sa{-u)

The GCPF can be expressed as an ensemble average of det M  at n = 0:

J[d u \ d e t M j h ^ l )  det M (V = °>™) e~Ss[U]

(2 .12)

J  [dU] det M (n  = 0 ,m ) e~sa\P\ 
det

(2.13)
det M(fi = 0 , m ) / lfi=o

Note th a t it is generating the ensemble at ^  =  0 which allows us to avoid the 

problem of the complex action in the Hybrid Monte Carlo algorithm.

W ith the chemical potential included, the lattice Dirac operator with Kogut- 

Susskind fermions [6 , 16] is:

^  ' , UyT)i,5x->ru,y , U},(y)r)y(y)8x—i>tl 
\.i/—1,2,3

.(2.14),

+  \ \ ^ aUt {x)r]t (x)8x+^ y - e  ^aU}{y)r]t{y)5x_ iy  (2.15)

This can be conveniently expressed in terms of matrices G and V  where G contains 

all the spacelike links while V  contains the forward and V 1 the backward timelike 

links.

2iM x>y = GXty +  Vx,y&̂  4- ^ T  (2.16)

Note th a t G=G* and VV* = 1.

We can now define the propagator matrix in term s of these matrices [35]

P  = (2.17)
—G — 2 im l  1 

- 1  0

which is a m atrix of dimension 6n3snt,  for a n 3s x n t lattice with S U (3) gauge fields. 

Note th a t V  is an  overall fa c to r o f P.

The determ inants of P and M are simply related:

d e t(P  — e M) =
—G V -  2im V  -  e~v V

- V  - l e -M

=  det {GVe-*  +  2im V e~ ,i + e“ 2/i +  V 2)

= det ( (Ge-M +  2ime~'i +  V h ~ 2li + V) V)  

= e~3̂ nt det (G +  2im  + +  V e")

= e~3̂ nt det M (2.18)

where we have used d e tF  =  1 and V ^V  = V’V"1’ =  1.
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Since we have expressed det M  in terms of the determinant of a m atrix which is 

diagonal in e-/i we can expand det M  as a polynomial in

\2iM\ = e3̂ n t \P -  (2.19)
6n® rit

= e3̂ n»n* ^  u ne - n» (2 .20)
n=0

Thus the determinant of the lattice Dirac operator is given by the characteristic 

polynomial of P.

Provided the (uin) are determined to sufficient accuracy, we can measure the 

averaged characteristic polynomial over the ensemble generated at n  = 0 , and use 

this to  provide an analytic continuation [1] for the GCPF to any non-zero fi. In

order to obtain the fugacity expansion we must determine the eigenvalues of P.

The inverse of the propagator m atrix is

so

\2iM\ = _  p - i |  (2.22)
6 n^nt

= e" 3̂ 1 wme+n/X (2.23)
,3 n,t

771=0

we can use this to identify a symmetry in the expansion coefficients:

\ p - e ~ f i \ = e~Qiir̂ nt |eM -  P ~ l | (2.24)

therefore

Un =  ^(6nPnt -n) (2.25)

i.e. u)n gives the coefficient for a lattice with n fermions missing. The are closely 

related to the can o n ica l p a r t i t io n  fu n c tio n s , Z n , for fixed particle number, n, 

on the lattice:

=  ( d S  =  0 ) )  ( 2 ' 2 6 )
where the normalisation factor arises from Eqn. 2.13

Since (P -1 )  ̂ is related to P by a unitary transform it can be shown th a t the

eigenvalues of P  have the symmetry: if A is an eigenvalue then so is 1/A*.

The GCPF can now be expressed as

3 npnt
Z = £  (2-27)

—3 n p n t
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2.3.2 Eigenvalues of the Propagator Matrix and Z(nt) Sym­

metry

In addition, since the m atrix V  is an overall factor of P , we can alter the timelike 

links on a single timeslice by e2™. We perform a unitary transform to spread this 

over all timelike links so th a t

V  — > V  x element of Z (n t ) (2.28)

This is then transferred to the eigenvalues, A

|P -A < | =  0 (2.29)

Therefore the eigenvalues themselves have a Z{rtt) symmetry. This Z (n t ) symme­

try  holds configuration by configuration. As a consequence of this symmetry, the 

characteristic polynomial for P  is a polynomial in eMnt with (6n zs +  1) complex 

coefficients. Thus we obtain ?tn expapsiqn for .the GCPF in the fugacity, . .
3n® 3n®

z  = Y ,  <  WM >  en/mt =  J 2  e - ^ ~ n^ f T (2.30)
n = —3nf n=—3n̂

Since the probability for a given configuration of gauge fields to appear in our 

ensemble is equal to th a t of its complex conjugate the imaginary parts of the coeffi­

cients should average to zero. We im pose the complex conjugation symmetry. As 

a consequence, the characteristic polynomial from a configuration (averaged with 

its complex conjugate) is invariant under fi —>• —/i.

The m ajor computational task in performing the GCPF fugacity expansion is 

the determination of all of the eigenvalues of P , a non-Hermitian, sparse m atrix of 

dimension 6n z8nt. We can exploit the Z (n t) symmetry of the eigenvalues because it 

is more efficient to diagonalize P nt than to diagonalize P . This introduces a Z(nt)  

degeneracy of the eigenvalues and effectively reduces the dimension of the m atrix

to 6rig. Note th a t although P  is a sparse m atrix P n* will be dense.

As described in detail in Chapter 2 we have investigated two methods of finding 

all the eigenvalues of P n*. The Lanczos technique with reorthogonalisation was 

used on 64 lattices but on 84 lattices the procedure involving balancing, reduction 

to  upper Hessenberg form and then LU  decomposition was more efficient.

2.3.3 Z(3) Tunnelling - Evidence for Simulating in the Con­

fined Sector

The order param eter for deconfinement in the pure gauge theory is the expectation 

value of the Polyakov loop, P (x), which describes the interaction of the gluons with
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a static quark charge

P(x) = T r

The expectation value of P  gives the free energy, Fq, associated with a single static 

quark

|(P(z)>l =  e - W  = ^  (2.32)

where Z q is the canonical partition function for a  system with a single antiquark 

while Z q is the canonical partition function for a quarkless system. P (x)  =  0 => 

Fq = oo relative to the vacuum indicating th a t quarks are confined. However 

P(x)  7̂  0 implies th a t the free energy of an isolated quark is finite therefore the 

system must be deconfined.

In the pure S U (N c) gauge theory we have N c equivalent vacua related by Z (N C) 

rotations in colour space. The Z (N C) centre symmetry consists of global gauge 

transformations which commute'with the gauge group although they  alter the quark 

fields. Note th a t Z (N C) is the only diagonal subgroup of S U (N C) which has unit 

determinant.

In simulations which include dynamical fermions, the Polyakov loop cannot be 

used as an order param eter for deconfinement. However in our dynamical simula­

tions we can use Z (3) tunnelling as an indication of whether we are in the confined 

sector. Tunnelling between the different Z {3) vacua is much more probable in the 

confined sector than in the deconfined sector. To ensure th a t we are in the confined 

sector at p, = 0 for the chosen lattice parameters we look for evidence of Z {3) tun­

nelling. The the pure-gauge action as well as the integration measure are invariant 

under the Z{3) transformation. This transformation should eliminate the triality 

non-zero coefficients. Just as for the Z (n t) symmetry, the Z (3) symmetry is trans­

ferred to the eigenvalues of P nt via a unitary transform. This is equivalent to the 

transformation:

V  -> V  < r£ - where z5 =  3-  for j  =  0 ,1 ,2 . (2.33)
o

Thus the G CPF can be written as:

E ?=o J[dU][dU'] detM (/, +

~  3 J[dU][dW] detM (p  -  0) e~s ^ u^ \

Note th a t the Z (3) symmetry does not hold configuration by configuration, but 

is a property of the ensemble average. We do not impose this symmetry - but we

n*

n *(*.*>
t~i

(2.31)
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look for it. Taking account of the Z (3) symmetry the GCPF can be expressed as:

Note th a t the sum, S m is dominated by the first few (largest) coefficients of the 

expansion. In a confined system we expect

• S m = 0 for m  =  1,2  which is a weak condition on the tr ia l i ty  one and 

t r ia l i ty  tw o coefficients.

The t r ia l i ty  zero  coefficients are associated with the canonical partition func-

and in a colour confined system we expect only canonical partition functions corre­

sponding to multiples of three quarks to contribute to the GCPF i.e. in the limit 

of infinite statistics Z(3) tunnelling must be completely achieved. In our simula­

tions we expect to see the magnitude of the triality one and triality two coefficients 

gradually decreasing as the statistics increase.

On any given single configuration the u n are complex but, since the conjugate 

configuration can occur with equal probability, their average is real. Their sign does 

fluctuate significantly between configurations. If the physical interpretation of the 

cjn’s as a measure of the relative probability of the associated canonical partition 

functions is valid then their average m u s t b e  re a l a n d  p o s titiv e .

2.4 Calculation of Observables

2.4.1 Definitions

Fermion number density is defined by:

(2.35)
n = —3 n s 3 ,3

Since our ensemble is generated at p = 0

(2.36)

and we monitor

S m =  £ > „ )  for mod(n, 3) =  m ; m =  0 , 1,2 (2.37)
n

• Sm =  1 for m  = 0 which is a strong condition on the tr ia l i ty  zero  coefficients

tions corresponding to m u ltip le s  o f  th re e  qu ark s . In the limit of infinite statistics

(nd (Ah m a )) =
T  d \n (Z (f i ,m ))

(is —  o>t —  a
(2.38)
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To define the fermion energy density we must subtract the energy density a t T  = 0 

and n  = 0 :

T  d \n (Z (fi ,m )){ed (fi, ma))  = n/i — limna—>00

+  lim
n B—> oo,nt= ns

n»3 9(1 / T)

(2.39)
CL g — a  f  — CL

n , 3 9(1/T)

The chiral order parameter, (xx)i indicates whether or not chiral symmetry is 

broken: lirnm_^0 (xx) ^  0 in the chirally broken (probably also colour confined) 

phase whereas limm_>o (xx) =  0 when chiral symmetry is restored (quark-gluon 

plasm a phase).

d
(XX) =  -  lim d (mat )

\n Z
n| —>00 n “Tlt

(xx) is related to the usual chiral order parameter, the chiral condensate, via 

...................................................................................................d

(2.40)

In Z
d(m)

2.4.2 Observables from Stochastic Estimators

(2.41)

The fermion number density, energy density and the chiral condensate can be eval­

uated using stochastic estimators. This procedure avoids the full inversion of the 

fermion m atrix, M,  which would be too computationally intensive. Instead the 

traces appearing in the expressions for expectation values of the observables are 

approximated by unbiased estimators. These are obtained by introducing N v vec­

tors of complex Gaussian random numbers with (/u =  1,2, . . . ,N V) of dimension 

equal to the dimension of M.  The components of r j^  are distributed according to 

e - (T,(*0’T,lM)) =  so th a t the diagonal matrix element with respect to

the random vector is an unbiased estim ator for the trace:-

1 Nr>
T r { M - ‘} =  lim _  W q M j t f - y / O ]  (2.42)

jV fj ) OO \ /
1

We make use of the mathem atical relation det M = eTr lnM and consider differen­

tiating with respect to arbitrary variable x:

-j^  det M  = det M Tr  ( m -1  (2.43)

We use this to obtain expressions for the observables in terms of the matrices V

and y l  in the propagator m atrix

(nd) =  lim ■ 1 -- ( T r M - 1 (otV e^0* + atV t e“ '101)) (2.44)
na-^oo n sAntasi at
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<£„> =  lim — (IT r M - 1 (Ve"”1 - y * e - " “' ) ) - ^  +  ^ ( ^ > lM = o  (2.45) n,—*oo n s ntdt 4a4 4 ' '

<«> =  - A  ( ( T r M - 1)) (2.46)
n s

2.4.3 Observables from GCPF Expansion Coefficients

Using the Glasgow method, we can readily obtain an independent estim ate of the 

fermion number and energy densities directly from the coefficients of the GCPF 

expansion coefficients as follows:

Fermion number density:

<n„M> =  J ^ ~ r  ; (2.47)

Fermion energy density:

............................................................................................................ , c . e -r {en - r m ) / T .............................................................

<«-(/*)> =  _ (, _nu)/T (2.48)
E n = —3n.3 e ( " W,/

2.4.4 Alternative M ethods

The Glasgow method involves an ensemble generated at [jl = 0. There is a possi­

bility th a t this could introduce systematic errors due to insufficient overlap when 

measuring observables a t fj, significantly greater than the onset of non-zero number 

density although simulations on a 24 lattice indicate that as the statistics increase 

the results improve significantly. W ith the availability computing power of the or­

der of Tera flops limited statistics should not pose a problem. It is im portant to

be aware of the fact th a t although generating the ensemble at n = 0 is an exact

method, accuracy could be lost if we have insufficient overlap with the true phys­

ical ensemble a t fi ^  0. The Glasgow method is currently the most promising in 

the context the shortcomings of a number of alternative methods which have been 

implemented previously.

One alternative m ethod involves generating the ensemble either with respect 

to the modulus of the real part of detM(^u) or with respect to its absolute value 

[38, 39].

det M  =  ei4>M |det M\ (2.49)

and to include the phase in the measurement. Consider for example the expectation 

value of the pure gluonic quantity 0\U\

(0[U]) =  (2.50)
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Although this procedure is in principle correct, in practice, simulations a t a fixed 

quark mass using these methods are well behaved only at low and high chemical 

potentials and not in the critical region: ^  < fi < In this critical region the 

quantity el<t>M has very strong fluctuations in phase generated by e~s *ff  so th a t it 

becomes very small and is not measurable. This behaviour can be understood by 

considering th a t most of the time the updating process produces incorrect config­

urations with inaccurate values of the observables and these contributions must be 

cancelled by a strongly fluctuating phase.

Gocksh [36, 40] used a s p e c tra l  d e n s ity  m e th o d  by binning the phase 0 and 

measuring p(0). The spectral density method was applied a t infinite coupling and 

is discussed in detail in Chapter 3. On a 24 lattice, his results for fxc are in broad 

agreement with mean-field theory. He studied the form of the density of states 

as a function of energy for different values of chemical potential and concluded 

th a t outside the critical region thedensity  of states'is sharply peeked a t (j>(U) = O' 

therefore the phase is not im portant. However for p  ~  /zc the density of states is flat 

and there is an contribution from 4>{U) at a ll p o in ts  in the integration region hence 

the phase of the determinant must be accounted for. This observation explains the 

failure, in the critical /z region, of the methods involving updating with respect to 

the modulus of the determinant.

2.5 The Static Quark M odel

Blum, Hetrick and Toussaint [41] have recently studied numerical simulations of 

lattice QCD in the limit th a t the quark mass and chemical potential are simulta­

neously made large. In th a t limit, the quark mass and chemical potential appear 

only in the ratio (2m a /e M“)nt and the propagator matrix becomes

(  - 2i m V  v \P = • (2.51)v ° J
The corresponding fermion determinant is complex but trivial to evaluate which 

allows generation of very high statistics in their measurements and determine (e*^) 

to sufficient accuracy.

For quenched QCD the high tem perature transition is first order and they ex­

pected this behaviour to extend into the interior of the T  — ji phase diagram. How­

ever their simulations showed th a t this transition becomes a sm o o th  crossover 

at very small density (possibly for any nonzero density) and that, at low enough 

tem perature, chiral symmetry remains broken at all densities.
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Of course, as the authors point out,it is not at all clear th a t the static approxi­

m ation has anything to do with real QCD. However, it is relevant th a t unexpected 

results follow in this simple model.

2.6 The Reweighting Procedure

The Glasgow algorithm is a particular example of a reweighting procedure. Such 

procedures are essentially based on the development of a Taylor series expansion 

of the G CPF around some update chemical potential, po, at which the GCPF is 

normalised to be 1. In the general case the GCPF is defined as:

The expansion coefficients, wn, of the GCPF are measured from an ensemble of con-

and are determined from the eigenvalues of the propagator matrix. A number of 

alternative W (p  = poYs have been tried in finite density simulations:

1. W  = | det(M (/io))| for some po > 0 .

2. W  — |rea£(det(M(/uo)))| for some po > 0.

3. W  = (det(M 0M iM 2) ) 1/3 for M k =  M (p  =

4. W  = |det(M 0) +  det(M i) +  det(M 2)| for M k =  M (p  = p 0 + ̂ ) .

The last two choices of W  are constructed in an attem pt to minimise the fluctuations 

in the triality non-zero coefficients so th a t the Zn’s are of comparable magnitude for 

n  a multiple of three -  these canonical partition functions are most relevant to the 

physical system. The last choice of update does serve to minimise the fluctuations 

but is difficult to implement.

The Glasgow algorithm uses W  = det (M(po  = 0 )) . This means th a t we have a 

reweighting factor R p  = det(M(^f=o)) • The reweighting procedure is most effective 

when R p  — 1. This criterion is satisfied for p, £  0.5 and for large n, although R p  

may be considerably less than 1, this is offset by the fact th a t the fluctuations are 

small for ji large. In the critical region (intermediate values of p) the fluctuations in 

sign of the coefficients are large and R f  «  1. This means th a t measurements here 

are dominated by a few isolated configurations i.e. those for which det(M (/io =

f [ d U ] [ d U ' ]  W &  =

J  [dU][dW]W{p = p 0)e~s^ u ^  
det M (/i, m) \

(2.52)

figurations generated with respect to the Boltzmann weight W (p  = po)e sa[u>u ]̂
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0)) is small. This implies that exact simulations of QCD at finite density using 

reweighting procedures may well require very high statistics to produce realistic 

estimates of observables in the critical region. Note also th a t as the dimensions 

of the lattice are increased the efficiency of the reweighting procedure diminishes. 

The effects of reweighting will inevitably affect the measurements of the observables 

using the stochastic estimators.
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Chapter 3

Eigenvalues of the  

Propagator M atrix and 

Lee-Yang Zeros

The m ajor computational task in performing the GCPF fugacity expansion is to 

find the eigenvalues of P , a non-Hermitian, sparse matrix of size Due to

the Z(nt)  symmetry, it is more efficient to diagonalize P Ut. This introduces a 

Z(nt)  degeneracy and effectively reduces the dimension of the m atrix to 6n^ but 

this smaller m atrix is dense. We have investigated two methods of finding all the 

eigenvalues of P nt: firstly via Lanczos with reorthogonalisation and secondly via 

LR decomposition.

3.1 Non-H erm itian Lanczos Algorithm

The Lanczos method [42] is an eigenvalue technique which is applicable to large, 

sparse matrices. The method involves tridiagonalization of the given matrix, A. In 

general the Lanczos method is most useful when only a few of A’s largest or smallest 

eigenvalues are required since information about A ’s extremal eigenvalues can often 

be obtained long before the tridiagonalization is complete. For our application 

we require all eigenvalues of the m atrix P Ut since they are used to obtain the 

coefficients of the GCPF and we need every coefficient. The main advantage of the 

Lanczos algorithm for finite density QCD simulations is th a t it minimises the storage 

requirements. Although P nt has many zero elements it is not sufficiently sparse to

4 5



make application of sparse m atrix algorithms advantageous. Furthermore for our 

purposes the m atrix sparsity decreases as the temporal extent of the lattice (n t ) is 

increased. S tandard eigenvalue routines require storage of the full 6n3s x 6n zs matrix. 

The Lanczos method does not require storage of the full matrix. Rather it requires 

storage space for only about six Lanczos vectors. A matrix-vector multiplication 

subroutine is also required. Only the last two Lanczos vectors need be retained after 

each iteration and the rest can either be discarded or w ritten to disk for subsequent 

use if calculation of the eigenvectors is required. The principal shortcoming of 

the Lanczos algorithm is failure induced by roundoff errors. Let A  be the matrix 

whose eigenvalues are required and T  be the tridiagonal matrix. We require a set 

of Lanczos vectors, X  =  [21 , 22 , The elements of the tridiagonal m atrix are

obtained directly by applying a similarity transformation

T  = X ~ ' A X

where

T  =

Oil Pi 0 0 0 0

Pi (*2 P2 0 0 0

0 P2 Ps 0 0

0 0 0

0 0 0 Pn-1
0 0 0 0 Pn-1 ocn

(3.1)

(3.2)

3.1.1 Orthogonalisation Vectors

X ~ ' A X  = T  

=4- A X  = X T (3.3)

now

{A X )1 = { X T )1 

X 1A 1 = T t X t 

{ X ^ X ^ ^ X 1)-1 = { X ^ ' ^ X ^ X 1)-1

A 1 (A' t )_1 =  (X t )“ 1T t (3.4)

In the special case where the starting m atrix A  is Hermitian {A = A 1) and T  = T* 

then it follows th a t

A{X*) 1 =  (AT*) lT  

=>- ( X 1)-1 = X  from Eqn. 3.3

- 1 ,

(3.5)
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hence x \  Xj = 6ij so th a t when A  is Hermitian we require only a single set of 

orthogonalisation vectors. However for our application, when y, ^  0 P nt ~  A  

is non-Hermitian and as a consequence (X t) 1 ^  X  so we need a second set of 

orthogonalisation vectors Y  = [2/1, 7/2, ,yn] such th a t Y  = p f t )  1 which satisfy

y \x j  = Sij (3.6)

therefore we now have two relations:

A X  = X T  (3.7)

A *Y  = Y T * (3.8)

Note th a t since A  7̂  A* the a^s and /3js can be complex.

The Lanczos equations which are used recursively to calculate a*, fli and Xi and 

yi are obtained by equating columns in A X  =  X T  and A ^ Y  = Y T * giving

A xj = P j - iX j - i  + oijXj 4- fijXj+i (3.9)

for j  = 1, 2 ,..., (n — 1) where fioqo =  0 and (3n = 0.

A*yj = 1 +  a*yj +  (3*yj+1 (3.10)

Equations 3.6, 3.9 and 3.10 are sufficient to determine all Lanczos vectors and the

elements of the tridiagonal form.

The a ’s come from

a i = y \ A x x (3.11)

The /3Js are obtained from

j  j  1 (3j—1 Xj—1 ctjXj — ̂  ‘i

PjVj+ 1 =  A *Vj -  P j - iV j - i  -  a *jVj = % (3-12)

so th a t

0i =  Y } X  i (3.13)

successive Lanczos vectors are obtained recursively from

X i YiXi+1 = -p-' ; Vi+I = (3.14)

The stopping condition for an N - dimensional m atrix is given by noting th a t (3'2N =  0.

If we assume exact arithm etic then the iterative procedure will end when we en­

counter fa = 0 for some i < N . The algorithm will term inate before the full

tridiagonal form has been obtained (for some i = N  — n) if either we inadvertently
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make a bad choice for the starting vectors whereby xi (y \ ) is orthogonal to n  of the 

right (left) eigenvectors of A  or if there is an n-fold degeneracy in the eigenvalue 

spectrum of A. In a practical implementation of the Lanczos algorithm rounding 

errors mean th a t we never obtain a stopping vector Pn - u exactly equal to zero 

because of rounding errors. Rounding errors spoil the relationship in eqn. 3.6 i.e. 

orthogonality is lost thereby termination is ill-defined and the relationship between 

A 's  eigenvalues and those of the tridiagonal form is complicated. To ensure accuracy 

and reliability of the algorithm we are forced to preserve the global m utual orthog­

onality of the x ’s and y ’s by reorthogonalising each new Lanczos vector against its 

predecessors. The reorthogonalisation step is

i— 1
X i  X i  -  J 2 ( V j X i ) X j

j - 1 
i- 1

...................................................Vi . - i  V i -  ^ 2 { x ] y i ) y j ......................................... (3.15).
j =1

Unfortunately the computational overhead associated with complete reorthogonal- 

ization is large. It is not always necessary to reorthogonalize after every step. In

1 1 \

practice we choose x\  and y\ at random, say x\  =  y\ =
0

and it follows

\ ° J
from the orthogonality condition th a t y \ x i =  0 for i ^  1 so we monitor this quan­

tity  for some y\  and if i t ’s value exceeds 10“ 12 then we reorthogonalize. Practical 

experience tells us th a t the quantity y \x \  will increase exponentially without re- 

orthogonalization. The choice of starting vector will affect the magnitude of the a ’s 

and /Ts but there is no way of knowing in advance how the algorithm will evolve 

on the basis of a given choice for the starting vectors.

Once the tridiagonal form, T , has been generated we still have to find the eigen­

values. This is done via a standard QL algorithm with implicit shifts.

3.2 COMLR Algorithm

3.2.1 Balancing

Numerical algorithms for nonsymmetric matrices are considerably less reliable than 

algorithms for symmetric matrices. The possible reasons for this are

1. the m atrix itself is defective so there is no complete set of eigenvectors.
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2. the eigenvalues are very sensitive to small changes in the m atrix elements.

The problems due to ill-conditioned matrices have been studied in detail by Wilkin­

son [43]. It is difficult to determine whether or not a nonsymmetric m atrix is 

ill-conditioned but a good indication of a defective m atrix is if two or more of 

the eigenvectors are almost parallel. It is particularly im portant for nonsymmetric 

matrices to minimise the rounding error in order to optimise the accuracy of the 

eigenvalues. The sensitivity of the algorithms to rounding error can be reduced by 

a procedure known as b a lan c in g . It is known th a t the errors in the eigensystem 

determined by numerical computation are related to the Euclidean norm  of the m a­

trix  i.e. the square root of the sum of the squares of the m atrix elements. Balancing 

involves using a sequence of similarity transformations to make corresponding rows 

and columns of the starting m atrix have norms which are comparable in magni­

tude, thus reducing the overall norm of the m atrix while leaving the eigenvalues 

unchanged. The actual algorithm employed uses diagonal matrices to achieve the 

similarity transformations and instead of summing the squares of m atrix elements 

it sums the absolute magnitudes of the matrix elements. Balancing the norm is 

equal in effectiveness but superior in efficiency to balancing the Euclidean norm. 

The Balancing procedure has 0 ( N 2) operations for an N  x N  m atrix and is inex­

pensive computationally. It is necessary to keep track of the order of the similarity 

transformations if the eigenvectors as well as the eigenvalues are required.

3.2.2 Reduction to Hessenberg Form

Prior to performing an iterative procedure to determine the eigenvalues the sta rt­

ing m atrix is reduced to a simpler form. Our complex m atrix is reduced to upper- 

Hessenberg form by stabilized elementary similarity transformations. An upper- 

Hessenberg m atrix has zeros everywhere below the diagonal except the first subdi­

agonal row. For example for a 6 x 6 m atrix looks like:

X X X X X X

X X X X X X

0 X X X X X

0 0 X X X X

0 0 0 X X X

0 0 0 0 X X

The most effective procedure for reducing a m atrix to Hessenberg form is analogous 

to Gaussian elimination with pivoting. The original matrix A is first balanced to
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produce the m atrix B. Let B\ = B  and prior to entering the r t h  s ta g e  of the 

reduction B i has become B r , which is upper-Hessenberg in its first (r — 1) rows and 

columns. The rth  stage involves the following sequence of operations

1. In the rth  column below the diagonal find the m atrix element which gives the 

maximum value for the sum of the moduli of its real and imaginary parts. If 

the maximum value is zero then the rth  stage is complete, otherwise denote 

by f  the row containing the above maximum element.

2. Perform the pivoting step by interchanging rows f  and r + 1  then to make the 

perm utation a similarity transformation interchange columns r and r  +  1.

3. Now perform the multiplication stage:- for i= (r+ 2),(r+3),..,N , compute the 

multiplication factor

/ i , (r+i) =  T“— — (3.17)
..............................................................................................................................$ ( r - | r l ) , r .....................................................................................

and subtract /i,(r+1) times row ( r+ 1) from row r then add f i t(r+1) times 

column i to column (r+ 1) to make the elimination a similarity transform.

A total of TV — 2 stages is required to complete the reduction. This corresponds to 

an operation count of approximately 57V3/ 6 . The Hessenberg reduction stage is the 

most computationally intensive stage in determining the eigenvalues of our large 

matrix.

3.2.3 LR reduction

The eigenvalues are obtained from the Hessenberg form, H, by LR decomposition. 

The basic LR algorithm involves decomposing the starting m atrix to a product of a 

lower triangular m atrix, L, (which has non-zero elements only on the diagonal and 

below) and an upper triangular m atrix, R (which has non-zero elements only on the 

diagonal and above).

H  = L R  (3.18)

Then it follows th a t the m atrix K defined by

K  = L ~ l H L  (3.19)

is similar to H and we can obtain a sequence of matrices each of which is similar to 

the original Hessenberg form H\ i.e.

Hs — LgFtg

R sL s =  H s+i (3.20)
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It can be shown th a t if H\ has roots of distinct moduli then, in general H s tends 

to upper triangular form where the diagonal elements tend to the roots arranged in 

order of decreasing modulus. The algorithm is stabilised by using partial pivoting 

in the triangular factorization of each of the matrices.

H\ is reduced to upper triangular form Ri  in (N  — 1) m ajor steps. The rth  step 

involves the following steps

• Interchange rows r and f  by premultiplying by the perm utation m atrix Ir^ .

• Premultiply by an elementary matrix N r which serves to annihilate the sub­

diagonal elements of the rth  column of the transformed matrix. N r is equal to 

the identity m atrix except for the non-zero sub-diagonal elements occupying 

the rth  column.

Note the r is chosen so that all elements of the elementary m atrix N r are bounded 

by unity. Thus we have

#1 — N(n-l)I(n-l),(n-l)'■■■•N'2h,2'NiIiji> Hi

H 2 =  R i h . i - N ^ h ,  2-iV2- ‘ . (3.21)

Since Hi is upper-Hessenberg, only N 2 complex multiplications are required to 

produce Ri  and a further N 2 complete the transform. Convergence is accelerated 

by origin shifting. If k is any constant then H-kl has eigenvalues A* — k. Eqns. 3.20 

now become

H s k8I  — L SR S 

R sL 8 4- ksI  = H s+i (3.22)

There is no need to add back the ksI  and we know th a t H s+i is similar to Hi — 

E J =1 k  I. A strategy which has proved to be effective is to compute the eigenvalues 

of the 2 x 2 submatrix
hs hs(n—l),(n—1) (n—l),n

hs hsn,(n—1) 'An,n
Then set ks equal to the eigenvalue closer to hsn n . It is recommended th a t the 

starting m atrix Hi is of upper-Hessenberg form since this means th a t all If Hi is 

upper- Hessenberg then all subsequent H s will also be upper-Hessenberg and this 

greatly reduces the computational effort and only the (N-l) sub-diagonal elements 

need be examined. There are two alternative stopping criteria:-

1. If a sub-diagonal element, ^(r+ i) r > is deemed negligible then the eigenvalues 

of H s are those of the leading principal minor of order r and the trailing

(3.23)
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principal minor of order (N-r). Since our m atrix is balanced we can assume 

th a t the element is negligible if

m ( h l r + l ) , r) <  e M ^(r+ l),(r+ l)) +  m ( K , r ) ]  (3-24)

where m (h ) is the sum of the moduli of real and imaginary parts of the m atrix 

element h and e is the machine precision.

2. The leading principal sub-matrix also decouples when two consecutive m atrix 

elements are small even though, each individually is not small enough to effect 

decoupling. In this case the stopping criterion is

m {h8ir+lhr)m (hsr>{p_ 1}) < e [m (^ r+1) (r+1)) +  m {hsr r) +

(3.25)

If the number of iterations required for any one root reaches 10 or 20 then and 

exceptional shift is used to promote convergence.

3.2.4 M ethod Comparison

The Lanczos method requires only half the storage of the LR reduction method and 

is more efficient for use on lattices of 64 and smaller. However the Lanczos method 

fails to find all eigenvalues on 84 lattices with the most likely explanation being ac­

cumulation of rounding errors. However the LR reduction method did prove to be 

successful on 84 lattices and in principle should be effective on larger lattices also. 

The LR algorithm has the additional advantage th a t it can be term inated after only 

half of the eigenvalues have been found since the eigenvalues emerge in order of de­

creasing modulus therefore the A, p .  symmetry can be exploited. Improvements in 

performance of the LR algorithm are possible if a machine-specific optimised imple­

m entation of the BLAS (basic linear algebra subroutines) is available. Routines for 

balancing , reduction to upper- Hessenberg form and LR decomposition for a com­

plex general m atrix are available in the EISPACK and LAPACK numerical analysis 

software packages.

3.3 Lee-Yang Zeros

Our motivation in performing a grand canonical partition function expansion for 

finite density QCD is to learn about the phase structure of the theory. In nature 

phase transitions are manifested by singularities in the thermodynamic functions 

such as the magnetization in a ferromagnet or the pressure in a liquid-gas system.
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Since we expect the partition function to be an analytic function of its arguments 

it is not immediately obvious how such singularities arise. In fact the singularities 

associated with phase transitions only emerge as we approach the thermodynamic 

limit (infinite volume for a fixed particle density) because it is known th a t the limit 

function of a sequence of analytic functions need not be analytic. Macroscopic 

bodies are indeed close to the idealized thermodynamic limit.

By studying the zeros of the GCPF we can visualize its properties and learn much 

about the occurrence of singularities in the thermodynamic limit. The landmark 

study of partition function zeros was performed by Lee and Yang [44, 45] who 

studied a simple statistical system of a lattice gas with attractive interactions (Ising 

ferromagnetic system). The Lee-Yang circle theorem states that for this particular 

system the roots of the partition function lie on a circle in the activity plane (e~2h 

where h is the magnetic field). The magnetic field in this model is analogous to the

chemical potential in finite density' Q C D . .........................................................................

Consider a (quantum mechanical) system of particles with hard cores occupying 

a finite volume V [46]. The particles will generally interact via some kind of poten­

tial. A finite volume can accommodate a maximum number of particles n max and 

if for example the particles interact via a pairwise potential when n  exceeds n max 

so th a t two of them touch the free energy will become infinite and the partition 

function will vanish.

The grand canonical partition function comprises a sum of terms

Z { e ^ T , V) = l  + ci(V )e fJ‘/ T +  c2(V)e2̂ T + ...... +  cnmo.(Y )en’" « /4/ T (3.26)

corresponding to canonical partition functions and the coefficients cn reflect the 

relative probability th a t the system will be in a  state with n  particles. If the 

expansion coefficients are to be interpreted as probabilities then in order to be 

physical they must be real and positive. Since all the expansion coefficients, cn are 

positive the polynomial can have no re a l p o s itiv e  ro o ts . We can however observe 

negative roots which are unphysical and, of course, complex roots. Yang and Lee 

showed th a t phase transitions are controlled by the distribution of roots of the 

GCPF in the complex fugacity (e^/T) plane. A phase transition occurs whenever a 

root approaches the real axis in the limit V  —> oo.

Consider the param etric form of the equation of state in the infinite volume limit 

and let 2 =  eti^T

=  lim V 1 In Z (z ,  V)
k l  V -+ c o
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1 Q
-  =  lim V ~ 1z — ln Z ( z ,V )  (3.27)
v V—►oo dz  v '

Then the Lee-Yang theorems can be stated as follows

• T H E O R E M  1 The following limit exists for all 2  > 0

Foo(z) = lim ^ - \a .Z ( z ,V )  (3.28)
V —¥oo V

This function is a continuous non-decreasing function of z.

• T H E O R E M  2

If R  is a region in the complex z  plane th a t includes a segment of the positive 

real axis and contains no roots of the GCPF then in this region V ~ l log Z(z , V ) 

will converge uniformly to its limit as V  -»• oo and this limit is analytic for all 

z in R .

As a result of the second theorem it follows th a t in any region R  the order of the 

partial derivative and the limit in eqn. 3.27 can be interchanged so that

-  f  r*i 
k T  ~  °°(z>

=  z T z Fa,i-z) (3'29)

If region R  includes the entire positive z axis then the system always exists in a 

single phase. However if a zero of the GCPF approaches a point, z0 on the real 

positive z axis then the system will have two phases : one in the region z < z0 and 

one in the region z > z0. P(z) must be continuous according to Theorem 1 but a 

discontinuity in d P /d z  would correspond to a first order phase transition while a 

discontinuity in d2P / d z 2 would indicate a second order phase transition.

Of course in practical lattice calculations we are not close to the thermodynamic 

limit V  —> oo but as the lattice volume is increased, in general we expect the zero 

with the smallest imaginary part to approach the real axis. It will move towards a 

value on the real axis corresponding to the critical value. The finite volume scaling 

behaviour of this lowest zero can be used to determine the order of the phase 

transition. In a physically meaningful system which has positive GCPF expansion 

coefficients we do not expect any of the zeros to lie on the positive real axis. The 

coefficients will all be positive once the statistical average is complete. In our finite 

density simulations negative coefficients can arise due to limited statistics which 

can give rise to zeros on the real axis but these are spurious and must disappear in 

the limit of infinite statistics.
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According to Itzykson et. al. [47] the occurrence of complex zeros th a t even­

tually stabilize along lines (or regions) on the complex plane does not in general 

indicate singularities in the thermodynamic quantities. They should in fact be 

interpreted as Stokes lines which separate different asymptotic behaviours of the 

partition function in the thermodynamic limit. They provided numerical evidence 

th a t along these lines of zeros the real part of the analytic continuation of the 

free energy will be continuous while the discontinuity in the imaginary part will be 

proportional to the density of the zeros.
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Chapter 4

Lattice QCD at Strong 

Coupling

4.1 M otivation

The strong coupling limit of QCD provides us with an im portant testing ground for 

lattice Monte-Carlo simulations a t finite density. Although we are ultim ately inter­

ested in the weak coupling, continuum limit, the strong coupling limit is attractive 

for several reasons:

• the theory confines and spontaneously breaks chiral symmetry

• numerical results from monomer-dimer simulations are available

• analytic results from the strong coupling expansion and from mean field theory 

are available

No such analytic predictions are available in the scaling region (i.e. at interme­

diate coupling).

At infinite coupling the mean-field method predicts a first order transition at 

chemical potential jum/  where

(4.1)

and
1 / 2

(4.2)

for a lattice with d space-time dimensions where r = n t / n s.
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m m n/2 m s / 3 l^mf

0.06 0.29 1.01 0.59

0.12 0.41 1.03 0.63

0.32 0.66 1.10 0.75

0.52 0.84 1.17 0.87

0.72 0.98 1.24 0.97

0.92 1.10 1.31 1.07

1.02 1.16 1.34 1.11

1.50 1.39 1.50 1.30

Table 4.1: Comparison of mean-field predictions at infinite coupling for one half the 

pion mass (from Eqn. 4.4), one third of the baryon mass (from Eqn. 4.3) and the 

critical.chemical potential (from. Eqn. . 4.1) for a range of bare quark masses. - - -

The mean-field baryon and pion masses are given by [31]

1 3 

2C + l  +  TC6

m n =  In

m s  = In

1 +  - ( c 2 -  2d) + \ (c2 -  2d) + - ( c 2 -  2d)2

where

c =  (m + \ /2 d  + m 2)

(4.3)

(4.4)

(4.5)

The corresponding thresholds for a range of bare quark masses are listed in table 

4.1. Note th a t fjLmf  does not coincide with the mean-field baryon threshold m s / 3.

It has been argued that the discrepancy is related to the binding energy of 

nuclear m atter which is large a t infinite coupling. Bilic et al. [48] demonstrated 

explicitly th a t 1/g2 corrections diminish the discrepancy between \imj  and the mass 

of the lightest baryonic state divided by N c (the number of colours). Their results 

are summarised in table 4.2

Note also th a t mean-field pion threshold {m^/2)  and fimf  are not well separated 

for bare quark masses m a  > 0 .5 .
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6/9 2 ra&a/3 pa

0 0.972 0.571

1 0.936 0.586

3 0.850 0.617

5 0.735 0.648

Table 4.2: Strong coupling nucleon mass divided by N c and the mean-field pre­

diction for the transition value of the chemical potential versus the inverse gauge 

coupling squared. Table taken from Bilic et. al. [48] whose calculations involved 

finding a numerical solution to the mean-field equation for a 1 / g 2 corrected model 

of S U (3) gauge theory with Kogut-Susskind fermions in the chiral limit (m  —> 0).

4.2 Alternative Simulation M ethods at Strong Cou­

pling

In addition to the simulations using the Glasgow method which will be described in 

detail in this chapter, Gocksch [36, 40] and Karsch and M utter [49] have developed 

methods to simulate finite density QCD and have measured the chiral condensate 

and the fermion number density at strong coupling (j3 = 0). Both of these methods 

gave results for p c as a function of the bare quark mass which were consistent with 

mean-field predictions (Eqn. 4.1). Gocksch used a spectral density method on a 

24 lattice only. Extension of the spectral density m ethod to larger lattices was not 

feasible. The Glasgow algorithm also gives p c ~  p mf  on a 24 lattice but not on larger 

lattices. Karsch and M utter applied a method where the GCPF is represented in 

terms of monomers, dimers and baryonic loops in which the dominant contributions 

to the partition function have positive weights. Their simulations were performed 

on an 834 lattice. This method is only applicable a t strong coupling and would have 

to be adapted in order to explore smaller bare quark masses m a  <  0.1.

4.2.1 The Spectral Density M ethod

Gocksch applied a general method for simulating systems with a complex action , 

the “spectral density m ethod” , to 517(3) lattice QCD at finite density and infinite 

gauge coupling. This method involves binning the phase of the determinant, 6, 

and measuring the density of states. He studied the form of the density of states 

as a function of energy for different values of chemical potential and concluded
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th a t outside the critical region the density of states is sharply peaked a t 9(U) =  0 

therefore the phase is not im portant, however for p, ~  p c the density of states is flat 

and there is an contribution from 9{U) at all p oin ts in the integration region so 

th a t the phase of the determinant must be accounted for. To illustrate the method, 

consider an observable such as the chiral condensate given by the expectation value 

of some operator, O :

(0[U]) = j ; J [ D U ]  0 (U )  | det M {U )\e9 Sa+iO(u) (4.6)

where (5 is the inverse gauge coupling, Sq  is the standard Wilson gauge action 

and 9(U) is th e phase o f th e determ inant of the fermion matrix, M(U). The 

expectation value can be re-expressed as:

T  (0 [U ] )d E (0 )M p{E )e iE
{0\U]) = 77  x }-----  (4 7)
{ 1 1} I l n dEp(E)e*E [ j

where we have introduced the density  o f sta tes, p{E), a periodic function of E 

with period 2-k defined by

p{E) = J[D U ] SP (9(U) -  E) | det M (U )\e0S° (4.8)

where 6p is a periodic delta function and (0 ) M is the microcanonical average of 

the operator, O , defined by

( ° ) m (e ) = - ^ ( E ) f  [DU}O(U)6p(0(U) -  E ) \d e tM (U ) \e ‘,So (4.9)

Equation 4.7 is evaluated as a Riemann sum. The interval [— Emin , E max] is divided 

into overlapping sets with a given number of bins in each. This is essentially binning 

the phase 9(U). The density of states p(E) is measured by considering the relative 

normalizations of adjacent sets using counts in the overlap bins. High statistics is 

required in each bin. In this method the Boltzman weight used in generation of 

configurations incorporates the modulus of the determinant

P(U)[DU] ~  \ det M (U )\eSa [DU] (4.10)

and a Monte-Carlo procedure is performed in each set so th a t each value of the 

phase of the determinant is sampled separately and the contributions are added 

up coherently. This is most im portant in the critical region where the density of 

states is flat. In this region it is clear that simpler approaches, where we “quench 

the phase” by measuring the phase as part of the operator, will fail because of wild 

fluctuations in phase from configuration to configuration. This was discussed in 

Chapter 2. Application of the spectral density method to lattices larger than 24
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would, unfortunately, be impractical because the method is too computationally 

intensive. We do however learn from the diagnostics of the simulations on the 24 

lattices.

4.2.2 The Monomer-Dimer Algorithm

Simulations [49] using the monomer-dimer algorithm whereby the partition function 

is represented graphically in terms of monomers, dimers and baryonic loops estimate 

a critical chemical potential, which is in agreement with /im/.  The partition

where ip and ip denote the quark fields and U, the SU(3) gluon field. In the absence

integrals over the SU(3) link variables. This is o n ly  p o ss ib le  a t  in fin ite  gauge 

coup ling . Starting with the standard lattice QCD action with four flavours of 

staggered fermions and performing the link integral we get

associated with M(x)M(y) and baryon-antibaryon fields. Non-vanishing contribu­

tions to the integrals over quark fields are obtained only if each site x of the lattice 

is occupied either by three mesons or by a baryon-antibaryon pair. The partition 

function can be written as a sum over monomer-dimer loop configurations K

The statistical weight, w k , of a configuration is essentially controlled by (m a)NM 

where N m  is the number of monomers. The baryonic loops which have troublesome 

o sc illa tin g  w eig h ts  are each replaced by two pure monomer-dimer configurations

polymer system are non-negative for fj, = 0 and for fi >  0 configurations can have 

negative weights (when certain dimers create an odd number of polymers along 

negative Polyakov loops) however it is argued that the dominant contributions arise 

from configurations with only positive weights. The im portant point is th a t the 

leading contribution a t n ^  0 comes from loops of minimal length ie. Polyakov 

loops of length equal to the number of sites on the lattice in the time direction.

function of a system of quarks and gluons in the infinite coupling limit is given by

(4.11)

of the gluonic part of the action, es ° , it is possible to  perform analytically the

(4.12)

where M(x) are associated with meson fields and F(x,y) contains dimer operators

(4.13)
K

which are denoted “polymers” . The Boltzmann weights in the new monomer-dimer-
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The performance of the algorithm is expected to deteriorate as the lattice size is 

increased. Since the gauge fields have been integrated out exactly the fluctuations 

have been greatly diminished. The observables such as chiral condensate, fermion 

number density and energy density can be studied at fixed baryon number. Since 

a separate simulation is required at each value of the chemical potential it is not 

possible to obtain continuous curves for the observables as we do in standard hybrid 

Monte-Carlo techniques. The algorithm is unsuitable for simulating a t small bare 

quark masses (m a  < 0.1) because the update scheme means th a t acceptance rate 

is proportional to (m a)2 which is clearly very small for small quark masses. The 

hybrid Monte-Carlo simulations allow us to push further towards the chiral limit 

(ma —> 0) and a typical bare quark mass would be m a = 0.01. The monomer- 

dimer algorithm is only applicable a t infinite coupling since it relies on the analytic 

evaluation of the gauge fields. Note that co n fin em en t is en fo rced  ex a c tly  in 

this model. Monomer-dimer simulations on 44 and 834 lattices predict a first order' 

transition a t a chemical potential consistent with the mean-field prediction. The 

fermion number density jumps from a tiny value to almost the saturation value at 

fic. The chiral condensate remains at its fi = 0 value right up until (ic where it 

crashes to zero.

4.2.3 Strong Coupling using the Glasgow M ethod

Consider again the expression for the GCPF

The zeros of this polynomial are the Lee-Yang zeros of Z  in the complex fugacity 

plane (or equivalently the complex eM plane). As we shall see, in the dynamical 

theory these zeros play a role analogous to that of the eigenvalues of P  in the 

quenched theory when calculating the number density.

The fermionic determinant can be expressed explicitly as a function of fi by

As before the lattice size is n 3n< and P  is the propagator m atrix (independent of 

p)[35]. We can compute det(M (/a,m)  in a basis where the propagator m atrix is 

diagonal

(4.14)
n ——3 n a3

d e t = e 3(m. n< det(P  — elt) (4.15)

(4.16)
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We recognize th a t the zeros of the determinant in the plane are the eigenvalues of 

the propagator matrix. The symmetry of the eigenvalues of the propagator m atrix 

\k+j = e*27rJ/ nt \ k  for j  =  0 to nt — 1, together with the polynomial decomposition

T i t —  1

Y [  (ei2*j l ntP - x )  = (0** -  x nt) (4.17)
j=o

yields the equivalent representation

6 n®
det =  e~3m‘

ife=i

and dictates the general structure of the characteristic polynomial det(M(/u, m))

3 n 3,

det (M(/z, ra)) =  ^  biekfiTlt (4.19)
3n8

Note the dependence on /z is now via the fugacity /  =  eMn*.

' Hence; measurement' of the average of the characteristic polynomials (normalised

by |M (0 ,ra)|) in the ensemble generated at update mass m  and fi = 0 will give

Z  (/z, m) explicitly as a function of /z at that mass.

This representation leads to a polynomial expansion of Z(fi) in powers of the

fugacity whose coefficients are functions of the gluonic fields.

3n \  3n®
z<M)= £  < b i > e k“T =  £  Zt f k (4.20)

fc=—3 n \  A:=—3n8

This expansion is just that of the GCPF expanded in terms of the canonical parti­

tion functions, (C PF’s), for a fixed number of quarks (anti-quarks) on the lattice.

Thermodynamical averages, which can be calculated as logarithmic derivatives of 

the G CPF, are then given explicitly as functions of /z.

The relative value of the CPFs can also characterise the properties of the system. 

For example, the relative weight of the triality-bearing to the triality-zero CPFs 

can signal whether the system is in the confined or deconfined phase. In the confined 

phase the ensemble average of the triality-bearing CPFs must be zero. This leads 

to

Z(n) = £  Z3kf k (4.21)
fc=nf

One can also explore the phase structure of the simulated system by examining 

the distribution of the zeros of the GCPF in the complex chemical potential (or 

fugacity) plane [44, 45] [47]. These zeros correspond to the singularities of the 

thermodynamic potential and will converge in the thermodynamic limit, (L  —> oo) 

towards any critical /z in the physical domain.
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In the following we also show that one can regard the zeros of the averaged 

characteristic polynomial as the “proper” ensemble average of the eigenvalues of 

the propagator m atrix. This interpretation of the zeros as reflecting the ensemble 

average of the eigenvalues could be im portant in the explanation for the “unex­

pected” onset chemical potential in ensembles of limited statistics.

4.2.4 Observables

The starting point of our analysis is the GCPF Z  computed with the Glasgow

algorithm. Our raw data are the C PF ’s Zn and our basic observables are the

particle number density and the zeros of the GCPF in the complex fugacity plane.

Most of our discussions will consider the quark number density, defined as

, , 1 dln(Z (f i ,m ))  1 d in  < det(M ( n ,m ) ) >
(»«(#*."*)) =  7 ------- ^ -------- =  7 --------------^ -------------- (422)

Singular behaviour of the 'curren t can result from 'singularities ih the' density of' 

baryonic states (particularly apparent in the zero-temperature limit). These singu­

larities could be purely lattice artefacts and vanish in the continuum limit. However, 

they may instead reflect continuum spectral features, such as gaps in the spectrum 

or abrupt changes in the dispersion relation of the baryonic excitations. A chiral 

phase transition is one such possibility. A spectrum of chirally symmetric baryonic 

excitations will follow a gapless relativistic dispersion relation, contrary to the dis­

persion of particles with broken chiral symmetry. If the disappearance of the mass 

gap occurs together with the deconfinement transition, quark states will emerge 

instead of collective colourless baryonic excitations. Thus, the /i—dependence of n q 

should determine the phase structure of dense baryonic m atter, an alternative to 

the evaluation of the chiral condensate.

Differentiating the action with respect to fi reveals the operator form of the 

charge, and one sees th a t the current is the expectation value of the number of

paths through the links in the time direction [6]. In this sense the current can be

defined on isolated configurations, where it reduces to

n j ( A i m )  =  ^91n(det(M ^m m  ^

In the quenched ensemble In (det (M )) is differentiated b e fo re  taking the statistical 

average:

<  n q > - » •  Qx, m)  =  1  {  8 ™ »>)  (4.24)

and we recognize that

< n q(fj,,m) >9uen —< n*(//,m ) > (4-25)
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In the following the n  and m  dependence will be left implicit wherever this does 

not create ambiguities.

4.2.5 Failures on isolated configurations, and the quenched 

model

The early work by Gibbs [35] made it clear that the behaviour of some observables 

measured on isolated configurations at finite density can be pathological. Since 

the analysis of isolated configurations is a necessary step in any lattice simulation, 

the impact of his result may be broader th a t its original motivation which was to 

understand the pathologies of the quenched approximation.

Our renewed interest was prompted by two considerations. First, our results 

presented below show clear relics of the quenched pathologies discussed in Gibbs’s 

paper : the onset fi0 where the number density n q departs from zero is at half 

the pion mass. Second, published results on four fermion models [2] do not have 

such pathologies. However, both models share the same pattern of chiral symmetry 

breaking, and both models have Goldstone modes. Why, then, is there a difference 

a t finite density? We decided to re-examine the behaviour of observables on isolated 

configurations in order to test the Gibbs scenario in a more general framework, and 

to gain some understanding of the process of statistical averaging in the two models.

First consider the behaviour of the quark number density on isolated configura­

tions. The following expression for n %q follows from Eqns. 4.23, 4.16

(here and in the following we use Gibbs’ notation z = [35]). In the zero tem ­

perature case the sum over complex poles can be conveniently done by contour 

integration, yielding:

The threshold for the current n q on isolated configurations is triggered by the lowest 

zero of the determinant. In turn, the zeros of the determinant are given by the 

eigenvalues of the propagator matrix.

From an analytical study of the eigenvalues of the fermionic propagator m atrix in 

the q u en c h ed  th e o ry , Gibbs [35] concluded th a t the eigenmodes of the propagator 

m atrix relate to the mass spectrum of the theory. The Gibbs argument requires 

the calculation of the hadronic spectrum on replicated lattices, i.e. lattices, with 

periodic boundary conditions on the gauge fields, which have been strung together d

(4.26)

K l A i K e '1
(4.27)
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times in the time direction. He considered the limit d —> oo in order to replace finite 

sums with contour integrations. The procedure is justifiable at zero tem perature. 

The expression obtained for the inverse of the duplicated fermion m atrix G{t\ , t^) 

is

where A a are the amplitudes (which can be related to the eigenvectors of the propa­

gator m atrix) and Aa are the associated eigenvalues. The form of the inverse shows 

th a t the exponential decay at large separation is controlled by the eigenvalues Aa 

hence we see th a t the eigenvalue spectrum calculated on isolated configurations 

should contain poles in correspondence to the physical masses. In particular, the 

smallest mass state can clearly be extracted from the lowest eigenvalues. This state 

is obtained by the squaring the propagator matrix, and defines the pion mass in 

QCD. The smallest mass state m ^  is related to the lowest eigenvalue by:

This identification was clear in simulations done by Gibbs because the pion prop­

agator was very similar configuration by configuration although, strictly speaking, 

masses are properties only of the statistical ensemble.

Gibbs argument has been reformulated and verified by Davies and Klepfish [34]. 

Pathologies of isolated configurations, the role of confinement and other issues, are 

also discussed in [32], [33]. All of these works confirm th a t on isolated configurations 

there is a  singularity a t a value of the chemical potential close to half the pion mass. 

This implies th a t in the quenched theory (tpip) is controlled by the pion mass. This 

was Gibbs’s explanation for the quenched pathologies whereby the discontinuities in 

the chiral condensate and fermion number density were apparently associated with 

the pion. The eigenvalues in the quenched theory are analogous to the zeros in the 

dynamical theory which are obtained from the averaged characteristic polynomial 

where the coefficients on isolated configurations are a particular set of propagator 

m atrix eigenvalues. Since on one configuration the eigenvalues (associated with 

particle masses) are formally equivalent to the zeros of the partition function in the 

statistical ensemble, it is conceivable that in a dynamical simulation with limited 

statistics we retain a remnant of “fake” critical points triggered by the masses in 

the QCD spectrum.

Therefore, the results on isolated configurations are qualitatively different from 

those expected of the statistical ensemble.

Some of the problems with the quenched model can be understood from Eqn.

(4.28)

m n — 2 In | Amin | (4.29)
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4.25 the quenched number density is a simple average of the single-configuration 

number density estimate, and the quenched ensemble retains the pathological fea­

tures observed on isolated configurations.

4.2.6 The statistical ensemble, and the full model

We can now focus on the interplay between the one configuration/quenched results 

and ensemble results. How can statistical averaging remove the problems observed 

on isolated configurations? Equivalently, how can the Glasgow averaging discussed 

above improve upon the quenched approximation?

Consider the fugacity expansion for Z, (Eqn. 4.20). By reinstating a factor 

e3nlntn we see ^hat 2, is a polynomial of degree 6n3nt — 6V  in the variable z =  eM. 

Z can then be written in terms of its zeros a* in the z plane

6 V

......................................................Z - e 3V>l  (4.30)'
%— 1

Recall th a t Z  =  (det(M)) and compare formulae 4.30 and 4.16 which we rewrite 

here
6 V

d e tM  = e3VlxY [ ( z - \ i )  (4.31)
*=i

We see th a t the zeros of the partition function are the “proper” ensemble average 

of the eigenvalues of the fermionic propagator m atrix, or, equivalently, of the zeros 

of the determinant.

Manipulations analogous to those of Eqns. 4.26 and 4.27 lead to the current

nq = — ^  1. (4-32)
l < | a i | < e * *

Let’s search for other critical points past the first onset. From Eqn. 4.32 we see that 

discontinuities in nq are associated with a high density of zeros on circles with radius 

eMc in the fugacity plane. More generally, the density of the moduli of zeros in the 

plane is the derivative of nq with respect to /z, i.e. the quark number susceptibility. 

Interestingly, the relevant quantities controlling the critical behaviour of the current 

are indeed the moduli of the complex zeros. Clearly, discontinuities in nq must be 

associated with a “high” density of zeros on circles with radius eMc.

We would like to understand how the eigenvalues and the zeros are related. One 

obvious constraint on the distribution of the zeros is th a t in the confined sector 

we expect to see a Z ( 3) symmetry arising from the triality non-zero coefficients 

averaging to zero so th a t only canonical partition functions containing multiples of
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three quarks contribute to the thermodynamics. It is worth noticing that once the 

Z 3 symmetry is enforced (Eqn. 4.21)

2V

Z  = e3n^ ] J ( z 3 -j3 i) .  (4.33)
i=l

The zeros in the complex plane z  should then come in triplets, corresponding to 

cubic roots of certain complex numbers (3i. In principle (in practice things can be 

very different!) the effect of the ZZ symmetry can simply amount to a redistribution 

of phases with no effect on the moduli. T hat would not affect the critical behaviour, 

since the critical behaviour is triggered by the moduli themselves. The unphysical 

quenched onsets could certainly survive the ZZ symmetry of the full ensemble.

The zeros of the partition function drive the critical behaviour of the full model 

as the zeros of the determinant drive the critical behaviour of isolated configura­

tions, hence of the quenched model. In the process of going from the zeros of the 

determ inant to the zeros of the grand canonical partition function, the pathologi­

cal results observed on isolated configurations should turn  into the physics of the 

full model : the fake critical points should disappear, the real phase transitions of 

the full model should emerge. This must be achieved by correct av e rag in g  of the 

characteristic polynomial.

4.3 Simulation Results and Observables

As described in detail in Chapter 2 the Glasgow method provides us with the 

fugacity expansion of the Grand Canonical Partition Function.

Once Z  is known, in principle one can compute all thermodynamical observables. In 

practice, we will focus our discussion on the number density n q, and on the analysis 

of the complex zeros of Z  in the plane.

The advantage of the Glasgow method lies in the fact th a t the configurations can 

be generated at zero chemical potential. In general we measure Z  = ^ detM(^=o) )  0

in which case the probability measure is detM(fi = 0)e- s ° . This is referred to  as 

a re w e ig h tin g  p ro c e d u re . At infinite gauge coupling ft = 0 hence e~SG can be 

replaced by the identity and we can generate configurations either with the usual 

hybrid MonteCarlo procedure or alternatively choosing ra n d o m  SU(3) matrices. 

This is a convenient strategy since a t infinite coupling the gauge action does not 

appear in the probability measure. Choosing random gauge fields corresponds to

(4.34)
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different normalization for the partition function:

„ f [dU]detM(K)

~  — 7 W ] —  ( •38)
A series of preliminary runs were performed on a 44 lattice to confirm th a t 

the results were independent of the algorithm chosen for the generation of the 

configuration. We finally selected a ra n d o m  g e n e ra tio n  procedure which produces 

decorrelated configurations.

We will present results on a 64 lattice for bare quark masses (ma) in the range 

0.05 to 1.5 and on an 84 lattice for masses 0.08 and 0.1. The number of gauge 

field configurations analyzed varied from a small sample of 25 on the 84 lattice with 

m q =  0.08, around 100 configurations on an 84 lattice with m q = 0.1, and several 

hundred configurations on the 64 lattices.

In every case our raw data, i.e. the starting point of our analysis, are the 

coefficients, 6n ,-of the  fugacity expansion (Eqn. 4 .3 4 ).....................................................

4.3.1 The number density

The first simulations which calculated the number density with the fugacity expan­

sions were performed by Barbour Davies and Sabeur on a 24 lattice [50]. Their 

results showed th a t the reweighting actually works on a 24 lattice -  the onset in 

the number density moves gradually from zero to a  value consistent with m p/ 3 as 

statistics are increased. We reproduced these results as a first step in our study 

and proceeded to extend the simulations to a 64 lattice. The effectiveness of the 

reweighting proceedure demands higher statistics on larger lattices.

We first studied m q =  0.1 where we can compare the results with the ones 

obtained in the quenched simulations, with the monomer-dimer simulation, and 

with the analytic results of the strong coupling expansions. Let’s briefly review 

these results.

For m a  =  0.1 the monomer dimer simulations [49] show a sharp transition at 

fica = 0.69(±0.015) which is consistent with the mean-field predictions.

The associated critical baryon-number density a t the transition point is n ca3 =  

0.045(±0.005) The strong coupling expansion predicts a strong first order transition 

a t fi ~  0.65. The small difference in p c could be probably accounted for by 1 /d  

corrections.

In the strong coupling expansion there is however another feature which is not 

seen in the monomer dimer results: a mixed phase for p 0 < p  < fis where ordinary 

confined hadronic m atter coexists with the saturated lattice phase.
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The quenched results [32, 33] were characterized by a “forbidden region” ranging 

from Ho =  m ^ /2  = 0.32 to p s — tub/ 3 ~  1.

p 0 and p s are close to the extrema of the mixed phase predicted by the strong 

coupling expansions mentioned above. In the hybrid Monte-Carlo quenched simula­

tions there is no  re m n a n t  of the critical point for the chiral symmetry restoration 

a t p c ~  0.65 predicted by the strong coupling expansion.

Our hope in doing the 64 calculations, was, of course, to see something com­

pletely different from the quenched calculations and very similar to the monomer- 

dimer results.

These expectations are only partially realized by the results. We do see a definite 

signature emerging for p c however the presence of the early onset p 0 is a persis­

tent feature of the unquenched hybrid Monte Carlo simulation results. The baryon 

number density associated with p c in our simulations corresponds to approximately 

half the lattice fermion-saturalion density i.e. n ca3 ~  0:5. This is inconsistent'with 

the results of the monomer-dimer algorithm.

We first consider, in the light of the above discussion concerning the roles of the 

eigenvalues and the zeros of the GCPF, their distributions in the complex p  and eM 

planes. By contrasting the zeros of the GCPF with the poles of the determinant we 

can study the effect of the G lasgow  reweighting procedure.

We can substantiate this interpretation of p c by examining the zeros of the grand 

partition function in the complex plane eM.

The numerical strategy suggested by the discussion leading to Eqn. 4.32 is 

straightforward: observe the distribution of the moduli of the zeros, or, equivalently, 

search for a strip of high densitiy in the plane. This criterion is numerically more 

convenient than the conventional Lee-Yang analysis, which only uses the zero whose 

imaginary part is closest to the real axis. It is also very natural since it says that 

the number density counts the density of states in the fermionic sector.

Fig. 4.1 shows a histogram of the distribution of the positive real parts of the 

eigenvalues in the complex p  plane. The distribution is obtained from configurations 

on an 84 lattice at a bare quark mass of 0.1. There is a  clear signal th a t the number 

density becomes non-zero at p  «  0.3 which is consistent with m ^/2 .  This is the 

quenched onset p. The lattice is filled at p = 0.95.

The analogous distribution of the zeros of the GCPF is also shown in Fig 4.1. 

These zeros are those of the polynomial obtained by averaging the characteristic 

polynomials of the propagator m atrix over the same 450 configurations. There is still 

a clear signal th a t the number density becomes non-zero at the same onset p  as that
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of the quenched theory, however, a strong signal has developed via an interm ediate 

peak in the distribution which is absent from th a t of the eigenvalues. As argued 

above, this band of increased density can be associated with a discontinuity in 

the number density. The fact th a t no further critical point was observed in the 

quenched calculations can be directly attributed to the fla t eigenvalue distribution. 

The signal a t /xc in the zeros is entirely due to the Glasgow reweighting.

This difference in distribution between the eigenvalues and the zeros is found at 

all other bare quark masses. Fig. 4.2 shows our results at quark mass m  — 0.05 

while Fig. 4.3 shows results a t m  = 0.08.

Simulations at small bare masses are essential in order to explore the chiral limit. 

There, we expect the critical point to remain fairly constant and different from zero. 

For m a  <  0.5, /zm/  and m n/ 2 are well separated (see equations 4.1 and 4.4) hence 

we can distinguish jx0 from /xm/  for small masses. Large bare masses were used to 

investigate the scaling of the peak th a t we associate with fic in the zeros histogrartis. 

We insist th a t this peak should move in correspondence with Eqn. 4.1. The motion 

of the peak is more pronounced a t larger bare quark masses. Simulation results 

for all bare quark masses were found to be in excellent agreement with Eqn. 4.1. 

For the larger masses the central peak shifts and broadens which is probably due 

to the fact th a t at large quark mass the transition is washed out. Interestingly, 

the current onset at larger quark mass is, apparently, smaller than half the pion 

mass -  a surprisingly result since at m q =  1.5 in the quenched model the critical 

region shrinks to zero -  certainly this adds to the complication and the confusion 

associated with /x0. However, even if the interpretation of the critical region a t this 

stage is largely subjective, the estimate of the critical point seems reasonably 

sound.

Fig. 4.4 gives an overview of the location of fx0 and /ic for six quark masses in 

the range m a = 0.05 to 1.5. The scaling of the central peak of the histogram is in 

remarkable agreement with the mean-field prediction calculated from Eqn. 4.1 and 

is consistent with the critical [x predicted by the monomer-dimer simulations. The 

peak corresponding to ix0 is consistent with the mean-field pion threshold for the 

smaller quark masses but significantly lower for m a  =  1.0,1.5 as noted above.

Figs. 4.5 and 4.6 show clearly the banded structure of the zeros distribution in 

the plane for two different lattice sizes and quark masses. As anticipated, we 

observe a dense line, which closely follows the prediction |eM| =  eMc. The innermost 

circle of zeros correspond to fx0, hence to half the pion mass. The zeros fill up the 

puzzling critical region fx0 -» fxs.
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Compare Fig. 4.7 which gives the distribution of the real part of the zeros with 

Fig. 4.8 which gives the number density (on a 64 lattice with m  =  0.1). Again 

the histogram  for the zeros shows three distinct peaks: fj,0 ~  0.3 corresponding 

to the onset of net non-zero quark density; fjtc ~  0.7 corresponding to the small 

discontinuity in the number density and the expected critical chemical potential; 

fi8 ~  1.0 corresponding to the lattice saturation point. Comparison of the two plots 

shows th a t the derivative of the number density correlates well with the density of 

states (frequency histogram). Note the general trend of the number density results 

which are basically, indistinguishable from the quenched ones, except for the sm all 

ju m p  at fj ,~  0.7 ~  fic suggesting the d isco n tin u ity  associated with the restoration 

of the chiral symmetry. This small hint of a discontinuity was not perceptibly larger 

on the 84 lattice.

One of the many intepretations proposed for the pathologies of lattice QCD at 

finite density-is th a t the anomalous increase in number density at fi0 is tem perature 

driven. There is no evidence for this in our simulations In Fig. 4.9, we show 

a  detailed comparison of the results on 64 and 84 lattices, for m q = 0 . 1  (note the 

different scales on the right and the left side). By zooming in on the onset region we 

observe th a t the number density starts to rise from zero a t fj, ~  0 . This effect is very 

small (note the scale) and it is tem perature dependent. Clearly the number density 

is suppressed on the colder lattice. There is, however, no appreciable difference 

in the value of /i0 when we compare 64 and 84 lattices. This is a t odds with the 

suggestion th a t the increase in the number density a t n 0 reflects a therm al excitation 

of baryons. This result supports the belief th a t the rise a t n 0 is unphysical, as in 

the quenched approximation. Of course we cannot rule out the possibility th a t the 

situation changes on larger lattices, and we refer to Refs. [32] and [33] for discussions 

on this point.

The most interesting point is that tem perature effects are greatly lessened for 

H > jj,0. Temperature effects become apparent again a t suggesting th a t fic is 

the threshold for a new phase.

In summary, we have seen how the small discontinuity observed in the fermion 

number density manifests itself in the histogram of zeros: the density of zeros is the 

derivative of the number density, so a small “discontinuity” in n q corresponds to a 

distinct signal in the histogram of zeros.

Will more statistics eventually cancel the onsets at fi0 and fis? Even if we have 

not observed any dramatic effect by increasing the number of configurations, the 

persistence of n 0 could still be explained by insufficient statistics, especially since
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Z3 invariance has not been completely achieved yet, and since it is possible th a t the 

precision required to achieve the cancellation of the unwanted onset is prohibitively 

high. It is also possible th a t the polynomial representation for the G CPF is ill- 

conditioned [51].

4.3.2 Analysis of the Probability Distributions

Fermion number density fluctuations in the grand canonical ensemble can be used 

to identify the critical region and are amenable to study using our GCPF expansion. 

Write
3 V

z =  Y ,  w « <4 -36)
n = - 3 V

If we choose to normalize so th a t Z  = 1, then W n is the probability th a t a system in 

a grand canonical ensemble has n  fermions. Using the numerical results for the GPF 

■ above (see Eqn.(4.20), the'shapes of the probability distributions W n — Z ne}iritn 

for different chemical potentials can be drawn as a function of n, and the critical 

region can be studied using standard statistical mechanics analysis.

For a first order phase transition we can make qualitative predictions for the 

expected behaviour of W n . For fi ^  p crit we expect W n to have a single sharp 

peak a t some value of n. This peak should become infinitely sharp as F  -» oo. 

However at the critical point, p  =  p c we expect the probability distribution to 

become flat over a range of n ’s where each fermion number density in th a t range 

is equally probable. The situation corresponds to large fluctuations of density in 

the transition region which is a well-known characteristic of a first order transition. 

Note th a t we were able to relate the density of partition function zeros to the fermion 

number susceptibility our analysis of the simulation results.

Since we consider both quarks and anti-quarks in our statistical ensemble what 

we measure is the net particle number which is the number of particles minus the 

number of anti-particles. The number density can be written as

3V

n « =  7  E  nW » (4 -37)
n = —3V

The chemical potential effectively enhances the propagation of quarks and inhibits 

the propagation of antiquarks. We expect th a t for p  = 0 the distribution is symmet­

ric about the origin, and Jo =  0 since the number of quarks is equal to the number 

of anti-quarks. This is reflected in our results. For 0 < p  < p 0 although the peak 

of the distribution migrates away from the origin favouring quark propagation, the 

net fermion number remains negligibly small (nq <  0.01).
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The behaviour of the probability distribution for small chemical potential is 

shown in Fig. 4.10 . At p  =  0 the distribution is symmetric around the origin, and 

n q =  0 as expected. By slightly increasing p  the distribution becomes asymmetric, 

reflecting the enhancement (suppression) of the forward (backward) propagation. 

Positive and negative states are still both contributing to the probability distribu­

tion. The net Jo moves immediately off zero, but it is very small. At p  = p 0 the 

scenario changes completely since a seco n d ary  m a x im u m  develops at positive 

n, and the distribution distinctly moves into the positive n  region. We show this 

behaviour for both m q =  0.1 and m q = 0.08 in Fig. 4.11. For p  > p 0 the negative 

states are totally suppressed. This behavior is correlated with the sharp increase 

of n q plotted before and should be related to changes in the theory’s spectrum, 

perhaps reflecting pathologies of the quenched case such as the “ funny pions” [33] 

or Stephanov’s condensates [37].

■ For p  p c which'we believe corresponds to the expected critical region, we do 

indeed observe a broadening of the probability distribution consistent with a peak 

in the fermion number susceptibility and supporting the idea th a t p c is associated 

with a phase transition. We show this behaviour for both 64 and 84 lattices in Fig. 

4.12.

Now consider the critical region we see the expected broadening of the prob­

ability distribution a t p c (Fig. 4.12 , 4.13). Finite size effects become im portant 

again for p  >  p c. Note, in particular, in Fig. 4.13, the sensitivity to p  on a very 

fine scale : the three central plots are for p = 0.68,0.683,0.7.

In Fig. 4.14 we summarize these observations by plotting Wo, the probability 

th a t the system has zero particle number, and the integrated probabilities W + = 

Y,  Wn, n  > 0; W ~  = X) Wn ,n  <  0. The logarithmic scale of the plot makes it easy 

to see th a t backward and forward propagations are enhanced and suppressed by the 

same factor at small p. Correspondingly, the contribution of n = 0 must decrease. 

At p = p 0 n  = 0 equals the overall contribution from > 0. For p >  p 0 only positive 

n  contribute to Z.

These results suggest th a t p 0 is the threshold for a phase with only positive 

propagation. Perhaps this observation is a clue to the nature of the phase p  > p 0. 

Recall th a t mean field analysis predicts the threshold of the mixed phase (broken 

phase/ saturated  phase) at p ~  p 0. Future work should address possible relations 

between these observations.

We believe th a t p c indicates a physical critical point. All approaches (except 

the pathological quenched case) predict a transition or, at least, a clear change
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in the behavior of observables here. From the point of view of this section it is 

relatively easy to understand the robustness of this result whereby the probabilities 

plotted here underlie all the observables discussed earlier and the “flatness” of the 

distributions, which locates the critical point, is a qualitative feature which should 

appear in all the numerical procedures.

4.3.3 Summary of Finite Density Lattice QCD at Strong 

Coupling

The simulations of QCD at strong coupling [52] which implement dynamical fermions 

using the Glasgow reweighting procedure on 64 and 84 lattices have demonstrated 

the persistence of the early onset, /x0, of the transition first observed in the quenched 

theory. However the unquenched simulations give a signature corresponding to the 

expected f i c as predicted by the strong coupling expansion. The value of fxc pre­

dicted by the simulations is consistent with fimf  (Eqn. 4.1) for all bare quark 

masses. This signature is absent in the quenched theory and is attributable to the 

averaging of the characteristic polynomial which is controlled by the reweighting 

procedure. As dem onstrated for ma  =  0.1, the small discontinuity observed in the 

fermion number density correlated with a very clear signature in the zeros. The 

density of the moduli of the zeros is analogous to the fermion number susceptibility. 

The susceptibility gives a much stronger signal for a discontinuity at pLc .

The success of the monomer dimer approach (of use only at strong coupling) may 

be due to analytic integration first over the gauge fields, and then the fermion fields, 

giving an effective action with a reduced sign problem. Standard Hybrid Monte- 

Carlo algorithms integrate the fermion fields prior to the gauge fields. The Glasgow 

algorithm fic prediction is in agreement with the monomer-dimer algorithm, however 

in the latter there is no early onset and the critical fermion number density is 

n ca3 ~  0.05 in stark contrast to n ca3 ~  0.5 from the Glasgow algorithm.

The explanation of the persistence of p,0 in the hybrid Monte-Carlo simulations is 

essential to an understanding of the physics of the transition. It is conceivable that 

the colour deconfinement and chiral transitions are separated a t finite density. This 

may suggest th a t both fi0 and fic are physical. A finite tem perature study could be 

used to explore this scenario. We do however expect that the early onset, / i 0, should 

disappear in a correct calculation. Physical arguments support this view as well as 

the monomer-dimer and strong coupling expansions discussed here. It might be 

th a t a high statistics run of the present algorithm will cancel fj,0. In this case the
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method would be impractical, but, at least, not conceptually wrong. If this were 

true, we should develop a strategy to monitor the convergence of the m ethod to  the 

correct statistical ensemble, and to remove unphysical contributions to observables 

due to partial “cancellations” of unwanted onsets. Although a limited increase in 

statistics revealed th a t the peak in the histogram of zeros corresponding to p 0 grew 

proportionally with the peak a t p c it is still possible that the signal for p 0 will be 

“cancelled out” in the limit of infinite statistics once the Z(3) invariance has been 

completely achieved.

Since it is believed th a t a correct implementation of dynamical fermions will 

eliminate p 0 it is possible that the necessary cancellation of the poles of the propa­

gator by the zeros of the fermion determinant (for example in the expression for the 

chiral condensate Eqn. 2.46) has not been fully realized in the simulations. Incom­

plete cancellation could arise from either limited statistics or from the reweighting 

procedure itself: Using an ensemble generated at p, — 0, together with reweighting' 

with respect to the fermion determinant at p = 0 may not give sufficient overlap 

with an ensemble generated at p  ^  0 to correctly describe the true physics there. 

This explanation is suggested from the standard problems encountered by reweight­

ing procedures. We have investigated this possibility by performing an exploratory 

simulation of the three dimensional Gross Neveu model [53] the results of which will 

be described in Chapter 6. If reweighting does pose a problem the Glasgow method 

can be improved if a better starting point were invented. This is a worthwhile 

direction to pursue.

At the present point, we have to accept that, at strong gauge coupling, ensemble 

averaging does not help to suppress the pathologies of isolated configurations. The 

results of a similar investigation at intermediate gauge coupling where the gauge 

action d o es  c o n tr ib u te  to the dynamics will be discussed in the next chapter.

It might well be th a t a satisfactory simulation of finite density QCD requires an 

algorithm which produces physical results on each configuration. This insight has 

motivated our study of xQCD [54], where an irrelevant four fermi term  is added to 

the standard QCD action used here. xQCD has the advantage th a t chiral symme­

try  breaking and the generation of a dynamical quark mass occurs configuration-by- 

configuration and the pion and sigma excitations are explicitly free of fi dependence. 

In fact, as we shall demonstrate in Chapter 7 xQCD simulations do not suffer from 

the severe fi0 pathologies seen here [55], although additional work, both theoreti­

cal and practical, is needed to see if xQCD really produces only physical results. 

Research in this topic is in progress.
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Figure 4.1: Histogram of the zeros of the full model (top), and Histogram of the zeros 

of the determ inant (bottom), hence of the quenched approximation. Simulation with 

m q = 0 .1  and (3 = 0.0 on an 84 lattice.
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Figure 4.2: As in Fig. 4.1, but m q =  0.05.
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Figure 4.3: As in Fig. 4.1, but m q = 0.08.
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Figure 4.4: Summary of the ft = 0.0 results for the critical point /rc, and current 

onset n 0. n c follows the prediction of the mean field analysis of ref.[4] (dashed line). 

The onset is close to half the pion mass at small mass, and below half the pion mass 

for m q >  0.5 .
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Figure 4.5: Zeros in the eM plane for 64 lattice with m  = 0.095 and (3 = 0.0. The 

critical line is the thin line inside the denser region =  eMc
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Figure 4.6: Zeros in the eM plane for 84 lattice with m =  0.1 and /3 =  0.0. The 

critical line is the thin line inside the denser region =  eMc.
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Figure 4.7: Histogram of zeros accompanying Fig. 4.8 (m q =  0.1 and ft = 0.0 on 

a 64 lattice). Note a) the peak at fic — 0.687(15) matching the small jump, to be 

contrasted with the monomer-dimer results fic = 0.69(1). b) the correspondence of 

the extrem a of the histogram with the onset fi0 of the current and its saturation
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Figure 4.8: Quark number density from the Glasgow algorithm. m q — 0.1 on a 64 

lattice (5 =  0.0. The onset /z0 ~  0.33, and the saturation point fj,s ~  1.0, are the same 

as the ones observed in the quenched approximation. The critical point for chiral 

symmetry restoration measured in a monomer-dimer calculation is (Lc — 0.69(1), 

coincident with the little gap observed in our results. The same monomer-dimer 

results would, however, predict a very sharp transition with a critical density close 

to zero, in agreement with the results of the strong coupling expansion.
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Figure 4.9: Finite size effects a t m q = 0.1 and f3 = 0.0. We show details of the 

critical regions around fi0  and fic for m q = 0 .1  for two different lattices. The thick 

lines are for the 84 lattice, the thin lines for the 64.
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Figure 4.10: Probability distributions for small chemical potential at m q = 0 .1  and 

(3 = 0.0 on the 84 lattice. The solid line is fi = 0.0, the dashed lines , from top to 

bottom  a t n = 0, are for fj, = 0.1,0.2,0.3.
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to right. For both masses a t fi0  the probability distribution moves on the positive 

n  axes. Simulations were performed at /3 =  0.0
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Figure 4.12: Probability distributions in the critical region a t m q =  0.1 and /3 =  0.0, 
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Figure 4.13: Probability distributions on the 84 lattice with m q = 0.1 and ft =  0.0, 

for jj, = (0.5 , 0.6 , 0.68, 0.683, 0.7 , 0.8 , 0.9). Only the Bezier interpolations are 

shown. The complete results for several fi values can be seen in Fig. 4.12.
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Figure 4.14: Wo (solid) , and integrated probabilities W + and W  (dash) a t m q =  

0.1 and (3 = 0.0, on the 84 lattice
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Chapter 5

Sim ulation R esults at 

Interm ediate Gauge 

Coupling

The simulations at strong gauge coupling have proved to be very informative. 

We have implemented dynamical fermions in the simulations using the Glasgow 

reweighting method and have demonstrated the persistence of the early onset of 

the phase transition . The strong evidence for the emergence of a signal for the 

expected transition at jxc was very encouraging although the pathological onset at 

Ho remained.

We have associated the early onset of the transition Ho with mass poles of the 

quark propagator on isolated configurations. Our understanding of how the poles 

in the region Ho <  h < He can be cancelled by the fermion determinant is far from 

complete. Such a cancellation would allow us to obtain a physical picture consistent 

with mean-field analyses and the strong coupling expansion.

The strong coupling simulations have offered us considerable diagnostic power 

but in order to explain continuum physics it will be necessary to perform simula­

tions a t intermediate gauge couplings and to gradually push further towards the 

continuum limit /3 —> oo. For simulations at intermediate coupling S o  i 1 0 hence 

our gauge fields are no longer random (as they were in the strong coupling simula­

tions). There are few analytical results available a t intermediate coupling bu t the 

strong-coupling analysis of Bilic et. al. [48] predicted a critical chemical potential 

of He — 0.65 for a gauge coupling of (3 =  5.0. We can use this as a guideline for the
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expected critical point in our simulations.

Will the fermion number density and the partition function zeros suggest a 

similar picture to th a t occurring a t strong coupling?

Taking account of the fact th a t we generate our configurations a t fi = 0 and 

perform an analytic continuation into the complex plane we selected our lattice 

param eters so th a t we were close to the deconfinement transition for the 64 lattice. 

We believe th a t such a choice is optimal for the Glasgow reweighting technique. 

To ensure th a t for our choice of lattice parameters we had a starting point in our 

simulation such th a t we were in the confined phase a t fi — 0 we monitored the 

Z ( 3) tunnelling of the system. As explained in Chapter 2, the Z (3) tunnelling is 

an order param eter for confinement where dynamical fermions have been included 

in the simulations. As Fig. 5.1 shows, a t (3 = 5.1 and m  = 0.01 on an 84 lattice 

we obtained a  clear signal for Z(3) tunnelling whereby the sum of the triality zero 

coefficients shows a strong tendency to average to unity and the'sutn is bounded' 

below whilst those of triality one and two coefficients each tend to zero and the 

sum is bounded above. This is consistent with simulating in the confined phase 

a t h = 0 as expected at this coupling and quark mass. The strongest signal for 

tunnelling was obtained around the small n  levels and the first few terms in the 

partition function expansion dominate the sum. Although some of the triality zero 

levels are determined with large statistical error, it is clear th a t their real parts are 

approximating to a continuous curve with respect to n, as seen in Fig. 5.3 for an 

84 lattice a t /3 =  5.1 and m a = 0.01.

The hybrid Monte-Carlo time evolution of In | det M\ on an 84 lattice at /3 =  5.1 

and m a = 0.01 is shown in Fig. 5.2. We have noticed from simulations close to 

the transition on a 64 lattice th a t if the system switches from the confined to the 

deconfined phase ln |d e tM | increases. This is a direct result of the fact th a t in 

the confined phase the eigenvalues are relatively small compared to those in the 

deconfined phase. In the confined phase the eigenvalues cluster around the origin 

when plotted in the complex chemical potential plane. This gives a non-zero value 

for the chiral condensate.

5.0.4 Thermodynamic Observables

We obtained an estimate of the fermion number and energy densities directly from 

the coefficients of the expansion using the definitions in Eqns. 2.47 and 2.48. The 

results for 64 and 84 lattices at /3 = 5.1 and ma = 0.01 are plotted in Fig. 5.4. 

Clearly the onset a t fi0 ~  0.1 is inconsistent with the prediction fic ~  0.6 and



it is possible th a t this is a remnant of the pathologies first seen in the quenched 

theory. Although the onset chemical potential differs very little on the 64 and the 

84 lattice both the fermion number and energy density curves steepen in gradient 

on the larger lattice for fi > 0.7. This is exactly the behaviour we would expect due 

to finite size effects. It is clear from the susceptibilities plotted for the 84 lattice in 

Fig. 5.5, th a t there is a distinct increase in gradient of number and energy densities 

signalled by a peak in the susceptibilities at [i ~  0.65. This is completely consistent 

with the analysis of the partition function zeros shown in Fig. 5.6. The zeros show 

the characteristic band of increased density which was closely associated with fic 

in the strong coupling simulations. As expected, the innermost circle of zeros is 

associated with the onset in the number and energy densities and the outermost 

circle is associated with the lattice saturation. The histogram of the real parts of 

the zeros reflects this behaviour with a peak at // ~  0.7 — 0.9. It is possible th a t this 

- peak is the true critical point-(as suggested by our strong-coupling simulations):

5.1 Scaling Behaviour

We have also checked the fi3 scaling of the number density and the fi4  scaling of the 

energy density which is the behaviour expected for a Fermi gas in the continuum 

limit. We expect the quark-gluon plasma to approximate a Fermi gas of quarks 

with zero dynamical mass. For the range of chemical potential where the scaling is 

continuum-like the two plots in Fig. 5.7 should have zero gradient and this seems 

to be a good approximation for // ~  0.7 — 0.9. Note th a t the densities pertaining 

to a free lattice gas did not fit our simulation data. Clearly we would not expect to 

obtain continuum behaviour on small lattices but the observed scaling properties 

combined with the other evidence th a t some fi > fi0 could be associated with fic 

constitute a self-consistent picture of the features of all of our finite density QCD 

simulations with our method of implementation of dynamical fermions.

5.1.1 Onset Dependence on Bare Quark Mass

The fermion number density on a 64 and 84 lattices with (3 =  5.1 and m a  = 

0.01 revealed th a t the early onset of deconfinement seen in the strong coupling 

simulations also occurs at intermediate coupling. We found fi0 ~  0.1 which is 

much less than the expected fic and consistent with the results of the quenched 

theory. We therefore repeated our simulation for a range of quark masses on a 64 

lattice in order to establish whether the scaling of ji0 with the bare quark mass
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was consistent with either a baryon or a Goldstone pion controlling the transition. 

To do this we make use of the PC AC relation (Eqn. 1.48) which tells us th a t fi0  

should be proportional to the square root of the bare quark mass if the scaling 

is consistent with a Goldstone boson. We expect fi0 to  have a  linear dependence 

on the bare quark mass if the scaling is consistent with a baryon. For a  range 

of bare quark masses we have investigated [56] the chemical potential (the onset 

f i )  required to  make the level with 3 quarks equally probable with the zero quark 

level, i.e. f i o n set =  ( e3 — eo)/3. This ad-hoc definition takes into account th a t it is 

these energy levels which are most accurately determined and allows errors to be 

estim ated directly.

Fig. 5.8 shows the dependence of the onset fi on the square root of the quark 

mass on a 64 lattice at gauge coupling ^  =  5.1. As a t strong coupling there is a 

strong signal th a t this onset fi is dependent on the mass of a Goldstone boson for 

quark mass m  >  0.01. A t some smaller mass the system (on a 64 lattice a t this' 

/3) becomes ‘deconfined’. We checked this behaviour by determining the Lee-Yang 

zeros in the complex m-plane and they were found to be complex with non-zero 

real part < 0.01 as shown in Fig. 5.9. Eliminating the data  point corresponding to 

the smallest quark mass we see that scaling with the square root of the bare quark 

mass is clearly preferred. Thus by investigating the scaling of the onset chemical 

potential with the bare quark mass and relating it to the Goldstone pion we have 

given further credence to the direct link between the pathologies of finite density 

QCD and the mass poles of the quark propagator.

5.2 Summary of Interm ediate Coupling Simulations

Simulation of standard lattice QCD at finite density seems to be plagued by the 

problems of the naive quenched version of the theory, namely the chemical poten­

tial a t which the fermion number begins to differ from zero (/i 0) appears to  be 

controlled by a Goldstone pion rather than by the lightest baryon. However the 

features observed in the strong coupling simulations also carry over to the interme­

diate coupling regime. In particular, a t intermediate coupling, in addition to the 

pathological early onset, we observe a clear signal for f i c from the distribution of 

zeros in the eM plane which is reflected in the histogram of the real parts of the 

zeros. The susceptibilities of the fermion number and energy densities exhibit a 

peak in the region f i  ~  f i c and scaling of the fermion number and energy densities 

appears to be continuum like for f i>  fic. The observed signal for fic is encouraging
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but the persistence of n 0 is still a puzzle. It will be instructive to perform a very- 

high statistics simulation and to monitor the evolution of [i0 as the statistics are 

increased to determine whether or not it moves towards /ic. This work is in progress.
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Chapter 6

Exploratory study of the 3 

D im  (7(1) G ross-Neveu M odel

at ' f i  7̂  0

6.1 Introduction

The original motivation for studying four-fermion interaction models was the fact 

th a t they offer considerable insight into the phenomenon of dynamical chiral sym­

metry breaking in strong interaction physics [57]. The only degrees of freedom 

involved correspond to fermions which are coupled through a short-range interac­

tion. At strong couplings, realisation of the Nambu-Goldstone mechanism of chiral 

symmetry breaking results in the appearance of scalar bound states in the particle 

spectrum. The fermions interact by exchanging these scalar bound states analogous 

to the case of the linear er-model where the fermions are coupled to scalars by a 

Yukawa interaction. The Gross-Neveu model is the simplest relativistic theory of 

interacting fermions.

We have seen th a t the simulations of full QCD using the Glasgow algorithm 

reweighting method, the initial onset of the critical behaviour a t non-zero fi appears 

to be controlled by the pion mass rather than the mass of the lightest baryon. 

Since the inclusion of the fermion determinant in the simulations was expected to 

eliminate the anomalous early onset of criticality first observed in the quenched 

theory (which replaces the complex fermion determinant by unity), the question 

of whether the reweighting procedure is sufficiently effective in its implementation

100



of dynamical fermions must be addressed. To check whether the persistence of fi0  

is an artifact arising from measuring our observables on an ensemble generated at 

fi = 0 we have implemented our reweighting method in an exploratory study of the 

3 dimensional U( 1) Gross-Neveu model at finite density. The lattice formulation 

of this model is described in ref. [2]. In this paper Hands, Kim and Kogut present 

a thorough study of chiral symmetry restoration using an exact algorithm which 

generates the statistical ensemble a t n ^ 0 (i.e. a t the fi at which the measurement 

of the thermodynamic observable was made). Such exact simulations are possible 

because in this simple model the fermion determinant is real and non-negative even 

when fi ^  0. Therefore standard Monte-Carlo algorithms can be used to study its 

critical behaviour as a function of (i. The 3-dim 17(1) Gross-Neveu model lacks two 

im portant features of QCD

• the model does NOT confine quarks.

•  model does NOT have a COMPLEX fermion determinant when /j, ^  0.

However the GN model is known to have a chiral transition and does have a 

m assless p ion  in the broken phase (// <  fj,c) in the chiral limit {mq —> 0). Quan­

titative studies are possible since analytic predictions from the leading order 1 / N f  

expansion can be compared with Monte Carlo simulations. Hands, Kim and Kogut 

addressed the question of whether the presence of the massless Goldstone pion in 

the theory was possibly responsible for the pathologies linked with m w in QCD sim­

ulations . Their simulations of the GN model were completely successful producing 

physical results in agreement with the predictions of the l / N f  expansion. Their 

study concluded that the presence of a massless pion is not the source of difficulties 

in lattice QCD. Validation of the full QCD reweighting technique requires confir­

m ation th a t the onset of non-zero fermion number density is in agreement with the 

results of the exact simulation i.e. th a t the onset is unrelated to the Goldstone pion 

in this simple model. Note th a t the gauge fields are effectively unity in the GN 

model so th a t the variation of det M(n) as n is increased through the chiral transi­

tion region is largely determined by the expectation values of the a and 7r auxiliary 

fields. Sigma acts like a dynamical fermion mass in this four-fermi theory so we 

expect (a) to  fall sharply for fi > fic and this will inevitably affect the observables 

via the “reweighting factor” M(^=o) • QCD the situation is more complicated 

since the gauge fields do contribute to the dynamics via the probability measure 

det M(fi =  0 )e-5 G .
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6.1.1 The Lattice Formulation

The lattice action for the bosonized Gross-Neveu model with U (l) chiral symmetry 

is

N f / 4

s = E E  X i(x )M x,yXi(y)
i=  1 ' -x ,y

+  <j{x)+iE{x) 7r(^))
< x ,x >  < x ,x >

+  +  7r2(^))- C6-1)

Here, Xi and Xi are complex Grassmann-valued staggered fermion fields defined on 

the lattice sites, the auxiliary scalar and pseudoscalar fields a and n  are defined 

on the dual lattice sites, and the symbol ( x , x )  denotes the set of 8 dual sites x  

adjacent to the direct lattice site x.  N f  is the number of physical fermion species 

and 1 /C 2 is the four-fermi coupling. The symbol e ( x )  denotes the alternating phase
( _ ] ^ z o + X i + X 2 _

The fermion kinetic operator M  is given by

• M x ,y  —  2 [ ^ y , x + 6 eM — ^ y , x - d e  ^  2  ^  V i ' { x ) ^ y , x + i >  ~  ^ y , x - £ >  + 7 7 l S y t X , ( 6 - 2 )
i /=l,2

where m  is the bare fermion mass, fi is the chemical potential, and r]u{x) are the 

Kawamoto-Smit phases ( — i ) z o - i - - " + x „ _ i  _

This lattice model (at non-zero lattice spacing) has the symmetry: U (iV //4 )y  <g> 

U(N/ /4 )v ® U (1 )a . If is the U(1)a symmetry which is broken, either spontaneously 

by the dynamics of the system, or explicitly by a bare fermion mass. We simulated 

the N f  =  12 model corresponding to three lattice species.

The expansion of this GCPF is very similar to th a t described above for standard 

QCD. At finite density the Dirac fermion matrices M  and M  are given by:

2iM xy(ii) = Yxy + Gxy +  +  V ^e  **

—2iMxy{fi) =  Y}v + Gxy + V*ye» + V}ye-i'.

where

Y  = 2i(mq + ^  ^ 2  (cr(x)+ie 7r(x)))8 xy. (6.3)
< x , x >

The determ inants of these fermion matrices are related to th a t of the propagator 

matrix
/  _ G V - Y V  V  ,

P  =  (6-4)
\ - V  0

102



by

det(2®M) =  e3/m-nt det(P  -  e " M) 

det(2iM ) =  e3^ " *  d e t((P ~ 1)t -  e"**) (6.5)

As for standard QCD, determination of the eigenvalues of P nt gives the expansion 

for the GCPF:

6.1.2 Results

We performed simulations developing the ensemble at p = 0 to confirm th a t evalu­

ation of the grand canonical partition function via reweighting does give an extrap-

lattice a t a four-fermion coupling of 1 /C 2 =  0.5 and a bare fermion mass m  =  0.01 

is shown in Fig. 6.1. The chemical potential at which the number density, (n), be­

comes non-zero, p 0 , is correctly predicted. Note th a t from our simulation p Q ~  0.5 

bu t ^  ~  0.1 (from ref. [2]) so the reweighting procedure is consistent with the 

exact simulations in th a t there is no evidence for an anomalous onset connected 

with the Goldstone pion.

Comparison with the exact simulation [2] (in which generation of the ensemble 

was a t the p  a t which the measurement was made) clearly shows th a t in this model 

the reweighting procedure results in an underestimation of the number density at 

p  > p 0. In fact the discontinuity in (n) corresponding to p c is absent in the number 

density estim ated from the coefficients of the GCPF generated on an ensemble at

In the GN model the gauge fields do not contribute to the dynamics so th a t the 

gauge links are effectively identity matrices. In this case it is instructive to  com­

pare our simulation data  for the fermion number density as a function of chemical 

potential with the predicted behaviour of a free fermi gas.

The expression for a free Fermi gas is obtained by summing over the finite 

set of M atsubara frequencies [58] th a t arises in the lattice thermodynamics. The 

appropriate expressions for the momentum sums for a 3-dimensional free lattice gas 

are :-

,nnnt

n=—2n„2 n=—2n,2

olation which predicts the correct critical behaviour. The number density for a 163

p = 0.

f t  f r e e  — 2®
f w d?p sin(p0 +  ip) cos(po +  ip)
-7T 2tt £ <=1 sin2 pi +  s in 2 (po +  ifj)

(6.7)

and

(6.8)
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where po is associated with the temporal direction. Exact simulations showed th a t 

for the above four-fermi coupling and fermion mass the theory has a critical chemical 

potential p c =  0.725(25) a t which the chiral symmetry is restored. The profile of 

the number density and energy density in the exact simulations corresponds to that 

of a free lattice gas of mass m q for p  > p c so it is consistent with a free fermion gas 

in the chiral limit. Using the Glasgow reweighting algorithm it was only possible 

to achieve free-fermion gas behaviour in the number density for an update chemical 

potential p  > p c- Note th a t in the Gross-Neveu model it is possible to generate an 

ensemble a t a non-zero update chemical potential whereas in QCD we are restricted 

to  updating a t p = 0 because the determinant is complex for finite density QCD.

The influence of the update chemical potential is illustrated in the upper portion 

of Fig. 6.1 which shows the number density obtained from an ensemble generated at 

an update p = 0.8, which is greater than p c. In the chiral limit the number density 

■ is consistent with th a t of a free gas of massless fermions whereas the num ber density ' 

from the p  =  0 update is th a t of a free gas of massive fermions. The exact results 

show the transition between these two phases a t p c.

The Lee-Yang zeros in the complex p  plane are the zeros of Eqn. 6.6 and should 

signal the critical p  associated with the chiral transition transition. They are shown 

in Fig. 6.1 There is a line formed by 6 zeros, two of which are isolated from the rest 

of the distribution. The line intersects the real p  axis a t p = 0.72, in agreement 

with the critical p  found by the exact method.

Hence we find th a t for four-fermi coupling 1 /C 2 =  0.5 and m  =  0.01 the onset 

p  found via the number density is not controlled by the Goldstone boson, and the 

critical p  is given by the distribution of the Lee-Yang zeros.

We repeated our simulations with the reweighting m ethod for 1 /C 2  =  0.8 and 

the same quark mass (m =  0.01). At this coupling the results from exact simu­

lations were much less well-defined with the fermion number and energy densities 

forming smooth curves with a much less obvious discontinuity than in the case of 

1 /C 2 =  0.5. The simulation results showed the same general features as the 1 / N  

calculation although the p c is much more difficult to locate especially from the 

number and energy densities. The transition was shown with greater clarity in the 

model’s spectroscopy. From the exact simulations Hands et. al. concluded th a t the 

transition was in the vicinity of p c — 0.295(3) and again there was no evidence for 

pathological behaviour at p = m ^/2  ~  0.11(1). Our own results are plotted in Fig. 

6.2. Again the Glasgow algorithm underestimates the number density based on a 

comparison with the exact simulation. The zeros which correctly predicted p c in
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the case of 1 /C 2 =  0.5, this time indicate fxc ~  0.4 which differs slightly from the 

value from the exact simulations. This could however be due to the difficulty in 

locating the transition point a t this particular four-fermi coupling.

A comparison of the predictions of the lattice gap equation for the fermion 

number density with the profile for a free lattice gas is made in Fig. 6.3. For both 

four-fermi couplings the behaviour for fi > fic is very well approximated by a free 

lattice gas. Note th a t for four-fermi coupling of 0.8 the gap equation starts to agree 

with the free lattice gas behaviour for fi ~  0.4 which is consistent with the estimate 

of fic from the zeros of the Glasgow reweighting method. The upper portion of Fig. 

6.4 shows the effect of a finite bare-quark mass in the simulations. As the bare 

quark mass is increased fj,c gradually increases and the number density takes longer 

to  converge with the free lattice gas curve.

It is easily shown from a numerical evaluation of the gap equation th a t the 

onset in the Gross-Neveu model is simply a finite size effect i.e: as the lattice 

size is increased n 0 increases accordingly as the transition sharpens up. This is 

dem onstrated in Fig. 6.4 where the number density profiles for four-fermi coupling 

0.8 with m  = 0.01 and for 83, 163 and 323 lattices have been plotted. Note that 

even on a 323 lattice the transition is not particularly sharp yet.

6.2 Summary of Gross-Neveu M odel Simulations

Exploratory simulations of the 3 dimensional Gross-Neveu model using the Glasgow 

reweighting procedure have confirmed the findings of the exact simulations in that 

there is no evidence for the pathologies connected with the pion mass which appear 

in standard QCD at finite chemical potential. There is good evidence th a t fic 

can be accurately predicted from the zeros distribution (as long as the update 

chemical potential is less than the critical value) and this is certainly true a t four- 

fermi coupling 1 /C 2 = 0.5 where the transition is strongly first order. The general 

vicinity of the transition can be confidently predicted for 1 /C 2 =  0.8. The fermion 

number density is inconsistent with th a t from the exact simulations for both four- 

fermi couplings tried and for 1 /C 2 = 0.5 the Glasgow algorithm did not pick up the 

discontinuity. The efficiency of the reweighting algorithm should certainly increase 

as higher statistics are obtained and in both of the simulations described above only 

a modest number of measurements (around 300) were made. The problems with 

the number density profile must originate from the fact th a t we have generated the 

configurations at zero chemical potential. However a  very high statistics simulation
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is clearly a finite size effect in this model.
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may well eliminate this problem. Alternatively the reweighting method could be 

improved if a better starting point were invented.

It is im portant to bear in mind th a t the outcome of this exploratory study cannot 

be translated directly to finite density QCD because as already mentioned some of 

the key ingredients of QCD are missing in the Gross-Neveu model. Unfortunately 

the GN model does not allow us to assess the crucial role which quark confinement 

plays in relation to the chiral transition. The most significant comparative factor in 

terms of the reweighting procedure is that in the Gross-Neveu model the gauge fields 

are all equal to unity whereas in QCD they make an im portant contribution to the 

dynamics. Although with limited statistics we certainly cannot trust the numerical 

values for the number and energy densities obtained from the reweighting method 

in the Gross-Neveu model we have shown that the zeros do correctly predict the 

critical chemical potential for the chiral transition and there is no evidence th a t the 

pion causes pathologies in this m odel...............................................................................
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Chapter 7

xQ C D  - Lattice Simulations 

at Non-Zero Chemical 

P otential in the Chiral Limit

7.1 Introduction to Four-Fermion Interaction M od­

els

The unphysical results of early quenched QCD simulations at finite density whereby 

an infinitesimal chemical potential led to chiral symmetry restoration in the theory 

with massless quarks have taught us that simulation studies of QCD at n ^  0 m u s t 

in c o rp o ra te  d y n am ica l fe rm io n s. It is believed th a t a correct implementation 

of dynamical fermions should result in the disappearance of the early pathological 

onset, /i0, first observed in the quenched theory.

As described in Chapters 4 and 5, in the simulations of full QCD (using the 

Glasgow algorithm which involves generation of the statistical ensemble at n = 0 

in conjunction with reweighting w.r.t. detM(/x=oj ) in^ied onset of the critical 

behaviour a t non-zero [i was controlled by the pion mass rather than th a t of the 

lightest baryon. This result was unexpected. To assess whether this is an artifact of 

measuring our observables on an ensemble generated at n  = 0, an implementation 

of the above reweighting method in a study of the 3-dimensional Gross-Neveu model 

a t finite density has been investigated. This has shown th a t the chemical potential 

a t which the number density, becomes non-zero, ix0, is correctly predicted and there 

is no evidence for pion dependence in this simple four-fermion interaction model.
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Due to the persistent dependence of the quenched onset of criticality in full 

QCD simulations at non-zero ju, and in the wisdom of experience with the Gross- 

Neveu model simulations where the anomalous pion-dependence is absent, we have 

investigated a new approach to QCD at finite density which has several im portant 

features. We add a chiral invariant four-fermi interaction terms to the standard 

QCD lattice action. These additional four-fermi interaction terms become irrelevant 

(in the renormalization group sense) as the lattice spacing is reduced to zero and thus 

should not affect the critical properties of QCD in the continuum limit. However 

a t finite lattice spacings the four-fermi terms favour the generation of a dynamical 

fermion mass [59]. Since this dynamical mass removes the singularity in the Dirac 

operator it allows us to study the behaviour of the theory in the chiral limit of 

e x a c tly  m assless  q u a rk s . This is not practical in standard QCD simulations 

where we rely on an extrapolation to zero bare quark mass. We refer to this modified 

version of-QCD-with an additional four-fermi interaction as xQCD [54].

An additional advantage of the xQCD algorithm is th a t it runs more efficiently 

and more than an order of magnitude faster than the standard QCD algorithm. In 

addition, a t m q = 0 there is a m assless Goldstone pion in xQCD.

Note th a t a t zero gauge coupling xQCD reduces to a Nambu-Jona-Lasinio 

model.

7.2 QCD with an additional Four-Fermi Interac­

tion

In the following formulation we will add an irrelevant four-fermi interaction term  

to the standard QCD action. This additional term  is of the form:

C 2 + O075’/’)2) (7.1)

For the purposes of analysis and simulations we require an action which is formally 

quadratic in the staggered fermion fields. The standard process of bosonization 

is used to linearize this four-fermion interaction term. We use the fact th a t the 

path  integral of Gaussian functions can be performed exactly by applying following 

identity:-

J  DQ  exp i J  dAx  (±A@ — Z?@2)
1 ( m ^ 21

=  ~Z' exp ! J l d x 4B, (7.2)

where © represents the auxiliary field; A  will be associated with (ijjip) or ( ' )  

and Z 1 is an infinite normalisation constant which need not be known explicitly.
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This explains the origin of the auxiliary pseudoscalar fields a and n  in the xQCD 

Lagrangian below.

The molecular dynamics Lagrangian for this lattice theory with staggered quarks

is

L = - / ? £ [ ! - i  Re(Tr UUUUU)] +  V  0 +M +M 0
□ s

-  Y ,  ^ N n ( a 2 + * 2) +  \  + * 2)
S 8

+ -  ^ ( ^ 7  +  4- 6 2 O2 + O3 Q3 ) (7.3)
I

where

M  =Jp + m q + j ^  ^2(cri +  ieiti) (7.4)
i

e = (—ly+v+z+t and the 6{ parametrize the SU(3) link variables U,

■ T h e 'd u a l's ite s  on' the lattice of Voliim6 rit x n 's3 are labelled by s [60] and 

the auxiliary fields a and 7r linearize the 4-fermi term. This Lagrangian describes

N f  =  8 flavours. For N f  which is not a multiple of 8 we use “noisy fermions” [29]

and multiply the fermion kinetic term by N f / 8.

After integrating over the auxiliary fields, the lattice model approximates to the 

continuum theory

C 2 2 /7  , \ 2L = il> (7 m£>m +  /i7o + m 0) i p -  -  ( 0 0 ) - ( 0 7 5 0 )  -  f—^T r  { F ^ F ^ )  (7.5)
1

where (5 = 2 N c/ g 2 and C 2 = I / 7 . The continuum theory (Eqn. 7.5) is invariant 

under the global JJ{ 1) chiral symmetry

0  -> 0 e i75<? , 0  ei75 V  (7.6)

Now consider the lattice model where for simplicity we consider a theory where 

the 4-fermion operator has a

U(  1) x U( 1) C S U ( N f )  x S U ( N f )

flavour symmetry generated by (1 ,175^5) [61]. The component of the chiral sym­

m etry generated by 1 is trivial since it is invariant under the following global trans­

formation which holds for all values of the quark mass and leaves fermion bilinears

(and quadrilinears) invariant

0 (n ) —> e ^ 0 (n ) (7.7)
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The most interesting component (which is only a symmetry when the quark mass 

is zero) is generated by 175^5. Under this symmetry the fields transform as

V>(n) -4

tr(n) +  iTv(n) -4 e*  ̂ [cr(n) 4- nr(n)] (7.8)

from which we find th a t

cr(n) 4- ie(n)7r(n) —> e*^e(n) [cr(n) 4- ie(n)7r(n)]

Aip(n) -4  e ^ ^ A ^ n )  (7.9)

and it follows th a t if m q = 0, the Lagrangian is chirally invariant. The U( 1) chiral 

symmetry is spontaneously broken in the low density hadron phase through the 

dynamics of the colour gauge fields. The chiral condensate is defined by

...................................................( * V t  =  f i W .......................................... (7.10)

where xa and x a are the staggered fermion fields and each xa represents four de­

generate flavours of fermions so th a t the sum over the flavour index a runs from 

1 to N f / 4. The chiral condensate is nonzero in the broken phase and serves as 

the order param eter for the chiral transition. Consider how the addition of the 

four-fermi term  facilitates simulations directly in the chiral limit. The Dirac oper­

ator of standard lattice QCD becomes singular as m q -4 0 simply because m q sits 

on the diagonal of the fermion matrix. By inspecting Eqn. 7.4 it is evident th a t 

the auxiliary scalar field a appears on the diagonal in addition to the bare quark 

mass term. The Dirac operator in xQCD remains non-singular at m q =  0 because 

the expectation value of a is always non-zero. One might naively expect th a t as 

we approach the limit of QCD as we take 7  —> 0 0  th a t we would obtain (a) ~  0, 

however this should not be the case. In fact in xQCD the QCD sector acts as an 

external symmetry breaking source to the auxiliary field scalar sector (analogous 

to an external magnetic field for a paramagnetic material) . Note th a t any gauge 

coupling is sufficient to drive chiral symmetry breaking on sufficiently large lattices. 

Therefore the expectation value of a  is always non-zero in xQCD even when the 

four-fermi coupling is chosen so small th a t it alone is insignificant dynamically.

The Lagrangian of xQCD, L (C 2), has a simple dependence on the four-fermi 

coupling C 2 and when C 2 —> 0 or equivalently 7  —>■ 0 0 , L (C 2) becomes formally 

equivalent to the standard QCD Lagrangian. How small must C 2 be in order to  be 

confident th a t we are extracting only QCD dynamics from the xQCD simulations 

and not physics which is dominated by the influence of the four fermion interaction
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term  ? We must ask for what threshold value of C 2 does the four-fermion interaction

cease to dominate the physics? When the gauge coupling is taken to  zero so th a t we 

are considering a pure four-fermi model, the simulations indicate th a t for 7  > 1.7 

[54] the chiral condensate vanishes so th a t the pure four-fermi model is already in 

the chirally symmetric phase for 7  >  1.7. Therefore provided we choose 7  1.7

the simulation results should correspond entirely to physical phenomena controlled 

by QCD dynamics.

Conjugate gradient inversion of the standard QCD Dirac operator requires a 

number of iterations which diverges as V  -> 00 and m q —>■ 0. Inversion of the 

xQCD Dirac operator requires a finite number of iterations even a t m q =  0. In 

addition the scale of the ‘tim e’ step in the molecular dynamics algorithm of xQCD 

is set by the dynamical quark mass and thus can be chosen several times larger in 

xQCD than in QCD for the same systematic error or acceptance rate.

7.2.1 Formulation

The expansion of the G CPF for xQCD is very similar to that described above for 

standard  QCD. The Dirac fermion matrices M  and M  are given by:

The determ inants of these fermion matrices are related to th a t of the propagator 

m atrix

As for standard  QCD, determination of the eigenvalues of P nt gives the expansion

2iM xy(n) — Yxy 4- Gxy 4- Vxye^ -I- V jye ^ 

-2 iM xv(p) =  Y*y + Gx,  + Vxye“ + V 'jje-''. (7.11)

where

(7.12)

(7.13)

by

det(2iM ) =  e3(in*nt det(P  -  e“ M) 

det(2 iM ) = e3fin' nt det ( (P -1 )1 -  e"^) (7.14)

for the GCPF:

< 6|nj > en/m* =  ] T  e-(«»-"f0 / r  (7.15)
n = —6n„3 n = —6n„3
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7.3 P re lim in a ry  results o f sim ulations o f x Q C D  at 

fin ite  density

The above equation provides an expansion of the GCPF in terms of the canonical 

partition  functions for fixed particle number [62]. Hence the chemical potential is 

given as a function of fermion number by the local derivative with respect to  n  of 

en , the energy of the state with n  fermions.

M  = (7-16)

where p is the fermion density,

We have measured the energies en for xQCD at strong and intermediate gauge 

couplings and varying 4-fermi couplings (parametrized by 7 ) on 44 and 64 lattices 

with m q = 0 .

' Given sufficient measurements, the en with mod(n, 3) = ' 0 should be real and 

finite whereas the en with mod(n, 3) 7̂  0 should tend to 00 (so th a t bn —> 0) 

because of the Z (3) tunnelling described above. We do see in our simulations th a t 

this tunnelling is occurring, with the strongest signal around the small n  levels. 

However, although some of the triality zero levels are determined with large error, 

it is clear th a t their real parts are approximating to a continuous curve with respect 

to n, as shown in Fig. 7.1.

We therefore made a cubic spline fit to a randomly selected subset of n 3s/  3 of 

the 2n3 en ’s with n  >  0 and triality zero and evaluated the derivative. This process 

was performed n 3f 3 times and an estimate of the fitting error and the mean was 

obtained from the distribution of the corresponding /x(p)’s. The continuity of the 

coefficients allows us to obtain profiles of the number density and energy density 

even on samples with limited statistics. The process is illustrated for a sample data  

set on a 64 lattice with ft = 5.0 and 7  =  3 by Figs. 7.2 and 7.3 . A total of 433 

triality  zero GCPF expansion coefficients from the coefficient corresponding to the 

zero quark (n =  0)CPF up to the coefficient corresponding to a fully populated 

lattice with n = 2n s3nt quarks. A random number generator was used to select 

80 distinct values of n  and the corresponding 80 coefficients were used to obtain 

the chemical potential as a function of the fermion number density from the local 

derivative of the coefficients with respect to n  (with appropriate normalisations). 

The derivative was calculated in the simplest possible way from the actual data 

points. This analysis was repeated on 300 sets of 80 coefficients and the results 

were plotted in the top diagram in Fig. 7.2. Since we expect the estimates of the
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coefficients to improve as the statistics are increased we investigated the effects of 

excluding those coefficients in the sample of 433 which were known to have large 

statistical errors and those which were not strictly positive (remembering th a t the 

coefficients must be positive if their interpretation as canonical partition functions 

is to be valid). We call this subset of 129 relatively accurate coefficients the “filtered 

set” . The results of the same analysis on the filtered set are shown in the bottom  

diagram in Fig. 7.2. Clearly we have achieved a more clear-cut number density 

curve and comparison of the upper and lower plots in Fig. 7.2 inspires confidence 

in our analysis procedure since we can see th a t as the statistical errors are reduced 

we can expect the outlying data  points on the number density profile to converge 

towards the fitted curve. The results of our splinefit to the data set are shown in 

Fig. 7.3.

In Fig. 7.4 we show the number density at strong gauge coupling, m q = 0 on a 

■ 44 lattice for varying 4-fermi couplings given by 7 . The pion is massless and mean 

field analyses [48] predict the critical fi to be about 0.60. S tandard QCD would give 

the particle number becoming non-zero at very small fj, whereas our simulation of 

xQCD is in good agreement with the mean field prediction. Note th a t we expect 

the fermion number density curves to become progressively closer as 7  is increased 

since for large 7  values (weaker four-fermi couplings) the four-fermi term  ceases 

to  dominate so the number density should become characteristic of standard finite 

density QCD. The simulation results are consistent with this trend.

Fig. 7.5 shows the number density a t a weaker gauge coupling (5 =  5.0 and 

m q =  0.0 for varying 7  on a 64 lattice. Simulations a t fi = 0 indicate th a t there is a 

finite ’tem perature’ quark gluon plasma transition for 7  between 5.0 and 6.0. Our 

results were totally consistent with this prediction - Fig. 7.5 shows this transition 

very clearly with the critical ^  > 0.5 for 7  < 5 .0  and falling suddenly to zero for 

7  =  6.0. For 7  =  1 ,2 ,3 ,4 ,5  our results were consistent with those on the 44 lattice 

a t /3 =  0.5 i.e. fi0 was significantly larger than the onset fi for the number density in 

standard  QCD. The six sets of zeros for the 64 lattice are plotted in Fig. 7.6. The 

inclusion of the four-fermi coupling means th a t we expect a zeros pattern  which is 

distinct from the simple pattern  observed for the standard QCD simulations. It 

can be seen th a t for 7  =  1 where the four-fermion interaction is dominant and 

for 7  =  6 where the QCD sector is deconfined the zeros have general features 

resembling those in the Gross-Neveu simulations. For 7  =  2 ,3 ,4 ,5  the innermost 

circular arc of zeros has a radius which decreases gradually and the corresponding 

fermion number density curves become progressively closer as gamma increases.
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The histograms of the real part of the zeros are plotted in Fig. 7.7. The histograms 

should be compared with those obtained for standard QCD at (3 =  5.01. Although 

the onset [i is distinctly larger for xQCD it is possible th a t there is a signal for a 

secondary peak is developing at n  ~  0.8 in the 7  =  5 and 7  =  6 data  sets. This 

is supported by Fig. 7.8 which shows the fermion number susceptibility for the 

64 lattice a t 7  =  5 and for the 84 lattice at 7  =  8 , both a t intermediate gauge 

coupling. The susceptibility plots for the two lattices are remakably similar and 

there seems to be an increase in gradient a t n  ~  0.8. We have also checked the 

/j? scaling of the number density and the fiA scaling of the energy density which is 

the behaviour expected in the continuum limit. For the range of chemical potential 

where the scaling is continuum-like the quantities plotted in Fig. 7.9 should have 

zero gradient -  this seems to be a good approximation for fj, ~  0.8—1.0. Furthermore 

the continuum scaling behaviours of both standard QCD and xQCD appear to be 

consistent'as'shown for the fermion num ber density-in -Fig. 7.10. Clearly the onset' 

f.1 is significantly larger for xQCD than for QCD however both data  sets have zero 

gradient (consistent with /x3 scaling) in the region marked m u x  to m u y • Comparing 

with Fig. 5.6, m u x  =  0.72 corresponds to the inner circle and m u y  =  0.89 to the 

outer circle of the band of increased density associated with /xc and the second 

peak in the histogram of the real parts of the zeros. The real parts of the zeros for 

xQCD (84 lattice) are plotted in the lower portion of Fig. 7.10. The development 

of a secondary peak is more difficult to distinguish than for standard QCD because 

the onset is much larger for xQCD however it is possible th a t an additional signal 

(corresponding to the true transition) at n  >  [i0 could also be present in this case.

Stochastic estimators were implemented for xQCD at 7  =  8 and /3 =  4 on an 84 

lattice (see Figs. 7.11 and 7.12). The operators used for the stochastic estimators 

are defined in Eqns. 2.44, 2.45 and 2.46. For the 84 lattice, the expectation value 

of the operator O was calculated from the following ad. hoc. definition:

Although the above definition is non-standard, it was necessary to use the a b so lu te

fluctuations in sign.

The profiles of the fermion number and energy densities were completely con-

function. For this 84 lattice with the given parameters we found /x0 ~  0.5. It was 

also possible to obtain the chiral condensate using a stochastic estimator. As seen

< A b s ( o j | |£ i } ) )

<Abs
(7.17)

v alue of the (appropriately normalised) determinant to eliminate the effects of the

sistent with those obtained from the coefficients of the grand canonical partition
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in Fig. 7.12 the chiral condensate starts to fall a t (i ~  n 0 indicating the onset 

of the chiral transition however the gradient becomes distinctly less negative for 

H ~  0.6 — 1.0 the interpretation of this effect is unclear at present.

The effects of the fluctuations in sign mentioned above can be seen from the 

stochastic estim ator results on the 44 lattice for (5 = 0.5 and 7  =  9 (see Fig. 7.13) 

where the absolute value of the determinant was n o t taken.

7.4 Summary of xQCD Simulations

We have seen in previous chapters th a t the finite density simulations which include 

dynamical fermions give a clear signal for the expected transition at fic bu t retain 

the pathological quenched onset fi0. It is still conceivable th a t fi0 may not cancel 

with high statistics in which case a satisfactory simulation of finite density QCD 

requires an algorithm which produces.physical results on-each configuration.' This' 

has m otivated our study of xQCD where we have added a perturbatively irrelevant 

four fermion interaction term to the lattice QCD Lagrangian. xQCD has the ad­

vantage th a t chiral symmetry breaking and the generation of a dynamical quark 

mass occurs co n fig u ra tio n -b y -co n fig u ra tio n  and the pion and sigma excitations 

are explicitly free of dependence. We have seen th a t xQCD simulations do not 

appear to suffer from the severe /i0 pathologies seen in standard QCD. We note 

th a t the introduction of a four-fermi interaction can also speed up spectroscopy 

and m atrix  element calculations for QCD with dynamical fermions a t light quark 

masses because of the dynamical quark mass it introduces.

Certainly additional analytical and numerical work is required to see if xQCD 

really produces only physical results. In particular, it will be necessary to explore 

the interplay between the gauge coupling and the four-fermi coupling to determine 

definitively the range of couplings for which QCD dynamics is dominant. The con­

dition 7  >  1.7 is a necessary but not necessarily a sufficient condition to ensure 

th a t the chiral symmetry breaking is entirely due to the QCD sector of the theory. 

Additional simulations should be able to clarify whether fi0 = fic for xQCD. In 

future work it will be im portant to establish how the critical points of QCD and 

of xQCD are related. For example, does the xQCD onset scale like m 7r((cr))/2 or 

like m s((cr))/3? Addressing such questions should help to reveal the origin of the 

pathologies of finite density QCD simulations. If we find that [i0 < n c in xQCD 

as well as QCD we will have to reconsider the role of the quark propagator in a 

colour confined system and attem pt to understand how the poles in the propaga-
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Figure 7.1: The energy levels en vs. n  on a 64 lattice a t j3 =  5.0 and 7  =  5.0.

tor for fig -> n c could be cancelled by the fermion determinant. These questions 

can be addressed by exploring the phenomenology of the xQCD algorithm and by 

performing very high statistics QCD simulation to see how n 0 evolves in relation to 

the signal for /jlc.
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Figure 7.6: PLANE ZEROS FOR CHIRAL QCD ON A 64 LATTICE AT (3 = 5.0

AND 7 =  1,2 (top);3,4(middle);5,6(bottom)
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Conclusions

The pathologies of quenched lattice QCD at non-zero chemical potential are well- 

known. However the explanations for the failure of the quenched theory have been 

the focus of debate ever since the problem was first exposed in 1986 [31]. Gibbs 

[35] showed th a t the failure of the quenched theory could be explained by the mass 

poles in the fermion propagator on isolated configurations and the more recent work 

of Stephanov [37] using a random m atrix model strongly suggests th a t the phase 

of the fermionic determ inant is im portant and th a t the true physical nature of the 

deconfinement/chiral transition at fi ^  0 will only be revealed with a simulation 

which correctly implements dynamical quarks. This task is a difficult one since the 

fermion determ inant becomes complex for [jl ^  0 and standard Hybrid Monte Carlo 

simulation algorithms cannot be directly applied.

This thesis describes an attem pt to implement dynamical fermions in finite den­

sity QCD simulations by using a reweighting method where the statistical ensemble 

is generated a t zero chemical potential thereby avoiding the problem of the complex 

action. The grand canonical partition function is expanded in powers of the fugacity 

variable and from the coefficients of this expansion the fermion number density and 

energy density are obtained. The coefficients are also used to perform a Lee-Yang 

zeros analysis of the partition function which gives us additional information on the 

phase structure of the theory.

The Glasgow method was applied to simulations at infinite coupling where our 

results could be compared with analytical results from the strong coupling expansion 

[48] and simulation results from the monomer-dimer algorithm [49]. By extending 

the arguments of Gibbs and developing an improved complex zeros analysis we have 

shown th a t the reweighting method gives clear signs of the critical point fic which 

should be the point of chiral symmetry restoration. The method also gives an onset, 

fi0, in the number density which is much less than fj,c. This onset is most likely 

unphysical since it is not seen in the monomer-dimer results and it coincides with
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the pathological onset first seen in the quenched theory. We have demonstrated 

by an analysis of the probability distributions for particle number th a t fi0 is the 

threshold of a phase characterised by forward quark propagation.

Simulations a t intermediate gauge coupling (3 = 5.1 where 5g  /  0 showed 

features very similar to the infinite coupling simulations with an early onset n 0 

for the transition and a signal for the true critical point fic in the zeros. The 

susceptibilities of the number and energy densities supported this scenario. An 

investigation of the scaling of fi0 with the bare quark mass revealed scaling with 

the square root of the bare quark mass which suggested th a t a Goldstone pion was 

controlling the onset. This result was unexpected because a pion has zero baryon 

number and therefore should not propagate in the temporal direction for n  ^  0 . 

Unfortunately since the thermodynamic observables in our simulations deviate from 

zero a t the unphysical n 0 point, their values near fic cannot be trusted which means 

that, although the Glasgow algorithm gives n c accurately, it does not make any other' 

phenomenologically reliable predictions.

We have attem pted to address the question of whether the persistence of /i0 

originates from having generated configurations a t zero chemical potential. This 

explanation is suggested from the standard problems encountered by reweighting 

procedures and from the behaviour observed in our exploratory simulations of the 

3 dimensional Gross-Neveu model a t ^  0. Implementation of the reweighting 

procedure in this simple model indicated th a t (with limited statistics) the disconti­

nuity in the number density at the chiral transition point fic was not observed. The 

discontinuity was clearly observed in the exact simulations at four-fermi coupling 

of 1 /C 2 = 0.5. However by generating our ensemble at fi < /ic we were able to 

accurately predict the critical chemical potential from the Lee-Yang zeros analysis. 

We verified the findings of the exact simulations in th a t we did not observe an 

early onset of the chiral transition despite having a non-zero bare quark mass in 

our simulations in a theory with pion which is massless in the chiral limit.

It is expected th a t the onset in the QCD simulations should disappear in a 

correct calculation. This would require cancellation of the poles of the fermion 

propagator by the fermion determinant. It may well be th a t a very high statistics 

run of the Glasgow reweighting algorithm will cancel the early onset (i0 and in 

this case a strategy should be developed to monitor the convergence of the method 

to the correct statistical ensemble. If the unwanted onset p 0 can be cancelled 

with high statistics then implementation of the reweighting method would be CPU 

intensive although not conceptually wrong. An unpleasant possibility which must be
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considered if the unwanted onset cannot be cancelled is th a t the Hybrid Monte Carlo 

approach to finite density QCD is flawed. The monomer-dimer algorithm involves 

first integrating over the gauge fields and then the fermion fields. Hybrid Monte- 

Carlo algorithms integrate the fermion fields first. It is clear from the work presented 

in this thesis th a t ensemble averaging does not help to suppress the pathologies of 

isolated configurations.

It may be the case th a t a satisfactory simulation of finite density QCD requires 

an algorithm which produces physical results on each configuration. A promis­

ing development of this sort is xQCD [54], where an irrelevant four fermi term 

is added to the standard QCD action used here. xQCD has the advantage th a t 

chiral symmetry breaking and the generation of a dynamical quark mass occurs 

configuration-by-configuration and the pion and sigma excitations are explicitly free 

of / 1 dependence. In fact preliminary simulations of xQCD at non-zero chemical po­

tential described in Chapter 7 of this thesis do not seem to suffer from the se v e re /v  

pathologies seen here bu t additional work, both theoretical and practical, is needed 

to see if xQCD really produces only physical results. Certainly the forbidden region 

Vo <  V <  Vc (characterised by large fluctuations in the observables) is significantly 

smaller for xQCD than for standard QCD. In future xQCD simulations it will be 

necessary to  explore the interplay between the gauge coupling and the four-fermi 

coupling in order to determine the range of couplings for which QCD dynamics is 

dominant. The condition 7  >  1.7 is a necessary but not a sufficient condition to 

ensure th a t the chiral symmetry breaking is entirely due to the QCD sector of the 

theory. Additional simulations should be able to clarify whether fi0 = fic for xQCD

Simulations of Lattice QCD at finite baryon density continue to pose a chal­

lenge for theoretical physics and although steady progress has been made towards 

understanding the pathologies of the theory, increased computing power and more 

theoretical effort are required before we can make confident predictions for critical 

densities an energies associated with the deconfinement/chiral phase transition.
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