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SUMMARY

The jaw-closing muscles generally are more resistant to fatigue than the 

limb muscles. The specific process of fatigue referred to here is localized 

fatigue proximal to the neuromuscular junction. In view of this resistance 

to fatigue and the notion that muscle fatigue leads to the muscle pain 

experienced in craniomandibular disorders, it was considered that this 

process required further investigation.

The jaw-closing muscle system presents difficulties for fatigue studies 

because of the complex inter-relationship of the muscles. It is not possible 

to isolate the force output of the individual muscles and it is not practical 

to gain access to the nerve supply of these muscles.

The first experiment was carried out to investigate the endurance and 

susceptibility to fatigue of the masseter and anterior temporalis muscles of 

a selected group of bruxists. The state of fatigue was assessed by 

measuring the percentage change in EMG signal amplitude during a 

sustained isometric contraction and a large variability was found in this 

parameter. It was found that bruxists have greater endurance and a larger 

maximum bite force than the age-matched controls. The differences 

between the bruxists and the controls were not statistically significant.

It was found that the bite force transducer introduced problems into this 

first experiment, particularly inducing contra-lateral pain. The thickness 

of the transducer (7 mm) was thought to be a problem and therefore a 

commercial system of measuring bite force (T-Scan system) using 

piezoelectric foil (thickness 80 p) was investigated. It was found that this
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system was so inaccurate that it was discarded as a means of monitoring 

sustained biting force.

Subjective perception of fatigue was then studied in a group of normal 

healthy volunteers. Subjective perception was assessed by the use of visual 

analogue scales and compared to objective measures of fatigue. Median 

frequencies of the EMG power spectra and percentage change in amplitude 

were recorded. It was found that these objective measures were closely 

correlated to the subjective perception of fatigue. Spectral changes were 

more closely correlated to subjective perception than amplitude changes.

Finally, relaxation rate, one of the muscle processes affected by localized 

fatigue, was investigated in the masseter muscles of a group of patients 

with a myogenous craniomandibular disorder, a group of age-matched 

controls and an additional separate healthy group. This was measured at 

10-second intervals during a sustained contraction, and again during a 3- 

minute recovery period; the median frequency of the power spectra was 

measured a t the beginning and the end of the sustained contractions. It 

was found that the patients, compared with the other two groups, became 

less fatigued during the sustained contractions but recovered less quickly 

on completion.
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GENERAL INTRODUCTION

The relevance of the process of fatigue in the jaw-closing muscles lies in 

the fact that it is considered to be of significance in the aetiology of the 

craniomandibular disorders i.e. temporomandibular joint pain dysfunction 

(myofascial pain dysfunction), facial pain of muscle origin and certain 

types of headache (Ramljord, 1961; Laskin, 1969; Miles, 1978; Laskin & 

Block, 1986; Hansson, 1988).

It has been shown that the jaw-closing muscles are more resistant to 

fatigue than limb muscles (van Steenberghe, de Vries & Hollander, 1978; 

Clark & Carter, 1985) and yet the craniomandibular disorders are common 

problems in clinical practice. It is clear that a greater understanding of the 

mechanisms of this process is required to help in understanding the 

aetiology of these various disorders. The jaw-closing muscles present 

special difficulties for the investigation of fatigue because it is not possible 

to measure their individual force output. There are four muscles (the 

superior head of the lateral pterygoid muscle has been shown by Gibbs et 

al [1984] to be active on jaw-closing) on each side of the mandible which 

moves in a complex fashion.

Muscle fatigue is a process which takes place over a period of time rather 

than being an instantaneous event (Basmqjian & De Luca, 1985). 

Localized muscle fatigue is characterized by changes in physiological 

processes occurring in a muscle or group of synergist muscles performing 

the contraction. It is seen as either a reduction in peak force output or as a 

necessity to increase applied effort in order to sustain a constant sub- 

maximal force. The processes occurring are either a transmission block at 

the neuromuscular junction, in which case the EMG level and force output
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both decrease, or failures distal to the neuromuscular junction, in which 

case only the force output will be reduced. There is also a decrease of the 

conduction velocity of the action potential along the muscle fibres 

(Lindstrom, Kadefors & Petersen, 1977).

It has been shown in many muscles that as fatigue progresses the 

rectified-integrated EMG signal increases in amplitude in order to 

maintain a given force level in a sustained isometric contraction (Edwards 

& Lippold, 1956). This increase is partly due to recruitment of additional 

motor units. However, some workers have found this increase to occur to a 

lesser extent in the masseter muscle, even though this muscle was 

apparently in a state of fatigue (Clark & Carter, 1985). The reasons for 

this require further investigation.

The shift of the frequency spectrum of the surface-derived EMG signal to 

lower frequencies as fatigue progresses has been shown to be a reliable 

and sensitive indicator of fatigue in limb muscles (Lindstrom et al, 1970; 

Mills, 1982). There are still varying opinions on why the shift occurs, but it 

is widely agreed that the shift does occur (Mills & Edwards, 1984). Power 

spectrum analysis has been applied to the masseter muscle, and would 

appear to be a useful technique in the investigation of fatigue (Palla & 

Ash, 1981; Naeye & Zorn, 1981; Lindstrom & Hellsing, 1983). This is 

particularly so in view of the small increase in rectified-integrated EMG to 

maintain a constant bite force, as mentioned earlier.

The rate of relaxation from an isometric contraction has long been known 

to decrease as fatigue occurs (Jones, 1981). This slowing of relaxation is 

one of the characteristic changes which may be seen, although the reasons 

for this slowing are still not completely understood.
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A further complicating factor of particular relevance to the jaw-closing 

muscles is the contribution of rotation of synergist muscle activity to 

fatigue resistance (Hellsing & Lindstrom, 1983). This becomes of 

particular importance in the interpretation of the results of studies of 

fatigue and bite force (collective jaw-closing muscle force).

The positioning of any bite force transducer within the dental arch is also 

worthy of consideration. As the jaw-closing muscles on the left and right 

sides are not totally independent in their action, the effects of any 

asymmetry of force application require investigation. There is also 

undoubtedly some effect on force limitation from the periodontal 

mechanoreceptors (Hannam & Matthews, 1969; Bessette, Mohl & Bishop, 

1974; Kloprogge, 1975; Cash & Linden, 1982), and this also requires 

consideration.
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CHAPTER 1.

REVIEW OF LITERATURE

1.1 SKELETAL MUSCLE FATIGUE

1.1.1 Definitions

The concept of muscle fatigue invokes a certain degree of confusion, as 

different descriptions exist and the term may hold different connotations 

in different branches of science (Edwards, 1984). It was pointed out by 

Basm ^ian & De Luca (1985) that fatigue is a time-dependent process and 

so does not occur at a particular point in time or during a specific time 

interval. This implies that changes are taking place within the muscle 

before an observable reduction in force output occurs.

Fatigue has been defined as “the inability o f a skeletal muscle to produce, 

on either natural or artificial stimulation, a pre-existing level o f tension 

subsequent to dynamic or static contractile activity o f the muscle” 

(Christensen, 1981). Fatigue has also been defined as "a failure to 

maintain the required or expected force” (Edwards, 1981). However, this 

latter definition does not acknowledge the fact that fatigue changes have 

already taken place before this failure occurs. A more comprehensive 

definition is “any reduction in the force-generating capacity o f the entire 

neuromuscular system, regardless o f the force expected” (Bigland-Ritchie & 

Woods, 1984). Vollestad et al (1988) make a distinction between fatigue 

and exhaustion, defining exhaustion as “an inability to sustain 

contractions / exercise at the target force / intensity”.
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1.1.2 Central and Peripheral Fatigue

The term localized muscular fatigue was explained by Chaffin (1973) and 

defined as “an inability to maintain a desired force output, augmented 

muscular tremor and localized pain”. This term differentiates between 

fatigue which occurs peripherally (in the muscle tissue or neuromuscular 

junction) from that which may occur centrally (in the brain and spinal 

cord). Localized muscle fatigue is characterized by changes in physiological 

processes occurring in a muscle or group of synergist muscles performing 

the contraction. It is seen as either a reduction in peak force output or as a 

necessity to increase applied effort in order to sustain a constant sub- 

maximal force. The sites at which fatigue may occur are the central 

nervous system (CNS), the motor end-plate, the cell membrane, the 

transverse tubular system and in the energy supply to the muscle. The 

energy source for brief contractions is muscle adenosine triphosphate 

(ATP) and creatine phosphate (CrP), while for longer contractions (more 

than five seconds) local glycogen stores are utilized with a resulting intra­

muscular accumulation of lactic acid (Edwards, 1984).

Current evidence suggests that in prolonged intermittent submaximal 

contractions muscle activation by the CNS is fully maintained, i.e. central 

fatigue does not occur, and that force output is not limited by failure of 

neuromuscular transmission (Bigland-Ritchie et al, 1978; Bigland-Ritchie, 

Furbush & Woods, 1986a; Bigland-Ritchie, Furbush & Woods, 1986b). The 

presence of central fatigue can be tested by comparing the force of a 

maximal voluntary contraction with that obtained by supramaximal 

tetanic stimulation of the motor nerve. This can be painful, however, and 

muscle tendon damage can result. In order to avoid these problems the 

technique of twitch interpolation (Denny-Brown, 1928; Merton, 1954) is
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commonly used (Belanger & McComas, 1981; Bigland-Ritchie et al, 1978, 

1986a, 1986b). This technique involves the application of single maximal 

stimuli to the appropriate motor nerve (transcutaneously) during a 

voluntary sub-maximal contraction. A detectable twitch response may be 

seen from any motor units which have not been recruited or from any units 

which are discharging at less than the tetanic frequencies for maximum 

force output. There is an approximately linear negative relationship 

between the strength of the voluntary contraction and the size of the 

superimposed twitch response (Figure 1). Thus, if the volunteer has 

claimed to perform a maximum voluntary contraction and a superimposed 

twitch can be seen, then either it was not a true maximum effort or central 

fatigue has occurred.

Stimulus TimeStimulusStimulus

F igure  1. Diagramatic representation of the twitch interpolation 
technique.
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Vollestad et al (1988) added evidence to the conclusion that fatigue occurs 

due to impairment of the excitation/ contraction process and not to 

impairment of central motor drive. They also found tha t the subjects 

inability to continue contractions (which they define as exhaustion) was 

strongly related to creatine phosphate and glycogen depletion but 

unrelated to muscle lactate levels. These conclusions were reached after a 

study involving various types of exercise and repeated muscle biopsies of 

the quadriceps muscle in human subjects. Mills & Edwards (1984) also 

pointed out that fatigue was unrelated to lactacidosis in patients suffering 

from myophosphorylase deficiency (McArdle's disease), as these patients 

do not produce lactic acid and yet suffer excessive fatigue. These patients 

were all confirmed as being myophosphorylase deficient after 

histochemical examination of muscle biopsies.

1.1.3 The Gamma Loop System

A comprehensive discussion of this system was provided by Hagbarth et al 

(1986). This is a functionally and anatomically distinct system consisting 

of intrafusal fibres connected to muscle spindle organs. This system allows 

the CNS to achieve varying degrees of tension and movement sensitivity. 

The sensitivity of the spindle organs to the muscle's tension and length 

states can be varied by the contraction of the intrafusal fibres which are 

under the control of the CNS by the gamma efferent fibres. Chaffin (1973) 

proposed a theory to explain the neuromuscular changes associated with 

fatigue, saying that muscle spindles are stretched as the fatigued muscle 

stretches in an attempt to produce the required force. This increased 

stretch results in increased stimulation of the spindles, increased 

facilitatory feedback to the CNS, and increased extra-fusal motor-unit
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recruitment a t the period of every 100 msec. This periodic recruitment 

produces both low frequency shift in the power spectrum and increased 

tremor. Chaffin further claimed that the increased facilitation also 

accounts for the tendency to perceive light forces as being heavier.

An alternative explanation, and one which is more generally accepted, is 

tha t this sensation of a load becoming heavier is due to the increased 

efferent barrage of voluntarily generated signals which are required in 

order to maintain a contraction with progressively fatiguing muscles 

(McCloskey, 1985).

1.1.4 High and Low Frequency Fatigue

Peripheral fatigue may be usefully divided into high frequency and low 

frequency categories, i.e. stimulation frequencies around 80 Hz lead to 

high frequency fatigue and around 20 Hz to low frequency fatigue 

(Edwards et al, 1977). Thus low frequency fatigue is a selective loss of force 

a t low stimulation frequencies, and is thought to be a result of impaired 

excitation-contraction coupling. It is generally long lasting, and is also 

more pronounced following eccentric contractions i.e. those made when the 

muscle is stretched during a contraction (Newham et al, 1983). The 

activities of everyday life are mostly the result of submaximal contractions 

induced by low frequency stimulation i.e. 10 to 30Hz (Grimby & Hannerz, 

1977).

High frequency fatigue is the selective loss of force a t high stimulation 

frequencies, and is considered to be due to impaired transmission a t the 

neuromuscular junction (Stephens & Taylor, 1972) and/or impaired
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propagation of muscle action potential (Jones, Bigland-Ritchie & Edwards, 

1979; Bigland-Ritchie, Jones & Woods, 1979). High frequency fatigue can 

occur as a result of cooling of muscle and of experimentally produced 

ischaemic fatigue (Edwards, 1984). The effect of high frequency fatigue is 

tha t it reduces the maximum force output of the muscle, whether by 

voluntary effort or by electrical stimulation.

One of the practical problems that occur in the investigation of fatigue is 

knowing whether or not the subject is really exerting a maximal voluntary 

contraction. One answer to this problem in the jaw-closing muscles is to 

make sure that there is a good level of reproducibility between the 

contractions, which would not occur if they were sub-maximal (van 

Steenberghe, de Vries & Hollander, 1978). The other approach is to apply 

the technique of twitch interpolation, which has already been discussed.

1.2 RELAXATION RATE

A slowing of relaxation is one of three predominant changes seen in 

localised muscle fatigue, the other two being the response to high frequency 

stimulation (high frequency fatigue), and changes in twitch amplitude and 

shape (Jones, 1981). The rate of relaxation from an isometric contraction 

has long been known to decrease with fatigue. The half-time of the latter 

part of the time course of relaxation, the exponential phase, may increase by 

a factor of two or three. In addition, there is no recovery of the relaxation 

rate under anaerobic conditions (Edwards et al, 1972). The reasons for these 

phenomena are still not completely understood.
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There are two main possibilities explaining the time course of relaxation 

(Cady et al, 1989):

•  The reduced rate of re-accumulation of calcium by the sarcoplasmic 

reticulum.

•  The reduced rate of dissociation of cross-bridges after the activating 

calcium has been removed (Edwards, Hill & Jones, 1975).

The dissociation of myosin cross-bridges is required for relaxation from an 

isometric contraction, and this dissociation requires the binding of ATP to 

the myosin molecule. It has been shown that the slower the relaxation, the 

slower the ATP turnover (Edwards, Hill & Jones, 1975). However, 

Edwards et al (1975) point out that it seems unlikely that a reduced 

amount of ATP as a substrate for actomyosin ATPase is the cause of slower 

relaxation, but rather that it has caused a change in regulatory subunits. 

Alternatively, this reduced concentration of ATP may possibly result in a 

reduced rate of calcium pumping by the sarcoplasmic reticulum (Dawson, 

Gadian & Wilkie, 1980; Jones, 1981).

There has been recent evidence to support the contention that slowing of 

relaxation is associated with reduced calcium uptake by the sarcoplasmic 

reticulum (Gollnick et al, 1991). Experiments were conducted on the 

quadriceps femoris muscle, and repeated muscle biopsies were taken. It 

was found that the half-time of relaxation was elongated on exhaustion, 

with full recovery after 30 minutes. At exhaustion the calcium uptake by 

the sarcoplasmic reticulum was reduced to 58% of the pre-exercise value. 

Gollnick et al (1991) suggest that some change to the sarcoplasmic
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reticulum occurs on exercise which depresses the Ca+-activated ATPase 

and reduces Ca+ uptake.

The concept of a reduced turnover of cross-bridges is supported by studies 

involving muscle heat production, where heat production falls as 

relaxation slows. It has been calculated that the reduced heat production 

might correspond to an approximately three-fold reduction in ATP 

turnover. These calculations are based on the heat produced from the 

splitting of phosphoryl creatine and from glycolysis (Edwards & Hill, 1975; 

Edwards, Hill & Jones, 1975b). With a reduction in relaxation rate there is 

a reduction in ATP and creatine phosphate, and in addition there is an 

accumulation of lactic acid and H+. It has been shown in patients with 

myophosphorylase deficiency (MPD) that there is a slowing of relaxation 

with fatigue, even though these patients do not produce lactic acid, and so 

accumulation of lactic acid is unlikely to be a cause.

The classic reaction CrP + ADP -» ATP + Cr is now considered to be 

important as a mechanism for eliminating ADP rather than producing 

ATP. ADP has a powerful negative effect on muscle force production, and 

muscles are rarely deficient in ATP.

A recent study investigated the relationship between slowing of relaxation 

and changes in intracellular pH and phosphorus metabolites in normal 

subjects and in those with MPD (Cady et al, 1989). Their experiments were 

performed on the first dorsal interosseous muscle under ischaemic 

conditions, and metabolite levels were measured using nuclear magnetic 

resonance spectroscopy. It was concluded that there are two processes 

involved, one due to H+ accumulation (i.e. pH-dependent) and the other 

due to some other cause (i.e. pH-independent). The H+ accumulation may
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inhibit Ca+ uptake by the sarcoplasmic reticulum. The pH-independent 

cause might be accumulation of ADP, modification of Ca+ pumping, or 

modification of the activity of actomyosin cross-bridges (Cady et al,1989).

1.3 HISTORY OF ELECTROMYOGRAPHY

An account of the history of electromyography was presented by Basmajian 

& De Luca (1985), where they state that the relationship between muscle 

contraction and electricity was first observed by Galvani in 1791. They 

continued by pointing out that the first detection of signals elicited 

voluntarily from muscle was reported in 1849 by Du Bois-Reymond. 

Methods of measuring electrical signals from human muscles were greatly 

simplified by the introduction of the metal surface electrode in 1907 by 

Piper. A significant advance for clinical electromyography was made by the 

introduction of the needle electrode in 1929 by Adrian & Bronk. The 

development of silver/silver chloride and fine-wire electrodes in the late 

1950's resulted in an increase in the use of EMG for kinesiological studies.

The first use of EMG in dental research may be attributed to the 

orthodontist Moyers (1949). One of the first to use EMG for the 

investigation of patients with craniomandibular disorders was Jarabak in 

1956. Ramflord (1961a,b), Moller (1966), and Ahlgren (1966) were 

prominent in the use of EMG for dental research. Yemm (1969a,b,c; 1971) 

was one of the first to investigate the effects of emotional stress on 

masseter muscle function, and later established a technique for recording 

single motor unit potentials from the first dorsal interosseous muscle 

(Milner-Brown, Stein & Yemm, 1973a). This group (Milner-Brown, Stein & 

Yemm) studied contractile properties (1973a), recruitment (1973b), and
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changes in firing rate (1973c) of single motor units from the first dorsal 

interosseous muscle, and Yemm also investigated the orderly recruitment 

of motor units of the masseter and temporal muscles (Yemm, 1977).

1.4 ELECTROMYOGRAPHY AND FATIGUE

1.4.1 EMG to Force Relationship

It has been shown for many muscles that as fatigue occurs in a sustained 

sub-maximal isometric contraction, the rectified-integrated EMG signal 

increases in amplitude in order to maintain the same force output 

(Edwards & Lippold, 1956; Kadefors et al, 1968; Vredenbregt & Rau, 1973; 

Stulen & De Luca, 1978). This increase in amplitude is more pronounced 

near the end of a sustained contraction, and is a result of either 

recruitment (Edwards & Lippold, 1956), rate modulation (Lippold, 

Redfearn & Vuco, 1960) or synchronization (Milner-Brown, Stein & Lee, 

1975).

The relationship between the amplitude of the EMG signal to the force 

output of the muscle in a non-fatigued state has been described by some to 

be linear (Stephens & Taylor, 1972; Milner-Brown & Stein, 1975), while 

others have described it as non-linear (Komi & Buskirk, 1970; 

Vrendenbregt & Rau, 1973). Haraldson et al (1985) found the relationship 

to be linear for the anterior temporalis muscle but not for the masseter 

muscle. As the EMG amplitude to muscle force relationship in a non­

fatigued state has been considered by some to be linear, the EMG 

amplitude has been used as a direct measure of force. However the 

amplitude observed at a given force increases as fatigue occurs, and as it is
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difficult to know when one is observing a fatigue effect or simply an 

increase in force output it can be seen that problems exist with this 

approach.

Lawrence & De Luca (1983) found that the relationship varied between 

different muscles, although it generally tended to be close to linear and 

was independent of the state of training of the muscle and its force 

output. They suggested that some of the factors which may be 

responsible for these differences between muscles are:

•  Motor unit recruitment and firing rate properties.

•  The distribution and quantity of slow-twitch and fast-twitch fibres 

within the muscle.

•  Cross-talk from adjacent muscles.

•  Agonist-antagonist muscle interaction.

Increasing force output by means of an increase in firing rate (rate 

modulation) provides a linear relationship to the EMG amplitude, whereas 

recruitment does not (De Luca & Van Dyke, 1975). The balance of these 

two mechanisms depends on the muscle concerned. It is also thought that 

a t low force levels (30-50% MVC) recruitment is dominant in small 

muscles (e.g. first dorsal interosseous muscle), and that rate modulation 

becomes more important with increasing force (Freund, 1983). However, as 

force increases it becomes more difficult to assess the relative roles of these 

two mechanisms, particularly because action potentials of different motor 

units begin to overlap as force increases (Weytjens & van Steenberghe,
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1984). Weytjens & van Steenberghe (1984) also confirmed that recruitment 

is the dominant factor up to about 30% MVC in the masseter muscle, with 

rate modulation becoming important a t higher force levels.

Lawrence & De Luca (1983) state that the amplitude of the action 

potential of a single fibre is proportional to its diameter. As fast twitch 

fibres are generally larger than slow twitch fibres, they will have higher 

amplitude action potentials and a higher amplitude root-mean-square 

(RMS) EMG signal. However, the amplitude contribution depends on the 

distance between the motor unit and the recording electrode and so fibre 

distribution becomes relevant. One must also take into consideration the 

"size principle" which says that larger motor units are preferentially 

recruited a t higher force levels (Henneman & Olson, 1965).

The agonist-antagonist relationship in isometric contractions is of 

particular importance where joints must be stabilized (Lawrence & De 

Luca, 1983). It is possible that this relationship has some relevance to the 

temporomandibular joints, and may contribute to the pain often described 

in the lateral pterygoid muscle.

1.4.2 Rate of Change of Force

An additional factor which complicates the use of the EMG/force 

relationship when the force is changing is the rate of change. A delay 

between peak EMG and peak force of the order of 70 msec has been 

shown in the temporalis muscle (Hannam, Inkster & Scott, 1975), but it 

has been shown that this is not a simple lag and is related to rate of 

change (Kawazoe et al, 1981; Devlin & Wastell, 1985). These studies have
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shown that the relationship is not a simple linear relationship, and that 

peak EMG tends to occur when the rate of change of force is greatest.

1.4.3 Changes to the Power Spectrum

It is clear that as fatigue occurs there is a shift of the surface-derived 

EMG power spectrum towards lower frequencies i.e. an increase in the 

power of lower frequencies and a decrease in higher frequencies 

(Kadefors, Kaiser & Petersen, 1968; Kwatney, Thomas & Kwatney, 1970; 

Lindstrom, Kadefors & Petersen, 1977; Bigland-Ritchie, Donovan & 

Roussos, 1981; Palla & Ash, 1981; Lindstrom & Hellsing, 1983; Naefje & 

Zorn, 1981). This shift is most noticeable near the beginning of a 

sustained contraction.

Frequency decrease and amplitude increase have a common origin, as the 

local accumulation of metabolites results in a decrease in conduction 

velocity and hence a longer time duration of the motor unit waveforms 

(Basmajian & de Luca, 1985).

The use of the increase in amplitude as a measure of fatigue does not have 

the sensitivity of measuring the frequency shift, even though the amplitude 

increase is a measure of the frequency shift. The reason for this is that there 

is a decrease in firing rates in a constant-force contraction during fatigue 

(Bigland-Ritchie et al, 1982) and this will decrease the amplitude of the 

signal, thus offsetting the increase induced by the frequency shift. The low 

frequency part of the spectrum . increases and the high frequency 

component decreases with the resultant power increase reflecting this 

change with reduced sensitivity.
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The explanations that have been offered to account for the amplitude 

increase and the frequency decrease occurring during a sustained isometric 

contraction are:

•  Recruitment (Edwards & Lippold, 1956; Vredenbregt & Rau, 1973). 

This is unlikely as an increase in the power of lower frequencies has been 

observed at force levels where recruitment does not occur.

•  Synchronization (Chaffin, 1973; Palla & Ash, 1981; Bigland-Ritchie, 

Donovan & Roussos, 1981; Naeije & Zorn, 1982; Weytjens & van 

Steenberghe, 1984b). One of the problems with this idea is that 

synchronization increases as the duration of the contraction increases, 

whereas the frequency shift is greatest during the early part of a 

contraction.

•  Conduction velocity decrease (Mills & Edwards, 1983; Lindstrom & 

Hellsing, 1983; Lindstrom, Kadefors & Petersen, 1977).

The two explanations most widely accepted are conduction (propagation) 

velocity decrease and synchronization. These explanations have been 

assessed by the use of mathematical models, and the two corresponding 

models are those of Lindstrom, Magnusson & Petersen (1970) and Lago & 

Jones (1977). Lindstrom et al (1977) believe that slowing of conduction 

velocity is the only explanation required, and other mechanisms such as 

synchronization are unnecessary in order to explain the phenomenon.

The conduction velocity of muscle fibres is related to fibre diameter and 

also to intramuscular pH. The intra-muscular pH depends upon the 

formation of lactic acid, pyruvic acid, and also on the rate of removal of
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hydrogen ions. Conduction velocity is directly related to membrane 

excitability, and it has been shown that membrane excitability decreases 

as the intracellular pH decreases (Orchardson, 1978). However, Mills & 

Edwards (1985) showed that hydrogen ion accumulation is not 

responsible for the power spectral shift seen in MPD subjects because 

acidosis does not occur (see Section 1.1.2). They postulated that 

accumulation of extracellular potassium ions may explain the spectral 

shift seen in fatigue of both normal muscle and the muscle of MPD 

patients.

It is clear that there is an increase in the power of the low frequency 

content of the power spectrum during a sustained isometric contraction, 

but the reasons for this increase are still the subject of discussion.

1.4.4 The EMG Fatigue Index

A method of expressing fatigue in quantitative terms was described by 

Lindstrom, Kadefors & Petersen (1977), whereby linear regression 

analysis is applied to the logarithmic form of the mean frequency of 

successive power spectra, to give a probability of fatigue. The fatigue 

index is the regression coefficient. The value of this index is zero for 

muscles unaffected by fatigue, and rises towards unity as fatigue occurs. 

A high value indicates progressive fatigue, not merely a state of fatigue.
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1.4.5 Spectral Parameters

A single parameter is usually used to identify changes in the power 

density spectrum. The most useful of these are the median frequency (that 

at which the spectrum is divided into two regions of equal power) and the 

mean frequency (average frequency), both giving unbiased estimates of the 

spectrum (Stulen & de Luca, 1981). The mode frequency (peak frequency) 

has also been used to describe a spectrum, but provides a very poor 

estimate because the peak value is not always sharply defined. The 

median frequency has been shown to be a theoretically more reliable 

estimator than other convenient parameters, as it is less susceptible to 

noise (Stulen & De Luca, 1981).

The mean frequency has been used by Lindstrom, Kadefors & Petersen 

(1977), Naeye & Zorn (1981), Barker, Wastell & Duxbury (1989). The 

median frequency has been used by Palla & Ash (1981), Stulen & De Luca 

(1982) and others.

The time taken for these parameters to return to normal after a sustained 

contraction has been reported to be four to five minutes (Mills, 1982).

1.5. ELECTRODES IN ELECTROMYOGRAPHY

1.5.1 Electrode Configuration

Electrodes are used to detect the current generated by muscle activity, i.e. 

ionic movement within the muscle. Electrodes may be used singly with a 

remotely placed reference electrode (monopolar configuration), or in pairs
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(bipolar configuration). The bipolar configuration has the advantage of 

recording less interference than monopolar, and may be used in 

conjunction with a differential amplifier. The higher the common mode 

rejection ratio of the amplifier, the better it will cancel out the effects of 

external interferences such as mains supply.

1.5.2 Subdermal Electrodes

Electrodes may be either surface (disc or subdermal hook) or in-dwelling 

(needle or fine wire). The subdermal hook electrode was first described by 

Ahlgren in 1967. It consists of 0.18 mm platinum wire bent over 5 mm 

from the end and bevelled. The performance of these was compared with 

the performance of surface disc electrodes by Ahlgren, Lewis & Yemm 

(1980). In a carefully planned experiment they placed the electrodes in an 

opposing diagonal arrangement, with a needle electrode in the middle, and 

found that averaged signals from the hook and the disc electrodes 

corresponded closely in both amplitude and duration. Both types of 

electrodes were able to sample units with small surface potentials equally 

effectively. They did not compare frequency response between the two 

types, however. They suggested that which of the two to use should really 

be a matter of convenience as neither had superiority in performance.

1.5.3 Disc Electrodes

The most widely used surface disc electrodes are of silver-silver chloride 

construction in order to provide a reversible chloride exchange interface 

with the metal of the electrode. This is to eliminate the AC component of
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the polarization potential, the DC component being dealt with by the use 

of differential amplifiers.

1.5.4 Motion Artifacts

A problem exists with the production of motion artifacts as a result of 

movement of the electrode wires which connect to the pre-amplifier. These 

artifacts can be substantial and therefore the wires should be kept as short 

as possible and the subject should keep still. An attempt to overcome this 

problem has been made (Fujisawa et al, 1990) with the use of built-in 

buffer amplifiers. The buffer amplifier has zero gain and acts by lowering 

the line impedance between the electrode and the amplifier and hence 

lowering the capacitance between the wire and earth. The description of 

the electronics was clear, but the method of testing the performance of 

these electrodes was not well presented and appeared to be inadequate. 

They simply compared the frequency response of these electrodes to that of 

a similar, but un-buffered, surface electrode pair as described by Yamaga, 

Yamada & Ishioka in 1982. An obvious concern is that the skin impedance 

of these self-adhesive electrode pairs could be unacceptably high. However, 

as pointed out by the authors, these self-adhesive buffered electrode pairs 

might be the answer for application by patients in biofeedback and sleep 

studies.

1.5.5 Ground Electrodes

It is necessary to ground, or earth, subjects when recording 

electromyograms in order to reduce unwanted signals or noise. In order to 

achieve this, it is necessary to reduce the skin-ground impedance to a
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lower level than the skin-electrode impedances. To reduce skin impedance 

the skin should be thoroughly prepared and an electrode with a larger 

active area than the other electrodes should be used. It is also desirable to 

locate the ground electrode as near to the active electrodes as possible, but 

not overlying muscle.

Various ground electrodes used include standard Ag/AgCl discs, ear-lobe 

clips, gauze wrist straps, and a lip-clip (Turker, Miles, & Hoanh, 1988).

1.6 THE REPRODUCIBILITY OF ELECTROMYOGRAPHY

1.6.1 Historical and General Factors

The problems of reproducibility and reliability of EMG were of particular 

concern before the wide availability of high-gain amplifiers with a high 

input impedance. In addition, experimental methods were not always 

standardised and it was difficult to make meaningful comparisons between 

different experiments.

An important paper was published in 1966 which set out some significant 

sources of error in electrophysiological research (Grossman & Weiner, 

1966). Areas of concern, with recommendations, were:

•  Frequency response characteristics: use amplifiers with a flat

frequency response in the frequency range of interest, with high input 

impedance to prevent loading loss. The frequency range of interest in 

surface EMG of the jaw-closing muscles is 10-1000 Hz.
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•  Direct recording: beware of limitations in the amplitude and frequency 

response of ink-writers.

•  Voltage integration: if a short time constant is used, only the average 

amplitude of the input signal voltage is displayed, and not an accurate 

instantaneous value at any particular point in time.

•  Frequency spectrum of the muscle action potential: it is important that 

the equipment and the methods of analysis used take into consideration 

the whole of the frequency spectrum of the signal.

•  Force of contraction and action potential: the relationship between EMG 

activity and muscle force output depends upon whether the contraction is 

isometric or isotonic, and also on the state of fatigue.

The problems of standardisation and reliability were addressed in some 

detail in a report which set out standard terms and units for the reporting 

of EMG research {ad hoc Committee of the International Society of 

Electro-physiological Kinesiology, 1980). Although this report was 

published nearly twelve years ago, it contains a wealth of information on 

the recording and processing of the myoelectric signal and still provides a 

baseline for terms and standards in EMG research.

1.6.2 Standardization of Recordings from the Masseter

Early EMG studies generally have been criticised for lack of quantification 

of the EMG response, lack of control groups, and poor descriptions of the 

populations under study (Dahlstrom, 1989).
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The standardisation of recordings from the masseter muscle has received 

much attention. It has been shown that the relocation of electrodes on the 

face results in a large variability in the signal, and it is the relocation 

rather than the removal and replacement which causes the variability 

(Frame, Roth well & Duxbury, 1973). A further study showed that 

repeatable results could be obtained if elaborate efforts were made to 

locate the electrodes accurately between sessions (Nouri et al, 1976).

In a study which examined the effects of applying electrodes to different 

areas of the masseter muscle at the same session and on different sessions, 

signal amplitude was the most variable parameter with onset and duration 

being slightly less variable (Garnick, 1975). It was pointed out that it is 

important to use control subjects to ensure validity of results.

One reason that reproducibility is difficult with the jaw-closing muscles is 

that their small size makes accurate relocation of electrodes unlikely 

unless elaborate procedures are employed. If it is important to detect small 

differences in signal amplitude, which is the case when dealing with 

muscles which are not necessarily suffering from a discrete myopathy, 

then even these procedures may not be sufficiently reliable.

A large review of the literature on the use of surface electromyography in 

dentistry was reported by Lund & Widmer (1989). Their most widespread 

criticism was that many of these studies failed to include a control group, 

and when a control group was used it was not matched for variables such 

as sex, age, and history of bruxism.
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1.6.3 Normalisation Procedures

A much simpler and more reliable method of obtaining reproducible 

between-session results is to normalize EMG activity to a standard load 

(Hosman & Naeye, 1979). The static load used is unimportant as long as it 

remains the same for all the experiments in a series. The maximal 

clenching force remains remarkably constant between sessions (van 

Steenberghe & de Vries, 1978; Hosman & Naeye, 1979), and this is also 

the most convenient force to use as it is not necessary to use a bite force 

meter. It is more constant if a bite force meter is not used, in fact, because 

the limiting factor will almost certainly not be the periodontal 

mechanoreceptors. Hosman & Naeye (1979) showed that the relationship 

between normalized integrated EMG and clenching force was linear up to 

80% of maximum force. At higher force levels the EMG increases a t a 

greater rate than the force output.

1.6.4 Inter-electrode Distance

Variations in inter-electrode distance between 1-2 cm has little effect on 

the EMG signal amplitude, but distances above 2 cm result in increased 

amplitude (Pancherz & Winnberg, 1981).

It has been pointed out by Dahan & Boitte (1986) that variations between 

individuals are better estimated when recordings are taken from only one 

side. If mean values for left and right side are used then this will increase 

the experimental error. For this reason bilateral recordings should be 

taken only when muscle asymmetry is to be studied.
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1.6.5 Reliability of Estimators of Power Spectrum

An assessment of the reliability of the mean power frequency of the power 

spectrum of the masseter and anterior temporalis muscles led to the 

conclusion that there is significant intra-subject variability in this 

parameter between sessions (Barker, Wastell & Duxbury, 1989). This is to 

be expected because they were not, in fact, testing the reliability of the 

mean power frequency as a representative parameter of the spectrum, but 

the variation in this parameter (and hence the spectrum itself) between 

sessions. One would expect this variation to occur in view of the 

demonstrated variation in signal power and likely variation in skin 

impedance and tissue density when electrodes are replaced a t a  different 

session.

1.6.6 Tonic Resting Activity

There is considerable interest in measuring tonic, resting activity of the 

jaw-closing muscles, particularly in the investigation of bruxism and the 

effects of treatm ent on this condition. It has recently been claimed that 

between-session reliability is good for the masseter muscle with the use of 

simple electrode relocation procedures (Burdette & Gale, 1990), but with 

correlation coefficients (r values) between 0.5645 and 0.6503 it is difficult 

to see how they reached that conclusion. Even for the measurement of 

tonic activity it would be preferable to use normalized amplitude values for 

between-session comparisons.
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1.7. MUSCLE FIBRE COMPOSITION

The jaw-closing muscles are required to perform regular and repetitive 

chewing movements, occasional heavy biting, and fine positioning of the 

mandible. Consequently these muscles have a varying fibre arrangement 

in order to facilitate the various activities. The masseter muscle has a 

multipennate architecture, as does the medial pterygoid, and the 

temporalis has a fan-shaped arrangement. It has been shown that fibres 

are differentially recruited to suit the jaw movement required, and that to 

enable this precise recruitment the fibres belonging to individual motor 

units are restricted to small territories (Stalberg & Eriksson, 1987; 

Tonndorf, Sasaki & Hannam, 1989). It is possible that each compartment 

has a different optimal length, the effect being to produce several local 

maxima.

Muscle fibres may be classified by histological methods according to 

oxidative capacity, ATP-ase and glycogen content. They may also be 

classified into functional categories of slow or fast twitch, fatigue resistant 

or fatigue susceptible (Denny-Brown, 1929; Burke, 1967; Burke, et al, 

1973). A combination of these classifications has been presented (Van 

Boxtel et al, 1983):

Type 1: Slow-twitch, oxidative. These fibres have a greater endurance than 

other types, i.e. low fatigability.

Type 11a: Fast-twitch, oxidative-glycolytic. Intermediate fatigability.

Type lib : Fast-twitch, glycolytic. High fatigability.
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The jaw-closing muscles have a heterogeneous fibre composition, probably 

reflecting their complicated activity pattern (Eriksson & Thornell, 1983). 

This was a thorough histochemical and morphological study of masseter, 

medial pterygoid and temporal muscle fibre characteristics in young male 

cadavers. It was concluded that the variability in fibre-type composition is 

probably a result of genetic influences and various levels of utilisation. This 

may suggest varying abilities to adapt to hyperactivity, to resist fatigue and 

to resist the development of cranio-mandibular dysfunction. Marked intra­

muscular variability occurred, particularly in the deep fibres of the 

masseter. They found the Type 11 fibres to be much smaller in diameter 

than Type 1 fibres, and that Type 11A fibres were rare. They did see a large 

proportion of Type 11A fibres in one individual, however, suggesting a high 

level of parafunctional activity (these fibres are fast-twitch yet fatigue- 

resistant, and Salmons & Henriksson [1981] have reported that endurance 

training appears to increase their number). This situation contrasts with 

that in the limb muscles where the different fibre types are more evenly 

distributed throughout the muscle and have almost an equal proportion of 

type 1 ,11A and 11B fibres (Miller, 1991).

Eriksson & Thornell (1983) found that although there was considerable 

heterogeneity in muscle fibre composition, Type 1 fibres occupied more than 

70% of the muscle fibre cross-sectional area in most parts of the three 

muscles studied. This supports the finding that the jaw muscles have a 

higher resistance to fatigue than the limb muscles (Steenberghe, de Vries & 

Hollander, 1978; Clark & Carter, 1985). This also supports the work of 

Goldberg & Derfler (1977) which showed that the majority of the motor 

units in the masseter muscle are recruited at low forces. The remaining 

muscle of mastication, the lateral pterygoid, has a more homogeneous 

structure and also has a higher proportion of Type 1 fibres, these occupying
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more than 80% of the total cross-sectional area of the muscle (Ericksson et 

alt 1981). There are no type 11A fibres present in either head of the lateral 

pterygoid muscle.

The superficial part of the temporalis muscle was comprised of 50% type 

11B fibres, which indicates an ability to develop high forces and to contract 

rapidly. A strong positive correlation has been shown between type 11 

fibre size and bite force (Ringvist, 1974). This greater proportion of Type 

11B fibres would explain the difference that exists between the masseter 

and temporalis muscle power spectra, with the masseter having a median 

frequency lower than that of the temporalis muscle (van Boxtel et al, 1983; 

Christensen & Donegan, 1990). The deep part of the temporalis muscle 

contained predominantly Type 1 fibres, which would make it suited to 

postural activity. Although the jaw-closing muscles support the mandible 

in the so-called postural position, they cannot be considered as true 

postural muscles as they are not necessarily active with upright posture 

(Klineberg, 1991).

In a study of length-related changes in the masseter muscle, Miles, 

Nordstrom & Turker (1986) found that the recruitment force and motor 

unit waveform changed significantly with muscle length. They pointed out 

that isometric force threshold has been used to categorise motor units in 

human studies, but that this may not be reliable in view of the dependence 

of this parameter on muscle length. A sharp rise was found in threshold 

forces beyond the mid-open position.
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1.8 MEASUREMENT OF PAIN

1.8.1 Rating Scales

The problem of the clinical measurement of pain was well described by 

Bond (1984) when he said “The fact that pain is a subjective phenomenon, 

and private to each o f us, presents difficulties for those wishing to measure 

it, for how is it possible to estimate the extent o f another’s mental 

experiences?”.

The most widely used measure in clinical pain research is one of the forms 

of rating scale (Reading, 1984). These include the verbal rating scale (VRS) 

and the visual analogue scale (VAS). The VAS has been discussed in some 

detail by Huskisson (1983) and he states that it is a simple and yet 

sensitive scale which is very widely used. It consists of a line, usually 10 

cm in length, each end of which represents the limit of the pain experience 

i.e. one end is defined as “no pain” and the other as “extreme pain”. The 

patient is then asked to mark the point along the line which corresponds to 

the severity of his pain. Problems with the VAS include failure of the 

subject to understand the concept, some variation in reproducibility along 

the length of the line and doubts regarding the relationship of the 

measurement to the true pain experience (Huskisson, 1983).

1.8.2 Sensory Decision Theory

Sensory decision theory (SDT), or signal detection theory, is a method of 

simultaneously measuring the sensory and the psychological aspects of 

pain (Christensen, 1988). A review of the technique has been presented by
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Clark (1974). Sensory decision theory is concerned with the subject’s 

ability to discriminate a stimulus above background “noise”, i.e. it 

measures the accuracy of judgment of stimulus intensity and the error 

rate. It separates the purely sensory component from attitudinal or 

judgmental variables and so has become widely used. Hit rate (HR) is the 

rate of correct positive responses during many trials, and the rate of wrong 

positive guesses over many trials is the false affirmative rate (FAR). The 

HR and FAR are the important parameters to be measured.

Unfortunately there are a number of problems with SDT, one being that it 

requires a fairly large number of repetitive stimuli for good results (Wolff, 

1984). The design of the experiment must be such that an adequate HR 

and FAR are generated for correct measurement. Factors such as fatigue 

and boredom are significant in reducing the validity of the results. The 

pain problem must be appropriate for the use of SDT e.g. it does not 

separately assess the intensity and aversive qualities of pain (Chapman, 

1980). SDT does not seem to be appropriate for many clinical pain 

problems, but does have an important role in more fundamental 

investigations (Wolff, 1984). SDT has been used in the investigation of 

dental pulp pain (Chapman, Chen & Bonica, 1977).

1.8.3 Category-scaling Methods

Methods of measuring perceived exertion are useful as indicators of the 

degree of physical strain when exercising. The problem is to quantify 

subjective symptoms and relate these to objective findings. There are two 

types of measurement of perceptual intensity of exertion, the ratio- 

scaling method and the category-scaling method. Ratio-scaling is
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unsuitable for inter-individual comparison. Borg’s RPE (Ratings for 

Perceived Exertion) scale (a category method) has been widely used, 

particularly for exercise testing and for the prescription of exercise 

intensities for rehabilitation purposes (Borg, 1982). His new category 

scale with ratio properties has value in the measurement of other 

subjective symptoms, apart from perceived exertion, such as pain. This 

new scale consists of a range of numbers, such as 0 to 10, and these 

numbers are anchored by words or expressions with a quantitative 

meaning.
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1.9 THE CRANIOMANDIBULAR DISORDERS AND FATIGUE

1.9.1 D efin itions

The craniomandibular disorders (CMD) are a group of disorders involving 

the masticatory musculature, the temporomandibular joint, or both 

(McNeill, 1990). These conditions have also been referred to as 

temporomandibular disorders, TMJ pain dysfunction syndrome, myofascial 

pain dysfunction syndrome, or, paradoxically, simply “TMJ” (even though 

the problem in a particular individual may be of muscle origin and not 

involve the joint).

These disorders classically involve one or more of the triad of pain in the 

head and neck, abnormal sounds from the TMJ, and mandibular 

dysfunction. The word “dysfunction” is often used loosely (Reynolds, 1988), 

but a suitable definition is “disturbance, impairment, or abnormality o f 

functioning o f an organ” (Dorland, 1977). Some authors include pain as 

part of dysfunction (Speculund et al, 1983), but generally pain should be 

considered as a separate symptom. There can be few areas of dentistry 

where terms are used so loosely and standardised definitions used so 

infrequently as in the field of CMD.

The concept that these disorders constitute a syndrome should be 

accepted as erroneous. A syndrome may be defined as “a set o f symptoms 

occuring together; the sum o f signs of any morbid state; a symptom 

complex.” (Dorland, 1977).

The signs and symptoms of CMD are too varied to be classified as a 

syndrome (Reynolds, 1988; Bell, 1990). A
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disorder is “a derangement or abnormality o f function; a morbid physical 

or mental state.” (Dorland, 1977). The term “disorder” would appear to be 

more appropriate.

Masticatory muscle involvement has long been recognised in 

craniomandibular disorders but in spite of this Schwartz (1955) coined 

the term “temporomandibular joint pain-dysfunction syndrome” despite 

obvious muscle involvement. Later, Laskin (1969) ascribed the symptoms 

of this disorder directly to the muscles and advocated the name 

“myofascial pain-dysfunction syndrome”. He proposed that the 

commonest cause of the disorder was muscle fatigue as a result of 

hyperactivity, and that this hyperactivity could be due to parafunctional 

habits or psychological stress. This was the beginning of a more biological 

approach to the problem.

The desirability of more accurate diagnosis of these conditions and of a 

more reliable classification scheme was emphasised in a comprehensive 

review by Moss & Garrett (1984) and, after a study of a large number of 

patients, by Rothwell (1987). There have been several recent publications 

which address these problems by describing the advances in diagnostic 

classification and standardisation of terms in CMD (Bezuur, Hansson & 

Wilkinson, 1989; McNeil, 1990; McNeill et al, 1990; Fricton, 1991). There 

are also five recent textbooks of particular merit, with regard not only to 

classification but also to broader issues (Fricton, 1988; Solberg, 1989; 

Klineberg, 1991a, 1991b; Miller, 1991).
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1.9.2 Prevalence

It has been shown that the muscles of mastication have a higher resistance 

to fatigue than the limb muscles (van Steenberghe, de Vries & Hollander, 

1978; Clark & Carter, 1985), when the fatigue appears it is relatively 

slowly followed by pain (Christensen, 1981), and yet paradoxically the 

craniomandibular disorders are common in clinical practice. It is claimed 

that approximately 20% of the general (non-patient) population are aware 

of symptoms of craniomandibular disorders, with 5% requiring treatment 

as the condition is a significant problem (Rugh & Solberg, 1985).

1.9.3 Psychological Factors

The role of psychological factors in CMD has been the subject of much 

debate. Unfortunately this has been fuelled by a lack of diagnostic 

specificity in describing the groups of patients. In a study of 93 patients 

referred with psychogenic facial pain, Feinmann & Harris (1984a) found 

a high prevalence of adverse life events and psychiatric disorders. They 

also found a better response to the anti-depressant dothiepin 

hydrochloride (Prothiaden, Boots) than to a placebo or to a soft bite guard 

(Feinmann & Harris, 1984b). It is unfortunate that there was no attempt 

to distinguish between patients with joint pain or those with muscle pain, 

and no information on the selection procedure for the trial. The 93 

patients were selected from an original pool of 150, so there was obviously 

some degree of aggressive selection. The report divided the subjects into 

those with facial arthromyalgia (which they defined as “Costen syndrome, 

temporo-mandibular jo int or myofascial pain dysfunction syndrome”) and 

those with atypical facial pain (“Atypical facial pain differs from facial
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arthromyalgia in that it does not specifically affect the

temporomandibular joint or its musculature”).

A prospective study of the illness behaviour of 100 TMJ patients and 100 

asymptomatic controls showed that the patients had increased levels of 

disease conviction, anxiety or depression (Speculund et al, 1983). 

However, the TMJ group were much closer to the control group than to a 

pain clinic population. Again no specific diagnosis was reported and so 

the results are of less value than would otherwise be the case.

An association between pain, depression and impairment of activity has 

been shown in muscle-pain patients but not in joint-pain patients 

(Lundeen, Sturdevant & George, 1987). The association between 

depression and muscle pain would tend to support the notion of treating 

selected muscle pain patients with anti-depressants. It was also shown 

that the experimental group as a whole did not have abnormally high 

stress levels as measured on the Derogatis Stress Profile (DSP), but that 

the muscle pain group had higher levels than the joint pain group. The 

DSP is a stress assessment profile developed from interactive stress 

theory, incorporating assessments of environmental stress, personality 

and ability to cope with stress, and response to stress (Derogatis, 1984).

1.9.4 M uscle Pain

Muscle pain may be associated with myogenous CMD and some forms of 

headache {ad hoc Committee on Classification of Headache, 1962; 

Christensen, 1981). One explanation for this pain is that tooth clenching 

and hyperfunction inhibit venous drainage from muscle, leading to an
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accumulation of metabolites. These metabolites, and probably extra­

cellular potassium ions in particular (Mense, 1977), effect chemical 

irritation of nociceptive afferents in the adventitial sheath of intra­

muscular blood vessels (Klineberg, 1988).

For a number of years the major hypothesis for the cause of CMD 

(Laskin, 1969; Miles, 1978; Laskin & Block, 1986) was that continued 

hyperactivity resulted in muscle spasm and hence ischaemic pain. A 

notion which is better supported by experimental evidence is that of local 

mechanical micro-trauma (implying no external trauma) following 

hyperactivity (Yemm, 1985). Evidence for the presence of inflammation is 

provided by the increase in skin surface temperature (Berry & Yemm, 

1974) and increase in tissue fluid pressure (Christensen, 1971) which 

occurs following voluntary tooth clenching. It has also been shown that 

signs and symptoms similar to those of CMD can be induced in the 

masseter muscle by voluntary tooth clenching (Christensen, 1971) and in 

the lateral pterygoid muscle by vigorously protruding the mandible (Scott 

& Lundeen, 1980).

Intra-muscular blood flow has been shown to increase by only a factor of 

2.5 in the masseter muscle during a sustained contraction at 50% MVC. 

The blood flow during the post-contraction hyperaemia was 27 times the 

initial resting flow rate (Monteiro & Kopp, 1988). The EMG activity is 

likely to increase by approximately 50-fold during a contraction a t this 

level, and so apparently the blood flow rate is insufficient to meet 

demands during a sustained contraction. However, oxygen supply does 

not depend on blood flow rate alone, as more oxygen is extracted per unit 

volume of blood passing through the muscle during exercise. The 

haemoglobin molecule is made up of four haem groups containing ferrous
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iron, and so each haemoglobin molecule will bind a maximum of four 

molecules of oxygen (Keele, Neil & Joels, 1982). With the reduction in 

oxygen tension, the oxygen supply can be increased four times with no 

increase in flow rate.

A number of significant points have been raised by Christensen (1981): 

there is no conclusive evidence that muscle fatigue leads to so-called 

muscle spasm; muscle fatigue and muscle pain appear to be influenced by 

different determinants (this is also the contention of Monteith, 1984); 

there is no conclusive evidence of how ischaemia is related to jaw muscle 

pains; the masseter muscles and anterior temporalis are the most 

frequent sites of muscle pain in voluntary tooth clenching. It is apparent 

that the lateral pterygoid is the most frequent site of muscle pain in CMD 

(Franks, 1965; Scott & Lundeen, 1980).

It has been pointed out that craniomandibular disorders may be 

primarily of muscle origin (myogenous) or primarily of joint origin 

(arthrogenous), perhaps with secondary muscle involvement (Hansson, 

1988). As a basis for this contention, Naeye and Hansson (1986) 

investigated patients who were clinically divided into myogenous and 

arthrogenous groups. They found that there were significant differences 

in RMS-integrated EMG amplitude between the two groups when 

clenching for 30 seconds at 50% of maximum EMG activity of the 

masseter muscles. However, they did not find any statistically significant 

differences in the rate of change of the mean power frequency. It could be 

that spectrum compression was minimal because the subjects maintained 

a constant EMG amplitude instead of a constant force output. A factor 

which would tend to mask any differences between the muscles in both 

EMG amplitude and in frequency shift was that these parameters from
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both left and right masseter muscles were averaged, as they were also for 

the temporalis muscles. Thus if only one muscle was affected by 

dysfunction, this would be masked by averaging the EMG parameters 

with those from the healthy muscles.

1.9.5. Effects of Occlusal Interferences

An occlusal interference may be defined as any premature tooth contact 

which causes a deviation in the final centred arc of closure of the 

mandible, or interferes with smooth gliding movements from a protrusive 

or lateral position to the position of maximum intercuspation. These 

interferences are commonly caused by tilting or drifting of remaining teeth 

following the loss of a tooth, or by poorly constructed restorations. It is 

believed that these interferences may have a substantial effect on the 

musculature of the head and neck (Guichet, 1982; Hellsing, 1987; 

Klineberg, 1988; Dawson, 1989). This effect may be due to alteration of the 

accepted reflex pattern of activity for the individual and the inducement of 

avoidance activity. The induced hyperactivity may have a training effect 

on the muscles of mastication, or may lead to muscle spasm, to localised 

muscle micro-trauma (Yemm, 1985), or to tooth wear. Other possible 

effects of hyperactivity are the inducement of intra-capsular TMJ disc 

displacement (Yemm, 1985) and migraine with aura on waking (Lamey & 

Barclay, 1987).

It has been pointed out that the teeth and their associated periodontal 

proprioceptors form physical reference points which are unique in the body 

(Klineberg, 1988). These tooth-to-tooth relationships affect muscle 

function, fibre orientation and motor unit composition. As pointed out
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previously, it has been shown that masticatory muscle control during 

chewing is centrally programmed (Dellow & Lund, 1971) and it seems 

quite likely that stress might influence this central drive, resulting in 

parafunctional jaw movement (Yemm, 1985). The degree of fatigue and/or 

spasm induced by this non-functional activity might possibly lead to 

muscle pain, as discussed above, or to the development of myofascial 

trigger points. These trigger points are small areas of exquisite 

hypersensitivity located within a muscle or within the muscle fascia 

(Travell, 1960). This myofascial pain is often intense and may be referred 

to a distant site, often to the TMJ or to the temporal or frontal area.

The highly developed stereognostic sensitivity of the stomatognathic 

system (Siirila & Laine, 1963) is significant because of the precise 

guidance provided by the teeth. Any change or deflective contact of teeth, 

even of very small magnitude, is likely to be readily detected. These 

changes could result in altered chewing patterns and also in aberrant 

movements, or postures, to avoid interferences. The importance of 

harmonious occlusal contacts was recognised by Watt (1966, 1981) with 

the development of gnathosonic diagnosis. The use of power spectral 

analysis of occlusal sounds has been reported recently (Shi Chong-Shan et 

al, 1991), and this has provided information on the frequency distribution 

as well as duration of occlusal sounds.

There have been many studies showing a significant effect of occlusal 

adjustment on signs and symptoms of CMD (Kopp, 1979; Weinberg, 1979; 

Hellsing, 1988;), but the responses were not uniform. It may be that 

different sub-groups within CMD patients respond in different ways and to 

a different extent. Some epidemiological studies have shown
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a positive correlation between interferences and signs and symptoms of 

CMD (Molin et al, 1976; Ingervall et al, 1980).

1.10 THE EFFECTS OF LOSS OF TEETH

While some natural teeth remain, muscle performance seems to be largely 

unaffected by loss of teeth provided occlusal interferences are not induced. 

Removable partial dentures have an indirectly beneficial effect on muscle 

performance by preventing the development of over-eruption and tilting of 

teeth and hence occlusal interferences. When all the teeth are lost, 

however, muscle performance is substantially affected, either directly or 

indirectly. Bite force has been shown to be greatly reduced (Haraldson, 

Karlsson, Carlsson, 1979; Glantz & Stafford, 1985), although it may be 

suspected that bite force recording in edentulous subjects tends to slightly 

underestimate the true MVC because the subject is closing on denture 

bases and not on natural teeth. Another reason for the greatly reduced bite 

force is that the muscles atrophy because they are unable to function with 

their previous vigour. It has been pointed out that complete dentures 

provide an inferior substitute to natural teeth (Glanz & Stafford, 1985). 

Muscle cross-sectional area has also been shown to be reduced markedly in 

edentulous subjects (Newton et al, 1987), which is to be expected if the 

muscles have undergone atrophy.

The mean power frequency of the power spectrum has been shown to be 

related to muscle fibre composition, with an increase representing the 

recruitment of type 11 fibres (Barker, 1985). Completely edentulous 

subjects have been shown to have a lower mean power frequency than 

dentate individuals, which was interpreted as showing a reduced number
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of type 11 fibres as a result of disuse atrophy (Wastell, Barker & Devlin, 

1987).

Edentulous patients also suffer from CMD, although with a different 

pattern to younger dentate sufferers. The prevalence of CMD has been 

reported to be 19% of a population of 100 denture wearers (Zississ, 

Karkazis, & Polyzois, 1988). The relation of occurence of CMD to occlusal 

vertical dimension and jaw relationship errors was found to be to be 

statistically significant. Lundeen et at (1990) also found complete denture 

wearers to have a higher prevalence of CMD symptoms than the general 

population, but these symptoms were of a low intensity and not clinically 

significant. This was particularly so in the case of pain intensity.

1.11 MEASUREMENT OF BITE FORCE

1.11.1 B ite Force Transducers

The measurement of bite force presents several difficulties, one of which is 

that most direct methods require a certain thickness of bite force 

transducer. This depends on the method used, but most bite force 

transducers are of the order of 7 mm thick. If these are placed between the 

molar teeth then this results in a considerable degree of jaw opening. 

Although it has been reported that a jaw opening of 15 to 20 mm results in 

the optimal masseter muscle length (Manns et al, 1979), this is not a 

normal functional length. Some bite force measuring devices are thinner, 

one being some 3.4 mm thick (Floystrand, Kleven & Oilo, 1982), but these 

are not widely available. The other problem with bite force transducers 

generally is that damage can be sustained by the natural teeth or dental 

restorations (van Steenberghe & de Vries, 1978), and some form of custom
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made acrylic resin index should be applied to the beams of the bite force 

transducer in order to minimise this risk. Gauze may be more comfortable.

When a patient or volunteer is requested to clench maximally on a bite 

force transducer, it is notoriously difficult to be sure that the force 

produced is indeed the maximum of which he is capable. A theoretical 

solution to the problem would be to employ the twitch interpolation 

technique, as described in Section 1.1.2. However, because of the anatomy 

of the region, with small muscles, this is not a practical approach.

1.11.2 Periodontal M echanoreceptors

Volunteers are hesitant about clenching forcefully in case damage results; 

there is also an inhibitory response from the fibres of the periodontal 

membrane which supports each tooth (Hannam & Matthews, 1969; 

Bessette, Mohl & Bishop, 1974; Kloprogge, 1975; Cash & Linden, 1982). 

Hannam & Matthews (1969) demonstrated the presence of a jaw-opening 

reflex when stimulating the canine tooth of a cat. Bessette et al (1974) 

were able to abolish the masseteric silent period by placing local 

anaesthetic about the periodontal ligament, thus adding evidence to the 

notion that stimulation of periodontal receptors inhibits the masseteric 

motorneuron pool. Thus there is some evidence that periodontal 

mechanoreceptors send afferent volleys in order to protect an individual 

tooth from overloading, and so when comparing bite force within or 

between individuals one must be sure that the force was obtained between 

the same opposing teeth in each case.
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1.11.3 Position of Transducers

A variable which should be considered when measuring bite force is the 

position of the force transducer within the dental arch (Leff, 1966). The 

more posteriorly the force transducer is placed the greater the bite force 

recorded, partly because of the lever effect of the mandible and partly 

because there is a greater area of periodontal ligament around posterior 

teeth available to support the load. Different positions will also influence 

which muscles are involved in the force production. If the force transducer 

is placed anteriorly between the incisor teeth, with a resultant mandibular 

protrusion, the masseter will produce most of the force together with the 

medial pterygoid muscle. If the bite force transducer is more posteriorly 

placed, then the anterior fibres of the temporalis muscle will contribute a 

greater proportion of the effort (Carlsoo, 1952; Hellsing & Lindstrom,

1983).

1.11.4 Individual M uscle Force Output

A complicating factor when wishing to assess masticatory muscle 

performance is that it is not possible to directly measure force produced by 

the individual muscles, only their collective output. Indirect methods using 

intramuscular electrodes and supra-maximal electrical stimulation of 

motor nerves have been used (Desmedt & Godaux, 1979), but the 

technique is difficult and invasive in this region.
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1.11.5 Average Bite Force Values

In Western populations, average maximum bite forces between the molar 

teeth are usually said to be in the range of 600-750N (Hagberg, 1987). In a 

study on ten young women the mean maximum bite force between the 

molar teeth was 396N (Hagberg, Agerberg & Hagberg, 1985). Maximum 

bite forces between the incisor teeth have been found to vary between 

140N to 200N (Hellsing, 1980), and from 120N to 350N between the canine 

teeth (Lyons & Baxendale, 1990).

1.12 BRUXISM

1.12.1 Aetiology

Hyperactivity may result from occlusal interferences or from 

parafunctional habits such as nail biting, cheek biting, gum chewing, or 

bruxism. Hyperactivity implies that "the muscle activity induces signs or 

symptoms o f deviations from a somatic state o f well-being” (Christensen, 

1981). Bruxism may be defined as the parafunctional grinding of the teeth 

(Glossary of Prosthodontic Terms, 1987). It is perhaps the most potentially 

damaging parafunctional activity, and it is generally considered to be due 

to an enhancement of central motor drive induced by stress (Yemm, 1985; 

Klineberg, 1988). Movement generally may be consciously or 

subconsciously performed; it may be started consciously and continued in a 

rhythmical subconscious manner, or be more reflex in nature. Central 

motor drive is the mechanism by which this skeletal muscle activity is 

regulated (Hellsing, 1987).
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Aetiologic factors have been separated into genetic, local, systemic, 

psychogenic, and occupational (Klineberg, 1991). Bruxism has been found 

to be more prevalent in the children of bruxists (Abe & Shimakawa, 1966), 

and in students with blood relatives who are bruxists (Reding, Rubright & 

Zimmerman, 1966). In two publications which have been widely quoted, 

RamQord (1966a,b) claimed to have demonstrated a significant association 

between tooth contact interferences and bruxism, but unfortunately there 

were no control groups. Subsequent studies by other groups have shown 

that adjustment of the occlusion to eliminate interferences does not have a 

consistent effect on bruxism (Bailey & Rugh, 1980; Rugh, Barghi & Drago,

1984).

In a well-designed study by Sherman (1985) it was shown that patients 

with jaw pain due to bruxing were no more anxious (as determined on the 

Minnesota Multiphasic Personality Inventory) than other dental patients. 

He also demonstrated that patients with pain due to elevated muscle 

contraction levels responded very well to biofeedback therapy. The effect of 

an occlusal splint on the signs and symptoms of nocturnal bruxism has 

been shown to be significant (Sheikholeslam, Holmgren & Riise, 1986). 

These signs and symptoms, however, returned to pre-treatment levels 

when the patients were instructed to stop wearing the splint.

1.12.2 M uscle Performance

Bruxists have been shown to have increased endurance when maintaining 

an isometric contraction and also increased bite force (Helkimo & 

Ingervall, 1978), which is perhaps to be expected because of a probable 

training effect of the hyperactivity. One of the consequences of this



Lyons MF, 1992, Chapter 1. 70

increased activity is tooth wear, or attrition. Teeth may maintain their 

position within the supporting alveolar bone as wear takes place, with the 

result that the lower face height (chin-to-nose distance) decreases, or they 

may overerupt and so maintain the original lower face height. If a change
ftw.scles

in lower face height occurs then the jaw-closing Awill have a different 

working length. It seems that they adapt readily to a different working 

length (Goldspink, 1976; Klineberg, 1991), and clearly the change is 

imperceptibly slow and probably has little functional significance in the 

majority of patients. There are some, however, who suffer from a 

craniomandibular disorder which often improves upon restoration of the 

lower face height. This effect might be due to the consequent change in 

occlusal relationship of the teeth which inevitably occurs rather than the 

change in lower face height per se.

1.13 SUMMARY OF REVIEW OF LITERATURE

Relevant literature suggests a certain degree of concensus on various 

important topics, and also reveals areas which are contentious or where 

knowledge is incomplete. A brief summary of these factors is presented in 

order to clarify the aims of this investigation:

In prolonged intermittent submaximal contractions of limb muscle, 

activation by the CNS is fully maintained i.e. central fatigue does not 

occur.

Slowing of relaxation is probably due to reduced rate of calcium uptake by 

the sarcoplasmic reticulum and probably, in addition, reduced activity of



Lyons MF, 1992, Chapter 1. 71

the actomyosin cross-bridges. However, the precise mechanism is still 

unproven.

Power spectral compression clearly occurs with fatigue, and is mainly due 

to changes in muscle fibre conduction velocity. The median frequency is a 

suitable estimator of the power spectrum.

Normalisation procedures enable valid between-session and between- 

subject comparisons of EMG signals to be made, but care is required if 

MVC is the standard load employed.

Great care is required when recording bite force. Muscle force production 

is influenced by, among other factors, the periodontal mechanoreceptors.

The jaw-closing muscles are more resistant to fatigue than the limb 

muscles. Muscle fatigue is only slowly followed by pain. The manner in 

which ischaemia is related to muscle pain is not clear. There is very little 

evidence that fatigue leads to so-called muscle spasm, and the role of 

muscle fatigue in CMD is unclear. Local mechanical micro-trauma still 

seems a likely explanation for some types of pain in CMD. Pain similar to 

that experienced in CMD can be induced experimentally by prolonged 

contraction of the masseter and temporalis muscles.

The effect of occlusal interferences on bruxism is insignificant, but there is 

a weakly significant association between occlusal interferences and CMD. 

Bruxism is considered to be largely induced by stress.
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Patients with muscle-pain have slightly higher levels of stress and 

depression than patients with joint pain, but the significance of this is 

unclear.

Thus the role of fatigue in CMD requires clarification; the link, if any, 

between fatigue and pain is not yet established. It must be recognised that 

CMD is a group of related disorders and the role of muscle fatigue might 

vary according to the specific disorder.
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1.14 AIMS OF INVESTIGATION

The aims of this work were to investigate various mechanisms and 

methods of measurement of fatigue in the jaw-closing muscles and obtain a 

better understanding of the craniomandibular disorders. The specific aims 

were as follows:

•  To investigate bite force, endurance and fatigue in bruxists and normal 

controls. To investigate the measurement of bite force with the mandible 

in a possible laterotrusive position of parafunctional activity.

•  To study any change in EMG amplitude during a sustained isometric 

contraction in the jaw-closing muscles and assess the use of this parameter 

to monitor the state of fatigue in healthy individuals.

•  To study the use of power spectral analysis and the reported shift in 

median frequency which occurs during fatigue. To relate any shift which 

might occur to changes in amplitude.

•  To investigate the measurement of subjective perception of fatigue and 

pain in healthy individuals and to compare this with objective measures.

•  To study the relaxation rate in the masseter muscles of patients with 

CMD, and any changes in this rate which might occur with fatigue.
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CHAPTER 2.

GENERAL METHODS AND SPECIFICATIONS

2.1 ETHICAL COMMITTEE APPROVAL

Approval was obtained from the Area Dental Ethics Committee of the 

Greater Glasgow Health Board prior to all the experiments involving 

human volunteers (see Appendix G).

2.2 TYPE AND POSITION OF ELECTRODES

A bipolar electrode configuration was used in every case, with a ground 

electrode being placed on the ear lobe or forehead.

2.2.1 Tem poralis M uscle

The electrodes were placed over the anterior fibres of the temporalis 

muscle. The muscle was palpated and the area of maximum muscle 

movement on clenching was chosen. This was approximately 4 cms mid­

way above a line joining the tragus of the ear and the outer canthus of the 

eye, and was invariably within the hair-bearing area of the scalp. The 

electrodes were placed in line with the direction of the muscle fibres, and 

with an inter-electrode distance of 2 cm. Copeland-Davis stainless steel 

clip electrodes were used for the experiment reported in Chapter 3 , but 

intra-dermal hook electrodes were used in subsequent work. These hook 

electrodes were constructed by bending platinum sub-dermal electrodes
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(Type E2, Grass Instrum ent Co, Quincy, MA), which a re  stra igh t, to the 

dimensions provided by Ahlgren (1967). It was considered necessary to use 

either clip or intra-derm al hook electrodes ra the r than  discs because of the 

presence of hair. If a more anterior electrode position is used, and  so 

avoiding hair-bearing skin, then it is likely th a t activity will be detected 

from the orbicularis oculi muscle and possibly also from the frontalis 

muscle.

F ig u re  2.1 Copeland-Davis electrodes attached to the skin.
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2.2.2 M asseter M uscle

The area of the masseter muscle from which recordings were taken was 

the lower anterior part of the main belly of the muscle. The electrodes were 

placed in line with the main direction of the muscle fibres, the inferior 

electrode being placed near to the lower border of the mandible and 

towards the palpable anterior edge of the muscle. This usually resulted in 

the electrodes being placed on a line extending from a position 

approximately 15 mm anterior to the angle of the mandible to the outer 

canthus of the eye.

Copeland-Davis clip electrodes were used for the work reported in Chapter 

3- In all subsequent work disc electrodes were used, these being 

silver/silver chloride and 9 mm in diameter (SLE Ltd, Croydon, Surrey). 

Double-sided adhesive discs were used to retain the electrodes, and 

electrode gel (Neptic, Sandev Ltd) placed with a blunt-ended 19 gauge 

needle. The centre-to-centre distance was 2 cm. The skin surface was 

prepared by rubbing briskly with gauze soaked in surgical spirit. As the 

electrode gel was applied the needle was rotated lightly against the skin to 

further improve the contact.
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2.3 AMPLIFIER SPECIFICATIONS

The pre-amplifier and isolating amplifier used for the experiment reported 

in Chapter 3 were both manufactured by the Institute of Physiology, 

University of Glasgow. The amplifiers used in subsequent experiments 

were components of the Neurolog System (Digitimer Ltd), and consisted of 

the NL824 4-channel AC pre-amplifier and NL820 isolator amplifier. The 

general layout of equipment may be seen in Figure 2.2.

2.3.1 Pre-am plifiers

The University of Glasgow pre-amplifier was a single-channel amplifier 

with a gain of X1000. The commercial pre-amplifier used subsequently was 

a four-channel, low-noise, differential AC amplifier (NL824, Digitimer 

Ltd). The lower cut-off frequency was set to 3Hz and the higher cut-off 

frequency was > 10kHz. The input impedance was 10QMQ. The noise level, 

with inputs short circuited, was <1.5p,V RMS.

The pre-amplifier was placed close to the volunteer so as to keep the wires 

from the electrodes as short as possible. This was desirable to minimise 

electromagnetic interference. The wires from each electrode pair were also 

twisted together in order to keep any interference the same in each wire.
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2.3.2 Voltage Isolators

It is necessary, for safety reasons, to isolate human subjects from possible 

direct contact with the mains 240 volt supply in the event of equipment 

failure. This may be achieved in several ways, and optical isolators were 

used in the experiment reported in Chapter 3. The principle of an optical 

isolator is to utilize light-sensitive diodes for the transmission of a voltage- 

determined light impulse. This is then converted back to an electrical 

current and amplified.

The isolator amplifier used in the experiments reported in Chapters 5, 6 

and 7 was an NL820 which used transformer techniques (i.e. an isolating 

transformer) to provide both both signal and power supply isolation from 

the power supply ground. The input impedance was lOkQ, noise < 4mV at 

150kHz.
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F ig u re  2.2 General layout of equipm ent in the clinic. The PCM-8 may be 
seen second from top in the rack. Note th a t the pre-amplifier is positioned 
on the dental chair as close as possible to the volunteer.
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2.4 BITE FORCE TRANSDUCER

Bite force was measured using a stainless steel bite force transducer (see 

Appendix E). This was used in coiyunction with a  DC-coupled differential 

amplifier (NL107, Digitimer Ltd, Welwyn Garden City) which is intended 

for use as a bridge amplifier and has an integral power supply. The bite 

force transducer was calibrated against known weights before each session 

and checked again afterwards. The calibration was calculated in Newtons 

(lKg = 9.98N).

The force level was displayed on an oscilloscope screen (Tektronix 5103N, 

Tektronix Inc., Beaverton, OR 97077, USA) before being passed to a 4- 

channel chart recorder (Devices, Digitimer Ltd, Welwyn Garden City, 

Herts.)

Small autopolymerizing acrylic resin indices were fabricated with the 

canine teeth in contact with the metal faces of the bite fork. These indices 

protected the teeth against the possibility of enamel fracture during heavy 

biting and assured closure in the desired position. The total thickness of 

the bite force transducer and the acrylic indices was 7 mm.

2.5 SIGNAL STORAGE

Signal storage was achieved by the use of a PCM-8 A/D video recorder 

adapter (Medical Systems Corp., Greenvale, NY 11548). This enabled up to 

eight channels of data to be stored on high quality video tape cassettes. 

Prior to the introduction of the PCM-8 it was necessary to store signals on 

FM (frequency-modulated) tape, which was less convenient than video 

cassettes and considerably more expensive.
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The PCM-8 operated by multiplexing analogue inputs through a single A/D 

converter into a digital data stream. This digital data then modulated a 

video carrier in a format compatible with a standard VHS video and the 

encoded data was fed to the video input of a video recorder. Retrieval of 

data was achieved by playing the video tape back through the PCM-8. The 

signal was decoded, D/A converted, demultiplexed, and presented a t the 

analogue outputs of the PCM-8 a t the same amplitude as recorded. There 

was also an audio channel to record and replay audio notes.

In the 8-channel mode the sampling frequency was 11kHz, and in the 4- 

channel mode 22 kHz. The frequency response was DC-7kHz (4-channel) 

and DC-3.5kHz (8-channel). The PCM-8 employed a sensitive method of 

error detection and correction to compensate for tape drop-out, dirt on the 

tape, and poor quality tape (PCM-8 Users Manual).

2.6 SIGNAL PROCESSING AND ANALYSIS

Signal processing and analysis was carried out using a signal analysis 

package (Spike 2, Cambridge Electronic Design, Cambridge). A computer 

interface (1401, Cambridge Electronic Design) was used to digitise the 

data in separate channels and data aquisition software was used to 

capture the data. The sampling rate for EMG data was 1660 Hz, and 550 

Hz for the force data.

A text file within Spike 2, FFTEMG.TXT, was used to obtain the power 

spectra (see Appendix B). A section of each channel was specified for 

analysis by two vertical cursors. The FFT calculation applied by CED used 

a 16 bit word, and removed edge effects with a raised cosine window. Any
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DC offset, manifesting as a peak in the spectrum at zero frequency, was 

dealt with by removing the first (and sometimes the second) “bin” before 

calculating the median frequency. One bin is one point on the FFT. The 

formula for calculating the amount of information lost per bin is:

sampling frequency X 1

2 number of bins

1660 X 1

2 1024

= 0.81 Hz per bin

The area of the spectra to be used for the calculation of the median 

frequency was specified with two vertical cursors; this area was 0 - 550Hz. 

The median frequency was displayed on the screen.

To measure relaxation times, which required the use of one horizontal and 

two vertical cursors, the programme FASLOPE.TXT was used. This was 

also within the data analysis section of Spike 2. One EMG channel and one 

force channel could be displayed. Sections of these channels could be 

marked by vertical cursors and expanded. The vertical cursors were 

provided with a display showing time (seconds) to five decimal places. The 

horizontal cursor was also provided with a digital display, permitting the 

measurement of amplitude.
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CHAPTER 3.

BITE FORCE AND JAW-CLOSING MUSCLE FATIGUE IN HUMAN 

VOLUNTEERS WITH ADVANCED TOOTH WEAR

3.1 SUMMARY

The maximum bite force was recorded in five volunteers with advanced 

tooth wear and in a control group of five volunteers with no abnormal 

tooth wear. They were then asked to maintain a force of 50% of their 

maximum biting force for as ^ong as possible while surface 

electromyograms from the masseter and temporalis muscles were 

recorded. The bite force and endurance time were found to be slightly 

increased in the group with tooth-wear, but no conclusions could be 

reached regarding the state of fatigue. Two significant problems for fatigue 

studies of the jaw-closing muscles were identified: the use of the canine 

position for recording bite force and the thickness of the bite force 

transducer.

3.2 INTRODUCTION

The problem of advanced tooth wear (or perhaps more correctly tooth 

surface loss) is seen with increasing frequency in dental clinics. There are 

many reasons for this, not least of which is the fact that a greater 

percentage of the population are retaining their teeth into their middle
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years and beyond. Patients' expectations are rising and general dental 

practitioners are increasingly recognising the process and referring these 

patients to specialists for an opinion or, more usually, for treatment.

The term “tooth surface loss” refers to the loss of the surface of teeth as a 

result of attrition, erosion or abrasion, or often a combination of all three. 

The process of particular interest in this investigation was attrition, 

defined as the loss of substance of teeth or dental restorations by 

mastication or contact between occluding or approximal surfaces (Watson 

& Tulloch, 1985).

In cases of attrition, where there is no obvious dietary factor, there is 

usually a history of bruxism. The forces exerted during bruxing activity 

have been reported to be between 30% and 60% of a maximum voluntary 

contraction (Clarke, Townsend & Carey, 1984), which is a large force 

when compared to normal chewing forces. Up to eleven bruxing episodes 

per night were also reported, with an average duration of 11 seconds. 

Bruxism also occurs during the day, particularly at times of stress.

It seems reasonable to suggest that the jaw-closing muscles of bruxists 

might sustain a training effect from this activity, becoming stronger and 

possibly more resistant to fatigue. The picture is not entirely clear on this, 

however, as it is likely that the activity may often occur in one particular 

laterotrusive position.

A view which is generally held regarding the aetiology of bruxism is that 

it is a centrally induced activity and perhaps peripheral factors, such as 

occlusal interferences, play a precipitating role in some cases (see Chapter 

1, section 1.12). It was pointed out by Chaffin (1971) that fatigue in limb
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muscles results in a reduced ability to perform accurate movements and to 

judge the exertion of light forces; it is possible that this impairment of 

judgement of light forces may also have some relevance in bruxists. 

Chaffin also defined localized muscle fatigue, saying that it results in 

discomfort and decreased performance; decreased ability to carry out 

precise coordinated movement; increased muscle tremor occurs; also there 

are subjective feelings of pain and a “desire to abandon the task”.

One of the problems associated with the study of fatigue of the jaw-closing 

muscles is that it is not possible to measure the force output of each 

individual muscle, only their collective force. Also it has been shown by 

Hellsing & Lindstrom (1983) that there is a rotation of activity among the 

synergist muscles which is quite beyond voluntary control and serves to 

further complicate the situation.

During a sustained isometric contraction the surface detected signal has 

been shown to increase in power as a result of metabolic fatigue. Thus the 

EMG/force ratio increases in an attempt to maintain the force output, due 

to recruitment of additional motor units (Edwards & Lippold, 1956).

The aims of this experiment were to investigate the strength, endurance 

and resistance to fatigue of the masseter and anterior temporalis muscles 

in bruxists compared to a non-bruxing control group. These parameters 

were to be studied with the canine teeth in a cusp-to-cusp position on the 

bite force transducer to investigate fatigue in this specific position. The 

feasibility of using change in EMG amplitude during a sustained isometric 

contraction as a measure of fatigue in the jaw-closing muscles was also to 

be investigated.
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3.3 METHOD

3.3.1 V olunteers

Ten volunteers participated in this study, five of whom showed advanced 

attrition (Figure 3.1) and five of whom did not. The controls were age- 

matched to the experimental volunteers and both groups were males aged 

between 32 and 60 years. The volunteers with attrition had a history of 

bruxism, were partially dentate, and showed a degree of attrition 

corresponding to a score of 3 or 4 on the Smith and Knight Tooth Wear 

Index (Smith & Knight, 1984) for the occlusal or incisal surfaces (Figure 

3.2). They were chosen as being representative of the patients referred to 

the Glasgow Dental Hospital and School with tooth surface loss. They were 

clearly suffering from attrition rather than a detectable dietary or systemic 

cause. The controls were also partially dentate but did not have a history 

of bruxism and had no abnormal tooth wear. Dental Ethical Committee 

approval was obtained for the project, and informed consent obtained from 

each participant.
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F ig u re  3.1 One of the volunteers with attrition.
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Score* Surface Criterion

0 B/L/O/I No loss of enamel surface 
characteristics

C No change of contour.

1 B/L/O/I Loss of enamel surface characteristics.
C Minimal loss of contour.

2 B/L/O Loss of enamel exposing dentinefor less 
than one-third of the surface.

I Loss of enamel just exposing dentine.
C Defect less than 1mm deep.

3 B/L/O Loss of enamel exposing dentine for more 
than one-third of the surface.

I Loss of enamel and substantial loss of 
dentine, but not exposing pulp or 
secondary dentine.

C Defect l-2mm deep.

4 B/L/O Complete loss of enamel, or pulp 
exposure, or exposure of secondary dentine.

I Pulp exposure or exposure of secondary 
dentine.

C Pulp defect more then 2mm deep, or exposure of 
secondary dentine.

In case of doubt a lower score is given.
B«buccal or labial; Lslingual or palatal; 0=occlusal; C=cervical.

F igure  3.2 The tooth wear index (Smith & Knight, 1984), reproduced from 
the British Dental Journal, vol. 156.

3.3.2 Electrom yography

Electromyograms were recorded from the masseter muscle and the 

anterior fibres of temporalis. Copeland-Davis stainless steel surface 

electrodes were used in a bipolar configuration. These clip electrodes are 

intended to maintain a constant impedance, and were placed with their 

centres 2cm apart and in line with the main direction of the muscle fibres 

(Greenfield & Wyke, 1956). A ground electrode was placed either on the
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ear lobe or on the forehead. The signal was amplified X1000, optically 

isolated (Figure 3.3) and rectified-integrated with a time constant of 200 

ms. The data was displayed on a 4-channel chart recorder with the paper 

speed set a t 10 cms/min. The preferred chewing side was used for the 

experiment.

The method of quantifying the change in amplitude of the EMG signal 

(AEMG) during the sustained contraction was to measure the increase in 

amplitude which occurred during the course of the contraction (Aa) and 

express this as a percentage of the initial rise from the resting amplitude 

to the amplitude at 50% MVC at the start of the sustained contraction 

(AAj). Thus %AeMG = Aa/AAj X 100 (Figure 3.4).
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O p TO ISOLATOR

O  p TO ISOLATOR

JDevicosi

F ig u re  3.3 The two single-channel optical isolators on top of the Neurolog 
case.
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Anterior
temporalis A ,

Masseter

Time
(sec)

Force
Subject B

F igure  3.4 RMS-integrated EMG records and force record from one 
volunteer. The horizontal lines indicate the levels from which 
measurements of EMG amplitude were taken.
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3.3.3 E xperim ental P rotocol

The procedure was explained to the volunteers and they were allowed to 

familiarize themselves with the bite fork and the oscilloscope screen which 

provided visual feedback. The volunteers were then asked to carry out a 

maximum voluntary contraction (MVC) several times, with a short rest in 

between, until the maximum had clearly been obtained (Figure 3.5). Each 

volunteer was then requested to sustain a force equal to 50% of the MVC 

for as long as possible. This force level was achieved by observing the 

marker on the oscilloscope screen.

Rectified integrated EMG

Anterior   <r-
temporalis

M asseter 

Time (sec)
JU

t : • • : ; ;  i .»11 « r i ! ?;: • jl t ; ; • i ;;»»i n  i • n  ■» n  • i • ?. t •. i > •

Force

Subiect E

]
100 N

F igure  3.5 Rectified-integrated EMG and force records from one volunteer 
to show a series of maximum voluntary clenches.
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3.4 RESULTS

The maximum bite force achieved by the group with tooth wear was 

generally higher than that achieved by the controls (Figure 3.6), their 

mean bite force being 260N (SD 58.1) compared to a mean of 220N (SD 

107.7) for the controls (Tables 3.1 and 3.2). Two members of the control 

group, however, had very large bite forces of 320N and 350N.

MAXIMUM BITE FORCE

400

Z
300<bo

b
LL

200
CD

x 100

B C GA D E F H J
Volunteers

vm with wear I I No wear

F igure  3.6 The maximum bite force obtained from each 
volunteer.
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Percentage Change in Amplitude 
Volunteer Endurance Force

(mins) (N) Temporalis Masseter

A 2.7 340 150 0
B 2.2 290 100 300
C 1.3 210 100 0
D 1.4 270 0 8
E 2.7 200 0 0

Mean: 2.06 260 70 61
+ SD 0.68 58 67 133

Table 3.1. Results from volunteers with tooth wear.

Percentage Change in Amplitude
Volunteer Endurance Force

(mins) (N) Temporalis Masseter

F 1.9 110 250 50
G 1.4 170 120 0
H 1.3 320 0 -100
I 1.4 350 330 160
J 2.1 150 20 -100

Mean: 1.62 220 144 2.0
+ SD 0.35 107 143 109

Table 3.2. Results from volunteers with no tooth wear (control group)
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The time which each volunteer was able to sustain a contraction was 

termed the endurance time (Figure 3.7). The endurance time of the 

attrition group, with a mean of 2.06 minutes (SD 0.680), was slightly 

longer than that of the controls, whose mean endurance time was 1.62 

minutes (SD 0.356) (Tables 3.1 and 3.2).

ENDURANCE TIME

<b
8
?
w

3

2

1

0
G JF HE

Volunteers

\/////\ with wear no wear

F igu re  3.7 The time for which each volunteer was able 
to sustain a contraction.
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When these two parameters of bite force and endurance time were 

subjected to an unpaired t-test there were no statistical differences 

between the means of the experimental and control groups. The values 

for force were t = 0.77, p = 0.47, DF = 6. The values for endurance were 

t  = 1.28, p = 0.25, DF = 6. Because of the small sample size and the 

difference in the standard deviations, a Mann-Whitney analysis was 

also carried out for each of these parameters but again no statistically 

significant differences could be demonstrated.

The change in EMG amplitude was slightly greater in the temporalis 

muscles than in the masseters, but no other pattern of change could be 

seen (Figures 3.8 and 3.9). Two volunteers showed a decrease in EMG 

amplitude from their masseter muscles. There was a large range in the 

levels of change of EMG amplitude with very large standard deviations. 

Unpaired t-tests showed no statistically significant differences between the 

two groups, either for the masseter or for the temporalis muscles. For the 

masseter t = 0.77, p = 0.47, df = 7, and for the temporalis muscle t  = -1.04, 

p = 0.34, df = 5. A Mann-Whitney analysis also failed to show any 

difference between the two groups a t the 5% level of confidence.
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for each volunteer, the error bars representing standard errors.
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3.5 DISCUSSION

The large variations in amplitude during the sustained contractions were a 

little difficult to explain, but this is often seen in an advanced state of 

fatigue (Figures 3.4 and 3.10). In order to make some comparison with 

another muscle system, recordings were taken of the first dorsal 

interosseous muscle of the hand from one volunteer (MFL) who was not 

one of subjects of the experiment (Figure 3.11). The same equipment and 

regime was used as for the jaw-closing muscles in the current experiment. 

A large and rapid increase in amplitude occurred during the course of the 

contraction, with comparatively small variations.

The large and increasing variation seen in the amplitude of the signals 

from the masseter and temporalis muscles probably resulted in a mean 

amplitude which was misleading. The mean of a rapidly-varying amplitude 

will be low compared to the maximum and so will not reflect the increasing 

power of the signal that is occuring with the onset of fatigue.
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F igure  3.10 EMG and force records from one volunteer. 
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F igure 3.11 EMG and force records from the first dorsal interosseous 
muscle. The steady rise in rectified-integrated EMG can be seen.
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A possible explanation for the decrease in EMG activity observed in two 

volunteers might be that a rotation of activity had occurred, perhaps to the 

medial pterygoid muscle. This illustrates the problem of rotation of 

synergist activity which occurs in the jaw-closing muscles.

The reason that the canine position was used to record force in this pilot 

study was that many patients with attrition show considerable wear on 

their canines, indicating heavy functional or parafunctional contacts. 

Helkimo & Ingervall (1978) found that clenching or grinding resulted in an 

increased bite force when measured a t the incisors but not at the molars 

and they suggested that there could have been a training effect on the 

muscles at mandibular positions away from the inter-cuspal position. They 

also found that there was a very large range of bite forces from 30 N to 450 

N at the incisors. The range in this preliminary study was 110 to 350 N in 

the canine area.

A difficulty with volunteers showing attrition is that the vertical overlap of 

the canine teeth is often nil, while it is invariably greater than this in 

people without attrition. This results in different degrees of opening 

between the two groups when closing on the bite fork. The use of the 

incisor position would still involve this problem, as often worn incisors are 

also in an edge-to-edge relationship.

The measurement of bite force is fraught with difficulties, firstly because it 

is difficult to be sure whether a volunteer is applying full effort or not. A 

theoretical solution to this would be to employ the twitch interpolation 

technique as described in Chapter 1 Section 1.1.2. Secondly, when using 

any eccentric position it is impossible to achieve the same degree of 

protrusion and laterotrusion in each volunteer, as this will vary
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according to the relative size of their skeletal bases and their occlusal 

patterns.

Another difficulty with bite force studies is that it is not easy to reduce the 

thickness of the bite fork to less than 7mm as the beams become too weak 

to resist the forces involved. This is a large opening and is quite a 

different situation to that occurring in either normal or para- function. 

The extrapolation from results obtained with this muscle length to the 

length in the normal contact position should be interpreted with caution in 

endurance and fatigue studies. Although the thickness of the force 

transducer is only 7mm, by the time any vertical overlap is taken into 

account the total amount of opening is a good deal more. As the jaws open 

there is muscle lengthening; the angle a t which the muscles are applying 

the force changes, and changes to different degrees in different 

individuals. If a lateral movement is incorporated the contribution of 

different muscles changes and the situation becomes even more complex.

It seems clear that a very much thinner device would be helpful. The use of 

piezoelectric foil of the order of 60 microns thick, which is now 

commercially available, would be a step forward in obtaining accurate 

information about bite force. An investigation of a system utilizing this 

principle is reported in Chapter 4.

Fatigue and bite force studies both present the difficulty of a volunteer’s 

cooperation. Some volunteers might well try harder than others to endure 

the discomfort of a prolonged contraction. Some might have more pain 

than others, while some may be able to tolerate the same level of pain 

better than others. It is certainly true that all of the participants in this 

study ceased to maintain the contraction because of pain and not
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specifically because of an inability of the muscles to continue. There is no 

obvious answer to this problem, but the number of volunteers should be as 

large as practically possible, and the control group should be matched for 

age, sex, and occlusal pattern.

Another solution might be to test pain tolerance and then to normalize the 

endurance time to the pain tolerance, but this adds yet another unpleasant 

procedure to the experimental session. On the other hand, alternative 

methods for quantifying fatigue, such as power spectral analysis, would be 

simpler and would probably be more meaningful in clinical research.

The most significant problem was that the use of the canine position 

introduced a laterotrusive position of the mandible; this meant that the 

lateral pterygoid and masseter muscles on the contralateral side had to 

exert a relatively large force in order to maintain this position. In several 

subjects pain on the contralateral side was the reason for abandoning the 

sustained contraction. This meant that endurance of the jaw-closing 

muscles was not fully tested on the ipsilateral side, which highlighted a 

significant complication with the use of this canine position. This 

phenomenon of pain on the contralateral side during unilateral biting has 

also been noted by other workers (Kydd, Choy & Daly, 1986).

It has been shown that resistance to fatigue varies between muscles. 

The phenomena which may contribute to this difference are; 

recruitment and firing rate differences, the proportion of slow twitch to 

fast twitch fibres, cross talk from adjacent muscles, and 

agonist/antagonist muscle interaction (Lawrence & De Luca, 1983). 

Agonist/antagonist muscle interaction is particularly relevant where 

joints must be stabilized, as may be the case with the masseter and
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temporalis. It is likely that this relationship takes a different form in 

the mandible because of the stability provided by the teeth, or contact 

with the force transducer, and that the contralateral lateral pterygoid 

muscle assumes the role of a partial antagonist to the contralateral 

masseter.

3.6 CONCLUSIONS

Bruxists do seem to have demonstrated increased bite force a t the 

canines, even though the difference between the means was not 

statistically significant. They also seemed to be able to maintain a given 

force longer than non-bruxists, again even though this is not 

statistically significant. However, no conclusion could be drawn 

regarding possible differences in resistance to fatigue between the two 

groups.

The most significant conclusions are that the recording of bite force 

between the canines presents complications in jaw muscle fatigue studies; 

the use of bite force transducers of any thickness which is greater than a 

normal functional limit (probably in the region of 0.5mm) might present 

complications in fatigue and endurance studies.
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CHAPTER 4.

AN EVALUATION OF A COMPUTERISED OCCLUSAL ANALYSIS 

AND FORCE MEASURING SYSTEM.

4.1 SUMMARY

A computerized system has recently become available to assist in occlusal 

analysis. An evaluation of this system is described, with particular 

emphasis on the measurement of bite force. A hand-held testing device and 

a NENE universal testing machine were used to apply force. A limited 

clinical trial was carried out on two volunteers with known occlusal 

interferences present. It was concluded that the system does not measure 

bite force accurately, but may be useful as a clinical tool if used with care.

4.2 INTRODUCTION

A computerized system, the T-Scan (Tekscan Inc., Boston, Mass., USA), 

has recently been developed for the analysis of the occlusal contacts of 

teeth (Figures 4.1 and 4.2). The first units were delivered in the USA in 

May 1988 and in Britain a short time later. The T-Scan is a self-contained 

computerised system intended to assist in occlusal analysis by providing 

information on the timing, magnitude and distribution of occlusal contacts. 

Later models may also be linked to a separate computer for data 

processing and storage.
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F ig u re  4.1 The T-Scan with sensor handle attached.

F ig u re  4.2 The sensor handle with sensor in place.
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F ig u re  4.3 The sensor foil.

The T-Scan system consists of a piezoelectric foil sensor (Figure 4.3), 

sensor handle, hardw are and software for recording, analysing and 

viewing the  data. In addition to a monitor screen, there is also an  integral 

prin ter to obtain hard copy.

The sensor foil is made up of several layers of conductive inks on a 

polyester film substrate  and is held in a rigid plastic supporting handle for 

intra-oral use. The m anufacturers sta te  th a t the sensors are  of the order of 

60|a thick, although when m easured on a digital m icrometer (Digimatic 

Indicator, Mitutoyo, Japan) they were found to be consistently between 

80ja and 90pt. Information on occlusal contacts may be obtained from the 

system either as a time analysis or a force analysis, and both of these will
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give position of contacts on an predetermined arch form. The force analysis 

may be obtained as either a Force Movie, which is a  three-second 

continuous recording of force consisting of some 180 frames, or as a Force 

Snapshot, which is an instantaneous single record of force taken when the 

sensor handle button is depressed.

The claim in the manual provided with the system that "... force 

information will appear on the screen as columns whose height is 

proportional to the contact forcen was of particular interest as this would 

make the system a useful research tool.

There have been five publications by the developers of the system (Maness, 

Chapman & Dario, 1985; Maness, 1986; Maness et al, 1987; Maness & 

Podoloff, 1989; Chapman, Maness & Osorio, 1991), one independent 

evaluation of the sensor foils (Harvey, Hatch & Osborne, 1991), and one 

evaluation of the sensitivity and reliability of the system in abstract form 

(Hsu, Gallo & Palla, 1990) at the time of writing. There had been no 

comprehensive evaluation of the ability of the system to measure force.

The aim of this investigation was to test the accuracy of the system when 

measuring force. In addition, the practicality of the system for clinical use 

was to be assessed. The clinical trial was very limited, being restricted to 

two volunteers.

4.3 METHOD

Measurement of force was tested by applying a known force to the sensor, 

taking a force snapshot, printing this pattern and measuring the height of
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the column produced on the hard copy (Figure 4.4). The column heigh t on 

the hard  copy was m easured to an accuracy of ± 0.01 mm, using vernier 

callipers. This column height was then compared to the  actual force 

applied. A total of 75 different applications of force was made, both with a 

hand-held device and with a universal testing machine. Single point force 

applications were made a t 5N, 15N, 30N, and 60N. This was considered to 

be an  appropriate range for the representation of single tooth contacts.

T—Scan 3D FORCE SNAPSHOT

F ig u re  4.4 Method of m easuring the column height on the print-out using 
calipers.
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F ig u re  4.5 The hand-held force transducer and Perspex sensor support.

F ig u re  4.6 The interchangeable probes for the hand-held force transducer, 
with the 0.75mm diameter probe attached to the device and the 2.5mm 
probe below.
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For the first series of force applications the hand-held device was used. 

This force transducer was designed and manufactured as a cervical dilator 

specifically for clinical research (Richardson et al, 1989). The essential 

elements of the system consisted of a central shaft supported by two 

silicone rubber bushes. These bushes were much stiffer in the lateral than 

in the axial direction. Axial displacement of the shaft was measured using 

a variable resistance linear displacement transducer. The accuracy of the 

device was IN and was checked by the manufacturers prior to use. The 

device had two interchangeable probes (Figures 4.5 and 4.6). The 

measuring device gave a readout of the applied force in two ways, one as 

the applied force a t any moment in time and the other as the maximum 

force applied since it was last reset. This capability to store the maximum 

applied force was useful as it meant that the actual applied force could be 

read more precisely because this remained on the screen after the force 

was released, and remained until the reset button was depressed.

One of the two probes had an end radius of 0.75mm, the other an end 

radius of 2.5mm. It was considered that these dimensions approximated 

the cusp size of a tooth reasonably well. The sensor was supported on a 

Perspex sheet while the force was applied, so in fact the situation was that 

of a round-ended probe applied to a flat Perspex sheet with the sensor foil 

interposed (Figure 4.5). A total of thirty force applications was made with 

the 2.5 mm probe. These were applied a t various positions on the same 

sensor for twelve applications. Subsequently a new sensor was used for 

each new twelve force applications. A further twelve applications were 

made using the 0.75 mm probe, making a total of forty two applications 

with the hand-held force transducer.
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The 0.75 mm probe was then mounted in a NENE universal testing 

machine (Nene Instruments Ltd., Wellingborough, Northamptonshire, 

England) and the foil placed on the platform of the machine (Figure 4.7). 

Twenty four force applications were made at various points on two 

different sensors (Figure 4.8). Then three applications of the same force 

were made in exactly the same place on a new sensor in order to test the 

reproducibility under repeated contacts. Two different force levels were 

used. The next step was to record a force movie while a known force was 

maintained for the duration of the movie, this being repeated a t three 

different force levels.
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CAPAC|TY 
SERIAL No

F igure  4.7 The 0.75mm probe attached to the NENE universal testing 
machine.
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F igure  4.8 Print-out from the NENE testing machine to show the pattern 
and timing of force application.
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For the final part of the laboratory study, upper and lower fully dentate 

acrylic resin casts were mounted in an articulator (Dentatus ARD) and 

placed in the testing machine (Figure 4.9). Twelve force applications were 

made, a t four different force levels, using a new sensor for each 

application. The range of forces applied was from 98N to 299N, 

representing the sort of forces achieved in light to moderately heavy 

clenching with a full complement of teeth.

To assess the practicality of the system to evaluate tooth contact, a clinical 

trial on two volunteers was undertaken. Volunteers who were known to 

have non-working side and protrusive interferences were obtained, and the 

ability of the machine to detect these interferences was evaluated. These 

interferences were demonstrated with marking paper and then both upper 

and lower arches were photographed from an occlusal view. The T-Scan 

was subsequently used to obtain a force movie and the pattern of 

interferences detected was compared with the pattern on the photographs.
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CAWOTY 
SERIAL No

F igure  4.9 Acrylic resin casts mounted in an  articulator, in place in the 
universal testing machine. The sensor handle, with sensor, may be seen 
between the teeth.
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4.4 RESULTS

The results of the single point force applications show that for a given force 

there were columns of widely differing height produced by the T-Scan 

(Tables 4.1 - 4.7). When a linear regression analysis was applied to all the 

data in Tables 4.1 - 4.6 and Table 4.7, the correlation coefficient was 0.472, 

giving an r^ value of 0.222. This meant that only 22.2% of the variation in 

the measured column height was explained by the estimate of the force 

applied. The degree of association between the two values was very poor 

indeed. The linear estimator of the column height is:

Height (mm) = 4.84 + 0.102 Applied Force (N)

However, this is of little predictive value. For any single force application 

there was a large variability in the column height (Figure 4.10). In clinical 

use it is obviously desirable to obtain a consistent column height for any 

one force application.
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Applied Force (N) T-Scan Column Height (mm)

5 3.20
5 2.88
6 3.74
6 6.10

17 6.92
19 14.68
15 10.44

29 16.70
29 6.12
30 15.38

62 9.28
60 16.50

T able 4.1 Force applied with hand-held force transducer, using 2.5mm 
probe.

Applied Force (N) T-Scan Column Height (mm)

5 6.12
5 4.00
5 2.96

16 5.52
16 11.38
15 5.74

28 11.46
30 19.80
30 7.38

60 8.94
60 16.62
58 16.48

T able 4.2 Force applied with hand-held force transducer with 2.5 mm 
probe attached.
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Applied Force (N) T-Scan Column Height (mm)

3 3.16
4 5.04
3 3.24

10 7.14
11 8.00
10 5.10

T able 4.3 Force applied with hand-held force transducer.

Applied Force (N) T-Scan Column Height (mm)

5 3.06
5 4.61
5 4.11

15 2.74
16 6.02
16 6.94

31 7.85
31 8.84
31 8.18

61 3.12
61 2.67
59 6.82

T able 4.4 Force applied with hand-held force transducer, using 0.75 mm 
probe.
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Applied Force (N) T-Scan Column Height (mm)

6 2.76
6 5.30
6 3.96

15.3 2.82
15.8 5.88
15.8 6.00

30.3 4.86
30.3 10.32
30.3 3.14

59.2 13.52
59.8 4.22
59.4 9.30

Table 4.5 Force applied with NENE universal testing machine using 0.75 
mm probe.

Applied Force (N) T-Scan Column Height (mm)

5.3 - 5.4 3.00 (no variation)
10.0 -11.0 5.12 (no variation)

14.6 -15.00 8.40 - 9.12 (one
pixel variation)

Table 4.6 Force applied with NENE universal testing machine using 0.75 
mm probe. The T-Scan was recording in Force Movie mode.
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Applied Force (N) T-Scan Column Height (mm)

5.9 3.88
5.9 6.18
5.9 5.22

11.0 8.80
11.0 3.00
11.0 6.12

Table 4.7 Force applied with NENE universal testing machine using 0.75 
mm probe. The T-Scan was recording Force Snapshots. Three applications 
of the same force were made in the same position on the sensor.

24.00

19.20

14.40

9.60

4.80

0.00
O 13 26 39 52 65

Applied Force (N)

F igure  4.10 The data from Tables 4.1 - 4.5 and 4.7 showing the 
distribution of 60 measurements of column height produced by different 
applied forces. The wide variation can be clearly seen, even a t low force 
levels.
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Using the hand-held force transducer with a 2.5mm probe again produced 

a wide variation in column height for any given applied force (Tables 4.1, 

4.2 and 4.3). A linear regression analysis of the data in Table 4.1 produced 

a correlation coefficient of 0.0596 with an r2 value of 0.355; for the data in 

Table 4.2 the correlation coefficient was 0.674 with an r2 value of 0.455; for 

Table 4.3 the correlation coefficient was 0.869 with an r2 value of 0.755. 

Once again the variability was very wide. The results were similar when 

the 0.75 mm probe was used (Table 4.4), with a correlation coefficient of 

0.027 and an r2 value of 0.001.

The results from the NENE testing machine showed a similar picture to 

the results obtained with the hand-held force transducer (Table 4.5). The 

correlation coefficient was 0.585 with an r2 value of 0.342.

When a force movie was recorded while maintaining a constant force by 

the NENE testing machine, there was no variation in column height 

(Table 4.6). This indicated that there was no detectable drift in the system 

and that the force movie mode was operating accurately with the 

information that it was detecting. In one of the three tests there was one 

pixel variation of the column height, which was only to be expected in such 

a system, and measurement of this variation showed the resolution of the 

hard copy to be 0.72 mm.

Three repetitions Of the same force to exactly the same position on the foil 

produced columns of widely varying height (Table 4.7), although it must be 

said that it was possible that some very slight degree of movement of the 

sensor might have occurred. The correlation coefficient was 0.237 with an 

r2 value of 0.056.



Lyons MF, 1992, Chapter 4. 122

The results of the test with the acrylic casts on an articulator in the NENE 

testing machine showed an increasing number of occlusal contacts 

detected as the applied force increased. However, the T-Scan columns were 

of varying height and there was a wide variation in relationship to the 

applied force (Table 4.8). The correlation coefficient was 0.788, giving an r2 

value of 0.621.

Applied Force (N) No. of Contacts Height of Tallest 
T-Scan Column (mm)

98 2 3.68
98 2 2.68
98 5 2.94

199 10 12.32
199 5 3.72
199 11 8.88

249 12 8.88
249 11 12.34
249 7 8.92

299 13 11.16
299 13 9.34
299 13 10.00

Table 4.8 Acrylic resin models on articulator, mounted in the NENE 
universal testing machine. A new sensor was used for each of these force 
applications.

The results of the clinical tests showed that the force movie was useful for 

detecting occlusal interferences (Figures 4.11-4.14).
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Protrusion SuhJ B

Right Left
Mo'-'ie: C Elapsed time: Q.98Q
Frame: 60 of 161

F igure  4.11 A print-out of frame number 60 of a 161-frame force movie, 
taken while the volunteer made a protrusive movement.



Lyons MF, 1992, Chapter 4. 124

Figure 4.12 Subject B showing articulating paper m arks produced by a 
protrusive movement. The interfering contacts on the palatal cusps of 
the first molars may be seen. The contact on 1.1 could be seen in a later 
fram e of the force movie, as it had not occurred by fram e 60.
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Left Lateral Excursion Subj B

Right

Movie: A Elapsed time: 1.960
Frame: 109 of 161

Figiire 4.13 A print-out of frame number 109 of a 161-frame force movie of 
Subject B making a left lateral excursion.
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F ig u re  4.14 Articulating paper m arking of the non-working side contact 
on the palata l cusp of 1.7 for volunteer B.
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4.5 DISCUSSION

The manufacturers claim that a force record may be made for a patient 

and this can be kept as a record of occlusal contacts and compared with the 

situation at a subsequent visit, or after occlusal adjustment. In view of the 

fact that a given tooth contact force can produce a different column height 

each time it is recorded, it is clear that the column heights are largely 

irrelevant and simply serve to indicate the presence of a contact and not 

force of contact. Also, it can be seen from Table 4.8 that the number of 

contacts recorded for a given force application was not consistent, and 

there was not a consistent relativity between forces applied a t different 

areas when viewed in a single frame.

The designer of the system explained that the sensor is constructed with 

conductive inks in a grid pattern (William Maness - verbal 

communication). In order to achieve a consistent force/resistance curve, i.e. 

a consistent force/ column height relationship, the force must always be 

applied in the centre of each grid. Every sensor foil is tested in this way 

before it leaves the factory. The manufacturers use a mechanical robot to 

apply force to ten different points around the sensor, each point being in 

the centre of a grid. The obvious problem with this, of course, is that as 

there are approximately 1500 grids on a foil it is clearly not possible to 

achieve this precise positioning clinically. The manufacturer explained 

that there was a compromise between accuracy of position measurement, 

which obviously requires a large number of grids, and accuracy of force 

measurement, which requires the smallest number of grids.

The force movie was shown to be useful for detecting occlusal 

interferences. It was quick, relatively easy to use and accurate, within the
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obvious limits of the system, in the two volunteers tested. It should be 

pointed out, however, that the volunteers were both dentists and were 

able to make unguided lateral and protrusive excursions. When guided 

movements are required it becomes very much more difficult, as a 

chairside assistant is required to hold the handpiece and press the record 

button a t precisely the right moment.

A study has been published very recently which lends support to the 

results of this work (Hsu, Palla & Gallo, 1992). It was found that the 

sensors did not have the same sensitivity throughout the surface and that 

the T-Scan always recorded fewer contacts than were actually present.
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4.6 CONCLUSIONS

The T-Scan was not accurate at measuring force, either with two different 

force applicator sizes or at varying force levels. However, the device did 

provide a constant column height to a constant sustained force when 

recording in the force movie mode.

When acrylic resin casts of a complete dentition were applied to different 

sensors and loaded with the same force, different numbers of contacts were 

recorded. In the two clinical evaluations the occurrence of non-working 

side contacts was demonstrated clearly by the T-Scan.

In view of the above findings it must be concluded that:

•  it is not valid to directly compare two different T-Scan recordings of 

occlusal patterns of the same patient.

•  the T-Scan does not measure force accurately.

•  the T-Scan may be useful for detecting the presence, but not relative 

force, of tooth contacts.
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CHAPTER 5.

FATIGUE AND EMG CHANGES IN THE MASSETER AND 

TEMPORALIS MUSCLES DURING SUSTAINED CONTRACTIONS 

IN HEALTHY VOLUNTEERS

5.1 SUMMARY

Local muscle fatigue was investigated in the anterior temporalis and 

masseter muscles during sustained isometric contractions. Each 

volunteer’s subjective perception of fatigue or pain was recorded at 

intervals during the sustained contractions, and this level was then 

compared to objective measures of fatigue. These objective measures 

included shift in median frequency of the power spectrum of the surface- 

detected EMG signal, and change in signal amplitude.

This relationship was investigated while closing on a bite force transducer 

placed between the second premolar and first molar teeth unilaterally, and 

also while clenching with the teeth together without the bite force 

transducer.

It was found that the subjective perception of fatigue, as measured on a 

visual analogue scale (VAS), had a nearly linear relationship with time, 

and that the relationship between the VAS score and median frequency 

shift was rather closer than the relationship with amplitude change.
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5.2 INTRODUCTION

It is possible to conduct fatigue studies with the use of a bite force 

transducer and hence to monitor the collective force output of the jaw- 

closing muscles. It may also be done with the teeth clenched together, in 

which case contraction levels are monitored by the EMG amplitude of one 

of the jaw-closing muscles. In both configurations the contractions are 

isometric, but a sustained contraction without a bite force transducer will 

not be of constant force if the EMG amplitude is kept constant.

It became clear after the experiment reported in Chapter 3 that fatigue 

should be measured using as many parameters as possible, particularly 

shift in median frequency of the power spectrum. Power spectrum analysis 

has been shown to provide a sensitive indicator of localized muscle fatigue 

(see Section 1.4.3). It was also clear that these parameters should be 

measured from previously-recorded data rather than the direct 

measurement of EMG amplitude from a chart-recorder.

The evaluation of the T-Scan system, reported in Chapter 4, showed that 

the use of piezoelectric foil was no viable alternative to the bite force 

transducer.

In view of the variability in the measurement of EMG amplitude in 

Chapter 3, and the fact that no change was demonstrated in muscles that 

were clearly fatigued, a further study was planned. The aims of the 

investigation were to assess the volunteer’s perceived state of fatigue in 

the jaw-closing muscles during sustained isometric contractions and relate 

this to changes in EMG amplitude and frequency shift in individual 

muscles. The relationship between amplitude and frequency shift and the
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subjective perception of fatigue were to be assessed both with and without 

the use of a bite force transducer.

5.3 METHOD

Local Dental Ethics Committee approval of the experimental protocol was 

obtained and eight informed healthy volunteers, with no symptoms or 

signs of craniomandibular disorders, were asked to clench on a bite force 

transducer several times to obtain their maximum voluntary contraction 

force (MVC). The bite force transducer was placed between the second 

premolar and first molar teeth on the preferred chewing side. The 

volunteers were then asked to maintain 50% MVC for as long as possible, 

using force displayed on an oscilloscope screen for visual feedback. During 

the course of this sustained contraction they were presented with a fresh 

visual analogue scale (VAS) at approximately fifteen second intervals and 

asked to mark the scale while maintaining the contraction. It is important 

to note that a fresh, unmarked, scale was presented to the volunteer each 

time and so they had no idea of where their previous mark was placed. The 

volunteers were also asked to record their overall state of jaw fatigue, and 

not to attempt to be specific as to side or muscle.

After resting for five minutes, the experiment was repeated without the 

use of the bite force transducer. For this part of the experiment visual 

feedback was provided by the EMG activity of the right masseter muscle, 

the signal being rectified and integrated with a time constant of 100 msec, 

and displayed on an oscilloscope screen.
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EMG was recorded with 9 mm diameter silver/silver-chloride surface disc 

electrodes (SLE Ltd, Croydon CRO 2SQ, U.K.) from the masseter muscles 

bilaterally, and with intra-dermal platinum hook electrodes (Grass 

Instrument Company, Quincy, MA 02169, U.S.A.) from the anterior fibres 

of the temporalis muscles, also bilaterally. The signals were amplified 

X2,000 and were recorded on video tape, along with the force record, via a 

multiplexing and digitising adapter (PCM-8, Medical Systems Corp., 

Green vale, NY 11548, U.S.A.) for off-line analysis (see Chapter 2 for 

details).

The signals were subsequently played back through the adapter, band­

pass filtered with cut-off frequencies of 8 and 800 Hz, and then RMS- 

integrated with a time constant of 200 ms. The RMS value was used as 

this is considered to give the best estimate of the power of the signal 

(Basmajian & De Luca, 1985a). Hard copy was obtained through a chart 

recorder and the average signal amplitude was measured manually during 

the four second time interval where a VAS score had been recorded.

In order to obtain the power spectra the original signal was again played 

back through the video adapter to obtain analogue outputs (for details see 

Chapter 2) and digitised at a rate of 1660 Hz to a personal computer. At 

the time that each VAS score was recorded, four seconds of data 

encompassing this point were sampled and 256-point Fast Fourier 

transforms carried out using C.E.D.’s Spike 2 software (Cambridge 

Electronic Design, Cambridge, U.K.). The median power frequency was 

calculated for each four-second sample. The median frequency was chosen 

as the parameter to describe the power spectrum as it is said to be less 

sensitive to noise than other parameters which are commonly used (Stulen 

& De Luca, 1981).
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5.4 RESULTS

When clenching on the bite force transducer at 50% MVC there was a 

large inter-individual variation in the time that the contraction could be 

sustained (endurance time), from 59 seconds to 220 seconds (Figure 5.1). 

The endurance time was considerably longer when clenching with the 

teeth together (without the bite force transducer) than when clenching on 

the bite force transducer.

The MVC varied four-fold between volunteers (Figure 5.2). The volunteers' 

ability to accurately maintain 50% MVC during the course of the sustained 

contraction also varied, but with most able to hold 50% ±10%.

MB JP MG AL PW DW RB JB
Volunteers

] with V///A without

F igure  5.1 The endurance time for each volunteer, both with and without 
the bite force transducer. The endurance time of volunteer PW was 1370 
seconds, but this was not depicted in full on the bar chart as it would 
have had the effect of compressing the visual impact of the remaining 
values.
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MB JP MG AL PW DW RB JB
Volunteers

] with V///A without
(calculated)

F igure  5.2 The MVC is shown for each volunteer when closing on the bite 
force transducer. A line across each bar has been drawn at the 50% MVC 
level, and error bars represent each volunteer's variation when attempting 
to sustain a contraction at 50% MVC. The calculated value of the MVC 
without the bite force transducer is also shown for each volunteer.

The MVC without the bite force transducer (i.e. with the teeth clenched 

together) was estimated by adding the EMG amplitude from the four 

muscles at a maximum clench without the force transducer, then with the 

force transducer, and as the MVCwith was known then the MVCwithout could 

be estimated by simple calculation. This calculation was valid because the 

electrodes were not moved and the amplification of the signal was kept the 

same for each channel in both configurations, i.e. both with and without 

the force transducer. The effects of sweating on signal amplitude should be 

considered, and these will be discussed in Section 5.5. Clearly the 

amplification could be altered between channels and between volunteers.
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It can be seen from Figure 5.2 that the MVCwithout was higher than MVCwith 

in all cases except one (MG). The difference between the mean MVC values 

was 47%.

When the curves were plotted for VAS versus time for each volunteer, it 

can be seen that they all produced relatively straight lines with few 

outlying values (Figures 5.3 and 5.4).

100

80

/•  ' /

20

173.00138.40103.8069.2034.600.00

Time (seconds)

F igu re  5.3 The VAS score versus time for each volunteer when clenching 
on the bite force transducer.
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F igure  5.4 The VAS score versus time for each volunteer when clenching 
without the bite force transducer.

A linear regression analysis was performed (MINITAB 7 software) and the 

correlation coefficients for the regression of VAS on time for each volunteer 

(both with and without the bite force transducer) were very high, showing 

that most of the values were very close to the regression line (Table 5.1). In 

all but two cases the correlation coefficients were above 0.954 and the r2 

values above 0.919. As these r2 values demonstrated, time was an almost 

perfect predictor of the VAS score.
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Volunteer DW RB MG JP PW MB AL JB

Corr.
coeff.
(with)

0.998 0.994 0.968 0.982 0.954 0.992 0.998 0.99C

r2 (%) 
(with)

99.6 98.8 93.7 96.4 91.9 98.4 99.7 98.1

Corr.
coeff.

(without)
0.747 0.997 0.958 0.993 * 0.981 0.970 0.87C

r2 (%) 55.7 99.4 91.7 98.6 * 96.2 94.1 75.7

Table 5.1. Correlations between VAS and Time for all volunteers when 
clenching with the bite force transducer, and then without. * represents no 
data.

The EMG amplitude was measured at the beginning of each sustained 

contraction, and also at each 4-second period within a contraction 

corresponding to a VAS score. The amplitude was then normalised to the 

MVC level for each subject. Similarly, the median frequency of the power 

spectrum of a 4-second period of EMG at the beginning of a contraction, 

and then 4-second periods corresponding to VAS scores, were obtained 

(Figures 5.5 - 5.8). The percentage changes for each period of time were 

calculated and are presented in Tables 5.2 and 5.3. The negative values 

indicate a reduction in the case of amplitude, or an increase in the case of 

frequency, i.e. the change is in the direction opposite to that expected for 

an actively contracting muscle.

To determine whether there was any significant difference by muscle or by 

volunteer, with and without the bite force transducer, a repeated measures 

analysis of variance was carried out using the SPSS/PC+ statistical
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analysis software (Tables 5.4 and 5.5). These showed no significant 

difference between the change in amplitude with and without the bite force 

transducer, or between the change in frequency with and without the bite 

force transducer. There were no significant interaction effects between 

muscle groups or volunteers on the amplitude changes with or without the 

bite force transducer (Table 5.4). However, there were significant 

differences between muscle groups and volunteers in frequency change 

with and without the bite force transducer (Table 5.5), but these masked 

any overall effect of the presence or absence of the bite force transducer. 

There were unusual results from two muscle groups for one volunteer and 

these aberrant values are responsible for the findings of significant 

differences between muscle groups or subjects. They manifest their effect 

because of the small sample size, and with a larger sample size such 

results would be unlikely to be significant.

The VAS scores were correlated with amplitude and also with median 

frequency, both with the bite force transducer and without (Tables 5.6 and 

5.7). It can be seen that there is a very high correlation between these 

parameters, particularly median frequency, and VAS scores for some 

muscles. Chi-squared tests were performed to determine whether there 

was any significant difference in the distribution within the correlation 

categories between VAS and amplitude, and VAS and median frequency. 

In the case of the sustained contraction on the bite force transducer the 

Chi-squared value was 0.593 with 2 degrees of freedom, p > 0.5 i.e. no 

significant difference. In the case of the sustained clench without the bite 

force transducer, the Chi-squared value was 6.975 with 2 degrees of 

freedom, 0.05 > p > 0.02, i.e. a significant difference.
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The median frequencies at the beginning of the contractions, both with the 

bite force transducer and without, may be seen in Table 5.8. These values 

were higher for all muscles a t the beginning of the sustained contraction 

without the bite force transducer than with the bite force transducer.

0 . 0 0 0 1 5

u
<D :

I 0. 00010;ft ;
0)
> :

0 . 0 0 0 0 5

400  Hz300100 200
F igure  5.5 The power spectrum from the left masseter
muscle of volunteer MG for the first four seconds of a sustained contraction
on the bite force transducer.

0 .000 20

0 . 0 0 0 1 5

0.00010

0 . 0 0 0 0 5

0.00000
0 1 0 0  2 0 0  300  400  Hz

F igure  5.6 The power spectrum from the left masseter muscle of volunteer 
MG for the last four seconds (VAS score was 100) of a sustained 
contraction on the bite force transducer.
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F igure  5.7 The power spectrum from the left masseter muscle of volunteer 
MG for the first four seconds of a sustained contraction without the bite 
force transducer.
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Figure 5.8 The power spectrum from the left masseter muscle of volunteer 
MG for the last four seconds (VAS score was 100) of a sustained 
contraction without the bite force transducer.
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DW RB MG JP PW MB AL JB
RAT 4.4 73 45 -4 23 71 -42 58 A
RM 120 37 106 0 21 49 28 28 M
LAT 12 205 105 18 49 122 40 1500 P
LM 147 -16 15 7 57 33 41 -8 L
RAT 40 12 47 8 43 47 20 6 F
RM 10 31 20 17 33 38 33 5 R
LAT 4 14 26 0 40 44 58 26 E
LM 4 15 26 0 37 39 35 21 Q

Table 5.2. Percentage change in amplitude and median frequency over the 
whole period of the sustained contraction on the bite force transducer. 
Negative values indicate a decrease in the case of amplitude, or increase in 
the case of frequency.

DW RB MG JP PW MB AL JB

RAT -77 130 3 -27 -18 4 18 48 A
RM 22 -5 0 -7 20 22 -4 -14 M
LAT 185 383 3 -29 -16 13 12 -27 P
LM 35 35 14 -22 72 0 5 23 L

RAT -3 37 32 10 22 41 20 17 F
RM 10 28 40 13 41 33 24 23 R
LAT 15 50 33 9 41 33 35 28 E
LM 12 48 37 9 54 30 33 30 Q

Table 5.3. Percentage change in amplitude and median frequency over the 
whole period of the sustained contraction without the bite force 
transducer, i.e. teeth together. Negative values indicate a decrease in the 
case of amplitude, or increase in the case of frequency.
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Source of Variation SS DF MS F Sign.of F

Residual 839605 21 39981

Bite force 
transducer 74461 1 74461 1.86 0.187

Volunteer by bite 
force transducer 253101 7 36157 0.90 0.522

Muscle by bite 
force transducer 82147 3 27382 0.68 0.571

Table 5.4. Test of the within-volunteer effect of amplitude involving the 
bite force transducer.

Source of Variation SS DF MS F Sign, of F

Residual 1650 21 79

Bite force 
transducer 113 1 113 1.44 0.244

Volunteer by bite 
force transducer 1569 7 224 2.85 0.029

Muscle by bite 
force transducer 745 3 248 3.16 0.046

Table 5.5. Test of the within-volunteer effect of frequency involving the 
bite force transducer.
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DW RB MG JP PW MB AL JB

RAT .114 .983 .864 -.091 .332 .954 -.998 .930 A
RM .832 .788 .232 -.056 .170 .850 993 -.813 M
LAT .873 .938 .910 .687 .943 .929 .621 .902 P
LM .992 -.878 -.231 .736 .728 .903 .837 -.709 L

RAT -.966 -.766 -.982 -.930 -.920 -.934 -.934 -.423 F
RM -.753 -.895 -.754 -.995 -.760 -.830 -.988 .022 R
LAT -.106 -.819 -.109 -.397 -.870 -.921 -.976 -.790 E
LM -.106 -.933 -.109 -.410 -.869 -.921 -.966 -.782 Q

Table 5.6. The correlations between VAS and Amplitude, and VAS and 
Frequency, with the bite force transducer in place.

DW RB MG JP PW MB AL JB

RAT .069 .703 .513 -.955 * .171 .572 .937 A
RM .641 .016 .442 -.713 .113 -.188 -.441 M
LAT .278 .964 .594 -.981 .618 .714 -.878 P
LM .602 .740 .950 -.921 * -.285 .570 .534 L

RAT .121 -.967 -.953 -.915 -.933 -.851 -.866 F
RM -.429 -.798 -.954 -.915 -.909 -.915 -.891 R
LAT -.793 -.930 -.915 -.866 -.848 -.946 -.955 E
LM -.697 -.939 -.929 -.863 -.925 -.916 -.964 Q

Table 5.7. The correlations between VAS and Amplitude, and VAS and 
Frequency, teeth clenched together without the bite force transducer.
* represents no data.
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With bite force 
transducer

Without bite force 
transducer

Volunteer RAT RM LAT LM RAT RM LAT LM

DW 175 182 175 169 182 201 221 208
RB 162 208 136 130 175 182 182 175
MG 123 130 123 123 143 130 117 123
JP 150 187 156 150 187 231 206 200
PW 136 136 130 123 147 141 141 141
MB 123 169 162 149 143 156 156 149
AL 130 136 136 130 162 162 162 156
JB 110 117 123 123 149 169 182 175

Mean: 138 158 142 137 161 171 170 165
± SD 22 32 19 17 18 32 34 29

T able 5.8. Median frequencies at the beginning of sustained contractions, 
both with the bite force transducer and without, for each volunteer, with 
means and standard deviations.

5.5 DISCUSSION

One of the problems in the investigation of fatigue in the jaw-closing 

muscles is that it is not possible to measure bite force with the teeth 

together or, at the very least, nearly together. The bite force transducer 

used for this experiment required a thickness of 7mm so that the beams 

were stiff enough to resist the forces involved without permanent 

deformation. This resulted in a greater degree of opening than would occur 

in normal or para-function (see also Section 1.10.1). As the jaws open the 

muscle length changes, as does their geometric relationship (i.e. line of 

action). This may be part of the reason why the volunteers were only able 

to maintain a target bite force within ± 10%, as they were unaccustomed to
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maintaining such a high force at this degree of jaw opening. However, 

although it is clear that fatigue is dependant on muscle length in skeletal 

muscle, one could argue that a separation of 7mm at the first premolar 

teeth results in a relatively small elongation of the jaw closing muscles.

A likely explanation for part of the large inter-individual variation in 

endurance times (Figure 5.1) is that there was almost certainly a variation 

from a true MVC among the volunteers i.e. it is likely that most did not 

achieve a true MVC. It is notoriously difficult to achieve a true MVC from 

the jaw-closing muscles when closing on a bite force transducer because of 

the response of the periodontal mechanoreceptors (see Section 1.11.2) and 

also fear on the part of the volunteers of fracturing teeth and restorations. 

This would mean that many would be sustaining less than 50% MVC 

during the first part of the experiment, even though it was 50% of the 

obtained MVC. This is supported by the calculated values of MVCwithout, 

because if these values are true MVCs then by simple calculation the 50% 

MVC sustained on the force transducer was really only 34% of a true MVC 

on average, as the difference between the mean values was 47%. The 

calculation of MVCwithout is valid if the amplification of the signal is not 

changed and if the effects of sweating are avoided. Sweating will provide a 

path between the electrodes and result in a reduced signal amplitude. The 

use of anti-perspirants will not solve the problem as these contain zinc 

chloride which will conduct an electrical current as effectively as sweat. In 

order to avoid this effect the room temperature was kept a t or below 19°C. 

The inter-electrode resistance was also measured with a DC resistance 

meter before and after the experiment. If this conduction were present, 

however, it would result in a lower calculated value of MVCwithout, i.e. a 

false negative rather than a false positive effect.
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The difference in median frequencies at the beginning of the sustained 

contractions in each configuration (Table 5.8) is explained by the fact that 

there was a difference in MVC levels. At higher force levels there is a 

greater increase in firing rate than in synchronization in order to increase 

output, and hence the median frequency would be higher at the higher 

force level.

The measurement of perceived fatigue on a visual analogue scale is not an 

exact procedure, but unfortunately there is no entirely satisfactory 

alternative. The problems of measuring subjective discomfort or pain are 

well known and the use of visual analogue scales is widely accepted 

(Reading, 1984; Huskisson, 1983). The results of this experiment support 

the validity of these scales, with very high r2 values of the correlation 

between VAS and time for each volunteer, and the very high values of the 

correlation coefficients. These figures showed the straight-line relationship 

between VAS and time and that there were very few outlying values. The 

perceived level of fatigue, of course, does not necessarily relate to any 

particular muscle; it is simply an overall perception from one or more 

muscles. It is also clear that joint discomfort or pain might contribute to 

the overall feeling of discomfort and fatigue which is a factor of particular 

significance when clenching unilaterally on a bite force transducer. It is 

unlikely that one can distinguish with any certainty between joint pain 

and pain from thie lateral pterygoid muscle or deep fibres of masseter. 

Several volunteers complained of pain from the joint area on the contra­

lateral side when clenching on the bite force transducer.

With regard to the use of electromyography to measure fatigue, it should 

be pointed out that both the increase in amplitude of the EMG signal and
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the frequency shift of the power spectrum are related. The local 

accumulation of metabolites results in a decrease in conduction velocity, 

resulting in a larger time duration of the motor unit waveforms. Both 

frequency shift and amplitude increase are indicators of metabolic events 

going on within a muscle, although signal amplitude has a reduced 

sensitivity compared to frequency shift (Basmajian & De Luca, 1985b). The 

total power of the signal is a result of a decrease in power a t higher 

frequencies and an increase in power at lower frequencies (Figure 5.9), 

hence this resultant power value will be a less sensitive measure of total 

change than the shift in median frequency (or any of the other accepted 

descriptive parameters of power spectrum shape).

A note of caution should be added at this stage regarding the calculation of 

MVCwithout (page 135). It has been shown that as muscle length changes, 

then the EMG/force ratio also changes (Mackenna & Turker, 1983). As the 

bite force transducer induces an opening of 7 mm at the premolar area, 

then muscle length clearly changes when the transducer is removed and 

the teeth are in contact. Hence the calculated value of force is only an 

approximation. However, although the integrated EMG level is greater 

when the teeth are together, it is likely that the actual bite force may be a 

little higher but not as high as the EMG would indicate.
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The significance of differences in percentage changes of amplitude and 

frequency shown between muscle groups with and without the bite force 

transducer (Tables 5.2 and 5.3) are unreliable because of the small sample. 

The degree of significance could be due to extreme values distorting the 

result; there is also no information on the reproducibility of measurements 

within volunteers.

The association between VAS and median frequency change was closer 

during the sustained contraction without the bite force transducer than 

with (Table 5.7), perhaps because there was more uniformity of activity 

between the muscle groups without the bite force transducer, resulting in 

a better overall correlation. The reason for the closer correlation between 

VAS and median frequency rather than VAS and EMG amplitude is 

probably that there was greater variability in the signal amplitude than in 

its power spectrum median frequency. This can be seen in Tables 5.2 and

5.3 where the mean values of amplitude change for each muscle, for all 

volunteers, show considerably greater variation than the mean values for 

the median frequency change. The standard deviations of these means are 

also considerably greater for amplitude change than for median frequency 

change. The smaller degree of variability of median frequency when 

compared to signal amplitude appears to make median frequency a more 

useful measure of muscle fatigue, particularly when coupled with a 

theoretically greater sensitivity.

The results of this experiment shown a clear relationship between the 

central perception of fatigue and the peripheral process of localised muscle 

fatigue, but this raises the interesting question of what causes the 

peripheral process to be detected centrally? It has been postulated that it 

is the increase in centrally generated motor commands which appears to
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lead to the perception of tiredness, rather than the muscle afferent barrage 

directly (McClosky, 1985).

5.6 CONCLUSIONS

The results of this experiment have provided more evidence to support the 

validity of visual analogue scales, and have shown that in the case of the 

anterior temporalis and masseter muscles the change in EMG amplitude 

and change in median frequency are closely reproduced by the perceived 

level of fatigue. In addition, the association between the perceived levels of 

fatigue and the change in power spectrum median frequency is rather 

closer than the association between perceived levels of fatigue and change 

in rectified RMS-integrated EMG amplitude.

The effects of the bite force transducer were to reduce maximum bite force, 

reduce endurance time, and to cause pain on the contralateral side. It had 

no effect on the volunteer’s perception of fatigue.
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CHAPTER 6.

MASSETER MUSCLE RELAXATION RATE IN VOLUNTEERS 

WITH A MYOGENOUS CRANIOMANDIBULAR DISORDER

6.1 SUMMARY

Twelve volunteers were investigated to determine their masseter muscle 

relaxation rate following voluntary contractions. Four of these were 

patients diagnosed as having a myogenous craniomandibular disorder. 

EMG was recorded from the left and right masseter muscles and 

maximum bite force was recorded in the mid-line between the incisor 

teeth. A sustained contraction was maintained a t 50% MVC for ninety 

seconds, during which there was a brief relaxation every ten seconds. 

Recordings were continued for a three-minute recovery period. This regime 

was then repeated at the 25% MVC level.

Median power frequencies were calculated for the first and last three 

seconds of the sustained contractions. Relaxation rates were measured for 

each brief relaxation during the sustained contraction and for the 

relaxation part of each brief clench during the recovery period.

It was found that maximum bite force values were very similar for 

volunteers in both the patient and control group. Relaxation rates slowed 

more and percentage changes in median frequency were greater in the 

controls than in the patients during the sustained contractions. However,
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relaxation rates returned to initial levels more quickly in the controls than 

in the patients.

6.2 INTRODUCTION

During a sustained isometric contraction a slowing of the rate of relaxation 

is seen in localised muscle fatigue. This is following a voluntary 

contraction and should not be confused with an electrically induced twitch 

response. A shift in the power spectrum of the EMG signal to lower 

frequencies and an increase in amplitude are also observed. The reasons 

that a slowing of relaxation occurs are not yet proven, but it is clear that 

such a phenomenon does occur with fatigue (see Chapter 1 for a detailed 

discussion). In patients with a craniomandibular disorder due primarily to 

a muscle disorder (myogenous CMD), it appears from clinical observation 

that muscle soreness often leads to rather slow and deliberate mandibular 

movements. This slowing of movement is probably a defensive reaction to 

avoid pain. Slightly slower movements are not a perceptible manifestation 

of slowing of relaxation as a result of muscle fatigue, as this effect is 

clinically imperceptible. Slowing of relaxation would be a clear indication 

of the presence of fatigue if detected from EMG and force records.

Having investigated the changes in the EMG signal which occur in fatigue 

(reported in Chapters 3, 4 and 5), it was considered necessary that these 

factors, together with the relaxation rate, should be investigated in 

patients with myogenous CMD. As discussed previously (see Section 

1.11.4), it is not possible to isolate the force output of individual jaw- 

closing muscles, but in a protrusive closure most of the force is produced by 

the masseter muscles with a small or nil contribution from the temporalis
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muscles (Carlsoo, 1952). The masseter muscle is also a  muscle which 

appears to be very often involved in myogenous CMD.

The aims of this investigation were to examine the relaxation rate and 

changes in the power spectrum of masseter muscles in patients with 

painful muscles who have been diagnosed as having myogenous CMD.

6.3 METHOD

6.3.1 The Volunteers

Of the twelve volunteers for this experiment, four were patients with a 

myogenous CMD, four were normal healthy controls, and four were a 

normal healthy group of young males (age range 23-29 years). The group of 

males were not termed a control group, but were considered an additional 

group not to be used for directly comparative purposes. Most importantly, 

the control group was age and sex-matched to the patient group; the age 

range of these two groups was 17-39 years and all were females. These 

patients were among those referred to the Departments of Oral Surgery 

and Prosthodontics of Glasgow Dental Hospital and were selected at 

random. They were questioned carefully regarding the symptoms, history 

and previous treatment of their facial pain. They also received a thorough 

clinical examination. The proforma used for these patients was developed 

in preparation for this experiment in order to aid in more accurate and 

specific diagnosis. This proforma is reproduced in Appendix G. The only 

form of selection that applied to the patients was that they should have a 

myogenous CMD involving a masseter muscle. The control group and the 

group of males were also examined for signs of CMD, and only those with
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no signs or symptoms were accepted. All the volunteers were fully dentate 

with no crowns or large composite restorations on their incisor teeth.

6.3.2 Response-time of Bite Force Transducer

The response-time of the bite force transducer was measured by applying a 

known load and then unloading as quickly as possible. The beam with the 

strain gauges attached was bolted to the edge of a bench and a load was 

applied by a piece of string. When the required load had been applied the 

string was cut with a pair of scissors, thus releasing the load. The results 

may be seen in Figure 6.4.

6.3.3 Electromyography

Recordings were obtained from the left and right masseter muscles, and 

from the sub-mandibular group in the region of the anterior belly of the 

digastric muscle on the right side. Surface silver/silver chloride disc 

electrodes were used in a bipolar configuration. Skin preparation was 

vigorously performed using gauze soaked in surgical spirit. Signal 

amplification, filtering and data storage were carried out as described in 

Chapter 2. The inter-electrode resistance was measured before and after 

the experiment to check for the effects of sweating.

6.3.4 Experimental Protocol

Each volunteer was given time to become familiar with the bite force 

transducer (see Appendix D) and the oscilloscope screen. Visual feedback 

was provided by the force display. Several attempts were then made to 

obtain a maximum voluntary contraction (MVC) with the mandible in a
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protrusive position on the bite force transducer. The bite force transducer 

was placed in the mid-line between the upper and lower central incisor 

teeth. The volunteer was urged at each attempt to try to exceed the 

previous force output and to be sure that the mandible was in protrusion. 

This was the only time that the volunteer was under any degree of 

coercion. It was considered important to attempt to elicit a true MVC if 

possible, even though this was difficult for the patient group with muscle 

pain. Several layers of gauze were used on the bite force transducer 

instead of acrylic indices, as it was found that gauze was more comfortable 

for the teeth than acrylic resin on maximal biting. These layers of gauze 

increased the total thickness slightly, but this was considered preferable to 

the possibility of obtaining less than a true MVC.

Each volunteer was also asked to attempt to open against resistance 

provided by the author’s hand; the palm of the hand was placed beneath 

the volunteer's mandible in the mid-line. This was done in order to be able 

to assess the level of assistance contributed by the jaw-opening muscles, if 

any, during a relaxation.

When a reproducible MVC had been obtained, each volunteer was asked to 

maintain 50% MVC for 90 seconds. During this period the volunteer was 

asked to relax and then immediately clench again every 10 seconds. At the 

completion of the 90 second period there followed a three minute recovery 

period, during which the volunteer was asked to clench briefly to 50% 

MVC every 20 seconds.

After a rest period of approximately five minutes the above regime was 

repeated, but this time the clenching level was 25% MVC. The time period 

over which the contraction was sustained was two minutes, with a brief
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relaxation every 10 seconds, followed by three minutes of recovery with a 

brief clench every 20 seconds.

6.3.5 Data Analysis

Sections of EMG signal of approximately 3 seconds duration were sampled 

from left and right masseter muscles at the beginning of the sustained 

contractions and again at the end, a t both the 50% MVC and 25% MVC 

levels. The sampling rate was 1660 Hz and 1024-point fast Fourier 

transforms were carried out using Spike 2 data capture and analysis 

software (see Chapter 2). DC-offset, if present, was removed and the 

median frequency calculated.

In order to measure relaxation rates, data from the whole period of the 

experiment was captured at a sampling rate of 1660 Hz for EMG and 550 

Hz for force. It was possible to display one EMG channel and the force 

channel in order to determine the time from which the relaxation half-time 

should be measured; this measurement was taken from the moment EMG 

activity ceased. The signal was expanded considerably on the computer 

screen in order to measure time accurately. The time taken for the force to 

fall by 50% from the moment EMG activity ceased was termed the 

relaxation half-time (Figure 6.1).
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7 2 .0 8 1 4 1
7 2 .1 4 2 1 2

200 msec

F igure  6.1 The measurement of relaxation half-time. A brief clench 
(volunteer JN), relaxation half-time is 61 msec. The signal has been 
expanded considerably more in the lower view, as can be seen by the time 
scale which represents 0.2 sec in both cases.
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6.4 RESULTS

6.4.1 M aximum Bite Force

Maximum bite force values varied widely between individuals but were 

remarkably consistent between age-matched patients and controls (Table

6.1). The mean maximum bite force for the patient group was 191N (SD 

33.3), for the control group was 186N (SD 77.2), and for the males was

302.5 (SD 37.7). A two (independent) sample t-test (MINITAB 7 software) 

demonstrated that there was no significant difference in maximum bite 

forces between the patients and controls (t = 0.12, p = 0.91, df = 4), but 

there was a highly significant difference between the patients and the 

males (t = -4.42, p = 0.0069, df = 5).

Vols. Bite Vols. Bite Vols. Bite
(pts) Force (N) (controls) Force (N) (males) Force (N)

CJ 150 JJ 150 AP 260
EB 210 PB 165 NH 290
CL 180 JN 130 JL 310
HM 225 LW 300 JG 350

Mean: 191 186 302
d: SD 33.3 77.2 37.7

Table 6.1 Maximum bite force values (N) for volunteers in the three 
groups. The patients and controls were age-matched as listed (i.e. CJ is the 
same age as JJ, and so on).

6.4.2 M edian Pow er Frequency

The mean percentage changes in median frequencies of the power spectra 

over the 90 seconds of the sustained contraction at 50% MVC were greater 

in the muscles of the control group than in those of the patients (Table
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6.2). This difference between the patients and the controls was not 

statistically significant. There was very little difference between the 

changes in the control group and the male group. The percentage changes 

in median frequencies during the sustained contraction a t 25% MVC were 

again a little greater in the control group than in the patient group, 

although not statistically significant (Table 6.3). An example of the 

changes in the power spectra, the shift to lower frequencies and the 

increase in power, may be seen in Figures 6.2 and 6.3.
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Med ia n 1 8 7 . 1 7  Hz

200 4 0 00 100 30 0

Med ia n 1 1 3 . 9 3  Hz T o t a l

4 0 03 0 02001000

F igure  6.3 Power spectra of 3 seconds of signal from the beginning (top) 
and end (bottom) of a sustained contraction at 25% MVC by volunteer LW.
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6.4.3 T ransducer Response Time

The response-time of the bite force transducer and bridge amplifier system 

was 2 msec for the final 85% of the fall-off in force from a loading of 125N 

(Figure 6.4). The initial 15% of the fall-off was a t a slightly slower rate, 

taking 2 msec for this part of the fall-off also. There was a very sudden 

change to the quicker rate after 2 msec, which could be reasonably 

assumed to be from the point that the string was severed rather than any 

delay in response from the transducer.

8 . 6 9 1 0 2

3 8 . 6 8 9 3 1
8 . 6 9 1 0 2

(b)

F igure  6.4 The response-time of the bite force transducer, (a) The cursors 
measure a time of 4 msec for the whole fall in force, whereas in (b) the 
final 85% of the fall occurs in 2 msec. The numbers on the vertical cursors 
indicate time in seconds.
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6.4.4 Relaxation Half-Times

The relaxation half-times for one patient and the corresponding age- 

matched control are presented in Table 6.4 as an example of the 

magnitude of the values obtained. The data for the patients and controls 

for the sustained clench at 50% MVC and the 3 minute recovery period is 

presented in Figures 6.S-6.8, together with the regression line in each case. 

For each volunteer in all three groups a regression analysis was carried 

out and the slope, intercept and correlation coefficient were calculated 

(Tables 6.5 and 6.6). The correlation coefficients are calculated to assess 

the reliability of the regression equations. A multivariate analysis of 

variance (MANOVA) was then performed on the slope and intercept values 

from this regression data using the SPSS/PC+ statistical analysis 

software. From Table 6.7 it was found that there was a significant 

difference (p = 0.013) in the slopes between the groups during the recovery 

period following the 50% sustained contraction, with the controls showing 

a significantly quicker reduction in relaxation half-times than the patients. 

All other differences of slope, intercept, contraction force, and group were 

not statistically significant.

There was no contribution of activity from the sub-mandibular muscles in 

the region of the anterior belly of digastric during a masseter muscle 

relaxation. Some considerable activity was seen at times, but this did not 

coincide with masseter relaxations (Figures 6.9 and 6.10).
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0
100 20 3 0 40 6 050 8070 9 0 100

Time (sec)

F igu re  6.5 Relaxation half-times for the four volunteers in the patient 
group recorded during the sustained contraction at 50% MVC. The 
regression equation is y = 63.6 + 0.398x.

16 0

12 8

96

6 4

32

0
0 10 20 3 0 40 6 050 70 8 0 9 0 100

Time (sec)

F igu re  6.6 Relaxation half-times for the four volunteers in the control 
group recorded during the sustained contraction a t 50% MVC. The 
regression equation is y = 70.5 + 0.533x.
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F igu re  6.7 Relaxation half-times for the four volunteers in the patient 
group recorded during the 3-minute relaxation period, with clenches to 
50% MVC. The regression equation is y = 64.15 + 0.0269x.

1 4 0

84

5 6
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0
3 0  4 5  6 0  75 9 0  105 120  135 1 5 0  16 5  1 8 0
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F igure  6.8 Relaxation half-times for the four volunteers in the control 
group recorded during the 3-minute relaxation period, with clenches to 
50% MVC. The regression equation is y = 78.05 - 0.1064x.
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Right Masseter

Opening against resistance

Right Ant Digastric

Left Masseter

Time (sec)

Force

100 n

F igure  6.9 The tracing from one volunteer patient (CL) to show activity 
in the jaw-openers on the right side when opening against resistance. 
There follows a series of maximum clenching efforts.
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J
Right Masseter

Right Ant. Digastric 

^  ------- k k

Left Masseter

Time (sec)

Force r n n 1

F ig u re  6.10 A section of tracing from the same volunteer as shown in 
Figure 6.9 (CL), taken a t the same session, showing a series of brief 
relaxations during a sustained clench at 50% MVC for 90 seconds.
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6.5 DISCUSSION

In view of the severity of the clinical disorder (i.e. masseter muscle pain) in 

the patient group, it was unexpected to find that the maximum bite force 

values were very similar to those of the controls, although this has also 

been found by other workers (Hagberg, Agerberg & Hagberg, 1986). It had 

been anticipated that the patients would have a significantly reduced 

mean maximum bite force in view of their severe muscle pain and 

limitation of movement. The similarity in bite force values could not be 

explained by differences in physical type or build between the two groups 

because, in addition to age and sex-matching, the two groups happened to 

be quite similar in physical stature. This similarity could not be 

realistically explained by a failure of the control group to produce a true 

maximum clenching effort either, as both groups were cooperative and 

subjected to considerable encouragement at that stage of the experiment.

A likely explanation is that only a small part of the muscle was affected by 

the disorder and this small part was the source of the considerable pain. 

During maximum voluntary effort the individual was able to overcome the 

protective limitation of activity of the remainder of the muscle and produce 

a near-normal maximal force output. This supports the concept of localized 

micro-trauma (see Section 1.9.4). A further explanation is that the pain 

was not coming from the superficial body of the miasseter muscle (where 

the recording electrodes were placed) but from the deep fibres of the 

masseter, or possibly from the lateral pterygoid muscle.

There was an interesting difference in bite force values between the 

different age-matched pairs in the patient and control groups and this 

emphasised the importance of age-matching, a t least in females. The large
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difference in maximum bite force between these two female groups and the 

young male group was expected.

The shifts in median frequency during the sustained contraction a t 50% 

MVC were considerably less in the patients than in the controls or males, 

but the differences were not statistically significant. The failure to show 

significance was possibly due to the small number of volunteers in each 

group, and also to the large standard deviations in the mean values. 

However, for each individual in the age-matched pairs there was a 

considerable difference, with the patients showing less decrease, i.e. 

becoming less fatigued, than the controls. This was unexpected and is 

difficult to explain; a possibility is that only a small part of the muscle was 

involved in the disorder, or more likely that coactivation had taken place 

in the patients to compensate for the disorder. The side affected by CMD 

had no obvious effect on shift in median frequency, as may be seen in 

Table 6.2.

During the sustained contraction at 25% MVC the differences in median 

frequency shift between the groups was smaller than shown during the 

contraction at 50% MVC but still evident, particularly between the 

patients and controls. The frequency shift was slightly greater in the 

control group. This is the same effect as seen a t the 50% MVC level and 

suggests that this difference in frequency shift was not entirely due to 

chance.

The magnitude of the half-relaxation times was larger than expected 

(Table 6.4). Previous workers (Edwards, Hill & Jones, 1972) found 

relaxation half-times of 30.6 msec for the quadriceps muscle, 29.3 msec for 

flexor pollicis brevis, and 30.0 msec for the first dorsal interosseous
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muscle, these values rising by a factor of two or three with fatigue. They 

found that recovery was very quick, being 50% complete in 10 seconds. The 

longer duration found in the present experiment was unlikely to be due to 

a slow response rate in the recording apparatus (see Sections 6.3.2 and 

6.4.3), and so some other explanation is required. The most likely 

explanation is that the surface electrodes were not detecting all the 

activity in the masseter and some undetected activity remained, effectively 

slowing the rate of relaxation. The difference between the masseter 

muscles and those cited above is that the mechanical system to which they 

are linked is more complex. There are more muscles involved in controlling 

movement, with more complex control of the relaxed or postural position. 

The masseter muscles form a smaller percentage mass of muscle 

controlling mandibular movement than is the case in the muscle systems 

investigated by Edwards, Hill & Jones (1972). It is considered that tissue 

elasticity plays a significant role in mandibular resting posture (Yemm & 

Berry, 1969) and also in resistance to movement of limbs (Bierman & 

Ralston, 1965); perhaps the ratio of tissue mass to elasticity or friction is 

different in the jaws to that in the limbs. Possibly the degree of jaw 

opening, or muscle length, has resulted in longer relaxation half-times. 

The muscles were lengthened by the bite force transducer and were held at 

this length after the masseter muscles had relaxed.

An alternative and simpler explanation is that the volunteers were not 

consciously relaxing as quickly or as completely as possible. This seems 

very unlikely as two volunteers (JG and PB) were specifically instructed on 

this matter and encouraged to relax quickly and completely, but their 

relaxation half-times were of the same order of magnitude as those of the 

remaining volunteers (see intercept values in Tables 6.5 and 6 .6 ). 

Relaxation half-times were not recorded with the masseter muscles
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completely fresh but only after 10 seconds of sustained contraction. While 

no reliance can be placed on the extrapolation from regression lines, the 

intercept values are likely to be of the same order of magnitude as the 

values that would have been recorded from fresh muscles.

A regression analysis was carried out on the raw data in order to reduce 

this to a form more convenient for analysis. The initial value is provided by 

the intercept, the trend by the slope and the scatter by the regression 

coefficient. Since the summarised data was represented by both slope and 

intercept together, a multivariate analysis of variance was performed 

(Table 6.7) using Pillais, Hotellings and Wilks tests (SPSS/PC+ software). 

Pillais is the most robust test of the three and so should be used with a 

small sample size. In the example shown in Table 6.7 the significance level 

should be considered 0.087 rather than the 0.048 provided by the 

Hotellings test. Hotellings test is unreliable if there are significant 

departures from normality, and with a small sample size this is difficult to 

ascertain.

It can be seen from Figures 6.5-6.8 that there are obvious trends shown by 

the regression lines. The relaxation half-times increased more in the 

control group than in the patient group, during both levels of sustained 

contraction. This indicator of increased fatigue in the control group 

compared to the patients is supported by the greater shift in median 

frequency discussed above. Moreover, reduction in half-relaxation times 

during the recovery period following both levels of sustained contraction 

was more rapid in the control group, indicating a greater rate of recovery 

in the control group compared to the patient group. With such a small 

sample size a significance a t the 10% level (as shown by Pillais test) is
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indicative of a real difference between the rates of recovery of the patients 

and the controls.

The mean correlation coefficients of the relaxation half-times were lower in 

the patients than in both the controls and the males, indicating greater 

scatter of data in the patient group (Tables 6.5 and 6 .6 ). When analysing 

the signals it was found that there was more ongoing EMG activity during 

relaxation in this group, making measurement of relaxation half-time 

difficult; the presence of continued activity made it difficult to decide on 

the appropriate point from which to measure the half-time (Figure 6.11). 

The presence of on-going EMG activity after relaxation in individuals with 

myogenous CMD was to be expected from clinical experience and also from 

the work of Lous, Sheikholeslam & Moller (1970). These workers 

demonstrated a higher level of postural activity in the masseter and 

temporalis muscles of patients; this higher level occured in one muscle and 

not all, suggesting that the cause was not emotional tension but a more 

specific factor.

This continued activity at rest and the slower rate of recovery fits with the 

clinical picture of patients with myogenous CMD.
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6 .6  CONCLUSIONS

In view of the small sample size and the variability of the data, the 

conclusions drawn from this experiment cannot be considered conclusive. 

The conclusions were as follows:

1. It is important to age and sex-match controls with patients.

2. The patients with myogenous CMD in this sample did not have a 

reduced maximum bite force compared with healthy controls.

3. The patients in this sample had less increase in relaxation half-times 

than controls during a sustained contraction.

4. Relaxation half-times of the patients recovered more slowly than those 

of the controls.

5. The patients had a reduced shift in median frequency of the power 

spectrum compared to the controls.

6 . The patients with myogenous CMD in this sample had less measurable 

fatigue in their masseter muscles than the healthy controls, but recovered 

less quickly.

7. The patients in this sample had more on-going EMG activity after 

relaxation of mechanical force than did the controls.
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CHAPTER 7.

GENERAL DISCUSSION AND CONCLUSIONS

7.1 GENERAL DISCUSSION

This work was undertaken to investigate the manner in which the 

masseter and anterior temporalis muscles withstand fatigue, and the 

occurrence of fatigue in patients with CMD. After a review of the relevant 

literature it was clear that attention had to be paid to more accurate 

diagnosis of CMD and more careful use of standardized terms. It was also 

apparent that CMD is a group of related disorders rather than one 

disorder. The failure of many studies to include a control group matched 

for age and sex was reported in Chapter 1.

There was little evidence in the literature that fatigue leads to muscle 

spasm, nor was the possible link between fatigue and muscle pain 

established. It is generally believed that localised muscle fatigue plays a 

central role in the complex of symptoms of CMD, but this hypothesis has 

not yet been proven.

The stomatognathic system has some advantages over other systems for 

certain physiological studies, principally because of the invariable 

reference point provided by the teeth. However, there are disadvantages: 

the medial pterygoid is a large jaw-elevator but is relatively inaccessible; 

the difficulty of recording the force output of an individual muscle; the 

inaccessibility of the motor nerve supply; and the occurrence of rotation of
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synergist muscle activity in particular. Activity occurs bilaterally and not 

in isolation, and frequently activity may change from one side to the other 

subconsciously. The extensive muscle compartmentalisation and the 

occurence of coactivation may lead to difficulty in the interpretation of 

results.

The stomatognathic system has special emotional significance throughout 

life. This is relevant when considering parafunctional activity, and 

bruxism in particular. Bruxism is generally considered to be a centrally 

induced activity enhanced by stress, but the reason for this behaviour 

remains unclear. A plausible explanation is that of thegosis, a 

phenomenon postulated by Every (1960, 1965). He proposed that in both 

primate and non-primate species the teeth are ground in order to maintain 

sharpness for defence, and that a vestige of this instinct may still be 

present in humans.

7.1.1 Bite Force and Endurance

The maximum bite force and endurance in bruxists was investigated in 

Chapter 3. It was decided to place the bite force transducer between the 

canine teeth because these teeth are often severely worn in bruxists and so 

this is presumably the position of the mandible (a laterotrusive 

mandibular position) in which parafunctional activity takes place. There 

was often a large difference in both horizontal and vertical overlap 

between bruxists and controls because of the degree of attrition. This 

meant that the mandible was in a different position (in relation to the
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maxilla) in the two groups, which brings into question the validity of 

directly comparing bite force and endurance values between these two 

groups.

Most volunteers found it quite uncomfortable to apply force in this 

laterotrusive position with the canines separated by 7 mm; this is 

approximately 25% of maximum opening. Heavy effort in this position 

induced considerable pain on the contralateral side, and it was not clear 

whether this was from the joint or from muscle. The most likely 

explanation is that protrusion of the contralateral condyle (which was 

beyond the parafunctional position because of the degree of opening) led to 

pain in the lateral pterygoid and some of the fibres of the masseter muscle 

on that side. The limit of endurance was pain rather than an inability of 

the muscles to continue the effort.

In an experiment where the bite force transducer was placed between the 

second premolar and first molar teeth (Chapter 5) it was found that the 

endurance times were slightly longer. It is true that this was a group of 

healthy volunteers with no history of bruxism or CMD, but in addition to 

the slightly longer endurance times there was also less contralateral pain. 

These differences could well have been due to the more centralised position 

of the mandible.

It was interesting that both bite force and endurance times were increased 

when clenching with the teeth together i.e. not using the bite force 

transducer; the bite force values in this case were obviously calculated 

values (see Section 5.5). The reasons for these increased values are clear: 

the condyles were centralised, the muscles were functioning a t optimum 

length, there was no discomfort to the teeth induced by a bite force
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transducer, and there was probably a greatly reduced inhibiting influence 

from the periodontal mechanoreceptors (see Section 1.11.2).

When the bite force transducer was placed between the anterior teeth in 

the mid-line (Chapter 6 ) it was found that pain did occur, but a t a later 

stage in the contraction. This was probably because of the brief relaxations 

every 10  seconds, but it is likely that some of this delay in pain onset could 

be attributed to the central position of effort. In this experiment (Chapter 

6 ) pain was experienced by the patients in the area where pain had been 

reported before taking part, as would be expected. In the control group, 

and also the group of males, pain tended to predominate on either one side 

or the other, but was present to some degree on both sides. One of the 

controls (JJ) experienced considerable pain on one side for several days 

after the experiment, whereas all the others had no pain by the following 

day. The only discernable difference between this volunteer and the other 

controls was that she had a slightly larger horizontal overlap than the 

others and so required to protrude slightly more to achieve an edge-to-edge 

vertical relationship of her incisor teeth on the bite force transducer. This 

would have induced a greater effort from the lateral pterygoid muscles.

7.1.2 EMG C hanges

The changes which occur in the electromyogram during localized muscle 

fatigue have been well documented (Section 1.4). However, because of the 

nature of the stomatognathic system these EMG changes have to be 

interpreted with care. This point is illustrated clearly in Chapter 3. An 

increase in EMG amplitude with time of the first dorsal interosseous 

muscle is regular and progressive (Figure 3.11); this increase is less easily
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seen in the masseter and anterior temporalis muscles, and there are 

greater fluctuations (Figures 3.4 and 3.10).

This variability of amplitude was also shown in Chapter 5. It was found 

that there was a closer correlation between the subjective perception of 

fatigue and median frequncy changes than between amplitude and median 

frequency changes. Regardless of this difference in correlation, it was clear 

that the volunteers were in a state of real fatigue at the end of the 

sustained contractions. Large fluctuations in signal amplitude are seen in 

many muscles in fatigue, and it may be that the masseter and anterior 

temporalis muscles are even more prone to this phenomenon than limb 

muscles.

Shift in median frequency appeared to be a better indicator of fatigue in 

that it correlated more closely to the subjective perception of fatigue. It has 

more theoretical sensitivity (Section 5.5) and is less prone to the wide 

fluctuations that occur in signal amplitude.

The finding in Chapter 6  that there was less shift in median frequency in 

the patients compared to the controls was unexpected, even though the 

difference was small and not statistically significant. A possible 

explanation was that only a small part of the muscle was affected by the 

disorder and that the remainder of the muscle had compensated for the 

small affected part. It is possible that if the electrodes had been placed in a 

slightly different position then the results would have been different. 

Surface EMG clearly does not sample the whole muscle, but 9 mm discs 

with a centre-to-centre separation of 2 0  mm are likely to sample a 

significant proportion of the superficial part of the masseter muscle.
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7.1.3 R elaxation R ate

The magnitude of relaxation half-times was greater than expected, 

considering the results of Edwards et al (1972). However, the essential 

difference between the muscles investigated by Edwards et al (the 

quadriceps, first dorsal interosseous and flexor pollicis brevis) and the 

masseter muscles was that the masseters do not act alone to produce 

movement of the mandible. It is very likely that there was still some 

activity from either the medial pterygoid or the anterior temporalis 

muscles, or even deeper fibres of the masseters, to prolong the total force 

output. The presence of a continuing low level of EMG activity after the 

relaxation would have slowed the relaxation rate considerably.

In spite of this difference in magnitude there was still an increase in 

relaxation half-times during the course of a sustained voluntary 

contraction, albeit with large fluctuations. The increase was of the order of

0.5, however, not the 2 or 3 obtained by Edwards et al (1972). This could 

again be attributed to the number of muscles involved in any jaw 

movement compared to the situation in the leg or the hand where the 

activity of individual muscles can be isolated.

The rate of recovery was very rapid, however, with values generally 

returning to initial levels within 20  seconds after the end of the sustained 

contraction. This figure corresponded approximately to the findings of 

Edwards et al (1972) who found that recovery was 50% complete within 10 

seconds. The rate of recovery was less likely to be affected by the number 

of muscles involved, and hence the closer agreement of these figures.
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7.2 CONCLUSIONS

The conclusions to be drawn from this work may be summarised as 

follows:

1. The position of bite force transducers is important and these should be 

placed either in the mid-line anteriorly or on both sides posteriorly. If 

these are placed on one side posteriorly then contralateral pain is usually 

induced. This will have an effect on bite force values and endurance times.

2. Groups of patients should be age and sex-matched with control groups, 

and other variables such as relative jaw size and parafunctional habits 

should also be considered.

3. The T-Scan system is of no value in the measurement of bite force and 

could be misleading.

4. The changes in EMG amplitude and power spectrum median frequency 

during a sustained isometric voluntary contraction are closely correlated to 

subjective perception of fatigue; the median frequency is correlated rather 

more closely than amplitude change.

5. Patients with CMD have more ongoing EMG activity than healthy 

controls when relaxing after voluntary sustained contractions.
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6 . The study of jaw-closing muscle relaxation rate is complicated by the 

number of muscles involved, but in the small sample studied the masseter 

relaxation half-times were longer than has been found in studies of limb 

muscles; relaxation half-times also increased less in the patient group but 

recovered more slowly than in the control group.

7. The shift in median frequency of the power spectrum is a more useful 

indicator of fatigue in the jaw-closing muscles than increase in EMG 

amplitude or increase in relaxation half-times.

AREAS FOR FUTURE RESEARCH

The application of the twitch interpolation technique (described on page 

29) to the jaw-closing muscles might be useful in the investigation of 

maximum bite force values and should be pursued. The recent availability 

of a new force-sensing material also warrants assessment for use in 

monitoring bite force.

Rotation of synergist activity has been demonstrated to occur between the 

masseter and anterior temporalis muscles (Hellsing & Lindstrom, 1983), 

and it would be of interest to attempt to replicate these results and to 

investigate the role of the medial pterygoid muscle in rotation.

The investigation of control properties of motor units perhaps provides the 

most promising avenue of research in the study of the jaw-closing muscles 

and their involvement in CMD. The use of the low frequency part of the 

power spectrum (below 40 Hz) may be of value in this endeavour.
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APPENDIX A.

FUND RAISING

The experiment reported in Chapter 2 was carried out with equipment on 

loan from the Institute of Physiology, University of Glasgow. The EMG 

signals were amplified, filtered, integrated, and then passed directly to a 

chart recorder. The hard copy was then analysed manually. It was clear 

that funds would have to be raised to enable the purchase of EMG 

equipment to detect a t least four channels of data and record this raw data 

for subsequent off-line analysis.

In November 1988 a Medical Research Travel Grant to the value of £895 

from the Scottish Hospital Endowments Research Trust was obtained. The 

purpose of this grant was to visit Dr Gustaf Hellsing of the Department of 

Clinical Oral Physiology, Karolinska Institute, Stockholm, in order to 

learn more on frequency analysis of surface EMG signals and the 

application of Lindstrom's EMG Fatigue Index. The period of the visit was 

from the 22nd January to the 3rd of February 1989.

In January 1990 an application to the Greater Glasgow Health Board for 

the sum of £10,195 for non-recurring expenditure was approved. This sum 

enabled the purchase of a Neurolog Power Supply, NL107 recorder 

amplifier, NL 820 isolator, four NL125 filters, four NL705 RMS 

integrators, a four-channel isolating pre-amplifier, PCM-8  video adapter, 

video recorder, mobile rack.
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A Tektronix oscilloscope and a Devices four-channel chart recorder are on 

long-term loan from the Institute of Physiology, and these complete the 

equipment required.

Disposable items have been purchased from the departmental and general 

research funds of the Department of Prosthodontics and the Institute of 

Physiology. The metal beams of the bite force transducer were constructed 

a t no cost to the project by the West of Scotland Health Board’s 

Department of Clinical Physics and Bio-Engineering.
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APPENDIX B

SIGNAL PROCESSING THEORY

The analysis of EMG signals may be in the time domain (rectification, 

smoothing, integration, RMS value) which is based on the autocorrelation 

function, or in the frequency domain (Fast Fourier transforms are used to 

obtain the power density spectrum) which is based on the spectral density 

function. The autocorrelation function and the spectral density function 

are useful characteristics of random signals because they contain all the 

first- and second-order statistical properties of the signal (Kwatney, 

Thomas & Kwatney, 1970). The spectral density function describes how 

the variation in a time series (a collection of observations made 

sequentially in time) may be accounted for by cyclic components at 

different frequencies. This function is estimated by a procedure called 

spectral analysis. Spectral analysis is essentially a non-parametric 

statistical procedure in which a finite set of observations is used to 

estimate a function defined over a range (Chatfield, 1975). A non- 

parametric method of analysis is used for data that does not follow any 

recognised distribution pattern i.e. data which is non-Normal.

A new development is time-frequency analysis of the reduced interference 

distribution of the electromyogram. This produces high resolution which 

reveals details not visible when using other distributions (Widmalm et al, 

1990; Shi & Hua, 1992).



Lyons MF, 1992, Appendix B. 193

The spectrum is best plotted with linear scales rather than logarithmic 

scales as a logarithmic scale would tend to compress the spectrum 

(Basmajian & De Luca, 1985). Plotting on a logarithmic scale exaggerates 

the visual effects of variations where the spectrum is small. When plotted 

on an arithmetic scale the area under the graph corresponds to power and 

so it is easier to assess the importance of various peaks. Logarithmic scales 

are often used in other disciplines, such as acoustics. The frequency scale 

can be measured in cycles per unit time or radians per unit time, but a 

spectrum is more easily interpreted if cycles per unit time are used.

The three parameters which are most often used to describe a spectrum 

are the mean frequency, the median frequency and the bandwidth. The 

median frequency was found by Stulen & De Luca (1981) to be less 

sensitive to noise than the mean frequency. The bandwidth is essentially a 

window in the frequency domain. Basmajian & de Luca (1985) state that 

the components of an EMG signal below 20 Hz are unstable and therefore 

the low frequency 3 dB point should be set a t 20 Hz. The high frequency 3 

dB point should be set a t slightly higher than the highest frequency of the 

signal.

The ratio of the output voltage to the input voltage is measured as a gain 

and it is, like all ratios, unitless. Magnitude and gain are usually measured 

in dB, and a gain of 0.707 = W0.5 = 3dB. An octave is a doubling of the 

frequency and a decade is an order of magnitude. The value of the 

frequency where the gain decreases by 3 dB is the cutoff frequency or 3 dB 

point. A 3-dB drop is the same as a 50% drop in a linear scale 

representation of the power spectrum, and can therefore be called a half­

power frequency.
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For any AC wave or sine wave:

effective voltage = RMS voltage

= peak voltage X 0.707

(Wallace, 1960)

Peak

R.M.S.

F igu re  B .l. A representation of the RMS value of a sine wave.
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Spectral analysis (spectrum analysis) is the name given to methods of 

estimating the spectral density function (or spectrum) of a given time 

series (Chatfield, 1975). This describes how the variation in a time series 

may be accounted for by cyclic components at different frequencies. It is 

concerned with estimating the spectrum over the whole range of 

frequencies. Spectral analysis is a modification of Fourier analysis so that 

it is suitable for stochastic rather than deterministic functions of time. A 

deterministic time series is one that can be predicted exactly, whereas a 

stochastic time series is one in which the future is only partly determined 

by past values. Fourier transforms have long been used when dealing with 

a continuous waveform, and when a waveform is sampled it is the discrete 

version of the Fourier transform which is used. The fast Fourier transform 

(FFT) is a more efficient way of calculating the discrete Fourier transform 

(Bergland, 1969). The fast Fourier transform provides point estimates of 

the spectral density function at different frequencies.

The Nyquist frequency is the highest frequency about which meaningful 

information can be obtained from a set of data. It is the upper limit of the 

spectral distribution function.

There are several methods of obtaining a consistent estimate of the power 

spectral density function. Before carrying out an FFT on a signal, any 

obvious trends should be removed first otherwise they will dominate the 

analysis. A trend may be defined as a long-term change in the mean and 

will produce a peak at zero frequency. The removal of trend and tapering 

are achieved by performing a straight-line fit and then applying a cosine 

bell to the first and last 10% of the samples in each record (Barker, Wastell 

& Duxbury, 1989). This application of a raised cosine window to the first 

and last 1 0 % of the data, with a weight of unity being applied in between,
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is called Tukey's “interim” data window and the objective is to reduce 

leakage. Another window which can be applied is the Hanning window, 

which is a cosine bell on a pedestal (Bergland, 1969). The procedure, then, 

is to de-trend, take out the pedestal, and taper.

The autocorrelation function is a valuable intermediate stage and can be 

calculated by performing two FFT's. To reduce the computations, zeros can 

be added to the mean-corrected sample record so as to increase the value of 

N until it is a suitable integer, and this should be accompanied by tapering 

(Chatfield, 1975; Godfrey, 1974).

In comparing different Spectral windows, the bias, variance and bandwidth 

should be considered. The wider the window, the larger will be the bias. 

The choice of bandwidth is an important step in spectral analysis. The 

bandwidth is the width of the “ideal” rectangular window which would give 

an estimator with the same variance (Chatfield, 1975). The bandwidths 

that have been used with surface electrodes on the masseter muscle are 1- 

600 Hz (Duxbury, Hughes and Clark, 1976), 8-800 Hz (Lindstrom and 

Hellsing, 1983) and lO-lOOOHz (Palla and Ash, 1981).
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F igure  B.2 The concept of band width, reproduced from Basmajian & De 
Luca, 1985.

A continuous time series can be converted into a standard discrete time 

series by taking values a t equal time intervals i.e to digitize the series. The 

main question is how to choose the sampling interval. If the maximum 

frequency is known then the choice of sampling interval is 

straightforward. The Shannon Sampling Theorem states that a t least two 

samples per cycle of the highest frequency of the signal must be taken 

(Geister, McCall & Ash, 1975). If the sampling interval is too large then 

aliasing may occur. This is where variation a t frequencies above the 

Nyquist frequency will be folded back and produce an effect a t a frequency 

lower than the Nyquist frequency. In other words, high frequency 

components can impersonate low frequencies if the sampling rate is too
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low (Bergland, 1969). The estimate of the spectrum should approach zero 

near the Nyquist frequency if the sampling interval is small enough.

If the spectrum is large at low frequencies it could indicate non- 

stationarity in the mean, as discussed previously. This is one of the factors 

to look for when interpreting the results of an estimation. The other two 

factors are peaks and general shape in the spectrum.

In summary, three important points which should be considered in 

spectral analysis are sampling rate, removal of trend and tapering, and the 

choice of bandwidth. The length of the data record is also important as it is 

proportional to the resolution. For masseter and temporalis muscles two 

seconds would be sufficient (Andrews, personal communication).
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APPENDIX C.

%

GLOSSARY OF TERMS

This Glossary is compiled from the following sources: Dor land, 1977; the 

ad hoc Committee of the International Society of Electrophysiological 

Kinesiology, 1980; British Standard (BS 4492) Glossary of Dental Terms, 

1983; Basmajian & De Luca, 1985; Glossary of Prosthodontic Terms, 1987; 

McNeill, 1990.

Alpha-M otoneuron: The neural structure whose cell body is located in 

the anterior horn of the spinal cord and which, through its relatively large 

diameter axon and terminal branches, innervates a group of muscle fibres.

3-dB Bandw idth: The difference between the upper and lower 3-dB

frequencies, or half-power frequencies.

Bruxism: The parafunctional grinding of teeth.

Common-mode Rejection Ratio: A performance characteristic of a 

differential amplifier (used with a bipolar electrode configuration). The 

ability to cancel out noise. The higher the CMRR the better the 

cancellation. The recommended CMRR is 100 dB (Basmajian & De Luca, 

1985).
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C ran iom and ibu lar D isorders: A collective term embracing a number of 

clinical problems that involve the masticatory musculature, the 

temporomandibular joint, or both.

D eflective O cclusal Contact: A tooth-to-tooth contact that changes the 

direction of mandibular movement during closure.

E ccen tric  contraction: The muscle is lengthening under tension.

Eccentric: (Dental) an adjective denoting any position other than that 

which is a centric position.

Fasciculation: A small local involuntary muscular contraction visible 

under the skin, representing spontaneous discharge of a number of fibres 

innervated by a single motor nerve filament.

In p u t Im pedance: A characteristic of a differential amplifier which 

should be above 1 0 12 ohms in order to minimise wave-shape distortion and 

signal attenuation.

Isom etric  C ontraction: The muscle maintains a fixed length.

Isotonic Contraction: The muscle maintains a constant force.

In tegration : The calculation of the area under a signal or curve. An EMG 

signal has an integrated value of zero, and so this calculation can only be 

applied to the rectified signal.
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M otor Unit: The smallest controllable muscular unit. It consists of a 

single a-motoneuron, its neuromuscular junction, and the muscle fibres it 

innervates (between 3 and 2000).

M otor U nit F iring  Rate: The average firing rate of a motor unit over a 

given period of time. The estimate should include a calculation of at least 

six consecutive inter-pulse intervals.

Myositis: A painful generalised inflammation, usually of the entire 

muscle. May also occur in tendinous attachments of the muscle.

O cclusal Device (Splint): Any removable artificial occlusal surface used 

for diagnosis or therapy regarding the relationship of the mandible to the 

maxillae. It may be used for stabilization, for TMJ dysfunction therapy, or 

to prevent wear of the dentition.

O verlap, vertical: The projection in a vertical direction of teeth in one 

arch beyond their antagonists.

R ate M odulation: The control of force output of a muscle by variation of 

motor unit firing rate.

R ecruitm ent: The involvement of additional motor units to contribute to 

muscle force output.

R ectification: Including only the positive waves of a signal. Can have 

half-wave or full-wave rectification, the latter inverting the negative part 

of the signal.
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R ectified In teg ra ted  EMG: The EMG signal is full-wave rectified and 

then integrated over a fixed time period.

Spasm: A sudden, violent, involuntary muscular contraction.

Synchronization: The tendency for a motor unit to discharge a t or near 

the time that another motor unit discharges.

S ynerg ist Muscle: One which actively provides an additive contribution 

to a particular function during a contraction.
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APPENDIX D.

CONSTRUCTION OF THE BITE FORCE TRANSDUCER

The bite force transducer was constructed from 3mm stainless steel sheet, 

cut to form two stiff beams and separated by a stainless steel spacer 

(Figure D.l). The three parts were held together by two 4mm stainless 

steel bolts. The dimensions were finalised by trial-and-error, as the 

instrument had to be as thin as possible and yet stiff enough to resist 

maximum biting forces without permanent deformation.

1Z

1
16 o o Plan view

1

1...................  -i=3 Side view
—*5*—^ ------------
* —  2.0 w — ► * — A  —p.

F igure  D .l Drawings of the stainless steel elements of the bite force 
transducer.
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Two strain gauges were attached to each side of one of the beams, so that 

two were in tension and two in compression when the beams were loaded 

(Figure D.2). The strain gauges were compensated for mild steel, 8 mm 

long, and with a resistance of 120Q (RS Components Ltd, stock number

308-102). They were attached to the metal beam with rapid setting epoxy 

resin (Araldite Rapid) and wired to form a Wheatstone bridge circuit 

(Figure D.3 and D.4). A Wheatstone bridge circuit is commonly used for 

the rapid and precise measurement of resistance. The strain gauges were 

connected to a 2m four-core braided cable (NL953, Digitimer Ltd). This 

cable is supplied with a Lemo F00304 male connector on one end, and this 

mates with the input socket of the recorder amplifier (NL107, Digitimer 

Ltd). The part of the beam with the strain gauges attached was coated 

with a proprietary silicone rubber compound in order to effect a watertight 

seal (Figure D.5).

Calibration of the instrument was carried out against known weights prior 

to the experiment reported in Chapter 3, but a NENE universal testing 

machine was used for calibration prior to later experiments. The response 

of the bite force transducer was found to be linear in the range tested (50- 

300N) and consistent between sessions.
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F ig u re  D.2 Two strain  gauges attached to one beam of the bite force 
transducer.

F ig u re  D.3 The cable attached to the stra in  gauges.
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F ig u re  D.4 The m anner in which the strain  gauges were wired to form a 
W heatstone bridge circuit, c = compression, t = tension.

F ig u re  D.5 The completed bite force transducer, showing the covering of 
silicone rubber.
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APPENDIX E.

NAMES AND ADDRESSES OF COMPANIES SUPPLYING 

EQUIPMENT AND MATERIALS

Digitimer Limited 
14 Tewin Court 
Welwyn Garden City 
Hertfordshire AL7 1AF

Specialised Laboratory Equipment Limited
15 Campbell Road
Croydon
Surrey CRO 2SQ

Medical Systems Corporation 
One Plaza Road 
Greenvale 
NY 11548, USA

Link 51 (Storage Products) Limited 
5/7 Colvilles Road 
Kelvin Industrial Estate 
East Kilbride G75 ORS

Radio Spares 
P.O. Box 99 
Corby
Northamptonshire NN17 9RS

Stag Instruments Limited 
16 Monument Industrial Park 
Chalgrove 
Oxon. 0X9 7RW

Tektronix Incorporated 
Beaverton 
OR 97077, USA
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Cambridge Electronic Design Limited 
Science Park 
Milton Road 
Cambridge CB4 4FE

Tekscan Incorporated 
237 Lewis Wharf 
Boston, MA 02110 
USA

Cottrell and Company 
15-17 Charlotte Street 
London W1P 2AA
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APPENDIX F 

PROFORMA USED IN THE EXAMINATION AND DIAGNOSIS OF 

PATIENTS WITH CRANIOMANDIBULAR DISORDERS

The following proforma was initiated and developed by the author, with 

constructive comments from Professor Iven Klineberg and Dr I.B. Watson. 

This proforma was used in the examination and diagnosis of the patients 

who participated in this research project. It was considered essential that 

all relevant information was collected and an accurate diagnosis made to 

ensure the validity of the project.
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GLASGOW DENTAL HOSPITAL AND SCHOOL 

DEPARTMENT OF PROSTH0DONTICS

CRANIOMANDIBULAR DISORDERS

Name:________________________________  D.o.B.:_

Address:______________________________

____________________________  Postcode:

Occupation:___________________________

Consultant:___________________________  Date:___

Clinician:____________________________

Referred by:__________________________

Primary referral: Yes

Reason for referral:

ni N o O

Main complaint (patient's own words):

History of complaint:

Previous treatment:
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Relevant Medical History:

Parafunctional Habits:

None □ Clenching 
Grinding 
Gum-chewing 
Biting soft tissues 
Biting objects

Nocturnal
Diurnal
Both

Headache: 

None dJ Frontal Left Morning
Ant temporal Right _ Evening
Post temporal 
Occipital

— Mid-line — Any time —

Occurs every day □  

every few weeks □  

Occurs only at times of stress

every few days

□
□

CLINICAL EXAMINATION

Muscle Palpation (0= none, 1= mild, 2= moderate, 3= severe)

Date:

R. L.

Temporalis - ant:

R. L. R. L. R. L.

post:
Masseter:
Lat. ptervgoid:
Med. ptervgoid:
Stemomastoid:
Trapezius:
Tongue:

Total score:



212

TM Joint Signs
(0= none, 1= mild, 2= moderate, 3= severe)

Date:

R. L.

Pain on palpation - lat:

R. L. R. L. R. L.

post:
Click - opening:
closing:
Closed lock:
Crepitation:
Subluxation:

Total score:

" End feel": elastic and painless
stiff or limiting

Joint play: smooth
rough

M andibular Movement

a
a

Date:

mm pain

Opening
(inter-incisor distance)

mm pain mm pain mm pain

Maximum protrusion:

Maximum Laterotrusion 
Right:
Left:

Total score:

Deviation on opening: to R. 

to L,

□
□
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Occlusion

Jaw relationship: C ll □ c i;I div 1 □

Cl 2 div2 □ Cl 3 □

Teeth present: 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8

Dentures: No □ Yes - partial upper □ partial lower O

complete denture in one arch □  

complete dentures □

Degree of attrition: □
(0= nil, 1= enamel only, 2= dentine, 3= dentine extensively, 4= secondary dentine. 
Score the most severely involved tooth)

Buccal mucosa ridging: 

Tongue ridging:

Freeway space (mm):

yes

yes

□
□

□
no

no

□
□

RCP - ICP slide:

Non-working side contacts:

Special Tests 

Study casts:

Other special tests:

yes
no 0

mainly vertical n  

mainly horizontal □  

nil □

none

yes, on L. excursion □  

yes, on R. excursion □

Radiographs taken: no 
OPT 

Zone arc
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DIAGNOSIS

1.Muscle disorder - myogenous pain 
(myofascial pain, myositis)
- spasm
- reflex splinting
- hypertrophy

□

2. Joint disorder - deviation in form

- disc displacement: 
with reduction 
(reciprocal click) 
without reduction 
(closed lock)

- hypermobility

- dislocation

- inflammatory conditions: 
synovitis/capsulitis

- arthritides: 
osteoarthrosis 
osteoarthritis 
polyarthritis

- ankylosis 
fibrous 
bony

□
□
□
□
□
□

a
3. Combined jo int and muscle disorder

4. Psychological factors:

□

TREATMENT PLAN
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SUMMARY OF ATTENDANCES

Date

/
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APPENDIX G.

LETTERS OF APPROVAL FROM THE ETHICS COMMITTEE

Letters of approval from the Area Dental Ethics Committee of the Greater 

Glasgow Health Board are reproduced on the following pages. These 

letters of approval relate to the experiments carried out in preparation for 

this thesis.
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GREATER GLASGOW HEALTH BOARD

Tel: 0 4 1 - 3 3 2  2 6 0 0  - H ea l th  B o a rd  
0 4 1 - 3 3 2  2 5 2 5  - P e r s o n n e l /  
S u p p l i e s / I n f o r m a t i o n  S e r v ic e s

Royal B eatson M em orial Hospital 
1 3 2  Hill S tree t, G lasgow  G 3 6UD

Our Ref.: RMcK/EMcG All communications must b e  add ressed  to

Chief Administrative Dental OfficerYour Ref.:

If ’phoning
ask fo r:— Mr R. McKechnie

Glasgow Dental"Hospital’’an8''Schoo1 
378 Sauchiehal l  Street  
Glasgow G2 3JZ

30 January  1989 Telephone: 041-332 7020 
Ext. 280/325

Mr Mervyn F.  Lyons
L e c t u r e r / P h D  S t u d e n t
Hon.  D e n t a l  Surgeon
D e p t ,  o f  P r o s t h o d o n t i c s
Gl as gow D e n t a l  H o s p i t a l  and S c h o o l
378 S a u c h i e h a l l  S t r e e t
Gl asgow
G2 3 JZ

Dear Mr Lyons

AREA DENTAL ETHICS COMMITTEE

I w r i t e  t o  i n f o r m you t h a t  your a p p l i c a t i o n  o f  2 9 t h  November 1988  
f or  c l i n i c a l  r e s e a r c h  h a s  now be e n  a p p r o v e d  by t h e  Area D e n t a l  E t h i c s  
Commi t t ee  a t  t h e i r  m e e t i n g  on 5 December  1 9 8 8 ,  t h e  t i t l e  o f  t h e  
p r o j e c t  b e i n g : -

"A p r e l i m i n a r y  i n v e s t i g a t i o n ,  i n t o  m a s t i c a t o r y  m u s c l e  
f u n c t i o n  i n  human s u b j e c t s  e x h i b i t i n g  a d v a n c e d  t o o t h  
wear "

I a p o l o g i s e  f or  t h e  l o n g  d e l a y  i n  i n f o r m i n g  you o f  t h e  C o m m i t t e e ' s  
d e c i s i o n .

The Commi t t ee  woul d  be g r a t e f u l  i f  you woul d  i n f o r m them o f  t h e  
r e s u l t s  o f  your p r o j e c t  and any e t h i c a l  p r o b l e m s  e n c o u n t e r e d  
whenever  t h e  p r o j e c t  i s  c o m p l e t e .

Yours  s i n c e r e l y

R. McKECHNIE
C h i e f  A d m i n i s t r a t i v e  D e n t a l  O f f i c e r

c . c .  Mr H.A.  C r i t c h l o w ,  Chairman  
Mr G. L e w i s ,  S e c r e t a r y
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GLASGOW DENTAL HOSPITAL AND SC HOO L

3 7 8  S A U C H I E H A L L  STREET,  GL A S GOW,  G2 3 J Z 
TELEPHONE No. 041-332 7020

RMcK/EMcG

15 Septem ber 1989

Mr Mervyn F. Lyons
D ept, of Prosthodontics
Glasgow Dental Hospital and School
378 Sauchiehall Street
Glasgow G2 3JZ

Dear Mr Lyons

AREA DENTAL ETHICS COMMITTEE

I write to inform you that your application of 16 May 1989 for clinical 
research  was considered b y  the Area Dental Ethics Committee at 
their m eeting on 5 June 1989, the title  of the project being:

"An investigation  of the mechanisms of fatigue  
in the m uscles of man"

The Committee decided to withhold approval of the project pend ing  
confirmation from you rself that an information sh eet and a consent 
form would be used  and also clarification was required on the source  
of volunteers for your project. Your le tter  of 29 June 1989 covers  
the points raised and you may proceed with your research  although  
the decision will not be minuted until the next formal m eeting of the 
Area Dental Ethics Committee.

The Committee would be gratefu l if you would inform them of the resu lts  
of your project and any ethical problems encountered w henever the  
project is complete.

1 apologise for the long delay in rep ly in g  to you .

Yours sin cerely

R. McKECHNIE
Chief Adm inistrative Dental O fficer
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G L A SG O W  DENTAL HOSPITAL AND S C H O O L

3 7 8  S A U C H I E H A L L  STREET,  G L A S G O W,  G2 3 J Z 
TELEPHONE No. 041-332 7020

RMcK/EMcG

15 Septem ber 1989

Mr Mervyon F. Lyons
D ept, of Prosthodontics
Glasgow Dental Hospital and School
378 Sauchiehall S treet
Glasgow G2 3JZ

Dear Mr Lyons

AREA DENTAL ETHICS COMMITTEE

I write to inform you that your application for clinical research  has 
now been considered  b y  the members of th e Area Dental Ethics 
Committee, the title  of the project being:

"An in vestigation  into the e fficacy  of the T -Scan  
com puterised system  for occlusal analysis"

The project has been  approved subject to the provision  of a simple 
information sh eet for patien ts who will be p artic ip atin g  d escr ib in g , in 
lay term s, the purpose of the in vestiga tion  and the proced ures  
involved .

You may proceed with your research  although the decision  will not 
be minuted until the n ex t formal m eeting of the Area D ental Ethics 
Committee.

The Committee would be gratefu l if  you would inform them of the resu lts  
of your project and any eth ical problems encountered  w henever the  
project is com plete.

Yours s in cere ly

R. McKECHNIE
Chief A dm inistrative Dental O fficer

r
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APPENDIX H.

PUBLISHED PAPERS

Reprints of papers which have been published on some of the material 

presented in this thesis are reproduced on the following pages.



221

Journal of Oral Rehabilitation, 1990* Volume 17, pages 311—318

A  preliminary electromyographic study of bite 
force and jaw-closing muscle fatigue in human 
subjects with advanced tooth wear

M .F .  L Y O N S  and R . H .  B A X E N D A L E *  Department of Prosthodontics, Dental 
School and *Institute of Physiology, University of Glasgow, Glasgow, Scotland, U.K.

S u m m ary
T h e  m ax im um  b ite  fo rce  w as re c o rd e d  in five ex p e rim en ta l v o lu n tee rs  w ith ad v an ced  
to o th  w ear and  five c o n tro l v o lu n tee rs  w ho  show ed  no  ab n o rm al w ear. A ll sub jec ts 
w ere  th e n  ask ed  to  m a in ta in  a  fo rce  o f  50%  o f  th e  m ax im um  fo r as long  as possib le  
w hile su rface  e lec tro m y o g ram s fro m  th e  m asse te r an d  tem p o ra lis  m uscles w ere  re ­
c o rd ed . T h e  b ite  fo rce  an d  e n d u ra n c e  tim e w ere  fo u n d  to  be  slightly  in c reased  in the  
ex p e rim en ta l g ro u p , b u t no  conc lu s ions cou ld  b e  d raw n  reg a rd in g  th e  s ta te  o f  fa tigue . 
T w o significant p ro b lem s w ith  re g a rd  to  fa tig u e  s tu d ies  o f  th e  jaw -closing  m uscles 
em erg ed  from  th e  s tu d y , n am ely  th e  use o f  th e  can in e  p osition  fo r reco rd in g  o f  th e  
fo rce , an d  th e  th ickness  o f  th e  fo rce  m e te r.

In tro d u c tio n
T h e  p ro b lem  o f ad v an ced  to o th  w ea r o r , p e rh a p s  m o re  co rrec tly , to o th  su rface  loss, is 
o b se rv ed  w ith  increasing  freq u en cy  in D e p a r tm e n ts  o f  F ixed  an d  R em o v ab le  P ro s th o ­
d o n tics . T h e re  a re  m any  re a so n s  fo r th is , n o t leas t be in g  th e  fac t th a t a  h ig h e r 
p e rcen tag e  o f  th e  p o p u la tio n  now  re ta in  th e ir  te e th  in to  th e ir  m idd le  years* and  
b ey o n d . P a tie n ts ’ e x p ec ta tio n s  a re  rising , an d  g en e ra l d e n ta l p rac titio n e rs  a re  in ­
creasing ly  recogn iz ing  th e  p ro cess  an d  re fe rrin g  such  p a tie n ts  to  specia lists  fo r an 
o p in io n  o r , m o re  usually , fo r tre a tm e n t. T h e  la t te r  is invariab ly  tim e-consum ing  and  
expensive .

T h e  te rm  ‘to o th  su rface  loss’ re fe rs  to  th e  loss o f  su rface  to o th  tissue as a re su lt o f 
a ttr i tio n , e ro s io n  o r  ab ra s io n , o r  o ften  a  co m b in a tio n  o f  all th re e . T h e  p ro cess  o f  
a ttr itio n  w as o f  p a rticu la r in te re s t in  th is s tu d y , be ing  th e  loss by w ea r o f  to o th  
su b s tan ce  o r  a  re s to ra tio n  cau sed  by  m astica tio n  o r  co n tac t b e tw een  occlud ing  o r  
ap p rox im al su rfaces (W atso n  &  T u llo ch , 1985).

In  cases o f a tt r i t io n , w h ere  n o  o bv ious d ie ta ry  fa c to r is invo lved , th e re  is u sually  a 
h is to ry  o f  b rux ism . T h e  fo rces e x e rte d  d u rin g  b ru x in g  activ ity  have b e e n  re p o r te d  to  
be  b e tw een  30%  an d  60%  o f a m ax im um  v o lu n ta ry  co n trac tio n  (C la rk e , T o w n sen d  & 
C a rey , 1984), w hich  is a  la rge  fo rce  co m p a red  to  n o rm a l chew ing  fo rces. U p  to  11

Correspondence: Mr M.F. Lyons, Department of Prosthodontics, Glasgow Dental Hospital and 
School, 378 Sauchiehall Street, Glasgow G2 3JZ, Scotland, U.K.

The subject matter of this paper was presented at the Annual Conference of the British Society for the 
Study of Prosthetic Dentistry 1989.
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b rux ing  ep iso d es d u rin g  a n ig h t’s s leep  w ere  a lso  re p o r te d , w ith  an  av e rag e  d u ra tio n  
o f 1 1 s . In ad d itio n , b rux ism  m ay o ccu r d u rin g  th e  d ay , p a rticu la rly  a t tim es o f  stress .

It w ould  seem  re a so n a b le  to  suggest th a t  th e  jaw -closing  m uscles o f  b ru x is ts  m igh t 
have ben efited  from  a ‘tra in in g  e ffec t’ as a re su lt o f  all th is  ac tiv ity , re su ltin g  in 
m uscles th a t a re  s tro n g e r an d  possib ly  m o re  re s is ta n t to  fa tig u e . T h e  p ic tu re  is n o t 
en tire ly  c lea r, ho w ev er, as it is likely th a t  such  activ ity  m ay  o fte n  o ccu r in one  
p a rticu la r eccen tric  po sitio n .

A  view  w hich is g enera lly  h e ld  reg a rd in g  th e  ae tio lo g y  o f  b ru x ism  is th a t it is a 
cen tra lly  induced  ac tiv ity , an d  p e rh a p s  p e rip h e ra l fac to rs , such  as occlu sa l ir re g u ­
la ritie s , p lay a  p rec ip ita tin g  ro le . I t w as p o in te d  o u t by C haffin  (1973) th a t lim b  m uscle 
fa tigue  resu lts  in a red u ced  ab ility  to  p e rfo rm  accu ra te  m o v em en ts  an d  to  ju d g e  the  
ex e rtio n  o f  light fo rces — it is possib le  th a t th is m ay  a lso  h av e  som e re lev an ce  in 
b rux ists . F u rth e rm o re , C haffin  defined  localized  m uscle  fa tig u e , s ta tin g , th a t it resu lts  
in d isco m fo rt and  d ec rea sed  p e rfo rm an ce . T h e  ab ility  to  p e rfo rm  p rec ise  co o rd in a te d  
m ovem en ts  d ec rea se s , an d  th e re  is an  in c rease  in m uscle  tr e m o r , as w ell as sub jec tive  
fee lings o f  pa in  and  a ‘d es ire  to  a b an d o n  th e  ta s k ’. A  b e tte r  u n d e rs ta n d in g  o f  fa tigue  
in the  jaw  m uscles o f  h u m an  sub jec ts is n ecessary  in o rd e r  to  ad v an ce  o u r  u n d e rs ta n d ­
ing o f  p a ra fu n c tio n a l activ ity .

O n e  o f  th e  p ro b lem s asso c ia ted  w ith  th e  s tudy  o f  th e  jaw  c losing  m uscles is th a t 
th e  force o u tp u t o f  each  ind iv idual m uscle c a n n o t b e  m ea su re d , o n ly  th e ir  co llec tive  
fo rce . F u r th e rm o re , it has b een  show n by H ells ing  and  L in d stro m  (1983) th a t th e re  is 
a ro ta tio n  o f  activ ity  am o n g  th e  synerg ist m uscles w hich is q u ite  b ey o n d  v o lu n ta ry  
c o n tro l, and  serves to  com p lica te  th e  s itu a tio n  fu r th e r .

M etab o lic  fa tig u e , as o p p o sed  to  fa tig u e  re su ltin g  from  an e x c ita tio n  fa ilu re , is a 
re la tive ly  g rad u a l b iochem ica l p rocess  th a t ev en tu a lly  resu lts  in an  inab ility  to  m a in ta in  
a co n trac tio n  (B asm ajian  & D e  L u ca , 1985). T h is  g rad u a l p ro cess  can  be  d e te c te d  by 
E M G  even  b e fo re  a red u c tio n  o f  fo rce  o u tp u t h as  o c c u rre d , as d u rin g  a  su s ta in ed  
isom etric  co n tra c tio n  th e  su rface -d e tec ted  signal h as  b een  show n to  in c rease  in pow er. 
T h u s th e  E M G /fo rc e  ra tio  in creases, w h e rea s  d u rin g  an  ex c ita tio n  fa ilu re  th is  ra tio  
rem ain s c o n stan t. T h e  increase  is d u e  to  re c ru itm e n t o f  ad d itio n a l m o to r  u n its  in an 
a tte m p t to  m a in ta in  th e  fo rce  o u tp u t (E d w a rd s  &  L ip p o ld , 1956).

In  th is inves tiga tion  th e  m ax im um  b ite  fo rce , an d  th en  th e  in te g ra te d  E M G  du rin g  
a su s ta in ed  isom etric  c o n tra c tio n , w ere  re c o rd e d  in o rd e r  to  d e te rm in e  th e  s tre n g th , 
en d u ran ce  an d  res is tance  to  fa tig u e  o f  th e  m asse te r an d  a n te r io r  tem p o ra l m uscles in 
brux ists  co m p ared  to  th o se  o f  n o rm a l co n tro l v o lu n tee rs .

M ethods
T en  v o lu n tee rs  p a rtic ip a ted  in th is s tu d y , five o f  w hom  show ed  ad v an ced  a ttr i tio n  and  
five o f  w hom  show ed  n o  a b n o rm a l w ear. A ll w ere  m ales aged  3 2 —60 y ea rs . T h e  
ex p e rim en ta l v o lu n tee rs  h ad  a h is to ry  o f  b rux ism , they  w ere  p a rtia lly  d e n ta te ,  and  
show ed  a d eg ree  o f  a ttr i tio n  co rre sp o n d in g  to  a sco re  o f  3 o r  4 o n  th e  S m ith  and  
K nigh t T o o th  W e a r In d ex  (S m ith  &  K n ig h t, 1984) fo r  th e  occlusal o r  incisal su rfaces. 
T h ey  w ere  se lec ted  as be in g  re p re se n ta tiv e  o f  th e  to o th  su rface  loss p a tie n ts  re fe rred  
to  the  G lasgow  D en ta l H o sp ita l an d  S choo l, an d  w ere  c lea rly  th e  v ictim s o f  a ttr itio n  
ra th e r  than  a d e te c ta b le  d ie ta ry  o r  o th e r  ab n o rm a lity . T h e  co n tro ls  w ere  also  partia lly  
d e n ta te , b u t d id  n o t have a h is to ry  o f  b ru x ism , an d  show ed  no  ab n o rm a l to o th  w ear. 
T h e  co n tro ls  an d  ex p e rim en ta l v o lu n tee rs  w ere  ag e -m a tch ed . E th ica l C o m m itte e  a p ­
proval w as o b ta in e d  fo r th e  p ro jec t, an d  in fo rm ed  co n sen t w as o b ta in e d  from  each  
p a rtic ip an t.
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T h e  b ite  fo rce  w as m easu red  using  a  sta in le ss  s tee l b ite  fo rk  w ith  tw o  s tra in  
gauges* a tta c h e d  to  each  side  o f  o n e  a rm  o f  th e  fo rk  to  form  a W h e a ts to n e  b rid g e  
c ircu it. T h is  w as ca lib ra ted  w ith  s ta n d a rd  w eigh ts b e fo re  each  session  an d  ch eck ed  
aga in  a fte rw a rd s . T h e  fo rce  level w as d isp lay ed  o n  an  o sc illo scope  s c r e e n t  a n d  th en  
fed  to  a 4 -channe l ch a rt reco rd e r* .

T h e  E M G  w as reco rd ed  using  C o p e lan d -D av is  s ta in less  s tee l su rface  e le c tro d e s , 
w hich a re  desig n ed  to  m a in ta in  a c o n s ta n t im p ed an ce , p laced  in a  b ip o la r  co n fig u r­
a tio n  o v e r th e  m asse te r m uscle and  th e  a n te r io r  fib res o f  tem p o ra lis . T h e  e le c tro d e s  
w ere  p o sitio n ed  w ith th e ir  c en tre s  2 cm  a p a r t an d  p a ra lle l w ith th e  m ain  d ire c tio n  o f  
th e  m uscle fib res, th e  e a r th  e le c tro d es  b e in g  p laced  e ith e r  on  th e  e a r  lo b e  o r  on  th e  
b ack  o f  th e  neck . T h e  signal w as am plified  xlOOO, op tica lly  iso la ted  an d  in te g ra te d  
w ith  a tim e  c o n s ta n t o f  200 m s. T h e  d a ta  w as s to re d  o n  a  4 -ch an n e l c h a r t re c o rd e r  
w ith  th e  p a p e r  sp eed  se t a t 10 cm  m in - 1 . T h e  p re fe rre d  chew ing  side  w as u sed  fo r th e  
ex p e rim en t.

Sm all au to p o ly m eriz in g  acrylic res in  in d ex es w ere  fab rica ted  w ith  th e  can in e  te e th  
in co n tac t w ith  th e  m e ta l faces o f  th e  b ite  fo rk . T h ese  indexes p ro te c te d  th e  te e th  
ag a in s t th e  possib ility  o f  en am e l fra c tu re  d u rin g  heavy  b itin g , an d  e n su re d  c lo su re  in 
th e  d es ired  po sitio n . T h e  to ta l th ickness  o f  th e  b ite  fo rk  and  th e  acry lic  in d ex es  w as 
7 m m .

T h e  p ro c e d u re  w as ex p la in ed  to  th e  v o lu n tee rs , an d  th ey  w ere  a llo w ed  to  fam ilia rize  
th em selv es w ith  th e  b ite  fo rk  an d  th e  osc illo scope  sc reen  th a t p ro v id ed  th e  visual 
fe ed b ack . T h e  v o lu n tee rs  w ere  th en  ask ed  to  carry  o u t a  m ax im um  v o lu n ta ry  co n tra c tio n  
(M V C ) severa l tim es , w ith  in te rv en in g  re s t p e rio d s , un til th e  m ax im um  h ad  c lea rly  
b een  o b ta in e d . E ach  v o lu n te e r  w as th e n  re q u e s te d  to  su s ta in  a fo rce  eq u a l to  50%  o f 
th e  M V C  fo r as long  as poss ib le . T h is  fo rce  level w as d e te rm in e d  by o b se rv in g  the  
m a rk e r  on  th e  osc illo scope sc reen .

R esults
T h e  m ax im um  b ite  fo rce  ach ieved  by  th e  a ttr itio n  g ro u p  w as g en e ra lly  h ig h e r th an  
th a t ach ieved  by th e  c o n tro ls  (F ig . 1), th e  m ean  b ite  fo rce  be in g  26 ±  2-59 kg ( ±  S E ) 
c o m p ared  to  a  m ean  va lue  o f  22 ±  4-81 kg fo r th e  co n tro l g ro u p . H o w e v e r, tw o  
m em b ers  o f  th e  c o n tro l g ro u p  h ad  very  la rge  b ite  fo rces o f  32 kg an d  35 kg , respec tive ly .

T h e  tim e  p e rio d  fo r w hich each  v o lu n te e r  w as ab le  to  su s ta in  a  co n trac tio n  w as 
te rm ed  th e  e n d u ra n c e  tim e (F ig . 2 ). T h e  m ean  e n d u ra n c e  tim e o f  th e  a ttr i tio n  g ro u p  
w as 2 0 ± 0 - 3 m in ,  slightly  lo n g e r th an  th e  va lue  fo r th e  c o n tro ls , w hich w as 1-6 ±  
0-15 m in.

H o w ev e r, w hen  th ese  tw o  p a ra m e te rs , n am ely  b ite  fo rce  an d  e n d u ra n c e  tim e , 
w ere  su b jec ted  to  an  u n p a ire d  S tu d e n t’s t- te s t, n o  sta tistica l d iffe ren ces  w ere  fo und  
b e tw een  th e  m ean s o f  th e  ex p e rim en ta l an d  co n tro l g roups .

T h e  ch ange  in th e  level o f  th e  in te g ra te d  E M G  signal d u rin g  th e  su s ta in ed  isom etric  
c o n tra c tio n , i.e . th e  m easu re  o f  fa tig u e , w as ex p ressed  as a p e rc e n ta g e  o f  th e  in itial 
in c rease  from  th e  res tin g  level to  th e  level a t a  fo rce  o f  50%  M V C  (F igs 3 an d  4 ). It 
w as o b se rv ed  th a t th e re  w as a slightly  g re a te r  ch ange  in th e  E M G  level from  the 
tem p o ra lis  m uscles th a n  from  th e  m asse te rs , b u t a p a r t from  th is no  p a rtic u la r p a tte rn  
em erg ed . T w o v o lu n tee rs  show ed  a d ec re a se  o f  E M G  level in th e  m asse te r . T h e re  w as

* RS Components Ltd, Corby, Northants, U.K. 
t Tektronix 5103N, Tektronix Inc., Beaverton, OR 97077, U.S.A. 
t Devices, Digitiincr Ltd, Welwyn Garden City, Herts, U.K.
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such w ide v a ria tio n  in th e  levels o f  ch ange  o f  E M G  activ ity , an d  w ith  a re la tive ly  low  
n u m b e r o f  v o lu n te e rs , th a t it w as co n s id e red  th a t s ta tistica l analysis o f  these  d a ta  
w ou ld  n o t serve  any  usefu l p u rp o se .

D iscussion
T h e  fac t th a t a  g re a te r  ch ange  in  activ ity  levels w as o b se rv ed  fo r  th e  tem p o ra l m uscles 
th a n  fo r th e  m asse te r m uscles w as to  b e  ex p ec ted  since  th e  a n te r io r  fibres o f  tem p o ra lis
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Fig. 1. The maximum bite force obtained for each volunteer; individuals showing tooth wear (H) and 
those showing no abnormal wear (□).
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Fig. 2. The time period for which each volunteer was able to sustain a contraction at 50% MVC; 
individuals showing tooth wear (O) and those showing no abnormal wear (□).
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a re  m o re  active th a n  th e  m asse te r m uscle  in th is la te ro tru s iv e  can in e  p o s itio n , an d  
th u s  a g re a te r  d eg ree  o f  fa tigue  w ou ld  be an tic ip a ted .

A  possib le  ex p lan a tio n  fo r th e  d ec rease  in E M G  activ ity  o b se rv ed  in tw o  v o lu n te e rs

300

200

100

0

Volunteers-100 Endurance  time
2  min

Fig. 3. The change in masseter muscle EMG level (±SE) for each subject; individuals showing tooth 
wear (PH) and with no abnormal wear (□). The width of each bar represents the endurance time, 
i.c: the time period during which the change in EMG occurred.
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Fig. 4. The change in temporalis muscle EMG level for each subject with (OH) or without (□) tooth 
wear. The width of each bar represents the endurance time, i.e. the time period during which the 
change in EMG occurred.
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m igh t b e  th e  o ccu rren ce  o f  a ro ta tio n  o f  ac tiv ity , p e rh a p s  to  th e  m ed ia l p te ry g o id . 
T h is  is a good  illu s tra tio n  o f  th e  p ro b lem  o f  ro ta tio n  o f  synerg ist m uscle  activ ity .

T h e  can in e  p osition  w as used  to  re co rd  fo rce  in th is p ilo t s tudy  b ecau se  m any 
ind iv iduals w ith  a ttr i tio n  show  co n sid e rab le  w ear o n  th e ir  c a n in e s , in d ica tin g  heavy  
fu n c tio n a l o r  p a ra fu n c tio n a l co n tac ts . H e lk im o  an d  Ingervall (1978) fo u n d  th a t c len c h ­
ing o r  g rind ing  re su lted  in an  in creased  b ite  fo rce  w hen  m easu red  at th e  inc iso rs , b u t 
no t w hen  m easu red  a t th e  m o la rs , an d  they  suggested  th a t th e re  co u ld  have  b een  
m uscu la r tra in in g  a t eccen tric  p ositions. T h ey  a lso  o b se rv ed  th a t th e  b ite  fo rces 
ran g ed  w idely , from  3 —45 kg a t th e  incisors. T h e  ran g e  in th is p re lim in a ry  stu d y  w as 
11—35 kg in th e  can in e  a re a .

A  d ifficulty  en c o u n te re d  w ith  v o lu n tee rs  show ing  a ttr itio n  is th a t th e  c an in e  o v e rje t is 
o fte n  ze ro , w hile it is invariab ly  g re a te r  th a n  th is in ind iv iduals w ith o u t a ttr i tio n . 
C o n seq u en tly , d iffe ren t d eg ree s  o f  o p en in g  a re  fo u n d  b e tw een  th e  tw o  g ro u p s  w hen  
closing  o n  th e  b ite  fo rk . T h e  use o f  th e  inc iso r p o sitio n  w ou ld  n o t e lim in a te  th is 
p ro b le m , as w o rn  inciso rs a re  o ften  also  invo lved  in an  ed g e-to -ed g e  re la tio n sh ip .

T h e  m e a su re m e n t o f  b ite  fo rce  is f rau g h t w ith  d ifficu lties, th e  m o st ob v io u s o f  
w hich is th e  inab ility  to  te ll w h e th e r  o r  n o t a  v o lu n te e r  is rea lly  app ly ing  full e ffo rt. A  
possib le  so lu tio n  to  th is p ro b lem  w ould  b e  to  em p loy  th e  tw itch  in te rp o la tio n  te c h ­
n iq u e , as d esc rib ed  by B ig lan d -R itch ie , F u rb u sh  & W o o d s (1986), w hich  involves th e  
de livery  o f  a  tra n sc u ta n e o u s  sub-m ax im al e lec trica l stim u lu s to  th e  m uscle  u n d e r  
in v es tiga tion . H o w ev e r, b ecau se  o f  th e  an a to m y  o f  th e  reg ion  and  th e  d iscom fo rt 
invo lved , th is  ap p ro ach  h as  som e d isad v an tag es .

Second ly , w hen  using any  eccen tric  p o sitio n  it is im possib le  to  ach ieve  th e  sam e 
d eg ree  o f  p ro tru s io n  an d  la te ro tru s io n  in all v o lu n tee rs  — th is will vary  acco rd in g  to  
th e  re la tiv e  size o f  th e ir  sk e le ta l bases an d  th e  occlusal p a tte rn s .

A n o th e r  p ro b lem  w ith  b ite  fo rce stu d ies  is th a t it is difficult to  red u ce  th e  th ickness  
o f  th e  b ite  fo rk  to  less th a n  7 m m , as th e  b eam s b eco m e  to o  w eak  to  resist th e  fo rces 
invo lved . T h is  is a la rge  o p e n in g , an d  is in m a rk e d  c o n tra s t to  th e  s itu a tio n  th a t occurs 
in e ith e r  n o rm a l o r  p a ra -fu n c tio n . A lth o u g h  th is type o f  b ite  fo rce  m e te r  is very  
ac c u ra te , th e  e x tra p o la tio n  o f  d a ta  o b ta in e d  w ith  th is d eg ree  o f  o p en in g  to  th e  n o rm al 
co n tac t p osition  in e n d u ra n c e  an d  fa tigue  te s ts  sh ou ld  b e  ca rr ied  o u t w ith  c a u tio n . It 
m u st b e  p o in te d  o u t th a t a lth o u g h  th e  th ick n ess  o f th e  fo rce  m e te r  is on ly  7 m m , if 
any  o v e rb ite  is ta k e n  in to  acco u n t th e  to ta l e x te n t o f  o p e n in g  will b e  co n sid e rab ly  
g re a te r  th a n  th is v a lu e . In  a d d itio n  to  th e  e ffec t o f  m uscle  len g th en in g , as th e  jaw s 
o p e n  th e  ang le  a t w hich th e  m uscles a re  app ly ing  th e  fo rce  ch an g es , an d  ch an g es to  
d if fe re n t d eg ree s . If  a  la te ra l m o v em en t is in c o rp o ra te d , th e  c o n tr ib u tio n  o f  d iffe ren t 
m uscles ch an g es, an d  th e  s itu a tio n  b eco m es even  m o re  co m plex . It seem s c lea r th a t a 
m uch  th in n e r  dev ice  is re q u ire d . T h e  use  o f  p iezzo -e lec tric  foil o f  th e  o rd e r  60 pm  
th ick , w hich is now  com m erc ia lly  av a ilab le , w ou ld  re p re se n t an  e n o rm o u s  s tep  fo rw ard  in 
o b ta in in g  accu ra te  in fo rm a tio n  a b o u t b ite  fo rce , if th e  te ch n iq u e  cou ld  b e  d ev e lo p e d  
sufficiently .

F a tig u e  s tu d ies , as w ell as th o se  o f  b ite  fo rce , a lso  p re se n t th e  d ifficulty  o f 
v o lu n te e r  c o o p e ra tio n . S om e ind iv iduals m igh t w ell try  h a rd e r  th an  o th e rs  to  en d u re  
th e  d isco m fo rt o f  a p ro lo n g ed  co n trac tio n . S om e m ight ex p e rien ce  m o re  pain  th an  
o th e rs ; so m e ind iv iduals m ay b e  ab le  to  to le ra te  th e  sam e level o f  pain  b e tte r  th an  
o th e rs . It is ce rta in ly  tru e  th a t all o f  th e  p a rtic ip an ts  in th is s tu d y  ceased  to  m ain ta in  
th e  c o n trac tio n  b ecau se  o f  p a in , an d  n o t o n  acco u n t o f  an  inab ility  o f  th e  m uscles 
to  co n tin u e . T h e re  is no  o bv ious an sw er to  th is p ro b lem , ex cep t to  p o in t o u t th a t
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th e  n u m b e r o f  ex p e rim en ta l v o lu n tee rs  n eed s  to  b e  la rg e r th a n  w ou ld  o th e rw ise  be th e  
ca se , and  th a t th e  c o n tro l v o lu n tee rs  sh o u ld  be  m a tch ed  as closely  as poss ib le  to  th e  
ex p e rim en ta l v o lu n tee rs , p e rh a p s  even  m o re  closely  th an  m igh t b e  re q u ire d  fo r  o th e r  
ex p e rim en ts .

A n  a lte rn a tiv e  so lu tio n  m igh t b e  to  te s t p a in  to le ran ce  an d  th e n  to  n o rm alize  th e  
en d u ra n c e  tim e to  th e  p a in  to le ra n c e , b u t th is ap p ro ach  ad d s y e t a n o th e r  u n p le a sa n t 
p ro c e d u re  to  th e  ex p e rim en ta l session . O n  th e  o th e r  h a n d , a lte rn a tiv e  m e th o d s  fo r 
quan tify in g  fa tig u e , such  as p o w er sp ec tra l analy sis, w ou ld  be  s im p le r and  p ro b ab ly  
m o re  m ean ing fu l in clinical re sea rch .

T h e  m ost sign ifican t p ro b lem  is th a t , by  using  th e  can in e  p o sitio n , an d  th u s  
in tro d u c in g  a la te ra l m o v em en t o f  th e  m an d ib le , th e  la te ra l p te ry g o id  and  m asse te r 
m uscles o n  th e  c o n tra la te ra l side m u s t e x e rt a  re la tiv e ly  la rge  fo rce  in o rd e r  to  
m a in ta in  th e  p o sitio n , an d  in  sev e ra l sub jec ts  p a in  in th e  c o n tra la te ra l side w as th e  
rea so n  fo r a b an d o n in g  th e  su s ta in ed  co n trac tio n . T h is  m ean s th a t th e  e n d u ra n c e  o f  
th e  jaw -closing  m uscles w as n o t fully te s te d  o n  th e  ip s ila te ra l s id e , w hich  h igh ligh ts a  
sign ifican t co m p lica tio n  w ith  th e  use  o f  th e  can in e  p o sitio n . T h e  p h e n o m e n o n  o f  pa in  
o n  th e  c o n tra la te ra l side d u rin g  u n ila te ra l b iting  has a lso  b een  o b se rv ed  by  o th e r  
w o rk e rs  (K y d d , C hoy  & D aly , 1986).

It has b een  show n th a t res istance  to  fa tigue  varies b e tw een  m uscles. T h e  p ro cesses 
w hich m ay  c o n tr ib u te  to  th is d iffe ren ce  a re  re c ru itm e n t an d  firing ra te  d iffe ren ces , the  
p ro p o r tio n  o f  slow  tw itch  to  fas t tw itch  fib res, cross ta lk  from  ad ja c e n t m uscles, and  
ag o n is t/an tag o n is t m uscle in te rac tio n  (L aw ren ce  & D e  L u ca , 1983). T h e  la tte r  p h e n o m ­
en o n  is p a rticu la rly  re lev an t w here  jo in ts  m ust b e  stab ilized , as in th e  case  o f  th e  
m asse te r an d  tem p o ra lis . It is likely  th a t th is re la tio n sh ip  tak e s  a d if fe re n t fo rm  in the  
m an d ib le  b ecau se  o f  th e  stab ility  p ro v id ed  by th e  te e th , o r  co n ta c t w ith  th e  fo rce  
m e te r , and  th a t th e  c o n tra la te ra l la te ra l p te ry g o id  m uscle  assum es th e  ro le  o f  a partia l 
an tag o n is t to  th e  c o n tra la te ra l m asse te r.

Conclusions
B ru x is ts  d o  a p p e a r  to  d e m o n s tra te  in c reased  b ite  fo rce  a t th e  c a n in e s , even  th o u g h  the  
d iffe ren ce  b e tw een  th e  m eans is n o t sta tistica lly  sign ifican t. T h ey  a re  a lso  ap p a re n tly  
ab le  to  m a in ta in  a  g iven fo rce  o v e r lo n g e r p e rio d s  th a n  n o n -b ru x is ts , a lth o u g h  again  
th is is n o t sta tistica lly  sign ifican t. H o w ev e r, n o  conclusion  can  b e  d raw n  reg a rd in g  
possib le  d iffe ren ces in res is tance  to  fa tig u e  b e tw een  th e  tw o g roups .

T h e  m ost im p o rta n t conclusions a re  th a t th e  reco rd in g  o f  b ite  fo rce  b e tw een  th e  
can in e s  p re sen ts  com p lica tio n s in jaw  m uscle  fa tig u e  s tu d ies , an d  th a t th e  use  o f  b ite  
fo rce  m e te rs  o f a th ickness g re a te r  th a n  w h a t m igh t b e  co n sid e red  a n o rm al fu n c tio n a l 
lim it (p e rh a p s  0-5 m m ) m ay also  p re s e n t co m p lica tio n s in fa tig u e  and  e n d u ra n c e  
s tud ies .
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Fatigue and EMG changes in the masseter and temporal muscles during sustained 
contractions
M . F .  L Y O N S ,  M . E .  R O U S E  and  R . H . B A X E N D A L E  Department o f  
Prosthodontics and Institute o f  Physiology, University o f  Glasgow, Glasgow, U.K.

It  h as  b e e n  sh o w n  th a t th e  m u sc les  o f  m a s tic a tio n  a re  m o re  re s is ta n t to  fa tig u e  th a n  
th e  lim b  m u sc les , b u t th e  m e c h a n ism s  by  w hich  th e y  d ea l w ith  fa tig u e  re q u ire  fu r th e r  
in v es tig a tio n . T h e  a im  o f  th is  s tu d y  w as to  e v a lu a te  th e  d ire c t m e a s u re m e n t o f  R M S- 
in te g ra te d  E M G  d u rin g  an  iso m e tric  c o n tra c tio n  as a  m e a su re  o f  fa tig u e , an d  to  c o m ­
p a re  it w ith  th e  c h a n g e s  o b se rv e d  by  sp ec tra l an a ly s is . T h e se  p a ra m e te r s  w ere  a lso  
re la te d  to  th e  su b jec tiv e  q u a n tif ic a tio n  o f  fa tig u e  by th e  u se  o f  v isual a n a lo g u e  sca les.

E ig h t v o lu n te e rs  w ith  n o  signs o r  sy m p to m s o f  T M D  w ere  a sk ed  to  c lench  o n  a 
b ite  fo rce  m e te r  sev e ra l tim es  to  o b ta in  th e ir  m ax im u m  v o lu n ta ry  c o n tra c tio n  fo rce . 
T h e y  w ere  th e n  a sk ed  to  m a in ta in  50%  M V C  fo r  as lo n g  as p o ss ib le , u sing  th e  fo rce  
d isp lay  fo r v isual fe e d b a c k . D u rin g  th e  c o u rse  o f  th is  su s ta in e d  c o n tra c tio n  th ey  w ere  
p re s e n te d  w ith  a fresh  v isual a n a lo g u e  sca le  a t a p p ro x im a te ly  15-s in te rv a ls  an d  d irec ted  
to  m a rk  th e  sca le  w hile  m a in ta in in g  th e  c o n tra c tio n . A f te r  re s tin g , th e  ex p e rim e n t 
w as re p e a te d  w ith o u t t*1'* use  o f  a fo rce  m e te r ,  th is  tim e  using  in te g ra te d  E M G  from  

th e  righ t m a sse te r  m uscle  as v isual fe e d b a c k . E M G  w as re c o rd e d  w ith  su rface  disc 
e le c tro d e s  fro m  th e  m a s se te r  m u sc les  a n d  in tra -d e rm a l h o o k  e le c tro d e s  from  th e  
a n te r io r  te m p o ra l m u sc le s , b o th  b ila te ra lly . T h e  d a ta  w ere  re c o rd e d  o n  v id eo  ta p e  via 
a m u ltip lex in g  a n d  d ig itiz in g  a d a p te r  fo r s u b s e q u e n t ana ly s is .

D u rin g  th e  iso m e tric  c o n tra c tio n  th e  m e a n  E M G  level fo r all fo u r m usc les  typ ically  
in c rea sed  fro m  a ro u n d  40%  M V C  a t th e  b eg in n in g  to  a ro u n d  70%  M V C  a t the  e n d , 
w ith  a la rg e  in te r-in d iv id u a l v a ria tio n . T h e re  w as , o f  c o u rs e , n o  in c rea se  fo r th e  
m a sse te r  m uscle  w h en  E M G  w as u sed  as fe e d b a c k , b u t fa tig u e  c e rta in ly  o c c u rre d . 
T h e  V A S  sco re s  in c rea sed  by  re la tiv e ly  ev en  in c re m e n ts  d u rin g  b o th  c o n tra c tio n s . 
E n d u ra n c e  tim es  v a ried  g rea tly  b e tw e e n  su b je c ts . T h e  m ean  fre q u e n c ie s  o f  th e  p o w er 
sp e c tra  d e c re a s e d  d u r in g  th e  su s ta in e d  c o n tra c tio n s . The use o f  amplitude increase o f  
RMS-integrated EM G  is not as useful as power spectral analysis as a measure o f  fatigue 
in the jaw-closing muscles.

T h is  s tu d y  w as s u p p o r te d  by  g ra n t n u m b e r  R S G /E N D /8 9 9 0 /J  fro m  th e  G re a te r  
G lasg o w  H e a lth  B o a rd  R e se a rc h  S u p p o r t G ro u p .
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