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Abstract

Measurements of the B® — B]j oscillation frequency and inclusive b hadron lifetime 

are presented, using a sample of approximately four million hadronic Z°  decays 

observed with the A L E P H  detector.

An inclusive double jet-charge technique is used in order to maximise the 

statistical precision of the measurement. The m ethod benefits from having 

approximately five times the statistics of other measurements. Events are b- 

tagged and decay lengths are reconstructed using inclusive vertexing procedures. 

A smearing procedure is applied to tracks in the Monte Carlo simulation in order 

to improve the agreement with data and hence control systematic uncertainties. 

A weighting procedure is used in reconstructing the b hadron momentum. The 

fitting procedures incorporate the effects of proper time resolution by means of 

folding matrices. A fit to the reconstructed proper time distribution yields a 

measurement of the inclusive b hadron lifetime :

Tf, = 1.570 ±  0.004 (stat.) ±  0.013 (syst.) ps

A jet-charge m ethod is used to determine the states of B  mesons at production 

and decay, based on the  fact tha t the jet-charge for mixed mesons is different from 

tha t for unmixed mesons. A multi-parameter fit is performed to the product of the 

jet-charges in the two event hemispheres, plotted as a function of reconstructed 

proper time. This gives a measurement of the Bd oscillation frequency :

A rrid =  0.441 ±  0.026 (stat.) ±  0.029 (syst.) ps-1

The result is compared with previous measurements and the potential for applying 

the m ethod to the s tudy of B s oscillations is discussed.



Preface

This thesis presents measurements of the time dependence of B® — B % 

oscillations and the inclusive b hadron lifetime, using ALEPH data  collected at 

the L ep  accelerator between 1991 and 1995.

Chapter 1 gives a brief overview of the Standard Model, with emphasis on 

the weak interaction and quark mixing. The CKM mixing m atrix  is discussed 

and current knowledge of its elements is reviewed. This leads to a discussion 

of B°  — B°  oscillations, which are an im portant way of constraining the m atrix  

elements involving the top quark. Chapter 2 outlines the general requirements 

for a measurement of time dependent oscillations, demonstrating the effects of 

mistag fractions and proper time resolution on the sensitivity of the method. The 

motivation is given for the double jet-charge method which is used in this thesis 

and the expected sensitivity of the method relative to other analyses is presented.

A description of the ALEPH detector is given in Chapter 3, with emphasis on 

tracking performance, which is vital to this analysis. The event selection, vertex 

reconstruction and 6-tagging procedures are described in Chapter 4 and the need 

for smearing the tracking resolution in the Monte Carlo simulation is highlighted. 

The smearing procedure is explained in some detail. Chapter 5 presents a 

discussion of the jet-charge method for measuring quark charges and explains 

how it can be used to give information on the B  meson state at production and 

decay. The jet-charge method is optimised to give the best sensitivity to B° — B°  

oscillations.

The decay length and mom entum reconstruction algorithms are described in 

Chapter 6 , along with the m atrix  folding method which is used to account for 

detector resolution effects. A fit is performed to extract the inclusive 6 lifetime. 

The fitting procedure to extract the B® — B® oscillation frequency, A n q ,  is 

described in Chapter 7. The effects of the proper time reconstruction algorithms 

on the jet-charge are discussed and accounted for in the fit. The result for A 

is presented and compared with previous measurements.

The work of the ALEPH collaboration depends on the participation of many



people over a long period of time. The au tho r’s contribution to the experiment 

included analysing da ta  from the laser alignment system of the vertex detector 

(Appendix A), taking part in shifts during data  taking and carrying out test-beam 

shifts during trials of the upgraded vertex detector.

The material presented in this thesis reflects the au th o r’s own individual 

analysis of the A L E P H  data, developed as part of a small group of people. The Bd 

oscillation measurement was presented at the ‘Frontiers in Contemporary Physics' 

conference, Nashville, in May 1997. No portion of the au thors’s work described 

in this thesis has been subm itted in support of an application for another degree 

or qualification in this, or any other, institute of learning.
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C hapter 1 

The S tandard Model and B() — B(] 

Oscillations

Particle physics is the study of the ultimate constituents of m atte r  and their 

interactions. Present knowledge has built up from many years of experimental 

discoveries and theoretical developments and is now formulated in the ‘Standard 

Model' which describes processes involving elementary particles in terms of the 

interactions of their fields. In this chapter the Standard Model is briefly reviewed, 

with emphasis on the weak interaction and quark mixing. This leads to a 

presentation of the theory behind B° — B°  oscillations, the measurement ol which 

is the subject of this thesis.

1.1 The Standard Model

Q uarks and L ep ton s

In the first half of this century there were few known, supposedly elementary, 

particles. The proton, neutron, electron and neutrino, together with the photon, 

seemed to describe the world around us. High energy experiments designed 

to s tudy these particles in more detail, however, resulted in the discovery of 

a m ultitude of strongly interacting particles, labelled hadrons. In addition,

1
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deep inelastic scattering of electrons from protons showed the proton to have 

substructure.

From these discoveries emerged a simple model of matter. There are two kinds 

of fundamental, structureless, spin |  fermions; quarks and leptons. There are six 

known types or flavours  of quarks, three charged leptons and three neutral leptons 

(neutrinos) and they fall naturally into three generations which exhibit identical 

properties and differ only in their mass. Measurements of the Z°  line shape from 

LEP constrain the number of light neutrino generations to be three [1] which, in 

the framework of the Standard Model, also constrains the number of generations 

of quarks and leptons to be three. The quarks and leptons of the Standard 

Model are listed along with some of their properties in Table 1.1. Quarks carry 

fractional electric charge, the ‘up-type’ (iz, c, t) quarks having charge + | e  and 

the ‘down-type’ (d, s, b )  quarks having charge — |e ,  while the e“ , /z_ , t ~  leptons 

have charge —e. Each particle has a corresponding antiparticle having the same 

mass but opposite electric charge, magnetic moment and fermion number.

All hadrons are made of quarks and fall into two categories. Baryons have 

half-integral spin and consist of three quarks (e.g. p = uud? n =  ddu) and mesons 

have integral spin and are made from a quark-antiquark pair (e.g. 7r+ =  ud).

Quarks have an additional degree of freedom called colour, which was first 

introduced to explain the existence of the A ++ baryon. This particle consists 

of three identical u quarks in a symmetric spin state and so would be forbidden 

by Fermi statistics if it was not in an antisymmetric colour state. A quark can 

be one of three colours (Red, Green or Blue) and all objects observed in nature  

are colourless. This explains why allowed quark configurations are qqq (in s tate  

RGB =  white) and qq (in state RR +  GG +  BB) and free quarks are not observed.

Forces and F ie ld s

There are four forces governing the universe : the strong force binds quarks 

to form hadrons and nucleons to form nuclei, the electromagnetic force acts on
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Particle Symbol Charge (e) Mass (G eV /c2)

First Generation

Up Quark u +  1 ' 3 ~  5 x  n r 3

Down Quark d 1
3 ~  8  x  10-3

Electron Neutrino 0 < 15 x  10“9

Electron e~ - 1 0.51 x  10" 3

Second Generation

Charm Quark c +  2
3 -  1.3

Strange Quark s 1
3 ~  0.200

Muon Neutrino 0 < 0.17 x  10-3

Muon - 1 0.106

Third Generation

Top Quark t +  2
3 180 ± 1 2

Bottom Quark b 1
3 ~  4.5

Tau Neutrino vT 0 < 24 x  10“ 3

Tau T ~ - 1 1.78

Table 1.1: The quarks and leptons of the Standard Model [2]. The u , d and 6 quark 

masses are estimates of the ‘current’ quark masses. The c and b quark masses are 

estimated from charmonium, bottomonium, D and B masses. The top quark mass is 

obtained from the direct observation of top events by the CDF and DO collaborations.

all charged particles, the weak force is responsible for processes like beta  decay 

and the gravitational force acts on all bodies with mass. Classically, forces are 

described in terms of fields through which particles interact. In quantum  theory 

the equivalent view describes the force as being transm itted  by the exchange of 

field quanta or bosons, of integral spin.

Combining Maxwell’s ideas of electromagnetism with relativistic quan tum  

mechanics gave rise to the theory of Q uantum  Electrodynamics (QED). This 

theory describes interactions between charged fermions as being due to the
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exchange of photons, the strength of the interaction being characterised by the 

coupling constant, a  =  4Tê h.. ~  QED is the simplest example of a local

gauge theory which means tha t the theory is invariant under a local gauge (i.e. 

phase) transformation. It has the im portant property tha t infinities arising in the 

theory can be consistently eliminated (i.e. it is renormalisable) and its success at 

describing the magnetic moments of electrons and muons has meant tha t it has 

been used as a model for describing the other types of interaction.

The weak interaction was first postulated to describe the beta decay of nuclei 

and has been developed as a gauge theory in analogy to QED. The field quanta 

which transm it the weak force are the massive W  and Z°  bosons. Glashow, 

Weinberg and Salam postulated that the electromagnetic and weak forces are 

different manifestations of the same electroweak force [3]. The slow rate of 

weak interactions is due to the gauge bosons having large mass giving rise to 

a smaller ‘effective1 coupling strength. The massive nature of the bosons also 

means tha t weak interactions have a short range since it requires a minimum 

energy fluctuation of MwC2 to emit a virtual W  which can then only travel a 

distance of h /M w e  ~  10-3 fm, limited by the uncertainty principle. The nature 

of weak interactions is discussed in more detail in Section E2.

Strong interactions are described by the gauge theory known as Q uantum  

Chromodynamics (QCD). In this case the gauge bosons are massless gluons which 

couple to colour charge. Unlike QED, where the photons do not carry electric 

charge, gluons themselves carry colour charge and can therefore interact with 

each other in addition to interacting with quarks. The strong coupling constant, 

a s, is typically around one hundred times tha t of QED but appears to decrease 

at small distances as a result of the screening effect of gluon-gluon interactions. 

The potential between two quarks can be described by :

4 o .  , / -a 1 \
Vs — ~  ~ —  A  kr  ( l . I )

3 r

The first te rm , dominating at small r, arises from single gluon exchange and 

has the form of the Coulomb potential between charged particles. At large r
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Force Gauge Boson Spin Mass

Electromagnetic photon (7 ) 1 0

Weak IE*, Z° 1 80.3 G eV /c2 , 91.2 G eV /c2

Strong gluon (g) 1 0

Gravitational graviton (G) 2 0

Table 1.2: The gauge bosons of the four fundamental forces.

{0(1  fm)) the quarks are tightly bound by the exchange of many gluons. The 

colour lines of force between the quarks are pulled together due to gluon-gluon 

interactions and form a f lux tube or string connecting the quark and antiquark. 

The potential increases linearly with separation and hence the quarks are confined 

within a hadron. Quarks and gluons are often referred to collectively as partons.

Lifetimes of strongly decaying particles are around 10- 23s, electromagnetic 

lifetimes are around 10~19s and weak lifetimes are longer by around ten orders 

of magnitude.

Gravity is the weakest force and while it is im portant for objects with large 

mass, its effects can be neglected for the mass scales used in high energy physics. 

It is believed to be transm itted  by massless, spin-2 gravitons, but there is currently 

no experimental evidence for such a particle. The four forces and their gauge 

bosons are summarised in Table 1.2.

1.2 Weak Interactions

The weak interaction was first proposed to explain processes such as beta  decay 

which occur on much longer time scales than strong or electromagnetic decays. 

Beta decay can be written as ;

n -> p -\- e~ T ue 

which can also be expressed in terms of the constituent quarks ;
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(a) (b)

Figure 1.1: Feynman diagrams showing (a) electron-proton scattering and (b) beta

decay.

Fermi proposed a model for this type of interaction which was based on the 

s tructure of electromagnetic interactions. Consider electromagnetic electron 

proton sctittering as shown in Figure 1.1(a). This can be described as the 

interaction of two currents, via. the exchange of a single photon of mom entum  

q and hence the m atrix  element is given by ;

M  =  ( e V v r w )  ( C )  ( e M '  =  C r ) !  (1-2)

where the ip are four component Dirac spinors and are the Dirac matrices 

[4]. The currents transform as vectors under Lorentz transformations. By 

analogy Fermi proposed for beta decay (Figure 1.1(b)) ;

M  = G f f a O f a )  (1.3)

where G f is the Fermi coupling constant and O  is a m atrix  operator which 

Fermi chose to be vector in type, in analogy with electromagnetism. In this type 

of weak interaction, the m atrix  element is the product of a charge-raising and 

charge-lowering current. These are referred to as charged current interactions 

(CC) and do not conserve quark flavour.
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Fermi’s description was satisfactory until parity violation was discovered in 

1957 when an asym m etry was observed in the angular distribution of electrons 

produced in the beta decay of polarised Co nuclei. It was observed, shortly after, 

tha t only ‘left-handed’ (i.e. negative helicity1) neutrinos [up) and ‘right-handed’ 

(i.e. positive helicity) antineutrinos (j/R) are seen in nature. Under a parity (P ) 

transformation, and under a charge conjugation (C) transformation,

Ul —* ^Li so it is clear that both C  and P  are violated. The combined C P  

operation leaves the weak interaction invariant to a large degree and is discussed 

in more detail later.

A m ixture of vector (ip'y^ip) and axial vector [ip7 '57 M̂ )  currents violates parity 

and gives a suitable form for the weak interaction. Replacing the operator O  by 

j 7 m(1 — 7 5) gives rise to the so-called V  — A  (vector-axial vector) structure. Since 

left and right handed states enter differently in the weak interaction it is often 

convenient to use left and right handed projections for all particles where ;

eL =  -  ( l  — 7 5)  e  eR =  i  ( l  +  7 s )  e 1.4)

(denoting ipe by e for convenience). Charged current weak interactions have the 

form ;

M  = j C C  v j C C  t 
y/ 2  M

(1.5)

where the charged current for leptons is ;

J cc>  =  V e Y \  ( i  ~  7 5) e +  ( l  -  7 5) h +  ( l  -  7 5) T

( 1.6)

T hat is, the lepton charged current is constructed from the following pairs of 

left-handed states :

(1.7)
/  \ I  \ (  \

J'e UT

V e ~ J L \  t r L \  T ~ J

The charged current for quarks is discussed below.

lrThe helicity of a particle is defined as a .p , where a  is the spin of the particle and p is its 

momentum.
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In te rp re ta t io n  of  Gf

T he coupling strength Gf is the same for all types of processes described 

above, suggesting a single underlying explanation. Comparing (1.5) with the 

electromagnetic m atrix  element ( 1.2 ) it can be seen tha t G f essentially replaces 

e2/ q2. In QED, the e2/ q2 term comes from the coupling strength e at each vertex 

in Figure 1.1(a) and a photon propagator ~  dj. Postulating tha t the weak force 

is mediated by the exchange of massive bosons [4] gives :

 ̂ D j C C  L
Vv/2

M H j C C \
( 1.8 )

J Myy ~ q2 \ \/2

where g is a dimensionless weak coupling and q is the m om entum  carried by the 

W  boson. In cases where q2 AI2V then the propagator between the currents 

disappears (i.e. the interaction is at a point) and we can identify :

G f

m i -
(1.9)

1.3 The Charged Weak Current for Quarks

The charged current for quarks may be expected to have the same s tructure as 

tha t for leptons (1.6 ) and be constructed from the doublets :

/ \u \c

V 5 / \ h >
1. 10)

This describes processes such as beta  decay (involving a u h  d transition) and 

D + —► K ° l+isi (involving a c <-> s transition). However, processes such as K + —> 

tt° un also occur, involving a s <-* u transition. This generation mixing is not 

possible using the doublets in ( 1.10).

Instead, the charged current for quarks couples to ‘ro ta ted ’ quark states (the 

weak eigenstates), which for two generations are given by ;
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where ;

=
cos 6C sin 0C

V *
i — sin 6C cos 0C s/

( 1. 12 )

where Oc is the Cabibbo angle (measured to be ~  13° from experiment). 

Interactions involving quarks from the same generation occur with a coupling 

proportional to cos 6C and are ‘Cabibbo favoured', while those involving a gener

ation mix are ‘Cabibbo suppressed' (coupling ~  s indc). So for the case of beta  

decay described above, Gf  should be replaced by Gf  c o s  0c.

For three generations the rotation m atrix is the 3 x 3 Cabibbo-Kobayashi- 

Maskawa (CKM) m atrix  'Vc k m  [5] :

s

\  b> /V /  L

Vud Vus Vub

Vcd Fes Fc6

vta vtb\ td

\ ' d '
s

\ b ,

(1.13)

The diagonal elements of V c k m  represent couplings between quarks of the same 

generation and the smaller, off diagonal terms represent couplings between quarks 

of different generations. The charged current for quarks can be written as :

J c c “ =  ( u  a v cC K M (1.14)

In the context of the Standard Model V c k m  is a unitary m atrix  (V *V  =  1 ). 

This means tha t in neutral current interactions, involving the exchange of a Z°  

boson, the only allowed transitions are cl d ,  s s etc. and transitions such as 

d h  s do not occur :

d ’ s '  V

d '

s

\ b ' /

=  ( d sft) V fV

6 /

=  dd T ss +  bb (F15)

Flavour changing neutral currents can only occur at loop level, via charged 

currents. An example of this type of process is B° — B°  mixing which is discussed 

in Section 1.5.
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1.4 The CKM Matrix

T he elements of the CKM m atrix  are not predicted by the Standard Model and 

the only theoretical constraint is tha t it is unitary. It is therefore necessary to 

measure the matrix elements experimentally and hence test unitarity constraints. 

In the following sections the parameterisation of the m atrix  is discussed and 

methods for determining its elements are outlined.

1.4.1 Param eterisation  o f  the C K M  M atrix

In the case of n generations, V c a m  would be an n x n matrix. In the most general 

case, the elements VtJ are complex giving 2n 2 parameters. However the unitarity  

condition V^V =  1 imposes constraints. There are n constraints arising from the 

diagonal terms and n[n — 1) constraints arising from the off-diagonal terms leaving 

n 2 free parameters. An orthogonal n x n matrix has | ( n  — 1) independent real 

param eters and so 'Vc k m  has ^ (n  — l)  real parameters and n 2 —| ( n  —1) =  | ( n  +  l) 

complex phases. However, not all these parameters are physical and 2n — 1 

phases can be removed by redefining the quark fields. This leaves ^(n — l) (n  — 2) 

independent phases. Therefore, whereas the original Cabibbo m atrix for two 

generations was parameterised with a single real param eter (the Cabibbo angle), 

the 3 x 3  CKM m atrix  of the Standard Model is complex and requires three 

real angles and one complex phase. A number of equivalent parameterisations 

of the CKM m atrix  exist [5] and for the discussion here it is convenient to use 

an approximate parameterisation suggested by Wolfenstein [6] which involves an 

expansion in terms of A =  sin#c ~  0.22 ;

1 — y  A AA3(p — irj) ^

V C K M  = -A  1 -  f  AX‘ + 0 (  A4) (1.16)f  A A2

i AA3(1 — p — irj) —AA2 1 j

where A, p and r/ are of order unity. This parameterisation clearly dem onstrates 

the hierarchy in the couplings between generations. Quarks couple strongly to 

other quarks in the same generation and hence the diagonal elements are close
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to one. The further from the diagonal (i.e. the more generations crossed) the 

smaller the couplings.

C P  V io la t io n

The presence of the imaginary part of the matrix is very im portant as it is 

necessary to describe C P  violation in the Standard Model. The quark charged 

currents are only invariant under a C P  transformation if Vl3 = V* (i.e. the V{3 

are real) [5]. It can be shown [7] tha t all C P  violating amplitudes in the Standard 

Model are proportional to :

Jcp  = I Im(ViaVjfiViVr) | ±  a  (1.17)

Using the Wolfenstein param eterisation2 it is found that Jcp  ~  A 2rjA6 «  (9(1 CU4 ) 

and hence C P  violation is a small effect.

It should be noted that the Wolfenstein parameterisation is not invariant 

under redefinition of the quark fields by an arbitrary phase factor, however the 

moduli of the elements | Vl3 | and the quantity  Jcp  are invariant quantities [7].

1.4.2 T h e U nitarity  Triangle

A useful way of investigating the implications of unitarity is to represent the 

unitarity  constraints J2i V q =  0 U 7̂  as triangles in the complex plane. 

There are six triangles which can be shown to have the same area, A&, which is 

related to the measure of C P  violation [7] :

| 4 a |  =  2 ^ CP (1-18)

W ithout C P  violation the triangles would collapse into lines along the real axis.

The unitarity  constraint applied to columns 1 and 3 of V c k m  involves the 

most poorly known CKM elements ;

vudv;b +  vcdv;b +  vtdv;b = o (1.19)

"Care must be taken when making precise calculations of J c p  using the Wolfenstein

approximation since the result is C7(A6). However using i = u, a  = d, j  =  t and /3 = b 

in Equation (1.17) gives the correct result.
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vcdvc*b C(0,0) b (1,0)

Figure 1.2: One of the unitarity triangles (left) and its rescaled form (right) in the 

p — i) plane.

A(p,r|)

and therefore gives the most useful triangle from a phenomenological point of 

view. Rescaling Equation (1.19) by |tCdfc6| gives a triangle in the p — 77 plane 

with coordinates at (0,0), (1,0), and (p,rj). The triangle and its rescaled form 

are shown in Figure 1.2. The lengths of the sides of the rescaled triangle are given 

by the moduli of the CKM matrix elements :

|AC| =  l jjJi

1 Ykl 1 Yul
A Vcb A Vt9

( 1.20) 

( 1.2 1 )

and hence the shape of the triangle is invariant under quark phase redefinitions3. 

Determining the shape of the triangle is of great importance both to measure C P  

violation and to test the unitarity prediction. If the triangle does not close then 

this will be an indication of ‘new physics’, beyond the Standard Model.

1.4.3 D eterm in ation  o f  the C K M  M atrix  E lem ents

The elements in rows one and two of the CKM m atrix  can be measured from tree 

level decays. Present knowledge of these elements is summarised be’ow [2].

• |Vud.| -  From nuclear beta  decay : \Vud\ =  0.9736 ±0.0010.

• |Vus| _ From Kaon decays ( K + —> 7r°e+^e, K 3 —> ir~e^ue) and semileptonic 

hyperon decays (A —> pe~ue) : |V7S| =  0.2205 ±  0.0018.

3The choice of a particular parameterisation simply changes the location of the triangle in 

the complex plane.
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• IVub\ ~ The ratio \ Vub/Vcb\ is obtained from the lepton energy spectrum for 

semileptonic B  decays by looking at the spectrum beyond the endpoint for 

the b —> c transition. The result depends strongly on the theoretical model 

used to generate the lepton spectrum. Future measurements may use exclu

sive semileptonic charmless B  decays (e.g. B°  —> B + —> p°l+vi ) 

but high statistics are required as the branching ratios for these decays are 

small. At present : \Vub/Vcb\ — 0-08 ±  0.02.

• I kerf I -  From charm production in deep inelastic neutrino(antineutrino)- 

nucleon scattering (u^d —■> p~c) : \Vcd\ = 0.224 ±  0.016.

• |hcs| _ From decays of D mesons (e.g. D + —*■ /v°e+z/e) : |KCS| — 101 ±0 .18 .

• |T'cfc| _ From exclusive decays such as B + —> D*°l+iyi and from the partial 

width of inclusive semileptonic B  decays : \Vcb\ = 0.041 ±  0.003.

Information on CKM elements involving the top quark can be obtained from 

flavour changing processes which occur at the one loop level, for example, particle- 

antiparticle oscillations of neutral B  mesons. This phenomenon is discussed in 

the following sections.

1.5 B° — B° Oscillations

The states |T?°) =  \bq) and \B®) = \bq) (where q = d,s)  are eigenstates of the 

flavour-conserving strong and electromagnetic interactions. They have the same 

mass but different quark flavours and are the correct basis states for describing the 

production of neutral B mesons by the strong interaction during fragmentation, 

and decays where quark flavours are tagged. They are not C P  eigenstates, 

however, since applying the C P  transformation, CP\bq) = \bq), results in a 

different state.

Weak interactions do not conserve quark flavour and mix the \B°) and |B°)  

states by the second order weak processes shown in Figure 1.3. An initially pure
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u .c .t

>w* ) w ±

a. c. t

q b -

B" + B°

b q -

u. c. t, u. c. i B°

 * b

Figure 1.3: Box diagrams showing the transition B^ —> B®.

|B°)  state, produced by a strong process at t  = 0 , will develop into a superposition 

of |B°)  and \B°) states. In the rest frame of the i?, an arbitrary neutral meson 

sta te  can be written as a two-component wave function, (i\B°) +  b\B°), which 

obeys the time-dependent Schrodinger Equation4 :

d_
F t

\  6 /

H

6

( 1.2 2 )

The m atrix  H  is not hermitian since B  mesons can decay and thus the system 

decays in time. The Hamiltonian can, however, be expressed in terms of hermitian 

mass and decay matrices :

(1.23)

From C P T  invariance, the diagonal elements of M  and T are equal and the off- 

diagonal elements are related by complex conjugation [8]. H C P  is also conserved 

then M v2 =  M 12 and T12 =  Tj2-

The eigenvalues of the Hamiltonian H  are ;

2" i )\ ii

( M m 12 ^ i
I T r 11 12

-  -
\  I  J K M{2 M  j 2

\ 1 12 r  i

>, =  m , -h ’j =  ±
9  9

M\ 2 — - T 12 M\2 -  - r 12 (1.24)

with eigenvectors ;

] D ,  _  1

A  + ip2iI  ± !  J
v - \

M\2 — 2 ^12

M h  -  j r i 2
(1.25)

'Note tha t  h = c =  1 is used throughout.
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where j  = H, L  (Heavy, Light) label the eigenvectors. These are the physical 

eigenstates of propagation (or ‘weak eigenstates1).

Neglecting C P  violation, p = 1, and the weak eigenstates |B h ) and | B l ) are 

simply the C P  eigenstates, \Bi)  and \B2) ;

\Bh ) =  | B i )  =  - L  (  | B ° )  +  \B°)  )  C P = + 1

| B l ) = | B 2) = T  ( | b °) - | C P  =  - 1  (1.26)

with eigenvalues ;

a H = m h -  =  (m  + m 12) -  A(r +  r 12)

Al -  M l  -  f r L =  (M -  M12) -  f(T -  T12) (1.27)

The mass difference between the two eigenstates of propagation is denoted by 

/Am =  M h  — M l =  2M i2 and the difference in width by AT =  T// — Vl = 2Ti2.

1.5.1 T im e D eve lopm en t o f  the B () — B °  S ystem

In order to discuss the time development of the B° — B°  system, the physical 

eigenstates of propagation, \ B h , l ) ,  are used. Assuming C P  is conserved, the 

tim e evolution of an initially pure |P°) state can be expressed as :

|B°> =  T  ( IB h ) + |B l ) ) time 0

^  -)=  ( e - iA'" |B „ )  +  e - Ai' |  B l ) )  t im e t

= \  ( +  e_‘At<) \B°) +  1 ( e _ a " ‘ -  e“*Ai‘ ) \B°)

= A(t) \B°) +  A(t)\ B°)( 1 . 2 8 )

Hence, given an initially pure B°  state, the intensities of B°  and B u at a later 

tim e t are given by :



C H A P T E R  1. S T A N D A R D  MODEL A N D  B°  -  B° OSCILLATIO NS  16

(a ) B,«  0.9 

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

P r o p e r  t im e  (p s)

«  0.9 (b) B.

0.8
0.7

0.6

0.5

0.4

0.3

0.2

0.1

P r o p e r  t im e  (p s)

Figure  1.4: Intensities of B° (solid) and Bu (dashed) as a function of proper time from 

an initially pure B° state (the dotted line shows the total intensity). Plot (a) shows 

the B°j case for A rrid = 0.467 ps-1 and (b) shows the B°s case with A m s = 6 ps-1 .

T hat is :

I { B L

=  ~ ( e VHt A e Fl< +  2e r< cos(Am t ) ^ (1.30)

Making the assumption tha t AF <C T [9] results in the following expressions :

/ ( £ c B  )(t) = -  e 1 [ 1 +  cos( A m i) ] 

I ( B °  —> B°)(t)  =  1  e ' r< [ 1 -  cos(A m i)] (1.31)

It is clear tha t the B°  and B°  intensities oscillate with a frequency which is equal 

to the difference in mass between the two eigenstates of propagation. Figure 1.4 

shows the intensities in (1.31) for the Bd and B s cases, using r  =  1/T =  1.5 ps, 

A rrid = 0.467 ps-1 and A m s =  6 ps_1.

T im e  In tegra ted  M ix in g

If Pmix{t) is defined as the probability for a particle produced in state B°  (or 

B°)  to decay in the state B°  (or B°)  at time f, then it follows immediately from
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Equation (1.31) tha t :

Pmix(t) = - T e  n  [ 1 — cos( A mt)  ] (1.32)

From this, the time integrated probability for a ‘mixed’ decay, y, is given by :

roo

X — I Pmix ( ̂ ) dt — —Jo A

■7.2 A m
x -- (1.33)2(1 + x 2) r

Here x can be interpreted as the number of oscillations occurring during an 

average lifetime. If A m  <C T then the system will decay before a significant 

phase difference builds up between the |B h ) and \Bj_) states and hence y —* 0.

If a: is large then y 2 •

1.5.2 Evaluation o f  A m

The expression for A m , (where q =  d ,s  for the Bd and B s systems respectively) 

is derived by calculating the Feynman diagrams shown in Figure 1.3 [10]. The 

calculation yields a sum over the heavy quarks5 in the loop and includes the 

relevant CKM coupling factors :

G l

with

A m " =  FBq &Bq m B q M w  [ Ac29 7/1 S ( x c) A \ 2tq 7/2 S ( x t

A  2 \ Cq Xtq rj3 S ( x c, x t) ] (1.34)

S(xA =

Ac, = cq | K  = l ^ |

X ;  =
m.

i 3 11 9
4 +  4 ( l - ® < )  2 (1  — a:,)2 1 J

(1.35)

(1.36)

In Xi (1.37)

S ( X i , X j )  =  X i X j
In x

4 2(1  - X j )  4(1 -  x j )2 J Xj -  Xi

3 1
+  ( Xj  <-> X{)  — —

4(1 - x l)(l -  X j )  _
(1.38)

5The contribution from u cjuarks has been neglected since x u is very small ~  (9(10 ).
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where GV is the Fermi coupling constant, m.Bq is the B q meson mass, 772_3 are 

QCD correction factors, Fgq is the decay constant for the B q meson and Bg  is 

a confinement factor. The QCD corrections are discussed in more detail in the 

following sections.

The complicated expression for given in Equation (1.34), can be

simplified by examining the relative importance of the terms in square brackets. 

The QCD corrections, 7/1- 3, are all of the same order of magnitude, and from the 

CKM matrix (1.16) the CKM factors for the Bd system are given by ;

V ,  =  \v;bvcd\ »  /IA3 Xtd = \vt;vtd\ «  /IA3 (1.39)

and for the B s system ;

Ac. =  \v;bvcs\~ /IA2 A,, =  |V ^V ,.| «  /1A2 (1.40)

So for each system the CKM factors are of the same order and hence the S ( x t ) 

factors determine which term  in (1.34) dominates. Since6 x c ~  3x  10-4 and x t ~  5 

it is clear tha t the second term in Equation (1.34) is the dominant one. Terms 

resulting from the exchange of the lighter c quark can therefore be neglected 

giving the simplified expression for A m q :

Am« =  §2 FK  Bb, ™b, VQCD M 2w S(xt) WtlV„\2 (1.41)

where t /qcd =  rl2 ■ Since Vtb ~  1 the above equation allows us to calculate \Vtd\ 

and | Vts | from a measurement of A nid and A m s. It can be seen from Equations 

(1.39) and (1.40) tha t oscillations in the Bd system are suppressed with respect to 

the B s system and we therefore expect A m s % -^Am^ ~  20A 77i^. At present the 

world average for Arrid is (0.459 ±  0.018) ps-1 [11] which suggests A m s ~  10 ps-1 

and hence \ s  ~  Thus while A rrid can be measured from tim e integrated 

mixing, A ras must be determined by measuring the time dependence directly. 

At present only lower limits exist for A m s, with combined measurements from 

A l e p h  giving A m s > 7 .8ps-1 (at 95% C.L.) [12].

6Using m c =  1.3 G eV /c2, mt =  180 G eV /c2 and M \v = 80 G eV /c2.
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Q C D  C orrections  and T h eo re tica l  U n certa in tie s

QCD corrections arise in the expression for A m , because, in reality, the box 

diagram is much more complicated than tha t shown in Figure 1.3, involving 

gluon exchange between the quarks. The QCD corrections are of two types.

(a) Short d istan ce  effects

The effective coupling constant a s(p) of QCD becomes small at short 

distances corresponding to large m om entum transfer. Therefore at short 

distances lowest order diagrams involving one or two gluon exchanges 

dominate. These gluons have energies E  > p where p is a renormalisation 

scale taken to be equal to The factor t\qcd accounts for these short 

distance corrections and has been calculated to next-to-leading order in a s 

using perturbative techniques [14] giving tjqcd — 0.55 ±  0.01.

(b) Long d istan ce  effects

At long distances the coupling becomes large and higher order diagrams 

involving the exchange of many soft gluons become im portant. These non- 

perturbative effects are responsible for the confinement of quarks within 

hadrons and are much harder to calculate. They are accounted for by the 

factors Fgq and B gq- Combining results from lattice QCD and QCD sum 

rules [13] gives Bgd — 1.0 ±  0.2 and Fgd =  (180 ±  50) MeV.

1.6 The Shape of the Unitarity Triangle

In order to determine the shape of the triangle, the position of vertex A in the 

p — 7/ plane must be measured (Figure 1.2). This can be achieved by a direct 

measurem ent of the angles a ,  /3 and 7 or by measuring the sides | AB| and | A C |. 

At present, experimental results only give information on the lengths of the sides. 

The angles of the triangle can be calculated using C P  violating asymmetries 

in the decays of B°(B°)  mesons into C P  eigenstates, for example B®(B®) —> 

J/x/>K°, Bd(&d)  —> pR's- Measurements of this kind will be performed at future
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Figure 1.5: Constraints on the position of vertex A arising from measurement of 

and B°, -  B®, oscillations.

B  factories.

Measurements of A =  |I4s| and the ratio |V̂ .6/ ^ 61 (Section 1.4.3) constrain 

vertex A to lie on a circle of radius |AC| =  0.36 ±  0.09 (Equation (1.20)) centred 

at C(0 ,0). A measurement of A rrid together with knowledge of |Ki>|, allows 

the  length of side |AB| to be determined thus constraining vertex A to lie on a 

circle centred at B(1,0). The length | AB| increases with decreasing top mass, m (, 

and eventually the circle becomes so large tha t it completely encloses the |AC| 

circle and the two do not intersect. In this way, the first lower limit was set 

on the top quark mass ( m t >  50 G eV /c2). Present measurements of A n q  give 

| AB| =  0.99 ±  0.22 [15]. These two constraints are shown in Figure 1.5.

Another constraint can be obtained from a measurement of the indirect C P  

violation param eter ' ck in the K °  — K °  system. This constrains vertex A to lie 

in the upper half plane on a hyperbola. A fit for the position of vertex A has 

been performed [16] using present experimental and theoretical knowledge and 

the result is shown in Figure 1.6 where the contour represents the 95% confidence 

level region.

It can be seen tha t current knowledge of the shape of the triangle is ra ther 

poor, the uncertainties being largely theoretical. However measurements of both

7€k  is defined as the ratio -T- jN ~ - ;  .0r(Ks—*(mr)[=o)
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Figure 1.6: Result of fit for position of vertex A. The triangle shows the best fit and 

the contour gives the 95% confidence level region.

Arrid and A m s allow a ratio to be constructed in which some of these uncertainties 

cancel :
A m s m Ba BBs

A m d m Bd F 2Bd S Bd
Vt 2ts
Vttd

V  2ts
Vttd

(1.42)

where £s is estimated to be 1.16 ±0 .1  [13]. All dependence on the top quark mass 

cancels, along with the i ] q c d  factors which are the same in both systems. The 

remaining theoretical uncertainty is in the calculation of £s. The ratio I Vtd/Vts | 

is directly related to |AB| (Equation (1.21)) and hence a measurement of Am^ 

and A m s allows the length of this side to be determined with less theoretical 

uncertainty.

1.7 Summary

Charged current, weak interactions do not conserve quark flavour and allow 

transitions between the three generations of quarks. Generation mixing is 

described by the CKM matrix, which is predicted to be unitary by the Standard 

Model. Measurements of the CKM m atrix elements are necessary in order to test 

unitarity  constraints.

Particle-antiparticle oscillations of neutral mesons occur via second order weak
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processes. The oscillation frequency is determined from the difference in mass 

between the eigenstates of propagation (Section 1.5.1). Measurements of the 

oscillations of neutral B  mesons yield constraints on the CKM matrix elements 

involving the top quark.



C hapter 2

Overview and M otivation

In this chapter the basic requirements for measurements of the time dependence 

of B°  — B°  oscillations are outlined. The effects of mistags and proper time 

resolution on the sensitivity of the measurement are shown. A number of methods 

for studying Bd and B s oscillations are described and the motivation is given for 

the double jet-charge method used in this analysis.

2.1 Requirements for a Mixing Analysis

A measurement of tim e dependent oscillations requires the following basic com

ponents :

• An event sample selectively enriched in b events.

• The proper lifetime of the B  meson, reconstructed from its decay length 

and momentum.

• The state of the meson (B°  or B°)  at production and decay, determined 

from the charge of the b (or b) quark in the meson at production and decay. 

A quantity which depends on the initial and final quark charges, referred 

to as the charge correlation, is measured as a function of proper tim e and 

fitted to extract the oscillation frequency.

23
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The sensitivity of a mixing measurement depends on the size of the event sample, 

the fraction of quarks which have their charge wrongly identified (known as the 

mistag fraction) and the proper time resolution. Many different m ethods have 

been used for tagging the initial and final meson states and some of these are 

described in Section 2.2.

For the purpose of discussing the general form of an oscillation signal and 

showing how the significance of the signal is affected by the mistag fraction and 

the proper time resolution, a Monte Carlo study is performed on a pure sample 

of b events, where the charge correlation is simply defined as the product of the 

b quark charges in the meson at production ( q ini )  and decay ( q / i n ) :

charge correlation =  (qini X qfin) {t) (2 .1)

Unmixed events give a positive contribution to the charge correlation whereas 

mixed events give a negative contribution.

In the Monte Carlo sample, all b hadrons have an equal lifetime of r =  1.5 ps, 

and the values Arrid = 0.467 ps-1 and A m s = 3.33 ps-1 are used. Quark charges 

are taken as ±1 for simplicity.

In the unphysical case, with perfect charge tagging and perfect proper tim e 

reconstruction, the charge correlation function defined in Equation (2.1) has a 

simple form consisting of a constant positive background term from charged B  

mesons and b baryons which do not mix, plus two cosine terms from neutral B d>s 

mesons :

( qini x qf i n ) (t) =  / A +  f u +  f d c o s (A m dt) +  f s c o s ( A m st) (2 .2 )

where /a ,  / u, f d and f s are the relative fractions of baryons, 77*, B d and B s as 

discussed in Section 5.4. In the Monte Carlo f u = f d ~  40%, f s ~  10% and 

/ a  ~  10%. Figure 2.1(c) shows the form of this function (Figures (a) and (b) 

show the contributions from B d and B s mesons respectively).
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Figure  2.1: The charge correlation in the Monte Carlo as function of proper time for 

the case of perfect charge tagging and proper time reconstruction for (a) Bd mesons, 

(b) B s mesons and (c) all b hadrons, where A = 0.467 ps-1 and A m s = 3.33 ps-1 .

2.1.1 Effect o f  M istag  Fraction on M ixing Signal

In a more realistic example, a fraction r]tni (77/in) of hadrons have their initial 

(final) s tate wrongly identified, causing a dilution of the mixing signal. As an 

example of this, consider the case of an initial B°  meson which decays in the 

same state as it was produced. If charge tagging is perfect, r/zm- and <//ln are 

both positive, since the B°  meson contains a b quark, resulting in a positive 

contribution to the charge correlation. However if mistags are introduced, a 

number of different outcomes are possible, as shown in Table 2.1. The total
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Qini Q f i n Fraction Charge correlation

+ + (1 V i n i ) { 1 V f i n ) +

— + Qini  ( i Q f i n ) —

+ - (1 Qini  )Q f i n —

- — Qini  Q f i n +

Table 2.1: The possible charge contributions for an unmixed B° meson, taking mistag 

fractions into account.

mistag rate, 7/ is given by :

Q — Qini (1 Qfin) T  Qfin{^- Qini) (2-3)

since this is the fraction of hadrons for which the contribution to the charge 

correlation has the wrong sign. The total contribution to the charge correlation 

from this unmixed B°  meson will therefore be (1 — //)( +  !) +  //( — l) =  (1 — 2tj).

Hence the mistag fraction reduces the amplitude of the mixing signal by a 

factor of (1 — 2r/) and Equation (2.2) becomes :

( qini X qjin){t)  =  (1 -2 ? /)  [ / a  +  f u +  f d cos(Amdt) +  f s cos (A m st) ] (2.4)

Figure 2.2 shows the effect of various mistags on the charge correlation function1. 

The figure shows (a) perfect tagging, (b) rjini = r)fin -  0.1 (rj =  0.18), (c) 

Vim = VJin = 0.2 ( 7/  =  0.32) and (d) 7jini = r]fin = 0.3 ( 7/  =  0.42).

2.1.2 Effect o f  Proper T im e R esolution

Detector resolution effects mean tha t a decay occurring at true tim e t will result

in a measured decay time tm. The proper time resolution function, R(t  — £m,cq),

LThe mistag fraction is introduced into the Monte Carlo model by flipping the sign of the 

quark charge in a fraction of randomly selected events.
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F igu re  2.2: The charge correlation function in the iMonte Carlo for various total

mistag rates. The mistag causes a reduction in the amplitude of the signal.

can be described in terms of a Gaussian2 of width crt : 

a u  1 IR { t - t m,(Tt) =   e x P  7) 2  (2-5 )( J t C 2  7r \  Z a t  J

The effect of the proper time resolution results in the convolution of the true  time

distribution with the resolution function. This can be shown [17, 18] to reduce

the am plitude of the oscillation signal by a damping factor, exp ( — • The

damping factor depends on the frequency, A?n, of the oscillation and hence the

higher frequency B s oscillations are damped more than the lower frequency B ti

oscillations. The proper time resolution is a critical factor in determining the

2 A sum of two or three Gaussians is a more realistic description of the proper time resolution.

The widths also vary rapidly with proper time and this should strictly be taken into account

for an accurate estimate of the mixing sensitivity. For this simple discussion, however, only a

single Gaussian is considered.
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a) perfect resolution

I . i i i  l . i . i l +f

b) 10% resolution
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Figure 2.3: T h e  cha rge  corre la tion  function  in M o n te  C arlo  for (a )  perfect p ro p er

t im e  reso lu tion  (b)  10% resolution and  (c) 30% reso lu tion .

sensitivity of a m ethod to B s oscillations, while being relatively unim portan t in 

the measurement of Bd oscillations.

The time resolution deteriorates as proper tim e increases (as discussed in 

Section 6.4). Figure 2.3 shows the comparison between (a) perfect resolution,

(b) 10% resolution and (c) 30% resolution using the Monte Carlo study. The B s 

oscillations are significantly dam ped out as the resolution deteriorates.

2.1 .3  Significance o f  an Oscillation Signal

Combining the effects of mistag fractions and proper time resolution, along with 

factors arising from sample size and purity, gives an estim ate of the statistical
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significance which can be achieved using a particular method. The signal/noise 

ratio is estimated as [17, 18] :

[ N  (  N m 2cr?\
signal/noise «  W — pq (1 -  2rj) exp ( -------^ — I (2.6 )

where N  is the number of events in the sample, pq is the purity of B q mesons in 

the sample, rj is the mistag fraction, a t is the proper time resolution in ps and 

A m q is the oscillation frequency for B q mesons.

t he remainder of this chapter is devoted to an overview of current methods 

for measuring time dependent oscillations. The motivation is given for the double 

jet-charge m ethod which is used in this analysis and comparisons are made with 

other analyses, based on the signal/noise equation.

2.2 Overview of Previous Oscillation Analyses

Methods for measuring tim e dependent oscillations fall into two general ca te

gories; inclusive methods and exclusive, or semi-exclusive, methods. Inclusive 

methods have the advantage of larger event samples but often mistag fractions 

are larger and the proper time resolution is worse. Exclusive m ethods have 

advantages in tha t the purity of B s or Bd mesons is enhanced and the proper 

tim e resolution is better. However exclusive m ethods are limited by the small 

numbers of events. Some current LEP measurements are briefly described in this 

section.

2.2.1 D ilep ton  M eth od

The dilepton method [19, 20, 21, 22] is illustrated schematically in Figure 2.4. 

Hadronic Z°  decays containing two high transverse m om entum  leptons are 

selected. The partic le /an tipartic le  state of the B °  meson is determ ined both 

at production and decay using the sign of the lepton charges. If either of the b 

hadrons is a B°  which oscillates to its antiparticle then the lepton charges will 

have the same sign. Events in which there has been no oscillation, and events
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c,c

mix !

Figure 2.4: Schematic diagram illustrating the dilepton method.

where both mesons have oscillated, have opposite sign leptons. The fraction of 

dilepton events which have like-sign leptons is studied as a function of the proper 

tim e of the B°  decay. The total mistag fraction in this analysis is approximately 

23% and comes largely from cascade decays (b —> c —» /+ , giving a lepton of the 

wrong sign). Dilepton methods have limited statistics since only about 20% of 

decays contain a lepton (e or /.i) and hence only 4% of events contain two leptons. 

Dilepton methods are sensitive to both Bd and B s oscillations.

2.2 .2  L ep ton -Jet-C h arge  M ethod

The lepton-jet-charge method [20, 23, 24, 25] is illustrated in Figure 2.5. Only

opposite 
side

jet-charge

Figure 2.5: Schematic diagram illustrating the lepton-jet-charge method.

one high m om entum  lepton is required in the event and its charge is used to tag 

the s tate of the B°  meson at decay. The initial meson state is inferred using 

the ‘je t-charge’ on the opposite side of the event to the lepton. The jet-charge 

is the weighted sum of particle charges in the jet or hemisphere and reflects 

the sign of the quark which produced tha t jet. Charge tagging using the jet- 

charge is explained in detail in Chapter 5. The lepton-jet-charge m ethod has 

approximately five times the statistics of the dilepton method since only one
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lepton is required, however the initial state mistag using the jet-charge method 

(~  33%) is higher than tha t for leptons giving rise to a total mistag fraction 

for the lepton-jet-charge method of around 39%. Like the dilepton analyses, the 

lepton-jet-charge analyses are sensitive to Bd and B s mixing.

2.2.3 D* and Lepton or Jet-C harge

Many analyses [20, 26, 27, 28] identify B® mesons by reconstructing the decay 

chain B® —> D * ~ X , D*~ —* D°7r~ , followed by the decay of the D° into one of 

K ~ 7r+ , K ~ 7r+7T° or I\ - 7r+7r+7r_ . The state of the Bd meson at decay is determined 

from the charge of the D* and the state at production is determined using either 

a lepton or the jet-charge in the hemisphere opposite to the reconstructed D*. 

If the D* and lepton (or jet-charge) have unlike signs then this indicates tha t a 

mix has taken place. This method has advantages in tha t the Bd purity is higher 

than  for inclusive analyses, however statistics are limited since only a few specific 

channels can be reconstructed. This method is not sensitive to B s oscillations.

2.2 .4  A dditional M eth od s for B s O scillations

In addition to the dilepton m ethod and the lepton-jet-charge method, other 

more exclusive methods exist which are used to investigate B s oscillations in 

particular. These methods involve the partial reconstruction of the B s meson 

using either semileptonic decays involving a Ds meson, B s —> D ^ ~  D  u iX  [29, 30] 

or hadronic decays, B s —■» D[*V -f hadron(s)  [31]. A schematic diagram 

illustrating these methods is shown in Figure 2.6. The initial s tate of the B s 

meson may be determined using the charge of a high m om entum  lepton in the 

opposite hemisphere if one is available, or by the jet-charge m ethod, or by the 

charge of a fragmentation kaon which is produced along with the B s meson. Some 

analyses [29, 31] use a combination of all these charge tagging methods to give 

an optimal tag. The final s tate of the B s is determined using the charge of the 

D f P  or D f h T (h = hadron track) combination. The B s purity is around 67%
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in the samples and is around 25% in the D fh T  samples, compared to the

~  10% B s production fraction. The proper time resolution is better than  with 

inclusive methods. However, these methods suffer from a lack of statistics.

lepton or hadronopposite side 
lepton or jet-charge

b,b c,c

mix ?

Kaon from 
fragmentation

Figure 2.6: Schematic diagram illustrating some of the methods for investigating Bs 

oscillations.

2.3 Motivation for Double Jet-Charge Method

2.3.1 O verview  o f  M eth od

The aim of the double jet-charge method which is used in this analysis is to 

obtain as large an event sample as possible, using inclusive tagging and vertexing 

techniques. The method, illustrated in Figure 2.7, is a generalisation of the 

lepton-jet-charge method, using the jet-charge to give information on the initial 

and final meson states. The m ethod relies upon the fact tha t the jet-charge 

for hemispheres containing mixed mesons is different from tha t for hemispheres 

containing unmixed mesons, as explained in Chapter 5. The charge correlation is 

defined as the product of the jet-charges in the two hemispheres and is measured 

as a function of the reconstructed proper time in one of the hemispheres.

The advantage of the double jet-charge method is tha t,  since no lepton is 

required in the event, the number of events in the sample is expected to be 

around five times the number in lepton-jet-charge analyses. The disadvantage 

of the method is tha t the mistag fraction is higher. The initial and final s ta te  

mistags for the jet-charge are both around 33% giving a total mistag fraction of
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measure jet-charge

mix /

measure jet-charge

mix ?

measure proper 
time

Figure 2.7: Schematic diagram illustrating the double jet-charge method.

2.3 .2  C om parison w ith  other M eth od s

The statistical significance of the double jet-charge m ethod is calculated using 

the signal/noise ratio given in Equation (2.6). Table 2.2 shows the expected 

signal/noise for a measurement of Bd oscillations using the double jet-charge 

m ethod, compared to tha t for the ALEPH lepton-jet-charge and dilepton analyses 

[20]. The value of A h a s  been taken as 0.46 ps-1 and the Bd purity is taken 

as 40%. Proper time resolution has a relatively small effect on the sensitivity 

to Bd oscillations but the values for each method are included for completeness. 

It can be seen from Table 2.2 tha t the double jet-charge m ethod has a greater 

statistical sensitivity to Bd oscillations than either the lepton-jet-charge m ethod 

or the dilepton method, despite the much higher mistag fraction.

An estimate of the signal/noise for measurements of B s oscillations is shown as 

a function of A m s in Figure 2.8. The parameters used for the various analyses are 

given in Table 2.3. It can be seen from Figure 2.8 tha t in all cases the signal/noise 

decreases rapidly as the value of A m s increases due to the exponential damping 

factor in Equation (2.6). If the value of A m s is very high then the oscillations 

are not distinguishable from noise. Present methods have only succeeded in 

setting lower limits on the value of A m s. The double jet-charge method shows 

comparable sensitivity to the dilepton and lepton-jet-charge methods. The
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Method N V (ps) signal/noise

Double jet-charge 423169 0.44 ~  0.35 ~  22

Lepton-jet-charge 63131 0.39 ~  0.26 ~  16

Dilepton 9710 0.23 ~  0.30 ~  15

Table 2.2: Predicted signal/noise for measurement of Ara^ using double jet-charge 

method, compared with A l e p h  lepton-jet-charge and dilepton methods. N  is the 

number of events selected from approximately 4 million hadronic Z° decays, rj is the 

total mistag for the method and at is an estimate of the proper time resolution.

—  Double jet-charge

—  Lepton-jet-charge 

Dilepton

Ds lepton 

  Ds hadron

6

5

4

3

2

1

Ams (p s1)

Figure 2.8: Estimated signal/noise ratio for several B s oscillation analyses, as a

function of the B s oscillation frequency. The parameters used for each analysis are 

given in Table 2.3.

exclusive analyses, using D s events, are inferior at low values of A m s due to 

the low statistics, however they become superior at higher frequencies due to the 

improved proper time resolution.

In this thesis, a measurement of the Bd oscillation frequency is presented. An
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Method N P s V <?t (ps)

Double jet-charge 423169 0.109 0.44 ~  0.35

Lepton-jet-charge 63131 0.109 0.39 ~  0.26

Dilepton 9710 0.109 0.23 ~  0.30

D s — lepton 277 0.67 0.27 ~  0.19

D s — hadron 1583 0.238 0.28 ~  0.2

Table 2.3: Properties of various methods for measuring B s oscillations. N  is the

number of events, ps is the purity of B s mesons in the sample, p is the total mistag 

and at is an estimate of the proper time resolution.

investigation of B s oscillations using this method will form part of a program 

of future work. The double jet-charge method is flexible since, with such a 

large event sample, tighter quality cuts can be made to improve the proper 

time resolution and thus increase the sensitivity to Bs oscillations. Hence the 

sensitivity to B s oscillations shown in Figure ‘2.8 should only be regarded as a 

rough guide since, in this thesis, no optimisation for B s oscillations is performed.



C hapter 3 

The ALEPH Detector at LEP

“It may look like a big boiler but i t ’s actually a giant gun that 

fires bullets smaller than the smallest speck o f dust. Scientists spend 

months studying those curly tracks looking fo r  clues about the origins 

of the universe.’'1

The Edinburgh Evening News (January  28, 1995)

3.1 The LEP Collider

ALEPH is one of four experiments which use the Large Electron Positron collider 

(L ep) at CERN, Geneva. The LEP collider is designed in order to allow detailed 

study of physics processes predicted by the Standard Model and to search tor 

new phenomena. During the period from 1989 until 1995, electron-positron 

annihilations occurred at energies around the Z°  resonance (91.2 GeV) and 

approximately four million Z°  decays were detected by ALEPH. L ep has recently 

entered its second phase of operation at centre of mass energies around 160 GeV 

and the first W +W ~  pairs have been produced [32].

The 27 km L ep ring is the last in the chain of five accelerators which make up 

the CERN complex. The LEP ring and injection scheme are shown in Figure 3.1. 

Electrons are produced using a high intensity electron gun and accelerated by a

36
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LEP
50 (100 GeV), 27kmALEPH

Point 5Point 4

OPAL
Point 6

Point 3

Point 7
Point 2

L I
Pninl 1 Point 8 Cj

EPA 
600 MeV 

25—ILINAC (electron)

LIN AC (electron)

Figure 3.1: T h e  L e p  collider.

200 MeV linear accelerator (linac). Some of these electrons are then fired at a 

tungsten converter creating e+e~ pairs. The positrons from the converter and 

the electrons from the linac are further accelerated by a 600 MeV linac and then 

accumulated in the Electron-Positron Accumulator (EPA) from which they are 

subsequently injected into the Proton Synchrotron (PS). The PS accelerates the 

electrons arid positrons from 600 MeV to 3.5 GeV before injecting them into the 

Super Proton Synchrotron (SPS) which accelerates them  to 20 GeV before finally 

injecting them  into L e p .

Once inside LEP, dipole magnets around the ring keep the electrons and
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positrons in circular orbits and quadrupole magnets focus the beams to contain 

them  within the beam pipe. The beams are accelerated by radio frequency 

(RF) cavities but energy is lost by synchrotron radiation. The energy losses 

are proportional to E 4, where E  is the beam energy, and inversely proportional 

to the radius of the beam orbit. This is the main reason for the large diameter 

of Lep . At each experimental collision point the beams are very tightly focused 

by means of superconducting quadrupoles to collide in an interaction region of 

transverse dimensions approximately 10 ^m  by 250/nn. Electrostatic separators 

are used at each collision point to keep the beams apart during injection and 

energy ramping.

3.2 Overview of the ALEPH Detector

The A L E P H  detector is designed to cover all expected types of physics available 

in the L ep  environment. The rate of events is low compared with hadron 

colliders and as much information as possible must be collected about each 

event. The detector covers as much of the solid angle as possible, provides 

measurements of particle charges, mom enta and energies, gives identification of 

leptons, photons and hadrons and allows measurement of the decay distances 

of short-lived particles such as b and c hadrons. It is sensitive to all Z°  decay 

products except neutrinos.

A cut-away view of the detector is shown in Figure 3.2. It forms a cylinder 

around the beam pipe with the interaction point at the centre. A superconducting 

solenoid provides an axial magnetic field of 1.5 T, enabling the charges and 

m om enta  of charged particles to be measured from the curvature of their tracks. 

Tracking detectors are situated closest to the beam pipe and are surrounded by 

an electromagnetic calorimeter. A hadron calorimeter is situated outside the 

superconducting coil and serves as a return yoke for the magnet. The coordinate 

system used by ALEPH has its origin at the beam crossing point. The positive 

2 axis points along the e~ beam direction, the x  axis is horizontal and points
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Figure 3.2: Overall view of the A l e p h  detector; (a) vertex detector, (b) inner tracking 

chamber, (c) time projection chamber, (d) electromagnetic calorimeter, (e) supercon

ducting solenoid, (f) hadron calorimeter, (g) muon chambers.

towards the centre of LEP ancl the y axis points upwards. The sides of the detector 

are referred to by the letters ‘A ’ and ‘B ’, where side ‘A ’ is on the positive z side.

The remainder of this chapter aims to give a brief description of the main 

components of the ALEPH detector, concentrating on features which are of most 

relevance to the analysis of B°  — B°  oscillations presented in this thesis. The 

measurement of the time dependence of these oscillations relies on the ability to 

efficiently select events containing B  mesons and accurately reconstruct their 

proper lifetimes. The tracking detectors, in particular the vertex detector, 

play a vital role in enabling secondary vertices to be found and decay lengths 

measured. The tracking performance of ALEPH will therefore be emphasised. 

The electromagnetic and hadron calorimeters also play an im portant role in 

reconstructing the m om enta of the B  mesons. A more detailed description of 

the ALEPH detector can be found in [33, 34].
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3.3 Tracking Detectors

3.3.1 V ertex D etec to r  (V D E T )

The ALEPH silicon vertex detector was installed in 1991. Its purpose is to 

provide precise three dimensional tracking information close to the interaction 

point, enabling primary and secondary vertices to be accurately reconstructed. It

The ALEPH V e r t e x  D e t e c to r

24 'F a c e s '

Double Sided 
Silicon Strip  
D e te c to r s  /

2 l a y e r s  
r, = 6 .3  cm 
r2 =10.3 cm

Readout E lectron ics Module27 cm

Module Lutke 
Oct. 1994

Figure 3.3: Configuration of the silicon vertex detector.

consists of two concentric cylindrical layers of double-sided silicon strip detectors 

at radii of 6.3 cm and 10.9 cm. A diagram of the VDET is shown in Figure 3.3. 

Each detector comprises a 5.12 cm x 5.12 cm x 300 f.im n-type silicon wafer onto 

which strips have been introduced on both sides (Figure 3.4). The strips on one 

side are p+ and function as rectifying junctions. The n + strips on the o ther side 

are ohmic contacts and are separated by p-implantations in order to in terrupt the 

accumulation layer of electrons which forms at the Si-SiCD interface and would
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accumulation
electrons

n substrate

Figure 3.4: Schem atic  of a  double-sided silicon s tr ip  d e te c to r

otherwise short-circuit all n + strips. A reverse bias voltage depletes the bulk 

volume and builds up an electric field. A charged particle passing through the 

detector creates electron-hole pairs which are transported by the electric field to 

the strips hence producing an electric signal. The strips on one side are parallel

p+ p+ p+

to the beam direction and measure the azimuthal angle, </>, while those on the 

other side are perpendicular to the beam and measure the z coordinate. Along 

with the radius of the detector layer r this gives three dimensional positional 

information for the particle hit.

Electronic units or ‘modules’ are constructed from two strip detectors. Each 

face is made up from two modules. The r(f) strips on neighbouring strip detectors 

within a module are connected together end-to-end and are read out at the ends 

of the detector while the z readout electronics are situated along the detector 

length.

Tracks with polar angle, 0, greater than 32° will have one V D ET hit while 

those with 0 > 47° will have hits on both layers. The distance between p+ strips 

on the ref) side is 25 pm  and the distance between n + strips on the z side is 

5U pm. Not every strip is read out, however, the distance between readout strips 

being 100 pm  on both sides of the detector. Capacitive charge division is used to 

interpolate the track impact point between readout strips. The spatial resolution 

achieved with the complete vertex detector is 12 pm  in both the ref) and z  views 

[33, 35].

A new VDET was installed for the second phase of Lep operation. The new
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detector is approximately twice as long as the present detector, uses radiation- 

hard electronics, and has all the readout electronics situated at the ends of the 

detector, thus reducing the am ount of passive material near the interaction point.

3 .3 .2  Inner Tracking C ham ber (ITC)

T he ITC is a cylindrical multi wire drift chamber which provides tracking in the 

radial region from 16 cm to 26 cm. It is 2 m long and consists of eight concentric 

layers of drift cells with wires running parallel to the beam direction. Each drift 

cell comprises six field wires surrounding a sense wire as detailed in Figure 3.5. 

The sense wires are held at a positive potential between 1.8 and 2.5 kV and five

o Sense wire 
•  Field wire 
® Calibration wire

Figure 3.5: The ITC drift cells.

of the six field wires are held at earth  potential. The other field wire is insulated 

from earth and can be used to inject a calibration pulse into the chamber. The 

ITC gas is a m ixture of 80% Argon, 20% Carbon Dioxide plus a small am ount 

of Ethanol. The passage of a charged particle causes ionisation in the gas and 

the liberated electrons then drift towards nearby sense wires where they create 

secondary ionisation (the Townsend avalanche effect). The signal induced on the 

sense wire is mainly caused by the movement of positive ions away from it. The 

ref) coordinate is found by measuring the drift time in the cell, giving an accuracy 

of around 150 ^m . The z coordinate is obtained by measuring the difference 

in arrival times of the pulses at each end of the sense wire but the resolution 

(~  5 cm) is not sufficient for use in three dimensional tracking.
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In addition to providing up to eight accurate r(f) coordinates, the ITC provides 

the only tracking information used in the level 1 trigger. The need for a fast trigger 

decision limits the size of the drift cells, the m aximum drift distance being 6.5 mm. 

Two dimensional trigger information is available from the ITC within 1 {is of a 

beam crossing.

3.3 .3  T im e P rojection  Cham ber (T P C )

The T PC  is a large cylindrical drift chamber which provides up to 21 accurate 

three dimensional points for each track. It is 4.7 m long and extends radially from 

0.31 to 1.8 m. A cut-away view of the T PC  is shown in Figure 3.6. The central 

membrane is held at a potential of —27 kV while the end-plates are grounded, 

giving rise to an axial electric field of 11 kV /m . The gas used in the T P C  is 91% 

Argon and 9% Methane at atmospheric pressure. Ionisation electrons produced 

by charged particles drift towards one of the end-plates where their position 

and arrival time are measured. A schematic diagram of part of an end-plate

COIL

INNER FIE10 CAGE

V  OUTER FIELD CAGE

0  3600 HV MEMBRANE

WIRE CHRMBER SUPPORT

Figure 3.6: The time projection chamber, 

is shown in Figure 3.7. An end-plate is formed from 18 wire chambers each of
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which comprises three layers of wires : a gating grid, cathode plane and sense 

wire plane. A plane of 21 radial rows of finely segmented cathode pads is s ituated 

approximately 4 m m  behind the sense wires and between these rows are long pads 

which provide information for the second level trigger. Ionisation electrons cause 

avalanches around the sense wires, inducing signals on the nearby cathode pads. 

The (f) coordinate is measured by interpolating the signals induced on nearby

F igure 3.7: Part of a TPC end-plate showing cathode pads for coordinate measure

ment alternating with trigger pads.

pads and the r  coordinate is given by the radial position of these pads. The z

coordinate is obtained from the drift time and known drift velocity (~  5cm //rs) .

The r^> coordinate resolution depends on the drift length and the angles of the

track segment with respect to the wires and pads. When the pad crossing angle1 is

0°, the typical single coordinate r</> resolution is about 180 fim. The z coordinate

resolution depends on the polar angle, being 800 /im for tracks with polar angle

around 90° and becoming approximately twice as large at polar angles of 20°.

These dependencies have been measured and parametrised using hadronic and

leptonic Z°  decays and are used to calculate coordinate errors in the track fit. It

LThe pad crossing angle is defined as the angle between the projected track segment and the 

radial direction. A large crossing angle indicates a large azimuthal spread of the charge cloud 

and hence poorer <p resolution.
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is im portan t to keep the electric field in the drift region as uniform as possible 

to avoid track distortions. A gating system is required to prevent positive ions 

produced during avalanches near the sense wires from entering the drift region and 

distorting the drift field. Remaining distortions are calibrated using collinear \i 

pairs and a laser system which produces straight tracks. Any measured curvature 

in these tracks is used to correct the sagitta of particle tracks.

In addition to providing tracking information, the T PC  measures the ionisa

tion density, d E / d x , which can be used for particle identi ication. The d E /d x  is 

determined from the pulse height on the sense wire and since the spacing of these 

wires is 4 mm, a track can have up to 338 sense wire pulses. A d E /d x  estim ator 

for the track is obtained by taking a truncated mean of these measurements.

3.3 .4  Overall Tracking Perform ance

Track reco n stru ct io n

The solenoidal magnetic field causes all charged particles to follow a helical path 

inside the tracking volume. Track reconstruction begins in the TPC  where ‘chains' 

of hits are found which are consistent with the hypothesis of lying on the same 

helix. These chains are linked to form track candidates and are extrapolated  to 

the inner detectors where consistent hits are assigned and the track fit repeated. 

The track helix is defined by five parameters : curvature (R), polar angle (6 or 

A), azimuthal angle (</>0) and impact parameters (d0 and z0) (Figure 3.8). The 

d0 value of a track is signed such tha t it is positive if the particle has positive 

angular m om entum  about the z axis.

A lignm en t

Accurate determination of the track parameters relies on a precise knowledge of 

the alignment of the three tracking detectors. The relative alignment of the T PC , 

ITC and V D ET is determined using isolated tracks from hadronic Z°  decays and 

the tracks from Z°  —> events. Tracks are extrapolated back from the T P C
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z

Figure 3.8: Definition of track helix parameters.

to the inner detectors and the residuals between the measured and expected hit 

positions are analysed. Since the VDET resolution is much better than th a t  of 

the outer trackers, its alignment does not rely solely on the outer tracking but 

makes use of self consistency constraints. Tracks which pass through the 5% 

overlap region of adjacent wafers in (p are used to constrain the relative positions 

of those wafers. The alignment procedure is iterative with VDET constraints also 

being used to improve the alignment of the outer detectors.

A laser alignment system is also used to monitor relative movements between 

the VDET and the ITC. The VDET laser system is described in more detail in 

Appendix A, where an analysis of the laser data is presented.

M o m e n tu m  reso lu tion

The transverse m om entum  of a particle, P j ,  is obtained from its radius of 

curvature in the magnetic field. The resolution A Pt  is proportional to the 

resolution of the sagitta of the arc which is obtained by projecting the helix 

onto the rep plane :

W  “  0 027 *  M
where 5 ( T )  is the modulus of the magnetic field, As (mm) is the sagitta  

resolution and / (m) is the length of the projected trajectory. The relative error 

on the measured momentum, P , of a track arises from the error on the transverse
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Detector Momentum Resolution A P / P Z (GeV/c) 1

T P C  only 1.2 x 10~3

T P C  +  ITC 0.8 x 10-3

T P C  +  ITC +  VDET 0.6 x 10“3

Table 3.1: M o m e n tu m  reso lu tion  of the  A l e p h  t r a ck in g  devices.

m om entum  since the error on the polar angle is small (A ta n #  «  6 x 10- 4 ). The 

error on Pt  has a 0 dependence since a track with large |cos# | typically has 

fewer measured coordinates and a shorter projected trajectory. The m om entum  

resolution for a 45 GeV particle traversing the full T P C  radius is given in Table 3.1 

for different sets of detectors [33]. Including the high precision VDET coordinates 

improves the m om entum  resolution by around 25%.

Im p a ct  p a ra m eter  reso lu tion

The impact param eter (d0,zo) resolution is im portant in this analysis since it 

has a direct effect on the resolution of a reconstructed decay length. The im pact 

param eter resolution can be measured using the two tracks from Z°  —> 

events. It is obtained from the distance between the two tracks at the interaction 

point projected into the rcj) and rz  planes. Figure 3.9 shows the distributions

r<p View rz View
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Z° —> [iy i
m e a n = ( -2 .8 ± 0 .5 )  /im  
a = (3 9 .5 ± 0 .4 )  /im

ALEPH•1000

800
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0.020.01- 0.02 - 0.01
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1400
Z °  — >  flfl
m ea n = (3 .8 ± 0 .4 ) fxvn 
a = (3 1 .7 ± 0 .3 )  /im

ALEPH
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- 0.02 - 0.01 0 0.01 0.02

Figure 3.9: Im p a c t  p a ra m e te r  reso lu tion  in rcj) an d  2  from  d im u o n  events .
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Detector Impact parameter resolution

r<j) (finl) rz  (/im)

T PC  only 300 800

T P C  +  ITC 100 800

T P C  +  ITC +  VDET 23 28

Table 3 .2 :  Im p a c t  p a ra m e te r  resolution of  A l e p h  t ra ck in g  devices.

of these projected distances for events with VDET hits in both layers. Dividing 

the widths of these distributions by y/2 gives the single track impact param eter 

resolution in the respective direction [36]. The results are summarised in 

Table 3.2.

3.4 Calorimetry

3.4.1 E lectrom agnetic  Calorim eter (ECAL)

The ECAL is a lead/proportional wire-chamber sampling calorimeter whose 

purpose is to identify and measure the position and energy of electrons, positrons 

and photons. It is situated inside the solenoid and consists of a barrel section 

extending radially from 1.85 to 2.25 m, plus two end-caps giving large solid angle 

coverage (0 <  </> < 27r and |cos# | < 0.98). A diagram of the ECAL is shown 

in Figure 3.10. The barrel and end-caps consist of 12 modules, each subtending 

30° in azimuth. Each module is made up of 45 layers of lead/proportional tubes 

giving a total of 22 radiation lengths. Cracks between modules constitute about 

2% of the barrel and 6% of the end-cap regions. The end-cap modules are ro tated  

by 15° with respect to the barrel to ensure tha t the cracks do not overlap. The 

s tructure  of an ECAL layer is shown in Figure 3.11. The lead sheets cause 

electrons, positrons and photons to produce showers of many electromagnetic 

particles through the processes of bremsstrahlung and pair-production. These 

showers cause ionisation avalanches around the anode wires and capacitively
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Figure 3.10: The electromagnetic calorimeter.

induce signals on finely segmented (~  30 mm x 30 mm) cathode pads. The 

cathode pads are connected together to form ‘towers’ which point towards the 

interaction point. The towers subtend an angle of 0.9° x 0.9° on average and are 

read out in three sections in depth, known as ‘storeys’, corresponding to 4, 9 and 

9 radiation lengths. Signals are also available from the wires planes, providing 

information for the trigger. The direction (0, (j>) of a shower is calculated from 

an energy weighted mean of the polar and azimuthal angles of the individual 

storeys in which energy deposits have been detected. The ECAL has an energy 

resolution of cte/ E  =  0 .1& /\JE /(G e \r) +  0.009 and an angular resolution of 

ae,4> = (2.5/ yJE /{G eV )  +  0.25) mrad. Particle identification is obtained using 

estimators based on the longitudinal and transverse shower shapes.

3.4 .2  H adron Calorim eter (H C AL)

The HCAL is situated outside the solenoid, extending to a radius of approximately 

5 m and covering 93% of the solid angle. Its purpose is to absorb and provide 

information on all particles which pass through the ECAL (mainly hadrons 

and muons). It also carries the return flux of the magnetic held. It has a 

similar s tructure to ECAL, consisting of layers of active detectors sandwiched
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;l e r d  s h e e t

H N O D E P L A N E

■uJires

g r o p h l t e d  m y l a r

C A T H O D E  P L A N E

Figure 3.11: Detail of ECAL layer.

between layers of absorber. A total of 23 layers of iron are used as the absorber, 

corresponding to 7.16 interaction lengths at 90°. Streamer tubes are situated 

between the layers of iron and detect the hadronic showers. Streamer tubes are 

similar to proportional tubes but operate at a higher voltage which means tha t 

the size of signal produced is independent of the incident particle energy. Each 

stream er tube consists of eight cells which have a cross-section of 0.9 cm x 0.9 cm 

and a length of around 7 m in the barrel region. A 100 /im wire runs along 

the centre of each cell and operates at 4kV. The tubes provide three different 

kinds of signals. Cathode pads on one side of the tubes are used to measure 

the energy released in the shower. They are connected in projective towers 

subtending 3.7° in azimuth (one HCAL tower corresponding to around 14 ECAL 

towers). Aluminium strips (4 m m  wide) on the other side of the tubes provide 

a digital signal if a tube has been fired at least once giving a two dimensional 

projection of the energy deposition which is used in muon identification. The 

third signal comes from the wires which give the energy deposited in single planes 

and is used for triggering. The energy resolution for pions at normal incidence is 

<te / E  =  0 .85 /v/£ / ( G  eV).
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M u o n  C ham b ers

Outside the HCAL there are another two double layers of streamer tubes aimed 

a t detecting muons which have passed through the iron layers. Each layer of 

tubes has cathode strips parallel to the wires on one side and orthogonal strips 

on the other side. The muon chambers are used as tracking devices and do not 

give energy information. The two layers are separated by 50 cm in the barrel 

region and 40 cm in the end-cap region allowing both the position and angle of a 

track to be measured. The angular resolution is approximately 10 — 15mrad.

3.5 Luminosity Monitors

The integrated luminosity received by ALEPH  is measured by determining the 

rate of elastic scattering (Bhabha) events at small scattering angles for which 

the cross section is well known2. The accuracy of the luminosity measurement 

depends on a precise measurement of the scattering angle since the cross section 

is a steep function of this angle. Good background rejection is also im portant.

The absolute luminosity is not im portant for the analysis described later, 

however the luminosity monitors also provide additional energy measurements 

which are used in calculations of missing energy.

SIC A L

Since 1992 the luminosity measurement has been performed using two silicon- 

tungsten sampling calorimeters (SICAL) which surround the beam-pipe at dis

tances of ±2.5 m from the interaction point, covering values of 0 between 24.3 

and 57.7 rnrad. Each calorimeter consists of 12 tungsten sheets alternating with 

layers of silicon giving a total of 23.4 radiation lengths. Each silicon layer is 

divided into 512 readout pads, corresponding to 16 radial pad rows of width 

5.2 m m  and 32 sectors in azimuth. The energy resolution of SICAL, for electrons,

2In lowest order of a  ; ^  where E  is the electron energy.
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is g e / E  = 0.33/y /E /{G e V ) .

L C A L

Prior to the installation of SICAL, the luminosity measurement was performed 

using a sampling calorimeter based on the design of ECAL. The LCAL consists 

of 38 layers of lead sheets and wire chambers.

B C A L

Online luminosity measurement is provided by the very small angle luminosity 

monitor (BCAL) which consists of two pairs of rectangular detectors placed at 

distances of ±7.7 m from the interaction point. Each calorimeter consists of 10 

layers of tungsten sheets alternating with layers of plastic scintillator. It covers 

the polar region 5.1 m rad < 0 < 9.0mrad.

3.6 Trigger

Idie purpose of the ALEPH trigger is to initiate readout of genuine e+e_ events, 

reject as many background events as possible and keep the dead tim e of the 

detector to a minimum. It should also be sensitive to unforeseen events from 

'new' physics.

A three level triggering system is used. The level 1 decision is reached within 

approximately 5 fis of a bunch crossing and is based on one or more of the following 

conditions ;

the energy deposited in the ECAL, HCAL or total detector is larger than  

a given threshold,

there are track candidates in the ITC with a corresponding energy deposit 

in the ECAL or HCAL,

there are back-tod^ack tracks in the ITC,
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there is a Bhabha event in SICAL.

A level 1 ‘N O 1 causes the detector to be reset in time for the next bunch crossing 

while a ‘Y ES1 decision initiates readout of the TPC.

The level 2 trigger uses information from the TPC  trigger pads and hence 

the decision time is limited by the time required for all the ionisation to drift 

to the ends of the chamber. This takes about 5 0 /zs. A level 2 ‘YES1 initiates a 

full read-out of the detector and a ‘N O 1 causes the data  acquisition to be cleared 

ready for the next event. The level 2 trigger rate is <  10 Hz.

The level 3 decision is made by an analysis process which runs within the 

d a ta  acquisition system. Its purpose is to check the level 2 decision using the 

da ta  from the whole detector and reject events which are not interesting. The 

level 3 trigger rate is 1 — 2 Hz which is an acceptable rate for data  storage. The 

combined trigger efficiency is close to 100% for hadronic and leptonic Z°  decays 

and Bhabha events.

3.7 Event Reconstruction

In the event reconstruction process, signals from the individual subdetectors are 

turned into objects which are then used for physics analysis. There are two types 

of object; tracks and calorimeter clusters. Track reconstruction is outlined in 

Section 3.3.4. Calorimeter clusters are formed separately in ECAL and HCAL 

from groups of spatially connected storeys which each have an energy deposition 

of greater than 30MeV. Two connected storeys must have at least one corner 

in common [37]. An energy-flow algorithm is used to combine the track and 

calorimetric information.

E n erg y  Flow

The aim of the energy flow algorithm [36] is to improve energy resolution by 

combining tracking and calorimeter information. The basic idea is to use the 

tracking detectors to calculate charged particle energies and avoid double counting
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by masking out the expected energy in the calorimeters which is associated to 

those tracks. The energy flow is therefore derived from tracks plus unmasked 

calorimeter energy.

The first stage in the algorithm is a ‘cleaning’ process. A subset of good 

charged tracks is formed by requiring each track to have a minimum of four T PC  

hits and to originate from within a cylinder of length 20 cm and radius 2 cm which 

is coaxial with the beam and centred on the interaction point. This selection 

removes V° candidates so these are searched for and recovered. Known noisy 

channels in the calorimeters are masked from the cluster finding and fake energy 

deposits from occasional noise are removed if the pad signal is incompatible with 

the signal measured on the wire plane.

After the cleaning process, charged tracks are extrapolated to the calorimeters. 

‘Calorimeter objects' are formed from associated tracks and calorimeter clusters. 

The energy associated with identified particles such as electrons, muons, photons 

and 7r°s is masked in the calorimeter object. The remaining particles should be 

charged and neutral hadrons. The energy of the remaining charged tracks is 

calculated assuming tha t they are pions and is subtracted from the remaining 

calorimeter energy. Finally, the energy remaining in HCAL clusters is a t tr ibu ted  

to neutral hadrons if it is larger than 500 MeV. Neutrinos escape from the detector 

without being detected but their energy is inferred from the missing energy in 

the event.

The energy flow algorithm enables the energy of the whole event to be 

determined with an accuracy of around 7% as shown in Figure 3.12.

3.8 Summary

The ALEPH detector gives a good overall performance in the study of e+e~ 

physics. The tracking detectors provide good m om entum  and impact param eter 

resolution which is im portant in the reconstruction of lifetimes and is vital for 

studying heavy flavour physics.
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Figure 3.12: D is tr ib u t io n  of  th e  to ta l  energy ca lcu la ted  using th e  energy  flow

a lg o r i th m .

Figure 3.13 shows three views of a reconstructed b event. The top-left picture 

presents an end-on view of the A LEPH  detector showing charged tracks and 

calorimeter deposits. The top-right picture is a magnified view of the the VDET 

and the bottom  picture shows two reconstructed secondary vertices which have 

been identified as being from the decay of a meson and the subsequent decay 

of a D f  meson.
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Figure 3.13: A b even t  r e c o n s t ru c te d  in th e  ALEPH de tec to r .



C hapter 4

Event Selection and b Tagging

This chapter describes the procedure for selecting candidate b events. The basic 

hadronic event selection is outlined and the procedures for reconstructing primary 

and secondary vertices are explained. The way in which the secondary vertex 

reconstruction package is used to enrich the event sample in b events is described. 

The need for smearing the track parameters in the Monte Carlo simulation is 

explained and the smearing procedure is outlined.

4.1 Event Selection

Hadronic events are selected from a total of approximately 4.1 million events 

collected between 1991 and 1995. The selection criteria are as follows :

• The high voltages for ECAL, HCAL and the tracking detectors are on.

• The event contains at least five ‘good1 charged tracks, where a ‘good1 track 

is defined to ;

(a) originate from a cylinder of radius 2 cm and length 20 cm around the 

interaction point,

(b) have at least four T PC  hits,

(c) have |cos0 | <  0.95, where 0 is the angle of the track with respect to 

the beam axis.

57
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• The total energy of all ‘■good’ charged tracks must be more than 10% of the 

centre-of-mass energy.

For events which pass these basic selection cuts, the thrust axis is calculated.
• • a • • | \  |p..72,|

This is defined as the vector h for which the quantity T  = is a maximum.

A cut is made on the angle of the thrust axis with respect to the beam axis to 

ensure tha t events are well contained within the VDET acceptance (Section 3.3.1). 

Events with | co s0 ^ rus*| <  0.8 are accepted and the others are discarded. This is 

essential for secondary vertex reconstruction. Each event is then separated into 

two hemispheres using the plane perpendicular to the thrust axis.

4.2 Vertex Reconstruction

4.2.1 Prim ary V ertex R econstruction

The position and size of the beamspot are calculated by the ALEPH event 

reconstruction program using blocks of approximately 100 events. The size of 

the beamspot envelope is approximately 150 p m  in the x direction, 3 p m  in the 

y direction and ~  1cm in the z direction [38]. The position of the beamspot 

is therefore not accurate enough to be used as a primary vertex position and 

so it is necessary to reconstruct the primary vertex on an event-by-event basis 

using information from the tracks in the event. It is very im portant tha t the 

reconstructed primary vertex position is not biased by the lifetime of heavy 

hadrons which may be present in the event. One method of primary vertex 

finding would be to identify tracks coming from the primary vertex and fit for a 

vertex position. In addition to being time consuming, this method opens up the 

possibility of including tracks with lifetime information in the primary vertex fit, 

hence biasing the primary vertex position.

In this analysis an alternative m ethod is used which is relatively insensitive 

to hadron lifetimes. The QFNDIP package [39] removes lifetime information by 

projecting tracks onto a plane perpendicular to the direction of the nearest
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je t,  this being an estimate of the direction of the decaying heavy hadron. The 

procedure is as follows :

(1) Perform jet clustering using the JADE [40] algorithm with a ycut of 0.02 and 

require at least two jets in the event.

(2) Project all tracks onto a plane perpendicular to their nearest jet and 

situated at the origin.

(3) Find the primary vertex position by minimising the \ 2 which includes all 

track information and the beamspot position ;

have no relation to either the primary or secondary vertex (such as tracks 

from photon conversions and tertiary decays). These tracks are removed if 

their contribution to the \ 2 is above a cut value.

a negative  projected distance along the jet direction and hence contain no 

lifetime information.

(4.1)
j=l i—iS  K ) 2

where ;

Bt = beam spot position in the i (x,y  or z) direction, 

V{ = primary vertex position in the i direction, 

a f  =  the size of the beam envelope in the i direction, 

N jet = number of jets,

Ntrack = number of tracks in je t j ,

D kL = distance between V  and track k J_ to je t, 

crkL =  track k error T to jet.

(4) Refine the vertex position by removing tracks from the calculation which

(5) Include the information parallel to the jet direction for tracks which have

Idle procedure described above yields a resolution on the prim ary vertex of about 

75 p m  in z  and 80 p m  in x for b events, and 50 p m  in z and 60 in x  for
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ads  events [41]. The resolution is better for uds events since there are more 

tracks originating from the primary vertex in uds events. The algorithm is 99.5% 

efficient and is largely unbiased by hadron lifetimes.

4 .2 .2  Secondary V ertex  R econstru ction

The problem of reconstructing secondary vertices is a complex one. A b hadron 

produced in the Z°  decay will typically travel around 2 m m  before decaying 

into about five charged hadrons. There may also be a similar num ber of 

charged hadrons in tha t hemisphere coming from the primary vertex. It is time 

consuming at these high multiplicities to perform a search among all possible 

track combinations for the best secondary vertex.

In this analysis, secondary vertices are reconstructed using an inclusive pattern  

recognition package, QVSRCH [42], which is based on a search in coordinate space 

rather than a search amongst track combinations. Prior to using this algorithm, 

jet-finding is performed on all energy flow objects, using the JADE [40] algorithm 

with a ycut of 0.02, identical to tha t of QFNDIP. Two jets are chosen as being those 

most likely to contain the b hadron decay vertices; the most energetic je t and the 

one which forms the highest invariant mass with it. The small fraction of events 

(~  0.06%) in which the two chosen jets are in the same hemisphere are rejected. 

The two je t directions and the primary vertex coordinates and its error are inputs 

to the QVSRCH algorithm. A quantity called A y 2 is defined as the difference 

between the y 2 when all tracks are assigned to the primary vertex, and the sum 

of the prim ary and secondary vertex y 2 values when some tracks are assigned to 

a possible secondary. The value of A y 2 is calculated for various secondary vertex 

positions on a grid extending ± l c m  along the je t direction and 4:500 y m  in the 

orthogonal direction. The point of m aximum A y 2 is chosen as the secondary 

vertex position. This procedure is carried out for both jets therefore giving 

a secondary vertex position for each hemisphere. As long as there are usable 

tracks in the hemisphere a secondary vertex position will always be found and 

the significance of the vertex can be estimated by the size of A y 2. In events with
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well separated vertices, the \ 2 wi^ t>e greatly improved when a possible secondary 

vertex is introduced. Large values of A \ 2 can therefore be used to tag b decays 

as discussed in the following section. The QVSRCH algorithm is approximately 

99% efficient at finding secondary vertices, although the significance of the vertex 

varies.

After using QVSRCH, secondary vertices are refined by re-vertexing a subset 

of tracks. This improves the decay length resolution which is obtained and is 

discussed more fully in Section 6.2.

4 .2 .3  b Tagging

Fhe QVSRCH algorithm returns a variable for each hemisphere, called the BTAG, 

which is defined to be A \ '2/2. A cut on the BTAG value can be used to enrich 

the event sample in b events. Ideally, it would be desirable to cut on the BTAG in 

one hemisphere and reconstruct the proper time in the other hemisphere in an 

unbiased way. However, it is found that,  due to correlations between hemispheres 

through the shared primary vertex, applying a cut on the BTAG in one hemisphere 

biases the proper time distribution in the other hemisphere. This bias must be 

taken into account in the fitting procedure. Therefore, since introducing a bias is 

unavoidable, an event tag is used, based on a cut on the sum of the BTAG variables 

in both hemispheres :

BTAG(hemi 1) T  BTAG(hemi2) > BTAG cut (4.2)

Using a cut on the event as a whole has the advantage of being much more efficient 

than  cutting on the BTAG in a single hemisphere. The bias introduced is taken 

into accuent in the fitting procedure.

4.3 Monte Carlo Simulation

Simulated events are used heavily in all lifetime and mixing analyses and similarly 

in several key areas of this analysis. In particular, Monte Carlo simulation is used
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D ata year MC simulation

1991 1992

1992 1992

1993 1993

1994 1994

1995 1994

Table 4.1: Monte Carlo samples corresponding to each data taking period.

in estimating the sample purity, modelling shapes of background distributions 

and accounting for the effects of detector resolution. It is vital tha t discrepancies 

between da ta  and Monte Carlo simulation are understood and, where possible, 

reduced to a minimum.

Monte Carlo events are generated using version 7.4 of the JETSET program 

[43], with parameters tuned to ALEPH data  [44]. The events are then passed 

through the detector simulation program, GALEPH, which converts the generated 

four-vectors into digitised pulses of the same format as those produced by the 

d a ta  acquisition system. The GALEPH program includes simulations of multiple- 

scattering, ionisation energy loss, electromagnetic processes and nuclear interac

tions. The events which are outpu t from GALEPH are then reconstructed using 

the same reconstruction program, JULIA, as used for real data.

Simulated events corresponding to the 1992, 1993 and 1994 detector geome

tries are available. Table 4.1 shows the Monte Carlo samples which are used for 

each da ta  taking period, as it is not possible to form a completely consistent set 

for each year.

4.4 Discrepancies between Data and Monte Carlo

Differences between da ta  and Monte Carlo can be seen in the distribution of 

[BTAG(hemi 1) +  BTAG(hemi 2) ], as shown in Figure 4.1 for 1993 data  and Monte
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Carlo. This discrepancy gives rise to differences in the efficiency of the BTAG cut 

as shown in Figure 4.2 and implies differences between data  and Monte Carlo in 

the flavour composition of the final sample. Discrepancies can also be seen in the 

distributions of reconstructed decay length returned from QVSRCH, as shown in 

Figure 4.3 for each data  year and corresponding Monte Carlo sample.

• Data 
 MC

■i
10

■2
10

10

5020 30 40 600 10

BTAG(l) + BTAG(2)

F igu re  4.1: Comparison of [ BTAG(hemi 1) + BTAG(hemi 2) ] distributions in 1993 data 

and Monte Carlo.

The [BTAG(hemil) 4- BTAG(hemi 2) ] distribution in Monte Carlo has more 

events with either very high or very low values and less in the intermediate region 

than  the data. This is consistent with the hypothesis tha t the tracks in the 

simulation are more tightly clustered round the primary and secondary vertices, 

while in the da ta  the tracking resolution is worse and the tracks are more spread 

out. The disagreement in the decay length distribution, especially in the negative 

tail, also indicates tha t the resolution in the simulation is better than  in the 

data. Tlie origin of both these discrepancies is a disagreement between d a ta  and 

Monte Carlo in the fundamental track impact parameters, d0 and Zo, which are 

defined in Section 3.3.4. The agreement between da ta  and simulation is improved 

by performing the Monte Carlo smearing procedure described in the following 

section.
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1.1
• Data

MC S 105
0 .7 5

0 .5

0 .950 .2 5

0 .9

BTAG cut

F igu re  4.2: The efficiency of the BTAG cut in 1993 data and Monte Carlo and the 

ratio of M C/data , prior to Monte Carlo smearing. The horizontal dotted lines indicate 

a disagreement of 5%.

4.5 Monte Carlo TYack Smearing

Several precision measurements [45, 46, 47], such as the measurement of 

which rely on impact param eter information, have shown tha t there is a need for 

Monte Carlo track smearing. Two main causes of the discrepancy between A L E P H  

data  and Monte Carlo have been identified. These are; (a) the VDET efficiency 

is incorrectly modelled in the Monte Carlo simulation, resulting in more tracks 

with VDET hits in the Monte Carlo than in the da ta  and (b) differences exist in 

the track impact param eter distributions. The smearing procedure [48] described 

here tackles these problems by; (a) randomly ‘removing’ a fraction of Monte Carlo 

tracks from the primary and secondary vertexing procedures, depending on the 

num ber of VDET hits which are associated with the track and (b) smearing the 

do and zq distributions by an amount determined from comparisons between da ta  

and Monte Carlo simulation.
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Figure 4.3: Distributions of the QVSRCH decay length prior to any b tagging for

each data taking period (points) and corresponding unsmeared Monte Carlo sample 

(histogram). The final plot shows the ratio data/MC for the high statistics 1994 sample.

4 .5 .1  V D E T  Track R em oval

Differences in the behaviour of the vertex reconstruction algorithms between da ta  

and M onte Carlo can be partly a ttr ibu ted  to differences in the numbers of V D ET 

hits which are assigned to tracks. Monte Carlo simulation uses an efficiency
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m ap of the vertex detector which reproduces inefficient regions and dead or noisy 

channels, however, some small discrepancies remain in the efficiency with which 

V D E T hits are assigned to tracks. In general, there are more tracks with VDET 

hits in Monte Carlo than in data.

In order to correct for this, a small percentage of randomly selected tracks 

axe temporarily removed from Monte Carlo events while primary and secondary 

vertexing is carried out. The percentage to be removed was calculated by 

comparing the numbers of tracks with 0, 1 or 2 VDET coordinates in each data  

year with tha t in the corresponding Monte Carlo sample. The comparison was 

done in 10 equal bins of cos #, where 0 is the angle of the track with respect to 

the beam axis, in order to allow for different data-M onte  Carlo discrepancies in 

regions where there is coverage of either 0, 1 or 2 layers of silicon. The fraction 

of Monte Carlo tracks with n VDET coordinates and with cos# in bin 0 ,  which 

are to be removed, is given by RTK(0,7?) ;

=  (4.3 )
•CSirC ( ® ! n )

where ;

n = number of VDET coordinates (0, 1 or 2),

0  =  cos 0 bin,

F tracks(Q, n) = fraction of tracks in bin 0  which have n VDET hits.

In cases where there are more da ta  tracks than Monte Carlo tracks in a 

particular bin, the RTK fraction is set to zero for tha t bin. Tracks are randomly 

removed from the vertexing procedures if the random number generated for tha t 

track is less than RTK for tha t track type. The RTK fractions used for the various 

da ta -M on te  Carlo years are shown in Figure 4.4. The extent of the inner and 

outer layers of the VDET are marked on the plots. It is seen tha t for all da ta  

taking periods, Monte Carlo events have an excess of single and double hit tracks 

in the region with VDET coverage. The number of tracks to be 'deleted" in the 

1992 Monte Carlo, in order to match to the 1991 data, is higher than  any other



C H A P T E R  4. E V E N T  S E L E C T IO N  A N D  B  TAG G ING 67

year. This is because the VDET was commissioned in 1991 and was initially 

operated with high thresholds which resulted in lower efficiency than other years. 

For small track angles where there is no VDET coverage, any vertex detector 

‘hits' are due to noise and there is an excess of these in the da ta  and so RTK is 

set to zero. Consequently, it can be seen tha t Monte Carlo track removal is only 

applied in the central region of the detector, at the level of a few percent. Monte 

Carlo tracks are only temporarily removed from the vertexing procedure so tha t 

properties of the event, such as multiplicity and jet-charge, are not affected.

Outer layer 
Inner layer

Outer layer 
Inner layer

0 .1 5 0 .1 5

• 1991
- 1992 
1993

o 1994
- 1995

o.i o.i

0 .0 5 0 .0 5
SO;

~c-

i
i0 .5 1 0 0 .5

0 .1 5

0.1

0 .0 5

(C) n = 2
Outer loyer ■
Inner layer

C O S 0 COS0 COS0

F igu re  4.4: Fraction of (a) 0, (b) 1, and (c) 2 VDET hit tracks ‘removed’ in Monte 

Carlo as a function of cos 0 of the track.

4 .5 .2  Track Im pact P aram eter Sm earing

The d0 and z0 distributions, and their significances (d0/<J^0, Zol<JZQ ), are shown

in Figure 1 5 for da ta  and Monte Carlo1. Discrepancies can be seen both in the

central regions and in the tails. The track smearing procedure described here

uses the shape of the da ta  distributions of the impact param eter significances as

a basis for modifying the Monte Carlo distributions. The discrepancies observed

'T h e  errors ad0 and a Zo are calculated from the track fit errors and are thus available for 

da ta  and Monte Carlo.
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F ig u re  4.5: Distributions of d0, z0, d o / ^ 0 an^ z0/ a Zo in data (points) and unsmeared 

Monte Carlo (histogram).
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may be due to one, or a combination, of the following :

(i) Physics scattering processes being incorrectly modelled in the simulation.

(ii) The distribution of material being different in data  and simulation.

(iii) The am plitude of physics processes being incorrect in the simulation.

In order to perform the track smearing procedure, the da ta  d0 /  and zq /  crZo 

distributions are first parameterised, using a combination of three Gaussians and 

a S tuden t’s-t distribution. A S tuden t’s-t distribution is given by [49] ;

J M  ’ £ I ^ J _ U L / a  ( 1 +  £ i ) - ' " " >/a
y  727T 1 (n /2 )  \  Tl )

where n is a positive integer. The S tuden t’s-t distribution resembles a Gaussian 

with wide tails. The tails diminish as n increases and the distribution approaches 

a Gaussian as n —> oo. S tuden t’s-t distributions with n = 3 and n = 4 were found 

to give the best fits to the clo /  ad0 and Zq /  crZQ distributions respectively. Scaling 

factors were introduced to allow the width of the S tuden t’s-t distribution to be 

varied in the fit, along with n and the amplitude. The parameterisation was found 

to yield a reasonable quality of fit to the data  (y 2 of 2 per degree of freedom). 

Contributions for each component of the parameterisations in da ta  are illustrated 

in Figure 4.6 for the d0 /  oy0 case. An identical fitting procedure is applied to 

the Monte Carlo sample corresponding to each data-taking period. Significant 

differences are observed in the widths and relative magnitudes of each of the four 

functions used to parameterise da ta  and Monte Carlo. As the discrepancy may 

be due to any of the several reasons stated previously, it is of interest to note 

whether it may be adequately explained by either the simulation yielding different 

widths or amplitudes in the fitted parameterisations.

It is observed tha t fitting the Monte Carlo using parameterisations with widths 

fixed to values determined from data, and allowing the Gaussian and S tu d en t’s-t 

amplitudes to float, yields a better  y 2 than the opposite case when the widths 

are varied. This implies tha t the discrepancy is most likely to be due to an
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F igu re  4.6: Results of the multi-parameter fit to the do /  <7̂0 distribution in the 199*2 

data. The upper plot shows the central small values on a linear scale whereas the lower 

plot shows the full range of values on a logarithmic plot.
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Function G l 

a = 1.07

G2 

<j =  1.96

G3 

o- =  21.3

S tuden t’s-t 

(j =  5.9

Data 48.3% 11.9% 0.1% 39.7%

Monte Carlo 51.5% 13.4% 0.1% 35.0%

Table  4.2: Amplitudes of the three Gaussians (Gl, G2, G3) and the Student’s-t

distribution used to parameterise the do /  ad0 distribution in 1992 data and Monte 

Carlo. The widths of the distributions are determined from data and are fixed while 

fitting the Monte Carlo distribution.

incorrect modelling of the amplitudes for various scattering mechanisms. Hence, 

the Monte Carlo fits are performed with fixed widths and the amplitudes of the 

4 functions used in the parameterisation are measured. The amplitudes obtained 

from fits to the d0 /  ad0 distributions in 1992 da ta  and Monte Carlo are given in 

Table 4.2. It can be seen tha t the narrowest Gaussians have greater amplitudes 

in the simulation while the S tuden t’s-t has a greater amplitude in data.

S m ea r in g  A lg o r ith m

Based upon the observations of the previous section, the smearing algorithm 

re-allocates Monte Carlo tracks from a point, on either the do /  <Td0 or Zq /  <JZ0 

axes, to a new position based upon tha t expected from the fitted data  resolution 

functions. This is a stepwise approach which proceeds as follows :

(1) For a given Monte Carlo track’s d0 /  cr̂ 0 or z0 /  <72o, the relative values of 

each of the 3 Gaussian and S tuden t’s-t distributions from the simulation 

are determined. A random number is then used to assign the track to one 

of the 4 parameterisations.

(2) If the chosen parameterisation is noted to have a greater am plitude in Monte 

Carlo, compared to tha t in data, a second random number is used to reassign 

the excess fraction of tracks to one of the underpopulated parameterisations.
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(3) The underpopulated da ta  parameterisation is then sampled and the position 

in d0 /  cr̂ 0 or zq /  <JZQ redistributed by firstly calculating the ‘t ru e ’ impact 

parameters, d1™6 and Zq1'116, and then using :

d s r n e a r  =  ^ true +  Q  x  ^

4 mear = 4 rue +  Q x (4-5)

where Q is the sampled number of standard deviations from the da ta  param eter

isation. This redistributes simulated d 0 and z0 significances, and hence their

im pact parameters, using a method which does not bias the actual value of 

do and z0. The effects of the smearing algorithm on the d o ,  Zo, d o  /  <JdQ, and 

z0 /  cr,0 distributions are shown in Figure 4.7. The agreement between d a ta  and 

smeared Monte Carlo is better. Clearly the result is not perfect, however the most 

im portan t discrepancies in the densely populated central regions of the tracking 

distributions are almost entirely corrected. The improvement is most marked in 

the case of d0.

R e -w e ig h t in g  o f  M o n te  Carlo C harm  E vents

The charm decay tables used in the Monte Carlo simulation vary depending on 

the year of Monte Carlo production. In order to update Monte Carlo samples 

to bring them  in line with the most recent charm measurements, a package of 

charm re-weighting algorithms is used. The package was first developed for the Rb 

measurements [45, 46]. It assigns both hemisphere and event weights according to 

the type and simulated lifetime of various charm branching modes. The weights 

are then  used when filling all distributions. The net effect of the charm  re

weighting is small.

After V DET track removal, im pact-parameter smearing and charm re-weighting 

have been applied, prim ary and secondary vertex finding are performed.
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Figure 4.7: Comparison of data distributions of cIq /  <Jd0 and zq /  crZo with smeared 

and unsmeared Monte Carlo. The left-hand plots indicate the central regions and the 

right-hand plots show the tail region on a logarithmic scale.
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4 .5 .3  R esu lts  o f  M onte Carlo Sm earing

Prior to applying the track smearing and VDET track removal, significant 

discrepancies between da ta  and Monte Carlo are observed in the decay length 

distribution and in the BTAG cut efficiency (see Figures 4.3  and 4 .2 ) .  After 

applying the smearing procedure to each Monte Carlo sample, the agreement 

between each data  year and its corresponding Monte Carlo sample is significantly 

improved. Figure 4.8  shows the decay length distributions obtained from QVSRCH 

(prior to any BTAG cut) after all Monte Carlo corrections have been applied. The 

bulk of the discrepancies are corrected, most im portantly  on the negative side 

of the distribution which is sensitive to detector resolution effects and relatively 

insensitive to lifetime contributions. The agreement in the BTAG cut efficiency is 

also improved, as shown in Figure 4.9  for each data-M onte  Carlo year, although 

a discrepancy of a few percent remains. This discrepancy is used to assign an 

uncertainty to the flavour composition of the sample as described in the next 

section.

4.6 Purities and Error Determination

The flavour composition after applying a BTAG cut as described in Section 4.2.3 is 

estim ated  from the Monte Carlo simulation after smearing has been applied. The 

6, c and uds purities and the b efficiency are shown in Figure 4.10 as a function ol 

the BTAG cut which is applied. The first bin in the plot shows the purities before 

any cut is applied and the second bin shows the effects of the vertexing (and 

re-vertexing - Section 6.2) cuts alone. For this analysis a BTAG cut of 20 is used 

(unless otherwise stated) which gives a b purity of about 90% and a b efficiency 

of around 60%.

Uncertainties are assigned to the purities based on the level of agreement of 

the tagging efficiency in data  and Monte Carlo, at the BTAG cut which is used. 

From Figure 4.9, the level of agreement at a BTAG cut of 20 is seen to be about 

2 — 6%, depending on the year. In order to convert the error on the overall tagging
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Figure 4.8: Distributions of the QVSRCH decay length prior to any b tagging for

each data taking period (points) and corresponding smeared Monte Carlo sample 

(histogram). The final plot shows the ratio data/MC for the high statistics 1994 sample.

efficiency into an error on the flavour purities, P / ,  two methods are considered.

The errors on the flavour purities, <j-pj (where /  =  6, c, uds), are related to 

the errors on the tagging efficiencies, e/, for tha t flavour by :

i _
T>s

(4.6)



C H A P T E R  4. E V E N T  S E L E C T IO N  A N D  B  TAG G ING 76

199

y  1.05

0.95

1993
  V ‘—1.05

M*

0.95

0.9 0 10 20
1.1

1995
1.05

1

0.95

0.9

1.1

1.05

0.95

0.9

1992

10

1994

1.05

0.95

10.9
200 10

1991-1995
1.05

0.95

0.9

BTAG cut

F igure  4.9: Ratio of the efficiency of the BTAG cut in the smeared Monte Carlo sample 

to that in data, for each of the data taking periods and corresponding Monte Carlo 

samples. The final plot shows the ratio obtained using the combined Monte Carlo 

sample and combined 1991-1995 data set. In each case the dotted lines represent ±5%.

One estim ate  assumes tha t the fractional error on the overall efficiency is the 

same as the fractional error on the flavour efficiency, hence :

a v,  =  V* (4.7)

where e is the overall tagging efficiency at the chosen BTAG cut and o c is the 

error on the overall tagging efficiency which is taken to be the difference between 

the tagging efficiencies in data and Monte Carlo. This means tha t the error
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F igure 4.10: Monte Carlo purities and efficiencies as a function of BTAG cut.

on the overall efficiency is ascribed to each flavour in proportion to the sample 

composition, the dominant error arising from b events with the contribution from 

c and uds  events being negligible.

A second, more conservative estimate allows for the fact tha t large uncertain

ties in the c and uds  backgrounds are as likely to give rise to the difference in the 

overall tagging efficiency as uncertainties in the b component. Assigning the total 

error on the overall tagging efficiency to each of the 6, c, and uds  components in 

tu rn  gives :

Since this method is the more conservative of the two, it is used in this analysis. 

In the fit for the average b lifetime (Section 6.5) the b and c purities are allowed 

to vary in the fit, constrained to their Monte Carlo estimates within the errors 

given by Equation (4.8). The fitted purities and errors from the lifetime fit are 

then used in the fit for the mixing parameter, A ( S e c t i o n  7.5).



C H A P T E R  4. E V E N T  S E L E C T IO N  A N D  B  TAG GING 78

4.7 Summary

In summary, hadronic events are selected as described in Section 4.1. Monte Carlo 

events are then modified as described in Section 4.5 by smearing track impact 

param eters and temporarily ‘removing' a fraction of tracks depending on their 

angle and number of associated VDET hits. By smearing in this way, Monte Carlo 

samples are obtained which are close representations of their corresponding data  

years. P rim ary and secondary vertices are found as described in Section 4.2 (after 

smearing in the Monte Carlo case). Refinement of the secondary vertices is then 

performed using a revertexing technique which is discussed fully in Section 6.2. 

The event sample is then enriched in b events by cutting on the sum of the BTAG 

values in the two event hemispheres. The statistics of the event selection are 

summarised in Table 4.3. After all cuts a total of 423169 events are selected

Selection Criteria Year 1991 1992 1993 1994 1995

Hadronic selection 249352 680577 677501 1748950 749840

Thrust cut 183078 505953 505326 1297540 553560

QFNDIP, QVSRCH 180435 498622 498652 1280240 545771

Revertexing 153767 426895 425632 1097160 464975

BTAG cut =  20 24803 69972 70347 182246 75801

Total 1991-1995 423169

Table 4.3: Summary of selected events after each stage of event selection for the

various data taking periods.

from the 1991-1995 data  set. In the following analysis, fits are performed on the 

combined 1991-1995 da ta  set, using a Monte Carlo sample which is formed by 

combining the smeared Monte Carlo samples for each year in the same proportions 

as the data. This is referred to as the ‘combined Monte Carlo sam ple’. Fits to 

individual da ta  years, using their corresponding smeared Monte Carlo samples, 

are done as stability checks.



C hapter 5 

Charge Tagging

In this chapter the method of determining quark charges by measuring the jet- 

charge is explained. In order to do this, the process of hadronisation is described, 

th a t  is, how coloured quarks produced in Z°  decays are transformed into jets of 

hadrons which are measured in the detector.

5.1 Hadronisation

T he decay of a Z u boson into a fermion-antifermion pair results in two categories 

of events. Leptonic events (Z°  —> /+/~) are characterised by few, high m om entum  

tracks while hadronic events (Z°  —> qq) consist of collimated je ts  of particles. A 

typical hadronic event consists of about twenty charged particles and a similar 

num ber of neutral particles. The differences between leptonic and hadronic events 

arise because leptons are colourless and can exist as free particles whereas quarks 

are confined and can only exist inside colourless hadrons. The process whereby 

coloured quarks are transformed into hadrons is called hadronisation and consists 

of two main stages; a parton shower stage which is described using perturbation 

theory, followed by a fragmentation  stage where perturbation theory breaks down 

and phenomenological models are used. A schematic diagram of a hadronic Z° 

decay is shown in Figure 5.1.

79
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Figure 5.1: Schematic diagram of a hadronic Z° decay.

P a rto n  showers

The parton shower stage can be described using perturbative QCD since energies 

are high and a s is small. The shower structure is derived using only the leading 

term s in the perturbative expansion (the leading logarithm approximation) and 

can be viewed as a series of branchings of the type g —> gg , g —> qq, q —> gq. The 

probability tha t a parton will branch is given by the Altarelli-Parisi equations 

[50]. The parton cascade continues until the effective mass of the branching 

parton  falls below a cut-off value (~  1 GeV). Beyond this cut-off, a s is too large 

and perturba tion  theory is no longer applicable.

F ra g m e n ta t io n

As the distance between quarks increases, the strength of the QCD coupling 

increases and perturbation theory breaks down. A number of models have been 

created to try and understand the fragmentation process. The A L E P H  Monte 

Carlo uses the ideas of string fragmentation  in the form of the ‘Lund M odel’ 

[43]. String fragmentation is based on the idea tha t,  at long distances, quarks 

are confined by a linear potential (Equation (1.1)). The flux tube connecting the 

q and q can be thought of as a one dimensional string having energy per unit 

leng th1 (i.e. string constant) k. As the q and q fly apart the energy in the string 

lrThe string constant is deduced to be % lG e V /fm  from hadron spectroscopy.
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- z

Figure 5.2: Schematic diagram of the string model.

increases until it breaks with the production of another qq pair (Figure 5.2). If the 

invariant mass of either of the new pieces of string is large enough, then further 

breaks will occur and the process continues until on-shell hadrons remain where 

each hadron is made of a small piece of string. The hadrons form collimated jets 

of particles travelling in approximately the same directions as the original quark 

and antiquark.

Partons produced during the shower stage complicate this picture slightly. 

High energy gluons create kinks in the string and qq pairs produced in the shower 

will lead to more than one string being formed. In these cases the events may 

contain three or four (or more) jets.

The production of qlql pairs from the string relies on the idea of quan tum  

mechanical tunnelling. The and qt must be produced at a point in order to 

conserve local symmetries (charge, flavour etc.) however, classically, this can only 

happen if the qx and qi have no transverse mass, m j_, where m \  = m 2 T p \  and 

m  and pj_ are the quarks1 masses and transverse momenta. Classically, if the qx 

and qx had transverse mass then they would have to be produced some distance 

apart so tha t the energy in the string could be converted into the sum of the two 

transverse masses. Q uantum  mechanically, the quarks can be produced at a point 

and then tunnel into the classically allowed region. The tunnelling probability is
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given by :
7r r a ^ \  i  7 r m 2 *p I \

e x p { ~ ~ )  = e x p \ ~ ) e x p \ ~) (5' 1) 
It can be seen from this equation tha t the production of heavy quarks during

fragmentation is strongly suppressed. The flavours of quarks are produced in the

ratio :

u : d : s : c : b »  1 : 1 : 0.3 : 10"11 0 (5.2)

However, heavy quarks can be produced in the parton shower stage by gluon 

splitting. The string has no transverse modes of oscillation and hence the 

transverse m om entum  of quark qt must balance tha t of its antiquark qx. The

transverse m om entum  of the hadron formed from <fr_i and its neighbouring

antiquark  cp (Figure 5.2) is given by the sum of p_Lz_i and p±i.

The energy and longitudinal m om entum  (with respect to the initial quark 

directions) of each hadron is constrained by the transverse mass :

m]_ = E 2 -  p2z = (E  + pz) ( E - p z ) (5.3)

Assuming th a t  the string breaks start at the quark end, the hadron qoq\ is formed, 

taking away a fraction 2 of the total available (E  +  pz), leaving reduced ( E  +  pz ) 

and ( E  — pz ) given by :

( E  +  pz )new — (1 — z ) (E - \ -p z )0id (5.4)
2

772
( H  Pz)neu> { H  P z )o ld  , j j 7 ( h - ^ )z ( E  +  p z ) 0 i d

The new string behaves in the same way as the old string and further hadrons 

are formed by iterating the above process. The probability tha t a hadron takes 

a fraction z  of the (E  +  pz) of the string is given by a fragmentation function  

f ( z ) .  Several forms have been tried for f ( z )  [43, 51]. The Lund Symmetric 

fragmentation function :

f ( z )  ~  \  (1 -  z)a exp (5-6)

with a = 0.5 and b = 0.92 [44], gives a good description of light quark (u , cf s) 

fragmentation but suggests a harder spectrum for B  mesons than  is observed in
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data. The Peterson fragmentation function [52] gives a better description for b 

and c hadrons ;

f ( z )  oc —  2  ^  (5 .7 )

* ( 1 " T "  A )
where the param eter eq (q =  6, c) varies as 1 / m 2q. The form of the Peterson 

function is shown in Figure 5.3 for the values e& =  0.0045, ec = 0.03 which are 

used in the 1994 Monte Carlo simulation. It can be seen tha t b and c hadrons 

are likely to take away a high fraction of the (E  +  pz) of the string.

  b hadrons (£b= 0.0045)6

---  c hadrons (cc= 0.03)5

4

3

2

1

(I
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0.1

z

Figure 5.3: The Peterson distribution (5.7) for the fraction of (E  + pz ) taken by

hadrons containing b and c quarks.

The fragmentation process gives rise to an ordering of the final particles in 

their flavour relationships as shown in Figure 5.4 for the case of an initial b quark. 

The meson which contains the original quark (i.e. the primary  meson) is given 

a rank of one, the neighbouring hadron is assigned rank two and so on down the 

chain. The decay products are assigned the same rank as their parents.

5.2 Charge Tagging using Jet-Charge

The jet-charge method has been used as a means of tagging initial quark charges 

in many analyses [24, 53, 54]. It is based on the fact tha t the particles produced 

during hadronisation retain some information about the charge of the quark which
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Figure 5.4: Illustration of hierarchy of hadrons produced in fragmentation (from an 

original b quark).

produced tha t jet [55]. This effect was first observed in neutrino and muon 

scattering experiments [56].

It can be appreciated from Figure 5.4 tha t if the primary meson is charged 

then the sum of charges of all rank one particles must have the same sign as 

the original quark. If the primary meson is neutral then the rank one particles 

will have a total charge of zero but the information on the quark charge will be 

obtained from the charge of the rank two particles (unless this is also neutra l in 

which case the information will be obtained from rank three etc.). The particles 

which are produced further down the chain with a high rank number retain almost 

no information about the charge of the original quark and only serve to add 

confusion. This gives some motivation for forming a weighted sum of particle 

charges in the jet or hemisphere, giving the particles which are more closely 

related to the original quark a higher weight than those produced further down 

the chain. In general the jet-charge is defined as ;

Q j = T  (5-8 )
i

where wl is the weight given to track i with charge qi and the sum is over all 

particles in the je t or hemisphere. The m om entum  of particles is expected to 

increase with decreasing rank number [55] and hence the longitudinal m om entum , 

/)|p, of a track z, with respect to the thrust axis, can be used as the weight. In
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this analysis the jet-charge is defined as ;

Q j  =  (5.9)
2-^hemi  P | |  i

where k is a positive constant. Choosing k. = 0 means tha t Q j  is just the 

average charge in the hemisphere and as n —> oo only the fastest tracks in 

the hemisphere contribute. Figure 5.5 shows the jet-charge distributions for 

hemispheres containing initial b and b quarks from a sample of Monte Carlo 

events using k =  0.5. The overlap region indicates the fraction of hemispheres

J S  SIMM)

• 54HKM)

4<MMM>

-0.75 -0.5 -0.25 0.25 0.5 0.75

Q

Figure  5.5: Monte Carlo jet-charge distributions for jets originating from b (solid)

and b (dotted) quarks for n = 0.5.

which would be wrongly tagged as b or 6 using this method. The mistag fraction 

is defined as :

mistag fraction =
No. of wrongly tagged hemispheres

(5.10)
No. of hemispheres

For Monte Carlo it is useful to sign the jet-charge using the charge, qquark, °f the 

initial quark which produced the jet. The quark signed jet-charge, Q j q, is defined 

as :

Q Jq = sign(qquark) x Q j  (5.11)

This quantity has a positive mean and the fraction of hemispheres with Q jq < 0 

is equal to the mistag fraction. The signed jet-charge is shown in Figure 5.6 for
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F ig u re  5.6: Signed jet-charge distributions for various n values, for Monte Carlo b 

events. The shaded region represents the mistag fraction.

various k, values and it can be seen tha t optimisation can be performed in order 

to obtain the k value which gives the lowest mistag fraction.

5.3 Choice of k, for Best Average M istag

Figure 5.7 shows the variation of mistag fraction with tz for the various quark 

flavours. For each flavour, there is value of k in the region 0.2-0.5 for which the 

m istag is at a minimum. It can be seen tha t the mistag fraction for u quarks 

is significantly lower than  tha t for cl quarks although their fragmentation is very 

similar. The reason for this is tha t u quark jets have a higher mean jet-charge
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Figure 5.7: Variation of mistag with k for the various quark flavours.

and there is therefore less of an overlap region between the u and u jet-charge 

distributions. This is not due to the u quark having a higher charge m agnitude 

( | J  than  the d quark as one might intuitively believe but is a consequence of 

the fact tha t only uu,  dd and ss  pairs are produced in the fragmentation process 

(see Equation(5.2)) [53]. An initial d quark can pair up with a d or a s to give a 

neutral meson whereas the suppression of cc. production means tha t an initial u 

quark can only form a neutral meson with a u. This is illustrated in Figure 5.8 

where the five possible fragmentation chains involving an ss  pair are shown for 

initial u and d quarks (showing only rank one and two mesons). It can be seen 

tha t fewer neutral states can be produced from an initial u quark. If u and d were 

the only two quark flavours then their jet-charges would be equal. This argument 

indicates tha t c quarks should also have a higher mean jet-charge and hence a 

lower mistag fraction. However, c quarks differ from u quarks in th a t  they have 

more complicated decay chains which tend to obscure the charge of the original
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quark. For example, in the decay D*+ —*■ 7r+ D°, the pion which carries the the 

initial quark charge has low m om entum  and will therefore have a low weight in 

the jet-charge sum.

U K+ iv)- 
s*

1 K- 
u

“ K+s
s o _ K 
d

ii) u jro V)

u

u K+

c:

_  71

c:i k°

iii)

r  s
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ii)

d iv)-

Ô s  r :

d K0 v)

i i i ) --------
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—  d Ko
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c i  (i)0s
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c
c:

d Ko

s
_ K

(b)

Figure 5.8: The five possible fragmentation chains involving a ss pair (showing first 

two ranks only) from an initial (a) u quark and (b) d quark.

In order to tag the initial quark state, k, — 0.5 is used since this gives the 

lowest initial state mistag for b events. In order to determine the sensitivity ol 

the jet-charge method to B°  — B°  mixing (i.e. the final state) it is necessary to 

understand the contributions which the various types of b hadron make to the 

average b jet-charge.

5.4 The b Jet-Charge and Sensitivity to M ixing

The average 6 jet-charge receives contributions from the various types of b hadrons 

which are produced during fragmentation. The relative fractions of B ± , B j  and 

B^  mesons which are produced are given by the probabilities to create uu, dd 

and ss  pairs in the fragmentation process (Equation (5.2)). Baryon production 

is poorly understood, but one model suggests it arises when a diquark pair (i.e.
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Figure 5.9: Jet-charge contributions associated with a charged B.

q q q q ) is produced at a string break instead of the usual quark-antiquark pair. 

This requires more energy and hence the baryon fraction is small. The world 

average values [11] for the b baryon and meson fractions are shown in Table 5.1.

Fraction Value

/„  =  B R (b ->

Si  =  BR(b-*

/ ,  =  BR(b- B»)

/ a  =  B R (b  —> b baryon)

0.395 ±  0.019 

0.395 ±  0.019 

0.109 ± 0 .013  

0.101 ±  0.031

Table 5.1: Meson and baryon fractions.

The different types of b hadron each give rise to different jet-cha.rges. In each 

case, the jet-charge receives a contribution from the decay tracks of the b hadron 

(i.e. rank one tracks) and a contribution from the other particles produced during 

fragmentation (higher rank number tracks). This is shown in Figure 5.9 for the 

case of a B + meson. The B + decay tracks give a large positive contribution to 

the jet-charge, reflecting the sign of the b charge, while the fragmentation tracks 

give a smaller negative contribution resulting in an overall positive jet-charge. 

The situation for neutral mesons is shown in Figure 5.10. The sensitivity of the 

jet-charge to mixing arises because the m om entum  weighted decay tracks of a 

B°  meson do not give a zero contribution to the jet-charge [54]. Figure 5.11 

shows the Monte Carlo m om entum  spectra, in the B  rest frame, for positively 

and negatively charged particles originating in (a) semi-leptonic decays, (b) two-
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F ig u re  5.10: Jet-charge contributions for (a) unmixed and (b) mixed neutral B

mesons.

body hadronic decays and (c) multi-body hadronic decays of B°  mesons. It can 

be seen tha t in all types of decay the positively charged particles have a harder 

m om entum  spectrum than the negatively charged particles. This is most obvious 

for semi-leptonic decays such as tha t shown in Figure 5.10. The high m om entum  

lepton has the same sign as the b (or b) in the B°  (or B°) meson when it decays, 

while the oppositely charged D meson shares its m om entum  between typically 

three or four decay tracks. The m om entum  weighted jet-charge contribution 

from the decay tracks therefore reflects the sign of the b (6) quark at decay. The 

fragmentation tracks produced along with the neutral meson give a jet-charge 

contribution which, on average, has the same sign as the initial b quark. In the 

case of an unmixed B°  as shown in Figure 5.10(a), the contributions from decay 

and fragmentation tracks add to give a positive jet-charge. If the B°  mixes and 

decays as a B°  (Figure 5.10(b)), then the contribution from the decay tracks flips 

sign and cancels the contribution from the fragmentation tracks to some extent, 

resulting in an average jet-charge which is closer to zero or possibly negative. 

Hence hemispheres containing mixed and unmixed mesons have different jet- 

charges and this is the basis of the method used in this analysis. The four types 

of b hadron { B ± , B d, B ^ : baryons) can be separated into six classes of hadron, 

each with its own characteristic jet-charge. The six classes are listed in Table 5.2 

and their signed jet-charge distributions for k =  1.0 are shown in Figure 5.12



C H A P T E R  5. C H A R G E  T AG G IN G 91

(a )  s e m i - l e p t o n i c  d e c a y s

  #
Aaaa *•

J 1 1 AiA A|A AlA a U  A1!  I

(b) two —body d e c a y s

L*_

j—|—i—i— AiA Ala a:A a-« m* m
(c )  multi —body d e c a y s_ A

0 2 *  3
P (GeV/c)

F ig u re  5.11: Monte Carlo momentum spectra for positively (solid circles) and

negatively (open triangles) charged particles from (a) semi-leptonic, (b) two-body 

hadronic, (c) multi-body hadronic decays of neutral B° mesons (containing positively 

charged b quarks).
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Class of hadron Time dependent fraction Time integrated fraction

B ± r e~t/rB+ 
Ju -R+ fu

baryons r e~f/rA 
T\ / a

Bd unmixed f, r~tlTnj (1+cos(Amat)) 
U  2rBd (1 -  Xd)fd

Bd mixed f  . r~tl TBi (1—co s(A mdt)) 
U  2 rBd Xdfd

B s unmixed f  r-t/rn.  (l+cos(Am#<)) 
Js 6 ~ 2tb. (1 -  Xs)fs

B s mixed f  r-t/TR„ ( l - c o s ( A mat)) 
Js ' 2TB, Xsfs

Table 5.2: Time dependent and time integrated fractions for each of the b hadron 

classes, where rB+, ta ,  , tb,  are the lifetimes of B ± , b baryons, Bd and B s 

respectively.

(where the jet-charge has been signed using the initial quark charge). The effects 

of mixing cause the mean Q j q to be negative in the Bd case and significantly 

lower in the B s case, than in the unmixed cases. The sensitivity of the jet-charge 

to mixing depends on the relative weight given to the B  decay tracks compared 

to the fragmentation tracks and therefore depends on the k value used. Although 

k = 0.5 gives the best average mistag it does not necessarily provide the best 

sensitivity to mixing. Intuitively a higher k value gives more weight to the B  

decay tracks and could give greater sensitivity, while k, =  0 would be insensitive 

to mixing since the track charges from the neutral B  would all sum to zero.

The value of the average jet-charge for b quarks changes as a function of proper 

time since the relative fractions of mixed and unmixed events is changing as a 

function of proper time (Equation(1.32)). For convenience, the tim e-dependent, 

average signed jet charge for b quarks, (Q j q)b( t ), is denoted by (Qb) (t). An 

expression for (Qb) (t) is found by forming a sum of the jet-charges for each class 

of b hadron, weighted by their time-dependent fractions :

( Q b){t )  = -■6c/- 5-e5-—-lass ^ class  ̂ (5.12)
^ 6  c l a s s e s  - ^ ~ c / a  S S

where Tciass is the time-dependent fraction for tha t class (listed in Table 5.2) 

and ( Q d a s s ) is the time-integrated signed jet-charge for tha t class. Rearranging
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F ig u re  5.12: Initial quark signed jet-charge distributions for the different b hadron 

classes (k = 1.0).
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Equation (5.12) and making the simplifying assumption tha t ail b hadrons have 

equal lifetimes leads to the expression :

\ Q  B  u n m tx  )  4  \  O r  m i x

( Q b ) ( t )  ~  f u  ( Q b ± )  +  A  ( Q a )  +  f d  -  2   -----

( Q  unrnix  )  +  ( Q b . m i x  y (  Q  g  u n m i x  y — (  q  m i x

+  f s -  1--------------  —  + f d 1 - Ly A   — -  cos(Amj()

\  Q b  u n m i x  ) —  ( Q g r n i x  )
4- f s        cos (A m st) (5.13)

The time-integrated, average b jet-charge, denoted by (Qb),  also contains 

mixing information through the time-integrating mixing probabilities, X d , s  :

( Q b )  =  f u ( Q B ± )  4  / a  (Qa)  +  fd ( Q g u n m i x ^  4 - f S  ( f Q  B  *nm i x ^

4 * f d X d  (  ( Qb™" * )  ~  (Q e ^ m i x  ^  )

+  f s X s  (  ~  )  (b *  1 4 )

In the above equations, the terms involving the mixing param eters are all

multiplied by a ( (Q^unm.x) — ( Qb ™'x) ) factor and hence the m axim um  sensitivity

to mixing is achieved by selecting the k value which gives the largest significant 

separation between the means of the quark signed jet-charge distributions in 

Monte Carlo for mixed and unmixed mesons. This is equivalent to maximising 

the difference in initial state mistags for mixed and unmixed events as shown in 

Figure 5.13. For k =  0 the jet-charge distribution is unchanged by mixing arid 

the difference between the mistags is zero. As ac is increased the sensitivity to 

mixing increases and reaches a m aximum around k = 1.0 for both Bd and B s 

mesons.

The different decay modes which are dominant in B d  and B s decays give rise 

to differences in their jet-charges. B d mesons decay predominantly via the decay 

chain :

B°d -> D *~X  , D*~ -> D°7r- (5.15)

The ir~ has the opposite charge to the b quark but has low m om entum  due 

to the small mass difference between the D*~ and D°.  It will therefore have
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F ig u re  5.13: Sensitivity to mixing, as given by the difference between (initial state) 

mistags for mixed and unmixed mesons, as a function of k for Bd and Bs mesons.

a low weight in the jet-charge sum and may escape detection altogether thus 

enhancing the positive jet-charge contribution from other tracks. In the B s case, 

the corresponding decay chain is :

B°s -  D - - X  , D ' -  e; 7 (or d ; * ° )  (5.16)

There is no neutral D meson which contains an s quark and so the direct analogy

to (5.15) is not possible, hence there is no charged pion to give an enhancement

effect similar to tha t for Bd mesons. Consequently the jet-charge m ethod is more 

sensitive to mixing for Bd mesons than  for B s mesons.

5.5 The Charge Correlation Function

The charge correlation function for da ta  is defined as the product of the two 

hemisphere charges :

charge correlation =  Q j ^ ° '5 Q j ^ 1 ‘°^ (t) (5.17)
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where V  refers to the hemisphere in which the proper time is measured, referred 

to as the ‘same' hemisphere, and ‘o' refers to the ‘opposite1 hemisphere. The 

charge correlation for a pure b sample (with perfect proper time resolution) can 

be w ritten  as :

charge correlation =  (Q°hf )  (QIs°) M + ™v(Qbo, Q bs) (5.18)

where (Q b) and (Q b) (t ) are defined in Equations (5.12) and (5.14) and cov (Q bo, Qbs) 

is the covariance between the two hemisphere charges. The correlation between 

hemisphere charges arises due to ‘swapping1 of low m om entum  tracks from 

one hemisphere to the other [57], which occurs at the hemisphere boundaries2. 

The correlation is largest for low values of k, where the contribution from low 

m om entum  tracks is greatest, and decreases rapidly as k increases and the tracks 

in the core of the jet are given more weight. At the k, values used here, the 

correlation is approximately 1%. In the fitting procedure described in C hapter 7, 

these covariance terms are taken from Monte Carlo simulation.

The jet-charge in the ‘opposite’ hemisphere reflects, on average, the initial 

quark charge in tha t hemisphere and hence gives information on the initial charge 

in the ‘sam e1 hemisphere since initially a bb pair are produced. The choice ol 

k =  0.5 on the opposite side therefore gives the best initial s tate tag as discussed 

in Section 5.3. On the ‘sam e1 side, the best sensitivity to mixing is obtained 

using k = 1.0. In most events, the two hemispheres will have opposite charges, 

and — Q j 0 Q j s will be positive. In events where a single mix has taken place, the 

product of the charges will be smaller or negative. A full description of the fit to 

the charge correlation function is given in Chapter 7.

2This is partly due to the uncertainty in the definition of the hemispheres and partly due to 

charge conservation during hadronisation.



C hapt er 6 

P roper Time Measurement

6.1 Introduction

The proper lifetime of a 6 hadron is calculated using :

t = — l (6.1)
P B  C

where m s  is the average mass of b hadrons (taken to be 5 .3G eV /c2), ps  is the 

reconstructed 6 hadron m om entum  and / is the reconstructed decay length. In 

this chapter, the algorithms for reconstructing the decay length and m om entum  

of b hadrons are described. The resulting proper time resolution is shown and 

the fitting procedure which is used to extract the inclusive b lifetime, r&, is 

described. An accurate value for the inclusive b lifetime is obtained which is 

in agreement with the world average. Measurement of the inclusive b lifetime 

serves as an im portant cross-check of the fitting procedures required to extract 

the B°j oscillation frequency and it is also a valuable measurement in its own 

right.

6.2 Measurement of Decay Length

A two stage process is used to calculate the decay length of the b hadron. Firstly, 

an initial secondary vertex position is found in each hemisphere, using the QVSRCH

97
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[2] reconstruction algorithm described in Section 4.2.2. A quantity, denoted by 

TZsig, is then calculated for each track where :

( 6.2

S p and S s are the track significances1 relative to the primary and secondary 

vertices respectively. The quantities S p and S s are signed relative to the jet-axis 

as shown in Figure 6.1.

Sp>0
ss > 0

primary
vertex^

jet axissecondary
^vertex

F ig u re  6.1: Schematic diagram showing how the track significances are signed.

The distribution of 'Rsig for tracks from b events is shown in Figure 6.2  where 

the contributions from b decay tracks and fragmentation tracks are superimposed 

on the total. The ratio 7Zstg is close to zero for tracks which pass through the 

prim ary vertex and is close to one for tracks which pass through the secondary 

vertex. There are a significant number of tracks which are far from both vertices 

or have no precision VDET information, and give a value of 7Zsig which is close 

to 0.5. Tracks which pass between the vertices (i.e. having S p positive and 

S s negative) populate the tails of the distribution. The R sig distributions for 

da ta  and Monte Carlo (before applying the BTAG cut) are shown in Figure 6 .3 . 

The agreement between data  and Monte Carlo is good, except in the region 

around R sig = 0.5 where there are more tracks in the da ta  than in the Monte 

Carlo. Since these are tracks which are far from both primary and secondary

LThe track significance is the signed impact parameter (relative to the primary or secondary 

vertex) divided by its error.
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F ig u re  6.2: The ratio IZstg for tracks from Monte Carlo b events. The shaded region 

indicates tracks from the decay of the b hadron.

vertices, the excess in da ta  is consistent with the fact tha t the tracking resolution 

is worse in data  than in Monte Carlo. Smearing the Monte Carlo track resolution 

as described in Chapter 4 has improved the agreement around 0.5 but has not 

removed the discrepancy altogether.

It can be seen from Figure 6.2 tha t 7Zsig provides a means of distinguishing 

between fragmentation tracks and those from the b hadron decay. Most fragmen

ta tion  tracks have 7Zs{g smaller than ~  0.5 while b hadron tracks tend to have 

higher values of 7Zsig. The decay length resolution is significantly improved by 

choosing ct subset of tracks which have 1Zsig > cut and fitting them  to form a new 

secondary vertex using a vertex fitting routine, described in [58]. The re-fitted 

vertex is required to have a y 2 probability of greater than 1%. The decay length 

is then given by the distance between the primary vertex and this revertexed 

secondary, signed relative to the je t direction.
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F igu re  6.3: Comparison of the IZsig distribution for data and Monte Carlo.

The efficiency of the revertexing procedure decreases as the 7Zslg cut increases, 

since less tracks are likely to pass the cut, whereas the decay length resolution 

improves as the cut increases and hence there is an optim um  cut which must 

be found. The best cut is found by optimising the sensitivity to B® mixing by 

maximising the quality factor given by :

( a r t i j g j ) 2
Quality factor =  \ /e exp 2 (6.3)

This quality factor is derived from the signal/noise ratio given in Equation (2.6), 

taking only the decay length resolution into account. Here, e is the efficiency 

for at least one hemisphere to contain a "good' revertexed secondary (a vertex is 

"good' if the vertex fit succeeds and its \ 2 probability is greater than 1%) and 

ai is the decay length resolution (in millimetres) from the Monte Carlo, taken 

as the rms of the ( l reCo ~  I t rue )  distribution where lreco is the reconstructed decay 

length and ltrue is the true b hadron decay length. The quality factor is plotted
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Figure  6.4: The quality factor for revertexing as a function of the 7Zsig cut. The

dotted line shows the quality factor obtained using the default QVSRCH vertexing.

in Figure 6.4 as a function of the 7Zs{g cut. A cut of at least 0.5 must be applied 

before the quality factor improves on tha t obtained using the original QVSRCH 

secondary vertex (i.e. without revertexing) and it can be seen tha t the best cut 

is at 0.7. From Monte Carlo b events it is determined tha t about 80% of tracks 

assigned to the secondary vertex by an 7Zsig cut of 0.7 are b hadron tracks and 

the remaining ‘20% are fragmentation tracks.

The second stage of decay length reconstruction therefore consists of fitting 

all tracks with 7Zsig > 0.7 to a new secondary vertex and requiring tha t this 

vertex has a \ 2 probability of greater than  1%. If both hemispheres contain good 

revertexed secondary vertices, then the hemisphere containing the vertex with 

the highest \ 2 probability is chosen to be the side on which the proper tim e is 

measured (referred to as the ‘sam e’ side) and if there is only one good secondary 

vertex then tha t hemisphere is chosen as the ‘same' side. Events in which neither 

hemisphere contains a good secondary vertex are rejected. The resulting decay 

length reconstruction efficiency is approximately 85% on average and about 93% 

for b events. Any bias to the proper time distribution, arising from choosing a 

hemisphere in this way, is taken into account in the fitting procedure.

QVSRCH
default

_____ ........ ....... , i , , . ,  i , , , ,  i , , , ,  i ,,i . i ... 11... 11 —  i . . . .  i . . . .  i , i ■. 
0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Figure 6.5: Decay length resolution with revertexing (points) and without revertexing 

(histogram), plotted on a logarithmic scale in order to show the tail regions.

Figure 6.5 shows the decay length resolution, ( l r e c o  — I t r u e ) - ,  after a BTAG cut of 

20. The points show the resolution obtained after revertexing and the histogram 

shows the resolution obtained using the default QVSRCH vertex. Table 6.1 gives 

details of the resolutions obtained with and without revertexing. The first column 

shows the rms of the (/reCo — U r u e )  distribution and the other three columns 

show the widths obtained when the resolution distribution is fitted with three 

Gaussians. It can be seen tha t revertexing gives a marked improvement.

Method rms (mm) G l (75%) 

cr (mm)

G2 (22%) 

cr (mm)

G3 (3%) 

cr (mm)

no revertexing 1.38 0.26 0.77 2.8

with revertexing 1.05 0.24 0.64 2.4

Table 6.1: The effect of revertexing on the decay length resolution. G l, G2 and G3 

are Gaussians 1,2 and 3 respectively.

The distributions of (/reco — Itrue) are shown in Figure 6.6 for several slices in
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Figure 6.6: Decay length resolution, (lreCo ~ hrueb f°r several slices in ltrue-

I true• It can he seen tha t the decay length resolution depends on ltrue and tends to 

improve with increasing ltrue as contamination of the secondary vertex, by tracks 

from the primary, decreases. All of the distributions have positive means, since 

in most cases the B  meson decays to a D meson which travels some distance 

before decaying. Tracks from the D decay tend to pull the reconstructed vertex 

away from the true B  vertex, giving larger decay lengths. This bias is taken into
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account using the folding procedure discussed in Section 6.5/2.

The reconstructed decay length distribution after a BTAG cut of 20 is shown in 

Figure 6.7 for data  and Monte Carlo. Despite the Monte Carlo smearing which 

was performed, a significant discrepancy is seen between data  and Monte Carlo,

u  40000 • Data 
 MC

35000

30000

25000

20000

15000

10000

5000

-0.5 -0.25 0 0.25 0.5 0.75 1.25 1.51

F igu re  6.7: Reconstructed decay length distribution in data and Monte Carlo after 

a BTAG cut of 20.

after b tagging, at low reconstructed decay lengths. This discrepancy is due to 

differences between da ta  and Monte Carlo in the efficiency of the BTAG cut and 

is discussed in more detail in Section 6.5.3.

6.3 M omentum Reconstruction

The m om entum  of the b hadron is composed of three contributions :

• Charged tracks from the b hadron decay, which contribute, on average, 60% 

of the total b hadron momentum.

• Neutral particles from the b decay, which constitute around 34% of the 

total b hadron momentum. These are particles such as 7 and 7r° which are
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detected in the ECAL and particles such as neutrons which are detected in 

HCAL.

• The third contribution comes from missing mom entum which is carried by 

undetected neutrinos which may be produced in the b decay, contributing 

6% on average.

The total b hadron m om entum  is reconstructed as the sum of these three 

components :

P B  =  p CBk  +  p nBeu  +  P b ’“( 6 - 4 )  

The reconstruction of each component is described in the following sections.

x 10
C/5

-g 1400 
2£ 1200 
o
o  iooo 

Z
800 
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400 

200

°  0 1 2 3 4 5

R a p id i t y

Figure  6.8: Rapidity distribution for tracks from Monte Carlo b events.

6.3.1 Charged Track M om en tu m  and Track W eights.

In order to reconstruct the m om entum  contribution from charged tracks it is 

again necessary to distinguish between B  decay tracks and fragmentation tracks. 

In order to do this the significance ratio, 'JZsig, is used once more. However since 

there are a large number of tracks with 7Zstg = 0.5 which are either far from

3

• All tracks 
I I frag, tracks 
®  B tracks
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both the primary and secondary vertices or have no VDET information, a second 

quantity  is needed to help discriminate between B  and fragmentation tracks. The 

track rapidity, y , with respect to the secondary vertex direction is also used where 

y  is given by :

y  =  1 In (6.5) 
2 E - p \ \

where E  is the energy of the track and py is its m om entum parallel to the vertex 

direction vector. The rapidity distribution for tracks from Monte Carlo b events 

can be seen in Figure 6.8, showing the contributions from b hadron tracks and 

fragmentation tracks.

The rapidity and 'R.stg of a track are used to calculate a probability weight, w , 

tha t the track came from the decay of the b hadron. The weights are calibrated 

using Monte Carlo b events by plotting 7Zsig against y  on a two dimensional grid. 

The weight for a track in a particular (y , R sig ) bin is given by :

No. B  tracks in bin (y, R sig)
Sl9 No. B  +  frag, tracks in bin (y , R sig )

The distribution of track weights for b events is shown in Figure 6.9. A clear 

distinction can be seen between B  tracks and fragmentation tracks. The weight 

distributions for data  and Monte Carlo are in good agreement, as shown in 

Figure 6.10 (prior to applying the BTAG cut). The unusual s tructure in the weight 

distribution is a consequence of the binning used in the calibration of the weights.

The charged contribution to the B  m om entum is found by summing the 

momenta of all charged tracks in the hemisphere, weighted by the probability 

tha t they are from the B  decay :

Pb =  Y  wiPi (6-7)
i — ch a rg e d  tra c k s

where wx is the weight assigned to track i and pi is the track mom entum . 

Forming the weighted sum in this manner is more efficient than simply adding the 

mom entum  of all tracks having wx passing a cut value. The reconstructed charged 

m om entum  distribution is shown in Figure 6.11 for data  and Monte Carlo.
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F i g u r e  6 .9 :  Track weights for b events showing the distinction between b hadron

tracks and fragmentation tracks.
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Figure  6.10: Track weights in data and Monte Carlo for all flavours of events (before 

applying BTAG cut).
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F ig u re  6.11: Reconstructed charged momentum distribution for data and Monte

Carlo, after a BTAG cut of ‘20.

6.3 .2  V ertex Charge

Since the  track weights are high for b hadron decay tracks, it is interesting to use 

these weights to form a ‘Vertex Charge’, Q vert , which should reflect the charge of 

the b hadron which decayed :

Qvert — ^ 1 Qi (0-b)
hemi

The vertex charge distribution does not lie between —1 and +1 as the s tandard 

jet-charge does, but tends to reflect the total charge at the secondary vertex. 

The vertex charge distribution is shown in Figure 6.12 where the contributions 

from charged and neutral B  mesons are superimposed on the total. Definite 

structure can be seen, with the distribution for B ± being more peaked at —1 and 

+  1, while the vertex charge for B°  mesons (B® and B °) is closer to zero. By 

making a cut on the value of Q vert for a hemisphere, it is possible to enhance 

the sample in charged or neutral mesons. For example, a sample of hemispheres 

with \Qvert\ <  0.6 consists of approximately 58% B°  and 33% B ± compared to the 

production fractions of ~  50% B°  and ~  40% B ± (Table 5.1). The idea ol cu tting
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on \Qvert\ in this way is used in Section 7.2 to check the agreement between da ta  

and Monte Carlo distributions of jet-charges and hemisphere multiplicities in B°  

and B ± enhanced samples.

C /5£ 20000 

Xa*
•■3 17500 
£  a>

X
* 0  1-5000 

O
Z

12500

10000

5000

2500

- 2 - 1 0  1 2
Qvert

• Data
 MC

- ... ..  B°

: m  B +/'

Figure 6.12: Vertex charge distribution after a BTAG cut of 20.

Although the vertex charge is useful for distinguishing between B°  and B ± 

mesons, it is not as sensitive to mixing as the standard jet-charge since the vertex 

charge for B°  mesons is close to zero and does not change significantly when a. 

mix has occurred. While the mistag fraction for charged B  mesons is better  using 

the vertex charge (~  26%) than  with the standard jet-charge (~  29%) it is worse 

for neutral B  mesons (~  39% compared with ~  36%) and the overall mistag 

fraction is approximately the same as for the standard jet-charge. Consequently, 

the vertex charge is not used as a means of tagging the initial and final states of 

the B  meson but is of use in obtaining B°  or B ± enhanced samples.
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6.3 .3  N eu tra l and M issing Energy R econstruction

Assigning neutral energy to the B  decay is slightly more difficult than calculating 

the contribution due to charged tracks. The procedure is as follows :

• Je t clustering is performed on all neutral and charged objects, using the 

JADE algorithm [40]. The algorithm loops over all pairs of tracks and merges 

pairs which satisfy (M f y f s )2 < ycut where M  is the invariant mass of the 

track pair and y4s is the centre-of-mass energy. The value of ycut is chosen 

to be (5.3/yds)2 corresponding to the average mass of the b hadron. On 

average 3-4 jets are found.

• The je t which is closest to the secondary vertex direction is chosen to be 

the B  jet.

• If a neutral object is in the chosen jet, then its m om entum  component 

parallel to the vertex direction is included in the total B  mom entum . This 

serves to reduce the contribution from fragmentation neutrals since they 

have smaller longitudinal m om enta than do neutrals from B  decays. This 

differs from other analyses [19, 24] which multiply the neutral energy by 

a fixed scaling factor. On average, six neutral objects contribute to the B  

momentum.

M iss in g  E n erg y  R e c o n s tru c t io n

The missing energy due to undetected neutrinos is calculated by subtracting the 

visible energy in the hemisphere from the total energy in tha t hemisphere :

where the total energy in hemisphere 1, is calculated using conservation

of energy and m om entum  :

Fi m i s s  
h e m i  i

'tot    rpvis
h em i i h em i i (6.9)

hem i  1 ( 6 . 1 0 )
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Figure 6.13: Figure (a) shows the missing energy in the hemisphere as calculated

using Equations (6.9) and (6.10). Figure (b) shows the missing energy which is added 

after taking resolution effects into account.

and mhemi i ,2 are the invariant masses of the two hemispheres. The missing energy 

distributions for da ta  and Monte Carlo are shown in Figure 6.13(a). Negative 

missing energies are possible because of resolution fluctuations in the calorimeters. 

Noise fluctuations might mean tha t E ms is greater than E tot for th a t  hemisphere. 

In ordei to estim ate the missing energy resolution, the negative side of the missing 

energy distributions in da ta  and Monte Carlo are fitted with Gaussians. The 

mean and widths of the Gaussians used for data  and Monte Carlo are given in 

Table 6.2. It can be seen tha t the missing energy resolution is better in the Monte 

Carlo than  in the data. Only a fraction of the missing energy, E^jdedi ls added to
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Param eter Data Monte Carlo

b 0.780 GeV 0.678 GeV

a 3.462 GeV 3.304 GeV

Table  6.2: Summary of Gaussian parameters from fit to negative side of missing

energy distribution in data and Monte Carlo simulation.

the B  momentum, where :

' E miss -  jirpm iss  __ jnr
added e r f (6 . 11)

\ /2  cr

where e r f  is the error function [2] and gives the fraction of the area of the 

resolution Gaussian which lies between fi ±  E miss. Hence for values of E miss 

which lie outside the resolution Gaussian, the whole of E miss is added, while for 

values of E mtss which lie within the resolution envelope, a fraction which is less 

than  one is added. The distribution of E™dd*d is shown in Figure 6.13(b).

6 .3 .4  M om en tu m  R esolution

The reconstructed m om entum distribution is shown in Figure 6.14 after a BTAG 

cut of 20 has been applied. The m om entum  resolution is approximately 9% for 

80% of events but is a strong function of p<rue as shown in Figure 6.15 for four 

different ranges of true momentum. Low m om entum b hadrons are much more 

poorly reconstructed and this is partly due to the poorer tracking information 

which implies less powerful track '7Zsig values.

6.3 .5  Fragm entation  S ystem atic  Error

The reconstructed m om entum  distributions in data  and Monte Carlo are not in 

perfect agreement (see Figure 6.14). This disagreement may be partly due to 

the Peterson fragmentation function (Equation. (5.7)) which is used in Monte 

Carlo not being a perfect description of the fragmentation in data. Changes in 

the Monte Carlo fragmentation function will effect the reconstructed m om entum
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Figure 6.14: Reconstructed momentum distribution in data and Monte Carlo, after 

a BTAG cut of ‘20.

distribution in Monte Carlo and consequently the reconstructed proper time 

distribution. Since the Monte Carlo simulation is used in the fitting procedure 

to account for resolution effects and efficiencies, it is im portant to investigate the 

effect th a t  a variation in the fragmentation has on the final lifetime and mixing 

results.

Experimental measurements of b quark fragmentation are used to assign a 

systematic error contribution to b fragmentation. The Peterson fragmentation 

function is defined in terms of the variable 2 as discussed in Section 5.1 ;

^ _  (E  +  Pz) hadron  ̂g  ̂9 ̂
(E  +  P)qUark

where (E  +  P)quark ls ^ ie sum the energy and m om entum  of the quark after 

accounting for initial s tate radiation, gluon bremsstrahlung and photon radiation 

in the final s ta te  and pz is the m om entum of the first hadron produced in the 

fragmentation chain, with respect to the quark direction. The 2 variable is not 

experimentally observable, however, so measurements of fragmentation functions
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Figure 6.15: Momentum resolution in slices of true momentum.

are usually expressed in terms of the ‘scaled energy’, x^ ,  where :

E h a d ro nr b - XE ~
Ebeai

(6.13)

The variable includes the effects of photon and hard gluon radiation in the 

denom inator and hence the mean value of is lower than the mean value of z .  

Combining experimental results from Lep [59, 60] gives :

4 )  =  0.702 ±  0.008 (6.14)

Assuming the fractional error on ( z )to be the same as the fractional error on ( 4 ) .  

this can be used to estimate an error on the Peterson fragmentation param eter 

Figure 6.16 shows how the mean value of 2 depends on the value of ej,. The solid 

lines correspond to the value of ej, =  0.0045 which is used in the 1994 Monte Carlo
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F igure 6.16: Dependence of (z ) upon the value of e*, used to generate the Peterson 

fragmentation function.

simulation and the dotted lines show the errors deduced from the measurement 

of ( ^ e )- Hence the uncertainty on ej, is taken to be :

e6 -  0.0045 ±  0.0009 (6.15)

The systematic errors on the lifetime and mixing results were studied by 

re-weighting2 the 1994 Monte Carlo to account for the spread in e& values 

discussed above and then repeating the fitting procedures using the re-weighted 

Monte Carlo. This is discussed in more detail in Sections 6.5.5 and 7.7. The 

reconstructed m om entum  distributions corresponding to the different e{, values 

are shown in Figure 6.17.

“The Monte Carlo weights were calculated to be; wt —  ̂ where f ( z ,  eb) is the Peterson

fragmentation function (Eqn. (5.7)), e°bld is the nominal value of 0.0045 and ebew is the new 

value of Cfc.
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Figure 6.17: Comparison of the reconstructed momentum distribution for various

values of e*, used in the Monte Carlo Peterson fragmentation function.

6.4 Proper Time Resolution

The reconstructed proper time distribution which is obtained using the decay 

length and m om entum  algorithms described above is shown in Figure 6.18 for da ta  

and Monte Carlo, using a BTAG cut of 20. Perfect agreement is not expected on 

the positive side of the distribution since the average b lifetime in the Monte Carlo 

(1.5 ps) is lower than  tha t expected in the data  (world average rj, =  1.549 ±  0.02 ps 

[2]). The agreement is good in the negative tail indicating tha t the proper tim e 

resolution is well modelled in the Monte Carlo after smearing has been performed.
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F igure  6.18: The reconstructed proper time distribution in data and Monte Carlo 

after a BTAG cut of 20.

A large discrepancy between data  and Monte Carlo can be seen at low proper 

times and can also be seen in the decay length distribution (Figure 6.7). This 

discrepancy is due to differences between da ta  and Monte Carlo in the way the 

BTAG cut affects the proper time distribution and is discussed in more detail in 

Section 6.5.3.

The average proper time resolution is shown in Figure 6.19 with the results of 

a triple Gaussian fit given in Table 6.3. The core 75% of events have a resolution 

of about 0.23 ps. Figure 6.20 shows the proper time resolution in eight slices

Parameter Gaussian 1 Gaussian 2 Gaussian 3

Amplitude 75% 22% 3%

Mean (ps) 0.027 0.0002 -0 .1 7

cr (ps) 0.23 0.65 2.1

Table 6.3: Results of a triple Gaussian fit to the average proper time resolution.



C H A P T E R  6. P R O P E R  T IM E  M E A S U R E M E N T 118

Mean
RMS

-0.2I37E-01
0.9287

cv>UJ
25(H)

20(H)

1000

500

-4 •2 1 1 2 40
becoTrue <PS>

F igu re  6.19: The average proper time resolution for Monte Carlo b events.

of true proper time. The resolution deteriorates rapidly as t true increases and at 

true proper times of 4 ps and above, a significant fraction of events appear to 

be reconstructed at low proper times. This ‘bin-swapping’ must be taken into 

account in the fitting procedures which are used to extract 77, and Ara^. The 

fitting procedures use a m atrix folding method to incorporate resolution effects 

as discussed in the following sections. The greatest sensitivity to B QS oscillations 

is at low proper times where there are high statistics and the resolution is best.

6.5 Measurement of the Inclusive b Lifetime.

A fit to the reconstructed proper time distribution is performed in order to ex tract 

the inclusive b lifetime, t&. This is done primarily as a consistency check, to 

ensure tha t the effects of vertexing, b tagging, and proper time resolution are well 

modelled in the lifetime fit before fitting the more complicated charge correlation 

function. However, the lifetime measurement is of interest in its own right since
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F ig u re  6.20: The proper time resolution, (treco — t true), in ps in slices of true proper 

time.

the large event sample implies tha t a precise measurement of r & can be obtained, 

provided systematic errors are not too large. There is much theoretical interest 

in m easurem ents of the inclusive b lifetime as a way of constraining the individual 

b hadron lifetimes, in particular the b baryon lifetime.
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6.5.1 O utline o f  F itt in g  P rocedure

The lifetime fitting procedure consists of a MINUIT minimisation [61] of the \ 2 

difference between the reconstructed proper time distribution in da ta  and a 

‘theoretical’ distribution which is constructed by folding detector resolution effects 

with a true b lifetime distribution and then adding background components. The 

basic s tructure  of the lifetime fit is as follows :

 t_
(a) Begin with the true b proper time distribution, e Tb/ u .

(b) Modify the true b distribution by the time dependent vertexing efficiency 

evtx(t) which is taken from Monte Carlo.

(c) Incorporate proper time resolution effects by folding the time distribution 

with the resolution m atrix  which is derived from Monte Carlo. This gives 

a ‘reconstruc ted’ b proper time distribution, prior to the effects of the BTAG 

cut.

(d) Modify this reconstructed distribution by the time dependent BTAG effi

ciency to obtain a final reconstructed distribution for b hadrons.

(e) Add the contributions from c and uds  backgrounds to obtain a ‘theoretical’ 

proper tim e distribution which is then fitted to da ta  by varying the lifetime, 

77,, in the true b proper time distribution.

6.5 .2  R eso lu tion  Folding

The ‘bin swapping' caused by the proper time resolution is included in the fit 

by means of a resolution folding matrix, R ,  which is formed by plotting treco 

against t true for b events and is obtained from the Monte Carlo. A schematic 

diagram of the m atrix  is shown in Figure 6.21(a) and Figure 6.21(b) shows the 

two dimensional plot of t reco against t trUe from which the m atrix  is derived. It can 

be seen th a t  the plot is peaked along t reco =  t true with the off-diagonal elements 

indicating the extent of the bin swapping. The m atrix  is filled after revertexing
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but before b tagging and is normalised to the total number of entries in each 

‘slice’ of ttme• Hence R pq is the fraction of events passing the revertexing cuts 

which have a true proper time in bin p and are reconstructed with a measured 

proper time in bin q.

An alternative method of folding would be to parameterise the time resolution 

in slices of true  proper time [24], for example in terms of three or four Gaussians. 

These parameterisations are then convoluted with the true time distribution. This 

m ethod has the disadvantage tha t the parameterisations often do not describe the 

resolution precisely, especially in the tails, leading to problems in the fit quality, 

especially considering the high statistical precision used here. Furthermore, the 

convolution process is mathematically  complicated and can lead to instabilities 

in the fit. The m atrix  m ethod of folding has advantages in tha t it is an exact 

description of the proper time resolution, at least in Monte Carlo, and it is 

m athem atically  very simple.

true
1I

R21

R n R 12 R-13 • • • • •---- —

C/3 10
9
8
7
6
5
4
3
2
1
0

IRDII

treco ( P S)r̂eco
(a) (b)

F igu re  6.21: The proper time resolution matrix R.
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6 .5 .3  Efficiency C orrections

The vertexing and BTAG cuts have efficiencies which depend on time. The cuts 

therefore modify the shape of the proper time distribution. These effects must be 

taken into account in the fitting procedure. The effects of vertexing and b tagging 

are trea ted  separately in the fit since, while the time dependence of the vertexing 

efficiency is taken from Monte Carlo, the BTAG efficiency can be checked using 

data.

The vertexing efficiency for b events is shown in Figure 6.22 as a function of 

true  proper time. It can be seen tha t events with intermediate proper times are 

reconstructed most efficiently. This is because at low proper times, less tracks 

pass the 'JZstg > 0.7 cut and so the vertexing is less efficient, while at high proper 

times, contamination of secondary tracks with those from the primary are more 

likely to cause the vertex to fail the \ 2 cut. The vertexing efficiency for b events 

is calculated by dividing the true proper time distribution, after vertexing cuts, 

by the true  proper time distribution before cuts.

b events

F igure  6.22: Vertexing efficiency as a function of true proper time for Monte Carlo b 

events.

After vertexing and m om entum  reconstruction have been performed, recon

s tructed proper time distributions are available and comparisons can be m ade 

between da ta  and Monte Carlo. The time dependence of the BTAG cut efficiency
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is calculated as a function of treco and is shown in Figure 6.23 for Monte Carlo b 

events (for a BTAG cut of 20). The BTAG cut efficiency is calculated as a function 

of t reco ra ther than t true since the shape of the time dependence can then be 

checked by comparing the average BTAG efficiency in da ta  and Monte Carlo. The 

average BTAG efficiency in data  and Monte Carlo is shown in figure 6.24, along 

with the ratio da ta /M C . It can be seen tha t the BTAG cut is more efficient at low 

reconstructed proper times in Monte Carlo than in data. This is the most likely 

cause of the discrepancy at low proper times seen in Figure 6.18 and must be taken 

into account in the fit. Hence the time dependence of the BTAG efficiency for b 

events (Figure 6.23) is taken from Monte Carlo but is modified by a correction 

factor C(treco) which is equal to the ratio of da ta /M C  shown in Figure 6.24. The 

only assumption made here is tha t the size of the discrepancy in the average 

efficiency is the same as tha t in a pure b sample. This is a reasonable assumption 

since the sample at a BTAG cut of 20 consists of 90% b events.

o  0 .9c
. a  o.8CJ
£  0 .7a>
= o- 
o  05

0 .4

S3 0 .3  

0.2 

0.1 

0

F igure 6.23: Efficiency of a BTAG cut of 20, as a function of reconstructed proper

time, for Monte Carlo b events.

6 .5 .4  C onstruction  o f  T heoretica l Lifetim e D istr ib u tion

The fraction of b events which are reconstructed in t reco bin j ,  before tagging, is 

found by summing the contributions from each true bin i which have ended up

b events

2 0 42 6 8
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Figure 6.24: Average efficiency of BTAG cut in data and Monte Carlo as a function of 

reconstructed proper time.

in bin j  ;
r6 _  E ,  TT,  e?te R „ 

E ;  TT,/  =  U  w  -a , - '  (6.16)

where T T l is the true theory for bin i and is given by ;

, - t /nr e 1 b
TTi =  dt (6.17)

T b in i  Tf)

and extx is the vertexing efficiency in true time bin i for b events shown in 

Figure 6.22. After b tagging, the fraction becomes ;

(e . is )f j  x 4 tag(j)  x C(j )
f j  x ^btagO) x F( j )

where ^ tagO ) 1S bin-dependent efficiency for selecting b events by the BTAG cut, 

as shown in Figure 6.23. The bin dependent correction factors C ( j ) are derived 

from the ratio plot in Figure 6.24 and take into account the discrepancies between
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data, and Monte Carlo in the time dependence of the BTAG efficiency. Errors are 

assigned to the correction factors such tha t crc{j) = C(j )  x ABS(1.0 — C(j ) )  and 

are included in the errors on the final results.

The distribution for b events is then combined with tha t for charm and 

light-quark backgrounds and normalised to the total number of da ta  events, N dat  ̂

which pass all cuts. This gives a theoretical prediction, RTj,  for the num ber of 

events reconstructed in bin j  :

RT,  =  N dat x  { v uiaF f ’ +  +  (6.19)

where V j  are the flavour purities and :

V uds =  1 -  V b - V c (6.20)

The proper tim e distributions for backgrounds, FJ and F- , are taken from the 

Monte Carlo.

The inclusive b lifetime, 77,, is a free param eter in the lifetime fit and the b and 

c purities are allowed to vary within Gaussian constraints centred on the values 

estim ated from the Monte Carlo. In this way, the systematic error arising from 

the knowledge of the flavour composition of the sample is automatically included 

in the error on 77, [62]. The \ 2 which is minimised by varying 77,, Vb and V c is 

given by :

^  A _i A (K° -  n ) 2 (fcmc -  vc)2
X -  ^ 2  \ apq ^9  +  ~2 +  ~2 (6.21)

p q  £  fit ra n g e  ^ 6

where A q = D q — R T q and D q is the number of data  events in bin q. The error 

m atrix  apq is the sum of da ta  and theory error matrices where the theory error 

m atrix  includes statistical errors due to the folding procedure, statistical errors 

on the shapes of the background distributions and errors due to the efficiency 

corrections, C(treco). The constraints on the purities, a p / , are based on the size of 

the discrepancy between da ta  and Monte Carlo in the overall tagging efficiency, 

as discussed in Section 4.6.
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6.5 .5  R esu lts  from Fit to Proper T im e D istr ibu tion

In order to check tha t there is no bias in either the proper time reconstruction 

or fitting procedures, the whole analysis chain was first applied to the combined 

Monte Carlo sample3. The result of the fit is shown in Figure 6.25 and yields a 

value of Tb = (1.499 ±  0.003) ps which is in good agreement with the value of

1.5 ps used in the Monte Carlo generation. The fitted purities are equal to the 

Monte Carlo values (Vb =  89.3 ±  0.4%, V c = 7.3 ±  0.6%). The y 2/n .d .f  of the fit 

is 0.8/49 and is very low as expected since the Monte Carlo is being used to fit 

itself. The results of the fit to Monte Carlo indicate tha t there are no additional 

biases which have not been accounted for in the fit.

C x 10QJ
H  ioooo 

8 0 0 0  

6 0 0 0  

4 0 0 0  

2000 

0

|
«  1 .0 5
-a

i

0 .9 5  

0 .9

Figu re  6.25: Result of lifetime fit to combined Monte Carlo sample.

1077656Entries

.  MC 
—  F it
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3See Sections 4.3 and 4.7 for details of the Monte Carlo samples.
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As a stability check the lifetime fit was performed on each individual da ta  year, 

using information from the corresponding Monte Carlo sample, to check tha t the 

results are all consistent. The results are given in Table 6.4 and are summarised 

in Figure 6.26. The errors include contributions from da ta  and Monte Carlo 

statistics and the systematic errors due to flavour composition and the BTAG 

efficiency corrections, C(treco). The central band shows the combined value and 

its full statistical and systematic error. The results are consistent with each other 

within the error. The fitted b and c purities are also shown in Table 6.4, along 

with the Monte Carlo expectations. It is clear tha t in all da ta  taking periods, the 

fitting procedure requires a flavour composition which is slightly different from 

the Monte Carlo prediction. In general the da ta  prefers a lower b purity and a 

higher c purity, as observed in other analyses [20]. Since c and uds  events tend 

to be reconstructed at low proper times, the different flavour composition in da ta  

is a possible explanation for the discrepancies observed at low proper times in 

Figures 6.18 and 6.24.

Year n  (ps) b Purity c Purity X2/n .d .f

1991 1.602 ± 0 .026 0.875 ±0 .012  

0.882 (expected)

0.089 ± 0 .018  

0.074 (expected)

12/49

1992 1.567 ± 0 .016 0.897 ±0 .013  

0.903 (expected)

0.071 ± 0 .017  

0.069 (expected)

18/49

1993 1.543 ± 0 .019 0.851 ±0 .020  

0.884 (expected)

0.136 ±0 .030  

0.077 (expected)

40/49

1994 1.570 ±0 .011 0.884 ±0 .009  

0.894 (expected)

0.077 ± 0 .013  

0.074 (expected)

15/49

1995 1.601 ± 0 .016 0.898 ±0 .017  

0.894 (expected)

0.068 ±0 .025  

0.073 (expected)

12/49

Table 6.4: Summary of the lifetime fit results for the 1991-1995 data-taking periods. 

The errors include contributions from data statistics, Monte Carlo statistics, flavour 

composition and the effects of the BTAG efficiency correction.
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^  1.64
Vi
3

1.62 

1.6 

1.58 

1.56 

1.54 

1.52

F ig u re  6.26: Results of the lifetime fit to the individual data years. The errors

shown include statistical errors from data and Monte Carlo, combined with systematic 

uncertainties due to the flavour composition and efficiency corrections. The band shows 

the combined value and its total statistical and systematic error.

Performing the fit on the combined 1991 to 1995 da ta  set, using the combined 

Monte Carlo sample gives the lifetime result :

rt, =  1.570 ±  0.004 (stat.) ±  0.013 (syst.) ps

The fitted purities are determined to be :

V b = (87.5 ±  1.2)% (89.3% expected), V c =  (9.8 ±  1.8)% (7.3% expected)

The result of the fit is shown in Figure 6.27. The x 2/ n -d-f is 19/49 and is low 

since the errors include both contributions from statistics and from systematic 

errors arising from the BTAG efficiency corrections.

C o n tr ib u tio n s  to  th e  error on Tb

The purely statistical error is determined by fixing the purities to their Monte 

Carlo values and only allowing rb to vary in the fit. The errors clue to Monte

i i ! J I I I L

91 92 93 94 95

D a t a  y e a r
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Figure 6.27: Reconstructed proper time distribution in data and the result of the fit. 

The bottom plot shows the ratio of the measured distribution to the fit. The errors 

shown include statistical errors from data and Monte Carlo and errors from the BTAG 

efficiency corrections.

Carlo statistics and efficiency corrections are switched off by means of a series of 

flags in the fit and hence the resulting error on rj, is due to da ta  statistics alone.

Contributions to the systematic error on the inclusive lifetime are summarised 

in Table 6.5. The various contributions are determined as follows :

• M o n te  C arlo S ta t is t ic s  : Errors associated with the resolution folding 

m atrix  and the shape of the reconstructed proper tim e distributions for c 

and uds  events are included by changing a flag in the fit. The contribution
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Error Source <7rb(ps)

Monte Carlo statistics 

Efficiency corrections 

Flavour composition 

b fragmentation

±0.002

±0.004

±0.006

±0.010

Total ±0.013

Table 6.5: Summary of the various contributions to the systematic error on r^.

from these sources is found by subtracting in quadrature the errors with 

and without the Monte Carlo statistical error included.

• E ffic iency  C orrect ion s  : The error due to the BTAG efficiency corrections 

is calculated in the same way as the error due to the Monte Carlo statistics, 

by switching the C(treco) errors off and on in the fit and noting the change 

in the error on T&.

• F lavour C o m p o s it io n  : The systematic error due to the flavour composi

tion is determined by fixing the b and c purities and subtracting the resulting 

error on r*, in quadrature from the error obtained when the purities are 

allowed to vary within the constraints described in Section 6.5.4. This gives 

the error of 0.006 noted in the table. The shift in the actual value of tj, when 

the purities are fixed to their Monte Carlo values is 0.004 which is within 

the systematic error which has been assigned to the flavour composition.

• b F ra g m en ta t io n  : The error due to the knowledge of the b fragmentation 

function is estimated as explained in Section 6.3.5 by re-weighting the Monte 

Carlo using different values of the Peterson fragmentation parameter, 

Variations of ±0.0009 were used about a central value of 0.0045. The re

weighting was performed on the 1994 Monte Carlo simulation alone and the 

fit was repeated on the 1994 data. The shift observed in the fitted value of 

U is taken as the systematic error.
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Additional cross-checks are performed to investigate the effect of the rever- 

texing procedure described in Section 6.2 and the effect of varying the sample 

purity by changing the BTAG cut.

To study any possible bias introduced by the revertexing procedure, the anal

ysis is repeated without using revertexing (i.e. using the default QVSRCH vertex) 

for the 1992 d a ta  set. This gives the value T™rvtx =  (1.580 ±  0.016) ps which is 

consistent, within errors, with the nominal 1992 value of rb = (1.567 ±  0.016) ps. 

Hence no additional systematic error is assigned to the revertexing procedure.

In order to vary the sample flavour composition, the analysis is performed in 

three bins of increasing b purity by varying the BTAG cut. Cuts of 15, 20 and 

25 were used, corresponding to estimated Monte Carlo b purities of 75%, 89% 

and 96% respectively. The results of the fits are given in Table 6.6 and shown 

in Figure 6.28 (the systematic error due to fragmentation is not included here). 

There are many common events in the three samples since, for example, all events 

passing a cut of 25 will also pass a cut of 20. The statistical errors on the lifetimes 

obtained using cuts of 15 and 25 are scaled to take into account their correlations 

with the nominal value. These scaled errors are shown in brackets in the table. 

The results indicate tha t the measured b lifetime is stable within the uncorrelated 

statistical and systematic errors. This serves as a cross check tha t the systematic 

error assigned to the flavour composition has not been underestimated.

6.6 Summary

Inclusive vertexing and m om entum  reconstruction techniques have been used to 

reconstruct the proper lifetimes of candidate b hadrons. Detector resolution 

effects have been taken into account by means of a folding m atrix  and cut 

efficiencies have been checked using the da ta  as far as possible. A fit to the 

reconstructed proper time distribution for the full 1991-1995 da ta  sample yields :

tj, = 1.570 ±  0.004 (stat.)  ±  0.013 (syst.) ps
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Cut n  (ps) b Purity c Purity

15 1.5761 ±  0.006 

(0.0056)

70.9 ±  0.77% 

(expect 74.7%)

19.9 ±  1.3 % 

(expect 14.0%)

20 1.5701 ±  0.0086 87.5 ±  1.2% 

(expect 89.3%)

9.8 ±  1.8 % 

(expect 7.3%)

25 1.5592 ±  0.013 

(0.0127)

94.2 ±1.3% 

(expect 95.7%)

5.2 ±  1.9 % 

(expect 3.2%)

T able  6.6: Summary of the measured b lifetime in samples of increasing b purity.

Errors include uncertainties from data and Monte Carlo statistics, flavour composition 

and efficiency corrections. The uncorrelated errors on the lifetime, relative to the central 

value, are indicated in brackets below the lifetime results.

^  1.6V)a
1.59t-*
1.58 

1.57 

1.56  

1.55 

1.54  

1.53

F ig u re  6.28: Dependence of the measured b lifetime on the sample purity. The results 

are indicated together with their uncorrelated statistical and systematic errors relative 

to the central value.

where the systematic error is dominated by uncertainties in the b fragmentation 

function. The fit quality is good and the result is in agreement with the world 

average result of (1.549 ±  0.020) ps [2], indicating tha t the effects of vertexing, b 

tagging and detector resolution are well modelled in the fit.

Some recent measurements of the inclusive b lifetime are shown in Figure 6.29

24 26

BTAG cut
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[63]. The world average including the new (unpublished) O P A L  measurement [47] 

is shown. The precise O P A L  value has raised the world average significantly. Due 

to the preliminary nature  of the O P A L  result, the world average is taken from 

reference [2] throughout this thesis.

1 .5 3 3 ± 0 .0 1 3 ± 0 .0 2 2  p s  

1 .5 3 5 ± 0 .0 3 5 ± 0 .0 2 8  p s  
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1 .5 3 2 ± 0 .0 2 4  p s

1 .5 1 1 ± 0 .0 2 2 ± 0 .0 7 8  p s  

1 .5 8 2 ± 0 .0 1 1 ± 0 .0 2 7  p s  

1 .5 4 2 ± 0 .0 2 1 ± 0 .0 4 5  p s  

1 .5 3 0 ± 0 .0 1 6 ± 0 .0 3 4  p s  

^ 6 1 1 ± 0 . 0 1 0 ± 0 .0 2 7  p s  

1 .5 6 4 ± 0 .0 3 0 ± 0 .0 3 6  p s

1 .5 8 5 ± 0 .0 2 2  p s
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Figure 6.29: Summary of recent measurements of the inclusive b lifetime. The error 

bars on the individual measurements indicate the size of the statistical error and total 

error on the result. The result from this analysis is not shown on the plot.



C hapter 7

M easurement of A

In this chapter the fitting procedure for extracting the value of A m j is described. 

The method is briefly re-stated and the form of the fit is explained. Corrections 

to jet-charges due to effects of the reconstruction algorithms are described in 

Section 7.2. Results and systematic errors are presented in Sections 7.6 and 7.7 

and comparisons made with other measurements in Section 7.8.

7.1 Overview of Method

‘op p o site ’ hem isphere

Qj(k = 0.5)

inform ation on initial 
quark charge

no tim e inform ation used

‘sa m e’ hem isphere

Qj(K= 1.0)

inform ation on final quark 
charge

reconstructed vertex 

with P rob( ) >  1%

= >  m easured proper tim e trec0

F ig u re  7.1: Schematic diagram showing the method for measuring

The m ethod for measuring A i s  shown in Figure 7.1 and is summarised as 

follows :

134
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• Proper time reconstruction is performed as described in Chapter 6. The 
hemisphere in which the proper time is reconstructed is referred to as the 
‘same' side. This is chosen as the hemisphere containing the secondary 
vertex with the highest \ 2 probability (see Section 6.2).

• Jet-charges are formed as described in Sections 5.2 and 5.4.
• The ‘charge correlation' is defined as the product of the opposite and same 

side jet-charges as discussed in Section 5.5 :

charge correlation = Qj77°'b Qjs=1'°) (t)

where k = 0.5 is used on the ‘opposite1 side in order to obtain the lowest 
initial state mistag and k = 1.0 is used on the ‘same1 side to achieve the 
best sensitivity to mixing.

The charge correlation consists of contributions from the six classes of b 

hadrons listed in Table 5 . 2 ,  plus contributions from c and uds backgrounds. 
Suppose, for example, there is a b baryon on the ‘same1 side. The contribution 
it makes to the charge correlation, denoted by ( — QQ) A, is found by considering 
the various classes of b  hadrons which it can ‘pair up1 with on the opposite side ;

{ - Q Q t  = /a { - Q T Q \ ° )  + /«(-Qb±C?a°) + f d U - X i ) ( - Q l 5r ™QAa)

+  h X i { - Q ° A - Q \ ° )  +  fs(ib»™ »Q a°)

+ f . x . ( - Q % L . Q \ * )  (7-1)
which can be written as ;

{ - Q Q ) A = (Q°b'5) ( Q a ° )  + covariance term (7.2)
where (Q° '5) is the time-integrated, average b jet-charge for k = 0.5 and (Q\'u) 
is the time-integrated jet-charge for baryons (for k = 1.0). Similarly, expressions 
can be found for the contributions from B±, B%nmzx etc. and so in general :

{ - Q Q ) claSS = (Q°b 5) (Qliass) + covariance term (7.3)
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These contributions, as they are written here, do not depend on time and the 

time dependence of the charge correlation comes from the variation in the relative 

fractions of the b hadron classes as a function of reconstructed proper time on 

the ‘same' side. The procedure for fitting the charge correlation function reduces 

to a twofold problem :

(a) Find the contribution to the charge correlation from each class of b hadron 

and from backgrounds.

(b) Calculate the fraction of each class of b hadron and of backgrounds which 

is reconstructed in a particular proper time bin.

This is over simplified since, in reality, the contributions to the charge correlation 

from each b hadron class are not strictly independent of reconstructed proper time. 

The effect of the proper time reconstruction algorithms is such tha t it introduces 

a correlation between the hemisphere multiplicity and the reconstructed proper 

time and this, in turn , gives rise to a variation in the jet-charge as a function 

of reconstructed proper time due purely to the effect of the reconstruction 

algorithms. It is essential tha t this effect is well understood and accounted for 

in the fit since it would mean tha t,  even in the absence of any mixing, a tim e 

dependence of the charge correlation would be observed. This is discussed fully in 

Section 7.2. In performing stage (a) above, the data  is used as much as possible 

to provide constraints and thus reduce the Monte Carlo dependence. The time- 

integrated, average jet-charges for 6, c and uds  are extracted from the data  by 

performing a fit to ( — Q j 0Q j s) (be =  0.5, 1.0) as a function of BTAG cut (i.e. 

purity). This is explained in Section 7.3 [53].

Stage (b) is done in exactly the same way as in the lifetime fit (Section 6.5) 

with the modification tha t different classes of b hadrons are treated individually.



C H A P T E R  7. M E A S U R E M E N T  OF  A M D 137

7.2 Multiplicity Corrections

T he idea th a t  the contributions to the charge correlation function (Equation (7.3)) 

are time-independent, with all the time dependence coming from the variation 

with tim e of the relative fractions of each b hadron class, is only strictly true in 

the case of perfect proper time reconstruction and charge tagging.

In reality, the vertexing and m om entum reconstruction algorithms behave 

differently in the case of high and low charged multiplicity hemispheres, thus 

causing the mean hemisphere charged multiplicity to vary as a function of 

reconstructed proper time. This, in turn, causes the mean jet-charge to vary 

with reconstructed proper time such that,  even in the absence of mixing, the 

charge correlation would show a time dependence. Figure 7.2 shows how the 

mean signed jet-charge, (Q ’/'a,,..), varies with reconstructed proper time for each b 

hadron class. It is clear tha t these distributions are not flat, with the jet-charges 

for D ± and unmixed Bd mesons (which constitute the m ajority of the sample) 

showing a significant rise in the region between 0 and 2 ps. This algorithm-induced 

tim e dependence must be well understood and accounted for in the fit for A/n^.

7.2.1 Variation o f  M ultip lic ity  w ith  P roper T im e

The mean charged multiplicity obtained from Monte Carlo 6 events is shown as a 

function of true proper time in Figure 7.3. The distribution shows tha t there is no 

dependence of hemisphere multiplicity on true proper time. However, the charged 

track multiplicity is seen to vary with true B  m om entum as shown in Figure 7.4 

and with true B  decay length as shown in Figure 7.5. Both these effects can be 

explained by considering the fragmentation process. If the b hadron takes a small 

fraction of the energy and m om entum  of the string then a large fraction is left 

over for the production of other fragmentation tracks and hence the hemisphere 

multiplicity is high, while if the b hadron has very high energy then there is little 

left over to create fragmentation tracks and so the hemisphere multiplicity will be 

close to the b multiplicity. Since the m om entum and decay length are correlated,
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Figu re  7.2: Dependence of the mean signed jet-charge on reconstructed proper time 

for the various classes of b hadrons. The points indicate the mean value observed in 

the Monte Carlo whereas the solid line represents the predicted dependence due to 

multiplicity variations (see Section 7.2.2).
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Figure 7.3: Variation of the mean charged track multiplicity as a function of true 

proper time in Monte Carlo b events (suppressed zero).
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Figure 7.4: Variation of the mean charged track multiplicity as a function of true B 

momentum in Monte Carlo b events (suppressed zero).

this gives the results as shown. In calculating the true proper time however, the 

high and low multiplicity hemispheres are distributed throughout all bins in true 

proper time, giving the flat distribution in Figure 7.3.

The dependence of the hemisphere multiplicity on reconstructed B  m om entum
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Figure 7.5: Variation of the mean charged track multiplicity as a function of true B 

decay length in Monte Carlo b events (suppressed zero).

and reconstructed B  decay length is shown in Figures 7.6 and 7.7 for data and 

Monte Carlo. The shapes of the distributions are different from those obtained 

with the true m om entum  and decay length (Figures 7.4 and 7.5). This is due 

to the different behaviour of the decay length and m om entum  reconstruction 

algorithms and BTAG cut under conditions of low and high hemisphere m ulti

plicities. It can be seen tha t the increase in hemisphere multiplicity at low 

reconstructed decay lengths (Figure 7.7) is more significant than in the true case 

(Figure 7.5). This is because hemispheres with high multiplicities are more likely 

to be those where a primary track is included in the secondary vertex calculation, 

thus ‘pulling’ the secondary vertex closer to the primary. The reconstruction 

algorithms produce a dependence of the average hemisphere charged multiplicity 

on reconstructed proper time. This is shown in Figure 7.8 for da ta  and Monte 

Carlo simulation. The mean multiplicity at low proper times is approximately 

20% greater than  the average. The agreement between da ta  and Monte Carlo is 

excellent.
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Figure 7.6: Variation of the mean charged track multiplicity as a function of

reconstructed B momentum in data and Monte Carlo (suppressed zero).
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Figure 7.7: Variation of the mean charged track multiplicity as a function of

reconstructed B decay length in data and Monte Carlo (suppressed zero).

7.2 .2  Variation o f  Jet-C harge w ith  H em isphere M u ltip lic

ity

The jet-charge is sensitive to changes in the hemisphere multiplicity. In low m u lt

iplicity hemispheres, the quark charge information is contained within relatively
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Figure 7.8: Variation of the mean charged track multiplicity as a function of

reconstructed proper time in data and Monte Carlo simulation (suppressed zero).

few, high m om entum  tracks whereas in hemispheres containing a large number of 

tracks, the charge information is confused by the abundance of low m om entum  

tracks. In high multiplicity hemispheres there is a higher probability tha t a 

low m om entum  track will escape detection and charge information will be lost. 

The variation in Monte Carlo of the signed jet-charge with hemisphere charged 

multiplicity is shown in Figure 7.9 for the various b hadron classes. In all cases 

the charge information is ‘d ilu ted1 as the number of charged tracks increases. 

Differences between the various b hadron classes arise because of the different 

contributions which fragmentation tracks make in each case (see Section 5.4). In 

the case of charged B  mesons, the fragmentation tracks are of the opposite sign 

to the initial quark and so adding more fragmentation tracks quickly results in 

deterioration of the jet-charge. In the unmixed B°  case however, fragmentation 

trackb contain some useful information and so the deterioration is less rapid. 

An argument similar to tha t for charged B  mesons can be applied to mixed B°  

mesons since fragmentation tracks similarly give a contribution of the wrong sign. 

Hence the gradients of the graphs for mixed mesons are slightly steeper than  for 

the corresponding unmixed mesons.
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F ig u re  7.9: Variation of signed jet-charge with hemisphere charged multiplicity for 

the different b hadron classes. (Signed using initial quark charge).
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In order to study and confirm the multiplicity dependence of jet-charges in 

da ta  the ‘opposite signed hemisphere charge1 is defined where :

opposite signed hemisphere charge =  —sign(Q j05) x Q j f  (7-4)

This is an approximation to the signed jet-charge with the advantage th a t  it 

is measurable in both da ta  and Monte Carlo simulation. Figure 7.10 shows 

the dependence of the opposite signed hemisphere charge on the hemisphere 

multiplicity. The dependence seen in data  is very similar to tha t of the signed 

jet-charge and is well modelled in the Monte Carlo simulation.

j?  0.12

• Data
—  MC

o.i

jj 0.08
-o
2 0.06

O 0.02

- 0.02

Hemi. charged multiplicity

Figure  7.10: Dependence of the opposite signed hemisphere charge on hemisphere

charged track multiplicity in data and Monte Carlo simulation.

It is clear th a t  the variation of jet-charges with multiplicity and the variation of 

multiplicity with reconstructed proper time accounts for a substantial component 

of the observed time-dependence of b hadron jet-charges observed in Figure 7.2. 

The multiplicity drops suddenly in the region from 0 to 2ps, corresponding to 

the change in jet-charges in this region. In order to investigate whether this hy

pothesis is correct, distributions of signed Q j  versus multiplicity and multiplicity 

versus reconstructed proper time are combined to predict the behaviour of signed 

jet-charges as a function of reconstructed proper time for each b hadron class.
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This prediction is shown as the histograms superimposed on Figure 7.2. The 

prediction models the general behaviour reasonably well, especially in the case of 

B ± mesons and unmixed Bd mesons. The agreement for baryons is poorer since 

topologies of these decays are expected to differ more from the average, which is 

used to calculate the predictions shown.

T im e  D e p e n d e n t J e t-C h a rg e  C orrection s

The multiplicity-induced time-dependence of the signed jei-charges for each b 

hadron class is taken from the Monte Carlo simulation and expressed as a time- 

dependent correction, c o r r^ * (£ reco), with respect to the time-integrated jet- 

charge for tha t hadron class :

c o r r =  ( Q l i L ) MC (treco) -  { Q \ L , ) MC <7'5 )

The justification for taking these corrections from the Monte Carlo comes 

from the fact th a t  :

(a) The variation of mean hemisphere charged multiplicity with reconstructed 

proper tim e agrees closely in data  and Monte Carlo (Figure 7.8).

(b) The variation of ‘opposite signed hemisphere charge1 with charged m u lt

iplicity also agrees well in data and Monte Carlo (Figure 7.10).

These arguments are strengthened if the agreement between da ta  and Monte 

Carlo is verified in samples with different mixtures of the b hadron classes. Using 

a cut on the vertex charge described in Section 6.3.2, samples enriched in B °  or 

B ± are obtained. Selecting hemispheres with |Quer*| <  0.6 is used to give B°  

enhancement (50% —> 58%) while cutting on \Qvert\ > 0.6 gives B ± enhancement 

(40% —> 50%). Figure 7.11 shows the variation of mean charged multiplicity 

with reconstructed proper time and Figure 7.12 shows the dependence of the 

opposite signed hemisphere charge on the hemisphere multiplicity for (a) B°  and 

(b) B ± enhanced samples. It can be seen tha t the dependence of the opposite 

signed hemisphere charge on multiplicity is much steeper in the B ± enhanced
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Figure 7.11: Variation of the hemisphere charged multiplicity as a function of

reconstructed proper time in samples enhanced in (a) B° and (b) B ± decays using 

a cut on the vertex charge (suppressed zero).
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Figure 7.12: Dependence of the opposite signed hemisphere charge on hemisphere

charged multiplicity in B° and B ± enhanced samples of data and Monte Carlo events.

sample than in the B°  enhanced sample, as expected from Figure 7.9. The 

agreement between da ta  and Monte Carlo is good in the enhanced samples, giving 

further indication tha t the Monte Carlo simulation gives a good description for 

the individual b hadron classes.

Percentage errors on the correction factors corr^*(Ceco), are taken to be equal
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to the percentage difference between the mean hemisphere multiplicities in da ta

and Monte Carlo for tha t t reco  bin, or the statistical error on the Monte Carlo 
XI cvalue of ( Q c l a s s ) 1 ' ( t r e c o ) ,  whichever is largest.
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Figure  7.13: Dependence of the charged multiplicity in the ‘opposite’ hemisphere on 

reconstructed proper time in the ‘same’ hemisphere (suppressed zero).

As an additional cross check, the mean hemisphere multiplicity on the 

'opposite ' side of the event is plotted as a function of reconstructed proper time 

on the ‘same' side (see Figure 7.13). This is done to verify tha t there is no bias on 

the opposite hemisphere jet-charge as a function of reconstructed proper tim e on 

the same side. This could arise due to correlations between hemispheres coming 

from the shared primary vertex. From Figure 7.13 it can be seen tha t negative 

reconstructed proper times are more probable when the opposite hemisphere 

multiplicity is high, however this effect is small and since there is no significant 

dependence for positive reconstructed proper times, any bias is neglected.

7.3 Measurement of Average Jet-Charges

The values of (Q£), (Q«) and (Q*uds) for k = 0.5 and tc = 1.0 are obtained, in this 

analysis, from a fit to the da ta  distributions of ( — Q j 0 Q j s) as a function of BTAG
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cut.

T he  value of ( — Q j 0 Qjs)  (where k, — 0.5 or k — 1.0 and is the same in both 

hemispheres in this case) varies as a function of BTAG cut as shown in Figure 7.14 

(the first bin is filled before vertexing or any BTAG cuts are performed and the 

second bin shows only the effect of vertexing cuts).
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0.012
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0 .0 0 8

0.006 -

0 .0 0 4

BTAG cut

F igure  7.14: Variation in data of (—Q j 0 Q j s) as a function of BTAG cut for k = 1.0 

and k — 0.5 (suppressed zero).

There are two reasons for the variation with BTAG cut :

(1) The flavour composition is changing as a function of BTAG cut, as shown in 

Figure 4.10. As the jet-charge for u quarks is higher than  th a t  for c and b 

quarks, the value of ( — Q j 0 Q j  tends to decrease as the uds  contamination 

decreases with increasing BTAG cut.

(2) The BTAG cut preferentially selects events with higher multiplicities and this 

affects the value of the jet-charges as explained in Section 7.2. This causes
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individual contributions from each flavour to vary with BTAG cut.

The value of ( — Q j 0 Q j s) after a BTAG cut in bin i is written as :

( - Q j o Q j . ) ®  = W )  ( - Q jo<?}.)» (0  +

+ -Puds( i ) ( - Q % Q ) s)u i s (i) (7.6)

where V j ( i )  is the purity for flavour /  at a BTAG cut i.

The contributions from each flavour vary due to the effect of the cut as 

described in (2) above. The variation of { — Q j 0 Q j s) for each flavour is shown in 

Figure 7.15 for Monte Carlo events and is accounted for in the fit. It is convenient

V 0 .0 2 5v  0 .0 2 5 0 .0 2 5

0.020.020.02

0 .0 1 50 .0 1 5 0 .0 1 5

0.010.01 0.01

0 .0 0 50 .0 0 5 0 .0 0 5  -

•  K =  1 .0
o K =0.5

BTAG cut BTAG cut BTAG  cut

Figure 7.15: Variation of (—Q j 0 Q j s) for (a) b events, (b) c events and (c) uds events 

for k = 0.5 and n = 1.0.

to express the variation caused by the BTAG algorithm as a correction, corr/(«), 

relative to the first bin, which is filled before the vertexing algorithm or any BTAG 

cut is applied :

corrj(i)  =  ( - 0 J .  Q J ,) / (i) -  < -Q J 0 Q3S>/ (1) (7.7)

Equation (7.6) can then be rewritten as :

( - G 3 .Q 5 .H O  =  n ( i )  c o r r f ( i ) ] +

-Pc(i)[( - 0 5 .  (1) +  C° r rc(*) ] +

^ ( O K - Q j . Q j . U U )  +  corrHds(*) 1 (7-S)
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In the first BTAG bin, the two hemispheres of the event are equivalent since no 

vertexing or tagging has been done and so :

(-05. <?}.>/(!) = (C/)2 + c° v(0/..0/.) (7-9)
where 0 7 )' s time-integrated, average jet-charge for flavour / before ver- 

texing or b tagging and cov ( Q j 0, Q f s) is the covariance between the same and 

opposite side jet-charges for flavour /  and is taken from Monte Carlo simulation.

Hence by fitting da ta  distributions of (—Qj'^Qj 's)  and (~Qj'o Q j 's ) as a 

function of BTAG cut, it is possible to extract the values for the time-integrated 

average jet-charges, (Q£), (Q *) and ( Q^s )  (K = 0-5,1.0). The « =  0.5 and k = 1.0 

distributions are fitted simultaneously in order to take account of correlations 

between them.

T rea tm en t o f C orrela tion s

There are several sources of correlation which must be treated carefully in the 

fit. Different BTAG bins are statistically correlated since, for example, all events 

in bin j  are also contained in bin i where i  < j . The covariance between BTAG 

bins i and j  (i < j )  of the ( — Q j 0 Q j s) versus BTAG plot is given by1 :

N-
c o v ^ J " )  =  (7.10)

where cr2(j)  denotes the error on { — Q j 0 Qjs)  (j) and N t is the number of events 

passing a cut value in bin i. It can be seen tha t the covariance between nearby 

bins is large (Nj  ~  N t) and decreases as the number of shared events decreases.

In addition, there are large correlations (~  85%) between { — Q°j^ Q°j's) (i) and 

{ - Q j S Q j 's ) ( 0  since these products use much of the same information. The 

covariance between bin i of the n = 0.5 distribution and bin i of the k =  1.0 

distribution is given by [64] :

(7.11)

T o r  a decreasing function.



C H A P T E R  7. M E A S U R E M E N T  OF  A M D 151

and the covariance between bin z of the k =  0.5 distribution and bin j  of the 

ac =  1.0 distribution is given by :

cov(t°'5, i 10) =  J c o v ( i » y y - 0 )  (7.12)

These covariances are calculated from data. A schematic diagram of the data  

covariance m atrix  is shown in Figure 7.16. A similar trea tm ent is used in [53].

BTAG bin 
1 28 1 28

/

. . 0 . 5  . 0 .5  
COV(  1 , J  )

0 . 5  1.0 ^  
c o v ( i  , j  )

1.0 0 .5 . i . o  . 1.0
C O V ( l , j  ) C O V ( 1 , j  ) 

/
F igure  7.16: Schematic diagram showing the form of the covariance matrix used in 

the fit for (Q£), {Q*) and (QKuds) (At = 0.5,1 .0). Details are given in the text.

The covariances for the Monte Carlo correction factors, corr/, are calculated 

in the same way as described above and are used to construct a covariance m atrix  

for the ‘theory' prediction given in Equation (7.8). The purities, P/(z), are taken 

from Monte Carlo simulation and their errors are taken as crf(z)/e(z), as described 

in Section 4.6, where e(z) is the efficiency for a BTAG cut in bin z and cre(z) is the 

difference in tagging efficiencies between da ta  and Monte Carlo for tha t BTAG cut. 

Purity  errors are included in the diagonal terms of the theory covariance m atrix .

A minimum y 2 fit is performed by varying the values of the six average jet- 

charges : (Q£), (Q*) and (Quds) = 0-5 ,1.0). This fit forms part of the global

A m-d fit as described in the next section.

The x 2 sum runs over all bins in both the ( — Q°/oQ°js) an<  ̂ ( ~ Q j’o Q lJs) 

distributions :

X b T A G  =  ^ i(Tij ( 7 * 1 3 )
ij = 1 , 5 6
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where a tJ is the sum of data  and theory covariance matrices and has the form 

shown in Figure 7.16 and A t is the difference between the data  value in bin ?’ and 

the theory value predicted by Equation (7.8). Results from this fit are presented 

along with the A r e s u l t s  in Section 7.6.

7.4 Fitting for Amc{

The charge correlation in a reconstructed proper time bin j  is given by a weighted 

sum of contributions from the various b hadron classes and from charm and light- 

quark backgrounds :

-  Q °J o  Q j 's )  . =
n  Edas. ^Cc + ^

i A  E  class F f a3S +  A  Ff + Puds F f ’
(7.14)

The fraction of events of a particular class, reconstructed in bin j ,  F f ass, is 

calculated in the same way as in the fit for the inclusive b lifetime, using Equations

(6.16)—(6.18), with the modification tha t the fraction is calculated separately for 

each b hadron class. The time-dependent fractions for each class are given in the 

second column of Table 5.2. For example, the true fraction of mixed Bd events 

in bin i is given by :

TTi = j, . / . e W 1 (7. 15)
J  t r u e  b i n  i

These true fractions for each class are then folded with resolution matrices and 

modified by vertexing and BTAG efficiencies as in the inclusive b lifetime fit. 

Separate resolution folding matrices and efficiency corrections are used for the 

four different b hadron types ( that is, B ± , B QS, baryons) to take into account 

differences due to different decay modes. Since the decay modes of B s mesons 

are poorly known, the effect of using the Bd resolution m atrix  and efficiency 

corrections to calculate the B s distributions is used as an estimate of its systematic 

error. The reconstructed proper time distributions for backgrounds, F ;c and F-uis, 

are taken from the Monte Carlo, as in the lifetime fit.

t he charge contribution from each b hadron class in reconstructed proper tim e
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bin j  is given by a modified version of Equation (7.3) which takes into account 

the multiplicity variation and effects of b tagging :

{ - Q Q Y ‘aS‘ =  [(< ??•* ) +  CBTAG™ 5] [ ( Q l £ „ )  + c o r r ^ i t i ) +  covariance term

(7.16)

Where (Q°'5) is the time-integrated, average b jet-charge (k = 0.5) before 

vertexing or b tagging and CBTAGj(pp is a correction factor, taken from Monte 

Carlo, to account for the effect on the ‘opposite’ hemisphere jet-charge, of the 

vertexing algorithm and BTAG cut which is being used. {Qliass) is the time- 

integrated jet-charge for this b hadron class after the effects of b tagging. A bin 

dependent correction, co r r ^ j f i ( j ) ,  takes into account the variation in jet-charges 

with reconstructed proper time due to the varying multiplicity (Section 7.2). The 

covariance terms are taken from Monte Carlo. The contributions to the charge 

correlation from backgrounds are constructed in a similar way. The contribution 

for c events is given by :

( - Q Q Y  =  [ (I ? ? '5)  +  CBTAG“W] [ (< ? ’ ° )  +  C B T A G f”“  +

+  covariance term (7.17)

and similarly for uds events. The bin dependent multiplicity corrections, c o r C ^ l , 

for backgrounds are taken from Monte Carlo simulation and the effect of setting 

them  to zero is taken into account as an estimate of their systematic error 

(Section 7.7).

7.5 Parameters and Constraints in the Amci Fit

In fitting to extract the values of Aiti^, systematic errors are reduced as far 

as possible by performing a multi-parameter fit to both the charge correlation 

function and the ( — Q j 0 Q j s) versus BTAG distributions, using many constraints 

from data. The param eters and constraints used in the fit are given in Table 7.1. 

They fall into the following categories :
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Param eter Constraint

A md free

(Qt'5), (Q ?-5>, (Q°ul) free

(Ql°), (Qc°)> (QIS.) free

TB d 1.56 ±  0.06 ps

t B , 1.61 ±  O.lOps

1.14 ±  0.08 ps

tb+ 1.62 ± 0 .0 6  ps

n 1.570 ± 0 .0 1 4 p s

/ a 0.101 ±0.031

fs 0.109 ±0 .013

< o 0.0317 ±  10%

{%°±> 0.1506 ± 2 %

/ n 10£$ u n m ix  / 0.1195 ± 2 %

( f t j " 1) -0.0576 ±  2%

( o 10 )B  u n m t x  j 0.0696 ±  10%

(■Q s r «) 0.0076 ±  10%

n (87.5 ±  1.2)%

vc (9.8 ±  1.8)%

Table 7.1: Parameters and constraints used in the Ara^ fit.

• Free  P a r a m e t e r s  : A nid and the values of the time-integrated, average 

jet-charges, (Q £), (Q*) and {Q*ds) (ft =  0.5,1.0), are free param eters in the 

fit.

• b H a d r o n  J e t - C h a r g e s  : The time-integrated jet-charges for the various 

b hadron classes, (QliaSS)i are vai'ied in the fit about a central Monte Carlo 

value within the Gaussian constraints given in Table 7.1. The average b 

jet-charge (Q ^0), in data, agrees with the Monte Carlo value to a precision 

of 2%. This is used as a guide in assigning the constraints in Table 7.1.
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The jet-charges for B ± and B d mesons are allowed to vary within a 2% 

constraint of their Monte Carlo values, while the more poorly known B s 

and b baryon jet-charges are assigned a conservative 10% constraint. An 

additional constraint is imposed requiring tha t the weighted sum of the 

b hadron jet-charges is consistent with the time-integrated average b jet- 

charge (k = 1.0) for the BTAG cut value which is used ;

[ ( < ? J ' ° )  +  C B T A G r ” ' ]  ( ± 3 % )  =  f u ( Q lg°± )  +  / a  ( ^ ° )  +

f d  ( 1  — X d )  ( O g u n m t i )  +  / d X d ( O g m . i )  +

/ . ( I  -  X . )  b “ ""*<*) +  / «  ( 7 . 1 8 )

where the 3% constraint is taken from [53] as being the combined statistical

and systematic uncertainty on (Q \'°). In this way, the absolute values of all 

jet-charges are allowed to vary in the fit, taking only algorithm dependent 

corrections and covariance terms from Monte Carlo simulation.

• L ife tim es : The b hadron lifetimes are varied within Gaussian constraints 

around world average values [2] given in Table 7.1 whilst also requiring tha t 

their weighted average is consistent with the measurement of the inclusive 

b lifetime t\> given in Section 6.5.5 :

Tb( ± a Tb) = f d TBd +  f u tb ± T  f s rBs +  /a  t a (7.19)

• b H adron  F raction s : The production fractions, f u and f d, are expressed 

in terms of the B s fraction, f Sl and the baryon fraction / A :

fd = fu = 1(1 / a )  (7.20)

The fractions f s and f \  are allowed to vary within Gaussian constraints [11] 

and are also constrained by Equations (7.18) and (7.19).

•  P u r it ie s  : The b and c purities are constrained within errors to the values 

obtained in the lifetime fit (Section 6.5.5).
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The Bs oscillation frequency, A m s, is fixed at oo and the possibility of non- 

maximal B s mixing is taken into account in the systematic error.

In summary, a m ulti-param eter fit is performed simultaneously to the charge 

correlation function and the ( — Q j 0 Q j s) versus BTAG distributions by varying the 

param eters in Table 7.1 and minimising the combined y 2 term  :

X 2 =  Xbtag +  X a  m d (7 -21)

where \b TAG is defined in (7.13) and XAmd incorporates the difference between the 

charge correlation in data  and the theory prediction given in (7.14) plus additional 

terms for each of the constraints discussed above. The fit is well constrained since 

for each param eter tha t is allowed to vary, an additional constraint is added. The 

fit is structured such tha t each of the constrained parameters can be fixed in turn , 

to assess the individual contributions to the systematic error from each source.

7.6 Results

As in the lifetime fit, the fitting procedure is initially applied to the Monte Carlo 

sample. The result of the fit is shown in Figure 7.17 and gives the value of 

A rrid = 0.465 ±  0.026 ps-1 with a x 2/n .d .f  of 19/71. This is consistent with 

the Monte Carlo input value of 0.467 ps-1 . The fitted lifetimes, jet-charges and 

purities are all consistent with their input values.

The fit to the combined 1991 to 1995 data  set gives the result :

A nid =  0.441 ±  0.026 (stat.) ±  0.029 (syst.) ps-1

The shape of the time-dependent charge correlation function is shown in 

Figure 7.18 for large and small binning in reconstructed proper t im e2. The result 

of the fit is shown as a solid line and the expected distribution for a no-mixing 

hypothesis is shown as a dotted line. The fitted ( — Q j 0Q j s) = 0-5,1.0) versus

BTAG distributions are shown in Figure 7.19 and the average jet-charge results 

JThe result obtained using small binning is compatible within statistical errors.
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F ig u re  7.17: Result of the fit to the charge correlation in Monte Carlo simulation.

are given in Table 7.2. The results are consistent with previous measurements 

[53]. The Monte Carlo values for the mean jet-charges are shown for comparison 

in the third column of Table 7.2. As mentioned previously in Section 7.5, the b 

jet-charges in da ta  and Monte Carlo, for k — 1.0, agree to within 2%.

Param eter F itted  Value Monte Carlo Value

( Q i 5)

( Q T )

( Q i l )

0.0783 ±0.0013 

0.0786 ±  0.0080 

0.1153 ±0 .0013

0.0760 ±  0.0002 

0.0841 ±  0.0002 

0.1117 ±  0.0001

(Ql° )

(Ql° )

( Q l i )

0.1136 ±0.0017  

0.0888 ±0.0129  

0.1601 ±0.0016

0.1112 ±  0.0003 

0.0859 ±  0.0003 

0.1611 ±  0.0002

Table  7.2: Fitted values for b, c and nds mean jet-charges, for k = 0.5 and k = 1.0. 

The Monte Carlo values are shown for comparison.

The fitted values for the constrained parameters are given in the third  column 

of Table 7.4. The fitted values are all consistent with their input values, within
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Figure 7.18: The charge correlation as a function of measured proper time with the 

result of the fit shown as the solid line. The no mixing hypothesis is shown as a dotted 

line (suppressed zero).
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Figure 7.19: The fitted distributions of ( - Q j 0Q j s} versus BTAG cut, for k = 1.0 and 

k, = 0.5 (suppressed zero).

the constraints applied. The discussion of the various sources of systematic error 

is given in the following section.

The fit is performed for each individual data  year as a stability check and the 

results are given in Table 7.3 and shown in Figure 7.20. The central band on 

Figure 7.20 indicates the combined value and its full statistical and systematic 

error.
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Year A m d (ps-1 ) X2/n .d .f

1991 0.653 ±  0.095 43/71

1992 0.582 ±  0.067 41/71

1993 0.347 ±0 .076 20/71

1994 0.394 ±  0.045 54/71

1995 0.415 ±0 .084 25/71

Table 7.3: Summary of the A md results for the individual data years including

their statistical uncertainties, errors arising from correction factors and systematic 

uncertainties arising from the fitted parameters.

0.8

0.5

0.4

0.3

0.2 _j     i   l   i   i l i i i i i i i i__j I i i_i
91 92 93 94 95

Data year

Figure 7.20: Summary of the A raj fit results for the different data years, indicating 

their statistical uncertainties and systematic uncertainties arising from the fitted 

parameters. The value from the fit to the combined data-set is shown as the central 

band with its full statistical and systematic uncertainty.

7.7 Errors on the A???̂  Result

In order to determine the purely statistical error on the Am^ result, all the 

parameters in Table 7.4 are fixed to their central values and only the free
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param eters in the upper part of Table 7.1 are allowed to vary.

Contributions to the systematic error are listed in Table 7.4. The systematic 

error due to each of the constrained parameters is determined by allowing each 

param eter to vary in turn, along with the free parameters, while fixing all others 

to their central values, and noting the new error on A md. The systematic error for 

each param eter is found by subtracting the statistical error in quadrature  from 

the new error which is obtained when tha t param eter is allowed to vary. The 

systematic error contributions from the fitted parameters are signed using the 

correlation m atrix  returned by the fit and given in Appendix B. Various sources 

of systematic uncertainty are separated into the following general categories :

• L i fe t im e s  : The b hadron fractions and lifetimes are allowed to vary in 

the fit within the Gaussian constraints given in Table 7.1, as discussed in 

Section 7.-5. The fit has also been performed using the current world average 

value of Tt, = 1.549 ±  0.02 ps as the constraint in (7.19) instead of the value 

obtained from the fit to the proper time distribution given in Section 6.5.5. 

This results in a shift of 3 x 10“5 ps-1 in the fitted value of A a n d  hence 

is safely neglected.

The charged B  lifetime, r#+, is positively correlated with Am.d and may 

be intuitively understood since an increase in rB+ implies a larger fraction 

of B ± at long proper times. This would increase the value of the charge 

correlation at long proper times and so A md must increase to compensate 

and so fit the data. Similar reasoning explains why r B d , t B s and T \  are 

anti-correlated with Am^.

• b H a d r o n  J e t - C h a r g e s  : The combined statistical and systematic error 

on the fitted average b jet-charge, (Qj'°), is used to constrain the sum of 

the individual b hadron components as described in Equation (7.18). The 

errors ascribed to the individual b hadron jet-charges account for possible 

conspiracies between the less well-known b hadron classes such as B s and b 

baryons. The systematic error arising from the B ± jet-charge is relatively
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large since this jet-charge shows the largest dependence on multiplicity and 

hence the largest variation with reconstructed proper time (Figures 7.2 and 

7.9). All of the b hadron jet-charges are positively correlated with A md 

since an increase in any of the jet-charges means tha t A rrid has to increase 

in order to fit the data.

• S am p le  C o m p o s i t io n  : The values of Vb and V c obtained from the fit to 

data  for 77, are used together with their associated errors. The b hadron 

fractions, f s and / a ,  are varied within Gaussian constraints [11]. The 

systematic error associated with the b baryon fraction is relatively large 

since it is poorly known and, although the baryon fraction itself is small, a 

variation in / a  implies a variation in fd and f u via Equation (7.20).

• b F r a g m e n ta t io n  : The effect of varying the b fragmentation is studied 

in two ways. These are : (a) varying the fragmentation function by 

re-weighting the Monte Carlo, using the range of tb values discussed in 

Section 6.3.5 and (b) using the Bd folding matrix and efficiency corrections 

in calculating the B s distributions, to take into account the current lack of 

knowledge about B s decays.

• M u l t ip l ic i ty  C or rec t io n s  : Errors associated with corrections to the 

b hadron jet-charges, corr£^(Geco), are discussed in Section 7.2 and are 

passed through, bin-by-bin, in t reco.

• B ac k g ro u n d  J e t - C h a r g e s  : The effect of the corrections applied to the 

ucls and c jet-charges to take into account their multiplicity induced time- 

dependence is estimated by turning the time-dependence on and off in the 

fit and observing the effect on the value of Am^.

• A m s : The effects of varying the input value of A m s between oo and 6 ps-1 

is taken as an additional systematic error.
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Param eter Variation Fitted Value ^sys(Ps )

TBd 1.56 ± 0 .0 6  ps 1.59 ±  0.06 ps ±0.0045

TBS 1.61 ±  0.10 ps 1.61 ±  0.10 ps ± 0.0022

T\ 1.14 ±  0.08 ps 1.14 ±  0.08 ps ±0.003

tb+ 1.62 ±  0.06 ps 1.60 ±  0.06 ps ±0.004

n 1.570 ±0 .014  ps 1.560 ±  0.043 ps ±0.0003

h 0.101 ±0.031 0.081 ± 0.021 ± 0.012

fs 0.109 ±0 .013 0.106 ± 0 .013 ±0.0093

<<?n 0.0317 ±  10% 0.0319 ±  0.0032 ±0.0025

(<?$> 0.1506 ± 2 % 0,1510 ±  0.0029 ± 0.012

( o 10 )\ * B  unmix j 0.1195 ± 2 % 0.1199 ±  0.0023 ±0.0063

/  Q 10 )\   ̂B tx / -0.0576 ±  2% -0.0577 ±0.0011 ±0.0015

( o l-Q \\ T/ B ,inrntX / 0.0696 ±  10% 0.0699 ±  0.0069 ±0.004

( Q b t ' ) 0.0076 ±  10% 0.0076 ±  0.0008 ±0.0006

sample composition
V b -  (87.5 ±  1.2)% 

V c =  (9.8 ±  1.8)%

(87.4 ±  1.1)% 

(8.9 ± 1 .2 )%
±0.004

A m s oo —> 6 ps-1 ± 0.0001

set R ( 5 S) = - 0.0022

(—QQ) c,uds time depend. off -0 .005

c btag correction, C(j) off ± 0.0002

multiplicity correction ±0.008

b fragmentation e6 =  0.0045 ±  0.0009 ±0.015

MC statistics ± 0.001

Total ±0.029

Table 7.4: Contributions to the systematic error on the Am^ result. The upper

part of the table corresponds to the fitted parameters and the second column gives 

the Gaussian constraints which are used. The third column gives the values returned 

from the fit. The lower part of the table corresponds to ‘fixed’ parameters. The fourth 

column gives the contribution of each source to the systematic error on Am^.
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Allowing all parameters to vary simultaneously in the fit gives an error 

of ±0.035 on the value of A T h i s  corresponds to a statistical error of 

±0.026 in quadrature with an error of ±0.023 arising from the fitted parameters, 

corresponding to the sum of the contributions from the fitted param eters listed 

in the upper part of Table 7.4.

The dominant systematic uncertainty is currently due to the knowledge of the 

fragmentation function for b quarks. The relative fractions of b hadrons assumed 

in the sample, and the average jet-charge for B ± mesons are also significant.

The analysis is repeated without applying the revertexing algorithm after the 

initial QVRSCH vertexing. This is done in order to check tha t no bias has been 

introduced by revertexing. Based upon the 1992 data alone, the value obtained 

without revertexing is A m™rvtx = 0.593 ±  0.074ps-1 which is consistent with 

the nominal 1992 value given in Table 7.3. The gain in signal/noise obtained 

using the re-vertexing procedure is approximately equal to tha t expected from 

Figure 6.4.

As a further cross check the fit is performed for BTAG cuts of 15, 20 and 

25, giving the results shown in Figure 7.21 (errors shown are due to statistical 

uncertainties and systematic uncertainties arising from the fitted parameters). 

The results are stable as expected, since the systematic error due to the flavour 

composition is small.

7.8 Comparison with Previous Measurements

The value for A o b t a i n e d  using this (Q j et /Q je t ) m ethod is compared with 

other measurements from ALEPH in Table 7.5, where (prel.) denotes the most 

recent preliminary results. Combining the result obtained in this analysis with the 

three other most recent results in the lower part of Table 7.5, assuming statistical 

correlations of 20% with the lepton analyses and 5% with the D * / Q j et analysis 

[65] , yields the following preliminary ALEPH result :

Am^ (combined) =  0.434 ±  0.029 p s -1
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Figure 7.21: A m j  dependence  on th e  BTAG cut applied. T h e  erro rs  in d ica te  the  

s ta t i s t ic a l  u n ce r ta in t ie s  and  sy s tem a tic  u ncer ta in t ie s  from th e  f i t ted  p a ra m e te rs .

Method No. Z° ( x l O6) A m d (ps *)

Dileptons [19] 

D*/lepton [26]

0.98

0.9

O A llo S  (stat.) toiio (syst.) 

0.52±g;i? (stat.)  ±8:83 (syst.)

(prel.) Lepton / Q j et [20] 

(prel.) D * / l , Q Jet [20] 

(prel.) Dileptons [20]

3.3

3.3

3.3

0 .3 9 6 ^ 4 4  (stat.) ±g;gl| (syst.) 

0.482 ±  0.044 (s ta t . ) ±  0.024 (syst .) 

0.426 ±  0.039 (stat.) ±  0.052 (syst.)

(prel.) Q j et/Qjet 4.1 0.441 ±  0.026 (stat.) ±  0.029 (syst.)

Table 7.5: M e a su re m e n ts  of  A b y  different m e th o d s  used by A l e p h .

For comparison, the combined ALEPH result, excluding the result from this 

analysis, is Am^(combined) = 0.436 ± 0 .033ps_1.

The ALEPH results for A mj  (including the result from this analysis) are shown 

in Fig.’re 7.22 along with recent results from the other Lep experiments [66]. The 

Lep average value is shown as a central band on the plot.

BTAG cut
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ALEPH Qjet/Qjet 
(91-95 prel)
ALEPH 1/1 

(91-94)
ALEPH 1/Qjet 

(91-94)
ALEPH D*/l,Qjet 

(91-94)
DELPHI 1/1 
(91-94 prel)

DELPHI 1/Qjet 
(91-94 prel)

DELPHI D ’/Qjet 
(91-94 prel)

DELPHI xc*/Qjet 
(91-94 prel)

L31/1 
(94-95 prel)

L3 1/Qjet 
(94-95 prel)

OPAL 1/1 
(91-93)

OPAL 1/Qjet 
(91-94 prel)

OPAL D l/Q jet 
(90-94)

OPAL D*/l 
(90-94)

preliminary 
LEP averageaverage

L E P  B O s c i l l a t i o n s  
W o r k i n g  G r o u p

0.441±0.026±0.029 ps 

0.426±0.039±0.052 ps 

0.396±0.045±0.028 ps 

0.482±0.044±0.024 ps 

0.480±0.040±0.052 ps 

0.493±0.042±0.027 ps" 

0.523±0.072±0.043 ps 

0.499±0.053±0.015 ps 

0.458±0.048±0.030 ps" 

0.451±0.077±0.016ps

n  ac  - ,+ 0 .0 4 0  + 0 .0 5 2  -10.462 _0 053 ,0 035 Ps 

0.444±0.029+o"ô  ps"1 

0.539±0.060±0.024 ps 

0.567±0.089+o'o23 ps"1

0.466±0.019 ps-l

0.35 0.4 0.45 0.5 0.55 0.6 0.65 

A m .  ( p s 1)

F ig u r e  7.22: Individual and combined measurements of Am^  at Lep. The error bars 

on the individual measurements indicate the size of the statistical error and total error 

on the result.
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Sum m ary and Conclusions

The tim e dependence of B ° — B® oscillations has been studied using an inclusive 

double jet-charge method, using da ta  taken with the ALEPH detector between 

1991 and 1995. The m ethod relies on the fact tha t the jet-charge for hemispheres 

containing mixed mesons differs from the jet-charge for hemispheres containing 

unmixed mesons, as described in Chapter 5. Since no lepton is required in the 

event, and no exclusive cuts are made, the double jet-charge method benefits 

from having at least five times the statistics of existing analyses.

The inclusive nature of this analysis places demands on the control of system 

atic uncertainties arising from backgrounds and detector resolution, which are 

estimated using the Monte Carlo. In order to keep discrepancies between data 

and Monte Carlo to a minimum and hence reduce systematic errors, a smearing 

procedure was developed and applied to the Monte Carlo (Chapter 4).

An inclusive vertexing technique followed by a re-vertexing procedure is used 

to reconstruct the decay length of the b hadron. Track probability weights are 

calculated, based on the significance of the track to the primary and secondary 

vertices and the rapidity of the track. These weights are used in the reconstruction 

of the charged part of the b hadron mom entum . The decay length and m om entum  

are used to calculate the proper lifetime of the b hadron. The proper time 

resolution is taken into account in the fitting procedure by means of folding 

matrices. Biases to the proper time distribution arising from the vertexing

167
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procedure and b tagging cut are also taken into account in the fitting procedure 

and are checked using the da ta  as much as possible (Chapter 6).

M easurem ent of the Inclusive b Lifetime

From around 4.1 million hadronic Z° decays collected during 1991-1995, a total 

of 423169 events pass all vertexing and b tagging cuts. A fit to the reconstructed 

proper time distribution for this da ta  sample gives a result for the inclusive b 

lifetime :

Tb =  1.570 ±  0.004 (stat.) ±  0.013 (syst.) ps

The systematic error is dominated by uncertainties in the b fragmentation 

function. The fit quality is good and the result is in agreement with the world 

average value of (1.549 ±  0.020) ps, indicating tha t the effects of vertexing, b 

tagging and detector resolution are well modelled in the fit.

M easurem ent of the BJ — B ° Oscillation Frequency

A m ulti-parameter fit has been constructed in order to extract the value of Am^, 

using constraints from da ta  where possible in order to control systematic errors. 

Variations in the jet-charges due to the effects of the reconstruction algorithms 

are well understood (Section 7.2) and have been included in the fitting procedure. 

The average values for all jet-charges are allowed to vary in the fit, taking only 

the algorithm dependent corrections and covariance terms from the Monte Carlo. 

The fit to the 1991-1995 d a ta  sample gives the A md result :

A md = 0.441 ±  0.026 (stat.) ±  0.029 (syst.) ps-1

The dominant contributions to the systematic uncertainty are due to the know

ledge of the fragmentation function for b quarks, the relative fractions of b hadrons 

assumed in the sample, and the average jet-charge for B ± mesons. The result is 

in good agreement with the world average value [11] of A =  0.459± 0.018 p s -1 .
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Future D evelopm ents

The tools developed for this analysis have not yet been exploited to their full 

potential and hence it is possible tha t improvements can be made in the sensitivity 

to Bd and B s oscillations and in the control of systematic errors. The methods 

used here can also be extended to enable new measurements to be made. Future 

developments can be made in the following areas :

• It is possible to improve the statistical sensitivity to both Bd and B s 

oscillations by making use of the vertex charge described in Section 6.3.2 

to calculate a probability weight for each hemisphere which can be used to 

enhance the contribution from neutral B  mesons.

• The vertex charge can also be used to obtain samples of events with varying 

b hadron compositions. Performing the lifetime fit on the various samples 

will allow tighter constraints to be placed on the individual b hadron 

lifetimes.

• The analysis has yet to be optimised to give m aximum sensitivity to B s 

oscillations. The large event sample means tha t tighter vertex quality cuts 

can be implemented, albeit at the expense of a drop in efficiency, in order 

to obtain improved proper time resolution.



Appendix A 

Study of the VDET Laser D ata

A .l Introduction

The purpose of the VDET Laser Alignment System is to help maintain the 

tracking quality by monitoring relative movements between the V D ET and the 

ITC. The laser system provides online information to the shift crew and laser 

events are also written to tape to allow further analysis to be carried out. 

In this section, results from the analysis of VDET laser da ta  taken during 

1994 are presented [67]. This analysis was motivated by a deterioration in the 

tracking quality which was discovered after the ALEPH detector was opened for 

maintenance in June 1994, around run number 26600. One possible suggestion for 

the cause of this deterioration was th a t  the VDET had moved [68]. A total of 650 

runs were analysed from June to November 1994 and the results are presented.

A .2 Outline of Laser Alignment System

A diagram of the system is shown in Figure A.I. Two kapton foils are glued onto 

the inner carbon-fibre tube of the ITC, each foil covering a half cylinder. Six 

sets of pairs of prisms are mounted on each foil, three sets at each end giving 

twelve pairs in total. In each set, one of the prisms delivers light perpendicular to 

the wafer and the other is orientated to deliver light at a 30° angle of incidence.

170
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Thus, for example, any radial motion of the wafers would cause changes in the 

distance between the two spots. There are two semiconductor infrared lasers, one 

at each end of the detector, and light is transm itted  to the prism sets via optical 

fibres. The lasers are fired by an oscillator which sends an independent signal to 

the ALEPH trigger at the same time. There are approximately 100 laser events 

per run. Light is pulsed onto the end wafers, 1 and 4, of faces 1, 4, 6, 9, 11 and 13 

of the outer layer. The numbering of VDET faces is shown in Figure A.2 (more 

detailed information on the VDET geometry can be found in Section 3.3.1 and 

elsewhere [69]). Each wafer should have two spots making 24 in total, and each 

spot has a Z view and an XY view which are treated separately giving 48 ‘spo ts’ 

in total. The spots are numbered such tha t spots 1-24 correspond to the Z view 

and 25-48 correspond to the XY view. Plots of pulse height versus strip num ber 

are shown in Figure A.4 for the Z view and Figure A.5 for the XY view. The 

numbering of the strips is shown in Figure A.3. It can be seen tha t some of the 

spots are missing or are very weak. This is due to misalignment of the prisms 

or poor contact between the optical fibres and the prisms. Modules B001, B006 

and A009 are the only ones which have two good spots in both views. Most of 

the other modules have one good spot seen in both views, except module A006 

which has no spots at all. Figure A.6 shows the XY distribution of hits for laser 

events. The laser spots can be seen along with some noise hits.

A.3 Analysis

The analysis was performed on approximately 650 runs taken between June and 

November 1994. The positions of the laser spots were determined and monitored 

as follows :

• A threshold level was set for each module in order to eliminate the 

background which can be seen on some modules, for example A013, B004, 

and B001 (see Figures A.4 and A.5). This overcomes the problem of fake 

hit positions being found from background.
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• ‘C lusters’ a.re formed from strips with pulse height above the threshold value 

and the exact hit position is found using a centre-of-gravity technique.

• For each spot, a nominal position was determined. This was taken as being 

the mean hit position found using 200 laser events. Windows centred on 

each spot were then set to allow each hit to be associated with a certain 

spot number. For most spots the width of this window was set at 600 //m 

(ie. 6 readout strips), to allow for movements of tha t size. In the case of 

two very close spots, for example spots 13 and 14 in Figure A.4, a smaller 

window was chosen.

• Deviations from the nominal positions were calculated on an event by event 

basis and history plots were produced showing the run-averaged deviation 

as a function of run number.

A .4 Results

Figure A .7 shows the run-averaged spot deviation as a function of run number 

for representative spots. It can be seen tha t until around run 29400 the spots are 

stable within approximately 3 /*m. Around run 29400 however, all the spots show 

a significant shift. The size of the shift varies between spots and is summarised 

in Table A.I. The shift occurs gradually, starting on the 4th October and taking 

4 days for the spots to reach their maximum deviation on the 7th. The spots 

then return to their previous positions on the 13th October around run 29700. 

From run 29700 onwards the spots are less stable than before. The following 

observations were m ade concerning the nature of the shift:

• The spots are stable around run 26600 indicating tha t a V D E T /IT C  relative 

movement was not a possible explanation for the tracking distortions seen 

at tha t time.

• The start of the shift does not coincide with the ALEPH detector being 

closed on the 22nd September but starts 12 days afterwards.
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• The fact tha t the shift occurred relatively slowly and the spots returned to 

their normal positions suggests tha t the movement is related to a gradual 

change, of tem perature  or pressure for example.

• The average cluster pulse heights were studied as a function of run number 

because if some of the strips were to saturate, the pulse height information 

would no longer be accurate for these strips1 and this could cause an 

apparent shift in the cluster position. The pulse heights were seen to be 

stable for all spots hence this is not a possible explanation for the observed 

shift.

A .4.1 P ossib le  E xplanations for the Shift

Three possible explanations could account for the observed spot shifts :

(a) The VDET moved.

(b) The ITC inner wall moved and the laser system moved with it.

(c) The laser system moved relative to the ITC inner wall.

Explanation (a) suggests tha t the VDET modules moved, perhaps due to a

tem peratu re  change. If this was the case then a deterioration in tracking quality

would be expected for runs between 29400 and 29700. In order to check this, 

the ALEPH tracking quality program, DQUAL [70], was used to independently 

analyse these runs. The DQUAL program uses di-muon events and analyses the 

residuals between the actual VDET hit and the expected hit position found by 

extrapolating a track back from the T PC  and ITC. This program should be 

able to detect V D ET movements of greater than  30 //m. Runs 29400-29700 were 

analysed using the tracking quality program and also a set of runs taken when 

the spots were stable. No significant differences were seen between the two sets 

LIf a strip saturates then the strip pulse height is measured to be smaller than it really is.
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Module

Number

Z side XY side

Spot Max. shift (^m) Approx. (f) Spot Max. shift (/im)

BO 13 1 +2

ooO'] *

2 +4 26 - 1 2

A013 * 290° *

4 +9 28 +70

B001 5 +  17 0° 29 +7

6 +20 30 +  12

A001 7 +  12 0° *

* 32 - 4 0

B004 9 +20 70° 33 - 8 5

* 34 - 5 0

A 004 * 70° 35 - 1 0

12 +  14 36 +45

B006 13 +  15 120° 37 +3

14 +  16 38 +  10

A006 * *

* *

B009 17 +8 195° *

* 42 +  17

A009 19 +5 195° 43 - 7

20 +5 44 +4

B011 21 -1 1 245° 45 +65

* 46 +85

AO 11 * 245° 47 - 5

24 +  12 *

Table A.l :  Summary table of spot shifts. A positive shift indicates that the spot 

moved in the direction of increasing strip number (see Figures A.3, A.8). A * indicates 

an absent spot.
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of results. However, many of the spot shifts are less than 30 fim  and therefore it 

is possible tha t the DQUAL analysis is not sensitive to them.

Explanations (b) and (c) appear to be more feasible. It was noted th a t  

atmospheric pressure rose from 970mbar on October 4th to 990mbar on October 

7th. This la tter pressure was the highest recorded around this time and coincides 

with the time of the m axim um  spot displacement. Since the gas pressure inside 

the ITC chamber follows the pressure outside, this pressure change should not 

have resulted in a movement of the walls of the ITC. A likely hypothesis is th a t  

small bubbles of air are trapped in the glue between the kapton foils of the laser 

system and the ITC walls. Changes in atmospheric pressure could cause such 

bubbles to expand or contract thus causing movements of the kapton foils and 

hence causing movements of the prisms which are attached to the kapton.

A .4.2 Interpretation  o f  Spot M ovem ents.

Adopting the assumption tha t it was the VDET which moved it is worthwhile 

trying to interpret the individual spot movements in terms of a global movement 

of the VDET. The first point to notice from Table A.l is tha t all the spots, except 

spot 21, move in the direction of increasing strip number in Z. Figure A.3 shows 

the way the strips are numbered and so the Z movements can be considered 

as suggestive of the V D ET contracting along its length2. However, problems 

arise when trying to interpret the movements more accurately. This is because 

there is a two-fold ambiguity when matching the Z view of a spot with its 

corresponding XY view. For example, on module B006 spot 13 (Z) could be 

paired with either spot 37 or 38 (XY) (see Table A .l).  This ambiguity is overcome 

during normal da ta  taking by extrapolating tracks back from the T PC  and ITC 

and looking for VDET hits within a region surrounding the extrapolated track. 

However for VDET laser events there are no hits in the other subdetectors and 

so this extrapolation can not be performed. An a t tem p t was made to resolve

“Note that the movement of a spot in one direction implies that the VDET module moved 

in the opposite direction.



A P P E N D I X  A. S T U D Y  OF T H E  V D E T  L A S E R  DATA 176

the  ambiguity by looking for correlations between the pulse heights of the Z and 

XY spots but this did not prove very successful since, for example, spot 20 was 

equally correlated with spots 43 and 44. Another way to resolve this problem is 

by obtaining a more detailed knowledge of the geometry of the system.

Despite these limitations, an idea of the sort of movement tha t took place can 

be obtained by making an assumption about the Z-XY pairing of spots. One pos

sible movement is pictured in Figure A.8, where each face is drawn individually. 

It can be seen that the motion cannot be easily accounted for in terms of a simple 

rotation or translation. However, this strange combination of contractions and 

expansions would perhaps be expected if tem perature  fluctuations were the cause. 

However, the VDET tem peratures were investigated in the period from the 4th 

to 14th of October and were found to be stable to within 2°C, thus reinforcing

the hypothesis that it was the laser system which moved and not the VDET.

A . 4 . 3  A ddition  o f  Laser Spot A nalysis into DQUAL P rogram

It was mentioned above tha t the tracking quality program was perhaps not 

sensitive to VDET movements of less than 30 /zm. In view of this it was decided 

to include some code in the DQUAL program to analyse the VDET laser events. 

This new code produces the following histograms :

• XY view spot deviation against (f). (Side A)

• XY view spot deviation against (f>. (Side B)

• Z view spot deviation against <$>. (Side A)

• Z view spot deviation against <f>. (Side B)

• Distribution of XY deviations for all spots.

• Distribution of Z deviations for all spots.

Examples of these histograms are shown in Figures A.9 and A. 10. The solid 

triangles correspond to da ta  taken between runs 28496 and 28608 (before the
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shift) and the open triangles correspond to data  taken between runs 29508 and 

29540 (during the shift). The distributions in Figure A. 10 should be Gaussian and 

the  extent to which they are not Gaussian is an indication that some movement 

has taken place. Clearly these histograms are sensitive to the movements which 

took place.

A .5 Improvements for LEP II

In view of the problems of spot pairing mentioned above and the possible 

instability of the laser system due to pressure changes, a new laser system has 

been designed for use with the upgraded VDET [71]. The new system has several 

improvements :

• The new laser system is matched to the longer length of the new VDET 

and light spots are incident on all but one of the outer VDET faces.

• The angles and positions of each light spot are precisely known.

• The prism cells are shaped to match the curvature of the ITC inner wall to 

avoid the problem of air bubbles being trapped behind the optics, which is 

a source of instability due to changes in atmospheric pressure.

W ith these improvements, the mechanical stability of the VDET can be moni

tored to an accuracy of better than one micron [72]. This is particularly useful for 

high energy running as the small event rate means tha t the num ber of di-muon 

events is reduced by a factor of the order of 100 and so monitoring of the V D ET 

alignment using real da ta  is difficult.

A .6 Conclusions

14ie performance of the VDET Laser Alignment System has been studied using 

data from the 1994 ALEPH run. The original motivation for this work came 

when a deterioration of the tracking quality after the June 1994 detector opening
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suggested tha t the VDET had perhaps moved. The results show tha t the VDET 

did not move at this time. In general the stability of the system was better 

than 3 fim  until 4th October. All the laser spots were then seen to move - the 

largest shift being 85 /mi. This movement can be attr ibu ted  to either a movement 

of the VDET or of the laser system or of its support (ITC inner wall). The 

spots returned to their nominal positions around October 13th suggesting tha t a 

pressure or tem perature  change had been the cause. This was investigated and 

movements of the laser system associated with changes in atmospheric pressure 

were found to be the most likely cause. The ALEPH tracking quality program, 

DQUAL did not show any differences in the results from di-muon events which 

occurred before and during the shift.

Code has been added to the tracking quality program to analyse the VDET 

laser events. It is hoped tha t this new code will be sensitive to relative movements 

between the ITC and VDET of less than 10/mi.
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(a) Cross section of foil and prism arrangement.

R O H A C E L L  
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V D E T  Face

L aser S p ots

(b) Close-up of one of the prism cells and a view of one of the VDET faces showing the 

angles of the two beams.

Figure A .l:  Diagram of the VDET laser system.
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Figure  A .2: VDET faces projected onto the Aleph XY plane, as viewed from side 

A. The face numbers are shown. Laser light is incident on the end wafers of faces 1, 4, 

6, 9, 11 and 13 of the outer layer.
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Figure A .3: Numbering of VDET strips.
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Figu re  A .4: Pulse height against strip number for Z view spots. Note some spots are 

not seen, for example spot 8 on module A001.
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Figure A .6: XY distribution of laser hits.
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machine development.



A P P E N D I X  A. S T U D Y  OF T H E  V D E T  L A S E R  DATA 185

F a c e  1

F a c e  4

F a c e  6

F a c e  9

F a c e  11

F a c e  13

//

.

/
B001 A001

/ \
B004 A004

\

B006 A006

\ y\ X

Z Side Assum ed spot pairs : 5 and 29
6 and 30

XY Side 7 and 32

Assum ed spot pairs : 9 and 33 
12 and 36

A ssum ed spot pairs : 13 and 37 
14 and 38

Assum ed spot pairs 17 and 42
19 and 43
20 and 44

B009 A009

I Assum ed spot pairs : 21 and 46 
24 and 47

B011 AO 11

t \
A ssum ed spot pairs : 2 and 26 

4 and 28

B013 A013

F igure  A .8: Possible movements of VDET faces.
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F igu re  A .9: Laser plots of deviation vs. </>(spot). (Solid triangles - runs 28496-28608, 

open triangles - runs 29508-29540).
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F igu re  A. 10: Laser plots of deviation distributions.



Appendix B 

M ulti-param eter Fit Correlation 

M atrix

T he correlation coefficients between the parameters in the multi-parameter fit for 

A rrid are given in Table B .l,  where the parameters are given as follows :

l =  n 12 = ( Q jf r .)

2 =  (Q°JS) n  — (o10u n m i x

3 = ( e 5) 14 =  (%?»,*)

4 = (C?-5) 15 =  7A

5 = «?!£ ) 16 = tb +

6 = (Ql-°) 17 =  r B d

7 = (Ql°) 18 =  t B s

8 = A rrid 19 =  / a

9 =  (Qk°) 20 =  f s

10 =  (Q'g°±) 21 = Vb
11 — /  ni-o \x ± Q u n m x x  j 22 =  V c

188
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Table B .l :  Correlation coefficients for multi-parameter fit.
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