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On account of the fact that there is no glory in the foundations, and that the sources of
_success or failure are hidden deep in the ground, building foundations have always been
treated as stepchildren; and their acts of revenge for lack of attention can be very

embarrassing.

... Terzaghi

Therefore,

According to the grace of God which is given unto me, as a wise masterbuilder, I have

laid the foundation.
... I Corinthians 3 : 10
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ABSTRACT

A three-dimensional numerical analysis, based on the indirect boundary element
method, is developed to model the cyclic behaviour of laterally loaded pile foundations
embedded in cohesive soils. Phenomena observed in cyclic pile-load tests, such as gapping,
backsliding and soil strength degradation effects are accounted for in the analysis. The
analysis is capable of solving one-way and two-way cyclic loading problems subjected to
load-controlled and displacement-controlled conditions.

Two-dimensional plane-strain finite element analyses using! a 'bubble' model and
Mohr-Coulomb model are carried out, to examine the details of the interaction between the
pile and soil when subjected to cyclic loading. These analyses were used to guide the
development of the full three-dimensional analysis. A detailed study of the bubble model,
including a parametric study is conducted.

The three-dimensional non-linear elasto-plastic analysis uses an elastic-perfectly
plastic model for soils, which are assumed to behave linearly elastically at small strain levels,
but yield, when the limiting stresses of the surrounding soil are exceeded. After the soil
yields, its strength may degrade depending on the magnitude of the plastic displacement (i.e.
strain softening). The mechanisms involved in the degradation are investigated, and methods
to determine the strength degradation parameters using experimental data and correlations
with soil index properties are presented.

Using the foregoing analysis, an extensive parametric study on the principal pile and
soil variables is undertaken and presented in dimensionless form, to provide data for design
purposes. The economy and generality of the analysis, together with good agreement between
its predictions and published case histories, assures confidence in its use in engineering

practice.
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NOTATION

pile segment cross sectional area

pile segment displacement due to unit boundary conditions

pile segment displacement due to unit boundary conditions, corresponding to elastic
soil segment

pile segment displacement due to unit boundary conditions, corresponding to plastic
soil segment

pile segment displacement due to unit lateral translation of the pile

pile segment displacement due to unit rotation of the pile about its head

pile segment displacement due to unit lateral translation of the pile, corresponding to
the elastic soil segment

pile segment displacement due to unit rotation of the pile about its head,
corresponding to the elastic soil segment

pile segment displacement due to unit lateral translation of the pile, corresponding to
the plastic soil segment

pile segment displacement due to unit rotation of the pile about its head,
corresponding to the plastic soil segment

bearing degradation rate factor

gap closing factor for the left pile face

gap closing factor for the right pile face

shear degradation rate factor

undrained shear strength

pile diameter or width

pile Young's modulus

soil Young's modulus

coefficient of the pile-head compliance matrix

coefficient of the pile-head compliance matrix

coefficient of the pile-head compliance matrix

coefficient of the pile-head compliance matrix

function of the separation of the bubble and MCC yield surfaces (bubble model only)
pile-head lateral load

pile-head lateral load at the specified load or displacement

specified pile-head lateral load

maximum lateral load

pile-head lateral load due to unit rotation of the pile about its head

pile-head lateral load (end of previous increment)

shear force for the pile segment

pile-head lateral load due to unit lateral translation of the pile

yield load

interactive constant

plasticity index

interactive term

spring segment stiffness

lateral earth pressure coefficient

pile length



pile-head moment

slope of the critical state line (bubble model only)

pile-head moment at the specified load or displacement

maximum bending moment

bending moment for the pile segment

moment at the pile-head due to unit rotation of the pile about its head
pile-head moment (end of previous increment)

moment at the pile-head due to unit lateral translation of the pile
yield moment

number of cycles

bearing capacity factor

overconsolidation ratio

ratio of the sizes of the bubble yield surface and the MCC yield surface
residual/peak bearing strength ratio

residual bearing ratio

residual/peak shear strength ratio

residual shear ratio

specific volume

[Go,] pile coefficients obtained by integration of the Bernoulli-Euler kernel
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[G;’,e] pile coefficients corresponding to the elastic soil segments
[Gze] pile coefficients corresponding to the elastic soil segments

[Gf,"] pile coefficients corresponding to the plastic soil segments

[G;"] pile coefficients corresponding to the plastic soil segments

[G,] soil segment coefficients obtained from Mindlin's solution

[Gs] soil coefficients obtained from Mindlin's solution

[G¢] soil coefficients corresponding to the elastic soil segments

[G%] soil coefficients corresponding to the elastic soil segments

[Gé¢] soil coefficients after modification for soil yielding, corresponding to the elastic soil
segments

[G%] undetermined terms corresponding to the elastic soil segments

[G#] undetermined terms corresponding to the elastic soil segments

[K] pile-soil stiffness matrix

[K,] soil segment stiffness matrix

[K?] original soil segment stiffness matrix

[K¢¢] soil stiffness coefficients corresponding to the elastic soil segments

[K%¢] soil stiffness coefficients corresponding to the elastic soil segments

[K¢"] soil stiffness coefficients corresponding to the plastic soil segments

[K%"] soil stiffness coefficients corresponding to the plastic soil segments

c rate of increase in undrained shear strength with depth
' cohesion intercept

c, residual cohesion intercept

d, plastic bearing displacement

dy left gap distance

d,, right gap distance
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= Q

plastic shear displacement

plastic shear displacements (end of previous increment)
eccentricity of loading

influence factor to modify the soil segment stiffness matrix
largest gap closing factor

largest yield factor

hardening function

rate of increase in soil Young's modulus with depth

number of elastic soil elements within the segment

number of yielded soil elements within the segment

mean effective stress

yield factor for the elastic soil elements

preconsolidation pressure which defines the size of the yield surface
defines size of the MCC yield surface

deviator stress

current bearing strength

peak bearing strength

pile segment traction

residual bearing strength

soil segment traction

limit bearing stress

reduced limit bearing stress

residual limit bearing stress

limit shear stress

reduced limit shear stress

residual limit shear stress

soil element traction

soil element traction at the specified load or displacement

limit adhesive stress

soil element traction (end of previous increment)

yield stress for the soil element

yield stress for bearing

yield stress for shear

yield stress for tension

pile-head lateral displacement

pile-head lateral displacement at the specified load or displacement
specified pile-head lateral displacement

pile displacement when soil element yield in tension at the left faces of the pile
pile displacement when soil element yield in tension at the right faces of the pile
pile segment displacement

pile segment displacement at the specified load or displacement
pile displacement (end of previous increment)

soil segment displacement
depth

empirical adhesion factor
backsliding factor
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value obtained by applying unit boundary conditions in each increment

pile segment traction

pile segment traction corresponding to the elastic soil segment

pile segment traction corresponding to the plastic soil segment

pile segment traction due to unit lateral translation of the pile, corresponding to the
elastic soil segment

pile segment traction due to unit rotation of the pile about its head, corresponding to
the elastic soil segment

elastic soil segment traction

plastic soil segment traction

elastic soil element traction

pile segment displacement corresponding to the elastic soil segment

pile segment displacement corresponding to the plastic soil segment

elastic soil segment displacement

plastic soil segment displacement

incremental plastic shear displacement

volumetric strain increment
plastic volumetric strain increment
shear strain increment

plastic shear strain increment

incremental pile-head lateral load

incremental pile-head moment

maximum pile-head displacement

incremental lateral pile-head rotation

soil element traction increment

incremental pile-head lateral displacement

pile segment displacement increment

axial strain

radial strain

angle of shearing resistance

residual angle of shearing resistance

effective unit weight of the soil

initial slope of the unloading lines in the /n V-In p’ compression plane
slope of the normal compression lines in the /n V-In p' compression plane
Poisson's ratio for soil

Poisson's ratio for pile

pile-head rotation

pile-head rotation at the specified load or displacement
pile-head rotation (end of previous increment)
effective axial stress

normal effective stress

effective radial stress

vertical effective stress

yield stress of the material

current shear strength

shear strength at o', = 50 kPa
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T peak shear strength
T, residual shear strength
v exponent in the hardening function

superscripts

e, ee, ne corresponding to the elastic soil segment

n, nn, en corresponding to the plastic soil segment

u due to unit lateral tranlastion of the pile

0 due to unit rotation of the pile about its head
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CHAPTER 1

Introduction

1.1 General remarks

Piles are columnar elements, used in foundations, which have the function of
transferring load from the superstructure through weak compressible strata to stiffer soils.
They may be required to carry uplift loads when used to support structures subjected to
overturning forces from winds or waves. Piles used in marine structures are subjected to
lateral loads from the impact of berthing ships and from wind and wave action. Combinations
of vertical and horizontal loads are carried where piles are used to support retaining walls,
bridge piers and abutments, and machinery foundations. A full descriptive account of pile
foundations is beyond the scope of this project; details may be found in the comprehensive
texts by Poulos and Davis (1980) and Tomlinson (1994).

For pile subjected to static lateral loading, the general characteristics of pile response
are reasonably well understood, and a number of methods of analysis have received
acceptance. However, the cyclic response characteristics of laterally loaded piles are not so
well understood, and suitable methods of analysis are still being developed. Because of the
difficulties which are encountered in conducting full-scale pile-load tests, there exists a need
for analytical methods that are capable of simulating the cyclic behaviour of laterally loaded
piles, as depicted in Figures 1.1 and 1.2. The typical pile response as revealed from the cyclic
tests based on the load-controlled conditions (Tassios and Levendis, 1974; Matlock, 1970),
showed an increase in the pile-head displacements (maximum and residual) with the increase
in the number of cycles (see Figure 1.1), and likewise the bending moments of the pile as
shown in Figure 1.2. For the displacement-controlled laboratory model pile tests illustrated in
Figure 1.3, a reduction in pile load with cycling is reported by Matlock (1970).

The main aim of this project is to provide a simple and realistic numerical method for
the design and analysis of cyclic laterally loaded piles embedded in cohesive soils. The
secondary objective is to develop a simple soil model that is capable of describing the gap

formation, backsliding and soil strength degradation effects, which are based on the
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phenomena observed in the cyclic pile-load tests shown in Figure 1.4. Dynamic effects will
not be considered in this project.

To understand the complex behaviour of piles subjected to cyclic loading, some
knowledge of the behaviour and analyses of static laterally loaded piles is necessary. This

will be reviewed in the following sections, together with the cyclic analysis.

1.1.1 Behaviour of static laterally loaded piles

The ultimate resistance of a vertical pile to a lateral load and the displacement of the
pile as the load builds up to its ultimate value are complex matters involving the interaction
between a pile and the soil, which deforms partly elastically and partly plastically. Taking the
case of a vertical pile unrestrained at the head, the lateral loading on the pile-head is initially
carried by the soil close to the ground surface. At low loading levels, the soili deforms
elastically. At a further stage of loading, the soil yields plastically and transfers its load to
greater depths.

In practical applications, few pileé deform over their whole length under lateral
loading. The pile displacements and bending moments tend to reduce to negligible
proportions within a few (typically less than ten) pile diameters from the ground surface.
Broms (1964), Poulos (1971), Poulos and Davis (1980), Randolph (1981), Davies and Budhu
(1986) and Budhu and Davies (1988) mentioned that there is a critical or effective length of
pile beyond which the pile behaves as it is infinitely long. As such, it is reasonable to assume
that piles which are longer than their effective length behave identically. The detailed
determination of effective length under elastic and yielding conditions have been described
by Davies and Budhu (1986) and Budhu and Davies (1988) for piles embedded in stiff and
soft clays, respectively.

A short rigid pile (having a length shorter than its effective length) unrestrained at the
top (free-head) shown in Figure 1.5a, tends to rotate and passive resistance develops above
the toe on the opposite face to add to the resistance of the soil near the ground surface
(Broms, 1964; Tomlinson, 1994). Eventually, the rigid pile will fail by rotation when the
passive resistance of the soil at the head and toe are exceeded. The short rigid pile restrained
at the head (fixed-head) by a cap or bracing will fail by translation as shown in Figure 1.5b

when the lateral soil reactions exceed the passive resistance of the soil.
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The failure mechanism of a long free-head pile (having a length longer than its
effective length) is different from that of a short pile as described by Broms (1964) and
Tomlinson (1994). The passive resistance of the lower part of the pile prevents rotation of the
pile, the lower part remaining vertical while the upper part deforms as shown in Figure 1.6a.
Failure takes place when the pile fractures at the point of maximum bending moment. For the
purpose of analysis, a plastic hinge capable of transmitting shear is assumed to develop at the
point of fracture. In the case of a long fixed-head pile, high bending stresses develop at the
point of restraint, e.g. just beneath the pile cap, and the pile may fracture at this point (Figure
1.6b).

The typical deformed shape of the pile and the corresponding bending moments,
shearing forces and soil reactions under elastic condition are illustrated in Figure 1.7 (Reese
and Matlock, 1956). With increasing loading, soil yielding will take place. The deformed
patterns and reactions of the pile and soil are similar to those shown in Figure 1.7, but with a

greater magnitude.

1.1.2 Behaviour of cyclic laterally loaded piles
Cyclic lateral loading on piles will result in an increase in pile-head displacements and
bending moments as compared with a corresponding static lateral loading; see Figures 1.1
and 1.2.
For piles embedded in cohesive soils or clays, there are basically five major factors
which may influence the pile behaviour. They are described as:
1.) Gap formation around the pile.
2.) Backsliding of the soil into the gap.
3.) Reduction in soil strength.
4.) Cyclic shakedown.
5.) Rate of loading.

Gap formation

A principal effect of cyclic loading is the cause of permanent physical separation
(gap) of the soil away from the pile in the direction of loading, resulting in the reduction of
pile capacity (Matlock, 1970; Dunnavant and O'Neill, 1989; Bijnagte et al., 1991; Long et al.,
1993). This is due to the fact that the soil has limited ability to take tension, and it is likely

3
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that separation will occur near the top of the pile, where compressive stress in front of the pile
and tensile stress behind the pile, are developed.

The permanent displacement of the soil creates a gap zone such that the soil resistance
will be reduced, and the effect is manifested by much greater bending moments and
displacements than obtained with similar loading during the initial cycle; see Figures 1.1 and
1.2. This was reported by Matlock (1970) where cyclic pile-load tests were carried out at
Lake Austin and confirmed at Sabine river. Bijnagte ef al. (1991) conducted cyclic pile-load
tests and concluded that gaps are evident during the tests, and that the gap formation is
restricted to a depth in the range of four pile diameters with gap widths of about 30 mm (5%
of the pile diameter) at ground level. Swane and Poulos (1982) pointed out that pile response
to cyclic load is dependent, not only on the pile-soil characteristics, but also on the geometry

of the gap.

Backsliding

The effects of backsliding of the soil into the gap (i.e. partially closing it; see Figure
1.4a), is due to the tensile or adhesive properties of cohesive soil. During cyclic loading, the
soil is first pushed forward by the pile. After the pile has reached its maximum displacement
and starts to move back, tensile stresses between the pile-soil contact zone may occur. The
adhesive strength of cohesive soil will result in backsliding of the soil into the gap, resulting
in the reduction in gap size. This phenomenon has been observed by Matlock (1970) using

laboratory model pile tests.

Soil strength degradation

Soil will degrade in strength when subjected to cyclic loading. This is due to the
increase in pore water pressures (for undrained condition), changes in soil density and
reorientation of the soil particles.

Cyclic loading on piles may cause a considerable loss in shear strength of the soil at
its side (slip zone) due to continuous sliding action at the pile-soil interface when the soil has
become plastic (i.e. reaches its shear strength); see Figure 1.4c. Shear strength degradation
can be observed by conducting reversal shear box tests on clays as reported by Skempton
(1964, 1985). The bearing strength of soil in the compression zone, will degrade due to

continuous shearing of the soil when the soil has become plastic after reaching its bearing
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strength. This phenomenon is observed experimentally using plate loading tests described by

Ward et al. (1965). Detailed coverage on soil strength degradation is deferred to Chapter“4.

Shakedown and related effects

Load paths which initially cause plastic strains in the soil but stabilise to an elastic
response after a finite number of load cycles are said to 'shakedown'. At shakedown, the soil
develops a residual stress distribution such that stresses due to an elastic response of the pile
to subsequent loads lying within the prescribed load path may be superimposed without
causing further yield of the soil. A state of permanent strain and residual stress remains in the
soil.

The shakedown limit represents the maximum load at which shakedown can take
place along a given load path. For loads which cause shakedown, the increments of pile
displacement and plastic work of the soil produced after each cycle tend to decrease,
becoming zero after a finite number of cycles as depicted in Figure 1.8b.

When the load path produces no plastic strain in the soil, the pile is said to be
experiencing a purely elastic response as depicted in Figure 1.8a. However, if the pile
displacement stabilises after a finite number of cycles, while plastic deformation continues
within the soil, the pile is said to have experienced alternating plasticity as illustrated in
Figure 1.8c, with the load-deflection curve forming a hysteretic loop. The amount of plastic
work within the soil increases for load paths undergoing alternating plasticity and may
eventually result in failure. If the pile does not stabilise to an elastic or inelastic response, the
plastic work done and the pile displacements will continue to increase with each load cycle.
After a number of load cycles, the pile may become unserviceable due to progressive
deformation, and is said to have failed by incremental collapse or ratchetting as shown in
Figure 1.8d.

Although shakedown and the three factors described above are interlinked, the present
project will only concentrate on the first three phenomena. The shakedown limit will not be
determined, and only pile loading below the 'collapse' load levels described by Davies and
Budhu (1986) and Budhu and Davies (1988) will be dealt with. At these levels, although
significant changes occurred during load cycling, the behaviour of pile-soil systems tend to

stabilise, unless total pile collapse is imminent. Such stabilisation response is usually attained
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to a practical degree in less than 100 cycles (Matlock, 1970; Reese ef al., 1975; Hamilton and
Dunnavant, 1993; Long et al., 1993), depending on loading levels.

Rate of loading

To date, there are no reports of rate of loading effects on cyclic pile-load tests. The
only reported case was based on static pile-load tests described by Tassios and Levendis
(1974). Their results indicated that;substantially lower pile displacement (by a factor between 2
to 4) was measured for rapid rate of loading of 500 kN/h as compared with slower rate
application of 5 kN/h. An alternative and economic way to determine the loading rate effect
was reported by Andersen and Stenhamar (1983). They conducted plate loading tests on Haga
clay and reported that a rapid loading test will give a 10% higher bearing strength as
compared with a rate 32 times slower.

The loading rate effect will not be considered in the present method of analysis since
there are insufficient data to characterise its influence on cyclic pile behaviour. It is assumed

that conventional rates of loading apply.

1.2 Analyses of static laterally loaded piles

Increased interest in the behaviour of lateral loaded piles has resulted in a variety of
methods being developed to analyse their response. The earliest and simplest representation
of the problem was that of a transversely loaded thin elastic beam, supported by a series of
linear springs acting along the length of the beam (Hetenyi, 1946). The analytical simplicity
of this representation has resulted in its widespread use in foundation engineering, but at the
same time, it is recognised that it has several shortcomings. In particular, the response of a
real soil is far from elastic, and non-linear soil response is a key factor in the behaviour of
laterally loaded piles. Moreover, group effects cannot be analysed in a rational manner by this
approach, and such factors as cyclic loading cannot be accommodated by such simple
analyses. Accordingly, more refined methods of analyses have been developed, using more
realistic representations of soil behaviour, categorised as linear and non-linear analyses. The
following sections contain a brief summary of developments in the analyses of static laterally

loaded piles.

1.2.1 Linear analysis
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There are essentially three approaches to the analysis of a laterally loaded pile in a
linear soil mass:

1.) The subgrade reaction or Winkler analysis, in which the pile is idealised as an elastic
transversely loaded beam supported by a series of unconnected linear springs
representing the soil (Hetenyi, 1946).

2.) Finite element analysis, either using two-dimensional or three-dimensional soil and
pile elements (Desai and Appel, 1976; Verrujit and Kooijman, 1989), or more
economically, by means of expansion of the displacement field in terms of a Fourier
series (Kuhlemeyer, 1979; Randolph, 1981).

3.) The boundary element (or integral equation) analysis, in which the soil is modelled

as an elastic continuum (Poulos, 1971; Banerjee and Davies, 1978).

In all cases, it is possible to incorporate non-homogeneity of the soil, although certain
approximations are usually necessary in the boundary element analysis. One major advantage
of the finite element or boundary element analysis over the subgrade reaction analysis is that
an elastic continuum soil model is adopted, hence a more rational calculation of the

displacements and rotations of piles can be made.

1.2.2 Non-linear analysis
The importance of incorporating non-linear response into the analysis of laterally
loaded piles is well recognised, and some of the methods employed for static analysis have
been extended to allow non-linear load-displacement analysis. These methods may be
classified into three categories:
1.) Non-linear subgrade reaction analysis.
2.) Non-linear finite element analysis.

3.) Modified boundary element analysis.

Non-linear subgrade reaction analysis

The most widely used approach is that of Matlock (1970) and Reese et al. (1975),
who utilise the concept of p-y curves, i.e. relationships between pile-soil pressure (p) and soil
displacement (). Such curves represent, in effect, non-linear soil spring characteristics and

have been derived from field measurements on instrumented piles. By making measurements
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of bending moments and displacements along the pile at different applied load levels, the
relationship between soil pressure and displacement may be inferred for various points along
the pile. On the assumption that these relationships apply to piles of all proportions, shapes
and relative flexibilities, they may be used in an interaction analysis to determine pile
response to applied load. Recommendations for determining p-y curves for different soil
types have been summarised by Matlock (1970), Reese ef al. (1975), Reese and Desai (1977),
while Sullivan et al. (1980) have generalised procedures to develop a 'unified method' for
piles in clay, covering both soft and stiff clays. A somewhat simpler approach has been

adopted by Kishida and Nakai (1977) who adopt a bilinear p-y relationship.

Non-linear finite element analysis

In this type of analysis, elasto-plastic constitutive models of the soil continuum are
used, usually conducted in either two-dimensions or three-dimensions (Yegian and Wright,
1973; Desai and Appel, 1976; Faruque and Desai, 1982; Kooijman, 1989a, 1989b; Brown and
Shie, 1990, 1991; Bhowmik and Long, 1991; Trochanis et al., 1991).

The main advantages of the finite element analysis are: i) the various geometry and
boundary conditions for the pile and soil system can be considered, ii) different forms of
constitutive models for soils and pile-soil interfaces can be used, and, iii) systematic
investigation of various aspects of pile behaviour can be conducted, since several parameters
can be varied and their influences studied within the same analytical framework.

A combination of finite and infinite element methods have been adopted by Chen and
Poulos (1993). The infinite element is used to simulate the (elastic) far-field behaviour of the
soil medium, while standard finite elements are used to model the pile and soil immediately
surrounding it (near-field). The incorporation of the infinite element into a standard finite
element program can not only approximate the stress distribution in the far-field, but can also

save much computational effort and time.

Modified boundary element analysis

The extension of the boundary element method to incorporate an elasto-plastic soil
model has been outlined by Banerjee and Davies (1980). Incremental and iterative initial
stress or initial strain procedures are employed in which the effects of yielding and slipping

are introduced by distributing initial stresses over volume cells and distributing initial surface
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tractions over slip surfaces, respectively. A simpler method of treating local soil failure was
adopted by Poulos (1971, 1973), in which a limiting lateral pressure p, (pile-soil yield
pressure) is specified for each element of the pile and the analysis ensures that the computed
pile-soil pressure does not exceed this limiting value. This approach is analogous to the
Kishida and Nakai (1977) analysis except that inter-element interaction is still allowed for,
according to the elastic Mindlin's equations (Mindlin, 1936).

A similar approach to the Poulos method was described by Davies and Budhu (1986)
and Budhu and Davies (1988) to deal with piles embedded in stiff and soft clay problems,
respectively. Unlike Poulos' method, where only the front and back face of the pile are dealt
with, they considered the complete three-dimensional nature of the pile-soil interface
problem. In their analysis, the soil is assumed to behave linearly elastically but yields when
the limiting stresses in the compression, slip and tensile zones are reached. As such, bearing
failure at the front face of an advancing pile, shear failure along the sides and tensile failure at
the back face of the pile are taken into consideration. Good agreement with the results from
published case histories, lended confidence in the application of this method of analysis to

deal with practical problems.

1.3 Analyses of cyclic laterally loaded piles
With the increasing use of piles to support offshore structures, the response of piles to

lateral cyclic loading has assumed great importance. Over the past years, various methods
have been employed to determine the cyclic pile behaviour. To date, the approaches used to
determine the cyclic response of laterally loaded piles are as follows:

1.) Empirical approach.

2.) Modified p-y analysis.

3.) Cycle-by-cycle analysis.

4.) Bilinear-elasto-plastic analysis.

5.) Discrete element analysis.

6.) Finite element analysis.

7.) Modified boundary element analysis.

1.3.1 Empirical approach
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Hettler and Gudehus (1980) developed|an empirical expression for the cyclic
displacement of piles, based on the results of published pile-load test data. For load levels
low enough not to cause failure, they found that the following relationship was applicable to

both shallow foundations and laterally loaded piles in sand:

B
u H
B=A|:YDL2:| (1+ClnN) (1.1)

where u is the pile-head displacement,
D is the pile diameter or width,
H is the cyclic load,
L is the pile length,
v is the effective unit weight of the soil,
N is the number of cycles, and

A, B, C are empirical parameters.

The shape factor 4 accounts for the shape of the foundations, while the empirical
exponent B is used to adjust the rate of increase in loading in relation to the displacement.
The empirical constant C helps to define the increase of displacement with increasing cycles.
These three empirical parameters were based on observations from the pile-load test data, and
no suggestions were made on the appropriate values to be adopted in the absence of data from
the pile-load tests. The effect of soil strength degradation was not included in the analysis,
and no indication was given to extend the analysis to deal with cohesive soils. Apparently, no
comparisons with field results were carried out. The values of B and C appeared to be
independent of the type of pile, but the generality of this finding must be questioned as the
relative flexibility of the pile and the pile-head conditions would be expected to be a
significant factor. The maximum bending moment subjected onto the pile, which is an
important factor in pile design, cannot be determined using this approach. Nevertheless,

Equation (1.1) is useful in indicating the form of cycle dependence of lateral displacement.

1.3.2 Modified p-y analysis
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A procedure of predicting the load-displacement and bending moment responses of
cyclic laterally loaded piles was suggested by Matlock (1970) and Reese et al. (1975),
involving modifications to the p-y curves for static analysis. Modified p-y curves were
employed which took account of the main observed effects of cyclic loading on lateral pile
response as observed in model and field tests. For a pile in clay, a 'strain softening' type of
behaviour was observed and gaps between the pile and soil were formed, thus leading to the
suggested criteria for development of p-y curves as shown in Figure 1.9. Modifications to
these criteria have been suggested by Reese and Desai (1977) in which both clays and sands
are treated, and a unified approach to p-y curve development for piles in clay has been
suggested by Sullivan et al. (1980).

These approaches require the determination of a series of p-y curves, coupled with
numerical solutions to evaluate the pile response, in terms of pile displacements and bending
moments. These p-y curves are often difficult to select in the absence of data from
; instrumented lateral pile-load tests, though detailed procedures are specified by Tomlinson
- (1994) and the above mentioned authors, in the selection of required parameters.

The analysis gives an envelope to the behaviour of a pile under cyclic loading and
does not consider the change in pile behaviour as the number of load cycles is increased. The
resulting load-displacement curve thus represents the behaviour of the pile under an infinitely
large number of loading cycles. Furthermore, soil continuity is neglected és the soil pressures
on the pile are modelled as independent non-linear springs, allowing no soil interaction with
neighbouring soil elements. There is also the question of how the p-y relationships are
affected by the pile-head restraint conditions and the relative stiffness of the pile and the soil.

The method, based as it is upon measured field data, reflects the main characteristics
of cyclic response. However, there appears to be only fair agreement between predicted and
measured behaviour (Long et al., 1993; Hamilton and Dunnavant, 1993) other than those
used in the derivation of the p-y curves, and relatively few instances of comparisons were
described. Also, there remains uncertainty in the adequacy of a given criterion for a particular
soil application and the selection of the required soil parameters (Randolph, 1981; Ruiz,
1986; Dunnavant and O'Neill, 1989). Because of the uncertainty in obtaining the various
parameters required, and the method of constructing the p-y curves, many modifications have
been suggested by Ruiz (1986), Dunnavant and O'Neill (1989), Long et al. (1993), Hamilton

and Dunnavant (1993), Rajashree and Sundaravadivelu (1996), among others. However,
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although many modifications had been suggested, there remains no change to the established
methods first proposed by Matlock (1970) for soft clay, and Reese et al. (1975) for stiff clay,
which are currently used in API RP 2A(1986) recommended practice.

1.3.3 Cycle-by-cycle analysis
A modification to the p-y analysis, which allows for progressive degradation of soil
resistance, has been described by Matlock et al. (1978). The soil is represented as a series of
non-linear springs, as in the usual p-y analysis, but to allow for the near-surface behaviour of
clays, a gap element has been developed. Such elements are attached to the pile in one
direction, but are detached as the pile moves away. Only when the pile returns to the point
where it left the element previously will its resistance be re-activated (see Figure 1.10a). The
number of gap elements can be specified in the analysis program by the user.
| The degradation of soil resistance with cycling is modelled by assuming that some
proportion of the ultimate resistance is lost after a full reversal of displacement. A factor (1)
is applied to the ultimate resistance of each element after the occurrence of a full reversal of
direction of plastic deformation. A lower limit of the ultimate resistance (Q,,.,) is specified, as
well as the initial value (Q,), and whenever the reduction is applied, the existing ultimate

resistance (Q,) is degraded to a new value (Q,) according to the expression:

QZ = (1 - 7\‘) (Ql - Qmin) + Qmin (1'2)

The features of this degradation model are demonstrated in Figure 1.10b. It should also be
noted that hardening could be simulated by setting Q,,., greater than Q,.

The above method of analysis, although a very useful development, has some
disadvantages. Problems can be anticipated when the users are required to specify the number
of gap elements, because, to begin with, they do not have a priori knowledge of the gap
zones. This raises a question about the appropriate number of gap elements to be used, and
the effects of varying the number of these elements. Also, there is no mention of how gap
closure is to be dealt with during unloading and subsequent reloading, since care must be
taken to ensure that each elementldoes not 'overclose' gaps that have been previously formed.
The factors A and Q,,, for degradation of soil resistance are ill-defined, and the authors

themselves admit that more experimental research in this area of degradation is needed. No
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comparison with field results were carried out to prove the validity of the proposed method
and Matlock et al. state that this method is presently intended to serve primarily as a research

tool.

1.3.4 Bilinear-elasto-plastic analysis

The analysis is based on the subgrade reaction theory. The pile is treated as a thin
elastic beam and the soil is modelled as a series of independent springs with friction-slider
blocks as described by Swane and Poulos (1985). The response of each spring-block system
is elasto-plastic as illustrated in Figure 1.11.

The method can be used to describe the shakedown and alternating plasticity
responses of cyclic laterally loaded pile. The analysis simulates soil degradation by allowing
the soil stiffness and yield pressure to deteriorate during cyclic loading. The contribution of
mechanical degradation to the cyclic response of the pile-soil system is included by using a
cycle-by-cycle approach. This allows for the effects of soil yielding and pile-soil separation to -
be considered, when the soil stress exceeds the yield pressure and soil failing in tension
respectively.

The degradation functions for soil stiffnesses and yield pressures are of the same basic
form as given by Matlock et al. (1978); see Equation (1.2). The functions allow both the soil

stiffness and yield pressure to degrade, according to the following equations:

kh2 = (1 - )“k) (khl = khmin) + khmin (1 ‘3)
py2 = (1 - A'p) (pyl 'pymin) +pymin (1 4)

where k;, is the new spring stiffness,
k,, is the existing spring stiffness,
kymin 18 the minimum spring stiffness,
A« 1s the degradation parameter for stiffness,
Dy, is the new yield pressure,
P, is the existing yield pressure,
Dymin 18 the minimum yield pressure, and

A, is the degradation parameter for yield pressure.
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For the case where the soil resistance increases during cyclic loading, the term £, and p,,,.,
in Equations (1.3) and (1.4), are replaced by k,,, and p,,.. , respectively. The degradation
functions are applied to plastic soil elements when the soil elements are about to be reloaded.
This simulates the deterioration in soil resistance due to repeated passive failure of clay at the
front face of an advancing pile as illustrated in Figure 1.11b.

Good agreement was obtained between predictions and the published case history of
Reese et al. (1975). It was demonstrated that the proposed method of analysis is capable of
simulating both the static and cyclic behaviour of cyclic pile-load tests. However, some
drawbacks are evident in this method. The use of independent springs to represent the soil
resistance ignores the continuous nature of soil. The soil resistance at the side face of the pile
is not taken into consideration; an important element in pile-soil interaction as observed in the
cyclic pile-load tests. The use of the degradation functions for both stiffness and yield
pressure, which have the same basic form employed by Matlock et al. (1978), means that at
least four soil parameters have to be determined or assumed. No correlations or methods were
proposed to obtain these parameters. The determination of the shakedown limit is not of great
value, since it is either equivalent to, or represents an upper limit to, the ultimate lateral
capacity of the pile. This is because in most cases, failure of the 'long' piles take place at loads
far less than the shakedown limit (i.e. bending moment exceeds the yield moment of the pile
section before the pile response stabilises). As such, the determination of shakedown limit is

not significant in practice.

1.3.5 Discrete element analysis

A one-dimensional discrete element model for laterally loaded piles under cyclic
loading conditions was presented by Grashuis et al. (1990) and Bijnagte et al. (1991). The
pile was modelled by rigid body elements, interconnected by elasto-plastic rotational springs,
represented by two parallel springs and a hinge, as shown in Figure 1.12a.

The elasto-plastic soil behaviour, gap formation, soil strength degradation and
backsliding effects are modelled by a spring and a massless dry friction element in series, as
depicted in Figure 1.12b. This element reacts as a linear spring until the force (compression
or tension) reaches the threshold force specified for the friction element, after which, the force
in the spring remains constant. Gaps originate when the tensile threshold of the friction

element is exceeded. Both the stiffness of the spring and the threshold force of the friction
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element, which vary with soil types and depths, can be determined from the p-y curve
approach derived by Matlock (1970) and Sullivan et al. (1980). To model the non-linearity of
a p-y curve, a model with two serial friction elements parallel at each hinge can be chosen;
see Figure 1.12c.

The cyclic strength of the soil is represented by using an exponential function that
models the decreasing soil strength as a function of the number of loading cycles. The

degradation function, characterised by two parameters 4 and B, is given by:
Fy=F,[1-B (1-exp™™)] (1.5)

where F), is the new soil strength after cycling,
F, is the soil strength in the first cycle,
A i3 the parameter for the rate of degradation; 4 > 0,
B is the parameter for the residual soil strength; 0 < B <1, and

N is the number of cycles.
The phenomenon of backsliding in the gap is modelled by a reduction in the gap size, i.e.
Gap,= Gap,, = C (1.6)

where Gap; is the size of gap in the i-th cycle, and

C is the parameter for the size of backsliding; 0 < C < 1.

The backsliding expression is an empirical approach derived from experiments reported by
Matlock (1970).

This model is capable of including several phenomena, like gap formation, soil
strength degradation and backsliding which have been observed during cyclic pile-load tests.
In comparison with measured test results, Bijnagte et al. (1991) reported that the model
overestimates pile displacements and maximum bending moments. The cause of these
conservative prediction may be due to the neglect of soil resistance at the sides of the pile and
the continuous nature of the soil. In this analysis, great difficulties can be anticipated in

obtaining values for the parameters 4, B and C, in addition to those required for p-y curve
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method. No suggestions or correlations were offered for determining values for these
parameters (4, B and C).

In a later publication by Grashuis and Bijnagte (1992), the non-linearity of the p-y
curve is described by three serial friction elements parallel at each hinge to give a tri-linear
approximation to the p-y curves. With such adjustments and variations in the parameters 4, B
and C, better agreement with field results in terms of pile displacements were obtained.
However, no concrete justification for curve fitting the p-y curves and varying the three
parameters were intimated. This suggests that the 'better' agreement is achieved basically by

trial-and-error.

1.3.6 Finite element analysis
Quasi three-dimensional model

In this approach, the three-dimensional analysis was decomposed into a series of
two-dimensional analyses, as adopted by Bijnagte et al. (1991). For the case of cyclic
laterally loaded piles, the horizontal displacements are assumed to dominate the displacement
field of the soil around the ;?ile. Further assuming that the vertical stresses in the soil are not
influenced by the horizontal load, a quasi three-dimensional model was proposed, where the
soil was modelled by a system of continuous layers; see Figure 1.13. These layers are coupled
in the vertical direction by an iterative process involving the finite element method. The only
stress components that can be transferred from one layer to another are shear stresses in a
horizontal plane; such processes have been described by Verrujit and Kooijman (1989). To
model plasticity in each layer, Bijnagte et al. assumed a Tresca yield criterion (Tresca, 1868).

The local contact between the pile and the soil was modelled by an interface element.
This element allows separation of the pile surface and the soil when the soil reaches a limit
tensile stress, simulating the formation of a gap.

This method of analysis adopts a continuum approach and includes gap formation via
the interface elements. However, the comparisons with experimental results showed that the
model overestimated the pile displacements by a factor of between two and three, and also
overestimated the maximum bending moments. This seems to be strange as one would
anticipate an underestimation rather than an overestimation in prediction, as the model

neglects soil strength degradation; an important factor in cyclic pile behaviour.
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Three-dimensional model

A three-dimensional elasto-plastic finite element model was employed by Bijnagte et
al. (1991). They used eight-noded quadratic Serendipity, degenerated shell elements to model
the pile and twenty-noded quadrilateral hexahedral isoparametric elements to model the soil.
The mesh details are depicted in Figure 1.14.

The constitutive behaviour of both granular and cohesive soils and the pile were
described by a 'perfect elastic-perfect plastic' (or simply elastic-perfectly plastic) material
model, where no hardening or softening was taken into account. The undrained plastic
behaviour of the clay was modelled by the Tresca material model (Tresca, 1868). The yield
surface for the drained behaviour of the sand layers was modelled by a combination of the
Mohr Coulomb model (1776) and the tension cut-off criterion according to Rankine (1857).
A non-associated flow rule is used. The yield surface for the pile was modelled using the Von
Mises criterion.

The interface element was not available in the three-dimensional configuration;
therefore only two extreme cases were analysed, i.e. the fully-bonded and completely smooth
cases. For the fully bonded case, no relative displacements between the pile and the soil were
allowed at the pile-soil interface. For the completely smooth case, the displacement of the pile
and the soil are radially linked in the loading direction. There was no contact between the soil
at the back of the pile, characterising the gap formation when tensile stresses occur. In the
vertical direction and parallel to the pile-circumference, shear stress cannot be transferred
from pile to soil.

The use of a three-dimensional model in the finite element analysis requires enormous
pre-processing and post-processing effort and very substantial amounts of computational
time. As such, only three different cases were analysed. The difference in results analysed
using the fully-bonded and the completely smooth cases for the pile-head load-displacement
response is a factor of between two and three, depending on the load level. This suggests that
it is important to model the pile-soil interface behaviour properly.

The fully-bonded predictions gave a 'too soft' pile response compared to that
measured in the field, although soil strength degradation was not employed in the analysis.
Bijnagte et al. reported that the model overestimated pile displacement by a factor of between
two and three, and also overestimated both the depth and the magnitude of the maximum

bending moment by about 30%. Such results have also been reported for the quasi
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three-dimensional model, despite the large differences in modelling the interface behaviour
for the three-dimensional and quasi three-dimensional cases. One would expect the
three-dimensional predictions (fully-bonded case) to be significantly stiffer than the quasi
three-dimensional predictions, since the former case considers full bonding between the pile
and the soil is present along the whole pile circumference. This difference may be due to the
differences in the undrained shear strengths and shear modulus adopted in the two models. It
might also be due to the fact that in the three-dimensional model, the vertical displacement
(as well as the increase of the vertical stress due to horizontal loading) is incorporated, unlike
the quasi three-dimensional model where these vertical displacement and stress are not taken
into account, thus giving a softer pile response.

Based on the three-dimensional analysis, it is noted that gap formation is restricted to
a depth of a few pile diameters and the plastic soil region is limited to a radius of two pile
diameters at the surface. Vertical soil stresses and deformations due to horizontal loading

occur only in a small zone around the pile top.

1.3.7 Modified boundary element analysis

An approach which might be considered as intermediate between the cyclic p-y
analysis and the cycle-by-cycle analysis of Matlock ef al. (1978) has been suggested by
Poulos (1982). This method aims to determine the behaviour of the pile after a specified
number of load cycles (&), considering degradation of both the soil modulus and ultimate
lateral pile-soil pressure. By progressively increasing N, the relationship between
displacement and number of cycles may be determined for a given magnitude of cyclic
loading.

The analysis is based upon the simplified boundary element method used for static
pile analysis (Poulos, 1971, 1973). The pile is assumed to be a thin rectangular vertical strip
of width (D) and length (L) with constant flexibility; the idealisation of the pile is depicted in
Figure 1.15a. The soil is essentially modelled as an elastic continuum via Mindlin's solution
(Mindlin, 1936) having properties which are unaffected by the presence of the pile. The
ultimate pile-soil pressures are specified for each element along the pile to allow for the
possibility of soil yielding. It is also assumed that complete adherence is maintained between

the pile and the soil.
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The effects of cyclic loading on the soil modulus and the ultimate pile-soil pressures

are defined by means of degradation factors D and D, respectively, defined as:

_E

D=7 (1.7)
and
Pyc
D=2 (1.8)

where E. is the soil modulus after cyclic loading,
E, is the soil modulus for static loading,
D is the limiting pile-soil interaction stress (yield pressure) after cyclic loading, and

D,s is the yield pressure for static loading.

Based on the data summarised by Idriss et al. (1978a), both the soil modulus degradation

factor D and the ultimate pressure degradation factor D, are expressed as:
D;=D,=N" (1.9)
where ¢ is the degradation parameter dependent on cyclic strain.

Figure 1.15b shows a plot of the degradation parameter ¢ against cyclic strain ratio €/¢,,,
derived from the data presented by Idriss et al. (1978a) for San Francisco Bay mud; €, is the
cyclic strain and €, is a reference value of cyclic strain which characterises the response of
the soil to cyclic loading. The smaller the value of €., , the more susceptible is the soil to
cyclic degradation.

To allow for the effect of rate of loading, the degradation functions D; and D, can be

multiplied by a rate factor Dy, in which:

Dy=1-F, log (%) (1.10)

where F, is the rate coefficient,
£, is the reference loading rate, and

€ is the loading rate.
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The major weakness of this continuum approach, is the determination of the
degradation parameter ¢, which is based on the estimation of the cyclic strain in the soil at
each element of the pile. It appears that there is currently little or no information on the order
of values which might be expected for €,,, which is a key parameter in the analysis. Also, the
determination of F, and , poses problems.

In comparison with published case histories, satisfactory agreement between the
predictions and the measured results were obtained, despite the fact that the soil resistance at
the side of the pile and the formation of gaps between the pile and the soil at the interface

were not taken into consideration.

1.4 Discussion

From the review of the numerical methods used in the analysis of cyclic laterally
loaded piles described in Section 1.3, it is clear that there are three major shortcomings in
these methods. Firstly, the idealisation of the soil resistance or pressure by discrete springs, is
not an appropriate approach, since soil continuity is being neglected. This leads to the choice
of continuum approaches, in which the distribution of the stresses and deformations in the
soil can be represented in a more rigorous manner. Another advantage of the continuum
model is the direct use of physical quantities for the soil properties, such as undrained shear
strength, Young's modulus and Poisson's ratio, etc. Also, there is the possibility of modelling
the detailed pile-soil interaction behaviour. The disadvantages of such models, are the
computer memory requirements and the relatively long program 'run times'. However, with
the advancement in computer technology, these disadvantages are inconsequential if better
representations and accuracy can be attained. In this thesis, the finite element method and a
numerical algorithm, termed the indirect boundary element method, based on a continuum
approach will be employed for the analyses.

It is evident from the established methods of analyses, except for finite element
analysis, that the shear stresses developed between the soil and the sides of the pile have not
been taken into account. Some methods, like the empirical approach and p-y method, have
ignored pile-head fixity and the relative stiffness of the pile and the soil. Others (e.g.
cycle-by-cycle, bilinear-elasto-plastic, finite element and modified boundary element

methods) have excluded at least one or more of the phenomena like gap formation,
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/

backsliding, and soil strength degradation, which are vital elements in the mechanism of
cyclic pile behaviour. Hence, a numerical analysis is needed which incorporates all these
aforementioned features.

Finally, most methods of analyses have involved the use of empirical assumptions to
obtain the parameters required. Most often, the manner in which these parameters are
acquired cannot be justified, and from the physical point of view cannot be explained. These
add to greater uncertainty, particularly if no standard laboratory tests can be used to determine
these parameters. To overcome this problem, numerical analyses should involve a minimum
of empirical assumptions and parameters should be easily attained via simple standard
laboratory tests. Only by this means is it possible to obtain proper predictions of field
behaviour.

In this research, a two-dimensional finite element plane-strain analysis will be
employed to give insight into the pile-soil interface behaviour. Then, the modified boundary
clement analysis described by Davies and Budhu (1986) and Budhu and Davies (1988) will
be explored and extended for cyclic analysis. This method has been chosen primarily because
it takes into consideration the three-dimensional nature of laterally loaded pile problems, and
has shown to give very good agreement with published case histories under static lateral

loading conditions.

1.5 Scope of the research

The primary objective of this work is the development of a numerical analysis based
on the indirect boundary element method framework, to model the cyclic behaviour of
laterally loaded piles embedded in cohesive soils. The analysis is capable of simulating most
of the phenomena observed in cyclic pile-load tests, such as gapping, backsliding and soil
strength degradation effects. The method of analysis is described in detail in Chapter 5, with
its implementation into a computer program known as APILEC presented in Chapter 6. The
soil strength degradation which is essential for the analysis will be investigated in Chapter 4,
together with correlations between strength degradation parameters and soil index properties.

The finite element analysis is described in Chapter 3, where it is employed to gain
insight into the details of pile-soil interface behaviour during cyclic loading. This is intended

to guide the development of the simplified boundary element analysis in the following
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Chapter. The constitutive cyclic soil models employed in the finite element analysis are
described in Chapter 2.

The main results of this study are presented in Chapter 7, and illustrate the influence
of the major relevant parameters. The validity of the analysis is demonstrated in Chapter 8 via
comparisons with published field test results. Based on the work completed during this
project, some general conclusions and recommendations for further research complete this

thesis.
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Figure 1.1 Increase in pile-head displacements with cycling for (a) one-way and (b) two-way

load-controlled cyclic pile-load tests (Tassios and Levendis, 1974).

23



CHAPTER 1 Introduction

20

CYCLE 100
CYCLE 1
42.
MOMENT (kNm)

Figure 1.2 Increase in pile bending moment for one-way load-controlled cyclic pile-load test

(after Matlock, 1970).
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Figure 1.3 Two-way displacement-controlled cyclic laboratory model pile tests (Matlock,

1970).
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Figure 1.4 Phenomena observed and soil zones developed during cyclic pile-load test.
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Figure 1.5 Short vertical pile under lateral load for (a) free-head pile and (b) fixed-head pile.
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Figure 1.6 Long vertical pile under lateral load for (a) free-head pile and (b) fixed-head pile.
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Figure 1.7 Deflections, slopes, bending moments, shearing forces and soil reactions for elastic

conditions (Reese and Matlock, 1956).
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Figure 1.8 Cyclic responses for a laterally loaded pile experiencing (a) purely elastic
response, (b) shakedown, (c) alternating plasticity and (d) incremental collapse (Swane and

Poulos, 1982)
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Figure 1.9 Criteria for predicting p-y curves for (a) short-time static loading, (b) equilibrium

under initial cyclic loading and (c) reloading after cycling (Matlock, 1970).
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Figure 1.11 Model developed by Swane and Poulos (1985).
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Figure 1.12 (a) Discrete element pile model, (b) dry friction element and (c) pile-soil

interaction elements (Bijnagte et a [ 1991).

Figure 1.13 Layer system for the quasi three-dimensional model (Bijnagte ef al.,, 1991).

29



CHAPTER 1 Introduction

Figure 1.14 Three-dimensional finite element mesh; backside shown from above with half the

pile shown in the background (Bijnagte ef al., 1991).
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Figure 1.15 (a) Idealisation of pile (Poulos, 1982) and (b) degradation parameter ¢ (Poulos,
1982 after Idriss et al., 1978a).
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CHAPTER 2
Cyclic Soil Models

2.1 Summary

This chapter contains a brief description of some soil models which have been
developed to predict the behaviour of soils under cyclic loading, including (in more detail) an
elasto-plastic two-surface model, formulated within the framework of critical state soil
mechanics. In addition, a brief review of the salient behaviour of clays under cyclic loading,
including the development of permanent strains, gccumulation of excess pore water pressure,

changes in soil stiffnesses, reduction in strength{ etc}, is presented.

2.2 Introduction

Successful numerical modelling of soil behaviour, requires the identification of the
important characteristics while leaving the model as simple as possible. It is clear that the
more sophisticated a model becomes (and the more soil parameters needed to describe it), the
more extensive will be the physical tests required to define it. A careful balance, therefore,
has to be maintained between cost of soil testing and analysis on the one hand and accuracy
on the other. A brief description of some cyclic soil models will be reviewed in this chapter,
including a model that will be employed in a subsequent finite element analysis. Before
advancing directly into the soil modelling, a brief review of the behaviour of soils when
subjected to cyclic loading, is presented. This will help in the selection of the appropriate soil
model to be employed in the finite element plane-strain analysis of cyclic laterally loaded

piles.

2.3 Soil behaviour under cyclic loading

2.3.1 Introduction
The behaviour of soils under cyclic loading is complex, and to date, even the most
sophisticated models fail to proVide accurate predictions under generalised cyclic stress

conditions. It is nonetheless possible to identify a number of strands of behaviour which
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appear to be exhibited in varying degrees by all soils. These can be categorised into four
distinct responses:

1.) Development of permanent strain.

2.) Changes in soil stiffness and dissipation of energy.

3.) Development of excess pore water pressure.

4.) Strength reduction.

2.3.2 Development of permanent strain

i Ideglised behaviour of soil subjected to drained cycling during stress-controlled
loading between two general stress states, S1 and SQ,?is depicted in Figure 2.1. Each cycle is
accompanied by a change in shear strain, some of which is recoverable and some of which is
not. The magnitude of the recoverable strain remains fairly constant during each cycle. On the
other hand, the irrecoverable or plastic strain developed during each successive cycle tends to
reduce with the increasing number of cycles. Eventually, the soil attains a form of equilibrium
for this loading pattern, and the behaviour can be described as quasi-elastic or 'resilient'. It is
well established that the resilient stiffness of the soil is stress-level dependent and is also
dependent on the magnitude of resilient shear strain.

While experiencing cyclic loading, the permanent strain developed during each
individual cycle will usually be small but, over a large number of load cycles, the magnitude
of accumulated permanent strains may be significant (Figure 2.1). Where the accumulated
strains are high (e.g. cyclic shear strain of 3%) and the soil does not reach an equilibrium

condition, failure must occur.

2.3.3 Changes in soil stiffness and dissipation of energy

Two closely interrelated phenomena are manifested during cycling: changes in soil
stiffness and dissipation of energy. In Figure 2.2 the changes in stiffness which occur during
cyclic loading are illustrated. It can be seen that immediately after each stress reversal, the
stiffness increases and subsequently decreases. Such behaviour applies only to soils subjected
to stresses that are below the critical level of repeated loading (CLRL as defined by Sangrey
et al., 1978), where a state of non-failure equilibrium will ultimately be reached (Sangrey et
al., 1980; Houston and Herrmann, 1980; Kramer, 1996); see Figures 2.1 and 2.3. If the soil is
subjected to a load level higher than CLRL, the stiffness of the soil immediately after each
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stress reversal will drop (as depicted in Figure 2.4) and failure of the soil may eventually be
reached after a finite number of cycles. Such results were reported by Sangrey et al. (1969),
Andersen (1976), Ishihara and Yashuda (1980) Andersen et al. (1980) and Ansal and Erken
(1989).

Regarding energy dissipation, it is observed in Figure 2.1, that during any stress
cycle, the stress sustained at any strain level of the unloading phase is lower than that for the
corresponding strain during loading/reloading. This indicates that the soil has failed to return
all of the strain energy stored during loading/reloading and some energy has been dissipated,

i.e. an hysteretic response.

2.3.4 Development of excess pore water pressure

The failure of soils under undrained cyclic loading is partly a consequence of
accumulated excess pore water pressure and partly due to the breakdown of interparticle
contacts. When cycled at low load levels (below CLRL), most soils will tend to reach a
non-failure equilibrium condition, as illustrated in Figure 2.3a. At this state, there is no
further accumulation of either strain or excess pore water pressure with additional stress
cycles (Sangrey et al., 1969, 1980; Ansal and Erken, 1989) as depicted in Figure 2.3b.
However, if the stress level is increased to a higher level, as shown in Figure 2.4, sufficient
excess pore water pressure will develop to reach the effective stress failure condition
(Sangrey et al., 1969, 1978). At point e, the sample was unable to carry the stress of 47.1 psi
and the non-recoverable deformation increased markedly. Figure 2.4 also illustrates that the
stress level to cause failure of soil under cyclic loading is lower than that under monotonic
loading (dotted line in Figure 2.4).

The accumulation of plastic strain and excess pore water pressure are two of the
principal features which distinguish cyclic behaviour from that exhibited during monotonic

loading.

2.3.5 Strength reduction

One of the dramatic effects of repeated loading on saturated soils is a loss of strength
or failure (defined in terms of specific levels of cyclic shear strain) after a finite number of
loading cycles. The potential for strength loss and failure increases as the level of cycled

stress increases has been reported by Sangrey and France (1980), Andersen et al. (1980),
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Ishihara and Yasuda (1980), Ansal and Erken (1989), Kramer (1996), among others.
Andersen et al. (1982) described direct simple-shear tests on Drammen clay and reported that
undrained cyclic loading caused a reduction in the undrained shear strength, which could be
related to the overconsolidation ratio (OCR) and the number of load cycles; see Figure 2.5.
Andersen et al. (1982) also illustrated the dependency of secant shear modulus on the level of
cyclic shear stress, number of load cycles and OCR, as shown in Figure 2.5. The results
presented by Lee and Focht (1976), showed that the cyclic strength ratio decreases with the

increasing number of cycles, refer to Figure 2.6.

2.4 Soil models for cyclic loading

Three classes of soil models are briefly described in this section. They are: 1) the
equivalent linear models, ii) cyclic non-linear models, and, iii) advanced constitutive models.
These models, with varying degrees of success, aim to encapsulate the experimentally

observed cyclic behaviour of soils described earlier.

2.4.1 Equivalent linear models

These simple models represent few aspects of soil behaviour under cyclic loading
conditions. For a typical soil, subjected to symmetric cyclic loading, the stress-strain plot
forms an hysteresis loop, as shown in Figure 2.7. Two important characteristics of the
hysteresis loop are its inclination and breadth. The inclination of the loop depends on the
stiffness of the soil, and its average value over the entire loop can be approximated by the
secant modulus G,,, (ratio of shear stress to the corresponding shear strain); see Figure 2.7.
The breadth of the hysteresis loop is related to the area of the loop, which is a measure of the
energy dissipation and can be expressed in terms of a damping ratio (£). The parameters G,,,
and & are often referred to as the equivalent linear material parameters, and have been used in
the analysis of soil response under (earthquake) cyclic loading (Idriss and Seed, 1968;
Kramer, 1996).

The locus of the points corresponding to the apices of hysteresis loops with various
cyclic strains is called a backbone curve (see Figure 2.8). Its slope at the origin (at zero cyclic
strain) is equal to the maximum shear modulus, G,,,.. At greater cyclic strain amplitudes, the
modulus ratio (G,,/G,,,) reduces. The modulus ratio can be used to characterise the stiffness

of soils as a function of shear strain amplitudes.
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The equivalent linear models can provide only a first approximation to the cyclic
non-linear behaviour of the soil. Obviously, they cannot be used directly for problems

involving permanent deformation (or failure).

2.4.2 Cyclic non-linear models

The non-linear stress-strain behaviour of soils can be represented more accurately by
cyclic non-linear models that follow the actual stress-strain path of the soil during cyclic
loading. A variety of such models has been described by Idriss et al. (1978a, 1978b), Richart
(1975), Streeter et al. (1974), among others. These models are characterised by a backbone
curve and a series of 'rules' that govern unloading and reloading behaviour and other effects.

The most widely accepted rule for generating the hysteresis loops from a backbone
curve is to assume that the soil behaviour satisfies the Masing rule (Masing, 1926). This rule
states that the unloading and reloading branches of the loop are comprised of the same
backbone curve, with both stress and strain scales expanded by a factor of two, and that the
origin is translated. At the apices of the loop and after stress reversal, the tangent modulus is
equal to G,, (see Figure 2.8). Additional rules (extended Masing rules) are needed to
describe the soil response under general cyclic loading. For the case when the unloading or
reloading curve exceeds the maximum past strain and intersects the backbone curve, it
follows the backbone curve until the next stress reversal. When an unloading or reloading
curve crosses an unloading or reloading curve from the previous cycle, the stress-strain curve
follows that of the previous cycle. An example of a model that follows the above rules is
depicted in Figure 2.9.

Cyclic non-linear models do not assume that shear strains are zero when the shear
stress is zero. Their ability to represent permanent strains is one of their most important
advantages over the equivalent linear models. However, the cyclic non-linear models do not
allow for the determination of shear induced volumetric strains, which can lead to hardening
under drained conditions (or pore pressure development with stiffness degradation under
undrained conditions). Further development in these models has included such factors (Finn
et al., 1977, Idriss et al., 1978a; Pyke, 1979), but requires many more parameters to
characterise the soil behaviour.

The above rules for generating the hysteresis loops, are not fundamentally accurate.

This is because experimentally results for soils loaded under a variety of stress configurations
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show no perfect symmetry on an unloading and reloading cycle. Additionﬁlly, one must
question whether soils really have the capacity to 'memorise' selected prior reversal points, as
is required by the extended Masing rules. Note that the Masing rule is not adequate beyond
certain strain limits as mentioned by Idriss et al. (1978a) and Pyke (1979). Besides these,
there remains the uncertainty in determining the backbone curve, and the unloading and
reloading curves, involving many complex mathematical functions and parameters to

describe them (Finn et al., 1977; Idriss et al., 1978a; Pyke, 1979).

2.4.3 Advanced constitutive models
The most accurate and general models make use of the basic principles of plasticity in
order to describe observed soil behaviour for quite general initial stress conditions and stress
paths, strain rates and drainage conditions. Such models generally involve a yield surface
(which describes the yield stress conditions), a hardening rule (which describes the changes in
the size and shape of the yield surface as plastic deformation occurs), and a flow rule (which
‘relates the direction of plastic strain to the stress state). Soil models of this nature,
which éccount for the cyclic behaviour of soils, include the kinematic hardening models and

the bounding surface plasticity models.

2.4.3.1 Kinematic hardening models

In an isotropic hardening model such as Modified Cam clay (Roscoe and Burland,
1968; Wood, 1994; see Section 2.5.2), the yield surface expands uniformly with plastic
deformation. Yield surfaces can also translate without change in size, described as kinematic
hardening. One particular form of kinematic hardening incorporates a series (nest) of yield
surfaces of different sizes, which translate in stress space, allowing them to touch and
translate together during hardening, but never to intersect (Mréz, 1967; Iwan, 1967; Prévost,
1977, Prévost and Griffiths, 1988 among others). The stiffness associated with any particular
change in stress depends on how many of these nested yield surfaces translate during the
stress increment.

The concept of these nested kinematic hardening models can be explained with the aid
of a one-dimensional model consisting of a series of parallel spring and slider elements; see
Figure 2.10a. Each of the springs has the same stiffness, but the sliders have a rigid perfectly
plastic response (Figure 2.10b) with different yield loads ¥ (where ¥, =y, ¥; =2y, ¥, = 3y).
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The load-displacement response of this model subjected to a load of 3y is illustrated in Figure
2.10c; a detailed descriptions can be found in O'Reilly and Brown (1991) and Wood (1994).
The generalisation of a one-dimensional slider is a yield surface, and in the kinematic
hardening soil model, the sliders of progressively higher yield loads are replaced by yield
surfaces of progressively larger sizes. For example, a series of yield surfaces is shown in the
q-p' stress plane in Figure 2.11. A stress path will meet successive members of this series of
yield surfaces, and drag them with it as it traverses stress space as shown in Figures 2.11a,
2.11band 2.11c. As more yield surfaces are dragged along by the stress path, the incremental
stiffness falls. The effect is shown schematically in Figure 2.11c and 2.11d, where the
stress-strain responses to triaxial compression CB and triaxial extension CD (after a stress
history ABC) are compared. Path CD activates yield surfaces 1, 2 and 3 and is associated with
a low stiffness. A retreat into triaxial compression, path CB translates initially across yield
surface 1 and is associated with high stiffness (Figure 2.11d). It can be observed from Figures
2.11c and 2.11d that the stiffness increases when the stress path changes direction. Further,
the current distribution of yield surfaces stores information concerning the history of the
loading of the soil. A disadvantage of these kinematic hardening models, is that during
numerical analysis of boundary value problems, it is necessary to store a large volume of

data: this can result in significant computational overhead.

2.4.3.2 Bounding surface plasticity models

In these models, the sudden change of stiffness associated with the passage of the
stress state through a yield surface is effected by making the stiffness fall steadily from a high
(elastic) value at a point in the interior of the yield surface to a low (plastic) value when the
stress state reaches the yield surface. Thus, the response to stress changes inside the yield
surface is no longer elastic, and the yield surface is now termed the bounding surface.

The application of bounding surface plasticity to the generation of constitutive models
for soils was presented by Dafalias and Herrmann (1980). They used a bounding surface
formulation to describe the behaviour of clays under cyclic loading. No explicit yield surface
was postulated within the bounding surface. The associated flow rule was utilised for the
bounding surface, and the variation of the hardening modulus within the boundary surface
was defined on the basis of radial mapping rule. For each stress point within the bounding

surface, a corresponding 'image' point on the surface was specified at the intersection of the
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surface with the radial line connecting the origin with the current stress point (the origin was
assumed to be always within the bounding surface). The hardening modulus is then assumed
to be a function of the 'image point' hardening modulus (on the bounding surface) and the
distance between the stress point and its image. Some improvements to this model were
described by Dafalias and Herrmann (1982). The major shortcomings of such models are the
use of complex mathematical formulations to define the bounding surface and the various
'rules' to characterise the soil responses. Furthermore, the parameters involve great
uncertainty in defining them. The fact that no yield surface is explicitly introduced in these
models, assuming that the soil has zero elastic range. This obviously neglects the initial
elastic response of soils observed in the experimental tests as illustrated in Figures 2.3 and
24.

A form of bounding surface model is the two-surface model proposed by Mréz et al.
(1978, 1979) for clays. The two surfaces are a bounding surface (representing the
consolidation history of the soil), and a yield surface (defining the elastic domain within the
bounding surface); see Figure 2.12. The bounding surface is assumed to expand or contract
isotropically, but the yield surface is allowed to translate, expand or contract within the
domain enclosed by the bounding surface. The translation of the yield surface is governed by
the same rule as the nested yield surfaces described in Section 2.4.3.1 (i.e. the yield surface
translates towards the bounding surface along the path PR in Figure 2.12). The hardening
modulus of the yield surface is assumed to be a function of the distance b (Figure 2.12)
between the stress point P on the yield surface and its conjugate (image) point R on the
bounding surface. A detailed discussion of this model and its application to clays under
monotonic and cyclic triaxial test conditions has been given by Mréz et al. (1979). Further
extensions of the model to account for soil stiffness degradation have been presented by Mr6z
et al. (1981). It must be emphasised that these models have employed extremely complex
mathematical formulations and involve many ill-defined parameters to predict the cyclic soil
behaviour.

A simplified form of two-surface model, which combines features of isotropic
hardening, kinematic hardening and bounding surface plasticity, has been developed by
Al-Tabbaa (1987) and Al-Tabbaa and Wood (1989). It is known as the 'bubble' model, and is
capable of analysing the general stress-strain behaviour of clays under cyclic loading. This

model will be described in detail in the next Section.
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2.5 The 'bubble' model
2.5.1 Introduction

Although the Modified Cam clay (MCC) model has been successfully used for
numerical modelling of the monotonic behaviour of clays, it cannot be used to model the
behaviour of clays subjected to cyclic loading. In order to improve the model predictions
without making the model too complicated, a single inner kinematic hardening yield surface,
a 'bubble’ (Al-Tabbaa and Wood, 1989) has been introduced inside the MCC yield surface
(acting as a bounding surface).

The bubble encloses the stress space in which only elastic deformations occur. When
the current stress state lies on the bubble, the soil behaviour is elasto-plastic, and when the
bubble reaches the MCC yield surface, the model degenerates to the MCC model. The bubble
model was developed to match experimentally observed phenomena such as accumulation of
permanent strains, hysteresis, changing stiffness, etc., during cyclic loading as described in
Section 2.3.

Since the bubble model is based on the MCC model developed by Roscoe and
Burland (1968), for completeness, the MCC model is briefly reviewed.

2.5.2 Modified Cam clay model

The MCC model is an elasto-plastic model which provides a coherent, if simplified,
description of the mechanical behaviour of unstructured cohesive soils. This model was
developed by Roscoe and Burland (1968) as a modification of the original Cam clay model
developed by Roscoe and Schofield (1963). The MCC model was based mainly on the results

of triaxial tests. The stress invariants adopted in the model are the mean effective stress:
p'= % (0, +20',) 2.1)
and the deviator stress:

g=0',-0, (22)

where o', is the effective axial stress, and
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o', is the effective radial stress.
The corresponding, work conjugated, strain increments are the volumetric strain increment:
d¢, = 8¢, + 20¢, (2.3)
and the shear strain increment:
86, = % (8¢, - 6,) 2.4)

where ¢, is the axial strain, and
€, is the radial strain.

Compressive stresses and strains are taken to be positive.

The MCC theory is based on the concept of the critical state which assumes that soils
reach a failure (critical) state at which unlimited shear strains take place without further
change in effective stress or volume. It is assumed that the yield surfaces ( /) and plastic
potentials (g) are identical (associated plasticity) and elliptical in the g-p’ stress plane. The

yield surface (see Figure 2.13a) is defined by the equation:

2
, q
f=@-py+ v -p,=0 (2.5)

Pm
2 2
P defines the size of the current yield surface (Figure 2.13), and

where p, =
M is a function of the angle of shearing resistance.

When the soil yields (i.e. stress point remains on the yield surface), the consistency

condition holds (obtained from differentiating Equation (2.5)):

4 \
(' - Po)dp' + 77 89 =p'dp, (2.6)
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The normality rule is assumed to apply. In other words, in g-p' stress plane, the plastic strain
increment vector (Ss’p’ : 582) is in the direction of the outward normal to the yield surface, at
the given stress point, i.e.

de, _ oflop’ _ oglop’

sch  dfldg  Oglog

Q2.7)

This relationship defines the relative magnitude of plastic volumetric and shear strains.
An isotropic hardening function is chosen so that the change in size of the yield

surface is related to the plastic volumetric strain increment of the soil by the relationship:

Spm
86f = (A* - c*) = (2.8)

where A* is the slope of the normal compression lines in the /n V-In p' compression plane,
and, Vis the specific volume, and

k* is the initial slope of the unloading lines in the /n V-In p' compression plane.

Combining Equations (2.6) with (2.7) and (2.8), the soil compliance matrix (for plastic strain

increments only) is obtained as:

—p)? ' _p )L
I:SSZ jl (A% — x*) (p’ po) (p p")Ml [ sp/ :l (29)

p|\= T 2
e PR b

The elasto-plastic compliance matrix can then be readily determined by assuming that the
elasto-plastic strains can be decomposed into elastic and plastic parts (e.g. d¢, = d¢p, + 5¢p ).
The above expression shows that if p' < p, (i.e. 'dry’ of critical, see Figure 2.13b), the

soil becomes unstable in the sense that the plastic shear strain increment has an opposite sign
to the shear stress increment. That means the yield surface contracts rather than expands, and

hence, the soil softens to failure. Further details can be found in Wood (1994).

2.5.3 Bubble yield surface
The bubble model assumes that soils have elliptical yield surfaces in the g-p' stress

plane. The inner bubble, introduced as shown in Figure 2.14, has the same shape as the MCC
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yield surface. The ratio of their dimensions is R and the bubble is centred at (p',, q,). The

equation of the bubble yield surface is:

—Jo 2
(g-4a)” q )\ Ry (2.10)

@'-pD)'+
When the soil yields, the consistency condition (generated by differentiating Equation (2.10),
in order to ensure that the changes in p’, p',, g, q, and p, are consistent with the stress state

remaining on the bubble yield surface) gives:

' ' ' ' (q—qa) 2
(p -p a)(sp - SP a) + M2 (Sq - Sqa) =R ospo (21 1)
This consistency equation, valid only for soil yielding, ensures that any stress point always

lies on or within the bubble yield surface.

2.5.4 Translation rule

The translation rule of the bubble yield surface which defines 8p', and &8¢, as
functions of 8p', 8q and dp,, guarantees that the bubble and MCC yield surfaces can touch
each other at a common normal, but never intersect. A conjugate point D on the MCC yield
surface can be associated with each point C on the bubble yield surface (Figure 2.15), such
that the points C and D have the same outward normal. The translation of the bubble yield
surface that occurs when plastic strains are being generated can be separated into two

components, namely:

1/
&ph, | 8po| Pl EE - @' -po)
l:ﬁqu :Iz'p—o'l: do +S R gga : (2.12)
R
where S is:

('-ph)| 8p'- 22/ ]+(£;7qza—)[5q—§§§q]

T ] el e[ )

(2.13)
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The first part of Equation (2.12) is associated with changes in size of the bubble and MCC
yield surfaces (due to change in p,). The second part is associated with translation of the
bubble yield surface along the vector § (which joins C and D) towards the MCC yield surface
(Figure 2.15). The evolution of dp', and dq, , as defined in Equation (2.12) satisfies the
consistency condition in Equation (2.11). Translation in the direction of the vector
guarantees that when the bubble yield surface reaches the MCC yield surface, they will have

a common normal and will never intersect.

2.5.5 Hardening rule

It is assumed, as in the MCC model, that the vector of plastic strain increments
(sz.f : SSZ) is in the direction of the normal to the bubble yield surface according to Equation
(2.7). The hardening rule links the change in size of both the bubble and MCC yield surfaces
with the plastic volumetric strain. For the particular situation where the bubble and MCC
yield surfaces are in contact at the current stress state, it is assumed that Equation (2.8) is
valid. Then, combining Equations (2.11) with (2.7) and (2.8), the plastic strain increments

arc:

= 2
— g-92) 9-9a
(p’—pé)[p’(p’—pé)ﬂ——(%“)] ¢ -pa) "o (“MT)

3¢5 (% — %) AN Al W e

The above expression is then used in a 'modified form' to calculate plastic strains whenever

they occur, whether or not the bubble and MCC yield surfaces are in contact:

7 @' -pu)? @ PSR
SR e

2
BN (ﬂ_ 8
Pa) s Mz) 9

N.B. Please note that the above equation which appeared as Equation (14) in Al-Tabbaa and

Wood (1989) contains a minor error, namely:

[585]_1 AR A |:5p/] ”
7 oo (s2)  |Le
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where £ is a hardening function consisting of two parts:
h=h,+H (2.16)

where H is a function of the separation of the bubble and MCC yield surfaces (which falls to
zero when the two surfaces are in contact at the current stress state), and,

h, (by comparison with Equation (2.14)) is defined as:

(p/_P{x) ~qa)
= e [ P+ 1 @17

h

Consideration of stability shows that it would not be satisfactory to set H = 0 in
Equation (2.16) for the stress state inside the MCC yield surface, because unlimited plastic
strains could occur at four singularity points, where 4 = 0 in Equation (2.15); see Figure 2.16.
Two singularity points, g, and g,, in Figure 2.16, lie at the top and bottom of the bubble yield
surface with p’' = p',; the other two singularity points are g; and g, where straight lines from
the origin touch the bubble yield surface. The vector (p' , q) is then perpendicular to the
normal of the bubble yield surface which has the direction [(p' - p',) , (¢ - q,)/M*]. The dot
product of these two vectors is zero leading to unlimited plastic strains in Equation (2.15)
assuming that the numerator is not equal to zero. With H = 0, the bubble yield surface would
be divided into four regions as marked in Figure 2.16: two stable regions (g,g, and g,g;) in
which increase of shear strain (8¢,” > 0) is associated with increase in shear stress (6 > 0),
and two unstable regions (g,g; and g,g,) in which increase of shear strain (8¢ > 0) is
associated with decrease in shear stress (8g < 0). Experimental results show typically that
behaviour is everywhere stable for ¢/p' < M, and the addition of the extra term H helps to
ensure this.

Hashiguchi (1985) suggested that H should be a monotonic function of the degree of
approach of the bubble and the MCC surfaces. From a study of experimental data, Al-Tabbaa
(1987) proposed that the function H should be written in the form:

] b |V,
H=W_K*)[ j|p0 (2.18)

bmax
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where v is an experimentally determined positive real exponent,
b is the component of the vector § in the direction of the normal to the
bubble yield surfaces at the current stress point; see Figure 2.17, and,

b, 15 taken to be 2p (1 - R).

The function A is not unique and different functions might be adopted for different soils.

N.B. Please note that the equation in defining b in Al-Tabbaa and Wood (1989) as Equation

(17) has a minor error:

b= 7| @ - 2 — ' —poy |+ 2 e _ g]] )

The corrected equation should be:

b__[(p/ a)[ plrh (p,_po)}%@ da _ q]] (2.19)

2.5.6 Numerical tests

To observe the behaviour of the bubble model, several clays subjected to undrained
loading conditions were analysed using the SWANDYNE (Chan, 1990) soil model tester
program. _

The predicted translations of the bubble and the MCC yield surfaces are illustrated in
Figure 2.18. In Figure 2.18a, a normally consolidated clay is tested under undrained loading
conditions up to the critical state. The stress path from point 4 to B in g-p' stress plane,
shows that the bubble and the MCC yield surfaces remain in contact at the current stress
point. The plastic strains calculated from the bubble model will therefore be identical to those
determined using the MCC model. The normality rule in this case predicts compressive
volumetric strains which causes the MCC yield surface to expand monotonically. The bubble
yield surface also expands and translates so as to remain in contact with the MCC yield
surface while remaining a constant size ratio (R) in proportion of it.

In Figure 2.18b, an overconsolidated clay is subjected to an undrained test, illustrating

plastic volumetric expansion and strain softening response (and corresponding decrease in the
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excess pore water pressure), until it ultimately reaches its critical state. It can be seen that as
the stress state moves from C to D (i.e. within the bubble yield surface), only elastic strains
occur and hence there is no change in size of the MCC and bubble yield surfaces. As the
stress state moves from D to E, it drags the bubble yield surface with it. The dilatant plastic
volumetric strains (which result from the application of the normality rule to the bubble yield
surface and the hardening function) causes the MCC yield surface to shrink. The bubble yield
surface also reduces in size and, in addition, translates within the MCC yield surface. The
new stress state always lies on the bubble yield surface, which retains a constant size ratio R

in proportion to the MCC yield surface.

2.5.7 Comparisons with experimental data

The effective stresses and specific volume at peak deviator stress in drained tests on
overconsolidated clays lie on a so-called Hvorslev surface (Atkinson and Bransby, 1978).
Thus, the MCC model tends to overestimate the strengths of such clays.

The hardening function introduced in the previous section inhibits strain softening for
stress states lying on the unstable part of the bubble yield surface, when it is not in contact
with the MCC yield surface. However, the influence of H in Equation (2.18) reduces as the
bubble yield surface approaches the MCC yield surface. Failure éonditions may develop for b
> (0 when H= -h,.

There is an infinite number of yield surfaces that can pass through any particular
stress state lying inside the MCC yield surface and consequently the failure points will
depend on the previous stress history of the soil. Some typical failure points observed in
drained and undrained tests using the present bubble model are shown in Figure 2.19, and it is
evident that these define a failure region rather than a failure line. Nevertheless, it is an
attractive by-product of this kinematic hardening extension of the MCC model that
reasonable strengths are now predicted for overconsolidated clays.

A typical example of the form of cyclic response observed, and analysed using the
model is shown in Figure 2.20, taken from Al-Tabbaa and Wood (1989). The model
successfully matches many of the important observed aspects of the response. Hysteresis is
included in cycles of reloading and unloading. The volumetric response is well matched and

the drift of shear strain is correctly reproduced.
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2.5.8 Parameters required for the bubble model

The six soil parameters necessary for the bubble model are as follows:

A* : the slope of normal compression lines in the /n V-in p’ compression plane,
Kk* : the initial slope of unloading lines in the In V-In p’ compression plane,
M : the slope of the critical state line representing ultimate failure conditions in

the g-p' stress plane,

\Y : Poisson's ratio,
) : the exponent in the hardening function H, and
R : the ratio of the sizes of the bubble yield surface and the MCC yield surface.

In addition, a reference point (I'), on the normal compression line or the critical state
line is required. Note that only the first four soil parameters, namely A*, x*, M and v, are
required for the MCC model, for the predictions of stress-strain behaviour of clays subjected
to monotonic loading.

The parameters required for the model can be obtained from simple standard tests.
They can also be obtained from one multi-stage test using the triaxial apparatus. An example
of such a test involves isotropic compression to determine A* followed by isotropic
unloading. The initial part of the unloading path will give a value for x* and R. The later part
of this path will give the value of y. The sample can then be isotropically reloaded, and
subsequently tested to failure either in an undrained test or a drained test. This will enable the

value of M and v to be obtained.

2.5.9 Strengths and weaknesses of the bubble model
Strengths
The strengths of the bubble model can be summarised by the following:
1.) Simple elliptical expression (Equation (2.5)) to define the bounding surface (MCC
yield surface) unlike models developed by Dafalias and Herrmann (1980, 1982).
2.) The yield surface (bubble) which has the same shape as the MCC surface but R times
smaller is explicitly defined in Equation (2.10).
3.) The use of the bubble yield surface to define the small elastic region reflects the

elastic soil response subjected to initial loadings.
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4.) The formulations employed to determine the plastic strain increments are easily
understandable.

5.) Parameters required for the model can be easily obtained from simple laboratory tests.

6.) The model is able to predict the experimentally observed cyclic soil behaviour
described in Section 2.3. For example the accumulation of permanent strains, changes
in stiffness, energy dissipation, etc., except the soil strength reduction.

7.) The model can account for the normally and overconsolidated clays, subjected to
drained and undrained conditions, which are commonly encountered in many site
situations.

8.) The model has shown good agreement with experimental results as illustrated in
Figure 2.20.

9.) The model can be more easily implemented into the finite element program (Chan,
1990) than other models (Mréz et al., 1981; Dafalias and Herrmann, 1982 among
others) described in Section 2.4.3.

Weaknesses
The bubble model, like all other models has limitations. They are:

1.) The bubble has constant size ratio R, and there is no reason why R should not be a
variable (Al-Tabbaa and O'Reilly, 1990). For instance, R can be taken as a function of
the bubble proximity to the MCC yield surface or the number of load cycles.
Experimental results depicted in Figures 2.3 and 2.4, have shown that the elastic
region of the soil varies according to the number of load cycles and the load levels.

2.) The assumption of rate independency suggests that the model is only appropriate to
the loading rate from which the model parameters were derived, which may pose
problems to rate sensitive soils.

3.) The model does not take into account soil strength reductions which are evident in

cyclic soil tests described in Section 2.3.4.

2.6 Concluding remarks
The dominant factors that influence the behaviour of soils under cyclic loading have
been described. The effects of cyclic loading include the loss of strength, changes in soil

stiffness and the accumulation of permanent strain.
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The review of cyclic models for soils has inevitably been incomplete and partial.
Evidently, the model selected should be sufficiently complex to capture the phenomena
described above. However, complexity implies an increasing number of soil parameters as is
evident in the models that have been discussed.

The advanced constitutive models, in particular, the bubble model, will be employed
for the finite element analysis of cyclic laterally loaded pile foundations described in Chapter
3. This model is chosen due to its strength (see Section 2.5.9) and availability in the finite
element program. Furthermore, it can account for the behaviour of soils under general initial
stress and cyclic loading conditions, subjected to drained and undrained conditions, which the
equivalent linear and cyclic non-linear models do not possess.

The concepts of critical state soil mechanics underpin the bubble model which is
capable of predicting many aspects of clays under cyclic loading. The model was developed
directly from experimental observations using the MCC isotropically hardening yield surface
as a bounding surface, within which a kinematically hardening' bubble yield surface is
introduced. A translation rule for the yield surface is assumed which ensures that the bubble
and MCC yield surfaces never intersect. A hardening rule is assumed to predict plastic strains
on the yield surface. Comparison between the predictions of the model and the experimental
results in Al-Tabbaa (1987) and Al-Tabbaa and Wood (1989) shows overall good agreement.
The bubble model has been implemented by Chan (1990) into a finite element program -
SWANDYNE. The results of its predictions will be presented in the next Chapter.

50



CHAPTER 2 Cyclic Soil Models
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§1-1 t  m» shear strain

Figure 2.1 Typical development of shear strain during a cyclic load test (O'Reilly and Brown,

1991).

Stress Stiffness
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Figure 2.2 The effect of stress reversals on soil stiffness (O'Reilly and Brown, 1991).
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Figure 2.3 (a) Undrained cyclic loading at low stress levels and (b) associated pore pressure

response (Sangrey and France, 1980).
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Figure 2.4 Undrained cyclic loading resulting in failure (Sangrey et a [ 1969).
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Figure 2.5 The effect of cyclic loading on undrained shear strength and secant shear modulus

(Andersen et al., 1982).
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Figure 2.6 The effect of cyclic loading on cyclic strength ratio (Lee and Focht, 1976).
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Figure 2.7 Typical stress-strain behaviour of a clay subjected to symmetric cyclic loading

(Kramer, 1996).
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Figure 2.8 Backbone curve showing effect of shear strain on secant modulus Gse (Kramer,

1996).
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Figure 2.9 (a) Shear stress variations and (b) resulting stress-strain behaviour (Kramer, 1996).
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Figure 2.10 (a) Chain of parallel springs and slider elements, (b) load-displacement response
of slider and (c) load-displacement response of chain of parallel springs and slider elements

(Wood, 1994).
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(b)

(©)
Figure 2.11(a) Initial position of nested yield surfaces, (b) position of yield surfaces after
stress path AB, (c) position of yield surfaces after stress path ABC and (d) stress-strain

response in triaxial compression CB and extension CD (Wood, 1994).
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Figure 2.12 Yield and bounding surfaces in stress space.
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Figure 2.13 The Modified Cam clay model in (a) g-p' stress plane and (b) In V-Inp' space.

Modified
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Figure 2.14 General layout of the bubble model.
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Figure 2.15 Assumed motion of the bubble yield surface within the Modified Cam clay

(MCC) yield surface along the vector {3

s = stable region
u = unstable region

Figure 2.16 Diagram showing singularity points, stable and unstable regions on the bubble

yield surface.

58



CHAPTER 2 Cyclic Soil Models

Figure 2.17 Definition of the vector £ and the distance b.
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Figure 2.18 Predicted relative motion of bubble and MCC yield surfaces for (a) normally

consolidated clay and (b) overconsolidated clay, subjected to an undrained test.
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Figure 2.19 Failure points:Y isotropic undrained;# isotropic drained; V one-dimensional

undrained;o one-dimensional drained (Al-Tabbaa and Wood, 1989).
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Figure 2.20 Constant ¢ cycles: experimental observations of (a) volumetric strains and (b)
shear strains; model predictions of (c) volumetric strains and (d) shear strains (Al-Tabbaa and

Wood, 1989).
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CHAPTER 3

Plane-Strain Finite Element Analyses

3.1 Summary

In this Chapter, pile foundations subjected to cyclic lateral loading are modelled using
the finite element method under plane-strain conditions. The effect of the boundary
conditions on the finite element predictions was examined and a convergence study was
undertaken to determine the optimum number of load increments required to obtain results of
good accuracy with minimum computational cost. Two different soil models, namely, the
'bubble' model and Mohr-Coulomb model, were employed in the finite element analyses in
order to examine the interaction between pile and soil behaviour when subjected to cyclic

loading.

3.2 Introduction

The primary objective of carrying out the two-dimensional finite element analyses
described in this Chapter was to evaluate the implications of adopting advanced constitutive
soil models for this complicated cyclic loading problem. This was intended to shed light on
the detailed pile and soil behaviour, in particular at the pile-soil interface, and to provide
insights for the development of the three-dimensional program APILEC, which employs a
simpler soil model.

Although, it is now possible to perform fully three-dimensional finite element
analyses for pile foundation problems (Brown and Shie, 1990, 1991; Bijnagte et al. 1991
among others), such analyses demand computer resources far beyond that which were
available for this project.

For ‘lpiles subjected to cyclic lateral loads, the horizontal displacements always
dominate the deformation field; the vertical displacements are not very significant and can
therefore be ignored. These assumptions allow modelling of pile foundations subjected to
cyclic lateral loading as a two-dimensional plane-strain problem (horizontal section of the

pile and soil in plan view) as shown in Figure 3.1. The pile-soil system can be subdivided
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into a number of horizontal layers, as illustrated in Figure 3.2. For these layers, an
elasto-plastic soil model can be employed for the analyses.
Two finite element packages, namely SWANDYNE and OASYS, were employed to

predict pile behaviour under cyclic lateral loading.

3.3 Finite element packages

The finite element program SWANDYNE was chosen because it contains the cyclic
soil model developed by Al-Tabbaa and Wood (1989) (known as the 'bubble' model described
in Section 2.5); this model is not available in OASYS. Furthermore, cyclic (sinusoidal)
loading conditions are also available. To compare with the predictions using the bubble
model, the elastic-perfectly plastic Mohr-Coulomb model for soil was employed.

The OASYS finite element program was used to check the results obtained from the
SWANDYNE analyses.

3.3.1 SWANDYNE

DIANA-SWANDYNE II is the acronym of Dynamic Interaction and Non-linear
Analysis - SWANsea DYNamic version II, developed by Chan (1990). It is a
two-dimensional program which incorporates plane-strain and axi-symmetric analyses. The
program uses the Finite Element method with triangular and quadrilateral isoparametric
elements in the spatial domain. The time integration is done using the Generalised Newmark
method. Both the tangential stiffness method and the Quasi-Newton method are available for
non-linear iterations. The program can deal with static, consolidating and dynamic conditions

under drained and undrained conditions.

3.3.2 OASYS

The OASYS-SAFE (OASYS, 1991) finite element program was developed for the
analysis of two-dimensional plane-stress, plane-strain, or axi-symmetric geotechnical
problems. The elements available are 4-, 8- and 12-node isoparametric quadrilateral elements.
Non-linear problems are dealt with by the 'initial stress' technique. The loading is applied
incrementally. The sequences of cyclic loading can be divided into the loading and unloading

stages.
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3.4 Idealised model

The two-dimensional plane-strain model is shown in Figure 3.2. Taking advantage of

the symmetry conditions, only half of the plane was modelled.

3.4.1 Boundary conditions

The boundary at 4 and C (see Figure 3.3) is assumed to be restrained by rollers,
allowing displacements only in the y-y direction. The displacements beyond the 15 pile
diameters in the x-x direction will not be significant, and can therefore be ignored. Due to the
symmetry boundary condition, the boundary at D is assumed to be restrained by rollers,
restricting displacements only in the x-x direction. The boundary at B is unrestrained,
allowing the displacements of soil in the x-x and y-y directions during loading. The load is

applied at the centre of the pile, at point E.

3.4.2 Cyclic loading conditions

One-way and two-way cyclic loading depicted in Figure 3.4 was used for
SWANDYNE analysis. A period of ten seconds per cycle was adopted following Rao et al.
(1992), Rao and Rao (1993) and Andersen et al. (1980). The design environmental condition
for offshore works based on a 100 year wave has a period of around ten seconds (Tomlinson,
1994).

For OASYS analysis, the loading was applied in stages to simulate cyclic loading; see

Figure 3.5.

3.5 Maximum load and undrained shear strength
The analyses are based on undrained loading conditions. The maximum lateral load

was taken to be:

H,

a=N.C, D (3.1
where N, is the bearing capacity factor, depending on pile depth,

C, is the undrained shear strength, and

D is the pile diameter.
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For simplicity, N, of ten is used (unless otherwise stated), indicating that the analysis is
applicable for depths greater than 3D (Poulos and Davis, 1980; Tomlinson, 1994).

In the absence of undrained shear strength for normally consolidated clay, field data
(Mersi, 1975; Larsson, 1980; Trak et al., 1980; Wood, 1994) suggests a linear relationship

between undrained shear strength and vertical effective stress, i.e.
C,=0250", (3.2)
where o', is the vertical effective stress.

The C, value can be determined from the Modified Cam clay (MCC) model. The equation
for the MCC yield surface is:

2

PR
p*-pputyn =0 (3.3)

where p'is the mean effective stress,
P 1s the preconsolidation pressure,
q is the deviator stress, and
M is a function of the angle of shearing resistance.
The preconsolidation pressure can be expressed as:
pn=N, D (3.4)

where N, is the overconsolidation ratio.

Coupling Equations (3.3) and (3.4), the deviator stress (for N, > 2) becomes:

q= D (Np - 1)0.5 (35)

S
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Under isotropic condition, p' = o, and taking C, = ¢/2, the undrained shear strength as a

function of the overconsolidation ratio is:
C,=050 . M(N,- 1) (3.6)

This result is reasonable valid provided that the yield surface lies below the tension cut-off .

The tension cut-off line (g = 3p") is depicted in Figure 3.6. Combining this with Equations
(3.4) and (3.5) gives:

P

N=l+% 3.7)

The slope of the critical state line for a typical clay, ranges from 0.8 to 1.2 (corresponding to
the angle of shearing resistance of 20° to 30° for clay), therefore the critical value of N, will

be around ten. For the purpose of this project, N, up to eight are employed.

3.6 Mesh details

For the SWANDYNE analyses, eight-noded isoparametric quadrilateral elements
were used to model the soil and the pile, while six-noded triangular isoparametric elements
were used to model the inner core of the pile; see Figure 3.7a. The mesh consists of a total of
84 elements. The mesh adopted is shown in Figure 3.7a.

For the OASYS analyses, the same type of elements were used to model the pile and
the soil, except that the inner core of the pile was deleted (Figure 3.7b) as OASYS does not
provide a triangular element option. This meant that the pile was modelled as a hollow pile.

This option should not affect the results as the pile elements were assumed to be very stiff.

3.6.1 Mesh discretisation

Based on a set of soil and pile parameter values, one-way cyclic loading was applied
to the centre of the pile. A fully bonded pile-soil interface is assumed, i.e. the displacements
of the pile and the soil are fully connected in all directions at the interface, and therefore

displace equally.
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The boundary was fixed at 30 pile diameters (D) and 15 pile diameters for the length
and width of the mesh, respectively, after some experimentations; see Figures 3.7 and 3.8.
Figure 3.8 shows the displacements (in the x-x direction) of the nodal points along the
syMetric plane under the specified maximum load. It is observed that the largest
displacement occurs at the pile-soil interface, and it decreases till the specified boundary is
reached. Extending the length and breadth of the mesh (with additional elements) increases

the computational cost without significant change to the results.

3.7 Convergence study

A convergence study using a simple mesh (Lee, 1995) assuming the fully bonded case
was carried out. Typical load-displacement response of the pile (pile-soil interface) is
depicted in Figure 3.9.

In this study, the number of load increments per cycle employed are 4, 10, 20, 40 and
100. Using these load increments, the maximum pile (pile-soil interface) displacements at the
end of the five cycles were determined. Cyclic loads of 75 kN, 150 kN and 225 kN
(arbitrarily chosen) with tolerances (i.e. convergence criteria) of 0.05 and 0.005, were used.
The computational time required (based on an IBM-compatible 80486 DX2-66 computer) for
these analyses were examined to assess the optimum number of load increments and

tolerances for further analyses.

3.7.1 SWANDYNE analysis

A set of soil parameters was used for the bubble model. One hundred load increments
per cycle was assumed to be the exact solutions for respective tolerances of 0.05 and 0.005.
Using the maximum pile displacements for the fifth cycle, Figure 3.10 shows that reducing
the number of load increments from 100 to 40, (20, 10, 4) for tolerance of 0.005, causes the
displacements to be underestimated by 1%, (2%, 3%, 4%) for load of 75 kN, 2%, (4%, 7%,
11%) for load of 150 kN, and 5%, (8%, 12%, failure to converge) for load of 225 kN. For
tolerance of 0.05, the underestimation is 3%, (7%, 11%, 21%) for load of 75 kN, 10%, (18%,
25%, 36%) for load of 150 kN, and 15%, (24%, 31%, 43%) for load of 225 kN. The above
results (judging from the amount of underestimation) show that convergence to the exact

solution is achieved with the use of a higher number of load increments and smaller
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tolerances. For higher load levels, say 225 kN, the number of load increments used has
greater effect on the displacement results, especially for tolerance of 0.05.

The times taken to execute the program for different load levels are depicted in Figure
3.11. It is shown that the computational time increases with the increase in both the load
increments and the tolerances, except for the case of 4 and 10 load increments using tolerance
of 0.005. The use of small load increments, say 4 and 10, cause the computational time to
increase because of the increase in the number of iterations required to converge to the
tolerance of 0.005, see Figure 3.11.

The displacement results, computational time, and the relative errors (defined as

(exact value - predicted value
exact value

) ) for different load levels were tabulated in Tables 3.1 and 3.2 for
tolerances of 0.05 and 0.005, respectively. The relative errors plotted against the number of
load increments depicted in Figure 3.12, show that the relative errors reduced with the
increase in the number of load increments. It is clearly shown that the relative errors for
tolerance of 0.05 are considerably larger as compared with tolerance of 0.005 at the same
number of load increments and load levels.

Assuming a maximum relative error of 10 % is acceptable in design, 20 and 40 load
increments with tolerance of 0.005 were considered. From the computational (time) point of

view, it is suggested that twenty load increments per cycle is probably the optimal choice.

3.7.2 OASYS analysis
For OASYS analyses, ten load increments with 5 and 10 iterations were used to
compare their results with the SWANDYNE analyses (using Mohr-Coulomb model for soil

and elastic model for pile). The comparison is deferred to Section 3.10.

3.8 Parametric studies

Parametric studies were carried out to examine the influence of the soil parameters on
the pile and soil behaviour under cyclic loading conditions. The parametric studies were
conducted at a depth of 5 m. Pile and soil are assumed to be fully bonded at their interface.
The bubble model and elastic model were employed for the soil and pile, respectively. The
details of the pile and soil data (unless stated otherwise) used in these parametric studies are:

Pile diameter (D) =1.0m

Pile Young's modulus (£,) =200 GPa
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Pile Poisson's ratio (v,) =0.3

Soil Type = Normally consolidated
Buoyant soil unit weight (y) =10 kN/m’

Undrained shear strength (C,) = 12.5 kPa (from Equation (3.2))
Bearing capacity factor (V,) =10

Maximum cyclic load (H,,,,) =125 kN (from Equation (3.1))

The details of the parameters (unless otherwise stated) for the bubble model are as follows:
M (slope of the critical state line) =1.0
R (ratio of the sizes of the bubble yield surface and the MCC yield surface) = 0.2

v (exponent in the hardening function) =15
v (Poisson's ratio) =0.2
A* (slope of the normal compression lines) =0.2

In addition, k* (initial slope of the unloading lines) is taken as 0.1 A*,

One-way cyclic loading of five cycles was applied at the centre of the pile. Only the
nodal maximum and residual displacements in the x-x direction along the symmetric plane at
the fifth cycle will be reported. To avoid massive parametric studies to be conducted, only
one parameter will vary at a time, while the others remain constant. This will help in

evaluating the sensitivity of the particular parameter.

3.8.1 The effect of soil strength parameter M

The soil strength parameter (M) is taken as a function of the angle of shearing
resistance, which is related to the shear strength of the soil. The higher the value of M, the
greater the strength of the soil will be. For this study, M of 0.8, 1.0 and 1.2 were considered.
Figure 3.13 clearly illustrates that the reducing M from 1.2 to 1.0, (0.8) increases the
maximum pile (pile-soil interface) displacements by 1.7 times, (3.8 times) and residual pile
displacements by 3.6 times, (6.0 times). The effect of M is greater for residual displacements
than for maximum displacements. It is observed in Figure 3.13 that soil at two pile diameters
away from the pile face is not greatly influenced by the loading as reflected by the steep drop
in the soil displacements. Comparing the displacement results at a distance of 0.5 m (pile-soil

interface) and 2.5 m from the centre of the pile, reduction in displacements averaging 3.3
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times and 5 times were accounted for maximum and residual displacements, respectively, for
all values of M. Figure 3.13 has indicated that the soil after seven pile diameters from the pile
face is not sensitive to the parameter M as the difference in displacement results is minimal.
Note that the assumption of fully bonded case has caused the nodal displacements along the
symmetric plane to produce a 'mirror' image, with similar displacements experienced on both

sides (left and right) of the pile.

3.8.2 The effect of soil parameter R

The ratio of the size of the bubble yield surface to the Modified Cam clay (MCC)
yield surface, is defined by the parameter R. Increase in R will increase the magnitude of the
elastic region of the soil. As such, one can expect a reduction in displacement as less soil
yielding is taking place. For this study R of 0.2, 0.3 and 0.4 were considered. Figure 3.14
shows that increasing R from 0.2 to 0.3, (0.4) results in a reduction in maximum pile
displacements by 21%, (45%) and residual pile displacement by 27%, (57%). The effect of R
is greater for residual displacements than for maximum displacements. It is shown in Figure
3.14, that the soil at two pile diameters away from the pile face is not greatly influenced by
the load as observed by the steep decline in displacement results. It is observed that the soil

after five pile diameters away from the pile face is not affected by the change in R values.

3.8.3 The effect of soil parameter y

For the purpose of this parametric study, the exponent in the hardening function () of
1.0, 1.5 and 2.0 were used. The results depicted in Figure 3.15 show that increase in y results
in the increase of both the maximum and residual displacements. This is due to the fact that
increases in y will reduce the hardening function (%) in Equation (2.16), thus causing an
increase in the plastic strain increments. The amount of increase in pile displacements when
v increases from 1.0 to 1.5, (2.0) is 1.4 times, (2.0 times) for maximum displacements, and
1.8 times, (2.8 times) for residual displacements. The effect of y is greater for residual
displacements than for maximum displacements. It is shown in Figure 3.15 that the effect of

v after five pile diameters away from the pile is negligible.

3.8.4 The effect of soil Poisson's ratio (v)
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Poisson's ratio (v) describes the ratio of the strain in the lateral direction to the strain
in the vertical direction during the elastic response to the imposed change of stress. Therefore,
increase in v will increase the lateral displacement. In this study, v of 0.2, 0.3 and 0.4 were
employed. Figure 3.16 shows that increasing v from 0.2 to 0.3, (0.4) causes an increase in
maximum pile displacements by 25%, (92%) and residual pile displacements by 14%, (38%).
The effect of v is greater for maximum displacements than for residual displacements. Figure
3.16 also indicates that the maximum displacements of the soil are still influenced by v after
seven pile diameters away from the pile, unlike the parameters M, R and , where the soil

displacements are not affected.

3.8.5 The effect of soil parameters A* and «*

The slope of the normal compression line (A*) and the initial slope of the unloading
line (x*) in the /n V-In p' compression plane, indicate the specific volume of the soil. The
higher the A* and x* values (at the same effective stress), indicate that the soil is more
loosely packed, i.e. more compressible. For this study, A* of 0.1, 0.2, and 0.4, and
corresponding k* of 0.1A* were considered. In Figure 3.17, it is shown that increasing A*
from 0.1 to 0.2, (0.4) results in the increase in both the maximum and residual pile
displacements by 2 times, (4 times). This indicates that increasing A* and corresponding k*
by some factors (say 5 times), the maximum and residual pile displacements will increase by
the same factors (i.e. 5 times). It is shown in Figure 3.17, that the maximum displacements of

the soil are still influenced by A* and x* after seven pile diameters away from the pile.

3.8.6 The effect of load level

Loads of 100, 125 and 150 kN (0.8, 1.0 and 1.2 times of the maximum load H,,,)
were considered in this study. The displacement results depicted in Figure 3.18, show that an
increase in the load levels, will cause an increase in both the pile and soil displacements. This
is due to the fact that a gfeater number of soil elements yielding are taking place at higher
load levels. Increasing the load of 125 kN by 1.2 times (i.e. 150 kN) has increased the
maximum and residual pile displacements by 86% and 110%, respectively. Decreasing the
load from 125 kN by 0.8 times (i.e. 100 kN), reduces the maximum and residual pile
displacements by 50% and 59%, respectively. The effect of load level is greater for residual

displacements than for maximum displacements. It is indicated in Figure 3.18, that the effect
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of load level on the maximum displacements of the soil after seven pile diameters away from

the pile are negligible.

3.8.7 The effect of overconsolidation ratio

'Values of overconsolidation ratio (OCR) of 1, 4 and 8 were employed in this study. The
preconsolidation pressure of the soil for OCR 4 and 8 are set to 200 and 400 kPa,
respectively, while maintaining the initial effective stress of 50 kPa. The results depicted in
Figure 3.19, show that an increase in OCR results in the reduction of both the pile and soil
displacements. This is because the soils were consolidated to a past maximum effective stress
of 200 and 400 kPa, and will naturally result in a denser packing than soil that is being
consolidated to an effective stress of 50 kPa. Hence, its resistance to loading is higher,
thereby giving a lower displacement. Increasing OCR from 1 to 4, (8) reduces the maximum
pile displacements by 78%, (79%) and the residual pile displacements by 98%, (100%). The
effect of OCR is greater for residual displacements than for maximum displacements.
Increasing OCR from 4 to 8 has not much effect on displacements, because the soil at OCR of
4 might be close to its densest state to resist the load of 125 kN. Therefore further increase in
OCR will only result in a further small decrease in displacements of less than 2%. It is
observed that the effect of OCR on the maximum displacements of the soil after seven pile

diameters away from the pile are negligible (Figure 3.19).

3.9 SWANDYNE analysis and results

iFrom the parametric studies, it can be seen that the bubble model does give quélitaﬁvely

'reasonable predictions. The following analyses will be based on applying the maximum load

(H,..) at the centre of the pile, and observing the maximum and residual displacements (in the
x-x direction) of the pile and soil at their interface (along the symmetric plane). Information
from the parametric studies has shown that it is not necessary to examine the soil elements
further away from the pile, as the displacements are much less than the displacements at the
pile-soil interface.

To simulate gap formation around the cyclic laterally loaded pile (see Figure 3.1),
many researchers like Yegian and Wright (1973), Kooijman (1989a, 1989b), Desai and Appel
(1976), Trochanis et al. (1991), Bhowmik and Long (1991) and Bijnagte et al. (1991) had

modelled the pile-soil interface by an interface element. Unfortunately, the option for the
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interface element is not available for the two finite element packages employed, hence
recourse is made by assuming a 'half-debonded' case. The half-debonded case is to take
account of the gap formation at the back of the advancing pile subjected to one-way cyclic
loading. For this study, a fully bonded case and a half-debonded case are analysed, using the
bubble model and the Mohr-Coulomb model. Typical pile and soil responses for these cases
are illustrated in Figure 3.20.

The following analyses were carried out using the pile and soil data mentioned in
Section 3.8, except that the undrained shear strength (C,) and the bearing capacity factor (V,)

are now taken as 20 kPa and 9, respectively.

3.9.1 Fully bonded case
The fully bonded case is assumed where there is no relative displacement between the
pile and the soil, i.e. pile and soil at their interface displacing at the same magnitude. No

slippage or gap formation (pile-soil separation) is taken into account.

Bubble model predictions

The six soil parameter values required for the bubble model mentioned in Section 3.8
are taken as follows: M=1.0,R=02, y =15, v=0.3, A* =0.08 and k* = 0.008. These
values are chosen based on experimental tests conducted by Al-Tabbaa (1987). With C, of 20
kPa, a maximum load (H,,) of 180 kN is determined from Equation (3.1). The results
depicted in Figure 3.21, show that the maximum and residual pile (pile-soil interface)
displacements were of the order of 150 mm and 120 mm, respectively, at the end of the fifth
cycle. This is rather high (around 15% of the pile diameter), and hence, it is decided to
reduced the H,,, load by 50%. With H,,, of 90 kN, a significant reduction in maximum and
residual displacements is observed in Figure 3.22, giving maximum and residual pile
displacements of 20 mm and 8 mm, respectively, at the end of the fifth cycle. This is a
reduction of approximately 8 times and 15 times, respectively, when compared with H,,, of
180 kN. This is due to the high plasticity involved within the soil under a load of 180 kN as

compared with a load of 90 kN, where lots of soil elements would have yielded.

Mohr-Coulomb model predictions
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For the Mohr-Coulomb model, the soil Young's modulus (E,), undrained shear
strength (C,) and Poisson's ratio (v) are taken to be 20 MPa, 20 kPa and 0.49 (undrained
loading), respectively. Under H,, of 180 kN, the maximum and residual pile displacements
at the end of the fifth cycle are 8.5 mm and 0.5 mm, respectively; see Figure 3.23. The
Mohr-Coulomb model predicts an elastic pile response for loads up to 120 kN, after which,
surrounding soil elements begin to yield. This is indicated by the change in gradient (point A)
shown in Figure 3.23. Eventually, the pile stabilised to a shakedown response with a residual

displacement of 0.5 mm.

3.9.1.1 Comparisons of models' predictions

Since different models are used in the analyses, one can expect differences in the
predictions. For the bubble model, which is developed for cyclic loading, greater soil yielding
can be anticipated (compare with the Mohr-Coulomb model) as the elastic region of the soil
is only within the size of the bubble (Figure 2.14). Hence, a large amount of displacements
and greater non-linearity can be observed; compare Figures 3.21 and 3.22 with Figure 3.23.

Using the Mohr-Coulomb model, the pile response is linearly elastic for loads below
120 kN, which subsequently shows signs of soil yielding. During unloading, the pile shows
an almost linear elastic response and eventually shakedown. This is a large contrast, to the
pronounced yielding of the soil and the progressive increase in pile displacements with
cycling for the bubble model; compare Figures 3.21 and 3.23.

With further cycling, the bubble model shows that the areas between the reloading and
unloading curves are reducing (Figure 3.21), indicating the amount of plastic ]work on the
soil per cycle are progressively decreasing. Figure 3.21 also shows that the cyclic degradation
(i.e. increase in maximum displacements with cycling) is reducing. Using the Mohr-Coulomb
model (Figure 3.23), the pile has stabilised to an elastic response (shakedown) after the first
cycle, indicating that no further plastic work is done on the soil.

Under H,, of 180 kN, it is observed that the bubble model gives much higher
maximum and residual pile displacements as compared with the Mohr-Coulomb model. At
the end of the fifth cycle, a difference of 18.2 times for maximum pile displacement and
200.5 times for the residual pile displacement is observed. Reducing H,,, to 90 kN for the

bubble model, the pile displacement differences between the Mohr-Coulomb model is
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reduced, with an overestimation of maximum and residual pile displacements of 2.4 times

and 14 times, respectively.

3.9.2 Half-debonded case

The left side of the soil was debonded from the pile (i.e. pile and soil nodes are not
linked; see Figure 3.20c). This interface will be described as debonded interface. The right
side of the pile remains bonded to the soil (i.e. pile and soil nodes are linked), and is
described as bonded interface. The debonding and bonding of soil on the left and right sides
of the pile, respectively, is to observe the gap formation on the left side of the pile (see Figure
3.20c), when the pile is subjected to one-way cyclic loading. The responses of the pile and
soil displacements at the debonded interface are observed, where their behaviour may be

simulated in the boundary element analysis.

Bubble model predictions

The same values for the pile and soil parameters mentioned in Section 3.9.1 were
adopted. With maximum load (H,,) of 180 kN, Figure 3.24 shows that the maximum and
residual pile displacements at the debonded interface are of the order of 600 mm. This will
result in immediate failure of the pile, as the maximum pile displacement has exceeded 60 %
of the pile diameter. Broms (1964) and Rao and Rao (1993) have suggested that the load
corresponding to displacement of 20 % of the pile diameter (or width) is taken as the ultimate
lateral capacity of the pile.

Due to the excessive displacement, H,,, is reduced by 50% (i.e. 90 kN). This causes a
significant reduction in the maximum and residual pile displacements of more than 7.5 times
(see Figure 3.25), giving a gap of approximately 70 mm at the end of the fifth cycle.

It is observed in Figure 3.24, that during unloading from 180 kN to 160 kN, the pile
displacement increases rather than decreases. For H,,,, of 90 kN, such strange phenomenon
only takes place in the first cycle of unloading from 90 kN to 80 kN (point 4 in Figure 3.25).
The mechanism of such occurrence is unclear.

The soil at the debonded interface responds in an almost elastic manner, though its
displacement is moving 'backwards'. This is also a strange response as one would have
expected the soil to move forward (in the positive x-x direction) due to the movement of the

pile and the corresponding soil elements pulling effects. Nevertheless, the soil displacements
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at the debonded interface are not significant as compared with the pile displacements. It can
thus be assumed that the soil at the debonded interface responds elastically, unless the gap has

been closed when the pile returns (say in a two-way cyclic loading).

Mohr-Coulomb model

The values for the soil and pile parameters are taken from Section 3.9.1. The pile and
soil displacements at the debonded interface are depicted in Figure 3.26; a gap of around 15
mm is shown at the debonded interface at the end of the fifth cycle. It is evident in this plot,
that the soil at the debonded interface is moving backwards, which is similar to the bubble
model predictions; the cause of this phenomenon is unclear. It is also observed that the soil at
the debonded interface has stabilised to an alternating plasticity response after the first cycle
of loading. It can therefore be assumed that the soil at the debonded interface responds
elastically. The pile at the debonded interface has shown signs of stabilisation to an
alternating plasticity response with further cycling, as the rate of increase in maximum

displacements with cycling is very small (less than 0.5%).

3.9.2.1 Comparisons of models' predictions

From the above results, the Mohr-Coulomb model seems to give more realistic pile
and soil displacement results. The bubble model predicts very large (greater than 0.6D) pile
displacements at a load of 180 kN, which, in the actual field situation, the pile foundations
will have collapsed. Under a load of 180 kN, the bubble model predicted much higher pile
displacements as compared with the Mohr-Coulomb model. The differences are 26.4 times
and 42.1 times for maximum and residual pile displacements, respectively, at the end of the
fifth cycle. However, we cannot expect both models to give the same results, but the
comparisons will indicate to us the suitable choice of soil models. That is, whether to employ
a simple elastic-perfectly plastic Mohr-Coulomb, or an isotropic hardening model like MCC
model, or a mixed hardening bubble model, for specific types of soils and environmental
conditions.

Both the bubble model and Mohr-Coulomb model predicted that the soil at the
debonded interface is moving backwards. This is a strange phenomenon. However, the

magnitude of the soil displacements is insignificant in comparison with the pile

77



CHAPTER 3 Plane-Strain Finite Element Analyses

displacements; see Figures 3.24 to 3.26. From the analyses, it can thus be assumed that the

soil at the debonded interface responds elastically.

3.10 OASYS analysis and results

The elastic-perfectly plastic Mohr-Coulomb model employed in SWANDYNE
analysis is used for OASYS analysis. The values for the'pile and soil parameters used in the
analysis are identical to those used for SWANDYNE analysis (Section 3.9.1). To check on
SWANDYNE results, 10 load increments with 5 and 10 iterations were used for OASYS
analyses, and only the half-debonded case is reviewed. Different numbers of iterations were
used, in order to see their effects and for comparisons with SWANDYNE results.

The pile and soil displacement results at the debonded interfaces are depicted in
Figure 3.27a for 10 iterations and in Figure 3.27b for 5 iterations. Higher displacements are
accounted for the 10 iterations than the 5 iterations' analyses, with a difference of about 10%
at the end of the fifth cycle. Comparisons of the displacement predictions between OASYS (5
and 10 iterations) and SWANDYNE analyses are shown in Figures 3.28a and 3.28b. As
observed in these plots, 10 load increments with 10 iterations (Figure 3.28a) gives a good
match with SWANDYNE predictions, with differences of less than 0.2% at the end of the
fifth cycle. From these comparisons, we can deduce that the results obtained from
SWANDYNE analyses are correct, since both the finite element packages yield
approximately the same load-displacement predictions. The slight difference in results may
be due to the number of load increments and iterations used, the type of non linear iterations

technique employed, etc.

3.11 Boundary conditions review

The soil at the debonded interface for the half-debonded case, appears to move
(marginally) in the 'wrong' direction, for both the bubble model and Mohr-Coulomb model
(Figures 3.24 to 3.28). It is suspected that this might be due to boundary conditions (denoted
here as the initial case; see Figure 3.3). As such, the following boundary conditions were
investigated using the SWANDYNE program.

Case (i) : All boundaries restrained by rollers.
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Case (ii) : All boundaries are unrestrained, except rollers on the plane of symmetry,
and fixity at the bottom right corner.
Case (iii) : Similar to case (ii) except fixed at the bottom left corner instead of the

bottom right corner.

The Mohr-Coulomb model was used in this investigation.

Case (i)

With all the four boundaries of the mesh restrained by rollers, a reduction in both the
pile and soil displacements at the debonded interface can be observed in Figure 3.29, when
compared with the initial case. In terms of maximum and residual displacements of the pile,
reductions of 39% and 41%, respectively, are observed at the end of the fifth cycle. For the
soil displacements, the reductions are 55% and 74%, respectively. This is due to the
constrained movement of the soil in the y-y direction at the boundary B in Figure 3.3, hence
reducing soil displacements in the x-x direction. It can be seen in Figure 3.29, that the soil at
the debonded interface is still moving backwards, though less noticeably than in the initial

case.

Case (ii) and Case (iii)
For these cases, large pile and soil displacements occur at the debonded interface; see

Figures 3.30 and 3.31. Obviously, these boundary conditions do not accord with reality and

are not considered further.

3.12 Discussion of results

In regard to computational efficiency, the mesh discretisation study has shown that the
mesh boundary can be confined to a length and breadth of thirty pile diameters and fifteen
pile diameters, respectively. The convergence study has shown that twenty load increments
(per ten seconds cycle) with tolerance of 0.005 can be employed to obtain predictions of good
accuracy. For the OASYS analysis, ten load increments with ten iterations have shown to
give similar displacement results to that obtained using SWANDYNE analysis (using
elastic-perfectly plastic Mohr-Coulomb model).
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Parametric studies

The parametric studies conducted based on the fully bonded case using the bubble
model, have revealed that the pile (pile-soil interface) displacements are always the highest.
The soil at two pile diameters away from the face of the pile is not greatly influenced by the
cyclic loading on the pile. This is evident in Figures 3.13 to 3.19 where the displacements fall
steeply from the pile-soil interface to a distance of 2.5 m from the centre of the pile. It is also
shown in Figures 3.13 to 3.19 that the influence of most parameters are negligible at a
distance of seven pile diameters from the face of the pile. In the fully bonded case, the nodal

displacements along the symmetric plane are the same at the front and back of the pile.

Models' comparisons

Comparison of the bubble model and Mohr-Coulomb model predictions at the same
load level for the fully bonded case, show that the former tends to predict much larger
displacements than the latter. The differences for the maximum and residual pile
displacements are 18.2 times and 200.5 times, respectively, at the fifth cycle.

For the half-debonded case, the bubble model also predicts much higher displacement
than the Mohr-Coulomb model, with differences of 26.4 times and 42.1 times for maximum
and residual pile displacements, respectively, at the fifth cycle. The predictions using bubble
model for soil seem to be unrealistic.

The displacement predictions using the elastic-perfectly plastic Mohr-Coulomb model
for soil and linearly elastic model for pile, yield reasonable results for gap formation, pile and
soil displacements. The SWANDYNE and OASYS programs give similar results (if
appropriate increments, iterations, loading conditions, etc., were used).

Comparisons between the fully bonded case and the half-debonded case using the
bubble model (see Figures 3.21 and 3.24), reveal large differences (greater than four times) in
the pile displacements. This is basically due to the fact that pile and soil nodes are not linked
(allowing gap formation) for the left half of the pile-soil interface, which effectively reduces
the soil resistance.

The evaluations of the half-debonded case for the bubble model and Mohr-Coulomb
model show that the soil at the debonded interface will respond in an elastic manner (Figures
3.24 to 3.28). The pile displacements at the debonded interface increase with the number of

load cycles. However, the cyclic degradation reduces and the pile may eventually stabilise to
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an alternating plasticity state with further cycling, depending on the type of soil models and

magnitude of cyclic loads.

3.13 Concluding remarks

The response of a pile subjected to cyclic lateral loads is influenced by various
factors. The stress-strain behaviour of the soil, geometry and stiffness of the pile, boundary
and drainage conditions at the site, and magnitude and nature of loading, are among the most
important factors that control the behaviour of the pile-soil system.

The plane-strain finite element analyses, have given some insights into the pile and
soil behaviour. For example, they show that the soil (at the debonded interface) will respond
elastically when separated from the pile. With the information gathered, a simplified
three-dimensional analysis, based on the indirect boundary element method (intended to
reduce the computational time and data preparation effort), will be introduced in Chapter 5.
Before advancing directly into the boundary element analysis, the model for soil strength

degradation used in that analysis will be described in the next Chapter.

81



CHAPTER 3

Plane-Strain Finite Element Analyses

Table 3.1 Relative errors based on tolerance = 0.05

No. of load |Displacement| Relative error | Computational time
(kN) increments (mm) (%) (minutes)
100 55.2 0 16.7
40 533 3.4 11.8
7 20 515 6.7 8.8
10 49.3 10.7 7
4 43.8 20.7 6.1
100 22 0 17.8
40 19.7 10.5 11.9
150
20 18.1 17.7 10.4
10 16.5 25 8.9
4 14 36.4 8.5
100 52.2 0 19.9
40 445 14.8 13
225 20 39.7 23.9 12.1
10 36.2 30.7 11.1
4 30 42.5 11

Table 3.2 Relative errors based on tolerance = 0.005

No. of load | Displacement | Relative error | Computational time
(kN) | increments (mm) (%) (minutes)
100 55.5 0 23.5
40 54.9 1.1 14
7 20 54.2 23 10.6
10 53.7 32 9.6
4 53.3 9.6
100 23 0 27
40 224 2.6 20
150
20 22 4.4 18.3
10 214 7 19.4
4 204 113 20.6
100 58 0 35.9
40 55.3 4.7 30.9
225 20 53.3 8.1 29.5
10 51 12.1 31.2
4 Failure to converge to tolerance specified
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Figure 3.1 Idealised model under plane-strain conditions.
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Figure 3.2 Two-dimensional half-layer systems.
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Figure 3.3 Mesh boundary conditions.
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Figure 3.4 (a) One-way and (b) two-way cyclic loading.
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Figure 3.5 Stages of loading to simulate cyclic loading for OASYS analysis.

Modified Cam clay
yield surface

Figure 3.6 Modified Cam clay yield surface with tension cut-offline.
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Figure 3.7 Mesh used for (a) SWANDYNE analysis and (b) OASYS analysis (not to scale).
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Figure 3.8 Comparisons of mesh sizes.
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Figure 3.9 Typical pile load-displacement response for fully bonded case based

SWANDYNE analysis.
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Figure 3.12 Relative error based on number of load increments.
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Figure 3.13 The effect of soil strength parameter M on maximum and residual displacements.
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Figure 3.15 The effect of soil parameter |l on maximum and residual displacements.
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Figure 3.16 The effect of soil Poisson's ratio (v) on maximum and residual displacements.
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0.0
of pile
hE_: — 0— OCR=1: Maximum
z --0 -*OCR=1:Residual
2 — 0— OCR=4: Maximum
@ OCR=4: Residual
i04
< 010, — a— OCR=$§: Maximum
@ --ir - WOCR=8 Residual
Q 003
.-0
-10
&0
-t

NODAL DISTANCE FROM CENIRE OF PILE (m)
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Figure 3.20 (a) Pile and soil elements at initial position, (b) Pile and soil element
displacements for the fully bonded case, (c) Gap formation at the debonded interface for the
half-debonded case.
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Mohr-Coulomb Model
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Figure 3.27 OASYS analysis (Mohr-Coulomb model) for the half-debonded case with (a) 10

load increments and 10 iterations and (b) 10 load increments and 5 iterations.
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Mohr-Coulomb Model
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Figure 3.28 SWANDYNE and OASYS results (a) using 10 load increments and 10 iterations

and (b) using 10 load increments and 5 iterations.
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Figure 3.29 SWANDYNE analyses for case (i) and initial case using Mohr-Coulomb model.
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Figure 3.30 SWANDYNE analysis for case (ii) using Mohr-Coulomb model.
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Figure 3.31 SWANDYNE analysis for case (Hi) using Mohr-Coulomb model.
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CHAPTER 4
Soil Strength Degradation

4.1 Summary

The phenomenon of soil strength degradation from peak to residual strength is
described in this chapter. This provides important information to guide the development of
the cyclic analysis of soil strength degradation at the pile-soil interface. Various correlations
are established using the soil index properties to determine the residual angle of shearing
resistance, and thereby the residual strength. Using experimental test results obtained by
several researchers, simple correlations relating the degree (and rate) of strength degradation
with soil index properties are presented. Some simple equations which describe the post-peak

strength degradation of soil are proposed for use later in the cyclic analysis.

4.2 Introduction

Soil strength degradation plays an important role in the evaluation of cyclic pile
response, as it can cause significant increases in pile displacements and moments, which may
eventually cause failure of pile foundations. With increasing cycles, soil strengths may
degrade from their peak values to a specific limit, known as the residual strength.

The degradation in strength is associated with an increase in the water content
(drained condition), accumulation of excess pore water pressure (undrained condition),
particle breakage, reorientation of the particles and loss of interparticle friction. To
incorporate these effects into the analysis of cyclic loading of piles would be tedious and
probably impossible. Hence, recourse is taken to a simpler approach: the fall in peak strength
of soils to their residual values is assumed to be a function of the plastic displacement (soil
displacement after peak strength is reached). This function is evaluated from the experimental
results reported by various researchers.

The (pre-peak) cyclic degradation of soil strength and soil stiffness as described in
Section 2.3 will not be dealt with. This is primarily due to the lack of data to quantify the
amount of degradation and its correlation with cyclic shear strain (Lee and Focht, 1976; Idriss

et al., 1978a among others). The cyclic shear strains are difficult to relate to the deformation
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of an element of soil in the field, especially for cyclic lateral loading on piles, where the
amount of strain experienced by the soil along the entire pile depth varies and can hardly be
determined.

When a pile is loaded laterally, the soil at the sides of the pile will be subjected,
predominantly, to shearing, while the front face of an advancing pile will be subjected to
compression (bearing). This behaviour can be seen in Figure 4.1 from the finite element
analysis for the half-debonded case described in Section 3.9.2. The finite element results
indicate a pattern of outward radial movement of the soil at the front and side of the pile, and
inward movement behind the pile

From the orientation of the displacement vectors surrounding the pile, various failure
mechanisms in the soil around the pile can be envisaged. In particular, the shear strength and
bearing strength degradation can be isolated. It is observed that soils under shearing and
bearing will exhibit the same trend of post-peak drop in strength, but that they may be of
different magnitudes.

4.3 Degradation of shear strength

The shear strength behaviour of nonﬁally consolidated (N-C) and overconsolidated
clays (O-C), with regard to peak and residual shear strengths and residual angle of shearing
resistance (¢',), is depicted in Figure 4.2. This figure shows results typical of those obtained
by carrying out slow drained tests in a shear box apparatus, in which the clay is subjected to
displacements amounting to several centimetres.

As the clay is strained, so it builds up increasing resistance. However, under a given
normal effective stress, there is a definite limit to the resistance the clay can offer (the peak
strength). In ordinary practice, the test is stopped shortly after the peak strength has been
clearly defined, and the peak strength is simply referred to as the 'shear strength' of the clay
(under the given normal effective stress). If, however, the test is continued, the displacement
will increase and the resistance of the clay decreases. This process, which may be called
'strain softening' or strength degradation, is not without limit, for ultimately, a certain
'residual strength' is reached which the clay maintains even when subjected to large

displacements.
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The peak and residual shear strengths, when plotted against normal effective stress,
would show a relationship approximately in accordance with the Mohr-Coulomb law (Figure

4.2). The peak shear strengths can therefore be expressed as:

1 =c+ao',tan ¢’ 4.1)

and the residual shear strength as:

t,=c,+ao', tan ', 4.2)

where ' is the cohesion intercept,
¢' is the angle of shearing resistance,
o', is the normal effective stress,
c', is the residual cohesion intercept, and

¢', is the residual angle of shearing resistance.

Test results reported by Skempton (1964), Bishop et al. (1965,1971), Skempton and Petley
(1967), Lacasse et al. (1985), Head (1988), Burland (1990), among others, show almost
invariably that ¢', is very small, and probably not significantly different from zero. Hence, the

residual shear strength may be written simply as:

T,=0,tan ', (4.3)

This indicates that in moving from the peak to the residual shear strength, the cohesion
intercept (c') disappears completely. During the same process, the angle of shearing resistance

also decreases; in some clays, by only 1° or 2°, but in others by as much as 10°.

4.3.1 Causes of shear strength degradation

Skempton (1985) states that the post-peak drop in drained shear strength of an intact
overconsolidated clay may be considered as being due, firstly, to an increase in water content
(dilatancy) and, secondly, to the reorientation of the clay particles parallel to the direction of

shearing. At the end of the first stage, the 'fully softened' or 'critical state' strength is reached.
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Under larger displacements, when reorientation is completed, the shear strength falls to and
remains constant at the residual value; see Figure 4.3a. In normally consolidated clays, which
consolidate when sheared, the post-peak drop in shear strength is due entirely to particle
reorientation, as depicted in Figure 4.3a.

The effects of particle reorientation are felt, to an appreciable extent, only in clays
containing platy clay minerals and having a clay fraction (percentage by weight of particles
smaller than 2 pm) exceeding about 20 - 25%. Silts and sandy clays, with lower clay
fractions, exhibit nearly the classical 'critical state' type of behaviour in which, even at large
displacements, the strength is scarcely less than the normally consolidated peak values, and
the post-peak drop in shear strength of overconsolidated material of this kind is due almost
entirely to water content increase, as shown in Figure 4.3b. Maksimovic (1996) suggests that
particle breakage, interparticle friction and bond may also play an important role in shear
strength degradation for normally and overconsolidated clays, depending on the magnitude of
the normal effective stress.

For soil subjected to undrained loading conditions, the post-peak drop in undrained
shear strength of the clay is mainly due to the accumulation of excess pore water pressure,
particle reorientation and reduction of interparticle bonds.

Irrespective of the physical explanation of the drop in shear strength after passing the
peak, the existence of this decrease in strength (especially in overconsolidated clays) must be
accepted as a fact which has been fully established. Thus, if for any reason a clay is forced to
pass the peak at some particular point within its mass, the strength at that point will decrease.
This action will 'throw' additional stress on to the clay at some other point causing the peak to
be passed at that point also. In this way, a progressive failure can be initiated and, in the limit,
the soil shear strength at the side of the pile along its entire length will fall to the residual

value, leading to a large reduction in pile lateral capacity.

4.3.2 Plastic displacement

It is noted that the plastic shear displacement (i.e. soil displacement after peak shear
strength is reached) required to attain the residual shear strength varies for different test
methods. For triaxial tests, this is relatively small (Bishop et al., 1965; Burland, 1990),

approximately 1 to 4 mm (corresponding to 1% to 5% axial strain), whereas for shear box
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tests, the plastic displacement ranges from 5 mm to as high as 50 mm or even more
(Skempton, 1964, 1985; Skempton and Hutchinson, 1969).

For triaxial tests, the failure plane is often not clearly defined on the 45° + ¢°2 plane,
and the plastic displacement is a function of specimen height.

In the case of shear box tests, the failure plane is well-defined, by sliding on the
horizontal plane. The plastic displacement is not restricted as the shear box can always be
~ brought back to its starting position (multiple-reversal) during the test; see Figure 4.4. Thus
the plastic displacement to reach residual strength may be much greater than for triaxial tests.
Evidence of substantial discontinuity on the failure plane can be observed in these tests as
opposed to triaxial tests.

For ring shear tests, the plastic displacement often exceeds 100 mm and in some cases
an excess of 500 mm is necessary, before the shear strength of an intact clay falls to the
residual value (Skempton, 1985; Bishop et al., 1971; Lupini ef al., 1981). It is believed that
the displacements required to establish residual conditions have been slightly overestimated,
and the residual strength measured underestimated by these testing procedures.

The shear strength results obtained from the (multiple-reversal) shear box tests are
probably most appropriate for the present study, as compared with triaxial and ring shear tests
(which are more suitable for slope stability analyses, where shearing displacement is
monotonic). However, shear strength results from ring shear tests and triaxial tests are also

employed where necessary.

4.4 Correlations of shear strength degradation with soil index properties

Regarding the degradation from peak to residual shear strength, Figure 4.5 shows that
this is not consistent for the overconsolidated clays presented by Skempton (1964). The cause
of this happening may be related to the soil index properties listed in Table 4.1.

The Selset boulder clay has been consolidated under a moderate thickness of ice, but
it is very sandy with a clay fraction of only 17%. Consequently, the cohesion intercept (for
the peak shear strength) is not large and there is only a drop of 2° between the peak (¢') and
the residual (¢',) angles of shearing resistance. The peak strength is 1.4 times the residual
shear strength at a normal effective stress of 1000 1b/ft? . The Jari clay has been consolidated
under at least 2,000 ft of sediments. It is very strong in its undisturbed state as compared with

the Selset, London and Walton's Wood clays, yet the residual shear strength indicates a zero
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residual cohesion intercept and ¢', of 18°. The peak shear strength is about 3.6 times greater
than the residual shear strength at a normal effective stress of 1000 1b/ft>. The London clay, of
Eocene age, has been consolidated under 500 ft to 1000 ft thickness of sediments,
subsequently eroded. The peak shear strength is about 2.4 times the residual shear strength at
a normal effective stress of 1000 Ib/ft* with ¢', = 16°. For Walton's Wood clay from
Staffordshire, the peak shear strength is three times the residual shear strength at a normal
effective stress of 1000 1b/ft*, and ¢' is 1.6 times greater than ¢', .

From the above evaluation, it may be implied that the degradation from peak to residual
shear strength and ¢', can be correlaited with the index properties of the clays. This question is

discussed in the next Section.

4.4.1 Correlations of residual angle of shearing resistance (¢',) with soil index properties

The peak and residual strengths of the overconsolidated clays described above are
shown in Figure 4.5, and their index properties tabulated in Table 4.1. There appears to be a
correlation between angle of shearing resistance (¢',) and these indices. For example. the
Selset clay has low clay fraction and relatively high ¢',. The clay fractions shown in Table 4.1
taken together with the results depicted in Figure 4.6, indicate that ¢', decreases with
increasing clay content.

Skempton (1985) states that the clay minerals can have little effect on residual
strength when the clay fraction is less than 20%, as the strength is then controlled largely by
the sand and silt particles. With clay fractions exceeding 40%, the residual strength depends
almost entirely on the sliding friction of the clay particles, as well as their shape. A pictorial
view of the influence of the clay fraction on post-failure given by Lupini et al. (1981) is
shown in Figure 4.7. For higher clay contents, well-developed shear surfaces form due to the
preferred reorientation of the clay particles.

A correlation of ¢', with plasticity index (/,) was given in Figure 4.8, after Fleischer
(1972), for various stiff clays, based on ring shear tests with varying strain rates. Voight
(1973) also found a relationship between ¢', and I, , using the results of others (Figure 4.8).
Vaughan et al. (1978) summarised tests in the ring shear apparatus at Imperial College,
mainly on natural clays of medium activity. They suggested the discontinuous relationship
between ¢', and /, which'is shown in Figure 4.8. They indicated that the controlling factor was

likely to be the proportion of platy clay minerals present, and that this would correlate with /,
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for clays of similar activity. Bucher (1975) used two strain-controlled ring shear devices of
different design and multiple-reversal shear box tests to study the influence of stress history,
stress level and temperature on residual friction angle. He presented a relationship between 1,
and ¢', similar to that of Vaughan et al. (1978), shown in Figure 4.8. He found that the ¢', of
two different clays (I, = 27%, ¢', = 12.5°, and, I, = 30%, ¢', = 25.6°) was unaffected by
temperature changes between 10 °C and 60 °C.

Relationships between clay fraction and plasticity index with ¢', for natural soils were
given by Lupini ef al. (1981), depicted in Figures 4.9 and 4.10, respectively. There seems to
be a discontinuous change in shearing resistance at a clay fraction of 35% or I, of 30%.
However, a number of test results clearly fall outside any reasonable correlation band. The
reason may be the shape of clay particles (proportions of platy and rotund particles), improper
determination of the soil index properties, etc., as explained by Lupini et al. (1981).

Other correlations for ¢',, for example, using liquid limit, have been presented by
Mersi and Cepeda-Diaz (1986); see Figure 4.11. From the above, simple correlations with
index properties may be adequate for the prediction of residual strength (using ¢',) for

engineering purposes, despite the scatter in the data.

4.4.2 Correlations of residual/peak shear strength ratio (R,) with soil index properties
The degradation of shear strength obtained from shear box tests reported by Skempton
(1964) and Bishop et al. (1971) is used as the basis for the following correlations. The soil
strength parameters and index properties are tabulated in Table 4.2. Assuming normal
effective stress (c',) range of 5 to 300 kPa, applying Equations (4.1) to (4.3) and using the
soil data from Table 4.2, the residual/peak shear strength ratios (R,) of the clays are

determined and is defined as:

R=1 (4.4)

where 7, is the residual shear strength, and

1, is the peak shear strength.

The residual/peak shear strength ratios (R,) are plotted against liquid limit in Figure 4.12a and

against clay fraction in Figure 4.12b, It is observed that the range of R, values for ¢, of 5 to
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300 kPa is small for plots R/P 34 and R/P 44 (see Table 4.2 for descriptions). This is due to
the presence of residual cohesion intercept (c',) in these clays, giving a high value for the
residual shear strength. However, setting c', to zero and using the average value of ¢', from
Petley (1966, 1969) results, have increased the range of R, values. These are shown in Figures
4.13a and 4.13b; with plots R/P 54, (R/P 64) replacing R/P 34, (R/P 4A).

The general trend from shear box tests shown in Figure 4.13, is that for a given
increase in liquid limit and clay fraction, the amount of shear strength degradation is higher.
It is shown in Figure 4.13, that for clays exceeding the 50% liquid limit or 40% clay fraction,
R, can be taken as 0.1, (0.5, 0.55) for o', = 5 kPa, (100 kPa, 300 kPa). For clays having liquid
limit less than 30% or clay fraction less than 20%, R, will be 0.3, (0.8, 0.85) for ¢', = S kPa,
(100 kPa, 300 kPa). Comparing Figure 4.13a with 4.13b, it can be seen that the liquid limit is
related to the clay fraction. It is noted that the increase in ¢', from 200 to 300 kPa causes only
slight increase in R,. The correlation of R, with plastic limit is not good and has therefore not
been presented.

The above correlations of R, with liquid limit and clay fraction are based on drained
tests, and are assumed to apply for undrained tests, so that it can be employed for the cyclic
analysis under undrained loading conditions. This assumption is made due to the limited data
for the post-peak drop of undrained shear strength of soil. From the triaxial test results of
intact Corinth Marl and intact Todi clay reported by Burland et al. (1996), R, values for
drained tests are found to be similar to the values for undrained tests (tested under
approximately the same effective consolidation pressures). The results obtained from Ward et
al. (1965) on London clay (liquid limit = 70% and clay fraction = 57%) tested using quick
undrained compression tests, gives R, = 0.6. This agrees with the correlations of R; based on
liquid limit and clay fraction depicted in Figures 4.13a and 4.13b, respectively. It is therefore

justifiable to assume that R, for drained tests are equal to those for undrained tests.

4.4.2.1 Modifications of R, for low normal effective stress

It is observed in Figure 4.13, that the shear strength degradation at low normal
effective stress range (e.g. R, = 0.1 for o', = 5 kPa) is very high, in comparisons with shear
strength degradation for &', > 50 kPa. This is due to the linear extrapolation of the peak shear
strength failure envelope at o', > 100 kPa towards the zero normal effective stress (see Figure

4.14), giving the cohesion intercept (¢") and hence the peak shear strength of soil obtained via
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Equation (4.1). This will give unsafe and high values of shear strength which the clay does
not possess at low normal effective stresses (o', = 5 to 50 kPa), thus leading to low R, which
is unduly conservative.

Maksimovic (1989a) shows that the shear strength failure envelope for compacted
London clay is very much non-linear as observed in Figure 4.14, especially for o', = 5 to 50
kPa. Experimental evidence of non-linear shear strength failure envelope can also be seen in
Bishop et al. (1965, 1971) and Atkinson and Farrar (1985). Their results show that only when
o', = 100 to 400 kPa, can we define the shear strength failure envelope by a straight line.

Bilinear approach

Several expressions for the non-linear failure envelopes, mostly in the form of power
or logarithmic relationships have been reported in the literature. The main shortcomings of
these proposals are their validity in limited stress ranges. The hyperbolic expression proposed
by Maksimovic (1989a, 1989b, 1996) offers good possibilities for simple description of the
non-linear shear strength failure envelope within the widest possible range of stresses.
However, the procedure is tedious and its application requires good experimental data.

For simplicity, the bilinear approach seems to be an appropriate and simple way to
determine the soil shear strength at low to high normal effective stress range. Taking ¢' = 0
for clay subjecting to o', < 50 kPa, while beyond the 50 kPa stress level, the ¢' value
determined from the experimental tests can be used; see Figure 4.15. The selection of ¢', = 50
kPa as the distinct mark for the transition of highly curved to a straight line failure envelope
is based on the observation and results presented by Bishop et al. (1965) and Maksimovic
(1996). This suggests that for o', < 50 kPa, the peak shear strength will be determined as:

/
c
=Ty % 4.5)

where 15, is the shear strength at o', = 50 kPa based on Equation (4.1).

The above equation applies to the peak shear strength under low normal effective stress for
normally consolidated and overconsolidated clays.
For the residual shear strength, though its failure envelope is curved with residual

cohesion intercept approximately equal to zero (Maksimovic, 1996; Kenney, 1967 and
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Bishop et al., 1971), it is reasonably accurate to adopt the straight line residual strength
failure envelope expressed in Equation (4.3).

Using the bilinear approach, the peak shear strengths for o', from 0 to 300 kPa were
determined using Equations (4.1) and (4.5). Adopting Equation (4.3) for residual shear
strength determination, the results presented in Figures 4.13a and 4.13b were modified for R,
at low normal effective stress range (c', = 0 to 50 kPa); see Figures 4.16a and 4.16b.

Based on the simple modification described above, R, is now constant for ', = 0 to 50
kPa. Figure 4.16 shows that for clays exceeding 50% liquid limit or 40% clay fraction, R, can
be taken as 0.3, (0.5, 0.55) for o', = 0 to 50 kPa, (100 kPa, 300 kPa). For clay with liquid
limit less than 30% or clay fraction lower than 20%, R, can be taken as 0.7, (0.8, 0.85) for &',
=0 to 50 kPa, (100 kPa, 300 kPa).

4.5 Rate of degradation of shear strength

From the shear box test results reported by Skempton (1964), it is shown in Figure
4.17 that the amount of shear strength degradation after passing its peak is dependent on the
plastic shear displacement of the soil. It also illustrates that for different clays, the plastic
shear displacements td reach residual shear strength will vary.

Considering only the peak to residual shear strength behaviour, the results in Figure
4.17 are replotted into Figure 4.18. From the trend of the shear strength degradation curves, it
suggests that the exponential function can be used to describe the post-peak strength

degradation. The current shear strength (post-peak) can be expressed as:
=1, + (50 7) expte Y 4.6)

where C, is the shear degradation rate factor in mm, and

d, is the plastic shear displacement.

The first term on the RHS of Equation (4.6) describes the magnitude of residual shear
strength. The second term describes the rate of degradation from peak to residual shear
strength by using the shear degradation rate factor C,, according to the magnitude of plastic
shear displacement. To categorise the rate of shear strength degradation as slow, medium and

fast, C, values of 0.1, 0.5 and 1.0, respectively, are used and illustrated in Figure 4.19.
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The use of Equation (4.6) to match the shear test results in Figure 4.18 is illustrated in
Figure 4.20. The matches are reasonably good. C; = 0.2 to 0.7 gives the best match to the
post-peak strength degradation of Walton's Wood, Jackfield and London clays. The index

properties of these clays listed in Table 4.3, suggest that C, can be related to their indices.

4.5.1 Shear degradation rate factor (C,) determination

In order to have a convenient quantitative expression by which the shear strength has
fallen from peak to residual, for all types of clays with different magnitudes of peak and
residual shear strengths, the residual shear ratio (R,,) is used. It is defined as:

T“tr
R, ===
f r

4.7)

Using the above expression, the residual shear ratio (R,,) is plotted against the plastic shear
displacement (d,) to determine the rate of shear strength degradation. The post-peak shear
strength degradation results obtained from various test methods described below, were used

to determine C,, and later, to establish correlations with the soil index properties.

Shear Box tests

The shear strength degradation results reported by Skempton (1964, 1985), using the
shear box apparatus were considered. The descriptions of these clays are listed in Table 4.3.
The residual shear ratios (R,,) of these clays are plotted against the plastic shear displacement
(d,) in Figure 4.21. It shows that the clays from Jackfield, Barbara and Walton's Wood have a
rapid rate of degradation as compared with the London clay, judging by the rapid decline of
the initial curve at plastic shear displacements of 0 to 5 mm.

Using Equations (4.6) and (4.7) to best match the post-peak shear strength degradation
curves shown in Figure 4.22, indicates that C; is between 0.2 to 0.7. Note that it is important
to have good curve matching in the initial portion of the degradation curve as the reduction of

strength is more significant.

Ring Shear tests
The clays tested using the ring shear tests are listed in Table 4.4. The post-peak shear
strength degradation curves of these clays are depicted in Figure 4.23. Using Equations (4.6)
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and (4.7), Figure 4.23 shows that the best match C; lies between 0.07 to 0.3 for Blue London
clay and Kalabagh clay, with an exceptionally low C, of 0.03 for the Brown London clay

from Walthamstow.

Triaxial tests

The details of the clays tested using the triaxial tests are listed in Table 4.5. Figure
4.24 shows the post-peak shear strength degradation of the Norwegian marine clays, Todi and
London clays. Applying Equations (4.6) and (4.7), the plot shows that Emmerstad clay,
(Ellingsrud clay, Ons¢y clay, London clay, Todi clay) can be matched using C,; = 1.5 to 2,
(0.8 to0 1.0, 0.4 t0 0.5, 0.9 to 1.0, 2.0). The C, values determined for the above mentioned test

methods are summarised in Table 4.6.

4.6 Correlation of rate of shear strength degradation with soil index

properties

The rate of shear strength degradation is described by the shear degradation rate factor
(Cy). To establish correlations of C, with soil index properties, the C, values determined from
the above tests were plotted against liquid limit, clay fraction and plasticity index as depicted
in Figures 4.25a, 4.25b and 4.25c, respectively. From these figures, it appears that the triaxial
tests (marked with T in the plots) give a very fast rate of shear strength degradation. Table 4.6
shows that London clay tested by shear box tests and ring shear tests give similar C; values of
around 0.2, while the tests conducted by triaxial apparatus gives C, of 0.9 (differences of 4.5
times). The reasons may be due to the method of tests conducted, orientation of failure plane,
etc. (Section 4.3.2). This may also suggest that the triaxial tests are not suitable for the
accurate determination of the rate of shear strength degradation.

Discarding C, determined from triaxial test results, Figure 4.26 indicates that C, tends
to be higher with lower liquid limit, clay fraction and plasticity index, but the results are
scattered at higher liquid limit, clay fraction and plasticity index. The low C, = 0.03 for
Brown London clay from Walthamstow may be due to shearing along the fissure plane
(numerous fissures and joints were found in the Brown London clay).

The wide range of normal effective stress (91 kPa to 525 kPa) applied to the

specimens for simple shear box and ring shear tests may be one of the factors which caused
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the scattered results. As seen in Table 4.6, lowering the normal effective stress from 283 to
207 kPa for the ring shear tests on Blue London clay, gives a decrease in C, from 0.3 to 0.15.
Different C, values are also seen in the triaxial tests for the Norwegian clays listed in Table
4.6 tested using different consolidation pressures. Coupled with the normal effective stress
effect, fissure conditions, particle breakage, etc. (in addition to the apparatus constraints and
human errors), may have substantial influences on the rate of shear strength degradation

If field results on degradation rate are not available, one might use C; of 0.5 for liquid
limit, (clay fraction, plasticity index) of less than 50%, (40%, 30%). C, of 0.2 can be used for
liquid limit, (clay fraction, plasticity index) greater than 60%, (50%, 40%). Figure 4.26 can be

used as a reference guide for the range of soil index properties.

4.7 Degradation of bearing strength

The soil at the front face of an advancing pile is subjected to compression (bearing).
The degradation in its bearing strength can be expected to display a similar trend to that of
shear strength degradation, i.e. the peak bearing strength reduces towards a residual value
when the soil is subjected to large displacements. This is illustrated in Figure 4.27 using plate
loading tests reported by Ward et al. (1965).

The failure mechanism involved in bearing, may be viewed as a footing embedded in
cohesive soil resulting in a wedge failure as described by Whitaker (1970), and as illustrated
in Figure 4.28 . The soil will flow or shear along the interfaces of zones 4 and B, and along
the boundary of zones B and C. Fleming et al. (1985) described the failure mechanism for
circular piles; soil flows along two intersecting circular zones causing shear failure as
depicted in Figure 4.29. Alternatively, bearing failure may be postulated as the failure
mechanism at the base of a deep foundation as described by Meyerhof (1951). A bulb system
of shear zones is developed as illustrated in Figure 4.30, and the soil will be sheared along the
boundary of BCEG and ACDF.

Whatever the failure mechanism that one may adopt, a rigid zone in front of the pile is
involved, pushing the soil forward and radially away from the pile as depicted in Figure 4.31.
The soil will be sheared along AC, BC, CD and DE. However, the failure mechanism in
bearing is not very well defined as compared with simple sliding along the side of the pile at

points 4 and B. The causes of bearing strength degradation can be taken as similar to that
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described for shear strength degradation in Section 4.3.1, involving accumulation of pore

water pressure, particle reorientation, particle breakage, etc., but over a wider soil area.

4.7.1 Expérimental observations

Bearing strength degradation has been examined using plate loading tests (Ward et al.,
1965). The tests were carried out on London clay at Ashford Common shaft at different soil
depths, with liquid limits ranging between 60% to 71%, plastic limits between 24% to 29%
and clay fractions between 44% to 60%.

The results from peak to residual bearing strength obtained from the plate loading
tests are shown in Figure 4.27. To describe the magnitude of bearing strength degradation, the

residual/peak bearing strength ratio (R;) is used, and is defined as:

R, = (4.8)

~ ] ™~
\I‘

where ¢, is the residual bearing strength, and

t;is the peak bearing strength.

From the results depicted in Figure 4.27, the tests E7/1 (Level E at depth of 34.8 m)
and CT7/2 (Level C at depth of 20.1 m) give R, = 0.48 and 0.41, respectively (based on
extrapolation to assumed residual bearing strength). The minor difference in results between
peak and residual bearing strength especially for £7/2 and F7/2 (Level F at depth of 42.1 m),
is due to the position of the fissures in relation to the plate. Ward et al. (1965) explained that,
if the fissures were located in positions which allowed the failure to occur almost entirely
along the fissure, then the peak would be small as for Tests £7/2 and F772 in Figure 4.27.
This is because the fissure acts as stress concentrator or discontinuous plane of weakness,
whereby the strength of the soil will be greatly diminished. It is unlikely that the strength on a
fissure or joint can be appreciably higher than the residual value. The largest peaks were
obtained when the fissures were so located that part of the failure was forced to pass through
some of the unfissured clays as in Tests C7/2 and E77/1. The plastic bearing displacements
(i.e. soil displacement after peak bearing strength is reached) attained by E7/1 and C7/2 based

on extrapolation, are approximately 15 mm before reaching to the residual bearing strength.
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Similar bearing strength degradation behaviour for plate loading tests, was obtained
for the quick undrained compression tests on cylindrical specimens of 76 mm long by 38 mm
diameter prepared from blocks in the laboratory (Ward et al., 1965); see Figure 4.32. Very
pronounced peaks were obtained for intact specimens containing no fissures, giving R, = 0.6
and a plastic displacement of 5 mm (greater than 6% axial strain) by extrapolation to assumed
residual strength. When failure occurred partly along existing fissures, smaller peaks were
found and where the failure occurred entirely along a fissure, little or no peak was noted.

Further investigation on bearing strength degradation was obtained from the plate
loading tests reported by Andersen and Stenhamar (1983). The in-situ plate loading tests were
carried out on a medium stiff overconsolidated clay at Haga in Norway. The plasticity index
is 15% and clay fraction is 45%.

The load-displacement curves from the plate loading tests are presented in Figures
4.33 and 4.34 for Test 1 and Test 3, respectively. The vertical load or bearing strength (area
of square steel plate is 1 m®) for Test 1, loaded to failure in 24 minutes is 340 kPa. For the
more rapid Test 3 with vertical loading to failure in 45 seconds (60 times faster than the rate
of testing for Test 1), the bearing strength is 10% higher, i.e. 375 kPa. It is evident that the
loading rate is not an important factor in the present study.

The residual bearing strength for Test 1 was not fully registered as observed in Figure
4.33. After the vertical load reaches its peak, the soil degrades slowly as seen from the gentle
decline of the load till it reaches about 260 kN, after which, there is a vertical drop in load.
This may be due to the quick release of pressure in the hydraulic jack. Obviously, the load at
residual will be less than 260 kN, giving R, of less than 0.76 and a plastic bearing
displacement of more than 40 mm. The stepping of the curve prior to reaching to its peak is
due mainly to the sequence of unloading and reloading, which does not show significant
change to the load-displacement response for loads up to 300 kN; compare Test 1 with Test 3
in Figure 4.34. The degradation from peak to residual for Test 3 was not recorded, but a
vertical drop of load can be clearly seen in Figure 4.34, suggesting a sudden release of
hydraulic pressure. |

It is difficult with the scant information available to make firm recommendations.
However, based on the limited amount of data available, one can assume R, = 0.4 to 0.7. The

soil depth did not seem to have a significant influence on R, as noted from the results from
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Ashford Common and Haga sites. Details of R, and soil index properties are listed in Table

4.7.

4.8 Rate of degradation of bearing strength

The bearing strength degradation from peak to residual depicted in Figures 4.27 and
4.33, shows that it is influenced by the plastic bearing displacement of the soil. Since the
trend of bearing strength degradation is similar to the shear strength degradation, it suggests
the use of exponential function to describe the post-peak bearing strength degradation.

The current bearing strength (post-peak) as a result of bearing strength degradation is

expressed as:
t=t,+ (- 1,) expt@ PP - (4.9)

where C, is the bearing degradation rate factor,
d, is the plastic bearing displacement, and

D is the plate diameter or width.

The first term on the RHS of Equation (4.9) describes the magnitude of residual bearing
strength. The second term describes the rate of bearing strength degradation from peak to
residual bearing strength by the use of the bearing degradation rate factor (C,), according to
the magnitude of the plastic bearing displacement. The diameter (or width) of the plate is
used to normalise the plastic bearing displacement since there appears to be a scale effect.
Ward et al. (1965) and Golder and Leonard (1954) have reported that the bearing strengths of
the clays are strongly influenced by the size of the plate used in the plate loading tests.

Rate of bearing strength degradation (C,) of 10, S0 and 100 are identified as slow,

medium and fast rates, respectively, and are illustrated in Figure 4.35.

4.8.1 Bearing degradation rate factor (C,) determination
The results from Ward et al. (1965) were employed for this study. Relevant results are
taken from plate loading tests on intact clays, i.e. E7/1 and C7/2 in Figure 4.27. To have a

convenient quantitative expression for the amount by which the peak bearing strength has
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reduced to its residual, for all types of clays, the residual bearing ratio (R,,) is used, and is
expressed as:

t—1ty

Rbr = lj_ tr

(4.10)

Considering only the peak to residual bearing strength, the results of R,, were plotted
against the plastic bearing displacement (d,). Different C, values were used to determine the
rates of bearing strength degradation which match closely the experimental results.

For the result of E7/1, the best match C, values were between 30 to 50, and for C7/2
were between 10 to 20 as depicted in Figure 4.36. The value for C, is dependent upon the
type of soil encountered in the site. With the lack of information on the rate of bearing
strength degradation, C, can simply be taken as ranging between 30 to 50. Details of C, and

soil index properties are listed in Table 4.7.

4.9 Application to cyclic analysis

For simplicity, the cyclic analysis is based on an elastic-perfectly plastic model for
soils, which are assumed to behave linearly elastically at small strains, but yield when certain
limit stresses (peak strength) are reached. After the soil yields, its limit stress will degrade

according to the magnitude of plastic displacement, as described in Section 4.5.

Shear strength degradation

The soil elements at the side face of the pile are subjected to shearing. They will yield
when the yield stresses (Z,,,) for shearing (taken as the limit shear stresses (z;), i.e. £, = f,),
are attained. After which, the limit shear stress will degrade to the residual limit shear stress
at large plastic shear displacements. The residual limit shear stress for each shearing soil

element can be determined as:

fir = Ry s 4.11)

where R, is the residual/peak shear strength ratio, and

t,, is the limit shear stress.
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In the absence of experimental data for the residual/peak shear strength ratio (R,),
Figure 4.6 and Figures 4.8 to 4.11 can be used to determine the residual angle of shearing
resistance ¢', based on the soil index properties. Thereafter, using Equation (4.3) to determine
the residual shear strength, and with the knowledge of the peak shear strength (Equation (4.5)
may be required for low ¢',), to determine R, using Equation (4.4). For a simple estimation of
R, for different types of clays, Figure 4.16 can be used as a guide, provided that the index
properties of the clay are known.

The shear strength degradation only applies to the shearing soil elements that have

yielded in shear, i.e. the shear stress reaches f,,,. The plastic shear displacements (d,) are

ys®
determined (from the pile displacements) when the shearing soil elements are plastic. While
the shearing soil elements continue to yield with increasing loads, d, will increase. When the
shearing soil elements have recovered from plastic to elastic (e.g. initial stage of unloading
and reloading), the limit shear stresses will degrade according to an exponential function
(analogous to Equation (4.6)) to a new value. This value is known as the reduced limit shear

stress (Z,,,), and is determined based on the plastic shear displacement (accumulated from the

loading/reloading and unloading cycles):
tSS = tssr + (tSS = tSS’) exp(-cs df) (4'12)
where C, is the shear degradation rate factor in mm™.

The value of C; can be determined from Figure 4.26 with knowledge of the soil index
properties. After determining the reduced limit shear stress, it is now set to be the yield stress
for shearing, i.e. £, = £, for that loading/reloading or unloading cycle.

The plastic shear displacement for the plastic shearing soil elements will progressively
increase for each cycle, and the reduced limit shear stress will progressively decrease until the

residual limit shear stress is reached. This is illustrated in Figure 4.37.

Bearing strength degradation
The soil elements at the front face of the advancing pile are subjected to bearing. They
will yield when the yield stresses (,,.) for bearing (taken as the limit bearing stresses (Z,.), i.e.

t,. = t,), are reached. After which, the limit bearing stress will degrade to the residual limit

sye
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stress, at large plastic bearing displacements. The residual limit bearing stress for each

bearing soil element is determined as:
tscr = Rb tsc (413)

where R, is the residual/peak bearing strength ratio, and

t,. is the limit bearing stress.

Recommendations for the values of R, are found in Section 4.7.1 and Table 4.7.

The bearing strength degradation only applies to the bearing soil elements that have
yielded in bearing, i.e. the bearing stress reaches f,,.. The plastic bearing displacements (d,)
are determined (from pile displacements) when the bearing soil elements are plastic. While
the bearing soil elements continue to yield with increasing loads, d, will increase. When the
bearing soil elements have recovered from plastic to elastic (e.g. in the initial stage of
unloading and reloading), the limit bearing stresses will degrade according to the exponential
function (analogous to Equation (4.9)) to a new value. This value is known as the reduced
limit bearing stress (Z,,), and is determined based on the plastic bearing displacement

(accumulated from the loading/reloading and unloading cycles):
b= L+ (b = L) EXPEPED) | (4.14)

where C, is the bearing degradation rate factor, and

D is the pile diameter or width.

Recommendations for the value of C, can be found in Section 4.8.1 and Table 4.7. The
reduced limit bearing stress is now set to be the yield stress for bearing, i.e. £, = ¢, for that
loading/reloading or unloading cycle.

The plastic bearing displacement for the plastic bearing soil elements will
progressively increase for each cycle, and the reduced limit bearing stress will progressively

decrease until the residual limit bearing stress is reached. This is shown in Figure 4.38.

4.10 Discussion
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In practice, the maximum shear strength of the soil or the strength parameters ¢' and ¢'
are easily available, but not the residual strength. As such, correlations of residual angle of
shearing resistance (¢') with soil index properties have been presented, to enable the
determination of residual strength of the soils. After which, R, (residual/peak shear strength
ratio) can be calculated, and used in the cyclic analysis to determine the residual limit shear
stress of the soil.

From the shear test results, it appears that R, is dependent on the magnitude of the
normal effective stress applied. Peak shear strengths of the clays are over-predicted using the
Mohr-Coulomb's straight line equation. As such, the bilinear approach is adopted to give
reasonable estimates of the R, values over a wide range of normal effective stresses. For
practical purposes, correlations of R, with soil index properties are presented in Figure 4.16.

From the experimental results, it appears that the rate of shear strength degradation,
described by the shear degradation rate factor (C,), can be related to the soil index properties.
As such correlations of C; with soil index properties were presented in Figures 4.25 and 4.26.

For post-peak bearing strength degradation, the parameters R, (residual/peak bearing
strength ratio) and C, (bearing degradation rate factor) are used to describe the magnitude of
residual bearing strength and the rate of degradation, respectively. These parameters may
also be correlated with the soil index properties. However, due to the limited test results on
bearing strength degradation, such correlations have not been presented. The recommended
values for R, and C, are discussed in Sections 4.7.1 and 4.8.1, respectively. With the
knowledge of the soil index properties, Table 4.7 can be used as a guide.

The use of the exponential functions to describe the post-peak shear strength and
bearing strength degradation via Equations (4.6) and (4.9), respectively, appear to be
satisfactory. These equations (in a modified form: Equations (4.12) and (4.14)) are employed
in the cyclic analysis, to determine the reduced limit stress for each cycle of loading,

depending on the plastic displacement of the soil.

4.11 Concluding remarks
The subject of soil strength degradation is presented based on the experimental results
provided by various researchers. From their results, it appears that the degree and rate of

strength degradation can be related to the index properties of the soil.
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To describe the post-peak shear strength and bearing strength degradation of the soils,
the strength degradation parameters, namely R, C,, R, and C, are required for the soil model.
These parameters can be obtained from experimental tests with few of the complications and
difficulties of the other soil models described in Chapter 2. Alternatively, these parameters
can be correlated with the soil index properties as discussed in this Chapter.

For the post-peak strength degradation of soil to their residual limits, Equations (4.6)
and (4.9) have been proposed. These equations provide a description of the shear strength and
bearing strength degradation, as observed in experimental tests. The application of these
equations to the soil model for cyclic analysis is straight forward: we determine the reduced
limit stress for each cycle of loading as a function of the plastic displacement of the soil.

With the soil strength degradation model now defined, the boundary element analysis

of cyclic laterally loaded piles can now be developed.
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Table 4.1 Index properties of clays, after Skempton (1964).

Clay type Liquid Limit | Plastic Limit |Plasticity Index | Clay Fraction
(%) (%) (%) (%)
Selset clay 26 13 13 17
Jari clay 70 27 43 47
London clay 82 29 53 55
Walton's Wood clay 53 28 25 69
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Table 4.2 Soil index properties and strength parameters determined from shear box tests.

Soil type & site Test method and Peak Residual Reference
index propertles ¢ (kPa) ¢| (0) C', (kPa) ¢|’ (0)
R/P1  [Jackfield clay Drained shear box test 10.5 25 0 19 {Skempton,
from Shropshire |LL=41,PL=22,CF=36,P[=22 1964
R/P2 Boulder clay Drained shear box test 8.6 32 0 30
from Selset, north |LL=26,PL=13,CF=17,PI=13
Yorkshire
R/P3 London clay Drained multiple-reversal shear 15.3 20 0 16
from Ashford box test
Common L1=82,P1=29,CF=55,PI=53
R/P4  [Jariclay Drained shear box test 37.3 22 0 18
from Himalayas |LL=70,PL=27,CF=47,PI=43
R/P S Walton's Wood | Casagrande shear box 153 21 0 13
clay from LL=53,PL=28,CF=69,PI=25
Staffordshire
R/P 1A |Blue London clay |Drained multiple-reversal shear 17.2 23.5 0 14.5 |Bishop, 1971
from box test after Petley,
Leigh on Sea LL=67,PL=26,CF=51,PI=41 1966
R/P2A |Blue London clay |Drained multiple-reversal shear 29.7 20 0 13.5 |Bishop, 1971
from Wraysbury |[box test after Agarwal,
LL=70,PL=29,CF=58,PI=41 1967
R/P3A |Brown London Drained multiple-reversal shear 17.9 23 3.5 14.6 |Bishop, 1971
clay from box test after Petley,
Hendon LL=82,PL=33,CF=60,PI=49 1966
R/P 4A |Weald clay from |Drained multiple-reversal shear 13.1 18.2 6.2 10.5 |Bishop, 1971
Arlington box test after Petley,
LL=73,PL=30,CF=45,PI=43 1969
R/P SA  |Brown London Drained multiple-reversal shear 17.9 23 0 16.7 |Bishop, 1971
clay from box test after Petley,
Hendon LL=82,PL=33,CF=60,PI=49 1966
R/P 6A |Weald clay from |Drained multiple-reversal shear 13.1 18.2 0 12.6 |Bishop, 1971
Arlington box test after Petley,
LL=73,PL=30,CF=45,P[=43 1969

Note: All clays are undisturbed and tested under drained conditions.

LL = Liquid Limit, PL = Plastic Limit, CF = Clay Fraction and PI = Plasticity Index in %.
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Table 4.3 Index properties of clays, from shear box tests.

Plot Name | Soil type & site | Testmethod |Liquid Limit| Clay fraction | Plasticity index | Reference
(%) (%) (%)
Walton's | Walton's Wood | Casagrande shear 53 69 25 Skempton,
Wood clay from box test 1964
Staffordshire
Jackfield clay |Jackfield clay Drained shear box 4] 36 22
from Shropshire [test
London clay [London clay Drained 82 55 53
from Ashford multiple-reversal
Common shear box test
Barbara: | S.Barbara clay Drained 76 37 33 Skempton,
Intact from Florence multiple-reversal 1985 after
shear box test Calebresi &
Manfredini,
1973

Table 4.4 Index properties of clays, from ring shear tests.

Plot Name | Soil type & site | Test method |Liquid Limit| Clay fraction | Plasticity index| Reference
(%) (%) (%)
Brown London |Brown London Ring shear test 66 53 42 Bishop, 1971
clay clay from
Walthamstow
Blue London |Blue London clay 72 57 43
clay; RS-2  |from Wraysbury
Blue London |Blue London clay 72 57 43
clay; RS-5 from Wraysbury
Kalabagh Kalabagh clay 62 47 36 Skempton,
1985
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Table 4.5 Index properties of clays, from triaxial tests.

Plot Name | Soil type & site | Test method | Liquid Limit | Clay fraction |Plasticity index | Reference
%) (%) %)

Onsoy Onsdy clay from Consolidated 56-74 60 30-44 Lacasse et al.,
Norway undrained 1985

Ellingsrud | Ellingsrud clay

from Norway

Emmerstad |Emmerstad clay 24 -32 40 3-12

from Norway

Todiclay |Todi clay Unconsolidated 50 35 28 Burland,
undrained 1990
London clay |London clay Consolidated 71 53 42 Webb, 1969
undrained

Table 4.6 Shear degradation rate factors (C,).

Clay type Test method | Normal effective stress C, Figure

(kPa) (mm™) Reference

Walton's Wood clay Shear box test 153 0.4 Figure 4.22 -

Jackfield clay 110 0.6

London clay 91 0.2

S.Barbara clay 300 0.5-0.6

Brown London clay Ring shear test 214 0.03 Figure 4.23

Blue London clay; RS-2 207 0.15

Blue London clay; RS-5 283 0.3

Kalabagh clay 525 0.07

Ons¢y clay Triaxial test - 04-0.5 Figure 4.24

Ellingsrud clay - 08-1.0

Emmerstad clay - 1.5-2.0

Todi clay - 2

London clay - 0.9
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Table 4.7 Residual/peak bearing strength ratios (R,) and bearing degradation rate factors (C,).

Soil type & site| Test method | Soil depth | LL PL | CF | PI R, G Reference

and description (m) ) | (B | (%) | (%)

London clay Plate loading 20.1 71 29 53 42 041 | 10-20 |Ward et al., 1965
from Ashford test: C7/2
Common Plate loading 348 70 | 27 | 57 43 | 048 | 30-50

test: ET/1

Quick undrained 34.8 70 27 57 43 0.6 -

compression test

Haga clay from {Plate loading 23-25 40 25 45 15 |[<0.76 - Andersen &

Norway test Stenhamar, 1983

LL = Liquid Limit, PL = Plastic Limit, CF = Clay Fraction and PI = Plasticity Index in %.
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soil

lo 12 14 1* £0

X <m>

Figure 4.1 Soil displacement vectors from a Finite element analysis for a pile subjected to

lateral load.

o-c peak
Shear cr'-constant
stress
mResidual
N-C peak
a/\
Displacement Effective pressure

on shear plane

Figure 4.2 Peak and residual strengths of normally consolidated and overconsolidated clays

(Skempton, 1964).
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j- Increasing water content

\ Critical state
Residual * N-C peak

Low (e.g. < 20%) clay fraction

(b)
High (e.g. > 40%) clay fraction
Increasing water content

Particle reorientation

Residual at ca. 300 mm

50 100

Displacement: mm

@

Figure 4.3 Stress-displacement curves at constant normal effective stress (<',) (Skempton,

1985).

1-6

Figure 4.4 Stress-displacement curves for intact clay using multiple-reversal shear box test

(Calabresi and Manfredini, 1973).
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Shear
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1000
Ib/ft* C+320

1000 Effective
pressure
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Figure 4.5 Peak and residual strengths of overconsolidated clays (Skempton, 1964).
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Figure 4.6 Decrease in residual angle of shearing resistance (§!) with increasing clay fraction

(Skempton, 1964).

129



CHAPTER 4 Soil Strength Degradation

Test Clay Thin section Description
no. fraction: %
20 No separation on shear zone. Thin section

showed no preferred orientation of the clay matrix

o ? 6 °< p Q”I.o(; (Figs 19, 20)
Ooo 00O d

:0°0fo 0°

27 No separation on shear zone. Thin section
showed no preferred orientation of the clay matrix

34 0 o No separation on shear zone. Thin section
showed shear zone about 1.5 mm thick containing
discontinuous shear surfaces parallel to the
direction of shear

40 Specimen separated on heavily striated
(slickensided) e hear surface. Thin section showed
two continuous shear surfaces, undulating in the

. (0] ,y=n. direction of shear, about 2.5 mm apart. Clay
~0 | particles between them orientated 0-45’ to
e 0 . 0 # direction of shear (Fig. 23)

48 Specimen separated on shear surface, more

polished than test 5, with less well developed
striations and no undulations in direction of shear.
This surface bounded one side of zone of strongly
orientated clayO-5-2.0 mm thick: other side bounded
by less well developed shear surface. Clay on
either side of this zone showed partial orientation
(Figs 21, 22)

Figure 4.7 Summary of post-failure structure from Happisburgh-London clay mixtures.

(Lupini et al., 1981).
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Vaughan et al (1978) CJn =130 -180 kPa
A Bucher (1975) (Jn'=72.5-269.5 kPa

Kanji (1974) CXn'= 147 kPa

Seycek (1978 ) CTn = 300 kPa

Fleischer (1972 )
Voight (1973)

index Ip %

Figure 4.8 Correlation of residual friction angle ((j)r) with plasticity index (Lupini et al.,

1981).
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Figure 4.9 Correlation of residual friction angle ((j),) with clay fraction for natural soils

(Lupini et al., 1981).
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o 36« Happisburgh till -
3Oa London clay mixtures
a 34 47. A
- 0.4
s 20
Sand-bentonite
mixtures 0.3
TH#
11.12
. 26% \ 0.2
35
2 4o
a
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0 20 60 80 100

Plasticity index . I p (*/*)

Figure 4.10 Correlation of residual friction angle () with plasticity index for natural soils

(Lupini et al., 1981).
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Figure 4.11 Correlation of residual friction angle ($r) with liquid limit (Mersi
Cepeda-Diaz, 1986).
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a =35,50, 100, 200, 300 kPa

-O-R/P 1
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—A—R/P 3
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-O-R/P 5
——R/P 1A
-+-R/P 2A
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—A - R/P 4A

Legend texts refer

to Table 4 2
40 50
HQUDIMT (%9
(a)
am=5, 50, 100, 200, 300 kPa
09
07 - 0300
5200 -R/P 1
-R/P 2
-R/P 3
-R/P 4
050
& 05 S -R/P 5
-R/P 1A
-R/P 2A
-R/P 3A
-R/P 4A

Legend texts refer
to Table 4.2

ol

30 40 60

LAY FRACTION (%)

(b)

Figure 4.12 Correlation of residual/peak shear strength ratio (Rs) with (a) liquid limit and (b)

clay fraction.
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a'n=5, 50, 100, 200, 300 kPa

09
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00 -O-R/P 1
06 AICO -0-R/P 2
—A—R/P 3
—*_R/P 4
al 05 o050 O-R/P 5
—i— R/P 1A
-+-R /P 2A
04
—+—R/P 5A
—A—R/P 6A
0.3
Legend texts refer
to Table 4.2
0.2
°5
0.1
0 10 20 30 40 50 60 70 80 90
LIQUDLIMT (%)
(a)
a'n= 5, 50, 100, 200, 300 kPa
0.7 00
00 -O-R/P 1
. -0-R/P 2
tjinoo
—6—R/P 3
—x—R/P 4
u A50 —*—R/P 5
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—i— R/P 2A
-+-R /P 5A
-4+ —R/P 6A
Legend texts refer
to Table 4.2
os
30 40
AY FRACTION (%9

(b)

Figure 4.13 Correlation of residual/peak shear strength ratio (Rs) with (a) liquid limit and (b)

clay fraction (with residual cohesion intercept ¢\ set to zero).
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200
« 100 Ca)
0 100 200 300 400
(kP.)
60
40
30
Cb)
30
10
2 30 60 0 70 60

trncTivs NORMAL BTRCHB

Figure 4.14 Failure envelope for compacted London clay; (a) investigated stress range with

detail and (b) in the low stress range (Maksimovic, 1989a).

assumed straight line
c>0
failure envelope for a’< 50 kPa

observed curved failure envelope

50 kPa normal effective stress

Figure 4.15 Shear strength failure envelope using bilinear approach.
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on=0- 50, 100, 200, 300 kPa
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-R /P

AW N -

SRR
ttf 05 00-50 “0O-R/P 5
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—  RIP A
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texts refer
to Table 4.2

I 1-
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texts refer
to Table 4.2
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Figure 4.16 Correlation of residual/peak shear strength ratio (Rs) with (a) liquid limit and (b)
clay fraction (with residual cohesion intercept c¢'r set to zero and modification for low stress

range).
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day test

p-s.i

0-8 2-0
Displacement fns

8 shour Sample R 176

<rV5-9

. 0%20 . . 0-40
Displacement ins

(b)

8 days

(©

Figure 4.17 Shear test results on (a) Walton's Wood clay, (b) Jackfield clay and (c) London

clay (Skempton, 1964).
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-WALTON'S WOOD
-JACKFIELD
-LONDON CLAY

SERIT
T

10 15 20 25 30 35

PLASTIC SHEAR DISPLACEMENT ()

Figure 4.18 Post-peak shear strength degradation after Skempton (1964).
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Figure 4.19 Identification of shear strength degradation rate factor (Cv.
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— O— WALTON'S WOOD
— o— JACKFIELD

— A— LONDON CLAY

- - WW Cs=04

- - JF Cs=0.7

-0 - L.C. Cs=02

WW. =Walton's Wood
J E =Jackfield
LC =London clay

Figure 4.20 Determination of shear degradation rate factor (Cv) from post-peak shear strength

degradation results.
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to Table 4.3
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Figure 4.21 Rate of shear strength degradation from shear box tests.
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09
07 -0— WALTON'S WOOD
-0— JACKFIELD
06 -a— LONDON CLAY
-x— BARBARA
- % - Cs=0.2
- % - Cs=0.3
- 0- Cs=04
0.4 — Wm—Cs=05
Cs=06
- e - Cs=0.7
0.3
Legend texts refer
o to Table 4.3
0 5 10 15 20 is 30 35 40

PLASTIC SHEAR DISPLACEMENT (i)

Figure 4.22 Determination of shear degradation rate factor (Cv) from post-peak shear strength

degradation results using shear box tests.

09

i—- BROWN LONDON CLAY
— BLUE LONDON CLAY; RS-2
i— BLUE LONDON CLAY; RS-5
06 r— KALABAGH
3- Cs=0.02
Cs=0 03
- Cs=0.07
I- Cs=0.08
04 = Cs=0.09
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Cs=0.20

0.3 -
i- Cs=0.30

0.2 Legend texts refer
to Table 4 4

livtHh
0 Z) 40 60 80 KD
PLASTIC SHEAR DISPLACEVENT (nm)

Figure 4.23 Determination of shear degradation rate factor (Cv) from post-peak shear strength

degradation results using ring shear tests.
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-ONSOY: 9.11 m (depth)
-ONSOY 6 1m
-ONSOY 317 m
-ELLINGSRUD: 13 08 m
-ELLINGSRUD 7.1 m
-EMMERSTAD: 5 92 m
-EMMERSTAD: 4.11 m
-TODICLAY
-LONDON CLAY
uCs=0 4
*Cs=0.5
uCs=0 6
-
-B- Cs=09
--0 - Cs=1.0
—-ft- Cs=1.5
—u — Cs=20

- Cs=3.0

texts refer
to Table 4.5

2 3 4 5 6

PLASTIC SHEAR DISPLACEMENT (mm)

Figure 4.24 Determination of shear degradation rate factor (Cv from post-peak shear strength

degradation results using triaxial tests.

141



CHAPTER 4 Soil Strength Degradation

— o— WALTON'S WOOD
— o— JACKFIELD
— a— LONDON CLAY
— K— BARBARA:INTACT
— *— BROWN LONDON CLAY
— O— BLUE LONDON CLAY;RS-2
— i— BLUE LONDON CLAY;RS-5
-m - KALABAGH
ONSOY
- ELLINGSRUD
- EMMERSTAD
— m— TODI
— *— LONDON CLAY-Triaxial test

texts refer
to Tables 4.3 to 4.5

LIQUID LIMIT (%)

()

25
Tm *T
-0 — WALTON'S WOOD
-0 — JACKFIELD
-a— LONDON CLAY
-* — BARBARA INTACT
-* — BROWN LONDON CLAY
-O— BLUE LONDON CLAY.RS-2
-t— BLUE LONDON CLAY;RS-5
O wm - KALABAGH
ONSOY
Tt mA- ELLINGSRUD
« - EMMERSTAD
-m— TODI

-+— LONDON CLAY-Triaxial test

I i Legend texts refer
fo Tables 4 3 t0 4.5

30 40

CLAY FRACTION (%)
(b)

Figure 4.25 Correlation of shear degradation rate factor (Cv) with (a) liquid limit, (b) clay

fraction and (c) plasticity index (see overleaf).
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— O— WALTON'S WOOD
— o— JACKFIELD

-a LONDON CLAY
— x— BARBARA INTACT

1.5 — *— BROWN LONDON CLAY
— O— BLUE LONDON CLAY.RS-2
— i— BLUE LONDON CLAY;RS-5
- « - KALABAGH
ONSOY
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- EMMERSTAD
] TODI
— ¢— LONDON CLAY-Triaxial test
03 texts refer
to Tables 4.3 t0o 4.5

20 30 40
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Figure 4.25 (c¢) Correlation of shear degradation rate factor (Cv) with plasticity index.

-WALTON’S WOOD
-JACKFIELD
-LONDON CLAY

E -BARBARA INTACT

-BROWN LONDON CLAY

o -BLUE LONDON CLAY;RS-2
-BLUE LONDON CLAY;RS-5
- KALABAGH

texts refer
to Tables 4 3 and 44
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LIQUDIIMT (%
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Figure 4.26 Correlation of shear degradation rate factor (Cv with (a) liquid limit, (b) clay

fraction (see overleaf), and (c) plasticity index (see overleaf), discarding triaxial test results.
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to Tables 4.3 and 4.4

Figure 4.26 Correlation of shear degradation rate factor (Cvy with (b) clay fraction and (c)

plasticity index, discarding triaxial test results.
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Figure 4.27 Typical load-settlement curves from plate loading tests (Ward e/ al., 1965).
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Figure 4.28 Shear zones beneath a shallow foundation according to Terzaghi. 4, zone of
elastic equilibrium; B, zones ofradial shear; C, zones of passive shear; D, depth of foundation

(Whitaker, 1970).
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fan zone
rigid

pile

sliding concentric
cylindrical shells

Figure 4.29 Failure mechanism for soil around laterally loaded pile. (Fleming cf cil., 1985).

7777707707 7 Tt w77 Thm777F
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Figure 4.30 Shear zones around the base of a pile (Whitaker, 1970).
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rigid
zone

Plan view

Figure 4.31 Failure mechanism of soil when a pile is loaded laterally.
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Figure 4.32 Undrained triaxial compression tests on block specimens (Ward et al., 1965).
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Figure 4.33 Measured load-displacement curve from plate loading tests for Test 1 (Andersen

and Stenhamar, 1983).
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Figure 4.34 Measured load-displacement curve from plate loading tests for Tests 1 and 3

(Andersen and Stenhamar, 1983).
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Figure 4.35 Identification of bearing strength degradation rate factor (C4).
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Figure 4.36 Determination of bearing degradation rate factor (CA from post-peak bearing

strength degradation results using plate loading tests.
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displacement

/,, = limit shear stress,
= reduced limit shear stress for unloading cycle 1,
tssj /2 = reduced limit shear stress for loading cycle 2,
= residual limit shear stress,
dsli = plastic shear displacement at loading cycle 1,
dsu, = plastic shear displacement at unloading cycle 1,

d.n = plastic shear displacement at loading cycle 2, and

d,lﬂ= plastic shear displacement at unloading cycle 2.

(a)

Peak

SY w

sstl 12

Residual

plastic shear displacement

(®)

Figure 4.37 (a) Determination of plastic shear displacement (d9 and reduced limit shear stress

(7WY, and (b) shear strength degradation based on plastic shear displacement.
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hil
hp
scd 12
hi3
scd I3
cycle 1
cycle 2

displacement

(a) tsc = limit bearing stress,

£k

t,cjn = reduced limit bearing stress for loading cycle 2,
ttedn = reduced limit bearing stress for loading cycle 3,
tter = residual limit bearing stress,

dhn = plastic bearing displacement at loading cycle 1,

! dhn = plastic bearing displacement at loading cycle 2, and
dhn - plastic bearing displacement at loading cycle 3.

Peak

Iscd 12
tscd I3

Residual

plastic bearing displacement

(b)

Figure 4.38 (a) Determination of plastic bearing displacement (dh) and reduced limit bearing

stress (tsad), and (b) bearing strength degradation based on plastic bearing displacement.
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CHAPTER 5
Boundary Element Analysis

5.1 Summary

The formulation used in the cyclic analysis of laterally loaded pile foundations
embedded in cohesive soils, based on the indirect boundary element method,jis described
here. The analysis is capable of determining the pile-head load-displacement and rotation
response. In addition, the pile tractions, displacements, shear forces and bending moments
along the length of the pile can also be evaluated. Phenomena observed in cyclic pile-load
tests, such as gapping, backsliding and soil strength degradation effects are accounted for in

tthe analysis, by the use of a simple soil model.

5.2 Introduction

A continuum approach based on incremental analysis, via the indirect boundary
ellement method, is presented based on a method employed by Davies and Budhu (1986) and
Budhu and Davies (1988) for static analyses of laterally loaded piles. This approach is
capable of analysing the three-dimensional pile-soil behaviour of cyclic laterally loaded piles
without undue computational cost. A significant simplification of the method is that although
the yield (failure) conditions at the pile-soil interface are satisfied, the yield conditions within
the soil continuum are not explicitly satisfied. While such an analysis fails to account fully
for the complex mechanics of the continuﬁm, the studies referred to above suggest that it is
capable of producing excellent results, and it captures all of the essential features of the
problem.

The non-linear elasto-plastic analysis is based on an elastic-perfectly plastic model for
soils, which are assumed to behave linearly elastically at small strain levels, but fail, when
they reach certain yield stressés, namely, bearing failure in the compression zone, tension
failure in the tensile zone and shear failure in the slip zone. After the soil yields, its strength
may degrade depending on the magnitude of the plastic displacement (i.e. strain-softening).

Cyclic loading of piles embedded in cohesive soil, generally results in gaps forming

at the tension face of the pile (Matlock, 1970; Bijnagte ef al., 1991; Dunnavant and O'Neill,
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1989; Long et al., 1993), resulting in degradation of the pile responses. Due to the cyclic
loading, soils will also degrade, resulting in increasing pile displacements, moments etc. For
cohesive soils, backsliding may reduce gap sizes (Grashius et al., 1990; Bijnagte et al., 1991).
These phenomena (described by a simple soil model) are included in the computer program,
APILEC, based on the existing program, APILES (Davies and Budhu, 1994). The main
extensions to the program are the following:
1.) Unload and reload cycles accounting for one-way and two-way cyclic loadings, with
the option of load-controlled (or displacement-controlled) conditions.
2.) Gap formation, i.e. separation between the pile and the soil, when the soil is subjected
to tensile stresses.
3.) Backsliding of soil into the gap.
4.) Soil strength degradation.

5.3 Soil model

The equivalent linear and cyclic non-linear soil models for cyclic loading (described
in Sections 2.4.1 and 2.4.2) cannot be applied, because the cyclic shear strain induced in soils
during cyclic loading cannot be readily determined. Furthermore, the parameters required for
these models are not easily determined experimentally. On the other hand, the advanced
constitutive models (described in Sections 2.4.3 and 2.5), for example, the bubble model, are
too complex.

For simplicity, it is assumed that the soil behaves like an elastic-perfectly plastic
material. While such a simple model cannot fully describe the behaviour of the soils, it is
sufficiently adequate for most practical problems. It can reproduce the non-linear
load-displacement response of laterally loaded piles from the interaction of elastic and plastic
(vielded) soil elements.

The soil parameters required in the static analysis are the undrained shear strength
(C,) of the soil and its Young's modulus (£,). Poisson's ratio (V) is assumed to be equal to 0.5
under undrained loading conditions. For cyclic analysis, residual/peak shear strength ratio
(R,), the shear degradation rate factor (C,), the residual/peak bearing strength ratio (R,), and
the bearing degradation rate factor (C,) are required to account for soil strength degradation.
A further backsliding factor (B) is needed if the backsliding phenomenon is taken into

consideration.
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5.3.1 Clay types
Two clay profiles are considered in the analysis, corresponding to soft (lightly

overconsolidated) clays and stiff (heavily overconsolidated) clays.
Soft clays
The undrained shear strength (C,) is to be linearly proportional to the depth (z) below
ground level:
C,=cz (5.1)
where c is the rate of increase in undrained shear strength with depth.
For very soft clays, if the groundwater level and ground level coincides, then the (minimum)
magnitude of the parameter c is approximately 3 kPa/m (Budhu and Davies, 1988). If field
measurements of shear strength are available, selection of the parameter ¢ should be governed
by the strength profile over the effective length of the pile, typically the upper ten diameters.
For soft clays, Equation (3.2) can be used, i.e.
C,=0250, (5.2) (3.2bis)

where o', is the vertical effective stress.

Alternatively, the undrained shear strength (Skempton, 1954, 1957) can be deduced from the

relationship:

C,=(0.11+0371) ¢, (5.3)

where I, is the plasticity index.

The Young's modulus (E,) of the soil is similarly assumed to be proportional to depth:

154



CHAPTER 5 Boundary Element Analysis

E,= mz 5.4)

where m is the rate of increase in Young's modulus with depth.

Stiff clays
The undrained shear strength (C,) and the Young's modulus (E,) for stiff clays are

assumed to be constant throughout the pile depth.

5.3.2 Limit stresses
In the analysis, elastic behaviour is assumed until the tractions on the pile-soil
interface reach certain yield stresses (determined from the limit stresses). In the compression

soil zone (see Figure 5.1a), the limiting bearing stress is given by the equation:

t,=NC, (5.5)

where M, is the bearing capacity factor.

The bearing capacity factor is assumed to increase linearly from two at the surface to a
constant value of nine at a depth of three pile diameters and below. These values are
suggested by Skempton (1959), Poulos and Davis (1980) and Tomlinson (1994).

In the slip (shear) soil zone (see Figure 5.1b), i.e. along the side of the pile, the

limiting shear stress is taken as:
ty=0C, (5.6)
where o is an empirical adhesion factor.
The adhesion factor (o) depends mainly on the undrained shear strength of the soil, and the
method of pile installation. For driven piles, o ranges from 0.2 for very stiff clays to 1.0 for

soft clays (Tomlinson, 1994). For bored piles, data on a are limited, and an average value of

0.5 is recommended.
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Since soils cannot sustain tension, the total change in normal stress in the tension soil
zone (see Figure 5.1a) cannot be greater than the in-situ lateral effective stress. Thus, the

limiting tensile stress is:

ty=Kiyz (5.7)

where K, is the lateral earth pressure coefficient,
v is the effective unit weight of the soil, and

z is the depth.

The lateral earth pressure coefficient (K,) should reflect the method of installation. For driven
piles, a value of unity or higher is appropriate, whereas for bored piles, K, may be less than
unity.

From the limit stresses determined using Equations (5.5) to (5.7), the yield stresses for

the soil elements are established. The yield stress for bearing is:

Lye =ty (5.8)
yield stress for shear is:
t, =1L, (5.9

Sy

and yield stress for tension is:

Ly =ty (5.10)
5.3.3 Gap formation

A principal effect of cyclic loading is the development of a permanent gap between
the pile and the soil when the soil yields in tension (Figure 5.1a). Gaps play a vital role in the
cyclic analysis, as they can determine whether a soil element remains plastic or elastic during
the unloading and reloading processes. When gaps occur at the pile-soil interface, the

resistance provided by the soil element at that particular section is reduced to zero until
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pile-soil contact is established again. Careful monitoring of gap formation throughout the
whole pile length is required and care must be taken to ensure that the gaps do not 'overclose'
when the pile returns.

From the plane-strain finite element analysis presented in Chapter 3, it is observed
that the soil elements at the debonded pile-soil interface (gaps present), responded elastically
(in terms of load-displacement responses); see Figures 3.24 to 3.29. This suggests that for
cyclic analysis, the soil element that has yielded in tension (gap occurs at the pile-soil
interface), will undergo an elastic load-displacement response according to the initial pile-soil
system stiffness. For simplicity, it can be assumed that when the soil element fails in tension,
it will remain stationary, unless the pile-soil contact is established again (e.g. gap closed

during unloading).

5.3.4 Backsliding

During loading, tensile stresses may occur at the pile-soil contact zone. The adhesive
properties of cohesive soil will result in backsliding of the soil into the gap, resulting in the
reduction in gap size, as depicted in Figure 5.1a. This phenomenon has been observed by
Matlock (1970) in his laboratory model pile tests and implemented by Bijnagte ef al. (1991)
in their discrete element numerical model (described in Section 1.3.5).

Backsliding is incorporated here by increasing the limit tensile stress of the soil. This
reduces the number of soil elements yielding in tension, and thereby reduces the gap sizes.

The limit adhesive stress of the soil is calculated from the equation:

tslb = BCu + tsl (51 1)

where f is a backsliding factor; 0 <f§ <1.

If backsliding is included in the analysis, the yield stress for tension (¢,,) in Equation (5.10)

will be replaced:

tsyt = Islb (5- 1 2)
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In many reported cyclic pile-load tests, backsliding has not been mentioned. This is
probably because its influence on the overall pile behaviour is not significant, or it may be
that the amount of soil sliding back into the gap cannot be measured in the field. However, it
is felt that the implementation of the backsliding effect is essential for the complete analysis

of pile-soil interface behaviour.

5.3.5 Soil strength degradation

Cyclic loading on soil will result in strength degradation as described in Chapter 4.
The soil strength degradation is based on the post-peak strength degradation to residual
strength, which are evident in shear tests and bearing tests depicted in Figures 5.2a and 5.2b,
respectively. The magnitude of strength degradation can be taken as a function of the plastic
soil displacement (i.e. displacement after peak strength is reached), as illustrated in Figure
5.1c. The soil strength degradation applies only to plastic soil elements where their stresses
have reached the yield stresses. Such situation occurs mostly for the soil elements at the upper
region of the pile. For soil elements subjected to stresses below their yield stresses, their
strength will not degrade. This applies to soil elements that are at the lower portion of the

pile, where the stresses subjected upon them are minimal.

Shear strength degradation
From Section 4.9, it was shown that the residual limit shear stress of the soil in the

slip (shear) zone can be determined as:

t.=R.t, (5.13) (4.11 bis)

Ssr

where R, is the residual/peak shear strength ratio.

Due to shear strength degradation, the limit shear stress will reduce. The reduced limit shear

stress is given by the equation:
fisa = Lo (1 = L) €XPTE D (5.14) (4.12bis)

where C, is the shear degradation rate factor in mm™, and
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d, is the plastic shear displacement.

The correlations of R, and C, with soil index properties are found in Figures 4.16 and 4.26,
respectively.
If shear strength degradation is allowed for the particular soil element, the yield stress

for shear will be:

tsys = tssd (515)
Bearing strength degradation

From Section 4.9, it was shown that the residual limit bearing stress of the soil in the
compression zone can be determined as:

Ly = Rb I (5 1 6) (4 13 blS)

where R, is the residual/peak bearing strength ratio.

As a result of bearing strength degradation, the limit bearing stress will reduce. The reduced

limit bearing stress is determined by the equation:

loca = bser T (tsc - tscr) exp(-Cl) D) (517) (4 14 blS)
where C, is the bearing degradation rate factor,

d, is the plastic bearing displacement, and

D is the pile diameter or width.
Discussion on the values for R, and C, is found in Sections 4.7.1 and 4.8.1, respectively.

If bearing strength degradation is allowed for the particular soil element, the yield

stress for bearing will be:

tsyc = tscd (51 8)
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5.4 Boundary element formulation

The non-linear response of piles to lateral loading is obtained by coupling the
equations describing the non-linear load-displacement behaviour of the soil with the
equations describing the flexural behaviour of the pile, treated as a solid cylindrical elastic
beam. An approximate solution to this elasto-plastic problem is obtained by means of an
incremental analysis via the indirect boundary element method, where only the pile-soil

interface is discretised (Davies and Budhu, 1986; Budhu and Davies, 1988).

5.4.1 Pile flexure

The pile of length (L) is divided into a number (») of cylindrical segments, see Figure
5.3a. Following the subdivision of the pile length into segments, the mean lateral
displacements and tractions over each segment (nodal values) in the pile domain can be

related to each other via the elementary (Bernoulli-Euler) beam theory, giving:

{up} = [Gp){tp} + {Bs} +{B5} (5.19)

where {u,} are the pile segment displacements,
[Gp] is the matrix of coefficients obtained by integration of the Bernoulli-Euler

kernel; for further details see Appendix 5.1,

{t,} are the pile segment tractions,
{B;} are the pile segment displacements, due to unit lateral translation of the pile (see

Figure 5.4a), giving [1, 1,1 .....]", and, T denotes transpose, and

{Bg} are the pile segment displacements, due to unit rotation of the pile about its head

(see Figure 5.4b), giving [-0.5A, -1.5h, -2.5A .....]", and, & is the height of pile segment.
The pile segment displacements due to unit boundary conditions are taken as:

{By} = {Bs} +{B}} (5.20)

Applying Equation (5.20), Equation (5.19) is simplified as:

{up} =[Gpl{tp} +{Bp} (5:21)
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5.4.2 Soil deformation
Assuming linearly elastic behaviour in the soil domain, the soil deformations and

tractions at the pile-soil interface nodes can be obtained by integration of Mindlin's (Mindlin,

1936) kernel, yielding:

{tise} = [Goel{tse} (5.22)

where {u} are the soil displacements at the pile-soil interface,
{ts} are the soil tractions at the pile-soil interface, and

[Gse] is the matrix of coefficients obtained from Mindlin's solution; for further details
see Appendix 5.2.

Evaluations of the [G,,] matrix are carried out by integration of the Mindlin's solution
for the horizontal displacement caused by a point load within the interior of a semi-infinite
mass. Although the solution is only applicable for an elastic isotropic homogenous mass with
uniform Young's modulus (E;), inhomogenous material with varying E; can also be
considered. To allow approximately for soil non-homogeneity, the representative modulus E;
for i-th element, when considering the influence of j-th element, may be taken as the larger E;
value at i-th and j-th elements (Davies and Budhu, 1994).

From the four faces of the pile segment (Figure 5.3b), a full soil matrix [G,,] of 4n x

4n is formed. The full soil matrix is then inverted to give the [F] matrix, i.e.

[F1=[G..]" (5.23)

Employing elastic theory and utilising the principle of superposition, the four soil element
(surrounding a pile segment) stiffnesses can be condensed into one soil segment (see Figure
5.5a), resulting in an » x n matrix. This is compatible with the pile coefficients matrix [G,] of
n x n. The condensation yields the 'soil segment' stiffness matrix [K.]; see Figure 5.5b. Each

coefficient of the [K,] matrix is taken as:

4i 4
K,= > 3 Fy (5.24)

F=4i=3 J=4j-
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where K, is the coefficient at the i-th row and the j-th column of [K] matrix,

sij

F,, is the coefficient at the /-th row and the J-th column of [F] matrix, and

iandj=1,2,3ton

It is worthy of note that the soil segment stiffness matrix generated using the Mindlin's
solution (Mindlin, 1936) is fully populated (in the initial loading stage) in contrast with the
p-y method which supposes a diagonal stiffness matrix. The soil segment stiffness matrix [K]]

is inverted to give the compliance matrix [G ], i.e.
[G]=[K]' (5.25)
Knowing the [G,] matrix, the soil segment displacements are determined as:

{u} = 1G] {1} (5.26)

where {u,} are the soil segment displacements, and

{t,} are the soil segment tractions.

5.4.3 Pile-soil system interaction

Invoking compatibility of the deformations of the pile and the soil:

{up} = {us} (5.27)
and equilibrium of the tractions at the pile-soil interface:

{1} =—{t:} (5.28)

Coupling of Equations (5.21) and (5.26) by applying Equations (5.27) and (5.28) gives the

pile segment tractions as:
{tr} =—1Gp+G.]" (B} (5.29)

Incremental analysis
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For load-displacement response to be non-linear, Equation (5.29) is solved
incrementally by applying unit boundary conditions on the pile head (Figure 5.4). For
convenience and to avoid confusion, the symbol A is used to identify the tractions (or

displacements) obtained, and Equation (5.29} is rewritten as:

-1
{Atp} =~ [Gp +Gs]  {Bp} (5.30)
where {Af,} are the pile segment tractions.

During each increment, the matrix [G,] is unaltered since the pile is assumed to remain
elastic, but the soil compliance matrix [G,] is altered because of soil yielding, elastic

unloading or gap closure.

Soil yielding

In the event, when a soil segment yields (i.e. the four soil elements that constitute the
soil segment reach their yield stresses), the stiffness coefficients of the [K,] matrix
corresponding to that segment (rows and columns) will be zero. The determination of [G,]
matrix is not possible as the inverse of [K|] matrix with zero terms in either the row or
column cannot be evaluated. This means that Equation (5.30) cannot be applied to determined
the pile segment traction.

In the above situation, based on equilibrium condition, the traction for the pile

segments corresponding to the plastic soil segments will be:

{ar} =—{A2} =0 (5.31)

where { At;} are the pile segment tractions corresponding to the plastic soil segments, and

{Ar{} are the plastic soil segment tractions.
The compatibility criterion is no longer justified, i.e.

{Aun} = {Aul} (5.32)
where {Au;} are the pile segment displacements corresponding to the plastic soil segments,
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and
{Au?} are the plastic soil segment displacements.

The interaction between elastic and plastic soil segments during the incremental

analysis, can be solved by using matrix partitioning. Equation (5.21) can be partitioned as:

A e Gee Gen Ate Be
o=l v o [ A (1 B (5.33)
Auj Gy Gy Aty B
where {Auf,} are the pile segment displacements corresponding to the elastic soil segments,

{ At;} are the pile segment tractions corresponding to the elastic soil segments,
[G;e] and [Gze] are the pile coefficients corresponding to the elastic soil segments,

[Gf,”] and [G;"] are the pile coefficients corresponding to the plastic soil segments,

and
{Be} and {B7} are the pile segment displacements due to unit boundary conditions

corresponding to elastic and plastic soil segments, respectively.

The soil segment displacements from Equation (5.26) is partitioned as:

Aus G G || Afg
{ Auf }—[ Gy Gy H Atg } (5.34)
where {Au¢} are the elastic soil segment displacements,

{Ats} are the elastic soil segment tractions,

[G%] and [G}¢] are the soil coefficients corresponding to the elastic soil segments,

and
[G¢"] and [G}"] are the soil coefficients corresponding to the plastic soil segments.

If the soil segments are elastic, compatibility and equilibrium implies:

{Aug} = {Aug} (5.35)

{Arg} =—{Ar} (5.36)
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Inverting Equation (5.34), we obtain:

A | [ ke k][ Aug 5 37
A [T K K || Aul (537)

where [K¢°] and [K}*] are the soil stiffness coefficients corresponding to the elastic soil
segments, and
[K¢"] and [K%"] are the soil stiffness coefficients corresponding to the plastic soil

segments.

Invoking Equation (5.31) and noting that the plastic soil segment displacements are arbitrary,

implies that:

[K5]=[K5"]=0 (5.38)
and applying symmetry:

[K$"]=0 (5.39)

Making the assumption that the stiffness submatrix [K¢¢] of elastic soil segments are only
altered based on the number of elastic soil segments (described in Section 5.4.11), from

Equations (5.37) to (5.39), we obtain:
{Ar5} = [K]{Aug} (5.40)
Inverting the above equation gives:
{Aug} = [GR{AL) (5.41)
where [G%]=[K*]"
Hence, for elastic and plastic soil segment displacements, Equation (5.34) is written as:
[ e
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The plastic soil segment displacements {Auj} are undetermined as there are no unique
solutions. It is important to note that [G¢¢] is not equal to [G$°] in Equation (5.34). The [G%
and [G%'] are undetermined terms, as the inverse of zero terms from Equation (5.38) will be
infinity. This suggests that the soil segment displacements after yielding cannot be
determined. However, this is not a major concern, as the pile segment displacements
corresponding to the yielded soil segments can still be evaluated as shown in Equation (5.33);
[G,] is assumed to be unaltered, as the pile segments remain elastic at all times. For

convenience, rewrite Equation (5.33) using Equation (5.31) yields:

{aug} =[Gee [{are) + {Bs} (5.43)
{au} =[Gy J{arg} + {83} (5.44)

Enforcing compatibility and equilibrium at the elastic pile-soil interfaces via Equations (5.35)

and (5.36), Equations (5.41) and (5.43) can be combined to give:

(A} =-[G+Ge ] (B} (5.45)
The pile-soil system stiffness matrix is defined as:

[K]=[Ge+Ge ] (5.46)

Once the tractions for the elastic and plastic segments are known, further analyses can then be

carried out.

5.4.4 Pile-head stiffness matrix and compliance matrix
In practice, the unit translation and rotation problems are solved independently by
applying Equations (5.45) and (5.46). The pile segment tractions due to unit lateral translation

of the pile are:

{Arer} = —[K]{Be*) (5.47)
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where {At;’,“} are the pile segment tractions due to unit lateral translation of the pile,

corresponding to the elastic soil segments, and

{B;“} are the pile segment displacements due to unit lateral translation of the pile,

corresponding to the elastic soil segments.

The pile segment traction increments due to unit rotation of the pile about its head are:

{ar} =—[K1{BZ} (5.48)

where { Atf,e} are the pile segment traction increments due to unit rotation of the pile about
its head, corresponding to the elastic soil segments, and
{B;e} are the pile segment displacements due to unit rotation of the pile about its
head, corresponding to the elastic soil segments.

The lateral load at the pile-head due to unit lateral translation of the pile is determined as:

H,= 3 A1 4, (5.49)

and due to unit rotation of the pile about its head is determined as:

Hy= 21 A 4, (5.50)
=

where At;“,. is the pile segment traction for the i-th segment, due to unit lateral translation of

the pile, corresponding to the elastic soil segment,

A, is the pile segment cross sectional area, and
At:,e,- is the pile segment traction for the i-th segment, due to unit rotation at the pile

about its head, corresponding to the elastic soil segment.
The moment at the pile-head due to unit lateral translation of the pile is:
M,= ):l A Ay z; (5.51)
and due to unit rotation of the pile about its head is:
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M,=- 21 A 4, 2, (5.52)
where z; is the depth at the i-th segment.

The system pile-head stiffness matrix [SM] can be assembled into:

ek o 559

where H is the pile-head lateral load,
M is the pile-head moment,
H,, Hy, M, and M, are coefficients of the pile-head stiffness matrix [SM] determined
from Equations (5.49) to (5.52),
u is the lateral translation of the pile-head, and

0 is the rotation of the pile-head.

The inverse of the stiffness matrix [SM] yields the pile-head compliance matrix [CM] as:

u F uH F uM H
where F,y, F.\, Fon and Fy,, are coefficients of the pile-head compliance matrix [CM].

5.4.5 Pile tractions and displacements

The matrix [CM] is employed to determine the pile segment tractions and
displacements through the following equations for various pile-head conditions, except the
fixed-head case where the pile-head rotation is zero. The pile segment tractions for a

fixed-head case are:
{arg} ={Ar] (5.55)
The pile segment displacements corresponding to the elastic soil segment are:
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{Aue} =[G A} + (B} (5.56)
and corresponding to the plastic soil segment are:

{aup} =[G J{arg) +{By) (5.57)

where {B;“} are the pile segment displacements due to unit lateral translation of the pile,

corresponding to the plastic soil segments.
For a general free-head with eccentricity case, the pile segment tractions are expressed as:
{Ate} = Fup{ A} +F9H{At;9}+(F,,M{Ar;“} + FGM{Atf;e}) e (5.58)

The pile segment displacements corresponding to the elastic soil segment are:

{Bug) =[Gy s} + Fun{ B} + Fou{ B
+(F,,M{ B }+F9M{Bf,"}) e (5.59)

and corresponding to the plastic soil segment are:

=[Gy J{arg} + Fun{By*) + Fou{B}?}
+ ( Fum{B2} + Fou{ B} ) € (5.60)

where e is the eccentricity of loading, and
{B,’;e} are the pile segment displacements due to unit rotation of the pile about its

head, corresponding to the plastic soil segments.

The pile segment tractions, which are equal in magnitude but opposite in direction to
the soil segment tractions, are distributed accordingly to the elastic soil element(s)

surrounding the pile segments, i.e.

() = - 52 (5.61)
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where {Af;} are the elastic soil element tractions, and

n, is the number of elastic soil elements within the segment.

These soil element tractions are compared with the yield stresses established for each soil
element (described in Section 5.3). A yield factor is applied to all elastic soil elements (see

Figure 5.6), expressed as:

{ALG}
2 T (5.62)

where {p;} are the yield factors for the elastic soil elements,
{t,,} are the current soil element tractions (end of previous increment), and

{t,,} are the yield stresses for the soil elements.

The yield factors {p;} determined for all the elastic soil elements were compared
against one another, and the largest yield factor ( f,) was chosen. This implies that the current
soil element traction (end of previous increment) for the particular soil element is closest to
its yield stress in the current increment. Subsequently, the soil element upon which the largest
yield factor is chosen, is regarded as plastic, as the current soil element traction in the current
increment will reach the yield stress (when f, is employed to determine the soil element
traction increment). At any one increment, only one soil element is allowed to yield unless
other elements (e.g. side soil elements of a soil segment) are having the same yield factor. No
increase in tractions are permitted for the plastic elements.

The soil elements traction increments are determined as:

{A1}
{6t} = —'J;y'— (5.63)

and the current soil element tractions are determined as:

{ta} = {ta} + {31} (5.64)
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The pile segment (corresponding to both elastic and plastic soil segments) displacement

increments are determined as:

_ {Aup}
{Ou,} = 7 (5.65)

and the current pile segment displacements are determined as:

{u,} = {u,} + {du,} (5.66)

where {Au,} is equal to {Aug} or {Au?}, and

u,,} are the current pile displacements (end of previous increment).
P p

The current pile segment traction is obtained by summation of the tractions of the four soil

elements surrounding it, i.e.

4
= - Xl (5.67)

J=1
where 1,, is the current pile segment traction for the i-th segment,

t,; is the current soil element traction for the j-th element of the i-th segment, and

i=1,2,3ton.

Knowing the traction of each pile segment, the shear force and bending moment for the pile

segments along the pile length can be readily determined.

5.4.6 Elastic unloading

Some soil elements tend to regain elasticity after yielding due to changes in their
traction increment directions during incremental loading. Consequently, it is necessary to
include provisions for elastic unloading to occur. These plastic elements are identified and

brought back to elastic when:

{are} {1} <0 (5.68)

171



CHAPTER S Boundary Element Analysis

For the case when the soil segments have yielded, the pile segment traction for that
segment will be zero (i.e. Af; =0), and the above Equation (5.68) for soil elements elastic

unloading cannot be applied. Elastic unloading of a plastic soil segment is allowed for when:

tori [ALS 1y + A5, ]<0 (5.69)

where 1, ; is the current pile segment traction (end of previous increment) for the i-th

segment,
At} ;,; is the pile segment traction for the i+1 segment; if i = n, then At ;,; =0, and
At} ;_; is the pile segment traction for the i-1 segment; if i = 1, then Az, | = 0.

The elastic unloading will result in an increase in the stiffness of the system as the elements
are set back to elastic, resulting in a stiffer pile response. Note that elastic unloading is not

provided for plastic soil elements where gaps are present at the pile-soil interfaces.
5.4.7 Gap formation

Gap distances are determined at the pile-soil interfaces when the soil elements yield in

tension. At the right pile face (see Figure 5.7a), the current right gap distances are:

{dg} = {ug} - {u,} (5.70)

and for the left pile face, the current left gap distances are:

{dg} = {u,} - {ug} (5.71)

where {u,} and {u,} are the pile displacements when soil elements yield in tension at the

right and left faces of the pile, respectively.

Since overclosing of the gap is not allowed, this implies:

{d,} 20 and {d,} >0 (5.72)
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To ensure that Equation (5.72) is satisfied, the gap closing factors are determined when 4,

and d,, are less than zero (see Figure 5.7b). The gap closing factors for the right pile face are:

{Aup}

{Cot =702 (5.73)
and for the left pile face are:
{Aup}
(Cod =T (5.74)
= - {dy}
Jy &

As many of the soil elements may experience gap closing in a particular increment, the gap
closing factors determined from Equations (5.73) and (5.74) are compared against one
another. The largest gap closing factor ( f;) is then chosen. This will ensure that only one gap
is closed in the current increment. Due to gap closure, the pile-soil contact is established and
the plastic soil element is brought back to elastic. The soil resistance for that element is
provided and the stiffness of the pile-soil system is increased.

The element once determined as plastic, where f, is chosen in the current increment, is
now set back to elastic as f; is always greater than f,. The largest yield factor ( f,) is now

taken to be:

L= (5.75)

In what follows, Equations (5.63) to (5.67) are recalculated by applying Equation (5.75). The

shear force and bending moments for the pile segments are subsequently determined.

5.4.8 Pile-head reactions

The incremental pile-head lateral load for a fixed-head pile is determined as:

H,
8H= 7 (5.76)

the incremental pile-head moment is:
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M= (5.77)

Su=+ (5.78)

where H, and M, are stiffness coefficients in the [SM] matrix from Equation (5.53).

For a general free-head case with eccentricity, the incremental pile-head lateral load is:

SH =+ (5.79)

SM=. < (5.80)

the incremental lateral pile-head displacement is:

Fuy | Fume
- 4 ZuM®
ou [fy b } (>-81)

and incremental lateral pile-head rotation is:

Foyy | Fome
| Zex | e
5 |: Jy Sy } (5-82)

where F,, F,,, Foy and Fy,, are coefficients in the [CM] matrix from Eqﬁation (5.54).
The current pile-head lateral load is:
H=H +06H (5.83)
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the current pile-head moment is:

M=M,+3M | (5.84)
the current pile-head lateral displacement is:

u=u,+du (5.85)
and the current pile-head rotation is:

0=0,+060 (5.86)

where H,, M,, u, and 0, are current pile-head lateral load, moment, lateral displacement and

rotation (end of previous increment), respectively.

5.4.9 Shear strength degradation

For shear strength degradation, the incremental plastic shear displacements (8d,) are
determined when the side soil elements yield under two or more consecutive increments or
change to elastic (due to elastic unloading only) after being plastic. The incremental plastic

shear displacements are calculated from the current pile segment displacements:

(8d) = {u,} - {4} (5.87)

where | |denotes absolute value,
{u,} are the current pile segment displacements, and
{u,,} are the current pile segment displacements (end of previous increment).

The current plastic shear displacements are determined as:

{d;} = {d,} + {6d,} (5.88)
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where {d,,} are the current plastic shear displacements (end of previous increment).

Using the appropriate residual/peak shear strength ratio (R;) and shear degradation rate factor
(C,), as discussed in Section 5.3.5, the limit shear stress for each soil element will degrade to
a new value using Equation (5.14), according to current plastic shear displacement. This new
value, known as the reduced limit shear stress (z,,,), is only determined when the element has

recovered from plastic to elastic. The yield stress for shear, for a particular element is now:

)

ts s tssd (589)

5.4.10 Bearing strength degradation

For bearing strength degradation, the incremental plastic bearing displacements (8d})
are determined when the bearing soil elements yield under two or more consecutive
increments or changes from the plastic to elastic (due to elastic unloading only). The
incremental plastic bearing displacements are determined from the current pile segment

displacements, i.e.

{8d} =1 {u} - {4} | (5.90)
The current plastic bearing displacements are determined as:

{d,} = {d,} + {84} (5.91)
where {d,,} are the current bearing plastic displacements (end of previous increments).

Using the appropriate residual/peak bearing strength ratio (R,) and bearing degradation rate
factor (C,), as discussed in Sections 5.3.5. The limit bearing stress of each soil element will
degrade to a new value using Equation (5.17), according to the current plastic bearing
displacements. The new limit, known as the reduced limit bearing stress (f,.,), is only
calculated when the element has recovered from plastic to elastic. The yield stress for

bearing, for a particular element is now taken to be:
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tsy = tscd (592)

5.4.11 Modified soil segment stiffness matrix

At the end of each increment, the 'original' soil segment stiffness matrix [K?]

(coefficients determined from Equation (5.24) at the beginning of the analysis) is modified

for soil yielding, elastic unloading or gap closure. The [K?] matrix is modified according to
the number of yielded soil elements in each soil segment, by using an influence factor ( f).
For soil element(s) yielded in the k-th segment, the stiffness coefficients for the 4-th row is

modified as:
K =f(np) ngi (5.93)
and the stiffness coefficient for the k-th column is modified as:

K, u=fn,) K3j (5.94)

where K., is the stiffness coefficient at the k-th row and the i-th column of [K|] matrix,
n, is the number of yielded soil elements within the segment; f1) = 0.75, A2) = 0.5,

f(3)=0.25,/4)=0,
K3, is the stiffness coefficient at the k-th row and the i-th column of [K?] matrix,
i=1,2,3ton,

K, i is the stiffness coefficient at the j-th row and the k-th column of [K] matrix,
K ;i is the stiffness coefficient at the j-th row and the £-th column of [K?] matrix, and
j=1,2,3ton.

The above process is repeated for each yielded soil segment. The lower value of stiffness
coefficients determined from Equations (5.93) and (5.94) is taken to form the [K] matrix.

The stiffness coefficients are then partitioned to correspond to the elastic and plastic
soil segments as shown in Equation (5.37). The matrix [K%¢] is then inverted to give the [GE:
matrix to be used in Equation (5.45) for the next increment. No direct interaction is allowed
to occur between elastic and plastic soil segments, as the stiffness coefficients (rows and

columns) of the plastic soil segments are taken as zero ( f{4) = 0). The use of the influence
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factor ( f) enforces load transfer to other elastic soil segments and results in monotonic

«decrease in the system stiffness as yielding progresses.

5.4.12 Unloading and reloading

At the beginning of unloading, all soil elements are set back to elastic due to changes
in the load direction, except for soil elements that have yielded in tension. The pile segment
tractions {Af,} and displacements {Au,} obtained from unit boundary conditions are now set
in opposite directions in contrast to the loading/reloading stage. This will lead to reduction in
the soil element tractions, pile segment displacements and tractions, pile-head lateral loads,
etc., in each increment, until the specified minimum load (or displacement for
displacement-controlled conditions) is reached.

At the beginning of reloading, all soil elements are set back to elastic due to changes
in the load direction, except for soil elements that have yielded in tension. The pile segment
tractions {Az,} and displacements {Au,} obtained from unit boundary conditions are now set
in opposite directions in contrast to the unloading stage. This will lead to increases in the soil
element tractions, pile segment displacements and tractions, pile-head lateral loads, etc., in
each increment, until the specified maximum load (or displacement for
displacement-controlled conditions) is reached.

The unloading and reloading processes continue until the specified number of cycles

1s reached.

5.5 Discussion

A simple and realistic soil model based on experimental observations is established.
The model assumes an elastic-perfectly plastic soil behaviour, with modifications that allow
soil strength degradation, taken as a function of the plastic displacement. To account for gap
formation, the gap sizes are determined when the soil elements yield in tension. To account
for backsliding, the backsliding factor () and the undrained shear strength of the soil is used.

The general formulation for the cyclic analysis via the indirect boundary method is
presented. The analysis has taken into consideration the four faces of the pile via the
Mindlin's solution (Mindlin, 1936), that allows interaction with the neighbouring soil
elements. The analysis has employed matrix partitioning, so that there will not be any direct

interaction between elastic and plastic soil segments during incremental loading. The
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modifications of the soil segment stiffness matrix using the influence factors, enforce load
transfer to other elastic elements, resulting in the reduction in the pile-soil system stiffness as
soil yielding progresses. The unloading and reloading cycles are carried out by simply
reversing the pile traction and displacement increments.

The yield factor approach adopted, ensures that only one soil element yields at any
one increment. Among other things, this reduces the computational time required for analysis
as compared with equal loading increments to the specified load. This leads to the application
of a gap closing factor to ensure that, at any one increment, only one gap is allowed to close,

at the same time, ensuring that the pile does not overclose other gaps.

5.6 Concluding remarks

The principal aspects of cyclic soil behaviour are accounted for in this model of cyclic
pile-load behaviour. The analysis is capable of determining the pile-head load, moment,
displacement and rotation, and shear forces and bending moments along the pile length for
piles subjected to cyclic lateral loading. The method takes into consideration soil continuity,
pile-head fixity and relative stiffness of the pile and soil as opposed to the established p-y

anelysis. The implementation will be described in the next Chapter.
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Appendix 5.1

Bernoulli-Euler Beam Theory

Using the Bernoulli-Euler beam theory, the displacement at 4 due to a point load (P) at B is:

u(4) = G(4,B) P(B) (AS.1-1)
[3rx% - X ]
where G(4, B) = TeEIL forX<Y (AS5.1-2)
plp
[3x72 - V?]
GA,B)= 6B I forX>Y (A5.1-3)
pip

For distributed traction (), between Y, and Y, over a beam of width D, we obtain:
Y
u(4)=D (B) | G(4,B) d¥ (A5.1-4)

Y,

The above integration is performed analytically.
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Appendix 5.2

Mindlin's Solution (Mindlin, 1936)

Yy
wn
C
X

surface o
(Loavding.in x direction)

C

R,= [+ +C) )"
p B
z
R, =[7X (- CF 1"
‘A

r= (xz +y2 )12

The horizontal displacement at A caused by a horizontal point load (P) at B within the interior

of a semi-infinite elastic-isotropic homogenous mass is expressed as:

u(4) = G(4,B) P(B) (A5.2-1)
where:
- 1 (3~4V) x2 | (4vp?
G(A,B)_ 167!2G/(1—V) [ R2 + R:; + R%
2Cz( 1 3% 4(1——v)(1—2v)( . )
* Rg (1 R%) + Ry+z+C 1 Ry(Ry+z+C) ] (AS5.2-2)

where G'is the shear modulus, and

v 1s the Poisson's ratio.

For distributed (constant) traction (f) over a surface (S), we obtain:
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u(4) = (B) gG(A,B) dS(B) (A5.2-3)

The above integration is performed numerically.
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Figure 5.1 Phenomena observed and soil zones developed during cyclic pile-load tests.
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Figure 5.2 (a) Shear test results on Jackfield clay (Skempton, 1964) and (b) typical

load-settlement curves for plate loading tests (Ward et al., 1965).
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Figure 5.4 Unit boundary conditions; (a) unit lateral translation of the pile and (b) unit

rotation ofthe pile about its head.
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Figure 5.5 (a) Four soil elements on the faces of a pile segment treated as one soil segment

and (b) full soil stiffness matrix /F] condensed into a soil segment stiffness matrix /Ks\.
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CHAPTER 6

Numerical Implementation of
Cyclic Loading Algorithm

6.1 Summary

This Chapter describes the implementation of cyclic loading algorithm, the APILEC
program. The program allows for load-controlled and displacement-controlled conditions as
well as one-way and two-way cycling. Other features of the program are also described,
including gap formation, backsliding and strength degradation. An investigation of the causes
of cyclic degradation observed in this analysis is undertaken by means of the simple

Beam-On-Spring and Beam-On-Interactive-Spring models.

6.2 Introduction

The implementation of the formulations presented in Chapter 5 is described in this
Chapter. To account for different loading conditions, the computer program (APILEC) is
designed to be capable of analysing one-way and two-way cyclic loadings. Two methods of
cycling are also considered here, namely the load-controlled and displacement-controlled
methods. For the load-controlled method, the unloading or reloading stage begins once the
specified maximum load or minimum load is attained. For the displacement-controlled
method, unloading or reloading begins once the specified maximum or minimum
displacement is reached. Phenomena observed during cyclic pile-load tests, for example, gap
formation, backsliding and strength degradation, are included in the analysis. The effects of

these phenomena on pile response will be examined.

6.3 Computational procedure for cyclic analysis

Sign conventions
The sign conventions adopted for loads, pile and soil tractions, shear forces, bending

moments and displacements are shown in Figure 6.1.

Procedure
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For a pile subjected to cyclic lateral loads or moments, the computational procedure is

described in terms of the following Steps.

Step (1
Discretise the pile into n equal segments (say height D) as depicted in Figure 6.2a.

Step (2
Set up the fully populated soil matrix of coefficients [G,,] via integration of the Mindlin's
solution (Mindlin, 1936). The elements on the four faces of the pile (see Figure 6.2b) are

taken into consideration. This will yield a 4n x 4n [G,,] matrix.

Step (3
Set up the fully populated pile matrix of coefficients [G,] via integration of the
Bernouli-Euler (beam theory) kernel, with the beam assumed as a circular section. This will

yield a n x n [G,] matrix.

Ste
Determine the undrained shear strength (C,) and soil Young's modulus (£,) values at the

mid-points of each soil element (nodal points), and thereby calculate the limiting stresses:

limit bearing stress

t,=NC, (6.1) (5.5 bis)
limit shear stress

t,=0aC, (6.2) (5.6 bis)
limit tensile stress

t,=Kyz (6.3) (5.7 bis)
limit adhesive stress ( for backsliding)

t = BC, + 1, (6.4) (5.11 bis)
residual limit shear stress (for shear strength degradation)

L =R, 1 (6.5) (5.13 bis)

residual limit bearing stress (for bearing strength degradation)

tscr = Rlz tsc (66) (516 blS)
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where N, is the bearing capacity factor,
o is an empirical adhesion factor,
K, is the lateral earth pressure coefficient,
v is the effective unit weight of the soil,
z is the depth,
B is the backsliding factor; 0 < <1,
R, is the residual/peak bearing strength ratio, and

R, is the residual/peak shear strength ratio.

From the limiting stresses, the yield stresses for the soil elements are defined:

yield stress for bearing

tsy =l (67) (58 blS)
yield stress for shear '
tsy = tss (68) (59 blS)

yield stress for tension

Ly =1y (6.9) (5.10 bis)

sy

If backsliding is considered, the yield stress for tension is:

t,=t, (6.10) (5.12 bis)

syt
6.3.1 Pile-soil system interaction

Step (5)
The full soil matrix [G,,] is inverted, i.e.

[F]=[G.]" (6.11) (5.23 bis)

The matrix [F] is then condensed to form the n x n [K,] matrix, known as the 'soil segment'

stiffness matrix; see Figure 6.3. Each coefficient of the [K] matrix is computed as:
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4i 4j
K,= > 3 F, (6.12) (5.24 bis)

Y 43 J=4j-3

where K

s ij

is the coefficient at the i-th row and the j-th column of [K|] matrix,
F, is the coefficient at the /-th row and the J-th column of [F] matrix, and

iandj=1,2,3ton.
The [K,] matrix is then inverted to give the soil segment compliance matrix [G,], i.e.
[G]=[K]' (6.13) (5.25 bis)

Step (6
Based on the compatibility and equilibrium conditions at the pile-soil interfaces, the pile
segment tractions are determined in each increment by applying unit boundary conditions on

the pile-head, i.e.
(At} =—[Gp+Gs]™ {By} (6.14) (5.30 bis)

where symbol A denotes tractions (or displacements) obtained by applying unit boundary

conditions in each increment,

Aty are the pile segment tractions, and
P p g

{Bp} pile segment displacements due to unit boundary conditions, taken as:
{Bp} ={B4} +{BY} (6.15) (5.20 bis)

where {B;} are the pile segment displacements, due to unit lateral translation of the pile,
giving [1, 1, 1 .....]", and, T denotes transpose, and
{Bg} are the pile segment displacements, due to unit rotation of the pile about its
head, giving [-0.5A, -1.5h, -2.5A .....]", and, 4 is the height of pile segment.

Step (7)

For plastic soil segments (i.e. all the four soil elements surrounding the pile segment which
have reached their yield stresses), the corresponding stiffness coefficients (rows and columns)

of the [K,] matrix are taken as zero. This results in no interaction being allowed for the elastic
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and plastic soil segments. The tractions of the plastic soil segments and the corresponding

pile segments are therefore:
{Arr} =—{Amy =0 (6.16) (5.31 bis)

where { At;} are the pile segment tractions corresponding to the plastic soil segments, and

{Ar?} are the plastic soil segment tractions.

Enforcing compatibility and equilibrium conditions at the pile-soil interface for the elastic
soil segments and equilibrium conditions for the plastic soil segments (Equation (6.16)), the
pile segment tractions correspond to the elastic soil segments (by matrix partitioning) are

determined as:

{are}=—[Ge+Ge ] {Be) (6.17) (5.45 bis)

where { Atf,} are the pile segment tractions corresponding to the elastic soil segments,
[G¢] are soil coefficients obtained from the inversion of the modified (due to soil

yielding) soil segment stiffness matrix [K,] corresponding to the elastic soil segments,

[G;"’] are pile coefficients obtained from the [G,] matrix corresponding to the elastic

soil segments, and

{B,e,} are the pile segment displacements due to unit boundary conditions

corresponding to elastic soil segments.

6.3.2 Pile-head stiffness matrix and compliance matrix
Step (8
Apply unit lateral translation and unit rotation at the pile-head, and determine the pile

segment tractions:

due to unit lateral translation
{Are} = —[K]{Be+} (6.18) (5.47 bis)

due to unit rotation
{Ar?} = —[K]{B} (6.19) (5.48 bis)
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where [K]= [Giﬁ;’ + Gf,“] ,
{Atf,“} are the pile segment tractions due to unit lateral translation of the pile,
corresponding to the elastic soil segments,
{Bf,“ } are the pile segment displacements due to unit lateral translation of the pile,
corresponding to the elastic soil segments,
{Ar®} are the pile segment traction increments due to unit rotation of the pile about
its head, corresponding to the elastic soil segments, and
{Bf,e} are the pile segment displacements due to unit rotation of the pile about its

head, corresponding to the elastic soil segments.

Step (9

Determine the lateral load at the pile-head due to unit lateral translation of the pile:

H,=%¥ A 4, (6.20) (5.49 bis)

i=1

and due to unit rotation of the pile about its head:

Hy= ;1 A A, (6.21) (5.50 bis)

where Ar; is the pile segment traction for the i-th segment, due to unit lateral translation of

the pile, corresponding to the elastic soil segment,

A, is the pile segment cross sectional area, and
At;e,- is the pile segment traction for the i-th segment, due to unit rotation at the pile

about its head, corresponding to the elastic soil segment.
Determine the moment at the pile-head due to unit lateral translation of the pile:
M, = -El At Ap zi (6.22) (5.51 bis)

and due to unit rotation of the pile about its head:

My=-3 A% 4, 2, (6.23) (5.52 bis)

i=1
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where z, is the depth at the i-th segment.

The above process yields the 2 x 2 pile-head stiffness matrix [SM]:

HAL_| Ha Ho 6.24) (5.53 bi
M| M, My |] © (6.24) (553 bis)
and by inversion, the compliance matrix [CM] is obtained:
u FuH FuM H .
{ 0 }—[ Fopr Fou H M} (6.25) (5.54 bis)

where H is the pile-head lateral load,
M is the pile-head moment,
H,, Hy, M, and M, are coefficients of the pile-head stiffness matrix [SM] determined
from Equations (6.20) to (6.23),
u is the lateral translation applied at the pile-head; u =1,
0 is the rotation applied at the pile-head, 6 = 1, and.

Fou, Fuy, For and Fy,, are coefficients of the pile-head compliance matrix [CM].

6.3.3 Pile traction and displacement due to unit boundary conditions
Step (1
Compute the pile segment tractions and displacements depending on the pile-head fixity. For

a fixed-head case, the pile segment tractions corresponding to the elastic soil segments are:
{Arg} = {ar] (6.26) (5.55 bis)
The pile segment displacements corresponding to the elastic soil segments are:
{aug} =[Gz A} +{Bg) (6.27) (5.56 bis)
and corresponding to the plastic soil segment are:

Aup

=[G ]{a} +{Bm) (6.28) (5.57 bis)
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where {B;,"‘} are the pile segment displacements due to unit lateral translation of the pile,

corresponding to the plastic soil segments.

For a general free-head with eccentricity case, the pile segment tractions corresponding to the

elastic soil segments are:
{Arg} = Fup{Are} +F9H{Ar;°}+(F,,M{At;“} + FgM{Atf,e}) e (6.29) (5.58 bis)

The pile segment displacements corresponding to the elastic soil segments are:

{aup} =[Gy J{atp) + Fun{Bs') + Fon{ B3}
+ | Fum{ B} + Fou{B2} ) e (6.30) (5.59 bis)

and corresponding to the plastic soil segments are:

{Aug} =[Gpe J{asg) + Fun{ B3} + Fou{ B2}
+ | Fun{B} + For{B®} ) e (6.31) (5.60 bis)

where e is the distance of the load point to the ground surface or mudline, and
{Bge} are the pile segment displacements due to unit rotation of the pile about its

head, corresponding to the plastic soil segments.

tep (11
Determine the soil element tractions by distributing the pile segment tractions according to
the elastic soil elements within the soil segment:

{Atg} = - {?,tf} (6.32) (5.61 bis)

where {Af;,} are the elastic soil element tractions, and
n, is the number of elastic soil elements within the segment.

6.3.4 Elastic unloading
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Step (12)

Provide for elastic unloading of the plastic soil elements when:
{Aar it} <0 (6.33) (5.68 bis)

where {t,,} are the current soil element tractions (end of previous increment).

If the whole soil segment yielded, elastic unloading of a plastic soil segment is provided

when:
toi [ A1y + A1 | <0 (6.34) (5.69 bis)
where 7,,; is the current pile segment traction (end of previous increment) for the i-th
segment,

At ;. is the pile segment traction for the i+1 segment; if i = n, then Atf, +1 =0, and

Afe

»i-1 is the pile segment traction for the i-1 segment; if i = 1, then At;, | =

Elastic unloading does not apply to plastic soil elements where gaps are present at the
pile-soil interfaces. If elastic unloading is allowed for, the soil elements will be set to elastic
and Step (23) will be executed to modify the soil segment stiffness matrix [K.]. If no elastic

unloading occurs, this step is ignored.

6.3.5 Yield factor
Step (13)

Determine the yield factors for the elastic soil elements:

Aty .
g = {,_Ay{}'ff},m} (6.35) (5.62 bis)

where {p;} are the yield factors for the elastic soil elements, and

{t,} are the yield stresses for the soil elements.

From all the yield factors ( p,) determined, the largest yield factor ( f,) is chosen and the

element from which f, is selected is regarded as plastic. This is because when £, is employed
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to determine the soil element traction increment (described in the next Section) in the current

increment, the current soil element traction will reach the yield stress.

6.3.6 Pile traction and displacement
Step (14

Determine the soil element traction increments:

{ALg} :
{o1,} = 7, (6.36) (5.63 bis)

and subsequently the current soil element tractions:
{t.} = {tw} + {0} (6.37) (5.64 bis)

Determine the pile segment displacement increments:

_ {Aup} )
{Ou,} = 7 (6.38) (5.65 bis)

and subsequently, the current pile segment displacements:

{u,} = {u,} + {du,} (6.39) (5.66 bis)

where {Au,} are pile segment displacements corresponding to both elastic and plastic soil

segments, and

u,,} are the current pile displacements (end of previous increment).
P P )Y p

Step (15

Compute the current pile segment traction:

4
b= -j§l [ (6.40) (5.67 bis)

where ¢,, is the current pile segment traction for the i-th segment,
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t,; is the current soil element traction for the j-th element of the i-th segment, and

i=1,2,3ton.

From the current pile segment tractions, the shear forces and bending moments at nodal

points and at the top of the pile segments, respectively, for the entire pile length are

calculated:
current shear forces

J=n—i

current bending moments

Mpni==3 tp; Ap h[j—(n—1i)+0.5) (6.42)
J=n—i

where H;,_; is the shear force for the n-i pile segment,
M, i is the bending moment for the »-i pile segment,
t,;is the current pile segment traction for the j-th segment,
h is the height of the pile segment, and
i=0,1,2ton-1.

6.3.7 Gap formation
Gap size

Step (16)
Compute the right and left gap distances (see Figure 6.4) at the pile-soil interfaces for those

soil elements- that have yielded in tension. For the right pile face, the current right gap
distances are:
{dgr} = {1} - {1} (6.43) (5.70 bis)

and for the left pile face, the current left gap distances are:

{dg } = {u,} - {ug } (6.44) (5.71 bis)
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where {u,,} and {u, } are the pile displacements when soil elements yield in tension at the

right and left faces of the pile, respectively.

Gap closure

Step (17

After determining the gap distance, some gaps may have overclosed by the pile (see Figure
6.5), i.e. when d,, or d,, is less than zero. If no overclosing of gaps is experienced, this step is

ignored. The gap closing factors for the right pile face are:

{Aup}
{Cgr} = {Aup}
5 +{dg’}

(6.45) (5.73 bis)

and for the left pile face are:

A
{ng} = {Aup{} e}
5~ {da

(6.46) (5.74 bis)

From all the gap closing factors determined, the largest factor ( f, ) is used so that it ensures
that the pile closes only one gap in the current increment and the rest of the gaps are not
overclosed.

The element once determined as plastic (where f, is chosen in the current increment) is
now set back to elastic as f; is always greater than f, . Due to gap closure, the plastic soil
element, is brought back to elastic. Steps (14) to (16) are re-evaluated with f, = f, in the
current increment. The progressive stages of soil elements yielding and gap closure are

illustrated in Figure 6.6.

6.3.8 Pile-head reactions

Step (18)
Depending on pile-head fixity, the incremental pile-head lateral load (8H) for a fixed-head

pile is determined as:

H, : .
SH==2 (6.47) (5.76 bis)
Iy
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the incremental pile-head moment as:

SM=—~ (6.48) (5.77 bis)

du=— (6.9) (5.78 bis)
where H, and M, are stiffness coefficients in the [SM] matrix from Equation (6.24).
For a general free-head case with eccentricity, the incremental pile-head lateral load is:

SH=+ (6.50) (5.79 bis)

SM=-= (6.51) (5.80 bis)

the incremental pile-head lateral displacement is:

_ M Fume ’ .
8u—|: 4 J (6.52) (5.81 bis)

the incremental pile-head rotation is:

Fou |, Fome .
—| 2oH 4
60 |:f:v 7 :| (6.53) (5.82 bis)

where F,, F,,, Foy and Fy,, are coefficients in the [CM] matrix from Equation (6.25).

The current pile-head lateral load is subsequently calculated:
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H=H +8H (6.54) (5.83 bis)

the current pile-head moment:

M=M+M (6.55) (5.84 bis)

the current pile-head lateral displacement:

u=u,+u (6.56) (5.85 bis)

and the current pile-head rotation:

0=0,+50 (6.57) (5.86 bis)

where H,, M,, u, and 6, are current pile-head lateral load, moment, lateral displacement and

rotation (end of previous increment), respectively.

As a check, the current pile-head lateral load and moment, must be equal to the current shear
force and bending moment for the top pile segment, determined from Equations (6.41) and

(6.42).

6.3.9 Shear strength degradation
Plastic shear displacement
Step (1
Compute the incremental plastic shear displacements (8d,) from the current pile segment
displacements (see Figure 6.7a) when:
+ side soil elements under two consecutive increments are plastic,
+ side soil elements have changed from plastic to elastic (due to elastic unloading and

not for the beginning of unloading or reloading).
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Satisfied with the above requirements, the incremental plastic shear displacements are

determined as:

{8d,} =l {u,} - {u,}| (6.58) (5.87 bis)

where | |denotes absolute value,

{u,} are the current pile segment displacements, and

{u,,} are the current pile segment displacements (end of previous increment).
Subsequently, the current plastic shear displacements are determined:

{d;} ={d,} + {dd;} (6.59) (5.88 bis)
where {d,,} are the current plastic shear displacements (end of previous increment).
The flow chart for the determination of d; is illustrated in Figure 6.8.
Reduced limit shear stress

Step (20)

Determine the reduced limit shear stress (¢,,,) for each soil element that has recovered from

plastic to elastic (Figure 6.7a):

la™ L+ (s - 1,,,) expt&©® (6.60) (5.14 bis)
where C, is the shear degradation rate factor in mm™.
The yield stress for shear can now be taken as:

Lyys = Ussa (6.61) (5.15 bis)

However, due to the constraint that the current shear stress (¢,,) may be higher than ., (see

Figure 6.7b), ¢, is determined as such:
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M lf tssa’ > ts2 then sys = tssd s

» ifr,<t,thent =101z, provided that 7, <1,. elset, =1, .
where ¢, is the yield stress for shear (end of previous increment).

The flow chart for the determination of 7, is illustrated in Figure 6.9. A constant value of
1.01 is applied to the current shear stress, in order to bring the yield stress close to the current
shear stress (Figure 6.7b). This is because the particular side element might yield due to
changes in the direction of traction increment, before reaching to its reduced limit shear stress

(t,.0)- The yield stress for shear applies to shearing in both positive and negative directions.

6.3.10 Bearing strength degradation

Plastic bearing displacement

Step (21)

Compute the incremental plastic bearing displacements (8d,) from the current pile segment
displacements (see Figure 6.10a) when:

+ Dbearing soil elements under two consecutive increments are plastic

+ Dbearing soil elements have changed from plastic to elastic (due to elastic unloading and

not the beginning of unloading or reloading)

Satisfied with the above requirements, the incremental plastic bearing displacements are

determined as:

{8d,} =1 {u,} - {u,} | (6.62) (5.90 bis)
The current plastic bearing displacement are subsequently determined:

{dy} = {dy} + {34y} _ (6.63) (5.91 bis)

where {d,,} are the current plastic bearing displacements (end of previous increments).
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The flow chart for the determination of d,, is shown in Figure 6.11.

Reduced limit bearing stress
Step (22
The reduced limit bearing stress (z,.,;) is calculated for each soil element that has recovered

from plastic to elastic (see Figure 6.10a):

tscd = tscr + (tsc = tscr) exp(—Cb 4b/D) (664) (517 biS)

where C, is the bearing degradation rate factor, and

D is the pile diameter or width.

The yield stress for bearing can be taken as:

tsy =l (665) (5.18 biS)

Since the current bearing stress (¢,,) might be greater than ¢, (see Figure 6.10b), the yield
stress for bearing (¢,,.) is determined as such:

o ift, >t thent =1, ,

o ift,,<t,thent = 1.01¢, provided that £, <t .,else s, =1,..

syc ye* s sye ye

where 1. is the yield stress for bearing (end of previous increment).

The constant 1.01¢,, is used to bring the yield stress for bearing close to the current bearing
stress, in case the particular soil element might yield due to changes in the direction of
traction increment, before reaching to its reduced limit bearing stress (¢,.,). The flow chart for
the determination of z,, is illustrated in Figure 6.12.

As the magnitude of plastic bearing displacements of the soil elements are different
for the right face and left face of the corresponding pile segments, the reduced limit bearing
stress determined will be different (Figure 6.10c). Care has to be taken on the sign

conventions adopted.
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6.3.11 Modified soil segment stiffness matrix
Step (23

Modify the soil segment stiffness matrix for soil yielding or elastic unloading or gap closure.

An influence factor ( /) is used to modify the 'original' soil segment stiffness matrix [K?]
(coefficients obtained from Equation (6.12) at the beginning of the analysis) depending on the
number of yielded soil elements. For soil element(s) yielded in the k-th segment, the stiffness

coefficients for the k-th row is modified as:

K, i =fn,) K i (6.66) (5.93 bis)
and the stiffness coefficient for the k-th column is modified as:

K, i =1fn,) K¢y (6.67) (5.94 bis)

where K|, is the stiffness coefficient at the k-th row and the i-th column of [K|] matrix,
n, is the number of yielded soil elements within the segment; f1) = 0.75, A2) = 0.5,
f3)=0.25,/(4)=0,

K3, is the stiffness coefficient at the k-th row and the i-th column of [K?] matrix,

i=1,2,3ton,

K, j is the stiffness coefficient at the j-th row and the &-th column of [K] matrix,

K¢, is the stiffness coefficient at the j-th row and the &-th column of [K?] matrix, and

j=1,2,3ton.

The above process is repeated for each yielded soil segment. The lower value of the stiffness
coefficients determined from Equations (6.66) and (6.67) is taken to form the [K,] matrix. The
use of the influence factor, f{1), f2), f(3) and f{4) implies that the stiffness of the soil segment
is reduced by 25, 50, 75 and 100%, respectively. No direct interaction is allowed for plastic
and elastic soil segments as the stiffness coefficients (rows and columns) for the plastic soil
segments are taken as zero. The stiffness coefficients are then partitioned accordingly to
correspond with the elastic and plastic soil segments. The stiffness coefficients corresponding
to the elastic soil segments are inverted and substituted into Equation (6.17) for the next

increment.
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6.3.12 At specified loads and displacements

Step (24

The procedure for Steps (7) to (23) is repeated for each increment, until the current pile-head
lateral load has exceeded the specified load (maximum or minimum) after Step (18). At this
stage, an interpolation factor (/) is required to bring the former load exactly to the latter load.

The interpolation factor is determined as:

IF—HF_Hr

= (6.68)

where H, is the specified pile-head lateral load.

For displacement-controlled conditions, the interpolation factor is determined when the
current pile-head lateral displacement has exceeded the specified displacement (maximum or
minimum), and is calculated as:

U — Uy

L= (6.69)

where u; is the specified pile-head lateral displacement.
The current soil element tractions at the specified load or displacement is then computed as:
{te} = o} - {8 Ie + {1} (6.70)
and the current pile segment displacements at the specified load or displacement as:
{2} = [t} - (1 I+ ) (6.71)

The current pile-head lateral load at the specified load or displacement is subsequently

determined as:

Ho=(H-H)IL.+H, (6.72)
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the current pile-head moment at the specified load or displacement as:

M.=M-M)L+M, (6.73)

the current pile-head lateral displacement at the specified load or displacement as:

u=Ww-u)I+u, (6.74)

and the current pile-head rotation at the specified load or displacement as:

0.=(0-0,) . +6, (6.75)

After solving Equations (6.70) to (6.75), the following were carried out for the current values:

current soil element tractions

{t.} = {t} (6.76)
current pile segment displacements

{u,} = {u,e} (6.77)
current pile-head lateral load

H=H. (6.78)

current pile-head moment

M= M. (6.79)
current pile-head lateral displacement

U=1u. (6.80)
current pile-head rotation

0=0. (6.81)

Steps (15) and (16) are re-evaluated and Steps (19) to (23) are then carried out. It follows that
when the specified load (maximum or minimum) was attained, the particular soil element
(where f, was determined) was set back to elastic. This is because the element could not have
yielded, as the predicted load in that increment is always greater (or lesser in the case of

specified minimum load) than the specified maximum load. If gap closure is encountered, the
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soil element (where f, was determined) was set back to plastic, because the pile could not
have closed the gap in that increment at the specified load. Step (25) is subsequently
executed.

For displacement-controlled conditions, when the specified displacement (maximum
or minimum) was attained, the particular soil element where f, was determined was set back
to elastic. This is because the element could not have yielded, as the predicted displacement
in that increment is always greater (or lesser in the case of specified minimum displacement)
than the specified maximum displacement. Also, if gap closure is encountered, the soil
element (where f, was determined) was set back to plastic, because the pile could not have
closed the gap in that increment at the specified displacement. Step (25) is subsequently

executed.

6.3.13 Unloading and reloading

Step (25

At the beginning of unloading, all soil elements are set back to elastic due to changes in
loading direction, except for soil elements that have yielded in tension as illustrated in Figure
6.13. The pile segment tractions (Af,)) and displacements (Au,) due to unit boundary
conditions are now set to reverse direction in contrast to the loading/reloading stage. This will
lead to reduction in the pile segment tractions and displacements, soil element tractions,
pile-head loads, etc., in each increment. Steps (7) to (24) were then carried out till the
specified minimum load (load-controlled) or displacement (displacement-controlled) was
reached.

At the beginning of reloading, all soil elements are set back to elastic except soil
elements that have yielded in tension. The pile segment tractions (Af,) and displacements
(Au,) due to unit boundary conditions are now reversed in direction in contrast to the
unloading stage. This will lead to the increase in the pile segment tractions and
displacements, soil element tractions, pile-head loads, etc., in each increment. Steps (7) to
(24) were then carried out till the specified maximum load (load-controlled) or displacement
(displacement-controlled) was attained.

The above was repeated for unloading and reloading stages, until the required number

of cycles was reached.

207



CHAPTER 6 Numerical Implementation of Cyclic Loading Algorithm

6.4 Description of the program
The computer program is written in FORTRAN 77 language, containing
approximately 3000 lines. Rather than giving explicit details of the program, only the main

subroutines involved (see Figure 6.14) and the tasks performed will be described here.

Subroutine DRIVE
¢ Calls for Subroutines DATGEN, GMAT, SVEC and START at the start of the analysis.
+ Calls for Subroutines PLAST and SOLYV for incremental analyses.
+ Contains the cyclic counter to generate to the specific number of cycles, and defines

whether the analysis is carried out based on the reloading or unloading process.

Subroutine DATGEN
+ Reads all the input data and assigns files for the output of results (e.g. pile displacements,
bending moments, etc.). The required input data are described in Table 6.1.

+ Discretise the pile into n segments; Step (1) in Section 6.3.

Subroutine GMAT
¢ Sets up the soil matrix of coefficients [G,,] by integration of the Mindlin's solution

(Mindlin, 1936) for the four faces of the pile; Step (2) in Section 6.3.

Subroutine DMAT
+ Sets up the pile matrix of coefficient [G,] by integration of the Bernoulli-Euler (beam

theory) kernel; Step (3) in Section 6.3.

Subroutine SVEC
¢ Determines the limit stresses for the soil elements, e.g. the limit bearing, shear, tensile
stresses, etc. Assigns these limit stresses as yield stresses for bearing, shear, tension, etc.;

Step (4) in Section 6.3.

Subroutine START

+ Sets the specific variables to zero.
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Subroutine SOLV

>

>

Sets up the pile-soil system stiffness matrix; Steps (5) to (7) in Section 6.3.1.

Solves for pile segment traction for unit lateral translation of the pile and unit rotation of
the pile about its head; Step (8) in Section 6.3.2.

Determines the pile-head stiffness matrix [SM] and the compliance matrix [CM]; Step (9)
in Section 6.3.2.

Computes the pile segment tractions and displacements for unit boundary conditions for
free-head and fixed-head cases; Step (10) in Section 6.3.3.

Computes soil element tractions for unit boundary conditions; Step (11) in Section 6.3.3.
Checks for elastic unloading of plastic soil elements and soil segments; Step (12) in
Section 6.3.4.

Determines the yield factors for all elastic soil elements; Step (13) in Section 6.3.5.
Checks for soil element closest to yield and determines the largest yield factor ( f,); Step
(13) in Section 6.3.5.

Computes soil element traction increments and current tractions, and pile segment
displacement increments and current displacements; Step (14) in Section 6.3.6.

Computes pile tractions, shear forces and bending moments for the pile segments; Step
(15) in Section 6.3.6.

Calls for Subroutines QCGAP and QDISP.

Computes incremental and current pile-head lateral load, displacement, moment and
rotation; Step (18) in Section 6.3.8.

Calls for Subroutines QDEGRAD, QRFACT, QDEGRADB and QRFACTB.
Determine the interpolation factor when the predicted load or displacement exceeded the
specified load or displacement; Step (24) in Section 6.3.12.

Return back to Subroutine DRIVE for the next increment.

Subroutine QCGAP

*

Computes gap sizes at the pile-soil interfaces for soil elements that have yielded in

tension; Step (16) in Section 6.3.7,

Subroutine QDISP

209



CHAPTER 6 Numerical Implementation of Cyclic Loading Algorithm

+ Searches for gaps experiencing gap closures and determines the gap closing factors; Step
(17) in Section 6.3.7.
+ Check for gaps nearest to gap closure and determines the largest gap closing factor ( £, );

Step (17) in Section 6.3.7.

Subroutine QDEGRAD
¢ Computes the incremental and current plastic shear displacement for soil elements that

have yielded in shear; Step (19) in Section 6.3.9.

Subroutine QRFACT
+ Determines the reduced limit shear stresses and thereby the yield stresses for shear, when

the side soil elements have recovered from plastic to elastic; Step (20) in Section 6.3.9

Subroutine QDEGRADB
+ Computes the incremental and current plastic bearing displacement for soil elements that

have yielded in bearing; Step (21) in Section 6.3.10.

Subroutine QRFACTB
¢ Determines the reduced limit bearing stresses and thereby the yield stresses for bearing,
when the bearing soil elements have recovered from plastic to elastic; Step (22) in

Section 6.3.10.

Subroutine PLAST
+ Modifies the soil segment stiffness matrix for soil yielding or elastic unloading or gap

closure; Step (23) in Section 6.3.11.

6.5 Typical illustrative results

Some cases were analysed using the program to demonstrate its features. The analyses
were carried out using a free-head pile embedded in a stiff clay, subjected to one-way and
two-way cyclic loadings. The details of the parameters involved are as follows (unless

otherwise stated):
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Pile length (L) =10m
Pile Diameter (D) =1.0m
Pile Young's modulus (£,) =50 GPa
Eccentricity of loading (e) =0m
Type of controlled conditions = Load-controlled
Soil unit weight (y) =10 kN/m’
Lateral earth pressure coefficient (X)) =1.0
Adhesion factor (o) =0.5
Undrained shear strength (C,) =100 kPa
Soil Young's modulus (E;) =100 MPa
Backsliding factor (B) =0
Residual/peak shear strength ratio (R,) =0.5

Shear degradation rate factor (C,) =0.5 mm"

Residual/peak bearing strength ratio (R,) =0.5
Bearing degradation rate factor (C,) =50

6.5.1 Load-controlled conditions

The results of one-way and two-way cyclic loadings with load-controlled conditions
are depicted in Figures 6.15a and 6.15b, respectively. The plots clearly indicate the increase
in pile-head displacement with the increase in the number of cycles. At the end of unloading
for the one-way cyclic analysis, a permanent or residual displacement can be seen, which is
indicative of the plastic yielding of soil. Gap closure can be observed from the sudden
increase in gradient of the load-displacement curves (point 4 in Figure 6.15a). It is observed
that the second cycle has a considerable effect on the pile-head load-displacement response.
This is because gaps are created at the first cycle, and the stiffness of the pile-soil system is
subsequently reduced.

For two-way cyclic loading depicted in Figure 6.15b, the maximum and minimum
pile-head displacements at maximum and minimum loads, respectively, are almost of the
same magnitude (differences less than 2%) but in opposite directions. Gap closure, for
two-way cyclic loading, normally occurs near to the initial position of the pile. This is marked

by the sudden increase in gradient of the load-displacement curves (point 4 in Figure 6.15b).
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It is observed that the maximum pile-head displacement for one-way cyclic loading is
larger than (by approximately 15% at the fifth cycle) the two-way cyclic loading. The reason
is that there are more yielded soil elements (especially for elements yielded in tension) at the
beginning of the reloading stage for the former than the latter, hence a greater reduction in the
pile-soil system stiffness, leading to higher pile displacements.

The bending moment distribution along the pile for cycles 1 to 5 is depicted in
Figures 6.16a and 6.16b for one-way and two-way cyclic loadings, respectively. In Figure
6.16a, an increase in maximum bending moment with cycling is observed. Also, the depth at
which the maximum moment occurs has moved from 3 to 4 m, as greater amount of soil
yielding have taken place near the top of the pile. For two-way cyclic loading (Figure 6.16b),
similar trend of positive bending moment distribution for one-way cyclic loading is observed.
The negative bending moment distribution at the end of unloading is almost identical (less
than 1% difference) to the positive bending moment distribution at the end of the reloading
for that cycle, displaying a mirror image.

The results of the pile displacement, left and right soil profiles together with the size
of the gaps at the end of the first cycle of one-way cyclic loading are depicted in Figure 6.17.
It is observed that left and right gaps are present near the top of the pile at the end of the

cycle.

6.5.2 Displacement-controlled conditions

The load-controlled conditions usually apply during cyclic pile-load tests. However,
in some circumstances, displacement-controlled testing is employed (e.g. test is easier to
control as mentioned by Long et al., 1993).

The pile-head load-displacement plots for the one-way and two-way cyclic loadings
using displacement-controlled conditions are depicted in Figures 6.18a and 6.18b,
respectively. The results indicate that with the increase in the number of cycles, the load
applied to reach to the specified maximum pile-head displacement (say at 15 mm) decreases
due to the increase in the amount of soil yielding. The reduction in load from the first cycle to
the fifth cycle is 20% for the one-way cyclic loading (Figure 6.18a) and 17% for the two-way
cyclic loading (Figure 6.18b).

6.5.3 Gap formation
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The effect of inclusion and exclusion of gap formation in the analysis on pile
responses is examined. The exclusion of gap formation, implies that the soil elements that
had yielded in tension in the unloading (or reloading) stage are all set to elastic at the
beginning of reloading (or unloading) stage. This assumes that the soil is adhering to the pile
at all times, though the soil might have yielded in tension. No soil strength degradation is
included, and one-way and two-way cyclic loadings under load-controlled conditions are used
for the analysis.

The results of pile-head load-displacement responses depicted in Figure 6.19, show
that cyclic degradation (i.e. increase in pile-head displacements with cycling) is evident for
analysis with gap formation. For the case without gap formation, the pile response stabilises
to an alternating plasticity state after the second cycle. This shows that with gap formation
included in the analysis, it will cause a significant increase in the pile-head displacements,
and may also indicate that gap formation is the cause of cyclic degradation. However, if the
load is increased to 1500 kN, cyclic degradation is evident in both cases with and without gap
formation included; see Figure 6.20. This shows that the process of unloading and reloading
in itself, is capable of producing the cyclic degradation, and that the gap formation inclusion
simply aggravates the rate of cyclic degradation.

It is shown in Figure 6.20, that the residual displacement with gap formation included
in the analysis, is much less than (around 60% at the end of the fifth cycle) the case without
gap formation. This is due to the fact that with gap formation included, all soil elements that
have yielded in tension have remained plastic in the beginning of the unloading or reloading
cycles, unlike the case without gap formation. This results in a lower pile-soil system
stiffness, hence, less stiff pile responses with higher maximum and lower residual
displacements.

For the two-way cyclic loading depicted in Figure 6.21, the exclusion of gap
formation in the analysis, has caused the pile to stabilise to an alternating plasticity response
in the second cycle. Significant differences (end of five cycles) in the magnitude of maximum
and minimum pile-head displacements, are observed between the case with and without gap
formation (Figure 6.21). It is observed in the case without gap formation, that the positive
displacement is greater than the negative displacement by approximately 70% at the end of

the fifth cycle. For the case with gap formation, the minimum pile-head displacements are
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similar to the maximum pile-head displacements (differences less than 1%) at the end of the

fifth cycle.

6.5.4 Backsliding

The effect on pile responses with backsliding included in the analysis, is examined in
this section. The backsliding factor (B) is assumed a value of 0.5 and no strength degradation
is included. Comparing the case with and without backsliding, it is observed in Figure 6.22,
that the maximum and residual pile-head displacements are reduced by 15% and 32%,
respectively, at the end of the fifth cycle. This is because the inclusion of backsliding will
increase the yield stress for tension of the soil according to Equations (6.4) and (6.10), hence
lesser soil yielding in tension can be anticipated. This results in the reduction of gap size,

simulating cohesive soil sliding back into the gap during loading.

6.5.5 Shear strength degradation

In this study, the residual/peak shear strength ratio (R,) and rate of shear degradation
factor (C,) are both set to 0.5, signifying a 50% degradation of the shear strength and a
medium rate of shear strength degradation. Bearing strength degradation is not included in the
analysis. The pile-head loéd-displacement response depicted in Figure 6.23, shows that the
inclusion of shear strength degradation has caused an increase in the maximum pile-head
displacement, but a reduction in the residual displacement as compared with the case of no
shear strength degradation. This is due to the greater amount of soil yielding taking place
during the unloading and reloading cycles, as the yield stress for shear is reduced because of
shear strength degradation. Figure 6.23 also indicates that the magnitude of residual
displacement is mainly controlled by the side (shear) soil elements. This means that, if the
adhesion factor (o) for the soil is set to a small value of 0.1, the yield stress for shear for the
side soil elements will be very low, and, we can therefore expect a very small residual
displacement as depicted in Figure 6.24. It is shown that reducing the yield stress for shear

will reduce the rate of cyclic degradation.

6.5.6 Bearing strength degradation
The analysis was carried out with residual/peak bearing strength ratio (R,) and rate of

bearing degradation factor (C,) taken as 0.5 and 50, respectively. This implies 50% of bearing
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strength degradation, degrading at a medium rate. Shear strength degradation is not included
in the analysis. Figure 6.25 shows that the analysis with bearing strength degradation
included has shown larger maximum and residual pile-head displacements than the analysis
without bearing strength degradation. In contrast to the shear strength degradation (Figures
6.23 and 6.24), larger residual displacements are observed for the analysis with bearing
strength degradation than without (see Figure 6.25). This is because of the lower amount of
soil yielding in bearing taking place in the unloading stage than with the reloading stage. A
larger reduction in the yield stress for bearing is accounted for in the latter stage than in the

former stage.

6.6 Investigation of cyclic degradation

The pile-head load-displacement responses depicted in Figures 6.20 and 6.23 to 6.25
have indicated that the reason for cyclic degradation is not simply caused by the inclusion of
gap formation or soil strength degradation in the analysis, but simply the inclusion of
unloading and reloading cycles. To examine the cause of cyclic degradation within the
APILEC analysis, a Beam-On-Spring (BOS) model and a Beam-On-Interactive-Spring
(BOIS) model were employed.

6.6.1 Beam-On-Spring model

The Beam-On-Spring (BOS) model is similar to the Winkler or subgrade reaction
approach, in which the pile is supported by an array of uncoupled springs and sliders (giving
a rigid perfectly-plastic response). The use of springs and sliders is to model the
elastic-perfectly plastic soil behaviour which is similar to APILEC soil model. The pile is
modelled as an elastic beam via beam theory. The use of uncoupled springs to model the soil
behaviour will create a diagonal soil matrix rather than the fully populated soil matrix in
APILEC analysis.

The model assumed that the pile segments are surrounded by four springs with sliders
(known as 'spring segments') as shown in Figure 6.26. The springs consist of the side springs
to take account of the shear loadings. For an advancing pile towards the right direction, the
right and left springs will take account of the compressive and tensile loadings, respectively,
and vice versa. A stiffness value is assigned to each spring, and likewise a limit load. Beyond

the limit load, i.e. the spring yields and slides, simulating the elastic-perfectly plastic soil
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behaviour; see Figure 6.27. Assuming that the soil takes no tension, the limit load for tension
for the spring is taken to be zero. Gaps will occur when the springs at the back face of an
advancing pile are subjected to tensile loads greater than zero.

The method of analysis for APILEC was adopted for BOS model, so as to avoid the
complication of rewriting a new set of programs, compared with changes made only to
specific Subroutine, namely the soil matrix generation Subroutine GMAT (see Section 6.4).
Gap formation, gap closure and strength degradation are accounted for in the analysis.

The 'spring segment' stiffness is generated by simply summing the four spring

stiffnesses connecting the pile segment, i.e.

4
K= % Koy (6.82)

sp i j=1

where K, is the spring segment stiffness for the i-th segment,

Ke ij is the individual spring stiffness for the j-th spring of i-th segment, and
i=1,2,3ton.

The diagonal terms of the soil segment stiffness matrix [K,] is then computed as:
Ki=Ksgpi (6.83)

where K, is the stiffness coefficients at the i-th row and i-th column of the [K|] matrix, and

i=1,2,3ton.

The stiffness coefficients for the non-diagonal terms in the [K,] matrix are zeros. The [K|]
matrix is then inverted to give the soil segment compliance matrix [G,] to be used in Equation
(6.14). The pile is discretised into n segments, and the pile matrix [G,] is set up via the beam
theory. With the limit loads specified for all the springs (taken as the yield stresses for the soil
elements), Steps (7) to (25) described in Section 6.3, are then applied until the specified

number of cycles is reached.

6.6.1.1 Beam-On-Spring model results
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For the analysis, the limit compression, tensile and shear loads for the springs are
taken to be 10, 0 and 0.5 kN, respectively. These limit loads of the springs are taken to be the
yield stress of the soil elements for compression, tension and shear. The ratio of the limit
compression loads in the springs to their limit shear loads was taken to be around ten; this
reflects the ratio of bearing to shear limit stress used in APILEC analysis. All the spring
stiffnesses are assumed to be 100 kN/m, simulating stiff clay with constant Young's modulus.
The pile data are similar to those described in Section 6.5. Ten cycles of one-way cyclic
loading were applied. Gap formation and soil strength degradation were also included in the
analysis.

The analysis carried out with and without gap formation, saw no cyclic degradation in
Figure 6.28, even when the load is very high (i.e. close to pile collapse). Comparing the case
with and without gap formation, reveals higher residual pile-head displacements for the latter
as depicted in Figure 6.28; reasons as explained in Section 6.5.3.

With the inclusion of bearing strength degradation and gap formation in the analysis,
cyclic degradation is observed in Figure 6.29, and eventually stabilised to an alternating
plasticity response at about ten cycles. With gap formation and shear strength degradation
included in the analysis, cyclic degradation can also be seen in Figure 6.30, and the pile-head
stabilised to an alternating plasticity response at the fifth cycle. The cyclic degradation is
produced, as a result of degradation of the yield stress in each stage of unloading and
reloading. The stabilisation to an alternating plasticity response can be anticipated when the
residual strength forr the soil elements is reached. This eventually reduces to gap formation

alone where no cyclic degradation is produced (see Figure 6.28).

6.6.2 Beam-On-Interactive-Spring model

Since the BOS model, does not provide the answer for the cause of cyclic degradation
due simply to the unloading and reloading cycles observed in APILEC analysis, the
Beam-On-Interactive-Spring (BOIS) model with interactive springs was used to model the
soil behaviour. The model is similar to the BOS model (see Figure 6.26), except that
interaction with neighbouring spring segments are allowed. This is to simulate the soil
segments interaction approach adopted by APILEC analysis.

For a simple interactive four spring segments, the soils segment compliance matrix

[G,] is:
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[G,] (6.84)
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The interactive term (Ir;) for the i-th segment due to loading at the j-th segment is taken as:

Ir,=—— L (6.85)

Y Kspi Ty

where [, is a interactive constant,
r; is the distance between the i-th segment and the j-th segment (see Figure 6.31), and

iandj=1,2,3ton.

Using the above method of obtaining the [G,] matrix, a fully populated soil matrix
will be created, which is similar to the APILEC continuum approach. With the limit loads
specified for the springs (taken as the yield stresses for the soil elements) and [G,] obtained
from Equation (6.84), Steps (7) to (25) described in Section 6.3, are then applied until the

specified number of cycles were attained.

6.6.2.1 Beam-On-Interactive-Spring model results

For the analysis, all the spring stiffnesses are assumed to be 100 MN/m. The limit
compression, tension and shear loads are taken to be 900, 0 and 50 kN, respectively. These
values are selected after observation from the BOS model, where the maximum pile-head
displacements were found to be too excessive (greater than 150 mm). The above limit loads
are taken to be the yield stress for compression, tension and shear for the soil elements.
One-way cyclic loading was applied in five cycles, with gap formation included in the
analysis. The interactive constant (/) for the interactive terms in Equation (6.85) is assumed
to be 0.1 (unless otherwise stated).

With the inclusion of the interactive terms (/r) in the soil matrix, cyclic degradation

was clearly observed in Figure 6.32. In comparison with the BOS model, a less stiff response
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is observed in Figure 6.33, which implies that the use of interactive terms in the soil matrix
will cause a decrease in the stiffness of the pile-soil system. With the exclusion of gap
formation in the analysis for the BOIS model, no cyclic degradation is observed in Figure
6.33. However, increasing the applied load to a higher value (close to pile collapse), cyclic
degradation is clearly evident in Figure 6.34, which is similar to the APILEC analysis at high
load level (see Figure 6.20).

It is observed in Figure 6.32, that the rate of cyclic degradation is quite small. This is
due to the value of I, that was employed in the [G,] matrix in Equation (6.84). Changing the I,
value from 0.1 to 0.4, will increase the interactive terms (Ir in Equation (6.85)) in the [G,]
matrix, leading to a lower pile-soil system stiffness. Hence, higher pile-head displacements
and higher rate of cyclic degradation can be anticipated as shown in Figure 6.35.

For the soil strength degradation, bearing strength degradation will be dealt with first.
Using a residual/peak bearing strength ratio (R,) of 0.5 and a bearing degradation rate factor
(C,) of 100 for the analysis, cyclic degradation can clearly be seen in Figure 6.36. No sign of
stabilisation to an alternating plasticity response was observed, which is similar to APILEC
results depicted in Figure 6.25; note that the BOS model has shown that the pile will stabilise
to an alternating plasticity response with further cycling as shown in Figure 6.29. Comparing
the case with and without bearing strength degradation included in the analysis (Figure 6.36),
shows that the former predicts higher maximum and residual displacements than the latter by
44% and 81%, respectively, at the end of the fifth cycle.

For shear strength degradation, residual/peak shear strength ratio (R;) of 0.5 and a
shear degradation rate factor (C,) of 0.1 were used. Cyclic degradation is clearly observed in
Figure 6.37 with no evidence of stabilisation to an alternating plasticity response at the end of
the fifth cycle. Comparing the case with and without shear strength degradation included in
the analysis, shows that the former gives higher maximum displacement but a lower residual
displacement than the latter (Figure 6.37). Such behaviour is similar to the APILEC analysis
shown in Figure 6.23.

From the results of BOS and BOIS analyses, it seems to suggest that the cause of
cyclic degradation is due to the interactive terms involved, i.e. when interaction between
neighbouring spring segments is taken into consideration. The degree of interaction can be
simply adjusted by the value of I, in Equation (6.85). With higher I, values (i.e. greater

interaction), higher rate of cyclic degradation is shown in Figure 6.38, whereby setting I to
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zero, i.e. essentially the BOS model, will lead to no cyclic degradation as depicted in Figure

6.38.

6.7 Discussion of results

The results revealed from the analyses with gap formation, backsliding and soil
strength degradation included, show similar trends of pile responses to those observed in the
cyclic pile-load tests, depicted in Figures 1.1 to 1.3. They indicate an increase in pile-head
displacement and maximum bending moment with cycling for the load-controlled conditions,
and a reduction in the pile-head load with cycling to the specified displacement for the

displacement-controlled conditions.

Gap formation

The inclusion of gap formation and likewise the gap closure in the analysis is vital,
because its exclusion can give a too stiff pile response during unloading and subsequent
reloading cycles, as observed in Figures 6.19 to 6.21. It is also a more realistic approach, as
gaps will form when the soil yields in tension, compared with the assumption that the soil
adheres to the pile at all times, as assumed by many researchers like Matlock (1970), Reese et

al. (1975), Poulos (1982) and Hamilton and Dunnavant (1993), among others.

Backsliding

Analyses with backsliding included (Figure 6.22) show that the pile-head
displacements (both maximum and residual) and gap sizes will decrease. It can therefore
simulate cohesive soils sliding back into the gap to reduce the gap sizes during loading,

resulting in the reduction of pile-head displacements.

Soil strength degradation

The soil strength degradation was only employed when the soil elements had reached
their yield stresses. Analyses with only shear strength degradation included (Figure 6.23)
show an increase in the maximum pile-head displacement and decrease in the residual
displacement with cycling as compared with the case where no shear strength degradation is
included. This is because of the greater amount of soil yielding taking place in the unloading

and reloading stages, as the yield stress for shear is reduced with cycling. Figure 6.24 shows
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that the magnitude of residual displacement is mainly controlled by the side face soil
elements. If the yield stresses of these elements are low, low residual displacements result.
With only bearing strength degradation included in the analysis (depicted in Figure
6.25), larger maximum and residual pile-head displacements with cycling occur, as compared
with the case where no bearing degradation is included. This is due to the much larger
amount of soil yielding taking place in the reloading stage than the unloading stage. As shear
strength and bearing strength degradation always occur together, this results in an increase of
maximum and residual pile-head displacements with cycling as compared with the case

where no soil strength degradation is assumed.

Spring models

The investigation on the cause of cyclic degradation (as observed in APILEC
analysis) using BOS and BOIS models, suggests that it is because soil continuity is accounted
for in the analysis, where interaction with neighbouring soil elements is considered. The
inclusion of gap formation and soil strength degradation will increases the rate of cyclic

degradation, due to the greater amount of soil yielding.

6.8 Concluding remarks

The analysis was successfully implemented using the procedure described here.
From the analyses of some simple cases described in Section 6.5, the predicted pile responses
appear to be similar to those observed during cyclic pile-load tests. The use of BOS and BOIS
models suggests that the cyclic degradation observed in APILEC analysis, arises from the soil
element interactions. With the assurance that the algorithm produces plausible results, a

number of parametric studies can now be conducted.
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Table 6.1 Input data for the program APILEC.

Description SI Units | Variable

Pile length (L) m al
Diameter (D) m diam
Pile Young's modulus (E,) kPa ep
Pile working stress kPa sigw
Pile-head conditions - iload

s 0 =Fixed - "

= 3 =Free . "
Eccentricity of loading (e) m xcent
Type of analysis - iqeyclf

= () = Static - "

® | = One-way cycling -

s 2 =Two-way cycling -

Gap formation analysis - igap

= 0=No - "

s ] =Yes - "
Number of cycles - nqcycl
Backsliding analysis - igback

s 0=No - "

= ]=Yes - "

» Backsliding factor () - gbeta
continued ...
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Description SI Units | Variable
Displacement-controlled conditions - iqdisco
= 0=No - "
= ]=Yes - "

» Displacement-controlled value mm qdisco
Shear strength degradation analysis - iqdegr
= 0=No - "
= ] =Yes ) "

» Residual/peak shear strength ratio (R,) - qresi
» Shear degradation rate factor (C)) mm” qcs
Bearing strength degradation analysis - iqdegrb
= 0=No - "
= |=Yes - "
» Residual/peak bearing strength ratio (R;) - qresib
» Bearing degradation rate factor (C,) - qcb
Soil type - iopt
s | = Stiff clay - iopt
» Effective unit weight (y) kN/m’ gama
» Lateral earth pressure coefficient (X)) - ako
» Adhesion factor (o) - alfa
» Young's modulus (£,) kPa esa
» Undrained shear strength (C,) kPa cua
= 2 = Soft clay v - iopt
» Effective unit weight (y) kN/m’ gama
» Lateral earth pressure coefficient (X)) - ako
» Adhesion factor (o) - alfa
» Young's modulus at ground level (m,) kPa esa
» Rate of increase in Young's modulus () kPa/m esm
» Undrained shear strength at ground level (c,) kPa cua
» Rate of increase in undrained shear strength (c) kPa/m cum
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Figure 6.1 (a) Response of a laterally loaded pile, (b) sign conventions for a pile segment and

(c) zones encountered when load direction changes.
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Figure 6.2 (a) Pile discretisation and (b) four faces of a pile segment.
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Figure 6.3 (a) Four soil elements on the faces of a pile segment treated as one soil segment

and (b) full soil matrix [F] condensed into a soil segment stiffness matrix [F.
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Figure 6.4 (a) Phenomena observed and soil zones developed during cyclic pile load test and

(b) pile faces and gaps terminology.
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Figure 6.5 Determination of gap closing factor for soil element.
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Figure 6.7 (a) Progressive yielding of side face soil elements and (b) determination of yield

stress for shear.
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{fup} = current pile segment displacements,
{u/lr} = current pile segment displacements
(end of previous increment),
Start {5c/v} = incremental plastic shear displacements,
{dxr}) = current plastic shear displacements (end

of previous increment), and

{ds} = current plastic shear displacements.
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Figure 6.8 Flow chart for the determination of incremental and current plastic shear

displacements.
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tss/=reduced limit shear stress,
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Figure 6.9 Flow chart for the determination of yield stress for shear.
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Figure 6.10 (a) Progressive yielding of bearing soil element, (b) determination of yield stress

for bearing and (c) bearing strength degradation as a function of the residual limit bearing

stress and the plastic bearing displacement.
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Figure 6.11 Flow chart for the determination of incremental and current plastic bearing

displacements.
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Figure 6.12 Flow chart for the determination ofyield stress for bearing.
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Figure 6.14 Structure of APILEC program with its subroutine.
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Figure 6.15 Pile-head load-displacement responses for (a) one-way and (b) two-way cyclic

loading under load-controlled conditions.
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Figure 6.16 Pile bending moment distributions for (a) one-way

loading under load-controlled conditions.

238

and (b) two-way cyclic



CHAPTER 6 Numerical Implementation of Cyclic Loadine Algorithm

left gap right gap
right sail profile

left soil gt sl rof
profile

ONEWAY CYAING

pile displacement
Pile initial position
at 0 mm displacement
10
DISPLACEMENT (mm)

Figure 6.17 Pile displacement, soil profiles and gap distances at the end of first cycle of

one-way cyclic loading.
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loading under displacement-controlled conditions.
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Figure 6.19 Pile-head load-displacement responses for one-way cyclic loading with and

without gap formation.
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Figure 6.20 Pile-head load-displacement responses for one-way cyclic loading at high load

level with and without gap formation.
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Figure 6.21 Pile-head load-displacement responses for two-way cyclic loading with and

without gap formation.
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Figure 6.22 Pile-head load-displacement responses for one-way cyclic loading with and

without backsliding.
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Figure 6.23 Pile-head load-displacement responses for one-way cyclic loading with and

without shear strength degradation.
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Figure 6.24 Pile-head load-displacement responses for one-way cyclic loading with and

without shear strength degradation at low limit shear stress.
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Figure 6.25 Pile-head load-displacement responses for one-way cyclic loading with and

without bearing strength degradation.
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Figure 6.27 Elastic-perfectly plastic soil behaviour.
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Figure 6.28 Pile-head load-displacement responses for one-way cyclic loading with and

without gap formation using BOS model.
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Figure 6.29 Pile-head load-displacement responses for one-way cyclic loading with gap

formation and bearing strength degradation using BOS model.
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Figure 6.30 Pile-head load-displacement responses for one-way cyclic loading with gap

formation and shear strength degradation using BOS model.
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Figure 6.31 Distance between neighbouring spring segments for Beam-On-Interactive-Spring

(BOIS) model.
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Figure 6.32 Pile-head load-displacement responses for one-way cyclic loading with gap

formation using BOIS model.
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Figure 6.33 Pile-head load-displacement responses for one-way cyclic loading with and

without gap formation using BOS and BOIS models.
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Figure 6.34 Pile-head load-displacement responses for one-way cyclic loading without gap

formation at high load level using BOIS model.
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Figure 6.35 Comparison on the magnitude and rate of cyclic degradation with different

interactive constant (/1) for BOIS model.
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Figure 6.36 Pile-head load-displacement responses for one-way cyclic loading with gap

formation and bearing strength degradation using BOIS model.
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Figure 6.37 Pile-head load-displacement responses for one-way cyclic loading with gap

formation and shear strength degradation using BOIS model.
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Figure 6.38 Comparison on the magnitude and rate of cyclic degradation with interactive

constant /c= 0 using BOIS model.
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CHAPTER 7 Parametric Studies

HAPTER

Parametric Studies

7.1 Summary

This Chapter begins with a study into the optimum pile discretisation for cyclic
loading analyses. The main part of the Chapter contains the results of an extensive parametric
study of the principal soil and pile variables and their effects on pile performance under cyclic

loading conditions.

7.2 Introduction

There are many parameters that will influence the behaviour of piles subjected to
cyclic lateral loading. Generally, these parameters can be classified into two categories. The
first category contains the pile parameters, namely: pile Young's modulus, diameter, length,
etc. The second category contains the soil parameters, namely: undrained shear strength, soil
Young's modulus, adhesion factor, backsliding factor, etc. As the variations of these
parameters are large, only major parameters will be explored here. '

The parametric studies are based on free-head and fixed-head piles subjected to
one-way cyclic loading under load-controlled conditions. The following parameters are
examined:

+ Pile Young's modulus,

+ Backsliding factor,

+ Residual/peak bearing strength ratio,
* Bearing degradation rate factor,

+ Residual/peak shear strength ratio,

¢ Shear degradation rate factor,

¢ Adhesion factor, and

+ Eccentricity of loading.

In addition, pile discretisation is studied to determine the optimum height to width ratio of

each pile segment, such that computational efficiency with adequate accuracy is achieved.
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The two main factors that govern the design of laterally loaded pile foundations are
the (maximum) pile-head displacements and the maximum bending moments. The parametric

studies which follow focus mainly on these two criteria.

7.3 Pile discretisation

An important practical aspect of this study was the requirement to limit the
computational time, while retaining reasonable accuracy. In this section, the results of
numerical experiments aimed at determining an optimal pile discretisation strategy were
reported.

A pile (of length (L) = 20 m and diameter (D) = 1 m), was discretised into » segments
of 10, 20, 30 and 40, yielding height to width ratios (4/D) for each pile segment of 2, 1, 0.67
and 0.5, respectively. The time taken to execute the APILEC program (using the Salford
Fortran FTN77 compiler) and based on an IBM-compatible 80486 DX2-66 computer was
determined.

The pile-head load-displacement results for different » segments are depicted in
Figure 7.1. It is indicated that with higher »n, the displacement (both maximum and residual)
is Jower. At the end of the ten cycles, it is shown in Figure 7.2, that the plastic zone (defined
as zone with yielded soil elements) has extended to a pile depth of 10 m, (8 m, 7.37 m, 7.5 m)
for n of 10, (20, 30, 40). The results indicate that with the increase in », the depths of plastic
zone and the percentage of soil yielding are lower (Figure 7.2), hence lower pile-head
displacements can be anticipated as shown in Figure 7.1. An initial stiffer pile-head
load-displacement response is due to the fact that the pile is discretised into more segments as
evident in Table 7.1.

Figures 7.3a and 7.3b show the reduction in pile-head displacement and increase in
maximum bending moment responses with increases in », for up to ten cycles. The plot in
Figure 7.4 shows the increase in the time taken for the analysis with increases in » segments.

Taking the results of n = 40 as the exact solution, Figure 7.3a shows that using » of
10, (20, 30) has overestimated the pile-head displacements by 14%, (9%, 4%) for the first
cycle. Increasing the number of cycles to ten, the overestimation is reduced, with
overestimation of 3%, (3%, 1%) for n of 10, (20, 30). Figure 7.3b shows that using » of 10,
(20, 30) has overestimated the maximum bending moments by 1.8%, (1.1%, 0.3%) in the first
cycle. With further cycling to the tenth cycle, the underestimation is 5.8%, (0.5%, 0.9%).
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exact value - predicted value

The relative errors, defined as ( ) , for pile-head displacements

exact value
and maximum bending moments are shown in Table 7.2 and 7.3, respectively. Taking an
error of approximately 5% or less as the allowable tolerance, suggests that 20 or 30 segments
are necessary. From the computational (time) point of view (see Figure 7.4), twenty segments
is probably an optimal choice, i.e. assuming an unit aspect ratio (4/D = 1).

From this study, it appears that the use of unit aspect ratio segments (as for static

analyses) can be adopted for cyclic loading analyses, in order to obtain results of good

accuracy without excessive computational costs.

7.4 Standard parameters

For piles subjected to lateral loading, the principal design criteria are the (maximum)
pile-head lateral displacements and the maximum bending moments at the working load
levels. The results of this study are presented in dimensionless forms. The advantage of
presenting the results in this way is that the wide range of practical parameters can be
presented in very few plots.

Since many parameters would be required to undertake a comprehensive study, only
the major parameters that influence pile behaviour are explored here. In what follows, several
non-dimensional groups are identified. The principal values (unless otherwise stated) of the

parameters used in the subsequent parametric studies are as shown below.

Pile length L=20m
Pile diameter D=1m

Pile length-diameter ratio L/D=20
Eccentricity-diameter ratio e/D= 0
Lateral earth pressure coefficient K =1
‘Buoyant soil unit weight y =10 kN/m’
Backsliding factor B=0
Residual/peak shear strength ratio R.=0.5
Shear strength degradation rate factor C,=0.5 mm’
Residual/peak bearing strength ratio R,=0.5

Bearing strength degradation rate factor C,=50
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Stiff clay

Undrained shear strength
Soil Young's modulus

Load-strength ratio
(describes the load level)

Pile Young's modulus

C,=50kPa
E,=25MPa

H/C,D* = 10 (free-head)
H/C,D* = 20 (fixed-head)
E,=25GPa

Pile-soil stiffness ratio EJE ;= K =1000
Soil stiffness-strength ratio E/C,=500
Adhesion factor a=0.5

Soft cla
Rate of increase in undrained shear strength ¢ = 2 kPa/m
Rate of increase in soil Young's modulus ~ m =25 MPa/m

HlcD® = 150 (free head)
H/cD* = 300 (fixed head)

Load-strength ratio
(describes the load level)

Pile Young's modulus E,=10 GPa
Pile-soil stiffness ratio E/mD = K= 5000
Soil stiffness-strength ratio m/c =1000
Adhesion factor a=1

Only ten cycles of loading are considered in these parametric studies. Further load
cycles (usually of 50 to 100 cycles or more) can result, in some circumstances, in numerical

instability which lead to apparently anomalous results.

7.5 Stiff clay

The 'stiff clay' model is intended to simulate the heavily consolidated clay conditions
commonly encountered in many site situations. The undrained shear strength (C,) and the
Young's modulus (E,) of the clays are assumed to be constant with depth.

In the following studies, the results are expressed in terms of normalised pile

SmaxEsD
H

max

. . . . M, .
displacement ( ) and normalised maximum bending moment (W) against the
parameters considered; where 6., , M, , H, and D, are the (maximum) pile-head

displacement, maximum bending moment, lateral load and pile diameter, respectively.
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7.5.1 The effect of load levels
Pile failure usually precedes soil failure. Yielding of a cylindrical cross section is

initiated, in the absence of axial loading, when the bending moment at the section is:

noyD?
M,=—3 (7.1)

where o, is the yield stress of the material.

Collapse occurs only when the full section yields which requires a further increase in bending
moment. For a cylindrical free-head pile subjected to lateral loading only, Davies and Budhu

(1986) show that yielding of the pile section (in bending) begins when the normalised load

level ( ng) is:

H [}
a2y 02

where H, is the yield load.

For fixed-head piles, which can sustain much higher lateral loads than the free-head piles, the

yield load can be taken as:

H, c
e =2 3)
Taking a typical Z—i value of 200, based on Equations (7.2) and (7.3), the yield load is 20C,D?
for free-head piles and approximately 30C,D” for fixed-head piles.

Free-head piles

Loads of 5, 10, 15 and 20(C,D*) were employed to explore the effects of load levels
on pile response. Figure 7.5a shows that increasing the loads causes an increase in the
pile-head displacements, and Figure 7.5b shows an increase in the maximum bending
moments. It is observed that the rate of cyclic degradation and the rate of increase in

maximum bending moment with cycling, increased with increasing load levels. The above
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results are because of the greater amounts of soil yielding taking place with increasing load
levels.

The above Figures show that the second cycle has a considerable effect on the
pile-head displacements and maximum bending moments. This is due to the fact that gaps are
created by the first cycle, and hence the stiffness of the pile-soil system, in subsequent cycles,
is lower. Comparing loads of 5C,D* with 10C,D?, (15C,D?, 20C,D?), Figure 7.5a shows that
the pile-head displacements have increased by 1.5 times, (2.5 times, 3.2 times) for the tenth
cycle. For maximum bending moments depicted in Figure 7.5b, the increase is 13%, (41%,
72%) for the tenth cycle. The effect of load levels is greater for pile-head displacements than

for maximum bending moments.

Fixed-head piles

Loads of 5, 10, 20 and 30(C,D*) were used to examine the effect of increasing load
levels. The pile-head displacement and maximum bending moment results depicted in
Figures 7.6a and 7.6b, respectively, show that at the low load level of 5C,D? the pile
responds elastically. At higher load levels of 10C,D* to 30C,D? cyclic degradation and
increase in maximum bending moments with cycling occur, and the rate of increase is higher
with increasing load levels (reasons as explained for the free-head piles). Increasing the load
from 5C,D* to 10C, %, (20C,D?, 30C,D?), increases the pile-head displacements by 1.6 times,
(2.2 times, 2.9 times) and the maximum bending moments by 33%, (45%, 69%) for the tenth
cycle. The effect of load levels is greater for pile-head displacements than for maximum
bending moments.

Comparing the influence of pile-head conditions for pile-head displacements (Figures
7.5a and 7.6a) at cycles 1 and 10 under a load of 20C,D?, indicates that the fixed head pile
has undergone lesser pile-head displacements than free-head piles by 2.6 times for the first
cycle and 3.8 times for the tenth cycle. This is due to the fact that the pile-head is restrained
against rotation for fixed-head piles. For bending moment comparison, the fixed-head piles
show lower maximum positive bending moments (not shown in figure) than free-head piles
by 3.1 times for the first cycle and 3.6 times for the tenth cycle. The maximum negative
bending moments shown in Figure 7.6b are the restrained moments at the pile-head.
Comparing the maximum bending moments which the pile is experiencing (regardless

whether it is positive or negative), it is observed that the fixed-head piles experience higher
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maximum bending moments than the free-head piles with cycling; compare Figures 7.5b and
7.6b.

The results of the free-head and fixed-head piles, have indicated that provision of
restraint at the pile-head, will effectively decrease the pile-head displacements as well as the
maximum positive bending moments of the piles. However, precautions have to be taken to
ensure that the maximum negative bending moment at fhe pile-head of fixed-head piles does

not exceed the yield moment

7.5.2 The effect of pile Young's modulus (E,))

For this parametric study, the pile-soil stiffness ratio (K" = E,/E,) of 250, 1000, 2000
and 4000 were considered. The soil Young's modulus (E,) is assumed to remain constant,
while the pile Young's modulus (E,) varies. Piles with lower E, are more flexible than those

with higher E, .

Free-head piles

Figure 7.7a shows the decrease in pile-head displacements as E, increases. It is
observed that a slower rate of cyclic degradation, is associated with the higher E, Such
results are because of the increase in the stiffness of the pile-soil system as E, increases,
resulting in the lower amount of soil yielding. Increasing XK' from 250 to 500, (1000, 2000,
4000) reduces the pile-head displacements by 24%, (58%, 66%, 73%) for the tenth cycle.
Further increase in E, from 2000E, to 4000E, does not show significant reduction in the
pile-head displacements. This is due to the fact that the stiffness of the pile-soil system is
already very high at E, = 2000, , and therefore further increase in E, only reduces the
pile-head displacements slightly. This is why hollow steel piles (with appropriate E,) are
more commonly used than solid steel piles, where the latter E, is obviously higher and more
economical.

Though the lower E, results in the increase in the pile-head displacements, it causes
lower maximum bending moments as depicted in Figure 7.7b. This is because E, is directly
proportional to bending moment and inversely proportional to displacement. Increasing K'
from 250 to 500, (1000, 2000, 4000) fesults in the increase in the maximum bending
moments by 15%, (15%, 39%, 68%) for the tenth cycle. It is observed that the rate of increase

in maximum bending moment with cycling, is higher for E, = 250E; than for E, = 1000E,.
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This is in consequence of the large pile-head displacements for low E,, as a result of large
amount of soil yielding. The large increase in the maximum bending moment from cycles 5
to 10 for K" = 500 (point 4 in Figure 7.7b), is due to the change in pile depth position (from 3

to 4 m) at which the maximum bending moment occurs.

Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum
bending moments for free-head piles (Figure 7.7) are observed for fixed-head piles (Figure
7.8). The only difference, is that the phenomenon of large increase in the maximum bending
moment from cycles 5 to 10 for X' = 500 is not seen. It is indicated that the effect of E, is
greater for pile-head displacements than for maximum bending moments for both free-head

and fixed-head piles.

7.5.3 The effect of backsliding factor (3)

The backsliding factor (B) is used to increase the yield stress for tension for the soil
according to Equations (6.4) and (6.10). Soils with high (3 is indicative of high adhesive
strength. In this parametric study, f 0f0.0, 0.1, 0.2 and 0.5 were considered.

Free-head piles

Increase in P reduces the pile-head displacements and maximum bending moments as
depicted in Figures 7.9a and 7.9b, respectively. This is because of the lesser soil elements
yielding in tension, which reduce the gap sizes, as the yield stress for tension for the elements
is increased. Increasing 3 from 0.0 to 0.1, (0.2, 0.5) decreases the pile-head displacements by
3%, (5%, 17%) and the maximum bending moments by 1%, (1%, 7%) at the fifth cycle. It is
observed that the rate of cyclic degradation and the rate of increase in maximum bending
moment with cycling, are similar for all values of B for up to five cycles. With further
cycling, say at the tenth cycle, it is noted that the pile-head displacements and maximum
bending moments for § = 0.1 and 0.2 are greater than = 0.0. The reason for such occurrence
is unclear. It is indicated that the effect of B on both the pile-head displacements and the
maximum bending moments is negligible for B = 0.1 and 0.2. This suggests that the

parameter 3 can be ignored as B rarely exceeds 0.2.
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Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum
bending moments for free-head piles (Figure 7.9) are observed for fixed-head piles (Figure
7.10). The differences are that the rate of cyclic degradation and the rate of increase in
maximum bending moment with cycling, are similar for all values of B for up to ten cycles.
The phenomenon of pile-head displacements and maximum bending moments for § = 0.1 and

0.2 greater than 3 = 0.0 is not produced.

7.5.4 The effect of residual/peak bearing strength ratio (R,)

For this study, residual/peak bearing strength ratio (R;) of 0.1, 0.2, 0.5 and 1.0 were
considered. This simulates the degradation of bearing strength of the soil at the front face of
an advancing pile by 90%, 80%, 50% and 0%, respectively. Soils with high R, i.e.
approaching unity suffer very little bearing strength degradation after peak. Conversely, a low

R, is indicative of low residual bearing strength.

Free-head piles

The results for pile-head displacements and maximum bending moments under a load
of 10C,D? (full line) are shown in Figures 7.11a and 7.11b, respectively. They show the effect
of R, is negligible. As such, the load is increased to 20C,D* (dotted line). With this higher
load, the reduction in R, gives higher pile-head displacements and maximum bending
moments. This is because of the greater amount of soil yielding taking place as a result of the
larger degradation in the bearing strength of the soil. This is also reflected in the higher rate
of cyclic degradation, and the higher rate of increase in maximum bending moment with
cycling, for lower R,. Reducing R, from 1.0 to 0.5, (0.2, 0.1) causes an increase in the
pile-head displacements by 1.2 times, (1.8 times, 2.8 times), and the maximum bending
moments by 1.2 times, (1.8 times, 2.2 times) for the tenth cycle. The effect of R, is greater for
pile-head displacements than for maximum bending moments. Note that the effect of R,
usually applies after the first loading cycle, when the elements have recovered from plastic to

elastic.

Fixed-head piles
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Under a load of 20C,D? (full line), Figures 7.12a and 7.12b show that R, has virtually
no effect on the pile-head displacements and maximum bending moments. As such, the load
is increased to 30C,D* (dotted line). With this increase in load, Figures 7.12a and 7.12b show
similar pile responses as for the free-head piles (see Figure 7.11). The difference is that the
rate of cyclic degradation and the rate of increase in maximum bending moment with cycling,
is lower for fixed-head than for free-head piles, due to lesser soil yielding.

From the analyses of free-head and fixed-head piles under loads of 20C,D* and
30C,D?, respectively, it is indicated that the effect of R, is more significant at higher load
levels. At load levels less than 10C,D* and 20C,D* for free-head and fixed-head piles,

respectively, the parameter R, can be safely ignored.

7.5.5 The effect of bearing degradation rate factor (C,)

The bearing degradation rate factor (C,) quantifies the rate of bearing strength
degradation of soil after peak. For this study, C, of 10, 20, 50 and 100 are considered. This is
to simulate slow (C, = 10 and 20), medium (C, = 50) and fast (C, = 100) rates of bearing

strength degradation.

Free-head piles

The effect of C, on pile-head displacements and maximum bending moments are
depicted in Figures 7.13a and 7.13b, respectively. They show that for a low load level of
10C,D* (full line), the effect of C, is negligible. At a higher load level of 20C,D? (dotted
line), the pile-head displacements and maximum bending moments increase with C,. This is
because of the greater amount of soil elements yielding in bearing, as the bearing strength is
degraded more rapidly for higher C,.

It is observed that the rate of cyclic degradation and the rate of increase in maximum
bending moment with cycling, increases with increasing C, (up to C, = 50). There is very
little difference between the results for C, greater than 50. This is because for low C, (10 and
20), the bearing strength of the soil elements lie between the peak strength and residual
strength. For high C, (greater than 50), the bearing strength of the soil elements is at the
residual strength.

It is indicated that when C, increases from 10 to 20, (50, 100) the pile-head

displacements are increased by 1%, (15%, 16%), and the maximum bending moments
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increased by 3%, (17%, 22%) for the tenth cycle. The results suggest that C, has greater effect

on the maximum bending moments than the pile-head displacements.

Fixed-head piles

Under a load of 20C,D? (full line), C, has negligible effect on pile-head displacements
and maximum bending moments as seen in Figures 7.14a and 7.14b. Increasing the load up to
30C,D* (dotted line) did not cause significant changes to the pile-head displacements and
maximum bending moments. It is observed that the rate of cyclic degradation and the rate of
increase in maximum bending moment with cycling, are not significantly influenced by C,.
This is because the residual bearing strength of the soil elements has been reached at C, = 50
and 100, and closely reached at C; = 10 and 20, due to large residual bearing displacements.
A slight increase in pile-head displacements (less than 3%) and maximum bending moments
(less than 5%) of up to ten cycles were experienced, when C, increased from 10 to 100. The
results suggest that C, has greater effect on the maximum bending moments than the
pile-head displacements.

From the above evaluation, it is observed that C, has greater effect on free-head than
fixed-head piles, when the piles are subjected to load levels close to their yield loads
(described in Section 7.5.1). Note that the effect of C, usually .applies after the first loading

cycle, when the elements have recovered from plastic to elastic.

7.5.6 The effect of residual/peak shear strength ratio (R,)

For this parametric study, residual/peak shear strength ratio (R,) of 0.1, 0.2, 0.5 and
1.0 were considered. This simulates the degradation of shear strength of the soil at the side
face of the pile by 90%, 80%, 50% and 0%, respectively. Soils with high R;, i.e. approaching
unity suffer very little shear strength degradation after peak. Conversely, a low R, is

indicative of low residual shear strength.

Free-head piles

Figures 7.15a and 7.15b show that reducing R, causes the pile-head displacements and
maximum bending moments to increase, due to greater amount of soil yielding as a result of
greater degradation in the shear strength. It is observed that the pile responds elastically for R,

= 1.0, while cyclic degradation occurs for R, < 1.0. This is because shear strength degradation
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is allowed for R, < 1.0, and therefore the shear strength is reduced for each reloading and
unloading cycle. Decreasing R, from 1.0 to 0.5, (0.2, 0.1) increases the pile-head
displacements by 31%, (67%, 59%) for the tenth cycle. It is observed in the tenth cycle, that
the pile-head displacement for R, = 0.2 (point 4 in Figure 7.15a) is greater than for R, = 0.1.
This is because the rate of cyclic degradation is higher for R, = 0.2 than for R, = 0.1 after the
fifth cycle when the residual strength of the soil for R, = 0.1 is reached; see Figure 7.15c.

The maximum bending moment results depicted in Figure 7.15b show that reducing
R, from 1.0 to 0.5, (0.2, 0.1) increases the moment by 11%, (20%, 19%) for the tenth cycle.
The higher maximum bending moments predicted for R, = 0.2 than for R, = 0.1, is a
consequence of the pile-head displacement responses (Figure 7.15a).

The above results show that the effect of R, is greater for pile-head displacements than
for maximum bending moments. The effect of R, is seen after the first loading cycle, when

the elements have recovered from plastic to elastic.

Fixed-head piles

Figures 7.16a and 7.16b show that reducing R, causes the pile-head displacements and
maximum bending moments to increase (reasons as explained for free-head piles). It is
observed that the rate of cyclic degradation and the rate of increase in maximum bending
moment with cycling, is higher for lower R,. This is due to the fact that higher shear strength
degradation is allowed for the soil elements. However, with further cycling of up to five
cycles, the rate of cyclic degradation for R, = 0.2 and 0.5, is higher than R, = 0.1 when the
residual strength of the elements is about to be reached. Comparing the pile-head
displacements for R, = 1.0 with 0.5, (0.2, 0.1) show an increase of 27%, (29%, 29%) for the
tenth cycle. For maximum bending moments, the increase is 8%, (11%, 11%) for the tenth
cycle. The effect is greater for pile-head displacements than for maximum bending moments.

The phenomenon of R, = 0.2 having greater pile-head displacements and maximum
bending moments than R; = 0.1 at the tenth cycle (as for the case of free-head piles; see
Figures 7.15a and 7.15b) was not observed in Figures 7.16a and 7.16b. However, with further

cycling, say for twenty cycles, such phenomenon may occur.

7.5.7 The effect of shear strength degradation rate factor (C,)

263



CHAPTER 7 Parametric Studies

The shear strength degradation rate factor (C,) is to quantify the rate of shear strength
degradation of soil after passing its peak. In this parametric study, C, of 0.1, 0.2, 0.5 and 1.0
were considered. This simulates slow (C, = 0.1 and 0.2), medium (C, = 0.5) and fast (C, =

1.0) rates of shear strength degradation.

Free-head piles

Figures 7.17a and 7.17b show that increasing C; results in the increase in the pile-head
displacements and maximum bending moments. This is because of a greater amount of soil
yielding taking place as the rate of shear strength degradation is increased, especially for
cycles 2 and 5. At the tenth cycle, the effect of C, is negligible, as the residual strength of the
soil elements is reached, regardless of the rate specified, due to large plastic shear
displacement. Note that the effect of C, usually applies after the first loading cycle, when the

elements have recovered from plastic to elastic.

Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum
bending moments for free-head piles (Figure 7.17) are observed for fixed-head piles (Figure
7.18).

From the above evaluation, it may suggest that the parameter C, can be safely ignored
for the analysis of free-head and fixed-head piles under loads of 10C,D* and 20C,D?

respectively.

7.5.8 The effect of adhesion factor (at)
The adhesion factor (a) is used to determine the limit shear stress of the soil elements
at the side faces of the pile according to Equations (6.2). For the purpose of this parametric

study, four values were considered, namely: 0.1, 0.2, 0.5 and 1.0.

Free-head piles

A reduction in o increases the pile-head displacements and the maximum bending
moments for cycles 1 to 5, as depictéd in Figures 7.19a and 7.19b, respectively. This is
because of the greater amount of soil yielding taking place as a result of lower limit shear

stress. However, with the increase in cycling, o = 0.2 (point 4 in Figure 7.19a) gives higher
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pile-head displacements than o = 0.1. This is due to the higher rate of cyclic degradation for
o = 0.2 than for a = 0.1 (see Figure 7.19c). The maximum bending moment for a = 0.2 is
higher than for o = 0.1, as a consequence of the pile-head displacement responses. Reducing
o from 1.0 to 0.5, (0.2, 0.1) increases the pile-head displacements by 29%, (60%, 52%), and
the maximum bending moments by 5%, (17%, 14%) for the tenth cycle. The effect of « is

greater for pile-head displacements than for maximum bending moments.

Fixed-head piles

The increase in the pile-head displacements and maximum bending moments with the
reduction in o is clearly shown in Figures 7.20a and 7.20b, for cycles 1 and 2 (reasons as
explained for the free-head piles). With further cycling, a = 0.1 and 0.2 has stabilised to an
alternating plasticity response. It is observed in the tenth cycle, that the maximum pile-head
displacements for o = 0.5 is greater than for a = 0.2. This is because of the higher rate of
cyclic degradation for higher a.. Reducing o from 1.0 to 0.5, (0.2, 0.1) increases the pile-head
displacements by 24%, (21%, 26%) and the maximum bending moments by 6%, (10%, 10%)
for the tenth cycle. The effect of a is greater for pile-head displacements than for maximum

bending moments.

7.5.9 The effect of eccentric loading (e)
Eccentric loading (e) decreases the lateral capacity of the pile due to the increase in
bending moments in the pile. The eccentricity of 0.0, 0.5, 1.0 and 2.0D (D is the pile

diameter) will be examined in this study.

Free-head piles

An increase in e causes the pile-head displacements and maximum bending moments
to increase, as depicted in Figures 7.21a and 7.21b, respectively. This is because of greater
soil yielding as a result of the increase in the bending moments in the piles. This is also
reflected in the rate of cyclic degradation and the rate of increase in maximum bending
moment with cycling. The above Figures show that increasing e from zero to 0.5D, (1.0D,
2.0D) increases the pile-head displacefnents by 1.7 times, (2.2 times, 3.2 times) and the

maximum bending moments by 1.4 times, (1.6 times, 2.1 times) for the tenth cycle. The
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results show that the effect of eccentricity is greater for pile-head displacements than for

maximum bending moments.

Fixed-head piles
It is assumed in APILEC analysis that eccentric loading does not have any effect on

the fixed-head piles. As such, the effect of eccentricity is not examined.

7.6 Soft clay

The 'soft clay' model is intended to simulate the normally consolidated (or
lightly-overconsolidated) clay conditions encountered in many site situations, where the

undrained shear strength of the clay increases linearly with depth.

Smame2

I ) and normalised

In the following studies, the normalised displacement (

. . M, .
maximum bending moment(ﬁ) are plotted against the parameters concerned; where &, ,

M,.., H, m and D are the (maximum) pile-head displacement, maximum bending moment,

lateral load, rate of increase in soil Young's modulus and pile diameter, respectively. ‘

7.6.1 The effect of load levels

In practice, most piles fail by yielding of the pile section (in bending) itself, well
before the load capacity of the surrounding soil. Following Brom's (1964) limit-equilibrium
approach, Budhu and Davies (1988) showed that the horizontal load at yield for free-head

piles is:

2
Hy Oy 3
e =0.5 (cD) (7.6)

For fixed-head piles, the yield load is:

2
H, _ oy 3
— =08 (D) (7.7

Taking a typical value % of \10000, based on Equations (7.6) and (7.7), the yield load is
around 200cD’ for free-head piles and 400cD’ for fixed-head piles.

266



CHAPTER 7 Parametric Studies

Free-head piles

Loads of 50, 100, 150 and 200(cD?) were used to examine the effect of load levels on
pile responses. Figures 7.22a and 7.22b show that the pile-head displacements and maximum
bending moments increase with load levels and cycling, as a result of the increase in soil
yielding. It is shown that the second cycle has a considerable effect on the pile-head
displacements and maximum bending moments. This is due to the fact that gaps are created
by the first cycle, and hence the stiffness of the pile-soil system in subsequent cycles is lower.
At a low load of 50cD’, the pile stabilised to an alternating plasticity response. At load levels
higher than 100cD’, cyclic degradation is observed and the rate is higher with an increase in
load levels, due to the larger amount of soil yielding taking place. The rate of increase in the
maximum bending moment with cycling, is as a consequence of the pile-head displacements.
Increasing the load from 50cD’ to 100cD?, (150cD?, 200cD?) gives an increase in the
pile-head displacements by 1.3 times, (1.8 times, 2.9 times) and the maximum bending
moments by 20%, (52%, 81%) for the tenth cycle. The effect of load levels is greater for

pile-head displacements than for maximum bending moments.

Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum
bending moments for free-head piles (Figure 7.22) are observed for fixed-head piles (Figure
7.23).

The comparison of free-head with fixed-head pile results under a load of 200cD’,
shows that the use of fixed-head piles instead of a free-head piles, reduces the pile-head
displacements by 77% for the first cycle and 82% for the tenth cycle. For the maximum
bending moments (ignoring positive or negative), the reduction is 17% and 27% for the first
and tenth cycle, respectively. From the above evaluation, we can deduce that fixing the

pile-head will definitely improve the lateral load capacity of the pile.
7.6.2 The effect of pile Young's modulus (E,)

For this parametric study, the pile-soil stiffness ratio K' (E,/mD) of 1000, 2000, 5000,

10000 and 20000 are considered. With mD (m is the rate of increase in Young's modulus and
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D is the pile diameter) remains constant, £, is varied accordingly. Piles with lower E, are

more flexible.

Free-head piles

Figure 7.24a shows that the pile-head displacements are increasing with reduction in
E, or K, due to the increase in soil yielding as a result of reduction in the pile-soil system
stiffness. It is observed that for K' = 10000 and 20000, the piles stabilised to an alternating
plasticity response as the stiffness of the pile-soil system is very high. Cyclic degradation
occurs at K' less than 5000, with higher rate of cyclic degradation associated with lower K'.
Reducing XK' from 20000 to 10000, (5000, 2000, 1000) causes the pile-head displacements to
increase by 1.5 times, (2.9 times, 7.8 times, 15.3 times) for the tenth cycle. It is observed in
Figure 7.24a, that the further increase of X' from 10000 to 20000 does not affect the pile-head
displacements significantly. This is because the stiffness of the pile-soil system is very high
for K' = 10000, where the pile responded almost elastically; further increase in K only gives a
slight reduction in the pile-head displacements.

It is shown in Figure 7.24b, that the maximum bending moments increase with K" as
EP

displacement. Increasing K' from 1000 to 2000, (5000, 10000, 20000) causes the maximum
bending moments to increase by 0.0%, (0.2%, 3%, 9%) for the first cycle. With further

is directly proportional to the bending moment and inversely proportional to the

cycling, however, due to the large pile-head displacements for low X' values (say K of 1000,
2000 and 5000), it produces large bending moments as a result of the large amount of soil
yielding. This off-sets the directly proportional effect of E, with bending moment (see Figure
7.24b for the first cycle), producing higher maximum bending moments for X' of 1000, 2000,
and 5000 than for K" of 20000 with cycling. The above results indicate that the effect of E, is

greater for pile-head displacements than for maximum bending moments.

Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum
bending moments for free-head piles (Figure 7.24) are observed for fixed-head piles (Figure
7.25).

The above results, suggest that the further increase in E, from 10000mD to 20000mD,

does not reduce significantly the pile-head displacements and maximum bending moments.
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This applies to both free-head and fixed-head piles. To economise on pile material costs,

hollow piles (with appropriate £,) may be more preferable than solid steel piles.

7.6.3 The effect of backsliding factor (3)
Similar to the stiff clay model described in Section 7.5.3, the backsliding factor () of
0.0, 0.1, 0.2, and 0.5 were considered in this study.

Free-head piles

Figures 7.26a and 7.26b show that increasing P results in the reduction of the
pile-head displacements and maximum bending moments, respectively. This is because of the
lesser amount of soil yielding taking place, as the increase in §§ increases the yield stress for
tension for the soil elements. This is reflected in the reduction in the rate of cyclic
degradation and the rate of increase in maximum bending moment with cycling. Increasing 3
from 0.0 to 0.1, (0.2, 0.5) causes the pile-head displacements to reduce by 1%, (2%, 5%), and
the maximum bending moments by 0.5%, (0.9%, 2.2%) for the tenth cycle. The results show
that B has negligible effect on the pile-head displacements and maximum bending moments.

It suggests that B may be safely ignored in the analysis for load levels less than 150cD’.

Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum
bending moments for free-head piles (Figure 7.26) are observed for fixed-head piles (Figure
7.27). The results suggest that B may be safely ignored in the analysis for load levels less than
300cD’.

7.6.4 The effect of residual/peak bearing strength ratio (R,)

For this parametric study, the residual/peak bearing strength ratio (R,) of 0.1, 0.2, 0.5
and 1.0 are considered. This simulates the degradation of bearing strength of the soil by 90%,
80%, 50% and 0%, respectively. Other details are described in Section 7.5.4 for the stiff clay

model.

Free-head piles
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Figures 7.28a and 7.28b show that reducing R, increases the pile-head displacements
and the maximum bending moments, respectively. This is due to the fact that more soil
elements are taking place as a result of higher degradation of bearing strength. This is also
reflected in the increase in the rate of cyclic degradation and the rate of increase in maximum
bending moment with cycling. Reducing R, from 1.0 to 0.5, (0.2, 0.1) causes the pile-head
displacements to increase by 13%, (34%, 51%) and the maximum bending moments by 8%,
(15%, 24%) for the tenth cycle. The effect of R, is greater for pile-head displacements than
for maximum bending moments. Note that the effect of R, usually applies after the first

loading cycle, when the elements have recovered from plastic to elastic.

Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum
bending moments for free-head piles (Figure 7.28) are observed for fixed-head piles (Figure
7.29). The only difference is that for R, = 1.0, the pile has stabilised to an alternating

plasticity response, where no degradation of bearing strength is being allowed.

7.6.5 The effect of bearing degradation rate factor (C,)

Similar values of bearing degradation rate factor (C,) for the stiff clay model (Section
7.5.5) were employed here. This is to simulate slow (C, = 10 and 20), medium (C, = 50) and
fast (C, = 100) rates of bearing strength degradation.

Free-head piles

Figures 7.30a and 7.30b, show that an increase in C, causes an increase in the
pile-head displacements and the maximum bending moments, respectively. This is because of
the increase in soil elements yielding as the rate of bearing strength degradation is increased.
This explains the increase in the rate of cyclic degradation and the rate of increase in
maximum bending moment with cycling, with increasing C,. Increasing C, from 10 to 20,
(50, 100) increases the pile-head displacements by 2%, (11%, 19%), and the maximum
bending moment by 2%, (6%, 10%) for the tenth cycle. The effect of C, is greater for
pile-head displacements than for maximum bending moments. Note that the effect of C, is
usually observed after the first loading cycle, when the elements have recovered from plastic

to elastic.
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Fixed-head piles.

Similar trends of pile responses in terms of pile-head displacements and maximum
bending moments for free-head piles (Figure 7.30) are observed for fixed-head piles (Figure
7.31). It is observed that for C, = 10 and 20, the pile tends to stabilise to an alternating
plasticity response with further cycling. This is because of the slow rate of bearing strength
degradation, which causes little degradation of bearing strength. The rate of cyclic
degradation and the rate of increase in maximum bending moment with cycling, are higher

for C,> 50

7.6.6 The effect of residual/peak shear strength ratio (R,)

For this study, the residual/peak shear strength ratio (R,) of 0.1, 0.2, 0.5 and 1.0 were
employed. This simulates the degradation of shear strength of soil by 90%, 80%, 50% and
0%, respectively. Other details are described in Section 7.5.6 for the stiff clay model.

Free-head piles

Figures 7.32a and 7.32b show that the increase in pile-head displacements and
maximum bending moments, respectively, is associated with the reduction in R.. This is due
to the fact that a greater amount of soil yielding occurs for lower R, as the degradation in the
shear strength of the clay is higher. It is observed that the rate of cyclic degradation and the
rate of increase in maximum bending moment with cycling, for R, = 0.1 is initially higher
than R, > 0.2. However, with cycling greater than five cycles, the rate of cyclic degradation
and the rate of increase in maximum bending moment decreases, when the residual strength
of the soil elements is reached. Reducing R, from 1.0 to 0.5, (0.2, 0.1) increases the pile-head
displacements by 4%, (9%, 12%), and the maximum bending moments by 4%, (6%, 6%) for
the tenth cycle. The effect of R, is greater for pile-head displacements than for maximum
bending moments. The effect of R, usually applies after the first loading cycle, when the

plastic elements are brought back to elastic.

Fixed-head piles
Similar trends of pile responses in terms of pile-head displacements and maximum

bending moments for free-head piles (Figure 7.32) are observed for fixed-head piles (Figure
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7.33), except that R, = 0.1 and 0.2 have stabilised to an alternating plasticity response with

further cycling. This is because the residual shear strength of the soil elements were reached.

7.6.7 The effect of shear strength degradation rate factor (C))
Similar values of shear strength degradation rate factor (C,) for the stiff clay model
(Section 7.5.7) were considered in this study. This is to simulate slow (C,; = 0.1 and 0.2),

medium (C; = 0.5) and fast (C, = 1.0) rates of shear strength degradation.

Free-head piles

The increase in pile-head displacements and maximum bending moments with the
increase in C, are depicted in Figures 7.34a and 7.34b, respectively. It is observed that the
effect of C, for both pile-head displacements and maximum bending moments are negligible.
This is because the residual strength of the soil elements have been reached regardless of the
rate specified, as the plastic shear displacement for the elements is very high. For example, it
is shown that the increase in C; from 0.1 to 0.2, (0.5, 1.0) increases the pile-head
displacements by only 0.2%, (0.2%, 0.4%), and the maximum bending moments by only
0.7%, (1.5%, 1.6%) for the tenth cycle.

Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum
bending moments for free-head piles (Figure 7.34) are observed for fixed-head piles (Figure
7.35).

The above results imply that C; can be ignored for both free-head and fixed-head piles
in the analysis, for loads below 150cD’ and 300cD’, respectively.

7.6.8 The effect of adhesion factor (o)
Similar adhesion factor (a) of 0.1, 0.2, 0.5 and 1.0 for the stiff clay model (Section

7.5.8) were considered in this study.

Free-head piles
Figures 7.36a and 7.36b show the increase in pile-head displacements and maximum

bending moments when o decreases. This is because of the greater amount of soil elements
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yielding taking place as the limit shear stress is lower. It is observed that the lower rate of
cyclic degradation and lower rate of increase in maximum bending moment with cycling, is
associated with a lower a. This is due to the greater amount of soil elements yielding in both
the loading/reloading and unloading cycles. Decreasing a from 1.0 to 0.5, (0.2, 0.1) causes
the pile-head displacements to increase by 5%, (10%, 14%), and the maximum bending
moments by 1%, (2%, 2%) for the tenth cycle. The effect of a is greater for pile-head

displacements than for maximum bending moments.

Fixed-head piles
Similar trends of pile responses in terms of pile-head displacements and maximum
bending moments for free-head piles (Figure 7.36) are observed for fixed-head piles (Figure

7.37).

7.6.9 The effect of eccentric loading (¢)
As for the stiff clay model (Section 7.5.9) , the eccentricity (e) of 0.0, 0.5, 1.0 and

2.0D (D is the pile diameter) were considered in this parametric study.

Free-head piles

An increase in e causes the increase in the pile-head displacements and maximum
bending moments as depicted in Figures 7.38a and 7.38b, respectively. This is due to the fact
that a greater amount of soil elements yielding are taking place, as the bending moments in
the piles are increased. This also causes the rate of cyclic degradation to increase. Increasing e
from 0.0 to 0.5D, (1.0D, 2.0D) increases the pile-head displacements by 1.3 times, (1.7 times,
2.7 times), and the maximum bending moments by 14%, (27%, 55%) for the tenth cycle. The
results suggest that the effect of e is greater for pile-head displacements than for maximum

bending moments.

Fixed-head piles
It is assumed in APILEC analysis that eccentric loading will not have any effect on

the fixed-head piles. As such, the effect of eccentricity on pile responses is not examined.

7.7 Discussion of results
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Pile discretisation
The pile discretisation study showed that unit aspect ratio for the pile segments should
be adopted during analysis, to obtain an optimum balance between computational cost and

accuracy.

Parametric studies
The parametric studies indicate the parameters that have significant influence on the
pile responses in terms of pile-head displacements and maximum bending moments. They

also indicated the parameters which can be safely ignored.

Load levels

The study has shown that the load levels have significant effect on the pile-head
displacements and the maximum bending moments. The effect is greater for pile-head
displacements than on maximum bending moments. The rate of cyclic degradation and the
rate of increase in maximum bending moment with cycling, are higher with increasing load
levels. Comparing the responses of free-head and fixed-head piles under the same load level,
indicates that the latter reduces the pile-head displacements and the maximum bending
moments for both stiff clay and soft clay models. The results indicate that fixing the pile-head

will improve the cyclic lateral load capacity of the pile.

Pile Young's modulus (E,)

The study has shown that E, has significant effect on the pile-head displacements and
the maximum bending moments. Increase in E, reduces the pile-head displacements but
increases the maximum bending moments. The effect is greater for pile-head displacements
than for maximum bending moments. It is observed for the stiff clay model, that further
increase in E, from 2000E, to 4000E, shows omly slight reduction in the pile-head
displacements and a slight increase in the maximum bending moments. For the soft clay
model, a further increase in E, from 10000mD to 20000mD shows negligible effect on
pile-head displacements and maximum bending moments. This evaluation-indicates-that piles

m@bk—Ep should be employed to reduce the pile foundation-costs.

Backsliding factor ()
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The study on B shows that it did not have significant effect on the pile-head
displacements and the maximum bending moments for both stiff clay and soft clay models.

This suggests that this parameter can be ignored in the analysis.

Residual/peak bearing strength ratio (R,)

For the stiff clay model, R, has shown to have significant effect on the pile-head
displacements and the maximum bending moments, only when the load level is at the yield
load. The parameter R, can be ignored if the load levels are below 10C,D? for free-head piles
and 20C,D? for fixed-head piles. For the soft clay model, R, has shown to have significant
effect on the pile-head displacements and maximum bending moments at load levels of 75%
of the yield load. The effect is greater for pile-head displacements than for maximum bending

moments for both models.

Bearing degradation rate factor (C,)

For the stiff clay model, C, has shown to have significant effect on pile-head
displacements and maximum bending moments for free-head piles subjected only to the yield
load level. C, can be ignored for fixed-head piles. The effect is greater for maximum bending
moments than for pile-head displacements. For the soft clay model, C, has shown to have
significant effect on pile-head displacements and maximum bending moments at load levels
of 75% of the yield load. The effect is greater for pile-head displacements than for maximum

bending moments.

Residual/peak shear strength ratio (R,)
The study shows that R, has significant effect on pile-head displacements and
maximum bending moments for both soft clay and stiff clay models. The effect is greater for

pile-head displacements than for maximum bending moments.

Shear degradation rate factor (Cy)
The study shows that C; does not have significant effect on pile-head displacements
and maximum bending moments. For the stiff clay model, C, can be ignored for free-head

and fixed-head piles subjected to load levels less than 10C,D* and 20C,D?, respectively. For
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the soft clay model, C, can be ignored for free-head and fixed-head piles subjected to load
levels less than 150cD’ and 300cD’, respectively.

Adhesion factor (o) and eccentric loading (e)
The study shows that a and e have significant effect on the pile-head displacements
and maximum bending moments for both soft clay and stiff clay models. The effect is greater

for pile-head displacements than for maximum bending moments.

7.8 Concluding remarks

The results obtained in this parametric study have shed light on the performance of
cyclic laterally loaded piles, and provides some useful data for design purposes. In the next
Chapter, a number of published case histories are examined in order to assess the usefulness

of this method of analysis in practice.
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Table 7.1 Effect of pile discretisation on the initial stiffnesses of the pile-soil system.

Table 7.2 Effect of pile discretisation on the relative errors in pile-head displacements.

No. of pile segments Initial stiffness
(n) (MN/m)
10 61.1
l‘ 20 64.1
30 65.4
40 65.7

No. of pile segments Relative errors (%)
(n) Cycle 1 Cycle 5 Cycle 10
10 14 7.5 3.2
20 8.6 4.1 2.6

|l 30 3.5 3.3 1

|L 40 0 0 0

Table 7.3 Effect of pile discretisation on the relative errors in maximum bending moments.

No. of pile segments Relative errors (%)
(n) Cycle 1 Cycle 5 Cycle 10
10 1.8 -6.8 -5.8
20 1.1 -2.8 -0.5
30 0.3 -0.7 -0.9
40 0 0 0
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Figure 7.2 The effect of pile discretisation on soil segments yielding.
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Figure 7.3 The effect of pile discretisation on (a) pile-head displacements and (b) maximum

bending moments.
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Figure 7.4 The effect of pile discretisation on time required for analysis.
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Figure 7.5 The effect of load levels on (a) pile-head displacements and (b) maximum bending

moments, for free-head piles in stiff clay.
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Figure 7.6 The effect of load levels on (a) pile-head displacements and (b) maximum bending

moments, for fixed-head piles in stiff clay.
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Figure 7.7 The effect of pile Young's modulus (Ep) on (a) pile-head displacements and (b)

maximum bending moments, for free-head piles in stiff clay.
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Figure 7.8 The effect of pile Young's modulus (Ep) on (a) pile-head displacements and (b)

maximum bending moments, for fixed-head piles in stiff clay.
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Figure 7.9 The effect of backsliding factor (P) on (a) pile-head displacements and (b)

maximum bending moments, for free-head piles in stiff clay.
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Figure 7.10 The effect of backsliding factor (P) on (a) pile-head displacements and (b)

maximum bending moments, for fixed-head piles in still clay.

286



Parametric Studies

CHAPTER 7
Free-head piles
— o0— CYCLE 1,H=10CuD A2
— o— CYCLE 2,
— A— CYCLE 5,
— X— CYCLE 10,
-m0 - CYCLE 1,H=20CuDA2
- CYCLE 2,
-A-CYCLE 5,
-x-CYCLE 10,
— a
G- — O-—mmmmem G M
05
02 0.5

(@)

Free-head piles

-0— CYCLE 1,H=10CuDA2
-0o— CYCLE 2,
-A— CYCLE 5,
-x— CYCLE 10,
- 0- CYCLE 1 H=20CuDA2
— CYCLE 2,
- * . CYCLE 5,
-+x-CYCLE 10,

(b)

Figure 7.11 The effect of residual/peak bearing strength ratio (RA on (a) pile-head

displacements and (b) maximum bending moments, for free-head piles in stiff clay.
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Figure 7.12 The effect of residual/peak bearing strength ratio (Rh) on (a) pile-head

displacements and (b) maximum bending moments, for fixed-head piles in stiff clay.
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Figure 7.13 The effect of bearing degradation rate factor (C/) on (a) pile-head displacements

and (b) maximum bending moments, for free-head piles in stiff clay.
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Figure 7.14 The effect of bearing degradation rate factor (CH on (a) pile-head displacements

and (b) maximum bending moments, for fixed-head piles in stiff clay.
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Figure 7.15 The effect of residual/peak shear strength ratio (Rs) on (a) pile-head
displacements, (b) maximum bending moments and (c) pile-head load-displacement

responses for Rsof 0.1 and 0.2 (see overleaf), for free-head piles in stiff clay.
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Figure 7.15 (c) The effect of residual/peak shear strength ratio (Rs) on pile-head

load-displacement responses for Rsof 0.1 and 0.2, for free-head piles in stiff clay.
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Figure 7.16 The effect of residual/peak shear strength ratio (Ry on (a) pile-head

displacements and (b) maximum bending moments, for fixed-head piles in stiff clay.
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Figure 7.17 The effect of shear strength degradation rate factor (Cv on (a) pile-head

displacements and (b) maximum bending moments, for free-head piles in stiff clay.
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Figure 7.18 The effect of shear strength degradation rate factor (Cvy on (a) pile-head

displacements and (b) maximum bending moments, for fixed-head piles in stiff clay.
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Figure 7.19 The effect of adhesion factor (a) on (a) pile-head displacements, (b) maximum

bending moments and (c) pile-head load-displacement responses for a of 0.1 and 0.2 (see

overleaf), for free-head piles in stiff clay.
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Figure 7.19 (c) The effect of adhesion factor (a) on pile-head load-displacement responses for

a of 0.1 and 0.2, for free-head piles in stiff clay.
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Figure 7.20 The effect of adhesion factor (a) on (a) pile-head displacements and

maximum bending moments, for fixed-head piles in stiff clay.
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Figure 7.22 The effect of load levels on (a) pile-head displacements and (b) maximum

bending moments, for free-head piles in soft clay.
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Figure 7.23 The effect of load levels on (a) pile-head displacements and (b) maximum

bending moments, for fixed-head piles in soft clay.
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Figure 7.24 The effect of pile Young's modulus (Ep) on (a) pile-head displacements and (b)

maximum bending moments, for free-head piles in soft clay.
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Figure 7.25 The effect of pile Young's modulus (Ep) on (a) pile-head displacements and (b)

maximum bending moments, for fixed-head piles in soft clay.

303



CHAPTER 7 Parametric Studies

Free-head piles

CYCLE 1
CYCLE 2
CYCLE 5
CYCLE 10
02 =

0.15 =

(2)

Free-head piles
-CYCLE 1
-CYCLE 2

-CYCLE 5
-CYCLE 10

(b)

Figure 7.26 The effect of backsliding factor (P) on (a) pile-head displacements and (b)

maximum bending moments, for free-head piles in soft clay.
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Figure 7.27 The effect of backsliding factor ((3) on (a) pile-head displacements and (b)

maximum bending moments, for fixed-head piles in soft clay.
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Figure 7.28 The effect of residual/peak bearing strength ratio (Rh on (a) pile-head

displacements and (b) maximum bending moments, for free-head piles in soft clay.
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Figure 7.29 The effect of residual/peak bearing strength ratio (Rh) on (a) pile-head

displacements and (b) maximum bending moments, for fixed-head piles in soft clay.

307



CHAPTER 7 Parametric Studies

05
0 45
04

035

Free-head piles

-CYCLE 1
-CYCLE 2
-CYCLE 5
-CYCLE 10
02

005

20

()

Free-head piles

-CYCLE 1
-CYCLE 2
-CYCLE 5
-CYCLE 10

(b)

Figure 7.30 The effect of bearing degradation rate factor (C# on (a) pile-head displacements

and (b) maximum bending moments, for free-head piles in soft clay.
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Figure 7.31 The effect of bearing degradation rate factor (C/ on (a) pile-head displacements

and (b) maximum bending moments, for fixed-head piles in soft clay.
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Figure 7.32 The effect of residual/peak shear strength ratio (RyY on (a) pile-head

displacements and (b) maximum bending moments, for free-head piles in soft clay.
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Figure 7.35 The effect of shear strength degradation rate factor (Cvw on (a) pile-head

displacements and (b) maximum bending moments, for fixed-head piles in soft clay.
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Figure 7.36 The effect of adhesion factor (a) on (a) pile-head displacements and (b)

maximum bending moments, for free-head piles in soft clay.
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Figure 7.37 The effect of adhesion factor (a) on (a) pile-head displacements and (b)

maximum bending moments, for fixed-head piles in soft clay.
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Figure 7.38 The effect of eccentric loading ) on (a) pile-head displacements and (b)

maximum bending moments, for free-head piles in soft clay.
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CHAPTER 8
Analyses of Published Field Test Data

8.1 Summary

The cyclic loading analysis developed in Chapter 6 is employed to interpret the test
data obtained from five published full-scale field tests. These studies concentrate on lateral
pile-head displacements, maximum bending moments and bending moment distributions
along the pile length. In addition, the predictions of the present numerical analysis are
compared with those obtained by a number of other workers. Before attempting to interpret
the pile responses, the selection of soil parameters to be used in the current analysis is

discussed.

8.2 Introduction
The objective of this Chapter is to examine the accuracy and usefulness of the current

analysis (APILEC), developed in Chapter 6. This is carried out by comparisons with cyclic
pile-load test results from published case histories. The case histories examined in this study
are:

+ Field tests at Lake Austin reported by Matlock (1970).

+ Field tests at Sabine reported by Matlock (1970).

+ Field tests reported by Reese et al. (1975).

+ Field tests reported by Tassios and Levendis (1974).

+ Field tests at Tilbrook Grange reported by Hamilton and Dunnavant (1993).

For each case, the soil conditions of the site were studied carefully, in order to determine the
appropriate soil parameters to be employed for the current analysis. The predictions of other
researchers were then discussed, and subsequently compared with the current analysis.

For the analyses, the comparisons with static loading tests were carried out first, so as
to determine if the selected soil parameters (e.g. soil Young's modulus) to be employed are

appropriate, before proceeding to the complex cyclic loading tests. In what follows, the
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selection of the appropriate soil parameters to be used in the current analysis will be

discussed.

8.3 Selection of soil parameters

The soil parameters required for the static analysis are the undrained shear strength
(C,) of the soil and its Young's modulus (£,). Poisson's ratio (v) is assumed to be equal to 0.5
under cyclic (undrained) loading conditions. For cyclic analysis, the strength degradation
parameters are required. The); are: residual/peak shear strength ratio (R,), the shear
degradation rate factor (C,), the residual/peak bearing strength ratio (R,), and the bearing
degradation rate factor (C,) are required to account for soil strength degradation. A further

backsliding factor (B) is needed to account for the backsliding phenomenon.

Soil stiffness-strength ratio (EJ/C,)

The most satisfactory method of obtaining E, appears to be to carry out full-scale
pile-load tests and back-figure the average value of E, from the measured displacement.
However, in situations where pile-load test data are not available, empirical correlations
between E, and C,, which may be determined more readily from laboratory or field tests are
frequently used. However, the reliability of determining E; from laboratory tests is often
questionable, because they are significantly affected by the anisotropic nature of the soils,
sampling disturbance, uncertainties of test equipments and testing procedures.

In the absence of data from good quality tests, it is preferable and convenient to
assume a value for the soil stiffness-strength ratio (E/C,). Simons (1976) reviewed published
data and found E/C, ratios ranging from 40 to 3000. The low values certainly incorporate
within them the effects of soil disturbance and non-linearity. D'Appolonia et al. (1971)
reported E/C, ratios of 1000 to 1500 for inorganic clays of moderate sensitivity. Bjerrum
(1972) reported EJ/C, ratios from 500 to 1500 obtained from field shear vane tests whereas
Poulos (1971) reported ratios ranging from 15 to 95 from back-calculated load-displacement
measurements of full-scale pile-load tests. These ratios correspond to secant values of
Young's modulus and in a later publication (Poulos and Davis, 1980) ratios of 250 to 400
were tentatively suggested for the tangent modulus/strength ratio. Ottaviani and Marchetti

(1979) obtained E/C, ratio of 1000 from the results of a single pile-load test. In another
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pile-load test conducted by Cooke et al. (1979), E/C, ratio of 1250 was obtained. From the
results of two pile-load tests, Meyerhof et al. (1981) reported that the average E/C, ratio is
approximately 400. Results reported by Butterfield and Ghosh (1980) on the study of 20
laboratory model pile tests, give an average E/C, ratio of 470. The results of Aschenbrener
and Olson (1984) seem to indicate that E/C, ratios lie between 400 and 1000. Davies and
Budhu (1986) and Budhu and Davies (1988) advocated E/C, ratios in the range of 500 to
1500 from their case history studies. Quek, Chow and Phoon (1992) analysed published
results of pile-load tests and laboratory model pile tests and found that £/C, ratio is averaging
about 740. It is apparent from the above results, that the £/C, ratio is quite uncertain, and the
proposals of E/C, ratios by Davies and Budhu (1986) and Budhu and Davies (1988) were
adopted for the cyclic analysis. Note that for soft clay model, the m/c ratio is used instead of
EJC, (where m is the rate of increase in soil Young's modulus and c is the rate of increase in

undrained shear strength).

Strength degradation parameters

The strength degradation parameters, namely: residual/peak shear strength ratio (R,),
the shear degradation rate factor (C,), the residual/peak bearing strength ratio (R,), and the
bearing degradation rate factor (C,) can be correlated with soil index properties as described
in Chapter 4. However, if the soil index properties are not available, R, C;, R, and C, can be
taken as 0.5, 0.5 mm™, 0.5 and 50, respectively, assuming 50% degradation of the shear
strength and bearing strength, and medium rate of shear strength and bearing strength

degradation.

Backsliding factor (B)

The backsliding factor (B) to account for backsliding phenomenon is taken as zero, as
there appears to be no field tests that can quantify the magnitude of backsliding. Nevertheless,
the parametric study on the effect on  (described in Sections 7.5.3 and 7.6.3), had shown that

its influence on pile-head displacements and maximum bending moments is negligible.

8.4 Field tests reported by Matlock
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Matlock (1970) has described six series of load-controlled tests performed at two
different locations using instrumented steel pipe piles. Two series of free-head tests (one
static and one cyclic) were conducted at Lake Austin, Texas. The other four series of loadings
(two static and two cyclic) tested under both free-head and fixed-head conditions were

conducted at Sabine, Texas. The details of the pile are:

Embedded length of pile (L) =12.8m
Outer diameter of the pile (D) =0.32m
Inner diameter of the pile =0.30m

Incremental lateral loads were applied by the loading strut; see Figure 8.1 for the test set up
for fixed-head pile at Sabine. A trench was excavated and filled with water to simulate the

offshore environment.

8.4.1 Field tests at LLake Austin
8.4.1.1 Soil conditions

The soils at Lake Austin consist of clays and silts deposited relatively recently behind
the Lake Austin Dam, Texas. The clays are somewhat jointed and fissured due to desiccation,
with an average vane shear strength of 38 kPa. Unconfined triaxial tests were also carried out
(Kay et al., 1986), giving shear strengths of about 24 kPa. The average submerged unit
weight of the clay was estimated to be 8 kN/m® (Grashuis ef al., 1990).

The current analysis has adopted a soft clay model (since the clay in which the pile is

embedded, is described as soft clay by Matlock). The details of the parameters are:

Buoyant soil unit weight (y) = 8 kN/m*
Lateral earth pressure coefficient (X)) =1.0
Adhesion factor (o) =0.5

Rate of increase in undrained shear strength (c) =10 kPa/m
Rate of increase in soil Young's modulus (m) =5 MPa/m
Backsliding factor (B) =0
Residual/peak shear strength ratio (R,) =0.5

Shear degradation rate factor (C,) =0.5 mm"
Residual/peak bearing strength ratio (R,) =0.5
Bearing degradation rate factor (C,) =50
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The C, at the mudline is taken as zero. The values for the strength degradation parameters
suggested above, are because the index properties of the soil are not available. The m/c ratio
is taken as 500, following the suggestion in Section 8.3. From the pile data and reference to

Appendix 8.1, the equivalent pile Young's modulus is taken as 55 GPa.

8.4.1.2 Predictions by previous workers

The relationship between pile-head loads and displacements were not published, and
comparisons with results can only be based on the pile-head load-maximum bending moment
responses and the bending moment distributions along the pile length.

Matlock used the p-y method (described in Section 1.3.2), with some adjustments to
the empirical values, to give the predictions for static and cyclic pile-head load-maximum
bending moment responses depicted in Figures 8.2 and 8.3. Good agreement with field results
were achieved by Matlock, with underestimation of maximum bending moments for both
static (only at load levels below 60 kN) and cyclic loading tests.

Kay et al. (1986) used the finite element method together with the soil parameters
determined from the in-situ pressuremeter testing to validate the load-displacement responses
reported by Matlock. The shear strength values obtained from the pressuremeter tests were
about 20 kPa, which were lower than the values previously obtained by Matlock. The E,
values adopted by Kay ef al. are around 300C, . In comparison with the measured field results
for static loading only, Kay et al. predictions gave much stiffer pile responses, typically 45%
higher.

Grashuis et al. (1990) used the discrete element method (described in Section 1.3.5) to
verify their proposed method of analysis, for static loading only. The C, and E, values
adopted were 20 kPa and 40 MPa, respectively. The analysis gave reasonable agreement with
the measured field results reported by Matlock.

Poulos (1982) employed the modified boundary element (described in Section 1.3.7)
to analyse the pile test data under both static and cyclic loading obtained by Matlock. The
shear strength value adopted is not mentioned. However, E, is assumed to vary linearly with
depth, with a rate of increase of 40 MPa per metre. The results of Poulos' analyses for static
and cyclic loading tests are shown in Figures 8.2 and 8.3, respectively. An underestimation of

the maximum bending moments at low load levels (below 70 kN) and an overestimation of
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the maximum bending moments at high load levels (above 70 kN) for static tests can be
clearly seen in Figure 8.2. For cyclic analysis, an underestimation and overestimation of
maximum bending moments at low and high load levels, respectively, can again be seen in

Figure 8.3.

8.4.1.3 Current analysis

The static and cyclic analyses were carried out based on the soil data described in
Section 8.4.1.1. The predictions for the static analyses depicted in Figure 8.2, show that
APILEC gives excellent predictions (differences less than 1%) of the maximum bending
moments for loads up to 30 kN, but it overestimated the maximum bending moments at
higher load levels. However, the differences are less than 20%.

For cyclic analyses, Figure 8.3 shows that the APILEC predictions for maximum
bending moments provide an excellent estimate (differences less than 1%) of the actual field
results for loads less than 70 kN. Slight underestimation of the maximum bending moments
of less than 10% are accounted for a load of 75 kN. It should be noted that only ten cycles
were considered. The bending moment distributions, depicted in Figure 8.4, show
comparisons between the predictions and the measured values at a load level of 75 kN. At
the tenth cycle, APILEC has underestimated the maximum bending moments by
approximately 10%. However, with further cycling of up to fifty cycles, APILEC gives a
more accurate prediction of the bending moment distribution, with overestimation of the
maximum bending moments by only 3%. It is clearly shown in Figure 8.4, that the depth at

which the maximum bending moment occurs, is correctly predicted by APILEC.

8.4.1.4 Discussion

The soil strength properties adopted by previous researchers (described in Section
8.4.1.2) are often inconsistent. The current analysis (APILEC) has adopted a soft clay model,
giving good predictions of pile responses for both static and cyclic loading.

APILEC has successfully predicted the increase in maximum bending moments with
increasing load levels for both static and cyclic loadings. The predictions clearly show that
the position at which the maximum bending moment occurs moves down the pile length with

increased cycling.
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The predictions by APILEC for ten cycles are sufficient to give accurate estimates of
the pile responses measured in the field. It is shown that with further cycling of up to fifty
cycles, the predictions are better especially at higher load levels. However, this will greatly
increase the computational cost.

Overall, APILEC certainly gives better predictions of the measured pile responses
than other methods of analyses developed by Matlock and Poulos, for static and cyclic

loadings (especially for cyclic loading); see Figures 8.2 and 8.3.

8.4.2 Field tests at Sabine
At Sabine, tests were carried out on free-head and fixed-head piles, in order to assess

pile-head fixity effects. The pile data is similar to that described in Section 8.4.1.

8.4.2.1 Soil conditions

The soils at the Sabine site are mainly soft, slightly overconsolidated marine clays
with vane shear strengths averaging about 14 kPa.

Since the pile is embedded in soft clay as described by Matlock, the shear strength is

assumed to vary linearly with depth. The details of the parameters employed for the current

analysis are:
Buoyant soil unit weight (Y) =10 kN/m’
Lateral earth pressure coéfﬁcient (K) =1.0
Adhesion factor (o) =1.0
Rate of increase in undrained shear strength (c) = 6 kPa/m
Rate of increase in soil Young's modulus (m) =3 MPa/m
Backsliding factor (3) =0
Residual/peak shear strength ratio (R)) =0.5
Shear degradation rate factor (C,) =0.5 mm™
Residual/peak bearing strength ratio (R,) =0.5
Bearing degradation rate factor (C,) =50

The C, at the mudline is taken as zero since the pile tests were performed in a pit flooded with
water. The adhesion factor (at) is taken as unity, since the clay is probably very soft (shear

strength is only 14 kPa). The values for the strength degradation parameters suggested above,
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are because the index properties of the soil are not available. The (m/c) ratio is taken as 500,

following the suggestion in Section 8.3.

8.4.2.2 Predictions by previous workers
Due to the limited field data, comparisons can only be based on the pile-head
load-maximum bending moment responses and the bending moment distributions along the

pile length.

Free-head pile

Matlock employed the p-y method to predict the response of free-head piles to static
and cyclic loading tests. Good agreement with field test results was achieved (see Figures 8.5
and 8.6), with some overestimation of the maximum bending moments (loads above 70 kN)
for static loading and underestimation of maximum bending moments (loads above 60 kN)
for cyclic loading. However, it should be borme in mind that repeated trial-and-error
adjustments would have been necessary to obtain these results, since the p-y method is, in
effect, merely an elaborate curve-fitting strategy.

Poulos (1982) used the modified boundary element method in his analysis. He
assumed that the soil modulus .varied linearly with depth (m = 40 kPa/m) and applied 100
cycles of symmetric two-way loading. For static loading, Poulos predicted much lower
maximum bending moments than the measured results (Figure 8.5), and for the cyclic
loading, he underestimated the maximum bending moments by 10% for loads above 60 kN

(Figure 8.6).

Fixed-head pile

The fixed-head pile test is conducted at an eccentricity of 0.32 m, giving different
bending moments at the mudline and at the load point. The comparisons with results were
carried out at the load point where the restraining moments are maximum.

The predictions given by Matlock using the p-y method are shown in Figures 8.7 and
8.8, for static and cyclic analyses, respectively. For both static and cyclic analyses, Matlock
predicted much lower maximum restraining moments than the measured values at the load

point.
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Poulos predictions for static loading, depicted in Figure 8.7, gave an overestimation of
the maximum restraining moments at low load levels and an underestimation at higher load

levels. For cyclic loading (Figure 8.8), he underestimated the maximum restraining moments.

8.4.2.3 Current analysis

The soil data used for the analyses are described in Section 8.4.2.1.

Free-head piles

For static analyses, APILEC gives excellent predictions of the measured maximum
bending moments as shown in Figure 8.5. The differences between predicted and measured
results are less than 2% for the full range of load levels. For cyclic analyses, the predictions
by APILEC for ten cycles, depicted in Figure 8.6, gives a very good prediction (differences
less than 1%) of maximum bending moment at a low load of 35 kN. An underestimation of
the maximum bending moments by 11 and 24% at loads of 53 kN and 60 kN respectively,
were observed. This is due to the insufficient number of cycles the pile is subjected to in the
analyses. Increasing the number of cycles to fifty, Figure 8.9 shows that APILEC gives a very
close prediction (differences less than 1%) of the measured maximum bending moment at a
load of 60 kN. In addition, APILEC produces similar bending moment distributions along the
pile length, with accurate predictions on the position at which the maximum bending

moments occur.

Fixed-head piles

For the fixed-head piles, APILEC overestimates the maximum restraining moments
for both static and cyclic analyses, as shown in Figures 8.7 and 8.8. This suggests that the
strength properties of clay used in these analyses needed to be adjusted. Hence, it was decided
to increase the ¢ and m values to 10 kPa/m and 5 MPa/m (m/c = 500), respectively, to reduce
the predicted maximum bending moments. This might be justified by possible variations in
soil properties. With these modifications, APILEC still overestimated (by an average of 15%)
the maximum restraining moments for both static (loads below 100 kN) and cyclic loadings
(loads below 80 kN); see Figures 8.10 and 8.11. However, better estimates were achieved for

higher load levels.
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In comparison with the measured bending moment distribution along the pile length
(at a load of 89 kN) depicted in Figure 8.12, APILEC closely estimates the negative moment
distributions at the tenth cycle. The positive moment distributions and the depth at which the
maximum positive moment occurs are underestimated. However, this is not the main concern,
as a good prediction of the maximum restraining moment for fixed-head piles is of prime

importance.

8.4.2.4 Discussion

The current analysis employed the soft clay model for its prediction (based on the fact
that the soil is described as soft clay), rather than using constant shear strength of 14 kPa
(suggested by experimental tests). However, its predictions indicated give good estimates of
the actual pile responses for both static and cyclic loadings. Some adjustments of the soil
strength properties are required to give good predictions for fixed-head piles. This may be
justified by variations in soil properties for different locations at which the free-head and
fixed-head piles were tested.

The p-y method employed by Matlock, gave better predictions for free-head piles than
for fixed-head piles. This may imply that different p-y methods may be needed to deal with
different pile-head fixity conditions.

APILEC gave good predictions of the measured pile responses by using only ten
cycles. However, if better predictions are desired (especially for high load levels), further
cycling (say up to fifty cycles) may be required (Figure 8.9).

APILEC is capable of giving better predictions for the cyclic pile-load tests, for
free-head and fixed-head pile éonditions, than other methods of analyses proposed by
Matlock (1970) and Poulos (1982); see Figures 8.5, 8.6, 8.10 and 8.11. The predictions have
shown that cyclic loading increases the maximum bending moments and that the increase
depends on the magnitude of the loading and the number of cycles. They also show that the
position at which the maximum bending moment occurs moves down the pile depth with an

increasing number of cycles.

8.5 Field tests reported by Reese ef al.
A series of field tests have been reported by Reese et al. (1975) on static and cyclic

laterally loaded piles embedded in stiff overconsolidated marine clay. The hollow piles were
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driven open-ended and tested under free-head conditions; the test set up can be seen in Figure

8.13. The details of the pile are:

Embedded length of pile (L) =14.95m
Outer diameter of the pile (D) =0.64 m (top 7 m), 0.61 m
Inner diameter of the pile =0.59m

For the cyclic loading tests, the load was applied in increments until the pile had stabilised at

a particular maximum displacement or until 100 cycles of loading had been applied.

8.5.1 Soil conditions

The soil is described as stiff overconsolidated marine clay. The undrained shear
strength (C,) of the clay is of the order of 192 kPa, at the top 6 to 7.5 m. The soil descriptions
are shown in Figure 8.14.

For the current analysis, a stiff clay model with constant E, and C, was adopted. The

details of the soil parameters are:

Buoyant soil unit weight (y) =10 kN/m’
Lateral earth pressure coefficient (K)) =1.0
Adhesion factor (o) =0.5
Undrained shear strength (C,) =190 kPa
Soil Young's modulus (E,) =190 MPa
Backsliding factor () =0
Residual/peak shear strength ratio (R,) =03

Shear degradation rate factor (C;) =0.2 mm"

Residual/peak bearing strength ratio (R,)  =0.01

Bearing degradation rate factor (C,) =100

The above R, and C, values are chosen from Figures 4.16a and 4.26a, respectively, based on
an average liquid limit of 70% (top 10 m in Figure 8.14). From the bending moment
distributions reported by Reese et al., it has been shown that the soil resistance near the
surface to a depth of 3.5 m (approximately 6 pile diameters) is extremely low, in fact, it is
virtually zero. This indicates that the soil has undergone severe degradation with cycling.

Reese et al. revealed that they were surprised at the severe deterioration of the soil resistance
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as reflected in their derived p-y curves. Hamilton and Dunnavant (1993) reviewed the tests
reported by Reese et al. and commented that the extreme degradation may be due to the fact
that the tests were conducted in a soil that was deposited in a salt water environment but was
inundated during the tests using fresh water. In view of the observations and comments, R, is
taken as a very low value of 0.01 and a rapid rate of degradation C, of 100 is assumed.

The eccentricity of loading (e) is taken as 0.35 m, based on the bending moment
measured at the ground surface. The equivalent pile Young's modulus (£,) is determined from

Appendix 8.1, giving E, as 55 GPa.

8.5.2 Predictions by previous workers

Reese et al. used the p-y method (described in Section 1.3.2) to predict the pile
responses under static and cyclic loadings; see Figures 8.15 to 8.18. For static loading,
underestimation of less than 10% of the pile-head displacements at high load levels (above
500 kN) is observed in Figure 8.15. In comparison with the measured maximum bending
moment responses, their predictions gave slight underestimation (approximately 5%) at high
load levels (above 500 kN), as depicted in Figure 8.16. For cyclic loading, Reese et al.
analyses show very good predictions (differences less than 5%) of the pile responses for both
pile-head displacements and maximum bending moments, as illustrated in Figures 8.17 and
8.18.

Poulos (1982) used the modified boundary element method (described in Section
1.3.7) to validate the pile responses reported by Reese ef al. After a series of static analyses, a
reasonable fit to the static behaviour was obtained by the use of constant E, value of 192
MPa. Poulos predictions under static loading, show a good estimate of the pile-head
load-displacement responses at low load levels of up to 200 kN. However, at load levels
above 500 kN, an overestimation of the pile-head displécements by approximately 20% was
observed (Figure 8.15). In terms of pile-head load-maximum bending moment responses,
Poulos underestimated the maximum bending moments as depicted in Figure 8.16. For cyclic
loading, parameter value (e.g. the reference cyclic strain €.,) adjustments are necessary to give
the pile-head displacement and maximum bending moment predictions shown in Figures 8.17
and 8.18. Poulos predictions for the pile-head displacements show a too soft response at high

load levels above 400 kN, resulting in an overestimation of more than 40% as compared with
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the measured displacements. An underestimation of the maximum bending moments at all
load levels is observed in Figure 8.18.

Swane and Poulos (1985) used the bilinear-elasto-plastic analysis (described in
Section 1.3.4) to predict the pile test responses reported by Reese e al. From their analyses of
static pile responses, they assumed that E; of the clay to be constant with a value of 53.4 MPa.
Their predictions of pile-head displacements and maximum bending moments for the static
analyses are shown in Figures 8.15 and 8.16. Good prediction of the pile-head displacements
at low load levels was achieved. However, at higher load levels, the predicted pile responses
are too stiff. For the maximum bending moment results, their predictions underestimated the
measured values, with greater differences as the loading increases. For the cyclic analyses,
Swane and Poulos predictions underestimated the pile-head displacements by an average of
15%, as illustrated in Figure 8.17. However, their predictions for the maximum bending
moments are very good (Figure 8.18), with differences of less than 5% from the measured

results.

8.5.3 Current analysis

The analyses are carried out using the soil data described in Section 8.5.1. For static
analyses, APILEC predictions shown in Figures 8.15 and 8.16 (denoted as APILEC: S1),
grossly underestimate the pile-head displacements and maximum bending moments. This
suggests that the soil strength properties (described in Section 8.5.1) needed to be changed.
From the undrained shear strength profile shown in Figure 8.14, a linear increase in undrained
shear strength with depth is chosen (i.e. the soft clay model) with lower bound ¢ = 40 kPa/m
adopted; C, at ground surface is assumed to be zero (water table is at the ground level). To
give a good prediction of the measured pile-head load-displacement responses under static
loading, a high rate of increase in soil Young's modulus with dcbth (m) of 190 MPa/m (m/c =
4750) was chosen. With these adjustments to the soil parameters, APILEC predictions
depicted in Figures 8.15 and 8.16 (denoted as APILEC: S2), show that it gives very good
estimates (differences less than 5%) of pile-head displacements and maximum bending
moments for the entire load range.

For cyclic analyses, APILEC predictions on pile-head displacements were compared
with the measured results; see Figure 8.17. At the tenth cycle, APILEC predictions are
excellent (differences less than 1%) for loads up to 300 kN. With higher load levels, APILEC
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predicts a stiffer response (about 10%). However, with further cycling to twenty cycles,
APILEC gives a good estimate (differences of less than 5%) of the pile-head displacement at
high load levels (above 300 kN). The maximum bending moment results depicted in Figure
8.18, show that APILEC gives excellent predictions (differences less than 1%) of the field
results at low load levels of up to 150 kN, but an underestimation of less than 10% at load
levels up to 445 kN is observed. In comparison with the. measured bending moment
distribution along the pile length at a load of 445 kN (Figure 8.19), APILEC (at cycle 20) has
correctly predicted the bending moment distribution and accurately determined the pile depth

at which the maximum bending moment occurs.

8.5.4 Discussion

The current analysis employed the stiff clay model initially (since the soil is described
"as stiff overconsolidated clay). However, the predicted pile response was far too stiff. Hence,
it was decided to employ the soft clay model, which is supported by soil data and field
observations (Figures 8.13 and 8.14). The use of m/c ratio of 4750 was required to give good
predictions of the measured pile responses for both static and cyclic loadings.

From the experimental results depicted in Figures 8.15 to 8.19, it is clearly shown that
pile-head displacements and bending moments increase with increasing load levels and with
cycling. This behaviour is successfully predicted by APILEC. In addition, APILEC has
shown that the depth at which the maximum bending moment occurs increases with cycling.
Overall, APILEC has shown better agreement with the evperimental results than methods
proposed by Poulos and Swane (1985) and Poulos (1982), as observed in Figures 8.15 to
8.19. The p-y analysis was developed from the above experimental test results with various
adjustments to best fit the measured pile responses, hence a slightly better agreement with

measured results than APILEC was observed.

8.6 Field tests reported by Tassios and Levendis

Laterally loaded pile tests, both static and cyclic were reported by Tassios and
Levendis (1974). One-way and two-way cyclic loading tests were conducted by jacking the
Franki piles against each other until the specified load was attained; see Figure 8.20 for the
test set up. The necessary details of the pile are:

Total length of pile =10m
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Diameter of the pile (D) =0.52m
Eccentricity of loading (¢) =0.25m

8.6.1 Soil conditions

The soil consists primarily of clay having an undrained shear strength (C,) of 50 kPa
(determined from triaxial tests). The unit weight and liquid limit of the soil, for the top 10 m
are around 15 kN/m® and 40%, respectively. Detail soil descriptions can be seen in Figure
8.21.

For the current analysis, a stiff clay model is assumed following the above soil

descriptions. The values for the soil parameters are:

Soil unit weight (y) =15 kN/m’
Lateral earth pressure coefficient (X)) =0.5
Adhesion factor (o) =0.5
Undrained shear strength (C,) =50 kPa
Soil Young's modulus (E)) =50 MPa
Backsliding factor (B) =0
Residual/peak shear strength ratio (R,) =0.7

Shear degradation rate factor (C;) =0.7 mm"

Residual/peak bearing strength ratio (R,) =0.5
Bearing degradation rate factor (C,) =50

The above values for R, and C, are taken from Figure 4.16a and 4.26a, respectively, based on
the average liquid limit of 40%. The R, and C, values (from Sections 4.7.1 and 4.8.1) are
taken as 0.5 and 50, respectively, assuming 50% of bearing strength degradation and a
medium rate of bearing strength degradation. The lateral earth pressure coefficient (X)) is
taken as 0.5 for bored piles, and the E/C, ratio is taken as 1000. The pile Young's modulus
(E,) is taken as 25 GPa.

8.6.2 Field test observations
Static loading
Two static loading tests were performed at locations L1a and L1b, and the pile-head

load-displacement responses are shown in Figure 8.22 (denoted as MEASURED: Lla and
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L1b). It is clearly seen in Figure 8.22 that the pile-head responses at locations L1a and L1b
are similar for loads up to 20 kN. However, with further loadings, say loads up to 80 kN, the
pile at location Lla displays a much stiffer response than the pile at location L1b, with a
reduction in pile-head displacement of approximately 40%. This suggests variations in soil

properties.

One-way cyclic loading

For the one-way cyclic loading tests, the Piles D and G are jacked against each other
at location L3a. Their responses at a load of 60 kN for fifteen cycles are depicted in Figure
8.23 (denoted as MEASURED: Pile D and Pile G). At the first cycle of the tests, which can
be considered as the static loading, the pile-head displacement for Pile D is 10.3 mm and for
Pile G is 9.4 mm (Figure 8.23). Compared with the static loading test results depicted in
Figure 8.22, at a load of 60 kN, the maximum pile-head displacements at two different
locations Lla and L1b are 4.0 mm and 5.5 mm, respectively. This demonstrates again the
large differences in results of approximately 2 to 3 times when tested at different site
locations, which may be due to variations in soil properties. It is also noted in Figure 8.23 that
Pile G displacements are lower than Pile D. This may be due to the arrangement of the piles

during testing as shown in Figure 8.20.

Two-way cyclic loading

The two-way cyclic loading tests were conducted at location L4a with three piles at a
single location. The loading was applied by jacking the middle and the left or right pile
against each other in any one loading direction. The pile-head displacement results recorded
for the middle pile at a load of 60 kN, in terms of forward and backward displacements
(denoted as MEASURED: Forward and Backward) are depicted in Figure 8.24.

The forward displacement for the load of 60 kN at cycle one, which can be considered
as the pile-head displacement for the static loading, gives a displacement of 3.6 mm. This is
lower than those measured for the static tests at locations L1a and L1b, and the initial cycle of
the one-way cyclic loading tests at location L3a, based on the same load level. It is also noted
that the forward (positive direction due to loading/reloading) and backward (negative
direction due to unloading) displacements are not similar, with differences averaging about

40%. This may be due to the larger amount of soil yielding taking place in the unloading
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stage, as compared with that of the loading/reloading stage. The differences between the
forward and backward displacements, however, are usually small as can be seen in the test

results reported by Tassios and Levendis at a load of 40 kN (Figure 1.1b).

8.6.3 Current analysis
Static loading

For the static loading, using the soil data described in Section 8.6.1, APILEC predicts
a too stiff pile response as depicted in Figure 8.22 (denoted as APILEC: S1). As such, it is
decided to reduce C, value to 10 kPa with E, assumed to be 25 MPa (in view of the above
discussed probable variations in soil properties), to reduce the pile-head displacements. With
these changes, APILEC predictions (denoted as APILEC: S2) lie between the two measured
pile-head displacement results (Figure 8.22). Unfortunately, no bending moment results were

measured by Tassios and Levendis, hence no further comparisons can be made.

One-way cyclic loading

For the one-way cyclic loading, APILEC uses C, = 10 kPa and E, = 10 MPa (other
soil data are similar to those described in Section 8.6.1) to give good predictions of the
measured pile-head displacements for the first cycle. However, with cycling to fifteen cycles,
APILEC has underestimated the measured pile-head displacements after the second cycle as
shown in Figure 8.23 (denoted as APILEC: C1). This suggests that the values for the soil
strength degradation parameters will need to be increased. Since the rate of increase in
pile-head displacements with cycling (i.e. rate of cyclic degradation) is high, it suggests a
rapid rate of bearing strength degradation is required; R, is taken as 0.2 and C, as 100. This is
based on the parametric studies reviewed in Sections 7.5.4 and 7.5.5 at high load levels. With
these adjustments, APILEC predictions (denoted as APILEC: C2 in Figure 8.23) give higher
pile-head displacements with cycling, but, they still underestimate the measured pile-head
displacements after the third cycle. From the parametric studies (Section 7.5.5), a very fast
rate of bearing strength degradation may be necessary to increase the rate of cyclic
degradation. As such, C, of 200 was considered. With this modification, APILEC (denoted as
APILEC: C3 in Figure 8.23) gives very good predictions (average differences less than 5%)
on the measured rate of cyclic degradation for the fifteen cycles, following closely the

displacement trend of Pile D.
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Two-way cyclic loading

From the field test observations described in Section 8.6.2 and the results depicted in
Figure 8.24, C, = 10 kPa and E, = 20 MPa are taken for APILEC analysis in order to give a
good prediction of pile-head displacements at cycle one. The other soil data described in
Section 8.6.1 are used, except that R, is now taken as 0.3 and C, as 100. The predictions by
APILEC depicted in Figure 8.24 (denoted as APILEC: C4 Forward and C4 Backward), show
that it overestimated (average about 30%) the forward displacements, and underestimated
(average about 20%) the backward displacements. Since the maximum pile-head
displacements (ignoring the direction) is of main interest in the cyclic laterally loaded pile
design, a very fast rate of bearing strength degradation with C, = 200 was again adopted to
increase the rate of cyclic degradation. With this change in C,, APILEC predictions depicted
in Figure 8.24 (denoted as APILEC: C5 Forward and C5 Backward), give excellent estimates
(differences less than 2%) of the measured maximum pile-head displabements (i.e. backward
displacements). However, APILEC overestimated the forward displacements by an average
of around 50%; this is not particularly significant as a good match with the maximum

pile-head displacements is of prime concern.

8.6.4 Discussion

The field test results, giving different pile-head displacements for static loading,
one-way cyclic and two-way cyclic loadings (both at cycle one) under the same load level,
clearly indicate the variations of soil properties at different locations. This suggests that
having an average undrained shear strength for the entire test site is not sufficient for pile
design purposes. Due to these factors, the C, and E, values for APILEC predictions have to be
adjusted (E/C, ratios ranging between 1000 to 2500 were used) to give good predictions of
the measured pile-head displacements at the first cycle, before proceeding to the cyclic
analyses. The analyses (APILEC) for one-way and two-way cyclic loadings have adopted a
high C, value of 200 to account for the fast rate of cyclic degradation observed in the field
tests. This may be due to the rate of load application during the tests or the type of soils
encountered, resulting in a very fast rate of strength degradation. Overall, APILEC has given
good predictions of the measured pile responses for static loading, one-way and two-way

cyclic loading tests.
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8.7 Field tests reported by Hamilton and Dunnavant
Hamilton and Dunnavant (1993) and Long ef al. (1993) gave detailed descriptions of
pile-load tests carried out at Tilbrook Grange in Cambridgeshire, England. The test set up can

be seen in Figure 8.25. The relevant pile details are:

Embedded length of pile (L) =294 m
Outer diameter of the pile (D) =0.76 m
Inner diameter of the pile =0.69 m
Eccentricity of loading (e) =0.6m
Flexural rigidity (E,/,) = 1136 MNm*

The open-ended steel pipe pile was subjected to one-way cyclic loading by jacking the pile
apart using a central steel strut. The ground surface elevation was arbitrarily set at 100 m for
the test. A pit (elevation 98.4 m) of 1.6 m in depth was excavated around the pile to contain
ponded water for a period of one month prior to the laterally loaded pile tests (Figure 8.25).
This was to ensure that the testing area around both piles was submerged with water to
simulate offshore conditions.

The tests conducted were displacement-controlled, in which the pile-head
displacement was increased to a new, significantly higher level following around 100 cycles
of loading at the previous displacement value. A total of nine displacement increments,
comprising of one static and eight cyclic were used. The sequence of increments?is outlined

in Table 8.1.

8.7.1 Soil conditions

The soil strata in which the piles were embedded are known as Lowestoft Till and
Oxford clay (Figure 8.26a). The Lowestoft Till is described as a very stiff to hard dark grey
silty clay covering from ground surface to elevation 82.9 - 81.4 m. The clay is of intermediate
plasticity with a liquid limit in the range of 35% to 45% and a plastic limit of about 15%. The
effective unit weight of the soil has an average value of 11.5 kN/m’. The Oxford clay is
described as hard dark grey fissured clay from level 82.9 m - 81.4 to level 60 m and beyond.
The clay is of high to intermediate plasticity with liquid and plastic limit of about 55% and
20% respectively.

335



CHAPTER 8 Analyses of Published Field Test Data

The undrained shear strength (C,) profile for axial loaded pile analyses is given in
Figure 8.26a. The upper portion of the shear strength profile was modified for the lateral load
test after additional site investigation. Two supplementary borings, designated as Boring 207
and 208 were drilled and sampled to 8 m penetration at locations close to the test pile
position. Unconsolidated undrained triaxial tests were performed on recovered samples.
Figure 8.26b details the revised undrained shear strength profile of the soil for the upper 10
m.

For the current analysis, only the soil at level 98.4 to 90 m (less than ten pile
diameters from the top) was taken into consideration to determine the appropriate undrained
shear strength, and the effective unit weight of the soil. From the undrained shear strength
results (Figure 8.26b), it suggests the use of the soft clay model, with C,, (E,) at the pit floor
level taken as 150 kPa (75 MPa) . Other soil data used in the analysis are:

‘Buoyant soil unit weight (y) =11.5 kN/m’
Lateral earth pressure coefficient (K,) =1.0
Adhesion factor (o) =0.5

Rate of increase in undrained shear strength (c) =50 kPa/m
Rate of increase in soil Young's modulus (m) =25 MPa/m
Backsliding factor () =0
Residual/peak shear strength ratio (R,) =0.6

Shear degradation rate factor (C,) =0.7 mm’
Residual/peak bearing strength ratio (R,) =0.5

Bearing degradation rate factor (C,) =50

The soil strength-stiffness ratio (m/c) of 500 was used. The above R, and C, values are taken
from Figure 4.16a and 4.26a, based on correlation with liquid limit of 35% to 45%. The
above R, and C, values are taken, assuming 50% degradation in bearing strength and medium
rate of bearing strength degradation (from Sections 4.7.1 and 4.8.1).

The pile-head displacement results indicated in Long et al. (1993) indicated that the
lower portion (below the 90 m level) of the pile behaviour has virtually no influence on the
upper part. The embedded pile length of twenty pile diameters was therefore assumed to
economise on computational costs. The equivalent Young's modulus (E,) of the pile was

taken as 70 GPa (from Appendix 8.1).
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8.7.2 Predictions by previous workers

The p-y methods established by Matlock (1970) and Reese ef al. (1975) and a recent
revised p-y method developed by Dunnavant and O'Neill (1989) were used to predict the pile
responses. The above methods use €5, = 0.005, typically assumed for design in the absence of
field measurements for p-y methods. In addition, the p-y curves derived from the measured
bending moment profiles of the piles, for the current pile-load tests described by Hamilton
and Dunnavant (1993), known as the 'derived p-y' method is used for predicting the pile

responses.

Static analysis

The predictions using the above p-y methods for static loading are shown in Figure
8.27. The agreement between the measured pile-head load-displacement responses with those
predicted using the derived p-y method is very good. This is because the derived p-y curves
were extracted from the measured pile responses (together with some curve fitting
techniques), and will naturally provide very good predictions. The predictions by Reese et al.
at low displacement levels (less than 10 mm) are very good, but with further increases in the
displacement levels, they predicted a very stiff pile response. Matlock predictions
underestimated the pile-head load by 20% at low displacement levels and continue to give a
soft response with the increase in displacements. Dunnavant and O'Neill predictions
underestimated the pile-head load at low displacement levels, but give good estimates

(differences less than 10%) at higher displacements.

Cyclic analysis

The comparisons with cyclic loading results using the above p-y methods are depicted
in Figure 8.28. The derived p-y method provides the best predictions of the pile-head
load-displacement results, with underestimation of pile-head load by 6% at displacement of
54 mm and overestimation at higher displacement levels. The method by Matlock predicted a
too stiff pile response. Dunnavant and O'Neill gave good estimation of pile-head loads at low
displacement levels, but overestimated the pile-head loads as the displacement levels
increased. Reese et al. predicted a stiff pile response at low displacement levels (less than 25

mm), after which, they predicted a soft pile response; the pile-head load-displacement
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response is essentially asymptotic after displacement of 25 mm. The method of analysis
developed by Reese et al., clearly leads to undue conservative design at high displacement or
load levels.

Figure 8.29 shows the comparisons between the maximum bending
moment-displacement responses with predictions obtained using the above p-y methods. As
expected, the derived p-y method predictions give the best estimates of the maximum bending
moments; overestimation of maximum bending moments at high displacement levels are
observed. Other p-y methods (developed by Reese ef al., Dunnavant and O'Neill and
Matlock) have grossly overestimated the maximum bending moments with increasing
displacement levels, except the method by Reese ef al., which underestimated the measured

maximum bending moments for displacement levels of more than 70 mm.

8.7.3 Current analysis

As APILEC is capable of analysing pile behaviour under displacement-controlled
conditions, the controlled displacement is set according to the maximum value for each
increment, outlined in Table 8.1. The minimum or residual displacements are all taken as
zero, although this is different from the field test minimum values. However, this will have
little effect on the overall pile behaviour. Furthermore, the maximum displacements of the
pile corresponding to the maximum loadings and bending moments are the main concern in

the analyses.

Static analysis

Static analyses were conducted using the soil data described in Section 8.7.1. APILEC
predicted a very stiff pile response; see Figure 8.30 (denoted as APILEC: S1). As such m was
lowered to 100c, and the predictions (denoted as APILEC: S2) showed very good agreement
(differences less than 5%) with the measured pile-head load-displacement responses at
displacement levels above 50 mm. At displacement levels less than 40 mm, APILEC
underestimated the pile-head loads by an average of 15% (Figure 8.30).

An examination on the bending moment distributions predicted by APILEC at
displacement increment 9 (displacement of 104.5 mm), depicted in Figure 8.31, shows that

the maximum bending moment is underestimated by approximately 20%. To have a more
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accurate prediction of the maximum bending moment, the values for the soil strength
parameters used in APILEC analyses, will need to be re-considered.

Figure 8.26b shows a significant reduction in the undrained shear strength of the soil
after the additional site investigations from results of Borings 207 and 208 carried out close to
the test pile location. As mentioned earlier, the soil in which the piles were embedded had
been flooded with water for a month prior to the lateral load tests. This may imply that the
soil at the pit floor level probably has a C, value close to zero. Hence, a C, value of zero at pit
floor level with (lower bound) ¢ = 60 kPa/m and m = 90 MPa/m (m/c = 1500) were chosen
based on Figure 8.26b. With these changes in soil strength, APILEC predictions (denoted as
APILEC: S3 in Figure 8.30) give close estimates (differences less than 1%) of the pile-head
load-displacement responses at displacement levels of less than 15 mm. After which, the
pile-head loads are overestimated with further increases in displacement levels. The bending
moment distribution along the pile length depicted in Figure 8.31 (for displacement increment
9), shows that APILEC overestimated the maximum bending moments by around 20%.

From the above results, the value of m has to be reduced as the pile response is too
stiff at large displacement levels. Taking ¢ = 60 kPa/m and m = 27 MPa/m (m/c = 450),
APILEC predictions (denoted as APILEC: S4 in Figure 8.30) show better predictions of the
pile-head load-displacement responses as compared with previous predictions. A soft
response of pile under displacement levels of less than 20 mm is observed, while a very good
agreement (differences less than 5%) with pile responses at higher displacement levels
(greater than 50 mm) are clearly seen. The predicted bending moment distributions along the
pile length (Figure 8.31) gives very good estimates of the measured results, with the
maximum bending moments correctly predicted (differences less than 2%). Further
comparison with the measured bending moment distribution for displacement increment 8
(displacement at 54 mm), show that APILEC has again accurately predicted the bending
moment distribution (Figure 8.31), at the same time giving excellent estimates (differences
less than 2%) of the maximum bending moment. In addition, the depth at which the
maximum bending moments occur for displacement increments 8 and 9 are accurately
predicted.

In comparisons with other p-y methods (except derived p-y method) described in
Section 8.6.2, APILEC analyses have shown to give better predictions of the pile-head

load-displacement responses for the full range of displacement increments; see Figure 8.32.
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Cyclic analysis

From the above evaluations, the use of ¢ = 60 kPa/m and m = 450c is justified in view
of the possible variations in soil properties and the good predictions of the bending moment
distributions and the pile-head load-displacement responses for static loading. These values
are employed for APILEC cyclic analyses.

Using the strength degradation parameters described in Section 8.7.1, APILEC
predictions for cycles 5 and 10 are depicted in Figure 8.33. Very good agreement (differences
less than 5%) with measured pile-head load-displacement response is obtained at
displacement levels greater than 30 mm (for the fifth cycle), and at displacement levels
greater than 100 mm (for the tenth cycle). At displacement less than 20 mm, APILEC has
underestimated the pile-head loads by approximately 15%.

APILEC predictions for maximum bending moments give a good agreement (average
differences of 10%) with the measured results for the full range of displacement increments;
see Figure 8.34. Slight underestimation of the maximum bending moments (average 5% for
displacement levels greater than 30 mm) is observed at the fifth cycle. Increasing the number
of cycles to ten, a lower maximum bending moment is predicted.

The measured bending moment distributions along the pile length at the first (static)
and final cycles for displacement increments 8 and 9 are shown in Figures 8.35 and 8.36,
respectively. They show that the maximum bending moment reduces and also the position at
which it occurs, moves down the pile length, with the increasing number of cycles.
Superimposed APILEC predictions for cycles 1, 5 and 10 to Figures 8.35 and 8.36, show
good predictions of the measured responses. It ivs shown that APILEC correctly predicted the
bending moment distributions and also gives good estimation of the maximum bending
moments for both static and cyclic loadings. In addition, the position at which the maximum
bending moment occurs is correctly predicted.

In comparisons with the predictions obtained via the p-y methods (except the derived
p-y method), APILEC has certainly shown that its predictions for pile-head load-displacement
(Figure 8.37) and maximum bending moment-displacement (Figure 8.38) responses are much

better.

8.7.4 Discussion
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The field results show significant reduction in the pile-head loads from the first cycle
(static loading) to the end of the applied cycles (see Figure 8.33); this phenomenon is due to
soil erosion, gap formation and soil strength degradation effects. The amount of reduction in
pile-head loads increases with the increase in displacement levels. The same trend of pile
response is clearly produced by APILEC, as illustrated in Figure 8.33.

Overall, the APILEC analysis gives better predictions of the measured results, than
those using the established p-y methods (except the derived p-y method; reasons as explained
earlier); see Figures 8.32, 8.37 and 8.38. This applies to both static and cyclic analyses.

APILEC predictions for cycles 5 and 10 can be taken as equivalent to the final cycle
measured in the displacement-controlled pile-load tests.

The established p-y methods, in particular those developed by Matlock (1970) and
Reese et al. (1975), are recommended by API RP 2A (1986) for the determination of static
and cyclic pile responses in the offshore environment for soft clays and stiff clays,
respectively. Given the significant errors in predicting the actual pile behaviour, the

suitability of these methods must be in some doubt.

8.8 Discussion of results
Load cycles

The current analysis has shown good agreement with measured pile responses in most
cases with cycling between 5 to 10 cycles. For low load levels, 5 to 10 cycles have proved to
be sufficient to provide very good estimates, as the piles tend to stabilise, as evident in the
many field results reported and in the parametric studies conducted in Chapter 7. For higher
load levels, more cycles (say, up to 50 cycles) may be required in order to provide very good
predictions (see Figures 8.4, 8.9, 8.17 and 8.18). However, this will greatly increase the

computational cost.

Selection of soil parameters

From the comparisons with field test results, it has been shown that good predictions
of pile responses for the static loading were vital before attempting to predict the pile
responses for cyclic loading. As such, selection of strength parameters (i.e. C, or ¢ and E; or
m in Section 8.3) were critical in the analyses. This can be seen in the analyses carried out in

Section 8.7.
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For static analyses, it was shown that increasing the strength parameters reduced the
pile-head displacements and maximum bending moments. For cyclic analyses, the strength
degradation parameters were needed (R, , C,, R, and C, in Section 8.3) to obtain good
predictions. These parameters increase the pile-head displacements, maximum bending

moments and the rate of cyclic degradation.

Strength parameters

To achieve good predictions of pile response, the C, values employed in the APILEC
analysis were often different from those provided by the experimental tests. This may be a
short-coming of APILEC analysis. However, in many cases, the C, values provided may not
be appropriate due to sampling disturbances, etc. Also, the C, values may vary due to spatial
variations of soil properties and soil disturbances during pile installations as suggested by the
field data reported by Tassios and Levendis (1974). In view of this, many researchers have
also adopted different C, values from those suggested by experimental results.

For E, determination, the values adopted by APILEC range between 450C, to 4750C,.
The 4750C, was certainly much higher than that recommended in Section 8.3. In retrospect, it
would have been more sensible (in this case) to have assumed a non-linear variation of
strength with depth, allowing for both low stiffness at ground level and a rapid increase with
depth. It was noted in the comparisons of field results, that many researchers had adopted a

very wide range of E/C, ratios.

Strength degradation parameters

The use of soil strength degradation parameters (R, , C;, R, and C, in Section 8.3) for
cyclic analyses, had demonstrated their usefulness. The values adopted for these parameters
were obtained from correlations with soil index properties and experimental results described
in Chapter 4. This eliminates any empirical assumptions associated with them. However, it
was sometimes necessary to adjust these parameters from the pile-load test results (e.g. from
the rate of cyclic degradation), as shown in Figures 8.23 and 8.24. The effects of these

parameters could also be seen in the parametric studies described in Chapter 7.

Backsliding factor
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The backsliding factor () was not employed in the current analysis as there was no
evidence for it in any of the five case histories reported. In the pile test results reported by
Hamilton and Dunnavant (1993), APILEC predicted a soft response for loads below 1100 kN
for both static and cyclic analyses. The use of B may perhaps be appropriate to reduce soil

yielding, and thereby give a stiffer pile response at the low load levels.

p-y analysis

The p-y analyses only gave good agreements with the field results from which they
were derived. These were observed in the tests of Matlock (1970), Reese et al. (1975),
Dunnavant and O'Neill (1989) and Hamilton and Dunnavant (1993). However, if the p-y
criteria established by Matlock, Reese et al. and Dunnavant and O'Neill were used to compare
with the measured pile responses reported by Hamilton and Dunnavant, poor agreements
were obtained as evident in Figures 8.32, 8.37 and 8.38. This illustrated that p-y analyses
were not suitable for predicting the complex behaviour of laterally loaded piles using
available soil data from other pile-load tests (reasons as explained in Section 1.3.2). Thus, the
statement made by Davies and Budhu (1986) - "the p-y relationship has no basis in reality
outside its role as an expedient empirical device to solve the present problem" appears to be

confirmed.

8.9 Concluding remarks
From these comparisons with published field test results, the current analysis had
proved useful in providing good predictions of measured pile responses. It had successfully
predicted the phenomena observed in both the load-controlled and displacement-controlled
cyclic pile-load tests. Overall, the current analysis had shown better predictions than other
methods of analyses developed by Matlock (1970), Reese et al. (1975), Poulos (1982), Swane
and Poulos (1985), and Dunnavant and O'Neill (1989). This is believed to be due to the fact
that:
+ It adopted the continuum approach, taking account the continuous nature of pile and
soil interaction at the interface.
+ It considered the three-dimensional nature of the cyclic laterally loaded pile problems,

where the side, front and back face of the pile-soil interfaces are taken into account.

343



CHAPTER 8

Analyses of Published Field Test Data

¢ The strength parameters (C, or ¢ and E, or m) and strength degradation parameters (R, ,

C,, R, and C,), required for the analyses, involved few empirical assumptions.

Thus, given accurate values for the undrained shear strength and the soil index

properties, applying the current analysis to cyclic laterally loaded piles can be done with a

reasonable degree of confidence.
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APPENDIX 8.1

Equivalent Pile Young's Modulus

APILEC is intended for the analysis of solid cylindrical piles (despite the fact that the
internal representation assumes a square cross section). It can be applied to hollow piles or
piles whose cross-section are not circular (e.g. H piles) by using an 'equivalent diameter' and
'equivalent Young's modulus'.

The essential sectional properties of the pile are its flexural rigidity and its projected
width (in the plane normal to the loading). Let E,’I,” be the flexural rigidity of the real pile
and D" be its width. The equivalent diameter can be taken (with little error) as equal to the

width of the real pile, i.e.
D=D (A8.1-1)

The equivalent pile Young's modulus can be calculated as:

GAELT,
» =~ T pA (A8.1-2)
For a circular hollow or pipe pile, Equation (A8.1-2) is reduced to:
r d 4
E,= E, [1-(5) ] (A8.1-3)

where d is the internal diameter of the pile.
For pipe piles, the equivalence is exact but for non-circular piles (e.g. H piles), some

errors will arise from the shape effect but this should not be significant in practice, as

suggested by Davies and Budhu (1986) and Budhu and Davies (1988).
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Table 8.1 Displacement increment sequences for laterally loaded pile test at Tilbrook Grange.

Displacement | No. of cycles Displacement (mm) Maximum force

Increment Minimum | Maximum (MN)
1 1 (static) 0 4.3 0.29
2 100 24 4.1 0.28
3 100 2.9 6.2 0.37
4 100 3.9 9.3 0.47
5 100 4 15 0.61
6 100 4 24 0.74
7 120 5 37.2 1.05
8 120 7 54 1.23
9 136 30.8 104.5 1.83
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Figure 8.25 Pile test set up as described by Long et al. (1993).
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Figure 8.26 (a) Undrained shear strength profile for axial loaded pile analyses, (b) Detailed
revised profile for undrained shear strength for laterally loaded pile analyses (Long et al,

1993).
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Figure 8.27 Comparisons with load-displacement responses for static loading using p-y

methods. After Hamilton and Dunnavant (1993).
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Figure 8.28 Comparisons with load-displacement responses for cyclic loading using p-y

methods. After Hamilton and Dunnavant (1993).
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Figure 8.29 Comparisons with moment-displacement responses for cyclic loading using p-y

methods. After Hamilton and Dunnavant (1993).
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Figure 8.30 Comparisons with load-displacement responses for static loading using APILEC

analysis. After Hamilton and Dunnavant (1993).
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Figure 8.31 Comparisons with bending moment distributions for static loading. After

Hamilton and Dunnavant (1993).
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Figure 8.32 Comparisons with load-displacement responses for static loading using p-y

methods and APILEC analysis. After Hamilton and Dunnavant (1993).
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Figure 8.33 Comparisons with load-displacement responses for static and cyclic loadings

msing APILEC analysis. After Hamilton and Dunnavant (1993).
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Figure 8.34 Comparisons with moment-displacement responses for cyclic loading using

APILEC analysis. After Hamilton and Dunnavant (1993).
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Figure 8.37 Comparisons with load-displacement responses for cyclic loading using p-y

methods and APILEC analysis. After Hamilton and Dunnavant (1993).
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Figure 8.38 Comparisons with moment-displacement responses for cyclic loading using p-y

methods and APILEC analysis. After Hamilton and Dunnavant (1993).
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CHAPTER9

Conclusions

9.1 Summary and general conclusions

The main objective of this project was to develop a rational method for analysing the
behaviour of cyclic laterally loaded pile foundations, using a continuum approach, via the
indirect boundary element method. This objective was achieved by the incorporation of a
simple but realistic elasto-plastic soil model which allows for various phenomena observed in
cyclic pile-load tests, including soil yielding, gap formation, backsliding and strength
degradation.

The main conclusions of this work are as follows:

¢)) Due to the complicated nature of cyclic loading, advanced cyclic soil models may be
required to simulate the salient features of soil subjected to cyclic loading. However, these
models are complex and involve many ill-defined parameters. From this study, it appears that
the "bubble' model (Al-Tabbaa and Wood, 1989) offers a practical means of describing cyclic
soil behaviour, except for strength reduction. This model was employed in the finite element

analysis to give some insight into pile-soil interface behaviour.

(2)  The two-dimensional plane-strain finite element analyses of pile foundations
subjected to cyclic loading were carried out by modelling the pile-soil system in plan section
(Figure 3.7). From the analyses using the bubble model and Mohr-Coulomb model (for soil),
the following observations were made:
+ It was shown that the soil at two pile diameters (or more) away from the pile face were
not greatly influenced by the cyclic loading.
+ It was observed that the soil at the debonded interface (gap present) responded
elastically.
¢ The comparisons of results using the bubble model and the Mohr-Coulomb model (for

soil), showed that the pile displacements for the former model were very much higher
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than the latter model. This suggests that identifying suitable state and fundamental

parameters for the bubble model is not straightforward.

3) A detailed three-dimensional finite element analysis of cyclic laterally loaded pile
problems would incur excessive computational cost and data preparation effort, which would
be too tedious and cumbersome to contemplate. This is likely to be the reason why finite
element analyses were not employed to predict the cyclic pile responses in the case histories
examined in Chapter 8. The average time taken for the plane-strain analyses alone averaged

more than an hour.

4) The extension of the simple elastic-perfectly plastic soil model to incorporate strength
degradation, was based on the detailed examinations of reported soil behaviour. The model
parameters can be obtained from standard tests or by correlations with soil index properties,
as presented in Chapter 4. The good agreement between predictions and experimental test

results, indicated the applicability of these equations for cyclic analysis.

(5) A three-dimensional continuum approach, using incremental analysis, via the indirect
boundary element method (Davies and Budhu, 1986; Budhu and Davies, 1988) was
employed for the cyclic analysis. This approach is capable of analysing the three-dimensional
pile-soil behaviour of cyclic laterally loaded piles without undue computational cost. The
algorithm is able to account for one-way and two-way cyclic loadings, and load-controlled
and displacement-controlled conditions. The algorithm takes into consideration the
phenomena observed in the cyclic pile-load tests, such as soil yielding, gap formation,
backsliding and strength degradation. The loading is applied incrementally, so that only one
more soil element reaches the yield condition (or encountered gap closure), at the end of each
increment.- Unloading and reloading cycles are simply solved by reversing the direction of the
traction and displacement increments. At the end of each increment, pile and soil tractions,
pile displacements, bending moments, etc. are computed by updating these values from the

data obtained from the previous increment.

(6) The algorithm has some useful features which may be of value in practice. Foremost

amongst these is the generality of the algorithm which allows different pile-head fixity,
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loading conditions, pile dimensions, etc., to be analysed. The soil model allows for many
different soil conditions. In addition to their generality, the algorithm is very efficient. For
example, for a pile subjected to ten cycles, the computational time for the analysis is less than
five minutes, on an IBM-compatible 80486 DX2-66 computer. In addition, the data

preparation and data entry effort for the current analysis is quite minimal.

(7)  The current analysis gives good predictions of pile responses observed in the cyclic
pile-load tests. Under load-controlled conditions, it predicts the increaée in pile-head
displacements and maximum bending moments with cycling. Under displacement-controlled
conditions, it predicts a reduction in pile-head loads and maximum bending moments. In
addition, the bending moment distributions along the pile length, and the position at which
the maximum bending moment occurs (moving down the pile with cycling) can be predicted.
The phenomena observed in cyclic pile-load tests, due to the increase in soil yielding, gap

formation and strength degradation with cycling are accounted for in the current analysis.

€)) Finally, comparisons between the current analysis predictions and data from published
case histories yields good agreement. This demonstrates the current analysis capabilities and
usefulness. In comparison with other methods of analyses (e.g. p-y method), the current
analysis gives better predictions of the measured pile responses. This lends some confidence

in using the analysis in practice.

9.2 Recommendations for future work

The work described in this thesis, has demonstrated the usefulness of using an indirect
boundary element method for analysing the complex behaviour of cyclic laterally loaded pile
foundations embedded in cohesive soils. Further research in this field might include the
following:

1.) Extending the current analysis to deal with pile foundations embedded in
cohesionless soil (sand). This will involve thorough investigation on the behaviour
of sand subjected to cyclic loading, followed by examination of the pile-soil
interface interaction behaviour.

2.) Formulation of design rules and charts using the current analysis, to deal with cyclic

laterally load pile problems commonly encountered in practice.
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3.) Detailed study on the shakedown effects of cyclic laterally loaded pile foundations,
followed by the examination of the feasibility of incorporating the shakedown

theorems to the current analysis.
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