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my family
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To God be the Glory



On account o f the fac t that there is no glory in the foundations, and that the sources o f 

success or failure are hidden deep in the ground, building foundations have always been 
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... Terzaghi

Therefore,
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ABSTRACT

A three-dimensional numerical analysis, based on the indirect boundary element 

method, is developed to model the cyclic behaviour of laterally loaded pile foundations 

embedded in cohesive soils. Phenomena observed in cyclic pile-load tests, such as gapping, 

backsliding and soil strength degradation effects are accounted for in the analysis. The 

analysis is capable of solving one-way and two-way cyclic loading problems subjected to 

load-controlled and displacement-controlled conditions.

Two-dimensional plane-strain finite element analyses using | a 'bubble' model and 

Mohr-Coulomb model are carried out, to examine the details of the interaction between the 

pile and soil when subjected to cyclic loading. These analyses were used to guide the 

development of the full three-dimensional analysis. A detailed study of the bubble model, 

including a parametric study is conducted.

The three-dimensional non-linear elasto-plastic analysis uses an elastic-perfectly 

plastic model for soils, which are assumed to behave linearly elastically at small strain levels, 

but yield, when the limiting stresses of the surrounding soil are exceeded. After the soil 

yields, its strength may degrade depending on the magnitude of the plastic displacement (i.e. 

strain softening). The mechanisms involved in the degradation are investigated, and methods 

to determine the strength degradation parameters using experimental data and correlations 

with soil index properties are presented.

Using the foregoing analysis, an extensive parametric study on the principal pile and 

soil variables is undertaken and presented in dimensionless form, to provide data for design 

purposes. The economy and generality of the analysis, together with good agreement between 

its predictions and published case histories, assures confidence in its use in engineering 

practice.
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NOTATION

pile segment cross sectional area
B, pile segment displacement due to unit boundary conditions

b p pile segment displacement due to unit boundary conditions, corresponding to elastic 
soil segment

Bp pile segment displacement due to unit boundary conditions, corresponding to plastic 
soil segment

Bup pile segment displacement due to unit lateral translation of the pile

K pile segment displacement due to unit rotation of the pile about its head
B f pile segment displacement due to unit lateral translation of the pile, corresponding to 

the elastic soil segment
B f pile segment displacement due to unit rotation of the pile about its head, 

corresponding to the elastic soil segment
Bp“ pile segment displacement due to unit lateral translation of the pile, corresponding to 

the plastic soil segment
B f pile segment displacement due to unit rotation of the pile about its head, 

corresponding to the plastic soil segment
c„ bearing degradation rate factor
c* gap closing factor for the left pile face

gap closing factor for the right pile face
c . shear degradation rate factor
C. undrained shear strength
D pile diameter or width
EP pile Young's modulus
E, soil Young's modulus
Fqh coefficient of the pile-head compliance matrix
Fqm coefficient of the pile-head compliance matrix
Fuh coefficient of the pile-head compliance matrix
Fum coefficient of the pile-head compliance matrix
H function of the separation of the bubble and MCC yield surfaces (bubble model only)
H pile-head lateral load
H* pile-head lateral load at the specified load or displacement
h f specified pile-head lateral load
rr ̂̂  max maximum lateral load
H* pile-head lateral load due to unit rotation of the pile about its head
Hr pile-head lateral load (end of previous increment)
Hs shear force for the pile segment
Hu pile-head lateral load due to unit lateral translation of the pile
Hy yield load
4 interactive constant
4 plasticity index
I,r interactive term
Ksp spring segment stiffness
K, lateral earth pressure coefficient
L pile length

X



M  pile-head moment
M  slope of the critical state line (bubble model only)
M * pile-head moment at the specified load or displacement
Mmax maximum bending moment
Mp bending moment for the pile segment
Mq moment at the pile-head due to unit rotation of the pile about its head
Mr pile-head moment (end of previous increment)
Mu moment at the pile-head due to unit lateral translation of the pile
My yield moment
N  number of cycles
Nc bearing capacity factor
Np overconsolidation ratio
R ratio of the sizes of the bubble yield surface and the MCC yield surface
Rb residual/peak bearing strength ratio
Rbr residual bearing ratio
Rs residual/peak shear strength ratio
Rsr residual shear ratio
V specific volume
[Gp] pile coefficients obtained by integration of the Bernoulli-Euler kernel 
\S**p~\ P^e coefficients corresponding to the elastic soil segments 
[G ”g] pile coefficients corresponding to the elastic soil segments

[GJ"] pile coefficients corresponding to the plastic soil segments 
[ G f]  pile coefficients corresponding to the plastic soil segments 
[Gs] soil segment coefficients obtained from Mindlin's solution
[Gse] soil coefficients obtained from Mindlin's solution
[Gese] soil coefficients corresponding to the elastic soil segments 
[G"g] soil coefficients corresponding to the elastic soil segments
[Gesi\ soil coefficients after modification for soil yielding, corresponding to the elastic soil 

segments
undetermined terms corresponding to the elastic soil segments 
undetermined terms corresponding to the elastic soil segments 

[AT| pile-soil stiffness matrix
[i£J soil segment stiffness matrix
|X£] original soil segment stiffhess matrix
[Kese] soil stiffhess coefficients corresponding to the elastic soil segments
[K"e] soil stiffness coefficients corresponding to the elastic soil segments
1Kesn] soil stiffness coefficients corresponding to the plastic soil segments
[K™] soil stiffhess coefficients corresponding to the plastic soil segments

c rate of increase in undrained shear strength with depth
c' cohesion intercept
c'r residual cohesion intercept
db plastic bearing displacement
dgi left gap distance
dgr right gap distance

xi



ds plastic shear displacement
dsr plastic shear displacements (end of previous increment)
e eccentricity of loading
/  influence factor to modify the soil segment stiffness matrix
f g largest gap closing factor
f y largest yield factor
h hardening function
m rate of increase in soil Young's modulus with depth
ne number of elastic soil elements within the segment
np number of yielded soil elements within the segment
p ’ mean effective stress
pf  yield factor for the elastic soil elements
p m preconsolidation pressure which defines the size of the yield surface
2p0 defines size of the MCC yield surface
q deviator stress
t current bearing strength
tf  peak bearing strength
tp pile segment traction
tr residual bearing strength
ts soil segment traction
tsc limit bearing stress
tscd reduced limit bearing stress
tscr residual limit bearing stress
tss limit shear stress
tssd reduced limit shear stress
tssr residual limit shear stress
ts, soil element traction
tsl* soil element traction at the specified load or displacement
tslh limit adhesive stress
tslr soil element traction (end of previous increment)
tsy yield stress for the soil element
t ^  yield stress for bearing
tsys yield stress for shear
tsyl yield stress for tension
u pile-head lateral displacement
u* pile-head lateral displacement at the specified load or displacement
Up specified pile-head lateral displacement
ugl pile displacement when soil element yield in tension at the left faces of the pile
ugr pile displacement when soil element yield in tension at the right faces of the pile
up pile segment displacement
Up* pile segment displacement at the specified load or displacement
upr pile displacement (end of previous increment)
us soil segment displacement
z depth

a  empirical adhesion factor
P backsliding factor
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A value obtained by applying unit boundary conditions in each increment
A tp pile segment traction
A/* pile segment traction corresponding to the elastic soil segment
A t” pile segment traction corresponding to the plastic soil segment
A tepu pile segment traction due to unit lateral translation of the pile, corresponding to the 

elastic soil segment
A t f pile segment traction due to unit rotation of the pile about its head, corresponding to 

the elastic soil segment
A fs elastic soil segment traction
A tns plastic soil segment traction
A 4 elastic soil element traction
A uep pile segment displacement corresponding to the elastic soil segment
Am" pile segment displacement corresponding to the plastic soil segment
Awf elastic soil segment displacement
Am" plastic soil segment displacement
5 4 incremental plastic shear displacement
5e, volumetric strain increment

5 s £ plastic volumetric strain increment
shear strain increment

5 s J plastic shear strain increment
5 // incremental pile-head lateral load
5A/ incremental pile-head moment
m̂ax maximum pile-head displacement

50 incremental lateral pile-head rotation
K soil element traction increment
5m incremental pile-head lateral displacement
5m̂ pile segment displacement increment
£ * axial strain
s r radial strain
<t>' angle of shearing resistance
<t>'r residual angle of shearing resistance
y effective unit weight of the soil
K* initial slope of the unloading lines in the In V-ln p ' compression plane
A* slope of the normal compression lines in the In V-ln p ' compression plane
V Poisson's ratio for soil
v/> Poisson's ratio for pile
e pile-head rotation
0* pile-head rotation at the specified load or displacement
ef pile-head rotation (end of previous increment)
G'a effective axial stress
v'„ normal effective stress
&r effective radial stress
Jz vertical effective stress
<Jy yield stress of the material
T current shear strength
5̂0 shear strength at a'„ = 50 kPa
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Ty peak shear strength
zr residual shear strength
v|/ exponent in the hardening function

superscripts
e, ee, ne corresponding to the elastic soil segment
n, nn, en corresponding to the plastic soil segment
u due to unit lateral tranlastion of the pile
0 due to unit rotation of the pile about its head
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CHAPTER I Introduction

CHAPTER 1 

Introduction

1.1 General remarks

Piles are columnar elements, used in foundations, which have the function of 

transferring load from the superstructure through weak compressible strata to stiffer soils. 

They may be required to carry uplift loads when used to support structures subjected to 

overturning forces from winds or waves. Piles used in marine structures are subjected to 

lateral loads from the impact of berthing ships and from wind and wave action. Combinations 

of vertical and horizontal loads are carried where piles are used to support retaining walls, 

bridge piers and abutments, and machinery foundations. A full descriptive account of pile 

foundations is beyond the scope of this project; details may be found in the comprehensive 

texts by Poulos and Davis (1980) and Tomlinson (1994).

For pile subjected to static lateral loading, the general characteristics of pile response 

are reasonably well understood, and a number of methods of analysis have received 

acceptance. However, the cyclic response characteristics of laterally loaded piles are not so 

well understood, and suitable methods of analysis are still being developed. Because of the 

difficulties which are encountered in conducting full-scale pile-load tests, there exists a need 

for analytical methods that are capable of simulating the cyclic behaviour of laterally loaded 

piles, as depicted in Figures 1.1 and 1.2. The typical pile response as revealed from the cyclic 

tests based on the load-controlled conditions (Tassios and Levendis, 1974; Matlock, 1970), 

showed an increase in the pile-head displacements (maximum and residual) with the increase 

in the number of cycles (see Figure 1.1), and likewise the bending moments of the pile as 

shown in Figure 1.2. For the displacement-controlled laboratory model pile tests illustrated in 

Figure 1.3, a reduction in pile load with cycling is reported by Matlock (1970).

The main aim of this project is to provide a simple and realistic numerical method for 

the design and analysis of cyclic laterally loaded piles embedded in cohesive soils. The 

secondary objective is to develop a simple soil model that is capable of describing the gap 

formation, backsliding and soil strength degradation effects, which are based on the
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phenomena observed in the cyclic pile-load tests shown in Figure 1.4. Dynamic effects will 

not be considered in this project.

To understand the complex behaviour of piles subjected to cyclic loading, some 

knowledge of the behaviour and analyses of static laterally loaded piles is necessary. This 

will be reviewed in the following sections, together with the cyclic analysis.

1.1.1 Behaviour of static laterally loaded piles

The ultimate resistance of a vertical pile to a lateral load and the displacement of the 

pile as the load builds up to its ultimate value are complex matters involving the interaction 

between a pile and the soil, which deforms partly elastically and partly plastically. Taking the 

case of a vertical pile unrestrained at the head, the lateral loading on the pile-head is initially 

carried by the soil close to the ground surface. At low loading levels, the soilj deforms 

elastically. At a further stage of loading, the soil yields plastically and transfers its load to 

greater depths.

In practical applications, few piles deform over their whole length under lateral 

loading. The pile displacements and bending moments tend to reduce to negligible 

proportions within a few (typically less than ten) pile diameters from the ground surface. 

Broms (1964), Poulos (1971), Poulos and Davis (1980), Randolph (1981), Davies and Budhu 

(1986) and Budhu and Davies (1988) mentioned that there is a critical or effective length of 

pile beyond which the pile behaves as it is infinitely long. As such, it is reasonable to assume 

that piles which are longer than their effective length behave identically. The detailed 

determination of effective length under elastic and yielding conditions have been described 

by Davies and Budhu (1986) and Budhu and Davies (1988) for piles embedded in stiff and 

soft clays, respectively.

A short rigid pile (having a length shorter than its effective length) unrestrained at the 

top (free-head) shown in Figure 1.5a, tends to rotate and passive resistance develops above 

the toe on the opposite face to add to the resistance of the soil near the ground surface 

(Broms, 1964; Tomlinson, 1994). Eventually, the rigid pile will fail by rotation when the 

passive resistance of the soil at the head and toe are exceeded. The short rigid pile restrained 

at the head (fixed-head) by a cap or bracing will fail by translation as shown in Figure 1.5b 

when the lateral soil reactions exceed the passive resistance of the soil.
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The failure mechanism of a long free-head pile (having a length longer than its 

effective length) is different from that of a short pile as described by Broms (1964) and 

Tomlinson (1994). The passive resistance of the lower part of the pile prevents rotation of the 

pile, the lower part remaining vertical while the upper part deforms as shown in Figure 1.6a. 

Failure takes place when the pile fractures at the point of maximum bending moment. For the 

purpose of analysis, a plastic hinge capable of transmitting shear is assumed to develop at the 

point of fracture. In the case of a long fixed-head pile, high bending stresses develop at the 

point of restraint, e.g. just beneath the pile cap, and the pile may fracture at this point (Figure 

1.6b).

The typical deformed shape of the pile and the corresponding bending moments, 

shearing forces and soil reactions under elastic condition are illustrated in Figure 1.7 (Reese 

and Matlock, 1956). With increasing loading, soil yielding will take place. The deformed 

patterns and reactions of the pile and soil are similar to those shown in Figure 1.7, but with a 

greater magnitude.

1.1.2 Behaviour of cyclic laterally loaded piles

Cyclic lateral loading on piles will result in an increase in pile-head displacements and 

bending moments as compared with a corresponding static lateral loading; see Figures 1.1 

and 1.2.

For piles embedded in cohesive soils or clays, there are basically five major factors

which may influence the pile behaviour. They are described as:

1.) Gap formation around the pile.

2.) Backsliding of the soil into the gap.

3.) Reduction in soil strength.

4.) Cyclic shakedown.

5.) Rate of loading.

Gap formation

A principal effect of cyclic loading is the cause of permanent physical separation 

(gap) of the soil away from the pile in the direction of loading, resulting in the reduction of 

pile capacity (Matlock, 1970; Dunnavant and O'Neill, 1989; Bijnagte et al., 1991; Long et al., 

1993). This is due to the fact that the soil has limited ability to take tension, and it is likely
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that separation will occur near the top of the pile, where compressive stress in front of the pile 

and tensile stress behind the pile, are developed.

The permanent displacement of the soil creates a gap zone such that the soil resistance 

will be reduced, and the effect is manifested by much greater bending moments and 

displacements than obtained with similar loading during the initial cycle; see Figures 1.1 and 

1.2. This was reported by Matlock (1970) where cyclic pile-load tests were carried out at 

Lake Austin and confirmed at Sabine river. Bijnagte et al. (1991) conducted cyclic pile-load 

tests and concluded that gaps are evident during the tests, and that the gap formation is 

restricted to a depth in the range of four pile diameters with gap widths of about 30 mm (5% 

of the pile diameter) at ground level. Swane and Poulos (1982) pointed out that pile response 

to cyclic load is dependent, not only on the pile-soil characteristics, but also on the geometry 

of the gap.

Backsliding

The effects of backsliding of the soil into the gap (i.e. partially closing it; see Figure 

1.4a), is due to the tensile or adhesive properties of cohesive soil. During cyclic loading, the 

soil is first pushed forward by the pile. After the pile has reached its maximum displacement 

and starts to move back, tensile stresses between the pile-soil contact zone may occur. The 

adhesive strength of cohesive soil will result in backsliding of the soil into the gap, resulting 

in the reduction in gap size. This phenomenon has been observed by Matlock (1970) using 

laboratory model pile tests.

Soil strength degradation

Soil will degrade in strength when subjected to cyclic loading. This is due to the 

increase in pore water pressures (for undrained condition), changes in soil density and 

reorientation of the soil particles.

Cyclic loading on piles may cause a considerable loss in shear strength of the soil at 

its side (slip zone) due to continuous sliding action at the pile-soil interface when the soil has 

become plastic (i.e. reaches its shear strength); see Figure 1.4c. Shear strength degradation 

can be observed by conducting reversal shear box tests on clays as reported by Skempton 

(1964, 1985). The bearing strength of soil in the compression zone, will degrade due to 

continuous shearing of the soil when the soil has become plastic after reaching its bearing
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strength. This phenomenon is observed experimentally using plate loading tests described by 

Ward et al. (1965). Detailed coverage on soil strength degradation is deferred to Chapter|4.

Shakedown and related effects

Load paths which initially cause plastic strains in the soil but stabilise to an elastic 

response after a finite number of load cycles are said to 'shakedown'. At shakedown, the soil 

develops a residual stress distribution such that stresses due to an elastic response of the pile 

to subsequent loads lying within the prescribed load path may be superimposed without 

causing further yield of the soil. A state of permanent strain and residual stress remains in the 

soil.

The shakedown limit represents the maximum load at which shakedown can take 

place along a given load path. For loads which cause shakedown, the increments of pile 

displacement and plastic work of the soil produced after each cycle tend to decrease, 

becoming zero after a finite number of cycles as depicted in Figure 1.8b.

When the load path produces no plastic strain in the soil, the pile is said to be 

experiencing a purely elastic response as depicted in Figure 1.8a. However, if the pile 

displacement stabilises after a finite number of cycles, while plastic deformation continues 

within the soil, the pile is said to have experienced alternating plasticity as illustrated in 

Figure 1.8c, with the load-deflection curve forming a hysteretic loop. The amount of plastic 

work within the soil increases for load paths undergoing alternating plasticity and may 

eventually result in failure. If the pile does not stabilise to an elastic or inelastic response, the 

plastic work done and the pile displacements will continue to increase with each load cycle. 

After a number of load cycles, the pile may become unserviceable due to progressive 

deformation, and is said to have failed by incremental collapse or ratchetting as shown in 

Figure 1.8d.

Although shakedown and the three factors described above are interlinked, the present 

project will only concentrate on the first three phenomena. The shakedown limit will not be 

determined, and only pile loading below the 'collapse' load levels described by Davies and 

Budhu (1986) and Budhu and Davies (1988) will be dealt with. At these levels, although 

significant changes occurred during load cycling, the behaviour of pile-soil systems tend to 

stabilise, unless total pile collapse is imminent. Such stabilisation response is usually attained
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to a practical degree in less than 100 cycles (Matlock, 1970; Reese et al., 1975; Hamilton and 

Dunnavant, 1993; Long et al., 1993), depending on loading levels.

Rate o f loading

To date, there are no reports of rate of loading effects on cyclic pile-load tests. The 

only reported case was based on static pile-load tests described by Tassios and Levendis 

(1974). Their results indicated that:substantially lower pile displacement (by a factor between 2 

to 4) was measured for rapid rate of loading of 500 kN/h as compared with slower rate 

application of 5 kN/h. An alternative and economic way to determine the loading rate effect 

was reported by Andersen and Stenhamar (1983). They conducted plate loading tests on Haga 

clay and reported that a rapid loading test will give a 10% higher bearing strength as 

compared with a rate 32 times slower.

The loading rate effect will not be considered in the present method of analysis since 

there are insufficient data to characterise its influence on cyclic pile behaviour. It is assumed 

that conventional rates of loading apply.

1.2 Analyses of static laterally loaded piles

Increased interest in the behaviour of lateral loaded piles has resulted in a variety of 

methods being developed to analyse their response. The earliest and simplest representation 

of the problem was that of a transversely loaded thin elastic beam, supported by a series of 

linear springs acting along the length of the beam (Hetenyi, 1946). The analytical simplicity 

of this representation has resulted in its widespread use in foundation engineering, but at the 

same time, it is recognised that it has several shortcomings. In particular, the response of a 

real soil is far from elastic, and non-linear soil response is a key factor in the behaviour of 

laterally loaded piles. Moreover, group effects cannot be analysed in a rational manner by this 

approach, and such factors as cyclic loading cannot be accommodated by such simple 

analyses. Accordingly, more refined methods of analyses have been developed, using more 

realistic representations of soil behaviour, categorised as linear and non-linear analyses. The 

following sections contain a brief summary of developments in the analyses of static laterally 

loaded piles.

1.2.1 Linear analysis
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There are essentially three approaches to the analysis of a laterally loaded pile in a 

linear soil mass:

1.) The subgrade reaction or Winkler analysis, in which the pile is idealised as an elastic 

transversely loaded beam supported by a series of unconnected linear springs 

representing the soil (Hetenyi, 1946).

2.) Finite element analysis, either using two-dimensional or three-dimensional soil and 

pile elements (Desai and Appel, 1976; Verrujit and Kooijman, 1989), or more 

economically, by means of expansion of the displacement field in terms of a Fourier 

series (Kuhlemeyer, 1979; Randolph, 1981).

3.) The boundary element (or integral equation) analysis, in which the soil is modelled 

as an elastic continuum (Poulos, 1971; Banerjee and Davies, 1978).

In all cases, it is possible to incorporate non-homogeneity of the soil, although certain 

approximations are usually necessary in the boundary element analysis. One major advantage 

of the finite element or boundary element analysis over the subgrade reaction analysis is that 

an elastic continuum soil model is adopted, hence a more rational calculation of the 

displacements and rotations of piles can be made.

1.2.2 Non-linear analysis

The importance of incorporating non-linear response into the analysis of laterally 

loaded piles is well recognised, and some of the methods employed for static analysis have 

been extended to allow non-linear load-displacement analysis. These methods may be 

classified into three categories:

1.) Non-linear subgrade reaction analysis.

2.) Non-linear finite element analysis.

3.) Modified boundary element analysis.

Non-linear subgrade reaction analysis

The most widely used approach is that of Matlock (1970) and Reese et al. (1975), 

who utilise the concept of p-y curves, i.e. relationships between pile-soil pressure (p) and soil 

displacement (y). Such curves represent, in effect, non-linear soil spring characteristics and 

have been derived from field measurements on instrumented piles. By making measurements
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of bending moments and displacements along the pile at different applied load levels, the 

relationship between soil pressure and displacement may be inferred for various points along 

the pile. On the assumption that these relationships apply to piles of all proportions, shapes 

and relative flexibilities, they may be used in an interaction analysis to determine pile 

response to applied load. Recommendations for determining p-y curves for different soil 

types have been summarised by Matlock (1970), Reese et al. (1975), Reese and Desai (1977), 

while Sullivan et al. (1980) have generalised procedures to develop a 'unified method' for 

piles in clay, covering both soft and stiff clays. A somewhat simpler approach has been 

adopted by Kishida and Nakai (1977) who adopt a bilinear p-y relationship.

Non-linear finite element analysis

In this type of analysis, elasto-plastic constitutive models of the soil continuum are 

used, usually conducted in either two-dimensions or three-dimensions (Yegian and Wright, 

1973; Desai and Appel, 1976; Faruque and Desai, 1982; Kooijman, 1989a, 1989b; Brown and 

Shie, 1990, 1991; Bhowmik and Long, 1991; Trochanis et al., 1991).

The main advantages of the finite element analysis are: i) the various geometry and 

boundary conditions for the pile and soil system can be considered, ii) different forms of 

constitutive models for soils and pile-soil interfaces can be used, and, iii) systematic 

investigation of various aspects of pile behaviour can be conducted, since several parameters 

can be varied and their influences studied within the same analytical framework.

A combination of finite and infinite element methods have been adopted by Chen and 

Poulos (1993). The infinite element is used to simulate the (elastic) far-field behaviour of the 

soil medium, while standard finite elements are used to model the pile and soil immediately 

surrounding it (near-field). The incorporation of the infinite element into a standard finite 

element program can not only approximate the stress distribution in the far-field, but can also 

save much computational effort and time.

Modified boundary element analysis

The extension of the boundary element method to incorporate an elasto-plastic soil 

model has been outlined by Banerjee and Davies (1980). Incremental and iterative initial 

stress or initial strain procedures are employed in which the effects of yielding and slipping 

are introduced by distributing initial stresses over volume cells and distributing initial surface
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tractions over slip surfaces, respectively. A simpler method of treating local soil failure was 

adopted by Poulos (1971, 1973), in which a limiting lateral pressure py (pile-soil yield 

pressure) is specified for each element of the pile and the analysis ensures that the computed 

pile-soil pressure does not exceed this limiting value. This approach is analogous to the 

Kishida and Nakai (1977) analysis except that inter-element interaction is still allowed for, 

according to the elastic Mindlin's equations (Mindlin, 1936).

A similar approach to the Poulos method was described by Davies and Budhu (1986) 

and Budhu and Davies (1988) to deal with piles embedded in stiff and soft clay problems, 

respectively. Unlike Poulos' method, where only the front and back face of the pile are dealt 

with, they considered the complete three-dimensional nature of the pile-soil interface 

problem. In their analysis, the soil is assumed to behave linearly elastically but yields when 

the limiting stresses in the compression, slip and tensile zones are reached. As such, bearing 

failure at the front face of an advancing pile, shear failure along the sides and tensile failure at 

the back face of the pile are taken into consideration. Good agreement with the results from 

published case histories, lended confidence in the application of this method of analysis to 

deal with practical problems.

1.3 Analyses of cyclic laterally loaded piles

With the increasing use of piles to support offshore structures, the response of piles to 

lateral cyclic loading has assumed great importance. Over the past years, various methods 

have been employed to determine the cyclic pile behaviour. To date, the approaches used to 

determine the cyclic response of laterally loaded piles are as follows:

1.) Empirical approach.

2.) Modified p-y analysis.

3.) Cycle-by-cycle analysis.

4.) Bilinear-elasto-plastic analysis.

5.) Discrete element analysis.

6.) Finite element analysis.

7.) Modified boundary element analysis.

1.3.1 Empirical approach
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Hettler and Gudehus (1980) developed an empirical expression for the cyclic 

displacement of piles, based on the results of published pile-load test data. For load levels 

low enough not to cause failure, they found that the following relationship was applicable to 

both shallow foundations and laterally loaded piles in sand:

- = AD
H

_ yDL _

B
( 1 + C l n N ) ( 1.1)

where u is the pile-head displacement,

D is the pile diameter or width,

H  is the cyclic load,

L is the pile length,

y is the effective unit weight of the soil, 

N  is the number of cycles, and 

A, B, C are empirical parameters.

The shape factor A accounts for the shape of the foundations, while the empirical 

exponent B is used to adjust the rate of increase in loading in relation to the displacement. 

The empirical constant C helps to define the increase of displacement with increasing cycles. 

These three empirical parameters were based on observations from the pile-load test data, and 

no suggestions were made on the appropriate values to be adopted in the absence of data from 

the pile-load tests. The effect of soil strength degradation was not included in the analysis, 

and no indication was given to extend the analysis to deal with cohesive soils. Apparently, no 

comparisons with field results were carried out. The values of B and C appeared to be 

independent of the type of pile, but the generality of this finding must be questioned as the 

relative flexibility of the pile and the pile-head conditions would be expected to be a 

significant factor. The maximum bending moment subjected onto the pile, which is an 

important factor in pile design, cannot be determined using this approach. Nevertheless, 

Equation (1.1) is useful in indicating the form of cycle dependence of lateral displacement.

1.3.2 Modified p-y  analysis
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A procedure of predicting the load-displacement and bending moment responses of 

cyclic laterally loaded piles was suggested by Matlock (1970) and Reese et al. (1975), 

involving modifications to the p-y curves for static analysis. Modified p-y curves were 

employed which took account of the main observed effects of cyclic loading on lateral pile 

response as observed in model and field tests. For a pile in clay, a 'strain softening' type of 

behaviour was observed and gaps between the pile and soil were formed, thus leading to the 

suggested criteria for development of p-y curves as shown in Figure 1.9. Modifications to 

these criteria have been suggested by Reese and Desai (1977) in which both clays and sands 

are treated, and a unified approach to p-y curve development for piles in clay has been 

suggested by Sullivan et al. (1980).

These approaches require the determination of a series of p-y curves, coupled with 

numerical solutions to evaluate the pile response, in terms of pile displacements and bending 

moments. These p-y curves are often difficult to select in the absence of data from 

instrumented lateral pile-load tests, though detailed procedures are specified by Tomlinson 

(1994) and the above mentioned authors, in the selection of required parameters.

The analysis gives an envelope to the behaviour of a pile under cyclic loading and 

does not consider the change in pile behaviour as the number of load cycles is increased. The 

resulting load-displacement curve thus represents the behaviour of the pile under an infinitely 

large number of loading cycles. Furthermore, soil continuity is neglected as the soil pressures 

on the pile are modelled as independent non-linear springs, allowing no soil interaction with 

neighbouring soil elements. There is also the question of how the p-y relationships are 

affected by the pile-head restraint conditions and the relative stiffness of the pile and the soil.

The method, based as it is upon measured field data, reflects the main characteristics 

of cyclic response. However, there appears to be only fair agreement between predicted and 

measured behaviour (Long et al., 1993; Hamilton and Dunnavant, 1993) other than those 

used in the derivation of the p-y curves, and relatively few instances of comparisons were 

described. Also, there remains uncertainty in the adequacy of a given criterion for a particular 

soil application and the selection of the required soil parameters (Randolph, 1981; Ruiz, 

1986; Dunnavant and O'Neill, 1989). Because of the uncertainty in obtaining the various 

parameters required, and the method of constructing the p-y curves, many modifications have 

been suggested by Ruiz (1986), Dunnavant and O'Neill (1989), Long et al. (1993), Hamilton 

and Dunnavant (1993), Rajashree and Sundaravadivelu (1996), among others. However,
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although many modifications had been suggested, there remains no change to the established 

methods first proposed by Matlock (1970) for soft clay, and Reese et al. (1975) for stiff clay, 

which are currently used in API RP 2A(1986) recommended practice.

1.3.3 Cycle-by-cycle analysis

A modification to the p-y analysis, which allows for progressive degradation of soil 

resistance, has been described by Matlock et al. (1978). The soil is represented as a series of 

non-linear springs, as in the usual p-y analysis, but to allow for the near-surface behaviour of 

clays, a gap element has been developed. Such elements are attached to the pile in one 

direction, but are detached as the pile moves away. Only when the pile returns to the point 

where it left the element previously will its resistance be re-activated (see Figure 1.10a). The 

number of gap elements can be specified in the analysis program by the user.

The degradation of soil resistance with cycling is modelled by assuming that some 

proportion of the ultimate resistance is lost after a full reversal of displacement. A factor (X) 

is applied to the ultimate resistance of each element after the occurrence of a full reversal of 

direction of plastic deformation. A lower limit of the ultimate resistance (Qmin) is specified, as 

well as the initial value (Qu), and whenever the reduction is applied, the existing ultimate 

resistance (Qj) is degraded to a new value (Q2) according to the expression:

Q2 = V - V ( Q , - Q nJ  + Qmin (1.2)

The features of this degradation model are demonstrated in Figure 1.10b. It should also be 

noted that hardening could be simulated by setting Qmi„ greater than Qu.

The above method of analysis, although a very useful development, has some 

disadvantages. Problems can be anticipated when the users are required to specify the nmnber 

of gap elements, because, to begin with, they do not have a priori knowledge of the gap 

zones. This raises a question about the appropriate number of gap elements to be used, and 

the effects of varying the number of these elements. Also, there is no mention of how gap 

closure is to be dealt with during unloading and subsequent reloading, since care must be 

taken to ensure that each element|does not 'overdose' gaps that have been previously formed. 

The factors X and Qmin for degradation of soil resistance are ill-defined, and the authors 

themselves admit that more experimental research in this area of degradation is needed. No
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comparison with field results were carried out to prove the validity of the proposed method 

and Matlock et al. state that this method is presently intended to serve primarily as a research 

tool.

1.3.4 Bilinear-elasto-plastic analysis

The analysis is based on the subgrade reaction theory. The pile is treated as a thin 

elastic beam and the soil is modelled as a series of independent springs with friction-slider 

blocks as described by Swane and Poulos (1985). The response of each spring-block system 

is elasto-plastic as illustrated in Figure 1.11.

The method can be used to describe the shakedown and alternating plasticity 

responses of cyclic laterally loaded pile. The analysis simulates soil degradation by allowing 

the soil stiffness and yield pressure to deteriorate during cyclic loading. The contribution of 

mechanical degradation to the cyclic response of the pile-soil system is included by using a 

cycle-by-cycle approach. This allows for the effects of soil yielding and pile-soil separation to 

be considered, when the soil stress exceeds the yield pressure and soil failing in tension 

respectively.

The degradation functions for soil stiffnesses and yield pressures are of the same basic 

form as given by Matlock et al. (1978); see Equation (1.2). The functions allow both the soil 

stiffness and yield pressure to degrade, according to the following equations:

* «  =  0 -  h )  ( * / , !  -  h m i n )  +  K m i n  ( 1  - 3 )

Pyl 0  ^p) (Py\ ~ Pymin) Pymin 0*4)

where kh2 is the new spring stiffness,

khl is the existing spring stiffness, 

khmm is the minimum spring stiffness,

Xk is the degradation parameter for stiffness,

py2 is the new yield pressure,

py] is the existing yield pressure,

pymin is the minimum yield pressure, and

Xp is the degradation parameter for yield pressure.
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For the case where the soil resistance increases during cyclic loading, the term khmin and pymin 

in Equations (1.3) and (1.4), are replaced by khmax and pymax , respectively. The degradation 

functions are applied to plastic soil elements when the soil elements are about to be reloaded. 

This simulates the deterioration in soil resistance due to repeated passive failure of clay at the 

front face of an advancing pile as illustrated in Figure 1.11b.

Good agreement was obtained between predictions and the published case history of 

Reese et al. (1975). It was demonstrated that the proposed method of analysis is capable of 

simulating both the static and cyclic behaviour of cyclic pile-load tests. However, some 

drawbacks are evident in this method. The use of independent springs to represent the soil 

resistance ignores the continuous nature of soil. The soil resistance at the side face of the pile 

is not taken into consideration; an important element in pile-soil interaction as observed in the 

cyclic pile-load tests. The use of the degradation functions for both stiffness and yield 

pressure, which have the same basic form employed by Matlock et al. (1978), means that at 

least four soil parameters have to be determined or assumed. No correlations or methods were 

proposed to obtain these parameters. The determination of the shakedown limit is not of great 

value, since it is either equivalent to, or represents an upper limit to, the ultimate lateral 

capacity of the pile. This is because in most cases, failure of the 'long' piles take place at loads 

far less than the shakedown limit (i.e. bending moment exceeds the yield moment of the pile 

section before the pile response stabilises). As such, the determination of shakedown limit is 

not significant in practice.

1.3.5 Discrete element analysis

A one-dimensional discrete element model for laterally loaded piles under cyclic 

loading conditions was presented by Grashuis et al. (1990) and Bijnagte et al. (1991). The 

pile was modelled by rigid body elements, interconnected by elasto-plastic rotational springs, 

represented by two parallel springs and a hinge, as shown in Figure 1.12a.

The elasto-plastic soil behaviour, gap formation, soil strength degradation and 

backsliding effects are modelled by a spring and a massless dry friction element in series, as 

depicted in Figure 1.12b. This element reacts as a linear spring until the force (compression 

or tension) reaches the threshold force specified for the friction element, after which, the force 

in the spring remains constant. Gaps originate when the tensile threshold of the friction 

element is exceeded. Both the stiffness of the spring and the threshold force of the friction
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element, which vary with soil types and depths, can be determined from the p-y curve 

approach derived by Matlock (1970) and Sullivan et al. (1980). To model the non-linearity of 

a p-y curve, a model with two serial friction elements parallel at each hinge can be chosen; 

see Figure 1.12c.

The cyclic strength of the soil is represented by using an exponential function that 

models the decreasing soil strength as a function of the number of loading cycles. The 

degradation function, characterised by two parameters A and B , is given by:

i V ^ t l - B O - e x p ^ ) ]  (1.5)

where FN is the new soil strength after cycling,

F0 is the soil strength in the first cycle,

A is the parameter for the rate of degradation; A > 0,

B is the parameter for the residual soil strength; 0 < B < 1, and 

N  is the number of cycles.

The phenomenon of backsliding in the gap is modelled by a reduction in the gap size, i.e.

Gap, = Gap,., ^  C (1.6)

where Gap, is the size of gap in the z'-th cycle, and

C is the parameter for the size of backsliding; 0 < C < 1.

The backsliding expression is an empirical approach derived from experiments reported by 

Matlock (1970).

This model is capable of including several phenomena, like gap formation, soil 

strength degradation and backsliding which have been observed during cyclic pile-load tests. 

In comparison with measured test results, Bijnagte et al. (1991) reported that the model 

overestimates pile displacements and maximum bending moments. The cause of these 

conservative prediction may be due to the neglect of soil resistance at the sides of the pile and 

the continuous nature of the soil. In this analysis, great difficulties can be anticipated in 

obtaining values for the parameters A , B and C, in addition to those required for p-y curve
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method. No suggestions or correlations were offered for determining values for these 

parameters (A, B and Q .

In a later publication by Grashuis and Bijnagte (1992), the non-linearity of the p-y 

curve is described by three serial friction elements parallel at each hinge to give a tri-linear 

approximation to the p-y curves. With such adjustments and variations in the parameters A, B 

and C, better agreement with field results in terms of pile displacements were obtained. 

However, no concrete justification for curve fitting the p-y curves and varying the three 

parameters were intimated. This suggests that the 'better' agreement is achieved basically by 

trial-and-error.

1.3.6 Finite element analysis

Quasi three-dimensional model

In this approach, the three-dimensional analysis was decomposed into a series of 

two-dimensional analyses, as adopted by Bijnagte et al. (1991). For the case of cyclic 

laterally loaded piles, the horizontal displacements are assumed to dominate the displacement 

field of the soil around the pile. Further assuming that the vertical stresses in the soil are not 

influenced by the horizontal load, a quasi three-dimensional model was proposed, where the 

soil was modelled by a system of continuous layers; see Figure 1.13. These layers are coupled 

in the vertical direction by an iterative process involving the finite element method. The only 

stress components that can be transferred from one layer to another are shear stresses in a 

horizontal plane; such processes have been described by Verrujit and Kooijman (1989). To 

model plasticity in each layer, Bijnagte et al. assumed a Tresca yield criterion (Tresca, 1868).

The local contact between the pile and the soil was modelled by an interface element. 

This element allows separation of the pile surface and the soil when the soil reaches a limit

tensile stress, simulating the formation of a gap.

This method of analysis adopts a continuum approach and includes gap formation via 

the interface elements. However, the comparisons with experimental results showed that the 

model overestimated the pile displacements by a factor of between two and three, and also 

overestimated the maximum bending moments. This seems to be strange as one would

anticipate an underestimation rather than an overestimation in prediction, as the model

neglects soil strength degradation; an important factor in cyclic pile behaviour.
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Three-dimensional model

A three-dimensional elasto-plastic finite element model was employed by Bijnagte et 

al. (1991). They used eight-noded quadratic Serendipity, degenerated shell elements to model 

the pile and twenty-noded quadrilateral hexahedral isoparametric elements to model the soil. 

The mesh details are depicted in Figure 1.14.

The constitutive behaviour of both granular and cohesive soils and the pile were 

described by a 'perfect elastic-perfect plastic' (or simply elastic-perfectly plastic) material 

model, where no hardening or softening was taken into account. The undrained plastic 

behaviour of the clay was modelled by the Tresca material model (Tresca, 1868). The yield 

surface for the drained behaviour of the sand layers was modelled by a combination of the 

Mohr Coulomb model (1776) and the tension cut-off criterion according to Rankine (1857). 

A non-associated flow rule is used. The yield surface for the pile was modelled using the Von 

Mises criterion.

The interface element was not available in the three-dimensional configuration; 

therefore only two extreme cases were analysed, i.e. the fully-bonded and completely smooth 

cases. For the fully bonded case, no relative displacements between the pile and the soil were 

allowed at the pile-soil interface. For the completely smooth case, the displacement of the pile 

and the soil are radially linked in the loading direction. There was no contact between the soil 

at the back of the pile, characterising the gap formation when tensile stresses occur. In the 

vertical direction and parallel to the pile-circumference, shear stress cannot be transferred 

from pile to soil.

The use of a three-dimensional model in the finite element analysis requires enormous 

pre-processing and post-processing effort and very substantial amounts of computational 

time. As such, only three different cases were analysed. The difference in results analysed 

using the fully-bonded and the completely smooth cases for the pile-head load-displacement 

response is a factor of between two and three, depending on the load level. This suggests that 

it is important to model the pile-soil interface behaviour properly.

The fully-bonded predictions gave a 'too soft' pile response compared to that 

measured in the field, although soil strength degradation was not employed in the analysis. 

Bijnagte et a l reported that the model overestimated pile displacement by a factor of between 

two and three, and also overestimated both the depth and the magnitude of the maximum 

bending moment by about 30%. Such results have also been reported for the quasi
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three-dimensional model, despite the large differences in modelling the interface behaviour 

for the three-dimensional and quasi three-dimensional cases. One would expect the 

three-dimensional predictions (fully-bonded case) to be significantly stiffer than the quasi 

three-dimensional predictions, since the former case considers full bonding between the pile 

and the soil is present along the whole pile circumference. This difference may be due to the 

differences in the undrained shear strengths and shear modulus adopted in the two models. It 

might also be due to the fact that in the three-dimensional model, the vertical displacement 

(as well as the increase of the vertical stress due to horizontal loading) is incorporated, unlike 

the quasi three-dimensional model where these vertical displacement and stress are not taken 

into account, thus giving a softer pile response.

Based on the three-dimensional analysis, it is noted that gap formation is restricted to 

a depth of a few pile diameters and the plastic soil region is limited to a radius of two pile 

diameters at the surface. Vertical soil stresses and deformations due to horizontal loading 

occur only in a small zone around the pile top.

1.3.7 Modified boundary element analysis

An approach which might be considered as intermediate between the cyclic p-y 

analysis and the cycle-by-cycle analysis of Matlock et al. (1978) has been suggested by 

Poulos (1982). This method aims to determine the behaviour of the pile after a specified 

number of load cycles (N), considering degradation of both the soil modulus and ultimate 

lateral pile-soil pressure. By progressively increasing N, the relationship between 

displacement and number of cycles may be determined for a given magnitude of cyclic 

loading.

The analysis is based upon the simplified boundary element method used for static 

pile analysis (Poulos, 1971, 1973). The pile is assumed to be a thin rectangular vertical strip 

of width (D) and length (L) with constant flexibility; the idealisation of the pile is depicted in 

Figure 1.15a. The soil is essentially modelled as an elastic continuum via Mindlin's solution 

(Mindlin, 1936) having properties which are unaffected by the presence of the pile. The 

ultimate pile-soil pressures are specified for each element along the pile to allow for the 

possibility of soil yielding. It is also assumed that complete adherence is maintained between 

the pile and the soil.

18



CHAPTER 1 Introduction

The effects of cyclic loading on the soil modulus and the ultimate pile-soil pressures 

are defined by means of degradation factors DE and Dp respectively, defined as:

where Ec is the soil modulus after cyclic loading,

Es is the soil modulus for static loading,

pyc is the limiting pile-soil interaction stress (yield pressure) after cyclic loading, and 

pys is the yield pressure for static loading.

Based on the data summarised by Idriss et al. (1978a), both the soil modulus degradation 

factor DE and the ultimate pressure degradation factor Dp are expressed as:

derived from the data presented by Idriss et al. (1978a) for San Francisco Bay mud; sc is the

the soil to cyclic loading. The smaller the value of scr, the more susceptible is the soil to 

cyclic degradation.

To allow for the effect of rate of loading, the degradation functions DE and Dp can be 

multiplied by a rate factor DR, in which:

(1.7)

and

( 1.8)

(1.9)

where t is the degradation parameter dependent on cyclic strain.

Figure 1.15b shows a plot of the degradation parameter t against cyclic strain ratio s /s cr,

cyclic strain and scr is a reference value of cyclic strain which characterises the response of

( 1.10)

where Fp is the rate coefficient,

<̂r is the reference loading rate, and 

£ is the loading rate.
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The major weakness of this continuum approach, is the determination of the 

degradation parameter t, which is based on the estimation of the cyclic strain in the soil at 

each element of the pile. It appears that there is currently little or no information on the order 

of values which might be expected for Ecr, which is a key parameter in the analysis. Also, the 

determination of Fp and poses problems.

In comparison with published case histories, satisfactory agreement between the 

predictions and the measured results were obtained, despite the fact that the soil resistance at 

the side of the pile and the formation of gaps between the pile and the soil at the interface 

were not taken into consideration.

1.4 Discussion

From the review of the numerical methods used in the analysis of cyclic laterally 

loaded piles described in Section 1.3, it is clear that there are three major shortcomings in 

these methods. Firstly, the idealisation of the soil resistance or pressure by discrete springs, is 

not an appropriate approach, since soil continuity is being neglected. This leads to the choice 

of continuum approaches, in which the distribution of the stresses and deformations in the 

soil can be represented in a more rigorous manner. Another advantage of the continuum 

model is the direct use of physical quantities for the soil properties, such as undrained shear 

strength, Young's modulus and Poisson's ratio, etc. Also, there is the possibility of modelling 

the detailed pile-soil interaction behaviour. The disadvantages of such models, are the 

computer memory requirements and the relatively long program 'run times'. However, with 

the advancement in computer technology, these disadvantages are inconsequential if better 

representations and accuracy can be attained. In this thesis, the finite element method and a 

numerical algorithm, termed the indirect boundary element method, based on a continuum 

approach will be employed for the analyses.

It is evident from the established methods of analyses, except for finite element 

analysis, that the shear stresses developed between the soil and the sides of the pile have not 

been taken into account. Some methods, like the empirical approach and p-y method, have 

ignored pile-head fixity and the relative stiffness of the pile and the soil. Others (e.g. 

cycle-by-cycle, bilinear-elasto-plastic, finite element and modified boundary element 

methods) have excluded at least one or more of the phenomena like gap formation,
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backsliding, and soil strength degradation, which are vital elements in the mechanism of 

cyclic pile behaviour. Hence, a numerical analysis is needed which incorporates all these 

aforementioned features.

Finally, most methods of analyses have involved the use of empirical assumptions to 

obtain the parameters required. Most often, the manner in which these parameters are 

acquired cannot be justified, and from the physical point of view cannot be explained. These 

add to greater uncertainty, particularly if no standard laboratory tests can be used to determine 

these parameters. To overcome this problem, numerical analyses should involve a minimum 

of empirical assumptions and parameters should be easily attained via simple standard 

laboratory tests. Only by this means is it possible to obtain proper predictions of field 

behaviour.

In this research, a two-dimensional finite element plane-strain analysis will be 

employed to give insight into the pile-soil interface behaviour. Then, the modified boundary 

element analysis described by Davies and Budhu (1986) and Budhu and Davies (1988) will 

be explored and extended for cyclic analysis. This method has been chosen primarily because 

it takes into consideration the three-dimensional nature of laterally loaded pile problems, and 

has shown to give very good agreement with published case histories under static lateral 

loading conditions.

1.5 Scope of the research

The primary objective of this work is the development of a numerical analysis based 

on the indirect boundary element method framework, to model the cyclic behaviour of 

laterally loaded piles embedded in cohesive soils. The analysis is capable of simulating most 

of the phenomena observed in cyclic pile-load tests, such as gapping, backsliding and soil 

strength degradation effects. The method of analysis is described in detail in Chapter 5, with 

its implementation into a computer program known as APILEC presented in Chapter 6. The 

soil strength degradation which is essential for the analysis will be investigated in Chapter 4, 

together with correlations between strength degradation parameters and soil index properties.

The finite element analysis is described in Chapter 3, where it is employed to gain 

insight into the details of pile-soil interface behaviour during cyclic loading. This is intended 

to guide the development of the simplified boundary element analysis in the following
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Chapter. The constitutive cyclic soil models employed in the finite element analysis are 

described in Chapter 2.

The main results of this study are presented in Chapter 7, and illustrate the influence 

of the major relevant parameters. The validity of the analysis is demonstrated in Chapter 8 via 

comparisons with published field test results. Based on the work completed during this 

project, some general conclusions and recommendations for further research complete this 

thesis.
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Figure 1.1 Increase in pile-head displacements with cycling for (a) one-way and (b) two-way 

load-controlled cyclic pile-load tests (Tassios and Levendis, 1974).
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Figure 1.2 Increase in pile bending moment for one-way load-controlled cyclic pile-load test 

(after Matlock, 1970).
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Figure 1.3 Two-way displacement-controlled cyclic laboratory model pile tests (Matlock, 

1970).
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Figure 1.4 Phenomena observed and soil zones developed during cyclic pile-load test.
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Figure 1.5 Short vertical pile under lateral load for (a) free-head pile and (b) fixed-head pile.
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Figure 1.6 Long vertical pile under lateral load for (a) free-head pile and (b) fixed-head pile.
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Figure 1.7 Deflections, slopes, bending moments, shearing forces and soil reactions for elastic 

conditions (Reese and Matlock, 1956).
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Figure 1.8 Cyclic responses for a laterally loaded pile experiencing (a) purely elastic 

response, (b) shakedown, (c) alternating plasticity and (d) incremental collapse (Swane and 

Poulos, 1982)

1 0

0 5

(a) Static

0 5
At x«0

(ft) Cycbc

»01

05

Figure 1.9 Criteria for predicting p-y  curves for (a) short-time static loading, (b) equilibrium 

under initial cyclic loading and (c) reloading after cycling (Matlock, 1970).

27



CHAPTER I Introduction

G o p p A^xv—«— i

/ >VW V'rQ

j SaiaUv* CHsdocamont 

(a) MUtip** Sot>-EJom*nU o* t̂o<3a  i

G ap :

fltiatv Owteimrt
Drag ^ ---

Rmaaxarca^ iTSST"

(bJ

Q . - r

(c)

Figure 1.10 Model developed by Matlock et al. (1978).
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Figure 1.11 Model developed by Swane and Poulos (1985).
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Figure 1.12 (a) Discrete element pile model, (b) dry friction element and (c) pile-soil 

interaction elements (Bijnagte et a l 1991).

Figure 1.13 Layer system for the quasi three-dimensional model (Bijnagte et al., 1991).
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Figure 1.14 Three-dimensional finite element mesh; backside shown from above with half the 

pile shown in the background (Bijnagte et al., 1991).
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Figure 1.15 (a) Idealisation of pile (Poulos, 1982) and (b) degradation parameter t (Poulos, 

1982 after Idriss et al., 1978a).
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CHAPTER 2 

Cyclic Soil Models

2.1 Summary

This chapter contains a brief description of some soil models which have been 

developed to predict the behaviour of soils under cyclic loading, including (in more detail) an 

elasto-plastic two-surface model, formulated within the framework of critical state soil 

mechanics. In addition, a brief review of the salient behaviour of clays under cyclic loading, 

including the development of permanent strains, accumulation of excess pore water pressure, 

changes in soil stiffnesses, reduction in strength^ etcj, is presented.
.x '

2.2 Introduction

Successful numerical modelling of soil behaviour, requires the identification of the 

important characteristics while leaving the model as simple as possible. It is clear that the 

more sophisticated a model becomes (and the more soil parameters needed to describe it), the 

more extensive will be the physical tests required to define it. A careful balance, therefore, 

has to be maintained between cost of soil testing and analysis on the one hand and accuracy 

on the other. A brief description of some cyclic soil models will be reviewed in this chapter, 

including a model that will be employed in a subsequent finite element analysis. Before 

advancing directly into the soil modelling, a brief review of the behaviour of soils when 

subjected to cyclic loading, is presented. This will help in the selection of the appropriate soil 

model to be employed in the finite element plane-strain analysis of cyclic laterally loaded 

piles.

2.3 Soil behaviour under cyclic loading

2.3.1 Introduction

The behaviour of soils under cyclic loading is complex, and to date, even the most 

sophisticated models fail to provide accurate predictions under generalised cyclic stress 

conditions. It is nonetheless possible to identify a number of strands of behaviour which
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appear to be exhibited in varying degrees by all soils. These can be categorised into four 

distinct responses:

1.) Development of permanent strain.

2.) Changes in soil stiffness and dissipation of energy.

3.) Development of excess pore water pressure.

4.) Strength reduction.

2.3.2 Development of permanent strain

j  Idealised behaviour of soil subjected to drained cycling during stress-controlled 

loading between two general stress states, SI and iS2,!is depicted in Figure 2.1. Each cycle is 

accompanied by a change in shear strain, some of which is recoverable and some of which is 

not. The magnitude of the recoverable strain remains fairly constant during each cycle. On the 

other hand, the irrecoverable or plastic strain developed during each successive cycle tends to 

reduce with the increasing number of cycles. Eventually, the soil attains a form of equilibrium 

for this loading pattern, and the behaviour can be described as quasi-elastic or 'resilient'. It is 

well established that the resilient stiffness of the soil is stress-level dependent and is also 

dependent on the magnitude of resilient shear strain.

While experiencing cyclic loading, the permanent strain developed during each 

individual cycle will usually be small but, over a large number of load cycles, the magnitude 

of accumulated permanent strains may be significant (Figure 2.1). Where the accumulated 

strains are high (e.g. cyclic shear strain of 3%) and the soil does not reach an equilibrium 

condition, failure must occur.

2.3.3 Changes in soil stiffness and dissipation of energy

Two closely interrelated phenomena are manifested during cycling: changes in soil 

stiffness and dissipation of energy. In Figure 2.2 the changes in stiffness which occur during 

cyclic loading are illustrated. It can be seen that immediately after each stress reversal, the 

stiffness increases and subsequently decreases. Such behaviour applies only to soils subjected 

to stresses that are below the critical level of repeated loading (CLRL as defined by Sangrey 

et al., 1978), where a state of non-failure equilibrium will ultimately be reached (Sangrey et 

al., 1980; Houston and Herrmann, 1980; Kramer, 1996); see Figures 2.1 and 2.3. If the soil is 

subjected to a load level higher than CLRL, the stiffness of the soil immediately after each
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stress reversal will drop (as depicted in Figure 2.4) and failure of the soil may eventually be 

reached after a finite number of cycles. Such results were reported by Sangrey et al. (1969), 

Andersen (1976), Ishihara and Yashuda (1980) Andersen et al. (1980) and Ansal and Erken 

(1989).

Regarding energy dissipation, it is observed in Figure 2.1, that during any stress 

cycle, the stress sustained at any strain level of the unloading phase is lower than that for the 

corresponding strain during loading/reloading. This indicates that the soil has failed to return 

all of the strain energy stored during loading/reloading and some energy has been dissipated,

i.e. an hysteretic response.

2.3.4 Development of excess pore water pressure

The failure of soils under undrained cyclic loading is partly a consequence of 

accumulated excess pore water pressure and partly due to the breakdown of interparticle 

contacts. When cycled at low load levels (below CLRL), most soils will tend to reach a 

non-failure equilibrium condition, as illustrated in Figure 2.3a. At this state, there is no 

further accumulation of either strain or excess pore water pressure with additional stress 

cycles (Sangrey et al., 1969, 1980; Ansal and Erken, 1989) as depicted in Figure 2.3b. 

However, if the stress level is increased to a higher level, as shown in Figure 2.4, sufficient 

excess pore water pressure will develop to reach the effective stress failure condition 

(Sangrey et al., 1969, 1978). At point e, the sample was unable to carry the stress of 47.1 psi 

and the non-recoverable deformation increased markedly. Figure 2.4 also illustrates that the 

stress level to cause failure of soil under cyclic loading is lower than that under monotonic 

loading (dotted line in Figure 2.4).

The accumulation of plastic strain and excess pore water pressure are two of the 

principal features which distinguish cyclic behaviour from that exhibited during monotonic 

loading.

2.3.5 Strength reduction

One of the dramatic effects of repeated loading on saturated soils is a loss of strength 

or failure (defined in terms of specific levels of cyclic shear strain) after a finite number of 

loading cycles. The potential for strength loss and failure increases as the level of cycled 

stress increases has been reported by Sangrey and France (1980), Andersen et al. (1980),
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Ishihara and Yasuda (1980), Ansal and Erken (1989), Kramer (1996), among others. 

Andersen et al. (1982) described direct simple-shear tests on Drammen clay and reported that 

undrained cyclic loading caused a reduction in the undrained shear strength, which could be 

related to the overconsolidation ratio (OCR) and the number of load cycles; see Figure 2.5. 

Andersen et al. (1982) also illustrated the dependency of secant shear modulus on the level of 

cyclic shear stress, number of load cycles and OCR, as shown in Figure 2.5. The results 

presented by Lee and Focht (1976), showed that the cyclic strength ratio decreases with the 

increasing number of cycles, refer to Figure 2.6.

2.4 Soil models for cyclic loading

Three classes of soil models are briefly described in this section. They are: i) the 

equivalent linear models, ii) cyclic non-linear models, and, iii) advanced constitutive models. 

These models, with varying degrees of success, aim to encapsulate the experimentally 

observed cyclic behaviour of soils described earlier.

2.4.1 Equivalent linear models

These simple models represent few aspects of soil behaviour under cyclic loading 

conditions. For a typical soil, subjected to symmetric cyclic loading, the stress-strain plot 

forms an hysteresis loop, as shown in Figure 2.7. Two important characteristics of the 

hysteresis loop are its inclination and breadth. The inclination of the loop depends on the 

stiffness of the soil, and its average value over the entire loop can be approximated by the 

secant modulus Gsec (ratio of shear stress to the corresponding shear strain); see Figure 2.7. 

The breadth of the hysteresis loop is related to the area of the loop, which is a measure of the 

energy dissipation and can be expressed in terms of a damping ratio (Q. The parameters Gsec 

and £ are often referred to as the equivalent linear material parameters, and have been used in 

the analysis of soil response under (earthquake) cyclic loading (Idriss and Seed, 1968; 

Kramer, 1996).

The locus of the points corresponding to the apices of hysteresis loops with various 

cyclic strains is called a backbone curve (see Figure 2.8). Its slope at the origin (at zero cyclic 

strain) is equal to the maximum shear modulus, Gmax. At greater cyclic strain amplitudes, the 

modulus ratio (GsetJGmax) reduces. The modulus ratio can be used to characterise the stiffness 

of soils as a function of shear strain amplitudes.
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The equivalent linear models can provide only a first approximation to the cyclic 

non-linear behaviour of the soil. Obviously, they cannot be used directly for problems 

involving permanent deformation (or failure).

2.4.2 Cyclic non-linear models

The non-linear stress-strain behaviour of soils can be represented more accurately by 

cyclic non-linear models that follow the actual stress-strain path of the soil during cyclic 

loading. A variety of such models has been described by Idriss et al. (1978a, 1978b), Richart 

(1975), Streeter et al. (1974), among others. These models are characterised by a backbone 

curve and a series of 'rules' that govern unloading and reloading behaviour and other effects.

The most widely accepted rule for generating the hysteresis loops from a backbone 

curve is to assume that the soil behaviour satisfies the Masing rule (Masing, 1926). This rule 

states that the unloading and reloading branches of the loop are comprised of the same 

backbone curve, with both stress and strain scales expanded by a factor of two, and that the 

origin is translated. At the apices of the loop and after stress reversal, the tangent modulus is 

equal to Gmax (see Figure 2.8). Additional rules (extended Masing rules) are needed to 

describe the soil response under general cyclic loading. For the case when the unloading or 

reloading curve exceeds the maximum past strain and intersects the backbone curve, it 

follows the backbone curve until the next stress reversal. When an unloading or reloading 

curve crosses an unloading or reloading curve from the previous cycle, the stress-strain curve 

follows that of the previous cycle. An example of a model that follows the above rules is 

depicted in Figure 2.9.

Cyclic non-linear models do not assume that shear strains are zero when the shear 

stress is zero. Their ability to represent permanent strains is one of their most important 

advantages over the equivalent linear models. However, the cyclic non-linear models do not 

allow for the determination of shear induced volumetric strains, which can lead to hardening 

under drained conditions (or pore pressure development with stiffness degradation under 

undrained conditions). Further development in these models has included such factors (Finn 

et al., 1977; Idriss et al., 1978a; Pyke, 1979), but requires many more parameters to 

characterise the soil behaviour.

The above rules for generating the hysteresis loops, are not fundamentally accurate. 

This is because experimentally results for soils loaded under a variety of stress configurations
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show no perfect symmetry on an unloading and reloading cycle. Additionally, one must 

question whether soils really have the capacity to 'memorise' selected prior reversal points, as 

is required by the extended Masing rules. Note that the Masing rule is not adequate beyond 

certain strain limits as mentioned by Idriss et al. (1978a) and Pyke (1979). Besides these, 

there remains the uncertainty in determining the backbone curve, and the unloading and 

reloading curves, involving many complex mathematical functions and parameters to 

describe them (Finn et al., 1977; Idriss et al., 1978a; Pyke, 1979).

2.4.3 Advanced constitutive models

The most accurate and general models make use of the basic principles of plasticity in 

order to describe observed soil behaviour for quite general initial stress conditions and stress 

paths, strain rates and drainage conditions. Such models generally involve a yield surface 

(which describes the yield stress conditions), a hardening rule (which describes the changes in 

the size and shape of the yield surface as plastic deformation occurs), and a flow rule (which 

relates the direction o f plastic strain to the stress state). Soil models of this nature, 

which account for the cyclic behaviour of soils, include the kinematic hardening models and 

the bounding surface plasticity models.

2.4.3.1 Kinematic hardening models

In an isotropic hardening model such as Modified Cam clay (Roscoe and Burland, 

1968; Wood, 1994; see Section 2.5.2), the yield surface expands uniformly with plastic 

deformation. Yield surfaces can also translate without change in size, described as kinematic 

hardening. One particular form of kinematic hardening incorporates a series (nest) of yield 

surfaces of different sizes, which translate in stress space, allowing them to touch and 

translate together during hardening, but never to intersect (Mroz, 1967; Iwan, 1967; Prevost, 

1977; Prevost and Griffiths, 1988 among others). The stiffness associated with any particular 

change in stress depends on how many of these nested yield surfaces translate during the 

stress increment.

The concept of these nested kinematic hardening models can be explained with the aid 

of a one-dimensional model consisting of a series of parallel spring and slider elements; see 

Figure 2.10a. Each of the springs has the same stiffness, but the sliders have a rigid perfectly 

plastic response (Figure 2.10b) with different yield loads Y (where Y2 = y, Y3 = 2y, Y4 = 3y).
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The load-displacement response of this model subjected to a load of 3y  is illustrated in Figure 

2.10c; a detailed descriptions can be found in O'Reilly and Brown (1991) and Wood (1994).

The generalisation of a one-dimensional slider is a yield surface, and in the kinematic 

hardening soil model, the sliders of progressively higher yield loads are replaced by yield 

surfaces of progressively larger sizes. For example, a series of yield surfaces is shown in the 

q-p' stress plane in Figure 2.11. A stress path will meet successive members of this series of 

yield surfaces, and drag them with it as it traverses stress space as shown in Figures 2.11a,

2.1 lb and 2.1 lc. As more yield surfaces are dragged along by the stress path, the incremental 

stiffness falls. The effect is shown schematically in Figure 2.11c and 2.1 Id, where the 

stress-strain responses to triaxial compression CB and triaxial extension CD (after a stress 

history ABC) are compared. Path CD activates yield surfaces 1, 2 and 3 and is associated with 

a low stiffness. A retreat into triaxial compression, path CB translates initially across yield 

surface 1 and is associated with high stiffness (Figure 2.1 Id). It can be observed from Figures 

2.11c and 2.1 Id that the stiffness increases when the stress path changes direction. Further, 

the current distribution of yield surfaces stores information concerning the history of the 

loading of the soil. A disadvantage of these kinematic hardening models, is that during 

numerical analysis of boundary value problems, it is necessary to store a large volume of 

data: this can result in significant computational overhead.

2.4.3.2 Bounding surface plasticity models

In these models, the sudden change of stiffness associated with the passage of the 

stress state through a yield surface is effected by making the stiffness fall steadily from a high 

(elastic) value at a point in the interior of the yield surface to a low (plastic) value when the 

stress state reaches the yield surface. Thus, the response to stress changes inside the yield 

surface is no longer elastic, and the yield surface is now termed the bounding surface.

The application of bounding surface plasticity to the generation of constituti ve models 

for soils was presented by Dafalias and Herrmann (1980). They used a bounding surface 

formulation to describe the behaviour of clays under cyclic loading. No explicit yield surface 

was postulated within the bounding surface. The associated flow rule was utilised for the 

bounding surface, and the variation of the hardening modulus within the boundary surface 

was defined on the basis of radial mapping rule. For each stress point within the bounding 

surface, a corresponding 'image' point on the surface was specified at the intersection of the
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surface with the radial line connecting the origin with the current stress point (the origin was 

assumed to be always within the bounding surface). The hardening modulus is then assumed 

to be a function of the 'image point' hardening modulus (on the bounding surface) and the 

distance between the stress point and its image. Some improvements to this model were 

described by Dafalias and Herrmann (1982). The major shortcomings of such models are the 

use of complex mathematical formulations to define the bounding surface and the various 

'rules' to characterise the soil responses. Furthermore, the parameters involve great 

uncertainty in defining them. The fact that no yield surface is explicitly introduced in these 

models, assuming that the soil has zero elastic range. This obviously neglects the initial 

elastic response of soils observed in the experimental tests as illustrated in Figures 2.3 and 

2.4.

A form of bounding surface model is the two-surface model proposed by Mroz et al. 

(1978, 1979) for clays. The two surfaces are a bounding surface (representing the 

consolidation history of the soil), and a yield surface (defining the elastic domain within the 

bounding surface); see Figure 2.12. The bounding surface is assumed to expand or contract 

isotropically, but the yield surface is allowed to translate, expand or contract within the 

domain enclosed by the bounding surface. The translation of the yield surface is governed by 

the same rule as the nested yield surfaces described in Section 2.4.3.1 (i.e. the yield surface 

translates towards the bounding surface along the path PR in Figure 2.12). The hardening 

modulus of the yield surface is assumed to be a function of the distance b (Figure 2.12) 

between the stress point P on the yield surface and its conjugate (image) point R on the 

bounding surface. A detailed discussion of this model and its application to clays under 

monotonic and cyclic triaxial test conditions has been given by Mroz et al. (1979). Further 

extensions of the model to account for soil stiffness degradation have been presented by Mroz 

et al. (1981). It must be emphasised that these models have employed extremely complex 

mathematical formulations and involve many ill-defined parameters to predict the cyclic soil 

behaviour.

A simplified form of two-surface model, which combines features of isotropic 

hardening, kinematic hardening and bounding surface plasticity, has been developed by 

Al-Tabbaa (1987) and Al-Tabbaa and Wood (1989). It is known as the 'bubble' model, and is 

capable of analysing the general stress-strain behaviour of clays under cyclic loading. This 

model will be described in detail in the next Section.
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2.5 The ’bubble’ model

2.5.1 Introduction

Although the Modified Cam clay (MCC) model has been successfully used for 

numerical modelling of the monotonic behaviour of clays, it cannot be used to model the 

behaviour of clays subjected to cyclic loading. In order to improve the model predictions 

without making the model too complicated, a single inner kinematic hardening yield surface, 

a 'bubble' (Al-Tabbaa and Wood, 1989) has been introduced inside the MCC yield surface 

(acting as a bounding surface).

The bubble encloses the stress space in which only elastic deformations occur. When 

the current stress state lies on the bubble, the soil behaviour is elasto-plastic, and when the 

bubble reaches the MCC yield surface, the model degenerates to the MCC model. The bubble 

model was developed to match experimentally observed phenomena such as accumulation of 

permanent strains, hysteresis, changing stiffness, etc., during cyclic loading as described in 

Section 2.3.

Since the bubble model is based on the MCC model developed by Roscoe and 

Burland (1968), for completeness, the MCC model is briefly reviewed.

2.5.2 Modified Cam clay model

The MCC model is an elasto-plastic model which provides a coherent, if simplified, 

description of the mechanical behaviour of unstructured cohesive soils. This model was 

developed by Roscoe and Burland (1968) as a modification of the original Cam clay model 

developed by Roscoe and Schofield (1963). The MCC model was based mainly on the results 

of triaxial tests. The stress invariants adopted in the model are the mean effective stress:

P '= \  (CT'fl + 2CT'r) (2.1)

and the deviator stress:

q = &a- a 'r (2.2)

where &a is the effective axial stress, and
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g\  is the effective radial stress.

The corresponding, work conjugated, strain increments are the volumetric strain increment: 

= 6sa + 25cr (2.3)

and the shear strain increment:

5 e , =  § ( 5 s „ - S e , )  ( 2 . 4 )

where ea is the axial strain, and 

sr is the radial strain.

Compressive stresses and strains are taken to be positive.

The MCC theory is based on the concept of the critical state which assumes that soils 

reach a failure (critical) state at which unlimited shear strains take place without further 

change in effective stress or volume. It is assumed that the yield surfaces ( / )  and plastic 

potentials (g) are identical (associated plasticity) and elliptical in the q-p' stress plane. The 

yield surface (see Figure 2.13a) is defined by the equation:

/ =  (P'-Pof + J fi-P ° 2 = 0 (2-5)

Pm
where p 0 = — ,

p m defines the size of the current yield surface (Figure 2.13), and 

M  is a function of the angle of shearing resistance.

When the soil yields (i.e. stress point remains on the yield surface), the consistency 

condition holds (obtained from differentiating Equation (2.5)):

q
(P' -P o W  + T =P'Sp0 (2.6)
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The normality rule is assumed to apply. In other words, in q-p' stress plane, the plastic strain 

increment vector (sb? : is in the direction of the outward normal to the yield surface, at

the given stress point, i.e.

5 zp dfldp' dg/dp1 
5s a ~  df d(l ~  dS/d(l

(2.7)

This relationship defines the relative magnitude of plastic volumetric and shear strains.

An isotropic hardening function is chosen so that the change in size of the yield 

surface is related to the plastic volumetric strain increment of the soil by the relationship:

8e% = (X* - K*) § £  (2.8)

where X* is the slope of the normal compression lines in the In V-ln p ' compression plane, 

and, V is the specific volume, and

k * is the initial slope of the unloading lines in the In V-ln p ' compression plane.

Combining Equations (2.6) with (2.7) and (2.8), the soil compliance matrix (for plastic strain 

increments only) is obtained as:

5  Bp (A.* -  K *) ( P '-P o ) 2 (p '-P o)jp
’ V

5 S  q ~Pop'(p' ~ Po)

i

"•S. 1

N

1

hq
(2.9)

The elasto-plastic compliance matrix can then be readily determined by assuming that the 
elasto-plastic strains can be decomposed into elastic and plastic parts (e.g. 8ep = 8e£ + 5b£ ). 

The above expression shows that if p  '<Po (i.e. 'dry' of critical, see Figure 2.13b), the

soil becomes unstable in the sense that the plastic shear strain increment has an opposite sign

to the shear stress increment. That means the yield surface contracts rather than expands, and

hence, the soil softens to failure. Further details can be found in Wood (1994).

2.5.3 Bubble yield surface

The bubble model assumes that soils have elliptical yield surfaces in the q-p' stress 

plane. The inner bubble, introduced as shown in Figure 2.14, has the same shape as the MCC
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yield surface. The ratio of their dimensions is R and the bubble is centred at (p'a, qa). The 

equation of the bubble yield surface is:

When the soil yields, the consistency condition (generated by differentiating Equation (2.10), 

in order to ensure that the changes in p \  p ’a, q, qa and p 0 are consistent with the stress state 

remaining on the bubble yield surface) gives:

This consistency equation, valid only for soil yielding, ensures that any stress point always 

lies on or within the bubble yield surface.

2.5.4 Translation rule

The translation rule of the bubble yield surface which defines 6p'a and 5qa as 

functions of dp\ hq and 6p0, guarantees that the bubble and MCC yield surfaces can touch 

each other at a common normal, but never intersect. A conjugate point D on the MCC yield 

surface can be associated with each point C on the bubble yield surface (Figure 2.15), such 

that the points C and D have the same outward normal. The translation of the bubble yield 

surface that occurs when plastic strains are being generated can be separated into two 

components, namely:

(2.10)

(2 . 11)

8 .P a  _ § P £  Pa
5qa ~ P° qa (2 .12)

where S  is:

S (2 .13)
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The first part of Equation (2.12) is associated with changes in size of the bubble and MCC 

yield surfaces (due to change in p 0). The second part is associated with translation of the 

bubble yield surface along the vector g  (which joins C and D) towards the MCC yield surface 

(Figure 2.15). The evolution of dp'a and dqa , as defined in Equation (2.12) satisfies the 

consistency condition in Equation (2.11). Translation in the direction of the vector J3 

guarantees that when the bubble yield surface reaches the MCC yield surface, they will have 

a common normal and will never intersect.

2.5.5 Hardening rule

It is assumed, as in the MCC model, that the vector of plastic strain increments 

(Sc? : 5e?) is in the direction of the normal to the bubble yield surface according to Equation 

(2.7). The hardening rule links the change in size of both the bubble and MCC yield surfaces 

with the plastic volumetric strain. For the particular situation where the bubble and MCC 

yield surfaces are in contact at the current stress state, it is assumed that Equation (2.8) is 

valid. Then, combining Equations (2.11) with (2.7) and (2.8), the plastic strain increments 

are:

5 e ? ( k *  _ K*) (P '-P a ? ^ - P ' a ) ^  ' r  v  i
§ 8  ?

s
ti■

h

3
ii

p ' t f - p W - ^M

t 
^

S
i,

1

3

i

(  q-q 2 
\ M2 J . 6 ? .

(2.14)

The above expression is then used in a 'modified form' to calculate plastic strains whenever 

they occur, whether or not the bubble and MCC yield surfaces are in contact:

d£p 1 ip' ~Pa)2 < P '- P '« f ^ ’ V
5 8 ? ~h

( P ' - P ' a ) ^
fq-qa^ 2
V M2 J

5 q (2.15)

N.B. Please note that the above equation which appeared as Equation (14) in Al-Tabbaa and 

Wood (1989) contains a minor error, namely:

(P1 -P 'a)2 ( P ' - P ' a ) ^5s p 1
5e? ~hL. -1 (p' - p' j^  (“0

dp' 
5 q (14)
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where h is a hardening function consisting of two parts:

h = h0 + H (2.16)

where H  is a function of the separation of the bubble and MCC yield surfaces (which falls to 

zero when the two surfaces are in contact at the current stress state), and, 

h0 (by comparison with Equation (2.14)) is defined as:

(2.17)

Consideration of stability shows that it would not be satisfactory to set H  = 0 in

strains could occur at four singularity points, where h = 0 in Equation (2.15); see Figure 2.16. 

Two singularity points, and g2, in Figure 2.16, lie at the top and bottom of the bubble yield

normal of the bubble yield surface which has the direction [(p ' - p'a) , (q - qa)/M2]. The dot

assuming that the numerator is not equal to zero. With H -  0, the bubble yield surface would 

be divided into four regions as marked in Figure 2.16: two stable regions (g,g4 and g2g?) in 

which increase of shear strain (8e/ > 0) is associated with increase in shear stress (bq > 0), 

and two unstable regions (gtg3 and g ^ )  in which increase of shear strain (Se/ > 0) is 

associated with decrease in shear stress (bq < 0). Experimental results show typically that 

behaviour is everywhere stable for qlp' < M, and the addition of the extra term H  helps to

Hashiguchi (1985) suggested that //should be a monotonic function of the degree of 

approach of the bubble and the MCC surfaces. From a study of experimental data, Al-Tabbaa 

(1987) proposed that the function H  should be written in the form:

Equation (2.16) for the stress state inside the MCC yield surface, because unlimited plastic

surface with p ' = p'a\ the other two singularity points are g3 and g4 where straight lines from 

the origin touch the bubble yield surface. The vector (p' , q) is then perpendicular to the

product of these two vectors is zero leading to unlimited plastic strains in Equation (2.15)

ensure this.

H  =
( A ,*  -  k * ) | _  b

(2 .18)
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where \\i is an experimentally determined positive real exponent,

b is the component of the vector J3 in the direction of the normal to the 

bubble yield surfaces at the current stress point; see Figure 2.17, and, 

bmax is taken to be 2p0(l - R).

The function H  is not unique and different functions might be adopted for different soils.

N.B. Please note that the equation in defining b in Al-Tabbaa and Wood (1989) as Equation 

(17) has a minor error:

2.5.6 Numerical tests

To observe the behaviour of the bubble model, several clays subjected to undrained 

loading conditions were analysed using the SWANDYNE (Chan, 1990) soil model tester 

program.

The predicted translations of the bubble and the MCC yield surfaces are illustrated in 

Figure 2.18. In Figure 2.18a, a normally consolidated clay is tested under undrained loading 

conditions up to the critical state. The stress path from point A to B in q-p' stress plane, 

shows that the bubble and the MCC yield surfaces remain in contact at the current stress 

point. The plastic strains calculated from the bubble model will therefore be identical to those 

determined using the MCC model. The normality rule in this case predicts compressive 

volumetric strains which causes the MCC yield surface to expand monotonically. The bubble 

yield surface also expands and translates so as to remain in contact with the MCC yield 

surface while remaining a constant size ratio (R) in proportion of it.

In Figure 2.18b, an overconsolidated clay is subjected to an undrained test, illustrating 

plastic volumetric expansion and strain softening response (and corresponding decrease in the

0q~qa) q~qa
M2 L M2 -  q (17)

The corrected equation should be:
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excess pore water pressure), until it ultimately reaches its critical state. It can be seen that as 

the stress state moves from C to D (i.e. within the bubble yield surface), only elastic strains 

occur and hence there is no change in size of the MCC and bubble yield surfaces. As the 

stress state moves from D to E, it drags the bubble yield surface with it. The dilatant plastic 

volumetric strains (which result from the application of the normality rule to the bubble yield 

surface and the hardening function) causes the MCC yield surface to shrink. The bubble yield 

surface also reduces in size and, in addition, translates within the MCC yield surface. The 

new stress state always lies on the bubble yield surface, which retains a constant size ratio R 

in proportion to the MCC yield surface.

2.5.7 Comparisons with experimental data

The effective stresses and specific volume at peak deviator stress in drained tests on 

overconsolidated clays lie on a so-called Hvorslev surface (Atkinson and Bransby, 1978). 

Thus, the MCC model tends to overestimate the strengths of such clays.

The hardening function introduced in the previous section inhibits strain softening for 

stress states lying on the unstable part of the bubble yield surface, when it is not in contact 

with the MCC yield surface. However, the influence of H  in Equation (2.18) reduces as the 

bubble yield surface approaches the MCC yield surface. Failure conditions may develop for b 

> 0 when H= -h0.

There is an infinite number of yield surfaces that can pass through any particular 

stress state lying inside the MCC yield surface and consequently the failure points will 

depend on the previous stress history of the soil. Some typical failure points observed in 

drained and undrained tests using the present bubble model are shown in Figure 2.19, and it is 

evident that these define a failure region rather than a failure line. Nevertheless, it is an 

attractive by-product of this kinematic hardening extension of the MCC model that 

reasonable strengths are now predicted for overconsolidated clays.

A typical example of the form of cyclic response observed, and analysed using the 

model is shown in Figure 2.20, taken from Al-Tabbaa and Wood (1989). The model 

successfully matches many of the important observed aspects of the response. Hysteresis is 

included in cycles of reloading and unloading. The volumetric response is well matched and 

the drift of shear strain is correctly reproduced.
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2.5.8 Parameters required for the bubble model

The six soil parameters necessary for the bubble model are as follows:

X* : the slope of normal compression lines in the In V-ln p ' compression plane,

k * : the initial slope of unloading lines in the In V-ln p ' compression plane,

M  : the slope of the critical state line representing ultimate failure conditions in

the q-p' stress plane, 

v : Poissoris ratio,

i}/ : the exponent in the hardening function H, and

R : the ratio of the sizes of the bubble yield surface and the MCC yield surface.

In addition, a reference point (T), on the normal compression line or the critical state 

line is required. Note that only the first four soil parameters, namely X*, k * , M  and v, are 

required for the MCC model, for the predictions of stress-strain behaviour of clays subjected 

to monotonic loading.

The parameters required for the model can be obtained from simple standard tests. 

They can also be obtained from one multi-stage test using the triaxial apparatus. An example 

of such a test involves isotropic compression to determine X* followed by isotropic 

unloading. The initial part of the unloading path will give a value for k * and R. The later part 

of this path will give the value of \\j. The sample can then be isotropically reloaded, and 

subsequently tested to failure either in an undrained test or a drained test. This will enable the 

value of M  and v to be obtained.

2.5.9 Strengths and weaknesses of the bubble model

Strengths

The strengths of the bubble model can be summarised by the following:

1.) Simple elliptical expression (Equation (2.5)) to define the bounding surface (MCC 

yield surface) unlike models developed by Dafalias and Herrmann (1980, 1982).

2.) The yield surface (bubble) which has the same shape as the MCC surface but R times 

smaller is explicitly defined in Equation (2.10).

3.) The use of the bubble yield surface to define the small elastic region reflects the 

elastic soil response subjected to initial loadings.
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4.) The formulations employed to determine the plastic strain increments are easily 

understandable.

5.) Parameters required for the model can be easily obtained from simple laboratory tests.

6.) The model is able to predict the experimentally observed cyclic soil behaviour 

described in Section 2.3. For example the accumulation of permanent strains, changes 

in stiffness, energy dissipation, etc., except the soil strength reduction.

7.) The model can account for the normally and overconsolidated clays, subjected to 

drained and undrained conditions, which are commonly encountered in many site 

situations.

8.) The model has shown good agreement with experimental results as illustrated in 

Figure 2.20.

9.) The model can be more easily implemented into the finite element program (Chan, 

1990) than other models (Mroz et al., 1981; Dafalias and Herrmann, 1982 among 

others) described in Section 2.4.3.

Weaknesses

The bubble model, like all other models has limitations. They are:

1.) The bubble has constant size ratio R, and there is no reason why R should not be a 

variable (Al-Tabbaa and O'Reilly, 1990). For instance, R can be taken as a function of 

the bubble proximity to the MCC yield surface or the number of load cycles. 

Experimental results depicted in Figures 2.3 and 2.4, have shown that the elastic 

region of the soil varies according to the number of load cycles and the load levels.

2.) The assumption of rate independency suggests that the model is only appropriate to 

the loading rate from which the model parameters were derived, which may pose 

problems to rate sensitive soils.

3.) The model does not take into account soil strength reductions which are evident in 

cyclic soil tests described in Section 2.3.4.

2.6 Concluding remarks

The dominant factors that influence the behaviour of soils under cyclic loading have 

been described. The effects of cyclic loading include the loss of strength, changes in soil 

stiffness and the accumulation of permanent strain.
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The review of cyclic models for soils has inevitably been incomplete and partial. 

Evidently, the model selected should be sufficiently complex to capture the phenomena 

described above. However, complexity implies an increasing number of soil parameters as is 

evident in the models that have been discussed.

The advanced constitutive models, in particular, the bubble model, will be employed 

for the finite element analysis of cyclic laterally loaded pile foundations described in Chapter

3. This model is chosen due to its strength (see Section 2.5.9) and availability in the finite 

element program. Furthermore, it can account for the behaviour of soils under general initial 

stress and cyclic loading conditions, subjected to drained and undrained conditions, which the 

equivalent linear and cyclic non-linear models do not possess.

The concepts of critical state soil mechanics underpin the bubble model which is 

capable of predicting many aspects of clays under cyclic loading. The model was developed 

directly from experimental observations using the MCC isotropically hardening yield surface 

as a bounding surface, within which a kinematically hardening bubble yield surface is 

introduced. A translation rule for the yield surface is assumed which ensures that the bubble 

and MCC yield surfaces never intersect. A hardening rule is assumed to predict plastic strains 

on the yield surface. Comparison between the predictions of the model and the experimental 

results in Al-Tabbaa (1987) and Al-Tabbaa and Wood (1989) shows overall good agreement. 

The bubble model has been implemented by Chan (1990) into a finite element program - 

SWANDYNE. The results of its predictions will be presented in the next Chapter.
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Figure 2.1 Typical development o f shear strain during a cyclic load test (O'Reilly and Brown, 

1991).

StiffnessStress
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Figure 2.2 The effect o f stress reversals on soil stiffness (O'Reilly and Brown, 1991).
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Figure 2.3 (a) Undrained cyclic loading at low stress levels and (b) associated pore pressure 

response (Sangrey and France, 1980).
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Figure 2.4 Undrained cyclic loading resulting in failure (Sangrey et a l 1969).
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Figure 2.5 The effect o f cyclic loading on undrained shear strength and secant shear modulus 

(Andersen et al., 1982).
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Figure 2.6 The effect o f cyclic loading on cyclic strength ratio (Lee and Focht, 1976).
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Figure 2.7 Typical stress-strain behaviour o f a clay subjected to symmetric cyclic loading 

(Kramer, 1996).
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Figure 2.8 Backbone curve showing effect o f shear strain on secant modulus Gsec (Kramer, 

1996).
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Figure 2.9 (a) Shear stress variations and (b) resulting stress-strain behaviour (Kramer, 1996).
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Figure 2.10 (a) Chain o f parallel springs and slider elements, (b) load-displacement response 

o f slider and (c) load-displacement response o f chain o f parallel springs and slider elements 

(Wood, 1994).
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Figure 2.11(a) Initial position o f nested yield surfaces, (b) position o f yield surfaces after 

stress path AB, (c) position o f yield surfaces after stress path ABC  and (d) stress-strain 

response in triaxial compression CB and extension CD (Wood, 1994).

bounding surface

yield surface

Figure 2.12 Yield and bounding surfaces in stress space.
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Figure 2.13 The Modified Cam clay model in (a) q-p ' stress plane and (b) In V-ln p' space.
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Figure 2.14 General layout of the bubble model.
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Figure 2.15 Assumed motion o f the bubble yield surface within the Modified Cam clay 

(MCC) yield surface along the vector {3.

s = stable region 
u = unstable region

Figure 2.16 Diagram showing singularity points, stable and unstable regions on the bubble 

yield surface.
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Figure 2.17 Definition o f the vector £  and the distance b.
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Figure 2.18 Predicted relative motion of bubble and MCC yield surfaces for (a) normally 

consolidated clay and (b) overconsolidated clay, subjected to an undrained test.
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Figure 2.19 Failure points: Y isotropic undrained;# isotropic drained; V one-dimensional 

undrained;o one-dimensional drained (Al-Tabbaa and Wood, 1989).
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Figure 2.20 Constant q cycles: experimental observations o f (a) volumetric strains and (b) 

shear strains; model predictions o f (c) volumetric strains and (d) shear strains (Al-Tabbaa and 

Wood, 1989).
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CHAPTER 3 

Plane-Strain Finite Element Analyses

3.1 Summary

In this Chapter, pile foundations subjected to cyclic lateral loading are modelled using 

the finite element method under plane-strain conditions. The effect of the boundary 

conditions on the finite element predictions was examined and a convergence study was 

undertaken to determine the optimum number of load increments required to obtain results of 

good accuracy with minimum computational cost. Two different soil models, namely, the 

'bubble' model and Mohr-Coulomb model, were employed in the finite element analyses in 

order to examine the interaction between pile and soil behaviour when subjected to cyclic 

loading.

3.2 Introduction

The primary objective of carrying out the two-dimensional finite element analyses 

described in this Chapter was to evaluate the implications of adopting advanced constitutive 

soil models for this complicated cyclic loading problem. This was intended to shed light on 

the detailed pile and soil behaviour, in particular at the pile-soil interface, and to provide 

insights for the development of the three-dimensional program APILEC, which employs a 

simpler soil model.

Although, it is now possible to perform fully three-dimensional finite element 

analyses for pile foundation problems (Brown and Shie, 1990, 1991; Bijnagte et al. 1991 

among others), such analyses demand computer resources far beyond that which were 

available for this project.

For piles subjected to cyclic lateral loads, the horizontal displacements always 

dominate the deformation field; the vertical displacements are not very significant and can 

therefore be ignored. These assumptions allow modelling of pile foundations subjected to 

cyclic lateral loading as a two-dimensional plane-strain problem (horizontal section of the 

pile and soil in plan view) as shown in Figure 3.1. The pile-soil system can be subdivided
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into a number of horizontal layers, as illustrated in Figure 3.2. For these layers, an 

elasto-plastic soil model can be employed for the analyses.

Two finite element packages, namely SWANDYNE and OASYS, were employed to 

predict pile behaviour under cyclic lateral loading.

3.3 Finite element packages

The finite element program SWANDYNE was chosen because it contains the cyclic 

soil model developed by Al-Tabbaa and Wood (1989) (known as the 'bubble' model described 

in Section 2.5); this model is not available in OASYS. Furthermore, cyclic (sinusoidal) 

loading conditions are also available. To compare with the predictions using the bubble 

model, the elastic-perfectly plastic Mohr-Coulomb model for soil was employed.

The OASYS finite element program was used to check the results obtained from the 

SWANDYNE analyses.

3.3.1 SWANDYNE

DIANA-SWANDYNE II is the acronym of Dynamic Interaction and Non-linear 

Analysis - SWANsea DYNamic version II, developed by Chan (1990). It is a 

two-dimensional program which incorporates plane-strain and axi-symmetric analyses. The 

program uses the Finite Element method with triangular and quadrilateral isoparametric 

elements in the spatial domain. The time integration is done using the Generalised Newmark 

method. Both the tangential stiffness method and the Quasi-Newton method are available for 

non-linear iterations. The program can deal with static, consolidating and dynamic conditions 

under drained and undrained conditions.

3.3.2 OASYS

The OASYS-SAFE (OASYS, 1991) finite element program was developed for the 

analysis of two-dimensional plane-stress, plane-strain, or axi-symmetric geotechnical 

problems. The elements available are 4-, 8- and 12-node isoparametric quadrilateral elements. 

Non-linear problems are dealt with by the 'initial stress' technique. The loading is applied 

incrementally. The sequences of cyclic loading can be divided into the loading and unloading 

stages.
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3.4 Idealised model

The two-dimensional plane-strain model is shown in Figure 3.2. Taking advantage of 

the symmetry conditions, only half of the plane was modelled.

3.4.1 Boundary conditions

The boundary at A and C (see Figure 3.3) is assumed to be restrained by rollers, 

allowing displacements only in the y-y direction. The displacements beyond the 15 pile 

diameters in the x-x direction will not be significant, and can therefore be ignored. Due to the 

symmetry boundary condition, the boundary at D is assumed to be restrained by rollers, 

restricting displacements only in the x-x direction. The boundary at B is unrestrained, 

allowing the displacements of soil in the x-x and y-y directions during loading. The load is 

applied at the centre of the pile, at point E.

3.4.2 Cyclic loading conditions

One-way and two-way cyclic loading depicted in Figure 3.4 was used for 

SWANDYNE analysis. A period of ten seconds per cycle was adopted following Rao et al. 

(1992), Rao and Rao (1993) and Andersen et al. (1980). The design environmental condition 

for offshore works based on a 100 year wave has a period of around ten seconds (Tomlinson, 

1994).

For OASYS analysis, the loading was applied in stages to simulate cyclic loading; see 

Figure 3.5.

3.5 Maximum load and undrained shear strength

The analyses are based on undrained loading conditions. The maximum lateral load 

was taken to be:

Hmax = NcCuD (3.1)

where Nc is the bearing capacity factor, depending on pile depth,

Cu is the undrained shear strength, and 

D is the pile diameter.
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For simplicity, Nc of ten is used (unless otherwise stated), indicating that the analysis is 

applicable for depths greater than 3D (Poulos and Davis, 1980; Tomlinson, 1994).

In the absence of undrained shear strength for normally consolidated clay, field data 

(Mersi, 1975; Larsson, 1980; Trak et al., 1980; Wood, 1994) suggests a linear relationship 

between undrained shear strength and vertical effective stress, i.e.

where a 'z is the vertical effective stress.

The Cu value can be determined from the Modified Cam clay (MCC) model. The equation 

for the MCC yield surface is:

where p' is the mean effective stress,

p m is the preconsolidation pressure,

q is the deviator stress, and

M  is a function of the angle of shearing resistance.

The preconsolidation pressure can be expressed as:

Cu = 0.25 cr'z (3.2)

(3.3)

( 3 . 4 )

where Np is the overconsolidation ratio.

Coupling Equations (3.3) and (3.4), the deviator stress (for Np > 2) becomes:
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Under isotropic condition, p' = &z and taking C„ = q/2, the undrained shear strength as a 

function of the overconsolidation ratio is:

Cu = 0.5 &zM (Np - l )05 (3.6)

This result is reasonable valid provided that the yield surface lies below the tension cut-off.

The tension cut-off line (q = 3p') is depicted in Figure 3.6. Combining this with Equations

(3.4) and (3.5) gives:

The slope of the critical state line for a typical clay, ranges from 0.8 to 1.2 (corresponding to 

the angle of shearing resistance of 20° to 30° for clay), therefore the critical value of Np will 

be around ten. For the purpose of this project, Np up to eight are employed.

3.6 Mesh details

For the SWANDYNE analyses, eight-noded isoparametric quadrilateral elements 

were used to model the soil and the pile, while six-noded triangular isoparametric elements 

were used to model the inner core of the pile; see Figure 3.7a. The mesh consists of a total of 

84 elements. The mesh adopted is shown in Figure 3.7a.

For the OASYS analyses, the same type of elements were used to model the pile and 

the soil, except that the inner core of the pile was deleted (Figure 3.7b) as OASYS does not 

provide a triangular element option. This meant that the pile was modelled as a hollow pile. 

This option should not affect the results as the pile elements were assumed to be very stiff.

3.6.1 Mesh discretisation

Based on a set of soil and pile parameter values, one-way cyclic loading was applied 

to the centre of the pile. A fully bonded pile-soil interface is assumed, i.e. the displacements 

of the pile and the soil are fully connected in all directions at the interface, and therefore 

displace equally.
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The boundary was fixed at 30 pile diameters (D) and 15 pile diameters for the length 

and width of the mesh, respectively, after some experimentations; see Figures 3.7 and 3.8. 

Figure 3.8 shows the displacements (in the x-x direction) of the nodal points along the 

symmetric plane under the specified maximum load. It is observed that the largest 

displacement occurs at the pile-soil interface, and it decreases till the specified boundary is 

reached. Extending the length and breadth of the mesh (with additional elements) increases 

the computational cost without significant change to the results.

3.7 Convergence study

A convergence study using a simple mesh (Lee, 1995) assuming the fully bonded case 

was carried out. Typical load-displacement response of the pile (pile-soil interface) is 

depicted in Figure 3.9.

In this study, the number of load increments per cycle employed are 4, 10, 20, 40 and 

100. Using these load increments, the maximum pile (pile-soil interface) displacements at the 

end of the five cycles were determined. Cyclic loads of 75 kN, 150 kN and 225 kN 

(arbitrarily chosen) with tolerances (i.e. convergence criteria) of 0.05 and 0.005, were used. 

The computational time required (based on an IBM-compatible 80486 DX2-66 computer) for 

these analyses were examined to assess the optimum number of load increments and 

tolerances for further analyses.

3.7.1 SWANDYNE analysis

A set of soil parameters was used for the bubble model. One hundred load increments 

per cycle was assumed to be the exact solutions for respective tolerances of 0.05 and 0.005. 

Using the maximum pile displacements for the fifth cycle, Figure 3.10 shows that reducing 

the number of load increments from 100 to 40, (20, 10, 4) for tolerance of 0.005, causes the 

displacements to be underestimated by 1%, (2%, 3%, 4%) for load of 75 kN, 2%, (4%, 7%, 

11%) for load of 150 kN, and 5%, (8%, 12%, failure to converge) for load of 225 kN. For 

tolerance of 0.05, the underestimation is 3%, (7%, 11%, 21%) for load of 75 kN, 10%, (18%, 

25%, 36%) for load of 150 kN, and 15%, (24%, 31%, 43%) for load of 225 kN. The above 

results (judging from the amount of underestimation) show that convergence to the exact 

solution is achieved with the use of a higher number of load increments and smaller
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tolerances. For higher load levels, say 225 kN, the number of load increments used has 

greater effect on the displacement results, especially for tolerance of 0.05.

The times taken to execute the program for different load levels are depicted in Figure 

3.11. It is shown that the computational time increases with the increase in both the load 

increments and the tolerances, except for the case of 4 and 10 load increments using tolerance 

of 0.005. The use of small load increments, say 4 and 10, cause the computational time to 

increase because of the increase in the number of iterations required to converge to the 

tolerance of 0.005, see Figure 3.11.

The displacement results, computational time, and the relative errors (defined as 

f  exact value - predicted valued   ̂  ̂ different load levels were tabulated in Tables 3.1 and 3.2 for
V exact value J  '

tolerances of 0.05 and 0.005, respectively. The relative errors plotted against the number of 

load increments depicted in Figure 3.12, show that the relative errors reduced with the 

increase in the number of load increments. It is clearly shown that the relative errors for 

tolerance of 0.05 are considerably larger as compared with tolerance of 0.005 at the same 

number of load increments and load levels.

Assuming a maximum relative error of 10 % is acceptable in design, 20 and 40 load 

increments with tolerance of 0.005 were considered. From the computational (time) point of 

view, it is suggested that twenty load increments per cycle is probably the optimal choice.

3.7.2 OASYS analysis

For OASYS analyses, ten load increments with 5 and 10 iterations were used to 

compare their results with the SWANDYNE analyses (using Mohr-Coulomb model for soil 

and elastic model for pile). The comparison is deferred to Section 3.10.

3.8 Parametric studies

Parametric studies were carried out to examine the influence of the soil parameters on 

the pile and soil behaviour under cyclic loading conditions. The parametric studies were 

conducted at a depth of 5 m. Pile and soil are assumed to be fully bonded at their interface. 

The bubble model and elastic model were employed for the soil and pile, respectively. The 

details of the pile and soil data (unless stated otherwise) used in these parametric studies are: 

Pile diameter (D) =1 .0m

Pile Young's modulus (Ep) = 200 GPa
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Pile Poisson's ratio (vp)

Soil Type

Buoyant soil unit weight (y) 

Undrained shear strength (C„) 

Bearing capacity factor (Nc) 

Maximum cyclic load (Hmax)

= 0.3

= Normally consolidated 

= 10 kN/m3

= 12.5 kPa (from Equation (3.2)) 

=  10

= 125 kN (from Equation (3.1))

The details of the parameters (unless otherwise stated) for the bubble model are as follows: 

M  (slope of the critical state line) = 1.0

R (ratio of the sizes of the bubble yield surface and the MCC yield surface) = 0.2 

\\f (exponent in the hardening function) =1.5

v (Poisson's ratio) = 0.2

X* (slope of the normal compression lines) = 0.2

In addition, k * (initial slope of the unloading lines) is taken as 0.1 X*.

One-way cyclic loading of five cycles was applied at the centre of the pile. Only the 

nodal maximum and residual displacements in the jc-jc direction along the symmetric plane at 

the fifth cycle will be reported. To avoid massive parametric studies to be conducted, only 

one parameter will vary at a time, while the others remain constant. This will help in 

evaluating the sensitivity of the particular parameter.

3.8.1 The effect of soil strength parameter M

The soil strength parameter (M) is taken as a function of the angle of shearing 

resistance, which is related to the shear strength of the soil. The higher the value of M, the 

greater the strength of the soil will be. For this study, M  o f 0.8, 1.0 and 1.2 were considered. 

Figure 3.13 clearly illustrates that the reducing M  from 1.2 to 1.0, (0.8) increases the 

maximum pile (pile-soil interface) displacements by 1.7 times, (3.8 times) and residual pile 

displacements by 3.6 times, (6.0 times). The effect of M is greater for residual displacements 

than for maximum displacements. It is observed in Figure 3.13 that soil at two pile diameters 

away from the pile face is not greatly influenced by the loading as reflected by the steep drop 

in the soil displacements. Comparing the displacement results at a distance of 0.5 m (pile-soil 

interface) and 2.5 m from the centre of the pile, reduction in displacements averaging 3.3
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times and 5 times were accounted for maximum and residual displacements, respectively, for 

all values of M. Figure 3.13 has indicated that the soil after seven pile diameters from the pile 

face is not sensitive to the parameter M  as the difference in displacement results is minimal. 

Note that the assumption of fully bonded case has caused the nodal displacements along the 

symmetric plane to produce a 'mirror' image, with similar displacements experienced on both 

sides (left and right) of the pile.

3.8.2 The effect of soil parameter R

The ratio of the size of the bubble yield surface to the Modified Cam clay (MCC) 

yield surface, is defined by the parameter R. Increase in R will increase the magnitude of the 

elastic region of the soil. As such, one can expect a reduction in displacement as less soil 

yielding is taking place. For this study R of 0.2, 0.3 and 0.4 were considered. Figure 3.14 

shows that increasing R from 0.2 to 0.3, (0.4) results in a reduction in maximum pile 

displacements by 21%, (45%) and residual pile displacement by 27%, (57%). The effect of R 

is greater for residual displacements than for maximum displacements. It is shown in Figure 

3.14, that the soil at two pile diameters away from the pile face is not greatly influenced by 

the load as observed by the steep decline in displacement results. It is observed that the soil 

after five pile diameters away from the pile face is not affected by the change in R values.

3.8.3 The effect of soil parameter vp

For the purpose of this parametric study, the exponent in the hardening function (\j/) of 

1.0, 1.5 and 2.0 were used. The results depicted in Figure 3.15 show that increase in vp results 

in the increase of both the maximum and residual displacements. This is due to the fact that 

increases in vp will reduce the hardening function (h) in Equation (2.16), thus causing an 

increase in the plastic strain increments. The amount of increase in pile displacements when 

ip increases from 1.0 to 1.5, (2.0) is 1.4 times, (2.0 times) for maximum displacements, and 

1.8 times, (2.8 times) for residual displacements. The effect of vp is greater for residual 

displacements than for maximum displacements. It is shown in Figure 3.15 that the effect of 

vp after five pile diameters away from the pile is negligible.

3.8.4 The effect of soil Poisson’s ratio (v)

71



CHAPTER 3 Plane-Strain Finite Element Analyses

Poisson's ratio (v) describes the ratio of the strain in the lateral direction to the strain 

in the vertical direction during the elastic response to the imposed change of stress. Therefore, 

increase in v will increase the lateral displacement. In this study, v of 0.2, 0.3 and 0.4 were 

employed. Figure 3.16 shows that increasing v from 0.2 to 0.3, (0.4) causes an increase in 

maximum pile displacements by 25%, (92%) and residual pile displacements by 14%, (38%). 

The effect of v is greater for maximum displacements than for residual displacements. Figure 

3.16 also indicates that the maximum displacements of the soil are still influenced by v after 

seven pile diameters away from the pile, unlike the parameters M, R and vp, where the soil 

displacements are not affected.

3.8.5 The effect of soil parameters X* and k *

The slope of the normal compression line (X*) and the initial slope of the unloading 

line ( k * )  in the In V-ln p' compression plane, indicate the specific volume of the soil. The 

higher the X* and k * values (at the same effective stress), indicate that the soil is more 

loosely packed, i.e. more compressible. For this study, X* of 0.1, 0.2, and 0.4, and 

corresponding k * of 0.R* were considered. In Figure 3.17, it is shown that increasing X* 

from 0.1 to 0.2, (0.4) results in the increase in both the maximum and residual pile 

displacements by 2 times, (4 times). This indicates that increasing X* and corresponding k * 

by some factors (say 5 times), the maximum and residual pile displacements will increase by 

the same factors (i.e. 5 times). It is shown in Figure 3.17, that the maximum displacements of 

the soil are still influenced by X* and k * after seven pile diameters away from the pile.

3.8.6 The effect of load level

Loads of 100, 125 and 150 kN (0.8, 1.0 and 1.2 times of the maximum load Hmax) 

were considered in this study. The displacement results depicted in Figure 3.18, show that an 

increase in the load levels, will cause an increase in both the pile and soil displacements. This 

is due to the fact that a greater number of soil elements yielding are taking place at higher 

load levels. Increasing the load of 125 kN by 1.2 times (i.e. 150 kN) has increased the 

maximum and residual pile displacements by 86% and 110%, respectively. Decreasing the 

load from 125 kN by 0.8 times (i.e. 100 kN), reduces the maximum and residual pile 

displacements by 50% and 59%, respectively. The effect of load level is greater for residual 

displacements than for maximum displacements. It is indicated in Figure 3.18, that the effect
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of load level on the maximum displacements of the soil after seven pile diameters away from 

the pile are negligible.

3.8.7 The effect of overconsolidation ratio

IValues of overconsolidation ratio (OCR) of 1, 4 and 8 were employed in this study. The 

preconsolidation pressure of the soil for OCR 4 and 8 are set to 200 and 400 kPa, 

respectively, while maintaining the initial effective stress of 50 kPa. The results depicted in 

Figure 3.19, show that an increase in OCR results in the reduction of both the pile and soil 

displacements. This is because the soils were consolidated to a past maximum effective stress 

of 200 and 400 kPa, and will naturally result in a denser packing than soil that is being 

consolidated to an effective stress of 50 kPa. Hence, its resistance to loading is higher, 

thereby giving a lower displacement. Increasing OCR from 1 to 4, (8) reduces the maximum 

pile displacements by 78%, (79%) and the residual pile displacements by 98%, (100%). The 

effect of OCR is greater for residual displacements than for maximum displacements. 

Increasing OCR from 4 to 8 has not much effect on displacements, because the soil at OCR of 

4 might be close to its densest state to resist the load of 125 kN. Therefore further increase in 

OCR will only result in a further small decrease in displacements of less than 2%. It is 

observed that the effect of OCR on the maximum displacements of the soil after seven pile 

diameters away from the pile are negligible (Figure 3.19).

3.9 SWANDYNE analysis and results

| From the parametric studies, it can be seen that the bubble model does give qualitatively 

' reasonable predictions. The following analyses will be based on applying the maximum load 

(Hmax) at the centre of the pile, and observing the maximum and residual displacements (in the 

x-x direction) of the pile and soil at their interface (along the symmetric plane). Information 

from the parametric studies has shown that it is not necessary to examine the soil elements 

further away from the pile, as the displacements are much less than the displacements at the 

pile-soil interface.

To simulate gap formation around the cyclic laterally loaded pile (see Figure 3.1), 

many researchers like Yegian and Wright (1973), Kooijman (1989a, 1989b), Desai and Appel 

(1976), Trochanis et al. (1991), Bhowmik and Long (1991) and Bijnagte et al. (1991) had 

modelled the pile-soil interface by an interface element. Unfortunately, the option for the
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interface element is not available for the two finite element packages employed, hence 

recourse is made by assuming a 'half-debonded' case. The half-debonded case is to take 

account of the gap formation at the back of the advancing pile subjected to one-way cyclic 

loading. For this study, a fully bonded case and a half-debonded case are analysed, using the 

bubble model and the Mohr-Coulomb model. Typical pile and soil responses for these cases 

are illustrated in Figure 3.20.

The following analyses were carried out using the pile and soil data mentioned in 

Section 3.8, except that the undrained shear strength (C„) and the bearing capacity factor (Nc) 

are now taken as 20 kPa and 9, respectively.

3.9.1 Fully bonded case

The fully bonded case is assumed where there is no relative displacement between the 

pile and the soil, i.e. pile and soil at their interface displacing at the same magnitude. No 

slippage or gap formation (pile-soil separation) is taken into account.

Bubble model predictions

The six soil parameter values required for the bubble model mentioned in Section 3.8 

are taken as follows: M =  1.0, R = 0.2, \\j = 1.5, v = 0.3, A* = 0.08 and k *  = 0.008. These 

values are chosen based on experimental tests conducted by Al-Tabbaa (1987). With Cu of 20 

kPa, a maximum load (Hmax) of 180 kN is determined from Equation (3.1). The results 

depicted in Figure 3.21, show that the maximum and residual pile (pile-soil interface) 

displacements were of the order of 150 mm and 120 mm, respectively, at the end of the fifth 

cycle. This is rather high (around 15% of the pile diameter), and hence, it is decided to 

reduced the Hmax load by 50%. With Hmax of 90 kN, a significant reduction in maximum and 

residual displacements is observed in Figure 3.22, giving maximum and residual pile 

displacements of 20 mm and 8 mm, respectively, at the end of the fifth cycle. This is a 

reduction of approximately 8 times and 15 times, respectively, when compared with Hmax of 

180 kN. This is due to the high plasticity involved within the soil under a load of 180 kN as 

compared with a load of 90 kN, where lots of soil elements would have yielded.

Mohr-Coulomb model predictions
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For the Mohr-Coulomb model, the soil Young's modulus (£,), undrained shear 

strength (C„) and Poisson's ratio (v) are taken to be 20 MPa, 20 kPa and 0.49 (undrained 

loading), respectively. Under Hmax of 180 kN, the maximum and residual pile displacements 

at the end of the fifth cycle are 8.5 mm and 0.5 mm, respectively; see Figure 3.23. The 

Mohr-Coulomb model predicts an elastic pile response for loads up to 120 kN, after which, 

surrounding soil elements begin to yield. This is indicated by the change in gradient (point A) 

shown in Figure 3.23. Eventually, the pile stabilised to a shakedown response with a residual 

displacement of 0.5 mm.

3.9.1.1 Comparisons of models' predictions

Since different models are used in the analyses, one can expect differences in the 

predictions. For the bubble model, which is developed for cyclic loading, greater soil yielding 

can be anticipated (compare with the Mohr-Coulomb model) as the elastic region of the soil 

is only within the size of the bubble (Figure 2.14). Hence, a large amount of displacements 

and greater non-linearity can be observed; compare Figures 3.21 and 3.22 with Figure 3.23.

Using the Mohr-Coulomb model, the pile response is linearly elastic for loads below 

120 kN, which subsequently shows signs of soil yielding. During unloading, the pile shows 

an almost linear elastic response and eventually shakedown. This is a large contrast, to the 

pronounced yielding of the soil and the progressive increase in pile displacements with 

cycling for the bubble model; compare Figures 3.21 and 3.23.

With further cycling, the bubble model shows that the areas between the reloading and 

unloading curves are reducing (Figure 3.21), indicating the amount of plastic jwork on the 

soil per cycle are progressively decreasing. Figure 3.21 also shows that the cyclic degradation 

(i.e. increase in maximum displacements with cycling) is reducing. Using the Mohr-Coulomb 

model (Figure 3.23), the pile has stabilised to an elastic response (shakedown) after the first 

cycle, indicating that no further plastic work is done on the soil.

Under Hmax of 180 kN, it is observed that the bubble model gives much higher 

maximum and residual pile displacements as compared with the Mohr-Coulomb model. At 

the end of the fifth cycle, a difference of 18.2 times for maximum pile displacement and

200.5 times for the residual pile displacement is observed. Reducing Hmax to 90 kN for the 

bubble model, the pile displacement differences between the Mohr-Coulomb model is
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reduced, with an overestimation of maximum and residual pile displacements of 2.4 times 

and 14 times, respectively.

3.9.2 Half-debonded case

The left side of the soil was debonded from the pile (i.e. pile and soil nodes are not 

linked; see Figure 3.20c). This interface will be described as debonded interface. The right 

side of the pile remains bonded to the soil (i.e. pile and soil nodes are linked), and is 

described as bonded interface. The debonding and bonding of soil on the left and right sides 

of the pile, respectively, is to observe the gap formation on the left side of the pile (see Figure 

3.20c), when the pile is subjected to one-way cyclic loading. The responses of the pile and 

soil displacements at the debonded interface are observed, where their behaviour may be 

simulated in the boundary element analysis.

Bubble model predictions

The same values for the pile and soil parameters mentioned in Section 3.9.1 were 

adopted. With maximum load (Hmax) of 180 kN, Figure 3.24 shows that the maximum and 

residual pile displacements at the debonded interface are of the order of 600 mm. This will 

result in immediate failure of the pile, as the maximum pile displacement has exceeded 60 % 

of the pile diameter. Broms (1964) and Rao and Rao (1993) have suggested that the load 

corresponding to displacement of 20 % of the pile diameter (or width) is taken as the ultimate 

lateral capacity of the pile.

Due to the excessive displacement, Hmax is reduced by 50% (i.e. 90 kN). This causes a 

significant reduction in the maximum and residual pile displacements of more than 7.5 times 

(see Figure 3.25), giving a gap of approximately 70 mm at the end of the fifth cycle.

It is observed in Figure 3.24, that during unloading from 180 kN to 160 kN, the pile 

displacement increases rather than decreases. For Hmax of 90 kN, such strange phenomenon 

only takes place in the first cycle of unloading from 90 kN to 80 kN (point A in Figure 3.25). 

The mechanism of such occurrence is unclear.

The soil at the debonded interface responds in an almost elastic manner, though its 

displacement is moving 'backwards'. This is also a strange response as one would have 

expected the soil to move forward (in the positive x-x direction) due to the movement of the 

pile and the corresponding soil elements pulling effects. Nevertheless, the soil displacements
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at the debonded interface are not significant as compared with the pile displacements. It can 

thus be assumed that the soil at the debonded interface responds elastically, unless the gap has 

been closed when the pile returns (say in a two-way cyclic loading).

Mohr-Coulomb model

The values for the soil and pile parameters are taken from Section 3.9.1. The pile and 

soil displacements at the debonded interface are depicted in Figure 3.26; a gap of around 15 

mm is shown at the debonded interface at the end of the fifth cycle. It is evident in this plot, 

that the soil at the debonded interface is moving backwards, which is similar to the bubble 

model predictions; the cause of this phenomenon is unclear. It is also observed that the soil at 

the debonded interface has stabilised to an alternating plasticity response after the first cycle 

of loading. It can therefore be assumed that the soil at the debonded interface responds 

elastically. The pile at the debonded interface has shown signs of stabilisation to an 

alternating plasticity response with further cycling, as the rate of increase in maximum 

displacements with cycling is very small (less than 0.5%).

3.9.2.1 Comparisons of models' predictions

From the above results, the Mohr-Coulomb model seems to give more realistic pile 

and soil displacement results. The bubble model predicts very large (greater than 0.6£>) pile 

displacements at a load of 180 kN, which, in the actual field situation, the pile foundations 

will have collapsed. Under a load of 180 kN, the bubble model predicted much higher pile 

displacements as compared with the Mohr-Coulomb model. The differences are 26.4 times 

and 42.1 times for maximum and residual pile displacements, respectively, at the end of the 

fifth cycle. However, we cannot expect both models to give the same results, but the 

comparisons will indicate to us the suitable choice of soil models. That is, whether to employ 

a simple elastic-perfectly plastic Mohr-Coulomb, or an isotropic hardening model like MCC 

model, or a mixed hardening bubble model, for specific types of soils and environmental 

conditions.

Both the bubble model and Mohr-Coulomb model predicted that the soil at the 

debonded interface is moving backwards. This is a strange phenomenon. However, the 

magnitude of the soil displacements is insignificant in comparison with the pile
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displacements; see Figures 3.24 to 3.26. From the analyses, it can thus be assumed that the 

soil at the debonded interface responds elastically.

3.10 OASYS analysis and results

The elastic-perfectly plastic Mohr-Coulomb model employed in SWANDYNE 

analysis is used for OASYS analysis. The values for the pile and soil parameters used in the 

analysis are identical to those used for SWANDYNE analysis (Section 3.9.1). To check on 

SWANDYNE results, 10 load increments with 5 and 10 iterations were used for OASYS 

analyses, and only the half-debonded case is reviewed. Different numbers of iterations were 

used, in order to see their effects and for comparisons with SWANDYNE results.

The pile and soil displacement results at the debonded interfaces are depicted in 

Figure 3.27a for 10 iterations and in Figure 3.27b for 5 iterations. Higher displacements are 

accounted for the 10 iterations than the 5 iterations' analyses, with a difference of about 10% 

at the end of the fifth cycle. Comparisons of the displacement predictions between OASYS (5 

and 10 iterations) and SWANDYNE analyses are shown in Figures 3.28a and 3.28b. As 

observed in these plots, 10 load increments with 10 iterations (Figure 3.28a) gives a good 

match with SWANDYNE predictions, with differences of less than 0.2% at the end of the 

fifth cycle. From these comparisons, we can deduce that the results obtained from 

SWANDYNE analyses are correct, since both the finite element packages yield 

approximately the same load-displacement predictions. The slight difference in results may 

be due to the number of load increments and iterations used, the type of non linear iterations 

technique employed, etc.

3.11 Boundary conditions review

The soil at the debonded interface for the half-debonded case, appears to move 

(marginally) in the 'wrong' direction, for both the bubble model and Mohr-Coulomb model 

(Figures 3.24 to 3.28). It is suspected that this might be due to boundary conditions (denoted 

here as the initial case; see Figure 3.3). As such, the following boundary conditions were 

investigated using the SWANDYNE program.

Case (i) : All boundaries restrained by rollers.
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Case (ii) : All boundaries are unrestrained, except rollers on the plane of symmetry, 

and fixity at the bottom right comer.

Case (Hi) : Similar to case (ii) except fixed at the bottom left comer instead of the 

bottom right comer.

The Mohr-Coulomb model was used in this investigation.

Case (i)

With all the four boundaries of the mesh restrained by rollers, a reduction in both the 

pile and soil displacements at the debonded interface can be observed in Figure 3.29, when 

compared with the initial case. In terms of maximum and residual displacements of the pile, 

reductions of 39% and 41%, respectively, are observed at the end of the fifth cycle. For the 

soil displacements, the reductions are 55% and 74%, respectively. This is due to the 

constrained movement of the soil in the y-y direction at the boundary B in Figure 3.3, hence 

reducing soil displacements in the x-x direction. It can be seen in Figure 3.29, that the soil at 

the debonded interface is still moving backwards, though less noticeably than in the initial 

case.

Case (ii) and Case (Hi)

For these cases, large pile and soil displacements occur at the debonded interface; see 

Figures 3.30 and 3.31. Obviously, these boundary conditions do not accord with reality and 

are not considered further.

3.12 Discussion of results

In regard to computational efficiency, the mesh discretisation study has shown that the 

mesh boundary can be confined to a length and breadth of thirty pile diameters and fifteen 

pile diameters, respectively. The convergence study has shown that twenty load increments 

(per ten seconds cycle) with tolerance of 0.005 can be employed to obtain predictions of good 

accuracy. For the OASYS analysis, ten load increments with ten iterations have shown to 

give similar displacement results to that obtained using SWANDYNE analysis (using 

elastic-perfectly plastic Mohr-Coulomb model).
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Parametric studies

The parametric studies conducted based on the fully bonded case using the bubble 

model, have revealed that the pile (pile-soil interface) displacements are always the highest. 

The soil at two pile diameters away from the face of the pile is not greatly influenced by the 

cyclic loading on the pile. This is evident in Figures 3.13 to 3.19 where the displacements fall 

steeply from the pile-soil interface to a distance of 2.5 m from the centre of the pile. It is also 

shown in Figures 3.13 to 3.19 that the influence of most parameters are negligible at a 

distance of seven pile diameters from the face of the pile. In the fully bonded case, the nodal 

displacements along the symmetric plane are the same at the front and back of the pile.

Models' comparisons

Comparison of the bubble model and Mohr-Coulomb model predictions at the same 

load level for the fully bonded case, show that the former tends to predict much larger 

displacements than the latter. The differences for the maximum and residual pile 

displacements are 18.2 times and 200.5 times, respectively, at the fifth cycle.

For the half-debonded case, the bubble model also predicts much higher displacement 

than the Mohr-Coulomb model, with differences of 26.4 times and 42.1 times for maximum 

and residual pile displacements, respectively, at the fifth cycle. The predictions using bubble 

model for soil seem to be unrealistic.

The displacement predictions using the elastic-perfectly plastic Mohr-Coulomb model 

for soil and linearly elastic model for pile, yield reasonable results for gap formation, pile and 

soil displacements. The SWANDYNE and OASYS programs give similar results (if 

appropriate increments, iterations, loading conditions, etc., were used).

Comparisons between the fully bonded case and the half-debonded case using the 

bubble model (see Figures 3.21 and 3.24), reveal large differences (greater than four times) in 

the pile displacements. This is basically due to the fact that pile and soil nodes are not linked 

(allowing gap formation) for the left half of the pile-soil interface, which effectively reduces 

the soil resistance.

The evaluations of the half-debonded case for the bubble model and Mohr-Coulomb 

model show that the soil at the debonded interface will respond in an elastic manner (Figures 

3.24 to 3.28). The pile displacements at the debonded interface increase with the number of 

load cycles. However, the cyclic degradation reduces and the pile may eventually stabilise to
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an alternating plasticity state with further cycling, depending on the type of soil models and 

magnitude of cyclic loads.

3.13 Concluding remarks

The response of a pile subjected to cyclic lateral loads is influenced by various 

factors. The stress-strain behaviour of the soil, geometry and stiffness of the pile, boundary 

and drainage conditions at the site, and magnitude and nature of loading, are among the most 

important factors that control the behaviour of the pile-soil system.

The plane-strain finite element analyses, have given some insights into the pile and 

soil behaviour. For example, they show that the soil (at the debonded interface) will respond 

elastically when separated from the pile. With the information gathered, a simplified 

three-dimensional analysis, based on the indirect boundary element method (intended to 

reduce the computational time and data preparation effort), will be introduced in Chapter 5. 

Before advancing directly into the boundary element analysis, the model for soil strength 

degradation used in that analysis will be described in the next Chapter.
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Table 3.1 Relative errors based on tolerance = 0.05

Load
(kN)

No. of load 
increments

Displacement
(mm)

Relative error 
(%)

Computational time 
(minutes)

75

100 55.2 0 16.7
40 53.3 3.4 11.8

20 51.5 6.7 8.8

10 49.3 10.7 7
4 43.8 20.7 6.1

150

100 22 0 17.8
40 19.7 10.5 11.9
20 18.1 17.7 10.4
10 16.5 25 8.9
4 14 36.4 8.5

225

100 52.2 0 19.9
40 44.5 14.8 13
20 39.7 23.9 12.1

10 36.2 30.7 11.1

4 30 42.5 11

Table 3.2 Relative errors based on tolerance = 0.005

Load
(kN)

No. of load 
increments

Displacement
(mm)

Relative error 
(%)

Computational time 
(minutes)

75

100 55.5 0 23.5
40 54.9 1.1 14
20 54.2 2.3 10.6

10 53.7 3.2 9.6
4 53.3 4 9.6

150

100 23 0 27
40 22.4 2.6 20

20 22 4.4 18.3
10 21.4 7 19.4
4 20.4 11.3 20.6

225

100 58 0 35.9
40 55.3 4.7 30.9
20 53.3 8.1 29.5
10 51 12.1 31.2
4 Failure to converge to tolerance specified
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Figure 3.3 Mesh boundary conditions.
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Figure 3.4 (a) One-way and (b) two-way cyclic loading.
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Figure 3.5 Stages o f loading to simulate cyclic loading for OASYS analysis.
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Figure 3.20 (a) Pile and soil elements at initial position, (b) Pile and soil element 
displacements for the fully bonded case, (c) Gap formation at the debonded interface for the 
half-debonded case.
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Soil Strength Degradation

4.1 Summary

The phenomenon of soil strength degradation from peak to residual strength is 

described in this chapter. This provides important information to guide the development of 

the cyclic analysis of soil strength degradation at the pile-soil interface. Various correlations 

are established using the soil index properties to determine the residual angle of shearing 

resistance, and thereby the residual strength. Using experimental test results obtained by 

several researchers, simple correlations relating the degree (and rate) of strength degradation 

with soil index properties are presented. Some simple equations which describe the post-peak 

strength degradation of soil are proposed for use later in the cyclic analysis.

4.2 Introduction

Soil strength degradation plays an important role in the evaluation of cyclic pile 

response, as it can cause significant increases in pile displacements and moments, which may 

eventually cause failure of pile foundations. With increasing cycles, soil strengths may 

degrade from their peak values to a specific limit, known as the residual strength.

The degradation in strength is associated with an increase in the water content 

(drained condition), accumulation of excess pore water pressure (undrained condition), 

particle breakage, reorientation of the particles and loss of interparticle friction. To 

incorporate these effects into the analysis of cyclic loading of piles would be tedious and 

probably impossible. Hence, recourse is taken to a simpler approach: the fall in peak strength 

of soils to their residual values is assumed to be a function of the plastic displacement (soil 

displacement after peak strength is reached). This function is evaluated from the experimental 

results reported by various researchers.

The (pre-peak) cyclic degradation of soil strength and soil stiffness as described in 

Section 2.3 will not be dealt with. This is primarily due to the lack of data to quantify the 

amount of degradation and its correlation with cyclic shear strain (Lee and Focht, 1976; Idriss 

et al., 1978a among others). The cyclic shear strains are difficult to relate to the deformation
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of an element of soil in the field, especially for cyclic lateral loading on piles, where the 

amount of strain experienced by the soil along the entire pile depth varies and can hardly be 

determined.

When a pile is loaded laterally, the soil at the sides of the pile will be subjected, 

predominantly, to shearing, while the front face of an advancing pile will be subjected to 

compression (bearing). This behaviour can be seen in Figure 4.1 from the finite element 

analysis for the half-debonded case described in Section 3.9.2. The finite element results 

indicate a pattern of outward radial movement of the soil at the front and side of the pile, and 

inward movement behind the pile

From the orientation of the displacement vectors surrounding the pile, various failure 

mechanisms in the soil around the pile can be envisaged. In particular, the shear strength and 

bearing strength degradation can be isolated. It is observed that soils under shearing and 

bearing will exhibit the same trend of post-peak drop in strength, but that they may be of 

different magnitudes.

4.3 Degradation of shear strength

The shear strength behaviour of normally consolidated (N-C) and overconsolidated 

clays (O-C), with regard to peak and residual shear strengths and residual angle of shearing 

resistance (tj)',.), is depicted in Figure 4.2. This figure shows results typical of those obtained 

by carrying out slow drained tests in a shear box apparatus, in which the clay is subjected to 

displacements amounting to several centimetres.

As the clay is strained, so it builds up increasing resistance. However, under a given 

normal effective stress, there is a definite limit to the resistance the clay can offer (the peak 

strength). In ordinary practice, the test is stopped shortly after the peak strength has been 

clearly defined, and the peak strength is simply referred to as the 'shear strength' of the clay 

(under the given normal effective stress). If, however, the test is continued, the displacement 

will increase and the resistance of the clay decreases. This process, which may be called 

'strain softening' or strength degradation, is not without limit, for ultimately, a certain 

'residual strength' is reached which the clay maintains even when subjected to large 

displacements.
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The peak and residual shear strengths, when plotted against normal effective stress, 

would show a relationship approximately in accordance with the Mohr-Coulomb law (Figure 

4.2). The peak shear strengths can therefore be expressed as:

y  = c' + a'n tan (j)1 (4.1)

and the residual shear strength as:

Tr = c \ + &„ tan <|)'r (4.2)

where c' is the cohesion intercept,

<j)' is the angle of shearing resistance,

cr'w is the normal effective stress,

c \ is the residual cohesion intercept, and

§'r is the residual angle of shearing resistance.

Test results reported by Skempton (1964), Bishop et al. (1965,1971), Skempton and Petley 

(1967), Lacasse et al. (1985), Head (1988), Burland (1990), among others, show almost 

invariably that c\ is very small, and probably not significantly different from zero. Hence, the 

residual shear strength may be written simply as:

xr = <j '„ tan (|)'r (4.3)

This indicates that in moving from the peak to the residual shear strength, the cohesion 

intercept (c') disappears completely. During the same process, the angle of shearing resistance 

also decreases; in some clays, by only 1° or 2°, but in others by as much as 10°.

4.3.1 Causes of shear strength degradation

Skempton (1985) states that the post-peak drop in drained shear strength of an intact 

overconsolidated clay may be considered as being due, firstly, to an increase in water content 

(dilatancy) and, secondly, to the reorientation of the clay particles parallel to the direction of 

shearing. At the end of the first stage, the 'fully softened' or 'critical state' strength is reached.
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Under larger displacements, when reorientation is completed, the shear strength falls to and 

remains constant at the residual value; see Figure 4.3a. In normally consolidated clays, which 

consolidate when sheared, the post-peak drop in shear strength is due entirely to particle 

reorientation, as depicted in Figure 4.3a.

The effects of particle reorientation are felt, to an appreciable extent, only in clays 

containing platy clay minerals and having a clay fraction (percentage by weight of particles 

smaller than 2 pm) exceeding about 20 - 25%. Silts and sandy clays, with lower clay 

fractions, exhibit nearly the classical 'critical state' type of behaviour in which, even at large 

displacements, the strength is scarcely less than the normally consolidated peak values, and 

the post-peak drop in shear strength of overconsolidated material of this kind is due almost 

entirely to water content increase, as shown in Figure 4.3b. Maksimovic (1996) suggests that 

particle breakage, interparticle friction and bond may also play an important role in shear 

strength degradation for normally and overconsolidated clays, depending on the magnitude of 

the normal effective stress.

For soil subjected to undrained loading conditions, the post-peak drop in undrained 

shear strength of the clay is mainly due to the accumulation of excess pore water pressure, 

particle reorientation and reduction of interparticle bonds.

Irrespective of the physical explanation of the drop in shear strength after passing the 

peak, the existence of this decrease in strength (especially in overconsolidated clays) must be 

accepted as a fact which has been fully established. Thus, if for any reason a clay is forced to 

pass the peak at some particular point within its mass, the strength at that point will decrease. 

This action will 'throw' additional stress on to the clay at some other point causing the peak to 

be passed at that point also. In this way, a progressive failure can be initiated and, in the limit, 

the soil shear strength at the side of the pile along its entire length will fall to the residual 

value, leading to a large reduction in pile lateral capacity.

4.3.2 Plastic displacement

It is noted that the plastic shear displacement (i.e. soil displacement after peak shear 

strength is reached) required to attain the residual shear strength varies for different test 

methods. For triaxial tests, this is relatively small (Bishop et al., 1965; Burland, 1990), 

approximately 1 to 4 mm (corresponding to 1% to 5% axial strain), whereas for shear box
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tests, the plastic displacement ranges from 5 mm to as high as 50 mm or even more 

(Skempton, 1964, 1985; Skempton and Hutchinson, 1969).

For triaxial tests, the failure plane is often not clearly defined on the 45° + (j>°/2 plane, 

and the plastic displacement is a function of specimen height.

In the case of shear box tests, the failure plane is well-defined, by sliding on the 

horizontal plane. The plastic displacement is not restricted as the shear box can always be 

brought back to its starting position (multiple-reversal) during the test; see Figure 4.4. Thus 

the plastic displacement to reach residual strength may be much greater than for triaxial tests. 

Evidence of substantial discontinuity on the failure plane can be observed in these tests as 

opposed to triaxial tests.

For ring shear tests, the plastic displacement often exceeds 100 mm and in some cases 

an excess of 500 mm is necessary, before the shear strength of an intact clay falls to the 

residual value (Skempton, 1985; Bishop et al., 1971; Lupini et al., 1981). It is believed that 

the displacements required to establish residual conditions have been slightly overestimated, 

and the residual strength measured underestimated by these testing procedures.

The shear strength results obtained from the (multiple-reversal) shear box tests are 

probably most appropriate for the present study, as compared with triaxial and ring shear tests 

(which are more suitable for slope stability analyses, where shearing displacement is 

monotonic). However, shear strength results from ring shear tests and triaxial tests are also 

employed where necessary.

4.4 Correlations of shear strength degradation with soil index properties

Regarding the degradation from peak to residual shear strength, Figure 4.5 shows that 

this is not consistent for the overconsolidated clays presented by Skempton (1964). The cause 

of this happening may be related to the soil index properties listed in Table 4.1.

The Selset boulder clay has been consolidated under a moderate thickness of ice, but 

it is very sandy with a clay fraction of only 17%. Consequently, the cohesion intercept (for 

the peak shear strength) is not large and there is only a drop of 2° between the peak (<|)') and 

the residual ((J)'r) angles of shearing resistance. The peak strength is 1.4 times the residual 

shear strength at a normal effective stress of 1000 lb/ft2 . The Jari clay has been consolidated 

under at least 2,000 ft of sediments. It is very strong in its undisturbed state as compared with 

the Selset, London and Walton's Wood clays, yet the residual shear strength indicates a zero
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residual cohesion intercept and <|>'r of 18°. The peak shear strength is about 3.6 times greater 

than the residual shear strength at a normal effective stress of 1000 lb/ft2. The London clay, of 

Eocene age, has been consolidated under 500 ft to 1000 ft thickness of sediments, 

subsequently eroded. The peak shear strength is about 2.4 times the residual shear strength at 

a normal effective stress of 1000 lb/ft2 with <t>'r = 16°. For Walton's Wood clay from 

Staffordshire, the peak shear strength is three times the residual shear strength at a normal 

effective stress of 1000 lb/ft2, and <)>' is 1.6 times greater than <t>'r .

From the above evaluationjitmay be implied that the degradation from peak to residual 

shear strength and <()'r can be correlated with the index properties of the clays. This question is 

discussed in the next Section.

4.4.1 Correlations of residual angle of shearing resistance with soil index properties

The peak and residual strengths of the overconsolidated clays described above are 

shown in Figure 4.5, and their index properties tabulated in Table 4.1. There appears to be a 

correlation between ailgle of shearing resistance (<{)',.) and these indices. For example, the 

Selset clay has low clay fraction and relatively high <J>'r . The clay fractions shown in Table 4.1 

taken together with the results depicted in Figure 4.6, indicate that <|>'r decreases with 

increasing clay content.

Skempton (1985) states that the clay minerals can have little effect on residual 

strength when the clay fraction is less than 20%, as the strength is then controlled largely by 

the sand and silt particles. With clay fractions exceeding 40%, the residual strength depends 

almost entirely on the sliding friction of the clay particles, as well as their shape. A pictorial 

view of the influence of the clay fraction on post-failure given by Lupini et al. (1981) is 

shown in Figure 4.7. For higher clay contents, well-developed shear surfaces form due to the 

preferred reorientation of the clay particles.

A correlation of (|)'r with plasticity index (Ip) was given in Figure 4.8, after Fleischer

(1972), for various stiff clays, based on ring shear tests with varying strain rates. Voight

(1973) also found a relationship between §'r and Ip , using the results of others (Figure 4.8). 

Vaughan et al. (1978) summarised tests in the ring shear apparatus at Imperial College, 

mainly on natural clays of medium activity. They suggested the discontinuous relationship 

between (|)'r and Ip which is shown in Figure 4.8. They indicated that the controlling factor was 

likely to be the proportion of platy clay minerals present, and that this would correlate with Ip
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for clays of similar activity. Bucher (1975) used two strain-controlled ring shear devices of 

different design and multiple-reversal shear box tests to study the influence of stress history, 

stress level and temperature on residual friction angle. He presented a relationship between Ip 

and (|)'r similar to that of Vaughan et al. (1978), shown in Figure 4.8. He found that the ty'r of 

two different clays (Ip = 27%, <()’,. = 12.5°, and, Ip = 30%, (j)'r = 25.6°) was unaffected by 

temperature changes between 10 °C and 60 °C.

Relationships between clay fraction and plasticity index with (j>'r for natural soils were 

given by Lupini et al. (1981), depicted in Figures 4.9 and 4.10, respectively. There seems to 

be a discontinuous change in shearing resistance at a clay fraction of 35% or Ip of 30%. 

However, a number of test results clearly fall outside any reasonable correlation band. The 

reason may be the shape of clay particles (proportions of platy and rotund particles), improper 

determination of the soil index properties, etc., as explained by Lupini et al. (1981).

Other correlations for ^ , for example, using liquid limit, have been presented by 

Mersi and Cepeda-Diaz (1986); see Figure 4.11. From the above, simple correlations with 

index properties may be adequate for the prediction of residual strength (using §'r) for 

engineering purposes, despite the scatter in the data.

4.4.2 Correlations of residual/peak shear strength ratio (Rs) with soil index properties

The degradation of shear strength obtained from shear box tests reported by Skempton 

(1964) and Bishop et al. (1971) is used as the basis for the following correlations. The soil 

strength parameters and index properties are tabulated in Table 4.2. Assuming normal 

effective stress (a'„) range of 5 to 300 kPa, applying Equations (4.1) to (4.3) and using the 

soil data from Table 4.2, the residual/peak shear strength ratios (Rs) of the clays are 

determined and is defined as:

R,= % (4.4)

where xr is the residual shear strength, and

Tf  is the peak shear strength.

The residual/peak shear strength ratios (Rs) are plotted against liquid limit in Figure 4.12a and 

against clay fraction in Figure 4.12b. It is observed that the range of Rs values for o'„ of 5 to
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300 kPa is small for plots R/P 3A and R/P 4A (see Table 4.2 for descriptions). This is due to 

the presence of residual cohesion intercept (c'r) in these clays, giving a high value for the 

residual shear strength. However, setting c\ to zero and using the average value of (j)'r from 

Petley (1966, 1969) results, have increased the range of Rs values. These are shown in Figures 

4.13a and 4.13b; with plots R/P 5A, (R/P 6A) replacing R/P 3A, (R/P 4A).

The general trend from shear box tests shown in Figure 4.13, is that for a given 

increase in liquid limit and clay fraction, the amount of shear strength degradation is higher. 

It is shown in Figure 4.13, that for clays exceeding the 50% liquid limit or 40% clay fraction, 

Rs can be taken as 0.1, (0.5, 0.55) for &„ = 5 kPa, (100 kPa, 300 kPa). For clays having liquid 

limit less than 30% or clay fraction less than 20%, Rs will be 0.3, (0.8, 0.85) for &„ = 5 kPa, 

(100 kPa, 300 kPa). Comparing Figure 4.13a with 4.13b, it can be seen that the liquid limit is 

related to the clay fraction. It is noted that the increase in &„ from 200 to 300 kPa causes only 

slight increase in Rs. The correlation of Rs with plastic limit is not good and has therefore not 

been presented.

The above correlations of Rs with liquid limit and clay fraction are based on drained 

tests, and are assumed to apply for undrained tests, so that it can be employed for the cyclic 

analysis under undrained loading conditions. This assumption is made due to the limited data 

for the post-peak drop of undrained shear strength of soil. From the triaxial test results of 

intact Corinth Marl and intact Todi clay reported by Burland et al. (1996), Rs values for 

drained tests are found to be similar to the values for undrained tests (tested under 

approximately the same effective consolidation pressures). The results obtained from Ward et 

al. (1965) on London clay (liquid limit = 70% and clay fraction = 57%) tested using quick 

undrained compression tests, gives Rs = 0.6. This agrees with the correlations of Rs based on 

liquid limit and clay fraction depicted in Figures 4.13a and 4.13b, respectively. It is therefore 

justifiable to assume that Rs for drained tests are equal to those for undrained tests.

4.4.2.1 Modifications of Rs for low normal effective stress

It is observed in Figure 4.13, that the shear strength degradation at low normal 

effective stress range (e.g. Rs = 0.1 for ct'„ = 5 kPa) is very high, in comparisons with shear 

strength degradation for cj'„ > 50 kPa. This is due to the linear extrapolation of the peak shear 

strength failure envelope at ct'„ > 100 kPa towards the zero normal effective stress (see Figure 

4.14), giving the cohesion intercept (c') and hence the peak shear strength of soil obtained via
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Equation (4.1). This will give unsafe and high values of shear strength which the clay does 

not possess at low normal effective stresses (o'„ = 5 to 50 kPa), thus leading to low Rs which 

is unduly conservative.

Maksimovic (1989a) shows that the shear strength failure envelope for compacted 

London clay is very much non-linear as observed in Figure 4.14, especially for a'„ = 5 to 50 

kPa. Experimental evidence of non-linear shear strength failure envelope can also be seen in 

Bishop et al. (1965, 1971) and Atkinson and Farrar (1985). Their results show that only when 

&„ = 100 to 400 kPa, can we define the shear strength failure envelope by a straight line.

Bilinear approach

Several expressions for the non-linear failure envelopes, mostly in the form of power 

or logarithmic relationships have been reported in the literature. The main shortcomings of 

these proposals are their validity in limited stress ranges. The hyperbolic expression proposed 

by Maksimovic (1989a, 1989b, 1996) offers good possibilities for simple description of the 

non-linear shear strength failure envelope within the widest possible range of stresses. 

However, the procedure is tedious and its application requires good experimental data.

For simplicity, the bilinear approach seems to be an appropriate and simple way to 

determine the soil shear strength at low to high normal effective stress range. Taking c’ = 0 

for clay subjecting to &„ < 50 kPa, while beyond the 50 kPa stress level, the c' value 

determined from the experimental tests can be used; see Figure 4.15. The selection of cr'n = 50 

kPa as the distinct mark for the transition of highly curved to a straight line failure envelope 

is based on the observation and results presented by Bishop et al. (1965) and Maksimovic 

(1996). This suggests that for a 'w < 50 kPa, the peak shear strength will be determined as:

x/ =Tso§§ (4-5)

where t 50 is the shear strength at &„ = 50 kPa based on Equation (4.1).

The above equation applies to the peak shear strength under low normal effective stress for 

normally consolidated and overconsolidated clays.

For the residual shear strength, though its failure envelope is curved with residual 

cohesion intercept approximately equal to zero (Maksimovic, 1996; Kenney, 1967 and
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Bishop et al., 1971), it is reasonably accurate to adopt the straight line residual strength 

failure envelope expressed in Equation (4.3).

Using the bilinear approach, the peak shear strengths for o'„ from 0 to 300 kPa were 

determined using Equations (4.1) and (4.5). Adopting Equation (4.3) for residual shear 

strength determination, the results presented in Figures 4.13a and 4.13b were modified for Rs 

at low normal effective stress range (&n = 0 to 50 kPa); see Figures 4.16a and 4.16b.

Based on the simple modification described above, Rs is now constant for &„ = 0 to 50 

kPa. Figure 4.16 shows that for clays exceeding 50% liquid limit or 40% clay fraction, Rs can 

be taken as 0.3, (0.5, 0.55) for = 0 to 50 kPa, (100 kPa, 300 kPa). For clay with liquid 

limit less than 30% or clay fraction lower than 20%, Rs can be taken as 0.7, (0.8, 0.85) for ct'm 

= 0 to 50 kPa, (100 kPa, 300 kPa).

4.5 Rate of degradation of shear strength

From the shear box test results reported by Skempton (1964), it is shown in Figure

4.17 that the amount of shear strength degradation after passing its peak is dependent on the 

plastic shear displacement of the soil. It also illustrates that for different clays, the plastic 

shear displacements to reach residual shear strength will vary.

Considering only the peak to residual shear strength behaviour, the results in Figure

4.17 are replotted into Figure 4.18. From the trend of the shear strength degradation curves, it 

suggests that the exponential function can be used to describe the post-peak strength 

degradation. The current shear strength (post-peak) can be expressed as:

T = Tr + (Tf  - Tr)  exp('a  ds) (4.6)

where Cs is the shear degradation rate factor in mm'1, and 

ds is the plastic shear displacement.

The first term on the RHS of Equation (4.6) describes the magnitude of residual shear 

strength. The second term describes the rate of degradation from peak to residual shear 

strength by using the shear degradation rate factor Cs , according to the magnitude of plastic 

shear displacement. To categorise the rate of shear strength degradation as slow, medium and 

fast, Cs values of 0.1, 0.5 and 1.0, respectively, are used and illustrated in Figure 4.19.
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The use of Equation (4.6) to match the shear test results in Figure 4.18 is illustrated in 

Figure 4.20. The matches are reasonably good. Cs = 0.2 to 0.7 gives the best match to the 

post-peak strength degradation of Walton's Wood, Jackfield and London clays. The index 

properties of these clays listed in Table 4.3, suggest that Cs can be related to their indices.

4.5.1 Shear degradation rate factor (Cy) determination

In order to have a convenient quantitative expression by which the shear strength has 

fallen from peak to residual, for all types of clays with different magnitudes of peak and 

residual shear strengths, the residual shear ratio (Rsr) is used. It is defined as:

RSr = ^ i  (4.7)

Using the above expression, the residual shear ratio (Rsr) is plotted against the plastic shear 

displacement (ds) to determine the rate of shear strength degradation. The post-peak shear 

strength degradation results obtained from various test methods described below, were used 

to determine Cs, and later, to establish correlations with the soil index properties.

Shear Box tests

The shear strength degradation results reported by Skempton (1964, 1985), using the 

shear box apparatus were considered. The descriptions of these clays are listed in Table 4.3. 

The residual shear ratios (Rsr) of these clays are plotted against the plastic shear displacement 

(ds) in Figure 4.21. It shows that the clays from Jackfield, Barbara and Walton's Wood have a 

rapid rate of degradation as compared with the London clay, judging by the rapid decline of 

the initial curve at plastic shear displacements of 0 to 5 mm.

Using Equations (4.6) and (4.7) to best match the post-peak shear strength degradation 

curves shown in Figure 4.22, indicates that Cs is between 0.2 to 0.7. Note that it is important 

to have good curve matching in the initial portion of the degradation curve as the reduction of 

strength is more significant.

Ring Shear tests

The clays tested using the ring shear tests are listed in Table 4.4. The post-peak shear 

strength degradation curves of these clays are depicted in Figure 4.23. Using Equations (4.6)
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and (4.7), Figure 4.23 shows that the best match Cs lies between 0.07 to 0.3 for Blue London 

clay and Kalabagh clay, with an exceptionally low C, of 0.03 for the Brown London clay 

from Walthamstow.

Triaxial tests

The details of the clays tested using the triaxial tests are listed in Table 4.5. Figure 

4.24 shows the post-peak shear strength degradation of the Norwegian marine clays, Todi and 

London clays. Applying Equations (4.6) and (4.7), the plot shows that Emmerstad clay, 

(Ellingsrud clay, Ons<|)y clay, London clay, Todi clay) can be matched using Cs = 1.5 to 2, 

(0.8 to 1.0, 0.4 to 0.5, 0.9 to 1.0, 2.0). The Cs values determined for the above mentioned test 

methods are summarised in Table 4.6.

4.6 Correlation of rate of shear strength degradation with soil index 

properties

The rate of shear strength degradation is described by the shear degradation rate factor 

(CJ. To establish correlations of Cs with soil index properties, the Cs values determined from 

the above tests were plotted against liquid limit, clay fraction and plasticity index as depicted 

in Figures 4.25a, 4.25b and 4.25c, respectively. From these figures, it appears that the triaxial 

tests (marked with T in the plots) give a very fast rate of shear strength degradation. Table 4.6 

shows that London clay tested by shear box tests and ring shear tests give similar Cs values of 

around 0.2, while the tests conducted by triaxial apparatus gives Cs of 0.9 (differences of 4.5 

times). The reasons may be due to the method of tests conducted, orientation of failure plane, 

etc. (Section 4.3.2). This may also suggest that the triaxial tests are not suitable for the 

accurate determination of the rate of shear strength degradation.

Discarding Cs determined from triaxial test results, Figure 4.26 indicates that Cs tends 

to be higher with lower liquid limit, clay fraction and plasticity index, but the results are 

scattered at higher liquid limit, clay fraction and plasticity index. The low Cs = 0.03 for 

Brown London clay from Walthamstow may be due to shearing along the fissure plane 

(numerous fissures and joints were found in the Brown London clay).

The wide range of normal effective stress (91 kPa to 525 kPa) applied to the 

specimens for simple shear box and ring shear tests may be one of the factors which caused
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the scattered results. As seen in Table 4.6, lowering the normal effective stress from 283 to 

207 kPa for the ring shear tests on Blue London clay, gives a decrease in Cs from 0.3 to 0.15. 

Different Cs values are also seen in the triaxial tests for the Norwegian clays listed in Table

4.6 tested using different consolidation pressures. Coupled with the normal effective stress 

effect, fissure conditions, particle breakage, etc. (in addition to the apparatus constraints and 

human errors), may have substantial influences on the rate of shear strength degradation

If field results on degradation rate are not available, one might use Cs of 0.5 for liquid 

limit, (clay fraction, plasticity index) of less than 50%, (40%, 30%). Cs of 0.2 can be used for 

liquid limit, (clay fraction, plasticity index) greater than 60%, (50%, 40%). Figure 4.26 can be 

used as a reference guide for the range of soil index properties.

4.7 Degradation of bearing strength

The soil at the front face of an advancing pile is subjected to compression (bearing). 

The degradation in its bearing strength can be expected to display a similar trend to that of 

shear strength degradation, i.e. the peak bearing strength reduces towards a residual value 

when the soil is subjected to large displacements. This is illustrated in Figure 4.27 using plate 

loading tests reported by Ward et al. (1965).

The failure mechanism involved in bearing, may be viewed as a footing embedded in 

cohesive soil resulting in a wedge failure as described by Whitaker (1970), and as illustrated 

in Figure 4.28 . The soil will flow or shear along the interfaces of zones A and B, and along 

the boundary of zones B and C. Fleming et al. (1985) described the failure mechanism for 

circular piles; soil flows along two intersecting circular zones causing shear failure as 

depicted in Figure 4.29. Alternatively, bearing failure may be postulated as the failure 

mechanism at the base of a deep foundation as described by Meyerhof (1951). A bulb system 

of shear zones is developed as illustrated in Figure 4.30, and the soil will be sheared along the 

boundary of BCEG and ACDF.

Whatever the failure mechanism that one may adopt, a rigid zone in front of the pile is 

involved, pushing the soil forward and radially away from the pile as depicted in Figure 4.31. 

The soil will be sheared along AC, BC, CD and DE. However, the failure mechanism in 

bearing is not very well defined as compared with simple sliding along the side of the pile at 

points A and B. The causes of bearing strength degradation can be taken as similar to that
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described for shear strength degradation in Section 4.3.1, involving accumulation of pore 

water pressure, particle reorientation, particle breakage, etc., but over a wider soil area.

4.7.1 Experimental observations

Bearing strength degradation has been examined using plate loading tests (Ward et al., 

1965). The tests were carried out on London clay at Ashford Common shaft at different soil 

depths, with liquid limits ranging between 60% to 71%, plastic limits between 24% to 29% 

and clay fractions between 44% to 60%.

The results from peak to residual bearing strength obtained from the plate loading 

tests are shown in Figure 4.27. To describe the magnitude of bearing strength degradation, the 

residual/peak bearing strength ratio (Rb) is used, and is defined as:

Rb = f  (4.8)
f

where tr is the residual bearing strength, and

tf  is the peak bearing strength.

From the results depicted in Figure 4.27, the tests £771 (Level £  at depth of 34.8 m) 

and C772 (Level C at depth of 20.1 m) give Rb = 0.48 and 0.41, respectively (based on 

extrapolation to assumed residual bearing strength). The minor difference in results between 

peak and residual bearing strength especially for £772 and £772 (Level F  at depth of 42.1 m), 

is due to the position of the fissures in relation to the plate. Ward et al. (1965) explained that, 

if the fissures were located in positions which allowed the failure to occur almost entirely 

along the fissure, then the peak would be small as for Tests £772 and FT/2 in Figure 4.27. 

This is because the fissure acts as stress concentrator or discontinuous plane of weakness, 

whereby the strength of the soil will be greatly diminished. It is unlikely that the strength on a 

fissure or joint can be appreciably higher than the residual value. The largest peaks were 

obtained when the fissures were so located that part of the failure was forced to pass through 

some of the unfissured clays as in Tests C772 and £771. The plastic bearing displacements 

(i.e. soil displacement after peak bearing strength is reached) attained by £771 and C772 based 

on extrapolation, are approximately 15 mm before reaching to the residual bearing strength.
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Similar bearing strength degradation behaviour for plate loading tests, was obtained 

for the quick undrained compression tests on cylindrical specimens of 76 mm long by 38 mm 

diameter prepared from blocks in the laboratory (Ward et al., 1965); see Figure 4.32. Very 

pronounced peaks were obtained for intact specimens containing no fissures, giving Rb = 0.6 

and a plastic displacement of 5 mm (greater than 6% axial strain) by extrapolation to assumed 

residual strength. When failure occurred partly along existing fissures, smaller peaks were 

found and where the failure occurred entirely along a fissure, little or no peak was noted.

Further investigation on bearing strength degradation was obtained from the plate 

loading tests reported by Andersen and Stenhamar (1983). The in-situ plate loading tests were 

carried out on a medium stiff overconsolidated clay at Haga in Norway. The plasticity index 

is 15% and clay fraction is 45%.

The load-displacement curves from the plate loading tests are presented in Figures 

4.33 and 4.34 for Test 1 and Test 3, respectively. The vertical load or bearing strength (area 

of square steel plate is 1 m2) for Test 1, loaded to failure in 24 minutes is 340 kPa. For the 

more rapid Test 3 with vertical loading to failure in 45 seconds (60 times faster than the rate 

of testing for Test 1), the bearing strength is 10% higher, i.e. 375 kPa. It is evident that the 

loading rate is not an important factor in the present study.

The residual bearing strength for Test 1 was not fully registered as observed in Figure

4.33. After the vertical load reaches its peak, the soil degrades slowly as seen from the gentle 

decline of the load till it reaches about 260 kN, after which, there is a vertical drop in load. 

This may be due to the quick release of pressure in the hydraulic jack. Obviously, the load at 

residual will be less than 260 kN, giving Rb of less than 0.76 and a plastic bearing 

displacement of more than 40 mm. The stepping of the curve prior to reaching to its peak is 

due mainly to the sequence of unloading and reloading, which does not show significant 

change to the load-displacement response for loads up to 300 kN; compare Test 1 with Test 3 

in Figure 4.34. The degradation from peak to residual for Test 3 was not recorded, but a 

vertical drop of load can be clearly seen in Figure 4.34, suggesting a sudden release of 

hydraulic pressure.

It is difficult with the scant information available to make firm recommendations. 

However, based on the limited amount of data available, one can assume Rb = 0.4 to 0.7. The 

soil depth did not seem to have a significant influence on Rh as noted from the results from
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Ashford Common and Haga sites. Details of Rh and soil index properties are listed in Table 

4.7.

4.8 Rate of degradation of bearing strength

The bearing strength degradation from peak to residual depicted in Figures 4.27 and

4.33, shows that it is influenced by the plastic bearing displacement of the soil. Since the 

trend of bearing strength degradation is similar to the shear strength degradation, it suggests 

the use of exponential function to describe the post-peak bearing strength degradation.

The current bearing strength (post-peak) as a result of bearing strength degradation is 

expressed as:

t = tr + (tf - t r)Qxp{-cbdblD) (4.9)

where Cb is the bearing degradation rate factor, 

db is the plastic bearing displacement, and 

D is the plate diameter or width.

The first term on the RHS of Equation (4.9) describes the magnitude of residual bearing 

strength. The second term describes the rate of bearing strength degradation from peak to 

residual bearing strength by the use of the bearing degradation rate factor (CA), according to 

the magnitude of the plastic bearing displacement. The diameter (or width) of the plate is 

used to normalise the plastic bearing displacement since there appears to be a scale effect. 

Ward et al. (1965) and Golder and Leonard (1954) have reported that the bearing strengths of 

the clays are strongly influenced by the size of the plate used in the plate loading tests.

Rate of bearing strength degradation (Cb) of 10, 50 and 100 are identified as slow, 

medium and fast rates, respectively, and are illustrated in Figure 4.35.

4.8.1 Bearing degradation rate factor (Q) determination

The results from Ward et al. (1965) were employed for this study. Relevant results are 

taken from plate loading tests on intact clays, i.e. ET/\ and C772 in Figure 4.27. To have a 

convenient quantitative expression for the amount by which the peak bearing strength has

116



CHAPTER 4 Soil Strength Degradation

reduced to its residual, for all types of clays, the residual bearing ratio (Rhr) is used, and is 

expressed as:

K = r p r r (4.io)

Considering only the peak to residual bearing strength, the results of Rhr were plotted 

against the plastic bearing displacement (db). Different Cb values were used to determine the 

rates of bearing strength degradation which match closely the experimental results.

For the result of £771, the best match Cb values were between 30 to 50, and for C772 

were between 10 to 20 as depicted in Figure 4.36. The value for Cb is dependent upon the 

type of soil encountered in the site. With the lack of information on the rate of bearing 

strength degradation, Cb can simply be taken as ranging between 30 to 50. Details of Cb and 

soil index properties are listed in Table 4.7.

4.9 Application to cyclic analysis

For simplicity, the cyclic analysis is based on an elastic-perfectly plastic model for 

soils, which are assumed to behave linearly elastically at small strains, but yield when certain 

limit stresses (peak strength) are reached. After the soil yields, its limit stress will degrade 

according to the magnitude of plastic displacement, as described in Section 4.5.

Shear strength degradation

The soil elements at the side face of the pile are subjected to shearing. They will yield 

when the yield stresses (tsys) for shearing (taken as the limit shear stresses (t„), i.e. tsys = tss), 

are attained. After which, the limit shear stress will degrade to the residual limit shear stress 

at large plastic shear displacements. The residual limit shear stress for each shearing soil 

element can be determined as:

< s s , =  R s t s s  (4.11)

where Rs is the residual/peak shear strength ratio, and 

tss is the limit shear stress.
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In the absence of experimental data for the residual/peak shear strength ratio (Rs), 

Figure 4.6 and Figures 4.8 to 4.11 can be used to determine the residual angle of shearing 

resistance <j>'r based on the soil index properties. Thereafter, using Equation (4.3) to determine 

the residual shear strength, and with the knowledge of the peak shear strength (Equation (4.5) 

may be required for low g '„), to determine Rs using Equation (4.4). For a simple estimation of 

Rs for different types of clays, Figure 4.16 can be used as a guide, provided that the index 

properties of the clay are known.

The shear strength degradation only applies to the shearing soil elements that have 

yielded in shear, i.e. the shear stress reaches tsys. The plastic shear displacements (ds) are 

determined (from the pile displacements) when the shearing soil elements are plastic. While 

the shearing soil elements continue to yield with increasing loads, ds will increase. When the 

shearing soil elements have recovered from plastic to elastic (e.g. initial stage of unloading 

and reloading), the limit shear stresses will degrade according to an exponential function 

(analogous to Equation (4.6)) to a new value. This value is known as the reduced limit shear 

stress (tssd), and is determined based on the plastic shear displacement (accumulated from the 

loading/reloading and unloading cycles):

tssd = tSsr + (tss - tsxr) exp('C s (4. 12) 

where Cs is the shear degradation rate factor in mm'1.

The value of Cs can be determined from Figure 4.26 with knowledge of the soil index 

properties. After determining the reduced limit shear stress, it is now set to be the yield stress 

for shearing, i.e. tsys = tssd for that loading/reloading or unloading cycle.

The plastic shear displacement for the plastic shearing soil elements will progressively 

increase for each cycle, and the reduced limit shear stress will progressively decrease until the 

residual limit shear stress is reached. This is illustrated in Figure 4.37.

Bearing strength degradation

The soil elements at the front face of the advancing pile are subjected to bearing. They 

will yield when the yield stresses (tsyc) for bearing (taken as the limit bearing stresses (tsc), i.e. 

tsyc = tsc), are reached. After which, the limit bearing stress will degrade to the residual limit
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stress, at large plastic bearing displacements. The residual limit bearing stress for each 

bearing soil element is determined as:

tscr = Rbtsc (4.13)

where Rb is the residual/peak bearing strength ratio, and 

tsc is the limit bearing stress.

Recommendations for the values of Rb are found in Section 4.7.1 and Table 4.7.

The bearing strength degradation only applies to the bearing soil elements that have 

yielded in bearing, i.e. the bearing stress reaches tsyc. The plastic bearing displacements (db) 

are determined (from pile displacements) when the bearing soil elements are plastic. While 

the bearing soil elements continue to yield with increasing loads, db will increase. When the 

bearing soil elements have recovered from plastic to elastic (e.g. in the initial stage of 

unloading and reloading), the limit bearing stresses will degrade according to the exponential

function (analogous to Equation (4.9)) to a new value. This value is known as the reduced

limit bearing stress (tscd), and is determined based on the plastic bearing displacement 

(accumulated from the loading/reloading and unloading cycles):

tscd = tscr + (tsc - tscr) exp(- ° db/D) (4.14)

where Cb is the bearing degradation rate factor, and 

D is the pile diameter or width.

Recommendations for the value of Cb can be found in Section 4.8.1 and Table 4.7. The 

reduced limit bearing stress is now set to be the yield stress for bearing, i.e. tsyc = tscd for that 

loading/reloading or unloading cycle.

The plastic bearing displacement for the plastic bearing soil elements will 

progressively increase for each cycle, and the reduced limit bearing stress will progressively 

decrease until the residual limit bearing stress is reached. This is shown in Figure 4.38.

4.10 Discussion
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In practice, the maximum shear strength of the soil or the strength parameters c' and <))' 

are easily available, but not the residual strength. As such, correlations of residual angle of 

shearing resistance (^V) with soil index properties have been presented, to enable the 

determination of residual strength of the soils. After which, Rs (residual/peak shear strength 

ratio) can be calculated, and used in the cyclic analysis to determine the residual limit shear 

stress of the soil.

From the shear test results, it appears that Rs is dependent on the magnitude of the 

normal effective stress applied. Peak shear strengths of the clays are over-predicted using the 

Mohr-Coulomb's straight line equation. As such, the bilinear approach is adopted to give 

reasonable estimates of the Rs values over a wide range of normal effective stresses. For 

practical purposes, correlations of Rs with soil index properties are presented in Figure 4.16.

From the experimental results, it appears that the rate of shear strength degradation, 

described by the shear degradation rate factor (Cs), can be related to the soil index properties. 

As such correlations of Cs with soil index properties were presented in Figures 4.25 and 4.26.

For post-peak bearing strength degradation, the parameters Rb (residual/peak bearing 

strength ratio) and Cb (bearing degradation rate factor) are used to describe the magnitude of 

residual bearing strength and the rate of degradation, respectively. These parameters may 

also be correlated with the soil index properties. However, due to the limited test results on 

bearing strength degradation, such correlations have not been presented. The recommended 

values for Rb and Cb are discussed in Sections 4.7.1 and 4.8.1, respectively. With the 

knowledge of the soil index properties, Table 4.7 can be used as a guide.

The use of the exponential functions to describe the post-peak shear strength and 

bearing strength degradation via Equations (4.6) and (4.9), respectively, appear to be 

satisfactory. These equations (in a modified form: Equations (4.12) and (4.14)) are employed 

in the cyclic analysis, to determine the reduced limit stress for each cycle of loading, 

depending on the plastic displacement of the soil.

4.11 Concluding remarks

The subject of soil strength degradation is presented based on the experimental results 

provided by various researchers. From their results, it appears that the degree and rate of 

strength degradation can be related to the index properties of the soil.
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To describe the post-peak shear strength and bearing strength degradation of the soils, 

the strength degradation parameters, namely Rs, C„ Rh and Ch are required for the soil model. 

These parameters can be obtained from experimental tests with few of the complications and 

difficulties of the other soil models described in Chapter 2. Alternatively, these parameters 

can be correlated with the soil index properties as discussed in this Chapter.

For the post-peak strength degradation of soil to their residual limits, Equations (4.6) 

and (4.9) have been proposed. These equations provide a description of the shear strength and 

bearing strength degradation, as observed in experimental tests. The application of these 

equations to the soil model for cyclic analysis is straight forward: we determine the reduced 

limit stress for each cycle of loading as a function of the plastic displacement of the soil.

With the soil strength degradation model now defined, the boundary element analysis 

of cyclic laterally loaded piles can now be developed.
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Table 4.1 Index properties of clays, after Skempton (1964).

Clay type Liquid Limit 

(%)

Plastic Limit 

(%)

Plasticity Index 

(%)

Clay Fraction 

(%)

Selset clay 26 13 13 17

Jari clay 70 27 43 47

London clay 82 29 53 55

Walton's Wood clay 53 28 25 69
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Table 4.2 Soil index properties and strength parameters determined from shear box tests.

Plot N am e Soil type & site Test m ethod and Peak Residual R eference

index properties c' (kPa) c \  (kPa) <f>V(°)
R/P 1 Jackfield clay 

from Shropshire

Drained shear box test 

LL=41 ,PL=22,CF=3 6,P  1=22

10.5 25 0 19 Skempton,

1964

R/P 2 Boulder clay 

from Selset, north 

Yorkshire

Drained shear box test 

LL=26,PL=  13 ,CF= 11,PI= 13

8.6 32 0 30

R/P 3 London clay 

from Ashford 

Common

Drained multiple-reversal shear 

box test

LL=82,PL=29, CF=5 5 ,PI=5 3

15.3 20 0 16

R/P 4 Jari clay 

from Himalayas

Drained shear box test 

LL=70,PL=27 ,CF=47 ,PI=43

37.3 22 0 18

R/P 5 Walton's Wood 

clay from 

Staffordshire

Casagrande shear box 

LL=53,PL=28,CF=69,PI=25

15.3 21 0 13

R/P 1A Blue London clay 

from

Leigh on Sea

Drained multiple-reversal shear 

box test

LL=67,PL=26,CF=51 ,PI=41

17.2 23.5 0 14.5 Bishop, 1971 

after Petley, 

1966

R /P2A Blue London clay 

from Wraysbury

Drained multiple-reversal shear 

box test

LL=70,PL=29,C F=58,PI=41

29.7 20 0 13.5 Bishop, 1971 

after Agarwal, 

1967

R/P3A Brown London 

clay from 

Hendon

Drained multiple-reversal shear 

box test

LL=82,PL=33,CF=60,PI=49

17.9 23 3.5 14.6 Bishop, 1971 

after Petley, 

1966

R/P4A Weald clay from 

Arlington

Drained multiple-reversal shear 

box test

LL=13,PL=30,CF=45,PI=43

13.1 18.2 6.2 10.5 Bishop, 1971 

after Petley, 

1969

R/P5A Brown London 

clay from 

Hendon

Drained multiple-reversal shear 

box test

LL=82,PL=33,CF=60,PI=49

17.9 23 0 16.7 Bishop, 1971 

after Petley, 

1966

R /P6A Weald clay from 

Arlington

Drained multiple-reversal shear 

box test

LL=73,PL=30,CF=45,PI=43

13.1 18.2 0 12.6 Bishop, 1971 

after Petley, 

1969

Note: All clays are undisturbed and tested under drained conditions.

LL = Liquid Limit, PL = Plastic Limit, CF = Clay Fraction and PI = Plasticity Index in %.
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Table 4.3 Index properties of clays, from shear box tests.

Plot N am e Soil type & site Test m ethod Liquid Limit 

(%)

Clay fraction 

(%)

Plasticity index  

(%)

Reference

Walton's

Wood

Walton's Wood 

clay from 

Staffordshire

Casagrande shear 

box test

53 69 25 Skempton,

1964

Jackfield clay Jackfield clay 

from Shropshire

Drained shear box 

test

41 36 22

London clay London clay 

from Ashford 

Common

Drained

multiple-reversal 

shear box test

82 55 53

Barbara:

Intact

S.Barbara clay 

from Florence

Drained

multiple-reversal 

shear box test

76 37 33 Skempton, 

1985 after 

Calebresi & 

Manfredini, 

1973

Table 4.4 Index properties of clays, from ring shear tests.

Plot Nam e Soil type & site Test m ethod Liquid Limit 

(%)

Clay fraction 

(%)

Plasticity index  

(%)

Reference

Brown London 

clay

Brown London 

clay from 

Walthamstow

Ring shear test 66 53 42 Bishop, 1971

Blue London 

clay; RS-2

Blue London clay 

from Wraysbury

72 57 43

Blue London 

clay; RS-5

Blue London clay 

from Wraysbury

72 57 43

Kalabagh Kalabagh clay 62 47 36 Skempton,

1985
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Table 4.5 Index properties of clays, from triaxial tests.

Plot N am e Soil type & site Test m ethod Liquid Limit 

(%)

Clay fraction 

(%)

Plasticity index  

(%)

Reference

Onsoy Ons<(>y clay from 

Norway

Consolidated

undrained

5 6 - 7 4 60 3 0 - 4 4 Lacasse et al., 

1985

Ellingsrud Ellingsrud clay 

from Norway

2 5 - 2 9 37 5 - 8

Emmerstad Emmerstad clay 

from Norway

2 4 - 3 2 40 3 - 12

Todi clay Todi clay Unconsolidated

undrained

50 35 28 Burland,

1990

London clay London clay Consolidated

undrained

71 53 42 Webb, 1969

Table 4.6 Shear degradation rate factors (Cs).

C lay type Test method Normal effective stress 

(kPa)

c ,

(m m 1)

Figure

R eference

Walton's Wood clay Shear box test 153 0.4 Figure 4.22

Jackfield clay 110 0.6

London clay 91 0.2

S.Barbara clay 300 0.5 -0.6

Brown London clay Ring shear test 214 0.03 Figure 4.23

Blue London clay; RS-2 207 0.15

Blue London clay; RS-5 283 0.3

Kalabagh clay 525 0.07

Ons<(>y clay Triaxial test - 0 .4 -0 .5 Figure 4.24

Ellingsrud clay -

O100o

Emmerstad clay - 1 .5-2 .0

Todi clay - 2

London clay - 0.9
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Table 4.7 Residual/peak bearing strength ratios (.Rs) and bearing degradation rate factors (Cb).

Soil type & site Test method 

and description

Soil depth 

(m)

LL

(%)

PL

(%)■

C F

(%)

P I

(%)

Q Reference

London clay 

from Ashford 

Common

Plate loading 

test: CT/2

20.1 71 29 53 42 0.41 1 0 -2 0 Ward e ta l . ,  1965

Plate loading 

test: £771

34.8 70 27 57 43 0.48 3 0 - 5 0

Quick undrained 

compression test

34.8 70 27 57 43 0.6 -

Haga clay from 

Norway

Plate loading 

test

2 .3 -2 .5 40 25 45 15 <0.76 - Andersen & 

Stenhamar, 1983

LL = Liquid Limit, PL = Plastic Limit, CF= Clay Fraction and PI=  Plasticity Index in %.
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V  <

soil

1 o 1 2 14
X  < m >

1 * £0

Figure 4.1 Soil displacement vectors from a Finite element analysis for a pile subjected to 

lateral load.

o-c peak

Shear
stress

■Residual

N-C peak

a^
Effective pressure 

on shear plane
Displacement

cr'-constant

Figure 4.2 Peak and residual strengths o f normally consolidated and overconsolidated clays 

(Skempton, 1964).
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o-c

/ N'c \
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Low (e.g. < 20%) clay fraction

(b)

High (e.g. > 40%) clay fraction

(\ o c

If N-C

Increasing water content
cb

Particle reorientation
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100 50 100
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(a)

Figure 4.3 Stress-displacement curves at constant normal effective stress (<t'„) (Skempton, 

1985).

1-6

1-4
1-2

Figure 4.4 Stress-displacement curves for intact clay using multiple-reversal shear box test 

(Calabresi and Manfredini, 1973).
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Figure 4.5 Peak and residual strengths o f overconsolidated clays (Skempton, 1964).
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Figure 4.6 Decrease in residual angle o f shearing resistance (§ \)  with increasing clay fraction 

(Skempton, 1964).
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Test Clay Thin section Description
no. fraction: %

20

° o ? 6 ° < p Q ~ °
O . o  o  0  O

,o
•  od

: o ° o f o 0 °

No separation on shear zone. Thin section 
showed no preferred orientation of the clay matrix 
(Figs 19, 20)

27
°  • °

o  - o  0 0 ‘ 2  ! 
• O  *o * 0 * 0
• O • O • o

o

O

No separation on shear zone. Thin section 
showed no preferred orientation of the clay matrix

34 0 • No separation on shear zone. Thin section 
showed shear zone about 1.5 mm thick containing 
discontinuous shear surfaces parallel to the 
direction of shear

40

•  _ O  , = n .
~ 0  r ---------
• 0  • o  #

Specimen separated on heavily striated 
(slickensided) e hear surface. Thin section showed 
two continuous shear surfaces, undulating in the 
direction of shear, about 2.5 mm apart. Clay 
particles between them orientated 0 -45 ’ to 
direction of shear (Fig. 23)

48 Specimen separated on shear surface, more 
polished than test 5, with less well developed 
striations and no undulations in direction of shear. 
This surface bounded one side of zone of strongly 
orientated clayO-5-2.0 mm thick: other side bounded 
by less well developed shear surface. Clay on 
either side of this zone showed partial orientation 
(Figs 21, 22)

Figure 4.7 Summary of post-failure structure from Happisburgh-London clay mixtures. 

(Lupini et a l., 1981).
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  Vaughan et al (1978) CJn = 130 -180 kPa
^  Bucher (1975) (J n'= 7 2 .5 -2 6 9 .5  kPa

  Kanji (1974) CXn'= 147 kPa
 Seycek (1978 ) CTn = 300 kPa
  Fleischer (1972 )
 Voight (1973)

■g 10

Plasticity index Ip  %

Figure 4.8 Correlation o f residual friction angle ((j)'r) with plasticity index (Lupini et a l., 

1981).
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Figure 4.9 Correlation o f residual friction angle ((j)',.) with clay fraction for natural soils

(Lupini et a l., 1981).
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Figure 4.10 Correlation o f residual friction angle (<)>',) with plasticity index for natural soils 

(Lupini et a l., 1981).
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Figure 4.11 Correlation of residual friction angle (<|>'r) with liquid limit (Mersi and 

Cepeda-Diaz, 1986).
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Figure 4.12 Correlation of residual/peak shear strength ratio (Rs) with (a) liquid limit and (b) 

clay fraction.
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Figure 4.13 Correlation o f residual/peak shear strength ratio (Rs) with (a) liquid limit and (b) 

clay fraction (with residual cohesion intercept c \  set to zero).
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Figure 4.14 Failure envelope for compacted London clay; (a) investigated stress range with 

detail and (b) in the low stress range (Maksimovic, 1989a).
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Figure 4.15 Shear strength failure envelope using bilinear approach.
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Figure 4.16 Correlation o f residual/peak shear strength ratio (Rs) with (a) liquid limit and (b) 

clay fraction (with residual cohesion intercept c'r set to zero and modification for low stress

range).
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Figure 4.17 Shear test results on (a) Walton's Wood clay, (b) Jackfield clay and (c) London 

clay (Skempton, 1964).
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Figure 4.20 Determination o f shear degradation rate factor (Cv) from post-peak shear strength 

degradation results.
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Figure 4.21 Rate of shear strength degradation from shear box tests.
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Figure 4.22 Determination o f shear degradation rate factor (Cv) from post-peak shear strength 

degradation results using shear box tests.
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Figure 4.23 Determination o f shear degradation rate factor (Cv) from post-peak shear strength 

degradation results using ring shear tests.
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degradation results using triaxial tests.
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Figure 4.25 Correlation o f shear degradation rate factor (Cv) with (a) liquid limit, (b) clay 

fraction and (c) plasticity index (see overleaf).
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Figure 4.25 (c) Correlation o f shear degradation rate factor (Cv) with plasticity index.
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Figure 4.26 Correlation o f shear degradation rate factor (Cv) with (a) liquid limit, (b) clay 

fraction (see overleaf), and (c) plasticity index (see overleaf), discarding triaxial test results.
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Figure 4.26 Correlation of shear degradation rate factor (Cv) with (b) clay fraction and (c) 

plasticity index, discarding triaxial test results.
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Figure 4.27 Typical load-settlement curves from plate loading tests (Ward el al., 1965).
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Figure 4.28 Shear zones beneath a shallow foundation according to Terzaghi. A, zone of 

elastic equilibrium; B , zones o f radial shear; C, zones o f passive shear; D, depth o f foundation 

(Whitaker, 1970).
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Figure 4.29 Failure mechanism for soil around laterally loaded pile. (Fleming ct cil., 1985).
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Figure 4.30 Shear zones around the base of a pile (Whitaker, 1970).
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Figure 4.31 Failure mechanism of soil when a pile is loaded laterally.
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Figure 4.32 Undrained triaxial compression tests on block specimens (Ward et al., 1965).
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Figure 4.33 Measured load-displacement curve from plate loading tests for Test 1 (Andersen 

and Stenhamar, 1983).
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Figure 4.34 Measured load-displacement curve from plate loading tests for Tests 1 and 3 

(Andersen and Stenhamar, 1983).
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Figure 4.35 Identification o f bearing strength degradation rate factor (Ch).
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Figure 4.37 (a) Determination of plastic shear displacement (ds)  and reduced limit shear stress 

(7vW), and (b) shear strength degradation based on plastic shear displacement.
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Figure 4.38 (a) Determination of plastic bearing displacement (dh) and reduced limit bearing 

stress (tscd), and (b) bearing strength degradation based on plastic bearing displacement.
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CHAPTER 5 

Boundary Element Analysis

5.1 Summary

The formulation used in the cyclic analysis of laterally loaded pile foundations 

embedded in cohesive soils, based on the indirect boundary element method, i is described 

here. The analysis is capable of determining the pile-head load-displacement and rotation 

response. In addition, the pile tractions, displacements, shear forces and bending moments 

along the length of the pile can also be evaluated. Phenomena observed in cyclic pile-load 

tests, such as gapping, backsliding and soil strength degradation effects are accounted for in 

the analysis, by the use of a simple soil model.

5.2 Introduction

A continuum approach based on incremental analysis, via the indirect boundary 

element method, is presented based on a method employed by Davies and Budhu (1986) and 

Budhu and Davies (1988) for static analyses of laterally loaded piles. This approach is 

capable of analysing the three-dimensional pile-soil behaviour of cyclic laterally loaded piles 

without undue computational cost. A significant simplification of the method is that although 

the yield (failure) conditions at the pile-soil interface are satisfied, the yield conditions within 

the soil continuum are not explicitly satisfied. While such an analysis fails to account fully 

for the complex mechanics of the continuum, the studies referred to above suggest that it is 

capable of producing excellent results, and it captures all of the essential features of the 

problem.

The non-linear elasto-plastic analysis is based on an elastic-perfectly plastic model for 

soils, which are assumed to behave linearly elastically at small strain levels, but fail, when 

they reach certain yield stresses, namely, bearing failure in the compression zone, tension 

failure in the tensile zone and shear failure in the slip zone. After the soil yields, its strength 

may degrade depending on the magnitude of the plastic displacement (i.e. strain-softening).

Cyclic loading of piles embedded in cohesive soil, generally results in gaps forming 

at the tension face of the pile (Matlock, 1970; Bijnagte et al., 1991; Dunnavant and O'Neill,
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1989; Long et al., 1993), resulting in degradation of the pile responses. Due to the cyclic 

loading, soils will also degrade, resulting in increasing pile displacements, moments etc. For 

cohesive soils, backsliding may reduce gap sizes (Grashius et al., 1990; Bijnagte et al., 1991). 

These phenomena (described by a simple soil model) are included in the computer program, 

APILEC, based on the existing program, APILES (Davies and Budhu, 1994). The main 

extensions to the program are the following:

1.) Unload and reload cycles accounting for one-way and two-way cyclic loadings, with 

the option of load-controlled (or displacement-controlled) conditions.

2.) Gap formation, i.e. separation between the pile and the soil, when the soil is subjected 

to tensile stresses.

3.) Backsliding of soil into the gap.

4.) Soil strength degradation.

5.3 Soil model

The equivalent linear and cyclic non-linear soil models for cyclic loading (described 

in Sections 2.4.1 and 2.4.2) cannot be applied, because the cyclic shear strain induced in soils 

during cyclic loading cannot be readily determined. Furthermore, the parameters required for 

these models are not easily determined experimentally. On the other hand, the advanced 

constitutive models (described in Sections 2.4.3 and 2.5), for example, the bubble model, are 

too complex.

For simplicity, it is assumed that the soil behaves like an elastic-perfectly plastic 

material. While such a simple model cannot fully describe the behaviour of the soils, it is 

sufficiently adequate for most practical problems. It can reproduce the non-linear 

load-displacement response of laterally loaded piles from the interaction of elastic and plastic 

(yielded) soil elements.

The soil parameters required in the static analysis are the undrained shear strength 

(C„) of the soil and its Young's modulus (Es). Poisson's ratio (v) is assumed to be equal to 0.5 

under undrained loading conditions. For cyclic analysis, residual/peak shear strength ratio 

(Rs), the shear degradation rate factor (CJ, the residual/peak bearing strength ratio (Rb), and 

the bearing degradation rate factor (Cb) are required to account for soil strength degradation. 

A further backsliding factor ((3) is needed if the backsliding phenomenon is taken into 

consideration.
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5.3.1 Clay types

Two clay profiles are considered in the analysis, corresponding to soft (lightly 

overconsolidated) clays and stiff (heavily overconsolidated) clays.

Soft clays

The undrained shear strength (C„) is to be linearly proportional to the depth (z) below 

ground level:

Cu= cz (5.1)

where c is the rate of increase in undrained shear strength with depth.

For very soft clays, if the groundwater level and ground level coincides, then the (minimum) 

magnitude of the parameter c is approximately 3 kPa/m (Budhu and Davies, 1988). If field 

measurements of shear strength are available, selection of the parameter c should be governed 

by the strength profile over the effective length of the pile, typically the upper ten diameters. 

For soft clays, Equation (3.2) can be used, i.e.

Cu = 0.25 ct'z (5.2) (3.2 bis)

where &2 is the vertical effective stress.

Alternatively, the undrained shear strength (Skempton, 1954, 1957) can be deduced from the 

relationship:

C„ = (0.11 +0.37 Ip)& g (5.3)

where Ip is the plasticity index.

The Young's modulus (Es) of the soil is similarly assumed to be proportional to depth:

yi
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Es = mz (5.4)

where m is the rate of increase in Young's modulus with depth.

Stiff clays

The undrained shear strength (CM) and the Young's modulus (Es) for stiff clays are 

assumed to be constant throughout the pile depth.

5.3.2 Limit stresses

In the analysis, elastic behaviour is assumed until the tractions on the pile-soil 

interface reach certain yield stresses (determined from the limit stresses). In the compression 

soil zone (see Figure 5.1a), the limiting bearing stress is given by the equation:

tsc = NcCu (5.5)

where Nc is the bearing capacity factor.

The bearing capacity factor is assumed to increase linearly from two at the surface to a 

constant value of nine at a depth of three pile diameters and below. These values are 

suggested by Skempton (1959), Poulos and Davis (1980) and Tomlinson (1994).

In the slip (shear) soil zone (see Figure 5.1b), i.e. along the side of the pile, the 

limiting shear stress is taken as:

tss = aCu (5.6)

where a  is an empirical adhesion factor.

The adhesion factor (a) depends mainly on the undrained shear strength of the soil, and the 

method of pile installation. For driven piles, a  ranges from 0.2 for very stiff clays to 1.0 for 

soft clays (Tomlinson, 1994). For bored piles, data on a  are limited, and an average value of 

0.5 is recommended.
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Since soils cannot sustain tension, the total change in normal stress in the tension soil 

zone (see Figure 5.1a) cannot be greater than the in-situ lateral effective stress. Thus, the 

limiting tensile stress is:

ts, = Ktlz (5.7)

where K, is the lateral earth pressure coefficient,

y is the effective unit weight of the soil, and 

z is the depth.

The lateral earth pressure coefficient (.K,) should reflect the method of installation. For driven 

piles, a value of unity or higher is appropriate, whereas for bored piles, K, may be less than 

unity.

From the limit stresses determined using Equations (5.5) to (5.7), the yield stresses for 

the soil elements are established. The yield stress for bearing is:

tsyc = tsc (5.8)

yield stress for shear is:

tSys = tss (5-9)

and yield stress for tension is:

tsy,= tst (5.10)

5.3.3 Gap formation

A principal effect of cyclic loading is the development of a permanent gap between 

the pile and the soil when the soil yields in tension (Figure 5.1a). Gaps play a vital role in the 

cyclic analysis, as they can determine whether a soil element remains plastic or elastic during 

the unloading and reloading processes. When gaps occur at the pile-soil interface, the 

resistance provided by the soil element at that particular section is reduced to zero until
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pile-soil contact is established again. Careful monitoring of gap formation throughout the 

whole pile length is required and care must be taken to ensure that the gaps do not 'overclose' 

when the pile returns.

From the plane-strain finite element analysis presented in Chapter 3, it is observed 

that the soil elements at the debonded pile-soil interface (gaps present), responded elastically 

(in terms of load-displacement responses); see Figures 3.24 to 3.29. This suggests that for 

cyclic analysis, the soil element that has yielded in tension (gap occurs at the pile-soil 

interface), will undergo an elastic load-displacement response according to the initial pile-soil 

system stiffness. For simplicity, it can be assumed that when the soil element fails in tension, 

it will remain stationary, unless the pile-soil contact is established again (e.g. gap closed 

during unloading).

5.3.4 Backsliding

During loading, tensile stresses may occur at the pile-soil contact zone. The adhesive 

properties of cohesive soil will result in backsliding of the soil into the gap, resulting in the 

reduction in gap size, as depicted in Figure 5.1a. This phenomenon has been observed by 

Matlock (1970) in his laboratory model pile tests and implemented by Bijnagte et al. (1991) 

in their discrete element numerical model (described in Section 1.3.5).

Backsliding is incorporated here by increasing the limit tensile stress of the soil. This 

reduces the number of soil elements yielding in tension, and thereby reduces the gap sizes. 

The limit adhesive stress of the soil is calculated from the equation:

tslb = ?>Cu + tsl (5.11)

where p is a backsliding factor; 0 < p < 1.

If backsliding is included in the analysis, the yield stress for tension (tsyl) in Equation (5.10) 

will be replaced:

tsyl = ts,b (5.12)
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In many reported cyclic pile-load tests, backsliding has not been mentioned. This is 

probably because its influence on the overall pile behaviour is not significant, or it may be 

that the amount of soil sliding back into the gap cannot be measured in the field. However, it 

is felt that the implementation of the backsliding effect is essential for the complete analysis 

of pile-soil interface behaviour.

5.3.5 Soil strength degradation

Cyclic loading on soil will result in strength degradation as described in Chapter 4. 

The soil strength degradation is based on the post-peak strength degradation to residual 

strength, which are evident in shear tests and bearing tests depicted in Figures 5.2a and 5.2b, 

respectively. The magnitude of strength degradation can be taken as a function of the plastic 

soil displacement (i.e. displacement after peak strength is reached), as illustrated in Figure 

5.1c. The soil strength degradation applies only to plastic soil elements where their stresses 

have reached the yield stresses. Such situation occurs mostly for the soil elements at the upper 

region of the pile. For soil elements subjected to stresses below their yield stresses, their 

strength will not degrade. This applies to soil elements that are at the lower portion of the 

pile, where the stresses subjected upon them are minimal.

Shear strength degradation

From Section 4.9, it was shown that the residual limit shear stress of the soil in the 

slip (shear) zone can be determined as:

t„  = R,t„ (5.13) (4.11 bis)

where Rs is the residual/peak shear strength ratio.

Due to shear strength degradation, the limit shear stress will reduce. The reduced limit shear 

stress is given by the equation:

r„rf = r„, + f c -O e x p < -° A) (5.14) (4.12 bis)

where Cs is the shear degradation rate factor in mm'1, and
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ds is the plastic shear displacement.

The correlations of Rs and Cs with soil index properties are found in Figures 4.16 and 4.26, 

respectively.

If shear strength degradation is allowed for the particular soil element, the yield stress 

for shear will be:

(yyr tssd (5 *15)

Bearing strength degradation

From Section 4.9, it was shown that the residual limit bearing stress of the soil in the 

compression zone can be determined as:

t.scr = Rbtxc (5.16) (4.13 bis)

where Rb is the residual/peak bearing strength ratio.

As a result of bearing strength degradation, the limit bearing stress will reduce. The reduced 

limit bearing stress is determined by the equation:

'«* = t s c r +  (4  - O  exp'-0*"®’ (5.17) (4.14 bis)

where Cb is the bearing degradation rate factor, 

db is the plastic bearing displacement, and 

D is the pile diameter or width.

Discussion on the values for Rb and Cb is found in Sections 4.7.1 and 4.8.1, respectively.

If bearing strength degradation is allowed for the particular soil element, the yield

stress for bearing will be:

(rye iscd (5.18)
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5.4 Boundary element formulation

The non-linear response of piles to lateral loading is obtained by coupling the 

equations describing the non-linear load-displacement behaviour of the soil with the 

equations describing the flexural behaviour of the pile, treated as a solid cylindrical elastic 

beam. An approximate solution to this elasto-plastic problem is obtained by means of an 

incremental analysis via the indirect boundary element method, where only the pile-soil 

interface is discretised (Davies and Budhu, 1986; Budhu and Davies, 1988).

5.4.1 Pile flexure

The pile of length (L) is divided into a number (n) of cylindrical segments, see Figure 

5.3a. Following the subdivision of the pile length into segments, the mean lateral 

displacements and tractions over each segment (nodal values) in the pile domain can be 

related to each other via the elementary (Bemoulli-Euler) beam theory, giving:

{«*} = [<?,]{',} +{**} + {*?} (5-19)

where {up} are the pile segment displacements,
[ G p ] is the matrix of coefficients obtained by integration of the Bemoulli-Euler 

kernel; for further details see Appendix 5.1,
{ t p } are the pile segment tractions,
{Bp} are the pile segment displacements, due to unit lateral translation of the pile (see

Figure 5.4a), giving [1, 1, 1 .....]r, and, T denotes transpose, and
{5®} are the pile segment displacements, due to unit rotation of the pile about its head

(see Figure 5.4b), giving [-0.5h, -1.5/j, -2.5h  ]r, and, h is the height of pile segment.

The pile segment displacements due to unit boundary conditions are taken as:

{Bp) = {B l\ + {Bl} (5.20)

Applying Equation (5.20), Equation (5.19) is simplified as:

{ U p }  = [ G p ] { t p }  + {Bp} (5.21)

160



CHAPTERS Boundary Element Analysis

5.4.2 Soil deformation

Assuming linearly elastic behaviour in the soil domain, the soil deformations and 

tractions at the pile-soil interface nodes can be obtained by integration of Mindlin's (Mindlin, 

1936) kernel, yielding:

where {use} are the soil displacements at the pile-soil interface,

{tse} are the soil tractions at the pile-soil interface, and

[Gse\ is the matrix of coefficients obtained from Mindlin's solution; for further details 
see Appendix 5.2.

mass. Although the solution is only applicable for an elastic isotropic homogenous mass with 

uniform Young's modulus (Es), inhomogenous material with varying Es can also be 

considered. To allow approximately for soil non-homogeneity, the representative modulus Es 

for z-th element, when considering the influence of y'-th element, may be taken as the larger Es 

value at z-th andy-th elements (Davies and Budhu, 1994).

From the four faces of the pile segment (Figure 5.3b), a full soil matrix [Gse] of 4n x 

4n is formed. The full soil matrix is then inverted to give the [F] matrix, i.e.

(surrounding a pile segment) stiffnesses can be condensed into one soil segment (see Figure 

5.5a), resulting in an n x n matrix. This is compatible with the pile coefficients matrix [Gp] of 

n x n. The condensation yields the 'soil segment' stiffness matrix [Ks]; see Figure 5.5b. Each 

coefficient of the [Ks] matrix is taken as:

{ U s e }  ~  \ G s e \ { t s e } (5.22)

Evaluations of the [Gje] matrix are carried out by integration of the Mindlin's solution 

for the horizontal displacement caused by a point load within the interior of a semi-infinite

m = iG„r (5.23)

Employing elastic theory and utilising the principle of superposition, the four soil element

(5.24)
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where Ks tJ is the coefficient at the z-th row and the y'-th column of [X5] matrix,

Fu is the coefficient at the 7-th row and the J-th column of [T7] matrix, and 

i and j  = 1, 2, 3 to n.

It is worthy of note that the soil segment stiffness matrix generated using the Mindlin's 

solution (Mindlin, 1936) is fully populated (in the initial loading stage) in contrast with the 

p-y method which supposes a diagonal stiffness matrix. The soil segment stiffness matrix [XJ 

is inverted to give the compliance matrix [GJ, i.e.

[GJ = [X J1 (5.25)

Knowing the [GJ matrix, the soil segment displacements are determined as:

R }  = [Gs] M  (5.26)

where {us} are the soil segment displacements, and 

{ts} are the soil segment tractions.

5.4.3 Pile-soil system interaction

Invoking compatibility of the deformations of the pile and the soil:

{up} -  [us] (5.27)

and equilibrium of the tractions at the pile-soil interface:

{G}= — (5.28)

Coupling of Equations (5.21) and (5.26) by applying Equations (5.27) and (5.28) gives the 

pile segment tractions as:

{tp} — [Gp + G5] {Bp} (5.29)

Incremental analysis
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For load-displacement response to be non-linear, Equation (5.29) is solved 

incrementally by applying unit boundary conditions on the pile head (Figure 5.4). For

where {A^} are the pile segment tractions.

During each increment, the matrix [GJ is unaltered since the pile is assumed to remain 

elastic, but the soil compliance matrix [GJ is altered because of soil yielding, elastic 

unloading or gap closure.

Soil yielding

In the event, when a soil segment yields (i.e. the four soil elements that constitute the 

soil segment reach their yield stresses), the stiffness coefficients of the [ATJ matrix 

corresponding to that segment (rows and columns) will be zero. The determination of [GJ 

matrix is not possible as the inverse of [AJ matrix with zero terms in either the row or 

column cannot be evaluated. This means that Equation (5.30) cannot be applied to determined 

the pile segment traction.

In the above situation, based on equilibrium condition, the traction for the pile 

segments corresponding to the plastic soil segments will be:

convenience and to avoid confusion, the symbol A is used to identify the tractions (or 

displacements) obtained, and Equation (5.29) is rewritten as:

{Atp} -  [Gp + Gs] {Bp} (5.30)

{A/"}=-{A/?}=0 (5.31)

where {At”} are the pile segment tractions corresponding to the plastic soil segments, and 

{At”} are the plastic soil segment tractions.

The compatibility criterion is no longer justified, i.e.

{Au”) * {Aw"} (5.32)

where {A Up} are the pile segment displacements corresponding to the plastic soil segments,

163



CHAPTER 5 Boundary Element Analysis

and
{Auns } are the plastic soil segment displacements.

The interaction between elastic and plastic soil segments during the incremental 

analysis, can be solved by using matrix partitioning. Equation (5.21) can be partitioned as:

where {Awf} are the elastic soil segment displacements,

{Arf} are the elastic soil segment tractions,

[Gese] [G”e] are the soil coefficients corresponding to the elastic soil segments, 

and
[Gf1] and [G™] are the soil coefficients corresponding to the plastic soil segments. 

If the soil segments are elastic, compatibility and equilibrium implies:

(5.33)

where {Auep} are the pile segment displacements corresponding to the elastic soil segments, 

{Atp) are the pile segment tractions corresponding to the elastic soil segments,

[G “ ] and [G “ ] are the pile coefficients corresponding to the elastic soil segments, 

[ G f ]  and [ G f  ] are the pile coefficients corresponding to the plastic soil segments, 

and
{Bp} and [Bp] are the pile segment displacements due to unit boundary conditions 

corresponding to elastic and plastic soil segments, respectively.

The soil segment displacements from Equation (5.26) is partitioned as:

(5.34)

{a uep) = {An?} (5.35)

{A t‘p } = - { A t ‘s } (5.36)
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Inverting Equation (5.34), we obtain:

Afs 
A tns

isee y e ns ***•s
jy'ne j^nn

A u%
Au? (5-3?>

where [Kf] and [K"e] are the soil stiffness coefficients corresponding to the elastic soil 
segments, and
[Kesn\ and [\K"n] are the soil stiffness coefficients corresponding to the plastic soil 
segments.

Invoking Equation (5.31) and noting that the plastic soil segment displacements are arbitrary, 

implies that:

[Kf] = [Knsn] = 0 (5.38)

and applying symmetry:

[Kf] = 0 (5.39)

Making the assumption that the stiffness submatrix [Kese] of elastic soil segments are only 

altered based on the number of elastic soil segments (described in Section 5.4.11), from 

Equations (5.37) to (5.39), we obtain:

{Afs}=[Kf]{Aues} (5.40)

Inverting the above equation gives:

{Aul) = (5.41)

where [G“ ] = [£ f]" '

Hence, for elastic and plastic soil segment displacements, Equation (5.34) is written as:
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The plastic soil segment displacements {Aw"} are undetermined as there are no unique 

solutions. It is important to note that [Gesi] is not equal to [G f ] in Equation (5.34). The [G”t] 

and [G""] are undetermined terms, as the inverse of zero terms from Equation (5.38) will be 

infinity. This suggests that the soil segment displacements after yielding cannot be 

determined. However, this is not a major concern, as the pile segment displacements 

corresponding to the yielded soil segments can still be evaluated as shown in Equation (5.33); 

\Gp] is assumed to be unaltered, as the pile segments remain elastic at all times. For 

convenience, rewrite Equation (5.33) using Equation (5.31) yields:

Enforcing compatibility and equilibrium at the elastic pile-soil interfaces via Equations (5.35) 

and (5.36), Equations (5.41) and (5.43) can be combined to give:

carried out.

5.4.4 Pile-head stiffness matrix and compliance matrix

In practice, the unit translation and rotation problems are solved independently by

(5.43)

(5.44)

(5.45)

The pile-soil system stiffness matrix is defined as:

(5.46)

Once the tractions for the elastic and plastic segments are known, further analyses can then be

applying Equations (5.45) and (5.46). The pile segment tractions due to unit lateral translation 

of the pile are:

{ a  r; )= -[K \{B ^} (5.47)
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where {A tepu} are the pile segment tractions due to unit lateral translation of the pile, 
corresponding to the elastic soil segments, and

{Bepu} are the pile segment displacements due to unit lateral translation of the pile, 
corresponding to the elastic soil segments.

The pile segment traction increments due to unit rotation of the pile about its head are:

{A t f } = - [ K \ { B f )  (5.48)

where {At f } are the pile segment traction increments due to unit rotation of the pile about 
its head, corresponding to the elastic soil segments, and

{Bf}  are the pile segment displacements due to unit rotation of the pile about its 
head, corresponding to the elastic soil segments.

The lateral load at the pile-head due to unit lateral translation of the pile is determined as:

Hu = £  A/®“ Ap (5.49)
1=1

and due to unit rotation of the pile about its head is determined as:

H„='£.6t?l Ap (5.50)
1=1

where is the pile segment traction for the z-th segment, due to unit lateral translation of 
the pile, corresponding to the elastic soil segment,

Ap is the pile segment cross sectional area, and
A i s  the pile segment traction for the z-th segment, due to unit rotation at the pile 
about its head, corresponding to the elastic soil segment.

The moment at the pile-head due to unit lateral translation of the pile is:

Mu = - t  AC A p Z i  (5.51)
i=l

and due to unit rotation of the pile about its head is:
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Me E Atpi Ap Zj (5.52)

where z, is the depth at the z-th segment.

The system pile-head stiffness matrix [SM] can be assembled into:

Hu HQ
Mu Mq

(5.53)

where H is  the pile-head lateral load,

M  is the pile-head moment,

Hu, Hq, Mv and Me are coefficients of the pile-head stiffness matrix [SM] determined 

from Equations (5.49) to (5.52), 

u is the lateral translation of the pile-head, and 

0 is the rotation of the pile-head.

The inverse of the stiffness matrix [SM] yields the pile-head compliance matrix [CM] as:

where FuH, FuM, FQH and FQM are coefficients of the pile-head compliance matrix [CM],

5.4.5 Pile tractions and displacements

The matrix [CM] is employed to determine the pile segment tractions and 

displacements through the following equations for various pile-head conditions, except the 

fixed-head case where the pile-head rotation is zero. The pile segment tractions for a 

fixed-head case are:

(5.54)

(5.55)

The pile segment displacements corresponding to the elastic soil segment are:
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{Au*} = [G ‘p‘]{A  + (5.56)

and corresponding to the plastic soil segment are:

{Ai£}=[G»]{Al* } + {*-}  (5.57)

where {B"u} are the pile segment displacements due to unit lateral translation of the pile, 
corresponding to the plastic soil segments.

For a general free-head with eccentricity case, the pile segment tractions are expressed as: 

{At‘ } = FuH{6t?} +FaH{A tf)+ (F uu { ^ ep“} + FBM{ At f } )  e (5.58)

The pile segment displacements corresponding to the elastic soil segment are:

{Au‘p} = [G “ ]{A/*} +FuH{B“ } +FBH{Bf]
+ {f m {B?} +Fm { B f } )  e (5.59)

and corresponding to the plastic soil segment are:

{A u"p] = [G*]{A/J} +FuH\B“ } +FeH{B? }

+ (f uM{B"p“} + Fm { B f }) e (5.60)

where e is the eccentricity of loading, and
{BpQ} are the pile segment displacements due to unit rotation of the pile about its 
head, corresponding to the plastic soil segments.

The pile segment tractions, which are equal in magnitude but opposite in direction to 

the soil segment tractions, are distributed accordingly to the elastic soil element(s) 

surrounding the pile segments, i.e.

{A teP}
{A/i} = - “  (5.61)

169



CHAPTER 5 Boundary Element Analysis

where {Atest} are the elastic soil element tractions, and
ne is the number of elastic soil elements within the segment.

These soil element tractions are compared with the yield stresses established for each soil

where {pf} are the yield factors for the elastic soil elements,

{ts,r} are the current soil element tractions (end of previous increment), and 

are the yield stresses for the soil elements.

The yield factors {pf} determined for all the elastic soil elements were compared 

against one another, and the largest yield factor ( fy) was chosen. This implies that the current 

soil element traction (end of previous increment) for the particular soil element is closest to 

its yield stress in the current increment. Subsequently, the soil element upon which the largest 

yield factor is chosen, is regarded as plastic, as the current soil element traction in the current 

increment will reach the yield stress (when f y is employed to determine the soil element 

traction increment). At any one increment, only one soil element is allowed to yield unless 

other elements (e.g. side soil elements of a soil segment) are having the same yield factor. No 

increase in tractions are permitted for the plastic elements.

The soil elements traction increments are determined as:

element (described in Section 5.3). A yield factor is applied to all elastic soil elements (see 

Figure 5.6), expressed as:

W  {tsy} -  {tstr} (5.62)

(5.63)

and the current soil element tractions are determined as:

{U  = ( U  + {8U (5.64)
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The pile segment (corresponding to both elastic and plastic soil segments) displacement 

increments are determined as:

{Aup\
{5W/,} = (5.65)

Jy

and the current pile segment displacements are determined as:

{up} = {upr} + {6up} (5.66)

where {Aup} is equal to {Aw*} or {Aw^}, and
{upr} are the current pile displacements (end of previous increment).

The current pile segment traction is obtained by summation of the tractions of the four soil 

elements surrounding it, i.e.

tpl= (5.67)

where tp, is the current pile segment traction for the z-th segment,

tslij is the current soil element traction for they-th element of the z-th segment, and 

i = 1, 2, 3 to n.

Knowing the traction of each pile segment, the shear force and bending moment for the pile 

segments along the pile length can be readily determined.

5.4.6 Elastic unloading

Some soil elements tend to regain elasticity after yielding due to changes in their 

traction increment directions during incremental loading. Consequently, it is necessary to 

include provisions for elastic unloading to occur. These plastic elements are identified and 

brought back to elastic when:

{Afj}{fJ/r} <0 (5.68)
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For the case when the soil segments have yielded, the pile segment traction for that 
segment will be zero (i.e. Atp = 0), and the above Equation (5.68) for soil elements elastic

where tpr, is the current pile segment traction (end of previous increment) for the z-th 
segment,

/+1 is the pile segment traction for the z+1 segment; if i = n, then Atep ;+1 = 0 , and 

Atp is the pile segment traction for the z-1 segment; if i = 1, then Atep f_, = 0.

are set back to elastic, resulting in a stiffer pile response. Note that elastic unloading is not 

provided for plastic soil elements where gaps are present at the pile-soil interfaces.

5.4.7 Gap formation

Gap distances are determined at the pile-soil interfaces when the soil elements yield in 

tension. At the right pile face (see Figure 5.7a), the current right gap distances are:

where {ugr} and {ug,} are the pile displacements when soil elements yield in tension at the 

right and left faces of the pile, respectively.

Since overdosing of the gap is not allowed, this implies:

unloading cannot be applied. Elastic unloading of a plastic soil segment is allowed for when:

(5.69)

The elastic unloading will result in an increase in the stiffness of the system as the elements

{.dgr} = {ugr} - {«„} (5.70)

and for the left pile face, the current left gap distances are:

{dgl} = {up} - {«g(} (5.71)

{dgr} > 0  and {d#} >0 (5.72)
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To ensure that Equation (5.72) is satisfied, the gap closing factors are determined when d„ 

and dgl are less than zero (see Figure 5.7b). The gap closing factors for the right pile face are:

{Aup}_

+ {dgr)
—  (5-73)

fy

and for the left pile face are:

(A u„}

As many of the soil elements may experience gap closing in a particular increment, the gap 

closing factors determined from Equations (5.73) and (5.74) are compared against one 

another. The largest gap closing factor (f g) is then chosen. This will ensure that only one gap 

is closed in the current increment. Due to gap closure, the pile-soil contact is established and 

the plastic soil element is brought back to elastic. The soil resistance for that element is 

provided and the stiffness of the pile-soil system is increased.

The element once determined as plastic, where f y is chosen in the current increment, is 

now set back to elastic as f g is always greater than f y. The largest yield factor ( f y ) is now 

taken to be:

f y =fg (5.75)

In what follows, Equations (5.63) to (5.67) are recalculated by applying Equation (5.75). The 

shear force and bending moments for the pile segments are subsequently determined.

5.4.8 Pile-head reactions

The incremental pile-head lateral load for a fixed-head pile is determined as:

HubH= (5.76)
Jy

the incremental pile-head moment is:
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M u
5M =-7£

Jy
(5.77)

and the incremental pile-head lateral displacement is:

8w = —

Jy
(5.78)

where Hu and Mu are stiffness coefficients in the [SM] matrix from Equation (5.53).

For a general free-head case with eccentricity, the incremental pile-head lateral load is:

m  = j  
Jy

(5.79)

the incremental pile-head moment is:

8 A / = - 7
Jy

(5.80)

the incremental lateral pile-head displacement is:

8 m =
F uh F UM e  

L f y  f y  .
(5.81)

and incremental lateral pile-head rotation is:

80  =
F qh , F qm ?

I  f y  f y J (5.82)

where FuH, FuM, Fqh and FQM are coefficients in the [CM] matrix from Equation (5.54).

The current pile-head lateral load is:

H = H r+bH (5.83)
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the current pile-head moment is:

M = M r + hM (5.84)

the current pile-head lateral displacement is:

u = ur + 8w (5.85)

and the current pile-head rotation is:

0 = 0r + 80 (5.86)

where Hr, M r , ur and 0r are current pile-head lateral load, moment, lateral displacement and 

rotation (end of previous increment), respectively.

5.4.9 Shear strength degradation

For shear strength degradation, the incremental plastic shear displacements (8ds) are 

determined when the side soil elements yield under two or more consecutive increments or 

change to elastic (due to elastic unloading only) after being plastic. The incremental plastic 

shear displacements are calculated from the current pile segment displacements:

where I I denotes absolute value,

{up} are the current pile segment displacements, and

{upr} are the current pile segment displacements (end of previous increment). 

The current plastic shear displacements are determined as:

{&/,}=! {up} - {Up,} (5.87)

{■ds} = {d„} + m } (5.88)
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where {dsr} are the current plastic shear displacements (end of previous increment).

Using the appropriate residual/peak shear strength ratio (Rs) and shear degradation rate factor 

(Cs), as discussed in Section 5.3.5, the limit shear stress for each soil element will degrade to 

a new value using Equation (5.14), according to current plastic shear displacement. This new 

value, known as the reduced limit shear stress ( t s s J ) ,  is only determined when the element has 

recovered from plastic to elastic. The yield stress for shear, for a particular element is now:

t s y s  =  t Ss d  (5.89)

5.4.10 Bearing strength degradation

For bearing strength degradation, the incremental plastic bearing displacements (&db) 

are determined when the bearing soil elements yield under two or more consecutive 

increments or changes from the plastic to elastic (due to elastic unloading only). The 

incremental plastic bearing displacements are determined from the current pile segment 

displacements, i.e.

{Mb}= \{u p} - { u pr}\ (5.90)

The current plastic bearing displacements are determined as:

K )  = {dbr} + {Zdh} (5.91)

where {dbr) are the current bearing plastic displacements (end of previous increments).

Using the appropriate residual/peak bearing strength ratio (Rh) and bearing degradation rate 

factor (Cb), as discussed in Sections 5.3.5. The limit bearing stress of each soil element will 

degrade to a new value using Equation (5.17), according to the current plastic bearing 

displacements. The new limit, known as the reduced limit bearing stress ( t s c d ) ,  is only 

calculated when the element has recovered from plastic to elastic. The yield stress for 

bearing, for a particular element is now taken to be:
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t Sy c  =  t Sc d  ( 5 . 9 2 )

5.4.11 Modified soil segment stiffness matrix
At the end of each increment, the 'original' soil segment stiffness matrix [AT®]

(coefficients determined from Equation (5.24) at the beginning of the analysis) is modified 
for soil yielding, elastic unloading or gap closure. The [AT£] matrix is modified according to

the number of yielded soil elements in each soil segment, by using an influence factor ( / ) .

For soil element(s) yielded in the &-th segment, the stiffness coefficients for the A>th row is

modified as:

Kski=Anp)K°ski (5.93)

and the stiffness coefficient for the fc-th column is modified as:

KSJt=Anp)K°SJk (5.94)

where Ks ki is the stiffness coefficient at the k-Xh row and the z-th column of [ATJ matrix, 

np is the number of yielded soil elements within the segment; 7(1) = 0.75,7(2) = 0.5, 

7(3) = 0.25,7(4) = 0,
K°ki is the stiffness coefficient at the k-th row and the z-th column of [AT®] matrix, 
i = 1, 2, 3 to n,

Ksjk is the stiffness coefficient at they-th row and the A;-th column of [Ks] matrix,
K°jk is the stiffness coefficient at they-th row and the k-th column of [AT®] matrix, and 
j  = 1, 2, 3 to n.

The above process is repeated for each yielded soil segment. The lower value of stiffness 

coefficients determined from Equations (5.93) and (5.94) is taken to form the [AfJ matrix.

The stiffness coefficients are then partitioned to correspond to the elastic and plastic 

soil segments as shown in Equation (5.37). The matrix \Kese] is then inverted to give the [Gesi]

matrix to be used in Equation (5.45) for the next increment. No direct interaction is allowed 

to occur between elastic and plastic soil segments, as the stiffness coefficients (rows and 

columns) of the plastic soil segments are taken as zero (7(4) = 0). The use of the influence
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factor ( / )  enforces load transfer to other elastic soil segments and results in monotonic 

(decrease in the system stiffness as yielding progresses.

5.4.12 Unloading and reloading

At the beginning of unloading, all soil elements are set back to elastic due to changes 

in the load direction, except for soil elements that have yielded in tension. The pile segment 

itractions (Atp) and displacements {Aup) obtained from unit boundary conditions are now set 

in opposite directions in contrast to the loading/reloading stage. This will lead to reduction in 

the soil element tractions, pile segment displacements and tractions, pile-head lateral loads, 

etc., in each increment, until the specified minimum load (or displacement for 

displacement-controlled conditions) is reached.

At the beginning of reloading, all soil elements are set back to elastic due to changes 

in the load direction, except for soil elements that have yielded in tension. The pile segment 

tractions (Atp) and displacements (Aup) obtained from unit boundary conditions are now set 

in opposite directions in contrast to the unloading stage. This will lead to increases in the soil 

element tractions, pile segment displacements and tractions, pile-head lateral loads, etc., in 

each increment, until the specified maximum load (or displacement for 

displacement-controlled conditions) is reached.

The unloading and reloading processes continue until the specified number of cycles 

is reached.

5.5 Discussion

A simple and realistic soil model based on experimental observations is established. 

The model assumes an elastic-perfectly plastic soil behaviour, with modifications that allow 

soil strength degradation, taken as a function of the plastic displacement. To account for gap 

formation, the gap sizes are determined when the soil elements yield in tension. To account 

for backsliding, the backsliding factor (P) and the undrained shear strength of the soil is used.

The general formulation for the cyclic analysis via the indirect boundary method is 

presented. The analysis has taken into consideration the four faces of the pile via the 

Mindlin's solution (Mindlin, 1936), that allows interaction with the neighbouring soil 

elements. The analysis has employed matrix partitioning, so that there will not be any direct 

interaction between elastic and plastic soil segments during incremental loading. The
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modifications of the soil segment stiffness matrix using the influence factors, enforce load 

transfer to other elastic elements, resulting in the reduction in the pile-soil system stiffness as 

soil yielding progresses. The unloading and reloading cycles are carried out by simply 

reversing the pile traction and displacement increments.

The yield factor approach adopted, ensures that only one soil element yields at any 

one increment. Among other things, this reduces the computational time required for analysis 

as compared with equal loading increments to the specified load. This leads to the application 

of a gap closing factor to ensure that, at any one increment, only one gap is allowed to close, 

at the same time, ensuring that the pile does not overclose other gaps.

5.6 Concluding remarks

The principal aspects of cyclic soil behaviour are accounted for in this model of cyclic 

pile-load behaviour. The analysis is capable of determining the pile-head load, moment, 

displacement and rotation, and shear forces and bending moments along the pile length for 

piles subjected to cyclic lateral loading. The method takes into consideration soil continuity, 

pile-head fixity and relative stiffness of the pile and soil as opposed to the established p-y 

analysis. The implementation will be described in the next Chapter.
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Appendix 5.1
Bernoulli-Euler Beam Theory

IT

Y

P —k B

A

IF

X

v

Using the Bernoulli-Euler beam theory, the displacement at A due to a point load (P) at B is:

u(A) = G(A,B) P(B) (A5.1-1)

[" 3 YX2 - X 3~\ 
where G(A , B) = — -----  for X < Y (A5.1-2)

'p2p

\3XY2 - Y 3 "I 
6Epi (A5.1-3)

For distributed traction (t), between 7, and Y2 over a beam of width D , we obtain:

r2
u(A) = D t{B) f G(A,B) dY

Y\
(A5.1-4)

The above integration is performed analytically.
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Appendix 5.2
Mindlin’s Solution (Mindlin, 1936)

surface

(Loading in x direction)

r = (x2+y2)

The horizontal displacement at A caused by a horizontal point load (P) at B within the interior 

of a semi-infinite elastic-isotropic homogenous mass is expressed as:

u(A) = G(A,B) P{B) (A5.2-1)

where:

G(A,B) =
( 3 - 4 v )  l x 2 ( 3 -4 v ) x :

^tcG^I-v) l R-2 r3. Ri
+  ?s 24 +<tew±4i , _

Ri+z+C R 2(R i +z+C) (A5.2-2)

where G' is the shear modulus, and 

v is the Poisson's ratio.

For distributed (constant) traction (t) over a surface (S), we obtain:
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u(A) = t(B) j G(A,B) dS(B) (A5.2-3)
5

The above integration is performed numerically.
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Figure 5.2 (a) Shear test results on Jackfield clay (Skempton, 1964) and (b) typical 

load-settlement curves for plate loading tests (Ward et a l., 1965).
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CHAPTER 6 
Numerical Implementation of 

Cyclic Loading Algorithm

6.1 Summary

This Chapter describes the implementation of cyclic loading algorithm, the APILEC 

program. The program allows for load-controlled and displacement-controlled conditions as 

well as one-way and two-way cycling. Other features of the program are also described, 

including gap formation, backsliding and strength degradation. An investigation of the causes 

of cyclic degradation observed in this analysis is undertaken by means of the simple 

Beam-On-Spring and Beam-On-Interactive-Spring models.

6.2 Introduction

The implementation of the formulations presented in Chapter 5 is described in this 

Chapter. To account for different loading conditions, the computer program (APILEC) is 

designed to be capable of analysing one-way and two-way cyclic loadings. Two methods of 

cycling are also considered here, namely the load-controlled and displacement-controlled 

methods. For the load-controlled method, the unloading or reloading stage begins once the 

specified maximum load or minimum load is attained. For the displacement-controlled 

method, unloading or reloading begins once the specified maximum or minimum 

displacement is reached. Phenomena observed during cyclic pile-load tests, for example, gap 

formation, backsliding and strength degradation, are included in the analysis. The effects of 

these phenomena on pile response will be examined.

6.3 Computational procedure for cyclic analysis

Sign conventions

The sign conventions adopted for loads, pile and soil tractions, shear forces, bending 

moments and displacements are shown in Figure 6.1.

Procedure
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For a pile subjected to cyclic lateral loads or moments, the computational procedure is 

described in terms of the following Steps.

Step (I)

Discretise the pile into n equal segments (say height D) as depicted in Figure 6.2a.

Step (2)

Set up the fully populated soil matrix of coefficients [Gse] via integration of the Mindlin's 

solution (Mindlin, 1936). The elements on the four faces of the pile (see Figure 6.2b) are 

taken into consideration. This will yield a 4n x An [Gxe] matrix.

Step H )

Set up the fully populated pile matrix of coefficients [GJ via integration of the 

Bemouli-Euler (beam theory) kernel, with the beam assumed as a circular section. This will 

yield a n x n  [Gp] matrix.

Step (4)

Determine the undrained shear strength (C„) and soil Young's modulus (Es) values at the 

mid-points of each soil element (nodal points), and thereby calculate the limiting stresses:

limit bearing stress

tsc = NcCu (6.1) (5.5 bis)

limit shear stress

tss = aCu (6.2) (5.6 bis)

limit tensile stress

tsl = K,yz (6.3) (5.7 bis)

limit adhesive stress (for backsliding)

ts'b = PCu + tst (6.4) (5.11 bis)

residual limit shear stress (for shear strength degradation)

tssr = Rs tss (6.5) (5.13 bis)

residual limit bearing stress (for bearing strength degradation)

tSCr=  R-b tsc (6.6) (5.16 bis)
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where Nc is the bearing capacity factor, 

a  is an empirical adhesion factor,

K, is the lateral earth pressure coefficient, 

y is the effective unit weight of the soil, 

z is the depth,

p is the backsliding factor; 0 < P < 1,

Rb is the residual/peak bearing strength ratio, and 

Rs is the residual/peak shear strength ratio.

From the limiting stresses, the yield stresses for the soil elements are defined:

yield stress for bearing

tsyc = tsc (6.7) (5.8 bis)

yield stress for shear

tsys = tss (6.8) (5.9 bis)

yield stress for tension

tsy, = tsl (6.9) (5.10 bis)

If backsliding is considered, the yield stress for tension is:

tsyt = tslb (6.10) (5.12 bis)

6.3.1 Pile-soil system interaction

Step (5)

The full soil matrix [Gje] is inverted, i.e.

[F\ = [G„]-1 (6.11) (5.23 bis)

The matrix [F] is then condensed to form the n x n |XV] matrix, known as the 'soil segment' 

stiffness matrix; see Figure 6.3. Each coefficient of the [ATJ matrix is computed as:

189



CHAPTER 6 Numerical Implementation o f  Cyclic Loading Algorithm

Ks„= £  £  Fu (6.12) (5.24bis)J 1=4 i-3 J=4j-3 V / V /

where Ksij is the coefficient at the z-th row and they'-th column of [XJ matrix,

Fu is the coefficient at the 7-th row and the J-th column of [A] matrix, and 

i and j  = 1, 2, 3 to n.

The [XJ matrix is then inverted to give the soil segment compliance matrix [GJ, i.e.

[GJ = [X J' (6.13) (5.25 bis)

Step (6)

Based on the compatibility and equilibrium conditions at the pile-soil interfaces, the pile 

segment tractions are determined in each increment by applying unit boundary conditions on 

the pile-head, i.e.

{At p } = - [ G p + Gs] 1 {Bp} (6.14) (5.30 bis)

where symbol A denotes tractions (or displacements) obtained by applying unit boundary

conditions in each increment,
{Atp) are the pile segment tractions, and

{Bp} pile segment displacements due to unit boundary conditions, taken as:

= + (6.15) (5.20 bis)

where {Bp) are the pile segment displacements, due to unit lateral translation of the pile,
giving [1, 1, 1  ]T, and, T denotes transpose, and
{Bp} are the pile segment displacements, due to unit rotation of the pile about its 
head, giving [-0.5/z, -1.5h, -2.5h  Y> and, h is the height of pile segment.

Step (7)

For plastic soil segments (i.e. all the four soil elements surrounding the pile segment which 

have reached their yield stresses), the corresponding stiffness coefficients (rows and columns) 

of the [Xy] matrix are taken as zero. This results in no interaction being allowed for the elastic
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and plastic soil segments. The tractions of the plastic soil segments and the corresponding 

pile segments are therefore:

{A/”} = -{AfJ} = 0 (6.16) (5.31 bis)

where {At"p} are the pile segment tractions corresponding to the plastic soil segments, and 

{A/"} are the plastic soil segment tractions.

Enforcing compatibility and equilibrium conditions at the pile-soil interface for the elastic 

soil segments and equilibrium conditions for the plastic soil segments (Equation (6.16)), the 

pile segment tractions correspond to the elastic soil segments (by matrix partitioning) are 

determined as:

{Atsp}= -[G %  + G‘p'\ '{ B ° p} (6.17) (5.45 bis)

where {A fp} are the pile segment tractions corresponding to the elastic soil segments,

[G% ] are soil coefficients obtained from the inversion of the modified (due to soil 

yielding) soil segment stiffness matrix [J£J corresponding to the elastic soil segments, 
\_Gep~\ are pile coefficients obtained from the [Gp] matrix corresponding to the elastic 

soil segments, and
{Bep} are the pile segment displacements due to unit boundary conditions 

corresponding to elastic soil segments.

6.3.2 Pile-head stiffness matrix and compliance matrix

Step (8)

Apply unit lateral translation and unit rotation at the pile-head, and determine the pile 

segment tractions:

due to unit lateral translation
{Af‘“} =-[K\{Bepu) (6.18) (5.47 bis)

due to unit rotation
{At f } = - [ K \ { B f )  (6.19) (5.48 bis)
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where [AT] = \G% + Gepe~\ ,

{A fp )  are the pile segment tractions due to unit lateral translation of the pile, 
corresponding to the elastic soil segments,

{Bep }  are the pile segment displacements due to unit lateral translation of the pile, 
corresponding to the elastic soil segments,

{Atep } are the pile segment traction increments due to unit rotation of the pile about 
its head, corresponding to the elastic soil segments, and

[ B f } are the pile segment displacements due to unit rotation of the pile about its 
head, corresponding to the elastic soil segments.

Step (9)

Determine the lateral load at the pile-head due to unit lateral translation of the pile:

where Ateput is the pile segment traction for the z-th segment, due to unit lateral translation of 
the pile, corresponding to the elastic soil segment,

Ap is the pile segment cross sectional area, and
Atfi is the pile segment traction for the z-th segment, due to unit rotation at the pile 
about its head, corresponding to the elastic soil segment.

Determine the moment at the pile-head due to unit lateral translation of the pile:

Hu= i A t " A p
i=l

(6.20) (5.49 bis)

and due to unit rotation of the pile about its head:

He= Z A t ' » A p
;=1

(6.21) (5.50 bis)

(6.22) (5.51 bis)

and due to unit rotation of the pile about its head:

M0 = -S  A t f t Ap Zi
Z=1

(6.23) (5.52 bis)
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where z, is the depth at the z-th segment.

The above process yields the 2 x 2 pile-head stiffness matrix [SA/]:

Hu Hq 
Mu Mq

(6.24) (5.53 bis)

and by inversion, the compliance matrix [CM\ is obtained:

(6.25) (5.54 bis)

where H  is the pile-head lateral load,

M  is the pile-head moment,

H„, Hq, Mu and Me are coefficients of the pile-head stiffness matrix [SM] determined 

from Equations (6.20) to (6.23),

u is the lateral translation applied at the pile-head; u = 1,

0 is the rotation applied at the pile-head, 0 = 1 ,  and

FuH, F ^ ,  Fqh and FQM are coefficients of the pile-head compliance matrix [CM].

6.3.3 Pile traction and displacement due to unit boundary conditions

Compute the pile segment tractions and displacements depending on the pile-head fixity. For 

a fixed-head case, the pile segment tractions corresponding to the elastic soil segments are:

Step (10)

(6.26) (5.55 bis)

The pile segment displacements corresponding to the elastic soil segments are:

(6.27) (5.56 bis)

and corresponding to the plastic soil segment are:

(6.28) (5.57 bis)
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where [B™] are the pile segment displacements due to unit lateral translation of the pile, 
corresponding to the plastic soil segments.

For a general free-head with eccentricity case, the pile segment tractions corresponding to the 

elastic soil segments are:

{At‘ } = F uH{&fpu} + F e«{A ?f}+(/’„w{A/™} + Fm {& tf}) e (6.29) (5.58bis)

The pile segment displacements corresponding to the elastic soil segments are:

{Au‘p} = [G «]{A /'} +FuH{B*"} +Ff>„{B?}
+ (f uM{B‘pu } + Fm {B? }) e (6.30) (5.59 bis)

and corresponding to the plastic soil segments are:

(A u"p) = [G -]{A ^} +FuH{ B + F 9„{B?}
+ (f m {B™}+Fm {B?})  e (6.31) (5.60 bis)

where e is the distance of the load point to the ground surface or mudline, and
{Bnp } are the pile segment displacements due to unit rotation of the pile about its 
head, corresponding to the plastic soil segments.

Step H 1)

Determine the soil element tractions by distributing the pile segment tractions according to 

the elastic soil elements within the soil segment:

{a4 }  = - ~ i r  (6-32) (5-61 bis)

where {A^} are the elastic soil element tractions, and
ne is the number of elastic soil elements within the segment.

6.3.4 Elastic unloading
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Step (12)

Provide for elastic unloading of the plastic soil elements when:

{Atp]{tsir} < 0 (6.33) (5.68 bis)

where {tslr} are the current soil element tractions (end of previous increment).

If the whole soil segment yielded, elastic unloading of a plastic soil segment is provided 

when:

V  / [ K  m  + K ] < 0 (6.34) (5.69 bis)

where tpr f is the current pile segment traction (end of previous increment) for the z-th 
segment,
t±fp /+1 is the pile segment traction for the z'+l segment; if i = n, then Atep i+l = 0, and 

Atp ,_j is the pile segment traction for the z'-l segment; if z = 1, then Atpi_{ = 0 .

Elastic unloading does not apply to plastic soil elements where gaps are present at the 

pile-soil interfaces. If elastic unloading is allowed for, the soil elements will be set to elastic 

and Step (23) will be executed to modify the soil segment stiffness matrix [Ks]. If no elastic 

unloading occurs, this step is ignored.

6.3.5 Yield factor

Step (13)

Determine the yield factors for the elastic soil elements:

{A t%}
W  = ( m  -  L a  <6-35) <5-62 bis>

where {pj) are the yield factors for the elastic soil elements, and

{tsy} are the yield stresses for the soil elements.

From all the yield factors ( pf ) determined, the largest yield factor ( f y ) is chosen and the 

element from which f y is selected is regarded as plastic. This is because w hen^ is employed
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to determine the soil element traction increment (described in the next Section) in the current 

increment, the current soil element traction will reach the yield stress.

6.3.6 Pile traction and displacement

Step (14)

Determine the soil element traction increments:

{A/;,}
{8/J#} = 1 7 £ i (6.36) (5.63 bis)

J y

and subsequently the current soil element tractions:

( U  = ( U  + {K }  (6.37) (5.64 bis)

Determine the pile segment displacement increments:

{A up}
{5w„} = -L7 iiI (6.38) (5.65 bis)

J y

and subsequently, the current pile segment displacements:

{up} = {upr} + {5up} (6.39) (5.66 bis)

where {Aup} are pile segment displacements corresponding to both elastic and plastic soil 
segments, and

{upr} are the current pile displacements (end of previous increment).

Step f l 5)

Compute the current pile segment traction:

tpi= (6.40) (5.67 bis)

where tpi is the current pile segment traction for the z-th segment,
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tsl jj is the current soil element traction for they'-th element of the z-th segment, and 

i = 1, 2, 3 to n.

From the current pile segment tractions, the shear forces and bending moments at nodal 

points and at the top of the pile segments, respectively, for the entire pile length are 

calculated:

current shear forces

where Hs is the shear force for the n-i pile segment,

Mp n-i is the bending moment for the n-i pile segment, 

tpj is the current pile segment traction for the y'-th segment, 

h is the height of the pile segment, and 

i = 0, 1, 2 to n-1.

6.3.7 Gap formation

Gap size 

Step (16)

Compute the right and left gap distances (see Figure 6.4) at the pile-soil interfaces for those 

soil elements that have yielded in tension. For the right pile face, the current right gap 

distances are:

(6.41)

current bending moments
n

A4p n—i = 2  tpj Ap h[j (n z) ■+■ 0.5] (6.42)

{dgr} = {ugr} - {up} (6.43) (5.70 bis)

and for the left pile face, the current left gap distances are:

{dgl} = {up} - {ugl} (6.44) (5.71 bis)
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where {ugr} and {ugl} are the pile displacements when soil elements yield in tension at the 

right and left faces of the pile, respectively.

Gap closure

After determining the gap distance, some gaps may have overclosed by the pile (see Figure 

6.5), i.e. when dgr or dgt is less than zero. If no overdosing of gaps is experienced, this step is 

ignored. The gap closing factors for the right pile face are:

From all the gap closing factors determined, the largest factor ( f g) is used so that it ensures 

that the pile closes only one gap in the current increment and the rest of the gaps are not 

overdosed.

now set back to elastic as f g is always greater than f y . Due to gap closure, the plastic soil 

element, is brought back to elastic. Steps (14) to (16) are re-evaluated with f y = f g in the 

current increment. The progressive stages of soil elements yielding and gap closure are 

illustrated in Figure 6 .6 .

6.3.8 Pile-head reactions

Depending on pile-head fixity, the incremental pile-head lateral load (6H) for a fixed-head 

pile is determined as:

Step f l  7)

(6.45) (5.73 bis)

and for the left pile face are:

(6.46) (5.74 bis)

The element once determined as plastic (where f y is chosen in the current increment) is

Step (18)

(6.47) (5.76 bis)
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the incremental pile-head moment as:

M u
5M = -zr  

Jy
(6.48) (5.77 bis)

and the incremental pile-head lateral displacement as:

hu -  —
Jy

(6.9) (5.78 bis)

where Hu and Mu are stiffness coefficients in the [SM] matrix from Equation (6.24).

For a general free-head case with eccentricity, the incremental pile-head lateral load is:

5 /7 = 7
Jy

(6.50) (5.79 bis)

the incremental pile-head moment is:

5M= - 7  
Jy

(6.51) (5.80 bis)

the incremental pile-head lateral displacement is:

5 u = F uh  , F um e 

I  f y  f y  J (6.52) (5.81 bis)

the incremental pile-head rotation is:

50 = F qh , F qm g 

L f y  f y  J (6.53) (5.82 bis)

where FuH, FuM, Fqh and Fm  are coefficients in the [CM] matrix from Equation (6.25).

The current pile-head lateral load is subsequently calculated:
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H = H r + SH (6.54) (5.83 bis)

the current pile-head moment:

M = M r + hM (6.55) (5.84 bis)

the current pile-head lateral displacement:

u = ur + hu (6.56) (5.85 bis)

and the current pile-head rotation:

0 = 0r + 50 (6.57) (5.86 bis)

where Hr, M r, ur and 0r are current pile-head lateral load, moment, lateral displacement and

rotation (end of previous increment), respectively.

As a check, the current pile-head lateral load and moment, must be equal to the current shear 

force and bending moment for the top pile segment, determined from Equations (6.41) and

(6.42).

6.3.9 Shear strength degradation

Plastic shear displacement 

Step (19)

Compute the incremental plastic shear displacements (6ds) from the current pile segment 

displacements (see Figure 6.7a) when:

♦ side soil elements under two consecutive increments are plastic,

♦ side soil elements have changed from plastic to elastic (due to elastic unloading and

not for the beginning of unloading or reloading).
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Satisfied with the above requirements, the incremental plastic shear displacements are 

determined as:

{64} =1 {up} - {upr} I (6.58) (5.87 bis)

where I I denotes absolute value,
{up} are the current pile segment displacements, and

{upr} are the current pile segment displacements (end of previous increment).

Subsequently, the current plastic shear displacements are determined:

{4} = { d j  + {54} (6.59) (5.88 bis)

where {dsr} are the current plastic shear displacements (end of previous increment).

The flow chart for the determination of 4  is illustrated in Figure 6 .8 .

Reduced limit shear stress 

Step (20)

Determine the reduced limit shear stress (tssd) for each soil element that has recovered from 

plastic to elastic (Figure 6.7a):

^  U  exp'-**' (6.60) (5.14 bis)

where Cs is the shear degradation rate factor in mm'1.

The yield stress for shear can now be taken as:

t Sy s  =  t s s d  (6.61) (5.15 bis)

However, due to the constraint that the current shear stress (ts2) may be higher than tssd (see 

Figure 6.7b), tsys is determined as such:
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♦ if tssd>ts2 then tsys = tssd ,

♦ if tssd < ts2 then tsys = 1 t t \ ts2 provided that tsys < tyŝ  else tsys = tys* . 

where tys* is the yield stress for shear (end of previous increment).

The flow chart for the determination of tsys is illustrated in Figure 6.9. A constant value of

1.01 is applied to the current shear stress, in order to bring the yield stress close to the current 

shear stress (Figure 6.7b). This is because the particular side element might yield due to 

changes in the direction of traction increment, before reaching to its reduced limit shear stress 

(tssd). The yield stress for shear applies to shearing in both positive and negative directions.

6.3.10 Bearing strength degradation

Plastic bearing displacement 

Step (21)

Compute the incremental plastic bearing displacements (5dh) from the current pile segment 

displacements (see Figure 6.10a) when:

♦ bearing soil elements under two consecutive increments are plastic

♦ bearing soil elements have changed from plastic to elastic (due to elastic unloading and 

not the beginning of unloading or reloading)

Satisfied with the above requirements, the incremental plastic bearing displacements are 

determined as:

{8db} =\ {u p} - { u pr}\ (6.62) (5.90bis)

The current plastic bearing displacement are subsequently determined:

{db} = {dbr} + (5db) (6.63) (5.91 bis)

where {dbr} are the current plastic bearing displacements (end of previous increments).
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The flow chart for the determination of db is shown in Figure 6.11.

Reduced limit bearing stress 

Step (22)

The reduced limit bearing stress (tscd) is calculated for each soil element that has recovered 

from plastic to elastic (see Figure 6.10a):

^  = + p(̂ dM>) (6.64) (5.17bis)

where Cb is the bearing degradation rate factor, and

D is the pile diameter or width.

The yield stress for bearing can be taken as:

tsyC = tscd (6.65) (5.18 bis)

Since the current bearing stress (tsl) might be greater than tscd (see Figure 6.10b), the yield 

stress for bearing (tsyc) is determined as such:

♦ if tscd > tsI then t ^  = tscd ,

♦ if tscd < tsl then tsyc = 1.01/,, provided that tsyc < tyc*, else t,yc = tyc*.

where tyc* is the yield stress for bearing (end of previous increment).

The constant 1.0\tsI is used to bring the yield stress for bearing close to the current bearing

stress, in case the particular soil element might yield due to changes in the direction of

traction increment, before reaching to its reduced limit bearing stress (tscd). The flow chart for 

the determination of tscd is illustrated in Figure 6.12.

As the magnitude of plastic bearing displacements of the soil elements are different 

for the right face and left face of the corresponding pile segments, the reduced limit bearing 

stress determined will be different (Figure 6.10c). Care has to be taken on the sign 

conventions adopted.
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6.3.11 Modified soil segment stiffness matrix

Step (23)

Modify the soil segment stiffness matrix for soil yielding or elastic unloading or gap closure. 
An influence factor ( / )  is used to modify the 'original' soil segment stiffness matrix [Kg']

(coefficients obtained from Equation (6.12) at the beginning of the analysis) depending on the

number of yielded soil elements. For soil element(s) yielded in the A>th segment, the stiffness

coefficients for the k-th row is modified as:

Kski=flnp)K°ski (6 .66) (5.93 bis)

and the stiffness coefficient for the &-th column is modified as:

KSJk=flnp)K°sjk (6.67) (5.94 bis)

where Ks ki is the stiffness coefficient at the A>th row and the /-th column of [K̂ \ matrix,

np is the number of yielded soil elements within the segment;7(l) = 0.75, f i l )  = 0.5,

K° ki is the stiffness coefficient at the A:-th row and the /-th column of matrix,

/ = 1, 2, 3 to n,

Ksjk is the stiffness coefficient at they-th row and the k-th column of [XJ matrix,
K°sjk is the stiffness coefficient at they'-th row and the k-th. column of [A'®] matrix, and 

j  = 1, 2, 3 to n.

The above process is repeated for each yielded soil segment. The lower value of the stiffness 

coefficients determined from Equations (6 .66) and (6.67) is taken to form the [XJ matrix. The 

use of the influence factor, 7(1), 7(2), 7(3) and7(4) implies that the stiffness of the soil segment 

is reduced by 25, 50, 75 and 100%, respectively. No direct interaction is allowed for plastic 

and elastic soil segments as the stiffness coefficients (rows and columns) for the plastic soil 

segments are taken as zero. The stiffness coefficients are then partitioned accordingly to 

correspond with the elastic and plastic soil segments. The stiffness coefficients corresponding 

to the elastic soil segments are inverted and substituted into Equation (6.17) for the next 

increment.

7(3) = 0.25,7(4) = 0,
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6.3.12 At specified loads and displacements

Step (24)

The procedure for Steps (7) to (23) is repeated for each increment, until the current pile-head 

lateral load has exceeded the specified load (maximum or minimum) after Step (18). At this 

stage, an interpolation factor (IF) is required to bring the former load exactly to the latter load. 

The interpolation factor is determined as:

HF - H r
<6-68)

where HF is the specified pile-head lateral load.

For displacement-controlled conditions, the interpolation factor is determined when the 

current pile-head lateral displacement has exceeded the specified displacement (maximum or 

minimum), and is calculated as:

U f  -  u r
If = - u = uT  (6-69)

where uF is the specified pile-head lateral displacement.

The current soil element tractions at the specified load or displacement is then computed as: 

( U  = [ { U - ( U ] / f + { U  (6.70)

and the current pile segment displacements at the specified load or displacement as:

{up.} = [{up} - {upr}] IF+ {upr} (6.71)

The current pile-head lateral load at the specified load or displacement is subsequently 

determined as:

H. = ( H - H r) I F + Hr (6.72)
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the current pile-head moment at the specified load or displacement as:

M. = (M -M r) I F + Mr (6.73)

the current pile-head lateral displacement at the specified load or displacement as:

u* = (u - ur) I f + ur (6.74)

and the current pile-head rotation at the specified load or displacement as:

0* = (0 - 0r) IF + 0r (6.75)

After solving Equations (6.70) to (6.75), the following were carried out for the current values: 

current soil element tractions

{U  = R,-} (6.76)

current pile segment displacements

{up) = {«,.} (6.77)

current pile-head lateral load

H = H * (6.78)

current pile-head moment

M= M* (6.79)

current pile-head lateral displacement

u = u* (6.80)

current pile-head rotation 

0 = 0 * (6.81)

Steps (15) and (16) are re-evaluated and Steps (19) to (23) are then carried out. It follows that 

when the specified load (maximum or minimum) was attained, the particular soil element 

(where f y was determined) was set back to elastic. This is because the element could not have 

yielded, as the predicted load in that increment is always greater (or lesser in the case of 

specified minimum load) than the specified maximum load. If gap closure is encountered, the
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soil element (where f g was determined) was set back to plastic, because the pile could not 

have closed the gap in that increment at the specified load. Step (25) is subsequently 

executed.

For displacement-controlled conditions, when the specified displacement (maximum 

or minimum) was attained, the particular soil element where f y was determined was set back 

to elastic. This is because the element could not have yielded, as the predicted displacement 

in that increment is always greater (or lesser in the case of specified minimum displacement) 

than the specified maximum displacement. Also, if gap closure is encountered, the soil 

element (where f g was determined) was set back to plastic, because the pile could not have 

closed the gap in that increment at the specified displacement. Step (25) is subsequently 

executed.

6.3.13 Unloading and reloading

Step (25)

At the beginning of unloading, all soil elements are set back to elastic due to changes in 

loading direction, except for soil elements that have yielded in tension as illustrated in Figure 

6.13. The pile segment tractions (Atp) and displacements (Aup) due to unit boundary 

conditions are now set to reverse direction in contrast to the loading/reloading stage. This will 

lead to reduction in the pile segment tractions and displacements, soil element tractions, 

pile-head loads, etc., in each increment. Steps (7) to (24) were then carried out till the 

specified minimum load (load-controlled) or displacement (displacement-controlled) was 

reached.

At the beginning of reloading, all soil elements are set back to elastic except soil 

elements that have yielded in tension. The pile segment tractions (Atp) and displacements 

(Aup) due to unit boundary conditions are now reversed in direction in contrast to the 

unloading stage. This will lead to the increase in the pile segment tractions and 

displacements, soil element tractions, pile-head loads, etc., in each increment. Steps (7) to 

(24) were then carried out till the specified maximum load (load-controlled) or displacement 

(displacement-controlled) was attained.

The above was repeated for unloading and reloading stages, until the required number 

of cycles was reached.
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6.4 Description of the program

The computer program is written in FORTRAN 77 language, containing

approximately 3000 lines. Rather than giving explicit details of the program, only the main

subroutines involved (see Figure 6.14) and the tasks performed will be described here.

Subroutine DRIVE

♦ Calls for Subroutines DATGEN, GMAT, SVEC and START at the start of the analysis.

♦ Calls for Subroutines PLAST and SOLV for incremental analyses.

♦ Contains the cyclic counter to generate to the specific number of cycles, and defines 

whether the analysis is carried out based on the reloading or unloading process.

Subroutine DATGEN

♦ Reads all the input data and assigns files for the output of results (e.g. pile displacements, 

bending moments, etc.). The required input data are described in Table 6.1.

♦ Discretise the pile into n segments; Step (1) in Section 6.3.

Subroutine GMAT

♦ Sets up the soil matrix of coefficients [Gje] by integration of the Mindlin's solution 

(Mindlin, 1936) for the four faces of the pile; Step (2) in Section 6.3.

Subroutine DMAT

♦ Sets up the pile matrix of coefficient [Gp] by integration of the Bemoulli-Euler (beam 

theory) kernel; Step (3) in Section 6.3.

Subroutine SVEC

♦ Determines the limit stresses for the soil elements, e.g. the limit bearing, shear, tensile 

stresses, etc. Assigns these limit stresses as yield stresses for bearing, shear, tension, etc.; 

Step (4) in Section 6.3.

Subroutine START

♦ Sets the specific variables to zero.
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Subroutine SOLV

♦ Sets up the pile-soil system stiffness matrix; Steps (5) to (7) in Section 6.3.1.

♦ Solves for pile segment traction for unit lateral translation of the pile and unit rotation of 

the pile about its head; Step (8) in Section 6.3.2.

♦ Determines the pile-head stiffness matrix [SM] and the compliance matrix [CM]\ Step (9) 

in Section 6.3.2.

♦ Computes the pile segment tractions and displacements for unit boundary conditions for 

free-head and fixed-head cases; Step (10) in Section 6.3.3.

♦ Computes soil element tractions for unit boundary conditions; Step (11) in Section 6.3.3.

♦ Checks for elastic unloading of plastic soil elements and soil segments; Step (12) in 

Section 6.3.4.

♦ Determines the yield factors for all elastic soil elements; Step (13) in Section 6.3.5.

♦ Checks for soil element closest to yield and determines the largest yield factor ( f y)\ Step 

(13) in Section 6.3.5.

♦ Computes soil element traction increments and current tractions, and pile segment 

displacement increments and current displacements; Step (14) in Section 6.3.6.

♦ Computes pile tractions, shear forces and bending moments for the pile segments; Step 

(15) in Section 6.3.6.

♦ Calls for Subroutines QCGAP and QDISP.

♦ Computes incremental and current pile-head lateral load, displacement, moment and 

rotation; Step (18) in Section 6.3.8.

♦ Calls for Subroutines QDEGRAD, QRFACT, QDEGRADB and QRFACTB.

♦ Determine the interpolation factor when the predicted load or displacement exceeded the 

specified load or displacement; Step (24) in Section 6.3.12.

♦ Return back to Subroutine DRIVE for the next increment.

Subroutine QCGAP

♦ Computes gap sizes at the pile-soil interfaces for soil elements that have yielded in 

tension; Step (16) in Section 6.3.7.

Subroutine QDISP
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♦ Searches for gaps experiencing gap closures and determines the gap closing factors; Step 

(17) in Section 6.3.7.

♦ Check for gaps nearest to gap closure and determines the largest gap closing factor ( f g); 

Step (17) in Section 6.3.7.

Subroutine QDEGRAD

♦ Computes the incremental and current plastic shear displacement for soil elements that 

have yielded in shear; Step (19) in Section 6.3.9.

Subroutine QRFACT

♦ Determines the reduced limit shear stresses and thereby the yield stresses for shear, when 

the side soil elements have recovered from plastic to elastic; Step (20) in Section 6.3.9

Subroutine QDEGRADB

♦ Computes the incremental and current plastic bearing displacement for soil elements that 

have yielded in bearing; Step (21) in Section 6.3.10.

Subroutine QRFACTB

♦ Determines the reduced limit bearing stresses and thereby the yield stresses for bearing, 

when the bearing soil elements have recovered from plastic to elastic; Step (22) in 

Section 6.3.10.

Subroutine PL AST

♦ Modifies the soil segment stiffness matrix for soil yielding or elastic unloading or gap 

closure; Step (23) in Section 6.3.11.

6.5 Typical illustrative results

Some cases were analysed using the program to demonstrate its features. The analyses 

were carried out using a free-head pile embedded in a stiff clay, subjected to one-way and 

two-way cyclic loadings. The details of the parameters involved are as follows (unless 

otherwise stated):
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Pile length (L) = 10 m

Pile Diameter (D) = 1.0 m

Pile Young's modulus (Ep) =50 GPa

Eccentricity of loading (e) = 0 m

Type of controlled conditions = Load-controlled

Soil unit weight (y) =10 kN/m3

Lateral earth pressure coefficient (K,) =1.0

Adhesion factor (a) =0.5

Undrained shear strength (C„) = 100 kPa

Soil Young's modulus (Es) =100 MPa

Backsliding factor (P) = 0

Residual/peak shear strength ratio (Rs) =0.5

Shear degradation rate factor (Cs) = 0.5 mm' 1

Residual/peak bearing strength ratio (Rh) =0.5 

Bearing degradation rate factor (Cb) = 50

6.5.1 Load-controlled conditions

The results of one-way and two-way cyclic loadings with load-controlled conditions 

are depicted in Figures 6.15a and 6.15b, respectively. The plots clearly indicate the increase 

in pile-head displacement with the increase in the number of cycles. At the end of unloading 

for the one-way cyclic analysis, a permanent or residual displacement can be seen, which is 

indicative of the plastic yielding of soil. Gap closure can be observed from the sudden 

increase in gradient of the load-displacement curves (point A in Figure 6.15a). It is observed 

that the second cycle has a considerable effect on the pile-head load-displacement response. 

This is because gaps are created at the first cycle, and the stiffness of the pile-soil system is 

subsequently reduced.

For two-way cyclic loading depicted in Figure 6.15b, the maximum and minimum 

pile-head displacements at maximum and minimum loads, respectively, are almost of the 

same magnitude (differences less than 2%) but in opposite directions. Gap closure, for 

two-way cyclic loading, normally occurs near to the initial position of the pile. This is marked 

by the sudden increase in gradient of the load-displacement curves (points in Figure 6.15b).
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It is observed that the maximum pile-head displacement for one-way cyclic loading is 

larger than (by approximately 15% at the fifth cycle) the two-way cyclic loading. The reason 

is that there are more yielded soil elements (especially for elements yielded in tension) at the 

beginning of the reloading stage for the former than the latter, hence a greater reduction in the 

pile-soil system stiffness, leading to higher pile displacements.

The bending moment distribution along the pile for cycles 1 to 5 is depicted in 

Figures 6.16a and 6.16b for one-way and two-way cyclic loadings, respectively. In Figure 

6.16a, an increase in maximum bending moment with cycling is observed. Also, the depth at 

which the maximum moment occurs has moved from 3 to 4 m, as greater amount of soil 

yielding have taken place near the top of the pile. For two-way cyclic loading (Figure 6.16b), 

similar trend of positive bending moment distribution for one-way cyclic loading is observed. 

The negative bending moment distribution at the end of unloading is almost identical (less 

than 1% difference) to the positive bending moment distribution at the end of the reloading 

for that cycle, displaying a mirror image.

The results of the pile displacement, left and right soil profiles together with the size 

of the gaps at the end of the first cycle of one-way cyclic loading are depicted in Figure 6.17. 

It is observed that left and right gaps are present near the top of the pile at the end of the 

cycle.

6.5.2 Displacement-controlled conditions

The load-controlled conditions usually apply during cyclic pile-load tests. However, 

in some circumstances, displacement-controlled testing is employed (e.g. test is easier to 

control as mentioned by Long et al., 1993).

The pile-head load-displacement plots for the one-way and two-way cyclic loadings 

using displacement-controlled conditions are depicted in Figures 6.18a and 6.18b, 

respectively. The results indicate that with the increase in the number of cycles, the load 

applied to reach to the specified maximum pile-head displacement (say at 15 mm) decreases 

due to the increase in the amount of soil yielding. The reduction in load from the first cycle to 

the fifth cycle is 20% for the one-way cyclic loading (Figure 6.18a) and 17% for the two-way 

cyclic loading (Figure 6.18b).

6.5.3 Gap formation
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The effect of inclusion and exclusion of gap formation in the analysis on pile 

responses is examined. The exclusion of gap formation, implies that the soil elements that 

had yielded in tension in the unloading (or reloading) stage are all set to elastic at the 

beginning of reloading (or unloading) stage. This assumes that the soil is adhering to the pile 

at all times, though the soil might have yielded in tension. No soil strength degradation is 

included, and one-way and two-way cyclic loadings under load-controlled conditions are used 

for the analysis.

The results of pile-head load-displacement responses depicted in Figure 6.19, show 

that cyclic degradation (i.e. increase in pile-head displacements with cycling) is evident for 

analysis with gap formation. For the case without gap formation, the pile response stabilises 

to an alternating plasticity state after the second cycle. This shows that with gap formation 

included in the analysis, it will cause a significant increase in the pile-head displacements, 

and may also indicate that gap formation is the cause of cyclic degradation. However, if the 

load is increased to 1500 kN, cyclic degradation is evident in both cases with and without gap 

formation included; see Figure 6.20. This shows that the process of unloading and reloading 

in itself, is capable of producing the cyclic degradation, and that the gap formation inclusion 

simply aggravates the rate of cyclic degradation.

It is shown in Figure 6.20, that the residual displacement with gap formation included 

in the analysis, is much less than (around 60% at the end of the fifth cycle) the case without 

gap formation. This is due to the fact that with gap formation included, all soil elements that 

have yielded in tension have remained plastic in the beginning of the unloading or reloading 

cycles, unlike the case without gap formation. This results in a lower pile-soil system 

stiffness, hence, less stiff pile responses with higher maximum and lower residual 

displacements.

For the two-way cyclic loading depicted in Figure 6.21, the exclusion of gap 

formation in the analysis, has caused the pile to stabilise to an alternating plasticity response 

in the second cycle. Significant differences (end of five cycles) in the magnitude of maximum 

and minimum pile-head displacements, are observed between the case with and without gap 

formation (Figure 6.21). It is observed in the case without gap formation, that the positive 

displacement is greater than the negative displacement by approximately 70% at the end of 

the fifth cycle. For the case with gap formation, the minimum pile-head displacements are
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similar to the maximum pile-head displacements (differences less than 1 %) at the end of the 

fifth cycle.

6.5.4 Backsliding

The effect on pile responses with backsliding included in the analysis, is examined in 

this section. The backsliding factor (p) is assumed a value of 0.5 and no strength degradation 

is included. Comparing the case with and without backsliding, it is observed in Figure 6.22, 

that the maximum and residual pile-head displacements are reduced by 15% and 32%, 

respectively, at the end of the fifth cycle. This is because the inclusion of backsliding will 

increase the yield stress for tension of the soil according to Equations (6.4) and (6.10), hence 

lesser soil yielding in tension can be anticipated. This results in the reduction of gap size, 

simulating cohesive soil sliding back into the gap during loading.

6.5.5 Shear strength degradation

In this study, the residual/peak shear strength ratio (Rs) and rate of shear degradation 

factor (Cs) are both set to 0.5, signifying a 50% degradation of the shear strength and a 

medium rate of shear strength degradation. Bearing strength degradation is not included in the 

analysis. The pile-head load-displacement response depicted in Figure 6.23, shows that the 

inclusion of shear strength degradation has caused an increase in the maximum pile-head 

displacement, but a reduction in the residual displacement as compared with the case of no 

shear strength degradation. This is due to the greater amount of soil yielding taking place 

during the unloading and reloading cycles, as the yield stress for shear is reduced because of 

shear strength degradation. Figure 6.23 also indicates that the magnitude of residual 

displacement is mainly controlled by the side (shear) soil elements. This means that, if the 

adhesion factor (a) for the soil is set to a small value of 0 .1, the yield stress for shear for the 

side soil elements will be very low, and, we can therefore expect a very small residual 

displacement as depicted in Figure 6.24. It is shown that reducing the yield stress for shear 

will reduce the rate of cyclic degradation.

6.5.6 Bearing strength degradation

The analysis was carried out with residual/peak bearing strength ratio (Rb) and rate of 

bearing degradation factor (Ch) taken as 0.5 and 50, respectively. This implies 50% of bearing
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strength degradation, degrading at a medium rate. Shear strength degradation is not included 

in the analysis. Figure 6.25 shows that the analysis with bearing strength degradation 

included has shown larger maximum and residual pile-head displacements than the analysis 

without bearing strength degradation. In contrast to the shear strength degradation (Figures 

6.23 and 6.24), larger residual displacements are observed for the analysis with bearing 

strength degradation than without (see Figure 6.25). This is because of the lower amount of 

soil yielding in bearing taking place in the unloading stage than with the reloading stage. A 

larger reduction in the yield stress for bearing is accounted for in the latter stage than in the 

former stage.

6.6 Investigation of cyclic degradation

The pile-head load-displacement responses depicted in Figures 6.20 and 6.23 to 6.25 

have indicated that the reason for cyclic degradation is not simply caused by the inclusion of 

gap formation or soil strength degradation in the analysis, but simply the inclusion of 

unloading and reloading cycles. To examine the cause of cyclic degradation within the 

APILEC analysis, a Beam-On-Spring (BOS) model and a Beam-On-Interactive-Spring 

(BOIS) model were employed.

6.6.1 Beam-On-Spring model

The Beam-On-Spring (BOS) model is similar to the Winkler or subgrade reaction 

approach, in which the pile is supported by an array of uncoupled springs and sliders (giving 

a rigid perfectly-plastic response). The use of springs and sliders is to model the 

elastic-perfectly plastic soil behaviour which is similar to APILEC soil model. The pile is 

modelled as an elastic beam via beam theory. The use of uncoupled springs to model the soil 

behaviour will create a diagonal soil matrix rather than the fully populated soil matrix in 

APILEC analysis.

The model assumed that the pile segments are surrounded by four springs with sliders 

(known as 'spring segments') as shown in Figure 6.26. The springs consist of the side springs 

to take account of the shear loadings. For an advancing pile towards the right direction, the 

right and left springs will take account of the compressive and tensile loadings, respectively, 

and vice versa. A stiffness value is assigned to each spring, and likewise a limit load. Beyond 

the limit load, i.e. the spring yields and slides, simulating the elastic-perfectly plastic soil
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behaviour; see Figure 6.27. Assuming that the soil takes no tension, the limit load for tension 

for the spring is taken to be zero. Gaps will occur when the springs at the back face of an 

advancing pile are subjected to tensile loads greater than zero.

The method of analysis for APILEC was adopted for BOS model, so as to avoid the 

complication of rewriting a new set of programs, compared with changes made only to 

specific Subroutine, namely the soil matrix generation Subroutine GMAT (see Section 6.4). 

Gap formation, gap closure and strength degradation are accounted for in the analysis.

The 'spring segment' stiffness is generated by simply summing the four spring 

stiffnesses connecting the pile segment, i.e.

Kspi= i K Seij (6.82)

where Ksp, is the spring segment stiffness for the z'-th segment,
Kse y is the individual spring stiffness for they'-th spring of z'-th segment, and 
z = 1, 2, 3 to n.

The diagonal terms of the soil segment stiffness matrix [X,] is then computed as:

Ksii = Kspi (6.83)

where Ks /7 is the stiffness coefficients at the z'-th row and z'-th column of the [A,] matrix, and 

z = 1, 2, 3 to n.

The stiffness coefficients for the non-diagonal terms in the [ATJ matrix are zeros. The [ATJ 

matrix is then inverted to give the soil segment compliance matrix [Gs] to be used in Equation 

(6.14). The pile is discretised into n segments, and the pile matrix [Gp] is set up via the beam 

theory. With the limit loads specified for all the springs (taken as the yield stresses for the soil 

elements), Steps (7) to (25) described in Section 6.3, are then applied until the specified 

number of cycles is reached.

6.6.1.1 Beam-On-Spring model results
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For the analysis, the limit compression, tensile and shear loads for the springs are 

taken to be 10, 0 and 0.5 kN, respectively. These limit loads of the springs are taken to be the 

yield stress of the soil elements for compression, tension and shear. The ratio of the limit 

compression loads in the springs to their limit shear loads was taken to be around ten; this 

reflects the ratio of bearing to shear limit stress used in APILEC analysis. All the spring 

stiffnesses are assumed to be 100 kN/m, simulating stiff clay with constant Young's modulus. 

The pile data are similar to those described in Section 6.5. Ten cycles of one-way cyclic 

loading were applied. Gap formation and soil strength degradation were also included in the 

analysis.

The analysis carried out with and without gap formation, saw no cyclic degradation in 

Figure 6.28, even when the load is very high (i.e. close to pile collapse). Comparing the case 

with and without gap formation, reveals higher residual pile-head displacements for the latter 

as depicted in Figure 6.28; reasons as explained in Section 6.5.3.

With the inclusion of bearing strength degradation and gap formation in the analysis, 

cyclic degradation is observed in Figure 6.29, and eventually stabilised to an alternating 

plasticity response at about ten cycles. With gap formation and shear strength degradation 

included in the analysis, cyclic degradation can also be seen in Figure 6.30, and the pile-head 

stabilised to an alternating plasticity response at the fifth cycle. The cyclic degradation is 

produced, as a result of degradation of the yield stress in each stage of unloading and 

reloading. The stabilisation to an alternating plasticity response can be anticipated when the 

residual strength for the soil elements is reached. This eventually reduces to gap formation 

alone where no cyclic degradation is produced (see Figure 6.28).

6.6.2 Beam-On-Interactive-Spring model

Since the BOS model, does not provide the answer for the cause of cyclic degradation 

due simply to the unloading and reloading cycles observed in APILEC analysis, the 

Beam-On-Interactive-Spring (BOIS) model with interactive springs was used to model the 

soil behaviour. The model is similar to the BOS model (see Figure 6.26), except that 

interaction with neighbouring spring segments are allowed. This is to simulate the soil 

segments interaction approach adopted by APILEC analysis.

For a simple interactive four spring segments, the soils segment compliance matrix

[GJ is:
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K sp 1
Ir 12 Ir 13 I r H

Ir2\ —  Ir23 I r 24
[G , ]  =

sp 2

Ir i\ I r 32 —  /^34
(6.84)

.sp 3

IrAi I rA2 Ir 43 K sp 4

The interactive term (/r^) for the z-th segment due to loading at they-th segment is taken as:

Ir = —  —
IJ K spi r,j (6.85)

where Ic is a interactive constant,

rtJ is the distance between the z'-th segment and they'-th segment (see Figure 6.31), and 

i and j — 1, 2, 3 to n.

Using the above method of obtaining the [GJ matrix, a fully populated soil matrix 

will be created, which is similar to the APILEC continuum approach. With the limit loads 

specified for the springs (taken as the yield stresses for the soil elements) and [GJ obtained 

from Equation (6.84), Steps (7) to (25) described in Section 6.3, are then applied until the 

specified number of cycles were attained.

6.6.2.1 Beam-On-Interactive-Spring model results

For the analysis, all the spring stiffnesses are assumed to be 100 MN/m. The limit 

compression, tension and shear loads are taken to be 900, 0 and 50 kN, respectively. These 

values are selected after observation from the BOS model, where the maximum pile-head 

displacements were found to be too excessive (greater than 150 mm). The above limit loads 

are taken to be the yield stress for compression, tension and shear for the soil elements. 

One-way cyclic loading was applied in five cycles, with gap formation included in the 

analysis. The interactive constant (/c) for the interactive terms in Equation (6.85) is assumed 

to be 0.1 (unless otherwise stated).

With the inclusion of the interactive terms (Ir) in the soil matrix, cyclic degradation 

was clearly observed in Figure 6.32. In comparison with the BOS model, a less stiff response
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is observed in Figure 6.33, which implies that the use of interactive terms in the soil matrix 

will cause a decrease in the stiffness of the pile-soil system. With the exclusion of gap 

formation in the analysis for the BOIS model, no cyclic degradation is observed in Figure 

6.33. However, increasing the applied load to a higher value (close to pile collapse), cyclic 

degradation is clearly evident in Figure 6.34, which is similar to the APILEC analysis at high 

load level (see Figure 6.20).

It is observed in Figure 6.32, that the rate of cyclic degradation is quite small. This is 

due to the value of Ic that was employed in the [GJ matrix in Equation (6.84). Changing the Ic 

value from 0.1 to 0.4, will increase the interactive terms {Ir in Equation (6.85)) in the [GJ 

matrix, leading to a lower pile-soil system stiffness. Hence, higher pile-head displacements 

and higher rate of cyclic degradation can be anticipated as shown in Figure 6.35.

For the soil strength degradation, bearing strength degradation will be dealt with first. 

Using a residual/peak bearing strength ratio (Rb) of 0.5 and a bearing degradation rate factor 

(Cb) of 100 for the analysis, cyclic degradation can clearly be seen in Figure 6.36. No sign of 

stabilisation to an alternating plasticity response was observed, which is similar to APILEC 

results depicted in Figure 6.25; note that the BOS model has shown that the pile will stabilise 

to an alternating plasticity response with further cycling as shown in Figure 6.29. Comparing 

the case with and without bearing strength degradation included in the analysis (Figure 6.36), 

shows that the former predicts higher maximum and residual displacements than the latter by 

44% and 81%, respectively, at the end of the fifth cycle.

For shear strength degradation, residual/peak shear strength ratio (Rs) of 0.5 and a 

shear degradation rate factor (Cs) of 0.1 were used. Cyclic degradation is clearly observed in 

Figure 6.37 with no evidence of stabilisation to an alternating plasticity response at the end of 

the fifth cycle. Comparing the case with and without shear strength degradation included in 

the analysis, shows that the former gives higher maximum displacement but a lower residual 

displacement than the latter (Figure 6.37). Such behaviour is similar to the APILEC analysis 

shown in Figure 6.23.

From the results of BOS and BOIS analyses, it seems to suggest that the cause of 

cyclic degradation is due to the interactive terms involved, i.e. when interaction between 

neighbouring spring segments is taken into consideration. The degree of interaction can be 

simply adjusted by the value of Ic in Equation (6.85). With higher Ic values (i.e. greater 

interaction), higher rate of cyclic degradation is shown in Figure 6.38, whereby setting Ic to
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zero, i.e. essentially the BOS model, will lead to no cyclic degradation as depicted in Figure 

6.38.

6.7 Discussion of results

The results revealed from the analyses with gap formation, backsliding and soil 

strength degradation included, show similar trends of pile responses to those observed in the 

cyclic pile-load tests, depicted in Figures 1.1 to 1.3. They indicate an increase in pile-head 

displacement and maximum bending moment with cycling for the load-controlled conditions, 

and a reduction in the pile-head load with cycling to the specified displacement for the 

displacement-controlled conditions.

Gap formation

The inclusion of gap formation and likewise the gap closure in the analysis is vital, 

because its exclusion can give a too stiff pile response during unloading and subsequent 

reloading cycles, as observed in Figures 6.19 to 6.21. It is also a more realistic approach, as 

gaps will form when the soil yields in tension, compared with the assumption that the soil 

adheres to the pile at all times, as assumed by many researchers like Matlock (1970), Reese et 

al. (1975), Poulos (1982) and Hamilton and Dunnavant (1993), among others.

Backsliding

Analyses with backsliding included (Figure 6.22) show that the pile-head 

displacements (both maximum and residual) and gap sizes will decrease. It can therefore 

simulate cohesive soils sliding back into the gap to reduce the gap sizes during loading, 

resulting in the reduction of pile-head displacements.

Soil strength degradation

The soil strength degradation was only employed when the soil elements had reached 

their yield stresses. Analyses with only shear strength degradation included (Figure 6.23) 

show an increase in the maximum pile-head displacement and decrease in the residual 

displacement with cycling as compared with the case where no shear strength degradation is 

included. This is because of the greater amount of soil yielding taking place in the unloading 

and reloading stages, as the yield stress for shear is reduced with cycling. Figure 6.24 shows
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that the magnitude of residual displacement is mainly controlled by the side face soil 

elements. If the yield stresses of these elements are low, low residual displacements result.

With only bearing strength degradation included in the analysis (depicted in Figure 

6.25), larger maximum and residual pile-head displacements with cycling occur, as compared 

with the case where no bearing degradation is included. This is due to the much larger 

amount of soil yielding taking place in the reloading stage than the unloading stage. As shear 

strength and bearing strength degradation always occur together, this results in an increase of 

maximum and residual pile-head displacements with cycling as compared with the case 

where no soil strength degradation is assumed.

Spring models

The investigation on the cause of cyclic degradation (as observed in APILEC 

analysis) using BOS and BOIS models, suggests that it is because soil continuity is accounted 

for in the analysis, where interaction with neighbouring soil elements is considered. The 

inclusion of gap formation and soil strength degradation will increases the rate of cyclic 

degradation, due to the greater amount of soil yielding.

6.8 Concluding remarks

The analysis was successfully implemented using the procedure described here. 

From the analyses of some simple cases described in Section 6.5, the predicted pile responses 

appear to be similar to those observed during cyclic pile-load tests. The use of BOS and BOIS 

models suggests that the cyclic degradation observed in APILEC analysis, arises from the soil 

element interactions. With the assurance that the algorithm produces plausible results, a 

number of parametric studies can now be conducted.
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Table 6.1 Input data for the program APILEC.

Description SI Units Variable

Pile length (L) m al

Diameter (D) m diam

Pile Young's modulus (Ep) kPa ep

Pile working stress kPa sigw

Pile-head conditions - iload

■ 0 = Fixed -
If

■ 3 = Free -
II

Eccentricity of loading (e) m xcent

Type of analysis - iqcyclf

■ 0 = Static - f t

■ 1 = One-way cycling -
If

■ 2 = Two-way cycling -
11

Gap formation analysis - igap

■ o II 2 o -
11

■  1 =  Yes -
11

Number of cycles - nqcycl

Backsliding analysis - iqback

■  0 =  No -
I t

■  1 =  Yes -
M

►  Backsliding factor (p) - qbeta

continued...
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Description SI Units Variable

Displacement-controlled conditions - iqdisco

■ 0 = No - M

■ 1 = Yes - (1

► Displacement-controlled value mm qdisco

Shear strength degradation analysis - iqdegr

■ o II 2 o - If

■ 1 = Yes - H

► Residual/peak shear strength ratio (Rs) - qresi

► Shear degradation rate factor (Cs) mm'' qcs

Bearing strength degradation analysis - iqdegrb

■ 0 = No - H

■ 1 = Yes - M

► Residual/peak bearing strength ratio (Rb) - qresib

► Bearing degradation rate factor (Cb) - qcb

Soil type - iopt

■ 1 = Stiff clay - iopt

► Effective unit weight (y) kN/m3 gama

► Lateral earth pressure coefficient (K,) - ako

► Adhesion factor (a) - alfa

► Young's modulus (Es) kPa esa

► Undrained shear strength (C„) kPa cua

■ 2 = Soft clay - iopt

► Effective unit weight (y) kN/m3 gama

► Lateral earth pressure coefficient (K,) - ako

► Adhesion factor (a) - alfa

► Young's modulus at ground level (m0) kPa esa

► Rate of increase in Young's modulus (m) kPa/m esm

► Undrained shear strength at ground level (c0) kPa cua

► Rate of increase in undrained shear strength (c) kPa/m cum
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Figure 6.1 (a) Response of a laterally loaded pile, (b) sign conventions for a pile segment and 

(c) zones encountered when load direction changes.
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Figure 6.2 (a) Pile discretisation and (b) four faces o f a pile segment.
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Figure 6.3 (a) Four soil elements on the faces o f a pile segment treated as one soil segment 

and (b) full soil matrix [F] condensed into a soil segment stiffness matrix [F v].

2 2 6



CHAPTER 6 N um erical Im plem entation o f  C yclic  L oadine A lgorithm

LOAD 
<------>

gap
compression

zone
backsliding

tension \1 t
zone side face

rightleftsoil: clay <2 Pile
00

side facepile

Pan view

right pile
face

left pile 
face

Elevation view

(a)
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Figure 6.7 (a) Progressive yielding o f side face soil elements and (b) determination o f yield 

stress for shear.
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Figure 6.9 Flow chart for the determination of yield stress for shear.
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Figure 6.10 (a) Progressive yielding o f bearing soil element, (b) determination o f yield stress 

for bearing and (c) bearing strength degradation as a function of the residual limit bearing 

stress and the plastic bearing displacement.
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Figure 6.12 Flow chart for the determination o f yield stress for bearing.
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Figure 6 .15 Pile-head load-displacement responses for (a) one-way and (b) two-way cyclic

loading under load-controlled conditions.
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Figure 6.16 Pile bending moment distributions for (a) one-way and (b) two-way cyclic

loading under load-controlled conditions.
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Figure 6.17 Pile displacement, soil profiles and gap distances at the end o f first cycle of 

one-way cyclic loading.
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Figure 6.19 Pile-head load-displacement responses for one-way cyclic loading with and 

without gap formation.
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Figure 6.20 Pile-head load-displacement responses for one-way cyclic loading at high load 

level with and without gap formation.
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Figure 6.21 Pile-head load-displacement responses for two-way cyclic loading with and 

without gap formation.
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Figure 6.22 Pile-head load-displacement responses for one-way cyclic loading with and 

without backsliding.
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Figure 6.23 Pile-head load-displacement responses for one-way cyclic loading with and 

without shear strength degradation.
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Figure 6.24 Pile-head load-displacement responses for one-way cyclic loading with and 

without shear strength degradation at low limit shear stress.
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Figure 6.25 Pile-head load-displacement responses for one-way cyclic loading with and 

without bearing strength degradation.
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Figure 6.26 Beam-On-Spring (BOS) model.
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Figure 6.27 Elastic-perfectly plastic soil behaviour.
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Figure 6.28 Pile-head load-displacement responses for one-way cyclic loading with and 

without gap formation using BOS model.

3 0
ONE-WAY CYCLING

25

20

15

10

5

10 CYCLES
0

25050 100 1 50 2000
DISPLACEMENT (mm)

Figure 6.29 Pile-head load-displacement responses for one-way cyclic loading with gap 

formation and bearing strength degradation using BOS model.
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Figure 6.30 Pile-head load-displacement responses for one-way cyclic loading with gap 

formation and shear strength degradation using BOS model.
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(BOIS) model.
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Figure 6.32 Pile-head load-displacement responses for one-way cyclic loading with gap 

formation using BOIS model.
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Figure 6.33 Pile-head load-displacement responses for one-way cyclic loading with and 

without gap formation using BOS and BOIS models.
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Figure 6.34 Pile-head load-displacement responses for one-way cyclic loading without gap 

formation at high load level using BOIS model.
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Figure 6.35 Comparison on the magnitude and rate o f cyclic degradation with different 

interactive constant (IL.) for BOIS model.
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Figure 6.36 Pile-head load-displacement responses for one-way cyclic loading with gap 

formation and bearing strength degradation using BOIS model.
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Figure 6.37 Pile-head load-displacement responses for one-way cyclic loading with gap 

formation and shear strength degradation using BOIS model.
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Figure 6.38 Comparison on the magnitude and rate o f cyclic degradation with interactive 

constant Ic = 0 using BOIS model.
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CHAPTER 7 

Parametric Studies

7.1 Summary

This Chapter begins with a study into the optimum pile discretisation for cyclic 

loading analyses. The main part of the Chapter contains the results of an extensive parametric 

study of the principal soil and pile variables and their effects on pile performance under cyclic 

loading conditions.

7.2 Introduction

There are many parameters that will influence the behaviour of piles subjected to 

cyclic lateral loading. Generally, these parameters can be classified into two categories. The 

first category contains the pile parameters, namely: pile Young's modulus, diameter, length, 

etc. The second category contains the soil parameters, namely: undrained shear strength, soil 

Young's modulus, adhesion factor, backsliding factor, etc. As the variations of these 

parameters are large, only major parameters will be explored here.

The parametric studies are based on free-head and fixed-head piles subjected to 

one-way cyclic loading under load-controlled conditions. The following parameters are 

examined:

♦ Pile Young's modulus,

♦ Backsliding factor,

♦ Residual/peak bearing strength ratio,

♦ Bearing degradation rate factor,

♦ Residual/peak shear strength ratio,

♦ Shear degradation rate factor,

♦ Adhesion factor, and

♦ Eccentricity of loading.

In addition, pile discretisation is studied to determine the optimum height to width ratio of 

each pile segment, such that computational efficiency with adequate accuracy is achieved.
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The two main factors that govern the design of laterally loaded pile foundations are 

the (maximum) pile-head displacements and the maximum bending moments. The parametric 

studies which follow focus mainly on these two criteria.

7.3 Pile discretisation

An important practical aspect of this study was the requirement to limit the 

computational time, while retaining reasonable accuracy. In this section, the results of 

numerical experiments aimed at determining an optimal pile discretisation strategy were 

reported.

A pile (of length (L) = 20 m and diameter (D) = 1 m), was discretised into n segments 

of 10, 20, 30 and 40, yielding height to width ratios (h/D) for each pile segment of 2, 1, 0.67 

and 0.5, respectively. The time taken to execute the APILEC program (using the Salford 

Fortran FTN77 compiler) and based on an IBM-compatible 80486 DX2-66 computer was 

determined.

The pile-head load-displacement results for different n segments are depicted in 

Figure 7.1. It is indicated that with higher n, the displacement (both maximum and residual) 

is lower. At the end of the ten cycles, it is shown in Figure 7.2, that the plastic zone (defined 

as zone with yielded soil elements) has extended to a pile depth of 10 m, (8 m, 7.37 m, 7.5 m) 

for n of 10, (20, 30, 40). The results indicate that with the increase in n, the depths of plastic 

zone and the percentage of soil yielding are lower (Figure 7.2), hence lower pile-head 

displacements can be anticipated as shown in Figure 7.1. An initial stiffer pile-head 

load-displacement response is due to the fact that the pile is discretised into more segments as 

evident in Table 7.1.

Figures 7.3a and 7.3b show the reduction in pile-head displacement and increase in 

maximum bending moment responses with increases in n, for up to ten cycles. The plot in 

Figure 7.4 shows the increase in the time taken for the analysis with increases in n segments.

Taking the results of n = 40 as the exact solution, Figure 7.3a shows that using n of 

10, (20, 30) has overestimated the pile-head displacements by 14%, (9%, 4%) for the first 

cycle. Increasing the number of cycles to ten, the overestimation is reduced, with 

overestimation of 3%, (3%, 1%) for n of 10, (20, 30). Figure 7.3b shows that using n of 10, 

(20, 30) has overestimated the maximum bending moments by 1.8%, (1.1%, 0.3%) in the first 

cycle. With further cycling to the tenth cycle, the underestimation is 5.8%, (0.5%, 0.9%).
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. (  exact value - predicted value )
The relative errors, denned as I  exact'vaiu'e )  ’ pile-head displacements

and maximum bending moments are shown in Table 7.2 and 7.3, respectively. Taking an 

error of approximately 5% or less as the allowable tolerance, suggests that 20 or 30 segments 

are necessary. From the computational (time) point of view (see Figure 7.4), twenty segments 

is probably an optimal choice, i.e. assuming an unit aspect ratio (h/D = 1).

From this study, it appears that the use of unit aspect ratio segments (as for static 

analyses) can be adopted for cyclic loading analyses, in order to obtain results of good 

accuracy without excessive computational costs.

7.4 Standard parameters

For piles subjected to lateral loading, the principal design criteria are the (maximum) 

pile-head lateral displacements and the maximum bending moments at the working load 

levels. The results of this study are presented in dimensionless forms. The advantage of 

presenting the results in this way is that the wide range of practical parameters can be 

presented in very few plots.

Since many parameters would be required to undertake a comprehensive study, only 

the major parameters that influence pile behaviour are explored here. In what follows, several 

non-dimensional groups are identified. The principal values (unless otherwise stated) of the 

parameters used in the subsequent parametric studies are as shown below.

Pile length L = 20 m

Pile diameter D=  1 m

Pile length-diameter ratio LID = 20

Eccentricity-diameter ratio e/D = 0

Lateral earth pressure coefficient K,= 1

Buoyant soil unit weight y = 10 kN/m3

Backsliding factor p = o

Residual/peak shear strength ratio

i/~>oII

Shear strength degradation rate factor Cs -  0.5 mm' 1

Residual/peak bearing strength ratio Rb = 0.5

Bearing strength degradation rate factor Q  = 50
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Stiff clav

Undrained shear strength Cu = 50 kPa

Soil Young's modulus Es = 25 MPa

Load-strength ratio H/C,JD2 = 10 (free-head)
(describes the load level) H/CttD2 = 20 (fixed-head)
Pile Young's modulus Ep = 25 GPa

Pile-soil stiffness ratio EJES = fC =1000

Soil stiffness-strength ratio EJCU = 500

Adhesion factor a  = 0.5

So ft clay

Rate of increase in undrained shear strength c = 2 kPa/m

Rate of increase in soil Young's modulus m = 25 MPa/m

Load-strength ratio H/cD3 =150 (free head)
(describes the load level) H/cD3 = 300 (fixed head)
Pile Young's modulus Ep = 10 GPa

Pile-soil stiffness ratio EJmD = K  = 5000

Soil stiffness-strength ratio mlc = 1000

Adhesion factor a  = 1

Only ten cycles of loading are considered in these parametric studies. Further load 

cycles (usually of 50 to 100 cycles or more) can result, in some circumstances, in numerical 

instability which lead to apparently anomalous results.

7.5 Stiff clay

The 'stiff clay' model is intended to simulate the heavily consolidated clay conditions 

commonly encountered in many site situations. The undrained shear strength (CM) and the 

Young's modulus (Es) of the clays are assumed to be constant with depth.

In the following studies, the results are expressed in terms of normalised pile

displacement an(j normalised maximum bending moment against the

parameters considered; where 8max , Mmax , H , and D, are the (maximum) pile-head 

displacement, maximum bending moment, lateral load and pile diameter, respectively.
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7.5.1 The effect of load levels

Pile failure usually precedes soil failure. Yielding of a cylindrical cross section is 

initiated, in the absence of axial loading, when the bending moment at the section is:

710 VZ )3

My = - j r  (7-^

where ay is the yield stress of the material.

Collapse occurs only when the full section yields which requires a further increase in bending

moment. For a cylindrical free-head pile subjected to lateral loading only, Davies and Budhu 

(1986) show that yielding of the pile section (in bending) begins when the normalised load

ievei Gfk)is:

- ^ = ( 2 — )°5 (7 2)cuD2 1 cu)

where Hy is the yield load.

For fixed-head piles, which can sustain much higher lateral loads than the free-head piles, the 

yield load can be taken as:

=(4^ ) 05 (7.3)CUD2 v CUJ v '

Taking a typical — value of 200, based on Equations (7.2) and (7.3), the yield load is 20C J )2

for free-head piles and approximately 30CJD for fixed-head piles.

Free-head piles

Loads of 5, 10, 15 and 20{ C jF ) were employed to explore the effects of load levels 

on pile response. Figure 7.5a shows that increasing the loads causes an increase in the 

pile-head displacements, and Figure 7.5b shows an increase in the maximum bending 

moments. It is observed that the rate of cyclic degradation and the rate of increase in 

maximum bending moment with cycling, increased with increasing load levels. The above
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results are because of the greater amounts of soil yielding taking place with increasing load 

levels.

The above Figures show that the second cycle has a considerable effect on the 

pile-head displacements and maximum bending moments. This is due to the fact that gaps are 

created by the first cycle, and hence the stiffness of the pile-soil system, in subsequent cycles, 

is lower. Comparing loads of 5CJD2 with 10CJ)2, (15CJD2, 20C„D2), Figure 7.5a shows that 

the pile-head displacements have increased by 1.5 times, (2.5 times, 3.2 times) for the tenth 

cycle. For maximum bending moments depicted in Figure 7.5b, the increase is 13%, (41%, 

72%) for the tenth cycle. The effect of load levels is greater for pile-head displacements than 

for maximum bending moments.

Fixed-head piles

Loads of 5, 10, 20 and 30{CJD2) were used to examine the effect of increasing load 

levels. The pile-head displacement and maximum bending moment results depicted in 

Figures 7.6a and 7.6b, respectively, show that at the low load level of 5CJD2, the pile 

responds elastically. At higher load levels of 10CJD2 to 30CJD2, cyclic degradation and 

increase in maximum bending moments with cycling occur, and the rate of increase is higher 

with increasing load levels (reasons as explained for the free-head piles). Increasing the load 

from 5CJD2 to 10QD2, (20CJD1, 30CJD2), increases the pile-head displacements by 1.6 times, 

(2.2 times, 2.9 times) and the maximum bending moments by 33%, (45%, 69%) for the tenth 

cycle. The effect of load levels is greater for pile-head displacements than for maximum 

bending moments.

Comparing the influence of pile-head conditions for pile-head displacements (Figures 

7.5a and 7.6a) at cycles 1 and 10 under a load of lOCjJDi2, indicates that the fixed head pile 

has undergone lesser pile-head displacements than free-head piles by 2.6 times for the first 

cycle and 3.8 times for the tenth cycle. This is due to the fact that the pile-head is restrained 

against rotation for fixed-head piles. For bending moment comparison, the fixed-head piles 

show lower maximum positive bending moments (not shown in figure) than free-head piles 

by 3.1 times for the first cycle and 3.6 times for the tenth cycle. The maximum negative 

bending moments shown in Figure 7.6b are the restrained moments at the pile-head. 

Comparing the maximum bending moments which the pile is experiencing (regardless 

whether it is positive or negative), it is observed that the fixed-head piles experience higher
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maximum bending moments than the free-head piles with cycling; compare Figures 7.5b and 

7.6b.

The results of the free-head and fixed-head piles, have indicated that provision of 

restraint at the pile-head, will effectively decrease the pile-head displacements as well as the 

maximum positive bending moments of the piles. However, precautions have to be taken to 

ensure that the maximum negative bending moment at the pile-head of fixed-head piles does 

not exceed the yield moment

7.5.2 The effect of pile Young's modulus (Ep)

For this parametric study, the pile-soil stiffness ratio (fC = EJEJ) of 250, 1000, 2000 

and 4000 were considered. The soil Young's modulus (£,) is assumed to remain constant, 

while the pile Young's modulus (Ep) varies. Piles with lower Ep are more flexible than those 

with higher Ep.

Free-head piles

Figure 7.7a shows the decrease in pile-head displacements as Ep increases. It is 

observed that a slower rate of cyclic degradation, is associated with the higher EF Such 

results are because of the increase in the stiffness of the pile-soil system as Ep increases, 

resulting in the lower amount of soil yielding. Increasing K  from 250 to 500, (1000, 2000, 

4000) reduces the pile-head displacements by 24%, (58%, 66%, 73%) for the tenth cycle. 

Further increase in Ep from 2000Es to 4000£s does not show significant reduction in the 

pile-head displacements. This is due to the fact that the stiffness of the pile-soil system is 

already very high at Ep = 20002?* , and therefore further increase in Ep only reduces the 

pile-head displacements slightly. This is why hollow steel piles (with appropriate Ep) are 

more commonly used than solid steel piles, where the latter Ep is obviously higher and more 

economical.

Though the lower Ep results in the increase in the pile-head displacements, it causes 

lower maximum bending moments as depicted in Figure 7.7b. This is because Ep is directly 

proportional to bending moment and inversely proportional to displacement. Increasing K  

from 250 to 500, (1000, 2000, 4000) results in the increase in the maximum bending 

moments by 15%, (15%, 39%, 68%) for the tenth cycle. It is observed that the rate of increase 

in maximum bending moment with cycling, is higher for Ep = 250Es than for Ep = 10002?,.
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This is in consequence of the large pile-head displacements for low Ep , as a result of large 

amount of soil yielding. The large increase in the maximum bending moment from cycles 5 

to 10 for K  = 500 (point A in Figure 7.7b), is due to the change in pile depth position (from 3 

to 4 m) at which the maximum bending moment occurs.

Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum 

bonding moments for free-head piles (Figure 7.7) are observed for fixed-head piles (Figure 

7.8). The only difference, is that the phenomenon of large increase in the maximum bending 

moment from cycles 5 to 10 for K  = 500 is not seen. It is indicated that the effect of Ep is 

greater for pile-head displacements than for maximum bending moments for both free-head 

and fixed-head piles.

7.5.3 The effect of backsliding factor (P)

The backsliding factor (P) is used to increase the yield stress for tension for the soil 

according to Equations (6.4) and (6.10). Soils with high p is indicative of high adhesive 

strength. In this parametric study, p of 0.0, 0.1, 0.2 and 0.5 were considered.

Free-head piles

Increase in p reduces the pile-head displacements and maximum bending moments as 

depicted in Figures 7.9a and 7.9b, respectively. This is because of the lesser soil elements 

yielding in tension, which reduce the gap sizes, as the yield stress for tension for the elements 

is increased. Increasing p from 0.0 to 0.1, (0.2, 0.5) decreases the pile-head displacements by 

3%, (5%, 17%) and the maximum bending moments by 1%, (1%, 7%) at the fifth cycle. It is 

observed that the rate of cyclic degradation and the rate of increase in maximum bending 

moment with cycling, are similar for all values of p for up to five cycles. With further 

cycling, say at the tenth cycle, it is noted that the pile-head displacements and maximum 

bending moments for p = 0.1 and 0.2 are greater than p = 0.0. The reason for such occurrence 

is unclear. It is indicated that the effect of p on both the pile-head displacements and the 

maximum bending moments is negligible for p = 0.1 and 0.2. This suggests that the 

parameter p can be ignored as p rarely exceeds 0 .2 .
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Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum 

bending moments for free-head piles (Figure 7.9) are observed for fixed-head piles (Figure 

7.10). The differences are that the rate of cyclic degradation and the rate of increase in 

maximum bending moment with cycling, are similar for all values of p for up to ten cycles. 

The phenomenon of pile-head displacements and maximum bending moments for p = 0.1 and 

0.2 greater than p = 0.0 is not produced.

7.5.4 The effect of residual/peak bearing strength ratio (Rb)

For this study, residual/peak bearing strength ratio (Rb) of 0.1, 0.2, 0.5 and 1.0 were 

considered. This simulates the degradation of bearing strength of the soil at the front face of 

an advancing pile by 90%, 80%, 50% and 0%, respectively. Soils with high Rb, i.e. 

approaching unity suffer very little bearing strength degradation after peak. Conversely, a low 

Rb is indicative of low residual bearing strength.

Free-head piles

The results for pile-head displacements and maximum bending moments under a load 

of lOC^D2 (full line) are shown in Figures 7.1 la  and 7.1 lb, respectively. They show the effect 

of Rb is negligible. As such, the load is increased to 20C ,p2 (dotted line). With this higher 

load, the reduction in Rb gives higher pile-head displacements and maximum bending 

moments. This is because of the greater amount of soil yielding taking place as a result of the 

larger degradation in the bearing strength of the soil. This is also reflected in the higher rate 

of cyclic degradation, and the higher rate of increase in maximum bending moment with 

cycling, for lower Rb. Reducing Rb from 1.0 to 0.5, (0.2, 0.1) causes an increase in the 

pile-head displacements by 1.2 times, (1.8 times, 2.8 times), and the maximum bending 

moments by 1.2 times, (1.8 times, 2.2 times) for the tenth cycle. The effect of Rb is greater for 

pile-head displacements than for maximum bending moments. Note that the effect of Rb 

usually applies after the first loading cycle, when the elements have recovered from plastic to 

elastic.

Fixed-head piles
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Under a load of 20C.P2 (full line), Figures 7.12a and 7.12b show that Rb has virtually 

no effect on the pile-head displacements and maximum bending moments. As such, the load 

is increased to 30CJ)2 (dotted line). With this increase in load, Figures 7.12a and 7.12b show 

similar pile responses as for the free-head piles (see Figure 7.11). The difference is that the 

rate of cyclic degradation and the rate of increase in maximum bending moment with cycling, 

is lower for fixed-head than for free-head piles, due to lesser soil yielding.

From the analyses of free-head and fixed-head piles under loads of 20CJ)2 and 

30C J)2, respectively, it is indicated that the effect of Rh is more significant at higher load 

levels. At load levels less than 10CJD2 and 20C J)2 for free-head and fixed-head piles, 

respectively, the parameter Rb can be safely ignored.

7.5.5 The effect of bearing degradation rate factor (Cb)

The bearing degradation rate factor (Cb) quantifies the rate of bearing strength 

degradation of soil after peak. For this study, Cb of 10, 2.0, 50 and 100 are considered. This is 

to simulate slow (Cb = 10 and 20), medium (Cb = 50) and fast (Ch = 100) rates of bearing 

strength degradation.

Free-head piles

The effect of Cb on pile-head displacements and maximum bending moments are 

depicted in Figures 7.13a and 7.13b, respectively. They show that for a low load level of 

10CJD2 (full line), the effect of Cb is negligible. At a higher load level of 20C.fi2 (dotted 

line), the pile-head displacements and maximum bending moments increase with Cb. This is 

because of the greater amount of soil elements yielding in bearing, as the bearing strength is 

degraded more rapidly for higher Cb.

It is observed that the rate of cyclic degradation and the rate of increase in maximum 

bending moment with cycling, increases with increasing Cb (up to Cb = 50). There is very 

little difference between the results for Cb greater than 50. This is because for low Cb (10 and 

20 ), the bearing strength of the soil elements lie between the peak strength and residual 

strength. For high Cb (greater than 50), the bearing strength of the soil elements is at the 

residual strength.

It is indicated that when Cb increases from 10 to 20, (50, 100) the pile-head 

displacements are increased by 1%, (15%, 16%), and the maximum bending moments
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increased by 3%, (17%, 22%) for the tenth cycle. The results suggest that Ch has greater effect 

on the maximum bending moments than the pile-head displacements.

Fixed-head piles

Under a load of 20C J)2 (full line), Cb has negligible effect on pile-head displacements 

and maximum bending moments as seen in Figures 7.14a and 7.14b. Increasing the load up to 

30CJ)2 (dotted line) did not cause significant changes to the pile-head displacements and 

maximum bending moments. It is observed that the rate of cyclic degradation and the rate of 

increase in maximum bending moment with cycling, are not significantly influenced by Cb. 

This is because the residual bearing strength of the soil elements has been reached at Cb = 50 

and 100, and closely reached at Cb = 10 and 20, due to large residual bearing displacements. 

A slight increase in pile-head displacements (less than 3%) and maximum bending moments 

(less than 5%) of up to ten cycles were experienced, v/hen Cb increased from 10 to 100. The 

results suggest that Cb has greater effect on the maximum bending moments than the 

pile-head displacements.

From the above evaluation, it is observed that Cb has greater effect on free-head than 

fixed-head piles, when the piles are subjected to load levels close to their yield loads 

(described in Section 7.5.1). Note that the effect of Cb usually applies after the first loading 

cycle, when the elements have recovered from plastic to elastic.

7.5.6 The effect of residual/peak shear strength ratio (/?*)

For this parametric study, residual/peak shear strength ratio (Rs) of 0.1, 0.2, 0.5 and 

1.0 were considered. This simulates the degradation of shear strength of the soil at the side 

face of the pile by 90%, 80%, 50% and 0%, respectively. Soils with high Rs , i.e. approaching 

unity suffer very little shear strength degradation after peak. Conversely, a low Rs is

indicative of low residual shear strength.

Free-head piles

Figures 7.15a and 7.15b show that reducing Rs causes the pile-head displacements and 

maximum bending moments to increase, due to greater amount of soil yielding as a result of

greater degradation in the shear strength. It is observed that the pile responds elastically for Rs

= 1.0, while cyclic degradation occurs for Rs < 1.0. This is because shear strength degradation
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is allowed for Rs < 1.0, and therefore the shear strength is reduced for each reloading and 

unloading cycle. Decreasing Rs from 1.0 to 0.5, (0.2, 0.1) increases the pile-head 

displacements by 31%, (67%, 59%) for the tenth cycle. It is observed in the tenth cycle, that 

the pile-head displacement for Rs = 0.2 (point A in Figure 7.15a) is greater than for Rs = 0.1. 

This is because the rate of cyclic degradation is higher for Rs = 0.2 than for Rs = 0.1 after the 

fifth cycle when the residual strength of the soil for Rs = 0.1 is reached; see Figure 7.15c.

The maximum bending moment results depicted in Figure 7.15b show that reducing 

Rs from 1.0 to 0.5, (0.2, 0.1) increases the moment by 11%, (20%, 19%) for the tenth cycle. 

The higher maximum bending moments predicted for Rs. = 0.2 than for Rs = 0.1, is a 

consequence of the pile-head displacement responses (Figure 7.15a).

The above results show that the effect of Rs is greater for pile-head displacements than 

for maximum bending moments. The effect of Rs is seen after the first loading cycle, when 

the elements have recovered from plastic to elastic.

Fixed-head piles

Figures 7.16a and 7.16b show that reducing R, causes the pile-head displacements and 

maximum bending moments to increase (reasons as explained for free-head piles). It is 

observed that the rate of cyclic degradation and the rate of increase in maximum bending 

moment with cycling, is higher for lower Rs. This is due to the fact that higher shear strength 

degradation is allowed for the soil elements. However, with further cycling of up to five 

cycles, the rate of cyclic degradation for Rs = 0.2 and 0.5, is higher than Rs = 0.1 when the 

residual strength of the elements is about to be reached. Comparing the pile-head 

displacements for Rs = 1.0 with 0.5, (0.2, 0.1) show an increase of 27%, (29%, 29%) for the 

tenth cycle. For maximum bending moments, the increase is 8%, (11%, 11%) for the tenth 

cycle. The effect is greater for pile-head displacements than for maximum bending moments.

The phenomenon of Rs = 0.2 having greater pile-head displacements and maximum 

bending moments than Rs = 0.1 at the tenth cycle (as for the case of free-head piles; see 

Figures 7.15a and 7.15b) was not observed in Figures 7.16a and 7.16b. However, with further 

cycling, say for twenty cycles, such phenomenon may occur.

7.5.7 The effect of shear strength degradation rate factor (Cs)
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The shear strength degradation rate factor (Cs) is to quantify the rate of shear strength 

degradation of soil after passing its peak. In this parametric study, Cs of 0.1, 0.2, 0.5 and 1.0 

were considered. This simulates slow (Cs = 0.1 and 0.2), medium (Cs = 0.5) and fast (Cs = 

1.0) rates of shear strength degradation.

Free-head piles

Figures 7.17a and 7.17b show that increasing Cs results in the increase in the pile-head 

displacements and maximum bending moments. This is because of a greater amount of soil 

yielding taking place as the rate of shear strength degradation is increased, especially for 

cycles 2 and 5. At the tenth cycle, the effect of Cs is negligible, as the residual strength of the 

soil elements is reached, regardless of the rate specified, due to large plastic shear 

displacement. Note that the effect of Cs usually applies after the first loading cycle, when the 

elements have recovered from plastic to elastic.

Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum 

bending moments for free-head piles (Figure 7.17) are observed for fixed-head piles (Figure 

7.18).

From the above evaluation, it may suggest that the parameter Cs can be safely ignored 

for the analysis of free-head and fixed-head piles under loads of 10CJD2 and 20CJ)2, 

respectively.

7.5.8 The effect of adhesion factor (a)

The adhesion factor (a) is used to determine the limit shear stress of the soil elements 

at the side faces of the pile according to Equations (6.2). For the purpose of this parametric 

study, four values were considered, namely: 0.1, 0.2, 0.5 and 1.0.

Free-head piles

A reduction in a  increases the pile-head displacements and the maximum bending 

moments for cycles 1 to 5, as depicted in Figures 7.19a and 7.19b, respectively. This is 

because of the greater amount of soil yielding taking place as a result of lower limit shear 

stress. However, with the increase in cycling, a  = 0.2 (point A in Figure 7.19a) gives higher
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pile-head displacements than a  = 0.1. This is due to the higher rate of cyclic degradation for 

a  = 0.2 than for a  = 0.1 (see Figure 7.19c). The maximum bending moment for a  = 0.2 is 

higher than for a  = 0.1, as a consequence of the pile-head displacement responses. Reducing 

a  from 1.0 to 0.5, (0.2, 0.1) increases the pile-head displacements by 29%, (60%, 52%), and 

the maximum bending moments by 5%, (17%, 14%) for the tenth cycle. The effect of a  is 

greater for pile-head displacements than for maximum bending moments.

Fixed-head piles

The increase in the pile-head displacements and maximum bending moments with the 

reduction in a  is clearly shown in Figures 7.20a and 7.20b, for cycles 1 and 2 (reasons as 

explained for the free-head piles). With further cycling, a  = 0.1 and 0.2 has stabilised to an 

alternating plasticity response. It is observed in the tenth cycle, that the maximum pile-head 

displacements for a  = 0.5 is greater than for a  = 0.2. This is because of the higher rate of 

cyclic degradation for higher a . Reducing a  from 1.0 to 0.5, (0.2, 0.1) increases the pile-head 

displacements by 24%, (21%, 26%) and the maximum bending moments by 6%, (10%, 10%) 

for the tenth cycle. The effect of a  is greater for pile-head displacements than for maximum 

bending moments.

7.5.9 The effect of eccentric loading (e)

Eccentric loading (e) decreases the lateral capacity of the pile due to the increase in 

bending moments in the pile. The eccentricity of 0.0, 0.5, 1.0 and 2.0D (D is the pile 

diameter) will be examined in this study.

Free-head piles

An increase in e causes the pile-head displacements and maximum bending moments 

to increase, as depicted in Figures 7.21a and 7.21b, respectively. This is because of greater 

soil yielding as a result of the increase in the bending moments in the piles. This is also 

reflected in the rate of cyclic degradation and the rate of increase in maximum bending 

moment with cycling. The above Figures show that increasing e from zero to 0.5D, (1.0/), 

2.0D) increases the pile-head displacements by 1.7 times, (2.2 times, 3.2 times) and the 

maximum bending moments by 1.4 times, (1.6 times, 2.1 times) for the tenth cycle. The

265



CHAPTER 7 Parametric Studies

results show that the effect of eccentricity is greater for pile-head displacements than for 

maximum bending moments.

Fixed-head piles

It is assumed in APILEC analysis that eccentric loading does not have any effect on 

the fixed-head piles. As such, the effect of eccentricity is not examined.

The 'soft clay' model is intended to simulate the normally consolidated (or 

lightly-overconsolidated) clay conditions encountered in many site situations, where the 

undrained shear strength of the clay increases linearly with depth.

maximum bending moment are plotted against the parameters concerned; where 6max,

Mmax , H, m and D are the (maximum) pile-head displacement, maximum bending moment, 

lateral load, rate of increase in soil Young's modulus and pile diameter, respectively.

7.6.1 The effect of load levels

approach, Budhu and Davies (1988) showed that the horizontal load at yield for free-head 

piles is:

7.6 Soft clay

In the following studies, the normalised displacement 'max' and normalised

In practice, most piles fail by yielding of the pile section (in bending) itself, well 

before the load capacity of the surrounding soil. Following Brom's (1964) limit-equilibrium

(7.6)

For fixed-head piles, the yield load is:

(7.7)

O y  |

Taking a typical value — of 10000, based on Equations (7.6) and (7.7), the yield load is 

around 200cD3 for free-head piles and 400cZ)3 for fixed-head piles.
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Free-head piles

Loads of 50, 100, 150 and 200(cD3) were used to examine the effect of load levels on 

pile responses. Figures 7.22a and 7.22b show that the pile-head displacements and maximum 

bending moments increase with load levels and cycling, as a result of the increase in soil 

yielding. It is shown that the second cycle has a considerable effect on the pile-head 

displacements and maximum bending moments. This is due to the fact that gaps are created 

by the first cycle, and hence the stiffness of the pile-soil system in subsequent cycles is lower. 

At a low load of 50C.D3, the pile stabilised to an alternating plasticity response. At load levels 

higher than 100cD3, cyclic degradation is observed and the rate is higher with an increase in 

load levels, due to the larger amount of soil yielding taking place. The rate of increase in the 

maximum bending moment with cycling, is as a consequence of the pile-head displacements. 

Increasing the load from 50cD3 to 100c/)3, (150cD3, 200cD3) gives an increase in the 

pile-head displacements by 1.3 times, (1.8 times, 2.9 times) and the maximum bending 

moments by 20%, (52%, 81%) for the tenth cycle. The effect of load levels is greater for 

pile-head displacements than for maximum bending moments.

Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum 

bending moments for free-head piles (Figure 7.22) are observed for fixed-head piles (Figure 

7.23).

The comparison of free-head with fixed-head pile results under a load of 200cZ)3, 

shows that the use of fixed-head piles instead of a free-head piles, reduces the pile-head 

displacements by 77% for the first cycle and 82% for the tenth cycle. For the maximum 

bending moments (ignoring positive or negative), the reduction is 17% and 27% for the first 

and tenth cycle, respectively. From the above evaluation, we can deduce that fixing the 

pile-head will definitely improve the lateral load capacity of the pile.

7.6.2 The effect of pile Young’s modulus (Ep)

For this parametric study, the pile-soil stiffness ratio K  (E/mD) of 1000, 2000, 5000, 

10000 and 20000 are considered. With mD (m is the rate of increase in Young’s modulus and
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D is the pile diameter) remains constant, Ep is varied accordingly. Piles with lower Ep are 

more flexible.

Free-head piles

Figure 7.24a shows that the pile-head displacements are increasing with reduction in 

Ep or K , due to the increase in soil yielding as a result of reduction in the pile-soil system 

stiffness. It is observed that for K  = 10000 and 20000, the piles stabilised to an alternating 

plasticity response as the stiffness of the pile-soil system is very high. Cyclic degradation 

occurs at K  less than 5000, with higher rate of cyclic degradation associated with lower K. 

Reducing K  from 20000 to 10000, (5000, 2000, 1000) causes the pile-head displacements to 

increase by 1.5 times, (2.9 times, 7.8 times, 15.3 times) for the tenth cycle. It is observed in 

Figure 7.24a, that the further increase of K  from 10000 to 20000 does not affect the pile-head 

displacements significantly. This is because the stiffness of the pile-soil system is very high 

for K  = 10000, where the pile responded almost elastically; further increase in K  only gives a 

slight reduction in the pile-head displacements.

It is shown in Figure 7.24b, that the maximum bending moments increase with K  as 

Ep is directly proportional to the bending moment and inversely proportional to the 

displacement. Increasing K  from 1000 to 2000, (5000, 10000, 20000) causes the maximum 

bending moments to increase by 0.0%, (0.2%, 3%, 9%) for the first cycle. With further 

cycling, however, due to the large pile-head displacements for low K  values (say K  of 1000, 

2000 and 5000), it produces large bending moments as a result of the large amount of soil 

yielding. This off-sets the directly proportional effect of Ep with bending moment (see Figure 

7.24b for the first cycle), producing higher maximum bending moments for K  of 1000, 2000, 

and 5000 than for K  of 20000 with cycling. The above results indicate that the effect of Ep is 

greater for pile-head displacements than for maximum bending moments.

Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum 

bending moments for free-head piles (Figure 7.24) are observed for fixed-head piles (Figure 

7.25).

The above results, suggest that the further increase in Ep from lOOOOmZ) to 20000mZ), 

does not reduce significantly the pile-head displacements and maximum bending moments.
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This applies to both free-head and fixed-head piles. To economise on pile material costs, 

hollow piles (with appropriate Ep) may be more preferable than solid steel piles.

7.6.3 The effect of backsliding factor (p)

Similar to the stiff clay model described in Section 7.5.3, the backsliding factor (P) of 

0.0, 0.1, 0.2, and 0.5 were considered in this study.

Free-head piles

Figures 7.26a and 7.26b show that increasing p results in the reduction of the 

pile-head displacements and maximum bending moments, respectively. This is because of the 

lesser amount of soil yielding taking place, as the increase in p increases the yield stress for 

tension for the soil elements. This is reflected in the reduction in the rate of cyclic 

degradation and the rate of increase in maximum bending moment with cycling. Increasing p 

from 0.0 to 0.1, (0.2, 0.5) causes the pile-head displacements to reduce by 1%, (2%, 5%), and 

the maximum bending moments by 0.5%, (0.9%, 2.2%) for the tenth cycle. The results show 

that p has negligible effect on the pile-head displacements and maximum bending moments. 

It suggests that p may be safely ignored in the analysis for load levels less than 150cZ)3.

Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum 

bending moments for free-head piles (Figure 7.26) are observed for fixed-head piles (Figure 

7.27). The results suggest that p may be safely ignored in the analysis for load levels less than 

300c/)3.

7.6.4 The effect of residual/peak bearing strength ratio (.Rb)

For this parametric study, the residual/peak bearing strength ratio (Rb) of 0.1, 0.2, 0.5 

and 1.0 are considered. This simulates the degradation of bearing strength of the soil by 90%, 

80%, 50% and 0%, respectively. Other details are described in Section 7.5.4 for the stiff clay 

model.

Free-head piles
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Figures 7.28a and 7.28b show that reducing Rb increases the pile-head displacements 

and the maximum bending moments, respectively. This is due to the fact that more soil 

elements are taking place as a result of higher degradation of bearing strength. This is also 

reflected in the increase in the rate of cyclic degradation and the rate of increase in maximum 

bending moment with cycling. Reducing Rh from 1.0 to 0.5, (0.2, 0.1) causes the pile-head 

displacements to increase by 13%, (34%, 51%) and the maximum bending moments by 8%, 

(15%, 24%) for the tenth cycle. The effect of Rb is greater for pile-head displacements than 

for maximum bending moments. Note that the effect of Rh usually applies after the first 

loading cycle, when the elements have recovered from plastic to elastic.

Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum 

bending moments for free-head piles (Figure 7.28) are observed for fixed-head piles (Figure 

7.29). The only difference is that for Rb = 1.0, the pile has stabilised to an alternating 

plasticity response, where no degradation of bearing strength is being allowed.

7.6.5 The effect of bearing degradation rate factor (Cb)

Similar values of bearing degradation rate factor (Cb) for the stiff clay model (Section 

7.5.5) were employed here. This is to simulate slow (Ch = 10 and 20), medium (Ch = 50) and 

fast (Cb = 100) rates of bearing strength degradation.

Free-head piles

Figures 7.30a and 7.30b, show that an increase in Cb causes an increase in the 

pile-head displacements and the maximum bending moments, respectively. This is because of 

the increase in soil elements yielding as the rate of bearing strength degradation is increased. 

This explains the increase in the rate of cyclic degradation and the rate of increase in 

maximum bending moment with cycling, with increasing Cb. Increasing Cb from 10 to 20, 

(50, 100) increases the pile-head displacements by 2%, (11%, 19%), and the maximum 

bending moment by 2%, (6%, 10%) for the tenth cycle. The effect of Cb is greater for 

pile-head displacements than for maximum bending moments. Note that the effect of Cb is 

usually observed after the first loading cycle, when the elements have recovered from plastic 

to elastic.
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Fixed-head piles.

Similar trends of pile responses in terms of pile-head displacements and maximum 

bending moments for free-head piles (Figure 7.30) are observed for fixed-head piles (Figure 

7.31). It is observed that for Cb = 10 and 20, the pile tends to stabilise to an alternating 

plasticity response with further cycling. This is because of the slow rate of bearing strength 

degradation, which causes little degradation of bearing strength. The rate of cyclic 

degradation and the rate of increase in maximum bending moment with cycling, are higher 

for Cb > 50

7.6.6 The effect of residual/peak shear strength ratio (ffs)

For this study, the residual/peak shear strength ratio (Rs) of 0.1, 0.2, 0.5 and 1.0 were 

employed. This simulates the degradation of shear strength of soil by 90%, 80%, 50% and 

0%, respectively. Other details are described in Section 7.5.6 for the stiff clay model.

Free-head piles

Figures 7.32a and 7.32b show that the increase in pile-head displacements and 

maximum bending moments, respectively, is associated with the reduction in Rs. This is due 

to the fact that a greater amount of soil yielding occurs for lower Rs as the degradation in the 

shear strength of the clay is higher. It is observed that the rate of cyclic degradation and the 

rate of increase in maximum bending moment with cycling, for Rs = 0.1 is initially higher 

than Rs > 0.2. However, with cycling greater than five cycles, the rate of cyclic degradation 

and the rate of increase in maximum bending moment decreases, when the residual strength 

of the soil elements is reached. Reducing Rs from 1.0 to 0.5, (0.2, 0.1) increases the pile-head 

displacements by 4%, (9%, 12%), and the maximum bending moments by 4%, (6%, 6%) for 

the tenth cycle. The effect of Rs is greater for pile-head displacements than for maximum 

bending moments. The effect of Rs usually applies after the first loading cycle, when the 

plastic elements are brought back to elastic.

Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum 

bending moments for free-head piles (Figure 7.32) are observed for fixed-head piles (Figure
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7.33), except that Rs = 0.1 and 0.2 have stabilised to an alternating plasticity response with 

further cycling. This is because the residual shear strength of the soil elements were reached.

7.6.7 The effect of shear strength degradation rate factor (Cs)

Similar values of shear strength degradation rate factor (C5) for the stiff clay model 

(Section 7.5.7) were considered in this study. This is to simulate slow (Cs = 0.1 and 0.2), 

medium (Cs = 0.5) and fast (Cs = 1.0) rates of shear strength degradation.

Free-head piles

The increase in pile-head displacements and maximum bending moments with the 

increase in Cs are depicted in Figures 7.34a and 7.34b, respectively. It is observed that the 

effect of Cs for both pile-head displacements and maximum bending moments are negligible. 

This is because the residual strength of the soil elements have been reached regardless of the 

rate specified, as the plastic shear displacement for the elements is very high. For example, it 

is shown that the increase in Cs from 0.1 to 0.2, (0.5, 1.0) increases the pile-head 

displacements by only 0.2%, (0.2%, 0.4%), and the maximum bending moments by only 

0.7%, (1.5%, 1.6%) for the tenth cycle.

Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum 

bending moments for free-head piles (Figure 7.34) are observed for fixed-head piles (Figure 

7.35).

The above results imply that Cs can be ignored for both free-head and fixed-head piles 

in the analysis, for loads below 150cZ)3 and 300cD3, respectively.

7.6.8 The effect of adhesion factor (a)

Similar adhesion factor (a) of 0.1, 0.2, 0.5 and 1.0 for the stiff clay model (Section 

7.5.8) were considered in this study.

Free-head piles

Figures 7.36a and 7.36b show the increase in pile-head displacements and maximum 

bending moments when a  decreases. This is because of the greater amount of soil elements
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yielding taking place as the limit shear stress is lower. It is observed that the lower rate of 

cyclic degradation and lower rate of increase in maximum bending moment with cycling, is 

associated with a lower a. This is due to the greater amount of soil elements yielding in both 

the loading/reloading and unloading cycles. Decreasing a  from 1.0 to 0.5, (0.2, 0.1) causes 

the pile-head displacements to increase by 5%, (10%, 14%), and the maximum bending 

moments by 1%, (2%, 2%) for the tenth cycle. The effect of a  is greater for pile-head 

displacements than for maximum bending moments.

Fixed-head piles

Similar trends of pile responses in terms of pile-head displacements and maximum 

bending moments for free-head piles (Figure 7.36) are observed for fixed-head piles (Figure 

7.37).

7.6.9 The effect of eccentric loading (e)

As for the stiff clay model (Section 7.5.9) , the eccentricity (e) of 0.0, 0.5, 1.0 and i 

2.0D (D is the pile diameter) were considered in this parametric study.

Free-head piles

An increase in e causes the increase in the pile-head displacements and maximum 

bending moments as depicted in Figures 7.38a and 7.38b, respectively. This is due to the fact 

that a greater amount of soil elements yielding are taking place, as the bending moments in 

the piles are increased. This also causes the rate of cyclic degradation to increase. Increasing e 

from 0.0 to 0.5D, (1.0Z), 2.0D) increases the pile-head displacements by 1.3 times, (1.7 times,

2.7 times), and the maximum bending moments by 14%, (27%, 55%) for the tenth cycle. The 

results suggest that the effect of e is greater for pile-head displacements than for maximum 

bending moments.

Fixed-head piles

It is assumed in APILEC analysis that eccentric loading will not have any effect on 

the fixed-head piles. As such, the effect of eccentricity on pile responses is not examined.

7.7 Discussion of results
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Pile discretisation

The pile discretisation study showed that unit aspect ratio for the pile segments should 

be adopted during analysis, to obtain an optimum balance between computational cost and 

accuracy.

Parametric studies

The parametric studies indicate the parameters that have significant influence on the 

pile responses in terms of pile-head displacements and maximum bending moments. They 

also indicated the parameters which can be safely ignored.

Load levels

The study has shown that the load levels have significant effect on the pile-head 

displacements and the maximum bending moments. The effect is greater for pile-head 

displacements than on maximum bending moments. The rate of cyclic degradation and the 

rate of increase in maximum bending moment with cycling, are higher with increasing load 

levels. Comparing the responses of free-head and fixed-head piles under the same load level, 

indicates that the latter reduces the pile-head displacements and the maximum bending 

moments for both stiff clay and soft clay models. The results indicate that fixing the pile-head 

will improve the cyclic lateral load capacity of the pile.

Pile Young's modulus (Ep)

The study has shown that Ep has significant effect on the pile-head displacements and 

the maximum bending moments. Increase in Ep reduces the pile-head displacements but 

increases the maximum bending moments. The effect is greater for pile-head displacements 

than for maximum bending moments. It is observed for the stiff clay model, that further 

increase in Ep from 2000Es to 4000£s shows only slight reduction in the pile-head 

displacements and a slight increase in the maximum bending moments. For the soft clay 

model, a further increase in Ep from 10000mD to 2QOOOmZ) shows negligible effect on 

pile-head displacements and maximum bending moments. This evaluation-mdicates-that piles 

oiTeasonableJ^, should be employed to reduce the pile foundation-costs.

Backsliding factor (P)
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The study on p shows that it did not have significant effect on the pile-head 

displacements and the maximum bending moments for both stiff clay and soft clay models. 

This suggests that this parameter can be ignored in the analysis.

Residual/peak bearing strength ratio (Rb)

For the stiff clay model, Rb has shown to have significant effect on the pile-head 

displacements and the maximum bending moments, only when the load level is at the yield 

load. The parameter Rb can be ignored if the load levels are below 10CttD 2 for free-head piles 

and 20C j f  for fixed-head piles. For the soft clay model, Rb has shown to have significant 

effect on the pile-head displacements and maximum bending moments at load levels of 75% 

of the yield load. The effect is greater for pile-head displacements than for maximum bending 

moments for both models.

Bearing degradation rate factor (Cb)

For the stiff clay model, Cb has shown to have significant effect on pile-head 

displacements and maximum bending moments for free-head piles subjected only to the yield 

load level. Cb can be ignored for fixed-head piles. The effect is greater for maximum bending 

moments than for pile-head displacements. For the soft clay model, Cb has shown to have 

significant effect on pile-head displacements and maximum bending moments at load levels 

of 75% of the yield load. The effect is greater for pile-head displacements than for maximum 

bending moments.

Residual/peak shear strength ratio (Rs)

The study shows that Rs has significant effect on pile-head displacements and 

maximum bending moments for both soft clay and stiff clay models. The effect is greater for 

pile-head displacements than for maximum bending moments.

Shear degradation rate factor (Cs)

The study shows that Cs does not have significant effect on pile-head displacements 

and maximum bending moments. For the stiff clay model, Cv can be ignored for free-head 

and fixed-head piles subjected to load levels less than 10CUD2 and 20CJD2, respectively. For
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the soft clay model, Cs can be ignored for free-head and fixed-head piles subjected to load 

levels less than 150cD3 and 300cD3, respectively.

Adhesion factor (a) and eccentric loading (e)

The study shows that a  and e have significant effect on the pile-head displacements 

and maximum bending moments for both soft clay and stiff clay models. The effect is greater 

for pile-head displacements than for maximum bending moments.

7.8 Concluding remarks

The results obtained in this parametric study have shed light on the performance of 

cyclic laterally loaded piles, and provides some useful data for design purposes. In the next 

Chapter, a number of published case histories are examined in order to assess the usefulness 

of this method of analysis in practice.
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Table 7.1 Effect of pile discretisation on the initial stiffnesses of the pile-soil system.

No. of pile segments 

in)

Initial stiffness 

(MN/m)

10 61.1

20 64.1

30 65.4

40 65.7

Table 7.2 Effect of pile discretisation on the relative errors in pile-head displacements.

No. of pile segments 

in)

Relative errors (%)

Cycle 1 Cycle 5 Cycle 10

10 14 7.5 3.2

20 8.6 4.1 2.6

30 3.5 3.3 1

40 0 0 0

Table 7.3 Effect of pile discretisation on the relative errors in maximum bending moments.

No. of pile segments 

in)

Relative errors (%)

Cycle 1 Cycle 5 Cycle 10

10 1.8 -6.8 -5.8

20 1.1 -2.8 -0.5

30 0.3 -0.7 -0.9

40 0 0 0
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Figure 7.1 The effect of pile discretisation on pile-head load-displacement responses.

16

10

7r ?
,o«?
■/\

75%

VA
50%
V 
A

0%

20 30

100%

75%

50%

0%

1(0 0 %

75%

0%

No. OF PILE SEGMENTS (n)

100 % <

75%

50%

0%

Percentage of 
yielded soil elements 
within a soil segment

-n = 1 0 : h/D =2  

' n=20: h/D=1 

' n=30: h /D = 0 .67  

' n=40: h /D = 0 .5

Figure 7.2 The effect of pile discretisation on soil segments yielding.

278



CHAPTER 7 P aram etric  Studies

CYCLE 1 

CYCLE 5 

CYCLE 10

5  4 0

c n  3 0

15 2 0  25

No. OF PILE SEGMENTS (n)

(a)
2 5 0 0

2000

1 5 0 0  •

5 0 0

CYCLE 1 

CYCLE 5 

CYCLE 10

15  2 0  25

No. OF PILE SEGMENTS (n)

(b)

Figure 7.3 The effect o f pile discretisation on (a) pile-head displacements and (b) maximum

bending moments.

279



TIM
E 

TA
KE

N 
(se

co
nd

s)
CHAPTER 7 Param etric  Studies

3 5 0

3 0 0

200

150

50

15 20 25

No. OF PILE SEGMENTS (n)

Figure 7.4 The effect o f pile discretisation on time required for analysis.

i

280



CH APTER 7 P aram etric Studies

X
Q
UJ

nj

0 6

0 4

0 2

10 1550 20

H/CUD

(a)

H/CUDZ

Free-head piles
-C YCLE 1 

-C YCLE 2  

-C YCLE 5  

-C YCLE 10

2  5

Free-head piles
Q
X

1s
CYCLE 1 

CYCLE 2 

CYCLE 5  

CYCLE 10

0 .5

15 200 5 10

(b)

Figure 7.5 The effect of load levels on (a) pile-head displacements and (b) maximum bending

moments, for free-head piles in stiff clay.
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Figure 7.6 The effect of load levels on (a) pile-head displacements and (b) maximum bending

moments, for fixed-head piles in stiff clay.
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Figure 7.7 The effect of pile Young's modulus (Ep) on (a) pile-head displacements and (b)

maximum bending moments, for free-head piles in stiff clay.
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Figure 7.8 The effect of pile Young's modulus (Ep) on (a) pile-head displacements and (b)

maximum bending moments, for fixed-head piles in stiff clay.
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Figure 7.9 The effect of backsliding factor (P) on (a) pile-head displacements and (b)

maximum bending moments, for free-head piles in stiff clay.
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Figure 7.10 The effect o f backsliding factor (P) on (a) pile-head displacements and (b)

maximum bending moments, for fixed-head piles in still clay.
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Figure 7.11 The effect of residual/peak bearing strength ratio (Rh) on (a) pile-head

displacements and (b) maximum bending moments, for free-head piles in stiff clay.
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Figure 7.12 The effect o f residual/peak bearing strength ratio (Rh) on (a) pile-head

displacements and (b) maximum bending moments, for fixed-head piles in stiff clay.
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Figure 7.13 The effect of bearing degradation rate factor (Ch) on (a) pile-head displacements

and (b) maximum bending moments, for free-head piles in stiff clay.
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Figure 7.14 The effect o f bearing degradation rate factor (Ch) on (a) pile-head displacements

and (b) maximum bending moments, for fixed-head piles in stiff clay.
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Figure 7.15 The effect o f residual/peak shear strength ratio (Rs) on (a) pile-head 

displacements, (b) maximum bending moments and (c) pile-head load-displacement 

responses for Rs o f 0.1 and 0.2 (see overleaf), for free-head piles in stiff clay.
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Figure 7.15 (c) The effect of residual/peak shear strength ratio (Rs) on pile-head 

load-displacement responses for Rs o f 0.1 and 0.2, for free-head piles in stiff clay.
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Figure 7.16 The effect of residual/peak shear strength ratio (Rs) on (a) pile-head

displacements and (b) maximum bending moments, for fixed-head piles in stiff clay.
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Figure 7.17 The effect o f shear strength degradation rate factor (Cv) on (a) pile-head

displacements and (b) maximum bending moments, for free-head piles in stiff clay.
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Figure 7.18 The effect of shear strength degradation rate factor (Cv) on (a) pile-head

displacements and (b) maximum bending moments, for fixed-head piles in stiff clay.
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Figure 7.19 The effect o f adhesion factor (a) on (a) pile-head displacements, (b) maximum

bending moments and (c) pile-head load-displacement responses for a  o f 0.1 and 0.2 (see

overleaf), for free-head piles in stiff clay.
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Figure 7.19 (c) The effect of adhesion factor (a) on pile-head load-displacement responses for 

a  o f 0.1 and 0.2, for free-head piles in stiff clay.
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Figure 7.20 The effect of adhesion factor (a) on (a) pile-head displacements and

maximum bending moments, for fixed-head piles in stiff clay.
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Figure 7.22 The effect of load levels on (a) pile-head displacements and (b) maximum

bending moments, for free-head piles in soft clay.
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Figure 7.23 The effect o f load levels on (a) pile-head displacements and (b) maximum

bending moments, for fixed-head piles in soft clay.
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Figure 7.24 The effect of pile Young's modulus (Ep) on (a) pile-head displacements and (b)

maximum bending moments, for free-head piles in soft clay.
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Figure 7.25 The effect of pile Young's modulus (Ep) on (a) pile-head displacements and (b)

maximum bending moments, for fixed-head piles in soft clay.
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Figure 7.26 The effect of backsliding factor (P) on (a) pile-head displacements and (b)

maximum bending moments, for free-head piles in soft clay.
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Figure 7.27 The effect o f backsliding factor ((3) on (a) pile-head displacements and (b)

maximum bending moments, for fixed-head piles in soft clay.
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Figure 7.28 The effect of residual/peak bearing strength ratio (Rh) on (a) pile-head

displacements and (b) maximum bending moments, for free-head piles in soft clay.
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Figure 7.29 The effect of residual/peak bearing strength ratio (Rh) on (a) pile-head

displacements and (b) maximum bending moments, for fixed-head piles in soft clay.
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Figure 7.30 The effect o f bearing degradation rate factor (Ch) on (a) pile-head displacements

and (b) maximum bending moments, for free-head piles in soft clay.
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Figure 7.31 The effect of bearing degradation rate factor (Ch) on (a) pile-head displacements

and (b) maximum bending moments, for fixed-head piles in soft clay.
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Figure 7.32 The effect of residual/peak shear strength ratio (Rx) on (a) pile-head

displacements and (b) maximum bending moments, for free-head piles in soft clay.
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Figure 7.33 The effect of residual/peak shear strength ratio (Rs)  on (a) pile-head

displacements and (b) maximum bending moments, for fixed-head piles in soft clay.
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Figure 7.34 The effect of shear strength degradation rate factor (Cs) on (a) pile-head

displacements and (b) maximum bending moments, for free-head piles in soft clay.
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Figure 7.35 The effect of shear strength degradation rate factor (Cv) on (a) pile-head

displacements and (b) maximum bending moments, for fixed-head piles in soft clay.
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Figure 7.36 The effect o f adhesion factor (a) on (a) pile-head displacements and (b)

maximum bending moments, for free-head piles in soft clay.
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Figure 7.37 The effect of adhesion factor (a) on (a) pile-head displacements and (b)

maximum bending moments, for fixed-head piles in soft clay.
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Figure 7.38 The effect o f eccentric loading (<e) on (a) pile-head displacements and (b)

maximum bending moments, for free-head piles in soft clay.
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CHAPTER 8 

Analyses of Published Field Test Data

8.1 Summary

The cyclic loading analysis developed in Chapter 6 is employed to interpret the test 

data obtained from five published full-scale field tests. These studies concentrate on lateral 

pile-head displacements, maximum bending moments and bending moment distributions 

along the pile length. In addition, the predictions of the present numerical analysis are 

compared with those obtained by a number of other workers. Before attempting to interpret 

the pile responses, the selection of soil parameters to be used in the current analysis is 

discussed.

8.2 Introduction

The objective of this Chapter is to examine the accuracy and usefulness of the current 

analysis (APILEC), developed in Chapter 6 . This is carried out by comparisons with cyclic 

pile-load test results from published case histories. The case histories examined in this study 

are:

♦ Field tests at Lake Austin reported by Matlock (1970).

♦ Field tests at Sabine reported by Matlock (1970).

♦ Field tests reported by Reese et al. (1975).

♦ Field tests reported by Tassios and Levendis (1974).

♦ Field tests at Tilbrook Grange reported by Hamilton and Dunnavant (1993).

For each case, the soil conditions of the site were studied carefully, in order to determine the 

appropriate soil parameters to be employed for the current analysis. The predictions of other 

researchers were then discussed, and subsequently compared with the current analysis.

For the analyses, the comparisons with static loading tests were carried out first, so as 

to determine if the selected soil parameters (e.g. soil Young's modulus) to be employed are 

appropriate, before proceeding to the complex cyclic loading tests. In what follows, the
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selection of the appropriate soil parameters to be used in the current analysis will be 

discussed.

8.3 Selection of soil parameters

The soil parameters required for the static analysis are the undrained shear strength 

(Cu) of the soil and its Young's modulus (Es). Poisson's ratio (v) is assumed to be equal to 0.5 

under cyclic (undrained) loading conditions. For cyclic analysis, the strength degradation 

parameters are required. They are: residual/peak shear strength ratio (Rs), the shear 

degradation rate factor (Cv), the residual/peak bearing strength ratio (Rb), and the bearing 

degradation rate factor (Cb) are required to account for soil strength degradation. A further 

backsliding factor (P) is needed to account for the backsliding phenomenon.

Soil stiffhess-strength ratio (EJCU)

The most satisfactory method of obtaining Es appears to be to carry out full-scale 

pile-load tests and back-figure the average value of Es from the measured displacement. 

However, in situations where pile-load test data are not available, empirical correlations 

between Es and Cu, which may be determined more readily from laboratory or field tests are 

frequently used. However, the reliability of determining Es from laboratory tests is often 

questionable, because they are significantly affected by the anisotropic nature of the soils, 

sampling disturbance, uncertainties of test equipments and testing procedures.

In the absence of data from good quality tests, it is preferable and convenient to 

assume a value for the soil stiffness-strength ratio (EJC„). Simons (1976) reviewed published 

data and found EJCU ratios ranging from 40 to 3000. The low values certainly incorporate 

within them the effects of soil disturbance and non-linearity. D'Appolonia et al. (1971) 

reported EJCV ratios of 1000 to 1500 for inorganic clays of moderate sensitivity. Bjerrum 

(1972) reported EJCV ratios from 500 to 1500 obtained from field shear vane tests whereas 

Poulos (1971) reported ratios ranging from 15 to 95 from back-calculated load-displacement 

measurements of full-scale pile-load tests. These ratios correspond to secant values of 

Young's modulus and in a later publication (Poulos and Davis, 1980) ratios of 250 to 400 

were tentatively suggested for the tangent modulus/strength ratio. Ottaviani and Marchetti 

(1979) obtained EJCU ratio of 1000 from the results of a single pile-load test. In another
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pile-load test conducted by Cooke et al. (1979), EJC„ ratio of 1250 was obtained. From the 

results of two pile-load tests, Meyerhof et al. (1981) reported that the average EJCU ratio is 

approximately 400. Results reported by Butterfield and Ghosh (1980) on the study of 20 

laboratory model pile tests, give an average EJCU ratio of 470. The results of Aschenbrener 

and Olson (1984) seem to indicate that EJCU ratios lie between 400 and 1000. Davies and 

Budhu (1986) and Budhu and Davies (1988) advocated EJCU ratios in the range of 500 to 

1500 from their case history studies. Quek, Chow and Phoon (1992) analysed published 

results of pile-load tests and laboratory model pile tests and found that EJCU ratio is averaging 

about 740. It is apparent from the above results, that the EJCU ratio is quite uncertain, and the 

proposals of EJCU ratios by Davies and Budhu (1986) and Budhu and Davies (1988) were 

adopted for the cyclic analysis. Note that for soft clay model, the mlc ratio is used instead of 

EJCU (where m is the rate of increase in soil Young's modulus and c is the rate of increase in 

undrained shear strength).

Strength degradation parameters

The strength degradation parameters, namely: residual/peak shear strength ratio (Rs), 

the shear degradation rate factor (C,), the residual/peak bearing strength ratio (Rb), and the 

bearing degradation rate factor (Cb) can be correlated with soil index properties as described 

in Chapter 4. However, if the soil index properties are not available, Rs, Cs, Rh and Cb can be 

taken as 0.5, 0.5 mm'1, 0.5 and 50, respectively, assuming 50% degradation of the shear 

strength and bearing strength, and medium rate of shear strength and bearing strength 

degradation.

Backsliding factor (P)

The backsliding factor (p) to account for backsliding phenomenon is taken as zero, as 

there appears to be no field tests that can quantify the magnitude of backsliding. Nevertheless, 

the parametric study on the effect on p (described in Sections 7.5.3 and 7.6.3), had shown that 

its influence on pile-head displacements and maximum bending moments is negligible.

8.4 Field tests reported by Matlock
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Matlock (1970) has described six series of load-controlled tests performed at two 

different locations using instrumented steel pipe piles. Two series of free-head tests (one 

static and one cyclic) were conducted at Lake Austin, Texas. The other four series of loadings 

(two static and two cyclic) tested under both free-head and fixed-head conditions were 

conducted at Sabine, Texas. The details of the pile are:

Embedded length of pile (L) = 12.8 m

Outer diameter of the pile (.D) = 0.32 m

Inner diameter of the pile = 0.30 m

Incremental lateral loads were applied by the loading strut; see Figure 8.1 for the test set up 

for fixed-head pile at Sabine. A trench was excavated and filled with water to simulate the 

offshore environment.

8.4.1 Field tests at Lake Austin

8.4.1.1 Soil conditions

The soils at Lake Austin consist of clays and silts deposited relatively recently behind 

the Lake Austin Dam, Texas. The clays are somewhat jointed and fissured due to desiccation, 

with an average vane shear strength of 38 kPa. Unconfined triaxial tests were also carried out 

(Kay et al., 1986), giving shear strengths of about 24 kPa. The average submerged unit 

weight of the clay was estimated to be 8 kN/m3 (Grashuis et al., 1990).

The current analysis has adopted a soft clay model (since the clay in which the pile is 

embedded, is described as soft clay by Matlock). The details of the parameters are:

Buoyant soil unit weight (y) = 8 kN/m3

Lateral earth pressure coefficient (K,) = 1.0

Adhesion factor (a) = 0.5

Rate of increase in undrained shear strength (c) = 10 kPa/m

Rate of increase in soil Young's modulus (m) = 5 MPa/m

Backsliding factor ((3) = 0

Residual/peak shear strength ratio (Rs) = 0.5

Shear degradation rate factor (Cs) = 0.5 mm' 1

Residual/peak bearing strength ratio (Rh) = 0.5

Bearing degradation rate factor (Cb) = 50
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The Cu at the mudline is taken as zero. The values for the strength degradation parameters 

suggested above, are because the index properties of the soil are not available. The m/c ratio 

is taken as 500, following the suggestion in Section 8.3. From the pile data and reference to 

Appendix 8.1, the equivalent pile Young's modulus is taken as 55 GPa.

8.4.1.2 Predictions by previous workers

The relationship between pile-head loads and displacements were not published, and 

comparisons with results can only be based on the pile-head load-maximum bending moment 

responses and the bending moment distributions along the pile length.

Matlock used the p-y method (described in Section 1.3.2), with some adjustments to 

the empirical values, to give the predictions for static and cyclic pile-head load-maximum 

bending moment responses depicted in Figures 8.2 and 8.3. Good agreement with field results 

were achieved by Matlock, with underestimation of maximum bending moments for both 

static (only at load levels below 60 kN) and cyclic loading tests.

Kay et al. (1986) used the finite element method together with the soil parameters 

determined from the in-situ pressuremeter testing to validate the load-displacement responses 

reported by Matlock. The shear strength values obtained from the pressuremeter tests were 

about 20 kPa, which were lower than the values previously obtained by Matlock. The Es 

values adopted by Kay et al. are around 300C„. In comparison with the measured field results 

for static loading only, Kay et al. predictions gave much stiffer pile responses, typically 45% 

higher.

Grashuis et al. (1990) used the discrete element method (described in Section 1.3.5) to 

verify their proposed method of analysis, for static loading only. The CM and Es values 

adopted were 20 kPa and 40 MPa, respectively. The analysis gave reasonable agreement with 

the measured field results reported by Matlock.

Poulos (1982) employed the modified boundary element (described in Section 1.3.7) 

to analyse the pile test data under both static and cyclic loading obtained by Matlock. The 

shear strength value adopted is not mentioned. However, Es is assumed to vary linearly with 

depth, with a rate of increase of 40 MPa per metre. The results of Poulos' analyses for static 

and cyclic loading tests are shown in Figures 8.2 and 8.3, respectively. An underestimation of 

the maximum bending moments at low load levels (below 70 kN) and an overestimation of
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the maximum bending moments at high load levels (above 70 kN) for static tests can be 

clearly seen in Figure 8.2. For cyclic analysis, an underestimation and overestimation of 

maximum bending moments at low and high load levels, respectively, can again be seen in 

Figure 8.3.

8.4.1.3 Current analysis

The static and cyclic analyses were carried out based on the soil data described in 

Section 8.4.1.1. The predictions for the static analyses depicted in Figure 8.2, show that 

APILEC gives excellent predictions (differences less than 1%) of the maximum bending 

moments for loads up to 30 kN, but it overestimated the maximum bending moments at 

higher load levels. However, the differences are less than 20%.

For cyclic analyses, Figure 8.3 shows that the APILEC predictions for maximum 

bending moments provide an excellent estimate (differences less than 1%) of the actual field 

results for loads less than 70 kN. Slight underestimation of the maximum bending moments 

of less than 10% are accounted for a load of 75 kN. It should be noted that only ten cycles 

were considered. The bending moment distributions, depicted in Figure 8.4, show 

comparisons between the predictions and the measured values at a load level of 75 kN. At 

the tenth cycle, APILEC has underestimated the maximum bending moments by 

approximately 10%. However, with further cycling of up to fifty cycles, APILEC gives a 

more accurate prediction of the bending moment distribution, with overestimation of the 

maximum bending moments by only 3%. It is clearly shown in Figure 8.4, that the depth at 

which the maximum bending moment occurs, is correctly predicted by APILEC.

8 .4.1.4 Discussion

The soil strength properties adopted by previous researchers (described in Section 

8.4.1.2) are often inconsistent. The current analysis (APILEC) has adopted a soft clay model, 

giving good predictions of pile responses for both static and cyclic loading.

APILEC has successfully predicted the increase in maximum bending moments with 

increasing load levels for both static and cyclic loadings. The predictions clearly show that 

the position at which the maximum bending moment occurs moves down the pile length with 

increased cycling.
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The predictions by APILEC for ten cycles are sufficient to give accurate estimates of 

the pile responses measured in the field. It is shown that with further cycling of up to fifty 

cycles, the predictions are better especially at higher load levels. However, this will greatly 

increase the computational cost.

Overall, APILEC certainly gives better predictions of the measured pile responses 

than other methods of analyses developed by Matlock and Poulos, for static and cyclic 

loadings (especially for cyclic loading); see Figures 8.2 and 8.3.

8.4.2 Field tests at Sabine

At Sabine, tests were carried out on free-head and fixed-head piles, in order to assess 

pile-head fixity effects. The pile data is similar to that described in Section 8.4.1.

8.4.2.1 Soil conditions

The soils at the Sabine site are mainly soft, slightly overconsolidated marine clays 

with vane shear strengths averaging about 14 kPa.

Since the pile is embedded in soft clay as described by Matlock, the shear strength is 

assumed to vary linearly with depth. The details of the parameters employed for the current 

analysis are:

Buoyant soil unit weight (y) = 10 kN/m3

Lateral earth pressure coefficient (K,) = 1.0

Adhesion factor (a) = 1.0

Rate of increase in undrained shear strength (c) = 6 kPa/m

Rate of increase in soil Young's modulus (m) = 3 MPa/m

Backsliding factor ((3) = 0

Residual/peak shear strength ratio (Rs) = 0.5

Shear degradation rate factor (C5) = 0.5 mm' 1

Residual/peak bearing strength ratio (Rb) = 0.5

Bearing degradation rate factor (Cb) = 50

The C„ at the mudline is taken as zero since the pile tests were performed in a pit flooded with 

water. The adhesion factor (a) is taken as unity, since the clay is probably very soft (shear 

strength is only 14 kPa). The values for the strength degradation parameters suggested above,
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are because the index properties of the soil are not available. The (m!c) ratio is taken as 500, 

following the suggestion in Section 8.3.

8 .4.2.2 Predictions by previous workers

Due to the limited field data, comparisons can only be based on the pile-head 

load-maximum bending moment responses and the bending moment distributions along the 

pile length.

Free-head pile

Matlock employed the p-y method to predict the response of free-head piles to static 

and cyclic loading tests. Good agreement with field test results was achieved (see Figures 8.5 

and 8 .6), with some overestimation of the maximum bending moments (loads above 70 kN) 

for static loading and underestimation of maximum bending moments (loads above 60 kN) 

for cyclic loading. However, it should be borne in mind that repeated trial-and-error 

adjustments would have been necessary to obtain these results, since the p-y method is, in 

effect, merely an elaborate curve-fitting strategy.

Poulos (1982) used the modified boundary element method in his analysis. He 

assumed that the soil modulus varied linearly with depth (m = 40 kPa/m) and applied 100 

cycles of symmetric two-way loading. For static loading, Poulos predicted much lower 

maximum bending moments than the measured results (Figure 8.5), and for the cyclic 

loading, he underestimated the maximum bending moments by 10% for loads above 60 kN 

(Figure 8 .6).

Fixed-head pile

The fixed-head pile test is conducted at an eccentricity of 0.32 m, giving different 

bending moments at the mudline and at the load point. The comparisons with results were 

carried out at the load point where the restraining moments are maximum.

The predictions given by Matlock using the p-y method are shown in Figures 8.7 and 

8 .8 , for static and cyclic analyses, respectively. For both static and cyclic analyses, Matlock 

predicted much lower maximum restraining moments than the measured values at the load 

point.
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Poulos predictions for static loading, depicted in Figure 8.7, gave an overestimation of 

the maximum restraining moments at low load levels and an underestimation at higher load 

levels. For cyclic loading (Figure 8 .8), he underestimated the maximum restraining moments.

8 .4.2.3 Current analysis

The soil data used for the analyses are described in Section 8.4.2.1.

Free-head piles

For static analyses, APILEC gives excellent predictions of the measured maximum 

bending moments as shown in Figure 8.5. The differences between predicted and measured 

results are less than 2% for the full range of load levels. For cyclic analyses, the predictions 

by APILEC for ten cycles, depicted in Figure 8 .6 , gives a very good prediction (differences 

less than 1%) of maximum bending moment at a low load of 35 kN. An underestimation of 

the maximum bending moments by 11 and 24% at loads of 53 kN and 60 kN respectively, 

were observed. This is due to the insufficient number of cycles the pile is subjected to in the 

analyses. Increasing the number of cycles to fifty, Figure 8.9 shows that APILEC gives a very 

close prediction (differences less than 1%) of the measured maximum bending moment at a 

load of 60 kN. In addition, APILEC produces similar bending moment distributions along the 

pile length, with accurate predictions on the position at which the maximum bending 

moments occur.

Fixed-head piles

For the fixed-head piles, APILEC overestimates the maximum restraining moments 

for both static and cyclic analyses, as shown in Figures 8.7 and 8 .8 . This suggests that the 

strength properties of clay used in these analyses needed to be adjusted. Hence, it was decided 

to increase the c and m values to 10 kPa/m and 5 MPa/m (m/c = 500), respectively, to reduce 

the predicted maximum bending moments. This might be justified by possible variations in 

soil properties. With these modifications, APILEC still overestimated (by an average of 15%) 

the maximum restraining moments for both static (loads below 100 kN) and cyclic loadings 

(loads below 80 kN); see Figures 8.10 and 8.11. However, better estimates were achieved for 

higher load levels.
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In comparison with the measured bending moment distribution along the pile length 

(at a load of 89 kN) depicted in Figure 8.12, APILEC closely estimates the negative moment 

distributions at the tenth cycle. The positive moment distributions and the depth at which the 

maximum positive moment occurs are underestimated. However, this is not the main concern, 

as a good prediction of the maximum restraining moment for fixed-head piles is of prime 

importance.

8.4.2.4 Discussion

The current analysis employed the soft clay model for its prediction (based on the fact 

that the soil is described as soft clay), rather than using constant shear strength of 14 kPa 

(suggested by experimental tests). However, its predictions indicated give good estimates of 

the actual pile responses for both static and cyclic loadings. Some adjustments of the soil 

strength properties are required to give good predictions for fixed-head piles. This may be 

justified by variations in soil properties for different locations at which the free-head and 

fixed-head piles were tested.

The p-y method employed by Matlock, gave better predictions for free-head piles than 

for fixed-head piles. This may imply that different p-y methods may be needed to deal with 

different pile-head fixity conditions.

APILEC gave good predictions of the measured pile responses by using only ten 

cycles. However, if better predictions are desired (especially for high load levels), further 

cycling (say up to fifty cycles) may be required (Figure 8.9).

APILEC is capable of giving better predictions for the cyclic pile-load tests, for 

free-head and fixed-head pile conditions, than other methods of analyses proposed by 

Matlock (1970) and Poulos (1982); see Figures 8.5, 8 .6 , 8.10 and 8.11. The predictions have 

shown that cyclic loading increases the maximum bending moments and that the increase 

depends on the magnitude of the loading and the number of cycles. They also show that the 

position at which the maximum bending moment occurs moves down the pile depth with an 

increasing number of cycles.

8.5 Field tests reported by Reese et al,

A series of field tests have been reported by Reese et al. (1975) on static and cyclic 

laterally loaded piles embedded in stiff overconsolidated marine clay. The hollow piles were
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driven open-ended and tested under free-head conditions; the test set up can be seen in Figure 

8.13. The details of the pile are:

Embedded length of pile (L) = 14.95 m

Outer diameter of the pile (D) = 0.64 m (top 7 m), 0.61 m

Inner diameter of the pile = 0.59 m

For the cyclic loading tests, the load was applied in increments until the pile had stabilised at

a particular maximum displacement or until 100 cycles of loading had been applied.

8.5.1 Soil conditions

The soil is described as stiff overconsolidated marine clay. The undrained shear 

strength (Cu) of the clay is of the order of 192 kPa, at the top 6 to 7.5 m. The soil descriptions 

are shown in Figure 8.14.

For the current analysis, a stiff clay model with constant Es and Cu was adopted. The 

details of the soil parameters are:

Buoyant soil unit weight (y) = 10 kN/m3

Lateral earth pressure coefficient (K,) =1.0

Adhesion factor (a) =0.5

Undrained shear strength (Cu) = 190 kPa

Soil Young's modulus (Es) = 190 MPa

Backsliding factor ((3) = 0

Residual/peak shear strength ratio (Rs) = 0.3

Shear degradation rate factor (Cs) = 0.2 mm' 1

Residual/peak bearing strength ratio (Rh) = 0.01

Bearing degradation rate factor (Cb) = 100

The above Rs and Cs values are chosen from Figures 4.16a and 4.26a, respectively, based on 

an average liquid limit of 70% (top 10 m in Figure 8.14). From the bending moment 

distributions reported by Reese et al., it has been shown that the soil resistance near the 

surface to a depth of 3.5 m (approximately 6 pile diameters) is extremely low, in fact, it is 

virtually zero. This indicates that the soil has undergone severe degradation with cycling. 

Reese et al. revealed that they were surprised at the severe deterioration of the soil resistance

327



CHAPTER ft Analyses o f  Published Field Test Data

as reflected in their derived p-y curves. Hamilton and Dunnavant (1993) reviewed the tests 

reported by Reese et al. and commented that the extreme degradation may be due to the fact 

that the tests were conducted in a soil that was deposited in a salt water environment but was 

inundated during the tests using fresh water. In view of the observations and comments, Rb is 

taken as a very low value of 0.01 and a rapid rate of degradation Cb of 100 is assumed.

The eccentricity of loading (ie) is taken as 0.35 m, based on the bending moment 

measured at the ground surface. The equivalent pile Young's modulus (Ep) is determined from 

Appendix 8.1, giving Ep as 55 GPa.

8.5.2 Predictions by previous workers

Reese et al. used the p-y method (described in Section 1.3.2) to predict the pile 

responses under static and cyclic loadings; see Figures 8.15 to 8.18. For static loading, 

underestimation of less than 10% of the pile-head displacements at high load levels (above 

500 kN) is observed in Figure 8.15. In comparison with the measured maximum bending 

moment responses, their predictions gave slight underestimation (approximately 5%) at high 

load levels (above 500 kN), as depicted in Figure 8.16. For cyclic loading, Reese et al. 

analyses show very good predictions (differences less than 5%) of the pile responses for both 

pile-head displacements and maximum bending moments, as illustrated in Figures 8.17 and

8.18.

Poulos (1982) used the modified boundary element method (described in Section 

1.3.7) to validate the pile responses reported by Reese et al. After a series of static analyses, a 

reasonable fit to the static behaviour was obtained by the use of constant Es value of 192 

MPa. Poulos predictions under static loading, show a good estimate of the pile-head 

load-displacement responses at low load levels of up to 200 kN. However, at load levels 

above 500 kN, an overestimation of the pile-head displacements by approximately 20% was 

observed (Figure 8.15). In terms of pile-head load-maximum bending moment responses, 

Poulos underestimated the maximum bending moments as depicted in Figure 8.16. For cyclic 

loading, parameter value (e.g. the reference cyclic strain ccr) adjustments are necessary to give 

the pile-head displacement and maximum bending moment predictions shown in Figures 8.17 

and 8.18. Poulos predictions for the pile-head displacements show a too soft response at high 

load levels above 400 kN, resulting in an overestimation of more than 40% as compared with
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the measured displacements. An underestimation of the maximum bending moments at all 

load levels is observed in Figure 8.18.

Swane and Poulos (1985) used the bilinear-elasto-plastic analysis (described in 

Section 1.3.4) to predict the pile test responses reported by Reese et al. From their analyses of 

static pile responses, they assumed that Es of the clay to be constant with a value of 53.4 MPa. 

Their predictions of pile-head displacements and maximum bending moments for the static 

analyses are shown in Figures 8.15 and 8.16. Good prediction of the pile-head displacements 

at low load levels was achieved. However, at higher load levels, the predicted pile responses 

are too stiff. For the maximum bending moment results, their predictions underestimated the 

measured values, with greater differences as the loading increases. For the cyclic analyses, 

Swane and Poulos predictions underestimated the pile-head displacements by an average of 

15%, as illustrated in Figure 8.17. However, their predictions for the maximum bending 

moments are very good (Figure 8.18), with differences of less than 5% from the measured 

results.

8.5.3 Current analysis

The analyses are carried out using the soil data described in Section 8.5.1. For static 

analyses, APILEC predictions shown in Figures 8.15 and 8.16 (denoted as APILEC: SI), 

grossly underestimate the pile-head displacements and maximum bending moments. This 

suggests that the soil strength properties (described in Section 8.5.1) needed to be changed. 

From the undrained shear strength profile shown in Figure 8.14, a linear increase in undrained 

shear strength with depth is chosen (i.e. the soft clay model) with lower bound c = 40 kPa/m 

adopted; Cu at ground surface is assumed to be zero (water table is at the ground level). To 

give a good prediction of the measured pile-head load-displacement responses under static 

loading, a high rate of increase in soil Young's modulus with depth (m) of 190 MPa/m (m/c = 

4750) was chosen. With these adjustments to the soil parameters, APILEC predictions 

depicted in Figures 8.15 and 8.16 (denoted as APILEC: S2), show that it gives very good 

estimates (differences less than 5%) of pile-head displacements and maximum bending 

moments for the entire load range.

For cyclic analyses, APILEC predictions on pile-head displacements were compared 

with the measured results; see Figure 8.17. At the tenth cycle, APILEC predictions are 

excellent (differences less than 1%) for loads up to 300 kN. With higher load levels, APILEC
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predicts a stiffer response (about 10%). However, with further cycling to twenty cycles, 

APILEC gives a good estimate (differences of less than 5%) of the pile-head displacement at 

high load levels (above 300 kN). The maximum bending moment results depicted in Figure

8.18, show that APILEC gives excellent predictions (differences less than 1%) of the field 

results at low load levels of up to 150 kN, but an underestimation of less than 10% at load 

levels up to 445 kN is observed. In comparison with the measured bending moment 

distribution along the pile length at a load of 445 kN (Figure 8.19), APILEC (at cycle 20) has 

correctly predicted the bending moment distribution and accurately determined the pile depth 

at which the maximum bending moment occurs.

8.5.4 Discussion

The current analysis employed the stiff clay model initially (since the soil is described 

as stiff overconsolidated clay). However, the predicted pile response was far too stiff. Hence, 

it was decided to employ the soft clay model, which is supported by soil data and field 

observations (Figures 8.13 and 8.14). The use of mlc ratio of 4750 was required to give good 

predictions of the measured pile responses for both static and cyclic loadings.

From the experimental results depicted in Figures 8.15 to 8.19, it is clearly shown that 

pile-head displacements and bending moments increase with increasing load levels and with 

cycling. This behaviour is successfully predicted by APILEC. In addition, APILEC has 

shown that the depth at which the maximum bending moment occurs increases with cycling. 

Overall, APILEC has shown better agreement with the experimental results than methods 

proposed by Poulos and Swane (1985) and Poulos (1982), as observed in Figures 8.15 to

8.19. The p-y analysis was developed from the above experimental test results with various 

adjustments to best fit the measured pile responses, hence a slightly better agreement with 

measured results than APILEC was observed.

8.6 Field tests reported by Tassios and Levendis

Laterally loaded pile tests, both static and cyclic were reported by Tassios and 

Levendis (1974). One-way and two-way cyclic loading tests were conducted by jacking the 

Franki piles against each other until the specified load was attained; see Figure 8.20 for the 

test set up. The necessary details of the pile are:

Total length of pile = 10 m
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Diameter of the pile (D) = 0.52 m

Eccentricity of loading (e) = 0.25 m

8.6.1 Soil conditions

The soil consists primarily of clay having an undrained shear strength (C„) of 50 kPa 

(determined from triaxial tests). The unit weight and liquid limit of the soil, for the top 10 m 

are around 15 kN/m3 and 40%, respectively. Detail soil descriptions can be seen in Figure 

8.21 .

For the current analysis, a stiff clay model is assumed following the above soil 

descriptions. The values for the soil parameters are:

Soil unit weight (y) =15 kN/m3

Lateral earth pressure coefficient (Kt) = 0.5

Adhesion factor (a) =0.5

Undrained shear strength (C„) =50 kPa

Soil Young's modulus (Es) =50 MPa

Backsliding factor (p) = 0

Residual/peak shear strength ratio (Rs) =0.7

Shear degradation rate factor (Cs) =0.7 mm' 1

Residual/peak bearing strength ratio (Rb) =0.5

Bearing degradation rate factor (Cb) =50

The above values for Rs and Cs are taken from Figure 4.16a and 4.26a, respectively, based on 

the average liquid limit of 40%. The Rb and Cb values (from Sections 4.7.1 and 4.8.1) are 

taken as 0.5 and 50, respectively, assuming 50% of bearing strength degradation and a 

medium rate of bearing strength degradation. The lateral earth pressure coefficient (K,) is 

taken as 0.5 for bored piles, and the EJCU ratio is taken as 1000. The pile Young's modulus 

(Ep) is taken as 25 GPa.

8.6.2 Field test observations

Static loading

Two static loading tests were performed at locations L la  and Lib, and the pile-head 

load-displacement responses are shown in Figure 8.22 (denoted as MEASURED: L la and
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Lib). It is clearly seen in Figure 8.22 that the pile-head responses at locations L la and Lib 

are similar for loads up to 20 kN. However, with further loadings, say loads up to 80 kN, the 

pile at location L la displays a much stiffer response than the pile at location Lib, with a 

reduction in pile-head displacement of approximately 40%. This suggests variations in soil 

properties.

One-way cyclic loading

For the one-way cyclic loading tests, the Piles D and G are jacked against each other 

at location L3a. Their responses at a load of 60 kN for fifteen cycles are depicted in Figure 

8.23 (denoted as MEASURED: Pile D and Pile G). At the first cycle of the tests, which can 

be considered as the static loading, the pile-head displacement for Pile D is 10.3 mm and for 

Pile G is 9.4 mm (Figure 8.23). Compared with the static loading test results depicted in 

Figure 8.22, at a load of 60 kN, the maximum pile-head displacements at two different 

locations L la and Lib are 4.0 mm and 5.5 mm, respectively. This demonstrates again the 

large differences in results of approximately 2 to 3 times when tested at different site 

locations, which may be due to variations in soil properties. It is also noted in Figure 8.23 that 

Pile G displacements are lower than Pile D. This may be due to the arrangement of the piles 

during testing as shown in Figure 8.20.

Two-way cyclic loading

The two-way cyclic loading tests were conducted at location L4a with three piles at a 

single location. The loading was applied by jacking the middle and the left or right pile 

against each other in any one loading direction. The pile-head displacement results recorded 

for the middle pile at a load of 60 kN, in terms of forward and backward displacements 

(denoted as MEASURED: Forward and Backward) are depicted in Figure 8.24.

The forward displacement for the load of 60 kN at cycle one, which can be considered 

as the pile-head displacement for the static loading, gives a displacement of 3.6 mm. This is 

lower than those measured for the static tests at locations L la  and Lib, and the initial cycle of 

the one-way cyclic loading tests at location L3a, based on the same load level. It is also noted 

that the forward (positive direction due to loading/reloading) and backward (negative 

direction due to unloading) displacements are not similar, with differences averaging about 

40%. This may be due to the larger amount of soil yielding taking place in the unloading
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stage, as compared with that of the loading/reloading stage. The differences between the 

forward and backward displacements, however, are usually small as can be seen in the test 

results reported by Tassios and Levendis at a load of 40 kN (Figure 1.1b).

8.6.3 Current analysis

Static loading

For the static loading, using the soil data described in Section 8.6.1, APILEC predicts 

a too stiff pile response as depicted in Figure 8.22 (denoted as APILEC: SI). As such, it is 

decided to reduce C„ value to 10 kPa with Es assumed to be 25 MPa (in view of the above 

discussed probable variations in soil properties), to reduce the pile-head displacements. With 

these changes, APILEC predictions (denoted as APILEC: S2) lie between the two measured 

pile-head displacement results (Figure 8.22). Unfortunately, no bending moment results were 

measured by Tassios and Levendis, hence no further comparisons can be made.

One-way cyclic loading

For the one-way cyclic loading, APILEC uses Cu = 10 kPa and Es = 10 MPa (other 

soil data are similar to those described in Section 8.6.1) to give good predictions of the 

measured pile-head displacements for the first cycle. However, with cycling to fifteen cycles, 

APILEC has underestimated the measured pile-head displacements after the second cycle as 

shown in Figure 8.23 (denoted as APILEC: Cl). This suggests that the values for the soil 

strength degradation parameters will need to be increased. Since the rate of increase in 

pile-head displacements with cycling (i.e. rate of cyclic degradation) is high, it suggests a 

rapid rate of bearing strength degradation is required; Rh is taken as 0.2 and Ch as 100. This is 

based on the parametric studies reviewed in Sections 7.5.4 and 7.5.5 at high load levels. With 

these adjustments, APILEC predictions (denoted as APILEC: C2 in Figure 8.23) give higher 

pile-head displacements with cycling, but, they still underestimate the measured pile-head 

displacements after the third cycle. From the parametric studies (Section 7.5.5), a very fast 

rate of bearing strength degradation may be necessary to increase the rate of cyclic 

degradation. As such, Ch of 200 was considered. With this modification, APILEC (denoted as 

APILEC: C3 in Figure 8.23) gives very good predictions (average differences less than 5%) 

on the measured rate of cyclic degradation for the fifteen cycles, following closely the 

displacement trend of Pile D.
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Two-way cyclic loading

From the field test observations described in Section 8.6.2 and the results depicted in 

Figure 8.24, Cu = 10 kPa and Es = 20 MPa are taken for APILEC analysis in order to give a 

good prediction of pile-head displacements at cycle one. The other soil data described in 

Section 8.6.1 are used, except that Rb is now taken as 0.3 and Ch as 100. The predictions by 

APILEC depicted in Figure 8.24 (denoted as APILEC: C4 Forward and C4 Backward), show 

that it overestimated (average about 30%) the forward displacements, and underestimated 

(average about 20%) the backward displacements. Since the maximum pile-head 

displacements (ignoring the direction) is of main interest in the cyclic laterally loaded pile 

design, a very fast rate of bearing strength degradation with Ch = 200 was again adopted to 

increase the rate of cyclic degradation. With this change in Ch, APILEC predictions depicted 

in Figure 8.24 (denoted as APILEC: C5 Forward and C5 Backward), give excellent estimates 

(differences less than 2%) of the measured maximum pile-head displacements (i.e. backward 

displacements). However, APILEC overestimated the forward displacements by an average 

of around 50%; this is not particularly significant as a good match with the maximum 

pile-head displacements is of prime concern.

8.6.4 Discussion

The field test results, giving different pile-head displacements for static loading, 

one-way cyclic and two-way cyclic loadings (both at cycle one) under the same load level, 

clearly indicate the variations of soil properties at different locations. This suggests that 

having an average undrained shear strength for the entire test site is not sufficient for pile 

design purposes. Due to these factors, the C„ and Es values for APILEC predictions have to be 

adjusted (EJCU ratios ranging between 1000 to 2500 were used) to give good predictions of 

the measured pile-head displacements at the first cycle, before proceeding to the cyclic 

analyses. The analyses (APILEC) for one-way and two-way cyclic loadings have adopted a 

high Ch value of 200 to account for the fast rate of cyclic degradation observed in the field 

tests. This may be due to the rate of load application during the tests or the type of soils 

encountered, resulting in a very fast rate of strength degradation. Overall, APILEC has given 

good predictions of the measured pile responses for static loading, one-way and two-way 

cyclic loading tests.
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8.7 Field tests reported by Hamilton and Dunnavant

Hamilton and Dunnavant (1993) and Long et al. (1993) gave detailed descriptions of 

pile-load tests carried out at Tilbrook Grange in Cambridgeshire, England. The test set up can 

be seen in Figure 8.25. The relevant pile details are:

Embedded length of pile (L) = 29.4 m

Outer diameter of the pile (D) = 0.76 m

Inner diameter of the pile = 0.69 m

Eccentricity of loading (e) =0 .6m

Flexural rigidity (Eplp) = 1136 MNm2. 2

The open-ended steel pipe pile was subjected to one-way cyclic loading by jacking the pile 

apart using a central steel strut. The ground surface elevation was arbitrarily set at 100 m for 

the test. A pit (elevation 98.4 m) of 1.6 m in depth was excavated around the pile to contain 

ponded water for a period of one month prior to the laterally loaded pile tests (Figure 8.25). 

This was to ensure that the testing area around both piles was submerged with water to 

simulate offshore conditions.

The tests conducted were displacement-controlled, in which the pile-head 

displacement was increased to a new, significantly higher level following around 100 cycles 

of loading at the previous displacement value. A total of nine displacement increments,
i

comprising of one static and eight cyclic were used. The sequence of increments j  is outlined 

in Table 8.1.

8.7.1 Soil conditions

The soil strata in which the piles were embedded are known as Lowestoft Till and 

Oxford clay (Figure 8.26a). The Lowestoft Till is described as a very stiff to hard dark grey 

silty clay covering from ground surface to elevation 82.9 - 81.4 m. The clay is of intermediate 

plasticity with a liquid limit in the range of 35% to 45% and a plastic limit of about 15%. The 

effective unit weight of the soil has an average value of 11.5 kN/m3. The Oxford clay is 

described as hard dark grey fissured clay from level 82.9 m - 81.4 to level 60 m and beyond. 

The clay is of high to intermediate plasticity with liquid and plastic limit of about 55% and 

20% respectively.
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The undrained shear strength (Cw) profile for axial loaded pile analyses is given in 

Figure 8.26a. The upper portion of the shear strength profile was modified for the lateral load 

test after additional site investigation. Two supplementary borings, designated as Boring 207 

and 208 were drilled and sampled to 8 m penetration at locations close to the test pile 

position. Unconsolidated undrained triaxial tests were performed on recovered samples. 

Figure 8.26b details the revised undrained shear strength profile of the soil for the upper 10 

m.

For the current analysis, only the soil at level 98.4 to 90 m (less than ten pile 

diameters from the top) was taken into consideration to determine the appropriate undrained 

shear strength, and the effective unit weight of the soil. From the undrained shear strength 

results (Figure 8.26b), it suggests the use of the soft clay model, with C„, (Es) at the pit floor 

level taken as 150 kPa (75 M Pa). Other soil data used in the analysis are:

Buoyant soil unit weight (y) = 11.5 kN/m3

Lateral earth pressure coefficient (K,) = 1.0

Adhesion factor (a) = 0.5

Rate of increase in undrained shear strength (c) = 50 kPa/m

Rate of increase in soil Young's modulus (m) = 25 MPa/m

Backsliding factor (P) = 0

Residual/peak shear strength ratio (Rs) = 0.6

Shear degradation rate factor (Cs) = 0.7 mm' 1

Residual/peak bearing strength ratio (Rb) = 0.5

Bearing degradation rate factor (Cb) = 50

The soil strength-stiffness ratio (m/c) of 500 was used. The above Rs and Cs values are taken 

from Figure 4.16a and 4.26a, based on correlation with liquid limit of 35% to 45%. The 

above Rb and Cb values are taken, assuming 50% degradation in bearing strength and medium 

rate of bearing strength degradation (from Sections 4.7.1 and 4.8.1).

The pile-head displacement results indicated in Long et al. (1993) indicated that the 

lower portion (below the 90 m level) of the pile behaviour has virtually no influence on the 

upper part. The embedded pile length of twenty pile diameters was therefore assumed to 

economise on computational costs. The equivalent Young's modulus (Ep) of the pile was 

taken as 70 GPa (from Appendix 8.1).
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8.7.2 Predictions by previous workers

The p-y methods established by Matlock (1970) and Reese et al. (1975) and a recent 

revised p-y method developed by Dunnavant and O'Neill (1989) were used to predict the pile 

responses. The above methods use s50 = 0.005, typically assumed for design in the absence of 

field measurements for p-y methods. In addition, the p-y curves derived from the measured 

bending moment profiles of the piles, for the current pile-load tests described by Hamilton 

and Dunnavant (1993), known as the 'derived p-y ' method is used for predicting the pile 

responses.

Static analysis

The predictions using the above p-y methods for static loading are shown in Figure 

8.27. The agreement between the measured pile-head load-displacement responses with those 

predicted using the derived p-y method is very good. This is because the derived p-y curves 

were extracted from the measured pile responses (together with some curve fitting 

techniques), and will naturally provide very good predictions. The predictions by Reese et al. 

at low displacement levels (less than 10 mm) are very good, but with further increases in the 

displacement levels, they predicted a very stiff pile response. Matlock predictions 

underestimated the pile-head load by 20% at low displacement levels and continue to give a 

soft response with the increase in displacements. Dunnavant and O'Neill predictions 

underestimated the pile-head load at low displacement levels, but give good estimates 

(differences less than 10%) at higher displacements.

Cyclic analysis

The comparisons with cyclic loading results using the above p-y methods are depicted 

in Figure 8.28. The derived p-y method provides the best predictions of the pile-head 

load-displacement results, with underestimation of pile-head load by 6% at displacement of 

54 mm and overestimation at higher displacement levels. The method by Matlock predicted a 

too stiff pile response. Dunnavant and O'Neill gave good estimation of pile-head loads at low 

displacement levels, but overestimated the pile-head loads as the displacement levels 

increased. Reese et al. predicted a stiff pile response at low displacement levels (less than 25 

mm), after which, they predicted a soft pile response; the pile-head load-displacement
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response is essentially asymptotic after displacement of 25 mm. The method of analysis 

developed by Reese et al., clearly leads to undue conservative design at high displacement or 

load levels.

Figure 8.29 shows the comparisons between the maximum bending 

moment-displacement responses with predictions obtained using the above p-y methods. As 

expected, the derived p-y method predictions give the best estimates of the maximum bending 

moments; overestimation of maximum bending moments at high displacement levels are 

observed. Other p-y methods (developed by Reese et al., Dunnavant and O'Neill and 

Matlock) have grossly overestimated the maximum bending moments with increasing 

displacement levels, except the method by Reese et al., which underestimated the measured 

maximum bending moments for displacement levels of more than 70 mm.

8.7.3 Current analysis

As APILEC is capable of analysing pile behaviour under displacement-controlled 

conditions, the controlled displacement is set according to the maximum value for each 

increment, outlined in Table 8.1. The minimum or residual displacements are all taken as 

zero, although this is different from the field test minimum values. However, this will have 

little effect on the overall pile behaviour. Furthermore, the maximum displacements of the 

pile corresponding to the maximum loadings and bending moments are the main concern in 

the analyses.

Static analysis

Static analyses were conducted using the soil data described in Section 8.7.1. APILEC 

predicted a very stiff pile response; see Figure 8.30 (denoted as APILEC: SI). As such m was 

lowered to 100c, and the predictions (denoted as APILEC: S2) showed very good agreement 

(differences less than 5%) with the measured pile-head load-displacement responses at 

displacement levels above 50 mm. At displacement levels less than 40 mm, APILEC 

underestimated the pile-head loads by an average of 15% (Figure 8.30).

An examination on the bending moment distributions predicted by APILEC at 

displacement increment 9 (displacement of 104.5 mm), depicted in Figure 8.31, shows that 

the maximum bending moment is underestimated by approximately 20%. To have a more
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accurate prediction of the maximum bending moment, the values for the soil strength 

parameters used in APILEC analyses, will need to be re-considered.

Figure 8.26b shows a significant reduction in the undrained shear strength of the soil 

after the additional site investigations from results of Borings 207 and 208 carried out close to 

the test pile location. As mentioned earlier, the soil in which the piles were embedded had 

been flooded with water for a month prior to the lateral load tests. This may imply that the 

soil at the pit floor level probably has a Cu value close to zero. Hence, a Cu value of zero at pit 

floor level with (lower bound) c = 60 kPa/m and m = 90 MPa/m (m/c = 1500) were chosen 

based on Figure 8.26b. With these changes in soil strength, APILEC predictions (denoted as 

APILEC: S3 in Figure 8.30) give close estimates (differences less than 1%) of the pile-head 

load-displacement responses at displacement levels of less than 15 mm. After which, the 

pile-head loads are overestimated with further increases in displacement levels. The bending 

moment distribution along the pile length depicted in Figure 8.31 (for displacement increment 

9), shows that APILEC overestimated the maximum bending moments by around 20%.

From the above results, the value of m has to be reduced as the pile response is too 

stiff at large displacement levels. Taking c = 60 kPa/m and m = 27 MPa/m (m/c = 450), 

APILEC predictions (denoted as APILEC: S4 in Figure 8.30) show better predictions of the 

pile-head load-displacement responses as compared with previous predictions. A soft 

response of pile under displacement levels of less than 20 mm is observed, while a very good 

agreement (differences less than 5%) with pile responses at higher displacement levels 

(greater than 50 mm) are clearly seen. The predicted bending moment distributions along the 

pile length (Figure 8.31) gives very good estimates of the measured results, with the 

maximum bending moments correctly predicted (differences less than 2%). Further 

comparison with the measured bending moment distribution for displacement increment 8 

(displacement at 54 mm), show that APILEC has again accurately predicted the bending 

moment distribution (Figure 8.31), at the same time giving excellent estimates (differences 

less than 2%) of the maximum bending moment. In addition, the depth at which the 

maximum bending moments occur for displacement increments 8 and 9 are accurately 

predicted.

In comparisons with other p-y methods (except derived p-y method) described in 

Section 8.6.2, APILEC analyses have shown to give better predictions of the pile-head 

load-displacement responses for the full range of displacement increments; see Figure 8.32.
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Cyclic analysis

From the above evaluations, the use of c = 60 kPa/m and m = 450c is justified in view 

of the possible variations in soil properties and the good predictions of the bending moment 

distributions and the pile-head load-displacement responses for static loading. These values 

are employed for APILEC cyclic analyses.

Using the strength degradation parameters described in Section 8.7.1, APILEC 

predictions for cycles 5 and 10 are depicted in Figure 8.33. Very good agreement (differences 

less than 5%) with measured pile-head load-displacement response is obtained at 

displacement levels greater than 30 mm (for the fifth cycle), and at displacement levels 

greater than 100 mm (for the tenth cycle). At displacement less than 20 mm, APILEC has 

underestimated the pile-head loads by approximately 15%.

APILEC predictions for maximum bending moments give a good agreement (average 

differences of 10%) with the measured results for the full range of displacement increments; 

see Figure 8.34. Slight underestimation of the maximum bending moments (average 5% for 

displacement levels greater than 30 mm) is observed at the fifth cycle. Increasing the number 

of cycles to ten, a lower maximum bending moment is predicted.

The measured bending moment distributions along the pile length at the first (static) 

and final cycles for displacement increments 8 and 9 are shown in Figures 8.35 and 8.36, 

respectively. They show that the maximum bending moment reduces and also the position at 

which it occurs, moves down the pile length, with the increasing number of cycles. 

Superimposed APILEC predictions for cycles 1, 5 and 10 to Figures 8.35 and 8.36, show 

good predictions of the measured responses. It is shown that APILEC correctly predicted the 

bending moment distributions and also gives good estimation of the maximum bending 

moments for both static and cyclic loadings. In addition, the position at which the maximum 

bending moment occurs is correctly predicted.

In comparisons with the predictions obtained via the p-y methods (except the derived 

p-y method), APILEC has certainly shown that its predictions for pile-head load-displacement 

(Figure 8.37) and maximum bending moment-displacement (Figure 8.38) responses are much 

better.

8.7.4 Discussion
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The field results show significant reduction in the pile-head loads from the first cycle 

(static loading) to the end of the applied cycles (see Figure 8.33); this phenomenon is due to 

soil erosion, gap formation and soil strength degradation effects. The amount of reduction in 

pile-head loads increases with the increase in displacement levels. The same trend of pile 

response is clearly produced by APILEC, as illustrated in Figure 8.33.

Overall, the APILEC analysis gives better predictions of the measured results, than 

those using the established p-y methods (except the derived p-y method; reasons as explained 

earlier); see Figures 8.32, 8.37 and 8.38. This applies to both static and cyclic analyses.

APILEC predictions for cycles 5 and 10 can be taken as equivalent to the final cycle 

measured in the displacement-controlled pile-load tests.

The established p-y methods, in particular those developed by Matlock (1970) and 

Reese et al. (1975), are recommended by API RP 2A (1986) for the determination of static 

and cyclic pile responses in the offshore environment for soft clays and stiff clays, 

respectively. Given the significant errors in predicting the actual pile behaviour, the 

suitability of these methods must be in some doubt.

8.8 Discussion of results

Load cycles

The current analysis has shown good agreement with measured pile responses in most 

cases with cycling between 5 to 10 cycles. For low load levels, 5 to 10 cycles have proved to 

be sufficient to provide very good estimates, as the piles tend to stabilise, as evident in the 

many field results reported and in the parametric studies conducted in Chapter 7. For higher 

load levels, more cycles (say, up to 50 cycles) may be required in order to provide very good 

predictions (see Figures 8.4, 8.9, 8.17 and 8.18). However, this will greatly increase the 

computational cost.

Selection o f soil parameters

From the comparisons with field test results, it has been shown that good predictions 

of pile responses for the static loading were vital before attempting to predict the pile 

responses for cyclic loading. As such, selection of strength parameters (i.e. Cu or c and Es or 

m in Section 8.3) were critical in the analyses. This can be seen in the analyses carried out in 

Section 8.7.
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For static analyses, it was shown that increasing the strength parameters reduced the 

pile-head displacements and maximum bending moments. For cyclic analyses, the strength 

degradation parameters were needed (Rs , Cs , Rb and Ch in Section 8.3) to obtain good 

predictions. These parameters increase the pile-head displacements, maximum bending 

moments and the rate of cyclic degradation.

Strength parameters

To achieve good predictions of pile response, the C„ values employed in the APILEC 

analysis were often different from those provided by the experimental tests. This may be a 

short-coming of APILEC analysis. However, in many cases, the C„ values provided may not 

be appropriate due to sampling disturbances, etc. Also, the C„ values may vary due to spatial 

variations of soil properties and soil disturbances during pile installations as suggested by the 

field data reported by Tassios and Levendis (1974). In view of this, many researchers have 

also adopted different C„ values from those suggested by experimental results.

For Es determination, the values adopted by APILEC range between 450C„ to 4750C,,. 

The 4750C„ was certainly much higher than that recommended in Section 8.3. In retrospect, it 

would have been more sensible (in this case) to have assumed a non-linear variation of 

strength with depth, allowing for both low stiffness at ground level and a rapid increase with 

depth. It was noted in the comparisons of field results, that many researchers had adopted a 

very wide range of EJCU ratios.

Strength degradation parameters

The use of soil strength degradation parameters {Rs , Cs , Rh and Cb in Section 8.3) for 

cyclic analyses, had demonstrated their usefulness. The values adopted for these parameters 

were obtained from correlations with soil index properties and experimental results described 

in Chapter 4. This eliminates any empirical assumptions associated with them. However, it 

was sometimes necessary to adjust these parameters from the pile-load test results (e.g. from 

the rate of cyclic degradation), as shown in Figures 8.23 and 8.24. The effects of these 

parameters could also be seen in the parametric studies described in Chapter 7.

Backsliding factor
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The backsliding factor ((3) was not employed in the current analysis as there was no 

evidence for it in any of the five case histories reported. In the pile test results reported by 

Hamilton and Dunnavant (1993), APILEC predicted a soft response for loads below 1100 kN 

for both static and cyclic analyses. The use of P may perhaps be appropriate to reduce soil 

yielding, and thereby give a stiffer pile response at the low load levels.

p-y analysis

The p-y analyses only gave good agreements with the field results from which they 

were derived. These were observed in the tests of Matlock (1970), Reese et al. (1975), 

Dunnavant and O'Neill (1989) and Hamilton and Dunnavant (1993). However, if the p-y 

criteria established by Matlock, Reese et al. and Dunnavant and O'Neill were used to compare 

with the measured pile responses reported by Hamilton and Dunnavant, poor agreements 

were obtained as evident in Figures 8.32, 8.37 and 8.38. This illustrated that p-y analyses 

were not suitable for predicting the complex behaviour of laterally loaded piles using 

available soil data from other pile-load tests (reasons as explained in Section 1.3.2). Thus, the 

statement made by Davies and Budhu (1986) - "the p-y relationship has no basis in reality 

outside its role as an expedient empirical device to solve the present problem" appears to be 

confirmed.

8.9 Concluding remarks

From these comparisons with published field test results, the current analysis had 

proved useful in providing good predictions of measured pile responses. It had successfully 

predicted the phenomena observed in both the load-controlled and displacement-controlled 

cyclic pile-load tests. Overall, the current analysis had shown better predictions than other 

methods of analyses developed by Matlock (1970), Reese et al. (1975), Poulos (1982), Swane 

and Poulos (1985), and Dunnavant and O'Neill (1989). This is believed to be due to the fact 

that:

♦ It adopted the continuum approach, taking account the continuous nature of pile and 

soil interaction at the interface.

♦ It considered the three-dimensional nature of the cyclic laterally loaded pile problems, 

where the side, front and back face of the pile-soil interfaces are taken into account.
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♦ The strength parameters (Cu or c and Es or m) and strength degradation parameters (Rs, 

Cs, Rh and Ch), required for the analyses, involved few empirical assumptions.

Thus, given accurate values for the undrained shear strength and the soil index 

properties, applying the current analysis to cyclic laterally loaded piles can be done with a 

reasonable degree of confidence.
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APPENDIX 8.1
Equivalent Pile Young's Modulus

APILEC is intended for the analysis of solid cylindrical piles (despite the fact that the 

internal representation assumes a square cross section). It can be applied to hollow piles or 

piles whose cross-section are not circular (e.g. H piles) by using an 'equivalent diameter' and 

'equivalent Young's modulus'.

The essential sectional properties of the pile are its flexural rigidity and its projected 

width (in the plane normal to the loading). Let EprIpr be the flexural rigidity of the real pile 

and Dr be its width. The equivalent diameter can be taken (with little error) as equal to the 

width of the real pile, i.e.

D = Dr (A8.1-1)

The equivalent pile Young's modulus can be calculated as:

64 Efpfp
E,=  ^  (A8.1-2)

For a circular hollow or pipe pile, Equation (A8.1-2) is reduced to:

Ep = E / l  1 - ( | ) 4] (A8.1-3)

where d is the internal diameter of the pile.

For pipe piles, the equivalence is exact but for non-circular piles (e.g. H piles), some 

errors will arise from the shape effect but this should not be significant in practice, as 

suggested by Davies and Budhu (1986) and Budhu and Davies (1988).
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Table 8.1 Displacement increment sequences for laterally loaded pile test at Tilbrook Grange.

Displacement

Increment

No. of cycles Displacement (mm) Maximum force 

(MN)Minimum Maximum

1 1 (static) 0 4.3 0.29

2 100 2.4 4.1 0.28

3 100 2.9 6.2 0.37

4 100 3.9 9.3 0.47

5 100 4 15 0.61

6 100 4 24 0.74

7 120 5 37.2 1.05

8 120 7 54 1.23

9 136 30.8 104.5 1.83
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Figure 8.1 Arrangement of Field tests at Sabine for fixed-head pile (Matlock, 1970).
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Figure 8.2 Comparisons with maximum bending moment data for static loading at Lake

Austin. After Matlock (1970).
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Figure 8.4 Comparisons with bending moment distributions for cyclic loading at Lake Austin.

After Matlock (1970).
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Figure 8.5 Comparisons with maximum bending moment data for static loading at Sabine 
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Figure 8.6 Comparisons with maximum bending moment data for cyclic loading at Sabine

with free-head pile. After Matlock (1970).
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Figure 8.8 Comparisons with maximum restraining moment data for cyclic loading at Sabine

with fixed-head pile. After Matlock (1970).
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Figure 8.10 Comparisons with maximum restraining moment data for static loading at Sabine

with fixed-head pile (with strength data modifications). After Matlock (1970).
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Figure 8.14 Soil profiles as described by Reese et al. (1975).
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Figure 8.15 Comparisons with load-displacement responses for static loading. After Reese et 

al. (1975).
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Figure 8.16 Comparisons with load-moment responses for static loading. After Reese et al.

(1975).

354



C H A P T E R  8 _A n alyses o f  P ublished F ield  Test Data

4 5 0

4 0 0

3 5 0

3 0 0

2 5 0ZJC
o<o
_ i

200

CYCLIC
150

77777 7777?
100  •

5 10 3 0 3515 20 2 50

-  a  -  M EASURED: CYCLIC 

— o— R E E SE  et al.

— a —  PO U L O S  

— x —  SW ANE & PO U L O S  

- m  -  APILEC,CYCLE 10  

— ♦ — APILEC,CYCLE 2 0

DISPLACEMENT (mm)

Figure 8.17 Comparisons with load-displacement responses for cyclic loading. After Reese et 

ad. (1975).
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Figure 8.18 Comparisons with load-moment responses for cyclic loading. After Reese et al.

(1975).
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Figure 8.20 Pile test set up as described by Tassios and Levendis (1974).
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Figure 8.22 Comparisons with load-displacement responses for static loading. After Tassios 
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Figure 8.23 Comparisons with pile-head displacements for one-way cyclic loading. After 

Tassios and Levendis (1974).
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Figure 8.24 Comparisons with pile-head displacements for two-way cyclic loading. After

Tassios and Levendis (1974).
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Figure 8.25 Pile test set up as described by Long et al. (1993).
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Figure 8.26 (a) Undrained shear strength profile for axial loaded pile analyses, (b) Detailed 

revised profile for undrained shear strength for laterally loaded pile analyses (Long et al., 

1993).
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Figure 8.27 Comparisons with load-displacement responses for static loading using p-y  

methods. After Hamilton and Dunnavant (1993).
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Figure 8.28 Comparisons with load-displacement responses for cyclic loading using p-y

methods. After Hamilton and Dunnavant (1993).
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Figure 8.29 Comparisons with moment-displacement responses for cyclic loading using p-y  

methods. After Hamilton and Dunnavant (1993).
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Figure 8.30 Comparisons with load-displacement responses for static loading using APILEC

analysis. After Hamilton and Dunnavant (1993).
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Figure 8.31 Comparisons with bending moment distributions for static loading. After 

Hamilton and Dunnavant (1993).
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Figure 8.32 Comparisons with load-displacement responses for static loading using p-y

methods and APILEC analysis. After Hamilton and Dunnavant (1993).
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Figure 8.33 Comparisons with load-displacement responses for static and cyclic loadings 

msing APILEC analysis. After Hamilton and Dunnavant (1993).
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Figure 8.34 Comparisons with moment-displacement responses for cyclic loading using

APILEC analysis. After Hamilton and Dunnavant (1993).
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CHAPTER 9 

Conclusions

9.1 Summary and general conclusions

The main objective of this project was to develop a rational method for analysing the 

behaviour of cyclic laterally loaded pile foundations, using a continuum approach, via the 

indirect boundary element method. This objective was achieved by the incorporation of a 

simple but realistic elasto-plastic soil model which allows for various phenomena observed in 

cyclic pile-load tests, including soil yielding, gap formation, backsliding and strength 

degradation.

The main conclusions of this work are as follows:

(1) Due to the complicated nature of cyclic loading, advanced cyclic soil models may be 

required to simulate the salient features of soil subjected to cyclic loading. However, these 

models are complex and involve many ill-defined parameters. From this study, it appears that 

the 'bubble' model (Al-Tabbaa and Wood, 1989) offers a practical means of describing cyclic 

soil behaviour, except for strength reduction. This model was employed in the finite element 

analysis to give some insight into pile-soil interface behaviour.

(2) The two-dimensional plane-strain finite element analyses of pile foundations 

subjected to cyclic loading were carried out by modelling the pile-soil system in plan section 

(Figure 3.7). From the analyses using the bubble model and Mohr-Coulomb model (for soil), 

the following observations were made:

♦ It was shown that the soil at two pile diameters (or more) away from the pile face were 

not greatly influenced by the cyclic loading.

♦ It was observed that the soil at the debonded interface (gap present) responded 

elastically.

♦ The comparisons of results using the bubble model and the Mohr-Coulomb model (for 

soil), showed that the pile displacements for the former model were very much higher
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than the latter model. This suggests that identifying suitable state and fundamental 

parameters for the bubble model is not straightforward.

(3) A detailed three-dimensional finite element analysis of cyclic laterally loaded pile 

problems would incur excessive computational cost and data preparation effort, which would 

be too tedious and cumbersome to contemplate. This is likely to be the reason why finite 

element analyses were not employed to predict the cyclic pile responses in the case histories 

examined in Chapter 8 . The average time taken for the plane-strain analyses alone averaged 

more than an hour.

(4) The extension of the simple elastic-perfectly plastic soil model to incorporate strength 

degradation, was based on the detailed examinations of reported soil behaviour. The model 

parameters can be obtained from standard tests or by correlations with soil index properties, 

as presented in Chapter 4. The good agreement between predictions and experimental test 

results, indicated the applicability of these equations for cyclic analysis.

(5) A three-dimensional continuum approach, using incremental analysis, via the indirect 

boundary element method (Davies and Budhu, 1986; Budhu and Davies, 1988) was 

employed for the cyclic analysis. This approach is capable of analysing the three-dimensional 

pile-soil behaviour of cyclic laterally loaded piles without undue computational cost. The 

algorithm is able to account for one-way and two-way cyclic loadings, and load-controlled 

and displacement-controlled conditions. The algorithm takes into consideration the 

phenomena observed in the cyclic pile-load tests, such as soil yielding, gap formation, 

backsliding and strength degradation. The loading is applied incrementally, so that only one 

more soil element reaches the yield condition (or encountered gap closure), at the end of each 

increment. Unloading and reloading cycles are simply solved by reversing the direction of the 

traction and displacement increments. At the end of each increment, pile and soil tractions, 

pile displacements, bending moments, etc. are computed by updating these values from the 

data obtained from the previous increment.

(6) The algorithm has some useful features which may be of value in practice. Foremost 

amongst these is the generality of the algorithm which allows different pile-head fixity,
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loading conditions, pile dimensions, etc., to be analysed. The soil model allows for many 

different soil conditions. In addition to their generality, the algorithm is very efficient. For 

example, for a pile subjected to ten cycles, the computational time for the analysis is less than 

five minutes, on an IBM-compatible 80486 DX2-66 computer. In addition, the data 

preparation and data entry effort for the current analysis is quite minimal.

(7) The current analysis gives good predictions of pile responses observed in the cyclic 

pile-load tests. Under load-controlled conditions, it predicts the increase in pile-head 

displacements and maximum bending moments with cycling. Under displacement-controlled 

conditions, it predicts a reduction in pile-head loads and maximum bending moments. In 

addition, the bending moment distributions along the pile length, and the position at which 

the maximum bending moment occurs (moving down the pile with cycling) can be predicted. 

The phenomena observed in cyclic pile-load tests, due to the increase in soil yielding, gap 

formation and strength degradation with cycling are accounted for in the current analysis.

(8) Finally, comparisons between the current analysis predictions and data from published 

case histories yields good agreement. This demonstrates the current analysis capabilities and 

usefulness. In comparison with other methods of analyses (e.g. p-y method), the current 

analysis gives better predictions of the measured pile responses. This lends some confidence 

in using the analysis in practice.

9.2 Recommendations for future work

The work described in this thesis, has demonstrated the usefulness of using an indirect 

boundary element method for analysing the complex behaviour of cyclic laterally loaded pile 

foundations embedded in cohesive soils. Further research in this field might include the 

following:

1.) Extending the current analysis to deal with pile foundations embedded in 

cohesionless soil (sand). This will involve thorough investigation on the behaviour 

of sand subjected to cyclic loading, followed by examination of the pile-soil 

interface interaction behaviour.

2.) Formulation of design rules and charts using the current analysis, to deal with cyclic 

laterally load pile problems commonly encountered in practice.
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3.) Detailed study on the shakedown effects of cyclic laterally loaded pile foundations, 

followed by the examination of the feasibility of incorporating the shakedown 

theorems to the current analysis.

370



REFERENCES

REFERENCES

1.) Agarwal, K.B. (1967). The influence o f size and orientation o f sample on the undrained 
strength o f London clay. Ph.D. thesis, University of London.

2.) Al-Tabbaa, A. & O'Reilly, M. (1990). Some observations on the modified Cam-Clay 
'bubble' model. Proc. Int. Conf. on Numerical Methods in Eng.: Theory and 
Applications. Swansea, Vol. 2, 779-786.

3.) Al-Tabbaa, A. & Wood, D. M. (1989). An experimentally based 'bubble' model for 
clay. Proc. 3rd Int. Conf. on Numerical Methods in Geomeck, Nigara Falls, Canada, 
91-99.

4.) Al-Tabbaa, A. (1987). The permeability and stress-strain response o f speswhite kaolin. 
Ph.D. thesis, Cambridge University.

5.) Andersen, K.H., Lacasse, S., Aas, P.M. & Andenaes (1982). Review of foundation 
design principle for offshore gravity platforms. Norwegian Geotech. Institute, 
Publication 143.

6 .) Andersen, K.H. & Stenhamar, P. (1983). Static plate loading tests on overconsolidated 
clay. Norwegian Geotech. Institute, NR 145, 1-17.

7.) Andersen, K.H. (1976). Behaviour of clay subjected to undrained cyclic loading. Proc. 
Int. Conf. on the Behaviour o f Offshore Structures. BOSS'76, Trondheim, Norway, Vol. 
1,392-403.

8 .) Andersen, K.H., Pool, J.H., Brown, S.F. & Rosenbrand, W.F. (1980). Cyclic and static 
laboratory tests on Drammen clay. J. Geotech. Eng. Div., ASCE, Vol. 106, No. 5, 
499-529.

9.) Ansal, A.M. & Erken, A. (1989). Undrained behaviour of clay under cyclic shear 
stresses. J. Geotech. Eng. Div., ASCE, Vol. 115, No. 7, 968-983.

10.) API RP 2A (1986). Recommended practice for planning, designing and constructing 
fixed offshore platforms (16th edn). American Petroleum Institute, Dallas, Texas.

11.) Aschenbrenner, T.B. & Olson, R.E. (1984). Prediction of settlement of single piles in 
clay. Analysis and design o f pile foundations. J.R. Meyer (eds), ASCE, New York, 
41-58.

12.) Atkinson, J.H. & Bransby, P.L. (1978). The mechanics o f soils. An introduction to 
critical state soil mechanics. McGraw-Hill.

371



REFERENCES

13.) Atkinson, J.H. & Farrar, D.M. (1985). Stress path tests to measure soil strength 
parameters for shallow slips. Proc. o f the 11th Int. Conf. o f Soil Mech. and Fdns. Eng., 
San Francisco 2, 983-986.

14.) Baneijee, P.K. & Davies, T.G. (1978). The behaviour of axially and laterally loaded 
single piles embedded in non-homogeneous soils. Geotechnique 28, No. 3, 309-326.

15.) Banerjee, P.K. & Davies, T.G. (1980). Analysis of some reported case histories of 
laterally loaded pile groups. Conf. Numerical Methods in Offshore Piling, I.C.E., 
London, 101-108.

16.) Bhowmik, S.K. & Long, J.H. (1991). An analytical investigation of the behaviour of 
laterally loaded piles. Geotech. Eng. Congress 1991, Vol. 2, Geotech. Special 
Publication, No. 27, 1307-1318.

17.) Bijnagte, J.L., Berg, P., Zorn, N.F. & Dieterman, H.A. (1991). Laterally loaded single 
pile in soft soil. HERON, Vol. 36, No. 1, 1-77.

18.) Bishop, A.W., Green, G.E., Garga, V.K., Andersen, A. & Brown, J.D. (1971). A new 
ring shear apparatus and its application to the measurement of residual strength. 
Geotechnique 21, No. 4, 273-328.

19.) Bishop, A.W., Webb, D.L. & Lewin, P.I. (1965). Undisturbed samples of London clay 
from the Ashford Common shaft: strength-effective stress relationships. Geotechnique 
15, No. 1, 1-31.

20.) Bjerrum, L. (1972). Embankments on soft ground. Proc. Spec. Conf. Performance o f  
Earth and Earth-supported Structures, Purdue University II, ASCE, New York, 1-54.

21.) Broms, B.B. (1964). Lateral resistance of piles in cohesive soils. J. Soil Mech. Fdns. 
Div., ASCE, Vol. 90, SM2, 27-63.

22.) Brown, D.A. & Shie, C.F. (1990). Three dimensional finite element model of laterally 
loaded piles. Computers and Geotechnics, 10, 59-79.

23.) Brown, D.A. & Shie, C.F. (1991). Some numerical experiments with a three 
dimensional finite element model of a laterally loaded pile. Computers and 
Geotechnics, 12, 149-162.

24.) Bucher, F. (1975). Die Restscherfestigkeit natiirlicher Boden, ihre Einflussgrossen und 
Beziehungen als Ergebnis experimenteller Untersuchungen. Report No. 103, Zurich: 
Institutes fur Grundbau und Bodenmechanik Eidgenossische Technische Hochschule.

25.) Budhu, M. & Davies, T.G. (1988). Analysis of laterally loaded piles in soft clays. J. 
Geotech. Eng. Div., ASCE, Vol. 114, No. 1, 21-39.

26.) Burland, J.B., Rampello, S., Georgiannou, V.N. & Calabresi, G. (1996). A laboratory 
study of the strength of four stiff clays. Geotechnique 46, No. 3, 491-514.

372



REFERENCES

27.) Burland, J.B. (1990). On the compressibility and shear strength of natural clays. 
Geotechnique 40, No. 3, 329-378.

28.) Butterfield, R. & Ghosh, N. (1980). A linear elastic interpretation of model tests on 
single piles and groups of piles in clay. Int. Conf. on Numerical Methods in Offshore 
Piling, ICE, 109-118.

29.) Calebresi, G. & Manfredini, G. (1973). Shear strength characteristics of the jointed clay 
of S. Barbara. Geotechnique 23, No. 2, 233-244.

30.) Chan, A.H.C. (1990). DIANA-SWANDYNE II user manual. University of Glasgow, 
U.K.

31.) Chen, L. & Poulos, H.G. (1993). Analysis of pile-soil interaction under lateral loading 
using infinite and finite elements. Computers and Geotechnics, 15, 189-220.

32.) Cooke, R.W., Price, G. & Tarr, K. (1979). Jacked piles in London clay: A study of load 
transfer and settlement under working conditions. Geotechnique Vol. 29, No. 2, 
113-147.

33.) Coulomb, C.A. (1776). Essai sur une application des regies de maximis et minimis a 
quelques problems de statique, relatifs a l'architecture. Mem. Acad. Roy. Pres. Divers, 
Sav. 5, Vol. 7, Paris.

34.) D'Appolonia, D.J., Poulos, H.G. & Ladd, C.C. (1971). Initial settlement of structures on 
clay. J. Soil Mech. Fdns. Div., ASCE, Vol. 97, SM 10, 1259-1376.

35.) Dafalias, Y.F. & Herrmann, L.R. (1980). A bounding surface soil plasticity model. Int. 
Symp. on Soils under Cyclic and Transient Loading, Swansea, U.K., Vol. 1, 335-345.

36.) Dafalias, Y.F. & Herrmann, L.R. (1982). Bounding surface formulation of soil 
plasticity. Soil Mech. - Transient and Cyclic Loads. Ed. G.N. Pande and O.C. 
Zienkiewicz, John Wiley & Sons Ltd, 253-282.

37.) Davies, T. G. & Budhu, M. (1986). Non-linear analysis of laterally loaded piles in 
heavily overconsolidated clays. Geotechnique 36, No. 4, 527-538.

38.) Davies, T.G. & Budhu, M. (1994). Program APILES. University of Glasgow, U.K.

39.) Desai, C.S. & Appel, G.C. (1976). 3-D analysis of laterally loaded structures. Proc. 2nd 
Int. Conf. Numerical Methods in Geomech., Blacksburg, Vol. 1, 405-418.

40.) Dunnavant, T.W. & O’Neill, M.W. (1989). Experimental p-y model for submerged, stiff 
clay. J. Geotech. Eng. Div., ASCE, Vol. 115, No. 1, 95-114.

41.) Faruque, M.O. & Desai, C.S. (1982). 3-D material and geometric nonlinear analysis of 
piles. Proc. 2nd Int. Conf. on Numerical Methods in Offshore Piling, University, of 
Texas, 553-575.

373



REFERENCES

42.) Finn, W.D.L., Lee, K.W. & Martin, G.R. (1977). An effective stress model for 
liquefaction. J. Geotech. Eng. Div., ASCE, Vol. 103, No. 6 , 517-533.

43.) Fleischer, S. (1972). Scherbruch- und Schergleitfestigkeit von Bindigen Erdstoffen. 
Neue Bergbautechnik 2, No. 2, 98-99. Freiburg: Mining Academy.

44.) Fleming, W.G.K., Weltman, A.J., Randolph, M.F. & Elson, W.K. (1985). Piling 
engineering. Surrey University Press.

45.) Golder, H.Q. & Leonard, M.W. (1954). Some tests on bored piles in London clay. 
Geotechnique 4, No. 1, 32-41.

46.) Grashuis, A.J., Dieterman, H.A. & Zorn, N.F. (1990). Calculation of cyclic response of 
laterally loaded piles. Computers and Geotechnics, 10, 287-305.

47.) Hamilton, J.M. & Dunnavant, T.W. (1993). Analysis of behaviour of the Tilbrook 
Grange lateral test pile. Large-scale pile tests in clay (eds J. Clarke), Thomas Telford, 
London, 454-468.

48.) Hashiguchi, K. (1985). Two and three surfaces model of plasticity. Proc. 5th Conf. on 
Numerical Methods in Geomech. Nagoya, 285-292.

49.) Head, K.H. (1988). Manual o f soil laboratory testing. Vol. 2, Pentech Press, London.

50.) Hetenyi, M. (1946). Beams on elastic foundations. Ann Arbor, Mich., Univeristy of 
Mich, Press.

51.) Hettler, A. & Gudehus, G. (1980). Estimation of shakedown displacements in sand 
bodies with aid of model tests. Int. Symp. on Soils under Cyclic and Transient Loading, 
Swansea, Vol. 1, 3-8.

52.) Houston, W.N. & Herrmann, H.G. (1980). Undrained cyclic strength of marine soils. J. 
Geotech. Eng. Div., ASCE, Vol. 106, No. 6 , 691-712.

53.) Idriss, I.M., Dobry, R., Doyle E.H. & Singh, R.D. (1978b). Behaviour of soft clays 
under earthquake loading conditions. Proc., Offshore Technology Conf, OTC 2671, 
Dallas, Texas, Vol. 3.

54.) Idriss, I.M., Dobry, R. & Singh, R.D. (1978a). Non-linear behaviour of soft clays 
during cyclic loading. J. Geotech. Eng. Div., ASCE, Vol. 104, No. 12, 1427-1447.

55.) Idriss, I.M. & Seed, H.B. (1968). Seismic response of horizontal soil layers. J. Soil 
Mech. Fdns. Div., ASCE, Vol. 94, No. SM4, 1003-1031.

56.) Ishihara, K., Yasuda, S. (1980). Cyclic strengths of undrained cohesive soils of Western 
Tokyo. Int. Symp. on Soils under Cyclic and Transient Loading, Swansea, U.K., Vol. 1, 
57-66.

374



REFERENCES

57.) Iwan, W.D. (1967). On a class of models for the yielding behaviour of continuous and 
composite systems. J. Applied Mech, 34, 612-617.

58.) Kay, S., Griffiths, D.V. & Kolk, H. (1986). Application of pressuremeter testing to 
assess lateral pile response in clays. ASTMSpec. Tech. Pub. STP 950, 458-477.

59.) Kishida, H. & Nakai, S. (1977). Large deflections of single pile under horizontal load. 
Spec. Sess No. 10, 9th Int. Conf. o f Soil Mech. and Fdns. Eng., Tokyo, 87-92.

60.) Kooijman, A.P. (1989a). Quasi three-dimensional model for laterally loaded piles. 
Proc. 8th Int. Conf. Offshore Mech. Artie Eng., The Hague, 511-518.

61.) Kooijman, A.P. (1989b). Comparison of an elastoplastic quasi three-dimensional model 
for laterally loaded piles with field tests. Proc. 3rd Int. Conf. on Numerical Methods in 
Geomech., Nigara Falls, Canada, 675-682.

62.) Kramer, S.L. (1996). Geotechnical Earthquake Eng.. Prentice Hall, Inc.

63.) Kuhlemeyer, R.L. (1979). Static and dynamic laterally loaded floating piles. J. Geotech. 
Eng. Div., ASCE, Vol. 105, No. 2, 289-304.

64.) Lacasse, S., Berre, T. & Lefebvre, G. (1985). Block sampling of sensitive clays. Proc. 
11th Int. Conf. o f  Soil Mech. and Fdns. Eng., San Francisco, 2, 887-892.

65.) Larsson, R. (1980). Undrained shear strength in stability calculation of embankments 
and foundation on soft clays. Canadian Geotech. Journal, 17 (4), 591-602.

6 6 .) Lee, K.L. & Focht, J.A. (1976). Strength of clay subjected to cyclic loading. Marine 
Geotechnology. Vol. 1, No. 3, 163-185.

67.) Lee, Y.P. (1995). SWANDYNE: Example on plane strain cyclic loading using 
Al-Tabbaa/Wood model. Ed. by Chan, A.H.C. University of Glasgow, U.K.

6 8 .) Long, M.M., Lambson, M.D., Clarke, J. & Hamilton, J. (1993). Cyclic lateral loading 
of an instrumented pile in overconsolidated clay at Tilbrook Grange. Large-scale pile 
tests in clay (eds J. Clarke), Thomas Telford, London, 381-404.

69.) Lupini, J.F., Skinner, A.E. & Vaughan, P.R. (1981). The drained residual strength of 
cohesive soils. Geotechnique 31, No. 2, 181-213.

70.) Mahar, L.J. & O'Neill, M.W. (1983). Geotechnical characterisation o f  desiccated clay. 
ASCE 109(1), 56-71.

71.) Maksimovic, M. (1989a). Nonlinear failure envelope for soils. J. Geotech. Eng. Div., 
ASCE, Vol. 115, No. 4,581-586.

72.) Maksimovic, M. (1989b). On the residual shearing strength of clays. Geotechnique 39, 
No. 2, 347-351.

375



REFERENCES

73.) Maksimovic, M. (1996). A family of nonlinear failure envelopes for non-cemented 
soils and rock discontinuities. Electronic Journal o f Geotech. Eng., Oct.

74.) Masing, G. (1926). Eigenspannungen und verfetigung beim messing. Proc. o f the 
Second Int. Congress o f Applied Mechanics.

75.) Matlock, H., Foo, S.H.C. & Bryant, L.M. (1978). Simulation of lateral pile behaviour 
under earthquake motion. Spec. Conf. on Earthquake Eng., 600-619.

76.) Matlock, H. (1970). Correlations for design of laterally loaded piles in soft clay. Proc. 
o f the 2nd Offshore Technology Conf., OTC 1204, Houston Texas, Vol. 1, 577-594.

77.) Mersi, G., Cepeda-Diaz, A.F. (1986). Residual shear strength of clays and shales. 
Geotechnique 26, No. 2, 269-274.

78.) Mersi, G. (1975). Discussion: New design procedure for stability of soft clays. J. 
Geotech. Eng. Div., ASCE, Vol. 101, No. 4, 409-412.

79.) Meryerhof, G.G. (1951). The ultimate bearing capacity of foundations. Geotechnique, 
2,301-332.

80.) Meyerhof, G.G., Brown, J.D. & Mouland, G.D. (1981). Prediction of friction pile 
capacity in a Till. Proc. o f  the 10th Int. Conf. o f Soil Mech. and Fdns. Eng., Stockholm, 
Sweden, 2, 777-780

81.) Mindlin, R.D. (1936). Force at a point in the interior of a semi-infinite solid. Physics 1, 
195-202.

82.) Mroz, Z., Norris, V. A. & Zienkiewicz, O. C. (1978). An isotropic hardening model for 
soils and its application to cyclic loading. Int. J. on Numerical and Analytical Methods 
in Geomech. Vol. 2, 203-221.

83.) Mroz, Z., Norris, V.A. & Zienkiewicz, O.C. (1979). Application of an anisotropic 
hardening model in the analysis of elasto-plastic deformation of soils. Geotechnique 29, 
No. 1, 1-34.

84.) Mroz, Z., Norris, V.A. & Zienkiewicz, O.C. (1981). An anisotropic critical state model 
for soils subjected to cyclic loading. Geotechnique 31, No. 4, 451-469.

85.) Mroz, Z. (1967). On the description of anisotropic hardening. J. Mech. Phys. Solids, 15, 
163-175.

86 .) Oasys Limited, 1991. Safe user manual. London

87.) Ottaviani, M. & Marchetti, S. (1979). Observed and predicted test pile behaviour. Int. J. 
fo r Numerical and Analytical Methods in Geomech., 3(2), 131-143.

376



REFERENCES

88 .) Petley, D.J. (1966). The shear strength o f soils at large strains. Ph.D. thesis, University 
of London.

89.) Petley, D.J. (1969). Unpublished tests at Imperial College.

90.) Poulos, H.G. & Davis, E.H. (1980). Pile foundation analysis and design. John Wiley 
and Sons, New York.

91.) Poulos, H.G. (1971). Behaviour of laterally loaded piles: I - single piles. J. Soil Mech. 
Fdns. Div., ASCE, Vol. 97, SM5, 711-731.

92.) Poulos, H.G. (1973). Load-deflection prediction for laterally loaded piles. Aust. 
Geomech., Journal., Vol. G3, No. 1, 1-8.

93.) Poulos, H.G. (1982). Single pile response to cyclic lateral load. J. Geotech. Eng. Div., 
ASCE, Vol. 108, No. 3, 355-375.

94.) Prevost, J.-H. & Griffiths, D.V. (1988). Parameter identification and implementation of 
a kinematic plasticity model for frictional soils. Proc. o f the Workshop on Constitutive 
Laws for the Analysis o f Fill Retention Structures, ed. Evgin, E. Dept, of Civil Eng., 
University of Ottawa, 285-358.

95.) Prevost, J.-H., (1977). Mathematical modelling of monotonic and cyclic undrained clay 
behaviour. Int. J. for Numerical and Analytical Methods in Geomech., 1(2): 195-216.

96.) Pyke, R.M. (1979). Nonlinear soil models for irregular cyclic loadings. J. Geotech. 
Eng. Div., ASCE, Vol. 105, No. 6 , 715-726.

97.) Quek, S.T., Chow, Y.K. & Phoon, K.K. (1992). Further contributions to 
reliability-based pile-settlement analysis. J. Geotech. Eng. Div., ASCE, Vol. 118, No. 
5, 726-742.

98.) Rajashree, S.S. & Sundaravadivelu, R.S. (1996). Degradation model for one-way cyclic 
lateral load on piles in soft clay. Computers and Geotechnics, Vol. 19, No. 4, 289-300.

99.) Randolph, M.F. (1981). The response of flexible piles to lateral loading. Geotechnique 
31, No. 2,247-259.

100.) Rankine, W.J.M. (1857). On the stability of loose earth. Phil. Trans. Roy. Soc., 
London, 147, Part 1, 9-27.

101.) Rao, S.N., Rao, K.M. & Prasad, Y.V.S.N. (1992). Behaviour of vertical piles under 
static and cyclic lateral load in marine clays. Int. Offshore Polar Eng. Conf, San 
Francisco, USA, Vol. 1, 475-482.

102.) Rao, S.N. & Rao, K.M. (1993). Behaviour of rigid piles in marine clays under lateral 
cyclic loading. Ocean Eng., Vol. 20, No. 3, 281-293.

377



REFERENCES

103.) Reese, L.C., Cox, W.R. & Koop, F.D. (1975). Field testing and analysis of laterally 
loaded piles in stiff clay. Proc. o f the 7th Offshore Technology Conf, OTC 2312, 
Flouston Texas, 671-690.

104.) Reese, L.C. & Desai, C.S. (1977). Laterally loaded piles. Numerical Methods in 
Geotech. Eng. , Ed. C.S. Desai and J.T. Christian, McGraw Hill, New York.

105.) Reese, L.C. & Matlock, H. (1956). Non-dimensional solutions for laterally-loaded piles 
with soil modulus assumed proportional to depth. Proc. o f the 8th Int. Conf. o f  Soil 
Mech. and Fdns. Eng., Austin, Texas, 1956, 63-94.

106.) Richart, F.E. (1975). Some effects of dynamics soil properties on soil-structure 
interaction./. Geotech. Eng. Div., ASCE, Vol. 101, No. 12, 1193-1240.

107.) Roscoe, K. H. & Burland, J. B. (1968). On the generalised stress-strain behaviour of 
'wet' clay. Eng. Plasticity. Cambridge University Press.

108.) Roscoe, K. H. & Schofield , A. N. (1963). Mechanical behaviour of an idealised wet 
clay. Proc. Conf. o f Soils and Rocks. British Geotechnical Society, London, 285-293.

109.) Ruiz, S. (1986). Uncertainty about p-y curves for piles in soft clays. J. Geotech. Eng. 
Div., ASCE, Vol. 112, No. 6, 594-607.

110.) Sangrey, D.A., Castro, G., Poulos, S.J. & France, J.W. (1978). Cyclic loading of sands, 
silts and clays. ASCE Spec. Conf. on Earthquake Eng. and Soil Dynamics, 2: 836-851.

111.) Sangrey, D.A., Henkel, D.J. & Esrig, M.I. (1969). The effective stress response of a 
saturated clay soil to repeated loading. Canadian Geotech. Journal, 6 (3), 241-252.

112.) Sangrey, D.A. & France, J.W. (1980). Peak strength of clay soils after a repeated 
loading history. Int. Symp. on Soils under Cyclic and Transient Loading, Swansea, Vol. 
1,421-430.

113.) Simons, N.E. (1976). Normally consolidated and lightly overconsolidated cohesive 
material. General report: Proc. Conf. Settlement o f structures, University of Cambridge, 
U.K., 500-530.

114.) Skempton, A.W. & Hutchinson, J. (1969). Stability of natural slopes and embankment 
foundations. Proc. 7th Int. Conf. o f Soil Mech. and Fdns. Eng., Mexico, 
State-of-the-art, 291-340.

115.) Skempton, A.W. & Petley, D.J. (1967). The strength along structural discontinuities in 
stiff clay. Proc. Geotech. Conf, Oslo 2, 29-46.

116.) Skempton, A.W. (1954). Discussion of the structure of inorganic soil. Proc. ASCE, Soil 
Mech. and Fdns. Div. 80, 19-22.

378



REFERENCES

117.) Skempton, A.W. (1957). Discussion: The planning and design of the new Hong Kong 
airport. Proc. ICE 7, 305-307.

118.) Skempton, A.W. (1959). Cast in-situ bored piles in London clay. Geotechnique 9, No. 
4, 153-173.

119.) Skempton, A.W. (1964). Long term stability of clay slopes. Geotechnique 14, No. 2, 
77-101.

120.) Skempton, A.W. (1985). Residual strength of clays in landslides, folded strata and the 
laboratory. Geotechnique 35, No. 1,3-18.

121.) Streeter, V.L., Wylie, E.B. & Richart, F.E., Jr. (1974). Soil motion computations by 
characteristics method. J. Geotech. Eng. Div., ASCE, Vol. 100, No. 3, 247-263.

122.) Sullivan, W.R., Reese, L.C. & Fenske, C.W. (1980). Unified method for analysis of 
laterally loaded piles in clay. Conf. on Numerical Methods in Offshore Piling, I.C.E., 
London, 135-146.

123.) Swane, I.C. & Poulos, H.G. (1982). A theoretical study of the cyclic shakedown of 
laterally loaded piles. Proc. 5th Int. Conf. Numerical Method Design in Geomech., 
Edmonton, 853-864.

124.) Swane, I.C. & Poulos, H.G. (1985). Shakedown analysis of a laterally loaded pile tested 
in stiff clay. Institution o f Engineers, Australia, Civil Eng. Transactions, 275-280.

125.) Tassios, T., & Levendis, E. (1974). Efforts repetitifs horizontaux sur pieux verticaux. 
Annales de L'Institut Technique du Batiment et des Travaux Publics. March, No. 315, 
45-71.

126.) Tomlinson, S.J. (1994). Pile design and construction practice (4th edn). E & FN Spon, 
London.

127.) Trak, B., LaRochelle, P., Tavenas, F., Leroueil, S. & Roy, M. (1980). A new approach 
to the stability analysis of embankments on sensitive clays. Canadian Geotech. 
Journal, 17 (4), 526-544.

128.) Tresca, H. (1868). Memoire sur l'ecoulement des corps solides, Mem. pres, par div. 
Savants 18, 733-799.

129.) Trochanis, A.M., Bielak, J. & Christiano, P. (1991). Three-dimensional nonlinear study 
of piles. J. Geotech. Eng. Div., ASCE, Vol. 117, No. 3, 429-447.

130.) Vaughan, P.R., Hight, D.W., Sodha, V.G. & Walbancke, H.J. (1978). Factors 
controlling the stability of clay fills in Britain, clay fills, 203-217. London, ICE.

131.) Verrujit, A. & Kooijman, A.P. (1989). Laterally loaded piles in a layered elastic 
medium. Geotechnique 39, No. 1, 39-46.

379



REFERENCES

132.) Voight, B. (1973). Correlation between Atterberg plasticity limits and residual shear 
strength of natural soils. Geotechnique 23, No. 2, 265-267.

133.) Ward, W.H., Marsland, A. & Samuels, S.G. (1965). Properties o f the London clay at 
the Ashford Common shaft: in situ and undrained strength tests. Geotechnique 15, No.

134.) Webb, D.L. (1969). Residual strength in conventional triaxial tests. Proc. 7th Int. Conf. 
o f  Soil Mech. and Fdns. Eng., Mexico City, 1, 433-441.

135.) Whitaker, T. (1970). The design o f  p iled  foundations. Pergamon Press, London.

136.) Wood, D.M. (1994). Soil behaviour and critical state soil mechanics. Cambridge 
University Press.

137.) Yegian, M. & Wright, S.G. (1973). Lateral soil resistance - displacement relationships 
for pile foundations in soft clays. Offshore Technology Conf., OTC 1893, Vol. 2,

138.) Grashuis, A.J. & Bijnagte, J.L. (1992). A model for cyclic pile-soil interaction, 
calculations and comparison with a full scale test. Numerical Models in Geomech., 
Pande & Pietruszczak (eds). 301-308.

139.) Kanji, M.A. (1974). The relationship between drained friction angles and Atterberg 
limits of natural soils. Geotechnique 24, No. 4, 671-674.

140.) Kenney, T.C. (1967). The influence o f mineralogical composition on the residual 
strength of natural clays. Proc. o f  Oslo Geotech. Conf. on the Shear Strength Properties 
o f  Natural Soils and Rocks, Vol 1, 123-129.

141.) O'Reilly, M. P. & Brown, S. F. (1991). Cyclic loading in geotechnical engineering. 
Cyclic Loading o f  Soils: from  theory to design. M. P. O'Reilly & S. F. Brown (eds), 
Van Nostrand Reinhold, New York, 1-18.

142.) Seycek, J. (1978). Residual shear strength of soils. Bull. Int. Ass. Eng. Geol. 17. 73-75.

4, 321-344.

663-676.

GLASGOW
UNIVERSITY

380


