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Abstract

The theory of nonrelativistic QCD, developed by the NRQCD collabora-
tion, is employed in simulations producing the D states of the upsilon system in
the quenched approximation. Correlations are analysed using multi-correlation
fitting routines to obtain energies arid amplitudes for the ground and first excited
states. Since the D states have never been observed, comparison of the simulation
results cannot be made with the experimental upsilon spectrum. However various
phenomenological potential model studies have been made and their results can
be used as an estimation of the D state part of the upsilon spectrum. The D state
spectrum at (6= 6.0 is studied in detail arid the ground state of 1D 2 is studied

at /3= 5.7 to test the scaling of the results at the two different lattice spacings.



Chapter 1

Introduction to Lattice QCD

1.1 Introduction

The traditional goal of particle physics has been to identify what appear to be
point-like units of matter, and to understand the nature of the forces acting be-
tween them. Briefly there are two fundamental types of matter: leptons and
quarks. Both are spin-1/2 fermions and are structureless at the smallest dis-
tances currently probed by the highest energy accelerators. The interactions of
these fundamental particles are described by a highly successful model called the
Standard Model (SM), where the fermions interact with each other via the ex-
change of gauge bosons. To understand the nature of these interactions requires
the principle of gauge invariance, where the SM demands invariance under the
gauge group of rotations 5/7(3) (@ SU(2) (@ U(!/). The gauge group 5/7(2) @/7(1)
defines the electroweak interaction describing the interactions between leptons
arid the W and Z gauge bosons, with the symmetry breaking at low energies
to Z7() of Quantum Electrodynamics (QED). The gauge group 5/7(3) describes
Quantum Chromodynamics (QCD), the theory of the strong interaction of quarks
and gluons. QCD incorporates the 5/7(3) group to account for the property of
quarks arid gluons known as colour, which both types of particle are believed
to carry. Although quarks and gluons are only ever observed as constituents of

colourless objects known as hadrons, which can be split into two types: baryons



and mesons. Baryons are formed from three quarks, each having one of the three
colours of the 5(7(3) colour group, while mesons are formed from a quark and
an antiquark, the antiquark possessing the anticolour corresponding to that of
the quark. Quarks also come in six known flavours, up, down, strange, charm,
bottom and top.

In the past perturbation theory was used to great success in QED to calcu-
late physical quantities of interest such as matrix elements and scattering ampli-
tudes. This involves the use of a power series expansion in the coupling constant
of the appropriate fermion and gauge boson: the electron and photon. The higher
orders generally represent very complicated processes involving the exchange of
virtual photons between electrons. Calculations in QED are relatively easy to
solve since the coupling constant between electrons and photons is a small num-
ber ae~ 0(1/137) making the power series very convergent. However, unlike
QED, QCD is a non-Abelian gauge theory and consequently displays properties
associated with this type of theory. For example the coupling constant in QCD,
asdisplays a property known as asymptotic freedom. Asymptotic freedom means
that the coupling goes to zero as the quark separation becomes very small, and at
distances less than about 0.1 fm the lowest order diagrams in perturbation the-
ory dominate. At these distances quark-quark scattering, for example, is given
approximately by one-gluon exchange diagrams and it is in this short-distance
region that perturbative QCD has been highly successful for analysing high en-
ergy phenomenon such as Bjorken scaling. However, as the distance between
the quarks increases, the interaction gets stronger, and many higher order di-
agrams become important. Another consequence of the non-Abelian nature of
QCD is confinement; at distances of order 1 fm, quarks are confined into bound
states called hadrons and at these medium and low energy scales the coupling
is as~ G(1), and so perturbation theory breaks down, thus a non-perturbative
treatment of QCD is required to study fundamental properties of hadrons such

as quark confinement and the hadron mass spectrum.



1.2 Defining QCD

In order to describe the true hadron picture, it is important to obtain an appro-
priate Lagrangian density ceco and use this as the starting point for a quantum
field theory of quarks and gluons. This Lagrangian must contain a kinetic term

for the quarks:

4 O)W = (1-1)
3=1

where j = 1 numbers the different quark flavours and rrij denotes their

masses. The quark fields ipj have three colour components

4]= 4] (1.2)\
The Lagrangian density cannot itself be satisfactory since only describes
the motion of free quarks. But there is a more subtle physical reason why is

unacceptable. Hadrons are colour singlet states, for example a #+-meson can be

imagined as a bound state of a v and a d quark:

TR~~ U\d\ + 122 T Urdz (f-3)

The physical #+-meson is invariant under SU{3) rotations in colour space. When
the bound states display an invariance, this should be a consequence of the un-
derlying Lagrangian density. In fact is invariant under the following SU(3)

colour transformation

toj(x)  UTI>j(x) G=1,....f) (1.4)

where UU"=1, detU=1 and U is independent of x. The important point here
is that U is a constant matrix. This means that with we can choose the
unobserved directions of the axes in colour space in any manner we like. They

must however be defined globally, that is the directions of the axes must be the



same at every point in the universe, which is very unsatisfactory since it would
give the relative orientation in colour space at different space-time points absolute
significance, even though there are no corresponding observable effects.

In the case of classical electrodynamics, Weyl discovered a principle that
can be regarded as the “reason” for the existence of the photon. The starting

point is the Lagrangian density for a free Dirac electron:

£(°) = - me)\l>(x) (1.5)

Typical observable quantities are bilinear expressions, e.g. the current density

fo=an(x) (1-6)

These observables are unchanged when V(x) multiplied by a phase factor. The

phase factor can have an arbitrary r-dependence and we make the substitution

ip(x)  —ip(x) = eta™ijj(x) (1-7)
We can see immmediately that the Lagrangian is not invariant under the above
phase transformation. Weyl discovered that the coupled system of electrons and

photons, which is described by the Maxwell-Dirac Lagrangian, is invariant under

the above transformation and is given for completeness by

£MD = - 7ne)M(x) - (1.8)

Here F*y is the field-strength tensor, and D Mis the covariant derivative:

Ffn/  — d™/™(x) dyA n(x')

DM(x)= (©x - ieA*x))'ip(x) (1.9)

arid the electron charge is given by (—e). It is easily shown that CmD is invariant

under the following ‘gauge’ transformations:



i1>(xy> eia{x)

A Ax)—>

Here a(x) isanarbitrary real function of x. In formal terminology, these trans-
formations aresaid toform a U{1) gauge group. Weyl interpretedthis result to
mean that the invariance of the Dirac field under the phase transformation (1.10)
can be thought of as a “reason’1 for the existence of the photon.

Returning to QCD, it is possible to construct a Lagrangian density along
similar lines to electrodynamics. It should be possible to choose the directions of
the axes in colour space completely freely at all space-time points, since they are
unobserved. Indeed, since all hadrons are colour singlets, we can demand gauge

invariance under local gauge transformation in colour space:

iI>j(x) -> U(x)i/>j(x) (1.11)

where U(x) is an SU(3) matrix and for all x it must hold that

U(x)U\x) = 1 and detU(x) = 1 (1-12)

It is easy to see that the Lagrangian of the free quark fields is not invariant
under (1.11). The way to save the invariance was discovered by Yang whilst
investigating non-Abelian gauge theories. As seen above for electrodynamics, the
gauge principle was saved by the introduction of photons. Analogously the gauge
principle of QCD also requires the introduction of vector fields, which of course
represent the gluons. We need eight gluons corresponding to the eight linearly

independent generators of the SU(3) colour group. The eight real gluon vector

potentials Aa(x) (with a = 1,..., 8) are combined into a 3x 3 Hermitian traceless
m atrix
M*) = A;(x)N-= Al(x)
TrAM(x) - O (1.13)

Af, (x(1.



The Aa are the Gell-Mann A-matrices [3] now operating in colour space. For the

coupling of the gluons to the quarks, we can use a ‘minimal’ substitution as in

electrodynamics, i.e replace all partial derivatives with
+ igsA™(x) (1-14)
where the quantity is the covariant derivative and gsis a dimensionless cou-

pling constant analogous to the electronic charge e. With this substitution, we

obtain from the following expression:

f
£q{x) = (1-15)

i=i
It is easy to see that Cq is invariant under local gauge transformations (1.11),

provided the gluon field is transformed as follows:

Arx) —AJMNX) = U(x)AXx)U\x) — —U(x)d"U\x) (1.16)
9s

where the matrix A'Jx) is also Hermitian and traceless for any U(x) that satisfies
the conditions (1.12).

Nothing useful can be been gained from this treatment as long as the vector
potential A*(x) of the gluons is treated as an external field. The gluon field
itself must become a dynamical variable. In order to construct the part of the
Lagrangian that contains the gluons dynamics, we introduce a gluon field-strength

tensor AMLAx), in analogy with the electromagnetic field-strength tensor

F,v{x) = d*Av(x) - duA™(x) + igs[A*x), Av(x)] (1-17)

which for fixed x is Hermitian with zero trace. Thus we define its components by

FM=yU-Uy (1.18)

and obtain from (1.17)

Fiv = dnAl(x) - dvAl(x) - gsfabcA\l(x)Aa(x) (1.19)



The faflCare the structure constants of the SU(3) group [3] and are defined by

the commutation relation

[Aa,Aq = 2ijatr) ¢ (1.20)

The quadratic term in the gluon field has no analogue in electrodynamics and
is typical of the non-Abelian nature of the SU{3) colour group. The term s
necessary in order to achieve a simple transformation behaviour for the field-

strength tensors under gauge transformations, i.e.

FA(x) -» U(x)F™(x)U\x) (1.21)

It is now possible to write down a gauge invariant Lagrangian density for quarks

and gluons

caco = E #(*) (irlDMs - ™ &AB) 4>f(x) - (1.22)
A,B,j 4

where the summation over A,B represents the quark colour (A = 1,2,3) and j
represents the quark flavour. is the covariant derivative arid F*uis the gluon

field-strength tensor defined by

[DVi\AB = &AB&H +ig[-£-]JABAP(x) (1.23)

and

Ku=

a sum is implied over the eight gluon colour fields A “(x).

1.2.1 Bottomium

The upsilon (T) meson, which is the subject of this thesis, is a bound state
composed of the bottom quark (6) and its antiquark (6). Since quarks do not,

apparently, exist as free isolated particles, it is not straightforward to decide how



to define their mass. However, for the heavier meson states (such as cc and
66) an approximation can be made by supposing the major contribution to the
hadronic mass is given by an effective quark mass contributing additively. Thus
from experimental values from the cc states of mass ~ 3 GeV, rnc~ 1.5 GeV, and
from the 66 ones at ~ 10 GeV, ~ 5 GeV, in very rough terms [4]. The average
value for the square of the velocity of the 6 quark in the T is estimated from
potential models (See Chapter 2) as v2~ 0.1, which is essentially nonrelativistic.
This gives an average 6 quark momentum (and consequently gluon energy) of
O(MbV) ~ 14 GeV. In this low energy regime, the strong coupling aa~ 0(1)
and so perturbation theory is not applicable here. This means that an alternative
method has to be employed to study the T system, which leads to the subject of

the next section, Lattice gauge theory.

1.3 Lattice QCD

Having examined the formulation for QCD it is necessary to discuss the starting
point for lattice calculations of non-perturbative quantities: Feynman’s sum over
paths formulation of quantum held theory. Feynman’s approach allows us to
calculate the expectation values of time ordered products of held operators as a

path integral of the form

(0[r(&,(*!) *me«t,(zn))|0) = INV M n {x\) sw?j,(*n)exp(i5[*])

-j—
m
(1.25)
where V(j)k is the integration measure and S is the action of the theory. The term
in the denominator Z[4>\ is called the vacuum functional and is dehned such that

46jQQ = 1. Z is given explicitly as

= fY[V(j)kexp(iS[(J)]) (1.26)
J k

It would be impossible to extract measurable, low energy quantities for QCD

analytically using the path integral expressions above since the path integrals do



not have a perturbative expansion in this regime. However after an important
modification, the path integral expressions (1.25) and (1.26) can be applied to first
principles calculations in QCD using lattice theory. The need for a modification
can be appreciated by noting that the quantum amplitudes of (1.25) and (1.26)
are very difficult to study numerically because of the rapidly oscillating complex
exponentials. To deal with this, we perform a Wick rotation, where we rotate

time into an imaginary direction:

t-+ir (1.27)

This has the effect of converting the oscillating factors ~ exp(zS') into exponen-
tially decreasing functions ~ exp(—ST), so that now they appear much more
like classical weighting functions, the most important path still being the one of
least Sem The subscript ‘E1stands for Euclidean, since we have now moved from
Minkowski space with an invariant squared length of t2—x2to a four-dimensional
Euclidean space with squared length —t 2—x 2. This Euclidean version of quantum
field theory, when put on a lattice, is in fact analogous to a statistical mechan-
ical system. The connection is made by observing that in Euclidean space, the
equation (1.26) is of the same form as the fundamental quantity of statistical

mechanics, the partition function Z

fI[V tkeM-S E) (1.28)

J k

This relationship allows the large number of numerical techniques available in
statistical mechanics to be applied to lattice field theory.

Field theories, such as QCD have an infinite number of degrees of freedom.
So in order to give path integral calculations meaning (which are well defined
only for systems with a finite nhumber of degrees of freedom), we have to split up
space-time into a four-dimensional lattice of discrete points with lattice spacing a
on a finite volume, i.e, the lattice provides a well defined regularisation of QCD.
Coordinates in this space-time lattice are restricted to these points using integer

multiples of the lattice spacing a



Xu —writa (1.29)

Continuum integration is replaced by a summation

f dax —>a4r (1.30)

n

and continuum derivatives are replaced by finite differences and will be discussed

in section (1.3.2) and in chapter 3.

1.3.1 Gauge Fields on the Lattice

In a lattice formulation of QCD, the fermion fields are only defined on the lattice
sites. The representation chosen for the gauge fields A*{x) on the lattice is deter-
mined by the requirement that gauge invariance be preserved. In the continuum,
in order to construct a gauge-invariant scalar bilinear term from the fields 'j’(x)
and 'ip(y), the held ijj(y) must undergo parallel transport from point y to point x

using the path-ordered parallel transporter

U(x,y) = Ve'aS“A* )dz" (1.31)

Thus the quantity

Mx)U(x,y)'(p(y) (1.32)

is gauge invariant. This suggests that on the lattice the gauge fields should
be associated with the links between neighbouring lattice sites. If x and y are
neighbouring sites, the path-ordered integral runs along the connecting link, and
if we assume that \x —y\ = a, is sufficiently small we can approximate the integral

by

U{x,x+aft) =fg~eQav(x+“A (1.33)

Hence, gaugeinvariancedictates that the gauge variables beSU(3) matrices.

Conventionally isknown as a link variable since it liveson the linkconnecting

10



n n+ (L n nT/r

Un,n+pL Un+p,iT = Unn_‘d
Figure 1.1: Link variables

two neighbouring sites. can be denoted by Uninip as it is a directed quantity
from the site nton + ji. Similarly the hermitian quantity can be denoted by

Ann+A which is directed in the opposite direction. See fig (1.1).

The gauge link undergoes the local transformation

Un,n+ii  yG{n)Un*(iG I(n-\-fi) (1-34)

where the matrix G(n) is a member of the SU(3) group and is local to the site
n. A construction of a lattice version of the continuum gauge action should
be strictly gauge-invariant as in the continuum case, and be a function of link
variables only. Such gauge invariant functions are easily formed by taking the
product of link variables around closed loops on the Euclidean space-time lattice.
Since U”(n)transforms as (1.34), the simplest gauge-invariant quantity one can
build fromthe elements U”(n): is the trace of the path ordered product of link

variables along the boundary of an elementary plaquette. See fig (1.2).

Up(n) = UMN(n) = Urn)Uv{n + [D)t/"(n + v)UI{n) (1.35)

It can be shown to 0(a2) that

Ugg(n) — €788 .0 (1.36)

11



nTv n-fL+ v

Uv(n + p)

Figure 1.2: The plaquette in the ////-plane is made from four gauge links formed

in an anticlockwise direction.

From this it is straightforward to show that the gauge field action on the lattice

is given by

A= [jE £ f1- 4T +LC (n))] (1-37)

where (3= " is often used to specify the size of the lattice spacing, since g is a

function of a [2].
This expression reduces to the continuum Euclidean gauge action

Sa = Jd4x"Tr(F w FI{1.38)

as the lattice spacing tends to zero.

1.3.2 Fermions on the Lattice

Consider the Dirac equation in Minkowski space

12



Sp

(irdn ~ M)M(x) = 0 (1.39)

where 77 are the Dirac matrices satisfying the following anti-commutation rela-

tions and ip is a four component spinor

{7", 7"} = 2<r

This equation of motion follows from the action

Sf = _J daxn(x)(itypdn — M)A (x) (1-40)

For reasonsmentioned inthe last section we need to go fromMinkowski to Eu-
clidean space. This can beachieved by making the transformation toimaginary
times, x° — —ix4, y° — —iy<\ etc. From now on, x and y denote the Euclidean
four vectors with components xMand yM (fi = 1,2,3,4). In order to transform
the fermion action into Euclidean space it is also convenient to express the action

in terms of a new set of 7-matrices 7* (ft = 1, ...,4) satisfying the algebra

(7®,7f} = 2

with the hermitian alternatives 7% = 70, 7f = —iy.
Applying these transformations to the fermion action SF, we obtain the following

action for the Euclidean action s§

=J d4xtp (x)F+ (1.41)

To make the transition from the continuum to the lattice, the action Sp has to

be discretised. We do this by making the following substitutions:

M -+ -M
X4 3T
Id(x) 4 @ (1.42)

13



where M and ip have been scaled according to their canonical dimensions.

Finally the derivative acting on the fermion field is replaced by

dh(x) -> (1.43)
where is the lattice derivative defined by
d*a(n) = 5 ipa(n -f afi) —ipa(n — aft) (1.44)
a
Here fi = eMwhere eMis aunit vector pointing along the fidirection. Applying

the abovereplacements to the Euclidean fermion action,we obtain

sf=E - 7h-m) +

n,\i

Alternatively the lattice can be written in the matrix form

Sf = "24>Knm'i>(m) (1-46)

71,771

where

Anm—* mn-+ T (1.47)
A A

The propagator for the free fermion in Euclidean space is given by the inverse
matrix K~f = (i/>(n)*(m)). The inverse matrix K~/ is determined from the

relation

(i-48)
I

and is easily obtained by switching to momentum space, where 6nm is given by

r _dj)_ ip{n-m) n 4m
nm 7-. (27r)4 1

substituting the above equation into (1.47), one finds that Knm is given by

(1.45)



where

4
KP =S *TmsinPm+ M (1-51)
M1

It is now easily shown, by using (1.48) that Knr" is given by

o*>

« = f0 ) - F Mo £ Msm2pMe M

In principle to obtain the continuum version of the fermion propagator (‘ip(x)'ip(y))
we rescale ipn, ij)m and M according to (1.42) and let a —0, keeping t>, %5, x = na,

y = na fixed, i.e.

(VAM?2/)) = lim -G (- Ma) (1.53)

Finally a change is made to the integration variable such that

W*Wy)) =Ji W + (L54>

However, looking at the dispersion relation for such fermions in the free field case

one has

E2= M2+ V sin 2(pza) (1.55)
alL %

where ~~ < P* < For pi — 0, E2 — M 2 which is the energy for a fermion
with zero momentum in the low energy region. However for pi — J, E2 — A42
as well. This is known as the fermion doubling problem, where there is an extra
particle in the low energy region even though it’s momentum is high. This is
purely a lattice artifact and in d dimensions one has 2d fermions using the naive
fermion action (1.45). This problem can be avoided by adding extra terms to the
Lagrangian which will disappear in the continuum Ilimit. The most commonly
used action is given by Wilson where such a correction term is added to the action

(1.45) to give

15



SEV = SF- 7*il;(n)Cnp(n) (1.56)
n

where r is the Wilson parameter. The Wilson action can be written in the form

of equ (1.47) where

Knm — (Al + 4r)6nm YA[™  H TCET n\
Z M

Setting r to unity, the dispersion relation for the Wilson action becomes

1
E2= M + -(1 - Vcosp*) + — Vsin2pl (1.58)
a | . az
Taking pi —> 0 as before one has E — M , but now when p; 7, E2 —
(M + 2a-1). Approaching the continuum a — 0, the effective mass becomes

infinite arid the extra 2d — 1 fermions do not propagate and decouple from the

theory. The above change to the action leads to the continuum single fermion

propagator in Euclidean space, (*(x)i/’(p)), as the lattice spacing goes to zero.
In order to maintain the gauge invariance of the Wilson action Sy’ *in the

interacting case, i.e Seqcb — SF *+ So, the following substitutions

i>(n) —» G(n)ip(n)

Un,n+t -> G(n)Unin+"G~I(n + [L) (1.59)

must be used to modify Sy* ~to include gauge fields.

S?}= (M + 4r)* Tp(n)ip(n) - (j>{n)(rl - ") U Mn)'ip(n + jx)

n A on/x A

+ tp(n + fl)(r1+ ITM7/V n)A(n)), (1.60)

This procedure is analogous to the treatment given in section (1.2), to ensure

gauge invariance in the continuum Lagrangian density CQcbD-

16



1.4 Simulations on the Lattice

After defining the lattice actions for the fermion and gauge fields of QCD and
showing that they posses the desired naive continuum limit, they can be used to
calculate the hadron spectrum from first principles. As mentioned in section (1.3)
the method most readily applicable to lattice theory is that of the path integral
in Euclidean space. For the vacuum expectation value of an arbitrary function

of the gauge and quark fields, f(U,xp,ip) on the lattice, the path integral is

(O]/(t/,rM )|0) = W W /(W ,2)eW *I (1.61)

where Z is the partition function defined as

Z = j AABe(1.62)

such that 58jfjT) =1 and the integration measures are defined as

DU

N du,(n),)¢9= N<700), Dif) = n dxpm) (1.63)

/x,n 71

i.,e., DU is defined over every link in the lattice, and Di/jDip over every site.

The quark fields are Grassman variables and as such difficult to deal with
computationally. Fortunately, for calculations of the hadron mass spectrum, one
usually only need to solve the path integral for quark propagators
which are also known as the quark Greens funcion G(m,n). The Grassman

integrals can then be done analytically to give

A MY Rt \ _ fVUVipD*il>(m)il)(n)e-sQD
r {m%p{n» (m. ) f VUDipDipe~sQCD

j DUKpl(n,m, U)detl\F{n,m, U)e~Sa

1.64
fDUdetKp(n,m, U)e-s 6 ( )
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In a computer simulation, the lattice necessarily has a finite number of
links, hence eq (1.64) is a multi-dimensional finite integral. It can be solved using
Monte Carlo integration with importance sampling where a gauge-configuration
Cp) is generated (with a random SU(3) matrix for each link CMn)) with weight
detliir(n:m,U)e~SG and repeated until one has an ensemble of Nconf such con-

figurations. Then the quark propagator is estimated by evaluating

G(n, m) = ——eeemeev G(n,m-Uf{i) (1.65)

where G(n, m; f/m) means the quark propagator between rn and n evaluated
on the ith gauge configuration. This method proves to be extremely difficult
in practice since the weight det/\F(n,rn, U)e~s® is a non-local quantity and is
too costly to calculate on most present computers. One way to overcome this
problem is simply to set detKp(ri, m, U) equal to unity. This defines the quenched
approximation, which is used in most lattice calculations. The meaning of setting
detK/?(n,m,6/) = 1is equivalent to ignoring internal quark loops in perturbative

QCD.
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Chapter 2

Potential Models

Since the discovery of the charm quark, potential models have been used with
some success to study the heavy meson spectrum of charmonium arid more re-
cently bottomium. In the following chapter a simple introduction to such poten-
tial models in the continuum is given and results of the T D-state spectrum are

presented.

2.1 Introduction to Potential Models

Bound states can be treated with the help of the (non-relativistic) Schrodinger

equation

HA = EA (2.1)

where the nonrelativistic Hamiltonian for a quantum system consisting of two
particles with masses m\ and m 2, respectively, which interact via some potential

P (r) is given inthe centre of momentum frame by

, P2
H =mi+m2+ i \-V(r) (2.2)

where // denotes the reduced mass

19



mimy
It = . 23
mi + m2
Here the main task is to find the potential V(r) describing the interaction of
the particles constituting the bound state. By considering the elastic scattering
of the constituents, the perturbatively accessible part of the potential may be

derived in the following way [5].

(i) compute the scattering amplitude T/;, defined in terms of the S-matrix

element Sfi by

Sfi

(/, out\i,in)

= S + i(2x)W (2.4)

in lowest non-trivial order in perturbation theory:

(ii) perform the non-relativistic limit p —0; and

(iii) obtain the potential V(r) as the Fourier transform of the scattering

amplitude Tj%

v w : (29)

A simple illustration of the above prescription goes as follows. The relevant
situation for the determination of the quark potential which describes the forces

acting within mesons is the quark-antiquark scattering

qifpi,cri) + qJ{p2* 2)  * qk{qi,Ti) + ql(q2,T2) (2.6)

where z,j,... = 1,2,3 label the colour indices (see figure (2.1)). Remembering
that the quarks in the meson are in a colour-singlet state and introducing the me-
son colour wavefunctions (1/\/3 )*j, we find from fig. (2.1) for the corresponding

T-matrix element
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Figure 2.1: (a) quark- (b) quark-antiquark
antiquark scattering, one- scattering, pair
gluon exchange graph annihilation graph
1 m 2 S{j Ski
T T 2TrY (E,EnEnEnyn 9""M~jz
N N PIR i )v(p2, c2)7 K2%:(M2, 1 2)
X u(qi,r ,crj)v(p2, 2, ("2, r
(pi - qy2 22 "t9tT VP
1 A% Ak |-
’ (qurl)-filv(q2,T2v(p2,a2) u(pual)}. (2.7)
(pi + p2)2 2 2

The contribution of the one-gluon exchange graph (2.1a) to the scattering ampli-

tude Tfi reads

g2 1 y ya A

texch = - J ~*~ 8 UM S kI-Y -2 u (q U TI)u(pu crl)v(p2,a2)*v(q2,T2) (2.8)
where k denotes the momentum transfer k = p\ —q\ = p2—q2 The colour graph

factor stemming from the exchange graph yields

1 ~ 1 ~ 8 la \a

JLV S— , Xy

I,k a=l
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= AErr[(A°)=i (2.9)

a=1
Hence the one-gluon exchange contribution texch to the scattering amplitude Tfi

reduces in the nonrelativistic lim it to

4 a2

texch o ft6(-10)

whereas the colour factor corresponding to the annihilation graph (2.1b) vanishes,

d=£.21 = J—Tr(\a) =0 (2.11)
%/3 2 2\/3 \Y !

Hence to lowest order in perturbation theory, the T-matrix element Tfi for quark-

antiquark scattering reduces in the non-relativistic limit to

T/,'(2U 6< = (2tt)63 (2-12)
Consequently, one-gluon exchange in mesons leads to a Coulomb-like potential of

the form

Vivn(r) = , with 1475 (2.13)
or r

2.2 The Spin Structure ofthe Quark Interaction

Colour confinement is described by a long-range part of the potential, which, un-
fortunately, is of non-perturbative origin. However, it is still useful to investigate
the most general spin structure for the quark-antiquark interaction. Allowing in
the scattering amplitude for an arbitrary kernal K{k2), k = p\ — <1, previously

given by

K (k2) = (2.14)

and generalising the spin structure 0 arising from vector-boson exchange
to an arbitrary spin structure T® T, the most general ansatz for the T-matrix

element for quark-antiquark scattering is
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Lorentz Structure ro r Static Potential

Scalar i® i Vs(r)
Pseudoscalar 750© 75 0
Vector T™M® 7 W {r)
Axial vector Tm7s © 7n7 5 4Si *S. Vh(r)
Tensor 1/2<v 0 aM  4Si *S. Vh(r)

Table 2.1: Nonrelativistic interaction potential VNR arising from the various
conceivable Lorentz structures TO T of an arbitrary fermion-antifermion interac-

tion

ra2
Tf' = ( 2 1£(2)'" u(9,)ru(pi)A' (" )(p2)rt’'(,72) (2015

where the possible spin structures r 0 T are shown in table (2.1)
where 75 = 7s = and aM/ = A[77,77]- Table (2.1) also shows the
nonrelativistic potentials V/N/? arising from the nonrelativistic reduction of the

different Lorentz structures [6], where

Vs(r) (@.16)

VV(r) = (273 / d(2.17)
and Si, S2 denotes the spins of the fermions involved, 51=52 = 1/2. The results

of the table can be summarised as follows:

* Both scalar and vector Lorentz structures lead to pure potential terms
+ The contribution of the pseudoscalar Lorentz structure vanishes.

« Both axial vector and tensor Lorentz structures contribute only to the spin

spin interaction term.
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Depending on the total spin S = Sj + S2, the quantum number 5 may accept

precisely either of two values:

« 5 = 0,which corresponds to some spin singlet like the r/cin the charmonium

system.

« 5 = 1, which corresponds to some triplet, like the J/jp \n the charmonium

system or the T in the bottomium system.

Accordingly, the expectation values (Si *S2) of the product of the spins SI7 S2

of the bound-state constituents are given by

—3/4 for spin singlets 5=0
1 6 A

(Si-S2) =/ (2.18)

*+1/4 for spin triplets 5=1
The empirically observed hadron spectrum also provides restrictions on the al-
lowed effective quark antiquark interaction. For example the existence of both
pseudoscalar mesons (like #, T and ?/) and vector mesons (like p, to and <) all
of which are bound states of a quark and antiquark pair implies that the actual
quark antiquark forces must be described by an interaction potential which yields
binding for 5 = 0 as well as 5 = 1. This fact rules out both the axial vector and
tensor Lorentz structures as the predominant contribution to any realistic quark
antiquark interaction potential. Put another way, the theoretically predicted par-
ticle spectra would look very different from the experimentally measured ones if
the dominant terms in the quark antiquark potential were anything other than
some linear combination of vector and scalar Lorentz structure. Therefore, in

conclusion the static interaction potential V/v/?(r) must be given by

WR(T) = W(r) +Ks(r) (2.19)

2.3 Generalised Breit-Fermi Hamiltonian

The next step in studying nonrelativistic potentials is the improvement to the

Hamiltonian (2.2) by taking into account relativistic corrections. We are mainly
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interested in the spin-dependent interactions, which induce the fine and hyper-
fine splitting of the bound-state mass spectra. The spin-independent interactions
are detailed in [7]. The Hamiltonian containing all spin-dependent relativistic

corrections up to order

v2 p:c p-
vz = UET - mlzdz 2'2°)

is called the generalised Breit-Fermi Hamiltonian

P 171 1
H —m\+ m2+ - — H——\ | P + VN2[)+HIs + Hss + (2.21)
21/i 8\m j m 2/

and accordingto theanalysis of section(2.4.1) - the staticpotential V/v/?(r)

consists of a vector and a scalar contribution

WWR(T) = Vs(r) + W (r) (2.22)

The corresponding spin-dependent relativistic corrections read for equal masses

rm = rri2= rn:

e spin-orbit term:

where S = Si T S2is the total spin of the bound state and L = r X p the relative

orbital angular momentum of its constituents;

* spin-spin term:

Hss = =S2V 2W (r) (2.24)

« tensor term:
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Hr - mz\rar «rz y VST r - S-y

- ( . A V(I')" i Vv{r) (m

with the abbreviation

Su= 127(Sl" 'r) - +S2

Expectation values of the operators VLs, Vss and Vj can be obtained for appro-
priate states. To do this, it is necessary to calculate the expectation values of the
operators L ¢S, Si «S2 and Sl2- If S, L and J are the eigenvalues of the total
spin S, orbital angular momentum L arid total angular momentum J. It is easily

shown that

(L+S)=t[J(J + 1)- L(L+1)- 5(5 + 1) (2.27)

(Si wS2) = i[5(5 + 1)- 5,(5, + 1)-52(52+ 1)] (2.28)

The derivation of the expectation value of the tensor (S12) is non-trivial[8] and

is given by

S12) = (25 + 3)(25-1)[5(S+ I)L(L + 1) - |<L +S>- 3<L +S))] (2.29)

It can now be seen that if a state has either L = 0 or S = 0, there will be no
spin-orbit VLs; °r tensor Vr, contributions to the potential. Table (2.2) gives the
eigenvalues of the operators (2.27) to (2.29) for 5, P and D states represented

by the spectroscopic notation 25+1Lj.

24 The Funnel Potential

According to the analysis of section (2.2), the quark-antiquark potential VNR(T)

is of vector and/or scalar type. For short distances, the potential (resulting from
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operator 'So 3s, ' 3pi 3A ID2 3Di 302 303
(t-S) o 0 0 —2 -1 1 0 -3 -1 2
CHECY I S A
<& 2> 0 0 o -4 2 é 0o -2 2 ‘;

Table 2.2: Eigenvalues of the spin-orbit, spin-spin and tensor operators for various

states given by their spectroscopic notation.

one-gluon exchange) is essentially Coulomb like

4 Os

‘ocngey) — T (2.30)

For large distances, there has to exist a contribution VGxf{r) in order to describe
colour confinement, Veonf{r) = arn with n > 0, implying that for large r the
binding force must not decrease faster than 1/r. From the mesonic mass spectrum
the exponent n is in the vicinity of n ~ 1. Moreover lattice gauge theories also
find that Veonj{r) is roughly proportional to r. Consequently, a linear potential
K-cm/(r) = ar is a sensible choice for V@ f{r)- The funnel (or Cornell) Potential

is given by

VSvi(r) =+ ar (2.31)

r

and despite its simplicity, it was the first model [9] to be able to reproduce the
charmoniumspectrum quite well. In a strict sense themomentumdependence
of thestrong coupling constant as(Q2) has to betaken intoaccount, thereby

modifying the Coulomb-like behaviour of the first term in (2.31).

2.4.1 Spin Structure of the Funnel Potential

In order to decide whether the spin structure of the potential (2.31) is a pure

vector, a pure scalar or a mixing of both, we consider the P-wave spin splitting
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Meson

Level cc bb
3p2 3.5563 9.9132
3/ 3.5106 9.8919
3P0 3.4151 9.8598
=) 0.479 0.664

Table 2.3: Masses (in GeV) and the ratio p for P states of cc and bb
of charmonium and bottomium, that is the ratio [10].
M{3P2) - M (3PX

' M(3P,) - M(3P0)

From table (2.3) the experimental average for p is pexp ~0.6.

(2.32)

With the help of the generalised Breit-Fermi Hamiltonian (2.21), we can
compute the ratio p for the potential (2.31) perturbatively. Since the spin-spin
interaction Hss does not depend on the total angular momentum, its contribution
cancels in a perturbative evaluation of p. Accordingly p is determined by the

contributions of the spin-orbit term HLS and the tensor term Hj only:

= ffW hs H\3P2) - (3P, | + HT)\ (2.33)
P (3Px\Hhs+ '
From table (2.2) we find for (L «S) and (S\2)
+ 1 -2/5 for 3P2
(L-S) = € -1 (Su) T2 3P (2.34)
-2 -4 3Po

For a pure vector Vy = V, VMO, one obtains

18as(r 3) + 7a(r
P= (2.35)
5 2as(r 3)+ a(r~I)

which gives the bounds 4/5 < p < 7/5 corresponding to a = 0 or as = 0, respec-

tively, in clear conflict with the experimental value pexp ~ 0.6. A pure scalar,
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Vs = V, Vv = 0 leads to p = 2, which is also not tolerable from an experimen-
tal point of view. In the case of vector/scalar mixing where it is assumed that

Vy = —4as/3r and Vs = ar, results in

(2.36)
52as(r J)-f 1/4a(r *)

which implies p < 4/5, if the Coloumb part dominates and p > 2 if the linear
part dominates. We arrive at the conclusion that the funnel potential (2.31) is a
linear combination of a vector and a scalar part, V/vn(r) = Vy(r) T Vs(r), where
the Coulomb part Vexch is °f vector type and the linear part Vconf is of scalar
type. In this form the funnel potential represents the genuine prototype of all
QCD potential models proposed for the description of hadrons as bound states

of quarks [5].

2.5 Results from Potential Models

So far no D-states for the T system have been observed experimentally, how-
ever various predictions of the D-state spectrum have been made [11, 12], with
the studies of potential models. These phenomenological studies of quarkonia
have led to a satisfactory picture of the interquark force [14]. A central poten-
tial V/VR(r) appears to interpolate between short-distance Coloumbic and long-
distance linear behaviour. Following the work of [11], a short review of the pre-
dictions for the D-state spectrum will be given here. It was shown in that work
that existing bound-state information can be used to reproduce an interquark
potential in the range of distances where the bound-state wave functions have
appreciable values, using the method of inverse scattering [15]. This method was
originally used to construct a potential on the basis of the T data on 3S\| bound
states; the potential was then used to satisfactorily predict the positions of the
P-state levels, which were borne out by experiment.

Briefly the inverse scattering method makes use of the equation
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40267

N, ee _ 2 a-i (2.37)
[Af(n35))]:
where
1604
A-1 = 1- (2.38)
3rr

is a QCD correction. The annihilation decay of the T states n3Si into an e+e~
pair has been observed experimentally [14] and the leptonic width T has been
measured along with the mass for each level. By inserting these experimental
values into (2.37) it is possible to calculate |*n(0)|2 for each of the lowest n3S\
T levels. An interquark potential V/v/?(r) can then be constructed [15] for bb by

solving a Schrodinger equation of the form

Vin(r) = (2.39)

A summary of the experimental T data used to construct a bb potential via the

inverse scattering method is given in table (2.4).

Level Mass (GeV) r«(KeV)
T(1381) 9.4604(2) 1.216(27)
T(235,) 10.0233(3)  0.553(23)
T(335,) 10.3553(5)  0.402(31)
T(435i)  10.5800(35)  0.248(31)

Table 2.4: Experimental parameters of T levels used to construct an interquark

potential

The parameter A in (2.37) is expected to be approximately A ~1.44 using
as(rrn,) ~0.18 (a value found in the analysis of quarkonium decays [11]). However
A and Eq (from the Schrodinger equation) are left as free parameters such that
they can be adjusted to obtain the most accurate predictions of the spin averaged

centre of mass levels of (IT) and (2P).
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Using the potential constructed from S-state levels, it is possible to solve the
Schrodinger equation to obtain the centre of mass P-state and D-state levels. Two
different sets of results are shown in table (2.5), for the 6-quark mass; =4.5
GeV with A =1.3 and =4.9 GeV with A =1.5. The predictions are nearly

indistinguishable from one another.

rarGeV) 4.5 4.9 Experimental
a 1.3 1.5
IP 9.9026 9.9031 9.9002
2P 10.2584 10.2589 10.2601
3P 10.5197 10.5201
ID 10.1562 10.1567
2D 10.4408 10.4412

Table 2.5: Spin averaged centre of mass P state and D states obtained from a

potential constructed from S state parameters

As can be seen from the table, the P-state predictions are very close to the
experimental results. In accordance with other potential models [11], A and m*,
are chosen to be A =1.5 and =4.9 GeV. The resulting potential can be found
in [14].

The fine structure of the triplet D-state levels can be obtained from the
centre of mass levels quoted in table (2.5) from the general expression for terms

contributing to fine structure in QQ systems

VES{T) = Vis{t) + UT(r) (2.40)

where the terms Vhs(r) and Vr{r) are the spin-orbit and tensor contributions
(2.23) and (2.25) to the Breit-Fermi Hamiltonian described in section (2.3). These
spin-dependent terms resolve the degeneracy in the triplet P or D-state levels such

that
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M(3L.,) = M(3L)+ S)+ (Su) (2.41)

with

as(r3) —H2.42)

o
1

a,{r~3)/3m@.43)

where M is the mass of the spin averaged centre of mass level for the P or D-
states. The values of (r-1) and (r-3) were evaluated for ID and 2D [11] and are
shown in table (2.7). The values of asand k can be estimated by calculating a and
b for each of the 13Pj and 23Pj masses M j, which are known from experiment.

These masses are shown in table (2.6).

Level Mass (GeV)
Xb(I13P0) 9.8598(13)
xt(i3A) 9.8919(7)
xt(i3a) 9.9133(6)
Xb(23Pu) 10.2321(6)
x(.(23a) 10.2552(5)
X<.(23P2) 10.2685(4)

Table 2.6: Experimental values of T levels used to construct an interquark po-

tential

Using the masses from the above table, a and b are calculated by rearranging

equation (2.41) to obtain

[)
1

(o))
1]

5(—2A40 + 3A4i - M 2)/72

(—2M 0 —3A7] + 5M2)/12

(2.44)



(r-1) (r-3) a b

Level (GeV) (GeV3) (MeV) (MeV)
IP 0.635 0.550 14.27 2.97
2P 0.445 0.394 10.35 2.04
3P 0.316 0.261 6.90 1.41
ID 0.430 0.120 1.78 0.65
2D 0.340 0.105 1.71 0.56

Table 2.7: Parameters governing fine structure in bb levels.

The values of a and b for IP and 2P are shown in table (2.7), and as stated
above may be used to determine the independent parameters Asjm\ and &/2m?2
in (2.42) and (2.43). An average of determinations from the centre of mass IP

and 2P levels yields

as/ml =0.016 GeV-2 (2.45)

k/2rn8 = 0.0049 (2.46)

W ith the help of the values of (r-1) and (r-3) listed in table (2.7), the values of
a and bfor 3P, ID and 2D can be calculated and are also listed in table (2.7). It
is now possible to predict the spectrum for triplet D-states of T using equation
(2.41) and the parameters quoted in table (2.7). The predicted values are shown
below in table (2.8).

The lefthand column in table (2.8) lists the predictions of the potential
modelreviewedin this section [11], while the centre and righthand columns
show the predictions obtained from other potential models used to predict the
D-state masses, [12, 13] respectively. Note that for potential models it is expected
that the spin averaged centre of mass of the triplet D states (D) will be at the
same point as the singlet state JD 2 [16].

From table (2.8) it can be seen that there is an enormous disparity in
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State Model reviewed [12] [13]

| 3£>i 10.150 10.153  10.120
1 3D 10.156 10.163  10.126
1383 10.160 10.174  10.130
(ID)~11A 10.157 10.166  10.127
23A 10.435 10.444
23D 2 10.441 10.452
23D 3 10.444 10.462
(2D) ~ 21D 2 10.441 10.455

Table 2.8: Comparison of predictions for masses of T (1Z)) and T(2D) levels, in

GeV.

the different spin splittings between the different potential model calculations.
From the comparison of the predictions obtained using the model reviewed for
this thesis with those of [12] there is a general agreement to within £+10 MeV.
However it is not the size of the splittings but the changes that are important,
e.g. the model of [12] has splittings twice as large as the model reviewed [11].
The final column in the table shows the results of a more recent study [13], which
predicts much lower masses for the D states than the two earlier models, but
the changes in the splittings are in complete agreement with those of the model
reviewed.

The differences between the predictions of the first two models in table (2.8)
points clearly to problems with the potential model approach, which seems to be
rather poor at obtaining spin splittings because these depend on details of the

potential that are not really known.

34



Figure 2.2: An example of a Wilson Loop

2.6 Potentials Studied on the Lattice

Alternatively the potential V(r) can be extracted from first principles using the
techniques of lattice QCD. In the limit mg —» oo, the heavy quark becomes
static. In space-time its world line becomes a line of QCD gauge fields in the
time direction. As described in Chapter 1, for lattice QCD we break up space-time
into a lattice of points and represent the gauge fields by SU(3) colour matrices,
U. The static quark propagator then becomes a string of U matrices. We can
put a quark and antiquark together and join them up into a closed, and therefore
gauge invariant loop, called a Wilson loop (see figure 2.2).

T 1e value of the Wilson loop can be calculated on sets of gauge fields {U}
where a gauge field is defined on every link of the lattice. These sets {U} are called
configurations. The physical quantity of interest here is the matrix element of the
Wilson loop between vacuum states and can be found by averaging values of the
Wilson loop over an ensemble of configurations [16]. The heavy quark potential
V{r) is related to the expectation value over such an ensemble of gauge fields of
a Wilson loop of spatial size R [2, 16]. The matrix element of the Wilson loop
becomes exponentially related to the ground state energy of the quark-antiquark

pair as the time T direction of the Wilson loop, LF, tends to infinity.
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(W(R, T)) FzIT [(?/)(0)x(i?)|0)|2e E(R)T -f Higher order terms (2-47)

[(t/’(0)x(77?)]|0)]|2is the amplitude for transition between the vacuum and the state
with two static sources separated by R. Since the quarks have no kinetic energy,
E(R) is the dimensionless lattice heavy quark potential Viatt(R). Unfortunately
as well as the real long range potential this contains an ultraviolet divergent self-
energy term which comes from gluon loops sitting around the perimeter of the
Wilson loop and so contributes, for large T » R, a constant piece Vcto Viatt(R)

which is dependent on {3 [16]. Consequently

E(R) - Viatt(R) = V(R) -f Vc (2.48)

Once the ensemble of gauge field configurations has been generated, Wilson loops
of various sizes in R and T are measured and average values of W(R, T) obtained.
For a fixed R, W(R)T) is fitted to the exponential function (2.47) for large T
(T —wo00), allowing E (which equals Viat{{R)) to be extracted. Moving away from
the large T limit, higher order terms need to be included in the fit. These higher
order terms contain exponentials of excited states of the potential. Once Viatt{R)
is obtained it can either be used directly or it can be fitted to a functional form
of /?, such that it can be compared with the continuum potential models. The
functional form usually used, takes the form of the Cornell potential (2.31) with

e = 4as/3 and an additive constant, Vc:

p Viatt(R) =<T(2.49)

The fit then yields the parameters cr, e and Vc. In general eis taken as a constant.
Since Viatt and the separation R are in dimensionless lattice units, the lattice
spacing a has to be used to obtain physical units of GeV. Thus the continuum

potential V is found by

V(r = Ra) = Viatt x a-1 (2.50)
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As mentioned above, Vg, is an unphysical constant, and must be removed before
applying the expression (2.50). If Vcis not removed at this stage it will diverge
on approach to the continuum limit a —0.

Most precision lattice calculations of the heavy quark potential have used
the quenched approximation where recent calculations have given a value of e
around 0.3 [17], which is smaller than the typical values that phenomenological
potentials have used, for example e =0.54 in [12]. This difference in values for e is
partly due to the quenched approximation, where no light gqq pairs are available
for screening. This means the strong coupling aswill run to zero too fast at small

distances, hence

LA CA7s(c)full theory

A(A*)full theory

when K(r) is dominated by the Coloumb term.

Finally it is appropriate to mention the string tension, er, which describes
the linearly rising part, of the potential. Since it has physical dimensions, a =
ciatt x values from phenomenological models can be used to fix the lattice
spacing a and hence convert all other dimensionless quantities to physical units.
However, the string tension a and e appearing in the Cornell potential (2.49) are
anti-correlated, arid so an alternative method of fitting the lattice spacing a can
be achieved using the physical quantity rO obtained by setting r2F(r) to a fixed
value [16]. F (r) is the interquark force, obtained by differentiating the potential
(2.49). Once a value of a has been obtained, Viatt — Vc can be converted into
the physical heavy quark potential which should be independent of the lattice
spacing at which the calculation was done. Figure (2.3) shows this is true for
current lattice results [17].

The infinitely massive heavy quark is only a source of colour; it carries no
spin. As discussed in section (2.3), in order to obtain spin-splittings it is necessary
to incorporate spin-dependent potentials into a Schrodinger equation, H'tp = E'lp,

and solve for the splittings.
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Figure 2.3: The heavy quark potential obtained from the lattice of two different
values of the lattice spacing in the quenched approximation. The potential and

separation are given in terms of the parameter rO.

H=E{"7 - + % (r) + Vki(r,L,S 1,S2) (2.51)

where V0 is the central potential discusses in section (2.1) and Vsd includes the
spin dependent potentials discussed in section (2.3). For heavy quarks of the

same mass mg, the complete spin-dependent potential is given by

VsD(r) = 2mqu S (VO(r) + 2V[(r))

+ L-SV'(r)
maBr
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AY4 [3(SXmr)(S2-r)-S 1-S2]C3(r)
3m\

2
+ 2 Sj mS2K,(r) (2.52)
3rn

These spin-dependent potentials can be extracted on the lattice by calculating

the following expectation values [16, 17]:

E
wV-I(R) = 2tijk lim £ dtt) >/Z-w (2.53)
~ VI(R) = djkdim J dtu YZw (2.54)
B:
B,
[RIRj - Isi3]V3(R) + t8ijV4(R) = 2dim £ di\ YZw (2.55)
B;

where the diagrams in the equations above represent Wilson loops with field
insertions of E or B as required by each potential. The denominator Zw is the
expectation value of the Wilson loop without field insertions, as in figure (2.2).

Once the spin-dependent potentials are calculated using (2.53) to (2.55)
they can be inserted into a Schrodinger equation and the energy shifts from the
spin-independent states can be calculated [17]. Calculations using this method
for studying spin-dependent potentials on the lattice have recently been carried
out, and predictions have been made for the S-, P- and D-state spectrum ofthe T
meson [17]. These predictions are shown in table (2.6) for different lattice spacings
and where appropriate a comparison with experiment is made. The predictions
for the masses in GeV for the P and D states are shown in table (2.6) for different
lattice spacings. The first two columns give the results that were obtained using
the quenched approximation, the third column shows unquenched results, while
the last column displays a comparison with experiment where appropriate.

The quenched results at 3 = 6.0 and /3 = 6.2 are in agreement with each

other but the spin splitting between these states are very small compared with
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State (3= 6.0 /3=6.2 e= 040 experiment

| 1Pj 9.879 9.879 9.889
13P0 9.866 9.866 9.867 9.860
13J\ 9.878 9.878 9.886 9.892
13p 2 9.882 9.883 9.895 9.913
2/PI 10.238 10.238 10.243
23P0 10.226 10.225 10.223 10.232
23Ti 10.237 10.237 10.237 10.255
23P2 10.241 10.242 10.249 10.269
1xD 2 10.120 10.121 10.136
13Th 10.121 10.121 10.134
13T2 10.121 10.122 10.137
13D 3 10.119 10.120 10.137

Table 2.9: Shows predictions for the masses of various T states for quenched and
unquenched results. The quenched results were carried out on different sizes of

lattice. A comparison is made with experiment where appropriate.

the predictions of the continuum potential models discussed in the last section
and seem to be in the wrong order. The unquenched predictions still give smaller
splittings than the continuum results however this time the 32)3 state has the
highest mass while the 3D\ state has the lowest mass which is in agreement with
continuum results like [13] but the 3D 2and AD 2 states seem to be the wrong way
round.

The problems outlined here arising from calculating the mass spectrum
for T using a potential model on a lattice seem to be similar to the problems

encountered with the continuum models of the previous section.
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Chapter 3

Non-Relativistic QCD

3.1 Motivation for NRQCD

The advantage of studying heavy-quark mesons lies in the fact that the quarks
can be treated in a non-relativistic way. From potential models it is possible
to calculate the typical velocity of the bottom quark in the T meson as v2 ~
0.1 [16]. Low quark velocities have two important consequences. The first is
the probability for finding low-energy gluons in the meson is small, since the
amplitude for a quark to radiate a gluon is proportional to u, for example the
probability for finding a QQg state in the meson is suppressed by G(v2). The
second is the quark-antiquark interaction is approximately instantaneous. A
gluon exchanged by the quark and antiquark usually has momentum of order
the quark momenta, making the gluon’s energy larger than the quark kinetic
energy by a factor of I/v: Eg ~ Pg ~ Mv » Mv2, where M is the quark
mass. As a result, exchanged gluons have reaction times that are //v times
shorter than the quark reaction time and can therefore be treated as instantaneous
interactions. These two consequences suggest that we can model heavy quark
mesons as QQ bound states, interacting by instantaneous potentials. Indeed the
phenomenological non-relativistic potential models examined in the last chapter
have been very successful in describing much of the physics of the T and ip

systems. There are however disadvantages to their approach, since they are
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only QCD inspired phenomenological models, and not calculations from first
principles. So in order to improve the accuracy of their predictions often requires
an increasing number of parameters which can make the models very complicated.

The approach of NRQCD [18, 19, 20, 21] allows first principles calculations
and has several advantages over potential models in that it retains the quark
dynamics, leading to a proper treatment of retardation effects. Therefore the
appearance of hybrid states such as QQg, whose components can be as large
as P(QQg) ~ 0(v2) ~ 10% for the T meson and QQqq, where qq are a light
quark/antiquark pair, are systematically accounted for. Another advantage of
NRQCD is that it is formulated with only two parameters and the accuracy of

its predictions can be improved relatively easily.

3.2 Energy Scales in NRQCD

In order to understand NRQCD it is important to realise that any study of
non-relativistic systems presents a fundamental difficulty due to a wide range
of important dynamical energy scales. These scales are the heavy quark mass
~ M, the quark’s momentum ~ Mv and the quark’s kinetic energy ~ Mv2 |In
order to see all three energy scales in a lattice simulation of T requires a lattice
space-time grid that is large compared with 1/Mv2 so reducing finite volume
errors and a lattice spacing that is small compared with 71/M thus reducing finite
lattice spacing errors. To satisfy these conditions would require a space-time grid
of ~ 1004 which is beyond the reach of current computing power [18]. A way of
avoiding this problem is to explicitly remove the largest scale, the mass M from
the theory, since it plays only a minor role in the dynamics of a non-relativistic
system. This is achieved by choosing a lattice spacing so as to exclude relativistic
heavy-quark momenta from the theory, ie. setting the lattice spacing to a ~ 1/M
allowing a more realistic space-time grid of 204 to be used.

One starting point for the derivation of NRQCD is to regularise the Dirac
theory for quarks at non-relativistic energies by introducing an ultra-violet cut

off A~ M so as to exclude relativistic momenta [18]. It is still possible for quarks
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with average momentum Myv to fluctuate into relativistic states of value M but
since this would occur for only short periods of time these relativistic intermedi-
ate states can be incorporated into the Lagrangian by adding local interactions
in powers of 1/A with coefficients determined perturbatively. The resulting alter-
ations to the Lagrangian leads to a modified theory, known as an effective field
theory. Effective theories allow any desired accuracy (p/A)n to be attained by
including all interactions up to order 1/An with the condition that the result-
ing couplings be determined by matching the modified theory to the full theory
through order (p/A)n. One way of modifying the Dirac theory in such a way is to
apply a transformation known as a Foldy-Wouthuysen-Tani (FWT) transforma-
tion [22, 23, 24] which allows the Lagrangian to be expanded in powers of 1/M,

so that

D.\

4% (fi7TS+2J7"B+8 AV E+-)* < >

+ antiquark terms + quark-antiquark terms -+-eee

This transformation is a unitary transformation on the four component Dirac
spinor T which is decoupled such that the upper components form a 2-component
Pauli spinor Yj>describing the quark dynamics, while the lower components x sim-
ilarly describe the antiquark dynamics. Combining both the regularisation of the
Dirac theory arid the FWT transformation such that the cut off A ~ M, the FWT
transformation (3.1) becomes an expansion in powers of 1/A. Thus to obtain an
accuracy of (p/An) = vn, only terms up to and including the O0( 1/An) interac-
tions need be retained in the Lagrangian. To summarise this section, NRQCD
is an effective field theory which approximates ordinary relativistic QCD at low
energies and in principle, the NRQCD action may be corrected to reproduce the
exact results of QCD by including an infinite number of non-renormalisable in-
teractions. Exact agreement with full QCD is unnecessary however since only a

finite number of interactions are required to attain any accuracy desired in powers
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of .. NRQCD has many advantages over the original Dirac theory; the quark field
decouples from the antiquark field allowing quark propagators to be calculated
separately, the fermion doubling problem of section (1.3.2) is completely avoided
when dealing with non relativistic propagators on the lattice and the non rela-
tivistic propagators are much simpler and cost less to calculate than relativistic
ones.

In the next section the work of [20] is followed to determine fundamentally
which interactions to include in the corrected Lagrangian, using power counting

methods.

3.3 Power Counting Rules for NRQCD

An estimation of the magnitude of the heavy quark field or equivalently
the antiquark field x {x) can made from the number operator for heavy quarks

which is normalised to unity for a quarkonium meson

j d =1 (3-2)

From the uncertainty principle, the quark in the meson is localised within a region

Ax ~ 1/p, therefore

xJj\x)~(x) ~ p3 (3-3)

and so the quark field has a magnitude 'ip(x) ~ p3'2. The expectation value for

the kinetic energy operator will be Mv2 by definition

| dW (*)g*(*) ~ mv2 (3.4)

and so the spatial covariant derivative acting on a quark field will be D ~ p.

Field equations can be used to relate estimates for different operators. For ex-
ample, the lowest-order FWT transformation applied to the Dirac theory gives a

quark Lagrangian whose leading terms are those of a Schrodinger theory:
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C = \I>\x) fiD t + rp(x) - NEA{X)FA(x) (3.5)

where the mass term M has been explicitly removed from the Lagrangian and
can be added in later as a constant shift. The corresponding lowest-order field

equation for the quark field is given by

(»A + Hx)=0 (36)

implying that the temporal covariant derivative Dt has magnitude ~ Mv2. For
non-relativistic systems the most natural choice of gauge is the Coulomb gauge,
in which the vector potential A is small and can be neglected. In this gauge the

above equation becomes

fidt- gef>(x) + X)(x) ~ 0 (3.7)

The potential energy that balances the kinetic energy and produces a bound state

enters through the potential energy operator g<f>(x) and consequently

gt>(x) ~ Mv2 (3.8)

To estimate the magnitude of the vector potential A(a;), the Euler-Lagrange

equation

am 1\d(duA»)
can be applied to the Lagrangian (3.5), giving the following field equations for

4>(x) and A(:r);

V 29<A(x) = -g 2\x) " (x) (3.10)

and

102 o ig2'V2irUx)N(x)  ig2h(x)V A (x
195 ig JNx) g2 (X)) VI );

2\
- VA = (3.11)
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From the field equation (3.10) the magnitude of the coupling g can be estimated

using the results from (3.3) and (3.8)

~ A
' . (3.12)
where V is the momentum operator, ~ p, and so from (3.11), the magnitude of
the vector potential is estimated as
1 )(v .
gA(x) ~ —p4d-f(Mr2p(Mr2)j ~ Mv3 (3.13)

which is smaller than the scalar potential by a factor of the quark velocity. Thus

estimates for the magnitudes of the electric and magnetic fields follow from

gE{x) = —'Vgcf)(x) + *++~ p(Mv2) = M 23 (3-14)

pB(x) =V x gA(x) + ¢+~ p(Mv3) = M 2v4 (3.15)

As expected for a nonrelativistic system, the magnetic fields are smaller than
the electric fields by a factor of v in quarkonium. Equipped with these power
counting rules, it is now possible to determine which terms in the quark action

in NRQCD are potentially important for quarkonium physics.

3.3.1 Relativistic Corrections

Relativistic correction terms to the quark Lagrangian(3.5) must respect the
symmetries of QCD such asgauge invariance, parity, chargeconjugation arid
rotational symmetry. This limits the possibilities for interactions and to 0(v2)

only four such correction terms are required

(3.16)

A'W ID .E -E -D )*) (3.17)
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c"\x)a (D xE-ExD)"z) (3.18)

c4-%ip\x)(r mBt/>(x) (3.19)

The first of the four corrections (3.16) follows from the expansion to 0 (M v 4) of
the formula for the relativistic energy of a noninteracting quark E2 = p2-fi M 2.
The second correction (3.17) is the QCD equivalent of the Darwin term in QED
which accounts for the zero point energy caused by fluctuations in the quark’s
position. The third correction (3.18) is a spin-dependent term called the spin-
orbit coupling and it removes the degeneracy between states which have the
same orbital angular momentum arid spin quantum numbers but differing total
angular momentum. The last correction (3.19) is also a spin-dependent term and
this removes the degeneracy between states which have the same orbital angular
momentum but differing spin.

To be able to use the NRQCD Lagrangian (3.5) together with the four
correction terms (3.16) to (3.19) for QCD predictions, the coupling constants c\,
c2i G, 4 need to be evaluated. These coupling constants have unique values
that are dependent on the ultra-violet cut-off A used to regulate the theory.
Unlike QCD one is not able to remove the cut-off A in NRQCD by taking it to
infinity since the theory contains power law divergences, contributing terms such
as asi\/M to the couplings making NRQCD non-renormalisable [18]. These terms
render perturbation theory useless if A is made too large, however limiting the cut-
off to A ~ AL, the couplings can be obtained perturbatively. In the next section
the coupling constants are obtained by computing simple scattering amplitudes

in QCD, and matching them with scattering amplitudes from NRQCD.

3.4 Determination of the Couplings

Following the work of [20] tree-level values of the couplings c1, ..., C4 are estab-

lished by matching results in NRQCD to those of low energy QCD through G(vA
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since the NRQCD Lagrangian is accurate to 0(v4).
As mentioned in section (3.3.1) for small momentum the relativistic energy-

momentum dispersion relation can be expanded as

E = (p2+ M2)12=M + + 3.20
(p ) oM 8M 3 (3.20)

so to order v4, the p4 shift in the energy is accounted for by the correction term
(3.16) which fixes c\ = 1/8.
The tree level amplitude for scattering a quark off a static electric field in

QCD is given by

Me(p,q) = bgbb<bq - pMp) (3.21)
where is the scalar potential. The Dirac spinor for the quark is written in terms

of the Pauli spinor ip as

D) Ep+ M\* ip (3.22)
u = .
Ep+M

and is normalised nonrelativistically with u'u = 1 [25]. Inserting the spinor into
the amplitude Me{p, q) and expanding the dispersion relation Ep = (p2+ M2)1/2

in powers of p/M, the amplitude can be divided into a spin-dependent part and

a spin-independent part

Me{P,q) = MSi{p, q) + MSd(P, q) (3.23)

where
MS(p,q) = (i- b y b ) ~ (3.24)
Msp(pP,Q =[AM*+ 32b"p2+ q2') q X _ PA A3'D5A

The two parts contributing to the spin-independent amplitude can be shown to

be accounted for by the NRQCD Lagrangian terms
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(3.26)

C2~ k f(x)(D "E - E *D)(x) (3.27)

since E(x) = —V</>(x) for a static field, becomes E(p) ~ P”*(p) in momentum
space. From this comparison c2 is found to be 1/8. Similarly the two parts

contributing to M sp{P5q) are accounted for by the correction terms

C3U P A {X)(T'A XA ~n X x A anch (3.28)

h~"4>\x){VuD X E - E X D)}V>(z)(3.29)

from which C3 is also found to be 1/8. The correction term (3.29) is of order
0(v6) and is of no importance for this work.
A similar analysis to the one above but with the quark scattering of a static

vector potential gives a value of 1/2 for CG4.

3.5 NRQCD on the Lattice

As explained in section (1.3) lattice theory is developed in Euclidean space. Con-
sequently in order to study the T meson on the lattice the NRQCD Lagrangian
developed in sections (3.2) to (3.4) has to be transformed into Euclidean space

where it is given by

£NRQCD = ADt — + £si + £sd (3.30)

where
Csi = - A HX)DVW + A (A~ (D -E - E.D)"x) (3.31)
Csb = ~ 8 XE~ExDMz) - vyy*\x)(T.B*(x)(3.32)
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To discretise this action the covariant derivatives acting on the quark field in the

continuum have to be replaced on the lattice by difference operations

aArN(x) = UMx)MNx + afi) - (3.33)
oA[*M(x) = 'ip(x) —Ux —ajl)'ip(x — aft) (3.34)
aAjftyfa) =i (nAM)+ aA{~" W(x) (3.35)

where the first two operations are forward and backwarddifferences respectively,
while the last operation is a centred or symmetric difference. The gauge invari-
ance of the Lagrangian is maintained on the lattice by the inclusion of fields

in each of the above operations.

The Laplacian operator D 2 is replaced on the lattice by

A<2>>= £ a l+)a!l-’ (3.36)
i

allowing the kinetic energy operator HO to be written as

Ho = ~ Z (3-37)
i
The discretised quark action to leading order can nowbewritten as
S = —ady %if)\x) (U4(x)'ip(x + at) —(1—aHo)ip(x)) (3.38)
X
Using the equation YIx1K(x, x')G(x',0) = one ends up with the evolution

equation for the quark propagator

G(x,tT a) = —aHo)G(x,t) + *x,0*qo (3.39)

where the notation G(x,£) = G (x,U x0,£0) has been used.
This evolution equation becomes unstable at high momentum modes. This
can be seen by looking at (3.39) in momentum space where the kinetic energy

operator is given by

50



V ,4sin2
aH°®° = * roo- <3-4°)
It can be seen immediately that the maximum value allowed for aHO = Q/Ma
where pi = T Since for smooth evolution one requires that [1 —aHO0\ < 1, this
means that the evolution equation will start to blow up for Ma < 3. To prevent

this, the evolution equation is replaced by

nH \ n / aH \n
(f — - JUI(x) (1——J " G(x, t) +"X0"0 (341)

which is now stable for ma > | [20]. The high momentum modesare expected
to have little effect on the spectrum of bottomium which is determined by much
lower momentum modes. The instability from the high momentum modes is just
a numerical effect and the extra interactions which will occur to eliminate the
instability will be suppressed by the lattice spacing a.

Considering the next to leading order terms (G(v4)) in (3.31) arid (3.32)
requires the calculation of the chromoelectric and chromomagnetic fields on the

lattice. In the continuum these fields are defined by

Ei(x) = FOI(x) (3.42)
Bt(x) = i 6ijkFjk(x) (3.43)

So a lattice equivalent of F7v(x) needs to be used. This is taken to be the

cloverleaf representation [26] of FA*x) defined in terms of plaquettes

where

Q(p)= U"x)
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with the summation over the four plaquettes centred at x and in the /ii/ plane.
The cloverleaf definition makes F fiv antihermitian and traceless as in the contin-

uum case.

3.6 Lattice Spacing Errors

The finite spacing of the lattice introduces systematic errors into NRQCD which
must be corrected if predictions from simulations are to be believed. That is, be-
lieving there is independence of the artificial cut-off introduced into the calcula-
tion as the lattice spacing. From the definition of the gauge field U”(x) = et9aAn(x)
it can be seen (by Taylor expanding iJ)(x-\-afi)) that the difference operators (3.33),
(3.34) and (3.35) can be expanded by exponential power series in the covariant

derivative Dfl

aAjit) = exp(aDIl) - 1 = aD "+ vy + ...
a™(-) = i _exp(~aD,y = aDM + ...
aA* = aD,+y D\ + ... (3.46)

From theses expansions, we obtain 1st order improvements tothese differ-
ence operators that reproduce the effectsof to order a2 for (3.33),(3.34) and
order a4 for (3.35)

AF) = A+ - A (42
A<-> = +
AW = AW -yA (+) AWAW (3.47)

we can use these results to improve the lattice Laplacian, given by

a2A<2>= £ (a2A2+ + eem) (3-48)
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resulting in an improvement that is also accurate to order a4

A<2>= A<2> - A £ (A < +)A (3.49)

1

Temporal derivatives enter NRQCD differently than spatial derivatives be-
cause the theory is non-relativistic. A consequence of this is that quark prop-
agation is governed by a Scrodinger-like equation with a single time derivative,
making the calculation of the quark green functions an initial value problem. If
we improve the time derivative operator as we did for spatial derivatives, this
initial value problem would be lost as higher order time derivatives enter the
theory. Alternatively using (3.47), the covariant time derivative may be written

as

abD, =«A<+) -

where at lowest order D4~ ~ ~ —HO.

When replacing this improvement for the time derivative into the quark
action (3.38) the extra terms in (3.50) form an exponential power series factor in

i/o, which modifies the evolution equation (3.39)

G{x,t + a) = Ul(x)e~aH°G(x, t) + 6x 0§,0 (3.51)

However this evolution equation is unstable at high momentum modes for the
same reasons discussed for the evolution equation (3.39), so it is necessary to
incorporate the improvements for the time derivative into the evolution equation
(3.41), stable at such modes for evolving the quark propagator at at lowest order.
This is achieved by comparing evolution equations (3.41) and (3.51) giving the

effective Hamiltonian of the second in terms of the Hamiltonian of the first

Feff — a \ 2n

a o
= Hao+ -—HO-f ... (3.52)
4n
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The order a terms in the effective Hamiltonian cancels if we replace HO by

HO= HO- — Hi (3.53)

Making this replacement in the stable evolution equation (3.41) removes the
leading error due to the lattice approximation of the time derivative.

As demonstrated in section (3.3), the four correction terms in the NRQCD
Lagrangian (3.30) have magnitude 0 (M v 4). Therefore any discretisation errors of
magnitude Q (Mv4) or less must be corrected for in order to retain an accuracy
of G[Mv4) in the simulation. It can readily be seen that the correction term
which improves the centred difference operator, given by (3.47) is a factor of
O(a2M 2v2) ~ (D(v2) (making the assumption Ma ~ 1) smaller in magnitude
than the difference operator it corrects and since this difference operator is only
required in the 0 (M v 4) correction terms (3.31) and (3.32) the improved version is
unnecessary. The improvements to the Hamiltonian (resulting from the temporal
derivative) arid the lattice Laplacian however, have to be included since they are

of magnitude

- Hi~ a(Mv2)2~ Mv4 (3.54)

n
A - V(AjHA] B~ — (M2v2)2~ Mv4 3.55
24 M A,( 1AL A M2 \(/ )

The way in which these corrections are implemented is demonstrated in the next
section.

The cloverleaf electromagnetic field strength tensor F£v can also be im-
proved and a detailed account can be found in [20]. However the first order
corrections to the electromagnetic field have a magnitude G(a2M 4v5) which is
a factor 0(v2) smaller than the magnitude of the lowest order field G (M 2v3),

hence the cloverleaf correction is not required when working to 0 (M v4).
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3.7 The Evolution of the Quark Propagator

The evolution equation (3.41) for the quark propagator is appropriate for leading
order 0 (M v2) terms. Now that all 0 (M v4) corrections have been established,

the evolution equation can be modified to include them

<3(x,t +a)= M — Up(x) (I - (1- a6H)G(x,1) (3.56)

where the initial condition is given by

G(x,0) = $0 (3.57)

and SH contains all four relativistic corrections and the two lattice spacing cor-

rections.

2M 8 24M 8 16n(M©)2
All of the difference operators in (3.58) act on everything to the right, with their
action identical to the difference operators defined in equations (3.33), (3.34) and
(3.35). However the action of the centred difference operator acting on the E

field in (3.58) is defined as

A-j-E = 7 A [Ui(x)Ei(x -f ai)Jj}{x) —U}(x —ai)E{(x —ai)Ui(x —ai) (3.59)
a

This is different from that of (3.35) in order to preserve the gauge invariance of

the NRQCD lattice Lagrangian.

3.8 Radiative Corrections

In section (3.3.1), relativistic correction terms to the nonrelativistic quark La-

grangian (3.5) were considered, each with its own coupling constant a. These
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coupling constants were found by comparing NRQCD to low energy QCD at tree
level. However radiative corrections to these tree level values are believed to be
large and must therefore be taken into account, and the coupling constants must
be shifted away from their tree level values appropriately. The belief that ra-
diative corrections are large comes from the fact that Monte Carlo estimates for
most short distance quantities on the lattice disagree poorly with lowest order
lattice perturbation theory estimates. An example is the vacuum expectation

value of the lattice gluon operator UMin the Landau gauge [27].

(1- FTrU,)Mc = U.m (3.60)

This is the lattice analogue of the expectation value (A2) of the square of the
gauge field A*. Since (A2) is quadratically divergent, the loop integral is dom-
inated by momenta close to the cutt-off and so at /3 = 6.0 perturbation theory

should work for cut-offs of order a couple of GeV or larger, giving

(1- tTrU,)PT = 0.97alott = 0.078 (3.61)

where alatt = 52/47r. As can be seen, the result obtained by perturbation theory,
differs considerably from the Monte Carlo estimate. These differences arise from

the naive relationship between the lattice gauge link arid continuum gauge field

U,(x) = eigaA“M 1+ igaA*x) (3.62)

This expansion seems reasonable when the lattice spacing a is small, but it is
misleading since further higher corrections in the expansion do not vanish as
powers of a in quantum theory. Higher order terms in the expansion of
contain additional factors like g2a2A 2 where A2 will quadratically diverge as

and so precisely cancel out the a2. For example

g2a2A\ ~ a2M 2v6 ~ ~ g3 (3.63)

Consequently these higher correction terms to are suppressed only by powers

of g (not a), and turn out to be large. These corrections are known as QCD
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tadpole contributions and lead to large renormalizations between the lattice and
the continuum, which in turn leads to large coefficients for perturbative expan-
sions in OLatt and hence poor convergence of these expansions. This problem
can be resolved by refining the naive formula that connects the lattice operator
to the continuum operator (3.62). Consider the vacuum expectation values of
these operators. In the continuum, the expectation value (1 -f iaga”x)) is 1. In
the lattice theory, tadpole contributions renormalize the link operator so that its
vacuum expectation value is considerably smaller than 1 [27]. This suggests that

the appropriate connection with the continuum fields is more like

Un(x) —»u0(l + iagA™(x)) (3.64)

where u0 is a gauge invariant expression, which can be defined is several ways,

here it is chosen to be the fourth root of the plaquette expectation value

Uo = (fJV (3.65)

For a more continuum like behaviour, all gauge links appearing in operators
are divided by the parameter UQ This is important when the chromoelectric.
and chromomagnetic fields are evaluated. This involves the evaluation of the
plaquette which contains the four U* fields arid tadpole improving using the

above prescription will change the definition of the cloverleaf term according to

B > A (3.66)
Uh

This increases the strength of the fields and therefore neglecting tadpole-improvement
will severly underestimate spin-plittings. Similarly, this prescription for building
continuum operators suggests that

&g ='72 gjg"Z?("Tr(Up -\-Up) where g2 = —ul? (3.67)
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is a better gluon action for lattice QCD. In particular, perturbation theory, ex-
panded in o.Latt = g2/47t is far more convergent. This is because tadpole improve-
ment has removed the tadpole contributions which are responsible for the bulk
of radiative corrections meaning that it is now possible to keep tree level values

for the arbitrary coupling constants cl5..., c6.

3.9 Meson Operators

From section (3.2) it was seen that the FWT transformation decouples the 4
component, Dirac spinor T into a 2 component Pauli spinor KJQ describing the
quark dynamics and a 2 component spinor \A describing the antiquark dynamics.

The actions for the quark and antiquark are then defined by

5= 8SQ+ SA (3.68)
where the quark action can be written in the form

sQ = A2 Aix)KQxAy)r(y) (3-69)

X,y

where Kq(x,y) is the inverse of the quark Greens function from which the quark

propagator can be found. The antiquark action is similarly written as

Sa = J2 x\V x)Ka(X,y)x(y) (3-70)

A consequence of the decoupling from a Dirac spinor T to 2 Pauli spinors ‘ipQ and
XA is that KA{x"y) = [Fq(x,y) [29]. This result is important since it connects
the dynamics of the quark and antiquark meaning that the antiquark propagator

is given by the complex conjugate of the quark propagator.

In orderto simulate mesons on the lattice, it is necessary to define meson

operators.

0(x) = XA(XWH'a(x) 0\ x) = "a(x)TXA(x) (3-71)
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where for example *q(x) creates a quark and x\{x) creates an antiquark, com-
bining these in the form of CT(x) creates a meson, with the appropriate quantum
numbers determined by F. O(x) consequently must be a meson annihilation
operator that destroys the quark and antiquark. To define meson correlation
functions for each type of meson state, it is necessary to define T explicitly. The
spectroscopic notation for meson states are conventionally labelled by the quan-
tum numbers spin 5, orbital angular momentum L and total angular momentum
J, usually given in the compact form 2S+1Tj. Of these three quantum numbers,
only the total angular momentum J is conserved. However two other quantum
numbers, the intrinsic parity P and the charge conjugation C are conserved and
for mesons are given by P = (—1)L_1 and ¢ = (—1)L+5. It is therefore possible
to label meson states by J/ C instead. From this we can see that states with the
same J FC will mix together, for example, the 35'i and 3D\. The types of operator
T chosen to create various meson states are given in table (3.1), along with the
lattice cubic group representation for each state.

As an example of how these operators work consider the creation of the 1So
state, where the operator T is chosen to be the identity matrix /. This choice can
be justified by noting that the state has spin 5 = 0 and orbital angular momentum
L = 0. It therefore does not need components formed from Pauli spin matrices
to project spin or spatial derivatives to project angular momentum.

As another example consider the 3S\ state where S= 1, L = 0, and J — 1,
again no derivatives are required to act on the fields to project orbital angular

momentum, while spin S = 1 is created using the Pauli spin matrices

cr = (crx, Cly, (1z) (3.72)

It is possible to project individual polarisations of 35i state; 35i:r, 3S\y and 3S\z
using the respective spin matrices ax, ay and crz.

As a final example consider the xPi state where S = 0, L = 1and J = 1.
It can be seen that this state requires no spin matrices since 5 = 0 but requires

L = 1 which can be achieved by making the operator F acting on the field, a
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Meson state Lattice

2S+ILj (Jpc) Representation T
'S0 (0-+) A+ !
35, (1--) Tie) <T.
'C, (1+-) A.
3P0 (o++) A+ £j A3~
3P, (1++) ;T'n:)' AL(T]
3-P2 (2++) i J
";(;) A i(Tj -f A Zert
CRERD
vgx2 (2-1) Em D jj
A5 Dij
*7i)
3C, (1") S, D ij <7
3D 2 (2~) € - Cé} =
(Dii D jj)JsT
Djké&j Dki&i
3£>3 (3 ") 52 (DijO"k T D jk(ji 3" D ki&j)/3
Tn~) A*er® 24jA)CTj D 14 (Jj
T 2(if) {Da D ji™NJk~\~

A (Dki D kj)

Table 3.1: Various meson operators. At denotes the symmetric lattice derivative

and Dij = AtAj —8{jA 2/3.
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derivative A*. A far more rigorous derivation of many of the different meson

operators shown in table (3.1), can be found in [29].

3.10 Meson Correlators

In the previous section it was shown how meson operators can be formed to create
or annihilate mesons with specific quantum numbers. The propagation of these
mesons from space point x0to x and time tOto t is represented by the correlation

function

C(x, £; x0,t0) = (0](9(x, )0 Hx0,%0)|0) (3.73)

Inserting the meson operators (3.71) we obtain

C(x,t]x0t0) = (0|x(x")r+(x,i)V't(xo,fo)rxt(x0,%0)|0) (3.74)

making colour arid spin indices explicit, the correlation function can be written

as

C(x,t-x0,t0) = (0|x?(x,Wtp'ipi (x,t)r/)f(x0A0)r8x]8x0,MI0)
=  (o|xa(x,0Oxifxo”o)rI/ f(x,t), jYx0,to)r5£o) (s ..s)

We can now write the correlation function in terms of Green functions [30]

ANX, Exot) = G-"ox,T,Xo,i0;t/)r*"G(x,i;x0,t0; U)TS

= Tr[Gt(x,M;x0,to;t/)rtG(x,f;x0,io;t/)r] (3.76)

where the Green functions represent quark propagators on a single gauge config-
uration 7/, which are then averaged over the complete set of gauge configurations
{U} with the correct Boltzmann weight (see section 1.4 for more details). The

trace is taken over both spin and colour indices.
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3.11 Effective Mass

In the Euclidean space of the lattice these two point correlation functions decay
exponentially with time with an exponent equal to the energy of the hadronic

state in question. To show that this is the case consider the correlation function

C(t) = GM(t) = <0|O(t)Cp0)|0> (3.77)

In the Feynman path integral approach the operator O is in the Heisenberg

representation and evolves in Euclidean time

O(t) = U'0{0)U (3.78)

where U =e~Ht is the Euclidean space evolution operator forsomeHamiltonian

operator 7+.Inserting a complete set of energy eigenstatesstates into equ (3.77)

Eln)M = 1 (3.79)

we obtain

C(t)

E(0|O (*)I«>(n|C, (0)J0>HR

n

= A(OH/tC(0){/In)(n|Ot(0)[0)//fl

= A<°|C’(0)e-w |n)(n|Ot(0)|0)sH

n

= O °10(0)M 2e“B"

n

0[O (0) DV MI* +

where we have restricted ourselves to states with zero momentum so that En =
Mn. For hadrons at rest equ (3.80) is known as a timeslice propagator for the
hadron with quantum numbers of the operator O.

A useful tool in diagnosing the point in time at which all the higher mass

states have decayed away is the effective mass function

62



C{t-f1
mej/ - in { ) (3.81)

As t —> o0 this function levels out into a plateau at Mi, enabling one to identify
the ground state. In practice however it is usual to use the effective mass function
to pick out the time region in which the ground state dominates. The meson mass
is then extracted with more accuracy by fitting the timesliced propagator to an
exponential Ae~mt over this region. The amplitude (0[(9(0)|n) is the matrix
element for the decay of the meson, a non-perturbative quantity which can only

be calculated by lattice simulations.

3.12 Smearing

As discussed in the last section the ground state mass of a particular meson state
is extracted by eliminating contributions from all the higher mass states |n) from
the correlation function (3.80). This is achieved by taking the time to infinity.
On a lattice, however this is not, possible since there is a restriction on the size
of the time direction and the signal will become dominated by noise before the
ground state is isolated. To increase the numerical accuracy of the simulation the
signal must be extracted at earlier times where the noise has not yet started to
dominate. This is possible using smeared operators. In earlier sections only local
operators were considered, meaning for example that the two-point correlation
function for the !50 state is calculated by creating the meson at a single source
point. Similarly in the case of the 1P\ state, the antiquark was displaced by a
minimal amount, of one lattice spacing relative to the quark to project out the
required angular momentum. Mesons are thus created at a single local source
point, for example at the origin of the lattice at t = 0, and evaluated at all possible
sink points. These sink points are then summed over the three spatial directions
to obtain the timesliced propagator from which masses are extracted. There
are thus three choices for improving the local hadron operators using smearing;

smear the sink, smear the source or both. To implement smearing the quark or
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anti-quark is smeared over the whole of the lattice relative to the antiquark or
quark with an appropriate weighting function. The idea is that a meson operator
is chosen in such a way that the ground state (or first excited state, ...) overlap
will dominate from small times onwards.

The meson operators used to create the states investigated in this thesis
are formed from two operators T and 5(r), where T is the 2x2 matrix in spin
space discussed in section (3.9) which generally includes derivatives that act on

the radial smearing function S(r). The smeared meson operator is defined as

r(x) = TS(x) (3.82)

The role of the radial smearing function allows us to create states which we wish
to extract with aspecific energy quantum number n. T, as inthe last section
makessure that the state has the required quantum numbersdpc. Toput it on
a more formal basis we define the smeared anti-quark field at the source by the

replacement

XHz0,t) -> x \xo,t) = X) S(z~ xo0)x\z, 1) (3.83)

z

and the smeared antiquark field at the sink by

X(z,t) -=> x(aqt) = J2 X{y, t)S\y - Xx) (3.84)
y
A general expression for the meson correlator with smearing at the source and

sink can be obtained by substituting these replacements into (3.77)

fo) = £<0[x(*, *)rV(z, t)ip\x., tQrx ("o, 0)|o)

= J2 Wx(y,t)(f>\\y - x\)Y]'il)(x,t)'id)\x0,to) T(])(\z - xoDx*MJIO)

X,y,z

= D (O|x(y, t)T{sk)](y - x)ip(x, t) \xo, t0)T{sc)(z - x0)x\z, 01°)

X, y,z

(3.85)
To implement smearing at the source numerically, it is known that at t = 0
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(o|xf(z/)x(*0)|o) = S0 (3.86)

and so

<OIxt(y)x(*0)|0) = (0 [xt(y)x(")|0)5'(z - xQ

z

_ £*,,,$(*‘*0)

z

= S{y-Xo0) (3.87)

Therefore instead of starting off with a delta function in the evolution, this can
he simply replaced by the function S(y —£o0) over the whole of the lattice.

For this thesis, smearings were required to reproduce ground arid first ex-
cited D states. These smearings are denoted by nsc and n”, depending on
whether the smearing is at the source or sink. For example, nsc = 1 and
risk = 2 denotes ground and first excited state smearing at the source respec-
tively. nsc = loc denotes local smearing at the source arid is given by the delta
function in (3.86). The explicit forms of smearing functions S(r) for any particu-
lar meson state are obtained using a Richardson potential model [5], which yields
values at integral values of the radius from the origin r. Values in between are

obtained using linear interpolation.

3.13 Correlated Fits

As described in section (3.11) the effective mass function can be used as a naive
model to determine the ground state mass. However since the values of the corre-
lator at only two timeslices are used a more effective method of determining the
ground and subsequent excited states would be to fit the data from one correla-
tion function C(t;to) to some functional form over as many timeslices as possible.
From equation (3.80) we know the form of the behaviour of the asymptotic fall
off for a meson correlation function. It would then seem appropriate to fit the

data from one correlation C(t]t0) to the function
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Ctheo{t510) —A\t » T A2  + ... (3.88)

where the energy of the ground state Fj, the first excited state E2.. and the
amplitudes y4i,A2,... are given as initial guesses. The usual way to fit data to
a functional form is to minimise a measure of the goodness of fit as a function
of the fit parameters (A\, E\,...). The goodness of fit for this model is given by

the y 2function

ra _ N2 fA(MN') ~ Ctheojtj] Ai:A2 ..., Ei,E2 .. )\ .
=1V ai /
and is subsequently minimised by varying each of the parameters in turn and
re-evaluating. The y 2 function has no specific value which needs to be reached
upon minimisation but in general if y2 per degree of freedom is less than one
then the fit is deemed acceptable. The number of degrees of freedom are defined
as iV - n where N is the number of data points and n is the number of fitted
parameters. The quantities represented by cq are just the standard deviations of
the meson correlators averaged over configurations. The variance in this case is

defined as

s A icw -¢c & m r (3.90)
N —n

1—1

which can be calculated once the minimum y 2 has been found.

3.13.1 Multi-Correlated Fits

The method of fitting to a single correlation discussed in the previous section is
a naive model to use for extracting masses from the data and can be improved
by simultaneously fitting to several meson correlators which have different types
of smearing. This improved method described in [29] involves fitting correlation
data to one of two functional forms.

Firstly define the meson correlation function as
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C(nscnskl  t)={0]|0si(i)C tc(0)|0>

where O sk represents the type of smearing at the sink etc. Inserting a complete

set of energy eigenstates one obtains

C(nacnsh-t) = £m *(i)I*}(*|C L (0)|0)e-E* (3.92)

k

The first functional form that can be fitted is called the matrix fit and is given
by

Nexp
Ctheoisci Tiskj A A KNZ (“Tskl k'jc (3.93)

k=1
Often the group of correlators used for the matrix fit have (nsc,n&) given by
(1,1), (1,2), (2,1), (2,2). One can make the identification a(nsc,fc) = (n|Ojc(0)|0),
k) = (n\Olkm O) as the sum over the exponential tends to infinity.
The second functional form is called the vector or row fit and is given by

N exp

Ctheo(n&,nsk-t) = Y Knsc k)e~Ekt (3.94)
k=1

with b(nsc, k) = ci(nsc, k)a*(loc, k), where nsk in equ (3.93) has been replaced
with Joc. The group of correlators used for the row fit have (nsc, loc) given by
(I,/oc),(2,/0c),....

Different combinations of smearing at the sink and at the source can be
used simultaneously in the fit restraining the energy parameters for each of the
radial excitations to have the same value. This will involve using data which is
correlated between data points from different meson correlation functions as well
as the correlation from different time values. To do this we define a generalised

version of equ (3.89) for the y2to be minimised

Ncorr tmax
X2= £ E (Ca(s)- A"(M i)) b2

(3.95)
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The O, /? indices represent different meson correlation functions, i.e., different
types of smearing combinations and t and t' are time indices. Ctheo is the func-
tional form that is fitted, which is either of the type (3.93) or (3.94) and a* are the
fitting parameters. The matrix a2is called the covariance matrix and measures

the likely error on each of the data-points. It is defined by

(Ca(t) <C«(<)» (Cf(t) (C,m (3.96)

t'conf r o i=1

where Nconj is the number of gauge configurations. The covariance matrix is a
square matrix of side length (Ncorr X TV¥), where Ncorr is the number of correlators
used in the simultaneous fit and Nt is the time range in which the fitting is
performed. The best fit, using the multi correlated fit is obtained in the same
way as detailed in the last section. Initial guesses are given for each of the
fit parameters and y2 is calculated and then minimised by varying each of the

parameters in turn until the y2 per degree of freedom is less than one.
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Chapter 4

Simulation Results

In this chapter the spectrum of the D-states of T at (3=6.0 will be studied in
detail. The spectrum can be obtained using the multi-exponential and multi-
correlated fitting methods described in the last chapter. Simulation data is also
studied for (3= 5.7 so that scaling behaviour can be examined.

The work of this chapter was performed on 163 x 24 lattices at (3 = 6.0.
105 quenched configurations using the standard Wilson gluonic action were used,
gauge fixed to Coulomb gauge with simulations beginning on 8 diiferent origin
sites and 4 different starting time slices per configuration as described in [32].

Equation (3.56), discussed in section (3.7), was used to evolve quark propagators.

41 Tuning the Bare Quark Mass

As discussed in Chapter 3, the parameters of NRQCD must be tuned to match
experimental values. The inverse lattice spacing a-1 is determined by matching
energy levels splittings to their experimental values. For this thesis an inverse
lattice spacing of a-1 = 2.59(5) GeV was used for the (3= 6.0 simulation data
which was obtained by matching the IP — /S dimensionless splitting to experi-
ment. This work was carried out by [34]. The bare quark mass is determined
as follows.

From experiment, there is evidence to show that spin-independent splittings
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such as IP —15 do not depend strongly on the bare quark mass M & [10, 31], how-
ever the spin-dependent splittings do [31]. For the hyperfine splitting 35i —j 50,
there are no experimental results, however it seems to be inversely proportional
to from perturbation theory and at least roughly on the lattice [31]. So it is
very important to tune this mass to its correct value.

As described in [31], the method for tuning the bare quark mass involves two
simulations of the T meson in the 35i channel. The first simulation is to compute
the non-relativistic energy for the T ’s with small components of three-momenta,
the other with zero momentum. The difference between these non-relativistic

energies equals the kinetic energy of the meson

PT(p) - PT(0)= " — (4.1)

where Mkin is called the kinetic mass. Hence the mass obtained is matched to the
experimental T rest mass value of 9.46 GeV. This work was carried out in [31]
and a dimensionless bare b quark mass of aM3=1.71 was found to give a kinetic
T mass of 3.94(3) which when multiplied by a~] =2.59(5) GeV gives a kinetic T

mass of 9.5(4) GeV, which is equal to the experimental value within error.

4.2 Fitting Results for the D states

In this section multiple exponential fits are used to extract the ground and first
excited states for the D states of the T meson which are listed in table (3.1) in
section (3.9). These states are the ID2T, ID2E, 3D 2T, 3D2E, 3D3S and 3D\,
where E and T label the two possible lattice cubic group representations for the
1D 2 and 3D 2 states. In principle at least, the E and T representations of the
1D 2 state should have the same ground state mass within errors, as should the E
and T representations of 3D2. Carrying out n multi exponential fits will give an
accurate value for n —1 states with higher excited state contamination contained
in the last exponential.

Before utilising the fitting methods outlined in section (3.13.1) the quality
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of the data was assessed by looking at effective mass plots for all possible smearing
combinations of each state. These plots were also used to determine the initial
values for the fitting parameters to be input in the fitting routines. In figures (4.1)
to (4.7) the effective masses are plotted for each of the D states studied for this
thesis. Looking at figure (4.1) the effective masses are plotted against time ¢ for
every type of (source,sink) combination of the 1D 2T state. The (loc,l), (l,loc) and
(1,1) plots have reasonable plateaux which suggests that ground state smearing
has worked. The (loc,2), (2,loc) and (2,2) plots show reasonable plateaux at low
t indicating a first excited state, the signal then decays towards the ground state
and is eventually lost in noise.

Table (4.1) shows results obtained from vector fits to the 1D 2T ground state
energy over various tmin/tmax ranges as well as the quality of the fit, Q. The upper
part of the table involved shows the simplest possible fit - a single correlation
function with (nsc,nsk) = (1,/oc) which was fitted to a single exponential ansatz
of the form (3.88). It can be seen from the table that the ground state is steady
over a large tmin/tmax and exhibits good, stable Q values down to tmin = 4. In
general the best estimate for the ground state mass is taken to be given at the
lowest tmin possible, corresponding to such a stable range of appropriate Q values
shown in the table. Hence a good estimate of the ground state mass is indicated
by the Q value of 0.49, giving 0.770(5) for the mass at tmin = 4. First and
higher excited states can contaminate the ground state. In order to see if there
is higher state contamination, two correlations fitted to two exponentials can be
used instead of one to extract the ground state mass and give a rough estimate of
the first excited state. It is often possible to obtain a good fit at a lower tmin using
this method than in the simple single correlation fit. If this is the case, then the
single correlation fit shows that the ground state has probably been contaminated
by the first excited state at this lower time range. The two correlation fit is then
usually considered to be the more accurate fit at the lower time range where
higher state contamination has taken place for extracting the ground state mass,
although as stated above the first excited state extracted from this fit is only a

rough estimate since it may be contaminated by the second excited state. Even in
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the cases where ground states extracted from single correlation vector fits cannot
be relied upon, they still have value, as they can often be used to obtain estimates
for energies and amplitudes for particular states with different smearings (nsc, n sk)
and these amplitudes can be used as initial guesses for fits that are harder to
perform, such as matrix fits.

The lower part of table (4.1) shows results obtained from a vector fit to the
1D 2T ground and first excited state energies over various tmin/t max ranges. The
fit involved two correlation functions with (nsc,nsk) = (1,/oc) and (2Joe) which
were fitted to atwo exponential ansatz. Again it can be seen that the ground state
is reasonably steady at low tmin/tmax, and a good estimate is given at tmin = 2,
giving 0.750(7) with Q value 0.42 and the first excited state is estimated by
0.087(9). As can be seen from the table, the inclusion of a second correlation and
exponential to the fit allows the ground state mass to be extracted at a lower
tmin than in the single correlation case, suggesting that the ground state was
contaminated by the first excited state. Figure (4.2) shows plots of the ground
state given by the one and two correlation vector fits. It can be seen clearly that
the ground state from the two correlation fit is stable at low tmin. This is because
any contamination from higher states is removed by the second exponential. This
case contrasts clearly with the single correlation fit where the ground state can
be seen to rise at low tmin due to the excited state, but at higher £min, both fits
are in agreement as expected. Table (4.2) shows results obtained from matrix
fits to four 1D 2T correlations with (nscnsk) = (1,1), (1,2), (2,1) and (2,2).
It was generally harder to obtain reasonable Q values for matrix fits of the D
states since the signals for the above correlations are lost in noise earlier than
the (l,loc) correlation used in the vector fits, and so for this reason the time
range over which the fitting took place was reduced slightly. However, a steady
ground state can be seen over a reasonable tmin/tmax and the Q value of 0.10
corresponding to tmin = 8 indicates a good fit and gives an estimate of 0.740(31)
for the ground state mass. The corresponding first excited state mass is estimated

to be 0.812(40).
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Figure 4.1: 1D<{1' Effective masses by (source,sink)
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fit MNexp  tmin/tmax

fit to | 3/16
(1,lo¢) 4/16
5/16

6/16

7/16

8/16

9/16

10/16

11/16

12/16

13/16

14/16

fits to (l,loc) 2 1716
and (2,loc) 2/16
3/16

4/16

5/16

0.779(4)
0.770(5)
0.766(6)
0.763(7)
0.759(8)

0.756(11)

0.767(15)

0.759(18)

0.750(23)

0.788(31)

0.785(43)

0.818(70)
0.749(5)
0.750(7)
0.753(9)

0.748(13)

0.754(17)

E2

0.996(7)
0.987(9)
0.993(13)
0.960(18)
0.955(27)

0.05
0.49
0.58
0.52
0.50
0.41
0.46
0.40
0.31
0.86
0.69
0.55
0.04
0.42
0.36
0.69
0.59

Table 4.1: Vector fits to 1D2T with 1 and 2 exponentials.
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fit MNexpo  imin

fits to 0 4114
(1,1),(1,2) 5/14
(2,1),(2,2) 6/14
7/14

8/14

9/14

10/14

11/14

12/14

Table 4.2: Matrix fit to 1D 2T .s with 2 exponentials.

1/\

75

0.763(8)
0.754(10)
0.753(13)
0.733(24)
0.740(31)
0.755(23)
0.753(23)
0.750(35)
0.821(47)

E2
0.959(22)
0.929(30)
0.912(44)
0.828(33)
0.812(40)
0.925(86)
1.055(161)
1.104(243)
1.398(189)

0.06
0.04
0.03
0.08
0.10
0.15
0.21
0.09
0.47
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Figure 4.2: The circles show a 1 exponential fit while the crosses show a 2 expo-

nential fit for the 1D 2T state.

The results from similar vector fits carried out on the 1D 2E ground state energies
are shown in table (4.3). The upper part of the table shows a single (1,/oc) cor-
relation fitted to a single exponential. As can be seen the ground state is steady
over a large tm{nlt max and a good mass estimate is given at tmin = 5 of 0.741(7)
with Q value of 0.42. As before, to see if there is any first excited state contamina-
tion, two correlations are fitted to two exponentials. This two correlation fit was
hard to perform since it seemed sensitive to the initial fitting parameters given
to the fitting routine and consequently most of the fits attempted (for different
amplitudes, energies and tmaxs) had very poor Q values. The final and best fit

shown in the lower half of the table shows acceptable ground state masses with
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reasonably stable Q values. The best estimate of the ground state is indicated
by Q = 0.30 at tmin = 5 giving 0.76(4) and the first excited state is estimated
to be 0.86(5). However the amplitude (obtained from the fitting routine) for the
overlap of the first excited state to the ground state was essentially zero (since
it was 50 per cent smaller than it’s error) suggesting that the two correlator
functions are uncorrelated, i.e. smearing for the ground state is working well, so
overlap with the first excited state is very small. This may explain why it was
more difficult to perform this fit compared with the two correlation vector fit for
1D 2T since more realistic initial fitting parameters had to be estimated in order
to achieve convergence in the fitting routine, since the effective mass plot for
(1, loc) clearly shows that there is little overlap with (2, loc). See figure (4.3). It
is also evident from this figure that the (2, /oc) signal is lost in noise before it can
decay to the ground state, c.f. (2,loc) plot in figure (4.1). It appears then, that
the two correlation fit has not given any improvement in statistical accuracy over
the single correlation fit, which in this case is believed to give the more reliable
estimate of the ground state. Table (4.4) shows the matrix fit to the four 1D 2E
correlations (1,1), (1,2), (2,1) and (2,2). This state has a steady ground state
and a good estimate is given at tmin = 6 as 0.757(14) with Q value of 0.76 and

are consequently in agreement with the single correlation vector fit.
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Figure 4.3: 1D 2E Effective masses by (source,sink)
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fit Mexp Imin/Amai

fit to 1 3/14
(I,loc) 4/14
5/14

6/14

7/14

8/14

9/14

10/14

11/14

12/14

fits to (I,loc) 2 3/14
and (2,loc) 4/14
5/14

6/14

7/14

8/14

9/14

10/14

Ei
0.758(5)
0.749(6)
0.741(7)
0.742(8)

0.748(11)
0.751(13)
0.775(19)
0.768(25)
0.767(35)
0.829(56)
0.719(14)
0.710(20)
0.762(35)
0.779(41)
0.784(53)
0.855(100)
0.758(69)
0.808(239)

0.890(16)
0.869(22)
0.859(45)
0.859(56)
0.888(88)

0.904(141)
1.038(226)
1.031(737)

0.03
0.18
0.42
0.32
0.29
0.21

0.45
0.32
0.17
0.30
0.03
0.05
0.30
0.20
0.11

0.08
0.06
0.02

Table 4.3: Vector fits to 1D2E with 1 and 2 exponentials.
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fit Nexo  tmin/imai

fits to 2 1/12
(1,1),(1,2) 2/12
(2,1),(2,2) 3/12
4/12

5/12

6/12

7/12

8/12

9/12

10/12

Table 4.4: Matrix fit to 1D 2E s with 2 exponentials.

0.492(232)

80

Ei
0.770(6)
0.761(6)
0.753(8)

0.745(11)

0.732(15)

0.757(14)

0.805(56)

0.766(19)

0.781(26)

EZ2
0.970(9)
0.942(11)
0.926(17)
0.885(22)
0.854(28)
0.898(57)
0.752(27)
0.725(103)
0.768(38)
0.758(43)

Q
0.00

0.00
0.03
0.25
0.24
0.76
0.83
0.75
0.68
0.73



Table (4.5) shows the two vector fits applied to the 3D 2T ground and first ex-
cited state energies. The upper part of the table shows a single correlation fit to
one exponential and again shows a steady ground state over a large tmin/t max.
The Q value of 0.73 corresponding to a ground state mass of 0.747(8) at tmin =4
indicates a reasonable estimate. The lower part of the table shows the two cor-
relation fit where it was also difficult to obtain reasonable Q values, since it was
highly sensitive to the initial fitting parameters. After much variation of these
parameters a final fit was obtained with reasonable ground state masses and sta-
ble Q values where a best estimate of the ground state is given by 0.75(4) at
tmin = 5 with Q value 0.17. The corresponding first excited state is estimated to
be 0.87(7), although once again the amplitude for the overlap of the first excited
state with the ground state is essentially zero and the (2, /oc) effective mass plot
in figure (4.4) shows that the first excited state signal is lost in noise before it
can decay to the ground state. Again the single correlation fit is deemed more
acceptable. Table (4.6) shows the corresponding matrix fit to the 3D 2 ground
and first excited state energies, where a steady ground state is present and the
best estimate is given by 0.770(18) at tmin = 6 with Q value 0.36 and the cor-
responding first excited state is estimated to be 0.99(10). The estimate for the
ground state extracted from the matrix fit agrees within errors to the estimate

extracted from the single correlation vector fit.
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fit Mexp  tmin/tmax

fit to [ 1/12
(1,loc) 2/12
3112

4/12

bin

6/12

7/12

8/12

9/12

10/12

fits to (l,loc) 2/13
and (2,loc) 2 3/13
4/13

5/13

6/13

7/13

8/13

9/13

10/13

Table 4.5: Vector fits to 3D 2T with 1 and 2 exponentials.
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0.777(4)
0.767(5)
0.757(6)
0.747(8)
0.743(10)
0.745(12)
0.754(17)
0.773(23)
0.774(35)
0.723(51)
0.740(35)
0.723(28)
0.712(35)
0.751(44)
0.711(75)
0.751(77)
0.866(105)
0.688(719)
0.751(207)

E2

0.868(42)
0.856(37)
0.830(48)
0.870(73)
0.768(80)

0.870(126)
0.999(188)
0.859(* * *)
0.870(440)

0.00
0.07
0.31

0.73
0.67
0.56
0.52
0.66
0.45
0.93
0.06
0.07
0.10
0.17
0.17
0.12
0.44
0.63
0.36



flt ﬂ/'exp imﬁw/tt;max £2 Q

fits to 2 3/12 0.756(10) 0.937(23) 0.00
(1,1), (1,2) 4/12 0.751(13) 0.907(31) 0.01
(2,1), (2,2) 5/12 0.745(18) 0.881(39) 0.05

6/12 0.770(18) 0.989(96) 0.36
7/12 0.746(36) 0.828(83) 0.43
8/12 0.744(86) 0.809(74) 0.28
9/12 0.753(49) 1.234(484) 0.82

10/12 0.584(398) 0.695(105) 0.77

Table 4.6: Matrix fit to 3D 2T .s with 2 exponentials.

Table (4.7) shows vector fits to the 3D 2E ground and first excited state energies.
Again the upper part of the table shows a one correlation fit and it also displays
steady estimates of the ground state masses which have a steady Q values over a
large “mivi/*rnax range. The Q value of 0.87 signals a good estimate of 0.776(6) at
tmin =4. The lower part of the table shows the two correlation, two exponential fit
and this too displays a steady ground state of which a good estimate is indicated
at Q value of 0.32 of 0.763(11) at fmd4n=2 and the corresponding first excited state
is estimated by 0.98(1). Table (4.8) shows the matrix fit to the 3D 2E ground and
first excited state. Again there is a steady ground state over a large tmin/t max
and a good estimate is given at tmin = 2 giving 0.786(7) with Q value 0.21 and
the first excited state is estimated to be 1.01(1). The estimate for the ground
state extracted from the matrix fit agrees within errors to the estimate extracted

from the single correlation vector fit.
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Figure 4.5: 3D 2E Effective masses by (source,sink)
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fit Mexp tmin/tmax

fit to | 1/15
(l.loc) 2/15
3/15

4/15

5/15

6/15

7/15

8/15

9/15

10/15

11/15

12/15

13/15

fits to (l,loc) 2 1/15
and (2,loc) 2/15
3/15

4/15

5/15

6/15

7/15

8/15

c,
0.801(4)
0.788(4)
0.784(5)
0.776(6)
0.771(8)
0.764(9)
0.764(13)
0.762(16)
0.772(22)
0.754(29)
0.725(38)
0.717(53)
0.686(75)
0.780(12)
0.763(11)
0.751(12)
0.747(17)
0.754(22)
0.754(34)
0.769(49)
0.730(67)

E2

0.972(12)
0.978(13)
1.005(17)
0.989(25)
1.016(42)
0.970(65)
0.987(114)
0.963(132)

0.00
0.44
0.52
0.87
0.89
0.95
0.90
0.84
0.81
0.83
0.94
0.84
0.86
0.00
0.32
0.44
0.50
0.51
0.46
0.33
0.27

Table 4.7: Vector fits to AD*E with 1 and 2 exponentials.
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fit Mexp  tmin/tmax E2 Q

fits to 2 1/9 0.800(5) 1.040(10)  0.01
(14),(1.2) 2/9 0.786(7) 1.009(13) 0.21
(2,1),(2,1) 3/9 0.779(8) 1.008(20) 0.21
4/9 0.773(11)  0.969(27) 0.17

5/9 0.761(15) 0.943(39) 0.13

6/9 0.768(18) 0.977(74) 0.13

7/9 0.753(48) 0.827(83) 0.07

8/9 0.757(39) 0.494(225) 0.42

Table 4.8: Matrix fit to ID2E .s with 2 exponentials.

Table (4.9) shows the two vector fits that were applied to the 3DAS ground arid
first excited state energies. As before the upper part of the table shows the single
correlation fit to the ground state again showing a steady range of ground state
mass estimates over large tmin/tmaxs A good estimate is given at tmin = 4 of
0.781(6) with Q value 0.60. The lower part of the table shows the two correlation
fit to the ground state and also shows a steady range of values over large tmin/t max,
where a good estimate is given at tmin =3 of 0.760(15) with Q value 0.70 and the
first excited state is estimated to be 1.01(2). Table (4.10) shows the matrix fit to
the 3DzS ground and first excited state energies. There is a steady ground state
with reasonable Q values and a good estimate is indicated by the Q value 0.17

given at tmin = 2 of 0.789(7) and the first excited state is estimated by 1.01(1).
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fit Nexp  trninit

fit to I 2/14
(Iloc) 3/14
4/14

5/14

6/14

7/14

8/14

9/14

10/14

11/14

12/14

fits to (l,loc) 2 1/14
and (2,loc) 2/14
3/14

4/14

5/14

6/14

7/14

8/14

0.798(4)
0.791(5)
0.781(6)
0.773(8)

0.771(10)

0.766(14)

0.759(19)

0.761(26)

0.724(31)

0.699(43)

0.674(67)

0.781(12)

0.781(15)

0.760(15)

0.745(20)

0.757(31)

0.738(40)

0.702(56)

0.609(78)

E2 Q
0.08
0.19
0.60
0.74
0.65
0.57
0.48
0.34
0.66
0.61
0.38
0.979(13) 0.00
0.979(17) 0.39
1.009(19) 0.70
0.971(26) 0.84
0.965(45) 0.76
0.959(62) 0.65
0.935(82) 0.56
0.890(76) 0.62

Table 4.9: Vector fits to 3D3S with 1 and 2 exponentials.
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fit 'L tmin jrraax Ex Ei Q

fits to 2 1/9 0.804(6)  1.042(10)  0.01
(1.1, (1.2) 2/9 0.789(7)  1.008(13) 0.17
(2,1), (2,2) 3/9 0.780(9)  1.007(20)  0.21
419 0.772(11)  0.970(26) 0.18

5/9 0.758(16)  0.942(37)  0.11

6/9 0.770(20)  0.968(72)  0.07

7/9 0.725(88) 0.802(46) 0.07

8/9 0.769(40) 0.431(220) 0.92

Table 4.10: Matrix fit to 3D 3S.s with 2 exponentials.

Table (4.11) shows the two vector fits for the 3D\ ground and first excited state
energies. Again the upper part of the table shows the single correlation fit, and

it displays steady estimates of the ground state masses which have steadyQ
values over a large tmin/tmax range.The Q value of 0.90 indicates an estimate of
0.749(6) for the ground state at tmin=5. The lower part of the table shows the
two correlation vector fit and this exhibits asteady ground state down tmin of 2.

A good estimate is indicated by the Q value 0.50 of 0.740(17) at tmin=4 and the
corresponding first excited state is estimated to be 0.91(2). Table (4.12) shows
the matrix fit applied to the 3D\ ground and first excited states, where a ground
state mass can be extracted from tmin=9 upwards. The best value is given by
0.72(3) with Q value 0.11 at tmin—9 and the first excited state is estimated to

be 0.85(11). The estimate for the ground state extracted from the matrix fit
agrees within errors to the estimate for the ground state extracted from the two

correlation fit.

90



(l.1loc)

(2,loc)

15

0.5

15

Figure 4.7: 3D] Effective masses by (source,sink)

(1.1)

0.5

(2,1

91



fit Newp  "min

fit to | 114
(1,loc) 2/14
3/14

4/14

5/14

6/14

7/14

8/14

9/14

10/14

11/14

12/14

fits to (l,loc) 2 1/15
and (2,loc) 2/15
3/15

4/15

5/15

6/15

7/15

8/15

9/15

Table 4.11: Vector fits to 3D\ with 2 exponentials.

/I\

92

0.781(3)
0.769(3)
0.762(4)
0.755(5)
0.749(6)
0.748(8)
0.743(9)

0.741(12)

0.747(15)

0.742(19)

0.735(26)

0.770(41)
0.741(6)
0.737(8)

0.743(11)
0.740(17)

0.748(23)

0.753(33)

0.762(42)

0.796(59)

0.809(96)

£2

0.957(8)
0.947(10)
0.941(14)
0.908(21)
0.901(31)
0.887(48)
0.895(73)

0.915(119)

0.966(238)

Q
0.00

0.05
0.34
0.73
0.90
0.84
0.84
0.75
0.69
0.56
0.38
0.43
0.03
0.29
0.25
0.50
0.45
0.32
0.21
0.17
0.12



fit N'exp 1,71 in /t E[ E2 Q

fits to 2 7/13 0.727(23)  0.850(52)  0.00
(1,1), (1,2) 8/13 0.706(41)  0.793(47)  0.00
2,1), (2,2) 9/13 0.721(32) 0.845(111) 0.11

10/13  0.727(31) 0.912(202) 0.15
1113 0.686(71) 0.948(278) 0.16

Table 4.12: Matrix lit to 3ZVs with 2 exponentials.

State Vector fit Matrix fit
3D 3s 0.760(15) 0.789(7)
3D 2E 0.763(11) 0.786(7)
3D 2r 0.747(8) 0.770(18)
1D 2E 0.741(7) 0.757(14)
'D 2T 0.750(7) 0.740(13)
3D\ 0.740(17) 0.72(3)

Table 4.13: Comparison of results obtained from vector and matrix fitting method

To conclude this section table (4.13) summarises the results obtained for
vector and matrix fits. As can be seen, the errors are quite high, although any
discrepancies between vector and matrix fits for a particular state are not more

than 2 sigma.

4.3 Fitting Results for Spin Splittings

Spin splittings for S, P and D sta.tes etc., arise from terms in the Lagrangian

(3.30) which involve the spin <r,
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~C8(Mf)2<r* A X E-E x A) and (4.2)

The first term gives rise to the P and D state fine structure, while the second
accounts for the hyperfine S splitting. For this thesis, only the D state spin
splittings were examined, and consequently only the first term is of interest here.
An order of magnitude for the first term can be made following the arguments of
section (3.3). The couplings are set to tree-level values, c3 = c4 = 1, and putting
cr= 1/2 and M£ ~ M, the spin term is evaluated as

a Myv4

~ *(A XE-EXA)
8(M6)2 v ; 16

\(/4.3)
Taking the dimensionless mass as aM =171 and v2 ~ 0.1, the spin term has
a dimensionless order of magnitude 0.001. As can be seen from tables (4.1) to
(4.12) the typical error for ground state masses for both vector and matrix fits
would not be able to distinguish these splittings adequately. To get around this
problem, one can take advantage of the fact that meson correlation functions
with the same orbital angular momentum but differing spin orientation, can be

highly correlated. This allows a direct fit to the splitting between them, using a

single exponential of the form

Ratio(t) = (4.4)

Where 8E is the difference between the ground state energies of both the mesons
involved. The method is known as ratio fitting and has the advantage of re-
ducing statistical errors because the high correlation between the numerator arid
denominator is divided out.

In the attempt to evaluate the D state splittings, advantage was taken of
the maximum correlation between particular polarisations of lattice representa-
tions for D states obtained from the same source state. For example the /D 2T xy

polarisation is formed from the spin/spatial symmetry matrix F = Dxy. The
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1D 2T xy state will be maximally correlated with the following particular polari-
sations consisting of the 3D 2E x state having T = D zxcry—D xyaz, the 3D 2Ey state
having F = Dxycrz- Dyzax and 3D 3S state having T = (Dxycz+{-Dyzax+ D zxcry)/3
(see table (3.1)). Since the initial source spinors only have an upper spin com-
ponent and since the action of cz preserves this, the above mentioned states
will be maximally correlated with the particular polarisation of 1D2Txy. Using
similar arguments, it is possible to work out which other polarisation states are
maximally correlated.

From the potential models discussed in Chapter 2, it is expected that the D
state spin splittings will not be as large as those for the P states. The study by
[12] predicted the D state masses to be 3D\ 10.120, 3D 2 10.126, 1D 2 10.127 and
3D 3 10.130 GeV respectively, giving an average splitting of around 4 MeV. The
average splittings for the P states are found experimentally to be around 20 MeV
[10], From another study of the T meson using NRQCD [32], splittings of around
0.007 in lattice units were found for the P states at 3 = 6.0. This means that we
can probably expect the splittings for the D states to be roughly around 0.003 in
lattice units, linfortunately this is below the statistical error in a lot of the ratio
fits carried out for this thesis.

Despite the fact that the ratio fits cannot be used to accurately determine
the spin splittings for the D states, they can be used to help establish the order
of the states. For example from the results of ratio fits, it seemed true that the
3D 2 and 1D 2 were heavier than the 3D\ state (tables (4.14), (4.15) and (4.16)).
The 3D 3 was heavier than the 3D 2E (tables (4.17) and (4.18)), however the ratio
fit of 3D 3to 1D 2T looks strange (table (4.19)).

Of the remaining possible fits (i.e. the ratio fits for 3D2 to /D2) there
were some problems with the 3D 2 and 1D 2 states. It was originally thought
that these problems could be due to discretisation errors or finite volume effects.
Finite volume effects would probably effect all of the D states together since they
are of similar size. Discretisation errors will act to split the T representation
from the E representation for both the 7D 2 and 3D 2 states. As an example

of the problems encountered table (4.20) shows the results for a ratio fit for the
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fit irexp  Amin/ Amax E x Q
(I,loc) 1 2/13 0.0082(15) 0.13
3/13 0.0078(22) 0.09

4/13 0.0029(32) 0.22

5/13 0.0068(46) 0.24

6/13 0.011(7) 022
7/13 0.019(9)  0.22
8/13 0.038(14) 0.58
9/13 0.041(20) 0.42

10/13 0.036(29) 0.25
11/13 0.044(45) 0.10

Table 4.14: Ratio fit to 3D 2Tyz-3DiX with 1 exponential.

fit in jA Q
(Lloc) 1 1115 0.0114(9)  0.11
2/15 0.0089(14)  0.26

3/15 0.0098(24)  0.21

4/15 0.027(34)  0.78

5/15 -0.0026(49) 0.89

6/15 -0.0065(66) 0.90

7115 -0.0063(89) 0.84

Table 4.15: Ratio fit to 3D.Tzx-:D\y with 1 exponential.
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fit “iexp  Am m/ Bn Q
(I,loc) 1 1/14 0.0208(11) 0.00
2/14 0.0141(16) 0.27

3/14 0.0120(21) 0.34

4/14 0.0077(28) 0.69

5/14 0.0075(38) 0.60

6/14 0.0101(53) 0.55

714 0.0173(73) 0.72

8/14 0.024(10) 0.75

9/14 0.033(14) 0.77

Table 4.16: Ratio fit to 1D 2Eyz-3D\Z with 1 exponential.

fit, “oxp  Amin Tamax £1 Q
(Iloc) 1 2/15 0.0106(3)  0.42
3/15 0.0082(20)  0.55

4/15 0.0053(30)  0.63

5/15 0.0016(42)  0.69

6/15 0.0075(61) 0.78

7/15 0.0051(87)  0.71

8/15 0.004(12)  0.64

9/15 -0.005(16) 0.54

10/15 -0.023(20) 0.69
11/15 -0.006(28) 0.69
12/15 0.012(4.3) 0.57

Table 4.17: Ratio fit to 3DsS-: D: EX with 1 exponential.
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fit Tlaxp train/ "max Ex Q

(loc) 1 2/15 0.0112(13)  0.12
3/15 0.0066(20)  0.67
4/15 0.0048(29)  0.64
5/15 0.0018(42)  0.65
6/15 0.0096(61)  0.89
7/15 0.0045(87)  0.89
8/15 0.0032(125)  0.81
9/15 -0.0052(168) 0.78
10/15 -0.021(23)  0.83

Table 4.18: Ratio fit to ~DAS-"D 2Ey with 1 exponential.

fit <lexp  train/ Ex Q
(1,loc) 1 1/14 -0.0068(3)  0.00
2/14 -0.0037(5)  0.08

3/14 -0.0026(8)  0.16

4/14 -0.0014(11)  0.20

5/14 -0.0014(17)  0.14

6/14 -0.00006(238)  0.11

7/14 0.0013(34) 0.08

8/14 0.0002(50) 0.05

9/14 0.097(72) 0.11

Table 4.19: Ratio fit to 3DsS. D 2Txy with 1 exponential.
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fit Texp  tmini®max £1 Q
(1,oc) 1 1114 0.022(3) 0.38
2/14 0.022(3) 0.31
3/14 0.030(5) 0.78
4114 0.032(6) 0.72
5/14 0.037(8) 0.73

6/14 0.029(11) 0.77
7114 0.022(16) 0.72
8/14 0.021(22) 0.60
9/14 0.016(29) 0.46
10/14  0.024(43) 0,31

Table 4.20: Ratio fit to 3D 2Ex-1D2Eyz with 1 exponential.

30 2e x — 1D 2Eyz splitting, which seems to show that the 3D 2E is heavier than the
1D 2E by something like 0.02. This is a much bigger splitting than expected and
probably in the wrong direction (the potential model predictions have 1D 2 heavier
than 3D 2). Similar results were found for ratio fits using different polarisations of
3D 2E and 1D 2E. When the ratio fits with the T representation were examined,
it was very unclear whether 1D 2 or 3D 2 was heavier.

In an attempt to determine whether the problems outlined above arose from
finite volume effects or discretisation errors, ratio fits were carried out for the E
to T representation for the 3D 2 arid 1D 2 states respectively. For the the case of
1E 2 it seems pretty clear that the E representation is split from the T and that all
of the 1D 2T states (i.e 1D 2T xy: Tyz and Tzx) have the same mass as each other.
Similarly the 1D 2E states (i.e. 1D2Exy and ID2Eyz seem to have the same
mass as each other. This is exactly what one would expect from discretisation
errors. The splittings found for each of the possible ratio fits seem quite high and
are all very similar, around 0.01-0.02, putting the 1D 2T above the AD2E. See

table (4.21) for an example. It is unclear why these discretisation errors were not
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fit exp  “min! tynax Ex Q

(1,loc) 1 1714 0.020(2) 0.70
2/14 0.019(3) 0.67
3/14 0.021(4) 0.66
4/14 0.022(5) 0.57
5/14 0.025(7)  0.51

6/14 0.017(10) 0.55
7/14 0.014(14) 0.45
8/14 0.006(18) 0.38
9/14 0.07(24) 0.34

Table 4.21: Ratio fit to 1D2Txy-AD 2Exy with 1 exponential.

observed for the P state splittings. One possibility may be that the D states are
more sensitive to the errors that appear, perhaps because they are more squeezed
in the volume.

For the 3D 2 case, it is not as clear. There seems to be a splitting within
the 3D 2T representation itself with 3D 2T xy lighter than the others. It is unclear
why this should happen, though it may be related to the fact that the 3D 2T xy
is unusual in that it has the same source as the 1D 2E states. All of the other
3D 2 states overlap with 1D 2T at the source. So the 3D 2Txy may look a bit like
a 1D2E which is below the 1D2 (from the discussion in the paragraph above).
Apart from that, there is no obvious sign of splitting for the 3D 2 state, in that
3D2E x and Ey seem to match well to 3D 2Tyz and Tzx.

If the problems examined here are due to discretisation errors it is important
to discuss how improvements can be made to achieve better results. There is a
choice of going to a finer lattice which is costly or further improving the NRQCD
action. How this is carried out is investigated in [20], and has been implemented
by [33] for S and P states. This would allow someone to repeat these results

but with smaller discretisation errors. They would probably also need higher
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0.6

statistics and perhaps a bigger spatial volume and none of these implementations

would be possible on aliner lattice without utilising massive computer resources.

4.4 Upsilon D States at 3 — 5.7

In addition to the study of the D states at (3 = 6.0, the 1D 2 state was also
studied on a coarser lattice, with a spacing of (3= 5.7. This work was performed
on 123 x 24 lattices with 42 quenched configurations using the standard Wilson
gluonic action. The simulation began on 8 different spatial origin sites and 2
different starting time slices per configuration. The inverse lattice spacing used
in this thesis for /3 = 5.7 was taken from [34] and is given by a-1 = 1.41(4) GeV.

Only two smearings were available for the 1Z2)2, (I,loc) and (1,1), which
meant only single exponential fits were possible. Figure (4.8) shows the effective
mass plots for both smearings, with both plots showing plateaux indicating a

ground state for the 1D 2

1.6
(I.loc)

1.4

1.2

1.0

0.8

0.6

Figure 4.8: ID 2 Effective masses by (source,sink)

Table (4.22) shows the results of the single exponential fit to the 1D 2 state
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with (l,loc) smearing and it shows the presence of a steady ground state over
a reasonable fmm/Tmea,. The Q value of 0.87 corresponding to a ground state of
1.103(14) at tmin = 2 indicates a reasonable estimate.

Table (4.23) shows the results of the single exponential fit to the 1D 2 state
with (1,1) smearing. This also shows the presence of a steady ground state over
a reasonable tminltmax. The Q value 0.69 corresponding to a ground state mass

of 1.084(24) at tmin = 2 indicates a reasonable estimate.

fit Wexp Ci Q

fit to | 1/9 1.128(11)  0.27

(1,loc) 2/9 1.103(14) 0.93
3/9 1.099(19)  0.87
419 1.084(28) 0.85
5/9 1.103(44) 0.81
6/9 1.081(66) 0.67
719 1.175(143) 0.73

Table 4.22: Vector fit to xD 2 with 1 exponential.

4.5 Scaling of Results

The dimensionless ground state mass for 1D2 at (3= 5.7 can be used to obtain a
dimensionless splitting with the 3Si ground state mass predicted at (3= 5.7 in an
earlier work carried out by [29]. Here the ground state mass of the 3Si was found
to be 0.5187(6). This gives a dimensionless splitting of 1xD 2 —13Si = 0.584(14)
in lattice units, where the value of 1.103(14) from the (1,/oc) fit was taken as
the best value for /I xD2. In order to make this splitting dimensionful so that
the scaling at (3 = 5.7 can be compared with (3 = 6.0 predictions, it must be
multiplied by the inverse lattice spacing for (3= 5.7 of a-1 = 1.41(4) GeV. This
gives the splitting as 0.823(31) GeV.
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f|t 'Ilyexp tmin I"max E: Q

fits to 1 1/8 1.091(17) 0.78
(i,i) 2/8 1.084(24) 0.69
3/8 1.083(36) 0.55
4/8 1.033(53) 0.63
5/8 1.078(85) 0.55
6/8 1.113(152) 0.29

Table 4.23: Vector fit to 1D 2 with 1 exponential.

A similar calculation to that above can be used for the (3= 6.0 predictions
of section (4.2). In this case the ground state mass of the 35i state is taken as
0.4534(8), from the earlier work of [31]. The dimensionless splitting is given by
11D2—135i = 0.294(5), where an average has been taken for the 1D 2 predictions
listed in table (4.13). Again to make this splitting dimensionful it must be multi-
plied by the inverse lattice spacing for j3 = 6.0 of a-1 = 2.59(5) GeV, giving the
splitting as 0.761(20) GeV.

As can be seen from the two splittings from the different lattice spacings
there is some sign of lack of scaling. However only single exponential fits could
be carried out for (3 — 5.7 as the (2Joe) smearings etc. were not available, so
this could be the reason for the problem. Figure (4.9) shows a graph of the two
splittings against a2

As can be seen from the graph the scaling is not too bad and we can
conclude that lack of scaling indicates that the continuum result is smaller than
either result. Though of course a cannot be taken to zero in NRQCD (because
of the non-renormalisable interactions) so in principle we have to improve the

action until this plot is flat.
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Figure 4.9: The graph shows a scaling plot of the /ID — 15 splittings results for
/3= 5.7 and /3= 6.0 against a2
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Chapter 5

Conclusions

The method of NRQCD has been shown in the past to be an excellent method
for simulation and analysis of the S and P states of the upsilon spectrum [31, 32].
The quenched simulations at (3= 6.0 of Chapter 4 provided determinations of the
D states of the upsilon spectrum, using the methods of vector and matrix fitting.
Although the predictions for each of the D states had fairly high errors, any
discrepancies between vector and matrix fits for a particular state were within 2
sigma. Quenched simulation data on a coarser lattice at (3= 5.7 was also studied
for the 1D 2 ground state to provide scaling analysis with the (3= 6.0 simulation
data. Results of the scaling analysis gave a ID — 15 splitting of 0.823(31) GeV
for /3 = 5.7 and a splitting of 0.761(20) GeV for (3= 6.0. These results point to
a lack of scaling. However, the fact that only single exponential fits were carried
out for (3= 5.7, could be contributary to the lack of scaling.

Although no upsilon D states have been observed experimentally, an ex-
perimental D state for charmonium has been observed. It is the -0(3770) and
is almost certainly a state (probably with some S state admixture). So the
splitting between the 0(3770) and the J/0 gives some idea of the expected split-
ting between T {'iSi) and the D states (although of course a spin average would
be preferable for a better estimate). That the 0(3770) is a D state is immediately
apparent when the levels are plotted arid it’s width examined for the annihilation

decay to ete~ [16]. It’s width is much smaller than the other states and is pro-
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portional to the wavefunction at the origin squared in perturbation theory. So if
it was entirely a D state this would be zero and the state could never be made in
ete~ collisions. This is why it is so hard to find them. For the upsilon D states,
they will not be seen experimentally if there is not some mixing with the S states
to give them some wavefunction at the origin.

From experimental studies of charmonium, the | 3Th splitting with the spin
averaged S state is 702 MeV. Also the potential model results quoted in Chapter
2 seem to be expecting a splitting of around 700 MeV. So either we are seeing
scaling violations and the ‘continuum’' splitting is more like 700 MeV, or we are
seeing quenching errors. However the standard arguments about quenching are
that it affects states with wavefunction at the origin, which would mean that the
ID-1S splitting should not be affected any more than the IP-IS splitting (which
was used to set the scale). The other possibility is a finite volume effect squeezing
the D states in the lattice ‘box' and pushing up their mass. Calculations would
need to be carried out on a bigger spatial volume (in physical units) to check
this.

Finally in conclusion, from the single state fits the ordering of the D states
are about right but the fine structure could not be determined accurately from
the ratio fits. This was probably due to discretisation errors and possibly a lack
of statistics. These results could be improved upon by going to a finer lattice or
further improving the NRQCD action. This would allow a repeat of these results
but with smaller discretisation errors. Increased statistics would probably also
be neccessary arid perhaps on a finer lattice, although all of these improvements

would require a huge amount of computer resources.
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