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ABSTRACT

This study, on testis development and descent, reproductive tract 

development and the sex steroid hormones in the grey short-tailed opossum, 

Monodelphis domestica, investigates sex differentiation in this important 

biomedical model.

Testis development in Monodelphis has been investigated by light and 

electron microscopy. On the day of birth, gonads in both sexes are elongated in 

shape, extending along the medial aspect of the large mesonephroi. Half the 

karyotyped males are found to have histologically differentiated testes at birth. By 

day 1 testicular cords are clearly distinguished in all XY gonads and the tunica 

albuginea is fully developed. At this stage the large and pale primordial germ 

cells can be easily differentiated from dark pre-Sertoli cells. From day 3 onwards, 

the testis becomes more rounded than the ovary. Leydig cells can be first 

distinguished at day 3 showing expected ultrastructural features of 

steroidogenically active cells. These cells form clusters surrounded by envelope 

cells until week 12 (pre-pubertal stage). By 4 months (pubertal stage), 

seminiferous tubules are now patent and various spermatogenic stages, including 

spermatozoa, are seen for the first time. At this time, Leydig cells are of adult 

type, greatly outnumbering other interstitial tissue cells and are closely-packed 

around blood vessels.

Investigation of reproductive tract development and testicular descent in 

Monodelphis has demonstrated that 1) young are bom with a fully functional 

mesonephros and at a sexual indifferent stage of urogenital development tract (e.g. 

patent Wolffian ducts are seen in both sexes); 2) Mullerian ducts were identified on 

day 1, grow in a caudal direction and reach the urogenital sinus on day 6; 3) in the 

male, regression of the Mullerian duct (presumably due to the production of 

Mullerian Inhibiting Substance at this time) occurs between days 12-16, the onset of 

production period; 4) female Wolffian ducts start to regress at day 15, reflecting the 

fact that testosterone secretion must occur in the male at this time; 5) the testis 

begins its transabdominal descent at day 13, starts inguinal descent by 16 and 

reaches its final position at the base of the scrotum by day 28
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The findings of this study also demonstrate functional characterisation of Leydig 

cells in Monodelphis by immunocytochemical identification of the enzyme 3p- 

hydroxysteroid dehydrogenase and by measurement of testosterone levels using 

radioimmunoassay. Three p-hydroxysteroid dehydrogenase immunostaining is first 

detected in a few Leydig cells on day 16, increases by day 24; reaches a peak at 4 

months and is present even in senescent (3 years) animals. Plasma testosterone is first 

measurable at pre-puberty (3.5 months). Prior to that, plasma testosterone 

concentrations are uniformly below the level of detection in both sexes from day 5 to 

2.5 months. By four months (puberty) plasma testosterone levels in males have risen 

significantly, continuing to increase at six months and peaking in the adult (1-2 years). 

Ovarian testosterone concentrations were consistently lower than those in the testis as 

were those of adrenals of both sexes. Thus the testis would appear to be the major 

source of androgen production throughout life in this species.

Puberty is reached in Monodelphis at 4 months as shown by the expression of 

3p- hydroxysteroid dehydrogenase, a rise in circulating testosterone levels and the first 

appearance of sperm at this time.



VII

CONTENTS

Chapter 1: General Introduction 1

1.1. Sexual Differentiation in Eutherians 1

1.1.1. History 1

1.1.2. Chromosomal Sex 1

1.1.3. Differentiation of the Gonads 3

Differentiation of the Testis 4

Differentiation of the Ovary 6

1.1.4. Endocrine Differentiation of Gonads 7

Mullerian Inhibiting Substance 8

Testosterone 10

1.1.5. Phenotypic Sex 11

Indifferent Stage 11

Male Development 12

Testicular Descent 13

Female Development 14

1.1.6. Role of Hormones in Sexual Differentiation 14

1.1.7. Summary 15

1.2. Sexual Differentiation in Marsupials 16

1.2.1. The History of Marsupials 16

1.2.2. Marsupial Reproductive Anatomy 18

Anatomy o f Female Urogenital Tract. 18

Anatomy o f Male Genitalia 18

1.2.3. Sex Determination and Differentiation 19

Sex Chromosomes 19

Differentiation of the Gonads 20

Differentiation o f the Urogenital System 21

Differentiation o f Pouch and Scrotum 22

Role o f Hormones 22



VIII

1.2.4. The Importance of Studying Sexual Differentiation in

Marsupials 24

1.3. The Grey Short-Tailed Opossum Monodelphis domestica 25

1.3.1. History 25

1.3.2. Genetics 26

1.3.3. Reproductive B iology 26

1.3.4. Gestation, Early Life and Behaviour 26

1.3.5. Opossum (Monodelphis domestica):

a Successful Laboratory Animal 28

1.4. Objectives of This Study 28

Chapter 2: Testis development in the Opossum Monodelphis domestica 30

2.1. Introduction 30

2.2. Materials and Methods 31

2.2.1. Animals 31

2.2.2. Karyotyping 32

2.2.3. Tissue Preparation 32

2.2.4. Light Microscopy 33

2.2.5. Transmission Electron Microscopy 33

2.2.6. Scanning Electron Microscopy 34

2.3. Results 34

2.3.1. Light Microscopy 34

2.3.2. Transmission Electron Microscopy 36

Pre-Sertoli and Sertoli cells 36

Germ cells 36

Leydig cells 37

2.3.3. Scanning Electron Microscopy 38

2.4. Discussion 38



IX

Chapter 3: The Early Postnatal Development of the Reproductive

Tract of Monodelphis domestica 43

3.1. Introduction 43

3.2. Materials and Methods 44

3.2.1. Animals 44

3.2.2. Karyotyping 46

3.2.3. Tissue Preparation 46

3.2.4. Co-culture 46

3.2.4. Light Microscopy 47

3.2.5. Scanning electron Microscopy 47

3.2.6. Transmission Electron Microscopy 47

3.3 Results 48

3.3.1. Mesonephros, Wolffian and Mullerian Ducts 48

3.3.2. Gubemaculum and Gonad Descent 49

3.3.2. MIS Detection 51

3.4. Discussion 51

Chapter 4: Immunocytochemical and Endocrinological Investigation of

Postnatal Leydig cell Development 56

4.1. Introduction 56

4.2. Materials and Methods 57

4.2.1. Animals 57

4.2.2. Tissue Preparation 58

4.2.3. Antibodies 58

4.2.4. Immunocytochemistry 58

4.2.5. Blood, Gonadal and Adrenal Samples 59



X

4.2.6. Testosterone Measurements 59

4.3. Results 60

4.3.1. 3p-HSD Immunocytochemistry 60

4.3.2. Testosterone Levels 61

4.4. Discussion 63

Chapter 5: General Discussion 66

5.1. When do the Gonads Differentiate? 66

5.2. The Characteristics of Leydig Cell in Monodelphis 66

5.3. The Developmental Time Course of Reproductive Tract Formation 67

5.4 The Onset of Testosterone Production 68

5.5. Is Sexual Differentiation in Monodelphis Under Hormonal Control 69

5.6. Future Work 71

5.6.1. Differentiation of Sertoli Cells in Monodelphis 71

5.6.2. Leydig Cells and Androgen Production 71

5.6.23. MIS Detection 72

References 73

Appendix 97



CHAPTER 1 1

Chapter 1: General Introduction 

1.1. Sexual Differentiation in Eutherians

1.1.1. History

In 1947, Alfred Jost established a theory for the fundamental mechanism of 

phenotypic sexual differentiation in mammals. Jost proposed that sexual 

differentiation in eutherians is a sequential process beginning with the establishment 

of chromosomal sex at fertilisation, followed by the development of gonadal sex, 

and culminating in the formation of the sexual phenotype (Fig. 1.1). Each step in 

this process is dependent on the preceding one and, under normal circumstances, 

phenotypic sex conforms to chromosomal and gonadal sex.

Chromosomal Sex

I
Gonadal Sex

i

Phenotypic Sex 

Fig. 1.1. Jost’s model for sexual differentiation (1947; 1953).

According to Jost’s formulation, chromosomal (or genetic) sex, established 

at the time of conception, directs the development of either ovaries or testes. If 

testes develop, their subsequent hormonal secretions elicit the development of male 

primary and secondary sex characteristics, therefore collectively forming the male 

phenotype. If an ovary develops (or if no gonad is present), development of 

phenotypic sex is female in character.

1.1.2. Chromosomal sex

In eutherians, the genetic nature of the spermatozoon penetrating and 

activating the oocyte is the primary determinant of the sex. The sex chromosome 

constitution of the zygote is accepted as having been imposed at fertilisation by the 

penetrating spermatozoon. The chromosomal sex-determining system in eutherians 

is XX : XY system, where females are chromosomally XX and males are XY.
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The chromosomal basis for sex determination was first established between 

1910 and 1916 by Morgan and his American colleagues. According to their work, 

sex determination is controlled by the number of X chromosomes; the Y 

chromosome plays no role in the process except for a contribution to male fertility. 

However, when karyotyping techniques for mammalian chromosomes were 

developed in the late 1950s and early 1960s, it became apparent that the presence of 

the Y chromosome is male determining and there is a vital segment on the Y 

chromosome that acts as the primary signal for male development in both mouse 

and human (for a succinct historical review see Hunter, 1995).

No matter how many X chromosomes are present in the embryo, the 

presence of a single Y chromosome (as in XY, XXY, XXYY, XXXY, etc.) dictates 

formation of a testis and, therefore, phenotypic male development (Davis, 1981). In 

the absence of a Y chromosome and its primary signal (a presumptive gene or 

sequence of genes), development will proceed in a female direction (Jost et al., 

1973). The primary sex-determining signal on the Y chromosome is a testis- 

determining signal referred to as TDF in human and Tdy in mouse (Davis, 1981).

One early proposal was the involvement of a protein - H-Y antigen, a term 

used for a male-specific cell-surface transplantation antigen originally thought to be 

controlled by the Y chromosome (Eichwald & Silmser, 1955; Billingham & Silvers, 

1960). Wachtel et al. (1975) used serological assays to detect antigen as the elusive 

factor, and proposed that the antigen had a testis-determining effect (Wachtel et al. 

1975; Ohno, 1976). The male-specific cell-surface antigen would act as a diffusible 

molecule to mediate transformation of the sexually indifferent gonad into a testis, 

that is to switch cells of the indifferent gonad into the testicular pathway. Lack of 

H-Y antigen in the female would result in the differentiation of ovaries.

In 1990, Sinclair et al. and Gubbay et al. found comparable genes located in 

the sex-determining region of man (SRY) and mouse (Sry) respectively, which are 

the best candidates for TDF. The presence of SRY or Sry on the Y chromosome 

acts as a transcriptional switch affecting the expression of subsidiary autosomal 

genes to control the formation of the testis, while the absence of the gene in the 

female (or the deletion of the gene in a male) leads to ovarian development.
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1.1.3. Differentiation of the Gonads

Differentiation of the gonads is the first phenotypic evidence of sexual 

dimorphism and involves the migration, organisation and differentiation of both 

germinal and somatic cells (Fig. 1.2) (numerous reviews: Jost et al., 1973; 

Wartenberg, 1989a & b; Jost & Magre, 1993; Frederick & Wilson, 1994; Hunter, 

1995). The presumptive gonads, or genital ridges, first appear as a stratification of 

the coelomic epithelium on the medial aspect of the paired mesonephroi during early 

embryonic development (Gardner et al., 1985). At this time the sex of the 

developing gonads cannot be determined morphologically and the indifferent gonads 

become populated with the primordial germ cells (PGCs).

The indifferent gonad is composed of three distinct cell types: germ cells, 

supporting cells of the coelomic epithelium of the gonadal ridge, and stromal 

(interstitial) cells derived from the mesenchyme of the gonadal ridge (for review see 

Frederick & Wilson, 1994). If the embryo is genetically male (XY), the PGCs 

preferentially colonise the medullary region of the presumptive gonads whereas, if 

genetically female (XX), the PGCs become concentrated in the cortical region (for 

review see Hunter, 1995).

The earliest PGCs are characterised by their ability to synthesise glycogen 

and alkaline phosphatase which can be demonstrated by appropriate histochemical 

techniques (McKay et al., 1953). Primordial germ cells - progenitors of the sex 

cells - were first identified by Witschi in the wall of the yolk sac (Witschi, 1948). 

More recently, in the human embryo, Fujimoto et al. (1977) demonstrated PGCs in 

the dorsal endoderm of the yolk sac membrane at 4 weeks post-conception, in the 

hindgut epithelium and mesentery at 5 weeks and then in the genital ridge at 6 

weeks. In the mouse embryo, PGCs can be identified at an earlier stage (7-7.5 days 

post coitum) as a cluster in the mesoderm posterior to the primitive streak (Ginsburg 

et al., 1990).

Primordial germ cells are distinguishable from other (somatic) cells of the 

developing embryo because of their significantly greater size, their large spherical 

nuclei and their distinctive cytoplasm which contains a substantial amount of 

glycogen, numerous lipid droplets, ribosomes and mitochondria (Fujimoto et al., 

1977; McLaren 1983). These cells increase in number by mitotic division during
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migration (e.g. 13-day mouse fetal gonads may contain > 10,000 germ cells), but 

most conspicuously once they reach the presumptive gonads (Tam & Snow, 1981).

In eutherians, formation of the gonad may involve contributions from four 

distinct lineages: the coelomic epithelium, mesenchymal cells, the mesonephros and 

the germ cells themselves. However, there is no consensus as to whether the 

somatic cells of the gonad are derived from the coelomic epithelium by ingrowth 

(Yoshinaga et al., 1988) or from the mesonephros by outgrowth (Mackay et al., 

1989; Smith & Mackay, 1990; Buehr et al., 1993), or from both coelomic 

epithelium and mesonephros (Pelliniemi, 1975; Wartenberg 1981; 1982).

Prior to differentiation of the testis, there is an incomplete separation 

between the mesothelium and the underlying tissue, because the basal lamina of the 

coelomic epithelium is not yet fully formed (for review see Byskov & H(|)yer, 1994). 

The earliest histological indication of gonadal differentiation is the development of 

primordial Sertoli cells and their organisation as presumptive seminiferous cords in 

genetic males (Jost, 1972b; Jost & Magre, 1984), supported by a basal lamina. In 

addition, the genital ridges are larger in XY than in XX embryos even before Sertoli 

cells can be recognised histologically (Mittwoch, 1970; 1985). The significance of 

the more rapid growth of gonads in the male is that testicular products such as 

androgens and Mullerian Inhibiting Substance (MIS) are necessary to prevent 

phenotypic feminization as the ‘default’ pattern (Jost et al., 1973).

Differentiation of the Testis

Differentiation begins at the centre of the genital ridge in the human and at 

the cranial end of the genital ridge in the mouse. As testis formation proceeds, germ 

cells migrate into the medulla and the sex cords become a prominent early feature 

(at about 12.5 days post coitum (dpc) in the mouse (Ginsburg et al, 1990), 13.5 dpc 

in rat and 6-7 weeks gestational age in the human (Jost, 1970a). Germ cell mitosis 

continues in the developing testis, but the initiation of meiosis in the male is delayed 

until the time of puberty (Jost & Magre, 1993). The XY germ cells in the testis 

enter a state of mitotic arrest as (pro) spermatogonia at the same time as female 

germ cells enter meiosis (at 13 - 15 dpc in the mouse), and they resume mitotic 

proliferation in the immediate postnatal period (McLaren, 1983; Jost & Magre, 

1993).
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The primordial Sertoli cells are specialised somatic cells with clear abundant 

cytoplasm and surround the germ cells achieving intimate contact by long 

cytoplasmic processes. Differentiation and alignment of Sertoli cells are the first 

steps in testicular cord formation in genetic males, simultaneous with a rapid 

proliferation and aggregation of PGCs (Jost, 1972b, Jost & Magre, 1988).

The Leydig cells differentiate later, shortly after the testicular cords have 

formed, and this is correlated with the onset of steroidogenesis (Black & 

Christensen 1969; Russo & Rosas, 1971; Byskov, 1986). The theory that Sertoli 

cells induce the development of Leydig cells was first proposed by Kitahara (1923). 

Jost and Magre (1988) also demonstrated that the differentiation of Leydig cells 

from mesenchymal precursors is under the influence of Sertoli cells. Precursors 

migrate from the mesonephric region into the genital ridge before 12.5 dpc and 

Leydig cells are recognisable at 13.5 dpc in the mouse embryo or in the rat at 15.5 

dpc (Wartenberg, 1989a; Jost and Magre, 1993).

The first important step in testicular differentiation is the formation of sex 

cords, precursors of the future seminiferous tubules. Testicular cords are made up of 

the primordial Sertoli cells and PGCs; differentiating Sertoli cells organise the 

position of germ cells within the future testicular cords. The formation of sex cords 

requires peritubular myoid cells, which migrate from the mesonephric region (Buehr 

et al., 1993) into the differentiating testis and collaborate with pre-Sertoli cells in 

the production of a basement membrane (Mackay & Smith, 1989; Tung et al., 

1984).

Around the periphery of the developing gonad, a membranous tunica 

albuginea forms and a prominent blood supply is characteristic of the developing 

testis (Mackay et a l, 1993). Although the tunica albuginea and the interstitial tissue 

become extensively vascularised, germ cells are isolated from direct contact with 

blood capillaries by a more or less complex basement membrane and the 

development of junctional complexes between the Sertoli cells; together these 

constitute the so-called blood-testis barrier (Dym & Fawcett, 1970).

Differentiation of testicular cords occur in the mouse at 13.5 dpc and in the 

rat at 14.5 dpc. These cords are disposed in double arcades in planes perpendicular 

to the length of the gonad (Magre & Jost, 1983). During further development, the 

interstitial cells become packed together; Sertoli cells migrate to the outer surface of



CHAPTER 1 6

the cords which remain in double arcades connected with the rete testis. The cords 

become the future seminiferous tubules once a central lumen develops and a 

basement membrane has formed (Fig. 1.2). At the same time the seminiferous 

tubules become convoluted (Clermont & Huckins, 1961; Magre & Jost, 1983).

Differentiation o f  the Ovary

At the time of testicular differentiation, the ovarian anlage remains 

morphologically indifferent since female gonads grow more slowly (Jost et al. 1973). 

However, the female gonad displays a transient endocrine activity and produces 

oestradiol at this stage (Johnson & Everitt, 1980). The female gonad can only be 

recognised as a potential ovary by the absence of testicular cords. Subsequently the 

PGCs continue to proliferate mitotically, and the primitive sex cords of the female 

remain irregular and ultimately break up and disappear in the medullary regions. 

During early stages of ovarian differentiation three main events occur: 1) meiotic 

prophase is initiated; 2) the diplotene oocyte is enclosed in the germ cell 

compartment, the follicle; and 3) the steroid-producing cells, the theca cells, and 

interstitial cells outside the follicle are differentiated (Byskov, 1986; Byskov & 

H(}>yer, 1994).

In formation of the female gonad, two overall patterns of differentiation may 

be distinguished, depending on whether the ovarian germ cells enter immediate 

meiosis (e.g. mouse, human) without previous steroid synthesis by the neighbouring 

somatic cells, or relatively delayed meiosis (e.g. hamster, rabbit) with steroid 

synthesis being demonstrable before meiosis begins (Byskov, 1979). Byskov & 

H(J)yer (1994) believe that cells derived from the mesonephros are the principal 

contributors to the ovary cell mass. The supporting cells differentiate as pre-follicle 

or pre-granulosa cells under the influence of oocytes. The processes involved in the 

formation of the ovarian are well-documented (reviews: Witschi, 1951; Byskov, 

1986; Wartenberg, 1983; 1989b; Byskov & H(|)yer, 1994; Hunter, 1995).

During ovarian differentiation, the germ cells become enclosed within 

elongated cell cords proliferated from the coelomic epithelium which are connected 

to the mesonephros, although the mesonephric tissue gradually regresses (Byskov, 

1986; Byskov & H())yer, 1994). Cords of mesonephric cells promote ovarian 

transformation by colonising the central part of the presumptive gonad and
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displacing germ cells towards the ovarian periphery (cortex) (Wartenberg, 1983). 

Germ cells remaining in the medulla tend to degenerate whilst those in the 

surrounding cortex continue to proliferate and/or to differentiate (Wartenberg, 

1989b). The primitive medullary sex cords degenerate to be replaced by the well- 

vascularised ovarian stroma. The tunica albuginea is formed by mesenchymatous 

cells. The formation of nests of germ cells distinguishable as oogonia is followed 

by further development and differentiation so that production of potential gametes - 

the primary oocytes - is essentially complete by the time of birth in most eutherians 

(Hunter, 1995).

Oocytes enter meiosis but become arrested at the diplotene stage. During 

this process, not only does the number of oocytes no longer increase but most of 

them degenerate and disappear. The oocytes which are maintained and which will 

be present in the definitive ovary are those surrounded by follicular cells (cells 

homologous to Sertoli cells in the male) to form primordial follicles (Fig. 1.2) (Jost 

& Magre, 1993). Extensive atresia of oocytes is a major feature even before the time 

of birth (Baker, 1972, 1982; Zuckerman & Baker, 1977). Resumption of meiosis is 

a preliminary to the events of ovulation in the adult (Johnson & Everitt, 1980, Jost 

& Magre, 1993).

Functional interactions between the theca and granulosa cells and between 

somatic and germ cells appear important for the endocrine role of the ovary. As to 

the actual origin of follicular cells, in many eutherians such as the mouse, the 

granulosa cells are derived from rete cells and originate in the mesonephros. Once 

such rete cells reach the differentiating ovary, they stop migrating and proliferate 

actively to accumulate as granulosa cells (Hunter, 1995). In the rat oocytes induce 

the supporting cell lineage to differentiate as follicle cells rather than as Sertoli cells 

(McLaren, 1991a). The time at which actual follicles commence to form in different 

species depends on when the oocytes reach the diplotene stage of the first meiotic 

prophase, and may occur during fetal life or after birth (Byskov & H(J)yer, 1994).

1.1.4. Endocrine differentiation of Gonads

A role for gonadal hormones in sexual differentiation was first proposed by 

Bouin and Ancel (1903). In subsequent studies, Jost’s experiments with the rabbit 

embryo were clear-cut and established that the development of phenotypic sex in
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eutherian mammals is female and that hormone secretion from the fetal testes are 

essential for male development (Jost, 1947). Development of the female urogenital 

tract occurs in the absence of gonads (Jost, 1953). This finding facilitated 

understanding of the scientific principle of sexual differentiation and clinical 

disorders of human sexual development. Further investigations have been directed 

towards elucidating the role of hormones secreted by the fetal testes (Jost 1961), the 

control mechanisms that regulate their rates of secretion during critical periods, and 

characterising their mechanism of action at the molecular and genetic levels (for 

review see: Jost & Magre, 1984; 1993; Wilson et al., 1995).

In mammals, all somatic sexual dimorphisms have been assumed to be a 

consequence of gonadal hormone action. The conventional view of mammalian 

sexual differentiation has been that a gene or genes on the Y chromosome causes the 

indifferent gonad to develop into a testis, which then secretes two classes of 

hormone. Androgens, chiefly in the form of testosterone secreted by the Leydig 

cell, actively stimulate growth and development of the Wolffian duct system in the 

male (including the epididymis, vas deferens, seminal vesicles and ejaculatory duct), 

as demonstrated by Greene et al. (1939), Jost (1947) and reviewed by Jost (1953). 

The polypeptide Mullerian inhibitory substance (MIS) is produced by Sertoli cells 

and acts locally to cause regression of the adjacent paramesonephric ducts 

(Mullerian ducts) in genetic males (Josso et al., 1977; Vigier et al., 1983). In the 

absence of a Y chromosome, the indifferent gonad develops into an ovary which 

does not produce androgens or MIS, so that the Wolffian duct derivatives regress 

and the Mullerian ducts persist to form the female reproductive tract (including the 

Fallopian tubes, uterus and upper vagina) (Jost et al., 1973; Wilson et al., 1981; 

Short, 1982; Josso & Picard, 1986).

Mullerian inhibiting substance

Mullerian inhibiting substance (also known as Anti- Mullerian hormone) is 

a large (approximately 140kDa) dimeric glycoprotein molecule and a member of 

the TGF-p family of growth and differentiation factors. This hormone is synthesised 

by Sertoli cells within the fetal testis and granulosa cells of the ovary after birth (for 

review see Cate et al., 1990).
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In the male, MIS is the first known molecule to be produced by the 

developing Sertoli cells (Tran et al., 1977; Tran & Josso, 1982; Josso, 1994) and its 

activity is expressed at the time of formation of seminiferous tubules, being highest 

during the period when the Mullerian duct regresses (Tran et al., 1987). Sertoli 

cells continue to express high levels of MIS after birth, then expression 

progressively decreases and drops sharply at puberty (Baker et al., 1990; Hutson et 

al. 1990; Josso et al., 1990), after which only traces of MIS are detectable in rat 

testis fluid (Josso, 1972; 1973; Tran & Josso 1977) and low MIS concentrations are 

found in human adult serum (Hutson et al., 1990). In the ovary, granulosa cells 

share many structural and functional characteristics with Sertoli cells. The 

possibility that MIS was also responsible for the ovarian effect was considered by 

Jost et al. in 1972 but could not be addressed without purified MIS. Not until 1981 

was the first indication of ovarian MIS production proposed by Hutson et al. who 

demonstrated anti-Mullerian activity in ovarian tissue of hens. Subsequently, MIS 

was detected in bovine follicular fluid by bioassay and radioimmuneoassay (Vigier 

et al., 1984). A low level of MIS is produced at birth by granulosa cells of antral 

follicles while a much higher level is produced in adult follicles (Takahashi et al., 

1986a). However, whatever the degree of follicular maturation or the age of the 

animal, the production of MIS by granulosa cells is low compared with that of 

immature Sertoli cells (Picard et al., 1986; Cate et al., 1990).

Taketo et al. (1993) investigated the site and timing of anti-Mullerian 

hormone synthesis in the mouse gonad by immunocytochemical staining. In the XY 

gonad MIS was first detected in Sertoli cells on day 12 of gestation and staining 

remained intense until day 4 post partum. MIS was also detectable in the XX gonad 

in granulosa cells of growing follicles on day 7 post partum and staining remained 

detectable thereafter.

Mullerian inhibiting substance synthesis begins before the appearance of 

Leydig cells and has not been demonstrated to require hormonal control. These 

observations indicate that MIS expression is found in immature Sertoli cells, is 

probably dependent upon SRY, and is not totally repressed in the mature testis 

(Taketo et al., 1993). Nonetheless, the Mullerian ducts of developing male embryos 

are only sensitive to MIS during the early period after gonadal sex differentiation 

(Josso et al., 1977), that is at the end of the indifferent stage. MIS may have a
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physiological role in regulating oogenesis. Takahashi et al. (1986b) proposed that 

MIS may be involved in preventing the oocyte from completing the first meiotic 

division. Although the role of MIS in the ovary is unknown, studies have identified 

the stages of follicular development where MIS is expressed.

Testosterone

The second developmental hormone of the fetal testis is testosterone (Jost, 1953). 

Sexual differentiation of the Wolffian duct derivatives depends on testosterone, 

secreted by the fetal Leydig cells (Jost, 1963; 1973; Hall, 1994). Although Leydig 

cells were fully described in 1850 by Leydig, the endocrine function of these cells 

was first proposed by Bouin and Ancel (1903). In eutherians, at least two 

populations of Leydig cells have been identified: the fetal Leydig cells are 

responsible for the primary somatic masculinisation and sex differentiation of the 

nervous system, while the postnatal population is activated at puberty and remains 

during adult life (Zirkin and Ewing, 1987; De Kretser & Kerr, 1988). Testosterone 

formation in the testis begins shortly after the onset of differentiation of the 

testicular cords and is coincident in eutherians with the histologic differentiation of 

the fetal Leydig cells (Gondos, 1980). The steroidogenic activity is expressed with 

two populations of Leydig cells by measuring blood and the activity of the enzyme 

3p-hydroxysteroid dehydrogenase (3p-HSD).

In the mouse ovary, the first cells to possess organelles characteristic of 

steroid production appear a few days after birth (Pehleman & Lombard, 1978), when 

the first follicles start growing (Peters, 1969). This coincides with the expression of 

3p-HSD activity, which is initially detectable by day 3 postpartum and increases 

thereafter (H(j)yer & Byskov, 1981). Furthermore, the first cells to acquire this 

enzyme activity are the mesonephric-derived intra-ovarian rete cells, which form the 

first thecal cells. In the human fetal ovary, 3p-HSD activity was also demonstrated 

at midpregnancy in theca cells of the newly formed follicles (Goldman et al., 1966; 

H(|)yer, 1980)
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1.1.5. Phenotypic Sex

Development of phenotypic sex involves differentiation of both the internal 

reproductive tract and the external genitalia accompanied by testis descent into the 

scrotum in the male.

Indifferent Stage

In the early phases of embryonic development, no sex differences in 

structure can be discerned although the genetic sex has already been determined at 

fertilisation. The first morphological evidence of sexual differentiation appears 

much later, at the time when the gonads differentiate. Gonadal ridges develop at the 

surface of the mesonephros near the root of the dorsal mesentery, appearing as a 

thickening of the coelomic epithelium and an underlying cellular condensation. The 

differentiation of the genital tract progresses, subsequently, according to a 

chronology well determined for each species, but it is at first identical in both sexes, 

during the so-called indifferent stage (Jost & Magre, 1993).

The internal urogenital tracts in males and females arise from separate 

anlagen, the Wolffian (mesonephric) and Mullerian (paramesonephric) ducts 

respectively (Fig. 1.3). The two ducts are present in the early embryonic stages of 

both sexes ( being identical in the two sexes up to 8 weeks in the human and 12 days 

in the mouse). During development only one pair of ducts in each sex will persist 

while the other pair regresses as a consequence of gonadal differentiation (Cate & 

Wilson, 1993; Dyche, 1979). The Wolffian ducts (named after Wolff 1733-1794, 

who first described it) run in a cranio-caudal direction along the external edge of the 

mesonephros; this duct is connected anatomically to the indifferent gonad and under 

the future bladder, to the urogenital sinus. The Mullerian ducts differentiate 

alongside the Wolffian ducts. Each appears as a funnel of the coelomic epithelium 

at the top of the mesonephros and is not associated with the gonad. Both types of 

duct terminate in the urogenital sinus. In the male, the Wolffian ducts give rise to 

the epididymides, vasa deferentia and seminal vesicles, and the Mullerian ducts 

disappear (Fig. 1.3). In the female, the Mullerian ducts give rise to the Fallopian 

tubes, uterus and upper vagina, and the Wolffian ducts either disappear or persist as 

vestigial remnants (Fig. 1.3).
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In contrast, the male and female external genitalia develop from common 

anlagen (Fig. 1.4): the genital tubercle, genital folds and genital swellings. In the 

female the system elongates but changes little: the genital tubercle becomes the 

clitoris; the genital folds become the labia minora; and the genital swellings become 

the labia majora. In the male fusion and elongation of the genital swellings become 

the scrotum, and the prostate forms in the wall of the urogenital sinus.

Male development

The development of the male genital ducts involves two different processes 

(Fig. 1.3): the degeneration of Mullerian ducts and the integration of mesonephros 

and Wolffian ducts to form the male genital apparatus. The first sign of 

differentiation in the male urogenital tract is the degeneration of the Mullerian ducts 

adjacent to the testes, a process which begins just after the formation of the 

testicular cords. Eventually the Mullerian ducts will regress completely. The 

transformation of the Wolffian ducts into the male ejaculatory system begins 

subsequent to the onset of Mullerian duct regression. The portion of the Wolffian 

duct adjacent to the testis becomes convoluted to form the epididymis; the central 

portion of the duct becomes the vas deferens. Seminal vesicles develop as buds 

from the lower portions of the Wolffian ducts just before they enter into the 

urogenital sinus. The prostatic and membranous portions of the male urethra 

develop from the pelvic portion of the urogenital sinus (for review see Jost & 

Magre, 1993; Byskov & H(j)yer, 1994).

The external genitalia of the male (Fig. 1.4) begin to develop shortly after 

the onset of virilization of the Wolffian ducts and urogenital sinus. The genital 

tubercle elongates, and the urethral folds begin to fuse over the urethral groove from 

posterior to anterior so that the urogenital cleft closes to form the penile urethra. 

The fusion of the urethral folds brings the two genital swellings together to form the 

scrotum (for review see Jost & Magre, 1993; Frederick & Wilson, 1994).

Two aspects of male phenotypic development take place during the latter 

phases of gestation: growth of the male phallus and testicular descent. There is 

little difference in the size of the genital tubercle in the two sexes, but the male 

phallus grows during the latter phases of fetal development under the influence of



CHAPTER 1 13

androgens from the fetal testis and by the time of birth is larger than the urogenital 

tubercle of the female (Frederick & Wilson, 1994).

Testicular descent

In most eutherians, testes can only become fully functional if they have 

descended from the abdominal cavity to the scrotal sac as spermatogenesis is 

inhibited at body temperature (Wensing, 1988). Testis descent to the scrotum is 

described as occurring in two distinct phases (Fig. 1.5)(Wensing & Colenbrander, 

1986; Wensing, 1988; Heyns, 1987): 1) the transabdominal phase, an androgen- 

independent transabdominal migration of the testis to the inguinal region; and 2) the 

inguinoscrotal phase, involving migration of the testis through the inguinal canal 

down to the scrotum (Hutson et al., 1990). This phase is regulated by testosterone 

(Hutson, 1985). In the rat, the transabdominal phase of testicular descent occurs 

between 1 6 - 2 0  d.p.c. (Wensing & Colenbrander, 1986) and the inguinoscrotal 

phase is completed by the end of the third week after birth.

The mechanics of testicular descent still remain poorly understand, although 

it is said that the gubemaculum plays a key role (Hunter, 1762). The gubemaculum 

is a mesenchymal structure extending from the caudal pole of the testis to the region 

of the inguinal canal in the anterior abdominal wall and into the scrotal swelling, 

van der Schoot (1993a), based on his observations on the rat, has questioned the 

concept of two phases of descent and noted that there is no evidence for active testis 

migration from the posterior abdomen towards the inguinal region during fetal life; 

rather, the testes remain in place at the base of the abdomen in fetuses of 15-16 days 

old. Furthermore, van der Schoot (1992) has stated that androgens play no role in 

the prenatal growth or the postnatal inversion and further development of the 

gubemacular and cremaster muscles, although in rabbits fetal testes certainly control 

prenatal growth and differentiation of the gubemacular cones (van der Schoot, 

1993b). Anti-Mullerian hormone rather than androgens has been implicated in 

promoting a first phase of testicular descent though this remains controversial 

(Hutson, 1985; Hutson et al., 1988; Hutson & Donahoe, 1986).
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Female development

The internal reproductive tract of the female is formed from the Mullerian 

ducts whose cephalic ends are the anlagen for the Fallopian tubes (Fig. 1.3). The 

caudal portions of the ducts fuse to form the uterus. Meonephros and Wolffian 

ducts disappear, with the exception of remnants such as the rete ovarii in the ovarian 

hilum. Contact of the Mullerian ducts with the urogenital sinus induces an intense 

proliferation of endodermal cells that results in the formation of the uterovaginal 

plate between the Mullerian ducts and the urogenital sinus (O’Rahilly, 1977). The 

cells of the uterovaginal plate proliferate, thus increasing the distance between the 

developing uterus and the urogenital sinus. Later, the plate canalises to form the 

lumen of the vagina (for review see Frederick & Wilson, 1994).

The vagina forms at the level where Mullerian ducts merge into the 

urogenital sinus but there are many species variations (for review see Jost & Magre, 

1993). In the rabbit, the vagina is formed by the fusion of the posterior parts of the 

Mullerian ducts. The “Mullerian vagina” opens into the anterior part of the 

urogenital sinus which will differentiate into a long urethra, the exact homologue of 

the male prostatic urethra. In the mouse, the fused portion of the Mullerian ducts is 

short and the vagina derives mainly from the epithelium of the urogenital sinus. 

Progressively, the vagina separates from the urogenital sinus and opens into an 

independent orifice on the body surface. In other animal species, the vagina and the 

female urethra are not so distinctly separate.

In contrast to the male, in which the phallic and pelvic portions of the 

urogenital sinus are enclosed by fusion of the genital folds, most of the urogenital 

sinus of the female remains exposed on the surface as a cleft into which the vagina 

and urethra open. The urogenital tubercle of the female undergoes limited growth 

and development to form the clitoris. In most species, the genital tubercle and 

urethral groove are very little modified during differentiation of the female external 

genitalia (Fig. 1.4) (George & Wilson, 1994).

1.1.6. Role of hormones in sexual differentiation

Development of phenotypic sex results from the action of three hormones 

(Fig. 1.6): 1) Mullerian inhibiting substance (MIS); 2) testosterone and 3) 

dihydrotestosterone (DHT). Only the first two are primary products of the testis,
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most DHT is formed by 5a- reductase at target tissues (Blecher & Wilkinson, 1989; 

Josso etal., 1990; Wilson, 1992).

Testosterone promotes male development in two ways: a) by acting directly 

on the Wolffian duct to stimulate its conversion into epididymis, vas deferens and 

seminal vesicle; b) by serving as a prohormone for the third fetal hormone 

dihydrotestosterone which induces both formation of the prostate from the 

urogenital sinus and formation of the external genitalia (Wilson et al, 1981).

Dihydrotestosterone has some lOx the affinity for androgen receptors than 

testosterone (Grino et al., 1990), enabling the external genitalia to be masculinised 

by very low concentrations of testosterone. Dihydrotestosterone stimulates the 

urogenital sinus to form the prostate and the membranous urethra, the urogenital 

tubercle to form the penis and penile urethra and urogenital swelling to from the 

scrotum (Wilson et al., 1981). The supporting evidence here is that the external 

genitalia contain 5a-reductase, the enzyme that converts testosterone to 

dihydrotestosterone. The fact that the internal ducts do not contain 5a-reductase 

could act to protect the male embryonic urogenital sinus and external genitalia 

against high concentrations of progesterone in the blood and amniotic fluid (Hunter, 

1995).

The critical role of testosterone in the development of the male urogenital 

tract can be deduced from three types of embryological and endocrinological 

evidence. First, the fact that testosterone synthesis immediately precedes the 

initiation of virilization of the urogenital tract in a variety of species (Lipsett & 

Tullner, 1965; Wilson & Siiteri, 1973). Second, the administration of androgens to 

female embryos at an appropriate time in fetal development causes male 

development of the internal and external genitalia (George & Peterson, 1988). 

Third, administration of pharmacological agents that specifically inhibit the 

synthesis or action of androgens impairs male development (Neumann et al, 1970).

1.1.7. Summary

During mammalian sex determination and differentiation, the genital ridge 

arises as a thickening on the medial side of the mesonephros and is bipotential, 

developing as a testis only if the testis-determining gene on the Y chromosome 

(Tdy) is active. In the absence of the gene, development follows the default
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pathway giving rise to an ovary. In contrast the anlagen of the male and female 

reproductive tracts, the Wolffian and Mullerian ducts respectively, are both present 

prior to sex determination. Each anlage is unipotential and the survival and 

development of one versus the other depends on the type of gonad that differentiates 

and its products. In the female, the Wolffian duct system degenerates and the 

Mullerian ducts give rise to the oviducts, uterus and upper vagina. This does not 

depend on any factors produced by the ovary and so can be considered as a default 

pathway. In the male, therefore, two processes have to occur. The Wolffian ducts 

must be maintained and stimulated to differentiate into the male tract and accessory 

organs by the influence of testosterone produced by Leydig cells in the testis. 

Additionally, the Mullerian duct system has to regress, due to the action of anti- 

Mullerian hormone produced by pre-vSertoli cells.

1.2. Sexual differentiation in marsupials

1.2.1. The History of Marsupials

Three sub-classes of living mammals can be distinguished: the monotremes 

which lay eggs, the marsupials which give birth to relatively undeveloped young and 

the eutherians which give birth to more developed young. The traditional view is 

that the marsupial is primitive compared to eutherian mammals, but it is now 

recognised that they merely represent an alternative path from eutherian evolution. 

No other function so distinguishes marsupials from the eutherians as the manner of 

their reproduction.

Fossil evidence has shown that eutherians and marsupials shared a common 

ancestor and that their divergence occurred more than 100 million years ago. The 

earliest fossil records which are unquestionably marsupial are 70 - 80 million years 

old and come from the Milk River formation of Alberta, Canada (Fox, 1971). Thus, 

it is strongly believed that marsupials originated in Western North America: some 

time during the Cretaceous they radiated throughout North and South America and 

then dispersed across the globe by various routes. From North America, one group 

of didelphids reached Europe, probably via Greenland, and survived there until 

competition from eutherians led to their demise. Others radiated from South 

America by island-hopping along the archipelago of West Antarctica, across East
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Antarctica and thence into Australia (Butcher, 1995; Tyndale-Biscoe & Renfree, 

1987).

The geographical separation of marsupials into Australian and American 

groups occurred about 70 million years ago (VandeBerg, 1983). There are about 

250 living species in 16 families, with approximately two-thirds of them living in 

Australia. The Americas are inhabited by three families - the Didelphidae, 

Caenolestidea and Microbiotheriidae of which the Didelphidae is the largest one 

containing 60 species (Butcher, 1995; Tyndale-Biscoe & Renfree, 1987).

The study of marsupials began in the early part of the 16th Century when 

Vincente Yanez Pinzon, the Spanish explorer of South America, discovered the 

opossum during his first voyage to Brazil (Clemens, 1968). Originally, biologists 

classified the marsupials as a variety of eutherian mammal which showed similar 

characteristics: opossums, armadillos, hedgehogs, pigs and shrews were grouped 

together because of their common possession of sharp teeth (Butcher, 1995). It was 

not until 1816 that de Blainville recognised that despite similarities with the 

carnivores and rodents, the marsupials could be distinguished from eutherian 

mammals by the anatomical and physiological features of their reproduction.

As the name implies, most female marsupials possess a pouch (or 

marsupium) on the ventral abdominal wall that encloses the teats and mammary 

glands. The most developed form is found in marsupials which climb (phalangers), 

dig (bandicoots and wombats, in which the pouch opens to the rear), hop 

(kangaroos) or swim (yapoks). However, in some small terrestrial marsupials such 

as the South American Monodelphis, the pouch is absent (Kirsch, 1977). In certain 

marsupials the pouch merely consists of folds of skin around the mammae and in 

many species a pouch is only developed when the mother is suckling.

In 1938, McCrady emphasised an important and useful characteristic of 

marsupials: the young are bom in a underdeveloped state. They are very small and 

for some time after birth each pup is permanently attached to one teat and has 

exclusive use of the associated mammary gland, so that the maximum litter size is 

determined absolutely by the number of functional mammary glands the female 

possesses. Furthermore, young are most vulnerable not at birth but at the time of 

emergence from the nest or pouch.
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1.2.2. Marsupial Reproductive Anatomy

The unusual reproductive anatomy of marsupials (Fig. 1.7) was discovered 

over 300 years ago when Tyson dissected Virginia opossums (Didelphis virginiana) 

(1698). Tyson reported that the genital tract was double from the ovaries to the 

opening of the urethra where the two lateral vaginae joined to form a common 

urogenital canal. Moreover, there was no direct passage between the uterus (= 

median vagina) and the common canal. He concluded that the penis of the male 

might be divided to enter the two vaginae. In the following century, this work was 

confirmed by his colleague William Cowper (1740) who dissected the same species. 

These two studies contributed the foundations of reproductive biology in 

marsupials.

Anatomy of female urogenital tract

Initially, all female marsupials possess two separate uteri, which open by 

separate cervices into the vaginal culs-de-sac. Two vaginae run lateral to the ureters 

to open posteriorly into the urogenital sinus (Fig. 1.7); these lateral vaginae are used 

exclusively for sperm ascent. Birth occurs through a third structure the median 

vagina or birth canal, which also connects the vaginal culs-de-sac with the 

urogenital sinus. This median vagina becomes patent at the time of parturition and 

closes up again afterwards in most species, although it remains open after the first 

parturition in the macropodids (kangaroos and wallabies) (Tyndale-Biscoe, 1973; 

Tyndale-Biscoe & Renfree, 1987; Renfree, 1994).

In eutherian mammals, fusion of the posterior end of the paired oviducts 

forms a single vagina (Fig. 1.7), but the vagina remains paired in marsupials (Fig. 

1.7). This is a result of the course of the ureters in marsupials which pass between 

and not around the developing oviducts, and so fusion into a single vagina is not 

possible. The retention of the paired lateral vaginae and the development of a third, 

median birth canal, results in the bizarre, tripartite arrangement of marsupials (for 

review see Renfree, 1994).

Anatomy of male genitalia

The genital tract consists of paired testes, epididymides and vasa deferentia 

which open into the anterior end of the large prostate gland. Male marsupials are
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unlike eutherians (Fig. 1.7) in that the penis is posterior (caudal) to the scrotum and 

the vasa deferentia open into the urethra without first having to curve around the 

ureters. In addition, the pouch, mammary glands and teats are universally absent in 

all adult males (Tyndale-Biscoe, 1973).

Moreover, in contrast to eutherians, the anal, urinary and genital passages of 

all marsupials open into a common cloaca with only a single external orifice. The 

penis of the male protrudes through this when erect. Although the rectum shares 

this common external orifice, the rectum and the urinogenital openings have 

separate sphincters (Tyndale-Biscoe & Renfree, 1987; Renfree, 1994).

In marsupial and eutherian mammals, the position of the ureters with respect 

to the Wolffian ducts differs: the ureters pass medially between the genital ducts in 

marsupials, and laterally in eutherians to reach the bladder.

1.2.3. Sex Determination and Differentiation

Sex Chromosomes

Marsupials, like eutherians, normally require the presence of a Y 

chromosome for testicular formation. A male-specific homologue of the putative 

testis-determining gene SRY (sex-determining region of the Y chromosome) has 

been identified recently in marsupials (Foster et al., 1992), but the products of this 

gene have not been isolated. The expression pattern of SRY in tammar differs from 

that of the mouse where SRY is expressed only in the gonad at the time of testis 

differentiation. SRY is transcribed not only in the male gonad throughout the period 

of testicular differentiation, but also at every stage examined, from before genital 

ridge formation until at least 40 days after birth in both the gonadal ridge, and in a 

variety of extra-gondadal tissues in males (Harry et al., 1995; Renfree et a l, 1997).

Some sexually dimorphic characters such as the scrotum, mammary anlagen, 

gubemaculum and processes vaginalis appear to be under direct genetic rather than 

secondary hormonal control. Although the Y chromosome is testis-determining in 

marsupials as in eutherians, development of a scrotum or pouch appears to be under 

X chromosome control (Cooper, 1993). Pouched males have an XXY chromosome 

constitution while females with scrota are either XO or XX/XO in constitution. In 

the well-studied marsupials such as the tammar wallaby, differentiation of the pouch 

and scrotum commences before the onset of testosterone synthesis in the testis
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(Renfree et al., 1992). McLaren (1991) suggested that direct genetic control may 

perhaps be determined by the X chromosome, and chromosomal studies indicate 

that scrotal development in marsupials occurs when only a single X chromosome 

(XY or XO) is functional, whereas two X chromosomes (XX or (XXY) are 

necessary for pouch formation (Renfree 1992; Shaw etal., 1990).

Differentiation o f Gonads

The early development of the gonad has been described in some species of 

marsupial: Dasyurus viverrinus by Fraser (1919) and Ullmann (1984), Didelphis 

virginiana by Moore (1939) and Morgan (1943), Perameles nasuta and Isoodon 

macrourus by Ullmann (1981), Macropus eugenii by Alcom (1975) and in 

Monodelphis domestica by Maitland & Ullmann (1993), Fadem et al. (1992), Baker 

et al. (1993; 1990) and Moore & Thurstan (1990). In most these species the gonads 

are at the indifferent stage at birth but differentiation occurs within a few days and, 

as in eutherians, the testis is recognisable before the ovary.

As with eutherians, formation of the genital ridge is on the medial side of the 

mesonephros; unlike eutherians the mesonephros is the functional kidney of the 

young marsupial (Bentley & Shield, 1962; Tyndale-Biscoe & Renfree, 1987) and is 

one the most prominent structures in the fetal abdominal cavity. As its function is 

progressively assumed by the metanephric kidney, the mesonephros starts to regress 

from the anterior end. Subsequently, the gonad becomes rounded and closely 

attached to the regressing portion of the mesonephros.

Histologically, differentiation of the testis becomes apparent on day 2 or 3 

after birth in D. virginiana (McCrady, 1938; Bums, 1939a), Perameles, Isoodon 

(Ullmann, 1981) and Dasyurus viverrinus (Ullmann, 1984) and between day 3 and 7 

in M. eugenii (Alcom, 1975). In genetically male young, the homogeneous blastema 

becomes organised into a central stroma, in which are the rete cords surrounded by a 

zone of pale-staining cells, the medullary cords, and an outer layer of fibrous cells 

and coelomic epithelium (Tyndale-Biscoe & Renfree, 1987)

In all species of marsupial so far studied the ovary can be recognised a few 

days later than the testis when the blastema differentiates into an inner medulla and 

an outer cortex in which the germ cells are found. The reason for this probably is
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due to the transformation and proliferation of germ cells into spermatogonia and 

growth of interstitial tissue (Renfree et al., 1996).

Differentiation of the urogenital system

As mentioned above, marsupials are bom with functional mesonephroi and 

the Wolffian ducts are functional urinary ducts in both sexes. The urogenital 

system, like the gonad, develops from the indifferent stage at birth to the distinctive 

male and female forms during the course of pouch life. The best-studied species in 

this respect are Didelphis virginiana (Baxter, 1935; McCrady, 1938; Bums, 1939c; 

Chase, 1939; Moore, 1939; Rubin, 1944) and the tammar wallaby Macropus eugenii 

(Renfree et al., 1996).

Briefly, at the indifferent stage the mesonephric or Wolffian duct is patent 

and functions as the main urinary duct conveying urine from the mesonephros to the 

urogenital sinus or proctodaeum until about day 14 after birth in Didelphis 

virginiana. Running parallel and lateral to it is the Mullerian duct, which first 

appears on day 3 and opens to the coelom near the genital ridge. At day 10 it has 

made a connection posteriorly to the urogenital sinus near the of the Wolffian duct 

(Tyndale-Biscoe & Renfree, 1987).

In the tammar wallaby, the Wolffian ducts enlarge and elongate in the male 

as the testes migrates caudally before descending through the inguinal canal. In the 

female the Wolffian ducts regress from around day 10 and lose their lumina in the 

portion between the caudal end of the gonad and the urogenital sinus. However, the 

distal and proximal portions of the Wolffian duct remain patent until after day 25. 

The Mullerian ducts in the male begin to regress by about day 7 and around day 21 

the mid-portion of the Mullerian ducts, between the gonads and the urogenital sinus, 

has completely regressed (Renfree et al., 1996).

In male tammars regression of the Mullerian ducts is under the influence of 

MIS secreted by the testis (Short et al. 1988; Hutson et al., 1988). Treatment of 

neonatal marsupials with oestrogens prevents Mullerian duct regression, 

presumably by inhibiting MIS production or action. Wolffian duct development is 

controlled by androgens. Treatment of new-born female pouch young with 

testosterone prevents regression of the Wolffian duct, which normally disappears 

within a few weeks of birth (Bums, 1961a & b; Shaw et al., 1988).
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Differentiation of Pouch and Scrotum

In D. virginiana both pouch and scrotum arise as paired bilateral folds on the 

ventral surface, anterior to the genital tubercle. Subsequently, the posterior ends 

fuse to form the scrotum in the male or the posterior lip of the pouch in the female 

(for review see Tyndale-Biscoe & Renfree, 1987). McCrady (1938) proposed them 

as homologous structures, as are the scrotum and labia majora of eutherian 

mammals. However, pouch rudiments have been recorded anterior to the scrotum in 

the male pouch young of eight species (Beddard, 1891; Bresslau, 1912; Pocock, 

1926), and the adult males of a few species retain a well-formed pouch anterior to 

the scrotum (Thylacinus: Beddard, 1891; Pocock, 1926; Chironectes: Enders, 1966; 

Hunsaker, 1977), which suggests that pouch and scrotum arise from different parts 

of the same anlagen (for review see Tyndale-Biscoe & Renfree, 1987). In D. 

virginiana (McCrady, 1938), M. eugenii (Alcom, 1975) and T. vulpecula (Ullmann, 

1993) pouch, mammary gland and scrotal bulges are histogically distinct at birth.

In all marsupial species which have been studied so far the scrotal anlagen 

only develop in genetic males, and in most species primordia of the mammary 

glands only develop in genetic females: both structures differentiate several days 

before birth (Alcom, 1975; O et al., 1988). These early sexual dimorphisms appear 

to be under direct genetic control determined by X-linked genes (see: O et al, 1988; 

Shaw et al., 1988, 1995; Renfree and Short 1988; Renfree et al., 1995). However 

the mammary anlagen are present in male neonates of American didelphid 

marsupials Didelphis virginiana and Monodelphis domestica (Renfree et al., 1990).

Role of Hormones

Bums (1945) studied the effects of hormone administration on development 

of the sexual phenotype in new-born opossums (Didelphis virginiana). Because of 

their sexual immaturity at the time of birth, the pouch young are accessible for 

experimental manipulation after they attach to the nipple. Administration of 

oestrogen caused some feminization of the urogenital tract of the male opossum, and 

treatment of female pouch young with androgens caused virilization of the 

urogenital tract. However, no hormone or combination of hormones caused reversal 

of the basic phenotype or influenced the basic secondary sex characteristics such as 

development of the pouch in the female or the scrotum in the male (Bums, 1945;
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1961). As a consequence, these studies in the opossum cast doubt on the theory that 

hormones play a primary role in mammalian sexual differentiation.

The formation of a testis ensures virilisation only because testicular 

hormones act to elaborate a male genital system and male secondary sexual 

characteristics (Jost, 1953). Whilst this is the accepted sequence for eutherian 

mammals, O et al. (1988) have noted an apparent and important exception in 

marsupials in that scrotal bulges and mammary anlagen can be identified in the fetus 

before birth, and pouch development is the first evidence of sexual dimorphism in 

marsupials which can be identified at the gross level after birth. Somatic sexual 

differentiation was deduced to be under primary genetic rather than endocrine 

control, since the gubemaculum and scrotum undergo a significant phase of 

differentiation whilst the gonads are still sexually indifferent, as do the mammary 

anlagen and pouch in females (Renfree et al., 1992, Ullmann, 1993). The gonadal 

steroids in the marsupial pouch young, as in pubertal mammals, appear to act as 

modifiers rather than as inducers of development (Wilson, 1994). These evidences 

imply that the differentiation of the scrotum and the pouch in the marsupial is 

controlled by nonhormonal processes. Thus, phenotypic development in marsupials 

differs in several important respects from the process in eutherian mammals.

Mullerian-inhibiting substance injected into a marsupial ovary, that of the 

tammar wallaby, even in quite massive amounts, fails to bring about masculinisation 

(Short et al., 1988). Whilst the timing of this experimental approach may need to be 

modified, it is possible that the structure of the marsupial MIS molecule differs very 

slightly from that of eutherians or that there is a rigorous form of genetic control 

over gonadal determination that is resistant to this particular endocrine intervention 

(for review see Hunter, 1995).

The time scale of virilisation of the urogenital tract of the tammar wallaby 

differs from that in eutherian mammals, being much delayed. Testosterone is the 

androgen found in the neonatal testis and 5a-reductase activity is present in the 

urogenital sinus and phallus at the time of their virilisation (Renfree et al., 1992a). 

This would suggest comparable endocrine function in marsupials and eutherians 

promoting full differentiation of the tract.

In the tammar wallaby, Macropus eugenii, O et al. (1988) reported that 

differentiation of the gubemaculum is hormone independent, highlighting the fact
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that there are sexual dimorphisms in marsupials which precede morphological 

differentiation of the gonads, suggesting a precocious influence of one or more sex- 

linked gene.

1.2.4. The importance of studying sexual differentiation in marsupials.

All marsupial species investigated (a mere handful of the 249 extant species) 

show many differences in respect to eutherian species: a) it has proved difficult to 

sex the offspring at birth by external phenotypic characteristics; b) the young are 

bom at the indifferent stage (development comparable to embryonic stages of 

eutherian species) of sexual differentiation, so that the process is readily accessible 

for experimental investigation; c) gonadal differentiation continues after birth, and is 

followed by differentiation of the Wolffian (mesonephric) and Mullerian ducts; d) 

testicular descent is not complete until some weeks after birth. This allows for 

postnatal research into reproductive development to be undertaken without having 

to kill the mother. Studies of fetal and neonatal stages of gonadal and genital 

differentiation in marsupials can contribute to our understanding of how sexual 

dimorphisms arise, e) The marsupial neonate is not under the influence of any 

placental hormones whilst it is in the pouch, the location at which gonadal 

differentiation is completed and this relative independence suggests that it might be 

possible to modify the gonads by administration of sex steroids to induce a 

complete, functional gonadal sex-reversal; f) structural features of the reproductive 

tracts differ from eutherians and g) the low number and large size of the 

chromosomes has enabled these to be identified more readily when compared with 

most eutherian species.

Evidence in marsupials indicates that some sexually dimorphic structures, 

such as the scrotum, pouch, teat and mammary gland, are more likely to be under 

direct genetic than hormonal control. How genetic sex is translated into phenotypic 

sex remains one of the most intriguing unanswered questions in mammalian sex 

determination and differentiation today and marsupials may prove to be the 

experimental animals of choice for solving this problem. Marsupials, therefore 

represent an important model system for studying sexual differentiation.
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1.3. The grey short-tailed opossum, Monodelvhis domestica

1.3.1. History

The American grey short-tailed opossum (Monodelphis domestica) (Fig. 1.8) 

is a member of the most ancient marsupial family Didelphidae, which separated 

from Australian marsupials about 70 million years ago (VandeBerg, 1983; 1990). 

Monodelphis domestica is one of seventeen species of the pouchless M onodelphis 

genus (Burnett, 1830) distributed from eastern Panama southward to central 

Argentina. This species is omnivorous, nocturnal in nature and gains its specific 

name from its tendency to occupy human habitation, (often reducing the numbers of 

both invertebrate and vertebrate pests) (Fadem et al., 1982).

Fig. 1.8. The female grey sort-tailed opossum (Monodelphis domestica) with young

The word, Didelphis, used by Linneaus in his “system Naturae” is derived 

from the Greek “didelphys” meaning “with two uteri”, i. e. the internal uterus and 

the pouch which was looked upon as an external uterus. This term was used by de 

Blainville in 1816 for a classification of mammals: Ornithodelphia = Monotremata, 

Didelphia = Metatheria and Monodelphia = Eutheria (Tyndale-Biscoe, 1973). 

Monodelphis was first used as a generic name by Wagner in 1842, probably to
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distinguish this animal from Didelphis due to the lack of a pouch or external 

uterus”.

Although several American marsupials such as the Virginia opossum 

(.Didelphis virginiana: Jurgelski, 1974; Jurgelski et al., 1974; Harder and Fleming 

1982), the mouse opossums (Marmosa elegans and Marmosa mitis: Barnes, 1968a, 

b; Barnes and Barthold 1969; Marmosa robinsoni: Godfrey 1975); and grey four

eyed opossum (Caluromys derbianus & Philander opossum: Barnes 1968b) have 

been kept and bred under captive conditions, none of these appears to be well suited 

for captive breeding. These species show low reproductive and survival rates, 

aggressive behaviour, cannibalism and health problems.

In 1978 the representatives of the National Zoological Park in Washington 

D. C., captured four male and five female M. domestica, from the state of 

Pernambuco, in Brazil. Unlike other marsupial species, these survived and bred 

prolifically in the laboratory. In 1979 the National Zoological Park donated 20 

animals to the Southwest Foundation for the exploration of this species as a suitable 

experimental laboratory marsupial.

1.3.2. Genetics

The chromosome number of M. domestica is 18 (2n), and the sex 

chromosome is easily distinguished by its small size relative to the autosomes.

1.3.3. Reproductive Biology

Sexual maturity is reached at 4-5 months in both sexes (Fadem & Rayve, 

1985) and animals breed throughout the year (Fadem et al. 1982; VandeBerg, 1983). 

Females of up to 28 months of age have produced litters and males of 39 months 

have sired young but the majority of animals become reproductively senescent at an 

earlier age than this.

1.3.4. Gestation, Behaviour and Early Life

The gestation period in Monodelphis domestica is 14-15 days (Fadem et al., 

1982, Fadem & Rayve, 1985; VandeBerg, 1983). Litters range in size from 2 -14 

with an average of 7 pups in laboratory conditions and 8.5 pups per litter in wild
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populations (Cothran et al., 1985); the females do not have a pouch, but a roughly 

circular mammary area on their abdomen.

Like all marsupials, the young are born in a very immature state of 

development - each one measuring approximately 1 . 5 - 2  cm in length, and 

weighing 97.9 ± 12.6 mg (Fig. 1.9). They attach to a nipple within minutes or even 

seconds of birth and cannot release it until about 14 days of age, usually in the nest, 

at which time they weigh 840.8 ± 49.8 mg (for review see VandeBerg, 1990).

Fig. 1.9. Newborn Monodelphis domestica attached to the teats

Nest-building is performed by both sexes and an intact nest appears to be 

important for females to maintain the body temperature of young pups since 

disruption of a nursing female’s nest can cause the loss of the litter. Homoiothermy 

is not developed until day 25 days after birth (Fadem et al., 1988). Gould (1984) 

observed that whilst still attached to the nipple, pups emit ultrasonic sounds which 

presumably emerge through the nostrils. These ultrasonic calls are of high intensity 

and have a repetition rate exceeding that observed in rodents.
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Between 18-25 days of age the pups can open their mouths and emit a more 

intense vocalisation, the lower frequencies of which can be heard by humans. By 

about 3 weeks of age the pups are fully furred and at 4-5 weeks their eyes are open 

and they begin to eat solid food. At this stage they are often seen out of the nest 

riding on the mother’s back (Fig. 1.8). The pups are frequently present on the 

nipples for up to 3 weeks of age, whether the mother is resting or active, and they 

continue to suckle until they are separated from their mother or lactation ceases 

naturally (9-11 weeks post partum). By 7 - 8 weeks the juveniles can be weaned, 

separated from their mother and housed individually, at which time they weigh 20.2 

± 3.3g. If the young are not removed from their mother’s cage, lactation can 

continue for as long as 75 days postpartum (Crisp et a l, 1989). Rapid growth 

continues until about 200-250 days when it begins to plateau (Cothran et al., 1985). 

An adult weighs between 80 to 155g and generally males are heavier than females 

(Fadem et al., 1982). The size of Monodelphis is intermediate between a mouse and 

a rat.

1.3.5. Opossum {Monodelphis domestica): a successful laboratory animals

The grey short-tailed opossum, Monodelphis domestica is increasingly used 

as a laboratory species; this is because of its small size, a short gestation period (14 

days), tractability, easy maintenance and high fecundity (litter number 3-14) under 

normal laboratory conditions. This species is therefore becoming the first practical 

marsupial of choice for laboratory research (Adam et al. 1988; Fadem, 1985; 

Fadem, et al. 1992; Fadem & Rayve, 1985; Moore & Thurstan, 1990).

1.4. Objectives of this study

Since this species has recently become the marsupial of choice for laboratory 

research, it is important to establish basic information on its reproductive biology. 

During the eighteen years of its captivity, Monodelphis has been intensively studied 

in many biological aspects. These studies include the physiological characteristics 

(Kraus & Fadem, 1987), sexual behaviour and oestrus (Trupin & Fadem, 1982; 

Fadem, 1985; Fadem & Rayve, 1985; Baggott et a l, 1987); clinical chemical and 

hematological characteristics (VandeBerg et al., 1986); biochemistry and genetics 

(Sinha et al., 1972; Sinha & Kakati, 1976; VandeBerg et al., 1987; Merry et al.,
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1983; Hayman, 1990) and endocrinology (Etgen & Fadem, 1987; Fadem & Erskine, 

1987; Schwanzel-Fukuda et al., 1988) of the species. In some cases the studies have 

direct medical significance. For example, adult Monodelphis domestica resemble 

humans in expressing both photorepair and excision repair pathways and 

consequently have been established as a model mammalian organism for research 

on photorepair mechanisms (Ley, 1987a; 1987b; Ley et al., 1987). Due to the 

advantageous general biological characteristics of Monodelphis when compared 

with other marsupials, it is an ideal candidate for obtaining valuable knowledge. 

However, despite the substantial amount of work conducted, sexual differentiation 

of the reproductive system has been neglected. The aims of this study of 

Monodelphis domestica are therefore:

a.) to examine differentiation of the testis from the indifferent gonad 

primordium;

b.) to examine the subsequent development of the testis at various stages;

c.) to characterise the development of Leydig cells morphologically (to 

ascertain whether there are separately identifiable neonatal and adult 

populations of Leydig cells);

d.) to characterise Leydig cells functionally by immunocytochemical 

identification of the enzyme 3(3-hydroxysteroid dehydrogenase (3(3- 

HSD);

e.) to study development of the reproductive tract and testis descent;

f.) to study steroid hormone synthesis by measurement of testosterone levels 

in the gonads, adrenal glands and peripheral plasma in both sexes using 

radioimmunoasssay;

g.) to study Mullerian Inhibiting Substance production.
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Chapter 2: Testis Development in the Opossum Monodelphis domestica

2.1. Introduction

One of the ways in which marsupials may differ from eutherians is in the 

mechanism of sexual differentiation. In eutherians the female phenotype will 

develop by default unless the testis-determining gene on the Y chromosome 

switches gonadal development to form a testis (see chapter 1 p20), whose hormones 

then control masculinisation of the reproductive tract, external genitalia and brain 

(George & Wilson, 1994; Short, 1982). The sex determining gene, SRY (human) 

and Sry (mouse), is thought to act to control a hierarchy of secondary regulatory 

genes: triggering of differentiation of the somatic cell line along the Sertoli cell 

pathway is a key event (Hunter, 1995). In marsupials, however, some sexually 

dimorphic structures - the scrotal and mammary gland primordia - are said to 

develop prior to gonadal differentiation (O et al., 1988; Renfree et al., 1992; 

Renfree & Short, 1988; Ullmann, 1993) and, as such, appear to be independent of 

androgens secreted by the Leydig cells. Since sexual differentiation of the testis in 

Monodelphis domestica has variously been reported as a prenatal event (Baker et al. 

1990, 1993; Maitland & Ullmann, 1993) or a postnatal one (Moore & Thurstan, 

1990; Fadem et al. 1992) a systematic study is timely.

In widely-documented species such as the laboratory mouse, testis 

differentiation occurs in a step-wise manner. At about 12.5 days post coitum (dpc) 

the testis is first distinguishable morphologically both by its greater vascularity and 

by the appearance of testicular cords (Sertoli and germ cells) at its cranial end. The 

tunica albuginea develops by 15 dpc; two days later a basal lamina and peritubular 

cells surround each cord and Leydig cells are identifiable morphologically. The 

ovary remains indifferent until 14 dpc, when clusters of germ cells begin to form 

indistinct ovigerous cords (Mackay & Smith, 1989). A similar sequence of events is 

seen in the rat, although it begins about a day later reflecting the longer gestation in 

this species (Jost & Magre, 1988).

Fetal and postnatal populations of Leydig cells have been distinguished on 

ultrastructural criteria in the rat (Zirkin & Ewing, 1987). The transient fetal 

population is responsible for the prenatal masculinisation of the reproductive and 

nervous systems, while the adult population is activated at puberty. The fetal
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population arises from precursors which probably originate from mesonephric 

mesenchyme (De Kretser & Kerr, 1988). They were thought to disappear during 

postnatal life as a result of either cell death or cells in the adult testis where their 

physiological role remains enigmatic. The fetal Leydig cells dedifferentiate (Gondos 

et al., 1974), but Kerr and Knell (1988) have reported their persistence as a small, 

distinct population of cells which initially regress during the perinatal period. 

Subsequently phase of prepubertal growth is reinitiated before a further phase of 

regression occurs during the second week post partum. Coincident with terminal 

regression of the fetal Leydig cells is the development of adult-type Leydig cells 

which are believed to differentiate de novo from primitive interstitial fibroblasts (or 

mesenchymal cells) rather than to transdifferentiate from fetal cells. In rats, 

therefore, there appear to be three consecutive waves of Leydig cell development: 

fetal, early juvenile and juvenile-adult; a similar developmental sequence pattern has 

been reported for the pig (De Kretser & Kerr, 1988).

The main objectives of this chapter are 1) to examine early differentiation of 

the testes; 2) to characterise testis development morphologically; 3) to ascertain 

whether there are separately identifiable neonatal and adult populations of Leydig 

cells.

2.1. Materials and Methods

2.1.1. Animals

The animals used in the present study were bred at Glasgow University were 

derived from 19 animals (10 males, 9 females) acquired from Manchester University 

in 1989, 23 females from Southampton University in 1992 and an additional 15 

animals in 1993 (4 males, 11 females) and 10 females in 1996 from Manchester 

University.

The opossums were housed in plastic rat cages, measuring 56 x 38 x 18 cm 

(RC1/F, North Kent Plastics), with wood shaving for floor coverage and shredded 

tissue paper supplied for bedding. The breeding system was applied whereby the 

female was placed directly in to the male’s cage and the pair left together for 14 

days. Following separation from a mate, the female was returned to her own cage, 

given a nest box (20 x 16 x 8 cm) and plenty of nesting material.
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The animal house was maintained at 24°C with a cycle of 14 hours light, 10 

hours dark throughout the year; and a humidity was approximately 35%. Animals 

were checked daily for litters. Animals were fed with a reconstituted cat food (SDS 

Powdered Carnivore Meat). Twice weekly the veterinary vitamin supplement SA- 

37 (Intervet Labs. Ltd.) and fresh fruit, such as bananas, were given. Fresh water 

was available from sipper tube bottles.

A total of 190 opossums of the following ages were used: 0,1, 2, 3,4 5, 8, 

16, 24 days after birth (the day of birth being designated as day 0), 7 - 9 weeks. 

Animals aged twelve weeks (pre-pubertal) 4 months (pubertal) and 1-3 years (adult) 

were also collected. Details of animals used at each age point are shown in Table

2.1. Young animals (from days 0 - 24) were killed by inhalation of CO2 or

Halothane gas and testes were immersion fixed. Older animals ( over 4 weeks of 

age) were anaesthetized by an intraperitoneal injection of 4% sodium pentabarbitone 

and fixed by perfusion with phosphate buffered-fixative (see below).

2.2.2. Karyotyping

Karyotyping was carried out according to the method of Evans (1987) 

(Appendix 1). The liver was removed, minced and cultured in Williams E medium 

(GIBCO) containing colchicine (0.4 mg/ml) for 1 hour at 37°C and then transferred 

to hypotonic 0.56% KC1 for 10 minutes. The tissue was then fixed in methanol: 

glacial acetic acid (3:1 V/V) and spread onto slides. Chromosomes were stained 

with Giemsa’s solution in 0.1M phosphate buffer at pH 6.8 for 15 minutes 

(Appendix 1).

2.2.3. Tissue Preparation

Testes were perfusion- or immersion-fixed with a primary fixative 

(modification of Kamovsky, 1965), composed of 3% glutaraldehyde + 1% 

formaldehyde in 0.1 M phosphate buffer (pH 7.2-7.4) for 24 hours at room

temperature (20°C) then, after a buffer wash, tissue was post-fixed with 1 % OSO4

in 0.1 M phosphate buffer for 30-60 minutes. Subsequently, specimens were 

dehydrated through an ascending ethanol series before being embedded in Araldite 

resin (Appendix 2).
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Table 2.1. Details of animals used

Age Number of Litters Number of Animals
Day 0 4 27
Day 1 2 12
Day 2 4 23
Day 3 2 14
Day 4 3 15
Day 5 2 13
Day 8 1 8

Day 16 2 15
Day 24 1 11
4 weeks 4
7 weeks 4
8 weeks 3
9 weeks 3
12 weeks 4
4 months 9
1-3 years 25

*From days 0 - 24 at least 3 animals of each sex were used. Beyond that only males 

were investigated.

2.2.4. Light Microscopy

For light microscopy, semi-thin (1-2 jam) sections were cut on a Reichert- 

Jung Ultracut with glass knives, then stained with Mayer's haemalum and eosin 

(Appendix 3). All photographs ware taken on a Leitz Vario - Orthomat 

photomicroscope.

2.2.5. Transmission Electron Microscopy

For transmission electron microscopy, ultra-thin sections were cut on a 

Reichert-Jung Ultracut E with a diamond knife ( Diatome-MP3455) and double 

post-stained with both saturated uranyl acetate solution and Reynolds’ lead citrate 

(Reynolds, 1963) (Appendix 3). Specimens were examined in a Philips - CM 100 

transmission electron microscope.
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2.2.6. Scanning Electron Microscopy

After primary fixation, testes for scanning electron microscopy were cut on a 

vibratome (200-300 (im) and postfixed in 1% 0 s 0 4 in 0.1 M phosphate butter for 

30-60 minutes. Dehydration was carried out using a graded series of acetone 

solutions; material was then critical point dried (Polaron E300 critical point drying 

apparatus) and finally coated with gold in a sputter coater (Polaron E5000) 

(Appendix 4). All specimens were examined under a Jeol JSM-T300 scanning 

electron microscope.

2.3. Results

2.3.1. Light Microscopical Observations

New bom and 1 day old specimens were karyotyped and semi-thin sections 

of gonads examined. The diploid chromosome number for Monodelphis domestica 

is 18; the karyotypes of male and female opossums are shown in Figure 2.1a & 

2. lb. The sex chromosome pair is the smallest, the Y being particularly small.

At birth (day 0) the gonads in both sexes are elongate in shape, extending 

along the medial aspect of the mesonephroi. At this stage some male gonads remain 

undifferentiated (Fig. 2.2a), resembling those of females of the same age (Fig. 2.2b). 

In others testicular cord development appears to be beginning (Fig. 2.2c). The 

prospective testis is surrounded by a tunica albuginea of flattened fibroblasts 4-5 

cells in thickness. In developing testicular cords several cell types are already 

distinguishable: large pale staining cells with sub-spherical nuclei and fibroblast-like 

cells. At this stage the larger pale cells are either found scattered in small groups or 

aggregated into cord-like structures (Fig. 2.2c). The latter presumably include the 

pre-Sertoli cells, but at this stage it is difficult to distinguish between these and the 

primordial germ cells at LM level. In immersion-fixed material, small capillaries 

with nucleated erythrocytes are seen occasionally (Fig. 2.2c).

By day 1 the testis primordium is clearly distinguishable in all male 

specimens. As can be seen from Figure 2.3. a tunica albuginea 4-8 cells deep now 

completely surrounds the organ. It is now possible to distinguish between the 2 cell 

types: primordial germ cells are large pale cells and the pre-Sertoli cells have darkly 

stained nuclei. Both cell types are now all gathered into testicular cords located in a 

broad zone below the tunica albuginea. Peritubular cells are beginning to surround
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the cords. The central region of the gonad is occupied by a stroma consisting of 

undifferentiated fibroblast-like cells.

By days 2 - 5  post partum, the testis is becoming rounded, in contrast to the 

ovary which remains elongated. In 4 animals measured on day 5, mean testis length 

is 0.4 ± 0.03 mm (mean ± SEM). The tunica albuginea becomes somewhat reduced 

in thickness as the cords grow. The 1-2 testicular cords seen per section are located 

peripherally and are composed of primordial germ cells and pre-Sertoli cells 

surrounded by 3-4 layers of peritubular cells (Fig. 2.4). Mitotic figures occur in 

both germ cells and pre-Sertoli cells. Spindle-shaped Leydig cells are observed 

between the cords in the enlarging interstitial spaces and are identifiable by their 

intense basophilia.

By day 16 in 5 animals measured, mean testis length has increased to 0.99 ± 

0.02 mm and each section now reveals several cord profiles (Fig. 2.5). Leydig cells 

increase in both size and number and occupy a major proportion of the interstitial 

tissue; their irregular granular nuclei are very obvious (Fig. 2.5). Mitotic figures are 

present in all cell types within the testis. The testis continues to grow, mean length 

measuring 1.5 ± 0.02 mm by day 24 (3 animals) and by the end of week four, the 

testicular cords dominate the organ (Fig. 2.6).

Between 7-12 weeks after birth the testis length increases from 3.7 ± 0.2 to

6.5 ± 0.8 mm (5 animals used per stage). Flattened peritubular cells are reduced to a 

single layer and the interstitial tissue is becoming less cellular (Fig. 2.7). Mitosis is 

still occurring in both germ cells (Fig. 2.7) and Sertoli cells. Blood vessels and 

lymphatics in the interstitial tissue are readily identifiable by the lymphoprotein 

content of the latter. In addition, the interstitial tissue contains macrophages which 

can be distinguished from Leydig cells by their inclusions and reduced basophilia. 

At 12 weeks the testicular cords are not yet patent and mature sperm are still absent 

(Fig. 2.7).

By 4 months, testis length is 7.4 ± 0.39 mm (9 animals) and rises to 8.5 ± 

0.78 mm (18 animals) in adults (1-3 years). Each testicular cord possesses a lumen 

and spermatogenic stages up to and including mature sperm are visible, so it is 

appropriate now to refer to them as seminiferous tubules (Fig. 2.8 & 2.9). The 

peritubular cell layer has become further flattened (Fig. 2.8). Mature Sertoli cells
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are columnar in shape and their cytoplasmic processes are associated with late 

spermatids (Fig. 2.8). Leydig cells now greatly outnumber other interstitial tissue 

cell types and in the adult can be seen closely packed around blood vessels (Fig. 

2.9).

2.3.2. Transmission Electron Microscopy 

Pre-Sertoli and Sertoli Cells

Pre-Sertoli cells can first be distinguished from primordial germ cells in the 

postnatal period (days 0 - 5) by the high electron density of their nuclei (Fig. 2.10). 

At both 12 weeks and 4 months, Sertoli cells proper are readily seen and have apical 

and lateral cytoplasm processes which make contact with germ cell surfaces (Fig. 

2.11a & 2.12a). Sertoli cells are tall, irregularly columnar in shape and rest on the 

basal lamina of the seminiferous epithelium. Their nuclei are large and irregular in 

shape with numerous clumps of heterochromatin. One or two nucleoli with granular 

and other components of varying electron density are found in each nucleus. The 

Sertoli cell cytoplasm contains many tubular mitochondria and numerous electron 

dense lipid inclusions. Both rough endoplasmic reticulum (RER) and smooth 

endoplasmic reticulum (SER) are present, the latter being more abundant. 

Microtubules and microfilaments are occasionally found in the cytoplasm. By 4 

months well-defined tight junctions form between the processes of adjacent Sertoli 

cells with many parallel lines of fusion of the apposed membranes (Fig. 2.12b) and 

the gap junctions are found between Sertoli cells and germ cells (Fig. 2.12a).

Germ Cells

Primordial germ cells are pale, relatively large and rounded in shape with 

predominantly rounded nuclei. At juvenile stages (up to 8 weeks), spermatogonia 

are common within the testicular cords and neighbouring cells are connected by 

intercellular bridges. Spermatogonial cytoplasm shows numerous mitochondria with 

tubular cristae, profiles of both SER and RER are present, as are abundant free 

ribosomes. By 12 weeks spermatocytes with synaptonemal complexes appear (Fig. 

2.1 la  & 2.1 lb). From 4 months, all stages of germ cell development may be seen in 

the testis (Fig. 2.12a). In general, spermatogonia lie against the basement membrane 

and primary spermatocytes are found towards the periphery of the tubule wall while
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other cell types such as spermatids and mature spermatozoan are located closer to 

the lumen. Primary spermatocytes are characterised by a large spherical nucleus; 

when present, synaptonemal complexes are evidence that the pachytene stage of 

meiosis has been reached (Fig. 2.12b). Mitochondria are ovoid and occasionally 

aggregated into groups of two or three. Well-defined Golgi bodies appear as large 

complexes of several lamellae and associated vesicles. Immature spermatids are 

rounded and smaller in size than spermatocytes. The spermatid has a centrally 

placed spherical nucleus with homogeneous chromatin, a well developed Golgi 

complex, and an adjacent centriole; the first signs of acrosome development are seen 

(Fig. 2.12a). Late spermatids are elongated in shape and their nuclei are condensed 

and the acrosome is more obvious. During spermiogensesis the nuclear shape 

changes and the mature spermatozoon nucleus becomes “U”-shaped. A fully 

formed acrosome is present at the head-end of the mature spermatozoon and axial 

filaments are found in the tail.

Leydig Cells

Leydig cells are not detectable at birth, but are first seen on day 3 (Fig. 2.13) 

when they can be readily distinguished from fibroblasts by their highly electron 

dense nuclei and cytoplasm. Over the course of the next few days they develop the 

expected ultrastructural features of steroidogenically active cells, namely a variable 

amount of elongate profiles and vesicles of SER; mitochondria with tubular cristae; 

abundant lipid droplets of high electron density clustered in the cytoplasm (Figs. 

2.13 & 2.14). By this stage SER is extensive and occasionally RER and Golgi 

bodies are visible; nuclei are irregular in shape and the nucleus:cytoplasm ratio is 

approximately 1.5:1. Subsequently Leydig cells are surrounded by envelope cells.

From 7 - 1 2  weeks Leydig cells still form clusters (Fig. 2.15a). SER has 

increased in amount and forms parallel profiles (Fig. 2.15b). At this stage lipid 

inclusions are still present but reduced in number compared to previous stages. 

Leydig cell nuclei are irregular in shape and the nucleus:cytoplasm ratio is 1:1 as a 

result of an increase in the amount of cytoplasm.

At 4 months Leydig cells remain closely packed but are no longer 

surrounded by envelope cells. Masses of SER now form highly organised parallel 

arrays which were not seen at earlier stages (Fig. 2.16) and lipid inclusions are
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further reduced. Nuclei are round or irregularly ovoid with finely dispersed 

chromatin; and the nucleus:cytoplasm ratio is 1:3 as the amount of cytoplasm is now 

further increased.

In the adult, Leydig cells reach their greatest size and their morphological 

features resemble those seen at 4 months, except that lipid inclusions are now sparse 

(Fig. 2.17). With ageing (2-3 years), masses of SER are present but disordered (Fig. 

2.18). Small amounts of RER and some secondary lysosomes are visible. Nuclei 

are irregular in shape and position and some heterochromatic nuclei can be seen at 

this stage.

2.3.3. Scanning Electron Microscopy

By 3,5 months fractured testes show seminiferous tubules, with various 

stages of germ cells, surrounded by peritubular myoid cells (Fig. 2.19a & b). At this 

stage (3-3.5 months) although the lumen is well developed, mature sperm are still 

absent. The interstitial tissue contains Leydig cells and abundant blood vessels; the 

Leydig cells are irregular in shape (Fig. 2.20). These cells, covered by numerous 

short microvilli and blebs are seen at 4 months (Fig. 2.21).

During the period between puberty (4 months) and adulthood, elongate early 

spermatids and mature spermatids with sperm tails are present in the seminiferous 

tubules (Fig. 2.22). Head-head pairing sperm are found in the epididymis (Fig. 

2.23). Leydig cells appear to be round or oval in shape and retain numerous small 

microvilli.

2.4. Discussion

While gonadal differentiation occurs in eutherians before birth (George & 

Wilson, 1994; Hunter, 1995), the limited observations on marsupials indicate that 

this process is a perinatal event. In bandicoots (Ullmann, 1981) the testis can be 

initially identified on the first day of pouch life, while in the marsupial native cat 

(Ullmann, 1984) and brown marsupial mouse (Taggart et a l, 1993a) it is not 

distinguishable until day 3 post partum. In the brush tail possum gonadal 

differentiation occurs perinatally (Ullmann, 1993). Tammar wallaby gonads were 

initially described as indifferent at birth (O et a l, 1988) but, more recently, subtle
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ultrastructural differences between the sexes have allowed prenatal identification of 

the testis (Renfree et al., 1992).

Among american marsupials, McCrady (1938) reported testicular cord 

formation in the Virginia opossum as a prenatal event; but early observations on 

testis development in Monodelphis suggested that the gonads were undifferentiated 

at birth. Thus Fadem et al. (1992) first recorded testis development on day 4 post 

partum, while Moore & Thurstan (1990) observed this on day 3. However Baker et 

al. (1990; 1993) and Maitland & Ullmann (1993) described recognisable testes at 

birth, indicating that testis differentiation is a prenatal event in this species. In the 

present study about half the karyotyped males were found to have histologically 

differentiated testes at birth. It thus appears that in Monodelphis, (as in the brush 

tail possum) testis differentiation is a truly perinatal event.

Fadem & Rayve (1985) and Adam et al. (1988) have already reported that 

puberty occurs at 4 months, but it is unclear whether these authors used 

morphological, endocrinological or behavioural criteria to calculate the onset of 

puberty. This study provides evidence firstly that, at 3 months, the seminiferous 

tubules have not yet developed a lumen and sperm are absent - from which it can be 

deduce that this stage is pre-pubertal. Secondly, by 4 months the seminiferous 

tubules are patent, various spermatogenic stages, including sperm, can be seen and 

Leydig cells greatly outnumber other interstitial cell types. Thus the morphological 

features associated with the onset of puberty in Monodelphis appear at 4 months.

The Sertoli cell is regarded as a principal regulator of materials delivered to 

the germ cells and also secretes fluid into the tubular lumen, the direction of fluid 

secretion being determined by the presence of the Sertoli cell barrier (George & 

Wilson, 1994). The latter is widely presumed to have a marked influence on 

spermatogenesis. Several studies have demonstrated its morphological and 

functional development in which inter-Sertoli junctional specialisations realign in 

order to provide an effective barrier (De Kretser & Kerr, 1988). Russell et al. 

(1989) described its postnatal development in the rat as on days 1 5 - 1 6  and its 

completion in all tubules prior to day 18. Cavicchia & Sacerdote (1991) indicated 

that the appearance of the blood-testis barrier takes place earlier, (days 13 - 20) with 

the appearance of zygotene-pachytene spermatocytes. In Monodelphis, the 

development of the blood-testis barrier probably occurs before puberty with the
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appearance of inter-Sertoli cell tight junctions at 12 weeks. In addition, 

synaptonemal complexes are found in some primary spermatocytes at this stage 

indicating that the pachytene stage of meiosis has been reached. By 4 months 

(puberty), the number of inter-Sertoli cell tight junctions (perpendicular to the basal 

lamina and parallel to each other) are abundant, suggesting the morphological 

substrate of the blood testis barrier is now fully developed.

Rod-like crystalloid inclusions occur in Sertoli cells of the koala (Harding et 

a l, 1982) and the Virginia opossum (Duesberg, 1919), often located close to the 

nucleus and the basal lamina. However, such inclusions are absent in Monodelphis.

The spermatogenic cells of Monodelphis present few unusual characteristics. 

The present study indicates that the nucleus is oval in spermatocytes, spherical in 

immature spermatids and U-shaped in mature sperm. This confirms a study based 

on immunostaining of suspensions of dissociated cells in Monodelphis by Olson & 

Winfrey (1991); similar findings were reported by Rattner (1972) in Didelphis 

virginiana and the mouse opossum Marmosa mitus. Pairing of spermatozoa in the 

epididymis probably occurs in all American marsupials (Rodger, 1982; Taggart et 

a l, 1993b) and the observations of this phenomenon have presented in Monodelphis 

confirm those of Taggart et al. (1993b).

The ultrastructural study confirms the earlier tentative identification of 

Leydig cells in Monodelphis on day 3 (Moore & Thurstan, 1990), by which time 

they possess the machinery for steroidogenesis. In the rat, in which Leydig cells 

have been most intensively studied, fetal Leydig cells are characterised by numerous 

lipid inclusions and clusters surrounded by envelope cells (Kerr & Knell, 1988; 

Kuopio et al., 1989). In the adult testis Leydig cells generally lack lipid inclusions 

and are not surrounded by envelope cells (Kerr & Knell, 1988). In Monodelphis 

though the clusters of Leydig cells found in immature animals are more loosely 

organised than in the rat, nevertheless the delicate processes of envelope cells can be 

demonstrated around them at the ultrastructural level. Moreover, the lipid inclusions 

which occur in these cells at early stages (day 3 onwards) are rapidly reduced at the 

onset of puberty (4 months).

The adult structure of Leydig cells is attained by 4 months and is 

characterised by the extraordinary abundance of SER which is highly organised into 

masses of parallel arrays and occupies the major part of the cytoplasm giving it great
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density. Christensen & Fawcett (1961) also demonstrated an unusually abundant 

SER in Virginia opossum Leydig cells, but this species lacks parallel arrays. Leydig 

cells may possess species-specific characteristics such as the crystals of Reinke in 

the human (De Kretser & Kerr, 1988), glycogen granules in the fetal rat (Kerr & 

Knell, 1988)) but such inclusions, are not found in Monodelphis.

Adult type Leydig cells in the rat are believed to differentiate from 

mesenchymal cells, after the disappearance of the fetal type cells (Kerr & Knell, 

1988; Kuopio et al., 1989). According to these authors, some fetal Leydig cells 

persist in the adult rat testis. Christensen and Fawcett (1961) also reported the 

persistence of relatively undifferentiated mesenchymal cells in the testis of the adult 

Virginia opossum that are believed to be capable of developing into adult-typical 

Leydig cells. In Monodelphis neither identify mesenchymal cells nor fetal-type 

Leydig cells could be identified in the mature testis, and there was no a period, 

subsequent to their appearance on day 3, when Leydig cells were absent. It is, 

therefore hypothesize that, in Monodelphis, the fetal-type Leydig cells give rise 

directly to the adult cells. Associated with this transformation is a 2-3 fold increase 

in the amount of cytoplasm, the remarkable development of the SER and the loss of 

envelope cells. Scanning electron microscopy reveals curious blebs on the surface of 

the Leydig cells: their function is unknown.

To summarise, this study suggests firstly that testicular differentiation in 

Monodelphis is a truly perinatal phenomenon since only about 50% of the animals 

show gonadal sex differentiation at birth. Secondly, although a morphological 

difference is evident in the Leydig cells of immature and mature animals (which 

equate to the fetal- and adult-type cells described in eutherians), two separate and 

distinct populations could not be recognised; neither could a period in postnatal 

development be identified in which Leydig cells were absent. Since neither 

degenerating Leydig cells nor mesenchymal cells were evident in the testis, it would 

suggest that fetal-type Leydig cells transform directly into adult-type cells by loss of 

lipid inclusions, loss of surrounding envelope cells and the development of highly 

organised arrays of SER. Thirdly, the appearance of patent seminiferous tubules 

with mature sperm has been demonstrated by four months, the period when 

peripheral testosterone begins to rise to adult levels (see chapter 4). On the evidence
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of this data it is concluded that, in Monodelphis, the pubertal period is reached 4 

months after birth.
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Fig. 2.1. Chromosome spread from new bom 

opossums (day 0):

a.) Chromosomes of a female opossum. The X 

chromosome pair (arrows) is the smallest. 

Magnification: x 2000

b.) Chromosomes of a male opossum. The X 

chromosome (arrow) is small and the Y 

chromosome (arrowhead) is minute.

Magnification: x 2600

Fig. 2.2. Longitudinal sections of XY and XX 

gonads of neonatal opossums (day 0):

a.) An XY gonad lacking testicular cords. 

Magnification: x 200

b.) The XX gonad shows no obvious cord 

formation.

Magnification: x 220

c.) The XY gonad is surrounded by a tunica 

albuginea (Ta) of 3-4 cells thickness. Note initial 

formation of testicular cords (Tc) with large pale 

cells (arrows). A small capillary with nucleated 

cells is seen (arrowhead).

Magnification: x 200



V
I s

t ' f> « /
o / A

4 ov/rtc < Sfi
la lb



CHAPTER 2

Fig. 2.3. Longitudinal section through the male 

gonad (day 1), showing the 4-8 cells deep tunica 

albuginea (Ta). The sex cords are well-defined 

and could easily be distinguished from interstitial 

tissue. Note primordial germ cells (arrows) and 

pre-Sertoli cells (arrowheads).

Magnification: x 200

Fig. 2.4. Transverse section through the male 

gonad on day 3. Note Leydig cells (arrows) and 

peritubular cells (arrowheads).

Magnification: x 200

Fig. 2.5. Transverse section through the male 

gonad (day 16), showing both germ cells and 

Sertoli cells. Note mitotic figures (arrows), 3-4 

layers of peritubular cells (arrowheads) and well- 

defined Leydig cells (Lc).

Magnification: x 200
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Fig. 2.6. Transverse section through the male 

gonad (day 24). The testicular cords predominate 

the gonad. Note Leydig cells (arrows) and 2-3 

layers of peritubular cells (arrowheads). 

Magnification: x 200

Fig. 2.7. Transverse section through the pre

pubertal testis (12 weeks), showing the interstitial 

tissue becoming less cellular. Note a single layer 

of peritubular cells (Pc), germ cells in mitosis 

(arrows) and abundant Sertoli cells (arrowheads) 

with extending cytoplasm. There are extensive 

capillaries and lymphatics in the interstitium. 

Magnification: x 200.
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Fig. 2.8. Transverse section through the pubertal 

testis (4 months), showing various stages of germ 

cell development in the seminiferous tubules and 

closely-packed Leydig cells (Lc) around blood 

vessels in the interstitial tissue. Note spermatids 

(Sp), sperm tails (St). This is the first stage at 

which the seminiferous tubules are patent. 

Magnification: x 200

Fig. 2.9. Transverse section through the adult 

testis (1 year). Note abundant Leydig cells (Lc) 

and numerous sperm (S). * The apparent absence 

of a lumen in this tubule is an effect of the plane of 

section.

Magnification: x 200
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Fig. 2.10. Electron micrograph of a neonatal male 

gonad (day 0), showing pre-Sertoli cells (Psc), 

primordial germ cells (Pgc) and a basal lamina 

(arrows).

Bar = 10pm.
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Fig. 2.11. Electron micrograph of pre-pubertal 

testis (12 weeks):

a.) Lower power micrograph of testicular cords 

showing following features: peritubular myoid 

cells (Pmc), basement membrane (arrow), 

spermatocytes (Spc) with synaptonemal complexes 

(arrowheads), Sertoli cell nuclei (Sn).

Bar = 5um.

b.) Spermatocytes with synaptonemal complexes 

(arrowheads) and nuclear pores (arrowheads). 

Note well-developed Golgi complex (G).

Bar = 5pm.
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Fig. 2.12. Electron micrograph of pubertal testis (4 

month):

a.) Low-power electron micrograph of 

seminiferous tubule (4 month) showing the 

following features: spermatogonia (Spg), primary 

spermatocytes (Psc), spermatids (Sp), acrosome 

(arrowheads) and Sertoli cell nuclei (Sn).

Bar = lOpm.

b.) Well-defined tight junction showing the 

parallel lines of fusion of the apposed membranes 

and cistemae of endoplasmic reticulum 

(arrowheads) Bar = 0.1 pm.
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Fig. 2.13. Day 3 Leydig cell showing vesicles of 

SER; mitochondria (M) and abundant lipid 

inclusions (L).

Bar = 2fxm.

Fig. 2.14. Day 8 Leydig cell showing elongate 

profiles and vesicles of SER (arrowheads) and 

mitochondria with tubular cristae (M).

Bar = 2|um.
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Fig. 2.15. Electron micrograph of pre-pubertal 

testis (12 weeks):

a.) Leydig cells clustered by surrounding envelope 

cells (12 weeks). Note envelope cell processes 

(arrows).

Bar = 2|im.

b.) Portion of Leydig cell showing parallel 

alignment of SER profiles (arrows). Note RER 

(arrowheads) and mitochondria (M).

Bar = lum.
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Fig. 2.16. Electron micrograph of pubertal testis 

showing closely-packed Leydig cells.

Bar = lOiim.

Fig. 2.17. Electron micrograph of adult testis (1 

year) showing part of a Leydig cell. The cytoplasm 

shows an abundance of SER highly organised into 

masses of parallel arrays.

Bar = 1pm.

Fig. 2.18. Electron micrograph of ageing testis (3 

year) showing masses of SER, but disorganised. 

Bar = 2|Xm.
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Fig. 2.19. Scanning micrograph of fractured testis 

(3.5 months):

a.) Low power micrograph showing the relation 

between seminiferous tubules (St) and interstitial 

tissue (It). Note peritubular myoid cells (arrow). 

Bar = 500pm.

b.) High power micrograph showing Sertoli cells 

with extending cytoplasm (Sep) and germ cells 

(arrows). Note patent seminiferous tubule (St).

Bar = 200|iim.
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Fig. 2.20 Scanning micrograph of fractured testis 

(3.5 months) showing Leydig cells (Lc) 

surrounding a blood vessel (Bv).

Bar = 200|Lim.

Fig. 2.21. Scanning micrograph of fractured 

pubertal testis (4 months) showing mature Leydig 

cells covered by numerous short microvilli and 

blebs (arrowheads).

Bar = 100|iim.
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Fig. 2.22. Scanning micrograph of fractured adult 

testis (1 year) showing mature sperm.

Bar = lOOpm.

Fig. 2.23. Scanning micrograph of fractured adult 

epididymis showing head-head paired sperm.

Bar = 20|iim.
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Chapter 3: The Early Postnatal Development of the Reproductive Tract of
Monodelphis domestica.

3.1. Introduction

The modem interpretation of phenotypic sexual differentiation, based upon 

Jost (1947), views establishment of the gonad as a genetically programmed, while the 

subsequent differentiation of the reproductive tract, genitalia and nervous system 

depend upon physiological factors during development. Thus, reproductive tract 

development involves two sets of primitive genital tracts, the mesonephric (Wolffian) 

and paramesonephric (Mullerian) ducts (see chapter 1 pi 1-12). Androgens produced 

by the testis maintain the Wolffian duct which gives rise to much of the adult male 

reproductive system while MIS causes regression of the Mullerian duct. The lack of 

androgens causes degeneration of the Wolffian duct while the lack of MIS permits 

the Mullerian duct to persist and give rise to much of the female reproductive system 

(see chapter 1 p8-ll).  Mullerian inhibiting substance is produced by granulosa cells 

as well as Sertoli cells (Cate et al., 1990), it may have additional actions on gonadal 

differentiation and testicular descent (Munsterberg & Lovell-Badge, 1991; Hutson et 

al., 1988) though these involvements are unconfirmed at present.

Marsupials pose a number of challenges to views on differentiation obtained 

from studies of eutherian mammals. Firstly, there is disparity in the timing and 

exclusivity of differentiation. Thus, development of the gonads and reproductive 

system generally occurs postnatally; mammary anlagen develop in both sexes of 

South American marsupials but not in Australasian species (Renfree et al., 1987; 

1990; Robinson et al., 1991) and both sexes possess large cremaster muscles as 

adults (Tyndale-Biscoe & Renfree, 1987; van der Schoot et al., 1996). Secondly, the 

process of differentiation leads to anatomical endpoints which are strikingly different 

from eutherians (Diagram. 3.1) e.g. i) a female system with two separate uteri, two 

lateral vaginae and one median vagina/birth canal or ii) a male system in which the 

scrotum is located anterior to a bifid penis (Cowper, 1740; Renfree, 1994). Thirdly, 

and most importantly, the development in marsupials of several sexually dimorphic 

structures such as the pouch, scrotum, mammary primordium, gubemaculum and 

processus vaginalis appears to occur prior to differentiation of the gonad and may, 

therefore, be independent of hormones (O et al., 1988; Shaw et al., 1988; 1995; 

Renfree & Short 1988; Renfree et al., 1995). Despite these differences, there are
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sufficient similarities to suggest that common processes may also operate during 

differentiation. Thus, as in eutherians, differentiation of the gonad depends upon a 

testis-determining gene SRY on the Y chromosome (Foster et al., 1992). Moreover, 

the testes of marsupials produce both testosterone (George et al., 1985; Fadem & 

Harder, 1992; Renfree et al., 1992a) and MIS (Hutson et al., 1988) during 

development and some aspects of differentiation appear to depend on these (Hutson 

et al., 1988; Shaw et al., 1988).

Although earlier reports suggested that gonadal differentiation in 

Monodelphis did not occur until 3-4 days after birth (Fadem et al., 1992; Moore & 

Thurstan, 1990), the evidence using karyotyped neonates has shown that 50% of 

testes are differentiated on the day of birth itself, and all by the next day (see Chapter 

2). Leydig cells can be identified morphologically by day 3 (see Chapter 2) but 3(3- 

hydroxysteroid dehydrogenase activity is not detectable before day 16 and both 

testicular and adrenal testosterone levels are uniformly low until 4 weeks (see 

Chapter 4). In this chapter: a) the developmental time course of reproductive tract 

formation and gonad descent; b) MIS production in Monodelphis will be 

documented.

3.2. Materials and Methods

3.2.1. Animals

The opossums were maintained as described in chapter 2 and pups of both 

sexes were examined at 0, 1, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 20, 24, 28 days after 

birth (birth = day 0). Female animals from 5 - 7  weeks and adults of both sexes were 

also examined. Details of animals used at each age point are shown in Table 3.1 and 

Table 3.2. Animals were killed by rapid decapitation and immersion-fixed with 3% 

glutaraldehyde +1%  formaldehyde in 0.1 M phosphate buffer (pH 7.2-7.4) for semi- 

thin resin histology, transmission and scanning electron microscopy (Appendix 1). 

For paraffin histology, specimens were fixed with 4% formaldehyde in 0.1 M 

phosphate buffer (pH 7.2-4) (Appendix 1).

For co-culture, the CBA mice used in the present study were from an inbred 

colony (Glasgow University, Laboratory of Human Anatomy), and maintained on a 

reversed lighting regime. Males were placed with females for 4 hours, between 12
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noon and 4pm, during the dark phase. Those females with a vaginal plug at the end 

the period were taken to be at day 0 of pregnancy.

Table 3.1. Details of Animals Used for Light Microscopy, Scanning and 

Transmission Electron Microscopy*

Age No. of Female opossums No. of Male opossums
day 0 4 3
day 1 3 3
day 2 3 3
day 4 2 2
day 5 2 3
day 6 2 2
day 8 3 4

day 10 3 2
day 11 1 2
day 12 2 4
day 14 2 2
day 15 3 5
day 16 . 3 4
day 17 2 4
day 19 2 2
day 20 3 3
day 24 4 5
day 28 2 5
day 35 2

7 weeks 2
adult 3 3

*From day 0-2 animals were sexed by karyotyping. Beyond that point, animals can be

sexed from external genitalia.

At specific stages of pregnancy, animals were sacrificed by inhalation with CO2. The 

uterine horns were dissected out and placed in a petri-dish and the fetuses, with 

amniotic membranes intact, were transferred into a solution of Hanks buffer in order 

to maintain an isotonic equilibrium. All dissections were carried out in a laminar 

flow cabinet and surrounding membranes were removed using fine needles.

Fetuses of gestational age E 13.5 day were utilized, the developmental stage being 

determined with reference to Theiler (1972). Prior to E 12.5 day, the gonads are
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indifferent. Following male sexual differentiation (E 13.5 day), the presence of 

testicular cords and distinct blood vessels allows easy identification under the 

dissecting microscope when compared with the relatively homogeneous ovary so that 

sexing can be made on morphological criteria.

3.2.2. Karyotyping

Accurate sexing of newborn and day 1 opossums was achieved by 

karyotyping as described in chapter 2 (Appendix 1).

3.2.3. Tissue Preparation

Dissected mesonephroi or reproductive tracts for light (semi-thin section), 

TEM and SEM were fixed with a primary fixative, composed of 3% glutaraldehyde + 

1% formaldehyde in 0.1 M phosphate buffer (pH 12-1 A) for 24 hours at room 

temperature (20°C) (Appendix 2).

For histology, specimens were fixed in 4% paraformaldehyde in 0.1 M 

phosphate buffer and rinsed in buffer for 10-30 minutes after fixation, then 

dehydrated through an ascending ethanol series and embedded in paraffin at 57°C 

(Appendix 2).

3.2.4. Co-culture

Opossum testes (Table 3.2) and female mouse urogenital ridges were 

dissected in Hank’s buffer and then incubated in a co-culture system to detect MIS 

biological activity (Hutson et a l 1988). The number of animals used at various age 

point are shown in Table 3.2. The standard MIS bioassay was used female E l3.5 

mouse urogenital ridges co-cultured with developing opossum testes for 72 and 120 

hours on a collagen disc over 0.6 ml of CMRL-100 medium (Gibco) containing 10% 

fetal calf serum (Gibco) and 0.1% gentamycin (Gibco). Cultures were maintained at 

37°C in a humidified atmosphere of 5% C 02 and 95% air. The specimens were 

processed for light and transmission electron microscopy as in chapter 2 (Appendix 

2).

The criteria for regression are adapted from a 5 point scale described by 

Hutson et al. (1988). Grade 1: Early regression (duct smaller than normal, basement 

membrane beginning to dissolve and mesenchyme around duct forming a loose
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whorl); Grade 2: Increasing regression (duct about half the normal size); Grade 3: 

Further regression (lumen decreases in size); Grade 4: Further regression (lumen 

obliterated) and Grade 5: Total regression (duct-has disappeared).

Table 3.2. Details of Animals Used for Co-culture

Age No. of Male Opossums

day 4 3

day 6-8 3

day 9-10 3

day 11 2

day 12 3

day 14 2

day 15 2

day 16 4

3.2.5. Light Microscopy

Semi-thin ( 1 - 2  pm) resin sections were stained with Toluidine blue 

(Appendix 3) and paraffin sections ( 5 - 7  pm) were stained with Mayer's haemalum 

and eosin (Appendix 3). All photographs were taken on a Leitz Vario - Orthomat 

photomicroscope.

3.2.6. Scanning Electron Microscopy

Animals were dissected to display the developing reproductive tract and then 

fixed for SEM (Appendix 4). Tissue were processed and examined as in chapter 2.

3.2.7. Transmission Electron Microscopy

Ultra-thin transverse sections through the mesonephros were double post

stained with both saturated uranyl acetate solution and Reynolds' lead citrate as 

described in chapter 2 (Appendix 2). Specimens were examined in a Philips - CM 

100 transmission electron microscope.
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3.3. Results

3.3.1. Mesonephros, Wolffian and Mullerian Ducts

At birth the mesonephros is fully developed and functional with convoluted 

mesonephric tubules (Fig. 3.1a & b, Fig. 3.2a & b); while the metanephros is smaller 

until day 5 (Fig. 3.3a & b). Degeneration of the mesonephros begins around day 10 

and is almost completed by day 19 in the male; however, the female mesonephros is 

still relatively large at day 14. Cranial to the ovary, the mesonephros does not regress 

as much as in the male although it too has almost disappeared by day 19.

Well-developed Wolffian ducts are seen in both sexes at birth (Fig. 3.4a & b), 

extending to the urogenital sinus. These ducts are patent with pale-staining cuboidal 

epithelium and continue to develop in both sexes (Fig. 3.4c & d) until about day 10. 

In the female the Wolffian ducts is larger than the Mullerian ducts until day 14 (Fig. 

3.4f) when the Wolffian ducts begin to regress at its cranial end. By day 15 the duct 

lumen is obliterated (Fig. 3.4h). Wolffian ducts show further regression by day 16 

and have almost disappeared by day 17 (Fig. 3.4j).

Mullerian ducts are clearly seen on day 1 and they grow in a caudal direction 

and reach the urogenital sinus on day 6. At this stage, Mullerian ducts are still not 

patent (Fig. 3.4c-d); it is easily distinguished from the Wolffian ducts by the deep 

staining of its pseudostratified epithelium and its lateral position. Epithelial cells of 

the Mullerian ducts are supported by a basement membrane and surrounded by 

mesenchymal cells (Fig. 3.4c 1-2). Prior to day 9 the Mullerian ducts continue to 

increase in size in both sexes.

In the male the Mullerian ducts begin to regress at its cranial end by day 10, 

when concentric whorls of mesenchymal cells surround the duct (a sign of early 

regression), this regression extends throughout the mesonephros by day 12. 

Increasing regression is clearly seen in the Mullerian ducts at day 14 and the 

mesenchymal cells forming whorls around the duct become flatter (Fig. 3.4e). At the 

ultrastructural level the breakdown of the basement membrane is evident (Fig. 4ei-2). 

By day 15 the Mullerian ducts lumen has completely disappeared (Fig. 3.4g); further 

regression is seen throughout the mesonephros by day 16 and the Mullerian ducts 

have almost disappeared by day 17 (Fig. 3.4i).

In the female the Mullerian ducts are smaller than Wolffian ducts until day 14 

(Fig. 3.4f). By day 15 well-developed Mullerian ducts are patent (Fig. 3.4h) and their
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lumen begin to enlarge at day 16. Its differentiation into a cranial, narrow, 

convoluted part with a transport and secretary function, the oviducts and a more 

dilated caudal part (the uterus) begin when the ducts converge at the urogenital sinus 

(Fig. 3.5a) and the ostium of the oviducts appear (Fig. 3.5a). The Mullerian ducts do 

not fuse to form a single median vagina or uterus. Instead, the uteri and vaginae 

remain separate: the paired but separate uteri are referred to as uterine ‘horns’. The 

developing Mullerian ducts fuse medially at the junction of the developing uterus and 

vaginal sections to form an anterior vaginal expansion, from which the two lateral 

vaginae extend, looping around the ureters as they pass down to the urogenital sinus. 

By day 20 separation into the narrower cranial oviduct primordium and a broader 

caudal uterus are clearly seen (Fig. 3.6a). At the same time the vaginal culs-de-sac 

start to form (Fig. 3.6a). The cranial portion of the Mullerian ducts further elongate 

by day 24 and little further change is observed at day 28 although the oviduct has 

begun to coil. By day 35 the Mullerian ducts have further narrowed and become 

substantially convoluted to form the Fallopian tube (Fig. 3.7). Further uterine 

elongation is evident by 7 weeks.

Differentiation of the male Wolffian ducts to form the epididymis and vas 

deferens has also begun by day 16 (Fig. 3.5b & Fig. 3.13a). Further development of 

epididymis is seen on day 20 (Fig. 3.6b). At day 24 the Mullerian duct is further 

elongated and convluted to form the epididymis (Fig. 3.8). The epididymis is fully 

developed by day 28 when the testis has finally descented into the scrotum (Fig. 3.9a 

& b).

The reproductive tracts are fully functional in both sexes after 4 months. The 

adult male genital tracts consist of epididymides and vasa deferentia which open into 

the anterior end of the large prostate gland (Fig. 3.10a). In the female, the paired 

uteri are separate and open by separate cervices, each leading into a vaginal cul de sac 

and then to separate lateral vaginae (Fig. 3.10b).

3.3.2. Gubernaculum and Gonadal Descent

The gubernaculum in Monodelphis consists of the gubemacular cord (the 

cranial part) which is an inconspicuous strand of mesenchyme attached to the caudal 

end of the gonad and mesonephros and the gubemacular bulb connected with the 

ventral abdominal wall. In Monodelphis the gubernaculum is not developed at birth
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(Fig. la  & b), being first identifiable by day 2 in both sexes as a peritoneal fold with a 

bulbar enlargement at the caudal end. Sex differences are apparent by day 3.5 (Fig. 

3.11a & b) when the male gubemacular cord is significantly longer than the female; 

the gubemacular bulb connects with the ventral abdominal wall in both sexes. In the 

male the gubernaculum elongates and extends through the inguinal canal to reach the 

scrotum. By day 15 it has reached the neck of the scrotum and shows developing 

myofibres and dense mesenchyme (Fig. 3.12a - d). The cremaster muscle, which 

takes origin on the iliac spine, inserts on the tunica vaginalis of the testis in males 

and in the female inserts into the substance of the mammary gland (Tyndale-Biscoe & 

Renfree, 1987). A differentiated cremaster muscle is seen at the periphery of the 

inguinal part of the gubemacular bulb at day 16 (Fig. 3.13a & b). At this time the 

gubernaculum has extended through the developing body wall into the scrotal bulges, 

with the apex of the processus vaginalis within the gubernaculum extending from the 

inguinal canal to the neck of scrotal bulges. By day 24 the when testes have reached 

the neck of the scrotum the gubemacular cord has almost disappeared (Fig. 3.8).

In the female, the gubemacular bulb remains as in the male, but the 

gubemacular cord does not grow much in length during development (Fig. 3.14a-d). 

The gubemacular bulb continues growing until day 20 (Fig. 3.14d), but it starts to 

decrease in size by day 28 (Fig. 3.14e) and a further reduction is seen on day 35 (Fig. 

3.14f). At this time the gubernaculum contains some pigmented cells. During 

development the gubemcular bulb is retained into adult life as the “uterine round 

body” (van de Schoot et al., 1996). In contrast to the male, the female gubernaculum 

never penetrates deeper into the inguinal ring.

At birth gonads in both sexes are elongate in shape (Fig. 3.1a & b). From day 

3 onwards, the testes become more rounded than the ovary (Fig. 3.3a & b). At this 

time gonads in both sexes are initially attached to the large mesonephroi in the 

abdominal cavity (Fig. 3.1-3). Around day 10-12 the testes and the ovaries start their 

caudal migration together with the mesonephros. At day 13 the testes begin their 

transabdominal descent, reaching the inguinal canal within another two days. The 

lower part of the testis and the caudal end of the mesonephros are attached to the 

inguinal region by the gubemacular cord. Inguinal descent begins at day 16 (Fig. 

3.5b, Fig. 3.13a); at this time the testis and the mesonephros have both completely 

descended into the inguinal canal (Fig. 3.15a & b). By day 24 testes have reached the
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scrotal sac (Fig. 3.8) and achieved their final position at the base of the scrotum by 

day 28 (Fig. 3.9a & b). In the female at day 16 the mesonephros cranial to the ovary 

is still relatively larger than in the male (Fig. 5a & 5b). The Mullerian ducts after 

turning medially fuse with the anterior part of the urogenital sinus. During 

development ovaries migrate caudally but remain in the abdominal cavity.

3.3.3. MIS Detection

Mullerian inhibiting substance activity is not detectable during early 

development by co-culture bioassay, in that there is no observed regression of the 

Mullerian duct (Fig. 3.16a) in the female mouse urogenital complex when compared 

with control experiments (Fig. 3.16b). MIS can first be detected on day 15 when the 

testis causes Mullerian duct regression and also stimulates the Wolffian duct (Fig. 

3.16c). In control experiments, no regression of the Mullerian duct is found on day 

15 (Fig. 3.16d).

3.4. Discussion

Genital tract development of marsupials and eutherians differs in the timing 

of key events relative to birth (Tyndale-Biscoe & Renfree, 1987; Renfree et al., 

1996). Monodelphis, like other marsupial species, is bom with a fully functional 

mesonephros and the urogenital system at a sexually indifferent stage (Diagram 3.1): 

the Wolffian ducts are patent to the urogenital sinus and elongated gonads are found 

in both sexes. Differentiation of the Wolffian and Mullerian ducts follows the 

normal eutherian pattern, and takes place after gonadal differentiation under the 

influence of gonadal hormones. In the male, Mullerian duct regression occurs 

between day 12-16 after birth; the onset of MIS production presumably occurs prior 

to this period. Testicular androgen production probably occurs on day 15, since 

Wolffian duct regression in the female begins at this time. This is confirmed by the 

first detection of the enzyme 3p-HSD in Leydig cells at day 16 (Xie et al., 

submitted). Furthermore, Mullerian duct regression in the male occurs earlier than 

the corresponding regression of Wolffian ducts in the female.

The gross anatomy of the adult female reproductive system of marsupials is 

different to that of eutherian mammals, due to a difference in the migration of the 

embryonic urinary and genital ducts (Shaw et al., 1988; Tyndale-Biscoe & Renfree,
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1987). In Monodelphis, as in other marsupials, the ureters pass medial to the 

Wolffian and Mullerian ducts, rather than laterally to them, as in eutherians. As a 

result, the female Mullerian ducts do not fuse to form a single median vagina or 

uterus. Instead, the uteri and vaginae remain separate. The developing Mullerian 

ducts fuse medially at the junction of the developing uterus and vaginal sections to 

form an anterior vaginal expansion, from which the two lateral vaginae develop, 

looping around the ureters as they pass down to the urogenital sinus.

Hunter (1762) proposed that the gubernaculum plays a key role in testicular 

descent and undergoes specific changes that are absent in the female (Backhouse, 

1964). Wensing (1973) reported that during transabdominal migration of the testis, 

the caudal end of the gubernaculum initially enlarges, only to regress again during 

testicular descent into the scrotum. This initial gubemacular swelling may be 

controlled by MIS, since it is abolished in male mice fetuses exposed to 

diethylstilboestrol (DES), which also prevents regression of their Mullerian ducts 

(Raynaud, 1958). Although in recent years the gubernaculum has received much 

attention there is still much confusion regarding this structure.

It is generally agreed in most eutherians (Wensing & Colenbrander 1986) that 

the gubernaculum is a column of mesenchyme initially connecting the gonad on the 

urogenital ridge with the anterior abdominal wall at the future inguinal region. The 

extraperitoneal end is embedded in the abdominal wall as the abdominal muscles 

develop around it, leaving a mesenchymal defect that will become the inguinal canal. 

An annular peritoneal diverticulum grows into the distal gubernaculum to form the 

processus vaginalis. Apart from a narrow connecting ‘mesorchium’ posteriorly, the 

processus vaginalis divides the gubernaculum into three parts: the central column or 

gubernaculum proper; the parietal or vaginal part surrounding the processus vaginalis 

and the origin of the developing cremaster muscle; and the infravaginal solid tip of 

the gubernaculum distal to the processus vaginalis.

However, van der Schoot (1996b) claimed that the strand which runs down 

from the lower end of the testis to the scrotum is a ligament, rather than the 

gubemacular cord. The structure termed the gubernaculum by van der Schoot (1992; 

1996a) in the fetal rat emerges as a part of the developing ventral/inguinal abdominal 

wall and differentiates from the inguinal fold of the mesonephric mesentery. The 

postnatal gubernaculum develops from the fetal gubernaculum and consists of the
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bulge of dense connective tissue on the dorsomedial aspect of the base of the 

cremasteric sac; the cremaster muscles and the covering sheath of the processus 

vaginalis.

In marsupials, the male gubernaculum resembles that of the most eutherians 

(O et al., 1988; Griffiths et al., 1993a; Renfree et al., 1996) as demonstrated by 

Wensing & Colenbrander (1986). Gubemacular stmctures have been studied 

exclusively as part of male genital development (review see van der Schoot, 1996b), 

but have been neglected in females. In the female gubernaculum becomes the uterine 

round ligaments and round bodies (Bums, 1939a, 1945, 1961a, Finkel, 1945) 

following a poorly understood process. The gubernaculum in the tammar wallaby 

develops as a cord of connective tissue, from the nephrogenic cord at the posterior 

end of the gonad and mesonephros; it connects with the anterior abdominal wall, is 

first identified in day-22 embryos and no sex difference in its structure is apparent 

until the day before birth (day 25 of gestation) (Renfree et al., 1996).

A function of the female gubernaculum as a suspensory support of the internal 

genitalia has been proposed in Monodelphis (van de Schoot et al., 1996). Present 

studies indicate that gubemacular differentiation in Monodelphis is a postnatal event 

since it is first identified on day 2 in both sexes. No sex differences prior to day 3.5 

are observed.

Morphological steps in testis descent to the scrotum fall into two distinct 

phases (Heyns, 1987; Hutson et al., 1990): transabdominal migration and 

inguinoscrotal descent. Although complete testicular descent into the scrotum occurs 

in most eutherians (such as the rat: Wensing, 1986; 1988) and marsupials (such as the 

tammar wallaby: Hutson et al., 1988; Griffiths et al., 1993a), there are significant 

differences in scrotal anatomy between them. In the rat, the scrotum is located a 

significant distance from the inguinal canal posteroinferior to the phallus, and 

consists of soft thin skin. The gubernaculum must migrate from the inguinal canal to 

the scrotum during the second phase of descent, then its tip or infravaginal part 

remains free as it does in humans (Heyns, 1987). However, in marsupials the 

scrotum is anterior to phallus and the scrotum has a hard scrotal ‘shell’ overlying the 

inguinal canal cranial to the phallus (Tyndale-Biscoe & Renfree, 1987; Griffiths et 

al., 1993b). In Monodelphis, as in the tammar, the distance for migration is therefore
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reduced and gubernaculum becomes densely adherent to the inside of the scrotum 

throughout the process.

The ontogeny of testicular caudal migration and scrotal descent in 

Monodelphis seem to be a more continuous process than in many eutherian species. 

Around day 10-12 both testis and ovary become more posteriorly located relative to 

the kidney due to differential growth and mesonephric regression. Transabdominal 

migration begins at day 13; inguinoscrotal descent starts at day 16 and descent into 

the scrotal sac is completed by day 28.

In eutherians, testicular descent is under separate hormonal control (Hutson,

1985). Transabdominal migration from its original abdominal position to the site of 

the future internal inguinal ring does not require androgen (Hutson & Donahoe,

1986). Mullerian inhibiting substance has been proposed as a possible regulator of 

this phase (Josso & Tran; 1977). Inguinoscrotal descent is regulated by androgens, as 

the testes remain at the inguinal ring in testicular feminisation (Hutson & Donahoe, 

1986). In Monodelphis, the transabdominal phase of testicular descent starts at day 

13 and inguinoscrotal descent begins on day 16, which coincides with the timing of 

MIS and testosterone production. This would be consistent with its proposed role in 

the control of testicular descent phase.

Mullerian inhibiting substance in eutherian mammals such as the rat, calf and 

human causes regression of the Mullerian (or paramesonephric) duct, the anlage of 

the Fallopian tube, uterus cervix and upper vagina (Josso & Picard, 1986, Josso et al., 

1993). Mullerian inhibitory substance of testicular origin can transform rat ovaries 

into testes in vitro (Vigier et al. 1987). Picon (1969) devised an in vitro organ culture 

assay to detect Mullerian inhibiting substance using the 14 day rat gonadal urogenital 

ridge. If cultured for 3 days with embryonic mammalian testis, regression of the 

Mullerian duct could be detected histologically. This co-culture bioassay technique 

has also been used in the human (Josso, 1972, 1973; Blanchard & Josso, 1974). In 

marsupials, Hutson et al. (1988) employed a modified MIS bioassay co-culturing 

13.5 day fetal mouse urogenital ridges with developing wallaby testes. The results 

show MIS activity in pouch young 2 to 85 days old. In Monodelphis, the male 

Mullerian duct starts regressing between days 12-16, which presumably indicates that 

the MIS production occurs prior to this period although MIS activity cannot be 

detected until day 15 using bioassay techniques. Lack of an effect may be a result of
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small size of gonads in Monodelphis when compared with those of the wallaby, 

causes the concentration of MIS in the co-culture medium to be too low.

To summarise, the development of reproductive tract and gonadal descent in 

Monodelpis follows the eutherian pattern and occurs under the influence of gonadal 

hormones. This study suggests that the onset of MIS production occurs prior to day 

12 and testicular androgen secretion begins at day 15. This is consistent with the role 

of these hormones in controlling the two phases of testicular descent.
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INDIFFERENT STAGE
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ADULT FEMALE ADULT MALE
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Ovary Oviduct

UterusUterus
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Bladder

Urogenital sinus

urethraEpididymis
Testis

Bladder
Vas deferens

Penis

Diagram. 3.1 Reproductive tract of the opossum.
(Modified from Fadem &Tesoriero, 1986)
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Fig. 3.1a-b. Newborn opossums sexed by 

karyotyping:

Scanning electron micrographs of female (a) and 

male (b) opossums show elongated gonads 

attached to the large mesonephros (Ms) in both 

sexes.

Note testis (T), ovary (O), metanephros (Mt), 

colon (Co) mesonephic ducts (arrows).

Magnification: x 58
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Fig. 3.2a-b. Histological transverse sections of 

opossums on day 0:

Female (a) and male (b) opossums both showing 

the large mesonephros (Ms) with patent 

mesonephric tubules and the first sign of 

paramesonephric (Mullerian) ducts (arrows) at 

the caudal end.

Note testis (T), ovary (O), metanephros (Mt) and 

intestine (It).

Magnification: x 25



9

c?



CHAPTER 3

Fig. 3.3a-b. Scanning electron micrographs of the 

opossum urogenital system on day 5:

Female (a) and male (b) opossums showing 

elongated ovary (O) and rounded testis (T) 

attached to the mesonephros (Ms).

Note metanephros (Mt), adrenal (A), 

gubemaculum (G) colon (Co), bladder (B) and 

inguinal canal (arrows).

Magnification: x 58
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Fig. 3.4a & b. Transverse sections through the 

opossum mesonephros on day 0:

Karyotyped male (a) and female (b) newbron 

opossums showing fully developed Wolffian 

ducts (W).

Magnification: x 240
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Fig. 3.4c & d. Transverse sections through the 

opossum mesonephros on day 6:

Male (c) and female (d) both showing well- 

developed Mullerian ducts(M).

Note Wolffian ducts (W) and mesonephric 

tubules (Mst).

Magnification: x 240
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Fig. 3 . 4 c i -2 . Transmission electron micrographs 

of transverse sections through the male opossum 

mesonephros on day 6:

ci.) Low power of micrograph shows the 

Mullerian duct (Md) are surrounded by 

mesenchymal cells (Me).

B a r  =  lOO fim.

C2.)  High power of micrograph showing the 

Mullerian duct epithelium and well-developed 

basement membrane (arrow).

Bar = lOOfim.
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Fig. 3.4e-f. Transverse sections through the 

opossum mesonephros on day 14:

Light micrographs show although evidence of 

Mullerian duct (M) regression is seen in the male 

(e): whorls of mesenchymal cells are aggregated 

around the duct (arrows), Mullerian ducts are still 

relatively large in the female (f).

Magnification: x 240
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Fig. 3.4ei-2. Transmission electron micrographs 

of transverse sections through male mesonephros:

a.) Low power micrograph showing flattened 

mesenchymal cells (arrowhead) around the 

Mullerian duct.

Bar = lOOum.

b.) High power micrograph showing breakdown 

of the basement membrane (arrow).

Bar = 20fim.

Note Wolffian (Wd) and Mullerian duct (Md).
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Fig. 3.4g-h. Transverse sections through the 

opossum mesonephros on day 15:

g.) Male showing further regression of the 

Mullerian duct which now lacks a lumen.

h.) Female showing regression of the Wolffian 

duct (W) with obliterated lumen (W) and well- 

developed Mullerian duct (M).

Magnification: x 240
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Fig. 3.4i-j. Transverse sections through the 

opossum mesonephros on day 17:

The Mullerian duct (M) has almost disappeared 

in the male (i) and as has the Wolffian duct (W) 

in the female (j).

Magnification: x 240
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Fig. 3.5a-b. Scanning electron micrographs of the 

opossum urogenital system on day 16:

Female (a) shows differentiation of the Mullerian 

duct (Md). Male (b) shows testis (T) now close 

to the entrance of the inguinal canal.

Note kidney (K), adrenal (A), colon (Co), 

urogenital sinus (Us), bladder (B), ovary (O), 

ostium of the oviduct (Os), scrotum (S), 

epididymis (Ep), intact testis (*) and inguinal 

canal (arrow).

Magnification: x 25.
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Fig. 3.6a-b. Scanning electron micrographs of 

the opossum urogenital system on day 20:

a.) The female opossum shows the Mullerian 

duct differentiated into a narrower cranial (Md) 

and a broader caudal region where the vagina 

(Vg) is forming by the junction of the two sides.

b.) The male opossum shows further development 

of epididymis (Ep) and vas deferens.

Note kidney (K), adrenal (A), bladder (B), ureter 

(Ur), testis (T), intact testis (*), ovary (O), 

urogenital sinus (Us), gubemaculum (G), scrotum 

(S) and phallus (P).

Magnification: x 18.
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Fig. 3.7. Scanning electron micrographs of 

female urogenital system on day 35:

The Mullerian duct becomes convoluted to form 

the Fallopian tube (arrow). The uterus (U) and 

lateral vagina (Lv) are clearly seen.

Note kidney (K), adrenal (A), gubemaculum 

(arrowheads) and urogenital sinus (Us).

Magnification: x 12
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Fig. 3.8. Scanning electron micrographs of the 

male opossum urogenital system on day 24 shows 

testes (T) have moved from their intra-abdominal 

position through the inguinal canal (arrows) into 

the extra-abdominal spece and reached to scrotum 

sac (Sc). Well-developed epididymis (Ep) are 

clear seen.

Note kidney (K), adrenal (A), bladder (B), colon 

(Co), intact testis (*), ureter (Ur), vas deferens 

(Vd) and gubemaculum (G).

Magnification: x 12
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Fig. 3.9a-b. Young opossum at day 28:

a.) The external genitalia of female and male 

opossums shows scrotal bulges (Sb) in the male, 

but absent in the female.

b.) Scanning electron micrographs of the male 

opossum urogenital system shows testes (T) 

descended into their final position at the base of 

the scrotum and a fully developed epididymis 

(Ep).

Note kidney (K), adrenal (A), bladder (B), colon 

(Co), intact testis and scrotum (*) and vas 

deferens (Vd).

Magnification: x 12
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Fig. 3.10a-b. The gross anatomy of the adult 

male and female opossum reproductive system:

a.) Male opossum shows the characteristic large 

prostate (Ps) and Cowper glands (Cg).

b.) Female opossum shows two uteri (Ut) and 

two vaginae (Vg).

Note kidney (K), bladder, ureter (Ur), testes (T), 

vas deferens (Vd); epididymis (Ep), tunica 

vaginalis (Tv), Fallopian tube (Ft) urogenital 

sinus (Us) and bladder (B).
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Fig. 3.11a-b. Scanning electron micrographs of 

male (a) and female (b) gubemaculum on day 3.5 

show the elongated male gubemaculum (G) 

extending further towards the body wall (Bw) 

when compared with the female. Note 

mesonephros (Ms).

a: Magnification: x 120

b: Magnification: x 200
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Fig. 3.12a-d. Longitudinal sections through the 

male opossum on day 15 shows the

gubemaculum extending through the inguinal 

canal, developing myofibres (Mf) and

mesenchyme cells (Me).

Note gubemaculuar cord (Gc); gubemacular bulb 

(Gb); scrotum (S), and processus vaginalis (Pv).

Magnification: a & c: x 32; b & d: x 80.
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Fig. 3.13a-b. Longitudinal sections through the 

male opossums on day 16:

a.) Low power micrograph of male opossum 

showing early differentiation of cremaster 

muscle (Cm) around the inguinal part of the 

gubemacular bulb.

Magnification: x 40.

b.) High power micrograph of gubemacular bulb 

showing developing myofibrs (Mf). 

Magnification: x 80.

Note testis (T), inguinal canal (Ic), scrutum (S) 

and differentiation of epididymis (Ep).
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Fig. 3.14a-f. Scanning electron micrographs of 

developing female gubemaculum:

Day 5 (a) shows female gubemaculum bulb (Gb) 

connects with the ventral abdominal wall. Day 8 

(b) showing female gubemaculum bulb (Gb) and 

cord (Gc). Further development of female 

gubemaculum on day 16 (c), day 20 (d), day 28 

(e) and day 35 (f).

Notes mesonaphros (Ms), ovary (O), ostium of 

the oviduct (arrows), Fallopian tube (Ft) and the 

uteri (Ut).

Magnification: a & d: x 220: b & c: x 110: e: x 

170: f: x 200.
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Fig. 3.15a-b. Transverse sections through male 

opossums on day 16 (a) and day 17 (b) showing 

descent of both testis (T) and mesnephros (Ms) 

into the inguinal canal (Ic) and differentiation of 

the Wolffian duct (Wd) into epididymis.

Magnification: x 100.
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Fig. 3.16a-d. Mouse urogenital complexes co

cultured with developing opossum testes:

a.) A testis on day 7 causes no regression of the 

Mullerian duct (M).

b.) Control experiment: An ovary induces no 

regression of the Mullerian duct (M ).

c.) A testis on day 15 causes Mullerian duct 
regression and also stimulates the Wolffian duct 
(W) when compared with control experiment.

d.) Control experiment: An ovary induces no 

regression of the Mullerian duct (M). The 

Wolffian duct (W) has regressed in the absence of 

androgen.

Magnification: x 300.
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Chapter 4: Immunocytochemical and Endocrinological Investigation of 

Postnatal Leydig Cell Development

4.1. Introduction

The course of sexual differentiation in male eutherians involves testis 

formation, followed by masculinisation of the reproductive tract, external genitalia 

and brain; much of this development occurs prenatally (Short, 1982; George & 

Wilson, 1994; Payne, 1996). The major androgen responsible for the 

masculinisation of the reproductive tract is testosterone, secreted by Leydig cells of 

the fetal testis (see chapter 1 p 10-11).

The enzymatic complex 3p-HSD, which is essential to the biosynthesis of 

forms of biologically active testosterone (Diagram. 4.1), can be readily detected by 

immunocytochemistry (Readhead et al., 1983; Luu-The et al., 1989; Dupont et al., 

1990a; 1990b; 1993). In eutherians, both enzyme histochemistry (Ziegler et al., 

1983; Haider et al., 1986;) and immunocytochemistry (Dupont et al., 1993) have 

shown 3P-HSD activity to be positively expressed in the mouse (13.5 dpc) and in 

the rat (15.5 dpc).

Testosterone is the principal gonadal androgen produced during marsupial 

sexual differentiation (Renfree et al., 1992; Fadem & Harder, 1992). Gonadal 

testosterone in the Virginia opossum cannot be detected until day 10 (George et al., 

1985). In the tammar wallaby, gonadal testosterone levels are low in both sexes at 

birth, but in males they rise between days 2 to 10 with the formation of seminiferous 

tubules (Renfree et al., 1992). Testosterone levels remain high in the testis until 

after day 40, by which time sexual differentiation of the internal genitalia is 

essentially complete (Renfree et al., 1992; 1995).

Leydig cells can first be identified ultrastructurally in Monodelphis on 

postnatal day 3 (chapter 2). Surprisingly, Fadem and Harder (1992) reported that 

there were high levels of testosterone (comparable to adult male levels) in the 

peripheral plasma of newborn Monodelphis. However, there is no reported evidence 

of testicular hormone production at birth in either Australian (e.g. tammar wallaby: 

O et al., 1988) or American marsupials (e.g. Virginia opossum: Bums, 1961a); 

moreover, Leydig cells cannot be distinguished prior to day 3 in Monodelphis, so the 

source of the testosterone measured by Fadem and Harder (1992) remains unclear.
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The aim of the work described in this chapter is to shed further light on early 

sexual differentiation in Monodelphis by i) immunocytochemical identification of 

the enzyme 3(3-hydroxysteroid dehydrogenase (3(3-HSD) involved in steroid 

hormone synthesis, and ii) measurement of androgen levels in the gonads, adrenal 

glands and peripheral plasma of both sexes.
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Androstenedione Testosterone

Diagram 4.1 Pathway of interconversion of steroid

4.2. Materials and Methods

4.2.1. Animals

The animals used in the present study were as described in chapter 2. For 

immunocytochemistry, male opossums of the following ages were used: (birth = day 

0) days 3, 4, 5, 8, 16, 24 ; 4 weeks, 7-10 weeks; 3 - 3.5 months (pre-pubertal); 4 - 5  

months (pubertal) and 1-3 years (adult). At least 3 animals were used at each age 

point (see Table 4.1). Animals were killed as chapter 2. For testosterone 

measurements, animals from day 5 to 4 weeks were decapitated and older animals 

from 7 weeks onwards were terminally anaesthetised.
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4.2.2. Tissue Preparation

Testes were immersion- or perfusion-fixed with 4% formaldehyde in 0.1 M 

phosphate buffer (pH 7.2-7.4) before being stored in fixative for over 24 hours at

room temperature (20°C). Specimens were then rinsed in buffer for 10-30 minutes, 

dehydrated through an ascending ethanol series and embedded in paraffin wax at

57°C (Appendix 21.

4.2.3. Antibodies

The polyclonal rabbit anti-human placental 3(3-HSD antibody was a gift 

from Prof. J.I. Mason (Department of Biochemistry, University of Edinburgh). 

Previous work has demonstrated cross-reactivity with Monodelphis domestica 

tissues (Ullmann etal., 1995) (Appendix 5).

4.2.4. Immunocytochemistry

Immunostaining was carried out by the avidin-biotin technique on 5-7 pm 

paraffin sections (Appendix 5). Briefly, sections were deparaffinized and incubated 

in 0.1% hydrogen peroxide (H20 2) for 15-30 minutes to eliminate endogenous 

peroxidase activity. After rinsing in 0.01 M phosphate buffered saline (PBS), 

sections were treated with 10-20% normal goat serum (NGS) in PBS for 30-60 

minutes to clear background staining, then incubated in a humidity chamber

overnight at 4°C with the primary antibody (polyclonal rabbit anti-human placental 

3p-HSD antibody). The primary antibody was diluted 1:1500 in PBS (containing 

1% NGS + 0.3% X-100 triton). Sections were then washed in PBS and incubated 

at room temperature for 1-2 hours with secondary antibody (peroxidase-labelled 

goat anti-rabbit) at a dilution of 1:500 in PBS (containing 1% NGS and 0.3% X-100 

triton). Peroxidase activity was revealed following a 5-10 minute incubation at 

room temperature in a medium containing 0.05% 3,3'-diaminobenzidine, 0.01% 

H20 2 and 0.02% NiCl3 in 0.01 M phosphate buffer. The slides were counterstained 

with 0.5% methyl green, dehydrated and mounted in Histomount. Control 

experiments were performed on young and adult testis sections by substituting 

preimmunized 10-20% NGS in PBS instead of the primary antibody.
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4.2.5. Blood, Gonadal and Adrenal Samples

Blood samples were obtained from the younger animals following 

decapitation and from animals seven weeks of age onwards by cardiac puncture (see 

Table 1). From day 5 to 4 weeks, the blood was collected in heparinized capillary 

tubes and pooled due to the very small volumes available (10-50 j l l I  plasma/pools). 

From 7 weeks onwards blood was obtained from terminally anaesthetised individual 

animals by cardiac puncture with a heparinized syringe. Plasma was separated from 

chilled blood by centrifugation and stored in heparinized tubes at -20°C.

In animals up to 28 days of age, the gonads were dissected and pooled, as 

were the adrenals (see Table 4.2). Gonads from older animals were assayed 

individually. Upon removal, the organs were placed in 0.1 ml of 0.9% NaCl and 

homogenised. After centrifugation the supernatant was removed and stored at -20°C 

before being assayed.

The protein content of the tissue pellet remaining after centrifugation was 

determined from its absorbance at 595 nm after reaction with Coomassie Blue G250 

(Pierce, Life Science Laboratories Ltd., Luton, UK). The weight of protein was 

calculated from a standard curve prepared using bovine serum albumin (Lowry et 

al., 1951) (Appendix 6). The sample pellets were dispersed in 210 pi 0.1M NaOH 

and incubated overnight at 4°C. On the following day, duplicate 100 pi samples 

were transferred to two separate tubes and each treated with 0.9 ml of distilled water 

and 1ml of Coomassie Blue. The protein concentration in each tube was calculated 

by substitution of the absorbance into the regression equation of the standard curve 

(Table 4.3). The protein content of the duplicate tubes was summed to give the total 

protein content of the original sample. The testosterone concentrations were 

expressed as ng/mg protein.

4.2.6. Testosterone Measurements

Testosterone was measured in diethyl ether extracts of plasma and in the 

supernatant from the homogenised gonadal and adrenal tissue. Twenty five pi 

volumes of plasma were taken from the pooled samples; 50pl plasma volumes from 

the individual older opossums and from the supernatant and correction made for the 

different volumes taken. The assay was a double-antibody radioimmunoassay 

originally developed by Cook and Beastall (1987) for human studies and more
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recently utilised by Gilmore et al. (1991) for studies in the sloth and by Kassim et 

al. (1997) for work on the rat (Appendix 7). The antiserum was raised against 

testosterone-3-(o-carboxymethyl)oxime-bovine serum albumin conjugate and l25I- 

histamine-3-testosterone was used as tracer. The assay cross-reacts with 5a- 

dihydrotestosterone by 16%, 5a-androstane-3a,17p-diol by 5.8%, 5a-androstane- 

3p,17p-diol by 3.7%, androstenedione by 2.1%, dehydroepiandrosterone by 0.04% 

and cortisol by <0.01%. The intra- and inter-assay precision was calculated as 

coefficients of variation 8% and 12% respectively.

Testosterone was spiked into adult male opossum plasma samples at levels 

of 2 and 5 nanomoles/litre. Ninety percent recovery of added testosterone was 

achieved. Furthermore, adult male opossum plasma samples were analysed at 

doubling dilutions and diluted parallel to the standard curve used for the assay.

4.3. Results

4.3.1. 3p-HSD Immunocytochemistry

At birth, testicular cords in Monodelphis are composed of germ cells and 

Sertoli cells delimited by a basement membrane and surrounded by peritubular 

cells. Opossum Leydig cells are first distinguishable morphologically in the 

interstitial spaces by day 3 (chapter 1). This study of the immunolocalization of 3p- 

HSD during postnatal testis development shows that from days 3 - 8, no specific 

immunostaining for the enzyme is found in the interstitial tissue, but it is present in 

the testicular cords (Fig. 4.1a & b). By day 16, immunopositive staining is apparent 

in both the cytoplasm of the Leydig cells and in the testicular cords (Fig. 4.2). On 

day 24, immunostaining of the Leydig cells is more intense (Fig. 4.3). Staining 

intensity continues to increase between 7-12 weeks (Fig. 4.4); by contrast, the 

immunopositive staining within testicular cords declines during this period. By 4-5 

months (puberty) immunostained Leydig cells reach peak numbers (Fig. 4.5) and 

some residual staining is still found peripherally in the testicular cords. In the adult 

opossum (1-3 years) positively-reacting cells are abundant in the interstitial tissue 

only (Fig 4.6a & b). In control incubations (where the primary antibody is omitted), 

no positive staining was found.
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Table 4.1. Details of animals used for immunocytochemistry (ICC) and testosterone

measurements*.

Age No. of Animals for 
ICC

No. of Dlasma Samples for 
RIA

day 3-5 11 M 2 M + 2 F
day 8-10 4 M 2 M + 2F
day 16 5 M 4 M + 3 F
day 24 4 M 1 M + 1 F

4 weeks 3 M 2 M
7-10.5 weeks 6 M 4 M
2-2.5 months 3 M 3 M
3-3.5 months 4 M 5 M

4 months 5 M 10 M
6 months 3 M
1-3 years 8 M 20 M + 10 F

*For testosterone measurement, blood samples were collected from a total of 78 

animals from day 5 to 4 weeks of age. Plasma from animals up to 4 weeks was 

pooled, (male = M; female = F)

Table 4.2. Concentrations of gonadal and adrenal testosterone in the developing

opossum*.

Age Number of 
Gonads

Gonadal T in 
SuDernatant 

(ng/mg protein)

Number of 
Adrenals

Adrenal T in 
Supernatant 

(ng/mg protein)
day 5 M 10 testes 0.1 8 <0.01
day 5 F 4 ovaries <0.01 4 <0.01
day 8 M 6 testes 0.3 6 <0.01
day 8 F 6 ovaries <0.01 6 <0.01

day 16 M 6 testes 0.45 14 <0.01
day 16 F 2 ovaries <0.01 2 <0.01
day 28 M 5 testes 0.7 7 0.11
day 28 F 4 ovaries <0.01 4 0.11

*For the testosterone measurements samples from animals of the same sex and age 

were pooled. (M = Male, F = Female; T = Testosterone)

4.3.2. Testosterone Levels

Plasma testosterone concentrations during early postnatal development of 

the opossum (day 5 to 2.5 months) were uniformly below the level of detection i. e.
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<0.3nmol/L. Testosterone levels in the male from week 4 onwards are illustrated in 

Fig.7. By four months testosterone levels had risen to 1.53 ± 0.35 nmol/L. After 

four months levels continued to increase steadily to 1.79 ± 0.4 nmol/L at six months 

and reached a peak of 2.71 ± 0.29 nmol/L in the adult ( 1 - 2  years).

°  0 c 2
o
k _
o
</>

2  1
CD
o

0

■ Testosterone(Mean + SEM) 

ND -  non-detectable
( 20 )

( 2 ) (3 ) (4 )

ND ND ND

1 1.8 2 - 2.5  3 - 3.5  4.0  6.0  12-24

A g e  in m o n t h s

Fig. 4.7. Mean ± SEM testosterone concentrations in plasma of developing male 

opossums. Bars represent mean values of testosterone for animals aged from 1-24 

months after birth. Number of pools or animals are shown in parentheses.

*ND = Non detectable (<0.3 nmol/L).

Gonadal and adrenal testosterone concentrations are shown in Table 4.2. 

Ovarian testosterone concentrations were uniformly low (<0.01 ng/mg protein). 

Testicular testosterone levels at day 5 were 0.1, at day 8 were 0.3, at day 16 were
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0.45 and at day 28 were 0.7 ng/mg protein. The adrenal testosterone concentrations 

were uniformly low in both sexes until day 28.

4.4. Discussion

Although Leydig cells can be identified on the basis of ultrastructural 

features (numerous lipid droplets, abundant SER) on day 3 (chapter 2), 3|3-HSD 

immunoreactivity is not detectable in the opossum testis before day 8. By day 16, 

positive staining is present in a few Leydig cells. This 3p-HSD reaction increases 

by day 24, reaches a peak at four months and remains maximal throughout 

adulthood. These data would therefore suggest that puberty is reached around four 

months, confirming the previous demonstration that sperm also first appear at this 

time (Xie et al., 1995; 1996a). The achievement of puberty at this age is further 

confirmed by the rise in circulating testosterone levels.

In mammals, the main source of testicular androgen is the Leydig cells of the 

interstitial tissue (Christensen & Mason, 1965; Hall, 1994). However, some 

steroidogenic enzymes are also found within the seminiferous tubules (Hall et al., 

1969; Hall, 1994). Although both the seminiferous tubules and interstitial cells in 

rat testes are thus capable of converting progesterone to testosterone and 

androstenedione, the interstitial cells are considerably more efficient (Christensen & 

Mason, 1965; Hall et al., 1969). Whole testis and interstitial cells are capable of 

converting cholesterol to androgens, whereas seminiferous tubules cannot synthesise 

androgens de novo from cholesterol; however, they are capable of converting more 

immediate precursors such as progesterone to testosterone (Hall et al., 1969). In the 

Hokkaido brown bear, Tsubata et al., (1993) reported that the cytochrome P450 

enzymes i) cholesterol side-chain cleavage (P450scc), ii) 17a-hydroxylase/C^7_20 

lyase (P450i7OC) an<̂  “ 0 aromatase (P450arom) are localized in Leydig cells but that

spermatids also stained very intensely in the testis. They suggested that 

steroidogenesis may occur not only in Leydig cells, but also in spermatids prior to 

the mating season and that Leydig cells and spermatids are the predominant sites of 

androgen and oestrogen synthesis respectively.

Surprisingly, during the first week after birth in Monodelphis positive 

immunostaining for 3p-HSD is present in the testicular cords, whereas the
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interstitial tissue remains negative for this enzyme. This contrasts with studies in 

other species, such as the rat, in which 3p-HSD staining is restricted to Leydig cells 

(Dupont et al., 1993). During subsequent development positive immunostaining in 

the opossum testicular cords declines gradually, being absent in the adult 

seminiferous tubules. This finding suggests that, in marsupials, there may be 

transient enzyme activity in the testicular cords, which disappears during 

development.

Sexual differentiation in eutherians is believed to be initially controlled 

genetically when the indifferent gonad is transformed into a testis or an ovary. 

Further differentiation of the Wolffian and Mullerian duct systems occurs under the 

influence of testicular hormones (Jost, 1947, 1953; Wilson et al, 1981). The 

differentiation of Wolffian duct derivatives is caused by testosterone, secreted by the 

fetal Leydig cells (Jost et al., 1963). In Monodelphis, this functional aspect of 

Leydig cells has been demonstrated by the activation of the 3p-HSD enzyme, which 

is first detected by day 16. Testicular androgen production in Monodelphis 

presumably starts around day 16 since Wolffian duct regression in the female begins 

at this time (see chapter 3). This result indicates the correlation between 

differentiation of the Wolffian duct and 3p-HSD enzyme synthesis by developing 

Leydig cells.

This study indicate that in Monodelphis testosterone synthesis at an early 

stage does not differ appreciably from that reported in other marsupials including 

the Virginia opossum (George et al., 1985) and the tammar wallaby (Renfree et al., 

1992b). Although the testes are undoubtedly the major source of testosterone 

production throughout life, the adrenal glands have also been implicated as a source 

of this steroid in the eutherian fetus (Kime et al., 1980). Fadem and Harder (1992) 

have suggested that the adrenals may also be a major source of andiogen synthesis 

in the newborn opossum. However, this explanation is unlikely to hdd since, as the 

present study shows, there is no evidence to indicate substantial testosterone 

secretion by the developing adrenal glands in either sex.

The presence of testosterone was undectable in peripheral plasma from 

Monodelphis until 3.5 months (pre-pubertal). However, by four months testosterone 

levels had risen significantly and reached a peak at adulthood Fadem & Harder 

(1992) reported that androgen levels in Monodelphis are measurable in the
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circulation from the day of birth; curiously, they found levels to be significantly 

higher in mixed sex plasma pools from animals on day 4 than in adult males. In this 

study animals were readily sexed by external morphological features after day 3; 

prior to this, karyotyping is a useful confirmatory adjunct. Blood samples were 

obtained by pooling plasma from male and female animals separately and the 

testosterone levels were also measured separately in both sexes.

These results differ from those of Fadem and Harder (1992) in several 

respects. Firstly, no evidence was found to indicate testosterone levels at or above 

those of adult males in developing opossums of either sex. Secondly, Fadem and 

Harder (1992) found levels of testosterone from males on day 16 to be higher than 

those of adult males, whereas at this stage testosterone was undetectable in the 

peripheral plasma and even in the testes levels were low (0.45 ng/mg protein). 

However, testosterone levels from adults of both sexes were comparable in the two 

studies. Fadem and Harder’s results are surprising because, if confirmed, extremely 

high testosterone levels in the female at the time of sexual differentiation would 

result in masculinisation unless the testosterone-sensitive tissues were in some way 

protected. The present findings are more consistent with those of previous studies in 

marsupials (George et al., 1985; Renfree et al., 1992b). Although the testosterone 

assay employed by Fadem and Harder exhibited more cross-reactivity with other 

steroids than did ours, this would be unlikely to fully explain the major discrepancy 

between the two studies. Moreover the authors themselves were unable to account 

for the very high levels of testosterone they measured in mixed sex plasma pools 

from animals 4 and 8 days of age.

Previous work (chapter 2) described morphological differences between 

Leydig cells in early postnatal development and adulthood, the change occurring at 

about 3.5 months. However, it is unclear whether these differences betokened i) 

different populations of cells or ii) different stages of development of a single of 

population. The present work shows positive 3P-HSD staining from day 16, but 

does not resolve the continuing problem of Leydig cell differentiation. Inability to 

detect plasma testosterone until pre-puberty (3.5 months) can be explained by 

plasma testosterone concentrations being very low during early development.
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Fig. 4.1. Section through the testis on day 8:

a.) Stained with H & E showing testicular cords 

(Tc) and interstitial tissue cells (It)

b.) Immunostained for 3p-HSD showing the 

positive reaction (arrows) within the testicular 

cords (Tc) and the absence of 3p-HSD in the 

interstitial tissue (It).

Magnification: x 200.
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Fig. 4.2. Section through the testis (day 16). 

Immunopositive staining has appeared in the 

interstitial tissue (arrowheads) and is still present 

in the testis cords (arrows).

Magnification: x 240.

Fig. 4.3. Section through the testis (day 24). 

Positive staining has increased in the interstitial 

tissue (arrows) and decreased in the testis cords 

(Tc).

Magnification: x 230.
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Fig. 4.4. Section through the pre-pubertal testis 

(12 weeks) showing immunostaining of Leydig 

cells (Lc) and at the periphery of the seminiferous 

tubules (arrow).

Magnification: x 200.

Fig. 4.5. Section through the pubertal testis (4 

months). Note immunostaining in the numerous 

closely-packed Leydig cells and residual staining 

in the seminiferous tubules (arrow).

Magnification: x 200.
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Fig. 4.6. Section through adult testis (1 year):

a.) stained with H & E showing abundant Leydig 

cells (Lc) and numerous spermatids (Sp). 

Magnification: x 120

b.) staing for 3(3-HSD, showing intense 

immunostaining in the Leydig cells and its absence 

in the seminiferous tubules (St).

Magnification: x 120
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Chapter 5: General Discussion

The aim of the present study was to examine the sexual differentiation of the 

reproductive system in Monodelphis domestica since this marsupial has become an 

important model for the study of sexual differentiation. Previous individual chapters 

have included some discussion of the findings reported; the purpose of this chapter is 

to bring together major conclusions of this investigation and to make some 

recommendations for future research.

5.1. When do the Gonads Differentiate?

In marsupials, as in eutherians, gonadal differentiation is determined by the 

presence or absence of the testis-determining gene SRY on the Y-chromosome (Foster 

et al., 1992) and the testis differentiates before the ovary (Didelphis virginiana: 

Baxter 1935; McCrady 1938, Bums 1939a, b; Moore 1939; the brushtail possum, 

Trichosurus vulpecula: Fraser, 1919; Ullmann 1993; the quoll, Dasyurus viverrinus: 

Ullmann, 1984; the bandicoot, Isoodon macrourus: Ullmann 1981; the tammar, 

Macropus eugenii: Renfree & Short 1988, the grey short-tailed opossum, 

Monodelphis domestica: Baker et al., 1990; Moore & Thurstan, 1990; Fadem et al., 

1992; Maitland & Ullmann, 1993). The present study has resolved conflicting data as 

to whether gonadal differentiation in Monodelphis occurs prenatally (Baker et al., 

1990; Maitland & Ullmann, 1993) or postnatally (day 4: Fadem et al., 1992; day 2: 

Moore & Thurstan, 1990). Testicular differentiation in Monodelphis is a truly 

perinatal phenomenon since only about 50% of XY gonads show differentiation at 

birth (Xie et al., 1996a) and as defined by the emergence of testicular cord. This 

study represents the first careful examination by light, transmission and scanning 

electron microscopy of the developing gonad in karyotyped young pups in 

Monodelphis.

5.2. The Characteristics of Levdig Cells in Monodelphis

In eutherians, fetal and postnatal populations of Leydig cells have been well- 

documented (De Kretser & Kerr, 1988; Gondos et al\, 1974; Zirkin & Ewing, 1987). 

The course of sexual differentiation in phenotypic males involves masculinisation of 

the reproductive tract and this is controlled by testosterone, which is secreted by 

Leydig cells of the fetal testis (Jost, 1973). The postnatal population initiates puberty
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and remains active during adult life (Zirkin & Ewing, 1987). However, the 

characterisation of Leydig cells in marsupials is poorly understood; indeed there is 

only one limited study, that in the brown marsupial mouse, (Antechinus stuartii) by 

Taggart et a l, 1993a).

Leydig cells in Monodelphis can be first distinguished on postnatal day 3 by 

the expected ultrastructural features of steroidogenically active cells, i.e. abundant 

vesicles of SER, numerous lipid inclusions as well as by the formation of cell clusters 

surrounded by envelope cells. From 4 months onwards, Leydig cells lack lipid 

inclusions and show highly organised SER. These cells are closely packed, but no 

longer surrounded by envelope cells. In addition, unlike adult rats, the mesenchymal 

cells or fetal-type Leyig cells are not found in the adult Monodephis. The present 

extensive studies confirmed the earlier tentative identification of Leydig cells in 

Monodelphis on day 3 (Moore & Thurstan, 1990).

Although a morphological difference is evident in the Leydig cells of 

immature and mature animals, 2 separate and distinct populations (such as occur in 

eutherains) could not be distinguished. It is suggested that in Monodelphis fetal-type 

Leydig cells transform directly into adult-type cells by loss of lipid inclusions, loss of 

surrounding envelope cells and the development of highly organised arrays of SER.

5.3. The Developmental Time Course of Reproductive Tract Formation

The unusual reproductive anatomy of marsupials has been well-demonstrated 

in South American marsupials (Virginia opossums, Didelphis virginiana: Cowper, 

1740; Bums, 1945) and Australian species (Tyndale-Biscoe & Renfree, 1987). The 

marsupial urogenital system develops from an indifferent stage at birth, when both 

Wolffian and Mullerian ducts are present, to the phenotypically distinct male or 

female condition during early pouch life (for review see Renfree et al., , 1996). 

During development, the caudal attachment of the ureter migrates ventrally to the 

neck of the urinary bladder and passes medially to the connection of the Wolffian and 

Mullerian ducts with the urogenital sinus (Buchanan & Fraser, 1918; Fraser, 1919; 

Tyndale-Biscoe & Renfree, 1987; Renfree et al., 1994). Differentiation of the 

Wolffian and Mullerian ducts follows the normal eutherian pattern, and takes place 

after gonadal differentiation under the influence of gonadal hormones (Renfree et al., 

1996).
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Monodelphis, like other marsupial species, is bom with a fully functional 

mesonephros and at a sexually indifferent stage of urogenital system development, 

when the Wolffian duct is patent to the urogenital sinus. Furthermore, Mullerian 

ducts regression in the male occur earlier than the corresponding regression of 

Wolffian ducts in female.

Wolffian ducts first show evidence of regression in the female around day 15; 

presumably reflecting testosterone secretion in the male at this time and this is 

confirmed by the first detection of the enzyme 3p-HSD in Leydig cells at day 16 (Xie 

et al., 1965; Xie et al., 1997 In Press). In the male, regression of Mullerian duct 

occurs between days 12-16 after birth; although it has yet to be confirmed, the onset 

of MIS production presumably occurs prior to this period.

5.4. The Onset of Testosterone Production in Monodelphis

In well-documented marsupial species such as the tammar wallaby, the testes 

contain very little testosterone on the day of birth, but levels rise to 1 ng/mg protein 

by days 5-10 after birth. This is significantly different from ovarian testosterone 

which remains uniformly low (Renfree et al., 1992a). The changing levels of fetal 

androgens may provide a greater understanding of the role of the different 

populations of Leydig cells in the development of the testis and differentiation of the 

male reproductive tract.

In Monodelphis, there is contradictory evidence on androgen availability 

during development. Fadem & Harder (1992) reported high levels of plasma 

testosterone in opossum pups of both sexes at birth, with testosterone levels by day 

16 higher than in the adult male. The prsent immunocytochemical and 

endocrinolgical studies could not confirm these findings (Xie et al., 1996b; Xie et al., 

1997 In Press). Only one population of Leydig cells is apparent in Monodelphis 

rather than the separate pre- and post-pubertal populations as in eutherians (Kerr & 

Knell, 1988). Patent seminiferous tubules with mature sperm appear by 4 months, 

the period when a) functional Leydig cells can be expressed immunocytochemically 

and ultrastructurally and b) peripheral testosterone begins to rise to adult levels. In 

conclusion, the pubertal period in Monodelphis is reached by 4 months.
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5.5. Is Sexual Differentiation and Testicular Descent in Monodelphis Under 

Hormonal Control ?

Differentiation of phenotype poses particularly interesting questions in 

marsupials since it has been suggested that some aspects may not be hormonally 

controlled during development (O et al., 1988, Renfree & Short, 1988; Renfree et al., 

1992). In eutherians, the formation of male sexual characteristics is dependent on the 

presence of hormones secreted by the embryonic testes. If gonads are removed from 

mammalian embryos, they will develop female characteristics, irrespective of their 

sex chromosome constitution (Jost, 1947).

In eutherian mammals the transabdominal phase of testis descent to the 

inguinal region is believed to be androgen-independent and regulated by MIS, while 

the subsequent inguinoscrotal phase is regulated by testosterone (Hutson, 1985). In 

marsupials, there is some evidence for a role for MIS in caudal migration in the 

tammar, since this coincides with high levels of testicular MIS production (Hutson et 

al., 1988) and treatment with oestradiol, which blocks MIS action, prevents caudal 

migration (Shaw et al., 1988, Moore & Thurstan, 1990). In Monodelphis these two 

phases of testicular descent broadly coincide with the timing of onset of MIS and 

testosterone production, thus reflecting the the regression of Mullerian ducts in males 

and Wolffian ducts in females.

The inguinoscrotal descent phrase in eutherians such as the rat appears to be 

dependent on androgen-induced calcitonin-gen-related peptide (CGRP) release from 

the genitofemoral nerves (Samarakkody and Hutson, 1992; Griffiths et al., 1993a, 

Goh et al., 1993). However, the tammar gubemacula did not show any contractile 

response to CGRP added in vitro. Renfree et al. (1996) suggested that whether this 

reflects a fundamental difference in the control of testicular descent between 

marsupials and eutherians remains unclear. In Monodephis, the gubemaculum 

develops in both sexes; the function of the female gubemaculum is in suspensor 

support of the internal genitalia (van de Schoot et al., 1996c). Development of the 

gubemaculum is not sexually dimorphic until 3.5 days after birth (this study).

The marsupial cremaster muscle presents an anomaly compared to eutherians 

in that it is well developed in both sexes possess (Tyndale-Biscoe & Renfree, 1987). 

In the male Monodelphis, this muscle is associated with the spermatic cord/scrotal 

sac as expected, but in the female it spans over the dorsal surface of part of the
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mammary gland (van der Schoot et al., 1996). The cremaster muscle is readily seen 

in this species on day 16 (this study), but it is not clear when the cremaster muscle 

differentiates in the two sexes or whether the period of differentiation coincides with 

a definable “androgenic” critical period.

Mammary primordia are present in both sexes at birth in American 

marsupials, although the male has fewer mammary glands than the female (e.g. D. 

virginiana: McCrady 1938; Bums, 1939; Renfree et al., 1990 and Monodelphis 

domestica: Renfree et al., 1990). In an extensive survey of Australian marsupials 

(such as the tammar wallaby, Macropus eugenii: Tyndale-Biscoe & Renfree, 1987), 

the mammary anlagen are found only in karyotypically female embryos (day 22 of 

gestation) (Renfree et al., 1990). There is thus a fundamental distinction between 

American marsupials which have mammary primordia in both sexes and Australian 

marsupials in which no evidence of mammary anlagen could be found in the male 

(Bresslau, 1912, Renfree et al., 1990). This could be explained by the long separation 

of marsupials into Australian and American groups. However, mammary glands and 

teats have never been described in any adult male marsupials (Tyndale-Biscoe & 

Renfree, 1987). Scrotal anlagen are only found in karyotypically male fetuses and 

cannot be induced in female tammars, even after prolonged treatment with androgen 

(Shaw et al., 1988). In Monodelphis differentiation of the scrotal bulges occurs 

around postnatal day 2-3 (present observations).

The control of sexual differentiation in Monodelphis is influenced by genes, 

hormones and receptors, but the relative importance of these factors appears to be 

very different from that seen in eutherian mammals. Differentiation of the scrotum, 

mammary primordia, gubemaculum and cremaster muscle seem independent of 

androgens since testicular testosterone content is very low during early development. 

Although Leydig cells can be distinguished at day 3, 3p-HSD immunoreactivity is not 

detectable until day 16. Sexual differentiation in marsupials therefore differs from 

eutherians perhaps reflecting their long evolutionary separation for over 100 million 

years.
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5.6. Future Work

5.6.1. Differentiation of Sertoli Cells in Monodelphis

In eutherians, the origin of the somatic components of the gonada remain 

controversial: potential contributors include the mesothelium, the mesonephros and 

the general mesenchyme. Current orthodoxy holds that the mesonephros is a major 

source of gonadal blastema cells (Byskov, 1986; Byskov & Hoyer, 1994). The steps 

involved in testis differentiation in marsupials and eutherians are broadly similar 

except for timing differences. The indifferent gonad forms medial to the 

mesonephros. Since the mesonephros is functional postnatally in marsupials 

(Tyndale-Biscoe & Renfree, 1987; Hughes & Hall, 1988) and believed not to be 

involved in the formation of gonadal blastema cells in some marsupials (Bandicoots: 

Ullmann, 1981; 1989; brushtail possum: Ullmann; 1996), it is still not clear whether 

the sex cords in Monodelphis derive from a mesothelial proliferation (Yoshinaga et 

al., 1988), or from the mesenchymal cells of the mesonephros as in the eutherian 

(Byskov, 1986). An investigation of prenatal gonadal development in Monodelphis 

would be necessary to resolve this problems. The genesis of Sertoli cells is regarded 

as the first sign of male gonadal differentiation. This study has shown 50% of 

genetically male opossums to have sexually differentiated gonads present at birth 

with readily distinguished pre-Sertoli cells (Xie et al., 1996a). Further work should 

investigate the initial apppearance of these cellls.

5.6.2 Leydig Cells and Androgen Production

Critical periods of sexual differentiation can be investigated by altering the 

hormonal environment and subsequently examining appropriate morphological, 

physiological or behavioural parameters. Where the timing of the critical period is 

not known it may often be deduced by evidence such as the appearance of fetal 

populations of active Leydig cells, detectable levels of androgens in the testis or 

plasma, steroid receptor densities in target tissues etc. In eutherian mammals, 

exposure of fetuses or neonates to ethylene-1,2-dimethane sulphonate (EDS) has a 

specifically cytotoxic action on Leydig cells with androgen production suppressed 

and Leydig cells killed within a few hours of administration (Bartlett et al., 1986; 

Molenarr et a l, 1985; Sharpe et al., 1986). EDS does not prevent Leydig cells 

reappearing in the adult testis and this has been used to examine development of a
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second wave of Leydig cell genesis - perhaps from fibroblast-like precursors 

(Thomson & Lendon, 1988). Since it is hypothesised that only one population of 

Leydig cells are present in Monodelphis, the employment of EDS would resolve these 

problems and contribute to our understanding of Leydig cell characteristics in 

marsupial species.

5.6.3. MIS Detection

The functional status of pre-Sertoli cells, producing Mullerian inhibiting 

substance, has been assessed by the use of co-culture bioassay in vitro, MIS causes 

regression of the Mullerian duct in the male (Jost et al., 1973; Wilson et al., 1981; 

Short, 1982, Josso & Picard, 1986), actions on early gonad formation (Jost, 1972b; 

Jost & Magre, 1988) and may control testicular descent (Hutson et al., 1988; 

Munsterberg & Lovell-Badge, 1991). The onset of MIS production in Monodelphis 

presumably occurs prior to day 12 since the male Mullerian duct starts regression at 

this time. However, MIS cannot be detected in Monodelphis until day 15, this may 

have been due to the small size of the gonad causing the dilution of MIS in the co

culture medium and is a limitation of the bioassay. The sequence of events involved 

in testicular cord formation could be investigated by an in vitro approach, 

radioimmunoassay or immunostaining for cell adhesion molecules. Unfortunately 

the anti-Miillerian hormone antibody (a polyclonal antibody raised in a rabbit against 

human recombinant AMH) used in the current work did not crossreact with 

Monodelphis.



REFERENCES 73

Adam E, Bunce CE, Saunders NR and Snart C (1988) Monodelphis domestica 
(grey short-tailed opossum): a model for studies of very early stages of 
development. Journal o f Physiology 400: 13

Alcorn GT (1975) Development of the ovary and urino-genital ducts in the 
tammar wallaby Maropus eugenii (Desmarest, 1817). Thesis, Macquarie 
University, Sydney

Backhouse KM (1964) The gubemaculum testis Hunteri, testicular descent and 
maldescent. Annals o f the Royal College o f Surgeons 35: 27

Baggott LM, Davis-Butler S and Moore HDM (1987) Characterisation of 
oestms and timed collection of oocytes in the grey short-tailed opossum, 
(Monodelphis domestica). Journal o f Reproduction and Fertility 79: 1 OS- 
114

Baker PJ, Moore HDM, Burgess AMC and Mittwoch U (1993) Gonadal sex 
differentiation in embryos and neonates of the marsupial, Monodelphis 
domestica'. arrest of testis development in postterm embryos. Journal o f 
Anatomy 182: 267-273

Baker PJ, Moore HDM, Penfold LM, Burgess AMC and Mittwoch U (1990) 
Gonadal sex differentiation in the neonatal marsupial Monodelphis 
domestica. Development 109: 699-704

Baker TG (1972) Primordial germ cells. In: Reproduction in Mammals (1st edn) 
(eds: CR Austin & RV Short) pp. 1-13 Cambridge: Cambridge University 
Press

Baker TG (1982) Oogenesis and ovulation. In: Reproduction in Mammals, (2nd 
edn), vol. 1 (eds: CR Austin & RV Short) pp. 17-45 Cambridge: Cambridge 
University Press

Baker TG, Metcalfe SA and Hutson JM (1990) Serum levels of Mullerian 
inhibiting substance in boys from birth to 18 years, as determined by enzyme 
immunoassay. Journal o f Clinical Endocrinology and Metabolism 70: 11- 
15

Barnes RD (1968a) Marmosa mitis, a small marsupial for experimental biology. 
In: Symposium on Animal Models for Biomedical Research, Animal Models 
for Biomedical Research. Publication No, 1594. pp. 88-97. (Natl Acad. Sci., 
Washington, DC)

Barnes RD (1968b) Small marsupials as experimental animals. Laboratory 
Animal Care 18:251-257

Barnes RD and Barthold SW (1969) Reproduction and breeding behaviour in an 
experimental colony of Marmosa mitis Bangs (Didelphidae). Journal of 
Reproduction and Fertility Supplement 6: 477-482



REFERENCES 74

Bartlett JMS, K err JB and Sharpe RM (1986) The effect of selective 
destruction and regeneration of rat Leydig cells on the intratesticular 
distribution of testosterone and morphology of the seminiferous epithelium. 
Journal ofAndrology 7: 240-253

Baxter JS (1935) Development of the female genital tract in the American 
opossum. Carnegie Institute Contributions to Embryology 25:15-35

B eddardJM  (1891) On the pouch and brain of the male Thylacinus. Proceedings 
o f the Zoological Society o f London 1891: 138-145

Benarous R Guerrier D, Josso N and Kahn A (1986) Cloning and expression of 
cDNA for anti-Mullerian hormone. Proceedings o f the National Academy of 
Sciences USA 83: 5464-5468

Bentley PJ and Shield JW  (1962) Progesterone-induced development of dormant 
blastocysts in the tammar wallaby, Macropus eugenii Desmarest: 
Marsupialia. Journal o f Reproduction and Fertility 20:201-210

Bezard J, Vigier B, Tran D, Mauleon P and Josso N (1987) 
Immunocytochemical study of anti-Mullerian hormone in sheep ovarian 
follicles during fetal and post-natal development. Journal o f Reproduction 
and Fertility 80:509-516

Billingham RE and Silvers WK (1960) Studies on tolerance of the Y chromosome 
antigen in mice. Journal o f Immunology, 85: 14-26

Black VH and Christensen AK (1969) Differentiation of interstitial cells and 
Sertoli cells in fetal guinea pig testes. American Journal o f Anatomy 124: 
211-238

Blanchard MG and Josso N (1974) Source of the anti-Mullerian hormone 
synthesised by the fetal testis: Mullerian-inhibiting activity of fetal bovine 
Sertoli cells in tissue culture. Pediatric Research 8: 968-971

Blecher ST and Wilkinson LJ (1989) Non hormone-mediated sex chromosomal 
effects in development: another look at the Y chromosome-testicular 
hormone paradigm. In: Evolutionary Mechanisms in Sex Determination (ed: 
SS. Wachtel) chapter 21, pp. 219-229 Baca Raton, Florida: CRC Press

Bouin and Ancel (1903) Recherches sur les cellules interstitielles du testicule des 
mammiferes. Arch. Zool. Exp. Gen. 1: 437-523

Bresslau E (1912) Die Entwickelung des Mammarapparates der Monotremen, 
Marsupialier und einiger Placentalier. In: Zoologische Forschungsreisen in 
Australien, vol. 4, (ed: R Semon) pp. 653-874 Jena: Gustav Fischer



REFERENCES 75

Buchanan G and Fraser EA (1918) The development of the urogenital system in 
the Marsupialia, with special reference to Trichosurus vulpecula. Journal o f 
Anatomy 53: 35-95

Buehr M, Gu S and McLaren A (1993) Mesonephric contribution to testis 
differentiation in the fetal mouse. Development 117: 273-281

Burnett (1830) In: Walker’s Mammals of the World, vol. 1. 5th edition (1991). 
(ed: RM Nowak) pp. 16 Baltimore & London: The John Hopkins University 
Press

Burns RK (1939a) The differentiation of sex in the opossum (Didelphys 
virginiana) and its modification by the male hormone testosterone 
propionate. Journal Morphology 65:79-119

Burns RK (1939b) Sex differentiation during the early pouch stages of the 
opossum (Didelphy virginiana) and a comparison of the anatomical changes 
induced by male and female sex hormones. Journal o f Morphology 65: 
497-545

Burns RK (1939c) Effect of testosterone propionate on sex differentiation in 
pouch young of opossum. Proceedings of the Society for Experimental 
Biology 41: 60-62

Burns RK (1939d) Effect of female sex hormones in young opossums. 
Proceedings o f the Society for Experimental Biology 41: 270-272

Burns RK (1945) The differentiation of the phallus in the opossum and its 
reaction to sex hormones. Contrib Embryol Canegie Inst Wash 31:147-162

Burns RK (1961a) Role of hormones in the differentiation of sex. In: Sex and 
Internal Secretions. (3rd Edn), (ed: WC. Young) pp. 76-158 Baltimore: 
Williams & Wilkins

Burns RK (1961b) Hormones in the differentiation of sex. In: Sex and Internal 
Secretions, (ed: WC Young), London: Tindall & Cox Ltd.

Butcher L (1995) Ovarian follicle growth and yolk formation in the New World 
marsupial Monodelphis domestica Thesis University of Glasgow U. K.

Byskov AG (1979) Regulation of meiosis in mammals. Ann Biol Anim Biochim 
Biopys 19: 1251-1261

Byskov AG (1986) Differentiation of mammalian embryonic gonads. Physiology 
Review. 66:71-117

Byskov AG and H<|>yer PE (1994) Embryology of mammalian gonads and ducts. 
In: The Physiology of Reproduction (eds: E. Knobil, J. Neill et al.) chapter 
9, pp. 487-540. New York: Raven Pres



REFERENCES 76

Cate RL and Wilson CA (1993) Miillerian-Inhibiting Substance. Genes in 
Mammalian Reproduction 185: 185-205

Cate, RL, Donahoe, Pk and Maclaughlin, DT (1990) Miillerian inhibiting 
substance. In: Peptide growth factors and their receptors, vol. II (eds: MB 
Spom & AV Roberts) pp. 179-210. Berlin: Springer-Verlag

Cavicchia JC and Sacerdote FL (1991) Correlation between blood-testis barrier 
development and onset of the first spermatogenic wave in normal and in 
busulfan-treated rats: a lanthanum and freeze-fracture study. The Anatomical 
Record 230: 361-368

Chase EB (1939) The reproductive system of the male opossum, Didelphis 
virginiana Kerr and its experimental modification. Journal o f Morphology 
65: 215-240

Christensen AK and Fawcett DW (1961) The normal fine structure of opossum 
testicular interstitial cells. The Journal o f Biophysical and Biochemical 
Cytology 9: 653-670

Christensen AK and Mason NR (1965) Comparative ability of seminiferous 
tubules and interstitial tissue of rat testes to synthesise androgens from
p r o g e s t e r o n e - 4 - in vitro. Endocrinology 76: 6 4 6 - 6 5 6

Clemens WA (1968) Origin and early evolution of marsupials. Evolution 22: 1- 
18

Clermont Y and Huckins C (1961) Microscopic anatomy of the sex cords and 
seminiferous tubules in growing and adult male Albino rats. American 
Journal Anatomy 108:79-97

Cook B and Beastall GH (1987) Measurement of steroid hormone concentrations 
in blood, urine and tissues. In: Steroid Hormones a Practical Approach. 
(eds: B Green & RE Leeke) pp. 1-65 Oxford:IRL Press

Cooper DW (1993) The evolution of sex determination, sex chromosome 
dimorphism, and X-inactivation in eutherian mammals: a comparison of 
metatherians (marsupials) and eutherians (‘placentals’). In: Sex
chromosomes & sex determining genes (eds: KC Reed & JA Marshall- 
Graves), pp. 183-200 Harwood Academic Publishers, GmbH, Chur, 
Switzerland

Cothran EG, Aivaliotis MJ and VandeBerg, JL (1985) The effects of diet on 
growth and reproduction in gray short-tailed opossums. {Monodelphis 
domestica). Journal of Experimental Zoology. 236: 103-114



REFERENCES 77

Cowper W (1740) II Carigueya, seu Marsupiale Americanum Masculum or, The 
Anatomy of a male opossum: in a letter to Dr Edward Tyson from Mr 
William Cowper. Philosophical Transactions o f the Royal Society 24: 
1565-1590

Crisp EA, Messer, M and Vandberg JL  (1989) Changes in milk carbohydrates 
during lactation in a Didelphid marsupial, Monodelphis domestica. 
Physiological Zoology 62: 1117-1125

Davis RM (1981) Localisation of male determining factors in man: a thorough 
review of structural anomalies of the Y chromosome. Journal o f Medical 
Genetics 18: 161-195

De K retser DM and Kerr JB (1988) The cytology of the testis. In: The 
Physiology Of Reproduction, (ed. E. Knobil. & J. Neill), pp. 837-932. 
London & New York: Raven Press

Duesberg J  (1919) On the interstitial cells of the testicle in Didelphis. Biological 
Bulletin 15: 175-194

Dupont E, Labrie F, Luu-The V and Pelletier G (1993) Ontogeny of 3(3-
hydroxysteroid dehydrogenase / A  ̂ - A^ - isomerase (3(3- HSD) in rat as 
studied by immunocytochemistry. Anatomy and Embryology 187: 583-589

Dupont E, Luu-The V, Labrie F and Pelletier G (1990a) Light microscopic 
immunocytochemical localization of 3|3-hydroxy-5-ene-steroid 
dehydrogenase / - isomerase (3|3-HSD) in the gonads and adrenal
glands of the guinea pig. Endocrinology 126: 2906-2909

Dupont E, Zhao H-F, Rheaume E, Simard J, Luuthe V, Labrie F and Pelletier
G (1990b) Localization of 3 (3-hydroxysteroid dehydrogenase / A^ - A^ - 
isomerase in the rat gonads and adrenal glands by immunocytochemistry and 
in situ hybridization. Endocrinology 127:1394-1403

Dyche W J (1979) A comparative study of the differentiation and involution of the 
Mullerian duct and Wolffian duct in the male and female fetal mouse. 
Journal o f Morphology 162: 175-210

Dym M and Fawcett DW (1970) The blood-testis barrier in the rat and the 
physiological compartmentation of the seminiferous epithelium. Biology of 
Reproduction 3: 308-326

Eichwald E J and Silmser CR (1955) Untitled communication. Transplantation 
Bulletin 2: 148-149

Enders RK (1966) Attachment, nursing and survival of young in some didelphids. 
Symposia of the Zoological Society o f London 15: 195-203



REFERENCES 78

Etgen AM and Fadem BH (1987) Estrogen binding macromolecules in 
hypothalamus-preoptic area of male and female gray short-tailed opossums 
{Monodelphis domestica). Gen Comp Endocrinol 66:441-446

Evans EP (1987) Karyotyping and sexing of gametes, embryos and fetuses and in 
situ hytndisation to chromosomes In: Mammalian Development A Practical 
Approach, (ed. M. Mont), pp. 93-114. Oxford: IRL Press

Fadem BH (1985) Evidence for the activation of female reproduction by males in 
a marsupial, the grey short-tailed opossum {Monodelphis domestica). 
Biology o f Reproduction 33: 112-116

Fadem BH and Erskine MS (1987) Estradiol and testosterone in the blood of gray 
short-tailed opossums Monodelphis domestica. Biology o f Reproduction 
36(Suppl. 1): 128

Fadem BH and Harder JD (1992) Evidence for high levels of androgen in 
peripheral plasma during postnatal development in a marsupial: the gray 
short-tailed opossum {Monodelphis domestica). Biology o f Reproduction 
46: 105-108

Fadem BH and Rayve RS (1985) Characteristics of the oestrous cycle and 
influence of social factors in grey short-tailed opossums {Monodelphis 
domestica). Journal o f Reproduction and Fertility 73: 337-342

Fadem BH Hill HZ, Huselton CA and Hill GJ (1988) Transplantation, growth, 
and regression of mouse melanoma xenografts in neonatal marsupials. 
Cancer Investigation 6: 403-408

Fadem BH, Tesoriero JV and Whang M (1992) Early differentiation of the 
gonads in the grey short-tailed opossums {Monodelphis domestica). Biology 
o f the Neonate 61: 131-136

Fadem BH, Trupin GL, Maliniak E, VandeBerg JL  and Hayssen V (1982) 
Care and breeding of the gray short-tailed opossum {Monodelphis 
domestica). Laboratory Animal Science 32: 405-409

Fadem, BH & Tesoriero, JV (1986) Inhibition of testicular development and 
feminization of the male genitalia by neonatal estrogen treatment in a 
marsupial. Biology o f Reproduction 34:771-776

Finkel MP (1945) The relation of sex hormones to pigmentation and to testis 
descent in the opossum and ground squirrel. American Journal o f Anatomy 
76: 93-151

Foster JW, Brennan FE, Hampikian GK, Goodfellow PN, Sinclair AG, Lovell- 
Badge R, Selwood L, Renfree MB, Cooper DW and Graves JAM (1992) 
Evolution of sex determination and the Y chromosome: 57?T-related 
sequences in marsupials. Nature 359:531-533



REFERENCES 79

Fox RC (1971) Marsupial mammals from the early Campanian, Milk River 
Formation, Alberta, Canada. In: Early Mammals (eds: DM & KA Kermack) 
Journal Linn. Sco. Suppl. 50: 145-164

Fraser EA (1919) The development of the urogenital system in the Marsupialia, 
with special reference to Trichosurus vulpecula. Part II. Journal o f 
Anatomy 53: 97-129

Frederick WG and Wilson JD (1994) Sex determination and differentiation. In: 
The Physiology o f Reproduction, (2nd ed) (eds: E. Knobil, J. Neill et al.) 
chapter 1, pp. 3-28. New York: Raven Press

Fujimoto T, Miyayama Y and Fuyuta M (1977) The origin, migration and fine 
morphology of human primordial germ cells. Anatomical Record 188: 315- 
330

Gardner RL, Lyon MF, Evans EP and Burtenshaw MD (1985) Clonal analysis 
of X-chromosome inactivation and the origin of the germ line in the mouse 
embryo. Journal o f Embryology and Experimental Morphology 88: 349- 
363

George FW and Peterson KF (1988) Partial characterisation of the androgen 
receptor of the newborn rat guberncaulum. Biology o f Reproduction 39: 
536-539

George FW and Wilson JD (1994) Sex determination and differentiation. In: The 
Physiology of Reproduction, (2nd ed.) (ed. E. Knobil. & J. D. Neill), pp. 1- 
28. London & New York: Raven Press

George FW, Hodgins MB and Wilson JD (1985) The synthesis and metabolism 
of gonadal steroids in pouch young of the opossum, Didelphis virginiana. 
Endocrinology 116: 1145-1150

Gilmore DP, Peres da Costa C, Valenca M, Duarte DPF, Wilson CA and Gray
CE (1991) Effects of exogenous LHRH on plasma LH and sex steroid 
levels in the three-toed sloth Bradypus tridactylus. Medical Science 
Research 19: 333-335

Ginsburg M, Snow MHL and McLaren A (1990) Primordial germ cells in the 
mouse embryo during gastrulation. Development 110:521-528

Godfrey GK (1975) A study of oestrus and fecundity in a laboratory colony of 
mouse opossums (Marmosa robinsoni). Journal o f Zoology (London) 175: 
93-96

Goh DW, Momose Y, Middlesworth W and Hutson JM  (1993) The relationship 
among calcitonin gene-related peptide, androgens and gubemacular



REFERENCES 80

development in 3 animal models of cytptorchidism. Journal o f Urology 
150: 574-576

Goldman AS, Yakovac WC and Bongiovanni AM (1966) Development of 
activity of 3p-hydroxysteroid dehydrogenase in human fetal tissue and in 
two anencephalic new boms. Journal o f Clinical Endocrinology 26: 14-22

Gondos B (1980) Development and differentiation of the testis and male 
reproductive tract. In: Testicular Development, Structure and Function 
(eds: A Steinberger & E Steinberger) pp. 3-20 New York: Raven Press

Gondos B, Paup DC, Ross J  and Gorski RA (1974) Ultrastructural 
differentiation of Leydig cells in the fetal and postnatal hamster testis. The 
Anatomical Record 178:551-566

Gould E (1984) Ultrasonic communication in terrestrial mammals with some new 
data about Monodelphis domestica (Marsupialia). Acta Zool. Fennica. 171: 
93-96

Greene RR, Burrill MW and Ivy AC (1939) Experimental intersexuality The 
effect of antenatal androgens on sexual development of female rats. 
American Journal o f Anatomy 65: 415-469

Griffiths A, Renfree MB, Shaw G, Watts LM and Hutson JM  (1993a) The 
tammar wallaby Macropus eugenii and the Sprague-Dawley rat: comparative 
anatomy and physiology of inguinoscrotal testicular descent. Journal o f 
Anatomy 183: 441-450

Griffiths AL, Middlesworth W, Goh DW, Hutson JM  (1993b) Exogenous 
calcitonin gene-related peptide causes gubemacular development in neonatal 
(Tfm) mice with complete androgen resistance. Journal o f Pediatric Surgery 
28:1028-1030

Grino FB, Griffin JE and Wilson JD (1990) Testosterone at high concentrations 
interacts with the human androgen receptor similarly to dihydrotestosterone. 
Endocrinology 126: 1165-1172

Gubbay J, Collignon J, Koopman P, Capel B, Economou A, M iinsterberg A, 
Vivian N, Goodfellow P and Lovell-Badge R (1990) A gene mapping to 
the sex-determining region of the mouse Y chromosome is a member of a 
novel family of embryonically expressed genes. Nature (London) 346: 245- 
250

H(|)yer PE (1980) Histoenzymology of the human ovary: dehydrogenases directly 
involved in steroidogenesis. In: Biology of Ovary (eds: PM Motta & ES 
Hafez) pp. 52-67 The Hague: Nijhoff



REFERENCES 81

H<])yer PE and Byskov AG (1981) A quantitative cytochemical study of A5, 3p- 
hydroxysteroid dehydrogenase activity in the rete system of the immature 
mouse ovary. In: Development and function o f Reproduction Organs (eds: 
Byskov AF & Peters H) pp. 216-224 Amsterdam Excerpta Med

Haider SG, Passia D and Overmeyer G (1986) Studies on the fetal and postnatal 
development of rat Leydig cells employing 3 p-hydroxysteroid 
dehydrogenase activity. Acta Histochemica Supplement Band XXXII. S. pp 
197-202

Hall PF (1994) Testicular steroid synthesis: organization and regulation. In: 
Knobil N, JD Neill JD. (eds), Physiology of Reproduction (2nd ed.) vol. 1 
London & New York: Raven Press, pp. 1335-1357

Hall PF, Irby DC and de Kretser DM (1969) Conversion of cholesterol to 
androgens by rat testes: comparison of interstitial cells and seminiferous 
tubules. Endocrinology 84: 488-496

H arder JD and Fleming, MW (1982) Husbandry of a small breeding colony of 
opossums (Didelphis virginiana). Laboratory Animal Science 32: 547-549

Harding HR, Carrick FN and Shorey CD (1982). Crystalloid inclusions in the 
Sertoli cell of the koala, Phascolarctos cinereus (Marsupialia). Cell and 
Tissue Research 221: 633-642

H arry JL, Koopman P, Brennan FE, Graves JAM and Renfree MB (1995) 
Widespread expression of the testis-determining gene SRY in a marsupial 
Nature Genetics

Hayman DL (1990) Marsupial cytogenetics. Australian Journal o f Zoology 37: 
331-349

Heyns CF (1987) The gubemaculum during testicular descent in the human fetus. 
Journal o f Anatomy 153: 93-112

Hughes RL and Hall LS (1988) Structural adaptations of the newborn marsupial. 
In: The Developing Marsupial, pp. 8-27 (Eds: C.H Tyndale-Biscoe & P.A. 
Janssens) Springer Verlag

Hunsaker D II (1977) Ecology of New World marsupials. In: The biology o f 
Marsupials (ed: B Hunsaker II) pp. 95-156 New York: Academic Press

Hunter J  (1762) Observations on the state of the testis in the foetus, and on the 
hernia congenita. In: Medical Commentaries, part 1 pp. 75-90 by Willian 
Hunter

Hunter RHF (1995) Mechanisms of sex determination. In: Sex Determination, 
Differentiation and Intersexuality in Placental Mammals, (1st ed.), pp. 22- 
62. Cambridge: Cambridge University Press



REFERENCES 82

Hutson J, Ikawa H, Donahoe PK (1981) The ontogeny of Mullerian inhibiting 
substance in the gonads of the chicken. Journal o f Pediatric Surgery 16: 
822-827

Hutson JH , Shaw G, O W-S, Short R and Renfree MB (1988) Mullerian 
inhibiting substance production and testicular migration and descent in the 
pouch young of a marsupial. Development 140: 549-556

Hutson JM  (1985) Abiphasic model for the hormonal control of testicular descent. 
Lancet II: 419-421

Hutson JM  (1986) Testicular feminization: a model for testicular descent in mice 
and men. Journal o f Pediatric Surgery 21: 195-198

Hutson JM  and Donahoe PK (1986) The hormonal control of testicular descent. 
Endocrine Reviews 7:270-283

Hutson JM , Shaw G, O WS, Short R & Renfree MB (1988) Mullerian 
inhibiting substance production and testicular migration and descent in the 
pouch young of a marsupial. Development 104: 549-556

Hutson JM , Williams MPL, Fallat ME and Attah A (1990) Testicular descent: 
new insights into its hormonal control. Oxford Reviews o f Reproductive 
Biology 12: 1-56

Johnson MH and Everitt BJ (1980) Sex. In: Essential Reproduction (1st ed) 
chapter 1 pp. 1-17 Blackwell Scientific Publications

Josso N (1972) Evolution of the Mullerian-inhibiting activity of the human testis. 
Effect of fetal, peri-natal and post-natal human testicular tissue on the 
Mullerian duct of the fetal rat in organ culture. Biology o f the Neonate 20: 
368

Josso N (1973) In vitro synthesis of Mullerian-inhibiting hormone by seminiferous 
tubules isolated from the calf fetal testis. Endocrinology 93: 829

Josso N (1994) Anti-Miillerian hormone: a masculinizing relative of TGF-p. 
Oxford Reviews of Reproductive Biology (ed HM Charlton) pp. 139-163 
Oxford University Press

Josso N and Picard JY (1986) Anti-Miillerian hormone. Physiological Reviews 
66: 1038-1090

Josso N Picard JY  and Tran D (1977) The anti-Mullerian hormone. Recent 
Progress in Hormone Research 33: 117-167



REFERENCES 83

Josso N, Lamarre I, Picard JY, Berta P, Davies N, Morichon N, Peschanski M 
and Jeny R (1993) Anti-Miillerian hormone in early human development. 
Early Human Development 33: 91-99

Josso N, Legeai L, Forest MG, Chaussain JL and Brauner R (1990) An 
enzyme-linked immunoassay for anti-Miillerian hormone in early human 
development. Early Human Development 33:91-99

Josso N, Vigier B, Cate RL, Behringer R, diClemente N and Lyet L (1992) 
Hormonal control of gonadal differentiation. In: Gonadal Development and 
Function pp. 31-39 New York Raven Press

Jost A (1953) Problems of fetal endocrinology: the gonadal and hypophyseal 
hormones. Recent Progress in Hormone Research 8:379-413

Jost A (1947) Recherches sur la differenciation sexuelle de l’embryon de lapin. IE. 
Role des gonades foetals dans la defferenciation sexuelle somatique. 
Archives d ’Anatomie Microscopique et de Morphlogie Experimentale 36: 
271-315

Jost A (1957) Embryonic sexual differentiation (morphology, physiology, 
abnormalities). In: Hermaphroditism, Genital Anomalies and Related 
Endocrine Disorders, (eds: HW Jones, Jr. & WW Scott) pp. 14-45 
Williams & Wilkins Co., Baltimore

Jost A (1961) The role of fetal hormones in prenatal development. Harvey Lecture 
Series 55: 201-226

Jost A (1970a) General outline about reproductive phyiology and its 
developmental background. In: Mammalian Reproduction (eds: H. Gibian & 
E. J. Platz) pp. 4-32. Berlin: Springer Verlag

Jost A (1970b) Hormonal factors in the sex differentiation of the mammalian 
foetus. Philosophical Transactions o f the Royal Society o f London Series B 
259:119-130

Jost A (1972a) A new look at the mechanisms controlling sex differentiation in 
mammals. John Hopkins Medical Journal 130: 39-53

Jost A (1972b) Donnees preliminaires sur les stades initiaux de la differenciation 
du testicule chez le rat. Archives dAnatomie Microscopique et de 
Morphologie Experimentale 61: 415-438

Jost A and Magre S (1984) Testicular development phases and dual hormonal 
control of sexual organogenesis. In: Sexual Differentiation Basic and 
Clinical Aspacts (eds: M. Serio et al.) New York: Raven Press



REFERENCES 84

Jost A and Magre S (1988) Control mechanisms of testicular differentiation. 
Philosophical Transactions of the Royal Society of London, Series B, 322: 
55-61

Jost A and Magre S (1993) Sexual differentiation. In: Reproduction in mammals 
and man (eds: C Thibault & MC Levasseur MC) pp. 197-212 Paris

Jost A, Chodkiewicz M and Mauleon P (1963) Intersexualite du foetus de Veau 
produite par les androgenes. Comparaison entre 1’hormone foetale 
responsable du free-martinisme et l’hormone testicularire adulte. C. R. 
Acad. Sci. (Paris). 256:274

Jost A, Magre S and Agelopoulou J (1981) Early stages of testicular 
differentiation in the rat. Human Genetics 58: 59-63

Jost A, Vigier B Prepin J and Perchellet JP (1973) Studies on sex differentiation 
in Mammals. Recent Progress in Hormone Research 29: 1-35

Jurgelski WJr (1974) The opossum (.Didelphis virginiana Kerr) as a biomedical 
model. I. Research perspective, husbandry, and laboratory techniques. 
Laboratory Animal Sciences 24: 376-403

Jurgelski Wjr, Forsythe W, Dahl D, Thomas LD, Moore JA, Kotin P, Falk HL 
and Vogel FS (1974) The opossum (.Didelphis virginiana Kerr) as a 
biomedical model, n. Breeding the opossum in captivity: facility design. 
Laboratory Animal Sciences 24: 404-411

Karnovsky M.J (1965) A formaldehyde-glutaraldehyde fixative of high 
osmolality for use in electron microscopy. Journal of Cell Biology 27: 
137A-138A

Kassim NM, McDonald SW, Reid O, Bennett NK, Gilmore DP, Payne AP
(1997) The effects of pre- and postnatal exposure to the non steroidal 
antiandrogen flutamide on testis descent and morphology in the albino swiss 
rat. Journal of Anatomy 190: 577-588

Keast A (1977) Historical biogeography of the marsupials In: The Biology of 
Marsupials (eds: B Stonehouse & D. Gilmore) pp. 69-95 London: The 
Macmillan Press Ltd

Kerr JB and Knell CM (1988) The fate of Leydig cells during the development of 
the fetal and postnatal rat testis. Development 103: 535-544

Kime D, Vinson G, Major P and Kilpatrick R (1980) Adrenal-gonad 
relationships. In: General Comparative and Clinical Endocrinology of the 
Adrenal Cortex (eds: I Jones & I Henderson), vol. 3. New York: Academic 
Press, pp. 183-264



REFERENCES 85

Kirsch JAW (1977) The six-percent solution: second thoughts on the adaptedness 
of the marsupials, (eds: B Stonehouse & DP Gilmore) Macmillan Press Led

Kitahara Y (1923) Uber die Entstehung der Zwischenzellen der Keimdrusen des 
Menschen und der Saugetiere und uber deren physiologische Bedeutung. 
Arch. Entwicklungsmech.Org. 52:571-604

Kraus DB and Fadem BH (1987) Reproduction, development and physiology of 
the gray short-tailed opossum (Monodelphis domestica). Laboratory Animal 
Sciences 37: 478-482

Krause WJ, Cutts H and Leeson CR (1979a) Morphological observations on the 
mesonephros in the postnatal opossum, Didelphis virginiana. Journal of 
Anatomy 129: 377-397

Krause WJ, Cutts H and Leeson CR (1979b) Morphological observations on the 
metanephros in the postnatal opossum, Didelphis virginiana. Journal of 
Anatomy 129: 459-477

Kuopio T, Paranko J and Pelliniemi LJ (1989) Basement membrane and 
epithelial features of fetal-type Leydig cells in rat and human testis. 
Differentiation 40: 198-206

Kuopio T, Tapanainen J, Pelliniemi LJ and Huhtaniemi I (1989) 
Developmental stages of fetal-type Leydig cells in prepubertal rats. 
Development 107: 213-220

Ley RD (1987b) Photoreactivation in mammalian skin: mouse, marsupial and 
man. Photodermatology 4: 173-175

Ley RD (1987a) Monodelphis domestica: a new animal model for studies on 
photodermatology. Photochemical Photobiology 46: 223-227

Ley RD, Applegate LA, Stuart TD and Fry RJM (1987) UV radiation induced 
skin tumors in Monodelphis domestica. Photodermatology 4: 144-147

Lipsett MB and Tullner (1965) Testosterone synthesis by the fetal rabbit gonad. 
Endocrinology 77: 273-277

Lowry OH, Rosebrough NJ, Farr AL and Randall RJ (1951) Protein 
measurement with the folin phenol reagent. Journal of Biological Chemistry 
193: 265-275

Luu-The V, Lachance Y, Labrie C, Leblanc G, Thomas JL, Strickler RC and 
Labrie F (1989) Full length cDNA structure and deduced amino acid
sequence of human 3p-hydroxy - A^- ene steroid dehydrogenase. Molecular 
Endocrinology 3: 1310-1312



REFERENCES 8 6

Mackay S and Smith RA (1989) Mouse gonadal differentiation in vitro in the 
presence of fetal calf serum. Cell Differentiation and Development 27: 19-28

Mackay S, Bashir AA and Birnie DH (1989) Primordial germ cells and gonadal 
development in the golder hamster. Journal of Anatomy 164: 155-163

Mackay S, Strachan L and McDonald SW (1993) Increased vascularity is the 
first sign of testicular differentiation in the mouse. Journal of Anatomy 183: 
171

Magre S and Jost A (1983) Early stages of the differentiation of the rat testis: 
relations between Sertoli and germ cells. In: Current Problems in Germ Cell 
Differentiation (eds: A McLaren & CC Wylie) Cambridge University Press

Maitland P and Ullmann SL (1993) Gonadal development in the opossum, 
Monodelphis domestica: the rete ovarii does not contribute to the 
steroidogenic tissues. Journal of Anatomy 183: 43-56

McCrady E (1938) The embryology of the opossum. In: American Anatomical 
Memoirs, No. 16. pp. 1-233 (eds: C. R. Stockard & H. M. Evans). 
Philadelphia: Wistar Institute

McKay DG, Hertig AT, Adams EC and Danzinger S (1953) Histochemical 
observations on the germ cells of human embryos. Anatomical Record 177: 
201-219

Mckeever S (1970) Male reprodictive organs. In: Reproduction and Breeding 
Techniques for Laboratory Animals (Ed: E. S. E. Hafez) Cpapter 2 Lea & 
Febiger: Philadelphia pp.28-55

McLaren A (1983) Studies on mouse germ cells inside and outside the gonad. 
Journal of Experimental Zoology 288: 167-171

McLaren A (1991a) Development of the mammalian gonad: The fate of the 
supporting cell lineage. Biological Essays 13: 151-156

McLaren A (1991b) Sex determination in mammals. In: Oxford Reviews of 
Reproductive Biology, Vol. 13 ed. SR Milligan pp. 1-33 Oxford: Oxford 
University Press

M erry DE, Pathak S and VandeBery JL  (1983) Differential NOR activities in 
somatic and germ cells of Monodelphis domestica (Marsupialia, Mammalia). 
Cy to genet. Cell Genet. 35: 244-251

Mittwoch U (1970) How does the Y chromosome affect gonadal differentiation? 
Philosophical Transactions of the Royal Society of London Series B 259: 
113-177



REFERENCES 87

Mittwoch U (1985) Males, females and hermaphrodite. Annals o f Human 
Genetics 50: 103-1121

Molenarr D, De Rooij DG, Rommerts FFG, Reuvers PJ and Van Der Molen JH
(1985) Specific destruction of Leydig cells in mature rats after “in vivo” 
administration of ethylene dimethanesulfonate (EDS). Biology o f 
Reproduction 33: 1213-1222

Moore CR (1939) Modification of sexual development in the opossum by sex 
hormones. Proceedings of the Society for Experimental Biology 40: 544- 
546

Moore HDM and Thurstan SM (1990) Sexual differentiation in the grey short
tailed opossum, Monodelphis domestica, and the effect of oestradiol 
benzoate on development in the male. Journal o f Zoology 221: 639-658

Morgan CF (1943) The normal development of the ovary of the opossum from 
birth to maturity and its reactions to sex hormones. Journal o f Morphology 
72: 27-85

Munsterberg AD & Lovell-Badge R (1991) Expression of the mouse anti- 
Miillerian hormone gene suggests a role in both male and female sexual 
differentiation. Development 113: 613-624

Neumann F, Von Berswordt-Wallrabe R, Eiger W, Steinbeck H, Haha JD and 
Kramer M (1970) Aspects of androgen-dependent events as studied by 
anti-androgens. Recent Progress in Hormone Research 26:337-410

O’Rahilly R (1977) The development of the vagina in the human. Birth Defects 
13: 123-136

O W-S and Baker TG (1978) Germinal and somatic cell interrelationships in 
gonadal sex differentiation. Ann. Biol. Anim. Bioch. Biophys. 18 (2B): 351- 
357

O W-S, Short RV, Renfree MB and Shaw G (1988) Primary genetic control of 
somatic sexual differentiation in a mammal. Nature 331: 716-717

Ohno S (1976) Major regulatory genes for mammalian sexual development. Cell 
7: 315-321

Olson GE and Winfrey VP (1991) Changes in actin distribution during sperm 
development in the opossum, Monodelphis domestica. The Anatomical 
Record 230:209-217

Payne AP (1996) Gonadal hormones and the sexual differentiation of the nervous 
system: mechanisms and interactions. In: CNS Neurotransmitters and 
Neuromodulators Neuroactive Steroids (ed: Stone TW), New York: CRC 
Press, pp. 153-175



REFERENCES 8 8

Pehleman FW and Lombard MN (1978) Differentiation of ovarian and testicular 
interstitial cells during embryonic and post-embryonic development in mice. 
Cell Tissue Research 188: 465-480

Pelliniemi LJ (1975) Ultractructure of gonadal ridge in male and female pig 
embryos. Anatomic Embryology 147: 19-34

Peters H (1969) The development of the mouse ovary from birth to maturity. Acta 
Endocrinologica 62:98-116

Picard J-Y, Benarous R, Guerrier D, Josso N and Kahn A (1986) Cloning and 
expression of cDNA for anti-Miillerian hormone. Proceedings of the 
National Academy of Sciences USA 83: 5464-5468

Picard J-Y, Guerrier D, Kahn A and Josso N (1989) Molecular biology of anti- 
Miillerian hormone. In: Evolutionary Mechanisms in Sex Determination 
(ed: SS Wachtel) pp. 209-217 Boca Raton, Florida: CRC Press

Picon R (1969) Action du testicule foetal sur le developpement in vitro des canaux 
de Miiller chez le rat Archives dAnatomie Microscopique et de Morphlogie 
Experimentale 58: 1-19

Pocock R J (1926) Description des organes de la generation chez le Macropus 
(Halmaturus) bennettii femalle. VAcademie Royale des Sciences de Belgique 
18: 595-599

R attner JB (1972) Nuclear shaping in marsupial spermatids. Journal of 
Ultrastructural Research 40: 498-512

Raynaud A (1958) Inhibition, sous I’effec d’une hormone oestrogene, du 
developpement du gubemaculum du foetus male de souris. C.r. hebd. Seanc. 
Acad. Sci., Paris. 246: 176-179

Readhead C, Lobo RA and Kletzky DA (1983) The activity of 3p- 
hydroxysteroid dehydrogenase and A^ - isomerase in human follicular 
tissue. Am J Obstet Gynecol 145:491-495

Renfree MB (1992a) Brief Reviews: The role of genes and hormones in marsupial 
sexual differentiation. Journal of Zoology London 226: 165-173

Renfree MB (1992b) The role of genes and hormones in marsupial sexual 
differentiation. Journal of Zoology 266: 165-173

Renfree MB (1994) Sexual dimorphisms in the gonads and reproductive tracts of 
marsupial mammals. In: The Differences Between the Sexes (eds: Balabane 
& Short RV) pp. 213-230 Cambridge University Press



REFERENCES 89

Renfree MB and Short RV (1988) Sex determination in marsupials: evidence for 
a marsupial-eutherian dichotomy. Philosophical Transactions o f the Royal 
Society (B) 322: 41-53

Renfree MB, Shaw G and Harry JL (1997) Differentiation of sexual 
dimorphisms during marsupial development 43(Suppl): 25-26

Renfree MB, Harry JL and Shaw G (1995) The marsupial male: a role model for 
sexual development. Philosophical Transactions o f the Royal Society B 350 
243-251

Renfree MB, O W-S and Short RV (1996) Sexual differentiation of the 
urogenital system of the fetal and neonatal tammar wallaby, Macuopus 
eugenii. Anatomical Embryololgy 194: 111-134

Renfree MB, Robinson ES, Short RV and Vandeberg JL (1990) Mammary 
glands in male marsupials: Primordia in neonatal opossums Didelphis 
virginiana and Monodelphis domestica. Development 110: 385-390

Renfree MB, Shaw G, Clarke J, Short RV and Kerr JB (1992) Morphology of 
the developing urogenital system of the tammar wallaby, Macropus eugenii. 
Journal o f Reproduction and Fertility, Abstract Series, 9: 134

Renfree MB, Wilson JD, Short RV, Shaw G and George FW (1992) Steroid 
hormone content of the gonads of the tammar wallaby during sexual 
differentiation. Biology of Reproduction 47: 644-647

Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain 
in electron microscopy. Journal o f Cell Biology 17: 208

Robinson ES, Renfree MB, Short RV and VandeBerg (1991) Mammary Glands 
in male marsupials. 2. Development of teat primordia in Didelphis 
virginiana and Monodelphis domestica. Reprod. Fertil. Dev. 3: 295-301

Rodger JC (1982) The testis and its excurrent ducts in American Caenolestid and 
Didelphid marsupials. The American Journal o f Anatomy 163, 269-282

Rubin D (1944) Embryonic differentiation of Cowper’s and Bartholin’s glands of 
the opossum following castration and ovariectomy. Journal o f Experimental 
Zoology 94: 463-473

Russell LD, Bartke A and Goh JC (1989) Postnatal development of the Sertoli 
cell barrier, tubular lumen, and cytoskeleton of Sertoli and myoid cells in the 
rat, and their relationship to tubular fluid secretion and flow. The American 
Journal o f Anatomy 184: 179-189

Russo J and Rosas JC-De (1971) Differentiation of the Leydig cell of the mouse 
testis during the fetal period: an ultrastructural study. American Journal o f 
Anatomy 130:461-480



REFERENCES 90

Samarakkody UK and Hutson JM (1992) Intrascrotal CGRP 8-37 causes a delay 
in testicular descent in mice. Journal of Pediatric Surgery 27: 874-875

Schwanzel-Fukuda M, Fadem BH, Garcia MS and Pfaff DW (1988) The 
immunocytochemical localization of luteinizing hormone-releasing hormone 
(LHRH) in the brain and nervus terminalis of adult and early neontal gray 
short-tailed opossums (Monodelphis domestica). Journal of Comp. Neurol. 
276:44-60

Sharpe RM, Kerr JB, Cooper I and Bartlett JMS (1986) Intratesticular factors 
and testicular secretion: the effect of ethane dimethane sulphonate (EDS) and 
the induction of seminiferous tubule damage. International Journal of 
Andrology 9: 285-298

Shaw G, Harry JL, Whitworth DJ and Renfree MB (1995) Sexual 
determination and differentiation in the marsupials. In: Recent Advances in 
Marsupial Biology (eds: Saunders NA & Hinds LA) University of New 
South Wales Press

Shaw G, Renfree MB and Short RV (1990) Primary genetic control of sexual 
differentiation in marsupials. Journal of Zoology 37: 443-450

Shaw G, Renfree MB, Short RV and O W-S (1988) Experimental manipulation 
of sexual differentiation in wallaby pouch young treated with exogenous 
steroids. Development 104: 689-701

Short RV (1982) Sex determination and differentiation. In: Reproduction in 
Mammals 2:70-113

Short RV (1972) Species differences. In: Reproduction in Mammals (eds: CR 
Austin & RV Short) Cambridge University Press

Short RV, Renfree MB and Shaw G (1988) Sexual development in marsupial 
pouch young. In: The Developing Marsupial Models for Biomedical 
Research pp. 200-238 New York Press

Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster 
JW, Frischauf A-M, Lovell-Badge R and Goodfellow PN (1990) A gene 
from the human sex-determining region encodes a protein with homology to 
a conserved DNA binding motif. Nature (London). 346: 240-244

Sinha AK and Kakati S (1976) C- and G-bands of the opossum chromosomes: 
Terminal sequences of DNA replication. Can J. Genet. Cytol. 18: 195-205

Sinha AK, Kakati S and Pathak S (1972) Exclusive localisation of C-bands 
within opossum sex chromosomes. Experimental Cell Research 75: 265- 
268



REFERENCES 91

Smith C and Mackay S (1990) The development of mesonephric tubules and their 
possible contribution to gonadal and adrenal cortical anlagen in the CBA 
mouse Abstract in Journal o f Anatomy 170: 240

Taggart DA, Johnson J and Temple-Smith PD (1993a) Testicular and 
epididymal development in the brown marsupial mouse, Antechinus stuartii 
(Dasyuridae, Marsupialia). Anatomy and Embryology 188:87-100

Taggart DA, Johnson JL, O'Brien HP and Moore HDM (1993b) Why do 
spermatozoa of American marsupials form pairs? A clue from the analysis 
of sperm-pairing in the epididymis of the grey short-tailed opossum, 
Monodelphis domestica. The Anatomical Record 236:465-478

Takahashi M, Hayashi M, Manganaro TF and Donahoe PK (1986a) The 
ontogeny of Mullerian duct inhibiting substance in granulosa cells of the 
bovine ovarian follicle. Biology of Reproduction 35: 447-453

Takahashi M, Koide SS and Donahoe PK (1986b) Mullerian inhibiting 
substance as oocyte meiosis inhibitor. Molecular Cell Endocrinology 47: 
255-234

Taketo T, Saeed J, Manganaro T, Takahashi M and Donahoe PK (1993) 
Mullerian inhibiting substance production associated with loss of oocytes 
and testicular differentiation in the transplanted mouse XX gonadal 
primordium. Biology of Reproduction 49: 13-23

Tam PPL and Snow MHL (1981) Proliferation and migration of primordial germ 
cells during compensatory growth in mouse embryos. Journal o f 
Embryology and Experimental Morphology 64: 133-147

Theiler K (1972) The house mouse. In: Development and normal stages from  
fertilisation to four weeks o f age. Berlin, Heidelberg, New York: Springer 
Verlag

Thomson SD and Lendon RG (1988) The effects of ethane-1, 2- 
dimethanesulphonate (EDS) on the neonatal rat testis. Journal o f Anatomy 
158: 203

Tsubota T, Nitta H, Osawa Y, Mason JI, Kita I, Tiba T and Bahr JM (1993) 
Immunolocalization of steroidogenic enzymes, P450, 3p-HSD, P450cl7, and 
P450arom in the Hokkaido brown bear (Ursus arctos yesoensis) testis. 
General and Comparative Endocrinology 92: 439-444

Tran D and Josso N (1982) Localisation of anti-Miillerian hormone in the rough 
endoplasmic reticulum of the developing bovine Sertoli cell using 
immunocytochemistry with a monoclonal antibody. Endocrinology 111: 
1562-1567



REFERENCES 92

Tran D, Meusy-Dessolle N and Josso N (1977) Anti-Miillerian hormone is a 
functional marker of foetal Sertoli cells. Nature (London) 269: 411-412

Tran D, Picard JY, Campargue J & Josso N (1987) Immunocytochemical 
detection of anti-Miillerian hormone in Sertoli cells of various mammalian 
species. Journal of Histochemistry & Cytochemistry vol. 35 7: 733-743

Trupin GL and Fadem BH (1982) Sexual behaviour of the gray short-tailed 
opossum (.Monodelphis domestica). Journal of Mammalology 63. 409-414

Tung PS, Skinner MK and Fritz IB (1984) Cooperativity between Sertoli cells 
and peritubular myoid cells in the formation of the basal lamina in the 
seminiferous tubule. Annals New York Academy of Sciences. 438: 435-446

Tyndale-Biscoe CH (1973) Life of Marsupials. London: Arnold

Tyndale-Biscoe CH and Renfree MB (1987) Reproductive Physiology of 
Marsupials Cambridge: Cambridge University Press

Tyson E (1698) Carigueya, Seu Marsupiale Americanum or The Anatomy of an 
Ppossum Dissected at Gresham college. Philoophical Transactions of the 
Royal Society (B) 20: 105-164

Ullmann SL (1981) Sexual differentiation of the gonads in bandicoots 
(Peramelidae, Marsupialia). In Development And Function of Reproductive 
Organs (ed. A. G. Byskov & H. Peters). Amsterdam: Elsevier North- 
Holland

Ullmann SL (1984) Early differentiation of the testis in the native cat, Dasyurus 
viverrinus (Marsupialia). Journal of Anatomy 138 675-688

Ullmann SL (1989) Ovary development in bandicoots: sexual differentiation to 
follicle formation. Journal of Anatomy 165: 45-60

Ullmann SL (1993) Differentiation of the gonads and initiation of mammary gland 
and scrotum development in the brush tail possum Trichosurus vulpecula 
(Marsupialia). Anatomy and Embryology 187: 475-484

Ullmann SL (1996) Development of the ovary in the brushtail possum 
Trichosurus vulpecula (Marsupialis). Journal of Reproduction and Fertility 
Abstract Series 18: 81

Ullmann SL Maitland P and Mason JI (1995) Distribution of 3(3-Steroid 
dehydrogenase in the ovaries of the opossum Monodelphis domestica. 
Journal of Reproduction and Fertility Abstract Series 15: 131



REFERENCES 93

Van der Schoot P (1992) Androgens in relation to prenatal development and 
postnatal inversion of the gubemacula in rats. Journal of Reproduction and 
Fertility 95: 145-158

Van der Schoot P (1993a) Doubts about the ‘first phase of testis descent’ in the rat 
as a valid concept. Anatomy and Embryology 187:203-208

Van der Schoot P (1993b) Foetal testes control the prenatal growth and 
differentiation of the gubemacular cones in rabbits - a tribute to the late 
Professor Alfred Jost. Development 118: 1327-1334

Van der Schoot P (1996a) Development, structure and function of the cranial 
suspensory ligaments of the mammalian gonads in a cross-species 
perspective; their possible role in effecting disturbed testicular descent. 
Human Reproduction Update 2: 399-418

Van der Schoot P (1996b) Towards a rational terminology in the study of the 
Gubemaculum testis: arguments in support of the notion that the cremasteric 
sac should be considered the Gubemaculum in postnatal rats and other 
mammals. Journal of Anatomy 189:97-108

Van der Schoot, Xie Q, Payne A, Mackay S, Ullmann SL and Gilmore D
(1996) Development of the gubemaculum in female marsupial mammals. 
Journal of Reproduction and Fertility Abstract Series 18: 43

VandeBerg JL (1983) The gray short-tailed opossum: a new laboratory animal. 
ILAR News 26:9-12

VandeBerg JL (1990) The gray short-tailed opossum (Monodelphis domestica) as 
a model Didelphid species for genetic research. In: Mammals from Pouches 
and Eggs. (ed. J. A. Marshall Graves, R. M. Hope & D. W. Cooper). 
Australia: C.S. I. R. O

VandeBerg JL Cothran DG and Kelly CA (1986) Dietary effects on 
hematologic and serum chemical values in gray short-tailed opossums. 
(Monodelphis domestica). Laboratory Animal Science 36: 32-36

VandeBerg JL, Robinson ES, Samollow PB and Johnston PG (1987) X linked 
gene expression and X chromosome inactivation: marsupials, mouse, and 
man compared. Isozymes Curr. Top. Biol. Med. Res. 15: 255-253

Vigier B, Picard JY, Tran D, Legeai L and Josso N (1984) Production of anti- 
Mullerian hormone: another homology between Sertoli and granulosa cells. 
Endocrinology 144: 1315-1320

Vigier B, Tran D, du Mesnil du Buisson F, Heyman Y and Josso N (1983) Use 
of monoclonal antibody techniques to study the ontogeny of bovine anti- 
Miillerian hormone. Journal of Reproduction and Fertility 69: 207-214



REFERENCES 94

Vigier B, W atrin R, Magre S, Tran D and Josso N (1987) Purified bovine AMH 
induces a characteristic freemartin effect in fetal rat prospective ovaries 
exposed to it in vitro. Development 11: 43-55

Wachtel SS, Ohno S, Koo GC and Boyse EA (1975) Possible role for H-Y 
antigen in the primary determination of sex. Nature (London) 257: 235-236

W artenberg H (1981) The influence of the mesonephric blastema on gonadal 
development and sexual differentiation. In: Development and Function of 
Reproductive Organs (eds: AF Byskov & J Peters) pp. 3-12 Amsterdam: 
Exverpta Medica

W artenberg H (1982) Structural aspects of gonadal differentiation in mammals 
and birds. In: Differentiation (eds:U Muller & WW Franke) Brelin: 
Springer-Verlag pp. 64-71

W artenberg H (1983) Development of the early human ovary and role of the 
mesonephros in the differentiation of the cortex. Anatomical Embryology 
165: 253-280

W artenberg H (1989a) Differentiation and development of the testis. In: The 
Testis (2nd edn) (eds: H Burger & D de Kretser) pp. 67-118 New York: 
Raven Press

W artenberg H (1989b) Ultrastructure of fetal ovary including oogenesis. In: 
Ultrastructure of Human Gametogenesis and Early Embryogenesis (eds: von 
blerkom J, Motta PM ) Boston: Kluwer Academic Publishers, 2989: 61-85

Wensing CJG and Colenbrander B (1986) Normal and abnormal testicular 
descent. Oxford Reviews of Reproductive Biology 8:130-164

Wensing CJG (1973) Testicular descent in some domestic mammals, n. The 
nature of the gubemacular changes during the process of descent in the pig. 
Proceedings of the Koninklijke Nederlandse Akademin van Wetenschappen 
Series C, 76:190-195

Wensing CJG (1986) Testicular descent in the rat and a comparison of this 
process in the rat with that in the pig. Anatomical Record 214: 154-160

Wensing CJG (1988) The embryology of testicular descent. Hormone Research 
30: 144-152

Wilson JD (1978) Sexual differentiation. Annual Review of Physiology 40: 279- 
306

Wilson JD (1992) Syndromes of androgen resistance. Biology of Reproduction 
46: 168-173



REFERENCES 95

Wilson JD (1994) Translating gonadal sex into phenotypic sex. In: The 
Differences Between the Sexes (eds: Balabane & Short RV) pp. 203-212 
Cambridge university Press

Wilson JD Frederick W, George FW and Renfree MB (1995) The endocrine 
role in mammalian sexual differentiation. Recent Progress in Hormone 
Research 50: 349-364

Wilson JD George FW, Griffin JE (1981) The hormonal control of sexual 
development. Science 211: 1278-1284

Wilson JD and Siiteri PK (1973) Developmental pattern of testosterone synthesis 
in the fetal gonad of the rabbit. Endocrinology 92: 1182-1191

Witschi E (1948) Migration of the germ cells of human embryos from the yolk sac 
to the primitive gonadal folds. Contributions to Embryology of the Carnegie 
Institution 32: 67-80

Witschi E (1951) Embryogenesis of the adrenal and the reproductive glands. 
Recent Progress in Hormone Research 6: 1-23

Xie Q, Mackay S, Ullmann SL, Gilmore DP and Payne AP (1996a) Testis 
development in the opossum Monodelphis domestica. Journal of Anatomy 
189: 393-406

Xie Q, Mackay S, Ullmann SL, Gilmore DP and Payne AP (1996b) A study of 
the early postnatal development of the reproductive tract of Monodelphis 
domestica. Journal of Reproduction and Fertility Abstract Series 18: 101

Xie Q, Mackay S, Ullmann SL, Gilmore DP and Payne AP (1995) An 
ultrastructural and immunocytochemical study of postnatal development of 
Leydig cells in the poossum, Monodelphis domestica. Journal of 
Reproduction and Fertility Abstract Series 16: 83

Xie Q, Mackay S, Ullmann SL, Gilmore DP, Payne AP and Gray CE (1997) 
Postnatal development of Leydig cells in the opossum Monodelphis 
domestica: an immunocytochemical and endocrinological study. Biology of 
Reproduction (In Press)

Yoshinaga K, Hess DL, Hendrickx AG and Zamboni L (1988) The 
development of the sexually indifferent gonad in the prosimian, Galago 
crassicaudatus crassicaudatus. American Journal of Anatomy 181: 89-105

Ziegler HG, Haider SG, Passia D and Hilscher W (1983) Enzyme histochemical 
and morphometrical studies on - 3 p-hydroxy steroid dehydrogenase 
during the fetal and neonatal development of rat Leydig cells. Andrologia 15 
(4): 392-397



REFERENCES 96

Zirkin BR and Ewing LL (1987) Leydig cell differentiation during maturation of 
the rat testis: A stereological study of cell number and ultrastructure. The 
Anatomical Record 219: 157-163

Zuckerman S and Baker TG (1977) The development of the ovary and the 
process of oogenesis. In Ovary (2nd edn) (eds: S Zuckerman & BJ Weir) 
chapter 2, pp. 41-67. New York & London: Academic Press



APPENDIX 97

Appendix 1: Chromosome Karyotyping Analysis 

Solution:

0.56% KC1: 0.56 gms KC1 in 100 ml H20

3:1 methanol: glacial acetic acid: must be freshly made up

60% glacial acetic acid: must be freshly made up

Hank’s Buffer:

Double distilled H20

Hank’s buffer (10X HBSS on bottle Gibco)

Sodium bicarbonate (Gibco)

Phosphate Buffered Saline (PBS):

Phosphate buffer 10 mis

NaCl 0.9 mis

Double distilled H20  90 mis

Williams E-Medium:

Williams medium 8.8 ml

Fetal calf serum (nutrients) 1.0 ml

Gentamycin (antibiotic) 0.1 ml

L-glutamine (Gibco) 0.2 ml

CMRL-100 Medium:

CMRL-100 8.9 ml

Fetal calf serum 1.0 ml

Gentamycin 0.1 ml

9 mis 

1 ml 

0.1 mis
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Colcemid Stock (mitotic arrest agent 1 fig/ml):

Supplied as lmg in 30 ml vial, add 20 ml of sterile phosphate buffered saline (0.1

M) and passing through the millpore (......) to sterile. Aliquoted 1 ml for each

(0.05mg/ml) and keep in the freezer.

Took 1 for “using” stock add 49 ml sterile PBS and leave in 5°C fridge in sterle 

bottle. The concentration of Solcemid Stock is 1 pm/ml.

Colcemid (0.4 fig/ml):

Colcemid stock (lpg/ml)

Williams medium

0.2 M phosphate buffer at pH = 7.2-7.4 solution:

NaH2P04.2H20 15.6 gm in 500 ml of distilled water

NaH2P04 56.8 mg in 2000 ml of distilled water

*Combine the two solutions to give 2.5 litres of 0.2M phosphate buffer at pH 7.4

0.1M phosphate buffer solution:

Stock A: 0.1 M sodium dihydrogen orthophosphate (mw 156) 1.56g in 100 ml

h 2o

Stock B: 0.1 M disodium hydrogen orthophosphate (mw 142) 1.42g in 100 ml

H20

Compisition of buffer:

x ml of A + y ml of B made up to 100 ml with distilled water

pH x ml of A v ml of B

6.8 25.5 24.5

7.2 14.0 36.0

7.4 9.5 40.5

2 ml

3 ml
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Methods:

Chromosome karyotyping were carried out on young aged opossum from day 0-3 

using a modification of a technique described for mice by Evans et al. (1972).

1. The pups were killed by decapitation.

2. Dissect out liver in Willians’ E-medium (Gibco) at 37°C.

3. Transfer to Williams’ E- medium containing 0.4 mg/ml of colchicine.

4. Break up liver into fragments with needles and pipette up and down in a syringe

to disperse cells prior to incubation. Incubate for 1-2 hours at 37°C.

5. Transfer the cell suspension to a centrifuge tube and spin at 1000 rpm for 10 

minutes

6. Discard supernatant and resuspend pellet in 0.56% KC1 at room temperature for 

10 minutes.

7. Centrifuge cell suspension at 1000 rpm for 10 minutes.

8. Discard supernatant and fix pellet slowly by carefully pipetting in 3:1 methanol : 

glacial acetic acid.

9. Remove fixative. Resuspend cells by flicking centrifuge tube, simultaneously 

adding further fixative. Complete fixation should take 2-5 minutes.

10. Centrifuge at lOOOrpm for 10 minutes. Discard supernatant and resuspend in 

60% glacial acetic acid. Place 3 drops in a row onto a cleaned slide.

Giemsa (For chromosome karyotvvinz) Stain:

1. 0.5M HC1 - 15 minutes

2. Wash in running tap water - 5 minutes

3. Stain with 2.5% Giemsa's in 0.1 M phosphate buffer (pH 6.8) -15 minutes

4. Wash in phosphate buffer

5. Dry in air.

6. Histoclear.

Mount in DPX.

Results: Chromosome stain blue to purple.
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Appendix 2; Processing Tissue for Light and Transmission Electron 

Microscopy

Solution:

Fixative for Light Microscopy (Paraffin Sections) and Immunocytochemistry:

To prepare 4% 1000 ml paraformaldehyde in 0.1M phosphate buffer (pH 1.2-1 A)

1) Heat 400 ml ml distilled water in a conical flask until water temperature reaches 

68-70°C.

2) Measure 40 gms of paraformaldehyde and empty into the above flask and stir. 

Add 1 N sodium hydroxide solution drop wise (a few drops) until solution 

becomes clear.

3) Add 500 ml of 0.2 M phosphate buffer.

4) Make the volume to 1000 ml with distilled water and filter.

Primary Fixative for Light (semi-thin sections) and Electron Microscopy:

To prepare 1000 ml 3%glutaraldehvde + l%formaldehvde in 0.1M PB (pH 7.2-7.4)

1) Heat 350 ml distilled water in a conical flask until water temperature reaches 68- 

70°C.

2) Measure 10 gms of paraformaldehyde and empty into the above flask and stir. 

Add 1 N sodium hydroxide solution drop wise (about 10 - 12 drops) until 

solution becomes clear.

3) Add 120 ml of 25% glutaraldehyde and 4 ml of 0.5 calcium chloride.

4) Add 500 ml of 0.2M phosphate buffer.

5) Make the volume to 1000 ml with distilled water and filter.

Post-Fixative (1% OsOan 0.1 M PB): 1 gm Os04 in 100 mis PB

Araldite Resin Mixture:

Araldite Resin

DDSA (Dodecenyl Succinic Anhydride)

DBP (Dihutyl Phthalate)

DMP-30 (2,4,6,-tri(dimethylaminomethyl) phenol)

12.5 ml

12.5 ml 

0.63 ml 

0.31 ml
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Histokinette Automatic Tissue Processor for Paraffin sections:

Fixed specimens were rinsed to remove as much fixative as possible with 

three changes of 0.1 M phosphate buffer. Any bony components were decalcified 

with buffered 10% EDTA to facilitate cutting. Specimens were placed in separate

histokinette baskets and labelled.

1) 70% ethanol 2 hours

2) 90% ethanol 2 hours

3) Absolute alcohol 2 hours

4) Amyl acetate 2 hours

5) Wax bath 2 hours

Multi-tissue specimens were subjected to vacuum extraction to ensure they were 

completely degassed. After embedding in wax they were then sectioned in 5-7jim 

thickness.

Processing Tissue for Light (semi-thin sections) Electron Microscopy:

stages

use rotator.
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Appendix 3: Morphological Staining

A. Haematoxylin and Eosin (For paraffin sections):

Solutions:

Haematoxylin - 2.5 Harris's haematoxylin in 25 ml absolute ethanol and 50g 

aluminium potassium suplphate in 500 ml warm distilled water. Mix the two 

solutions and boil for 2 minutes. Add 1.25g mercuric oxide and cool rapidly in cold 

water. When cold add 20 ml glacial acetic acid.

Putt's eosin - lOg Eosin y, 5 potassium dichromate, 100 ml absolute ethanol, 100 ml 

saturated aqueous picric acid and 800 ml distilled water. Dilute 1:3 with water. 

Scott's tap water substitute - 3.5g sodium bicarbonate and 20g magnesium sulphate 

in 1000 ml distilled water. Add a few crystals of thymol.

Method:

1. Histoclear 10 minutes

2. Ethanol series (100%, 90%, 70%, 50%, 30%)

3. Distilled water

4. Harris's haematoxylin

5. Rinse in tap water

6. Scott's tap water substitute until blue.

7. Rinse in tap water.

8. Differentiate, if necessary, in acid alcohol.

9. Putt's eosin

10. Rinse in tap water.

11. Ethanol series ( 30%, 50%, 70%, 90%, 100%)

12. Histoclear

13. Mount in DPX.

3 minutes in each

3 minutes

3 minutes

1 minutes

2 minutes

30 seconds each

5 minutes

Results:

Nuclei stain blue/purple. Cytoplasm stains pink.
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B. Haematoxylin and Eosin (For semi-thin sections) 

Solution:

Celestine blue:

Ferric ammonium solphate 

Distilled water 

Celestine blue 

Glycerine

Method:

1. Hotplate

2. Saturated sodium hydroxide in ethanol

3. Ethanol series (100%, 90%, 70%, 50%, 30%)

4. Distilled water

5. Celestine blue

6. Wash in tap wate

7. Haematoxylin (Meyer’s)

8. Wash in running tap water

9. Scott's tap water substitute until blue.

10. Wash in running tap water

11. Differentiate, if necessary, in acid alcohol.

12. Putt's eosin

13. Rinse in tap water.

14. Ethanol series ( 30%, 50%, 70%, 90%, 100%)

15. Histoclear

16. Mount in DPX.

5 mgs 

lOOmls 

0.5 gms 

14 mis

30 - 60 minutes 

30 minutes 

3 minutes in each

30 minutes

5 mintues 

5 miuntes

2 minutes

30 seconds each 

5 minutes

Results: Nuclei stain blue/purple. Cytoplasm stains pink.
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C. Toluidine Blue (For semi-thin sections) 

Solution:

A: Sodium tetraborate (borax)

B: Toluidine blue

1 g in 100 mis H2O 

1 g in 100 mis H20

*60 mis solution A + 40 mis solution B stir and filter before use.

Method:

1. Stain 1-2 m resin sections on 60°C hotplate for 10 to 30 seconds.

2. Rinse with water and dry in air.

3. Xylene

4. Mount in DPX.

Results: Various shades of blue.

D. Ultra-thin sections staining 

Solutions:

A: Lead Citrate Solutions:

Pb nitrate 1.33 g

Na citrate 1.76 g

distilled water 30 ml

*Shake until solution is well mixed (20-30 minutes) and add 8 mis 1 N NaOH, then 

add distilled H20  to top up to 50 mis.

B: Saturated Uranyl Acetate Solution in 60% ethanol.

Method:

1. Uranyl acetate solution

2. Wash in distilled water

5-10 minutes

3. Lead citrate solution 5-10 minutes

(*NaOH pellets placed in petri dish to absorb carbon dioxide)

4. Wash in distilled water

Result: Electrical density
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Appendix 4: Processing Tissue for Scanning Electron Microscopy

The neonates were killed by rapid decapitation. They were then immediately 

fixed in 3% glutaraldehyde +1%  formaldehyde in 0.1 m phosphate buffer (pH 7.2- 

7.4). The neonates were then dissected to expose the abdomen i.e. the urogenital 

ducts, bladder, kidneys, gonads adrenals etc. The colon was removed at the base of 

the bladder so that the reproductive tract can be easily observed.

1. Opossums are fixed with 3% glutaraldehyde + 1% formaldehyde in 0.1 m 

phosphate buffer (pH 7.2-7.4).

Method:

2. Transfer to same buffer 1 hour

3. Post fix with 1% OSO4

4. Transfer to buffer

5. Dehydrate through the following series:

30 minutes

30-60 minutes

50% Acetone 1 hour

70% Acetone 1 hour

90% Acetone 1 hour

1st Absolute Acetone 

2nd Absolute Acetone 

3rd Absolute Acetone

1 hour

1 hour

1 hour

6. Critical Point Dry using liquid CO2

7. Mount on stub and coated with gold
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Appendix 5: Immunocvtochemical (ICC) Staining 

Solution:

Blocking serum diluent:

1.5% goat serum in PBS containing Triton X-100 (0.3%) = 1ml PBS 

containing Triton X-100 (0.3%) + 15jLil NGS.

Primary antibody:

The primary antibody used is a polyclonal rabbit anti-human placental 3|3-HSD 

antibody was a gift from Prof. J.I. Mason (Department of Biochemistry, University 

of Edinburgh). This antibody has been wildly used on rat, mouse and human tissues 

and previous work has demonstrated cross-reactivity with Monodelphis domestica 

tissues (Ullmann etal., 1995).

Biotinylated secondary antibody (anti-rabbit IgG -1:200 in diluent):

1 ml PBS containing Triton X-100 (0.3%) + 15pl NGS + 5pl biotinylated 

anti-rabbit IgG.

ABC reagent:

1 ml PBS + 20pl solution A + 20pl solution B

(mix well and stand for > 30 minutes; A and B must be from same kit)

DAB solution (make up just before use):

50 ml PBS + 1 vials DAB + 1ml 3.5% NiCl3- filter and add 15 pi (30%) H20 2

Antibody dilutions from 1:100 Stock solution:

10 pi of stock in 90 pi of diluent = 1:1000 

5 pi of stock in 95 pi of diluent = 1:2000 

4 pi of stock in 96 pi of diluent = 1:2,500 

3.33 pi of stock in 96.66 pi of diluent = 1:3000 

2.5 pi of stock in 97.5 pi of diluent = 1:4000
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Methods:

1. Xylene

2. Ethanol series (100%, 90%, 70%)

3. Water

4. Per-incubation in 1-5% BSA

5. 0.3% H2O2 in methanol

6. PBA

7. 1-10% NGS containing Triton X-100

8. Incubation in primary antibody (1:1000)

9. Rinse in PBS

10. Incubation in secondary antibody (1:200)

11. Rinse in PBS

12. Incubation in ABC reagent

13. Rinse in PBS

14. DAB containing 0.01% H2O2 and 0.02% NiCl3

15. Wash in PB

16. Counterstain in 0.5% methyl green

17. Ethanol series (70%, 90%, 100%)

18. Xylene

19. Mount in DPX

20 minutes 

10 minutes each 

5 minutes 

30-60 minutes 

30 minutes

3 X 5  minutes 

30-60 minutes 

overnight 

3 X 5  minutes 

60 minutes 

3 X 5  minutes 

30-60 minutes 

3 X 5  minutes 

5-10 minutes

5-10 minutes 

30 seconds 

5 minutes each

*Note: Incubation most be carried out in a humidity chamber. 

Results:

3J3-HSD positive cells - dark Ley dig cell cytoplasm 

All nuclei - green (methyl green)
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Appendix 6: Protein Estimation

Solution:

Weigh out lOmg BSA and dissolve this in 100ml of 0.1 NaHO (lOOjig/ml)

The total volume of the BSA dilutions is 10ml and the small plastic capped bottles 

are used, these must be carefully labelled.

1. Blank 10ml 0.1 NaOH

2. A dilution of 10|ig BSA is formed - 1ml BSA stock +9ml 0.1M NaOH 

3 A dilution of 20pg BSA is formed - 2ml BSA stock + 8ml 0.1M NaOH

4. A dilution of 30|ig BSA is formed - 3ml BSA stock + 7ml 0 .1M NaOH

5. A dilution of 40pg BSA is formed - 4ml BSA stock + 6ml 0.1 M NaOH

6. A dilution of 50jig BSA is formed - 5ml BSA stock + 5ml 0.1 M NaOH

7. A dilution of 60|ig BSA is formed - 6ml BSA stock + 4ml 0.1 M NaOH

8. A dilution of 70jig BSA is formed - 8ml BSA stock + 3ml 0.1 M NaOH

9. A dilution of 80|ig BSA is formed - 9ml BSA stock + 2ml 0.1 M NaOH

10. A dilution of 90|ig BSA is formed - 10ml BSA stock + 1ml 0.1 M NaOH

11. Adilution of lOOpg BSA is formed - 1ml BSA stock

Weigh out 20mg BSA, dilute it in lOOme of 0.1M NaOH (200jig/ml)

12. A dilution of 120jLLg BSA is formed - 6ml BSA stock + 4ml 0.1 M NaOH

13. A dilution of 140|ig BSA is formed - 7ml BSA stock + 3ml 0.1 M NaOH

14. A dilution of 160)Lig BSA is formed - 8ml BSA stock + 2ml 0.1 M NaOH

15. A dilution of 180|ig BSA is formed - 9ml BSA stock + 1ml 0.1 M NaOH

16. A dilution of 200jng BSA is formed - 10ml BSA stock

Weigh out 30mg BSA, dilute it in 100ml of 0.1M NaOH (300|ig/ml)

17. A dilution of 210|ig BSA is formed - 7ml BSA stock + 3ml 0.1 M NaOH

18. A dilution of 240jLtg BSA is formed - 8ml BSA stock + 2ml 0.1 M NaOH

19. A dilution of 270|ig BSA is formed - 9ml BSA stock + 1ml 0.1 M NaOH

20. A dilution of 300|Xg BSA is formed - 10ml BSA stock
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The samples cell membranes must be broken down thus pellets are left 

overnight, 210pg of 0.1 M NaOH are added to each of these, they are placed in the 

vortex mixer for 1 minute and incubated overnight at 4°C.

The protein content of the tissue pellet is determined from its absorbance at 

595nm after reaction with Coomassie Blue G250 (Pierce, Life Science Laboratories 

Let., Luton, UK). The weight of protein is calculated from a standard curve 

prepared using bovine serum albumin by modified method of Lowry et al. (1951).

To each cuvette add 1ml Coomassie Blue + 900|ll1 Distilled water + IOOjliI of 

each of the 10, 20 & 30 (ig BSA solutions in 0.1M NaOH (i.e. the series of solutions 

prepared as in the above). The first reading is a blank 200jnl of 0.1M NaOH in 

1800(il of distilled water. The first cell contains the blank, between each reading the 

spectrophotometer must be reset to zero. The protein concentration in each tube 

was calculated by substitution of the absorbance into the regression equation of the 

standard curve (shown below).

X(mg/mg protein) = Y - 0.51551 3.413 x 3‘3 (Y is your reading from a sample)

BSA Standard Curve
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Appendix 7: Radioimmunoassay (RIA)

Solution:

Diluent Buffer: RIA buffer pH 7.4 containing 0.25% BSA (Sigma)

Diethyl Ether: B.D.H. AR grade.

Antiserum:

Supplied by Biochemical Services Ltd., Cardiff. The reagent was obtained

by immunisation of rabbits with testosterone-3-0 (carboxymethyloxime)-

BSA.

a. Working Stock as - Stock antiserum is diluted 1:100 with RIA buffer and 

stored -20°C in aliquots of 300 pi.

b. Working stock (1:100) is diluted sixty-fold e.g. 300 jul to 18 ml to give an 

initial titre of 1:6000. This dilution is prepared for each assay and lOOpl 

added to each tube (except total count and NBS tubes). The incubation 

volume is 500 pi and therefore the final titre of the antiserum is 1:30,000.

Tracer:

a. Stock tracer - 125I-histamine-testosterone is prepared every 6-8 weeks 

according to instructions in RIA method book. The stock solution of

tracer in ethanol is stored at 4°C. The appropriate dilution for use of each 

batch of tracer to yield 10,000 counts/100pl/60s should be marked on the 

container. This dilution varies from batch to batch of tracer.

b. Working solution - To prepare a working solution of the tracer, take the 

volume of stock tracer indicated and evaporate to dryness under an air 

stream in a conical flask, then add the diluent buffer and allow to stand 

for several minutes with occasional swirling. This solution should be 

prepared fresh for each assay.
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Extraction o f testosterone:

All tubes are set up in duplicate. For the standard curve, the tubes consisted 

of total counts, normal bovine serum and standards TO to T9, and the quality control 

(QC) pools (low, medium, high, normal male and high female).

For the samples, testosterone was extracted from plasma and testicular and 

adrenal homogenates: 2 measure of 25, 50 or 100|il of plasma (or 50|il of testicular 

homogenates) were placed in two separate tubes, (for testicular homogenate - dilute 

with an equal amount (50fxl) of distilled water to make the volume to lOOjil). Then, 

3 ml of diethyl ether was added before agitating the mixture using a multi-tube 

vortexer for 3 minutes with a speed set to ensure that the lower aqueous phase is 

spun off the bottom of the tube.

The tubes were allowed to stand for 5 minutes at room temperature to 

separate the different phases (i.e. the lower aqueous phase and the upper ether 

phase); the lower phase was then allowed to freeze in a bath of methanol containing 

carbon dioxide pellets for about 30 seconds before decanting the solvent phase into 

another assay tube. The solvent was then allowed to evaporate in the ‘Buchler 

Vortex Evaporator’, thus leaving the testosterone as sediment at the bottom of the 

tube.

Staining the Testosterone:

300jli1 of 0.25% bovine serum albumen (NSB) in buffer pH 7.4 (prepared 

fresh for each assay) was added to each tube containing the dried testosterone 

sediment or control (without testosterone) followed by 100|il of the primary 

antibody (1° antibody against testosterone raised in rabbit with titre 1:6000) and 

IOOjllI of the radioactive tracer (125I-histamine-testosterone). The mixture was then 

briefly agitated and incubated for 1-2 hours at room temperature. Afterwards, 500jil 

of doubled antibody reagent (donkey anti-rabbit in rabbit serum) was added and then 

incubated at 4 °C overnight.

Separation:

Finally, the assay tubes were centrifuged at 2,500 rpm for 25 minutes at 4°C. 

The supernatant fraction was then removed using a finely drawn out glass Pasteur 

pipette. Assay tubes were counted for sufficient time on the NEN 1600 gamma
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counter (linked to the Commodore 4032 computer and printer 4022) to accumulate

10,000 counts in the total count tubes. (NB: where a 25 or 50jil sample has been

extracted, the result obtained should be multiplied by 4 or 2).

Methods:

1. Measured samples of plasma, adrenal and testis (25-50jxl) were pipetted in 

duplicate into large numbered test-tubes.

2. Ether was added to the tubes which were vortexed, taking care not to foam the 

samples.

3. Test-tube were also vortexed while evaporating the ether off. The residue was 

transferred to smaller test-tubes.

4. Dilutent buffer was added to the test-tubes.

5. Primary antibody (100|il) raised in rabbit, was added to both standards and 

samples, which were again vortexed.

6. Iodine tracer was added (lOOpl) to all tubes including standards, samples, non

specific buffer and tracer tubes. These were then incubated for 1-2 hours at room 

temperature.

7. After vortexing a secondary antibody (raised in donkeys), lOOjul was finally 

added to all the tubes. The samples were again vortexed and incubated overnight

at 4°C.

8. The samples were centrifuged, the supernatant of each was discarded and 

radioactive counts made.

*Note: All samples should be assayed together to avoid inter-assav anomalies


