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Abstract

This thesis considers the problems of order-sorted equational logic and its operational 
interpretation, order-sorted term rewriting.

Order-sorted equational logic is a well-known paradigm in the field of algebraic specification 
for expressing partial functions and error handling. In this thesis we review the work 
undertaken in this field and present a new implementation of order-sorted term rewriting, an 
equational theorem-proving environment known as MERILL. This implementation extends 
previous implementations by integrating the order-sorted rewriting process with reasoning 
modulo associative-commutative axioms. The implementation of this system is described 
and examples of its use are given.

However, the standard theory of order-sorted equational logic and term rewriting also has 
theoretical and pragmatic difficulties. In particular, the restriction to sort-decreasing rules 
limits its practical application, and this can be traced to difficulties in the semantics. There 
have been several approaches to overcoming these problems, which are reviewed.

The thesis develops a new approach to the semantics of order-sorted specification, via a 
two-tier model, called a dynamic algebra, and a corresponding dynamic equational logic. 
A term-rewriting theory is then associated with this semantics. This approach, dynamic 
order-sorted term rewriting, uses dynamic terms where the sort of terms is carried as extra 
information within the structure of the term. This information may change as the rewriting 
process uncovers further sort information of terms. Matching and unification are defined 
for dynamic terms, although well-sorted unification proves to be undecidable.

Dynamic rewriting is shown to be sound and complete. However, to automatically generate 
rewriting proofs, the Church-Rosser property is required. To establish this, completion 
algorithms are given, subject to two properties: well-sorted unification and the coherence 
property. Criteria are given which satisfy these conditions; the definition of further criteria 
remains an open problem. An alternative approach of constrained order-sorted rewriting, 
using well-sortedness constraints, is also proposed.

Examples of the use of dynamic rewriting are given and an implementation of dynamic 
rewriting is proposed.
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Chapter 1

Introduction

1.1 The Formal M ethods Background

The use of mathematical modelling is becoming recognised as an im portant tool in the 

development of correct software systems. As software systems become more pervasive, it is 

vital tha t they are safe and predicatable, especially when influencing the safety of people, 

but also where large financial or physical losses can result. At the same time, software 

systems are becoming increasingly complex and this complexity must be managed. By 

giving a mathematical model of the system, the designer can ensure correct behaviour of the 

system while abstracting away from the complexity of implementation, and by developing 

the system within a formal method, correct software can be produced. Both parts of 

this process, showing tha t the mathematical model is correct, and th a t the development 

preserves correctness, rely on formal proof, that is deriving the result from assumptions by 

the application of logical inference rules.

However, there is much resistance to the adoption of formal methods, a problem which 

partly lies with the methods themselves. They are insufficiently m ature to be easily appli­

cable, especially in large and complex systems; proof is a difficult skill to learn and apply 

effectively; and tools are needed to support formal methods, especially for formal proof,

1



2 Introduction

where a large volume of shallow proofs are typically needed. The precise nature of rule 

application within proofs is particularly suited to mechanised support.

Support for proof can lie along a spectrum, from a ‘bookkeeping’ role, where the human user 

determines the proof steps, the computer performing the accurate symbolic manipulation, 

and tracking dependencies; through semi-automated systems which can assist the user by 

searching for and suggesting directions for proof and performing simpler proofs through the 

use of tactics; to completely automated systems where the machine rapidly searches for and 

applies proof steps to generate a proof. Typically, automated systems apply a simple set 

of basic proof rules in an arbitrary fashion and this can result in an inefficient and fruitless 

search. The user of automated system has to present the problem in such a manner tha t 

the system can both find a proof if there is one, and efficiently home in on tha t proof.

This thesis describes an implementation of a (semi-automated) proof tool to support one 

formal method, order-sorted algebraic specification. It further describes a significant ex­

tension of the theory of order-sorted algebraic specification to more general cases, which 

modifies the rules and methods of proof.

1.1.1 Form al D evelop m en t M ethodolog ies

Several different broad approaches have been developed within formal methods, and three 

of the most common are outlined below.

Algebraic Specification. Algebraic specification languages, such as Clear [BG80], Larch 

[GHW85], ACT ONE [EM85], and Extended ML [ST86, KST96] describe behaviour of 

systems in terms of an algebra representing the data of the system and the operations as 

functions. This is also called property-based specification, as the properties of the systems 

are specified using first-order formulae, usually equalities, and details of representation are 

ignored; there is no one model which ‘is’ an algebraic specification, and any model which 

behaves in the specified way is acceptable.
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M odel Based Specification. Model-based specification languages, such as Z [Spi92], 

VDM [Jon90] or B [Abr96], can be seen as a specialisation of algebraic specification to a 

particular model. Basic structures such as booleans, sets, numbers, maps and sequences 

are supplied and are used with a notion of a ‘s ta te ’, which models the state of the machine, 

with the obvious connection to state-based programming.

Process Based Specification. Formal methods such as CCS [Mil89], CSP [Hoa85] and 

LOTOS [IS088] view software as a process, or series of actions or events, rather than a 

model of data  and operations. These events can take place in parallel, and with differ­

ent actors performing them and communicating with one another, so such formalisms are 

particularly suited to the analysis of concurrent systems.

W ithin this thesis, the approach used is an algebraic specification method, with properties 

specified by equations, which is particularly suited to automated reasoning.

1.2 Algebraic Specification

Algebraic specification was first developed in the mid 1970’s by several groups including 

Liskov and Zilles [LZ74], Guttag and Horning [GH78], and Goguen, Thatcher and Wright 

[GTW79], and is now an established technique for defining data  types and their operations, 

and for developing software. For an introduction and references see [EMC092, EM 092, 

Wir90] and for a more in depth account see [EM85].

Software is modelled as an algebra constrained by first-order formulae, usually equations, 

which define the properties of the system. Data objects are represented as terms, defined 

using symbols from a signature, which specifies sorts for different types of data, and op­

erators for the operations on the data. These terms are interpreted in a model where the 

data  objects are a set of atomic entities and operations are functions between entities. The 

behaviour is constrained by the first-order formulae which determine which algebras are 

satisfactory interpretations of the specification. For example, the natural numbers with 

the addition operator can be modelled as:
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Sorts: Nat

Operators: 0 : —> Nat

s : Nat —*■ Nat 

_ +  _ : Nat Nat —► Nat 

Equations: x +  0 =  x

x +  s(y) = s(x  +  y)

Terms such as 0, 5(0), 5(0) +  s(0) represent natural numbers in any algebra, but in any 

valid algebra the equations must be respected, so the representation of s(0) +  5(0) must be 

th a t of s (s(0 ) +  0) and also tha t of 5(s(0 )). Similarly, we can specify sequences of natural 

numbers, implicitly importing the above specification of naturals, as follows:

Sorts: Nat, Seq

Operators: () : —► Seq head : Seq —> Nat

_ _ : Nat Seq —> Seq tail : Seq —> Seq

Variables: n : Nat, s : Seq

Equations: head(n ^  s) = n tail(n ^  s) = s

The property-based nature of algebraic specification is clear in this example as we are not 

concerned with the representational details of sequences, but only tha t their behaviour 

respects the equations. When specifications are given using first-order equations, conse­

quences can be deduced using Equational Reasoning. That is the application of the rules 

of equational logic determining the behaviour of equality.

1.2.1 T h e P rob lem  of P artia lity

Algebraic specification forms a powerful technique for describing systems, combining a sim­

ple presentation and syntax with deep mathematical foundations. These are straightfor­

ward when to tal functions are specified. However, algebraic specifications have difficulties 

in defining partial functions and error handling. For example, in the specification of se­

quences above, the terms head(()) and tail(Q) are terms but we have no specification of 

their behaviour, as intuitively, head and tail are not defined upon the empty sequence. Sev­

eral different approaches to these problems have been developed, including Error Algebras



1.2. Algebraic Specification 5

and Partial Algebras.

Error Algebras, such as th a t of [Gog78a], and [GDLE84], allow the definition of explicit 

error values to represent the result of applying a function outside its domain. For example, 

in sequences, we could specify th a t head(Q) =  underflow, where underflow is an error value. 

However, defining such values naively can soon lead to the the specification being only 

modelled by trivial algebras, so error algebras keep the error values separate by splitting 

the specification into ok and error parts, and controlling the interaction between them, by 

marking operators to be safe or unsafe, variables to match ok or error terms, and equations 

to propagate ok or error values. Such machinery soon becomes cumbersome.

Partial Algebras, such as tha t of [BW82], allow operators to  be modelled by partial func­

tions in the algebra rather than to tal ones, the exact definition of such partial algebras 

having several options. Partial algebras typically require a definedness predicate, D (t) to 

determine when terms are defined. Thus in the sequence example, the definedness pred­

icates: D(()) and D{n ^  s ) are added, and head and tail are declared to be partial. 

However, naive approaches again can lead to problems, such as trivial or non-existent 

initial algebras, and methods to overcome these problems require complex definitions.

1.2 .2  O rder-Sorted  E quational Logic

One of the most successful approaches to partiality in algebraic specification is Order- 

Sorted Algebra1. Algebraic specifications are modified by splitting the set of terms into a 

collection of types or sorts and imposing a partial ordering on those sorts, which intuitively 

represent sets and subsets of elements in the algebra. This gives greater ease of expression, 

combining the strengths of error and partial algebras, without most of their difficulties. 

Operators are defined to be partial by specifying them to be total over subsorts; error 

handling can be cleanly specified by the use of error sorts, generalising the idea of ok 

and error sets; and the scope of equations can be restricted allowing differing properties

1The phrase ‘order-sorted’ seems to have been coined in analogy to the simpler ‘many-sorted’ style 
of specification. The phrase ‘sort-ordered’ is more grammatically correct and may be more aesthetically 
pleasing, but I shall bow to convention and use the usual terminology.
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in different parts of the specification. Thus in the sequence example, head and tail are 

defined as to tal functions on the subsort of non-empty sequences, and thus the problem 

term s head(Q) and tail(Q) are not even defined.

This power and economy of order-sorted algebraic specification which makes it attractive. 

However, order-sorted algebra, while allowing a more flexible approach, does have subtleties 

which restrict its use. We will discuss this at length later in this thesis. In order to 

overcome the problems of order-sorted equational logic, whilst maintaining its advantages, 

we investigate how to modify the paradigm.

History. The awareness of the problems of specifying error values led Goguen to develop 

the order-sorted specification [Gog78b]. This approach, subsequently known as the Over­

loaded approach, is followed in [GM87, KKM88, MGS89, GM89, GKK90]. An alternative 

approach, known as Non-overloaded, was developed by Walther [Wal83] in the context of 

resolution, and Gogolla [Gog84] and followed by [Gog87, Smo86, SS86, SNGM88, Kir88, 

Wal89, SS89] and also [Poi90], who discusses both approaches, but tends to favour the 

second. Waldemann gives a survey [Wal92] giving a comparison of the two methodologies 

pointing out their strengths and weaknesses and Diaconescu [Dia91] gives a briefer overview 

of the field. Cunningham and Dick [CD85] were the first to develop order-sorted rewriting, 

with an independent approach subsumed by [GM89]. The problems of these methods are 

discussed together with possible solutions in [GM89, GKK90, WD89, IG88, GI88, Gan91b, 

CH91b, Wit92, Wer93] and [HKK94], the most recent work in the area, which most closely 

matches the work of this thesis, and are discussed at length in later sections.

1.3 Proof for Algebraic Specifications

In order to give proofs of properties of algebraic specifications, we reason using the given 

equations. This equational reasoning is based on the ancient mathematical principle, often 

know as Leibnitz’s law, tha t if one thing is equal to another, then anything tha t is true of 

one is true of the other, tha t is if P(a) and a = b then P{b). The operational interpretation 

of this is th a t subterms of a term can be replaced by equal subterms, which are instances
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of some equation and the semantics of the term remains the same. Thus the required 

property is described as an equation, and its terms are formally manipulated by replacing 

equals for equals, until one term  is transformed into the other. This is a simple and easily 

understood process. However, such proofs are typically formed by many small steps which 

are tedious for a human user to apply and there is a high probability of bookkeeping error. 

Also, the search space is large, and strategies are needed to  search it efficiently. Thus it is 

appropriate tha t these proofs should be automated as much as possible.

1.3 .1  Term  R ew ritin g

Term rewriting is arguably the simplest, most appropriate and most successful technique 

developed to automate equational proofs. The large search space of equational replacement 

is restricted by orienting equations into rewrite rules, and only allowing the replacement to 

take place in one direction, by matching the left-hand side of rules to subterms and rewriting 

to the right-hand side. Thus in the sequence example, we can consider the equations as 

left-to-right rewrite rules and using —► to denote a rewriting step, give the rewrites:

head(tail(0 ^  succ(0) ^  .succ(0) ())) —» head(succ(0) ^  succ(0) ^  ()) —> succ(0)

Rewriting has the advantage over equational replacement in tha t it is directed, limiting the 

search space and proof of equality can be performed by detecting whether terms can be 

rewritten to the same term, a process which can easily be automated. However, care has to 

be taken th a t rewriting terminates, otherwise infinite rewriting sequences can be followed 

and proofs not established.

However, rewriting is not strong enough to cover all equational theories. The commutative 

axiom, considered as rewrite rule, does not terminate. It results in the sequence:

a -T b —► 6 +  a —► a b —► b - a —̂ • • •

leading to looping in an automated system. Commutativity frequently occurs with the 

Associativity axiom and together these are known as the AC axioms. These axioms com­

monly occur in practical problems, and it is desirable to handle them in conjunction in 

some other way to avoid non-termination. This can be done by rewriting with respect to
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(or ‘modulo’) the equational theory, where equational variants are matched and rewriting 

is to terms which are equal modulo the equational theory. Thus the AC equations are not 

used as rewrite rules directly, but built into the rewriting method itself.

Rewriting in order-sorted specifications is a more straightforward extension to standard 

rewriting theory than rewriting modulo equations. Care has to be taken tha t the match 

formed preserves the sorts. However, as we shall see, there are restrictions to standard 

order-sorted rewriting theory which limit its applicability.

History. The replacement of equals for equals has always been used by mathematicians. 

However, the investigation of its use as an automated proof method using computers dates 

to the development of the Knuth-Bendix algorithm in the late 1960’s [KB70]. Interest 

grew slowly in the 1970’s with the work of Lankford [LB77] on rewriting modulo permuta- 

tive theories, including commutativity, and Huet [Hue80] extended the theory to rewriting 

modulo left-linear theories. Huet and Oppen’s survey [HO80] was followed by an explo­

sion of interest in the 1980’s and several implementations appeared incorporating these 

new developments, including REVE [For84], RRL [KZ89], the Larch Prover [GG89], the 

OBJ family [GW88] and ERIL [Dic85]. Peterson and Stickel [PS81], and Jouannaud and 

Kirchner [JK86] provided full accounts of rewriting modulo arbitrary equational theories. 

Cunningham and Dick [CD85] were the first to develop order-sorted rewriting, with an in­

dependent approach improved upon in [GJM85, SNGM88, GM89]. Order-sorted rewriting 

modulo equational theories is considered in [GKK90]. Research is still continuing in many 

of the areas of rewriting theory including termination and unification methods, rewriting 

and modularity, and extensions of rewriting into constraint and logic programming. For 

surveys see [JD90, Klo90, Pla93, Jou93].

1.3 .2  U nification

Unification is the process of finding a solution to a system of equational constraints, and 

thus is a fundamental equational operation. Syntactic unification over homogeneous sig­

natures is a straightforward process of finding common instances of expressions for which 

very efficient algorithms are known to find the ‘best’ or ‘most general’ unifier. By adding
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an equational theory to the signature, the unification problem becomes equation solving 

in th a t theory, which is undecidable in general and if soluble, complex. Whilst merging an 

equational theory into the unification algorithm produces a more complex unification algo­

rithm, with the possibility arising of either an infinite set of solutions or no most general 

unifiers, it is useful in some cases, such as the commutative theory, which is non-terminating 

as a rewrite rule. As the AC axioms commonly occur in practical problems, the associative- 

commutative (AC) theory has been the most studied equational theory in the context of 

unification. If an order-sorted signature is used, the unification algorithm becomes more 

complex again as checks must be made on the sorts of terms to prevent the unification of 

expressions of incomparable sort, which can lead to multiple most general unifiers.

H isto ry . Although described by Herbrand [Her30, Her67], the first effective algorithm for 

syntactic unification was given by Robinson [Rob65] as one of the inference rules of the 

resolution theorem proving method. Knuth and Bendix [KB70] used the same technique 

for completing sets of equations. Robinson’s algorithm was exponential, and Paterson 

and Wegman [PW78] developed a linear algorithm, although it could have an expensive 

overhead. Martelli and Montenari [MM82] presented a new perspective on unification as 

solving systems of equations. In addition they developed an algorithm which maximises 

the use of commonalities of terms and solves equations simultaneously. Whilst not linear, 

it proves a more effective algorithm in most cases.

Unification over equational theories was first considered by Plotkin [Plo72], and the first 

effective algorithm for AC unification was devised by Stickel [Sti81], shown to be correct by 

Fages [Fag87]. Since then there has been much work on the development of algorithms for 

equational unification and for AC unification in particular, including [Fag87, For87, Kir87, 

Kir89, LC89, AK90, BCD90].

Unification over order-sorted signatures was first investigated by Dick [CD85]. The com­

bination of unification in equational theories and order-sorted signatures was studied by 

Schmidt-Schauss [SS86, SS85, SS89]. Smolka, Goguen and Meseguer give a category the­

oretic account of order-sorted equational unification in [MGS89], where they present a 

Martelli and Montenari style algorithm, and [SNGM88] present a two stage algorithm. 

Waldemann also presents an algorithm for order-sorted unification [Wal89] and gives con-
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ditions for unification to be finitary and unitary. Claude Kirchner [Kir88] presents Order- 

Sorted Equational Unification as a series of inference rules and also extends the method to 

signatures which have differing equational theories on different parts of the signature by 

giving a general m utation rule, subsequently improved by Boudet [Bou92].

The survey papers by Siekmann [Sie89], Jouannaud and Kirchner [JK91], and Baader and 

Siekmann [BS93] give an overview of unification theory and algorithms.

1 .3 .3  C om p letion

Term rewriting is a powerful method for automated reasoning since it restricts and directs 

the space through which the theorem prover can search for proofs of equalities under equa­

tional theories, compared with arbitrary equational reasoning. However, the price which 

is paid for this is loss of completeness: there may be proof of equalities which exist in 

the equational theory which cannot be found by rewriting. For rewriting systems to be 

complete, the Church-Rosser property is required of the rewrite rules, which establishes 

tha t for all equational proofs of equalities there is a corresponding rewriting proof. Com­

pletion seeks to establish the Church-Rosser property for terminating rewrite systems by 

considering when overlapping terms can be rewritten in two ways, known as Critical Pairs.

This process requires unification of existing rules to generate the critical pairs, which may 

then be added as extra rules to the set of rules. This procedure may generate sufficient 

rules to re-establish completeness. However, it may alternatively generate an infinite set of 

new rules, or fail through the lack of termination proof for a new rule.

Completion can also be extended to rewriting modulo equational theories, with the Church- 

Rosser property also modified to modulo equations. In this case, unification modulo the 

equational theory is also required. Further, it can be extended to order-sorted theories and 

the combination of order-sorted signatures and rewriting modulo equational theories.

History. Completion was first introduced in a seminal paper by Knuth and Bendix [KB70].

Huet [Hue81] gives an alternative proof of the algorithm, and Peterson and Stickel and 

Jouannaud and Kirchner give accounts of completion modulo equations. Smolka et. al. [SNGM88]
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describe completion in order-sorted theories and Gnaedig, Kirchner and Kirchner [GKK90] 

describe completion over order-sorted rewriting modulo equational theories. Bachmair [Bac87, 

Bac91] gives an alternative approach to the description of completion using inference rules 

and to proofs of correctness using the notion of equational proofs, which has since become 

the standard method of verifying completion algorithms.

1.4 Using Order-Sorted Logic

Equational reasoning can be used in several areas of computer science. In this section we 

give a brief account of some of these applications, with special emphasis on the use of 

order-sorted equational reasoning.

1.4.1 T heorem -P roving  S ystem s

There are many existing term-rewriting based theorem-proving systems, for example RRL 

[KZ89], LP [GG89], ORME [Les89, Les90] and ReDuX [Biin93, WB95], which perform rea­

soning modulo associative-commutative operators, but over many-sorted signatures. The 

ERIL system [Dic87, DK88] can perform equational reasoning over order-sorted signa­

tures, but cannot handle the associative-commutative axioms in the reasoning mechanism. 

ELIOS-OBJ [Gna92a] is an extension of the 0B J3 [GW88] programming environment to  a 

prover which can perform completion, although not completion modulo equations. In this 

thesis we describe a term-rewriting theorem-proving system, MERILL, which incorporates 

both an order-sorted signature and also equational theories, in particular the AC-theory.

1.4 .2  H igh -level Program m ing Languages

OBJ3 [GW88, KKM88] does handle AC-matching and rewriting over an order-sorted sig­

nature, but this system is designed to be a high-level programming language which uses 

term  rewriting as its computation mechanism. It does not attem pt completion and there-
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fore does not require unification. The system has been extended to explore rewriting as 

a programming language, including modules and higher-order types [Gog88], and object- 

oriented programming [GM88]. 20B J [GSHH92] has been developed as a general purpose 

first-order logic theorem prover on top of OBJ3. A similar language is TEL [Smo88], which 

combines an order-sorted type system with polymorphism in a combination of logic, using 

Horn clauses and resolution, and functional programming, using conditional equations and 

rewriting.

1.4 .3  F u nctional P rogram m in g

Functional programming (see for example [BW88]) is a declarative programming paradigm 

based on the lam bda calculus (see [HS86]) which has aroused interest for its conceptual clar­

ity, conciseness, and the ease of proof compared with conventional programming languages. 

Programs are described using systems of equations, and equational reasoning is frequently 

used in an ad hoc fashion to show program correctness. Rewriting has been considered for 

proving properties of functional programs, for example by Martin and Nipkow [MN90a]. 

However, the higher-order nature of functional programs makes them awkward to analyse 

in this fashion.

Equational reasoning has another role to play in functional programming. Functional lan­

guages often provide a powerful yet flexible type system and the type inference procedure, 

for example as in [Mil78], uses unification. Blott and Wadler [WB89, Blo91] have developed 

an extended type system for functional languages which handles overloading of operators 

which has been incorporated into the language Haskell [HPJE92], This has a three layered 

type system, with values, types and type classes. The type classes divide the types into 

a hierarchical structure, similar to the sorts in an order-sorted signature, and the types 

within the classes have ranks similar to operators in an order-sorted signature. Nipkow 

and Snelting [NS91] have exploited this similarity by using order-sorted unification to per­

form type checking for a Haskell-style language. The current author has explored this idea 

further [Mat92] using order-sorted equational matching and unification to search libraries 

of Haskell functions via their type signature, extending the work of Rittri [Rit89, Rit93]
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for the ordinary type system of functional languages.

1.5 Overview of the Thesis

The motivation behind this thesis is the development of a new autom ated theorem-proving 

system based upon order-sorted term-rewriting. However, in the development of this sys­

tem, it soon became apparent tha t the shortcomings of the existing order-sorted algebraic 

specification and rewriting theory meant that the application domain of this theorem prover 

was strictly limited, and many useful specifications were not within the range of its appli­

cation. As a consequence, it was decided to reconsider the theory of order-sorted algebra, 

logic, and rewriting to extend its range of application, with a view to implementing this 

new theory within a future version of the theorem prover.

We give a short synopsis of the content of each chapter.

In Chapter 2, the standard theory of order-sorted specification, algebra, and equational logic 

is discussed, contrasting the given non-overloaded approach with the overloaded approach. 

Unification, rewriting and completion modulo equational theories, with emphasis on the 

AC theory, are then introduced, and the implementation of this rewriting theory within a 

theorem-proving system, MERILL, is then described.

In Chapter 3, the problems associated with order-sorted specification are described, to­

gether with a discussion of why the existing theory is too restrictive. Although these 

problems are ultimately intractable, several of the approaches to  mitigating these problems 

are discussed. These approaches become increasingly sophisticated: however, it is felt th a t 

none of these methods gives an entirely satisfactory account of handling the shortcomings 

of the existing theory.

In Chapter 4, a new two-tier algebraic semantics for order-sorted specification is defined, 

known as dynamic order-sorted algebra. Dynamic order-sorted equational logic is then 

introduced, and proven to be sound and complete with respect to the dynamic algebra. 

The notion of well-sorted terms in this algebra is then discussed, the sorts of terms being
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dependent on the equational logic. The sorting of terms is shown to be undecidable.

In Chapter 5, dynamic order-sorted terms are introduced. These are used as an operational 

representation of terms which record their sorts within their structure. Dynamic substitu­

tions are defined and some basic operations on dynamic terms are given. Finally, dynamic 

equations are introduced.

In Chapter 6, the options available to define dynamic order-sorted matching and dynamic 

order-sorted unification are explored. Decidable algorithms for constructing canonical 

matching and unifying substitutions are given. However, in the case of unification, such 

substitutions may not be well-sorted, and a discussion follows on how well-sorted unifiers 

can be identified.

In Chapter 7, a description of dynamic order-sorted term rewriting is given, based on 

three separate rewriting methods. The soundness and completeness of dynamic rewriting 

with respect to dynamic equational logic is proven, and termination properties of dynamic 

rewriting systems is discussed. Church-Rosser and confluence properties are defined, as 

well as similar properties modulo sorts, which use the identity of the underlying terms. 

Results on local confluence are given, with a view to automatically generating dynamic 

rewriting proofs.

In Chapter 8, the work towards automated rewriting proofs is presented. Dynamic critical 

pairs are defined and the critical pair lemma is proven for rewriting modulo sorts. The 

completion of dynamic rewriting systems to give decision procedures for dynamic order- 

sorted rewriting is explored, identifying two conditions for the realisation of this procedure. 

Some sufficient criteria for these conditions are given. An alternative approach to dynamic 

order-sorted rewriting is discussed, which uses sort constraints, generated during dynamic 

unification, as conditions on equations.

In Chapter 9, the thesis is concluded with a summary and a discussion on the future 

implementation and research directions. Some examples of dynamic rewriting are given 

which illustrate how dynamic rewriting overcomes the problems highlighted in Chapter 3, 

and also how dynamic rewriting could be taken further.
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1.5.1 O riginal C ontent o f T hesis

This thesis contains the following original content.

• The first implementation of order-sorted associative-commutative term-rewriting the­

ory in a practical equational theorem proving system is described.

• A new semantic framework for order-sorted algebra, dynamic algebra is derived, which 

captures the intuition of order-sorted specification, with a simple dynamic equational 

logic and a notion of sorting which is semantic rather than syntactic.

• Dynamic terms, which record sort information, are defined as an operational repre­

sentation of terms and their sorts.

•  Decidable matching and unification algorithms for dynamic terms are derived and 

proven correct.

•  A sound and complete rewriting theory for order-sorted algebra based on dynamic 

terms is developed. This rewriting theory manipulates sorts as well as operators, and 

does not require the compatibility condition for its completeness.

•  Confluence, critical pair and completion results for dynamic rewriting are proved and 

sufficient conditions are identified for completion. Criteria are given which extend 

the range of application of the completion algorithm beyond the standard theory.

•  A constrained rewriting method for extending dynamic rewriting is presented as an 

alternative approach.



Chapter 2

Order-Sorted Specification

This chapter summarises the existing work on order-sorted algebra, logic and rewriting 

theory. Notation and concepts used throughout this thesis are introduced in a presentation 

of standard theories, with discussion of the variations in the literature. This work also 

stands as the theoretical basis behind the implementation of associative-commutative order- 

sorted rewriting in the MERILL system, which is described in this chapter.

2.1 Sets and Relations

We use standard notation for first order predicate logic and set theory, with operators 

-i, A, V, =>-, V, 3 and 0 £, C, C, 2 , C, U, H defined in the standard fashion' additionally 1+) is 

used for disjoint union. The notation IN represents the set of natural numbers. A relation 

R  on sets A, B  is a set of pairs such tha t R  C A  x B.

Definition 2.1. A relation ■< is a quasi-ordering  if Vz • x < x  ( reflexive) and Vz,y , z  - x < 

V A |/ ■< z  x < z  ( tran s it ive ). It is a partia l-ordering  if it is reflexive, transitive and 

V z , y - x < y A y - < x = $ ' X  =  y  ( a n tisym m etr ic ).

16
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Notation 2.2. Let —► be a relation. Then we use the following notation:

the closure up to n steps of —> 

the transitive closure of —>

—̂  the transitive reflexive closure of —>

<— the symmetric relation of —>

<— ► the symmetric closure of —>

the transitive symmetric closure of —>

the reflexive transitive symmetric closure of —►

A multiset (or bag) is an unordered collection of elements from some base set E, with 

possibly repeated occurrences, and can be formally described as a mapping from elements 

to the number of occurrences of the elements. The following definition follows [JL82];

equivalent definitions are given in, for example, [Pla93, HO80].

Definition 2.3. Given a set £7, a multiset M  over E  is a mapping E —+IN. If x E E  we 

say th a t x E M  if and only if M (x ) > 0. M{ E )  is the set of all finite multisets over E,  

th a t is VM E M ( E )  the set {x \ M( x ) > 0} is finite.

The empty multiset {} E M ( E )  is the multiset such tha t Vz E E  • {}(z) =  0. The sum 

of two multisets, M  + N  is (M +  N)(x)  = M{x)  + N(x) .  M  is included in N , M  C N  if 

Vx £ E- M( x )  < N(x) .  If M  C iV then the difference N  — M  is (M — N)(x)  = M( x )  — N(x) .

An ordering < on E  is extended to an ordering on M  ( E) .

Definition 2.4. The Dershowitz-Manna Ordering [DM79] is defined as M -4< N  if

and only if 3X, Y  E M ( E )  such that:

i) {} #  X C JV

ii) M  = ( N  — X )  + Y

iii) \ / y £ Y - 3 x £ X - y < x

So M  is less than N  if a finite number of elements of N  can be replaced by a finite number 

of elements, all of which are less than an element removed from N , to result in M.
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Example 2.5. Multisets over natural numbers M ( J N )  include:

{1} -«< {1,1} -«< {2} {0,0,0,0,3,0,0}

□

This ordering on multisets is im portant for two reasons. Firstly it is the maximal ordering 

on multisets which extends the ordering on the underlying set in a monotonic fashion.

Definition 2.6. Let r  : E x  E ^ M ( E )  x M  (E) .  r (< )  is said to be a monotonic extension 

of < if and only if (i). r (< )  is an ordering and (ii). r  is monotonic, that is r(-<) C

r ( < ) .

Theorem 2.7. ([JL82])

i) is a monotonic extension of <.

ii) If r (< )  is an monotonic extension of <, and -<KC t (<) then -« =  r(< ).

Secondly, -<« is particularly useful for termination proofs. The multiset extension preserves 

well-foundedness of orderings.

Theorem 2.8. [DM79] If < is well-founded on E,  then -<K is well-founded on M ( E ) .

2.2 Non-Overloaded Order-Sorted Signatures

The syntax of order-sorted specifications is given by order-sorted signatures.

Signatures.

Order-sorted signatures consist of three components: the sorts, an ordering on the sorts 

and the operators. A sort symbol is a name with no structure. A subsort declaration is a 

pair of sorts of the form < s2. An operator is also a name but it has an associated rank.

Definition 2.9. The rank of an operator is a pair consisting of a sequence of sorts (the 

arity) and a sort (the coarity). For convenience we write operator /  with rank (tn, s) as an
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operator declaration of the form /  : s1?. . . ,  sn—>s where w = (sl5. . . ,  sn). We write | / |  for 

the length of the arity of an operator.

Intuitively, the sorts describe collections of objects and the operators functions over those 

collections.

Definition 2.10. An Order-Sorted Signature, E, is a triple, (5s, where:

1. 5 s  is a set of sorts.

2. < s  is a partial ordering on 5 s , which is the least transitive-reflexive closure of a set 

of subsort declarations.

3. T y, is a (w, s) G 5£ x 5 s  indexed set of operators.

More fully, T y =  («;,«) s êS* x5s > where each T y {w^) 1S th e set of operators with

rank (w, s). Note tha t an operator can have more than one rank.

When the signature is clear in context, the E subscript is dropped. Also, we write s G E 

when s G 5 s  and /  G E when /  G Fy{w,s)i f°r some (w, s). The ordering on sorts is 

extended to sequences of sorts and to pairs in 5£ x 5 s  in the obvious, pointwise and 

pairwise fashions.

Two sorts s and s' are incomparable written 5 N s' if s ^ s  s' and s' s - The meet of 

two sorts s and s', written s A s', is defined to be the maximal elements of the set of sorts 

less than or equal to both: if s'' G (s A s') then s" < s  s, s" < s  s' and if for any r G 5 s  if 

r < s  5 and r < s  s' then 3s" G (s A s') for which r < s  s''.

Terms.

For each sort s G 5 s , assume an infinite set of variables Xs of sort s. The set of all variables 

is X  =  UseE'Ts-

Definition 2.11. The set of Yj-Terms of a sort s G E is the set constructed as follows:

1. If x G As/, s ' < s  s, # is a (variable) E-Term of sort s.
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2. If /  G •7rE«si,...,sn),s/)> s' ^E s and are E-Terms of sorts s i , . . .  , s n respec­

tively, then ,fn) is a (compound) E-Term of sort s. If n = 0 then /  is a

constant of sort s .

We write th a t a term t is of sort s by t : s.

The set of all E-Terms on a set of variables X  is denoted Ty (X). If the set of variables 

X  =  0 then the set 7 s (0) (or just 7 s) is the set of Ground terms. The set of variables 

occurring in a term t is Vars(t), and this is extended in the obvious way to sets of terms, 

equations, and sets of equations.

The notion of paths is introduced to access subterms within terms.

Definition 2.12. An Path is a possibly empty (written e) finite sequence of integers, 

written n \.n 2 . • • • .n^. The set of paths for a term t, 0 ( t)  is defined to be:

0 ( t)  = {e} if t is a variable or a constant

0 ( / ( t i , . . .  , tn)) =  M  u  ( M 1 < i < n ,V £  0{ti)}

Given a term t and a path p G 0(t)  the subterm occurring at p, t\p is t |e =  t if p = e, and

/ ( £ i , . . .  ,tn)\i.u — ti\u if p = i.u. The result of replacing a subterm of t at path p G 0{t)

by term s is written t\p+—s].

From the definition of terms, we can also give the definition of a least sort of a term.

Definition 2.13. Given a signature E, the set of least sorts of a term i, CS(t) is the 

minimal set of sorts such tha t Vs G £ S(t)  • t : s, and Vs' such that t : s' then 3s G £ S ( t)  

such tha t s < s'.

If the least sorts of terms are unique, then unification becomes finitary [SS89] and in 

the overloaded semantics initial algebras exist (see below). Uniqueness is ensured by the 

property of Regularity. There are several definitions of regularity in the literature depending 

on the semantics chosen; for a discussion see [Wal92]. The following is from [SNGM88].
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Definition 2.14. A signature E is said to be Regular if for each t E (A) the set {s\t : s}

has a unique minimal element, unambiguously denoted as CS(t).

Regularity can be decided by analysis of the signature.

Lemma 2.15. ([SNGM88],[Wal89]) A signature E is regular if and only if for every /  E 

and every w E the set { s \ f  : w ' ^ s  E Ty, A w <£ w'} is either empty or has a unique 

minimal element.

Example 2.16. Assuming a specification of naturals Nat, we give the following signature 

for sequences of numbers.

Sorts: Nat, NeSeq, Seq

Subsorts: Nat < NeSeq < Seq

Operators: () : —► Seq

: NeSeq Seq —> NeSeq : Seq Seq —> Seq

head : NeSeq —► iVai tail : NeSeq —>

Here, the Naturals are regarded as sequences of length one; there are two ranks for the 

concatenation operator, giving different result sorts for differing arguments; and head and 

tail are defined only on NeSeq. Thus terms and their sorts include 0: NeSeq, 0@():NeSeq. 

The empty sequence () is not of sort NeSeq and consequently, head(Q) and tail(Q) are 

ill-defined terms. Note also th a t this signature is regular. □

Substitutions.

Definition 2.17. A E-Substitution is an endomorphism on Ts(A') which preserves the

sorts of terms and is identity on all but a finite set of variables. A substitution is thus

completely defined by its effect on tha t set of variables, the Domain of a substitution o, 

written Dom(cr). Substitutions are sort preserving: V(# : 5 ) E Dom(cr)-(Jx : s. The Image of 

a substitution is the set of variables occurring in the range: 7m(<j) =  {JxeDom(a) ^ ar5(cra;)-

Substitutions can be constrained to apply to a set of variables. A substitution 0  restricted 

to a set of variables W C X , is denoted <7|yy and defined as o\yy(x) = o(x) if x E W and
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<T|yy(;r) =  x otherwise.

A substitution o can be written as a set of pairs {a^ ■—> £1, . . .  , x n i—> tn}, for all X{ E 

Dom(o). The composition of substitutions o and A, written A o o is the substitution given 

by V£ • (A o o)t = X(ot).

D efin ition  2.18. p is a renaming substitution if V# E Dom(p) • px E X  and s(x) = s(px).

D efin ition  2.19. Terms t 1} t2 are alpha-equivalent, ti =a t2 if for some renaming p pti = t2

We use substitutions in the definition of subsumption and matching.

D efin ition  2.20. A term t E T%(X) matches a term t' if there is a E-substitution a 

such th a t at = t f. In this case t subsumes t ' , (t' is an instance o ft) ,  and we define the 

subsumption ordering t < t ' . We extend this to substitutions. For substitutions o and r ,  

if 3A such th a t Vz E X .\ (o (x ) )  = r(x), then o ■< t . This can be restricted to a set of 

variables W C A; o r  if and only if there 3A such that Vz E W • A(cr(ar)) = #  t{x).

One interesting observation on the subsumption ordering, in the light of the later presen­

tation of dynamic matching, is the following lemma.

L em m a 2.21. If E is regular, and t < t ' , then Vp E 0{t),  £<S(f|p) >£ CS(tf\p).

P ro o f  (2 .21). Assume tha t t < t ' , so there is a o such tha t crt = t'. Proof is by induction 

on the height of subterms. If t\p = x : s E X , then ox — t'\p and CS(tf\p) < s. If t\p = c, 

a constant, then t\p = t'\p and the proposition holds. Consider a subterm, at path p of 

length n  +  1. Let t\p = f ( t i , . . .  , tn), and t'\p =  f ( t [ , . . .  ,t'n). By induction hypothesis, 

CS(t{) > CS(t[), f ( t [ , . . .  ,t'n) is a term of sort £<S(£|p) and thus £«9(£|p) > £S(t'\p). □
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2.3 Non-Overloaded Order-Sorted Algebras

The denotation of terms over an order-sorted signature is given by Order-Sorted Algebras. 

T his section follows [SNGM88], and the algebra it describes is Non-Overloaded1.

Definition 2.22. Given signature E, an (Non-overloaded) Order-Sorted Algebra, .As, (E- 

Algebra) is a pair (SA , such that:

1. 5^ is a set of sets indexed by 5 s; for each s E 5 s  there is a set sA E S A , the carrier 

of s. The carrier of A  is the union of the carriers: C A — U ses5'4*

2. If s < s  s'  then C s,A.

3. For each operator /  E there is a function f A : D f —*CA E ^ s ”4? where D f  C

(CA) is the domain of f A . Thus each operator has a unique denotation.

4. If /  E •7*E(<s1 ,..sn>,s) and a* E s f  for * =  1 . . .*  then (a1, . . . , a n) E D f  and

. . .  ,an) E sA . If c E ^e(a,«) ^ e n  c 4  E s A

A signature is denoted by a class of algebras, which are related using Homomorphisms.

Definition 2.23. Given signature E and E-algebras A  and B a E -homomorphism h : A -^ B  

is a mapping between the algebras which satisfies the following conditions.

1. h(sA) C sB for every sort s E 5s-

2. h (D f)  C D f  for every operator /  E 7 s*

3. h ( f A (au . . .  an)) = f B(h(a1) , . . . ,  h(an)) for all /  E J e ,  and (alf . . . a n) E D f .

E-algebras and E-homomorphisms together form a category, O SA lgs- A homomorphism 

h : A —>B is an isomorphism if there is a homomorphism h1 : 5 —\A such th a t h' o h  = id a  

and h o h '  = id&, where id a  and ids are the identity homomorphisms for A  and B.

1This is the terminology used in [Wal92]. Mosses objects to this designation as misleading, as syntactic 
overloading is permitted in this paradigm, and prefers to call this style Universal O rder-Sorted  Algebra  
[Mos92]. However, we use the term Non-Overloaded to contrast it with the Goguen style semantics.
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2.3 .1  Term  and In itia l A lgebra

Definition 2.24. Given signature E, and E-sorted set of variables X , the Free Term- 

Algebra T^^x on X  is given by the following construction on Ty(X).

1. s 1̂ '* = (£|£ 6 Ty (X) and t : s)

2. Df-*  = {(t1, . . . , t n) \ f ( t1, . . . , t „ ) £ T E(X)}

If the set of variables X  =  0, then the term algebra 7^,0 is formed by ground terms.

Thus terms form an algebra for the signature, although care is taken to distinguish between 

the well-sorted terms T%(X) which are syntactic entities, and the free term algebra T% x ,  

which is a denotation of the signature. This algebra is canonical in the following sense.

Definition 2.25. If A is a E-algebra, and V C X  a set of variables, a (V, A)-assignment 

is a mapping v : V—>A such tha t \/x E V.v(x : s) E sA . The denotation of a term £ in A, 

with assignment v on Vars(t), written £", is a mapping T%y *4 given by:

x 1' =  u(x) if x E X ,

/ ( £ i , . . .  ,£„)*' =  An) Otherwise.

For any (V, A)-assignment v, the denotation function X  : T ^ y -^ A  is a homomorphism. 

In particular, if V =  0 there is only the trivial (0 , A)-assignment. There is a unique 

homomorphism from 7^0 to A and thus 7^,0 is the Initial Object in OSAlgg, unique up 

to  isomorphism, known as the Initial Algebra.

2.4 Equations

Properties of specifications are defined using equations.

Definition 2.26. A E -Equation is a triple (Y, £, £') where Y E X  and £,t' E Ty(X),  such 

th a t Vars(t) U Vars(t') C V, written VY.£ =  t'. If the variable set Y  = Vars(t) U Vars(tf),
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then we write t = t ' .

A signature is combined with a set of equations to give a specification.

Definition 2.27. A Specification consists of a pair (E, E) where E is an order-sorted 

signature and E  a set of equations.

Example 2.28. Example 2.16 can be extended to a specification of sequences as follows:

Variables: n : N a t , 51,52,s 3 : Seq , ns : NeSeq

Equations: Vsi.()@si =  si

VS i , S 2 , S 3 . ( S i @S2)@S3 =  S i @ ( s 2@S3)

\/n.tail(n) =  ()

Vra, Si. tail(n@si) =  Si 

Vns,si.£a«7(ns@si) =  (£az7(ns))@si

Note tha t the head and tail operators are defined only on non-empty sequences and this is 

reflected in the sorts of the variables in their defining equations. □

A specification restricts the class of models to those with the specified properties, using 

the notion of validity.

Definition 2.29. Given a specification S  =  (E, E), an equation W .t  = t' is Valid in an 

E-algebra A  written A  \= W . t  = t' as defined in the following:

A  |= t = t' <£>• \/(Y, A ) —assignments v • t u =  t ,u

A  is a Model for S  (or A  is a S-Algebra) if every 'iY.t =  t’ £ E  is valid in A.

The class of models for S  and their homomorphisms form a category, OSAlg^.

Given a specification <5, its equational theory is the class of equations which are valid in all 

models of S.  An equation W .t  = t ' is valid under a specification <S, written S  (= W .t  = t \  

if W .s  = t is valid in every model of S.  Care is taken with the variable sets of equations 

to avoid difficulties with empty sets, as illustrated in the following example.

Vsi.si@() =  Si

Vn.head(n) =  n

\lns,si.head{ns@si) = head(ns)
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Example 2.30. Consider the following specification.

Sorts: Bool, Void

Operators: fa lse  : -+B0 0 I true : —>■Bool

f  : Void-^Bool 

Equations: f ( x  : Void) = true f ( x  : Void) =  false

There are no ({# : Void}, T^^-assignm ents, as Void1E-0 is empty. Hence, the given equa­

tions are trivially valid in 7^,0, which is thus a model. However, for every ({# : Void}, '7^,0)-

assignment, v, truev — false11. But true /  false in 7^0. □

This problem occurs because of quantification over empty sets. To avoid this difficulty, we 

keep track of which sorts are empty.

Definition 2.31. A sort s G 5 s  is Inhabited, if there is a ground term of sort s. A

signature E is inhabited if every s G 5 s  is inhabited. The set of inhabited sorts of E is

denoted Inhabjj.

The inhabitedness of signatures is decidable, and given by the following algorithm.

Lemma 2.32. Given a signature E:

1. If c : — G T y then s is inhabited.

2. If /  : S i . . .  sn—>s G T y and s1}. . .  , sn are inhabited, then s is inhabited.

3. If s' < s and s' is inhabited, then s is inhabited.

P ro o f  (2 .32). Immediate from the definition of ground terms of sort s. □

To manipulate the variable set carried by equations, we use the following lemma.

Lemma 2.33. ([Wal92]) Given a E-equation VY.£ =  t ' . If s G 5s  is inhabited, or there is 

a y : s' G Y  such tha t s' < s, then for every E-algebra A:

A  |= V(y U [x : *}).£ =  t' A  |= W .t  =  t'
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The problem of empty models is considered in more detail in [GM89, GKK90, Wal92].

2.4.1 O rder-Sorted  E quational Logic

The Well-Sorted Congruence Generated by E, denoted as s =E t, is the smallest relation 

containing E  generated by the deduction rules in Figure 2.1. Under these laws a set of 

equations E  presents an equational theory.

Reflexivity. E  bE VY.t =E t if t is a E-term.

Symmetry. E  bE VY.s —E t
E  b s  W .t  =E s

Transitivity. E  b E VY.s =E t , E  b E VY.t = e  u
E  bE VY.S = e  U

Congruence. E  b s V Y ^ =E U,--- , E  b E,VY.sTO - E tn if f ( s l t . . .  , sn) and
E  b E V Y ./(s i,... ,s„) =E / ( * i , . . . , t n) / ( ^ i , • • • ,*n) are E-terms.

Instantiation. E  b E VY.s = t if a : Y —► T ^(X )  is a E-substitution,
E  bE VX<7s =E an(i s = t e E.

Figure 2.1: Rules for Non-Overloaded Order-Sorted Equational Deduction.

Example 2.34. The associative-commutative (AC) equational theory over a single-sorted 

signature with a single operator “+ ” is presented by the two equations:

Commutativity: x +  y = y +  x

Associativity: (x +  y) +  2 =  x +  (y +  z)

□

Definition 2.35. For a term  t the congruence class of t under an equational theory E  is 

the set of terms which are equal to t under tha t theory: \t\E = { t '^ Y . t  =E t'}-

It can be shown tha t the models of a specification and the equational theories generated 

by the equational logic are equivalent. If an equation can be deduced via the rules, it is
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valid in all models (Soundness), and if an equation is valid in all models, it can be deduced 

using the rules (Completeness).

T h eo re m  2.36. ([SNGM88]) Order-sorted equational logic is sound and complete:

1. S oundness. E  bE VY.s —e  t => S  |= VY.s =  t

2. C o m ple teness . S  \= VY.s = t => E  b E VY.s = e  t

This justifies the use of equational deduction to generate consequences of a specification. 

2.4 .2  Q uotient A lgebra

The free term algebra is not a model for specifications. However, the quotient term al­

gebra for a specification can be constructed upon the free term algebra. Intuitively, this 

construction identifies those terms which are provably equal.

D efin ition  2.37. Given a specification S  =  (E, E), we give the Quotient Term Algebra 

over a set of variables A, written 7^ % by the following construction.

1. Vs G <SE • s^s 'x — {[̂ ]£71̂ € T ^(X ) and t : s}

2 . v / e - F E - u f ' *  =  { ([* ik ....... e r s (*)}

3. f rs '*([h]E, • • •, M b )  =  U (t  i, • • •, tn)]E

T h eo re m  2.38. Given a specification S  = (E, E), a <S-algebra A , and a (V, A)-assignment 

i/ over a set of variables V, the denotation function V  : T s y ^ A  is a homomorphism. The 

ground quotient term algebra 7^  ̂ is the initial model of the category OSAlgs.

The initial algebra can be characterised as tha t which has “no junk” and “no confusion” .

• No Junk. Every element in the algebra is a denotation of some ground term. Extra 

elements in the algebra which do not denote some ground term are ‘junk’.

•  No Confusion. Elements are identified in the algebra if and only if they are provably
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equal using equational logic. Elements which are identified, but not provably so, are 

‘confused’.

2.5 Overloaded Order-Sorted Semantics

Goguen and Meseguer [GM87, GM89] give a different approach to order-sorted semantics, 

also used in [GKK90]. This approach is known as Overloaded Semantics as it allows a more 

general overloading of operators.

D efin ition  2.39. Given an Order-Sorted Signature E with the Monotonicity condition:

/  € •7rE(™llSl) and f  G F z (W2,s2) and uq < s  w2 then s1 < E s2 

Then an Overloaded E-Algebra, A  is defined to be a pair , 7:E,/4) such th a t :

1. S £  = {8A \ 8 € S z }.

2. If s < E s' then sA C s,A.

3. For each operator /  in .,Sn),s) there is a function f A : sA, . . . ,  sA-+sA .

4. If /  G («,ltai) and /  G and wx < E w2 then f A : w f - > s f  equals f A :
A A Aw2 —+s2 on Wi .

Thus in overloaded semantics, each operator symbol is denoted by family of functions in the 

algebra, one for each rank. This properly extends the many-sorted approach to algebraic 

specification as defined in for example [GTW79].

Example 2.40. Given the signature:

Sorts: A B C

Subsorts: A < C, B  < C

Operators: a : —► A  f  : A  —> A

b: -► B  f  : B ^ B

Given a denotation in an overloaded algebra A  such tha t A a  fl B A /  0, and an element
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e G A A fl B a , then f A-^A(e) may no  ̂ be the same as f B_̂ .B (e). In the non-overloaded 

semantics, there is only one possible value for f A (e). □

However, in overloaded algebras, only coherent signatures can be used.

Definition 2.41. An order-sorted signature E is filtered if for all distinct pairs of sorts 

s, s' G <SE, and (s, s') G (< U < -1 )+ , then there is a sort s" G 5 E such that s, s' < s". It is 

coherent if it is filtered and regular.

W ithout this restriction, the notion of Isomorphism between algebras breaks down and there 

is no initial algebra. Meseguer and Goguen claim tha t in practice signatures can be easily 

made coherent. They also show tha t a slightly different set of the laws of equational logic 

is sound and complete with respect to overloaded algebras [GM89], for coherent signatures. 

However, this has some unexpected consequences, which may not be as the user intended.

Example 2.42. In Example 2.40, add the equation a =  b. In the overloaded semantics, 

f(a )  = f(b) does not follow as f s  denotation may not be the same on each sort. □

The two approaches to the semantics of order-sorted equational logic are very similar, and 

in most natural examples produce the same results, although differences do occur in subtle 

ways. The overloaded semantics is more general and as Goguen and Meseguer emphasise, 

properly extends many-sorted algebra, and also is suited for modelling inheritance in object- 

oriented languages. However, it is subject to more restrictions, and can have unexpected 

consequences. For a full discussion of the differences see [GM89, Poi90, Dia91, GD92, 

Wal92]. Poigne [Poi91] gives an interesting approach which can describe both in the same 

framework by partitioning the set of sorts, and insisting that the operators are consistent 

on the partitions; non-overloading uses the trivial partition of the whole set of sorts. The 

approach used in this thesis is the non-overloaded semantics similar to [Gog84, Smo86, 

SNGM88, Kir88, Wal89, SS89], and is called the Standard Model or Standard Semantics.
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2.6 Order-Sorted Associative-Com m utative Unification

In this section, we consider unification modulo equational theories. Given a set of equations 

E, we extend the subsumption ordering to the equational theory of E.

Definition 2.43. Given equational theory E,  a E-term t E-matches a E-term t' written 

t :6e t' if there is an E-matching substitution o such th a t t' —e  0{t)- We extend this 

to substitutions. For E-substitutions a and r ,  if there exists a substitution A such tha t 

\fx G X . \ ( g (x )) = e t (x ),  then cr <e t  • This can be restricted to a set of variables 1 V C 1 ’, 

a <*e T if there exists a substitution A such tha t \ /x G >V-A(cr(z)) = e t (x ).  Substitutions, 

(7 and r  are equal with respect to E  and set of variables W  C X ,  written a  r  if and 

only if o t  and r  a.

We can now define order-sorted equational unification.

Definition 2.44. Given an order-sorted specification (E ,E), an E-Unifier of E-terms t
*

and t' is a E-substitution a  such tha t cr(t) where Vars(t = tr) G W.

An E-Unifier of a set of equations T is a E-substitution a such tha t V(t =  t') G T • o(t) 

0 (t'), where Vars(r) G W. The set of E-unifiers of a set of equations T is denoted Ue(T).

In general, Ue {T) is an infinite set of substitutions. However, for many equational theories 

a set which characterises all unifiers of a equation set T can be given.

Definition 2.45. Given equational theory E, a Complete set of E-unifiers of a set of 

equations T on Vars(r) C W C A, C S U $ (T ) ,  is a set of E-substitutions such that:

1. Vo- € C S U ^  ■ Im (a )  n  W  =  0

2. C S U g (T )  C l/E(r)

3. Vr € Dfifr) • 3a e C S U g (T ) .a  ^  r

In addition, a complete set of unifiers is known as minimal, denoted i tC S U ^ iT ) ,  if it is a 

complete set and Vcr, r  € liCSU$  (r)  • a r  =? a  =J^ r.
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The problem of unifying t and t ' over an equational theory E  is that of finding a minimal
?

complete set of E-unifiers for {t= tr}. Such sets of .E-unifiers may not exist ([FH83]), and 

if they do, they may be infinite, as for example the associative theory [Plo72]. However, 

the commutative and associative-commutative theories do have finite most general sets of 

minimal unifiers [Fag87, For87], although they can be very large: Domenjoud [Dom92] 

demonstrates th a t x + x + x + x =  2/i +  2/2 +  2/3 +  2/4 has 34 359 607 481 minimal AC-unifiers.

2.6 .1  C ond itions for U nification

Before discussing the generation of order-sorted AC-unifiers, we give the conditions on 

specifications which ensure finite sets of unifiers in the order-sorted AC theory.

Combination of Theories. It is not straightforward to combine unification algorithms 

for equational theories (including the empty theory). However, Yelick [Yel85] defines two 

conditions on the equational theory which ensure a straightforward combination.

Definition 2.46. A set of equations E  is Collapse Free if there is no t =  t' £ E  such tha t 

t G X  or t' G X . A set of equations E  is Regular ii for all t = t' £ E, Vars(t) =  Vars(t').

Both the commutative and associative-commutative theories are collapse-free and regular.

In an order-sorted signature, different equational theories could apply to different parts of 

the signature. For example, an operator could be AC over some sorts, but only commutative 

over others, as considered in [Kir88, Bou92]. However, in this thesis we ignore this and 

assume an equational theory applies to all well-formed terms.

Regularity. Consider the following unification problem.

Example 2.47. Given the signature.

Sorts: A B

Operators: c : —> A f  : A  —> A
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?

and the unification problem {x : A = y : B}.  {x : A y : B}  is not sort-preserving. 

However, the following infinite set of substitutions are all sort-preserving and minimal:

{ i : A h  f n {c)i y : B ^  f n (c)} where n = 0 ,1 ,2 , . . .

This infinite set of minimal unifiers occurs because in all E-algebras the sets representing A 

and B  intersect on f n (c) and so the equation x : A — y : B  can have meaningful solutions, 

but this is not reflected in the syntax as the terms f n(c) have no unique least sort. □

This problem is caused because the signature is not regular2. By restricting the unification 

problem to regular signatures the following theorem holds.

T h e o re m  2.48. ([SNGM88]) If E is regular, unification over the empty theory is finitary.

S o rt C o m p a tib le  T heories. We consider whether the commutative or associative- 

commutative theory applies to all well-formed terms.

E x am p le  2.49. Given the signature:

Sorts: A B

Operators: a : —> A b : B

_ +  _ : A B A

and *+’ is commutative. However, y : B +  x : A is not a E-Term. □

The initial model of the specification does not respect the commutativity axiom for ‘+ ’; the 

commutativity axiom cannot even be presented as an equation. The following construction 

tests whether the AC theory is well-defined.

D efin ition  2.50. The set of commutativity equations C  for a signature E and operator 

+  is as follows. For each s i 1s2 € generate new variables X\ : $1, 2:2 : s 2 and construct 

the term s ti = x\ +  x 2, *2 =  x 2 +  x i- If £ T%(X) then ti = t2 G C\ if t i , t 2 0 

then ti = t2 C. If for some Si,S2 » h  (respectively t2) G Te(A') and t2 (respectively ii) 

^  M X )  then C =  0. If C ^  0 then +  is commutative with the specification (E,C).

2 This is not to be confused with the regularity of the equational theory as defined above.
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The set of associativity axioms A  is as follows. For each Si,S2>s 3 £ generate new 

variables Xi : S i ,x 2 : s2^x^ : s 3 an(f construct the terms t\ =  (a?! +  X2) +  £3 , £2 =  

x 2 +  {x i +  ^3)* If ^1 ^ 2  £ then = t 2 £ A ; if £1?£2 £ T^{X)  then £2 =  t2 $ A. If for

some s1, s 2, ti (respectively £2) € T^{X)  and t2 (respectively ti) $ T^(X)  then A = 0. If 

A ^  0 then +  is associative with the specification (E, A). If A /  0 and C  /  0 then +  is 

associative-commutative with specification (E, AC) where AC  = A  U C.

However, this is not sufficient to ensure a well-sorted congruence.

E x am p le  2.51. Given the signature:

Sorts: A  B

Subsorts: B  < A

Operators: /  : B  —*■ B  . +  . :  A A

6 : -> B  _ +  _ : A B

a : —> A

and “+ ” is commutative then:

C = {x1 : A  + x 2 : A  = x 2 : A  + xi : A, xi : A  + x 2 : B  = x 2 : B  + x\ : A}

CS{x : B  + y : A )  = A , CS{y : A  +  x : B) =  B, so / ( a  +  6) £ TS (A), /(*  +  a) t  (*)• □

Equational variants need to be valid in every context, given by the sort-compatibility 

condition on equational theories, as discussed by Schmidt-Schauss [SS8 6 , SS89].

D efin ition  2.52. An equational theory given by equations E  is Sort-Compatible with 

signature E if Vs,£ £ T%(X) - s =e  t =$> £S(s)  =  CS(t).

E x am p le  2.53. Given the signature:

Sorts: A B C

Subsorts: B  < A, C  < A

Operators: _+  _ : A A —> A  _+  _ : B  C  —► C
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and “+ ” commutative then x : B + y : C = e y ' C + x : B , CS{x : B  +  y : C) = C  and 

CS(y : C  +  x : B) =  C.  The signature is sort-compatible with “+ ” commutativity. □

For a equational theory to be sort-compatible with a signature, the sorts and arities of 

the operators must form a model for the equational theory. For regular signatures, sort- 

compatibility is decidable.

Theorem 2.54. ([SS89]) Given a regular signature E, and a set of equations E,  if for all 

equations s = t G E  and for all renaming substitutions p

CS(p(s)) = CS{p(t))

then E  is sort-compatible with respect to E.

For a finite specification, sort-compatibility is decidable.

Corollary 2.55. The commutativity of + G Ty, is sort-compatible with signature E, if the 

partial function S+ : Sz-+S% given by 5 + (s, 5 ') =  CS(x  : s +  y : s') for any a?, y G X  of

sorts 5 , 5', where 3_+  _ : w—>r G * (s5 is commutative.

The associativity and commutativity of +  G E is sort-compatible with E, if the function 

S + : S% given by S+(s, s’) = £ S (x  : s-\-y : s') for any x, y G X  of sorts s, s' where

3_ +  _ : w—>r G Ew 1S an Abelian Semigroup over S £.

Example 2.56. [Examples 2.51 and 2.53 revisited.] In Example 2.51 , <S+(jB, A) =  A 

and S+ (A, B) = B and so commutativity is incompatible. In Example 2.53:

S+(A,B)  = A =  S+ (B,A)  

S+{A,C) = A =  S+ (C, A) 

S+ (C,B) = A =  S+ (B,C)

and so the function S+ is commutative. □

E xam ple  2.57. Given the signature:
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Sorts: A B

Subsorts: B  < A

Operators: . +  . :  : B  B  —► A

where “+ ” is associative and commutative. The function S + : S% >Ss given by 

S+(s, s') =  £ S (x  : s + y : s') does not form an Abelian semigroup over S%. Consider

(«i : A  -I- x 2 : A) +  x3 : B  —E x x : A  +  (x2 : A  +  x3 : B)

in this case £«S((zi : A  +  x 2 : A) 4- x 3 : B) = A  and £ S ( x i : A  +  (x2 : A  + x 3 : B)) = B. 

Hence this specification is not AC-sort-compatible. □

If the sort-compatible property holds, then the different semantics of [GM89] and [SNGM88] 

result in the same unifiers; if not they can be different [Wal89].

E x am p le  2.58. Given the signature:

Sorts: A B C

Subsorts: B  < A, C < A

Operators: /  : B  —» B  _ +  _ : A A —> A

f  : C -> C  _ +  _ : B C  C

c : —* C  _ +  _ : C £  ̂  £

b : B

where “+ ” is commutative. This is a well-defined commutative theory but not sort- 

compatible. Consider unifying f ( x i  : B  +  yi : C) = f ( y 2 : C  4 - x 2 : B). In the non- 

overloaded semantics, there is a single most general unifier {x i -* x 2,y \ - ^ y 2}. But in the 

overloaded semantics, there are no most general unifiers as a model A  may exist where 

- f^ (x i  :■ J9--K* y% : C) /  f ^ { y 2 • C  -K* x% : B) for some A-assignment u on the variables. □

2.6.2 An A bstract Unification Algorithm .

In the view of unification originally developed by Herbrand [Her30, Her67] and rediscovered 

by Martelli and Montenari [MM82], generating minimal unifiers is seen as a set of rules
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which transform a set of equations while preserving the minimal unifiers. The equations 

are transformed into solved forms.

D efin ition  2.59. An equation is in Solved Form if it is of the form x =  t where x E Xs is 

a variable of sort s, and t : s E Ty {X) such that x 0 Vars(t).

(1) Decomposition.
{ { / f a , . . ; , t „ ) = m , . . . , 4 ) } u t / } u c  if /  € H d

(2) Conflict.

l { / f e r - - ^ n ) = # i r - > 4 ) } U ^ } U ^  if / , 9  € T^d  and /  ±  g 
C

(3) Trivial Equation.
{ { t= t} U U } \J C

{U }U C
(4) Occurs Check.

{{#=£} U U} U C  if x E A , t $  X  and x E Vars(t).
C

(5) Eliminate.
{{a: : s=t : s'} U U} U C  if x Vars(t), x E Vars(U) and s' < s 

{ { z = t }  t}(U)}  U C
(6) M utation.

{{/(*i, ■ • • ■ tn)=g(t‘ . . . ,  Q }  u  u )  u  c  if one of / ,  g € H e

M U TE( { f ( h , . . . ,  t „ )= S(t i , . . . ,  fm)} U V) U C
(7)  Intersect.

{{m : s=y  : s'} U U} U C  if x, y E Vars(U) and s' XI s
{{x=z  : s", y=z : s''} U U\s" E s A 5'} U C

(8) Remove.
{{# : s=y : s ' } U U } U C  if x, y E Vars(U) and s ' M s  and s' A s = 0 

C
(9) Abstract.
_____________________{{x  : s = f ( t l l . . . 1tn) } \ J U ] u C _____________________

{{zx : s1= t1, . . . , z n : sn=tn, x = f ( z 1, . . . 1zn)} \JU \s l l . . . i sn -> s' E EJ} U C
if £ « S ( / ( t i , . . .  , t n)) % s and
T,} = {w > s '\ f  : w —* s' £ T, A s' < s A w maximal}

Figure 2.2: Rules for Order-Sorted Equational Unification 

A most general unifier can easily be inferred from a set of equations all in solved form.
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T h eo re m  2.60. Given a set of equations T all in solved form, {xi =  U , . . . ,  x n = tn} say, 

such tha t Xi g Vars(tj) for i , j  = 1 , . . .  n, p C S U ^{T )  is given by o =  {xn ► tn , . . .  , Xi i—> 

U} where >V =  {a^, . . . ,  x n}.

We give a set of transformation rules in Figure 2.2 for order-sorted equational unification 

similar [Kir88] to give an abstract algorithm which does not assume any particular con­

trol. In [SS86] and [MGS89, SNGM88] the algorithms first generate an unsorted solution 

and then analyse the sort structure to find the order-sorted unifiers, and this may result 

in performing tha t unnecessary work in the case of sort clash. Giving the algorithm as 

transformation rules allows the development of alternative strategies which interleave the 

structural, equational and sort decomposition rules.

The rules transform sets of candidate sets; in the rules other candidate sets are represented
7

by C, and other equations in the same unifier by U . To solve a unification problem t=t' we
7

transform the set {{£=£'}}. The transformations preserve the unifiers of the candidates. We 

assume tha t the signature is inhabited, and regular, and the equational theory is regular, 

collapse free and sort-compatible.

The set of operators in is divided into two sets: which appear in the equations

defining the equational theory, and T^d  f°r other free symbols. The unifier of terms with the 

same free symbol at root is the composition of the unifiers of the corresponding subterms 

and, if the top free symbols differ, no unifier is possible. If the two terms are the same then 

the unifier is trivial. If a variable occurs on both sides of an equation circularities occur 

and no unifier is possible. If a variable occurs in the left hand side of a solved form, it can 

be eliminated from other equations in th a t candidate.

Rules 1-5 alone reduce the sets of equations to equations of the form:

1 . / ( i i , . . . , * „ )  =  ,t'm) where one of f , g  £ T d, or

2. x =  t where x E X  and x £ Vars(t).

M U T e  in rule 6 is a specialised operation for the particular equational theory. For theories 

other than AC see the surveys of Siekmann [Sie89], and Jouannaud and Kirchner [JK91].
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Commutative mutation is simple, and is given as a transformation rule in Figure 2.3.

The mutation operation for AC-theories is complex and cannot be simply described in terms 

of a simple inference rule. The central part of the algorithm is the solution of a set of linear 

Diophantine equations to form a basis. Solutions to AC unification are then generated 

by considering subsets of this basis. This has an interesting consequence for order-sorted 

solutions. New variables are introduced in the subset resolution phase of the algorithm, 

and should be sorted. However, at this stage the sorts of variables cannot be given: this is 

established by the sort-resolution rules 7-9. To overcome this, we adopt a solution similar 

to  tha t of Meseguer, Goguen and Smolka [MGS89]. A new sort Top is introduced such tha t 

Vs E S y • c < Top. All new variables are said to be of this sort and later weakened to be 

of a declared sort, if possible. The AC mutation operation is not discussed further in this 

thesis; for more details see, for example, [Sti81, Fag87, For87, LC89, AK90, BCD90].

(6a) Commutative Mutation.
7

{{si +  s2=ti + t 2} \ J U } l ) C  if +  commutative (only)
{{5i=£i, s2=t2} U £/} U {{si=£2, s2= t-[} U t / } U C

Figure 2.3: Commutative Mutation Rule

Rules 7-9 carry out the conversion of equations of the form x =  £, where x E - f ,  into solved 

forms, which may result in more than one unifier.

Example 2.61. ([CD85]) Given the signature for lists with an append function:

Sorts: List NeList

Subsorts: NeList < List

Operators: : List List —► List : NeList List —> NeList

: List NeList —> NeList : NeList NeList —> NeList

7
unify {x : NeList = y : List @ z : List}. The Abstract Rule can be applied in two ways, 

either using the second rank for @, and substitute y for a variable of sort NeList, or use 

the third rank to replace z similarly. Thus there are two unifying substitutions.

{x i—► (yi : NeList)@z, y ^  y\}

{# i—> yQ(z1 : NeList), z i—»• zx}
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Using the fourth rank to replace both variables would be subsumed by either of the above 

and therefore would not form a minimal solution. □

The Intersect rule handles the case where two variables are of incomparable sorts. They are 

equated in alternative unifiers to a variable of a maximal common subsort. The Remove 

rule applies when there are no common subsorts of the variables, resulting in a type clash

and the candidate is rejected. The Abstract rule deduces feasible sorts from the signature
?

for subterms where . . .  , t n) is not a solved-form.

2.7 Order-Sorted Term Rewriting

Rewrite rules give an operational interpretation of equations to automate equational proofs, 

by replacing one side of a rule with the other in terms. However, some equational theories 

are not suitable for treatm ent as rewrite systems. A common example is commutativity, 

which generates a non-terminating rewrite relation: the commutative axiom will rewrite 

the ground term  a +  b indefinitely: a +  6—>6 +  a—>a +  &—>•••. Similarly associativity 

may require an infinite set of rules to generate a decision procedure [PS81]. Alterna­

tive methods have been developed to  handle such theories. One approach, ordered or 

unfailing completion, delays the orientation of rules until their application to particular 

instances [HR87, MN90b, Bac91]. Another approach builds the equational theory into 

the rewrite relation [Plo72, LB77, BL79, Hue80, PS81, JK 8 6 , GKK90, Bac91], and in this 

section we sketch this approach, giving results for order-sorted term-rewriting modulo an 

equational theory.

Definition 2.62. An order-sorted rewrite rule is an order-sorted equation VY.l—►r where 

Vars(r) C Vars(l). A rewriting system modulo E  is a specification 71 =  (E, E U R )  where 

E  is a set of equations and R  is a set of rules.

Definition 2.63. A rewriting system 7Z =  (E, E  U R) defines a rewriting relation on E- 

terms. t rewrites to t f, written t —̂ ^t ' if and only if there is some path p of £, a rule l—>r € R, 

and a matching substitution cr such tha t t\p = crl and t' — t\jp*—or\.
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7Z also defines a rewriting relation modulo E  on E-terms, t rewrites modulo E  to  t', written 

^  and only if there is some path p of £, a rule l—>r £ R, and a El-matching 

substitution a  such tha t t\p =e  gI and t1 = t\p*—ar\.

77 defines a rewriting relation on E-equivalence classes - ^ r / e  defined as: =e  ° ^ R °  =e

For each of these rewriting relations, if there is no t' such tha t then t is in normal

form  with respect to that relation. If t t' and tr is in normal form, then we write 

t' = t{ .

Clearly —*r .e  Q ~^r /E i although —*r .e  is a more tractable relation. To have a decidable 

rewrite system, these relations should terminate.

Definition 2.64. A rewrite relation R  is terminating if there exist no infinite chains of 

E-terms ->R t2 —>r t3 —►R

Termination is commonly estabhshed by termination orderings, which are well-founded or­

derings on terms, by demonstrating that the rewriting relation —>r  (or -+r .e , or —+r /e ) 

is contained within some termination ordering > t , —>r  C > t , and thus is well-founded also. 

There is an extensive literature on termination (see for many useful results [Der87]) and 

termination orderings, including the Knuth-Bendix Ordering [KB70], Polynomial Order­

ings [BL87] and the Recursive Path Ordering [Der87]. For the purposes of this thesis, we 

shall assume the existence of a termination ordering >t on terms.

Rewriting generates a symmetric relation known as Equational Replacement.

Definition 2.65. Equational Replacement. Two terms t and t' replace one another in 

rewriting system 1Z =  (E, E  U R ) , written t*— t' if there is an equation I = r £ E  U R, 

a path p and a substitution o such that t\p = o(l) and t ' =  t\p<—cr(r)\

This relation is intended to be equivalent to equality. However, it is not in general the case 

th a t u —n  t if and only if u t for order-sorted rewriting.

E x am p le  2.66. Sm olka’s E xam ple  [SNGM 88]. Given rewriting system TZ:
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Sorts: A B

Subsorts: A < B

Operators: a : —> A b : —► B

a’ : A f  : A ^  A

Rules: a b a' —► b

This system is confluent and terminating using rewriting over the empty theory. It is 

provable tha t f(a )  = r  / ( o ' ) .  However, f(a)  / ( a 7) .  □

Thus order-sorted rewriting is incomplete. The term f(b) is not a well-formed 77-term and 

the rewriting system cannot replace through it. The problem is caused by replacing a term 

of a lower sort by one of a higher. Thus the right-hand side cannot always be substituted for 

the left. However, the rewriting relation is complete if all rules are compatible [SNGM88].

Definition 2.67. A term rewriting system 77 is compatible if Vt £ Te(A'), if t—̂ R^t' then 

t' GT2 (A).

Informally, this ensures tha t term-rewriting can never form ill-sorted terms. This condition 

is decidable by means of a test on the rewrite rules of 77 [Wal90].

Theorem 2.68. Birkhoff’s Theorem for Order-sorted Rewriting.

If 77 is a compatible rewriting system then:

R  U E  h s  • ti = t2 if and only if t\ t2

To use the rewrite relation for automatic proofs, we would like to establish the Church- 

Rosser property. If we have established the Church-Rosser property, then to prove auto­

matically th a t an equality R  U E  ti = t2, then we only need rewrite ti n  ti |  

, t2 t2 1 and then test whether t i l  =e  t2 j.

Definition 2.69. A rewrite relation —>r.e is Church-Rosser modulo E  if for any E-terms, t 

and t7, t t', there are E-terms w, v such that t — >r.e u an<f ^  ~ ^ r . e  v an<i  u =E v •



2.7. Order-Sorted Term Rewriting 43

This is established by showing equivalence of this property to confluence.

Definition 2.70. A rewrite relation — is confluent modulo E  € T%(X), such

tha t ti r .e ^ -  t ~~^r .e  *2 then St,l i t,2 G T%(X) such tha t £x RmE t[ =E t'2 r .e ^ ~  t2 

(see Figure 2.4a).

If we restrict ourselves to compatible rewrite systems, then the equivalence of confluence 

and the Church-Rosser properties can be established.

Definition 2.71. A rewrite relation — is locally confluent modulo E if V£, £j, t 2 E ( X ) , 

such tha t ti R'E <— £—> re £2 then G Ie (A )  such tha t t\ — *r .e  = e  12 R.E<—  h

(see Figure 2.4b).

a). Global Confluence m odulo E. b). Local Confluence m odulo E.

Figure 2.4: Confluence Conditions for the Rewrite Relation.

Also, in rewriting modulo an equational theory the following properties are im portant.

Definition 2.72. A rewrite relation —>re is coherent modulo E  if V£, t i , t2 E T%(X), such 

th a t ti R.E4r~~ t = s t 2 then 3t[ ,t2 E T%(X) such tha t £x RE t[ = E t2 r . e ^ ~  t2. (see 

Figure 2.5a).

Definition 2.73. A rewrite relation —►RiE is locally coherent modulo E  if V£, tx, t2 E (X ) , 

such tha t £1 r .e  <— t = E t2 then t2 E TE(X) such tha t £x ~ ^ r , e  t[ =E t2 r . e ^ ~  h -
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(see Figure 2.5b).

t = E  t '= E  t '

= E  h

b). Local Coherence 

m odulo E.

a). Global Coherence 

m odulo E.

Figure 2.5: Coherence Conditions for the Rewrite Relation.

The following lemma, a modification of Newman’s Lemma [New42], establishes the rela­

tionship between these properties.

Lemma 2.74. A terminating rewrite relation —*r.e is confluent and coherent modulo E 

if and only if it is locally confluent and locally coherent modulo E.

In order to demonstrate the local confluence of the rewrite relation, we consider all possible 

peaks tha t can occur within <— >r .e , th a t is terms which can be rewritten by rewrite rules 

in two different ways. Some peaks are formed by rewrites occurring at incomparable paths, 

or at so called variable overlaps, and such peaks can always be replaced by a rewriting 

proof. However, peaks formed by overlapping rewrite rules are more complex; such peaks 

are instances of critical pairs.

Definition 2.75. Given a set of rewrite rules R, and equational theory E, a critical pair 

of variable disjoint rules / —> r, g—>d is defined to be {cr{r),(j{l[p <— d])) where there exists 

some path p in  I and E-substitution a  such tha t <j(1\p ) = e <*(<})■> tha t is the terms jE-Unify. 

A critical pair (£, u) is trivial if there exists t',u '  such tha t t r  e  t' = e u' r .e  u ' 

C P e(R )  is the set of all critical pairs of R  under the equational theory E.
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However, in the order-sorted case, it is not sufficient to  consider critical pairs.

Example 2.76. ([SNGM88]) Consider the following compatible rewriting system:

Sorts: A B

Subsorts: A < B

Operators: a : —> A f  : A —> A

b: B f  : B  -> B

Rules: a —► b f ( x  : A) —> x : A

There are no non-trivial critical pairs of these rewrite rules. However, it is not locally 

confluent as a <— f(a) —► /(&), but a and /(&) do not rewrite to the same term. □

To establish the critical pair lemma, we have to show tha t the set of rewrite rules is (weakly) 

sort decreasing, The following definition is given by Schmidt-Schauss [SS89].

Definition 2.77. A rewriting system 1Z is weakly sort-decreasing if for every 7^-term t of 

sort s, such tha t then u - ^ v  where v is of sort s.

A stronger condition is sort-decreasingness.

Definition 2.78. A rewriting system 7Z is sort-decreasing if for every 7^-term t of sort s, 

and t-+Tiu th en u is also of sort s.

This is decidable, with an algorithm given by Waldemann [Wal90], and more simply in a 

regular signature [SNGM88]. Clearly, if a set of rules is sort-decreasing, it is compatible.

The following result is an extension of the key result of Knuth and Bendix [KB70].

Lemma 2.79. Critical Pair Lemma. ([SNGM88, GKK90]). Let R  be a sort-decreasing 

rewriting system. Then R  is locally confluent modulo E if and only if all critical pairs of 

R  are trivial.

Thus if we can construct a set of rewrite rules, equivalent to the initial set of rules, where
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all critical pairs are trivial, then we have a locally confluent, and thus a confluent and 

Church-Rosser rewrite relation. Thus, to prove equivalence of term in the algebra, we need 

only test whether they rewrite to identical normal forms.

(1) D elete ( £ U { i  =  £'},£, S)  
(E,R)

if t =AC t’

(2) Reduce { EU{ t '  = t } , R , S )  
{EU{ t '  = u} , R , S)

if t —►R'AC u

(3) Orient { E U { t  = t ' } ,R,S)  
{ E , R U { t ^ t f} ,S)

if t >t t' and t —>t' is sort-decreasing.

(4) Deduce (E, R, S)
(E  U {ti = t2}, R , S )

if t\ = t2 Q. CPAc {R)

(5) Extend (E , R , S )
( E , R , S U { l ^ r } )

if I = r £ E X T Ac (R)

(6) Simplify Right ( E , R U { l - + r } , S )
( E , R U { / - * r ' } , S )

if r -»R.AC iJ

{E, R , S U { l ^ r } )  
(£?, R , S U { l ^ r ' } )

if r yR.AC r’

(7) Simplify Left { E , R U { l - > r } , S )  
(£7U{/' =  r},R, S)

e
if / -+ r .a c  I by g - * d  where I > g.

Figure 2.6: Rules for Standard Order-sorted AC Completion.

This is basis of the completion procedure for order-sorted AC rewriting, where all critical 

pairs are generated in turn and tested to see if they are trivial. This is given in Figure 2.6 

as a set of inference rules on triples consisting of a set of equations and two sets of rules. 

The rules can be applied in any order to give an abstract completion algorithm. Note th a t
e . ...................................................................................................................................................e ..............................................................................
t> is the well-founded strict encompassment ordering: t\ > t2 if 3cr and path p E 0{t \ )  

such th a t ti\p ~  <jt2, and o  is not a variable renaming.

Three other conditions have to be met for this to generate a confluent set of rewrite rules. 

Firstly, the rules must be terminating. This is ensured by supplying a termination ordering 

>t on terms, and proving tha t each rule entered into R  is within this ordering, generat­

ing a termination proof as completion proceeds. Secondly, as we are using order-sorted
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signatures, we must show that each rule is sort-decreasing. Finally, we have to establish 

the local coherence of rewriting modulo the AC theory. This is established by means of 

AC-extensions.

Definition 2.80. Given a rewrite rule I— within the associative-commutative theory AC, 

then if (x +  y) -|- x = x +  (y +  z) 6 AC, for some AC operator + , and x +  y order-sorted 

AC-unifies with /, then l + z—>r + z is an extended rule. The extension is AC-trivial if there 

is a rule <7— E R  and substitution a such tha t l + z —a c  <*9 and r +  z r .a c  a d. The 

set of all non-AC-trivial AC-Extensions of R  is written E X T a c ( R )•

In an order-sorted AC system, there may be axioms (x +  y) +  x =  x +  (y +  z) E AC,  for 

different sorts, and each may generate extensions, differing from unsorted AC-completion. 

Peterson and Stickel [PS81] and Bachmair [Bac91] prove tha t this set of extended rules 

added to the set of rewrite rules is sufficient to prove local coherence of AC rewriting.

Completion starts with the set axioms and the empty set of rules and extensions (E,  0,0), 

and by the application of the above rules, a sequence of Equation set/Rule set/Extension 

set triples are generated, {(£7t-, Ri,S%)}i=i,2,...' Extensions are kept as a separate set of rules 

as they have to be protected from being rewritten by the rule which they extend. The final 

triple is written (Eqq, R 0q, S qq). This process can result in one of three states.

1 . Success. All critical pairs are generated and oriented, and no more non-trivial critical

pairs remain. The rules terminate in the state (0, R ^ ,  S qq). The resulting set of rules 

R<x> U S qq form a decision procedure for equations t\ = t2; if ti —-►r00us0o h  I —AC 

t2 i  RooUSoo 'H“— 2̂ th en the equality holds; otherwise it does not hold.

2. F ailu re . There is an (irreducible) equation =  t2 E E{ for some i, which is unori-

entable, as t\ t 2 and t2 £1? in the termination ordering, or ti >t t2 but ti~^tt2 

is not sort-decreasing. The rules terminate in a failure, with E± ^  0, and no deci­

sion procedure results. The user can attem pt to provide a more suitable termination 

ordering, or no such ordering may exist.

3. N o n -te rm in a tio n . There is no i such tha t Ei = 0 and R{ has no non-trivial critical

pairs, so completion does not terminate and the set R ^  U 5 ^  is infinite. In this case,
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there is a semi-decision, procedure for U — t2 under the algebra; if the equality holds, 

there is some i such tha t t i  k  i = a c  h  I R^us, h -

2.8 Implementing Order-Sorted Equational Reasoning

The non-overloaded order-sorted rewriting theory has been implemented within MERILL3, 

a general purpose order-sorted equational reasoning system, developed at the C.L.R.C. 

Rutherford Appleton Laboratory (RAL) and the Dept of Computing Science at Glasgow 

University4. In this section we give a brief overview of this implementation. A more 

detailed description of the use of MERILL appears in [Mat93b]; a brief description appears 

in [Mat93a].

The development of MERILL was inspired by the ERIL (Equational Reasoning : an Inter­

active Laboratory) system developed by Jeremy Dick at RAL and Imperial College, Lon­

don [Dic85, Dic87], which used order-sorted logic in a practical equational theorem prover. 

However, the design of ERIL became obsolete: it was considered too slow, and lacked AC 

operators. It was decided to implement a new system which would retain the major features 

of ERIL, and have a similar ‘menu-driven’ user interface whilst being significantly faster 

and having new facilities. Like its predecessor, MERILL is designed to support order-sorted 

reasoning. However, unlike ERIL, it also incorporates reasoning modulo commutative and 

associative-commutative equations. It is also comparable with the Helios-OBJ [Gna92a] 

system, which supports AC-rewriting, and order-sorted completion, but not order-sorted 

completion modulo equations; MERILL remains unique in tha t respect.

MERILL is written in Standard ML [HMT88 , Rea89, Pau96], chosen due to the elegance 

associated with functional programming languages, coupled with the availability of efficient 

implementations. Standard ML’s module system also makes the system easy to modify to 

incorporate new extensions and experiments in equational reasoning techniques.

3Available via anonymous ftp from the University of Glasgow ftp.dcs.glasgow.ac.uk (130.209.240.50)
4 Partly supported by the SERC/DTI IEATP project “Verification Techniques for LOTOS Specifica­

tions” between RAL, Glasgow University and Royal Holloway and Bedford New College.

ftp://ftp.dcs.glasgow.ac.uk
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P art of the philosophy of MERILL is th a t the user is in control. Thus the system has few 

built in assumptions and does little reasoning in the background. This also means th a t the 

user has to enter the object syntax explicitly as the system has no built in assumptions, 

for example about the form of variables.

2.8.1 The Organisation of the MERILL System

The organisation of MERILL is given in Figure 2.7. The central database of the system is 

divided into three major components: the signature, the equality sets and the environment. 

These mutually dependent data sets combine to provide the raw material for the tools, and 

provide storage for their results. Tools include rewriting, unification and completion.

Tools

Unification ) f Rewriting ^  Completion

Environm ent
Equality Sets

Strategies

Theory

Term OrderingsParser

^signature

WeightsOperatorsSort Order Variables PrecedenceSorts

Figure 2.7: The Logical Organisation of MERILL.

We discuss the features of MERILL with reference to  the specification in Figure 2.8, of 

basic arithmetic over the natural numbers. This example shows the distinctive features 

of order-sorted equational logic as implemented in MERILL. It has a hierarchy of sorts
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and subsorts, multiple ranks for functions and sorted variables. Further, the addition and 

multiplication functions are both declared to be AC.

Sorts: Bool, nat, zero , posnat
Subsorts: zero < nat, posnat < nat
Operators: / /  : —► Bool tt : Bool

succ : nat —► posnat 
pred : posnat —> nat

_ +  - : na£ nat —► nat 
_ +  - : zero zero —► zero 
_ +  _ : nat posnat —> posnat 
_ +  _ : posnat nat —► posnat 

Variables: n, n l, n2 : nat, p : posnat
Equations: pred(sncc(n)) =  n 

n +  0 =  n
n +  (succ(nl)) =  sncc(n +  n l) 
n * 0 =  0
(succ(n)) * n l =  (n * n l)  +  n l 
n * (n l +  n2) =  (n * n l)  +  (n * n2) 
0 > n =  / /
sncc(n) > sncc(nl) =  n > n l

_ * _ : nat nat —> nat 
_ * _ : posnat posnat —> posnat 
_ * _ : zero  nat —> zero  

: nat zero  —> zero

n l +  n2 =  n2 +  n l
(n +  n l)  +  n2 =  n +  (n l +  n2)
n l * n2 =  n2 * n l
(n * n l)  * n2 =  n * (n l * n2)

p >  0 =  tt

Figure 2.8: An Example Specification of the Naturals.

2.8.2 Signatures in MERILL

The signature defines the object language the user wishes to use. This comprises four 

components: the sorts; a sort ordering over the declared sorts; operators together with their 

ranks; and sorted variables. Unlike other term-rewriting systems, which have predefined 

conventions about variables and operator symbols, MERILL insists tha t the user declares 

all the sort, operator and variable symbols before use.

Sorts and Sort-Orderings. Sorts are declared as names. The user then declares a 

set of pairs of sorts as subsort declarations, and the subsort relation is calculated as the 

least transitive reflexive closure containing the declarations. This ordering is stored in an 

efficient manner; no repeated or reflexive pairs are stored and no pair is stored which could 

be deduced using the transitive closure of the relation. Circularities are also prevented.
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There are also two predefined sorts available, Top and Bottom, the first of which is larger 

than any other sort, the second smaller.

O p era to rs . Operators are declared in a mixfix format, tha t is they can have a concrete 

syntax of a sequence of separate symbols with the arguments interspersed between them; 

the positions of arguments denoted by underscores in declarations. Also, the rank of the 

operator is declared. Examples include:

_ + _ : i n t  in t  -> in t  (* infix, binary operator + *)

_ + _ : n a t n a t -> n a t (* overloaded *)

a : i n t  (* constant *)

b : -> in t  (* constant *)

f  : in t  in t  -> in t  (* function of form  f ( „ , - ) * )

f  (_) : i n t  -> in t  (* due to arity this is a different operator *)

i f  _ th en  _ e ls e  _ : bool s s -> s (* a mixfix operator *)

_ _ : s s - > s  (* Juxtaposition as an operator *)

The user can also declare tha t operators are associative, commutative, or both, by declaring 

the attributes COMM ASSOC after the operator declaration. Thus we may have:

_ + _ : n a t n a t -> n a t (COMM ASSOC) (* + is AC  *)

_ * _ : m a trix  m a trix  -> m a trix  (ASSOC) (* matrix mult assoc only *)

Note tha t currently a declaration will apply over the whole of the sort structure, wherever 

the terms are well-defined. MERILL automatically checks the compatibility of the decla­

ration, using the algorithm given in Corollary 2.55, and will delete the declaration if it is 

incompatible with the signature, by generating a representation of this equational theory 

which is also used in completion to construct associative extensions.

Figure 2.9 gives an example screen from MERILL showing operators being added as in the 

example in Figure 2.8, showing a typical example of the menu-driven style of the system’s 

interface. The top of the screen shows the operators already within the system with their 

ranks. The user has selected the ‘a ’ item from the menu, to add new operators. Each 

rank is added separately; here we declare the greater-than operator, and two ranks of the 

multiplication operator. The addition operator is annotated ‘(ASSOC COMM)’ to denoting
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---------------------------------------- OPERATORS-----------------------
1 0 : -> zero
2 su c c ( _ ) : nat -> posnat
3 pred( _ ) : posnat -> nat
4 _ + _ : nat nat -> nat (ASSOC COMM)

: zero  zero  -> zero  (ASSOC COMM)
: nat posnat -> posnat (ASSOC COMM)
: posnat nat -> posnat (ASSOC COMM)

5 t t  : -> Bool
6 f f  : -> Bool

--------------------------- (h - help, Control-C - Interrupt)-----------
Operator Options 
a Add Operators 
d Delete Operators 
e Equational Theory 
»  a

Enter O perators:
> > _ > _ :  nat nat -> Bool 
> > _ * _ :  nat  nat  -> nat  
> > _ * _ :  posnat posnat -> posnat

Figure 2.9: Adding operators to MERILL. 

th a t it has been has been declared to be AC.

Variables. Classes of variable names are similarly declared with their sort within the 

variables menu. There are two types of variable name declarations which can be entered, 

whole variables and variable prefixes. The first are variable names in their own right. The 

second form a class of variable names, each with the declared prefix. Example variable 

declarations include:

x* : i n t  (* all strings beginning with an x are sort int vars *)

f  re*  : S (* all strings beginning with a fre are sort S  vars *)

f  red  : i n t  (* but fred is interpreted as a int var *)

jo e  : S (* and joe is a sort S  var *)

In the above example ‘f  re d a ’ would be a sort S variable, while ‘f r e d ’ is of sort in t .  Variable 

names can be the same as sort names and can overlap with operator forms, but operator 

forms take precedence.

From the declarations of operators and variables, the system builds a parser of terms, 

handling the mixfix forms to try  to produce an unambiguous parse, using a method similar
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to tha t in [Voi86]. As it is implemented, the parser chooses one particular parse, which 

may not be the desired parse; this could be easily modified to allow the user to choose 

between a list of possible parses. Brackets can always be used to  disambiguate terms.

Tests on the Signature. Three tests are available to check the properties of the given 

signature. Unlike the sort-compatibility test mentioned earlier, these are optionally called 

by the user.

Inhabitedness. The inhabitedness test determines whether all the declared sorts have 

ground terms, either declared within them or inferred from the current signature, as 

in Definition 2.31, and displays which sorts are inhabited and which are not.

Monotonicity. The monotonicity test checks operator declarations to see if any pair 

breaks the monotonicity requirement, as given in Definition 2.39.

Regularity. The Regularity test determines whether the current signature is regular and 

displays those pairs of operator arities which break the condition defined in Defini­

tion 2.14. This is done pairwise. A finite monotonic signature is Regular if for all 

operators /  which have ranks w-̂ —̂  and tn2—>s2 an<i  if there is some w0 such tha t 

w0 < w\ and also w0 < w2, then there is some w < uq, w2 such th a t f has rank in— 

and wq < w. This definition extends to a non-monotonic signature by adding the 

extra condition tha t if there is a rank w'—>s' such th a t Wq < w’ < W\, W2 , then s < sf.

2.8.3 Equality Sets

The user can declare equalities which are collected within equality sets. This allows separa­

tion of equalities which can be manipulated separately. There are four varieties of equality 

which can be declared within MERILL, each with a different role.
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Equality type Format of Equality Role

Equations 11 =  t2 Axioms which cannot be used for rewriting.

Rewrite Rules t\ = >  t2 Rules used for rewriting.

Conjectures t\ = ?  =  t2 Passive equalities used as a query, declared

true when rewritten to identity.

Conditionals el, • • • } ---- ^  ^ Used for rewriting, but not completion.

By dividing equalities into sets the interaction between them can be controlled. For exam­

ple, an equality can be rewritten by a specified set of rules, or critical pairs can be generated 

between two sets of rules and the resulting equations placed in a third. This allows the 

user to control the reasoning process more tightly than keeping all equalities together.

2.8.4 The MERILL Environm ent

The environment allows the selection of term orderings and completion strategies which 

are independent of the nature of the signature used. To use these orderings the user may 

have to set precedences and weights on operators.

Global Orderings. The global term ordering is a noetherian ordering on terms, generic 

on operators, which controls the ordering of rewrite rules during completion. Several global 

term orderings have been implemented.

User RPO - Left Status. A version of the Recursive Path Ordering [Der87] which uses 

the precedences on operators given previously by the user and all operators are of 

left lexicographic status.

User RPO - Right Status. A version of the Recursive Path Ordering which uses the 

precedences on operators given previously by the user and all operators are of right 

lexicographic status.

User RPO - M ultiset Status. A version of the Recursive Path Ordering which uses the 

precedences on operators given previously by the user and all operators are of multiset 

lexicographic status.
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U ser K B O . A version of the Knuth-Bendix Ordering [KB70], where all operators have 

their weights and precedences predefined by the user.

U ser A K B O . A version of the Knuth-Bendix Ordering by Steinbach [Ste90], where all 

operators have their weights and precedences predefined, which in addition can handle 

AC-operators. This method is subject to three conditions.

1 . C and AC-Operators have a multiset status, others left-lexicographic.

2. The weight of all AC-operators is zero.

3. AC-Operators are minimal in the precedence ordering.

A u to m a te d  K B O . The Incremental Knuth-Bendix Ordering as described by Dick, Kalmus 

and Martin [DKM90], which automatically decides whether a Knuth-Bendix order­

ing exists for the current set of rules as they are oriented. If a rule can be oriented 

in either direction, then the local ordering is used; if the manual local ordering is 

used, the user has control. The implementation of this ordering is due to Cropper at 

Glasgow University [Cro92]. It can handle small sets of rules well, but care must be 

taken as in certain cases the matrices used internally to calculate the existence of an 

ordering can grow exponentially.

In addition, by not selecting any of the above, the local ordering will be used for ordering 

rules. This is particularly useful for manual ordering of rules in completion when no ordering 

is applicable or easy to set up, although there is no proof of termination.

Local O rdering . The Local Ordering is invoked when the Global Term ordering has 

insufficient information to determine the orientation of an equation, which can be in either 

direction. Note tha t this is not the same as unorientability, where the Global Ordering 

cannot order the equation in either direction. The available Local Orderings are:

by-size Puts the term with the largest number of operators on the left-hand side.

m an u a l Prompts the user to orient the rule.
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2.8.5 Tools in MERILL

MERILL allows the explicit unification of terms. It uses the algorithm of Clausen and 

Fortenbacher [CF89] for solving sets of linear Diophantine equations, and the algorithm 

of Lincoln and Christian [LC89] for generating AC-Unifiers, modified as described in Sec­

tion 2.6 for order-sorted signatures. This algorithm assumes tha t checks for regularity and 

sort-compatibility have already been performed.

Other tools available for operating on terms and equalities include: rewriting of both terms 

and equations, as described in Section 2.7; the generation of critical pairs, and three order- 

sorted completion algorithms.

Knuth-Bendix Completion. An implementation of the Knuth-Bendix completion al­

gorithm [KB70] adapted to  order-sorted signatures is available. This does not use any 

associative-commutative declarations of operators. The user can also attem pt to use the 

Knuth-Bendix algorithm as a semi-decision procedure. Any conjecture equalities can be 

reduced in parallel with the completion process: they are proven when reduced to an 

identity.

H uet’s Completion Algorithm. This is an implementation of H uet’s Left-linear comple­

tion algorithm [Hue81] adapted to  order-sorted signatures. It handles associative-commutative 

operators without using special unification algorithms, but is restricted to left-linear rewrite 

rules only, a left-linear rule being one with no repeated variables in its left-hand term. 

H uet’s completion algorithm is similar to the Knuth-Bendix completion algorithm, with 

the exception th a t it will generate an error and halt if a non left-linear rule is generated.

Peterson and Stickel’s Completion Algorithm. This is a combined implementa­

tion of Peterson and Stickel’s commutative and associative-commutative completion algo­

rithms [PS81], as sketched in Section 2.7. This generates critical pairs by using AC unifi­

cation and also generates extended rules for the associative axiom. As the AC-unification 

algorithm is computationally very expensive, the maximum amount of orientation and in­

terreduction of rules are performed in this algorithm before new critical pairs are generated.

All three of these completion algorithms can result in the three outcomes as in Section 2.7.
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Local strategies determine the order in which rules are chosen for consideration in the 

Knuth-Bendix Algorithm. A fair strategy is one where all possible critical pairs are gener­

ated and considered for orientation. Currently available strategies are:

by-size Picks equations according to the number of operators occurring in both sides, the 

smallest first; a fair strategy.

by-age Picks equations according to the length of time th a t they have been in the system, 

the oldest first; a fair strategy.

m an u a l Prompts the user to select which equation to consider next; an unfair strategy.

The strategy used should be ‘fair’, especially when the algorithm is being used as a semi­

decision procedure to some set of conjectures. However, the unfair manual strategy can be 

useful if the user knows which equation to orient next.

To give an example of the nature of these completion algorithms, we complete the ex­

ample in Figure 2.8 using AC-completion. The organisation of the algorithm is given in 

Figure 2.10. Boxes represent equality sets, solid arrows movement of equalities during 

completion, and dashed arrows rewriting of equalities in one set by another set. Thus the 

algorithm is data driven, in a similar style to ERIL and also to ORME [Les90]; the control 

of the algorithm is determined by the presence of equalities in these sets. We select three 

sets from the equality sets database: A contains the unoriented equations; T is a set of 

temporary rewrite rules; and R is the final target set to hold the rewrite rules. In addition, 

another set H can hold conjectures to be considered in parallel with the completion process.

The strategy described in this diagram is to move all axioms from A, orienting them 

through the term ordering O and placing them in T, also checking whether the equation 

is sort-decreasing. All equality sets are rewritten by T and R, (rewriting by T and R on 

themselves omitted in the diagram for clarity). Then, using the selection strategy from the 

environment, a single rule is moved from T to R, generating all critical pairs between tha t 

rule and members of R, including itself. Non-trivial critical pairs are then placed in A, and 

the cycle begins again. Termination occurs when the sets A and T are empty; the set R 

then contains a confluent set.

To run this we first need to  set up a term ordering. Only one of the implemented orderings
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Move all and Orient

T - Tem porar 
Rules

A - Axioms

Move
OneCritical

Pairs

R - Rewrite 
Rules

H - Hypothese

Figure 2.10: Running AC-Completion.

accepts AC-operators; the Associative Knuth-Bendix ordering. However, the rule set given 

is not suitable for this ordering and we use a manual ordering, and assume termination.

--------------------------------------Rewrite Rules--------------------------
10 Equalities

1 p r e d ( s u c c (n ) ) => n
2 n + 0 => n
3 n * 0 => 0
4 0 > n => f f
5 p > 0 => t t
6 n + ( s u c c ( n l ) )  => succ(  n + n l  )
7 ( s u c c (n ) )  > ( s u c c ( n l ) )  => n > n l
8 ( s u c c ( n ) )*  n l  => ( n * n l  )+ n l
9 n * ( n l + n 2  ) => ( n * nl  ) + ( n * n 2  )
10 ( ( s u c c ( n ) ) *  n l  )* n l  => ( n l  * n l  )+( n l  *( n * n l  ) )  (*)

----------------------------(h - help, Control-C - Interrupt)----------------
Equality Set Options 
a Add Equations 
d Delete Equations 
o Orient Equations
»

Figure 2.11: Complete Set of Rewrite Rules for Arithmetic on Naturals.

Figure 2.11 gives the results of running this strategy upon the example in Figure 2.8 from 

an actual MERILL session. In this case no new non-trivial pairs were created. However, 

rule 10 is a new extended rule, and is marked with an asterisk, added to ensure confluence 

of AC-rewriting. This rule is generated by superposing rules on the associative laws of the 

equational theory generated by the annotations on operators.



Chapter 3

The Problems with the Standard 

Semantics

In this chapter, we discuss of the problems associated with the standard theory of order- 

sorted specification, and consider several approaches given in the literature to  their miti­

gation. It is these shortcomings, and those of the proposed solutions which motivates the 

theoretical work described in the rest of this thesis.

3.1 The Problems of these Semantics

The approach to order-sorted specification based on syntactic sorts and well-sorted term  

algebra, given in the previous chapter, has several problems which have already been hinted 

at in Example 2.66, and also discussed in [CH91b], which note following defects of order- 

sorted equational logic.

1. The congruence relation induced from equational axioms may not be sound.

2. Replacement of equals for equals may not be equivalent to equational deduction.

3. The Church-Rosser property is not equivalent to Confluence for the rewrite relation.

59
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4. The Critical Pair Lemma no longer holds.

The reason Chen and Hsiang give for these problems is worth quoting (op. cit. p .3):

When establishing the equivalence of two terms through equational replacements, the 

substitution may force the introduction of terms which are not defined in the term alge­

bra from the sort declaration. These ‘ill-formed’ terms should have semantic meaning 

since they are equivalent to well-defined terms. Furthermore, two terms whose equiv­

alence can be established should belong to the same sorts since they apparently have 

the same meaning.

To expand on this, consider the following example.

Example 3.1. ([CH91b]) Given the specification S  as follows

Sorts: B  C  A

Subsorts: B  < A, C < A

Operators: a : —> B  c : —> C

b : B  f  : B  -► A

Equations: a =  c b =  c

The ground quotient term algebra Ts $, has the following sets denoting sorts.

b t ° *  = MM}
=  { { “ ><>, c } }

C ^ . »  =  { [ c ] } ..........................................................................................................................................................

= {{«.*. c}}

A Ts* =  MM.M. [/(«)]■ [/(»)]}
=  {{«,fr,c},  { / ( a ) , / ( 6 ) } }

Whilst this is the correct initial interpretation with respect to the unsorted algebra, it has 

consequences th a t the user may not have expected. In particular, there are three points 

which raise questions about the soundness of this method.
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The first point is th a t a =  c but /(c) 7^  / (a )  which illustrates th a t since f(c)  is an 

ill-formed term, the congruence rule, while sound, does not give results as expected.

The second point uses the notion of equational replacement. In this example, whilst 

/ M  =E f (b) by the deduction rules, it is not the case th a t / ( a )  <— >*E f(b) as this would 

require the use of /(c ) in an intermediate step. This illustrates th a t even expected con­

sequences involving well-formed terms may not be deducible operationally as they may 

involve steps tha t use ill-formed terms.

The third point is if we consider the equations as left to right rewrite rules, the system is

confluent, but there is no rewriting proof of /(a )  <— >E /(&)• a

Other problems with this methodology occur when equations are used as rewrite rules to do 

automated deduction. The completeness of rewriting is lost and the critical pair lemma no 

longer applies unless the restriction applies tha t the rewrite rules used are sort-decreasing. 

Exceptions to this restriction are common and natural, as in the following example.

Example 3.2. Consider the following (partial) specification (again from [CH91b]):

Sorts: In t , Nat

Subsorts: Nat < Int

Operators: _ * _ : Nat Nat  —► Nat

_ * _ : Int In t  —► Int 

square : Int —> Nat 

Variables: x : In t , n : Nat

Equations: (equations for  _* _ omitted)

square(x) =  x * x

The natural way to orient this equation is from left to right as square(x) —> x * x. However, 

this is a sort increasing rule and is thus disallowed. □

In this case, sort-increasing rules could be avoided, for example by the use of an auxiliary 

operator abs : In t—>■ N at  for the absolute value of an integer, but such a specification is 

not as clear and succinct. Even if an initial set of rules is sort-decreasing, Knuth-Bendix
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Completion may generate rules which are not, causing the completion process to fail.

If we allow such rules in specifications, problems occur as in Example 2.66. Also, consider 

the following specification from [Wer93], similar to the above.

Example 3.3. Consider the following specification:

Sorts: I n t , Nat

Subsorts: N at < Int

Operators: 0 : —► N at succ : N at —► N at

square : In t  —► N a t succ : In t  —» In t

_* _ : In t In t  —> In t  |_| : In t  —»• N at

Variables: x : I n t , n : N at

Rules: \n\ —► n square(x) —> x * x

This specification has no critical pairs, but there is the following overlap at a variable path: 

succ{x * x) <— succ(square(x)) <— \succ(square(x)) \ —> |succ(:r * a:)| 

which is not convergent. □

While we emphasise tha t the deduction rules are sound and complete with respect to  the 

given definition of algebra, the standard proof and model theory is not strong enough to 

capture the desirable consequences of specifications. This criticism applies to both the non­

overloaded and the overloaded semantics. There have been several attem pts to overcome 

these problems, which shall be considered in the rest of this chapter.

3.2 Syntactic Alterations

A style of approach to the problems associated with the standard order-sorted theory is to 

modify the signatures of problematic specifications.

Adding a Top Sort. One approach is to add a new top sort and modify the signature 

accordingly [SS89, SNGM88].



3.2. Syntactic Alterations 63

D efin ition  3.4. Given an Order-Sorted Signature E, the T -Augmented signature E T is 

given by:

1. Set = S e U{T}

2. < e t  =  <£ U {(5 , T )|s  G Se t}

3. V/ E T t, ’ ranker  ( /)  =  rank^( f )  U {(T“W, T)}

In T-Augmented signatures all terms are well-formed, thus equivalence is sound with re­

spect to the logic; there are no ill-formed terms through which to make deductions. How­

ever, the restriction to sort-decreasing rules remains. Also this style reintroduces the prob­

lem which order-sorted specification was designed to avoid: any ill-defined term can be 

used as it now is well-defined. This method does not discriminate between those terms 

with well-defined denotations and those without.

A dd ing  Extra Operators. Gnaedig, Kirchner, and Kirchner [GKK90] propose another 

solution to the problem of non-sort-decreasing rules. When such a rule is encountered, 

a new sort and a new operator are added to the signature and the rule is split into new 

sort-decreasing rules.

Example 3.5. Given the following specification:

Sorts: s, s', s"

Subsorts: s' < s", s < s"

Operators: a : —► s" g : s" —> s'

f  : s" —> s h : s" —> s"

Variables: x : s''

Rules: h(x)  —>• f ( x)  h(x ) g(x)

Completion generates the critical pair f ( x)  — g(x)  which has terms of incomparable sorts. 

As all sorts are non-empty, there is an inhabited intersection of s and s', and / (a )  and 

g(a) must be members of this intersection by the critical pair. A new sort s ^ s '  and a new 

operator k are thus added which conservatively extend the specification.
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Sorts:  ̂ w ,

Subsorts: s ^ s f < s' < s" , s ^ s '  < s < s,f

Operators: a : —> s" g : s" —> s'

f  : s" s h : 5" —► s"

k : s" —► s ^ s '

Variables: x : s”

Rules: h(x)  —»• fc(x) /(x )  —> fc(x)

p(x) -> k(x)

Gnaedig, Kirchner, and Kirchner give a theorem which can be used to alter the specification 

when a pair p = q has some specialisations p, LS(p(p)) < LS(p(q))  which can be oriented 

and for other specialisations p, LS(p(p))  N LS(p(q)).  This theorem is stated incorrectly 

in [GKK90] as it does not change the sort ordering; we give a corrected version.

T h eo re m  3.6. Assume tha t the sort set does not contain a void sort and tha t completion 

generates a non-sort-decreasing pair VX.p =  <7, such tha t X  = xUyUz,  where x = Var(p) D 

Var(q),  and y = Var(p) — x, z =  Var(q) — x. Let So = {sp\p is such tha t LS(p(p))  M 

LS(p(q))}  be a new set of sort symbols, < 0=  {s^ < LS(p(p)) , sp < LS(p(q))\sp E 50} be a 

set of new sort order declarations, and E0 =  { fp : <j(p(x))—>sp\sp E So and f p £  E} be a 

new set of operator declarations. Then let:

S ' =  S  U S 0 

< '=  <  U < 0 

E '=  E U E0

T' =  r  .U.{Vp(f)..p(p) =  / p(p (*))|/? E E 0}U {Vp(x).p(<7). =  /p (p (* ))|/p E Eo}. 

where T is the set of rules, pairs and axioms generated so far. Then:

•  (S', < ', E ') is coherent

• T' is a sort-decreasing equational term-rewriting system, and

• ^E '.r 'P O  is a conservative extension of Tz p(X) .
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This method has the advantages of being simple, and straightforward to implement. How­

ever, it does obscure the signature with intersection sorts and extra operators. Moreover, 

it is of limited applicability. In Example 3.2 this method results in the new equations:

square(x) =  sq(x) 

x * x =  sq(x)

for some new operator sq : I n t ^ N a t  and nothing is gained.

Retracts. The method of retracts is described in [GJM85, GM89], and vigorously ad­

vocated in [GD92]. This method allows a restricted class of ill-sorted terms to appear in 

rewriting and is implemented in the rewriting system and programming language OBJ-3 

[KKM8 8 , GW88]. Here, an order-sorted specification (E, S) is conservatively extended into 

(E®,£®) as follows:

1. Vs, s' E E such tha t s < s', add the retracts rSjS> : s '—>s to

2. For each retract add to S the retract equation: r sy  (x : s) =  x

By using retract operators, ill-formed terms can be transformed into well-formed ones, 

although marked by the retracts as being ‘odd’. Then, by the application of the retract 

equations with the rules the term may be rewritten into a well-formed term. For example, 

in the specification of sequences of Example 2.28, the term head(tail(l@2)) is ill-formed. 

The use of retracts can convert this into /&ead(r/VeSeg,Seg(£a^(l@ 2))) and can be rewritten:

head{rNeSeq )5eg {tail (1@2)) )■-+head(rNeSeq )Seq (2) )■->head(2)->2

OBJ-3 automatically inserts retracts at parse time. In [GD92] examples are given which 

give equations on the retracts to give further properties between sorts, such as converting 

between alternative representations of an abstract datatype.

Retracts are undoubtedly a useful operational tool to allow the efficient use of ill-sorted 

terms in rewriting. However, the method of retracts has not been used in completion 

theory. This would be an interesting research area. For example, one could envisage a rule 

which takes a sort-increasing rule I—>7* and replaces it with a sort-preserving rule I— (r)
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where I  = rSQiSl o r Sl)S2 o • • • o rSn_1)Sn, s0 =  CS(l),  sn = CS{r) and s* < s i+1 for some path 

s0 . . .  sn through the sort lattice. This is similar to the work of Ganzinger discussed below.

3.3 Using a Many-Sorted Signature

Ganzinger [Gan89, Gan91b] presents a different approach by not considering completion 

over an order-sorted signature, but by converting the signature into an equivalent many- 

sorted signature. To do this he defines a translation function between signatures.

D efin ition  3.7. Let Eo s  be an order-sorted signature. Its translation into a many-sorted 

signature E =  (5, Q) is defined as follows:

1 . The sorts in S  are the sorts in S o s .

2 . If f  : s i . . .  sn—>s0 is an operator in Eo s , then / Sl...Sn—».So : S i . . .  sn~*so €

3. If s <b s' in E o s , then isCs> 6  Q.

where s <i s' if s < s' and jBs" such tha t s < s" < s' and isCs> : s—+s' is the injection from 

s into s'.

The injection functions represent the subsort relation in the many-sorted algebra, and 

functions are separated into a different function for each rank. Using this translation, there 

is a pair of mappings from T-^os(X) to ?e(X ) and vice-versa. These mappings are not 

inverses; more than one many-sorted terms map to an order-sorted term, and the function 

A : T-£os (X)  —> T%(X),  produces the term with the lowest possible sort in an arbitrary 

to tal extension of <£os. Ganziger defines a canonical rewrite system L P  on E to convert 

a E-term to the E-term with the ‘lowest parse’ of the order-sorted term it represents.

Using this translation, an order-sorted equational presentation E  is converted into a many- 

sorted presentation E #  which has the same equational theory.

A(£i =  t 2) =  I SlCs(^( t l ) )  — -̂ s2Cs(M ^2)) 

where I SiCs is the minimum composition of injection functions from to s and s is some
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minimal supersort of the order-sorted terms ti and t2. This function is naturally extended 

to sets of (conditional) equations.

E *  = L P U l N U \ ( E )  where

I N  — OsCs; (®) =  IsQs' (?/) & =  y\hcs' ^

In the rewriting theory of this system, rewriting by a set of order-sorted sort-decreasing 

rules R  is equivalent to rewriting by the many-sorted rules R # = \ ( R s )  U L P  where R$ is 

the set of rules generated by adding all specialisations of R, renaming the variables of the 

rules by variables of lower sorts. Thus the many-sorted completion algorithm can be used.

However, a many-sorted conditional rule is used to simulate a non-sort-decreasing rule. 

Thus in Example 3.2,the sort-increasing rule is converted to the conditional equation:

x * X = %NatClnt(n) => X * X = 71

Conditional equations which have variables in their right-hand sides which do not occur in 

the left of this kind are not usually admitted. However, a deterministic valuation for n can 

be found by normalising x * x and matching the result to iNatcint(n )- Ganzinger gives a 

brief account of how the completion algorithm is modified to allow for such rules and gives 

further references to his own work for more details of how this is done.

Thus the problem of non-sort-decreasing rules can be handled by switching to the many- 

sorted algebra, which while detailed is conceptually straightforward and can be mechanised. 

However, this method uses a conditional completion algorithm, which is an involved process 

adding complexities of its own. Also, in cover ting to a many-sorted signature, the elegance 

of order-sorted specification is lost.

3.4 Rewriting through Ill-Sorted Terms

A further class of approaches allows the use of ill-sorted terms in the rewriting process, 

unmediated by retracts, and with little modification to the algebra.
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R ew ritin g  in  C o n n ec ted  A lgebras. Gallier and Isakowitz [GI88] propose a new for­

malism for order-sorted algebra which stands between the overloaded and non-overloaded 

approaches. Confusingly, they call this approach Overloaded Order-sorted Algebra even 

though it introduces some of the features of the non-overloaded approach into the over­

loaded formalism. Gallier and Isakowitz’s algebra depends on sorts being connected; a 

better name would be connected order-sorted algebra, which is used here.

D efin ition  3.8. Let = =  (< U < -1 )+ be the equivalence class induced by the partial 

ordering on sorts <. Sorts s and s' are connected if s = s'.

D efin ition  3.9. Given an order-sorted signature E, a E -Connected-Order-Sorted Algebra 

A is a E-overloaded-order-sorted algebra such tha t given function symbol /  6  Pj:(w,s) G 

7rE(w',s,)i where w = w’ and s = s' then for every x £ A w fl A'w, = fA~*s>{x ) ’

A connectivity condition on signatures ensures initial algebras; if the argument sorts for 

two ranks of an operator are connected then so should the result sort. They also have 

a coherence condition to ensure tha t congruences over algebras are well-behaved. By de­

veloping this algebra, they avoid the non-intuitive consequences of the fully overloaded 

semantics mentioned above. More importantly in this thesis, the rewriting theory for this 

algebra has the following property.

L em m a 3.10. Given a rewriting system u t if and only if u t.

—TZ is the least overloaded order-sorted congruence of R , a definition of congruence which 

forms congruences using connected ranks of an operator. This result states that rewriting is 

sound and complete for proving equational congruences. Thus any rewriting sequence which 

begins and ends with well-formed terms is a valid inference, even if the intermediate steps 

pass through ill-formed terms. This result has very im portant consequences as the sort- 

decreasing condition on rules is not needed to ensure the soundness of rewriting. Further, 

Gallier and Isakowitz state (op. cit. p .15)’.

Since the notion of structure presented in [ non-overloaded order-sorted algebra ] 

seems to be stronger than that of Overloaded Order-sorted Algebra [that is Connected
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Algebra] it follows that our results on rewriting also hold [on their] structures.

Gallier and Isakowitz do not present results covering completion, and rewriting modulo 

equational theories. More fundamentally, their theory on rewriting only covers rewriting 

sequences begun and terminated by well-sorted terms. However, the status of sequences 

term inating in ill-sorted terms is not considered. Such terms may occur in a completion 

procedure or be generated in a critical pair and should have a semantics and proof the­

ory. Thus while this work provides the interesting pointer of ignoring the sort-decreasing 

restriction, further investigation is required.

D y n am ic  S orting . Watson and Dick [WD89] take an approach similar to th a t of Gallier 

and Isakowitz, allowing computation through ill-sorted terms. They note th a t problems 

arise when there is a discrepancy between the syntactic sort of a term, determined by the 

signature alone, and the semantic sort, which is the minimal (named) set of denotations 

to which the denotation of the term belongs in any algebra. This is determined by an 

interaction between the signature and the equations of the specification. Watson and Dick 

give the following definition for a semantic sort.

D efin ition  3.11. Given an order-sorted specification S  =  (E ,£ ), with a regular signature 

E, the semantic sort, SS( t )  of a term t is defined to be

SS( t )  =  P i CS( u)
U = £ t

Given any rewrite rule, both sides must have the same semantic sort and recording the 

semantic sort of terms, rewriting is sound. Thus the result of Gallier and Isakowitz above 

is reproduced, except the intermediate ‘ill-sorted’ terms will be well-sorted using the se­

mantic sort. However, the semantic sort of a term  is undecidable in general, and thus so 

is matching. Consequently, they give a weaker definition, which they associated with the 

Knuth-Bendix Completion algorithm.

D efin ition  3.12. Given an order-sorted specification S  =  (E ,£ ), with a regular signature 

E, the approximate least sort, A L S( t ), of a term t a t stage (n +  1) of the Knuth-Bendix
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procedure is the greatest lower bound of in the complete sort lattice of:

i). ALS( t , n)

ii). {ALS(u,  n)\u <-** t]

Watson and Dick use this to develop a Knuth-Bendix completion procedure. However, their 

work is sketchy. For example, they do not consider whether semantic sorts are allowed to 

occur in matching substitutions. Also their deduction system is not sound as the following 

example shows.

E x am p le  3.13. Given the specification S  as follows:

Sorts: A B C

Subsorts: B < A, C < A

Operators: b : —► B c : —> C

f  : B  A  

Equations: b = c

Under either semantics for order-sorted specifications, the equation f(b)  =  /(c) is not a 

valid consequence of this specification as the term /(c) is ill-sorted. However, using the 

inference rules for dynamic sorting as given in Watson and Dick [WD89], the following 

inferences can be made. Equations are represented by a sort and two terms: < S , t1, t2 >, 

where 5  is the greatest lower bound of all the sorts tha t the t i , t 2 have been proven to have. 

As equations are derived, this sort can move down the sort hierarchy and thus the sorts of 

equations are dynamic.

< B,b,b > < T, 6, c > < C, c, c > < T, 6, c >

< B,  b, c > < C>b,c >

< H D C, 6, c >

< A, f(b),  f (c) >

where T is the top sort. The final inference step is since B  ft C  C B  and /  € F'Z(<b >,a )' 

Thus in this system, /(&) =  /(c ) is a valid consequence of our specification, and thus the 

dynamic rules are unsound with respect to the standard models. □
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Nevertheless, the idea in this paper is an intriguing: use the equational theory to define 

the sort of a term, and change this sort during deduction using equational reasoning.

3.5 Changing the Semantics

The method proposed by Chen and Hsiang [CH91b] follows from the approaches of Watson 

and Dick, and Gallier and Isakowitz by using syntactically ill-formed, but semantically 

meaningful terms. They redefine the meaning of an order-sorted algebra, and build up 

three layers of equational reasoning. They start by defining all possible terms which have 

a valid meaning in a specification; the 2 -Terms.

D efin ition  3.14. The set of 2 -Terms with respect to a specification (E, S) is inductively 

defined as follows. For each s £ S's, let

T j ( ^ X ) ° s = T*{X)  

TI (J7z , X ) i+1 = T j ( ^ X ) \  0 { u \ p ^ - a r ] \ u [ j > ^ c 7 l ] e T I ( T ^ X ) i ,

I = r £ £, Vav £ Vars(l) • c t ( x s >) £ T x ( T ^ X ) \ , }

The set of all the 2-Terms of sort s, written as 2 j(X e, X ) s, is U;>o T j(2 e , U s* The set 

of all the X-Terms T j ( T ^  X)  is Usess X ) s

Using this definition of ill-sorted terms, Chen and Hsiang develop deduction rules and 

replacement of equals for equals (<— ¥i,s),  using the following definition of substitution

D efin ition  3.15. A substitution cr is a X-substitution if Vx £ Vom  a  if x : s then 

a(x)  £ TI (Jr̂ , X ) s .

J-deduction and 2-replacement prove to be equivalent. They then give the following se­

mantics of the 2-Term algebra.

D efin ition  3.16. Let S  =  (E ,£) be an order-sorted specification. An X-Algebra A  consists 

of a pair (S£ , such tha t :
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1. S £  is a set of sets indexed on the S s, the carriers of E.

2. If s <£ s' then sA C s ,A.

3. C a  — U ^ ^ ls  £ 'S'e}*

4. If /  £ ^ rE ( < s 1 .. .sn > , s ) an(i if ai € sj4 for * — l . . . z  then (a1}. . . , a n) £ Dy and

,an) £ sA .

5. If u is a E-term of sort s and u U then for all .4-assignments a, a(t)  £ sA .

Chen and Hsiang develop the theory of 2-rewriting, which does have the desired properties 

missing from the normal order-sorted rewriting. However, it is undecidable whether a term 

is an 2-term , and thus, 2-matching, and 2-rewriting are also undecidable. To produce a 

decidable operational semantics for this theory they introduce a new concept intermediate 

between th a t of 2-deduction and the standard E-deduction, W-deduction. Here, substitu­

tions are restricted to well-formed substitutions, using E-terms, but we can still rewrite to 

2-term s, similar to Gallier and Isakowitz, although the rewriting sequence does not have 

to begin or end with a E-term.

Chen and Hsiang prove tha t W-deduction and W-replacement are equivalent to 2-deduction 

and 2-replacement. However, W-rewriting is not the same as 2-rewriting, unless the system 

is sort-convergent, a weaker condition than sort-decreasingness, but which is still decidable.

D efin ition  3.17. A E-rewrite step, t ^ x ,R u ls a 2-rewrite step between E-terms u and t 

using rule l—>r and a E-substitution o such that £<S(cr(r)) < £<S(cr(/)).

D efin ition  3.18. A term-rewriting system R  is sort-convergent if for any I—>r £ R  and 

any E-substitution a, there is a E-term u such tha t o(l) u E,R<r~~ a {r)'

Chen and Hsiang show tha t this is sufficient to ensure the equivalence of the Church-Rosser 

theorem and confluence for well-sorted rewriting and also the following proposition.

T h eo re m  3.19. If R  is terminating, sort-convergent and W-confluent, then it is E- 

confluent.

To show confluence of W-rewriting, the confluence of E-rewriting can be used, and this is
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established for sort-convergent systems via a critical pair lemma for W-rewriting. They 

use this to give a completion procedure using sort enrichment to extend the signature with 

new sorts and operators similar to [GKK90], whenever instances of rules are discovered 

which are not sort-convergent.

Thus Chen and Hsiang extend the semantics of order-sorted equational logic to cover ill- 

sorted but semantically meaningful terms and develop a rewriting theory for it. This is a 

most interesting approach, but also has several deficiencies.

The definition of order-sorted 2 -algebra is unsatisfactory. Clause 5 of this definition, which 

gives a semantics for ill-sorted terms, links the rewriting theory with the semantics; it de­

mands a denotation for ill-sorted terms precisely when they are reachable through rewriting. 

It would be better to give a definition of the 2-algebra which separates the denotation from 

the rewriting theory.

The restriction of sort decreasing rules is weakened to tha t of sort-convergent rules. It 

would be desirable to weaken this restriction still further, or remove it all together.

The completion procedure uses sort-enrichment, similar to [GKK90], and suffers from the 

same disadvantages. It would be preferable to produce a completion procedure without it.

Chen and Hsiang find tha t 2-rewriting is undecidable and so use W-rewriting, which em­

ploys syntactic matching. Some intermediate rewriting technique could be used which uses 

some partial semantic information, as in Watson and Dick, to approximate more closely 

the ideal of 2 -rewriting.

3.6 Further Approaches using Semantic Sorts

Two further approaches explore the notion of terms being well-sorted via the equational 

theory.
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Using Term-Sort Declarations. Schmidt-Schauss [SS89] explores the notion of Term - 

S o rt D eclarations, a concept dating back to Goguen’s original work [Gog78b]. A Term-Sort 

Declaration is an explicit assertion of the sort of terms.

Definition 3.20. A Term -Sort Declaration over a signature E is a pair t : s where 

t  E Te(A') and s E S's. An order-sorted signature with declarations is a pair (E,X>) 

where V  is a set of term-sort declarations over E. For convenience, we include the set 

{ f ( x i : s i , . . .  , x n : sn) : s \ f  : s i . ..  sn^ s  E Tt.)  within V.

Example 3.21. A specification of the Evens can be given as:

Sorts: Nat, Even

Subsorts: E ven < N at

Operators: 0 : —► E v e n

succ : N a t  —► N a t  

Declarations: succ(succ(x  : E v e n ))  : E v e n

□

However, unification over specifications with term declarations is undecidable in general. 

W ith [Wit92] proposes a method by which a class of term-sort declarations can be accom­

modated. W ith first extends rewriting to allow rewriting through syntactically ill-sorted 

terms. He considers substitutions which are sem antically well-sorted as follows.

Definition 3.22. Given a set of E-equations E , the E -Sem an tica l Sorts of a term t is:

SortsE (t) =  S o r ts ^ ')
t'=Et

A (E, E ) -substitution o  is such tha t S o r tsg fo x )  < s (x ) .

Then t  t[u*—a r\ in the E ft-rew rite  relation if there is a rewrite rule l—*r E R , u  E 0 ( t )  

such tha t t\u =  crl for some (E, ^ -substitu tion .

Using this rewrite relation, a critical pair lemma can be given, but With notes (op. cit 

p .399): this theorem  is m ainly o f  theoretical interest because in general it is undecidable
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whether a substitu tion  is sem antically well-sorted.

W ith then gives a more powerful method than tha t given in [SS89] for showing th a t specifi­

cations with term-sort declarations are weakly sort-decreasing. He first discusses introduc­

ing new term-sort declarations into a specification to convert the signature into a weakly 

sort-decreasing one. This is also given in [SS89].

Definition 3.23. If t  : s is a term-sort declaration, Z—>r € R , and if there is a E-substitution 

such tha t <j(t\p) =  crl for some non-variable path p  E 0 ( t ) ,  then the pair (a t, crt[p<—r]) is 

called the critical sort relation.

A critical sort relation ( t , t ')  is satisfied if £ S ( t ')  < £ S ( t ) .  It is weakly satisfied if t ' - ^ ^ t "  

and £ S { t" )  < £ S { t) .

Theorem 3.24. If E is a regular signature, and R  a term-rewriting system, then —>r is 

weakly sort-decreasing if and only if all critical sort relations are weakly satisfied.

This gives rise to a method of establishing the weakly sort-decreasing property. W ith thus 

goes on to investigate a criterion for deciding unification in particular cases.

Definition 3.25. A critical overlap between term-sort declarations t \  : S\ and t 2 : s 2 is 

given by o t i  where o  is such that <r(fi|p) =  o t2 for p E 0 ( t i ) .  A critical overlap is solved 

if o t i  : si E V,  if p A or o t \  : {s1? s2} E V, p =  A.

Theorem 3.26. If E is a signature with term-sort declarations, unification is decidable 

and finitary if every critical overlap between term-sort declarations is solved.

This gives rise to a mechanism for generating new term-sort declarations which may make 

unification decidable; this process may fail to terminate. Finally, W ith considers an open 

problem of Schmidt-Schauss’s and states that unification is decidable for linear signatures , 

tha t is signatures with sort declarations which have no repeated variables. This result, and 

the extension to sem i-linear signatures is also given in [SA93].

W ith’s approach is interesting as he first tries to give a semantic approach to order-sorted
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term  rewriting. He notes tha t this is not decidable and thus restricts his attention to 

extending existing theory to show tha t for linear signatures with term-sort declarations, 

this theory is decidable, using the new techniques that he has developed.

Another Semantic Approach. Werner [Wer93] gives another, semantic approach to

the order-sorted rewriting, while still keeping to the non-overloaded algebra. He defines

extended terms to be the well-formed terms constructed without considering sorts, and

the E-terms to be the syntactically well-sorted. Like Chen and Hsiang, he extends the set

of well-sorted terms to those which are semantically well-sorted, defined as follows. The 
* 2relation is the equational replacement relation over all extended terms, restricted to 

using E-substitutions.

Definition 3.27. ([Wer93], Definition 2 .) Given signature E and rules R , T^1r ( X ) s is the 

set of all (E, i2)-Terms (semantically well-sorted) of sort s:

t € Te ,r (X ) s if an(i  only if 3t' £ Ty, (X ) s such that£ & r  tf 

Tx, r{X)  = LUss Tx>r(X) s.

This definition again captures exactly those terms which can have sorts semantically. 

Werner then goes on to develop the rewriting relations —A and — which are rewriting 

over extended terms using E-substitutions and (E, ./^-substitutions respectively, and gives 

the following interesting result.

Theorem 3.28. ([Wer93], Theorem 11.) Given t, t ' , t"  E T^,r{X)^ p E 0(t) ,  and a binary 

relation —>A on (E,i2)-terms such tha t —A C — C — t he following holds.

1. Strong Compatibility If t ' ^ At” then £[p<—i;] E Ty,,r(X) if and only if t"] E

t Z,r (X)-

2 . Completeness t' A t" if and only if t' £ > r  t" if and only if t' = r  t".

Thus any rewriting relation between — —îr ,R  ̂ on extended terms is strong enough to 

represent the equational theory. However, the critical pair lemma does not hold for — 

unless R  is sort decreasing.
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He notes tha t (E, /^-unification is undecidable as is whether an extended term  is a (E, R )- 

term, and goes on to develop the special case of — where E is range unique.

D efin ition  3.29. Signature E is range unique if whenever /  : S j . . .  sn— £ T y  and 

f  : s[ . . .  s'n ^ s f £ T y, i then s — s'.

D efin ition  3.30. If E is range unique, a T -substitu tion  cr, is a (cr, R )-substitution such 

that:

1. if <j{x : 5) =  / ( £ i , . . .  t n) then there is a s' such tha t /  : u —>s' £ T y  and s ' < s;

2. if o(x : s) = y : s'

T-rewriting — is — restricted to T-substitutions.

We have —̂  C — C and so the theorem above applies. Further, Werner demon­

strates tha t T-unification is decidable and thus completion is possible over range-unique 

signatures. He then goes on to give a construction which can convert any specification into 

an equivalent range-unique one.

Werner’s approach is interesting for several reasons. He recognises the importance of having 

all terms available, including ill-formed ones, and then uses a semantic description of the 

well-sorted ones, although he also recognises tha t it is sufficient in this case to use E- 

substitutions. The above quoted theorem shows tha t it is sufficient to use any rewriting 

relation between the ‘syntactic’ and the ‘semantic’, and —̂  is one such rewriting relation. 

He also points out the undecidability of semantic unification.

Nevertheless there are problems with Werner’s approach. He uses the standard non- 

overloaded semantics. As we have seen this semantics does not capture the intended 

meaning of order-sorted specification, although Werner’s rewriting systems do, so Werner’s 

approach is unsound with respect to the standard approach. Also, the semantic information 

on the sorts of terms which is deduced during rewriting is not recorded or reused in other 

circumstances, which seems a waste of the expressive power of order-sorted rewriting. Fur­

ther, the decidable relation that he gives is only valid over range-unique signatures, which
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is a only small class of order-sorted signatures. His transformation of any signature into 

a range-unique one suffers from the syntactic complexity of other transformation systems 

th a t we have seen before.

3.7 Decorated Rewrite Rules

Hintermeier, Kirchner and Kirchner [HKK93, HKK94] have independently developed a 

method for order-sorted computations which is similar to the dynamic sorting scheme pre­

sented later in this thesis. As in this thesis, they define an extended class of terms, which 

they call decorated terms, where each node of a term is annotated with a set of sorts record­

ing which sorts the term  is valid in. They proceed to define matching, unification, rewriting 

and completion in terms of these decorated terms in a fashion superficially similar to tha t 

presented in this thesis, and we shall note similarities and differences to the presentation 

given in this thesis in subsequent chapters. However, we do point out here that their work 

differs significantly from the work in this thesis in the following respects:

• They use the Galactic Algebra paradigm of Megrelis [Meg92] to provide a semantic 

basis for their work. This is a more expressive but more complex scheme than the 

embedded algebras used in this thesis. The work reported in this thesis is considered 

more intuitive and closer to the existing work on order-sorted algebras.

• The form of matching used is quite different. They use an exact syntactic matching 

of decorated terms which matches sorts exactly, and allows sort variables to appear 

in sort decorations. This thesis defined a matching based on an approximation of 

sorts, which is strictly more powerful.

• The form of unification used is also different for the same reasons as the matching 

above. This thesis also allows ill-sorted unifiers to occur in certain circumstances.

• Only one kind of rewriting is used, where two forms are defined in this thesis, one for 

sorts (static and dynamic) and one for terms. However, to give the same rewriting 

power and also to overcome the strict syntactic nature of the decorated term matching
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and unification, they also define a parallel set of rewrite rules which only rewrite 

the sort decorations, a set of rules which are conditional. Thus in this method, 

more rewrite rules are generated, with consequently a higher chance of divergence in 

completion.

• There is no analogue to the ‘constrained’ method described in Chapter 8.

Thus this independently developed method has a quite different style and methodology 

to the method described in this thesis, even though many of the results are similar. This 

paper has been useful and inspiring to the work presented in this thesis.

3.8 Summary

In this chapter the problems associated with the standard order-sorted theory and various 

approaches to  their resolution. No approach seems entirely satisfactory, although Gallier 

and Isakowitz, Watson and Dick, Chen and Hsiang, With, Werner, and Hintermeier, Kirch­

ner and Kirchner all seem to have interesting partial solutions. It is clear from Watson 

and Dick and Chen and Hsiang tha t the semantics of order-sorted algebra need rethinking. 

The appearance of ill-sorted terms in reasoning steps points to the need to give such terms 

meaning, which W ith and Werner point out requires a new approach to the sorting of 

terms, including syntactically ill-sorted terms. Chen and Hsiang, and Hintermeier, Kirch­

ner and Kirchner give approaches towards a new semantics for order-sorted signatures. 

However, each of these has their difficulties and none of these solutions seems entirely sat­

isfactory. There is scope for a new approach to semantics and operational interpretation 

of order-sorted specifications, which takes inspiration from all the approaches discussed 

in this chapter. In the following Chapters 4-8 we discuss a new approach to  order-sorted 

algebra, equational logic, and rewriting.



Chapter 4

A Semantics for Dynamic 

Order-sorted Equational Logic

4.1 Introduction

Order-sorted equational logic is a powerful extension to unsorted equational logic, and 

allows the elegant handling of partial functions and error values. However, the paradigm is 

limited by restrictions on the equational theories which can be defined. We would like to 

remove these restrictions, while retaining the elegance and power of order-sorted reasoning.

Of the existing approaches devised to overcome these restrictions, dynamic order-sorted 

logic [WD89] is particularly attractive since it has a strong intuitive basis. However, this 

method and others are unsound with respect to the standard semantics of order-sorted equa­

tional logic. In this is chapter, a reformulation of the semantics of order-sorted equational 

logic is given. This approach is similar to the Standard Semantics sketched in Chapter 2, 

but allows for sorts of terms to  be determined using the equational theory.

There are three alternative views of specifications: the Model theory; the Equational Logic 

and the Rewriting theory, shown in Figure 4.1. The Model Theory describes an abstract

80
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soundness soundness

Algebra Equational Logic <=> Term Rewriting
completeness completeness

Figure 4.1: Views on (Algebraic) Specifications

mathematical entity which may be non-constructive; the Proof Theory, or Logic describes 

the system in terms of logical rules for deriving true theorems by symbolic inference and 

proof; rewriting, or more generally replacing equals by equals, is an operational view of 

the system which describes the system in terms of computations. The three views can 

be seen as decreasing in abstractness, but increasing in computability. They should be 

developed independently and soundness and completeness results provided to show their 

equivalence. This chapter will give the first and second views for order-sorted specifications; 

the following chapters will explore the operational semantics via term  rewriting.

The difficulties with order-sorted equational specifications arise from the same source: the 

equational axioms have models which would naturally give denotations to  term s which 

are ill-sorted in the standard definition and thus have no valid meaning. As discussed in 

Chapter 3, attem pts to overcome this problem in [GI88, WD89, CH91b, Wit92, Wer93, 

HKK93] rely on deduction through ill-sorted terms. These terms have no denotation and 

these deductions are unsound in the standard model. Thus the standard model is not 

sufficiently powerful for full order-sorted deduction.

In Example 3.13, in the dynamically sorted system, f(b) = /(c ) is a valid consequence of 

the specification, although it is not a valid consequence of the specification in the standard 

semantics, and thus the dynamic rules are unsound with respect to the standard model. 

Our solution to this problem is not to discard the idea of dynamic sorting, but to change 

the notion of a model.

The problem is th a t b = c is satisfied in the model, but f(b) =  /(c ) is not as /(c )  is an ill- 

formed term , and therefore not available in the domain of discourse. Thus the congruence 

rule, while sound, does not produce the expected result, although in any model which 

satisfies the given equational theory b = c there will always be a satisfactory denotation for 

/(c ). Since b = c, in any <S-model A, bA = c* and thus as /•'Ms a well-defined function on
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B A, we know th a t f A (cA) has a value which is the same as f A (bA). But the definition of 

satisfaction of equations prevents the expression of equations valid in the model since such 

equations involve ill-sorted terms.

Our solution is to  denote ill-formed terms in valid models in a controlled fashion. Such terms 

take the same denotation as any well-formed term to which they are equal. Classically, the 

initial algebra allows no junk and no confusion. This system allows ‘junk’ in the model of 

the sorts, but only if it is identified with a non-junk element.

4.2 Signatures and Terms

To give a semantics for Dynamic Order-Sorted Specifications in which ill-sorted terms 

have valid denotations, ill-sorted terms need to  be available in the domain of discourse. 

Consequently, order-sorted signatures are embedded within unsorted ones so unsorted terms 

are available. We modify the definitions of order-sorted signatures given in Chapter 2 .

Definition 4.1. An Unsorted Signature, E is a pair, where:

1. is a set of operators.

2 . a : T ^ —► IN is an arity function.

Assume an infinite set of variables X . The set of unsorted terms is as follows.

Definition 4.2. Unsorted Terms.

The set of unsorted terms T-^(X) is the set of E-Terms, the least set such that: .

1. If * E A, x E T ^ ( X )

2. If c E T ^ and a{c) =  0 then c E T ^ (X ) .

3. If /  E T jj, a ( f )  = n and t1}. . .  tn E T ^ ( X )  then / ( t l5. ..  tn) E T ^(X ) .

If a term has no variables it is ground. The set of ground unsorted terms is denoted T^-.
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Order-sorted signatures introduce sorts and an ordering on sorts. A sort symbol is a name 

with no structure; a subsort declaration is a pair of sorts of the form Si < s2. We construct 

order-sorted signatures from the definition of unsorted signatures.

Definition 4.3. An Order-Sorted Signature E built on an unsorted signature E, is a triple, 

(Se, < e>^ e)  where:

1. S's is a set of sorts.

2. <£ is a partial ordering on S s , the least transitive-reflexive closure of a set of subsort

declarations.

3. T y. is the set together with a function rank^ : T-^-^lP{S£ x such th a t if

V / G T f . '  (wi s) ^ rankz(f)  then \w\ = a ( f ) .

For convenience, we write /  : s1, . . . , s n— when ((s1?. . . ,  sn), s) G rank(f). When the 

signature is clear in context, the E can be dropped. By abuse of notation, we refer to s G E 

when 5 G 5 s  and /  G E when /  G Also, we extend the ordering on sorts to sequences 

of sorts and to pairs in S£  x S% in the obvious, pointwise pairwise fashion.

Assume tha t the set of variables X  can be partitioned into a set of variables X s for each 

sort s G S%. The sort of a variable x is given by its sort assignment: s(#) =  s if and only 

if x G X s.

Given this definition of an order-sorted signature E and a to tal sort assignment to  variables 

s : X ^ S z ,  we define the set of syntactically well-sorted terms T%(X) C T ^{X ) .

Definition 4.4. Sorted Terms (E-Terms).

The set of E-Terms of a sort s G E, TS(X)  is the least set constructed as follows:

1. If x £ X,  s(x) = s' and sf <■£ s, then £ is a (variable) E-Term of sort s.

2. If /  G ((5i>--  , sn),s') € rank( f) ,  n > 0, s' <£ s and , t n are E-Terms of

sorts « i , . . . ,  sn respectively, then / ( t 1}. . . ,  tn) is a (compound) E-Term of sort s. If

n =  0 then /  is a constant of sort s.
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The set of all E-terms T ^(X)  = UsesE The set of ground E-terms is denoted Ts-

If a term t E T S( X)  then it is denoted t  : s.

4.3 Unsorted Algebras

Algebras for unsorted signatures are defined in a standard fashion. See for example [EM85] 

for a full treatm ent of such algebras.

Definition 4.5. An Unsorted Algebra, A|r, of an unsorted signature E (also known as a 

E-Algebra) consists of a pair (A, such tha t :

1. A is the carrier set of A%.

2. For each operator /  in there is a corresponding function f A : A aW —*A in

Thus a signature is denoted by a class of algebras. The algebras of a signature are related 

using Homomorphisms.

Definition 4.6. Given an unsorted signature E and two E-algebras A  and B an Unsorted  

E-H om om orphism  h : A — is a mapping between the algebras such that:

K f ' A (al , . . .  an )) =  f B (h( a i ) , ... , h(an )) for all /  E and (al 5 . . . an) E Aa(/)

It is trivial to show th a t E-algebras and E-homomorphisms form a category, Alg^-.

A homomorphism h : A ^ B  is an isom orphism  if there is a homomorphism h r : >A such

tha t h ' o h = id a  and h o h f = id&, where id a  (zd#) is the identity homomorphism for A

(B).

One algebra is of special significance: the Term-Algebra.

Definition 4.7. Given an unsorted signature E, and a set of variables A, the free unsorted 

Term -Algebra T^ x  on X  is defined to be the following construction on T ^ ( X ) .
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1 . = T ^ ( X ) .

2 . f T^ x ( t 1: . , . , t n )  =

Note th a t if the set of variables X  is empty, then the term algebra 7^  ̂ is formed by ground 

terms. This algebra is canonical of all E-algebras in the following sense.

D efin ition  4.8. If A is a E-algebra, and V C X  a set of variables, a (V, A)  -assignm ent is a 

mapping P : V—>A. The denotation  of a term t in an E-algebra A and under an assignment 

P on V a r s ( t ), written is a mapping from 7^ v to A given by:

lxh  = j 'M  

1/ ( ^ 1, - - - A n %  =  f A ( l h

Thus for any (V, A)-assignment P, the denotation function : 7 ^ v—>A is a homo­

morphism. In particular, as a corollary of this result, if V =  0 there is only the trivial 

(0, A)-assignment. Thus there is a unique (up to isomorphism) homomorphism from 7^  ̂

to A and 7^ 0 is the In itia l Object in A lg ^ , and called the In itia l Algebra.

4.4 Order-Sorted Algebra

An Order-Sorted Algebra can be defined as embedded within an Unsorted Algebra.

D efin ition  4.9. Given an order-sorted signature E built upon an unsorted signature E, an 

O rder-Sorted E-Algebra A  is an unsorted E-algebra A with the additional properties:

1. For each s E S% there is a subset A s C A

2. If s < s  s ' then A s C A s>

3. If /  : s i , . . . ,  sn >s and ax E A Sl, . . . ,  an E ASn then f A (a1}. . . ,  an) E A s.

Thus the E-Algebra A is embedded within the E-algebra A, or simply A is in A.

There are several comments which can be made concerning this definition:
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•  We don’t  need to state properties about the domains and ranges of functions; these 

details are imported from the embedding unsorted algebra.

• This definition is consistent with the non-overloaded interpretation of the standard 

semantics, as the embedding unsorted algebra enforces the use of one function to rep­

resent each operator, rather than a family of functions as in the standard overloaded 

semantics.

•  One unsorted E-algebra can embed many different E-algebras.

•  There is always a E-algebra for any order-sorted signature. Let A  =  UseSs ^ s"

• As we assume a ground term for every s £ Ss, the set A s cannot be empty.

Again we can relate the algebras of an order-sorted signature using homomorphisms.

Definition 4.10. Given an order-sorted E built on an unsorted signature E and two E- 

algebras A  and B on E-algebras A  and B respectively an Order-Sorted E -H om om orphism  

h : A —>B is a mapping between the E-algebras such that

Vs £ Sy, • h ( A s) C B s

E-algebras and E-homomorphisms together form a category, O SAlg£.

Similarly, we can define the order-sorted term-algebra.

Definition 4.11. Given an order-sorted signature E on E, and a set of variables A ,  with 

a sort assignment s, the free order-sorted Term-Algebra T%fx  on X  is the unsorted term 

algebra 1y,,x  which has been divided into subsets such that:

sT*’* = {t\t £ Ts  (X)  and t  : s }

This is clearly a E-algebra as defined above. If the set of variables X  chosen is empty, then 

7 ^ 0  is formed by the ground terms. This E-algebra is canonical in the following sense.

Definition 4.12. If A  is a E-algebra in A , and V C X  a set of variables, with sort assign­

ment s, a sorted (V, A ) -ass ignment  is a mapping v  : V—>A such tha t Vx £ V m (x : s ) £ A s.
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The denotation  of a term t in a E-algebra A  and under an assignment v on V a r s ( t ), written 

is a mapping from T ^ y  t°  given by:

x v = v{x)

Thus for any (V, .4)-assignment v, the denotation function ?  : T ^ y —̂ A is a homomorphism. 

In particular, as a corollary of this result, if V =  0 there is only the trivial (0, A)-assignment. 

Thus there is a unique (up to isomorphism) homomorphism from to A  and thus is 

the In itia l Object in OSAlgs, the In itia l Algebra.

From the definition of syntactic sort and the valuation under sorted assignment, we can 

show the following proposition.

Theorem 4.13. If t  : s then for any sorted ( Vars(£), ^ -assignm ents v, t v G A s.

Proof (4.13). If f G A, then by definition of sorted ( Vars(t), .4)-assignment v{t)  G A s. If 

t  =  f ( t i , . . . ,  t n ) then by definition of syntactic sort, there exists a rank for /  : s1?.. .  sn —> s 

and t i  : S i . . . t n : sn. By induction hypothesis on the depth of t, t \  G A Si, as Vars(ti) C 

Vars(t). Thus t u = f A ( t i , . . . ,  t \ )  G A 3 by definition of f A . □

4.5 Equations and Models

Having constructed a two-tier semantics for order-sorted algebras embedded within un­

sorted algebras, we introduce the notion of equations.

Definition 4.14. An unsorted E -E quation  is a triple (Y, £, t ') consisting of a set of variables 

Y  and a pair of E-terms t , t ’, such tha t Vars(t) U Vars(t') C Y. This triple is usually written 

V Y .t = t ' . If the variable set Y =  Vars{t) U Vars(t'), then we can omit the variable set and 

write t  = t '. An Unsorted Specification consists of a pair (E, E )  where E is an unsorted 

signature and E  a set of E-equations.



88 A Semantics for Dynamic Order-sorted Equational Logic

Similarly, an Order-Sorted E -Equation is a triple of a set of variables and a pair of E-terms 

w ritten VY.£ =  t ' . An Order-Sorted Specification consists of a pair (E ,E )  where E is an 

order-sorted signature (implicitly defined in terms of a unsorted signature E) and E  a set 

of order-sorted equations1.

Thus an order-sorted specification is embedded within an unsorted specification.

We wish to investigate the equational models of order-sorted specifications and develop 

computational methods which reflect these models. Thus we need to develop a theory of 

these models. As usual in this development, we begin with a model for the unsorted theory.

4 .5 .1  U n sorted  E -A lgebras

We define validity of equations under a specification S  =  (E, E) in a E-algebra A.  An 

equation VY.£ =  t' is Valid in an algebra A  (or algebra A  Satisfies equation VY.£ =  £'), 

written A  |= VY.£ =  as defined in the following:

A  \= VY.£ = t'<& V(Y, A)-assignments v • t v = tlv

We say tha t A is a Model for <S (or A is a S-Algebra) if every VY.£ =  t' G E  is valid in 

A.  Again, the class of models for S  and homomorphisms between them form a category 

OSAlg^.

Given a specification , the equational theory is the class of equations which are valid in all 

models of S: an equation VY.t =  t' is valid under a specification <S, written <S (= VY.t =  t', 

if VY.t = t' is valid in every model of S.

4 .5 .2  O rder-Sorted  E -A lgebras

The Example 3.1 demonstrates tha t it is not sufficient to define a similar model for order- 

sorted specifications. In such a model, equational consequences of the dynamic method

1Here we restrict the equations in the specification to be statically sorted. We can relax this to unsorted 
equations, as long as the equations prove to be dynamically well-sorted in the sense defined below.
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become invalid, even though perfectly satisfactory elements for the unsorted terms exist in 

the model. We need to modify the concept of the validity of equalities in a model.

The principle behind this change in interpretation is to allow equations which are valid in 

the unsorted model to be valid in the order-sorted model provided that they have at least 

one element equal to some other well-sorted element. Then they denote the same element

in the model as the denotation of a well-sorted term and thus have a valid denotation.

T hat is t x = t2 in an order-sorted algebra if and only if for some u, ti = u : S  or t2 = u : S  

and t\ =  t2 in the unsorted model. Not all equalities in the unsorted model can hold as 

the following example shows.

Example 4.15. Consider the following order-sorted specification, S.

Sorts: A B

Operators: a : —► A f  : A  —► A

b : -► B f  : B  -► B

Equations: f ( x  : A) = a

Ignoring the sort information, then any «S-algebra M  will satisfy f(b) = a. □

Thus we alter the notion of an unsorted algebra satisfying an equation, and only consider 

assignments th a t preserve the sorts of variables.

Definition 4.16. Given an order-sorted specification S  = (E, E)  built on the unsorted 

specification S  =  (E, E ), then the E-algebra A,  containing sorted E-algebra A,  Satisfies 

Sortedly S  if and only if for all sorted assignments v : X  —> A

V(VY.t = t ' ) e E  • tv =  t ,v

If this holds for an equality VY.t =  t7, we write A  (=s VY.t =  t'.

This last definition restricts the definition of equality of unsorted terms to consider only 

well-sorted instantiations of variables. This well-behaved equality is used to extend the 

valid sorts in the algebra. We give a notion of a Sort-Judgement which takes into account 

the equations in deciding whether a term  has a well-sorted denotation.
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Definition 4.17. Given an order-sorted specification S  = (D,E)  built on the unsorted 

specification S  = (£,£7), then a Sort Judgement of sort S  of a term t £ T ^ ( X )  in a S- 

algebra, A , on unsorted <S-algebra, A,  written A  \= t :: S', is defined by:

1. A  t :: S  if t : S  or

2. A  |= t :: S  if 3t' such tha t A  f=£ VY.t = t ' and A  \= t' :: S  where Y  = Vars(t) U

Vars(t')2.

We can then extend Theorem 4.13 to characterise the sort of a term in the algebra.

Theorem 4.18. If A  f= t :: 5 , then for any ( Vars(t), A ) -assignment tu £ A s.

Proof (4.18). Assume A  \= t :: S.  If t : S  then by Theorem 4.13, t v £ A s. Otherwise 

A  (=s VY.£ =  £', so tu = t ,v, and A  \= t' :: S.  □

Thus an unsorted term has a well-sorted denotation if under any denotation, it is either a

well-sorted term, or equal to  a well-sorted term.

We now define the notion of equality: sorted algebras satisfy equations in particular sorts. 

Definition 4.19. Equality in a Sort.

Given an order-sorted specification S  = (£,£?) built on the unsorted specification S  =  

(£, E ), and an order-sorted <S-algebra A  on unsorted «S-algebra, A,  then two elements £1,^2 

of A  are Equal in Sort 5 , where S  £ 5^, written as A  \= VKij = s t2, if and only if:

1 . either A \ = t i  :: S  or A  \= t2 :: S

2 . A  VY.£i =  t2

Note th a t, by the definition of sort judgement, if either disjunct of the first condition holds, 

then so does the other.

This definition can be used to define the general equality in the order-sorted algebra.

2This will prevent sort assignment through empty sorts.
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A  f= W . h  = t2 if and only if 35 £ S's • A  |= VY.^ =s t2.

We can now define the notion of validity for an order-sorted specification in the normal 

fashion. Thus an equation MY.t = t' is valid under a specification S,  written 5  |= VY.£ =  

if VY.£ =  t' is valid in every model of S.

Note th a t in this definition of a valid order-sorted algebra for a specification S  =  (E, E)  

we do not build upon an 5-algebra, but a E-algebra. Indeed, Example 4.15 shows th a t an 

«S-algebra can be an unsuitable model upon which to construct the order-sorted model as 

it will satisfy too many equalities.

4.6 Dynamic Order-Sorted Equational Logic

This section defines Dynamic Order-Sorted Equational Logic and uses it to construct a 

canonical model for a specification, the quotient term algebra. This gives an inference 

system which respects the formulation of equality in sorts tha t we have defined above.

4.6 .1  A P resen tation  o f D yn am ic E quational Logic

Definition 4.20. A set of equations E  derives an equation VY • u =  t in a sort 5, w ritten 

E  by; MY.u = s  t, if either VY • u = t £ E  and either u : S  or t : 5, or else VY • u = s  t is 

derived using the rules in Figure 4.2. If the subscript 5 is omitted, then we assume tha t 

the equation holds in CS(u)  U CS(t).

We define the notion of a >V-substitution, used in the Instantiation rule.

Definition 4.21. Given a specification 5  =  (E ,E), a W-substitution a : X — is a 

mapping on a set of variables X  such tha t if z £ X  and s(x) = s then 3u £ T%(X) such 

th a t E\~y. crx =s u : s.

Thus the definition of dynamic equational logic is recursive; it uses a definition of substi-
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Reflexivity. E  bE VY.t = 5  t if t : S

Symmetry. E  bE VY.u = 5  t 
E  bE VY.t = 5  «

Transitivity. E  h E VY.u = 5  t, E  h E VY.t = T u 
E  hE VYtt = 5  ^

Congruence. E  h E Yy.ui  =5j ti • • • £7 hE, VY.un =5n £n if (1V, S) € ranks(f) and
E h E V Y / (« i , . . .  , u n) =s (s i , . . .  sn) < JY

Instantiation. E  b E VY.w = s  t if a : Y —»■ 7s (X) is 
E  bE \/X.cru =s

a W -substitution.

Figure 4.2: Rules for Dynamic Order-Sorted Equational Logic

tution which uses the notion of derivation. Nevertheless, this definition is well-defined.

Lemma 4.22. hE is well-defined. That is 

=E =def {( t, t ') \3S € S x .E  \~x t =s  t'} 

is a well-defined relation.

Proof (4.22). For each sort S  G SE, define the following set of relations

= 5  —def {* = 5  '• S } u { t  = s  t'\t = u £  E  A ( t :  S v  u:  S)}

Thus =g are those equations immediately valid in S.  Let:

- S 1 =def  = 5  U {* = s u\u = 5  t}

U {u =$ v\u =ls t A t — lT  v}

u  { /(« ! , . . .  , t n) =s  =5a *1 A . . .  A «n —5n tn A

3{W, S) € ranksif) ■ {S1 . . .  Sn> < 1Y} 

U {au =s  &t\u =s  t A Vx 6 Dom(cr) • 3v 6  • era: = 5^)

Then let:

—5 — def = S
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= E  - d e f  U = s  

s e s z

As =e  is the set of all finite derivations, then it is a well-defined relation. □

These rules thus define a relation, the Congruence Generated in sort S by E.

Definition 4.23. The Congruence Relation Generated by E , denoted as s =E t, is the 

relation generated by taking the union of the congruences in all sorts:

= E =  {(u, t ) \ 3 S  £ S z - V Y  ■ u = s  t}

Using W -substitution in a recursive definition of equational congruence is an awkward way 

of defining this relation. However, we can replace this definition by a simpler one.

E-Instantiation. E  hE VY.u = s t if a : Y —► TE(X) is a E-substitution.
E  b E yX .au  =s  at

Figure 4.3: Alternative Instantiation Rule

Lemma 4.24. The set of rules given by taking the set of rules in Figure 4.2 and replacing 

the Instantiation rule with the E-Instantiation in Figure 4.3 generates the same congruence.

Proof (4.24). If the new set of rules derives an equality in sort 5, we denote this by 

MY.u t. Let = e =  {(wj0  135 E 5e • VY • u =§ t}. Then clearly =j^ C =E since every 

E-substitution is also a W-substitution. We need to show th a t = e Q  =§• We prove this 

by considering the derivation trees.

VY.v =s  u
I f ---------------------- where a : Y —>T(X) is a W -substitution, then \ f x  E Dom(a), 3t E

yX .av  =s au
Ts(x)(X),  such th a t ax  = s(a;) £, then construct the substitution 

9 = {x  !-»■ t\x E Dom(a) A ax = s(x) t A t  £ Ta(a.j(X)}

VY.v = s  u
Then 6 is a E-substitution, and therefore by E-Instantiation---------------------

yX.Ov = s  9u
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As Vx E Dom(a),  31 E TŜ ( X )  * ax  = s(ar) we can use the congruence rule multiple times 

to  build the following proof:

y x . a x i  —s ( x i )  U ? ’ ’ * ?VY.<TXn —s(a:n )

y x . a v  =s 6v

and also a similar proof of yX .au  = 5  Ou. Thus by further applications of the symmetry 

and transitivity rules, we can derive yX .av  =s au.  □

Thus we can use E-substitution at the cost of making the derivation steps implicit in the 

definition of W -substitution explicit. This proof is illustrated via the following example.

Example 4.25. Given a specification S  = (E, E) as follows:

Sorts: A, 1B, C

Subsorts: A < C, B  < C

Operators: a : —► A b : B

c : —> C f  : A - > C

Equations: f ( x  : A) = c  c

a ~ a b

then we can derive the equation f(b) = c  c immediately from f ( x  : A) = c c using W- 

substitution a = {x 1—» 6}. However, it can be derived using only E-substitutions as 

follows:

a =A b

b =A a f ( x : A ) = c c E-substitution 0 = {x 1—> a}

/(&) = c  / ( a )  / M  =c c

/(ft) = c  c

□

The following lemma shows that this congruence has the property th a t equality of term s
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in a sort corresponds to the equality of those terms with a well-sorted E-term. Thus this 

congruence shares this im portant property with the semantic definition of equality above.

L em m a 4.26. If E  b^ VY.t =$ u then 31' : S  such th a t E  b^ VY.t' =s  t and E  b^ 

VY.t' =s  u.

P ro o f  (4 .26). By induction on the length of derivation.

B ase Case: R eflexivity : by definition E  b^ VY.t = s  t if t : S.  Thus let t' — t.

B ase C ase: D irec t E quality : If VY.t =  u E E  then E  b^ t =cs(t) so let ^  = t.

In d u c tio n  S teps. S ym m etry . E  b^ t =s u and for some t' : s, E  b^ t' =$ t. Thus 

t' : S, E  b^ t' =$ t f°r E  b s  u =$ t. Similarly for u.

T ransitiv ity . If E  b^ VY.u =s  t , E  b^ VY.t =t  v and E  b^ VY.u =$ t ' for some t' : S , 

then by application of symmetry and transitivity with this inference E  b^ VY.v =$ t'. 

Thus the proposition holds for E  b s  VY.u = 5  v.

C ongruence . Assume th a t Vi = l . . . n  E  b j  V Y . t = 5  ̂ u; and 3i'-.t'- : S{ A E  b^ 

VY.ti = s i t[, {W,S)  E ranks(f) and ( S i . . . S n) < W.  Then by the congruence rule ap­

plied twice: E  b^ . . . ,  t'n) = 5  / ( t 1?. . . ,  tn) = 5  / ( « i , . . . ,  un), and by definition of

T x(X)

In s ta n tia tio n . By the above lemma, we can use a E-substitution, a  : Y-+T%(X).  Hence 

if E  b s  VY.t =s  u and E  b^ VY.t = s  tr for some t' : S', consider E  b^ VX.at  = 5  au.  Also 

E  b^ VX.at  = s  at'  and as Vx E Dom{a).ax : 5 (0:), then by definition of T s(A ), at' : S.  

The proof is trivially completed via transitivity. □

If an equation can be derived in a sort, then it can be derived in any supersort, so the 

Sort-Weakening Rule of Figure 4.4 is unnecessary.

L em m a 4.27. The rules of dynamic equational logic imply the rule given in Figure 4.4.

P ro o f  (4 .27). By Lemma 4.26, if E  b^ VY.t = 5  tr then 3u : S  such th a t E  b^ VY.t' = 5  u.
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S ort-W eaken ing . E  bE VY.t = s  tf if S<^T.
E  bE VY.t =T t'

Figure 4.4: The Sort-Weakening Rule 

If u : S  then u : T, as S < y,T. Hence by transitivity:

E  b s  VY.t' =s u, E  b s  VY.u =T u 

E  bE VY.t =s t' E  hE VY.t' =T u

E  b E VY.t =x tf

□

Under these laws a set of equations E  presents a dynamically sorted equational theory.

D efin ition  4.28. For a given term t the congruence class of t under an equational theory 

E  is the set of terms which are equal to t in that theory: [£]# =  {tf \VY.t =e  t'}.

We can then show the following theorem, that the model theory and the proof theory 

correspond to each other.

T h e o re m  4.29. The rules for dynamic order-sorted equational logic are sound and 

complete. That is:

1. S oundness. E  bE VY.u =E t => S  \= VY.u = t

2 . C om ple teness. S  \= VY.u — t E  bE VY.u =E t

The proofs of these two theorems are given in the following sections.

4 .6 .2  Soundness

Rather than prove the statem ent of soundness as it stands, we prove a stronger theorem.
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Theorem 4.30. Given an Order-Sorted specification S  = (E, E):

E  b E VY.u =s t= > S\=  VY.u = s  t

Clearly, this proposition implies the soundness of deduction. We prove this by induction 

on the length of the derivation of u =s  t. A  is any 5-algebra built on unsorted algebra 

.4XS

Proof (4.30).

Base Cases. If VY.u = t E E  then by Instantiation with the empty substitution, E  bE 

VY.u = s  t for either u : S  or t : S.  By definition of «S-algebra A  f= VY.u = t. So 

A  [=E VY.u = t. As either u : S  or t : S', A  |= u :: S  or A  f= t :: S.  Hence A  f= VY.u =s  t.

Reflexivity. If E  hE VY.t = 5  t for some sort 5, then t : S  from the order-sorted signature. 

Obviously, for any sorted assignment of variables to A, v : Y  —>v4, t v = t v and so A  f=E t = t. 

And since t : S  then A  f= t :: S.  Hence A  (= VY.t = 5  t.

Induction Steps.

S y m m etry . If A  |= VY.u = 5  t, then A  (=E VY.u =  t and either A  [= u :: S  or A  \= t :: S.  

Thus for any for any sorted assignment of variables to ^4, v \ Y —*A, tv — uv and A  [=E 

VY.t — u and so A  \= VY.t = 5  u.

Transitivity. If A  [= VY.u = 5  t, and A  (= VY.t u, then A  [=E VY.u = t and 

A  VY.t = v. So for any sorted assignment v : Y—>.A, uv = tu = vu and so A  |=E u = v. 

Also A  f= u :: S,  hence A  [= VY.u = 5  v.

Congruence. Assume A  (= VY.Ui = 5 . Then for all sorted assignments u : Y —>A, 

u\  — t\ .  Consider / ( u l5. . .  , un).

f ( u l , . . . , u n)u =

=  SA { t ^ . . . A Vn) 

=  f ( t u . . . , t ny  

Hence A  |=E VY.f (uu . . . , un) =  f ( t l i . . . 1tn).

Further, A  [= Ui :: Si. Hence there exist terms u\ such th a t A  (=E VY.Ui = u\ and
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u'i : S{. By a similar argument to above A  |=E VY./(ui, . . . ,  un) = f ( u [ , . . .  , u'n) and since 

(W ,5) 6 ranks(/) and ( 5 i , . . . 5 n) < W, f ( u [ , . . . ,  u'n) is a well-sorted term of sort S.  

Hence A  \= f ( u u . . . , u n) :: S  and thus A  |= VY.f{u1%...  , u n) =s  f ( t  1, . . .  ,*n).

In s ta n tia tio n . If A  \= VY.u = 5  t for u : 5, then let X  be an arbitrary set of sorted 

variables. So for any well sorted substitution u : Y —>Tz(X) consider a sorted assignment 

to a 5-algebra A,  g : X —*A. Thus g o a : Y —>A is a sorted assignment to Y.  Since 

A  |= VY.u = t , then u ^ oa — t ^ oa and thus (o u =  (crt)^ and so A  |=E VY.u = t. 

Clearly, as a  is well-sorted, if u : 5 , then au : S  by construction of sorted terms, and thus 

A  \= au  :: S . So A  \= VX.ou  = 5  at. □

4 .6 .3  Q u o t ie n t  A lg e b ra

The free term algebra no longer forms a model for the specification. However, we can 

carry out a construction on the free term algebra to generate the quotient term algebra 

for a specification, using the notion of congruence as defined above. Intuitively in this 

construction we identify all those terms which are proven to be equal using the logic. This 

is regardless of the well-sortedness of terms as terms will appear in the congruence classes 

if they can be proven equal, even if they are not syntactically of tha t sort.

D efin ition  4.31. Given an order-sorted specification 5  =  (E, E ), on unsorted specification 

5  =  (£, E)  the Quotient Term Algebra over a sorted set of variables X,  written Ts,x-> 

given by the following construction.

We first generate the following E-algebra, 7^ x  where:

1 - % *  =  (M b U{t}|« £ % ( * ) }

2. f Ts,x([ti]E U f a } , . . . ,  [t„]B U f a } )  =  [ / f a , . . . ,  tn)]E U { / f a , . . . , („ )}

In this algebra, the identity element is used solely if the set [t]s is empty. Note th a t 

according to the proof rules, ill-sorted terms which are not shown to be equal to any well- 

sorted term  have empty equivalence classes. We cannot even show the identity of such
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terms. However, for terms t : S  which are well-sorted, [t]% is guaranteed not to be empty. 

We can then build the following quotient algebra on top of this unsorted algebra:

1. S^s 'x  =  {[£].e|£ € Tf?(X) and t : s} for all S  G S s;

2. / Ts'* ([ t!k , • • • , [ („k ) =  [/(*i, • • •, t„)]E-

Thus we have denotations for terms which are unsorted but equal in some sort to a well-

sorted term and these denotations are in the appropriate sort.

We can now return to the proof of completeness.

Theorem 4.32. Given an Order-Sorted specification S  = (E,E):

S  \= VY.u = t= > E  h s  VY.u =E t 

Proof (4.32). Completeness.

If for every <S-algebra A  we have A  f= VY.s = t then in particular, the quotient term  

algebra over X , Es,x f= VY.s = t. However, by the definition of the la tter, VY.s = t holds 

if and only if there is a sort S  such tha t s and t are in the same equivalence class. The 

equivalence classes are determined by the inference system, and thus the equality holds 

only if E  l-£ VY.s =s  t. Hence the equational system is complete. □

Similarly to the free term  algebra for the signature (that is a specification with an empty 

set of equations), the quotient term algebra has the following property.

Theorem 4.33. Given a specification S  =  (E, jE7) , and an <S-algebra A , and a (V,.4)- 

assignment u over a set of variables V, the corresponding denotation function - : TSy-^-A  

is a homomorphism.

As a corollary, the ground quotient term algebra 7^  ̂ is the initial model of the category 

O SA lgs (up to isomorphism), and is thus the initial algebra of the specification. The 

initial algebra can informally be characterised as having ‘no ju n k ’ and ‘no confusion’.

• No Junk. Every element in the algebra is a denotation of some ground term. Extra
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elements in the algebra which do not denote some ground term are ‘junk’.

• No Confusion. Two elements are identified in the algebra if and only if they are 

provably equal using the equational logic. Elements which are identified, but not 

provably so are ‘confused’.

Example 4.34. We return to Example 3.1. The dynamic quotient term algebra is:

B ts * = {[6]}

=  { f tc } }

c Ts-° =  M

= m 4 }

AT°* = {M,[c], [/(»)]}

= {{M , {/(»),/(c)}}
and we can use the new inference rules to perform the derivation directly.

b - n c

/(&) =A f(c)

So now we have the expected result f(b) = f(c) as a sound inference in our system. □

4.7 Terms and Sorts

In this section, some terminology and results on terms are re-examined in the light of the re­

vised order-sorted semantics. We assume a specification S  = (E, E)  with E =  (S's, < s , Tr;), 

and sorted variables X  =  l±Js€ss Xs. If x £ Xs, then s(a?) =  s. E and <S represent the 

unsorted components of the signature and specification respectively. The definitions of 

Unsorted Terms T ^ ( X )  and Sorted Terms1 TS(X)  are as in Definitions 4.2 and 4.4. For 

any term , we define the Least Sorts.

Definition 4.35. Least Sort.

Given a T ^ ( X )  term , f, then the least sorts CS(t) C S's is the smallest set such that:
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1. Vs E £S( t )  - t : s

2 . Vs • t : s => 3s' € £<S(t) - s' < s

The set of least sorts is thus the smallest set of sorts which can be determined for a term by 

static sort-checking alone. In any model A  of E, the denotation of a term  t is an element 

of every set {As |s E CS(t)}  and thus is an element of P|{As |s E £<S(t)}. If the least sort 

of a term is unique, we refer to it as the least sort and write CS(t) = s. For some terms 

the set of least sorts will be empty.

Definition 4.36. Under-sorted Term.

The set of under-sorted terms, or [/-Terms, U^,(X) is given by:

U z ( X ) = T z ( X ) - T s ( X )

Uy, is the set of ground under-sorted terms.

Lemma 4.37. If t E Uy(X),  then CS(t) =  0.

Proof (4.37). Obvious from the definition. □

Thus E-Terms are sorted via static sort-checking. However, in the new semantics, an 

equality holding in a sort was defined for both model and proof theory. Definition 4.23 

says th a t an equality will hold in sort s if its terms are equal to a term  in TS(X).  This 

‘equational’ point of view of determining the sorts of equations can be shifted to one based 

on determining which terms are in a sort. If a term is equal to  another in a sort, then 

it must be denoted by an element of the model of tha t sort and can be thought of as 

having th a t sort. Thus there is more sort information which can be determined about 

terms by considering the specification. This information cannot be derived statically, but 

only through a process of equational deduction, tha t is to  say a ‘dynamic’, or ‘runtime’ 

sort-checking process. These are the semantic sorts of terms: semantic since in any valid 

model of the specification denotations of terms will be elements of the denotations of these 

sorts, as opposed to the syntactic sorts which can be statically determined.

Definition 4.38. Semantic Sort.
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Given t E the set of semantic sorts for t is the set S(t) = { s  \ 3u  E T ^ ( A ) . t  = s u }.

If s  E S(t),  then we write t :: s.3

The set of least semantic sorts of £, written SS( t) ,  is the minimal set of semantic sorts of 

t. That is s E SS( t)  if t :: s and Vs' E S(t)  • 3s E SS( t)  • s < s'.

It is trivial to prove the following.

Lemma 4.39. Vs E CS(t)  • 3s'  E SS( t)  such tha t s' < s.

In any model of the specification the denotation of a term will be an element of the de­

notation of the least semantic sorts of that term. In any model A  of the signature E the 

denotation of a term t will be an element of all the sets {As |s E <Se>(£)} and thus will be an 

element of n{-^sls € SS( t) } .  Further, we cannot determine from the specification whether 

will be in the denotation of any subsort of any s E SS{t) .  This is a strong statem ent, 

and it is in general undecidable to show t :: s for any arbitrary specification, s and t.

Theorem 4.40. Given an arbitrary specification it is undecidable whether t :: s for an 

arbitrary term t and sort s.

Proof (4.40). We demonstrate tha t there is a class of specifications for which in 

general this property is undecidable. A Turing Machine [RS86] is defined as a 6-tuple 

(Q ,E ,T ,P ,g 0,F )  where

1. Q is a finite set of states,

2. E is a finite set of symbols including the blank symbol A,

3. T  C E — {A} is a set of input symbols,

4. P  is a program, a partial function:

P  : (Q -  F) x  E —► Q x E x {L, P , 0}

5. <?o £ Q is the initial state,

6. F  C Q is a set of final states.

3In our semantic presentation we use the same notation for a sort judgement: A  |= t  :: s if and only if 
t A €  s A . As this is the concept captured by semantic sort, there is no confusion in notation.
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Any Turing machine can be encoded as an order-sorted specification using the following 

construction. We take a specification of the structure of the Turing machine as in Figure 4.5. 

Then we augment this specification with rules as follows.

Sorts: E Tape Q F

Subsorts: E <  Tape, F < Q

Operators: • • • 5 A . > E

qit • • • ) qn • * Q

/ i ,  - - • , fm  : -»■ F

e : —► Tape

__ : Tape Tape —> Tape

T ape Q Tape —> T ape

Variables: : Tape ,

s  : E

q : Q

f : F

Equations: e.t =  t

t.€ =  t

(ti .t2).t3 =  t i . ( t2.t3)

l[q\e=l[q]( A.e)

Figure 4.5: Specification of a Turing Machine as an Order-Sorted Algebra

For each pair in (Q — F) x  E, q{, Sj  say, if P(%, Sj) =  s/, R) then add the rule:

l [ q i \ s j . r  -

if P ( q i ,  Sj)  = {qk-, si ,  L ) then add the rules:

l . s [ q i ] s j . r ->• /[gfc]s.s/.r

e[qi\Sj . r -► efe*] A . sh r

if P ( q i , S j )  = then add the rule:

l [q i ] s j . r  - + l[qk\si-r

In this presentation we also add the output rule:
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Thus the tape is split into two by the current position, marked with the current state, the 

first symbol on the right being the current symbol. Clearly, for any /, q, r, l[q]r : Tape. 

Assume it is decidable whether l[qo]r :: E for any I, r  then we can show tha t l[qo]r = £  a± for 

some ai : E. T hat is, there is some /;  such th a t l[qo]r =£ Thus, the rules reduce

the initial state to a final state. However, this provides a decision procedure for the halting 

problem for Turing Machines which is well-known to be undecidable, so our assumption 

th a t we can decide whether l[qo]r :: E is incorrect, and the proposition is shown. □

Using this definition we extend the concept of well-sorted terms beyond those which are 

sorted through syntax alone.

Definition 4.41. Well-Sorted Terms

The set of well-sorted terms (W-Terms) are defined to be:

ws(A) = {t\ss{t)̂ Hi}
The well-sorted terms of sort s  are given by:

W , { X )  =  { t \ 3 u . t = s u}  

=  { t \ 3 s ' e S S ( t ) . s ' < s }

=  {t|£ :: s }

and thus

W S ( X)  =  (J W , ( X )

W s  is the set of ground well-sorted terms.

Lemma 4.42. T^(X)  C Ws{X).

Definition 4.43. Ill-sorted Terms (/-Terms).

I s ( X ) = T ^ { X ) - W s { X )

I s  is the set of ground ill-sorted terms.

The following properties are obvious.



4.7. Terms and Sorts 105

Lemma 4.44.

1. v t e i s ( x ) - s s ( t )  = Q

2. IS ( X ) C T T (X).

The relationships between these various sets of terms are succinctly expressed in Figure 4.6. 

As the semantic sorts are undecidable, whether a E-term is an I -term or a IF-term  is in 

general undecidable.

U t, { X ) W T S ( X )
T ^ X )  =  Ul in

Is(X) W W S ( X )

Figure 4.6: Relationships between Sets of Terms.

Example 4.45. Given the following order-sorted specification:

Sorts: A B C

Subsorts: A < B, C < B

Operators: a : A b : —» B

c : —> C f  : A ^  A

Equations: a =  b

f ( x  : A) = x

Then we can enumerate the following sets of ground terms:

7% =  {a,b,c,  f n (a), f n(b), f n(c)\n 6 IN}

Tz  =  {a,b,c,  f n {a)\n 6 JN}

Uz  =  { f n ( b ) , r ( c ) \ n e l N }

Ws  =  { a , b , c , f n ( a ) , f n( b ) \ n € l N }

Is  =  { f n( c ) \ n € ] N }

a
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4.8 A lternative Approaches

This approach to  order-sorted algebras can be compared to several others given in the 

literature. An interesting approach to semantics which has yet to be explored fully is 

given by Poigne [Poi87]. Also Equational Typed Logic [MSS90], Unified Algebra [Mos89a, 

Mos89b, Mos89c] and Galactic Algebra [Meg92] are general approaches to  universal algebra 

which can be specialised to order-sorted algebra in a similar way to tha t presented here; we 

only consider Equational Typed Logic in detail, and also a slightly different presentation 

of the two-tier semantics.

4.8 .1  U sin g  Sort Top

An alternative to the two-tier algebra is to augment signatures with sort T  (‘Top’), as 

defined in Section 3.2. Then all terms are well-sorted and the standard (non-overloaded) 

semantics for the free order-sorted algebra as given in Section 2.3 can be used. However, 

augmenting with sort T allows too many ‘ill-sorted’ terms, without distinguishing those 

which have valid denotations. Thus the notion of “equality within a sort” is still required, 

as equations in the sort T must still be regarded as invalid, so the semantics of specifications 

would have to be modified, in a similar fashion to the two-tier semantics.

4 .8 .2  E quational T yp ed  Logic

Equational Typed Logic [MSS89a, MSS89b, MSS89c, MSS90] provides an alternative ap­

proach to  the semantics of order-sorted specification. Equational Typed Logic (ETL) is 

an algebraic specification method which is designed to tackle the problems of specifying 

partiality, type polymorphism, higher-order and dependent types, by regarding sorts or 

types as first-class objects. An ETL presentation is a single-sorted algebraic specification, 

with operators for elements, and types, thus in any algebra, there are elements rather than 

sets representing types. Any algebra A  also provides a typing relation between terms, 

and the presentation includes conditional typing assertions and equations, which can have
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typing assertions as conditions. The rules of ETL include rules for type deductions. Thus 

for example, the specification of a stack is given as follows:

Example 4.46. Stacks can be specified in ETL as follows:

spec STACK

var s, i

in empty : stack

s : stack, i : i t e m —» push(s,i) : stack

s : stack, i : item —> pop(push(s,i)) = s

s : stack, i : item —> top(push(s,i)) = i

endspec

The first two axioms are typing rules, the second of which has the types of variables as 

conditions. The third and fourth axioms give the behaviour of top and pop, given correctly-

typed variables. Although pop(empty) is a well-formed term  in ETL, there is no term which

can be proved to be in the typing relation with it, capturing the partiality of pop. □

Clearly, ETL has a close relation with the semantics of dynamic order-sorted algebras: 

all syntactically well-formed terms are available, the ‘meaningful’ ones distinguished via 

a typing assignment, similar to a sort judgement. The similarity of the intentions of the 

approaches are exposed in the following comment ([MSS89b] p.2):

. . .  not every term has to be meaningful: but for a given presentation, a term can be 

considered meaningful if  and only i f  it proves so in the context of that presentation; 

more precisely, meaningful terms are all and only those which appear in some formula 

that is derivable from the presentation.

Indeed, a representation of order-sorted logic in ETL is given in [MSS90], with a systematic 

translation from an order-sorted specification into an ETL presentation.

Definition 4.47. Given an order-sorted specification S  =  (E, E ), its ETL presentation 

consists of the following ETL formulas:

1. for each s < sf £ E, add y : s—>y : s';
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2 . for each /  : s1?. . . ,  sn^ s  G E, add yx : s i , . . . ,  yn : s „ -> /(y i, . . . ,  yn) : s;

3. for each VX • e £ E,  where X  = {x^ : s1}. . . ,  xn : sn}, add aq : s1}. . . ,  x n : sn—>e.

This translation is shown to be sound and complete. However, it is not a sound translation 

of the standard semantics. As pointed out in [MSS90], p.34 (report version):

. . .  it is not clear to us to what extent Smolka’s type logic is complete: its completeness 

is stated in [e.g. as in [SNGM88]] for well-typed specifications only, whilst E T  logic is 

complete tout-court.

Thus equations which are not provable in the standard logic since they contain terms 

which are not well-formed (such as f (a)  = /(c) in Example 3.1) are derivable in ETL. 

Such equations are derivable in dynamic order-sorted logic, and this translation reflects the 

semantics presented in this chapter rather than the standard semantics.

ETL is more general and powerful than order-sorted logic, since complex conditions on the 

types, such as higher-order and dependent types, can be defined. Nevertheless, there is a 

value in the order-sorted semantics given in this chapter. The two-tier semantics captures 

exactly the intuition of order-sorted algebra and no more. For instance, there are too 

many terms available in the ETL presentations since there are terms formed by operators 

acting on sorts. The dynamic order-sorted logic is also a much more concise description 

of the logic, providing the useful notion of sorted equations. Further, as we shall see, the 

computational counterpart of the dynamic logic is a simpler rewriting system than the 

restricted conditional rewriting supported by ETL [MSS90].

4.9 Conclusions

The standard semantics for order-sorted equational logic prove too restrictive to allow 

many desired specifications to be written, and natural inferences prove to be unsound. 

In this chapter, the standard semantics have been reformulated to free the logic from 

the syntax and to accommodate natural inferences from the equations. This results in 

a two-tier algebra with an order-sorted algebra embedded within an unsorted one. This
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extra layer allows unsorted terms to be identified with well-sorted ones. From this two-tier 

semantics a simple sound and complete deduction system has been formulated for order- 

sorted equational logic, and this system captures the intuition of equational reasoning.

Dynamic sorting precludes the use of static type-checking to detect contextual errors by 

analysing the syntax of terms and checking they are used in the right context, as determined 

by sort. If the sorts of terms are dependent upon equational consequences, then type- 

checking becomes a process of theorem-proving and is undecidable in general. This is not a 

problem as the dynamic sorting method is regarded as primarily a specification technique, 

and so freedom is preferred over a strict sorting discipline. As specifications are transformed 

into programs, the type-discipline should become stronger to allow static type-checking. 

The order-sorted rewriting based-programming language OBJ-3 [GW88] also forgoes static 

type checking since it allows multiple parses of terms, so each term  may have more than 

one sort, and uses retracts to enable the computation of ill-sorted results. If the final result 

of a rewriting sequence in OBJ-3 still has retracts, then there must be a type error. This 

is similar to the use of the unsorted terms in dynamic order-sorted equational logic.



Chapter 5

Dynamic Order-Sorted Terms

5.1 Introducing Dynamic Terms

In previous chapters we have discussed some of the problems associated with the standard 

presentations of order-sorted algebras and logics, and also explored a semantics and equa­

tional logic which overcome these difficulties. This dynamic equational logic introduces a 

concept of a sorted equation, whereby equations can be shown to hold in sorts. By exten­

sion, extra sort information can be generated for terms over and above tha t which can be 

deduced from their syntactic structure alone.

However, as with standard presentations of equational logics, this logical system is too 

undirected to be used practically in an automated theorem-proving system. It is there­

fore desirable to develop a computational analogue to the dynamic equational logic which 

can be used for automated proof in the logic, tha t is a dynamic rewriting relation which 

corresponds to the dynamic equational logic.

To perform rewriting respecting the dynamic equational logic it is necessary to use the 

additional sort information of a term operationally to decide whether a rewrite step is 

valid. This leads to a problem: the semantic sort information deduced about a term needs

110
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to be known, but this sort information is lost. We need a mechanism for recording the 

sort information deduced concerning a term. Therefore this chapter introduces the concept 

of dynamic terms, which are terms tagged with sorts. As sort information is deduced 

concerning the sort of the term, the sort tag is updated dynamically1. Dynamic term s are 

given semantics by relating them to the terms in the underlying (unsorted) term algebra.

5.2 Dynamic Terms

This section gives the basic definitions and properties of dynamic terms.

5.2.1 Sorts and M inim al Sets o f Sorts

We define an order-sorted signature as in Chapter 4. We extend the notion of ordering on 

sorts to sets of sorts, which are regarded as the intersection set of sorts. T hat is in any 

model A, {ASl,A S2, . . . , ASn} =def A Sl n  A S2 n  . . .  n  A Sn.

Definition 5.1. If S, S ' C Ss then S  < S'  if and only if Vs' E S '  3s E S  • s < s'.

It can thus be decided whether a set of sorts is ‘less than ’ another. Note th a t this means 

tha t if Si  C S 2 then S 2 < Si. However, the motivation is when a term  has a particular set 

of sorts, then it is an element of all of these sorts, and thus an element of their intersection, 

and the ordering relation is defined to reflect this.

The partial order on sorts forms a quasi-order when extended to  sets of sorts. This can 

be seen as if Si < S 2 then S i U  S 2 < Si and Si < Si U S2 but it is not the case th a t 

Si US2 =  Si. Applying the minimisation function : p S s—>jpSs to  sets of sorts recovers

1This process has an analogy with dynamic binding in programming languages, notably Lisp and 
Object-Oriented languages, where the operation applied to an object is not determined until runtime as 
the type of the object is not necessarily known before that point. Unfortunately this makes static type 
checking incomplete, which is also the case with dynamic terms.
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the partial-order.

M e (5) =  {s\s e S  A - 3 s ' G (5 -  {s}) • s' < s}

The following lemma is trivial.

Lemma 5.2. If Si < S 2 then M z (S i  U S 2 ) = M%(Si)

Thus < forms a partial-order on minimised sets. The following lemmas are also useful.

Lemma 5.3.

1 . M e (Me { S ) u S 1) = M x ( S u S 1)

2 . S  < U S 2) if and only if S  < Si  and S  < S 2

3. M s(5 i U 5 2 ) < S  if and only if Si  < S  or S 2 < S

When S  < {s}, i.e. a singleton set, we write S  < s.

5 .2 .2  D yn am ic Term s

A variable x over a signature E is a symbol distinct from For each variable there is 

a set of sorts from 5 s , denoted s(ar). We also write x : s(#). The set of all variables is 

normally denoted by X .

Definition 5.4. Dynamic Terms.

The set of dynamic terms, written T>z(X), is given by

1. X  C V ^ ( X ) .

2. if /  G # ( /)  =  n, S  C 5 s  and d j , . . .  dn G V ^ X )  then the pair

M  « « 5 g 5e( 4

The Dynamic Sort, V S ,  of a dynamic term is defined as  VS(x)  = {s(#)} if x G X,  

VS(d*S)  = S  otherwise. is the set of ground dynamic terms.



5.2. Dynamic Terms 113

A dynamic term is minimised if the set of sorts at every node is minimised; it shall be 

assumed tha t all terms are minimised.

Notation 5.5. If d#{s}, then we can omit the brackets, d*s. Also we abbreviate the 

term / ( / ( •  • • (f(d)*S)  • • •)*S')»5) to f n (d)*nS,  and denote by t I S,  where t E T ^ ( X )  the 

dynamic term formed by inserting S  a t each node in the term, th a t \s x [ S  = x if x € X , 

f ( t i , • • • ,* « ) ! £  =  f ( t l [ S , . . . , t n i  S)*S

A canonical way in which to relate the dynamic terms to a term  in T-^(X),  is given by the 

following forgetful mapping

Definition 5.6. (f>: V ^ { X ) —̂ T^{X)  is defined as

<f>(x) = x if x E X,

<j>{f(di, . . . ,  dn)*S) = f((f>(di),. . .  , (j>(dn)) otherwise.

4>(d) is known as the resolvent of d.

Thus a term t E T%(X) is represented as a set of dynamic terms, each with the same 

resolvent, but with differing sets of sorts tagged at each node. This can be expressed by an 

isomorphism between terms t E T ^ ( X )  and the sets formed by {d\(j>{d) = t ,d  E X>e(A')}. 

The following im portant relation exists between dynamic terms.

Definition 5.7. Two dynamic terms d !,d 2 are equivalent, w ritten di ~  d2, if their

resolvents are equal, <f>(di) = </>(d2). Note tha t the quotient of V ^ ( X )  by ~ , V ^ ( X ) /  ~  is 

isomorphic to T^r(X).

A canonical way to transform a E-Term into a dynamic term is by tagging each subterm 

with its least sort.

Definition 5.8. Given t E T ^ ( X )  then the least syntactic dynamic term L{t) is given by 

L{t) = t if t E X ,  or L(t) =  / ( L ( * i ) , . . . , L(tn))*CS{t) if t = f ( t  i , . . .  , t n).

We extend this to dynamic terms. The least syntactic dynamic term  of d E T>^(X), L(d)
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is given by L(<f)(d)). If d = L(d) then it is in L-normal form. C ^ X )  is the set of L-normal 

forms by .

Thus the least syntactic dynamic term  of a dynamic term  is the dynamic term with the 

same syntactic form, but tagged with the least sort at all paths.

We then define those dynamic term s which carry valid sets of sorts for their corresponding 

term  in T ^ ( X ) .

Definition 5.9. Well-sorted Dynamic Terms.

A dynamic term d is well-sorted if and only if d = f { d \ , . . . ,  dn)*S, S  > <S<S(0(d)) and if 

d{,i = l . . . n  are well-sorted, or d E X .  Then S  is a valid set of sorts for d.

Further, a term d = f ( d \ , . . .  , dn)»S  is minimally well-sorted if and only if it is well-sorted 

and Vs E 5 ,Vs' E (S — {s}).s' % s , and all d{,i = 1 . . . n  are minimally well-sorted. All 

x E X  are trivially minimally well-sorted.

The set of well-sorted dynamic terms is denoted as (X), and the set of well-sorted ground 

dynamic terms is denoted Vs-

The set of sorts carried with a well-sorted dynamic term represents a set of sorts such tha t 

in any model of the specification, the denotation of that term ’s resolvent is a member of 

the denotations of all these sorts. The set of sorts at the nodes of a minimally well-sorted 

dynamic term is a minimal representation of such a set of sorts. Thus the denotation of 

the resolvent will be in the intersection of these sorts.

We define the dynamic term  which carries the maximal amount of valid sort information 

for each subterm.

Definition 5.10. Given t E T ^ ( X )  then the least semantic dynamic term SV{t)  is given 

by SV{t )  =  t if t E X,  or if t = / ( f 1?. . .  , tn) then S V ( t ) =  f ( S V ( t i ) , . . .  , S V ( t n))9SS(t).

Again, we extend this to dynamic terms. The least semantic dynamic term of d E V%(X),  

SV(d)  is given by SV((f>(d)). A dynamic term such that d = SV(d)  is in S-normal form.
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A trivial lemma is tha t these canonical conversions of terms to dynamic terms are into the 

set of well-sorted dynamic terms.

Lemma 5.11. V£ £ T ^ ( X )  • L(t) £ Vs{X )  and i t  £ T ^ { X )  • SV( t )  £ Vs{X) .

Two other trivial dynamic terms can be defined for each t £ T ^ {X ) .

Definition 5.12. The top term T(£) =  t j  {}, and the bottom  term _L(£) =  t j  5 s . Thus 

SV( t )  = T (t) if and only if t £ / 5 (A).

We shall also need to  refer to the set of ill-sorted dynamic terms.

Definition 5.13. The set of ill-sorted dynamic terms T V s { X )  is given by

T D s (X )  = V v ( X ) - V s (X).

By T V s  we denote the ill-sorted ground dynamic terms.

Example 5.14. Given the Order-Sorted Specification given in Example 4.45 we can enu­

merate the following sets of minimised ground dynamic terms:

V y, =  {a*{},a*A, a*B, a*C, a*{A,C}, &•{},&• A, 6*{A,C},

<:•{}, c« A, c*J3, c*C, c*{A, C}, /(a*  A)#{}, /(a#A )#A , /(a«A )«£ ,

/(a»A)«C, /(a*A)*{A, C}, / n (a#A)#nA, /( /(a# A )# A )# B ...}

X>5  =  {a*{}, a«A, a*£ , &•{}, 6«A, &•£, c * C ,/n (a*A)#nA , / n (6#A)»nA ,...}

T V S =  {a*C, a*{C, A },6*C, 6*{C, A},c*A, c*{C, A },/(c*C )«C ,

/ ( a .C ) .C , . . .}

□

Analogously to standard terms, paths are introduced to access subterms within dynamic 

terms.

Definition 5.15. A Path is a possibly empty (written e) finite sequence of integers, written
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n\ .n2. - - • -rib- The set of paths for a dynamic term d , 0(d)  is defined to be:

0(d) = {e} if d is a variable or a constant 

0 ( f ( d u . . .  ,d„)»S) =  {e} U {i.p\l < i < n , p e  0(di)}

We extend the notation to joining paths: if p, q are paths, then so is p.q (conventionally 

dropping the intervening e). Path  p is a subpath of path written p < q, if p is an initial 

subsequence of q. If neither p < q, nor q < p then the paths are independent, written 

p tx q.

Given a term d and a path p £ 0 ( d ) , the subterm occurring at p written t\p is d\t =  d 

if p = e and / ( d 1}. . .  , dn)*S\iM =  d{\u if p = i.u. The result of replacing a subterm of d 

occurring at path p £ 0(d)  with a term e is written as d[p*— e]. The height of a dynamic 

term ht(d) is the length of the longest path in d, defined as ht(x) = 1 , h t( f (d \ , . . . ,  dn)*S) = 

1 +  max{ht (di ) , . . . ,  ht(dn)}.

5 .2 .3  D yn am ic  A pp roxim ation

One characterisation of ordinary terms using dynamic terms is by considering the set of 

dynamic terms which have the same resolvent. Another characterisation which has more 

structure and which is useful later, is to use an approximation relation on dynamic terms.

Definition 5.16. d\ £ V y ( X )  is a dynamic approximation of d2 G T>y(X), written d\ > d 2, 

if and only if

1 . d\ ~  d2

2. i p  £ 0 ( d 1).DS(d1\p) > D S(d2\p)

L em m a 5.17. > forms a partial ordering on minimised terms.

Proof (5 .17). Trivial from < being a partial order on minimised sets of sorts. □

The approximation ordering partitions the set of dynamic terms. The strongly connected
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components of the graph of this relation are isomorphic to the set of ordinary terms.

Definition 5.18. Let the relation <> be the symmetric transitive closure of >.

Then we have the isomorphism

Vf E ?% (T) • t ^  {d\d<>L(t),d E V E{X)}

This isomorphism however, is to an object with structure. For each term there is a lattice, 

with T (t) a t the top and _L(t) at the bottom. The lattice for a term is shown in Figure 

5.1.

L(t)

SD(t)

Figure 5.1: The Approximation Relation Lattice for t E T ^{X ) .

The lattice has meet and join terms.

Definition 5.19. Given d1, d2 G such tha t d± ~  d2, then d1 Ad2 is the dynamic term
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such tha t d\ ~  (di A d2) — d2 and Vp E 0( t \ ) .VS{{d i  Ad2)|p) = M ^(V S(d i \p) U V S (d 2\p)). 

If di < d2, then d\ A d2 = d i .

Similarly, d-^V d2 is the term  such th a t d\ ~  {d\ Vd2) ~  d2 and Vp E 0( t i ) .V S ( (d i  Vd2)|p) =  

M'£('DS(d1\p) nX \S(d2|p)). If di < d2, then d1 \/ d2 = d2.

We give some basic properties of the approximation ordering in the next two lemmas. 

Lemma 5.20. If d\ t> d2, then L{d\) =  L(d2) and SV{di)  =  S V (d2).

This is obvious as they both have the same resolvent. More interesting are the following:

Lemma 5.21. Vd, d1?d2 E ^ ( T )  such tha t di ~  d ~  d2,

1 . T (0 (d)) > d.

2. d > _L(</>(d)).

3. d E if and only if d > SV{d).

4. d i,d 2 ^ ( d j A d 2).

5. If di, d2 t> d then (dj A d2) > d.

6 . If d1?d2 E £ \s(T ) then (di A d2) E X>5 (T).

7. If dj > d2 and d2 E T)<s('T) then dj E £>,s(T).

8 . If di t> d2 and di E then d2 E XX>5 (T').

Proof (5.21). 1, 2 and 4 are immediate from the definitions.

For 3, note tha t for all p E 0(d ), VS{d\p) > 5(</>(d)|p) > SS{<l>(SV(d))\p) -  VS{SV{d)\p).

For 5, let d1?d2 > d '. Then Vp E 0 (d 1).JD5(d1|p) > OS'(d'lp) AO(S'(d2|p) > DS(d'\p). Hence 

^ p e O ( d 1).DS(d1\p) U D S ( d 2\p) > DS(d'\p).

6 is immediate from 5 noting tha t d1? d2 > SV(di) ,  and 7 is a corollary of 3.

For 8 if d2 E V$ (X)  then d2 > SV(d)  and so by transitivity dj > «SX>(d), which contradicts
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the assumption. □

The approximation ordering clarifies the relationship between dynamic terms and the sorts 

of terms. Given a dynamic term d, the least well-sorted dynamic term  according to  this 

approximation ordering is the least semantic dynamic term, th a t is the minimum of the 

set (d '|d  ~  d! and d' E T>s(X)} (assuming tha t this set is not empty). Clearly this is not 

decidable, but with each sort deduction the dynamic term moves down this lattice to make 

a better approximation to the least semantic term.

E x am p le  5.22. Using the specification in Example 5.14:

T (/(a ))  =  /(«•{})•{} > L{f(a)) = f(a*A)%A = S V ( f (a ) )

> 1  { f  (a)) = /(a»{A ,C})«{A ,C}

T ( / ( 6)) =  /(&•{})•{} > /(* •* )•{ }  =  L(f(b))  > f ( b . A ) . A  = SV(f{b))

> !(/(& )) =  /(6 .{A ,C }).{A ,C }

5.2 .4  D yn am ic S u b stitu tion

Dynamic substitutions are almost everywhere identity mappings between X  and X>s(A).

Definition 5.23. A dynamic substitution a is an almost everywhere identity mapping 

from X  to V ^ ( X )  and for all x E Dom(a), V S  (ax) <£ VS(x ) .  If for all x E Dom(a), ax  E 

T>s(X), then the substitution is well-sorted. The set of dynamic substitutions over a sig­

nature is given by DSubstY,. The set of well-sorted dynamic substitutions over a signature 

is given by DSubstg.

To extend this to Vy,{X), ad is defined as: if d E X  then ad. Otherwise, d =  / ( d i , . . . ,  dn)#5, 

and ad  =  f ( a d i , . . .  , adn)*S.

We denote the composition of substitutions by 6 o a or just da where (6 o a)s = 8(a(s)). 

We also define the forgetful function on dynamic substitutions into W -substitutions. If
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<7 =  {a^ I—► d\ , . . . ,  x n i—► dn} then:

=  { x i ^  H d i ) »  • • • , x n H dn)}

Note th a t (f>(o)<j>(d) = <p(od) and therefore we abuse notation by writing o<j)(d).

Note tha t these substitutions are dynamic-sort preserving. The intuition can clearly be 

seen by converting back to W -substitutions by applying the function 0  to the range of a. 

Thus the substitution maps variables to terms of sorts less than or equal to its own.

Lemma 5.24. For any cr G DSubst£ if d G V%(X)  then Vp G 0(d) VS(d\p) > VS(od\p).

Further, if d\p £ X  then VS(d\p) = VS(od\p).

P ro o f  (5.24). If p G 0(d)  is a leaf, then if d\p is a constant, od\p = d\p and we are done. 

Otherwise d\p is a variable, and by definition VS(od\p) < VS(d\p). If p is not a leaf, then 

the dynamic sort is not changed by substitution, VS(od\p) = VS(d\p). □

We extend the notions of t>, meets and joins to substitutions and define a subsumption 

ordering on terms and substitutions.

D efin ition  5.25. Dynamic substitutions cr, p are <p-equivalent, written o  ~  p, if and only 

if 'ix G X  • ox  ~  px.

A substitution o2 approximates substitution o\ written 0 \ <3 o2 if Dom(oi) =  Dom(o2) and 

V# G Dom(o{) <Jix < o2x.

If cr ~  p, then

1. cr V p =  {x I—> ox  V px}, \/x G X.

2. o A p = {x ox A px}, \/x G X.

Lemma 5.26. If o,p  G DSubsts , then cr V p G DSubst% and cr A p G DSubst£. If 

cr, p G DSubst s i  then <r V p G DSubsts  and cr A p G DSubsts .



5.2. Dynamic Terms 121

Proof (5.26). Since V S  (ox) < sx , and VS(ox)  < sx , then V S ( o x  V px) < sx , therefore 

o V p G DSubsts; o  A p G DSubst£ is obvious, Also note tha t if o x ,px  G X\s(A) then 

ox A px G Ps(A ') and o x V  px £ V$(X),  so the second part holds. □

Definition 5.27. Subsumption Preorder. A dynamic term t subsumes a dynamic term 

s written t < s if and only if there exists a dynamic substitution o such th a t s m o t .  Such 

a substitution is called a matching substitution2.

Definition 5.28. A dynamic substitutions o is more general than a dynamic substitution 

o' with respect to a set of variables W, written cr cr', if there is a dynamic substitution 

7r such th a t Vd G P.sfVV) • o'(d) m  7r o <j(d). Further Vx G W  • ^'(a:) <3 7ro-(x). If <7 cr' 

and also o' cr then they are equivalent, cr cr'. If >V =  X , then we may drop the 

superscript.

Note the approximation ordering condition used in this definition of more general substi­

tutions. Special cases of substitution are specialisation and renaming.

Definition 5.29. A specialisation p is a dynamic substitution such th a t Mx G Dom(p)-px G 

X  and s(x) > s(px). A renaming p is a specialisation such th a t Mx G Dom(p)-s(x)  =  s(px). 

Dynamic terms d\,d2 are alpha-equivalent, d\ =a d2, if there is a renaming p such tha t 

pd\ =  d2.

A subclass of dynamic substitutions is those with range terms in L-normal form.

Definition 5.30. A dynamic substitution o is a S-substitution if Vx G Dom(o), ox  is in 

L-normal form.

E-substitutions thus correspond to E-substitutions in standard order-sorted theory. It is 

trivial to see tha t a E-substitution is a well-sorted dynamic substitution.

We give some properties of substitutions with respect to the approximation ordering.

2We shall consider well-sorted matching in more detail later.
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Lemma 5.31.

1 . If d2 > di then d\p *— d2] > d\jp *— di] (monotonicity) and ad2 > ad\ (stability).

2. If <rdi > d and d2 > di then crd2 > d.

3. If 9s > t  and at  > u then aOs t> u.

Proof (5.31). 1 is obvious from their definitions, and 2 follows as a consequence of

stability, and transitivity of >.

For 3, note tha t <j>(9s) = <f>(t) and so <j>(aOs) =  <j>(at). Consider p E 0(£). If t\p = x E 

Dom(a) then Os — x and so aOs = at\p >u\p. If t\p £ Dom(a), then VS(u \p) < V S ( a t \p) =  

VS( t \p) < VS{aOs \p) =  VS(9s\p). □

Im portant special cases arise when we wish to consider substitutions which preserve the 

well sorted properties.

Lemma 5.32. If d E V s { X )  and a is a well-sorted substitution then ad  E T>s{X).

Proof (5.32). If a E D Substs , then Vart- : s E Dom(a), Vs' E T>S(aXi) 3ti E T%(X) 

such th a t <f>(axi) = si t{. Thus £ =  {$,- i—► <f>(axi),... , x n <f>(axn)} is a >V-substitution.

Then as d E V s (X ) ,  Vs E VS{d)  there is a term t E T%(X) such tha t </>d = s t. As £ is a

W -substitution, then £(<f>d) =s ££. Hence 4>(ad) =s ££. This holds for all s E VS{d)  and 

thus ad  E T>s{X). □

Another im portant lemma is the following.

Lemma 5.33. If d E V z ( X ) ,  d' E T>s(X) and for some a E DSubsts , ad > d' then 

ad  E V S (X).

P ro o f  (5 .33). Immediate from Lemma 5.21 part 3. □
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5.3 Sort Propagation

We call the logic described in Chapter 4 dynamic order-sorted equational logic as the sorts 

of equations and terms can change through the action of the equational theory. However, 

it may be possible to infer statically more sort information about the dynamic term  than 

the current dynamic sorts. This inference is known as Sort Propagation and has two forms: 

Sort Balancing and Sort Percolation.

5.3 .1  Sort B alancing

Sort balancing ensures tha t subterms with the same underlying form have the same sorts. 

D efin ition  5.34. B alanced  T erm  d 6  V z ( X )  is sort-balanced if:

Vp, q e 0 ( d ) . d\p ~  d\q => v s ( d \ p) = v s ( d \ q)

Sort Balancing thus propagates sort information across a term: if two subterms are the 

same up to their operator structure then it is reasonable to give both the same dynamic 

sorts. This observation gives rise to the rule of inference in Figure 5.2.

( 1 ) B alance.
d\p<-di •S'i] [q<— d2*S2] if p cxi qr, <̂ (d1»Si) =  <f>(d2*S2)

d\p*—di A d2][q*—di A d2] and Si i=- S 2.

Figure 5.2: The Balancing Rule

We denote by Bp q̂(d) the result of applying Balance at p, q and B%(d) the result of 

repeatedly applying the rule to a term until it cannot be applied again.

L em m a 5.35. For any d E T>e('T), balancing terminates with B^(d)  which is uniquely 

defined.

Proof (5 .35). For d E V ^ X )  and path p E 0(d),  form the multiset M p(d) such th a t
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M p(d) =  {VS(d\q)\d\„ =  d\p}

Let UM p(d) = (UMpfrf)}. Then, if VS(d \p) j t  VS(d\q):

M„(BPt,(</)) =  M p{d) -  {VS(d\p) ,V S (d \q)} u {D5(<i|p) U VS{d\q)}

(using multiset ’ and ‘U’). Let -*K be the multiset extension of >£. Clearly:

M p(d) Mp(Bp,q(d)) ^  UMp(d)

So each M p(d) is bounded below and balancing strictly decreases in this relation. We take 

as a measure the multiset M(d) = {Mp(d)\p G O(d)}, then using the multiset extension of 

-4<(, this relation is strictly decreasing and bounded below, and as balancing respects this 

ordering, balancing is terminating.

For unique definition we show tha t for any p G 0(d), VS(B^(d) \p) =  UM p(d). Firstly, note 

th a t V# G 0(d)  such tha t d\q = d|p, VS(B^(d ) \p) = V S (B ^ (d ) |g), otherwise B%(d) will not 

have terminated. From the above:

{D5(D s (d)|p)} =  MP(Bx(d)) ^  UMp(d)

But Mp{d) M p(Bs(d)),  and so by definition of lower bound UM p{d) == M p(B%(d)). □

Lemma 5.36. The following facts about Balanced terms hold.

1 . B y, (d) is sort balanced.

2 . d > B E(d).

3. If d G V $(X )  if and only if -Bs(d) G T>s(X).

4. If ad G V S (X)  then <r(flE(d)) G V S (X).

5. If ad i  V S (X)  then <r(Bs (d)) # V S (X).

6 . If d > d' then f?E(d) ^
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Proof (5.36). 1 is immediate from definition.

For 2, given d such tha t d[p<— d2*S2], P 1X1 =  ^(di»Si) and Si ^  S2

then d t> BPiq(d) since at paths DS(d\p) > D S (B Pjq(d)\p) and DS(d\q) > D S ( B Ptq(d)\q)

and all other subterms remain the same. By transitivity of >, d > B ^ d ) .

Again we show tha t each step preserves the property to show 3. By assumption S\  > 

VS(SV(d) \p) and S 2 > VS{SV(d) \q). Hence Si  U S 2 > VS{SV (d) \p) and S x U S 2 > 

V S(SV (d ) \q), and so B p q{d) G The opposite direction is trivial from part 2.

For part 4, we show tha t one balance step preserves this property. By assumption <S<S(0(cr(d|p))) =  

SS(<f>(cr(d\q))) < VS(o(d\„)), VS(o(d \q)). So55(<A(<r(d|,))) < VS(<r(BPj,(d\p))), V S ( a ( B p,q(d\q))), 

and we are done.

For part 5, by part 2, d > B^(d),  so by Lemma 5.31 part 1 od \> cr(.Bs (d)) and thus we

are done by Lemma 5.21 part 8 .

For part 6 , we consider one step of balancing at positions p, q. Thus d =  d[p<—di*Si][q<r-d2»S2] 

and d' =  d ^ S Q ,  where Si  > S[ and S 2 > S 2. Thus Si  U S 2 > S[ U S 2, so

d\p+—di»Si  U S 2][q<—d2»S2 U Si] > d'[p<— d'^S'i U S ^ q t —d ^ S ^  U S[], as all other subterms 

are unchanged. □

Sort balance is not preserved under substitution as the following example shows.

Example 5.37. We augment the specification in Example 5.14 with the ranks:

Operators: g : B B-+B f  : B —*B

g : A  A—>A

The term d =  g(f(b9B)9B,g(x : B , y  : is well-sorted and balanced. If cr =

{# : B  i—> / ( 6»A)*A, y : B  / ( 6*A)*A) which is a well-sorted and balanced sub­

stitution (that is all range terms are balanced with respect to  each other), then od =

<7 ( / (6*J3) •£ ,# (/(& • A) • A ,/(&• A) *A) •£)•.£?. Balancing this term  results in B ^ fr d )  =  

p ( / ( 6*A)«A, #(/(&• A)*A, /(6*A)*A)»B)»5. □
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Balancing ‘distributes’ through substitution and subterm replacement.

L em m a 5.38. Given d E T>y,(X)  then:

1. Vo- E DSubst^ , -Bs ((j(Bs(d))) =  B^(od).

2. Vd7 E V E(X)  and position p E 0(d) B ^ d l p ^ B ^ d ' ) ^ )  = B^(d\p^~d7]).

P ro o f  (5 .38). Part 1. Consider a step in balancing <rd, at paths p, q. Then if both p and 

q are non-variable paths in d, then there is a balancing step at those paths in d. Doing all 

such balances first results in a(B^(d)).  Clearly, cr(B^(d)) = B^(crd), and thus the lemma 

holds.

P art 2. Consider a balancing step at paths g, q'. Then if both q and qr are paths be­

low p, such steps are balancing steps in d7. Performing all such balances first results in 

d[p<— B s(d7)], and the lemma holds. □

A extension to balanced terms is the concept of balanced sets of terms.

D efin ition  5.39. A set of dynamic terms {dt-}iGj is said to be balanced if Vz,j E I  and 

p E 0(di)  and q E 0(dj) ,  if dt-|p ~  dj\q then dt-|p =  dj\q.

5 .3 .2  Sort P erco lation

Sort Percolation is similar to the least-sort function. It uses the ranks of operators in the 

signature to  infer further sort information using the dynamic sorts of subterms.

D efin itio n  5.40. A d E V ^ X )  is in Signature Least Form (DL-form)  if Vp E O(d) and 

d|p =  / ( d i , . . . ,  dn)*5 and u  = ( s i . . . s n) = (VS(d i ) . . .  VS(dn)) then the set {s'lw < 

u/, (a/, s7) E ranks(f)} > S.

Sort percolation propagates sort information towards the root of a term. If a subterm 

changes sort, the argument of the parent operator may fall into the range of a different
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rank for th a t operator, and thus the parent operator has a new sort. This is captured in 

the rule of inference in Figure 5.3.

(2) P e rco la te .
d[p<-f(dl f . . . , d n)9S] if ( ( s ! . . .  sn), s) E ranks(f), V S ( d 1) < « i , . . . ,

d[p<-f(d1}. ..  ,dn)*S u{s}] V S (d n) < sn and S  s

Figure 5.3: The Percolate Rule

Pp,(v,s) {d) 1S the result of applying the percolate rule to a term at path p and rank (u, s). 

Pz(d)  is the result of repeatedly applying the percolate rule until it cannot be applied

again.

L em m a 5.41. For every d E Pz(d) always exists.

P ro o f  (5 .41). For each d E P z ( X )  form the multiset of paths MP(d),  with one entry 

for each rank where the above percolation rule applies. Let -<K be the multiset extension 

of the strict subpath ordering on paths, which is noetherian. We show th a t the percolate 

rule reduces in this ordering. Let q be the parent node of p, for some k p = q.k, and let g 

be the operator at q. Then either after percolation there is a rank (u>', s') E ranks(g) such 

tha t now V S (P p^UiŜ (d)\p) < s'k where it was not before and also Vz /  k 'V S ( d \ qii) < s'-. So 

M P ( P p,(u,s)(d)) = MP(d)  - p U  {g}, As q < p, MP(d)  -«  M P ( P Pt(Ut8)(d)). Alternatively, 

if this is not the case, # M P { P p^w^{d))  =  # M P ( d ) — 1 , so M P ( d ) -«K M P ( P p ĵJs^(d)). □

L em m a 5.42. For every d E Pe(A '), P e M  is uniquely defined.

P ro o f  (5 .42). Consider two paths p, q E 0(d),  such th a t d\p = f ( d \ , . . .  , dn)*S ,

( ( s i . . .  sn), s) E ranks(f), VS(d i)  < s l 5 . . .  ,V S ( d n) < sn and S  ^  s, and also d\q =  

g(e\i • "  i em)*R, « r i . . .  rm),r) E ranks(g), V S ( e 1) < r 1}. . .  , V S ( e m) < rn and R  £  r.

If p cx q, or if without loss of generality p < q and there is a non-empty path p' and integer i 

such th a t g = p.i.p' then clearly P„,((l, Jm ),r)(Pp, s)(rf)) =  Pp, .)(<*))•

If, without loss of generality, q = p.i , for some *, then T>S(Pq^ ri_̂ rm^r^(d)\q) < VS(d i )  < 

s1. So we can still percolate at p resulting in:
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d\p <- f (d i , . . . ,g (e1, . . . , e m) 9 R U { r } , . . . , d n)»S\J{s}]

which is also the result of doing percolation at p before percolation at q. □

We give some general properties of Percolation.

L em m a 5.43.

1. Fe (^) is in SL-form.

2. d ^  Pz{d)'

3. d E T>s{X) if and only if Fe(^) £ Ps{X) .

4. If d > d' then P%(d) t> P ^ d ' ) .

5. L(t) = Ps (T(t)).

P ro o f  (5 .43). 1 is immediate from definition.

For 2, suppose th a t for some p, d\p = / ( d i , . . . ,  dn)*S and (u,s) = ( {s i . . .  sn), s) E 

ranks(f), VS(d i )  < S i, .. .  , V S ( d n) < sn , and S  ^  s. Then VS{d\p) = S  > S  U {5} =  

V S ( P P)(u,s)(d)\p)i and all other subterms remain the same, so by Lemma 5.31 part 1, 

d > Ppfa^ id)  and by transitivity of >, d > Pz(d).

For 3, the ‘if’ direction is immediate from part 2 and Lemma 5.21 part 7. For the 

‘only if’ we show th a t applications of percolation preserve the property. Suppose th a t 

for some p E 0 (d ), d\p =  / ( d 1?. . .  , dn)*S  and (a;, s ) =  ((sj . . .  sn), s) E ranks(f), VS{d \ ) < 

5 i , . . . ,  VS{dn) < sn , and S  ^  s. As d E T>s(X), <f>(di) :: s1?. . . , (f>(dn) :: sn , and so by the 

congruence rule /(</>(di),. . . ,  <f>(dn)) :: s. So / ( d 1?. . . ,  dn)*s E V s (X ) ,  and by Lemma 5.21 

part 6, / ( d i , . . .  j d ^ S U  {s} E V S {X), and so Pp^ s){d) = d [p * -/(d i,. . .  ,dn)*5U {s}] E 

Vs{X ) .

For 4, consider when a percolation step can be applied to either d or d'. If a percolation 

step applies to d', then from the proof of part 2 d" < d' <] d. If the step is applied to d, 

then for some p, d|p =  / ( d i , . . . ,  dn)%S and (oj,s) =  ((s]_. . .  sn),s) E ranks(f), X\S(d!) < 

51?. . .  ,V S ( d n) < sn , and S  s. However, VS(d'l ) < VS(di )  < sl5. . .  ,T>S(d'n) <
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V S (d n) < sn for the equivalent subterm d'\p, and thus, if VS{d!\p) ^  s, there is also a per­

colation step available at p in d!. If VS{d' \p) < s, then we are done. Hence Ps(d) > Pz(d').

For 5, note tha t percolating from the leaves to the root performs all the sort calculations 

necessary to form the least-sort of each subterm. Note also tha t this term  is balanced. □

Again percolation “distributes” through substitution and subterms.

L em m a 5.44.

1. Vd G V ^ { X )  and for any dynamic substitution cr, Pz(o(Pz(d)))  = P^(crd).

2. Vd,d1 G V y, (X)  and path p in 0 (d), Ffc(d[p<—jFfc(d')]) =  ffc(d[p<—d']).

P ro o f  (5.44). Part 1 . Given crd, then since o is sort-preserving, any percolation step in 

this term at a non-variable path p G 0(d) using a rank f  : s i . . . S2~*s, where /  =  root(d\p), 

and VS(((rd)\pA) < VS(d\pA) < Si . . .  £\S((crd)|p-n) < Z\S(d|p.n) < sn and VS({(rd)\p) = 

VS(d\p) ^  s is also a percolation step for d. Recursively performing all such steps results 

in cr(Pz(d)) and we are done.

Part 2. Given d[p<— d'], then percolation step below p will be also percolation step in df. 

Recursively performing all such steps results in d[p<— Ps(d')] and we are done. □

E xam ple  5.45. Continuing Example 5.37, we note tha t 

Hs (crd) =  0 (/(&«A)#A,£r(/(&*A)*A,/(&«A)#A)*H)»H 

is not in EL-form. Applying percolation to it results in

P e (H e M ))  =  g ( f  (6#A)*A, <?(/(6#A)#A, /  (6#A)*A)*A)»A.

□
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5.4 Dynamic Equations

In this section, we briefly define dynamic equations which are used in the next chapter. We 

return to consider dynamic equations and rewrite rules in more detail in Chapter 7.

Equations are constructed from dynamic terms in a similar manner to equations between 

ordinary terms described in chapter 4 above.

Definition 5.46. A dynamic equation is a quadruple consisting of a set of variables Y, a 

pair of dynamic terms d1? d2 G T>s(Y), and a set of sorts S  such that V S ( d i )  U V S ( d 2) Q S . 

This quadruple is usually written VY.di = 5  d2, A dynamic equation is well-sorted if 

d i,d 2 G V $ ( X ) ,  and S  > S S ( d i ) .

If the set of sorts is a singleton, say S  = {A}, then for notational convenience we write 

I = A r. If V S  (I) = V S { r )  = 5 , then we can omit the subscripted sort set.

The semantics of dynamic equations is given by a translation into equations over T ^ ( X ) .  

In a dynamic equation, the two dynamic terms are the representation of the term s to be 

made equal, and the set of sorts represents the sorts in which the equality holds. Thus we 

can convert a dynamic equation into an equivalent set of sorted equations. We use to 

represent the extension of <f> to sets of dynamic equations.

$(VYi = 5  r) =  {VY.0(O = , <f>(r)\s G S }

This notion is extended in the obvious fashion to  sets of dynamic equations, and to relations 

over dynamic terms to give sets of standard equations and relations over T ^ ( X )  respectively.

We can also make a canonical conversion of a E-equation into a dynamic equation.

Definition 5.47. The least dynamic equation for a given E-equation VY.l = s r, denoted 

^(VY./ = s r) is given by VYL(/) = 5  L(r )  where S  = M ^ ( C S ( l )  U CS ( r )  U {s}).

This definition, extended to sets of equations, allows the conversion of specifications over
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T g (X )  into systems of dynamic equations.

D efin ition  5.48. Given an order-sorted specification S  = (E,E),  the canonical set of 

well-sorted dynamic equations is given by ^ (P )  =  {\k(e)|e £ E }.

Thus (E, ^ (P ) )  is the canonical interpretation of a specification (E, E)  using dynamic 

equations.



Chapter 6

Dynamic Matching and Unification

In this chapter we discuss the concepts of Matching and Unification within the context 

of dynamic sorts. Different definitions of these two operations can be given which have 

different properties. We discuss some of these definitions, giving their strengths and weak­

nesses and the relations between them. In order to keep this presentation of matching and 

unification as simple as possible, we do not consider the case of matching and unification 

modulo an equational theory.

6.1 Dynamic Matching

Matching determines whether one term is an instance of another. In this section we give 

several definitions of a dynamic match, and discuss their relative merits and properties.

6.1.1 Sem antic M atching

Semantic matching is the most general match on well-sorted terms. This definition is 

similar to (E, R )-matching given in [Wer93], couched in a dynamic framework.

132
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D efin ition  6.1. S em an tic  M atch ing

A dynamic term p (the pattern) semantically matches dynamic term t (the target) if and 

only if there exists a well-sorted dynamic substitution cr such tha t crp~ t .

In general it is not the case tha t ap = t since the dynamic sorts of the two terms may differ, 

but the semantic match occurs on the underlying terms and the matching substitution is 

well-sorted. However, in general it is not decidable whether such a match exists. If it was, 

the least semantic sort of every term would be decidable.

T h eo re m  6.2. Semantic matching is not decidable.

P ro o f  (6 .2). Assume semantic matching is decidable, then given an arbitrary dynamic 

term d, for each sort s E match x : s to d. If it matches, the substitution {x > d#s} is 

well-sorted and hence d*s E Vs{X) .  Hence this method decides which sorts are valid for 

4>{d). This contradicts the undecidability of sorting in Theorem 4.40. □

It is thus desirable to use a purely syntactic definition of matching, which exploits the 

dynamic sort. There are several approaches to this.

6.1.2 W eak M atching

We retain the property tha t underlying forms remain the same, but loosen the restriction 

th a t the matching substitution must be well-sorted.

D efin ition  6.3. W eak D ynam ic M atch ing

A dynamic te rm p  E ^ e ( ^ )  weak matches t E if there exists a dynamic substitution

a such tha t op ~ t .  If a is a weak matching substitution for p onto t we write p U ^ t .

In general, there is more than one weak match for each pattern and target. However, we 

can give a definition of a ‘canonical’ match. This match represents the ‘best’ match in tha t 

it preserves the maximum amount of sort information available in the target term  alone, 

without using external deductions as used in semantic matching.
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Definition 6.4. A match k of p on t is canonical if for all paths q E 0(p)  such th a t 

p\q E X  then np\q = B^( t) \q.

Intuitively, the distinguishing feature of the canonical weak match is tha t it is the minimal 

match (in the > ordering) such th a t the maximum amount of known sort information of 

the pattern is preserved in the match. By balancing the term first, we maximise the sort 

information used in the term, and also make ^-equivalent subterms identical, allowing the 

canonical match to be well defined.

Lemma 6.5. If d, d! E T>y;(X) are dynamic terms, d E T>s{X) is well-sorted and k, is the 

canonical weak match of d' on d, then k is a well-sorted substitution.

Proof (6.5). If x =  d'|g, then VS{B^(d \q)) = VS(nd' \q) < s(z) and B^(d\q) E T>s(X).

□

Lemma 6 .6 . If cr is a weak match of p onto £, and if V# E 0(p)  such tha t p\q E X , 

aP\q ^  t\q then a t> k, where k is the canonical weak match of p on t.

Proof (6 .6 ). ap\q > t\q > B^(t) \q = np\q. □

Lemma 6.7. Given a canonical match « of p on t and t is balanced, then for all paths

q E 0(p)  such tha t p\q E X,  np\q =  t\q.

Proof (6.7). np\q = B^( t) \q = t\q. □

Example 6.8. Given the specification:

Sorts: A B

Subsorts: A  < B

Operators: a : —► A b : B

f  : B  B ^ B  

Equations: a = b

If the pattern f ( x  : B , x  : B)*B  is matched onto /(6#A, {x b*B} consti-



6.1. Dynamic Matching 135

tutes a weak match, and { x  > 6#A} is a canonical weak-matching substitution since 

B E{f{b*A,b*B)*B) = /(&*A,6#A>£. □

However, there is not necessarily a canonical match, even in cases where there is a weak 

match and with balanced terms.

Example 6.9. Continuing with Example 6 .8 , there is a weak match between the dynamic 

terms x : A  and 6*jB, {# 6*A}, but no canonical weak match. However, the same

substitution does form a canonical weak dynamic match between x : A  and 6*A, which is 

also a well-sorted dynamic term. □

Although { x  i—► &• A} is well-sorted, it is not a canonical match since it cannot be derived 

from the target term alone.

Canonical weak matching is decidable and the set of rules in Figure 6.1 gives an algorithm

for generating a canonical match on balanced terms. To determine the canonical match,

the target term is first balanced and then the matching algorithm is applied. The symbol

□ is used to represent failure. These rules are applied to sets of equations between dynamic 
?

terms of the form di=d2.

Before proving these rules correct, we give some auxiliary definitions.

? ?
Definition 6 . 1 0 . A weak match for a set of equations {d i= el5. . .  , dn= en}, is a dynamic 

substitution g  such tha t Vz • Gdi ~  et-, and is canonical if for all x : s  E X  and paths p  such 

tha t di\p =  x : s  then B s (e ; ) |p =  Gdi\p .

? ?
A set of equations E  =  {d i= e i , . . .  ,dn=en} is in normal form if Vz-di E A, X><S(et) < VS(di)  

and z /  j  => di /  d j .

? ?
If E  = {Xi=ex,. . .  , x n=en} is in normal form then g  =  {xi  i—» i ) , . . .  , x n i—* B s(en)}

forms a canonical weak match for E.

Lemma 6 . 1 1 . The rules in Figure 6.1, applied to a balanced target term, term inate with 

either failure or in a normal form.
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( 1 ) Weak Decomposition.
{/(< *!,..., d „ ) . s l f ( d 'l v . . ,  d'n) .S ' }  U E  if /  E T y.

,dn=d'n} U E

( 2 ) Conflict.
{ f { d \ , - - - , d n)9S=g{d'1, . . . , d ,m) 9 S ' } \ J E  if f , g  E f z  and /  ^  g 

□

(3) Coalesce.
{x : s=d , x : s=d} U E  VS(d)  < s 

{x=d}  U E

(4) Failure. (5) Sort Clash.
{d=x  : s) U E  if d X {x \ s=d} U E  if VS(d)  ^  s

□ □

(6 ) Clash.
? ?

{x : 5=dl5 x : s= d 2} U E  if d\ ^  d2 _

Figure 6.1: Rules for Canonical Weak Dynamic Matching on Balanced terms.

P ro o f  (6 .11). Clearly rules 2, 4, 5 and 6 terminate with failure. Given a finite set 

of equations E,  let M  (E) be the multiset of the heights of the terms in E.  Let be the 

well-founded multiset extension of the standard ordering on the natural numbers. The non­

failure rules strictly reduce M  (E) in this ordering. The weak decomposition rule removes 

term s of heights N  and M  respectively and inserts terms of heights at most N  — 1 and 

M  — 1 respectively, reducing M (E ) .  The Coalesce rule removes terms of heights 1 and N.  

Consequently, the rules must terminate.

To show the second part, assume the rules terminate with a set of equations E  which are
7not in normal form. Thus there exists an equation d{=ei E E  such th a t either di 0 X,  

in which case one of rules 1, 2, or 4 will apply, or X>5(et) ^  VS(di )  and rule 5 applies or 

di 6 {di} jei..i-i,i+i..m in which case rule 3, or 6 applies. This contradicts the assumption 

of termination, and so E  must be in normal form. □
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L em m a 6 .1 2 . The rules of Figure 6.1, applied to a balanced target term, either preserve 

weak dynamic matches, or if they fail, then no weak match exists.

P ro o f  (6 .1 2 ). Consider each rule in turn.

7
( 1 ) W eak D ecom position . If cr is a weak match for { / ( d j , . . .  , dn)* S= f(d '1, . . .  , d'n)*S '}U 

E,  then o ( f ( d x, . . . ,  dn)mS) ~  / ( d j , . . . ,  d'n)*S', hence /(c rd i,. . . ,  odn)»S  ~  /(d '1?. . . ,  d^)*£",
7 ?

so cr is a weak match for { d ^ d i , . . .  ,dn=d'n} U E.  Similarly, if cr is a weak match for
7 7 7

{di=d[ , . . . ,  dn=dfn} u E , then it is a weak match for { /(d 1?. . . ,  dn)*S= f(d '1, . . . ,  d^)*^}  U E.

(2) C onflict. If { /(d 1?. . . , d n)»5=</(di,. . .  ,d^)»S"}U l?if / ,#  £ / £  and /  /  <7 then there 

can be no substitution o such th a t o ( f ( d i , . . .  ,dn)»S')) ~  ^ (d i,. . . , d'm).

7 7
(3) C oalesce. Clearly cr is a match for {x : s=d, x : s=d} U E , if and only if it is also a

?
match for {x : s=d} U E.

7
(4) F ailu re . If {d=x : sjU-E1, for some d ^  X , then there is no cr such th a t <r(^>(d)) =  x : s.

7
(5) S o rt C lash. Given {x : s = d } \ jE  and VS(d)  ^  s, if <7 is a weak matching substitution, 

then d =  ox,  by definition of weak match, and V S  (ox) < s, by well formed substitution. 

Hence VS(d) < s , which contradicts our assumption, and thus no such cr can exist.

7 7
(6) C lash  Given {x : s=d i ,x  : s=d2} U E  where di d2, there is no substitution cr such 

th a t d\ =  o(x) = d2. □

7
T h eo re m  6.13. Applying the rules in Figure 6.1 to an initial set {d=B^(d')} ,  where d! is 

a target term, either fails or terminates with a set of normal forms which have a canonical 

weak dynamic match o for d on d'.

Proof (6.13). Immediate from Lemmas 6.11 and 6.12. □
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6.1.3 Strong M atching

The idea encapsulated in canonical weak matching is to check from the dynamic sorts of 

the pattern  term , whether there already exists a dynamic term  of the right sort at the 

same path  in the target. However, while the above lemma tells us that a dynamic term 

d' weakly matching onto a well-sorted dynamic term results in a well-sorted substitution, 

we cannot guarantee tha t the resulting instance of d' will be well-sorted. Consider the 

following example.

Example 6.14. Extend Example 6 . 8  with the operator g with rank g : B —►£, then 

g(x : A)«A £ XX)s(X).  This weak matches with the well-sorted term g(a*A)*B,  with 

well-sorted substitution {x a»A}, but o(g(x : A)* A) =  g(a*A)*A £ X V s(X ) .  □

To exclude this possibility, we extend the idea of checking the dynamic sorts of the pattern 

to apply to all paths, rather than just those at variables, giving us a strong dynamic match.

Definition 6.15. Upward Strong Dynamic Matching

A dynamic term  p upward strong matches a dynamic term t , written pUu t, if and only 

if there exists a dynamic substitution o  such that op ~  £, and for all paths q  £ 0(p)  

V S (B x ( t ) \q) < V S ( o p \ q).

The upward strong match can be succinctly expressed using the approximation relation.

Lemma 6.16. If p £ (X)  upward strong matches a t £ V g (X ) via a matching dynamic

substitution o  then op > B%(t). If t is balanced, then op > t.

Proof (6.16). Immediate from the definitions of upward strong matching and approxi­

mation relation. □

Again, there can be many upward strong matches, and the definition of canonical weak 

match given in Definition 6.4, is used for canonical upward strong match. In upward strong 

matching, the canonical match has the following minimal property.
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Lemma 6.17. If o  upward strong matches p onto t , then o > k.

Proof (6.17). If q £ 0(p)  and p\q £ X , then op\q > B^(t ) \q = np\q. □

For completeness, we also consider the dual matching algorithm which checks th a t the 

pattern is less than the target at all paths.

Definition 6.18. Downward Strong Dynamic Matching

A dynamic term p downward strong matches a balanced dynamic term  t written pQv  t ,

if and only if there exists a dynamic substitution cr such th a t op ~  t and for all paths

? e O ( p )  V S ( B E(t)\g) > V S ( a V\q).

Downward strong matching can also be expressed using the approximation relation.

Lemma 6.19. A dynamic term p £ V%(X) downward strong matches a d-term t £ V ^ X )  

via a matching dynamic substitution <7 if and only if B-^(t) \> op. If t is balanced, then 

op < t.

Proof (6.19). Immediate from the definitions of downward strong matching and the 

approximation relation. □

Again the definition of canonical downward strong match can be given, which has the 

following maximal property.

L em m a 6.20. If o downward strong matches p onto t , then o < k .

Proof ( 6 .2 0 ). If q £ 0(p)  and p\q £ X , then op\q <3 B%(t)\q = np\q. □

The strong matches form a proper subclass of weak matches.

E x am p le  6.21. Extend Example 6.14 with the additional rank g : A—>A, then the dynamic 

term g(x^)*A  will weak match onto g(b*A)*B, but not upward strong match. □
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Example 6 .2 2 . In Example 6.8, {x »-»■ b*B} also forms an Upward Strong match of 

f ( x  : B,  x : B )*B  onto /(6*A, b*B)*B,  and {x i—>• b*A} is the canonical upward strong 

matching substitution, as balancing the target term results in f(b*A, b*A)*B. □

The weak matching algorithm for canonical matching on balanced terms needs little mod­

ification to perform these checks, modifying the decomposition rule, and adding a new 

failure mode. The rules which replace the weak decomposition rule are given in Figures 

6.2 and 6.3.

( la )  Upward Strong Decomposition.
{ f ( d u . . .  ,dn) * s l f ( d [ , . . . , d ' n) ,S ' }  U E }  if /  € T?

{di=d[ , . . . ,  dn=d'n} U E  and S'  < S

( lb )  Upward Strong Decomposition Failure.
{/(<*!,. • •, dn) . s l f ( d [ , . . . ,  d'n) .S ' }  U E}  if

□ and S'  S

Figure 6.2: Additional Rules for Upward Strong Dynamic Matching.

We give details of upward strong matching, using some auxiliary definitions.

Definition 6.23. An upward strong match (downward strong match) for a set of equations
7 7

{d i= e i , . . .  , dn==en}, is a dynamic substitution a such that V« • adi ~  et-, and Vz, Vp E 0 ( d {) 

then T>S(B^(ei)\p) < VS(odi\p) (respectively VS(crdi\p) < X\S(e;|p)).

7 7
If E  =  { x i = e i , . . . , x n=en} is in normal form then a = {xi jBs(ei )5 • • • i x n ^  B z ( e n)} 

forms a canonical (upward/downward) strong match for E.

Lemma 6.24. The rules in Figure 6.1, excluding the weak decomposition rule including 

the rules in Figure 6.2, applied to a set of equations E  terminate with either failure or with 

a normal form.

Proof (6.24). Given the same measure M (E )  as the termination proof for weak m atch­

ing above, note th a t the strong decomposition rule removes terms of heights N  and M  

respectively and replaces them with terms at most IV — 1 and M  — 1. The rest of the proof 

follows the proof of termination for weak matching. □
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L em m a 6.25. The rules in Figure 6.1, excluding the weak decomposition rule including 

the rules in Figure 6.2, applied to a set of equations E  either preserve upward strong 

matches, or if they fail, then no upward strong match exists.

P ro o f  (6 .25). Consider the new rules in turn.

( la )  U pw ard  S tro n g  D ecom position . If <7 is a upward strong match for {f { d \ , . . .  , dn)*S

/(d '1?. . . ,  d'n)9S'}UE}  where /  E E% and S'  < S  then cr(f(di , . . .  , dn)*S) ~  / ( d ^ , . . .  , d'n )*S ' , 

hence / ( c rd^ . . . ,  <jdn)*S ~  f { d [ , . • •, d^)»5". Hence a  is an upward strong match for
? ? 7  7

{d i=di , . . . ,  dn=d'n}UE.  Similarly, if a is an upward strong match for {di=d 'Xl. . . ,  dn=d'n} U
?

E  then it will be an upward strong match for { / ( d i , . . . ,  dn)» 5 = /(d /1, . . . ,  d'n )*S'} U E , as 

S' < S.

( l b )  U pw ard  S tro n g  D ecom position  F ailu re . If a  was an upward strong m atch for 

{ / ( d i , . . .  ,dn)«5 =  / (d 'j , . . .  ,d'n)*S'} U E}  where f  E and S'  ^  5 , then for the path 

e E 0(cr ( / (d i , . . . ,  dn)*S )) then S'  ^  5 , which contradicts the definition of upward strong 

match.

The rest of the proof follows tha t of the soundness of weak dynamic matching. □

T h eo rem  6.26. The rules in Figure 6.1, excluding the weak decomposition rule but
?

including the rules in Figure 6.2, applied to a initial set (d=d'}, where d' is a balanced 

target term, either fails or terminates with a set of normal forms which have a canonical 

upward strong dynamic match cr for d on d'.

P ro o f  (6 .26). Immediate from Lemmas 6.24 and 6.25, noting th a t the canonical strong 

match of a set of terms in normal form is extracted. □

Similarly, the rules for downward strong dynamic matching are given in Figure 6.3.

The proofs of termination and correctness of this form of matching are similar to those for 

upward strong dynamic matching and are not repeated. Both forms of strong matching 

are compositional.
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( la ) Downward Strong Decomposition.
{ f ( d 1, . . . , dn) . S = / ( d ' , . . . , dfn) . S f} U E} if f e f z

{d i=d[ , . . .  , dn=d'n} U E and S  < S'

( lb ) Downward Strong Decomposition Failure.
{/ (d l5. . . , d > S = / ( d ' , . . . , dfn) . S f} U E} i f / e ^ E

□ and S  £  S'

Figure 6.3: Additional Rules for Downward Strong Dynamic Matching.

Lemma 6.27. Let d, d1? d2 E and d1? d2 are balanced. Then d upward (down­

ward) strong matches dj via 0 and di upward (downward) strong matches d2 via a  if and 

only if d upward (downward) strong matches d2 via ad.

Proof (6.27). For upward, as Od > d 1 and ad\  > d2 this is immediate from Lemma 5.31. 

For downward, as d > dd\ and d\ > <rd2 this is immediate from Lemma 5.31. □

Upward strong dynamic matching has one im portant property: an (ill-sorted) pattern term 

will not upward strong match a well-sorted target and result in an ill-formed instance.

Lemma 6.28. Let d E V ^ { X )  and d' E X>$(<T). If dC^d', then ad E T>s{X).

Proof (6.28). Immediate from Lemma 5.33. □

The definition of upward strong matching is not however, powerful enough to exclude well- 

sorted terms matching onto ill-sorted ones; if it were the case we could decide semantic 

matching.

Example 6.29. Continuing Example 6 . 2 1  with the extra constant c : —>B we see that 

the ill-sorted term f (c*B)*A  is upward strong matched by the well-sorted term f ( x  : B)*B  

with matching substitution {x  > c*B}. □

This may mean in the definition of rewriting we are able to rewrite ill-sorted terms as well 

as well-sorted ones using well-sorted rewrite rules.
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Downward strong matching has a different property: well-sorted terms only match onto 

well-sorted terms, th a t is it is not possible to downward strong match a well-sorted pattern 

with an ill-sorted target.

Lemma 6.30. Let d E V s  (A) and d' E Vy,{X). If and cr is a well-sorted dynamic

substitution, then d' E Vs{X) .

Proof (6.30). Immediate from Lemmas 6.19 and 5.21. □

6.1 .4  Som e C om m ents on M atching

It is interesting to contrast the approach taken here with tha t of Hintermeier, Kirchner and 

Kirchner [HKK93]. They define a variety of matching which they call strict matching. In 

the notation given in this thesis, this becomes:

Definition 6.31. Strict Dynamic Matching

A dynamic term p strict matches a dynamic term t written pQStt, if and only if there exists 

a dynamic substitution a such tha t p ~  t and for all paths q E 0(p) V S ( t \q) = VS(cr(p)\q).

This variety of matching is syntactic on dynamic sort sets as well as operators, since the 

dynamic sorts at all nodes must be equivalent (that is S  = S'  if and only if S  < S '  and 

S'  < S).  Strict matching thus ensures tha t crp = t , while strong matching only ensures 

op > £, and weak matching only ensures tha t (j>(crp) =  4>{t). It might seem th a t strict 

matching is simpler and more intuitive than strong or weak. However, the use of strict 

matching leads to a less powerful rewriting system. If only strict matches can be made, 

then extra rules are needed to add sorts explicitly to the dynamic sorts of terms, whilst 

strong matches ‘code up’ classes of strict matches within one match. In [HKK93], this 

question is partly answered by the use of sort variables in dynamic sorts.

This difference in approaches is also influenced by a difference in motivation. In [HKK93], 

the semantic framework is Galactic algebras and the computation is designed to answer 

questions on the algebra, which might include type formulae. In this thesis, order-sorted
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specifications are defined in a conventional way and only equalities between conventional 

terms are tested, not in which sort tha t they are valid. The dynamic framework is a means 

to this end rather than an end in itself.

Thus we have four candidates for matching between dynamic terms; weak, upward strong, 

downward strong, and strict dynamic matching. If we represent the matching definitions 

by the pairs of well-sorted terms which they match:

Substx  =def {(d, d') |d, d! E V§{X),  d, d' in SL-form and a is a X-match such that dC.x d'}, 

then we have the relationship between matches as shown in Figure 6.4.

Substf/
SubstvvSubstc SubsW

Figure 6.4: The relationship between well-sorted matches

The appropriate match depends on the properties of the match required. The weak match 

has fewer restrictions. However, it will only be sound in cases where both the pattern and 

target terms are well-sorted. If the pattern term (which may be one side of an equality) 

is not well-sorted then under weak matching the resulting instantiation may not be well- 

sorted and so replacing equals by equals will not be sound. The upward strong match leads 

to  a less powerful rewrite relation, but allows us to use ill-sorted terms in our equalities; 

there may occur circumstances where this is appropriate. Thus the choice of matching 

rewriting relation generated by tha t match depends on whether we wish to allow ill-sorted 

terms.

6.2 Dynamic Unification

Semantic dynamic unification has a similar definition to tha t of semantic matching. 

Definition 6.32. Semantic Dynamic Unification
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Given a specification S  = (D,E)  and dynamic terms di,d2 G T>s(X), then the terms are 

unifiable, if there exists a well-sorted dynamic substitution a such th a t crdi ~  ad2. a is 

then known as the semantic unifier of di and d2.

As Werner [Wer93] points out in a different context, the semantic dynamic unification 

problem is closely related to Z?-Unification. It is not in general possible to decide whether a 

dynamic term is well-sorted, as it requires the consideration of the entire equational theory. 

Thus it is not possible, in general, to decide whether a dynamic substitution is well-sorted, 

and similarly to semantic matching, semantic dynamic unification is not decidable. In cases 

where it is, it is in general infinitary as the following example [Wer93] demonstrates.

Example 6.33. [Wer93] Given the specification:

Sorts: Pos Nat

Subsorts: Pos  < Nat

Operators: 0 : —*■ Nat s : N a t  —> Pos

mod2 : Nat  —> Nat  

Equations: mod2 (0«iVat)*Nat =Nat 0*Nat

mod2(s(09Nat)*Pos)9Nat =pos s(0*Nat)»Pos  

mod2(s(s(xNat)*Pos)*Pos)»Nat =Nat mod2(xNat)*Nat

7
Consider unifying ypos=mod2(z}^at)9Nat.  Then each of:

{ypos Tnod2(s2n+1 (0#iVaf)*2ri+1 Pos)*Pos

z N a t  s2n+1(0*Nat)*2n+1Pos}

are unifiers since for each n, mod2(s2n+1 (Q9Nat)*2n+1 Pos)»Pos  G T>s(X), 1 as it is equal 

to s(Q*Nat)9Pos, and none of them is subsumed by any other well-sorted unifiers. {ypos 

mod2(zp[a^)*Nat} is not a dynamic substitution, and thus cannot subsume these unifiers. 

Another candidate substitution might be {ypos mod2(zNat)*Pos}.  However, this is not 

a well-sorted substitution as mod2(zNat)*Pos $ T>s(X). □

Nevertheless, dynamic unification can be decided and is finitary if we relax the restriction

1 These unifiers are similar to recurrence terms [CH91aj. It is conjectured that for a suitable class of 
problems, such infinite sets of unifiers can be characterised by recurrence terms.
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to well-sorted substitutions. Similarly to matching, there are several forms which dynamic 

unification can take. Two general definitions of the unification of dynamic terms are given.

Definition 6.34. Loose Dynamic Unification

Given a specification S  = (E ,E),  d i ,d2 G V y,{X) are loosely unifiable if there exists a 

dynamic substitution cr such tha t crd\ ~  crd2. a is the loose unifier of di and d2.

Definition 6.35. Strict Dynamic Unification

Given a specification S  = (E ,E),  d i ,d2 G V ^ { X )  are strictly unifiable if there exists a 

dynamic substitution a such tha t ad\ =  ad2. a is the strict unifier of d\ and d2.

The loose unification of dynamic terms requires the underlying terms to be the same under 

the unifying substitution, whilst strict unification requires tha t the dynamic terms to be 

the same, including their sort components, which is analogous to strict matching. Loose 

unification is analogous to weak and both forms of strong matching. However, the strong 

matching algorithms are distinguished by the existence of particular Unified Terms.

Definition 6.36. Given matching algorithm X  and (loosely) unifiable di,d2 with substi­

tution <r an X-Unified Term for d\ and d2 is a term u G such tha t diQx u and

d2 U:au- u is X-maximal if for all v such tha t v is an X-unified term for d\ and d2, then 

v < u, and X-minimal  if for all v such tha t v is an X-unified term for d\ and d2, then v > u.

It is these unified terms tha t characterise dynamic unification in contrast to standard 

unification theory. In standard theory, the unified term is trivial; it is just the query terms 

with the unifying substitution applied. However, in dynamic unification, this unified term 

is not trivial. Indeed, in general there is a set of such terms for each unifier, and particular 

unified terms are of special interest.

We characterise the unifications which are associated with strong matches by the existence 

of particular unified terms.

Lemma 6.37. If di,d2 E Vy,{X) are loosely unifiable with substitution <7, then:
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1. crdi t \ o d 2 is the unique Upward Strong maximal Unified Term (USMUT ? (<r)) for
d \ — d,2

d\ and d2.

2. adi  V od2 is the unique Downward Strong minimal Unified Term (DSMUT ? (cr))
d\=d.2

for di and d2.

P ro o f  (6 .37). Proof of part 1. As, if di and d2 loosely unify, crdi > crdi A crd2 and od2 > 

crdi A od2, and by definition of upward strong match diC^adi  A od2 and d2C.^adi A crd2, 

which thus forms an upward strong unified term. If for some u, d iQ ^u  and d2U%u, then

ad1 > u and ad2 > u. Then, by Lemma 5.21, part 5, crdi A <rd2 > u.

Proof of part 2 is similar. □

Example 6.38. Given the following Order-Sorted Specification.

Sorts: S  A B C  D T

Subsorts: T <  C < A < 5 ,  T <  D < B < S

Operators: a : —*■ A b : —> B

f  : A B  —► S  g : A ^ C

h : B  -+ D

The unifiers of:

f(g(a*A)*C, y : B )* S = f{x  : A, /*(&•£)•£>)•£

include the following substitutions with their upward strong maximal unified terms:

{;x i—̂ g(a»{})*A,y h(b»{})*B} /(<7(a»A)»C,

{x i—> g{a*{})*C, y h(6»{})#Z)} /(^(a#A)*C, h (&•.£?) «.D)«S

{x i—► p(a#5)«C, y i—> h(b*S)*D} f(g(a*A)*C, h(b*B)*D)*S

{x i—* g{a*A)*C,y i—> h{b*B)%D} f(g{a*A)*C, h{b*B)*D)*S

{x i—► g(a*C)*C, y h(6»T))«D} f(g(a*C)*C, h(b*D)9D)*S

{x flr(a*T)»C, 2/ /(^(a*T)»C, h(6«T)»D)*5
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□

In both strict and loose cases, we define a minimal complete set of unifiers.

D efin ition  6.39. The set of (loose/strict) unifiers of a pair of dynamic terms d1,d2,
7

written Uy(di=d2), where Y is loose or strict, is the set of dynamic substitutions which are 

(loose/strict) unifiers of di, d2. A Complete set of unifiers for a pair of dynamic terms di, d2 

on Vars(di) U Vars{d2) C W  C A, written CSUy^ (d i= d2), is a set of dynamic substitutions 

such that:

1. Vo- G C S U P  • Im(o)  fl W  =  0

2. C S U P ( d i ± d 2) C U{dx=d2)

3. Vr G U(di=d2) • 3cr £ C S U ^ ( d 1=d2) • cr r .

A complete set of unifiers is minimal, denoted \iC SUy* (di=d2) , if V<7, p G g C S U ^  {d\=d2) • 

a P => a = W P• Such unifiers are known as most-general.

L em m a 6.40. If <7 is a most general unifier, and p is a unifier of the same terms, then 

there is a it such th a t p < ira.

Proof (6 .40). Immediate from the definition of □

The problem of unifying s and t becomes tha t of finding a minimal complete set of unifiers
7

for a singleton set of equations, conventionally written {s=t}.

E x am p le  6.41. Given the following order-sorted specification.

Sorts: A B

Subsorts: A < B

Operators: /  : B  —► B  g : B  —► B

a : —> A  

Equations: g{x : A)*B x  : A

7
A most general loose unifier of f (g (x  : A )*B )*B =f (y  : B)*B  is a =  {y : B  g(x : A)*B}.
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Another unifier is o' — {y : B  i—> g(x : A) •A ), and cr > a'. □

All most general loose unifiers are equivalent.

Lemma 6.42. If cr,p £ pC S U ^ ose{di±d2) , then a ~  p.

Proof (6.42). By definition of loose unification, (f>(crdi) =  <f>(crd2) and <j>(pdi) = (f){pd2). 

Therefore, (j>{cr) and <f>(p) are unifiers of standard unsorted terms ^(dj),  <fi(d2) £ T^(A) .  By 

a well known theorem (for example [JD90]), unsorted unifiers are unique up to renaming, 

hence (f>(a) =a <̂ >(p), and <r ~  p up to renaming. □

Loose dynamic unification is unitary.

Theorem 6.43. If <r, p £ pCSUi^ose{d\=d2) , then a =  p up to renaming of variables.

Proof (6.43). Assume tha t there are cr,p £ pC S U ^ ose{di=d2) such th a t cr ^ a p. Then, 

by the previous lemma a ~  p. Consider the substitution r  =  a V p; clearly, rdi  ~  crdi ~  

crd2 ~  rd 2 and thus r  £ Uj^ose(di=d2) . Since a <  r  and p < r ,  by definition a  and p are 

not most general, which contradicts the assumption. □

The unique member of pC S U ^ ose(di=d2) , if it exists, is known as the most general loose 

unifier of di and d2.

Example 6.44. In Example 6.38, {x *-*■ p(<z»{})«A, y >—► h(6«{})»B) is the most general 

unifier. We also observe tha t {z p(a«A)*C, y i-» h(b*B)*D} is the minimal unifier 

(under the > ordering) with the maximal USMUT. □

When used in conjunction with upward strong matching, we have the following property 

on the upward strong maximal Unified Terms.

Lemma 6.45. If cr is the most general loose unifier for d1? d2 £ V g (A), with u the upward
7

strong maximal Unified Term for cr, and if p £ Uioose(di=d2), with v the upward strong 

maximal Unified Term for p, then £ DSubst£ such th a t v <\ iru.
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P ro o f  (6 .45). <7 is most general so there is a substitution w such that p < ttct. u =

crdi A crd2, therefore iru =  ir(crdi A crd2) = {ircrdi A ncrd2) > (pdi A pd2) = v. □

Thus it can be seen tha t all unifiers of terms can be ‘factored through’ the most general 

loose unifier.

6 .2.1 A  D yn am ic  U nification  A lgorithm

A unification problem is described as a set of equations T and the aim is to transform 

this into a solved form, from which a unifying substitution can be trivially derived, whilst 

maintaining the set of minimal unifiers of the equations.

7
D efin ition  6.46. A dynamic equation is in Solved Form if it is of the form x=d  where x 

is a variable of sort s , and d is a dynamic term such tha t s £ VS{d)  and x Vars{d). A
7 7 7

set of equations T =  { x \ = d i , . ..  , xn=dn} is in solved form if each X{=di £ T is in solved 

form, and if Vi ^  j ,  x± ^  Xj.

Once a set of equations are all in solved form, then a loose unifying substitution can easily 

be derived.

7 7
Theorem 6.47. Given a set of equations T =  {aq : S i =d i , . . . ,  xn : sn=dn} in solved form, 

the most general loose unifier p C S U w (Y) is given by a =  {a?i i di [ {}*{si}, • • ., ®i *-*■ 

d\ 1 ( W 5 n } }  where W =  {xu . . . ,  xn }.

P ro o f  (6 .47). Clearly o  is a loose unifier for Y. Let r  be another unifier of Y. Thus for
7

all Xi=di £ T, TXi ~  Td^

If TXi 9̂  d{, define A to be Xx =  x if x £ W, Xx = tx if x £ W. Thus for all X{ — d{ £ T, 

TX{ X{axi), and thus a r .

If TXi — di, then consider p £ 0(di) .  By definition of substitution, X\S(rxj|e) < VS(crxi\e) = 

Si. If e < p then, VS(TXi\€) < VS{crxi\t ) =  {}, thus r  < cr.
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So cr is the most general loose unifier for T. □

A similar substitution can be derived for strict unification, which is omitted here.

The Loose Dynamic Unification algorithm is similar to the standard order-sorted unifica­

tion, modified to allow for the dynamic sort-information to be exploited. This algorithm is 

given in Figure 6.5. The symbol □ is used to represent failure.

( 1 ) Loose Decomposition.
{ M , . . . , 4 ) » ^ / ( 4 , . . . , 4 K } u f  if /  e

{ d i = d i , . . .  ,dn=d'n} U U

( 2 ) Conflict.
{ f ( d 1, . . . , d n)*S=g(d'1, . . . ,d 'm)»S '} \JU  if / ,  g E and f  

□
(3) Trivial Equation.

{d=d} U U 
U

(4) Occurs Check.
{x=d}  U U if £ 6  A , d X  and x E Vars(d).

□

(5) Eliminate.
7

{x : s=d} UU  if x £ Vars(d), x E Vars(U)  and

{x=d}  U {a: —> d}(U) VS(d)  < e  5

(6 ) Intersect.
7

{a; : s=y : s'} U U  if x, y E Vars(U)  and s' M s - -
{ x = z ,  y=z]  U U and z : M j ( 5 , s') is a new variable.

(7) Abstract.
{x  : s = f ( d i , . . . ,  dn)«5} UU \i x € X  x £ Vars(f(di , . . . ,  dn)»S)

{x : s = f (d 1 |  {} , . . . ,  dn |  {})•{*}} U U and S  ^  {s} .

Figure 6.5: Rules for Loose Dynamic Unification.

The Decomposition, Conflict, Trivial Equation and Occurs Check rules are similar to  ordi­

nary statically sorted unification. However, the variable elimination rule, applied when a 

new solved form is found, is modified to cater for the possibility of a right-hand side having 

a dynamic sort less than the sort of the variable.
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The remaining rules carry out the conversion of equations of the form x= d , where x E A, 

into solved forms. This ensures tha t the right-hand term has a dynamic sort less than or 

equal to x. This process is called weakening and analyses the sorts of the right-hand terms 

and weakens them by equating them to a variable of a lower sort if necessary. The Intersect 

rule handles the case where two variables are equated but are of incomparable sorts. They 

are both equated in alternative unifiers to a variable of a maximal common subsort. The 

Abstract rule converts a variable and non-variable pair which are not in solved form into a 

solved form by changing the dynamic sort of the non-variable term, to the variable’s sort, 

and setting all other dynamic sorts to the empty set2.

6 .2.2 C orrectness o f th e  U nification  A lgorithm

7
If the above rules are applied to a unification problem, {d\=d2} say, using a suitable fair 

control which nondeterministically applies rules to the set of equations until no rule is 

applicable to any equation, this will terminate resulting in a set of equations in solved 

form, from which the most general unifier can be derived in a straightforward manner. 

This is formalised in the following theorem.

Definition 6.48. Given a control strategy, and a sequence of sets of equations {I\-}j-e{0..../v} 

for N  application steps of the strategy, set Fj is Descended from set I\-, written I\- ^  Tj, if 

there is a sequence of rule applications under the control strategy tha t converts I\- to Tj .

A control strategy is Fair if for all sequences T0, r 1}.. .  generated by the rules, if a rule M  

can be applied to some candidate Tm then for some n > m, such tha t Tm ^  r n, Tn is 

transformed by the strategy by the rule M, Tn ^  Tn+1.

Theorem 6.49. Given a suitable fair nondeterministic control, the set of rules in Fig­

ure 6.5 forms a complete algorithm for loose dynamic unification. T hat is, given a uni-
7

fication problem To =  {d\=d2} it generates the most general loose unifier cr of d\ and 

d2.

2 Strictly, this Abstract rule is unnecessary, since the most general unifier of the solved forms will perform 
this transformation. Nevertheless, for clarity we retain the rule here.
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P ro o f  (6 .49). The proof is in two parts. First we demonstrate tha t the rules preserve 

unifiers: if T; ^  r t-+1 then / iCSU ^iY i )  — f i C S U ^ ( r l+1) . The second part demonstrates 

tha t this transformation system terminates with a set of equations for some finite 

integer N , in solved form and, by Theorem 6.47, we can generate the most general loose 

unifier for Tjy.

To demonstrate th a t the rules preserve unifiers, consider the rules in turn.

1. D ecom position . If / ( d l5. . . , dn)*S=f(d /1, . . .  ,d/n)*Sf G T; for /  G T-£.d an<i  if f°r 

some substitution cr, crdi ~  ad'v  . . . ,  adn ~  ad'n then cr(/(d1, . . . ,  dn)) ~  a ( f ( d '1, . . . ,  d'n)). 

Thus f iCSU^(T i)  = f iC S U ^ (T i+i), and the decomposition rule holds.

2. C onflict. If f ( d i , . . . ,  dn)*S=g(d[ , . . .  , d ^ )* 5 ' G T for /  /  g G di then no unifier

exists which will make the terms equal.

73. T riv ia l E q u a tio n . If d=d G T, any substitution is a unifier of this equation. Hence
7

the unifiers of T are the unifiers of T — {d=d}.
7

4. O ccu rs C heck. If x=d  G T, x G X  and x G Vars(t ) then there is no substitution 

a  such tha t ox  and ad are identified as ax  will always be a subterm of a t , and no 

unifier exists.
7

5. E lim in a te . If x=d  G T;, x G X  and x 0 Vars{t) then using Eliminate results in r,-+i,

where x = d G r t+i and hence a unifier, <7, of T; and r i+1 must both identify x and
7 • 7 d. Consider another pair di=d2 G Tj. This is transformed into d1—d2 G r i+1. Now

7
every instance of x in di=d2 has been replaced by an instance of d. Thus ad\ =  ad[ 

and ad2 = ad2 and so any unifier of r z- is a unifier of Tj+1.
7

6. In te rs e c t.  If x : s=y : s' G T where s M s', then {x y } is not a well-formed 

E-substitution, but clearly {x z : s", y > z : s"} where s" =  M s(s ,s ')  are unifiers. 

This set is complete as for any other unifier {x i—> d*Si,y  i—> d*Si} will have some 

s i G Si such tha t Si < s  s", and the given unifier will subsume it.

7. A b s tra c t.  If x : s ± f ( d i , . . . ,  dn)*5} G T and /9s" G S  such th a t s" < s, then 

{x  i—> / ( d i , . . . ,  dn)*5) is not a substitution. However, a = {x ^  f (d i  j  {} , . . . ,  dn j  

{})•{$}} forms a loose unifier.

We now prove termination. Let the measure M  on equations be defined as a triple:
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M (d i»si= d2*s2) =  (MinSort(si, s2), | Vars(d\) U Vars(d2)|, ht(d2)})

where

MinSort(s\, s2) = {} if Si =  s2

=  {si} _ i f s 1 < E s2 

=  {«2> if S2 < E St

=  { 5 l , 5 2 }  if S 2 XI S 1

Define the ordering on M  to be the lexicographic combination of the multiset ordering 

over < E, the normal natural number ordering and the multiset ordering over the naturals. 

Clearly this is well-founded. Then let M(T)  be the multiset of these triples on a set of 

equations T, with the well-founded multiset extension of the above ordering.

Clearly Conflict and Occurs Check terminate; Loose Decomposition reduces the multiset of 

depths of terms; Trivial Equation reduces the number of triples in the multiset; Eliminate 

reduces the number of variables occurring equations, while Intersect and Abstract reduce 

the value of MinSort, and thus the rules terminate.

If x = d G T is in solved form and if for all other j/ =  d' G T, if y = x then d =  d' and if 

y ^  x, then x $ d’ then none of the above rules apply to x = d. Thus the rules terminate 

with T in solved form. Then from Theorem 6.47, the most general loose unifier can be 

given. □

Example 6.50. Using the signature given in Example 2.61, the dynamic unification al-
7

gorithm applied to {x : NeList == (y : List @ z : List)•List} results in the most general 

unifier {x : NeList i—>■ (y : List @ z : List)•NeList), which is ill-sorted, but subsumes the 

well-sorted unifiers:

{x i—> ((yi : NeList)@z)*NeList, y i—► y-̂ }

{x i—► (y@(^i : NeList))*NeList, z t—> z^}

□

Example 6.51. If we now reconsider Werner’s Example 6.33, we can see that the
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unification algorithm generates the most general dynamic unifier:

<r =  {y i—► mod2(z : Nat)  • Pos}

This term  is not well-sorted, but note tha t every well-sorted solution can be factored 

through this ill-sorted solution. T hat is to say, given a well sorted solution:

6 = [y : Pos i—► mod2(s2n+1 (0 • Nat)*2n+1) • Pos , z : Pos i-* s2n+1 (0 •  Nat)»2n+1]

for some n, we can decompose this solution so tha t 6 =  £ o a where £ =  {z : Pos > 

52n+i jq # Nat)»2n+1} is a well-sorted substitution. □

6 .2 .3  G enerating  W ell-sorted  U nifiers

The unification algorithm generates the unique most general loose unifier; however, this 

unifier is not in general well-sorted. Indeed, as we have discussed already, there is in general 

no decision procedure for deciding the existence of well-sorted unifiers. However, in practice 

it will be necessary to  give sufficient conditions to decide the well-sortedness of unifiers.

Definition 6.52. The set of most general well-sorted dynamic unifiers is similar to Def­

inition 6.39 A Complete set of well-sorted dynamic unifiers for a pair of dynamic terms 

d i ,d2 on Vars(di) U Vars(d2) C >V C X,  written CWSUy*(di=d2) , is a set of dynamic 

well-sorted substitutions such that:

1. V o e C W S U ^  • Im (a)  n  W =  0

2 . C W S U ^ ( d 1=d2) C U{d!=d2)

3. Vr G U(di=d2) such th a t r  G DSubsts  3cr G CWSUy?(di=d2) • a r.

A complete set of unifiers is minimal, denoted p C W SU yV (di=d2), if Vcr, p G pCWSU^y {di=d2) 

a p => a = w p.

The well-sortedness or otherwise of unifiers can be isolated to the application of two rules in 

the above loose unification algorithm: the Intersect and the Abstract rules, which determine
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the sorts of solved forms. These rules may introduce ill-sorted substitutions. In this section, 

we give some guidelines to the areas where sufficient criteria may be produced to determine 

well-sorted unifiers in special cases.

?
If sorts A  and B  are unrelated then unifying x : A=y : B  results in the unifier {x : A  ■—► 

2 : { A y B}, y : B  i—► z : {A, 5}}, which may be ill-sorted if this intersection is empty. 

The Intersect rule produces well-sorted substitutions when the intersection sorts of the 

introduced new variable satisfies the Semantic Inhabitedness property.

Definition 6.53. Given a specification <S, a set of sorts S  is semantically inhabited if there 

is a term t £ W s{X)  such tha t S  C SS(t) .  Clearly, a set of sorts S  is inhabited if there 

is a well-sorted dynamic term  d £ T>s(X) such that S  C VS(d).  The set of semantically 

inhabited sorts of S  is denoted Inhab$-

This is more general than the syntactic inhabitedness of sorts discussed earlier (Defini­

tion 2.31), and clearly it is undecidable. However, it reduces to syntactic inhabitedness if 

the following criteria is met.

Lemma 6.54. Given a specification S  =  (£ , # ) ,  if Vd £ Ds(X)  • d > L(d), then 

Inhabs =  Inhabz

Proof (6.54). For all d £ T>s(X), SS(d) = VS(L(d)) .  Hence if S  is semantically inhab­

ited, then there is t £ T^{X)  such tha t the LS(t) < S , and thus the sort is syntactically 

inhabited. □

The Abstract rule is even more intractable. However, we do know that all well-sorted 

unifiers can be ‘factored through’ a loose unifier; we can at least determine that a well- 

sorted unifier does not exist when there is no loose one.

Nevertheless, in special cases it may be possible to provide criteria to decide the well-sorted 

unifiers. If no equational theory is provided with the specification, the unification problem 

reverts to th a t of the standard order-sorted theory, with the use of the standard abstract 

rule which analyses the signature to determine unifiers.
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S ta n d a rd  A b s tra c t.
{{a; : s = / ( d i , . . .  , dn)*S} U U } U C

{{zx : «!=<*!,...,*„ : sn=dnyX=f(z1y... yZn)*{s}} \JU
|si, . . . ,  sn —► s' £ £ y }  U C  

if S  s and
Y,Sf  = {w —> s ' \ f  : w —*■ sf £ E A s / < s A w  maximal}
Zi , . . .  , zn new variables.

Figure 6 .6 : Abstract Rule for Standard Well-sorted Loose Dynamic Unification.

It can be shown tha t these rule can be applied to any specification for which least syntactic 

dynamic terms are also least semantic terms.

L em m a 6.55. Given a specification S  = (£, E ), if Vd £ T>s(X) • d > L(d), then the most 

general well-sorted unifiers are generated by the algorithm in Figure 6.5, with the abstract 

rule replaced by the rule in Figure 6 .6 . Note tha t this generates sets of unifiers.

7
P ro o f  (6 .55). If x : s = / ( d 1?.. .  ,dn)»5 and S  ^  5 , a most-general well-sorted unifier 

a  is such tha t ax  ~  f { a d \ , . . . o d n)*S and VS{ax)  = s > SS{ox) ,  as a  is well-sorted. 

However, as Vd £ V${X)  • d > L(d), then SS{ax)  =  CS(L(ox)) ,  so 3 5 l5. . .  , s n —> s' £ 

such tha t S S ( a x ) =  s' and so VS(adi )  = s i , . . .  ,V S (o d n) =  sn . So a is also a well-sorted
7 7 7

most-general unifier of [z\ : 5 i = d 1?. . .  , zn : sn=dn, x = f ( z 1y. . . ,  2n)*{5}}> where Zi , . . .  , z n 

are new variables. □

This rule can generate several alternative unifiers, each with its own candidate sets.

It still remains to be seen what is to be done in cases which fall outside these criteria. 

In [HKK93] the unification process is aborted when a term  is encountered which does not 

already have a dynamic sort of at least tha t of the variable. T hat is the A bstract rule is 

replaced by th a t in Figure 6.7.

If the terms being unified are well-sorted, this rule will guarantee th a t the unifiers and 

unified term s are well-sorted also, but it may result in well-sorted unifiers being missed. 

Sufficient criteria to guarantee the completeness of this method are verified during the 

completion process.
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Abstract for [HKK93]

{z : s = f ( d l t . . . ,  dn)*S} U U if x £ X  x £ Vars(f(di , . . . ,  dn)*S)
□ and S  £  {s}.

Figure 6.7: Abstract for [HKK93]

Alternatively, it may be useful to generate the most general loose unifier as here, and 

the upward strong maximal unified term, and later analyse them to determine well-sorted 

instances.



Chapter 7

Dynamic Order-Sorted Rewriting

In this chapter we define the concept of rewriting using dynamic terms. For simplicity, we 

do not consider rewriting modulo equations.

7.1 Dynam ic Rewriting

The concept of rewriting using dynamic rules can be sketched as follows. Dynamic terms 

record the known minimal sorts of terms. Rewriting changes this sort information dy­

namically; each time a rewrite occurs extra sort information can be gathered from this 

application of an equational inference step. Thus rewriting not only changes the terms, 

but also manipulates the sorts of terms.

Definition 7.1. Dynamic Rewrite Rule.

A dynamic rewrite rule is a directed dynamic equation, written VY./—>-57* such th a t V S  (I) U 

VS(r )  C S.  When the set of variables Y  =  Vars(l) U Yars(r), then we may omit this set. 

If /, r 6 X><s(A')and S  C SS(l)  then the rewrite rule is well-sorted.

As dynamic rewrite rules are dynamic equations, the translation into T^-(A')-equations is

159
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as Definition 5.47. The rewriting relation is dependent on the definition of matching. The 

most general form using well-sorted terms is to use semantic matching.

Definition 7.2. Semantic Rewriting.

Given a set of dynamic rewrite rules R , a dynamic term d rewrites to d' with rule I—*$r E R , 

if there is a well-sorted dynamic substitution o, and path p E 0(d),  written d— dr, 

such th a t d\p ~  ol  and d! =  d[p<—or].

This definition is analogous to the — defined in [Wer93]. If a subterm is of the same 

semantic sort as an instance of the left-hand side of a rule, the rule can be applied. However, 

semantic matching is undecidable, and thus so is this relation. Consequently, we replace 

this definition with one using weaker matchings. The following defines a rewrite relation 

for each form of matching.

Definition 7.3. Dynamic Term Rewriting.

Given a set of dynamic rewrite rules R,  a dynamic term d X-term-rewrites to d' by rule
X  TVY.l—>sr € Ri where (f)(1) /  <f>(r), written d— pd' , if there is a dynamic substitution 

<j : Y— and path p E 0(d),  such tha t there is an X-match IQ? d\p and d' =  

d [ p ^ o r \ i pS U V S ( d \ p).

Note th a t we exclude rewriting via a rule which has terms with the same resolvents. Such a 

rule is valid in the set of rules, and can be non-trivial since the dynamic sorts of the terms 

may be different, but its use for term rewriting would lead to non-termination. Subscripts 

are omitted when the context is clear.

Example 7.4. Given the specification S  as follows:

Sorts: A B

Subsorts: A < B

Operators: a : —> A, b : —► B, g : B  —> B

f  : B ^  B  g :  A -> A

Equations: b =  a

f ( x  : A) = x
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The equations are converted to dynamic rules, by taking the canonical set of well-sorted 

dynamic equations, as in Definition 5.48. These equations are then oriented left to right, 

to give:

b*B — ^  a*A  

f ( x  : A) •£? —>a x '• A

Thus we have a rewriting proof under semantic rewriting tha t

f (g(b*B)*B)*B  — f (g(a*A)*B)*B — g( a*A) *A

using the semantic match {x i-+ g(a*A)*A} with the second rule. However, there is no 

dynamic term-rewriting proof, since the substitution for the second rule to  apply would 

be {x : A  i—► g(a9A)*B}  which is not sort-preserving. However, the term  g(a*A)*A is 

well-sorted via sort-propagation. □

In standard rewriting theory the use of the least sort is implicit when checking the well- 

sortedness of a substitution. In the dynamic rewriting theory, as sorts are explicitly carried 

as part of the terms, the recalculation of sorts needs to be carried out explicitly. This 

motivates the following definition.

Definition 7.5. Static Sort Rewriting (Sort Propagation).

Given a signature S, a dynamic term d statically sort-rewrites (sort propagates) to d' 

written ^  ^d'  if 3p E 0(d)  such tha t d\p = f ( d x, . . . ,  dn)*5, ( ( s i . . .  sn), s) E

ranks( f) ,V S(d1) < S i,. . . ,  V S ( d n) < sn and 5  £  s. Then d' = Pp,((Sl...Sn)>s)(d).

In general we shall refer to this relation as sort propagation, to prevent confusion with 

dynamic sort-rewriting below.

Example 7.6. Example 7.4 revisited. Now we can perform the rewriting steps: 

f (g(b*B)*B)*B — f(g(a*A)*B)*B  —̂  f(g(a»A)»A)*B — g(a*A)*A

□

However, rewriting is still not complete.
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Example 7.7. Given the specification S  as follows:

Sorts: A B

Subsorts: A < B

Operators: a : —> A, b : —+ B

f  : B  -► B

Equations: a = b

f ( x  : A) = x

In standard order-sorted rewriting theory it is not possible to orient the equation, a —► b 

and then give a rewriting proof of f(b) = b. However, converting it to a dynamic rewriting 

system gives the following dynamic rules.

a*A b*B

f ( x  : A)*B x ' A

and there is a direct rewriting proof using semantic rewriting.

f(bmB)mB b%A

with the semantic match {x i—> &•A}  with the second rule. However, there is no dynamic

term-rewriting proof, since there is no (weak/strong) match of the left-hand side of either
* T

rule on any subterm of f (b*B)*B.  Indeed, there is no proof of f (b*B)^B <— ► 6#A, as

there is no d E T>s(X) such tha t d—*Tf(b*B)*B.  However, we do have the dynamic rewrite 

proof: f (b*A)*B  — b*A. □

This example demonstrates tha t rewriting is incomplete, even combined with sort-propagation. 

The term b*B is a normal form with respect to the —>T relation, but this term is not in 

S-normal form; there is a well-sorted term, 6#A E V s (X ) ,  such that b*A < b%B. However, 

there is no proof of b*B—>Tb*A. This rewrite step can be achieved by rewriting using a 

right-hand side of a rule. This motivates the following definition.

Definition 7.8. Dynamic Sort Rewriting.

Given a set of dynamic rewrite rules R , a dynamic term d X-sort-rewrites to  d' written 
X s a pd' where d' = d [p S , if there is a rule \/Y.l—>sr € R, a dynamic substitution
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<7 : Y —>X>s(A'), p E 0(d)  such tha t there is an X-m atch rQx d\p and VS(d)  ^  S.

Thus extra sort information is derived by matching using right-hand sides. Note tha t

we can sort-rewrite by a rule /—>57* where I ~  r. Sort rewriting does not change the

operators of a term, only its dynamic sort, replacing the dynamic sort by a lower one. In

general this relation is called Sort Rewriting, without confusion with sort propagation. Sort
* s

normalisation is the reflexive-transitive closure of the sort-rewriting relation, — ► . For any 

finite signature, and finite set of dynamic rewrite rules, sort-normalisation terminates, since 

when a rule sort rewrites a subterm, it cannot rewrite at th a t path again.

L em m a 7.9. If d*A E V z ( X )  is sort-rewritten at root, d*A-^^Ucry(Ĵ d*B  then B  < C.

P ro o f  (7.9). Direct from the definition of sort rewriting. □

Rewriting thus has three components, combined into one dynamic rewriting relation.

Definition 7.10. Dynamic Rewriting

Given a set of dynamic rewrite rules, the dynamic rewriting relation with respect to  a 

matching algorithm X, —>x , is given by —>X’T U —*x,s  U — When the (Term, Sort, or 

Propagation) rewriting takes place at position p we write —>x .

Depending on the variety of matching used, this relation is weak, or upward strong, down­

ward strong or strict, as denoted in the following table.

-*w Weak Matching
_^u Upward Strong Matching

— Downward Strong Matching

— >St Strict Matching

Due to the inclusions of the matching algorithms described above, we have the following 

relationship between the rewriting relations on well-sorted terms.
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If the matching used is unim portant or obvious in context, we write —>D.

The dynamic rewriting relation is strictly more general than dynamic term rewriting as we 

can see by reconsidering the previous example.

E x am p le  7.11. Example 7.7 revisited. We now have the dynamic rewrite proof:

f (b*B)*B -+s  f(b*A)*B  —>T b*A &•£

f (b*B)*B  does not match with any left-hand side, but will sort normalise by the first rule. 

This reduces the term to one which will term rewrite, producing the dynamic term b*A 

recording th a t b has semantic sort A. Thus we now have a rewrite proof. □

Thus we do not need the compatibility condition (see Definition 2.67) on the rewrite relation 

to ensure its completeness; this is proven in the next section.

For a set of dynamic rewrite rules R  we write its dynamic rewriting relation as -►g, or 

when it is clear from context tha t it is the full rewriting relation tha t is used, then the 

superscript may be dropped. The following relations are also defined.

• Inverse relation: d D<r-d' if df—>Dd.

• nth Iteration: d^-+Dd! if 3d0, . . . ,  dn such tha t d — d0-^ Ddi • • • dn_ i ^ Ddn = d'.

• nth Inverse Iteration: d D£- d' if 3d0, . . . ,  dn s.t. d — d0 D̂ d i • • * dn_i D*—dn — d!.

•  Transitive Closure: d ^ +  d' if 3n > 0 such tha t d - ^ - ?  d!.

*  D  _L D
•  Transitive-Reflexive Closure: d— > d' if d — ► d! or d =  d!.

D efin ition  7.12. Given a set of Dynamic Rewrite Rules R, then d 6  V ^ X )  is in normal 

form if there is no rule l—>sr, path p and substitution <7 , such that d-^f_^sT Qd! . A normal
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form of a term d, d I r , is a term such tha t d — ► d and is in normal form. R  is 

normalising if every term has a normal form.

We also define dynamic rewriting with respect to a specified set of dynamic terms.

Definition 7.13. Given a set of dynamic rewrite rules J?, and a set of terms E  C V ^ ( X ) ,

R  rewrites in E  is the relation {(d, d') \ d,d' £ E  and d —>D d'}.

The results which follow are with respect to the set X>e (X) unless otherwise specified.

The dynamic rewriting relation is a well-defined reduction relation on dynamic term s which 

is stable with respect to substitutions and monotonic with respect to subterms.

Lemma 7.14. Stability of Dynamic Rewriting.

If d—P d ’ then for any dynamic substitution A, Ad—PXd'.

Proof (7.14). Consider a term-rewriting step with respect to X -matching. If d—*J_+sr apd' 

then lQad\p and d! =  d[p<— ar] l p S  U VS(d\p). Then as crl ~  d\p, (A o a)l ~  A(d|p), so 

l^XoPlp and \ d P f _ ^ sr Xoa pdi where dx =  Ad[p<— (A o a)r] | P5U  V S ( \ d \ p). By lemma 5.24 

VS(Xd\p) = VS(d\p) if p £ 0(d)  and d\p 0 X . For any e, Ad[p+— Ae] =  Ad[p*—e], so 

di =  Xd[p<— ar] \ p S  U VS(Xd\p) = Ad'. The proof for a dynamic sort-rewriting step is 

similar, and sort-propagation is trivial. □

Lemma 7.15. M onotonicity of Dynamic Rewriting.

If d i - ^ srvTpd2 then Vd £ V ^ (X ) ,  and Mq £ 0 (d), d[q^d1]-^f_,sraqpd[q^-d2].

Proof (7.15). Consider a term-rewriting step with respect to X-matching. If d i—*f_̂ . a pd2 

then lQadi\p and d2 =  di[p^ar] [pS  U VS(d i \p) . Then as al ~  d \ |p, al ~  d[q*—di]\q̂p and 

thus dPf_+sT (T q pd' where d! =  d[q<-di][q.p<-<rr]lqmPS\J  V S (d [ q ^ d 1]|9.p). Since q < q.p:

d' =  d[q^-d1[ p ^ a r \ i pS \ J V S ( d 1\p)] =  d[g<— d2]

A similar proof follows for dynamic sort-rewriting, and sort-propagation is trivial. □

Dynamic rewriting either reduces or leaves unchanged the top sort of a term.



166 Dynamic Order-Sorted Rewriting

Lemma 7.16. If is a dynamic rewriting relation then if d1-^j i d2, V S ( d i )  >£ V S { d 2). 

Proof (7.16). Trivial from the definition of term and sort rewriting. □

Both term and sort rewriting preserve the well-sortedness of terms.

Lemma 7.17. If d1} d2 E D ^ ( X ) : and «S =  (E, <&{R)) and R  is a set of well-sorted dynamic 

rewrite rules then if d\  E T>s(X)  and if d i ~ ^ R d 2 then d2 E T>s(X).

Proof (7.17). For this proof, we need only show that the lemmas hold for the one step 

relations — ^  and — wi th respect to X-matching.

Assume th a t d i —y^l_^ d2t tha t is term rewrite at root. Then d2 =  or  | e S  U V S ( d \ )  

and i Q p d i .  If d 1 E V s { X ) ,  and by definition /, r E T>s{X),  so o  must be well sorted via 

Lemma 6.5 and so by Lemma 5.32, or  £ T>s(X) ,  and since S  is a valid set of sorts for r, 

and V S ( d i )  is a valid set of sorts for then ( r r |e5  U V S ( d i )  E T>s{X) .

If d i —*0tl_+ d2l where p is not root, then d2 =  err] [pS  U V S (d 1\p). dx\p E T>s(X)  

and /, r E T>s(X) ,  and thus or  £ T>S ( X)  such that <f>(or) = r  <t>(di\p). Hence, di[p<—or] E 

T>s(X) .  Also as S  are valid sorts for r, and VS{d\)  is a valid set of sorts for di\p, then 

di\p<—crr]J,p5U V S ( d 1\p) £ V S (X).

Similarly for sort rewriting. If d i —*fj_+ d2, then d2 = d\  [p S.  As S  is a valid sort for 

or  then d-i [p S  E V S ( X) .

From previous lemmas sort propagation preserves well-sortedness. □

Example 7.18. If we have the specification:

Subsorts: A  < B

Operators: a :  —► A f  : A A  —► A

b:  -> B  f  : B  B

Equations: b = a

Then f ( x  : A,b*B)*A  E T>s(X), and f ( x  : A, >Tf ( x  : A, a#A)#A using the rewrite
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rule b9B—>Aa*A, and f ( x  : A, <z*A)»A £ T*s{X). Note th a t a strict match is used here, so 

this follows for all varieties of matching. □

However, the converse does not hold for all types of matching: it is not the case th a t if 

d2 E T>s(X) and if d\ — d2 then d\ E Vs{X).

Example 7.19. If we have the specification:

Sorts: A B

Subsorts: A < B

Operators: b : —> B g : B  —> B

Equations: g(g(x : B )) =  x : B

Then g(g{b*B)*A)*B 0 T>s(X). However:

using the rule g(g(x : B)*B)*B—>b x : B  with an upward strong match. □

Thus problems can be caused if there are invalid sorts occurring in the redex of a reduction. 

However, we can show the following property.

Lemma 7.20. Given a set of well-sorted dynamic rewrite rules R , if d i—*p d2 and d2 £ 

V s ( X ) ,  then there is a dynamic term d[ £ T>s{X) such tha t d'l -*p d2 and <f)(d\) = 

Further, if strict or downward strong rewriting are used, then di £ V s (X ) .

Proof (7.20). If then d2 = dx\p^or]  i p S  U V S ( d 1\p). So d2- ^ _ ^ sltatpd[

where d[ = d2[p<— crl\ J,p S  U VS{d2\p) and by previous lemma d[ must be well-sorted. 

Clearly, d[-+f_+srt(rtpd2, and <f>(di) = <f>(d[).

Clearly, in the case of the sort-rewriting and sort-propagation, as the sort of the term  is 

reduced in either case, if d2 £ T>s(X) then d\ £ T>s{X).

For strict term-rewriting d\\p =  crI, or for downward strong rewriting di\p > crl. In either 

case, ol £ T>s(X), then d\ \p £ T>s(X), and since d2 £ T>s(X), then so is d\. □
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However, a property of upward strong dynamic rewriting not shared by downward strong 

or strict is th a t it respects the approximation relation.

Lemma 7.21. Term Rewriting. If di,d2 E d\ t> d2, and di—̂ J^ d^ using

weak or upward strong rewriting, then there is some substitution o' , and dynamic term df2 

such th a t d2—>T—>sr a>lPd2 and d[ > dl2.

Sort Rewriting. If d1?d2 E dx > d2, and d[ using weak or upward

strong rewriting, then if VS{d2\p) ^  5 , there is some substitution o', and dynamic term d2 

such tha t d2—*f_i. , d,2 and d[ > d2, and if VS{d2\p) < S , then d[ > d2.

Proof (7.21). Consider the case of weak term-rewriting. IQY di\p then d\\p ~  ol, 

and for any q such tha t l\q E X ,  x q say, then crxq =  d i|p.g and s(£g) > VS(di \p.q). 

However, as dj > d2 then s (xq) > V S ( d 1 \p-q) > V S (d 2|p>9) and therefore the substitution 

a' =  {xq i—► d2\P'q}i\q£x  is a well-sorted dynamic substitution and thus d2\p ~  o'l, ICWd2\p 

and so d2—>Dd2. For upward strong matching, note tha t if IUPdi and d2 < d\ then l n u d2.

Now d\ = di\p^~or] [p S  U VS(di \p) and d2 = d2[p<—or] [PS U  VS(d2|p) Clearly, d[ ~  d2, 

since d1 ~  d2. Consider paths q in d[. If p m q, then d[\q = di\q > d2\q =  d2\q. If p < q, 

q = p.p' say, and p' is at position at or below a variable in r, then d\\q is the result of the 

substitution and hence is a subterm of d\. d2\q is the equivalent subterm in d2, and hence 

d[\q [>d2\q. If pf is a non-variable position in r, then d ^  =  or\p> and d2\q =  <r'r|p/, and thus 

VS{d’x\q) = VS(r \p,) = VS(d '2\q). If q = p then VS{d[\q) = S U V S ^ )  > S u V S ( d 2\p) = 

V S (d 2\q). If p > q then d[\q = d\\q > d2|g =  d2\q. Thus d[ > d2.

A similar proof exists for sort-rewriting, with the observation that if V S (d 2\p) < S , then 

since V S (d 2|p) < VS(di \p) then VS{d2\p) < VS(di \p) U S  — VS(d'1 |p), so d[ > d 2. □

This property has already been shown for sort propagation, in Lemma 5.43.

Lemma 7.22. If we have dynamic substitutions w < 6 and Od — > d', then ird — ► d" 

and d" < d'.
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Proof (7.22). If 7r <  0, then V# £ Dom(ir), irx <  Ox. Hence ird <  Od. We need only 

show the lemma for one step rewriting. Given a term-rewriting step Od-+f_^.sr a pd' , then, 

for each path q such tha t l\q = x £ X , VS(Trd\p q̂) < VS(0d)\pq < s(x).  Form a matching 

substitution o'  such th a t o'x =  7rd|p.g, and rewrite Trd—>J_̂ . , d". Clearly o' < o , and

d" <3 d! follows. Similar proofs exist for sort rewriting and sort propagation, except if 

Z\S(7rd|p) < S  where S  is the sort to be added, then no sort-rewriting step (respectively 

propagation step) exists, in which case let d" =  ird and the result follows. □

   ̂ D
Corollary 7.23. If d1?d2 £ V ^ X ) ,  di > d2, and d\ — n-+sri<TiP d[ using weak or upward 

strong matching, then there is a d'2 such tha t d2 d'2 and d[ > d2 and o > o'.

Proof (7.23). Immediate from the definition of < and the previous Lemmas. □

We also have the following similar result.

Lemma 7.24. If d >B^(d')  and d— for weak and strong rewriting, then d'—►/__>sr.)Pdj 

and di t> B^(d[).

Proof (7.24). We note tha t from the definition of canonical matches, if IQ# B ^ d ' )  then

lQ%d', and so the lemma follows from Corollary 7.23. □

To give a notion of the replacement of equals for equals, we use the reflexive symmetric 

transitive closure of —>D restricted to well-sorted terms.

Definition 7.25. Given a set of dynamic rewrite rules R, let <— ^  be the symmetric 

closure of — restricted to well-sorted terms. That is

di <-^->d2 if and only if d1?d2 £ V s ( X )  and d i—>-#d2 or d2-+ftdi 
R

7h j -
We write <— ►, for the n-fold transitive closure of <— ►, <— > for its transitive closure, and 

for its transitive reflexive closure.

One aspect of dynamic rewriting which differs from standard rewriting theories is th a t this 

relation is not the same as the similar relation — U — , since the la tter relation is only
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symmetric in the case of strict rewriting.

Example 7.26. Considering the specification of Example 7.18, note tha t a*A<— >b»B 

since &• £— but  it is not the case tha t a*A-^R[jR-\b*B.  □

However, it is sufficient to consider for the soundness and completeness of rewriting 

for any matching algorithm. The notation is extended to allow the relation to stand over 

sets of dynamic equations.

Definition 7.27. Given a set of dynamic equations E,  let R(E) = { l ^ s r K =s r £ E}.  

Then we define: <— = <— >/?(£)> an(l similarly for P ^ e  an(l *— *E’

Not all dynamic terms can be reached using these relations from least-syntactic forms. We 

use these definitions to define the following subsets of the well-sorted dynamic terms.

Definition 7.28. Given a set of dynamic rewrite rules R, the set of Reachable D ynam ic  

Term s SR {X)  is given by:

SR (X)  =  { d \ 3 t e  T ^ ( X )  • L(t )  ^ U R d}

Further, the set of R ew rite Reachable D ynam ic Terms SR {X),  is given by:

SR {X)  =  { d \ 3 t e  T ^ ( X )  ■ L( t )  - U R d}

7.2 Soundness and Completeness of Dynamic Rewriting

In this section we give a version of Birkhoff’s theorem which is suitable for the dynamic 

rewriting framework. This demonstrates tha t dynamic rewriting is sound and complete 

with respect to the dynamic order-sorted equational logic presented in Chapter 4. The 

properties of soundness and completeness hold for all the varieties of rewriting.
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7.2 .1  Soundness

If we restrict our dynamic rewrite relation to well-sorted dynamic terms then we are guar­

anteed to make only correctly sorted equalities between underlying ordinary term s and 

only in sorts which are valid for those terms. This is expressed in the following soundness 

result. Since weak rewriting is the largest of the (decidable) rewrite relations defined above 

it suffices to consider weak rewriting for the soundness result.

* wTheorem 7.29. Given a specification S  = (E, J5), and di,d2 G V $(X )  if di <— d2, 

and 5 G VS(di )  U V S (d 2) then E  hE <j>(di) = s (f)(d2).

Proof (7.29). It will be sufficient to show tha t the one-step relation <— ►#(£) preserves 

the property. The transitive closure will follow by transitivity of E  h E .

We give the proof for di~+fid2, where p £ 0(d{) .  A similar argument holds for d\p^-d2. 

We consider cases on the length of path where rewriting takes place.

Sort Rewriting at Root. di—*f__>.s r t d\ | e 5  for some l—>sr £ where r C ^ d i .

Thus Vs G 5 , E  b E cj)(l) = s <j>(r), by definition of dynamic equations, and by substitutivity, 

E  b E o(<j>(l)) =s <r{<f>(r)). Since r \ z j d 1: <j>(or) = f f a )  and thus E  b E <f>(di) =£s(^(d1)) 

o(4>(r)) by reflexivity. Thus by symmetry and transitivity E  h E ^(^ i) =s ^ (^2)- Also if 

s G T>S(di | e 5 ), but s ^  S', then s G VS(di) .  Then since d\ G X\s(A), so Vs G VS(di ) ,  

3 1 G TE(A) such tha t E  h E t =s (f>{di) and thus E  b E <f)(di) = s <f)(d2).

Term Rewriting at Root. d i ~ r a edi[c<— or] j.e S  U V S ( d i \ t ) for some l—>sr € E , 

where i Q ^ d i .  Thus di~+T or [t S  UX>*S(d1) =  d2. Consider s £ S.

If o  is the identity substitution, then E  bE (j>(l) =s (f>(r), and thus E  h E <f>(di) = s <f>(d2). 

If o  is not the identity, then since o  is well-sorted, then (f>(o) is a >V-substitution and 

using the substitutivity rule E  b E o(cf>(l)) =s o(cf>(r)), and since <f>(di) = o(4>(l)) and 

4>(d2) = o(<f>(r)),E b E <j>(dx) = B </>(d2 ) .

If s £ V S (d 2), but s ^  S  then s £ VS(di) .  Then, if s' £ VS(di ) ,  and d\ is well- 

sorted, for some t £ TE(A) E  bE t =si <f>(di). From the above, for s £ V S  (or) we have
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E  b E (f)(di) = s </>(d2). Thus by transitivity, E  bE <j)(di) =s> 0(d2).

S o rt P ro p a g a tio n  a t  R o o t. If di~>fd2, let d\ =  / ( d i |1}. . .  > |fc)®̂ i, then there is a 

rank for /  in E, /  : s'1?. . . ,  s'k^ s '  such tha t 3sj £ V S (d 2\j) which s i . . .  sk < s j , . . . ,  s'k and 

VS(d \ )  ^  s'. Since also Vj -E  bE d\\j = s d2|j, then by the Congruence rule E  bE d1 = st d2. 

Again if s £ VS(di ) ,  then E  bE dj =s d2 since di is a well-sorted term.

In d u c tio n  S tep . Assume the theorem holds for dynamic rewriting at paths of up to 

length n. Let dx =  f ( d i \ i , . . . ,  dj and p be a path of length n +  1, then there is a

path q of length n such tha t for some 1 < i < k, p = i.q. If d i—>^d2, then dj_ |t-—►̂?d2|t-. By 

the induction hypothesis, Vs £ VS(d\\ i)  • E  h E 4>(d\\i) =s <j>{d2\i). Hence, by Congruence 

Vs £ CS(d1) • E  bE ^(dj) =s (f>(f{di\h. . . ,  d2|t-,. . . ,  d1 |Ar)*^i)• n

7 .2 .2  C o m p le te n e s s

The dynamic rewriting relation restricted to well-sorted dynamic terms is also complete. It 

suffices to prove completeness for strict rewriting as this is the smallest rewriting relation.

T h eo re m  7.30. C o m ple teness o f  D ynam ic  R ew riting .

Given a specification S  = (E, E ), and R  = \P(E ) then Vti, t2 £ TE(A) if for some s £ S%:

e  hE vyiti =s t2

then

S tL(ti) L (t2)

where there exists a chain of intermediate terms di £ T>s(X) such that 

L(ti)  = dx *— d2 <— iff • • • «— yfl dn_! i— dn = L(t2) 

and for some d;, s > VS(d{).

Completeness is proven by induction over proof trees in the equational logic. 

P ro o f  (7 .30). Assume th a t the strict rewriting relation is used.
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Base Cases.

Reflexivity: E  b E VY.t = s t where t : s then L(t) L(t), and if t : s, then £S( t )  < s

and so VS(L( t) )  < s. Note tha t this is trivially a strict match.

Direct Derivation: If VY.ti =  t2 £ E  then E  b E VY.ti = s t 2 for all s £ S  =  CS(ti)  U

CS(t2). Let I = L(ti),  r = L( t2), then l—*sr £ ^ ( E )  and

L ( h ) - * U s w L { h ) [ ^ H t 2) ) i t S  = L(t2) U S  

where 1 is the identity substitution, and also

z,(i2) - f _ sri4,ei ( t 2) l ' S  =  L ( t 2) u s

These are both strict rewritings, so we have:

thus L(ti) L(t2) and we are done. Note the crucial role of sort rewriting in this step:

without it the equivalence cannot be established.

Induction Steps.

Symmetry: Assume the theorem holds for E  hE VY.ti =s t2, so L(£i) —* L(t2), and

there is an intermediate term d{ such tha t VS(di) < s. Consider the symmetric inference 

E  b E VY.t2 =s ti. Since the relation is symmetric, each step of the chain can be 

reversed, so L(t2) *— > L(ti),  and as the same terms are in the chain, di is in the chain.

T ran sitiv ity : Assume the theorem holds for E  b E VY.ti =s t2, and E  h E VY.t2 = si t3, 

so L(ti)  L ( t2), and there is an intermediate term di such tha t VS(di) < s, and also

L(t2) <— > L(£3), and there is an intermediate term d'■ such th a t VS(dj)  < s’. Consider the 

transitive inference E  b E VY.ti =s t3. Since the relation is transitive, L(ti) <— >■ L(t3) 

with intermediate terms the union of the two sets of intermediate term. Hence, di is an 

intermediate term such th a t VS(di) < s.

Congruence: Assume the theorem holds for E  bE VY.ti = Si £'■, for i =  l . . . n s o  for each 

i, L(ti) L (£'■), and there is an intermediate term d^{ such th a t VS(dij i) < Si. Consider

the congruence inference E  b E VY./(£i,. . .  tn) = s f ( t [ , . ..  ,t'n) where (W,s) £ ranks(f) 

and (s1?. . .  ,5n) < W.  Note tha t since diji is an intermediate term for L (tJ  L(£j),
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L{ti) dijt <-— > L(t[). Hence we can generate the chain of dynamically equivalent terms: 

/(L (* i) ,. ..  ,L(*n))»A m  f ( d l j l , . . . , L ( t n))mA

i * f  {^lji ? ^ 232 * ' ' ’

< • • • 5 dnjn)*A

/ (d iji, • • •, dnjn)• A U B  U {s}

S<- f ( d ljlJ. . . , d njn)m BUA

f  (^iji 5 • • • j dnjn)*B

■+ / ( L f t ) , . . .  , £ ( £ ) ) • £

where A =  £«S(/(£1?. . .  , t n)) and B  = CS(f( t 'v  . . .  ,t'n)). Note that 

f ( d l j l} . . . , d njn)9A «  f (L ( t [ ) , . . .  ,L(t'n))%A

m  f ( d l j v . . .  ,dnjn)* A \JB  

and similarly for: f ( d l j i : . .. , dnjn)*B / ( d ^ , . ..  , dnjn)*B U A.

Thus f ( L ( t 1) , . . . , L ( t n))*A / ( Lf t j ) , . . . , wi t h intermediate term di such 

tha t 2>5(dt) < 5.

S u b s titu tiv ity : Assume the theorem holds for E  VY.£i = s t2, so L{t \ ) L(t2),

and there is an intermediate term di such tha t VS{di) < s. By the substitutivity rule 

E  I-e \/Y.cr(ti) = s o ( t2) where <7 is a E-substitution. Note by Lemma 4.24, only E- 

substitutions need be considered. Let p E D Subs ts , such tha t V# E X.px = L(ox)  if 

x E -Dora(cr) and px = x if x $ Dom(o). Then V£ E T%(X).L(crt) = p{L{t)). So

L(ti)  «— ► d\ *— ►... *— > di <— >... <— ► X(i2)

Then by stability of strict rewriting:

L(oti)  = p(L(t-i)) <— >pdi <— ►... <— >pdn— ► ...  <— >p(L(t2)) = L(o t2)

since p is a well-sorted substitution. Hence L(oti)  L(<j£2), and VS(pdi) < s. □

\
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We can prove the following lemma concerning the dynamic sorts of terms.

Corollary 7.31. Given a specification S  = (E,E),  and £1?£2 € T^{X)  if E  b^ £x = s t2, 

then 3d E Vs(%)  such tha t L{ti) d, L(t2) d, and s >£ VS(d),  for all

dynamic rewriting relations.

Proof (7.31). Directly from the completeness of the dynamic equivalence relation. □

7 .2 .3  B ir k h o f f ’s T h e o re m  fo r  D y n a m ic  R e w r i t in g

Thus there is a version of Birkhoff’s theorem for dynamic rewriting of any kind: the relation 

generated by the equational logic and tha t generated by replacing equals by equals are in 

a strong sense equivalent over well-sorted terms.

Theorem 7.32. Birkhoff’s Theorem for Dynamic Rewriting.

Given an order-sorted specification S  =  (E, E ) , the set of theorems

TE = {t = t ' \E \ -E t = s t'} 

is the same as the set of equalities resulting from replacing equals by equals,

Td  =  {4>(d) = <f>(d')\d <-̂ ->\2 (e) d' where d,d' E T>s{X)}

Proof (7.32). Immediate from the soundness and completeness of □

Thus the relation can be used for proofs in the equational logic. However, this

relation is too general for constructing automated proofs as it has too large a search space 

and there is no control over its search. It is impractical to search for appropriate interme­

diate ‘peak’ terms. It would be preferable to use a rewriting relation only, and showing 

tha t the rewriting relation is strong enough to contain rewrite proofs of all equalities is the 

subject of the following sections.
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7.3 Termination of Dynamic Rewriting

In this section the termination of the dynamic rewriting relations is discussed. It is assumed 

th a t any of the dynamic rewrite relations apply here.

Definition 7.33. Given a set of dynamic terms E  C V ^ ( A )  and a set of Dynamic Rewrite 

Rules R , then the associated term-rewriting relation —>D terminates in E  (is well-founded 

in E) if there are no infinite chains of dynamic terms {d;} such tha t

d 1 ^ D d 2 ^ D d 3 ^ D d i ^ D - - -

such th a t d{ E E.

For example, —>D terminates in T>s(X) if there are no such chains contained within T>s(X). 

A conventional definition of a termination ordering applies.

Definition 7.34. A well-founded relation > on X)e (A) is a dynamic termination ordering 

if it has the following properties:

1. Monotonicity. V/ E Ty  and S  E IP(Sy),  if di > d2, then 

/ ( • • . , di r . . ) • £ > / ( . . - ,d2, . . • )•£ .

2. Stability. V<r : A —►De(A'), if d\ > d2, then ad\ > ad2.

An additional property of dynamic termination orderings is as follows.

Definition 7.35. A dynamic termination ordering > is coherent modulo sort if given 

di, d2 E such tha t d\ ~  d2 we have for any d E such tha t dqkd\:

1. if d > di then d > d2.

2. if dx > d then d2 > d.

As mentioned above, sort normalisation and propagation terminate given a finite signature. 

Thus ordinary term-orderings can be used to establish termination.
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Definition 7.36. If > e on the sorts of S  is a well-founded relation, and given a well- 

founded relation >t on Tg-(A'), then the dynamic extension of >t , >d on is:

d\ >d if and only if 4>{d{) >t (f>(d2) or d4 > d2

Further, we write d\ >t d2 if <f)(di) >t 4>{d2).

Lemma 7.37. Given a well-founded ordering >t on T ^ T ), then the dynamic extension 

of >t to T>y(X) is coherent modulo sorts.

Proof (7.37). Immediate from definitions of dynamic extension and ordering coherent 

modulo sorts. □

Lemma 7.38. For a well-founded relation >t on T ^ ( X ) ,  the dynamic extension to 

Vy { X)  is also well-founded.

Proof (7.38). Note that if d\ t> d2, then <j)(di) = <j)(d2) so <j>{dx) ^ t <j>{d2) and also vice 

versa. Thus is the disjoint union of the two well-founded relations on T>y{X). Assume 

tha t there is an infinite chain in >«*.

d\ >d d2 >d d$ > d d 4 >d . • •

since for a finite signature t> is well-founded, then there are finite subchains in l> within 

this chain, such as:

d{~i ^ t  d{ t> di^.\ t> ... d{^.n >% d{4.n r̂ \

Since >d is coherent modulo sorts, we can replace this subchain by >t di di+n+

If this replacement is done to all subchains in t>, then we result in the infinite chain in >t :

d{1 s ’ t di2 s 't di3 t dii >^ . . . 

which contradicts the assumption tha t >t is well-founded. □

Theorem 7.39. Given a termination ordering >t on Tg-(A'), the dynamic extension >d 

to T>y(X) is a dynamic termination ordering.

Proof (7.39). >d is well-founded from Lemma 7.38, and stable and monotonic from the 

stability and monotonicity of >t and t>. □
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Note also th a t from the definition of sort-rewriting, and sort-propagation, for any rewrite 

relation R , —̂  C > and —̂  C t>. Consequently, to show termination of a dynamic 

rewriting relation, it is sufficient to show tha t the resolvent of the term-rewriting relation, 

$ (  —>#), is contained in some well-founded ordering on terms >t . In particular, if >t is 

a (monotonic and stable) termination ordering on T^( X) ,  then it is sufficient (but not 

necessary) to  show tha t for each rule /—>sr E R  is such that (f)(1) >t (f>(r). Thus standard 

term ination orderings such as the Knuth-Bendix Ordering, or the Recursive Path  Ordering 

can be used to  establish the termination of dynamic rewriting relations.

As discussed in [Gna92b], the added structure of order-sorted specifications allows termi­

nation to be established in cases where it cannot if the sorts of terms are ignored. It is 

conjectured th a t this can be extended to dynamic order-sorted rewriting. This problem is 

not considered further and remains an area of further research.

7.4 Church-Rosser Property and Confluence

To carry out automated rewrite proofs, we require that the rewrite system satisfies the 

Church-Rosser Property. We assume tha t any consistently applied dynamic rewriting re­

lation is valid in the following, unless explicitly stated.

Definition 7.40. If d, dl5d2 E then if d1 r  d -^-*r d2 the terms form a peak,

if di d ~  d2 a cliff and if d\ - ^ r  d r  <-?— d2 a valley.

A proof of the equality of terms t \ , t2 E Ty(X)  is a rewrite proof if L(t\) — >r d r  <-— L( t2), 

and a rewrite proof modulo sorts if L(t4) - ^ r  d4 ~  d2 r  ^ — L( t2).

The Church-Rosser property, and subsequent definitions are given relative to a give set of 

dynamic terms.

Definition 7.41. Church-Rosser Property.

Given a set of dynamic terms E , a set of dynamic rewrite rules R  is Church-Rosser on E
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in E.

For example, we have the Church-Rosser property on the well-sorted terms if E  = T*s(X). 

Closely associated with the Church-Rosser property is the concept of confluence (Fig­

ure 7.1).

d d

* /  's. *

di d2 di d2

\  / \ /

\  / \ /

\ * * *
\  /

d! d'

a). Global Confluence. b). Local Confluence.

Figure 7.1: Confluence.

Definition 7.42. Confluence.

Given a set of dynamic terms £7, a set of dynamic rewrite rules R  is Confluent on E  if
* D   ̂ D

given d, d i , d2 € E,  such th a t d — d1, d — >r  d2 in E,  then there exists d 6 E  such

tha t di -^->r  d', d2 —'-*r  d' in E.

Theorem 7.43. R  is Church-Rosser on E  if and only if R  is Confluent on E.

Proof (7.43). The proof follows the standard proof method for showing the equivalence 

of the Church-Rosser and confluence properties.

Clearly, if R  is Church-Rosser on E  then it is confluent on E  . To show the converse, 

assume th a t d d' and consider the number of peaks in the chain:

d =  dj <— > d2 <— ► • * • ■<— > dn_j <— ► dn — d

where dt- € E. Let a maximal peak in this chain be a triple (d;, dy, d*.), 1 < i < j  < k < n
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be such th a t

dp < * • • < dj—j ■< dj *dj^.\ ► • • • d̂/̂

and if 1 < i, then d j_ i—>d; and if k < n  then dk<— d^+i. Let M  be the number of such 

maximal peaks in this chain. If (dj, dy, d^) is a maximal peak, then since R  is confluent on 

E , there exists a term d'- £ E  such tha t dt- d' d*, in E.  Form the new chain:

di di c u  d] ^ - d k ^ d n

and the number of maximal peaks is now M  — 1. This process can be repeated until the 

number of maximal peaks, and thus peaks, is zero, and this chain is of the form:

d1 - ^ d ^ - d n

for some term  d £ E.  This establishes the Church-Rosser Property on E.  □

Again from standard rewriting theory we have the property of local confluence. 

D efin ition  7.44. Local C onfluence.

Given a set of dynamic terms E , a set of dynamic rewrite rules R  is Locally Confluent on

E  if given d, d1?d2 G E,  such tha t d—̂ d i ,  d—>#d2, then there exists d' G E  such tha t
* D  , *  D  ,

di — >r  d , d2 — >r  d in E.

T h e o re m  7.45. If R  is terminating in E,  it is confluent on E  if and only if it is locally 

confluent on E.

P ro o f  (7 .45). Clearly if R  is confluent on E  it is locally confluent on E.  We show that 

local confluence is equivalent to the Church-Rosser property. If R  is terminating in E  then 

there is a well-founded term  > ordering on dynamic terms such th a t .—>D C> (just take 

> to  be —>£>). If d0 <— > di <— ► • • • <— ► dn_! <— ► dn in E,  then let M  be the multiset of 

terms in the chain {dt-}. If for some i such tha t 1 < i < n, dt-_i+—d,—>dz+1 is a peak in the 

chain, then since R  is locally confluent in E  replace dt- by di_i—>dn—> • • • djj • • • *— dj*.<— d,-+1 

in E.  Since for every m  G l..m  d{ dt-m then di > dim. Using the multiset extension of 

>, the multiset M ' = {d0, . . . ,  d,-_i, d n , . . . ,  dt-*, dt-+i , . . . ,  dn} is less than M .  Thus every 

peak reduction reduces the multiset in the multiset ordering. However, since this multiset
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must be well-founded, there must be a minimum chain, which contains no peaks and must 

contain do and dn , and thus is a rewrite proof do d! C-— dn in E  for some d! £ E.  □

W ith dynamic term-rewriting systems, confluence not only guarantees unique normal forms 

and the Church-Rosser Property, but also the sorting of terms becomes decidable.

Theorem 7.46. If — is a dynamic rewrite relation confluent on V s  ( X )  over specification 

<S, then

yi t ^ W s ( X ) . V S ( L ( t ) i ^ = S S ( t )

Proof (7.46). Consider a sort s £  S S ( t ) .  If s £  C S ( t ) ,  then by Lemma 7.16, V S ( L ( t )  J,# 

) < s. But as s £  S S ( t ) ,  then it is minimal, and thus s £ V S { L { t )  |# ) .  If s £ C S { t ) 

then there is some t' £ W s ( X )  such th a t E  hg t  = s t f and s £ jC,S(tf).  By completeness 

L (t)  L(£') and by confluence, L(t) — >R L( t )  r+—  L(t')  in V s ( X ) .  Then again

by Lemma 7.16 and minimality of S S ( t ) ,  s £ V S ( L ( t )  I/?). □

7.4 .1  C hurch-R osser P ro p erty  and C onfluence M od u lo  Sorts

An alternative approach to the previous section is not to insist on identical dynamic terms 

in rewriting proofs. Recall tha t the motivation of dynamic sorting is to decide equality 

theorems t \  = t 2 in the underlying order-sorted algebra, using sorts as an aid to the 

computation. The previous section insists tha t the sort information derived in the rewrite 

proof is the same in both directions. This condition can be relaxed and still decide theorems 

in T ^ ( X ) .  The procedure would be to take the query equality t \  = t 2 , convert to dynamic 

terms using the conversion function L  and then test whether the normal forms are equivalent 

modulo resolvents L ( t i )  J, ~  L ( t 2) [. This relaxation of the conditions leads to a simpler 

decision procedure.

Definition 7.47. Church-Rosser Property modulo sorts.

Given a set of dynamic terms E,  a set of dynamic rewrite rules R  is Church-Rosser modulo 

sorts on E  if given d1? d2 £ E , such th a t d1 d2 in E  then there are d!x,d!2 £ E  such
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th a t di -^->r  di ~  d'2 r  d2 in E.

Again the concept of confluence modulo sorts is closely associated with the Church-Rosser 

modulo sorts property.

d\ ~  do

b). Local Confluence modulo Sorts.a). G lobal Confluence m odulo Sorts

Figure 7.2: Confluence modulo sorts.

Definition 7.48. Confluence modulo sorts.

Given a set of dynamic terms E,  a set of dynamic rewrite rules R  is Confluent modulo
* D  * D

sorts on E  if a given d, d1 d2 £ E  such tha t d — >r  dx, d — >r  d2 in E , then there exist 

d[, d'2 £ E  such th a t d\ ~ ^ r  d\ ~  d'2 r  ^ — d2 in E.

Confluence and the Church-Rosser property modulo sorts are equivalent if all terms have 

at least one normal form, as shown in the following theorem.

Theorem 7.49. If R  is normalising in E , then it is Church-Rosser modulo sorts in E  if 

and only if R is Confluent modulo sorts in E.

Proof (7.49). Clearly, if R  is Church-Rosser modulo sorts on E  then it is conflu­

ent modulo sorts on E.  Recall the definition of maximal peak from the proof of Theo­

rem 7.43. The proof proceeds by induction on the number of maximal peaks in the chain 

do «— ► di <— ► • • • dn_! *— ► dn in E.  If there is one maximal peak, then we have some term  

d such th a t d0 — d; d dj dn . Then from the confluence modulo sorts of R
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there are some d'0,d'n E E  such tha t 4  dfQ — drn <— dn in E.

Assume th a t the theorem holds for all chains with up to N  maximal peaks. Consider a 

chain with N  +  1 maximal peaks, as in Figure 7.3. This chain is of the form:

d0 <— ► d1 <— ► • • • dk- i-+dk di dj CL- dn

where there are N  maximal peaks in the chain d0 ► 4 -  Since R  is normalising, this 

chain can be changed to one with the normal form of dk.

d0 <— ► di <— ► • • • 4 - 1 ^ 4  4  dk di -L+ dj CL- 4

in E.  Thus by the induction hypothesis there are terms 4 * 4  G E  such th a t 4  — df0 ~  

4  C — dk |  in E.  Also by confluence modulo sorts there are terms d d j  G E  such tha t 

dk J.—̂  d'k ^  d'j C— dj in E.  Since 4  i  is a normal form, d'k = dk j=  4  an<  ̂ thus 

d'o — 4 1 — 4  anc  ̂ w e  a r e  d o n e .  n

Figure 7.3: Church-Rosser and Confluence modulo Sorts

Similarly, we define local confluence property modulo sorts.

Definition 7.50. Local Confluence modulo sorts.

Given a set of dynamic terms E,  a set of dynamic rewrite rules R  is Locally Confluent 

modulo sorts on E  if given d, 4 ?  4  £ E,  such tha t d—̂ d i ,  d—̂ 4  in E,  then there exist
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Additionally, R  is Normalised Locally Confluent modulo sorts in E  if given d, d j, d2 G E,

such th a t d— d—>R d2 in I?, then there exist normal forms di d2 |.r G £  such tha t
* D  * D

d1 — >R d1 d2 — >r  d2 I/? in E , and d1 d2 J#.

However, this property is not sufficient to give confluence modulo sorts. The extra property 

of coherence modulo sorts is needed.

a). Global Coherence 
modulo Sorts.

b). Local Coherence 
modulo Sorts.

c). Reachable Local
Coherence modulo Sorts.

Figure 7.4: Coherence Modulo Sorts.

Definition 7.51. Coherence modulo sorts.

Given a set of dynamic terms E,  a set of dynamic rewrite rules R  is Coherent modulo sorts 

on E  if given d, d', d" G E,  such tha t d' ~  d — ► d" in E,  then there exist d1? d2 G E  such 

th a t d' di ~  d2 D d” in E.

Definition 7.52. Local Coherence modulo sorts.

Given a set of dynamic terms E,  a set of dynamic rewrite rules R  is Local Coherent modulo 

sorts on E  if given dynamic terms d, d ',d" G E , such tha t d' ~  d-^Dd" in E } then there 

exist di, d2 G E  such tha t d' di ~  d2D d" in E.

Definition 7.53. Reachable Local Coherence modulo sorts.
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Given a set of dynamic terms E , a set of dynamic rewrite rules R  is Reachably Local 

Coherent modulo sorts on E  if given dynamic terms d ,d \ ,d2,d! E E,  such th a t di D *-?— 

d d2, and d2 ~  di—>Dd' in E , then there exist d^d^ E E  such th a t d! ^  ~

d'2 D d2 in E.

We give three theorems on coherence modulo sorts.

Theorem 7.54. Given a set of dynamic terms E , and a set of dynamic rewrite rules R , 

if > is a well-founded coherent ordering on E  and R  C> and R  is coherent modulo sorts 

on E , then R  is confluent modulo sorts on E  if and only if it is locally confluent modulo 

sorts on E.

Proof (7.54). This proposition follows as a consequence of the next theorem. □

Theorem 7.55. Given a set of dynamic terms E , and a set of dynamic rewrite rules R , 

if > is a well-founded coherent ordering on E  such tha t i ? C > ,  and R  is locally coherent 

modulo sorts on E , then R  is confluent modulo sorts on E  if and only if it is locally confluent 

modulo sorts on E.

Proof (7.55). Clearly if R  is confluent modulo sorts on E  it is locally confluent modulo 

sorts on E  . We show tha t local confluence establishes the Church-Rosser property modulo 

sorts. Let be the well-founded coherent term ordering on E  such th a t — C>.  If 

{dk}k=i_ n is a chain in <— »U ~  in E  then let M  be the multiset of terms in this chain.

Peak Reduction. If for some i such tha t 1 < i < n, d;—►di+i is a peak in the chain,

then since R  is locally confluent modulo sorts in E,  we can build the new chain by replacing

di by —► >dij ^ d ' ik< <-di+1 in E.  Since for every m  G l . . j  d{ dim

and m  G 1 ..k di d'im then di > dim and di > d'im. Thus by multiset extension of > 

the multiset M ' = {d0, . . . ,  di_i , d n , . . . ,  dij, d'ik, . . . ,  d , d{+1, . . . ,  dn} is less than M . Thus 

every peak reduction reduces the multiset in the multiset ordering.

Cliff Reduction.
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If for some i such th a t 1 < i < n, d; ~  is a cliff in the chain, then since

R  is locally coherent modulo sorts in E , we can replace di by d ;_ i—>dn~ ► >dij ~

d'ik<------+— dfi<r-di+1 in E. Since for every m  E l . . j  di dim and m  E 1 ..k di ~  d?+1

d'm then di > dim and dt- > d'im since > is coherent modulo sorts. Thus by multiset 

extension of > the multiset M f = (do ,. . .  , d j_!, d n , . . .  , dij ,d'ik, . . .  , d ^ , dj+i , . . .  , dn } is less 

than M .  Thus every cliff reduction reduces the multiset in the multiset ordering.

Since > is well-founded so must this multiset ordering and so there must be a minimum 

chain. This can contain no peaks or cliffs and must contain d0 and dn, and thus must be 

a rewrite proof d0 d[ ~  d'2 dn in E  for some d[,d2 £ E. □

Theorem 7.56. Given a set of dynamic terms E , and a set of dynamic rewrite rules 

R , if > is a well-founded coherent ordering on E  and R  C> and R  is Reachably Locally 

Coherent modulo sorts on E, then R  is confluent modulo sorts on E  if and only if it is 

locally confluent modulo sorts on E.

Proof (7.56). In order to show the Church-Rosser theorem, it is sufficient to consider 

chains in <— ► U ~  which are derived from chains in «— ► in E  alone by peak reduction or 

cliff reduction. Cliff reduction preserves the number of occurrences of ~  in the chain. Thus 

any cliff in such a chain di_i<^di ~  must have originally been inserted into the chain 

via peak reduction and thus there is a d such tha t d di and d d{+1 . Thus in the 

proof of Theorem 7.55 it is sufficient to assume reachable local coherence. □

Note also tha t if the Church-Rosser theorem is restricted to proofs of the form: L(t1) < -^ r  

L(t2) where t i , t 2 E T^(A'), then it is sufficient to have Local Coherence in £r {X).

The condition of local coherence on Theorem7.55 can be dropped by assuming normalised 

local confluence modulo sorts.

Theorem 7.57. Given a set of dynamic terms E , and a set of dynamic rewrite rules R, if 

> is a well-founded coherent ordering on E  and R  C>, then R  is confluent modulo sorts 

on E  if and only if it is normalised locally confluent modulo sorts on E.
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P ro o f  (7 .57). Clearly if R  is confluent modulo sorts on E  it is normalised locally 

confluent modulo sorts on E. We show tha t normalised local confluence establishes the 

Church-Rosser property modulo sorts. Let ><* be the well-founded coherent term ordering 

in E  such tha t —*D C>. If {dk}k=\...n is a chain in <— ► U ~  in E  then let M  be the multiset 

of terms in this chain.

If given a chain C  where for some i such tha t 1 < i < n, dj_i<—dj—>-dj_|_i is a peak in 

the chain, then since R  is normalised locally confluent modulo sorts in E  we can build

the chain C' by replacing dj in C  by d j_ i—►dji—►->dZJ- ~  d'ik* —d ' i —dt-_|_i in E,

where djj and d!ik are in normal form. Since for every m  E l . . j  di dim and m  E 1 ..k

di — djm then dj > djm and di > d'im . Thus by multiset extension of > the multiset 

M ' = (d0, . . . ,  d j_!, dj!, . . . ,  d jj, d '^ ,. . . ,  d ^ , dj+J, . . . ,  dn} is less than M .  Thus every peak 

reduction reduces the multiset in the multiset ordering. We say th a t chain C  derives C ;, 

written C ^  C ' .

Assume tha t do <— dn, with the initial chain of terms Co =  {d̂ }A;=o...n- We show tha t 

for any chain in Ck such tha t Co ^  Ck there are no cliffs in C^. Clearly there are no 

cliffs in Co- Assume th a t there are no cliffs in Cj, and without loss of generality tha t 

there is a peak djj_i *— djj —>■ djj+i ~  djj+2 in Cj, then by normalising local confluence, 

djj_ i djj_! ~  djj+1 CL- djj+i ~  djj+2. However, since Co Cj d 'j+1 is in normal 

form, thus d 'j+1 =  djj+i, and djj_i djj_x ~  djj+i ~  djj+2, and no cliff is introduced

into Cj+1- Cliffs can be introduced into Ck in no other way.

Since > is well-founded in E, so must this multiset ordering and so there must be a minimum 

chain. This can contain no peaks or cliffs and must contain d0 and dn , and thus must be 

a rewrite proof d0 d[ ~  d'2 CL- dn in E  for some d^, d2 E E. □

However, in general normalised local confluence requires coherence conditions.
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7.4 .2  E stab lish in g  C oherence

Coherence is thus an im portant property of a dynamic rewriting system and it should be 

established before rewrite proofs can be given. One sufficient condition for coherence is 

Resolvent Confluence.

D efin ition  7.58. Given a set of dynamic rewrite rules R, a set of dynamic terms E  is 

rewrite closed with respect to R  if Vd E E  and d—>Rd' then d' E E.

Note th a t in particular the set of well-sorted dynamic terms T>s{X) is rewrite closed.

D efin ition  7.59. Given a set of dynamic terms E, a set of dynamic rewrite rules R  is 

Resolvent Confluent on E  if given d1?d2 E E , such tha t di ~  d2, then 3d1 E E  such th a t 

di > d' < d2 and di — *■r  d' r  <-L- d2 in E.

L em m a 7.60. Given a set of dynamic terms E, if a set of dynamic rewrite rules R  is 

Resolvent Confluent on E , and E  is rewrite closed with respect to R, then for weak and 

upward strong rewriting:

1. R  is coherent in E.

2. If R  is confluent modulo sorts on E, then it is confluent on E.

*  DP ro o f  (7 .60). 1. If d1?d2,d  E E,  such th a t di ~  d2 — ► d in E , then by resolvent

confluence, there is a d' E E  such tha t di > d' < d2 and di ~ ^ R  d! g  d2 in E. 

If d2 —*\-+ar d{ -L+ d, d1 must also weak or upward strong match using the same rule and 

therefore d' — d' and d'- < dj. This can be repeated and so d' d!" in E,  as E  is 

rewrite closed, and d" ~  d!. Thus R  is coherent in E.

2. If d1?d2,d  E E  are such tha t d\ d — > d2, then by confluence modulo sorts

3dj,d2 E E  such th a t dx -L+ d[ ~  d'2 d2, in E  and by resolvent confluence, 3d' E E

such th a t d  ̂ — *■ d' d2. □

Coherence can also be established on restrictions to the rewrite relation. For example,
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consider the rewrite relation restricted to E-substitutions (Definition 5.30).

Definition 7.61. Given a set of dynamic rewrite rules R, and matching algorithm X ,  the 

X-L-rewrite relation —>X ~L C —>x  is the relation —>x  restricted to E-substitutions. T hat 

is if di — a d2, then a is a E-substitution, a : X —̂ C ^ X ) .

Lemma 7.62. The L-rewrite relation is coherent on P s ( ^ ) i  f°r weak or, if the rules are 

in canonical form, upward strong matching.

Proof (7.62). Consider term rewriting. For some d i ,d 2,d2 E 7>s(A'), let d1 ~
£

d2-+JJ^~^a pd2. If di <jAL(di) then dj -L-> P^(di)  <1 L(d\). So we can assume tha t 

di < L(di).  If o  is a E-substitution, then if /C ^ d 2|p, as I =  L(l), /C ^L (d 2)|p as o is a

E-substitution. L(d2) =  L(d1), so /□ ^ L (d 1)|p and as d1 < L(di), for weak and upward

strong matching, /C ^ d i |p, so d2 ~  d2. Sort rewriting and sort propagation are

trivial, so L-rewriting is coherent. □

7.4.3 Local Confluence R esults

In order to generate rewrite proofs, th a t is proofs which can be produced automatically 

by a rewriting system without any specific control, it is necessary for a rewrite system to 

be Church Rosser. T hat is, all proofs can be given via a rewriting sequence without any 

peaks. To analyse the peaks which can occur in rewriting, we consider the possible overlaps 

between rules to test the local confluence of such overlaps. Given a terminating rewrite 

system, this is sufficient to guarantee a Church Rosser rewrite system. We assume in this

section th a t rewriting is on T>z(X).

W ith three forms of rewriting in the dynamic rewriting relation, there are several overlaps 

to consider. However, for some of these overlaps, local confluence results can be given. 

Firstly, the sort propagation relation is locally confluent.

Lemma 7.63. Local Confluence of Sort Propagation.
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P ro o f  (7 .63). Immediate from the lemmas in Chapter 5. □

When the rewriting occurs at disjoint subterms, the relation is locally confluent whichever 

varieties of rewriting and matching are used.

L em m a 7.64. Vd E V'£(X), if di p<— d —>^d2, and q cxi p, then there is a d' E V'e (X)  such 

th a t di — d' D d2.

P ro o f  (7 .64). Clearly, di\q = d\q, so di\q—>?d2\q, and thus 

di[q<-d2\q] = d\p<-d1\p][q+-d2\q]

Similarly d2\p =  d\p, d2|p—►f’dilp, and so:

d2^ p  d2[ p ^d 1\p] = d[9*-d21J[><-<*!y  

Clearly d[p<-di\p][q^-d2|J  =  d[q<r-d2\q][p<—rfi\P]. n

An im portant class of terms which can be rewritten in two ways are the variable overlaps.

D efin ition  7.65. Given a set of dynamic rewrite rules # , a variable overlap between two 

rules /i —>s1ri and l2 —+s2 r 2 1S a triple of dynamic terms (d, d i,d 2) formed in two ways:

1. d—*J_+sr(7pdi, and d—»^d2 where 3p’ E 0(1) such tha t l\p< E X  and p.p' < q.

2. d—*f_̂ , di, and d—>®d2 where 3p' E 0(r )  such that r\p> E X  and p.p' < q.

A variable overlap is trivial if there is a dynamic term d' such th a t d\ -^-+r  d' d2.

All variable overlaps are trivial whichever varieties of rewriting and matching are used.

L em m a 7.66. T h e  V ariab le  O verlap  L em m a. Given a set of rules jR, then in the 

dynamic rewriting relation —>D, all variable overlaps are trivial.

P ro o f  (7 .66). For any matching algorithm M , let term d2 f£~+r2 C2 q^-d-+ff^.ri ai pd i ,

where p.p'.p" — q, and let li \p> = x E X . As the set of variables of the two rules are disjoint, 

then we can let a — a\Oo2.
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Figure 7.5: Variable Overlaps: Term-Term Case.

1. T erm  R ew ritin g . Since there is a match li\ZMd\p, then for all other paths 6 0{l\)  

such tha t /i|p/ =  x , d\Pmpi = d\p,pi and thus d\pp>, pn—>®d2\q. Hence d can be rewritten at 

these paths d—>®d2—>pp, p„ . . .  —*>ppt p„d'. Also there is a match l \ Q ^ d 2\pi where <j'(y) = 

cr(y) if y /  x, and <r'(x) — d'2\v.pi. Thus d'2-^J_+ , pd2 and for each path qj such tha t

r \ q j  —  x ,  d 2 \p qj  p ri —  d 2 \q

If r\qj = x then di\Ptq.mpn = d\q and at each path p.qj.q di\Ptqjiq—̂  d2\q and thus di d”. 

d'{\p.qj.p" — d2\q, and thus d2 = d”. This case is shown pictorally in Figure 7.5

2. T h e  S o rt R ew ritin g . The cases of sort above sort and sort above propagation are 

covered in the lemmas above. If there is a sort-rewriting step with a term-rewriting step 

in a variable path below, then the proof is similar to the term-rewriting case. □
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Sort propagation is also locally confluent in combination with dynamic sort-rewriting, when 

weak or upward strong matching is used.

Lemma 7.67. Vd £ V $ { X ) ,  if d\  d —>s d2, then there is a d' £ V $ { X )  such that 

di — *■ d! D d2, for weak or upward strong rewriting.

Proof (7.67). Let d— d1? then d\  =  d [ p S  and let d—>gd2, then d2 =  Pg,(w,s)(d). 

If p ixi q or else g < p then clearly

=  Pq,(ui,s){d) *■ Pq,(jj,s)(d) Ip =  P q,(u>,s){d l p S)  i d [ p S  =  dj

Also if p < q then since V S { d 2) < V S ( d )  there is still a match of r onto d2 at p and d2 can 

sort-rewrite. For downward strong or strict rewriting, there is no such match. □

Similarly for the combination of propagation and term rewriting.

Lemma 7.68. Vd £ V s ( X ) ,  if di  p<— d —* f d 2, and p ^  q then there is a d' £ V s ( X )  such 

th a t di d' D d2, for weak or upward strong rewriting.

Proof (7.68). Let d—*J_^ST^ pd i ,  then di  =  d[p<— ar] i p S  U V S ( d \ p), and let d -+ ^ w ^ d 2, 

then d2 =  Pq̂ w^{d ) .  If p dxi q then Lemma 7.64 applies.

If p < q, q = p.p’ say (term above propagation), and l\p> is not at or below a variable path, 

then since d[p<—or] |p 5 U  VS(d\p)\q = <jr[cS  U VS(d\p)\pi =  err|p/ , there is no propagation 

step. However, d2— r a pd2\j>*—or] l pSuT>S(d2\p) since the propagation has taken place 

in a non-variable path in /, ol ~  d2|p. Thus

<*2 = p ,,(w,s) (<*) -*t p, W  b—H  i p s  u v s  ( p , (</) |p) =
d[p<—<rr] |p  S  U V S  (d\p) =  di

If q < p then p = q.q' say (propagation above term). If d\p is an immediate subterm of d\q 

then qf =  i for some i £  IN,  since V S ( d i \ p) <  S  U V S ( d \ p) <  V S ( d \ p), the sort propagation 

step still applies, so:
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Clearly the term rewriting step applies to the (unchanged) subterm d2 |p, so:ipi

. Td2 = P q, ( u , s ) W ^  Pgt{uJjS){d)[p+-or]lp S U V S ( P qi{UiS){d)\p) =

P q,(»,s){d\p+-<rr]lp S  U V S ( d \ p)) s<-d[p<-<7r] [ p S  U V S ( d \ p) =  d x

and we are done. If qf =  i.r for some non-empty path r, then as V S { d \ \ q^ )  =  V S ( d \ qj )  for 

all j  G 1. . .  |u>|, the propagation step still apphes.

The variable overlap cases hold via Lemma 7.66. □

Propagation and term-rewriting are not locally confluent if they are both applied at the 

same path as the following example demonstrates.

Example 7.69. Consider the following specification:

Sorts: A  B

Subsorts: A  < B

Operators: a : —> A b :  -► B

f  : A  —> A f  : B  -► B

Rules: f ( x  :

Then the following non-confluent peak is formed by rewriting two ways a t root. 

b*A /(a*A)*A f  <— /(a#A)#jB b*B

□

The sort-rewriting relation is locally confluent, for weak and upward strong rewriting. 

Lemma 7.70. Local Confluence of Sort Rewriting.

Vd G V S { X ) ,  if dx 5^ / 1̂ s 1ri,ff1,pd ^fe->>«?2r2la2>9rf2» then tliere is a d! G T>s{X) such th a t 

di — v d ^ <—  d2 ? for weak or upward strong rewriting.

Proof (7.70). d\ = d [p Si  and d2 = d [ q S 2. We consider paths p  and q. If p  txj q then 

clearly d[p S i\q = d\q and d [qS 2\p = d|p, so the other rewrite still applies to give us:

d l pS 1- ^ s d l pS 1 l qS 2 = d l qS 2l pS 1 s*-<U,S2
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If p < g, then clearly d l p S i\q = d\q, so d \ p S \—>s d [pS\ i q S 2 . Also, since V S (d [ qS 2 i , ) <  

V S(d \q), there is still a match of r1 on d l q 5 2> so d [q S 2~>s d S 2 | p S\. If downward 

strong or strict rewriting is used, then the matches are not necessarily preserved. □

One other combination is also locally confluent for weak and upward strong rewriting: a 

term-rewrite above a sort-rewrite.

L em m a 7.71. If dx J ^ sT^ ^ d - + f , ^ sir, ^  qd2 and p < q, then d2-^ f-^sr^ pd1, for weak 

and upward strong rewriting.

P ro o f  (7 .71). If p < q, q = p.p' say, and l\p> is not at or below a variable position, then 

since or] l pS l)V S (d \p)\q =  or l eS U V S(d \p)\pi = o r \p>, there can be no sort-rewriting 

step. However, d2^ f ^ , sr (7ipd2 [p^-or] \ p S  U V S (d 2\p) since the sort-rewriting has taken 

place in a non-variable position in /, ol ~  d2 \p. Thus

d2 = d l qS'-+Td {qS '\p^or} \ ,pS 'J V S { d \ qS%)  =  d\p+-ar]lpS U V S {d \p) =  dx

□

Rewrite Relation
Overlap Weak Upward Strong Downward Strong Strict
Variable T T T T

Disjoint (p tx q) T T T T
E - E T T T T
E < S T T T T
E < T T T T T
S - S T T N N
S  < E T T N N
S  < T N N N N
T - T N N N N
T  = E N N N N
T  < E T T N N.
T  < S T T N N

Figure 7.6: Summary of Local Confluence Properties.

These results are summarised in the table in Figure 7.6. The left-hand column represents 

the form of overlap, T  for term-rewriting, S  for sort-rewriting and E for sort-propagation, 

with A  < B  representing a rewrite of kind A  above (at a subpath of) a rewrite of sort 

B , with A  ^  ^  if th.6 overlap is strict* In addition there are the special cases of variable
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and disjoint path overlaps. The entries in the table represent the behaviour of each kind 

of overlap under the four decidable dynamic matching algorithms. A ‘T ’ entry marks tha t 

overlaps are trivial, whilst a ‘N’ entry stands for non-trivial. The weak and upward strong 

rewrite relations converge in more cases than the downward strong and strict relations.

7.4.4 Local Confluence M odulo Sorts R esults

Further results can be established if confluence modulo sorts is considered. The combination 

of propagation and term-rewriting has a full result.

Lemma 7.72. Vd £ V s(X ) ,  if di d—̂ d2, and p ^  q then there are d ',d" £ V §(X )  

such tha t di — d' ~  d" D d2, for weak or upward strong rewriting.

Proof (7.72). If p ^  q then the result is immediate from Lemma 7.68. If p = q then 

without loss of generality, let p =  e. Then d\ = o r  j e S  U VS(d)  for some rule l—+sr ?an(I 

d2 = d [ e s U VS(d)  for some s. Thus I still weak or upward strong matches with d2, and 

d2—>To r l e S  U VS(d)  U s ~  di □

Also, sort rewriting above term  rewriting is also confluent modulo sorts, for weak and 

upward strong matching.

Lemma 7.73. Vd £ T*s(X), if d\ d —>qd2, and q < p then there are df,d"  £ T>s(X) 

such th a t di CL+D d' ~  d" D d2, for weak or upward strong rewriting.

Proof (7.73). If q < p then without loss of generality, let q =  e. Then dx =  d[p<—or ]

5  U V S(d \p) for some rule l - ^ s r and d2 = d [e S '  U VS(d)  for some rule I'—̂ gr'. Thus / still 

weak or upward strong matches with d2, and d2—>Td[p<— o r ]  i pS u S 'U V S (d ) \ jV S (d \p) ~  dj.

□

A further interesting result considers the application of a balancing step as an additional 

form of rewriting. This is not necessary for the completeness of rewriting. Nevertheless, 

balancing is a sound operation, and can be added as an efficiency gain in a rewriting engine.
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Unfortunately, it does lead to non-confluence of rewriting.

Definition 7.74. A d £ 7>e(A), unbalanced at paths p, q £ 0(d), Balance Rewrites to 

B p>q(d), written d-+BqB Piq(d).

Example 7.75. Consider the following specification.

Sorts: A B

Subsorts: A < B

Operators: a : —> A b : —> B

c : —> B g : B  —► B

f  : B B  B  

Rules: g{x : B)*B  —

If the rewriting relation includes balancing, then there is the following non-confluent peak.

f{c*B,b*B)*B  <- f(g(b*A)*B,b*B)*B -+B f{g{b*A)»B,b*A)*B /(<?•£, 6#A)*H

□

However, this is not the case for confluence modulo sorts.

Lemma 7.76. Vd £ T>s(X), if d1 p*— d-+Bq,d2, then there are d ',d" £ T>s{A) such that 

di d' ~  d" D — d2, for weak or upward strong rewriting.

Proof (7.76). If p cxi q and p M q then clearly the same proof as Lemma 7.64 applies.

If without loss of generality q < p (balance above rewrite) then clearly the match still 

applies at p on d2, and hence d2—>p d' ~  d^

If without loss of generality p < q (rewrite above balance), as we are weakly or upward 

strongly matching, the match still applies at p and hence d2—*-j?d' ~  dj. □



Chapter 8

Completion of Dynamic Systems

In this chapter we investigate the generation of Church-Rosser dynamic rewriting systems. 

This is done using a completion procedure which, if successful, generates a decision pro­

cedure which can generate automated rewrite proofs in the underlying equational theory. 

However, this completion procedure is contingent on the well-formedness of unifiers and the 

coherence of rewriting. We discuss alternative approaches to establishing these conditions.

8.1 Critical Pairs

To establish (local) confluence we examine terms which rewrite in alternative ways. Such 

terms are instances of the superposition of the terms in the rewrite rules involved and thus 

an instance of a Critical Pair.

8.1.1 G enerating Critical Pairs

Critical pairs can be formed in nine different ways, depending on the combination of Term, 

Sort or Propagation rewriting used.

197
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Definition 8 . 1 . Term-Term Critical Pairs.

Given dynamic rewrite rules \ /X .k~^s1ri » Vy./2—>s2r 2 m  a set of dynamic rewrite rules R , 

if there is a path p G 0 ( k ), such tha t |p ^  Vars(/1), and a most general dynamic unifier o 

such th a t o(h \p) ^  ol2, then the terms ori l eS iU V S ( o k )  and crl\[p<— r2] l pS 2 UPSfcr/ilp) 

form a Term-Term Critical Pair, written:

VX U y.o-r! | e5! U =  <r/i[p^—r2] | p5 2 U MftrZilp)

The Critical Term of the pair is the term: all [p<—o k  \p A ol2].

Critical pairs can also be generated when right-hand sides overlap and thus can be sort- 

rewritten in two different ways.

Definition 8.2. Sort-Sort Critical Pairs.

Given dynamic rewrite rules V X .k  —>51r 1, \/Y.l2 —>52r2 in a set of dynamic rewrite rules R , 

if there is a path p € 0(?*i), such tha t r i |p qL Vars{r{), and a most general dynamic unifier 

o  such th a t cr(ri\p) ~  or2, then the terms o r i [ t Si  an(l (Jri l p S 2 form a Sort-Sort Critical 

Pair, written:

VXU Y.arx i t S 1 = or1 i pS 2

The Critical Term of the pair is the term: o r ^ ^ o r - ^ \ p A o r2].

Critical pairs can also be formed by a combination of term and sort rewriting, when either 

an instance of a left-hand side can be sort rewritten at a subterm, or an instance of a 

right-hand side can be term  rewritten at a subterm.

Definition 8.3. Term-Sort Critical Pairs.

Term-Sort Critical Pairs can be generated in two ways. The dynamic rewrite rules VX./i —̂  r^, 

\/y./2—>52r 2 in a set of dynamic rewrite rules R  form the following critical pairs.

1. Term rewriting at root: sort rewriting at a subterm. If there is a path p G 0 ( /i) , such 

tha t li\p £  Vars{k)i and a most general dynamic unifier o such tha t o (k  |p) ~  <rr2, 

then the terms or1 S\  U V S  (ok)  and ol\ l p S 2 form a Term-Sort Critical Pair of 

Type 1, written:

VX U Y.ori |  eSi U V S  (ok) = o k  i p S 2
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The Critical Term of the pair is the term: crli[p<— oli\p A or2].

2. Sort rewriting at root: term rewriting at a subterm. If there is a path q E 0 ( r 2), such 

tha t r2\q $ Vars(r2), and a most general dynamic unifier o such th a t o(r2\q) ~  <7 /1 , 

then the terms o r2[€S 2 and or2[q<—o r ^  [qSi U V S (o r2\q) form a Term-Sort Critical 

Pair of Type 2, written:

VX U Y.or2i eS 2 = 0 r2[q<-ori]lqS i \ J V S ( o r 2\q)

The Critical Term of the pair is the term: or2[p<—or2\q A ol{\.

From Lemmas 7.63, 7.67 and 7.68 it can be seen tha t certain critical pairs involving sort

propagation are unnecessary. Consequently, we define only the following critical pairs.

Definition 8.4. Propagation Critical Pairs.

Propagation critical pairs are generated when a propagation step can be applied to  a rule.

Given a dynamic rewrite rule VX./—>57*, and a rank for operator /  E Xe, /  : s\...sn—»s, we

can form the following critical pairs.

1. Term rewriting at root: propagation at a subterm. If there is a path p E 0(1), such 

tha t there is a unifier a such tha t ol\p ~  o f  (zi : s \ , . . . , z n : sn)*s, for new variables 

Z \ , . . .  , z n , then the terms ol [p s and or  form a Term Propagation Critical Pair 

written:

VX.o7 j ps =  or  

The Critical Term of the pair is the term: ol J,p s.

2. Sort rewriting at root: propagation at a subterm. If there is a path q E 0 ( r ), such 

th a t there is a unifier o such tha t or\p — / ( ^  : Si, . . . ,  zn : sn)*s, for new variables 

Z \, . . .  , z n , then the terms or \ p S  and ol form a Sort Propagation Critical Pair 

written:

' iX.orlpS =  o r l eS 

The Critical Term of the pair is the term: or \ p s

Any of these critical pairs can be trivial.

Definition 8.5. A critical pair (di,d2) is trivial if 3d1 E V ^ X )  such th a t
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d\ - ^ r  d! r ^ — d2.

A  critical pair (di,d2) is trivial modulo sorts if E V z (X )  such that

di ~ ^ r  d!x ~d '2 R ^ -  d2. 

and normalised trivial modulo sorts if d^d^  are in normal form.

Previous lemmas show th a t some of the critical pairs generated will always be trivial. In 

particular, all sort-sort critical pairs and all term-sort critical pairs of type 1 are trivial, for 

weak and upward strong matching.

Lemma 8 .6 . All Sort-Sort critical pairs are trivial for weak and upward strong matching.

Proof (8 .6 ). Immediate from Lemma 7.70, the local confluence of sort-rewriting. □

Lemma 8.7. All term-sort critical pairs of type 1 are trivial for weak and upward strong 

matching.

Proof (8 .7). Immediate from Lemma 7.71. □

Propagation can also be excluded in nearly all cases.

Lemma 8 .8 . All propagation critical pairs are trivial for weak and upward strong match­

ing, except for the case c\ p *— c —>p c2 for some path p .

Proof (8 .8 ). Immediate from Lemmas 7.67 and 7.68, which excludes the given case. □

Consequently, sort-sort critical pairs and term-sort critical pairs of type 1 , can be disre­

garded, as can all propagation pairs except those where a term rewriting and propagation 

occur at the same path. W ithout confusion, by sort critical pairs we mean term-sort criti­

cal pairs of type 2 , and by propagation pairs those where term and propagation rewriting 

occur at the same path, unless explicitly stated otherwise.

D efin ition  8.9. Given a set of rules R , the set of all term, sort and propagation critical
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pairs is denoted CP(R).

If we consider confluence modulo sorts, then we can make further observations concerning 

critical pairs.

Lemma 8 . 1 0 . All term-sort critical pairs of type 2 are trivial modulo sorts for weak and 

upward strong matching.

Proof ( 8 .1 0 ). Immediate from Lemma 7.73. □

Lemma 8 .1 1 . All propagation critical pairs are trivial modulo sorts for weak and upward 

strong matching.

Proof (8 . 1 1 ). Immediate from Lemmas 8 .8  and 7.72. □

Thus for confluence modulo sorts we need only consider Term-Term critical pairs.

Definition 8 . 1 2 . Given a set of rules R , the set of all term-term critical pairs is denoted 

CP~(R).

8.1.2 The Critical Pair Lemma

Given the definitions of critical pairs, we can formulate a critical pair lemma. However, we 

first need to clarify the notion of an ‘instance’ of a critical pair.

Lemma 8.13. If a term d rewrites in two ways such tha t d—̂ d j  and d—>^d2, and w.l.o.g. 

Pi < P2 then there is a critical pair (01, 02) such tha t there are 7r £ DSubstg  such that, 

d i |Pl ~  7rC\ and d2 |Pl cz 7rc2 , and in the case of upward strong rewriting d i|Pl < 7rci and 

^2 Ipi <! 7rc2-

Proof (8.13). We only consider the case of a term which term rewrites in two ways. 

Other cases are similar.
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If a term d rewrites in two ways such tha t and d—+f2_>^T2 U2 P2d2, then

if pi.q =  P2 for some path q then (T\l\\q ~  d|P2 ~  <r2/2 and as we can assume that variables 

in the two rules are disjoint, let cr = o2 o ct\ and crl\\q — d\P2crl2 and crl f cr2 are well-sorted 

substitutions, and thus these terms dynamically unify. Thus there is a most general unifier 

0 of li\g and l2 such th a t 0 <7 ,  and there is a term-term critical pair between l i—+Slri

and I2— r2i (ci> c2 ) an<i  there is a it such tha t a < 7ro 0,  and so di\pi <3 7rc1 and d2|pi ^  7rc2.

Also in strong rewriting, d j|pi <3 oti <3 7rc1 and d2|P2 < crr2 <3 7rc2|g. We also know that 

from the canonical match B x(d2|P2) < 7rc2 so from Lemma 7.24 the lemma holds. □

The overlapping rewriting dj <— d —*• d2 is known as an instance of the critical pair (c!,c2).

Thus if there is a peak d\ *— d d2 then this is an instance of a critical pair <— c —*• c2, 

for some unified term c, under some substitution 0, where 0c\ ~  d1? and 0c2 — d2. For the 

peak (di, d2) to be convergent a series of rewrites d\ ——*■ d' d2 is required. In semantic 

matching this would be immediate if all critical pairs were trivial. However, this is not the 

case with weak matching, since if c\ c^, it is not necessarily the case tha t d\—>d'v

We can however, give sufficient criteria for the existence of such convergent derivations if 

we restrict ourselves to upward strong matching, which we without confusion call strong 

matching, as downward strong matching is not used here. Thus we use strong matching 

and strong rewriting, which has the desired property.

To show tha t local confluence results from the elimination of critical pairs, it would be 

desirable to prove the following conjecture.

Theorem 8.14. Critical Pair Lemma.

Given a set of dynamic rewrite rules R , where all the critical pairs of R  are trivial, then 

the strong rewriting relation — is locally confluent.

This theorem holds for strict rewriting; however, this requires many critical pairs to be 

considered and results in a completion algorithm similar to tha t of [HKK93], which is 

omitted here. Unfortunately, this is not proven for strong or weak rewriting. The proof 

of this lemma breaks down in the proof tha t the confluence of term-term critical pairs
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necessarily gives the confluence of term -term overlaps. However, it can be shown th a t in 

these circumstances the overlap necessarily converges to terms equivalent modulo sorts. 

This gives rise to the following lemma.

Theorem 8.15. Critical Pair Lemma modulo Sorts.

Given a set of dynamic rewrite rules R , where all the critical pairs of R  are trivial modulo 

sorts, then the strong rewriting relation is locally confluent modulo sorts.

Proof (8.15). This proof is performed by case analysis on overlaps, th a t is terms which 

can be rewritten in two different ways. Since there are three varieties of rewriting, we must 

include the cases of where these different kinds of rewriting interact. However, much of the 

proof of local confluence has been already carried out in Lemmas 7.63, 7.67, and 7.68, for 

confluence of sort-propagation in combination with other forms of rewriting; Lemma 7.70 

for terms which sort-rewrite in two ways; Lemma 7.64 for all terms which rewrite at dis­

joint paths; Lemma 7.66 for variable overlaps; and Lemma 7.71 for the combination of 

term rewriting at a position above a sort-rewriting step. Further, Lemmas 7.72 and 7.73 

demonstrate tha t the root overlap of propagation and term rewriting, and overlaps of sort- 

rewriting above term-rewriting are locally confluence modulo sorts, and can be discounted 

also. Thus there is only one case to consider: a non-variable overlap of term-rewriting 

steps. Assume a set of dynamic rewrite rules, R.

Term-Term Rewriting. Given a dynamic term d, there exist paths p, q, dynamic substi­

tutions d i , <j2 and dynamic rewrite rules/!—> • ,  /2—>s2r2 € i2, such tha t d— n  (Ti pdi, 

and d-+J2̂ S2r2,a2,qd2 - We need to show: 3di,d'2 . d2 ——->■# d[ — d2 #  dx

Assume, without loss of generality, p < q, q = p.p', and li\pt 6 0 { l \ ) such th a t li\pi £ 

Vars(li). In this case we have tha t

d\ = d\p^-a1r i] ipS i \J V S (d \p) 

d2 =  d[q+-a2r2] lqS 2 U V S(d \q)

Assuming the variable sets in the rules are disjoint, let a = 0 \ o cr2 and ali\pi ~  dq ~  al2. 

Thus li\p/ and l2 are unifiable and by Lemma 8.13 it is an instance of a Term-Term critical 

pair, Or-L j e Si UVS(0li)  =  0l\[p'^-r2] [p> S 2 U VS(0li\p>), where 0 is a most general dynamic
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unifier of li\pi and l2. As this critical pair is, by assumption, trivial modulo sorts, then 

there are terms d[ , d2 such tha t

9r1L S 1 U V S { 9 h )  r  dl1 d'2 g ^ -  Ol1{p'^r2] l p,S 2 U V S (0 t l \p,)

As 6 is most general there is a A such tha t cr <3 A o 6. Then by stability of rewriting,

Atfrj JeS! U V S ( » k )  Adi ^  Adi g < ^ - xeklp'^-r?] [p,S 2 UV S(9 l2\p.)

and thus by Lemma 7.22 there are d" <3 Ad[ and d2 <3 Ad2 such tha t

ar ,  | e 5 ,  U V S (0h)  - ^ r  d'{ ~  d'2' g  ^  T h \p '^r 2] V  S2 U V S ^ l ^ )

Further, since we are using strong rewriting, all > B^(d\p) so again via Lemma 7.24 there 

are d'” < d![, d2 < d2 such that:

d\P[e^<riri] | £ U VS(d\p) - i *r  d f  ~  di" g  d|p[ p W 2r2] V  5 2 U D5(d|„.p')

and by monotonicity of rewriting

di =  d\p*—<Jiri] l p Si  U VS(d\p) d [q ^ a 2r2] iq S 2 UVS(d \q) =  d2
* *

\ r  r S

d[p<—d'/'] ~  d[p<—d^]

and the theorem holds.

Hence in all cases the theorem holds and we are done. □

A crucial point to note is tha t when we use critical overlaps using upward strong rewriting, 

then the critical term of the critical pair involved is the Maximal Upward Strong Unified 

Term generated by the most general unifier, and is thus the minimal term in the subsump­

tion ordering T hat is, any other term is an instance of this term, or is less than it 

(contains more sort information) in the approximation ordering <3.
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8.2 Completion M odulo Sorts

The completion algorithm for dynamic order-sorted term-rewriting systems modulo sorts 

is similar to tha t for ordinary term-rewriting systems. It should not be forgotten th a t the 

operations used are the dynamic  operations: (upward strong) dynamic matching; dynamic 

rewriting, term, sort and propagation rewriting all being used; and dynamic unification. 

A good deal of the calculation in the completion procedure is hidden in these operations. 

We obtain the set of rules given in Figure 8.1, which we call Basic Dynamic Completion 

(BDC). These rules are applied to a pair consisting of a set of dynamic equations E  and 

a set of dynamic rules R.  We also assume the existence of a well-founded sort-coherent 

termination ordering on dynamic terms, ><*.

(1) D elete
( E U { d  = s  d}, R)  

( E , R )

(2) Reduce
{ E U { d = s  e } , R )  if e —̂  e'

( E  U {d = S Li {VS (e >) }  e'}, R)

(3) Orient
( E  U {d = s  e}, R)  if d > d  e, or d ~  e and d ^  e
(E,  R  U {d >s e})

(4) Deduce
( E , R )  if (d ,e) € C P ~ ( R )  and S  =  V S ( d ) u V S { e ) .

( E  U {d = s  e}, R)

Figure 8.1: BDC: Base Rules for Dynamic Completion.

In addition to the rules for basic dynamic completion, we can augment the procedure with
e

additional rules which reduce rules as well as the equations. Note th a t t> is the well-founded
e

strict encompassment ordering: d\ l> d2 if 3cr and path p 6 O (d i )  such th a t d \ \p ~  crd2, 

and a  is not a variable renaming.

We call the set of rules BDC augmented with these additional rules the set of rules for 

Dynamic Completion (DC). In rule (5), Simplify Right, note th a t we can maintain the
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(5) Simplify Right
(E ,R \J{1  r}) if r r'

(E, RU {1  —►5 u { 2 ? 5 (r ')} ^})

(6) Simplify Left
(£7,RU{Z - s  r}) if ( / — and / t>g) or 1-^rI'  or

(E  U {/' = S U { 2 \S (Z ')}  r}> R)

Figure 8.2: Additional Rules for Interreduction.

equation as a rewrite rule, since we know tha t new right hand-side r' must be lower in the 

term-ordering than r. Note also tha t in Simplify Left we cannot rewrite a rule on the left 

by itself.

As a further refinement we note tha t if a rule in R  is sort-rewritten on the left, then 

if the term ordering is an extension of a standard simplification ordering, as discussed 

in Section 7.3 above, the resulting equation will still be in the term-ordering and can 

immediately be reintroduced as a rule.

8 . 2 . 1  P roofs

We prove the correctness of these rules by considering all possible proofs, as in Bach- 

mair [Bac87, Bac91] and other papers in the literature including [GKK90] and [HKK93].

Each inference rule transforms a pair of an Equation-set and Rule-set, (E{,Ri) into a 

pair (Ei+1,.Ri+1). We s tart from a pair (£70, 0), where E0 — <F(E) and E  are the non­

dynamic equations of the specification. Assuming that the application of these rules do 

not result in failure, we generate the set of persisting equations and rules: E°° =  (Jz- p|j>i Eji 

R°° = (J  ̂P| Rj. It is our intention to show that, given a fair completion strategy, every 

proof of the equality of terms can be written as a dynamic rewrite proof. First we give a 

notion of fairness: every critical pair is considered for orientation into a rule, every critical 

pair is generated and each rule specialisation is added to the rule set.
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D efin ition  8.16. The completion procedure is fair if:

1. E°° =  0. T hat is every critical pair is oriented.

2. C P (R °°) is generated.

We give a notion of a proof using a pair (P , R).

D efin ition  8.17. Given a set of dynamic equations E  and a set of dynamic rewrite rules 

R , a proof step d \^±d2 is a pair of terms where either d\—>#d2, d\ d2, or d\ ~  d2, or 

di <— >e  d’2-

D efin ition  8.18. A proof of d = d' using a set of dynamic equations E  and a set of

dynamic rules R  is a sequence of proof steps written

d =  d\ ^  d2 ^  ^  dn_i ^  dn =  d'

A proof P  is a rewrite proof if it is of the form

d — dj ► d2 ► • • * ► dj — dj_|_| < • * • dn_j < dn — d

Given a proof P, and some dynamic substitution cr, then the proof o P  is

<t d —— od1 i—- <7 d2 t—■ ■ * * —■ <7 dn  ̂ ■'—■ & dn —  o d

and given a position p in some term u, the proof w[p<—P] is given by:

u[p<— d] =  «[p<—da] ^  u[p<—d2] ^  ^  u[p^-dn_i] ^  du[p*-n] =  u[p*-d']

By P[Q] we denote the proof P  with the subproof Q, ie Q = d^  • • • ^ d j  for some 1 < i <

j  < n.

From the soundness and completeness of rewriting, there is a proof for every equation 

E  l-£ t = t ' . We define a set of transformation rules which apply to proofs of this form, 

and show tha t the set of inference rules DC above simulates these transformations on 

proofs. We then show tha t every proof under the pair (0, R °°) is a rewrite proof.

D efin ition  8.19. We give the following transformation rules T  on proofs, to generate a 

transformation relation on proofs P  i— > P ' . For brevity, some obvious symmetric counter­

parts of rules are omitted.
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1. Deleting a Pair:

Vd,d' : V s (X ) .(d ^d ')  i— ► (d = d)

if d < *d=d,i,e d

2. Reducing a Pair:

Vd,d' : V s (X ) .(d ^d ')  — + (d -> d 'W )

if d < Ĉl =C2 )(7)p d ,

C1 *7—►sr,T,gci 5

and d" — d\p<—crc{\

Vd,d' : V s {X ) .{d ^d f) t—+ ( d ^ d 'W )  

if d< *Cl =c2 )0-,p d ,

c2 *7—►srIT,gC2,

and d" = d'[p<—crc ]̂.

3. Orienting a Pair:
Vd,d' : V s {X).(dr±d') (d->Td')

if d< *Cl =c21(t,p d »

Ci ]> (f C2

Vd,d' : X>5 (^ ) .(d ^ d ')  > (d-+5d')

if d« ĉi=c2,<7,p di,

Ci ~  c2 and c2 ^  c2.

4. Adding a Critical Pair:

Vd,d',d" : X k(*).(d '«-d-*d") h—+ (d'<— ► d"' ~  d")

if d—>7  d'h —►s1ri,ai,pu'

d->f_> r 0d"
*2 >S2r2,<72,q

p < q

d'\p < rc1 

d"\p < tc2

d'" =  d'[p<—rc 2] |p  5  U £><S(d'|p)

Cl = 5  c2 e  CP~({l1->s1r u l 2-+S2 r2 })

5. Rewriting by Term above Sort:
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Vd,d',d" : V s {X).(d'<-d-^d”) ► (d'<-d")

if d— d'
b — > î )  P

d - + f r „ d"‘2 * S2 r2 iCF219

P < Q

6. Rewriting by Sort above Term:

Vd,d',d" : V s { X ) . (d '^ d ^ d " )  ► (d'->d'" ~  d")

if d—>f_t ad'
*2 >S2 r  2 , & 2 , q

^ yh ~  

q < p
A ' . T  j///

b ~ >>5 1 n , < 7 i , p tt

7. Reducing a Peak without Overlap:

Vd,d',d" : V s (X).(d'<-d-+d") ♦ (d'->di«-d")

p tx q

d'—̂ -P , r „ dj‘2 *S2r2,V2,q L

r „ J i
‘ 1  >S1 r \ i a \^P 1

8. Reducing a Peak with a variable Overlap:

Vd,d',d" : V s (X).(d'*-d-+d") >— ► (d' da d")

if d—>J^. d!
‘ 1  ^ 5 x ^ 1  i ^ l  >P

d-*?_^ d"
h - + s 2 r 2 , < ? 2 , q  

3p' such tha t p.p' < q and li \pi G A

d' - % d i

d" di

Vd,d',d" : V s (X ) . ( d ! ^ d ^ d " )  i—+ (d; d1 d") 

if d— , d'
‘ 1 — H  i ^ l  i P

d—►f’ , d"
*2 * S2T2,V2,q

3p' such tha t p.p' < q and 7*! |p/ G A 

d' - ^ d i

d" da

9. Reducing a Sort-Sort Overlap:
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Vd,d',d" : V s ( X ) \ d ' < - d - ± d " )  ► ( d ' ^ d ^ d " )

if d—>f d'

d ^ l 2 - ^ S 2 r 2 i V 2 , q d  

d,—> f .  r „ J x*2 *S2r 2 ,<?2,q 1
d " - + ? _  , dx•1 r l  i*7! i f  1

10. Reducing a E Overlap:

Vd,d',d" : 2>5 (* ).(d '« -d -+ d ") h—► (d'-td^-d")
d - >pdf

d - ►?d"

p < q

d!-+?<*i

d"-~*p d\

Vd,d',d" : V s {X).(d '^d-+d")  i— ► (d '-^ d ^ d " )  

if d— d' 

d—̂ d "  

p  = q  

d ' ^ d x

d " ^ f d 1

Vd,d',d" : Z>5 (*).(d '<-d->d") h—► (d'—>d!<—d")

d -*pd '

d -+?d"

P = q

d!-

d" -+p d]

Vd, d ',d" : (AT).(d'<—d—►d") ► (d '^d ")

if d—>pd'



8.2. Completion Modulo Sorts 211

Vd,d7,d" : V s ( X ) . ( d ' ^ - d - + d " )  + (d7̂  ~  d")

d-~>£d7

d-- J ’d'7

p = q

d7-*qdi

11. Simplifying the Right-Hand Side of a Rule:

Vd,d7 : V s {X).{d^d ')  i— ► (d-+d"<-d')

if d^ s ^ , /

—>s2r 2,&2,qrl 
d" =  d ' t y t - a ^ ]  l pVS{d'\p)

Vd,d7 : V s {X ) . (d ^ d ’) ► (d-+d7W )

if d—>P . d'‘l — >sx r i , u i , p

r  _+S  /
1 h —>S2r 2)°‘2i9 1

d" = d ' lpVS(r{)

12. Term Simplifying the Left-Hand Side of a Rule:

Vd,d7 : V s (X).(d,^d')  h— (d->d"<— >d') 

if d—* P .  „d'
*1 1 t^l i P

1 -+T /'
1 ^2— ¥S 2 r 2  .<72,9

e
/j t> I2

d" = d[p<—<71/'] ip^ 2  u X>5(<i|p)

Sort Simplifying the Left-Hand Side of a Rule:

Vd,d' : X>s (^).(<f-*d') i— > (d^d"<— >d')

if d ^ S in m J

1  /'
1 h — ^ S 2 r 2 iCT2 >9

d" =  d |p£>S(/7)

13. Cliff reduction:

Vd, d! : V s (X ) . (d " ^ d  ~  d7) ► (d77 ^  d7/ 7 ~  d7277 d7)

D efin ition  8.20. If proof P  is transformed into proof Q by repeated application of rules 

T , then we write P  =>£ Q. If there is no proof Q such th a t proof N  Q, then TV is a 

normal form proof.
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D efin ition  8.21. (Bachmair 91). A Proof transformation system T  is said to reflect an 

inference system X on sets of equations and rules (E , R ), if (E ,R)  b j  (E ', R ') implies that 

every proof P  in (E , R) can be transformed by T  to a proof P' in (E f, R f).

We show th a t the above set of transformation rules on proofs reflects the set of rules DC.

L em m a 8.22. The set of transformation rules on proofs T , reflects the set of rules DC.

P ro o f  (8 .22). Deduce is reflected by transformation rule 2, since if (E , R) \~dc  {E', R') 

by Deduce, then E 1 = E  U cq =  c2, where (cl5c2) G C P ~(R ), with critical term c, and 

R' = R. If P is a proof in (E , R ), for every peak in P  di T<— d — d2 such that there exist 

paths p < q G 0(d),  and substitution o  such tha t d\p < <rc, and d\ = d[p<—oci] l pVS(d\p), 

and d2 < d[p<-oc2\ i pVS(d\p) [qV S(d\q) = d’2, and thus d1 m {(ci>C2)} d'2 ~  d2.

Similarly, Delete is reflected by transformation rule 1, Reduce by transformation rule 2, 

Orient by transformation rule 3, Simplify Right is reflected by transformation rule 11, and 

Simplify Left by rule 12. Proof transformations rule 13 transform proofs in {E,R)  if R  is 

(reachably) locally coherent. Other rules transform proofs within (E , R) by the confluence 

lemmas of Chapter 7. □

L em m a 8.23. Given a coherent well-founded dynamic term ordering >^, the set of 

transformation rules T  terminate.

P ro o f  (8 .23). Given a proof P, we define M (P )  to be the multiset of triples defined as 

follows. For each £ P:

if di di+1 then ({d,-,<Z<+1}, _L, _L) G M (P)  

if di —+sr di+1 then ({ d j, / ,  r) G M (P)  

if di i->s r<- di+ 1 then {{di+1},l,r)  £ Af(P) 

if di ~  di+i then ({d,-, di+1}, ± , _L) £ M (P)  

if di = di+ 1 then ((dt-} ,± ,± ) £ M{P)

  ^ _  g

where _L is an arbitrary element such tha t Vd £ T>x(X) • d ± , and Vd £ Z>e(T) • d t> 1 . 

Clearly if is a well-founded then its multiset extension >mui is also well-founded. Let
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y-M be the lexicographic combination of >muu the strict encompassment ordering t> on 

dynamic term s and >d, and then let y^M  be the multiset extension of )^m - We show tha t 

T  is reducing in Consider each rule in turn.

In each case, T  transforms proof P  to F '. For rules 1-10, we note the following reduction 

in the ordering >mui'.

1. {d,d} mul M

2 . {d,d'} >mul {d} ,{d" ,d’} i i d "  <d d.

3. {d,d'} >mui M ,  if d" <d d.

4. {d},{d} >mui { d '} ,{ d '" ,d " h i fd ' t d " < d d.

5. {d},{d} >mui {d"}, if d ',d" <d d.

6 . {d},{d} >mul { d '} ,{ d " \d '% \id ' ,d "  <d d.

7. {d}, {d} >mul {d'}, {d"}, if d ',d" <d d.

8 . {d},{d} >mul {d'},{d"}, if d ',d" < rf d.

9. {d}, {d} >mui {d'}, {d"}, if d', d" <d d.

1 0 . {d}, {d} >mui {d'},{d"}, if d ',d" <d d.

so in each of these cases M (P ) y^M M (P').  For rule 11, we note that:

1 1 . {({d}, l\ , 7*1)} { ({d } ,/i,rj) ,({d '} ,/2 , r 2)} as d >d d' and n  >d r[

For Rule 12, we have:

12. {({d}, l i , t*!)} yy-M {({d}, /2, r 2), ({d", d'}, _L, _L)} as d >d d',d” and lx t> Z2.

For rule 13, since >d is a coherent ordering, d, d' >d d"', d^, so

13. {({d}, h , r i) , ({d, d'}, _L, _L)} >̂ -M { (K '} , h ,  r2) , . . . ,  ({d", d'}, _L, J L ) , . . . , ({d}, rn)}.

Thus T  is terminating. □

L em m a 8.24. If proof P  N  and iV is a normal form proof, then iV is a rewriting
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proof, of the form d\ d[ ~  d'n dn.

Proof (8.24). Assume tha t the following subproofs are in N.

1. If d d' € IV, then rule 1, 2, or 3 applies, so IV is not in normal form.

2. If peak dj*—d— E iV then rule 4, 5, 6 , 7, 8 , 9 or 10 applies, so N  is not in normal 

form.

3. If cliff di<—d ~  d2 E N ,  then rule 13 applies, so N  is not in normal form.

Hence, there are no peaks, cliffs, or =  or <-—> steps in N,  so N  is a rewrite proof. □

Theorem 8.25. If (jEq,0) is transformed to (0,-Roo) by DC using a fair strategy, then 

any proof P  in E0 can be transformed into a rewrite proof N  in Roq.

Proof (8.25). By Lemma 8 .2 2 , T  reflects DC, so proof P  in E0 is transformed into a 

proof Q in R ^ .  Q N  where N  is in normal form, and by Lemma 8.24, A  is a rewrite 

proof. However, since there are no non-trivia! critical pairs remaining in R<*>, and all rules 

have been oriented, there can be no steps using rules 1,2,3, or 4 in transforming Q to N , 

and hence AT is a rewrite proof in R ^ . □

Thus we have a completion procedure modulo sorts. However, this completion is dependent 

on two conditions.

1 . The dynamic rewriting relation is locally coherent.

2. Well-sorted unifiers can be identified.

These conditions are not in general met by dynamic rewriting systems. We go on to discuss 

ways tha t sufficient criteria can be given to meet these conditions. First, a simple example 

of how this completion algorithm can complete rule sets upon which standard completion 

fails.

Example 8.26. Given the specification of Example 3.5, we now have the dynamic rules:
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Subsorts: s f < s ", s < s"

Rules: h (x  : s")*s" — f ( x  : s")*s

h (x  : s ,,)*s ,/ —v  g(a: : s")#s'

This set of rules can be seen to be coherent by inspection of terms. Completion generates 

the critical pair f ( x ) * s  ={«,«'} g{x) *s ,1 from the well-sorted unified term  h ( x  : s")»s", 

which given a well-founded term ordering, can be oriented into a rule (say left to righ t), 

resulting in the complete set of (interreduced) rules, under upward strong rewriting:

Rules: h (x  : s " ) ^ "  —*-{S)S'} g{x : 5//)»{s,s/}

f ( x  : s")«s g (x  : s")»s '

□

8 .2 .2  P ro o f Term s

Recall tha t the motivation of the completion procedure is to generate rewrite proofs of 

equations of the form L(t) =  L(t'), where t, t' £ T^(2l). The following set of terms 

represents a minimum set of terms which are needed to give proofs of such equations, which

from the completeness of rewriting, are those terms used in a strict matching replacement
* S t

proof, L(t) <— ► £ (0>  and als° those proofs which can be derived from such proofs by

transforming such proofs into rewrite proofs. It suffices to show the Church-Rosser property 

for this set of terms for such equations to be provable via rewrite proofs.

Definition 8.27. Given a specification S  =  (E,R), the set of Proof  Terms , V s { X )  is 

defined as follows.

The the set of Kernel  Proof  Terms  is the set of terms:

S t
Kers (X) =  {d | 3t € TE(X) ■ L(t) d}

Then the proof terms, with respect to matching algorithm M are the set of terms:
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Clearly, the strict matching proof terms are exactly K e r $ (X ) .  Unless otherwise stated, 

we shall assume the Upward Strong Proof terms. Note also tha t the set of proof terms is 

rewrite complete.

Lemma 8.28. If R  t i  = s t 2»then there exists a proof in K e r s ( X )  of L(t{) r  L ( t 2).

St
Proof (8.28). The completeness of rewriting demonstrates tha t there is a proof L(£i) <——>r 

L { t 2). □

Thus we can restrict the Church-Rosser property, global and local confluence and global 

and local coherence to proof terms, as defined in Section 7.4.1. Also, we have the following 

property on the transformation system T.

Lemma 8.29. The Transformation system T  in Section 8.2 preserves proofs in Vs{X) .

Proof (8.29). Immediate from the forms of the rules. □

Note th a t the proof terms are not all the well-sorted terms, not even the well-sorted terms 

which are less than their syntactic-least form.

Example 8.30. Consider the specification:

Sorts: A B

Subsorts: A < B

Operators: a : —> A b : —* B

f  : B - > B  

Rules: b*B — >^4 a*A

Then f(b*A)*B  E T>s(X),  but / ( 6»A)»B ^  Vs{X) . □
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8.3 Criteria for Completion

In the previous section, we established a completion procedure modulo sorts, which was de­

pendent on a coherence rewriting relation, and well-sorted unification. In subsection 6.2.3, 

we discuss some criteria for identifying well-sorted unifiers. In this section we discuss 

further criteria, and also criteria for showing the coherence of dynamic rewriting.

8.3 .1  Sort-D ecreasing  R ules

The restriction placed on the standard theory of rewriting is th a t rewrite rules should be 

sort-decreasing. We consider how this restriction is reflected in the Dynamic rewriting 

framework. The definition of sort-decreasing dynamic rules is as follows.

Definition 8.31. A dynamic rewrite rule l—*sr is sort-decreasing if:

1. l e £ E ( X)  a n d r  £ C E (X) .

2. S  = V S { r )  = £ S { r ) .

*  £  *  £
3. For all specialisations of variables p, pi — ► Px(pl) =  L(pl ) ,  pr  — ► Ps{p r )  =

L(pr), and V S ( P E (pl)) > V S { P E (pr)).

A set of dynamic rewrite rules R  is sort-decreasing if all rules /—►sr E R  are sort-decreasing.

Note tha t there is no upward strong sort rewriting using sort-decreasing systems.

Lemma 8.32. If a set of dynamic rewrite rules R  is sort-decreasing and d E V s ( X ) ,  then 

there is no d' E V s  ( X)  such tha t d-+s d' using upward strong (or strict) matching.

Proof (8.32). Let l—*sr t>e a rule in R.  I f  d > L(d) ,  then as r E C ^ X ) ,  then r will not 

match on d. If d < L(d),  then if r\Zu d\p, then V S ( r )  > V S ( d \ p) and so S  > V S ( d \ p), and 

no sort rewrite will occur. □

If we restrict rewriting to proof terms, we can give the following result.
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Lemma 8.33. If a set of dynamic rewrite rules R  is sort-decreasing, then Vd E V s(X ),
*  £ 

d -^ +  L(d).

Proof (8.33). Consider terms in Ker$(X). Clearly if Bt E Ty,(X) such tha t d =  L(£), 

then d E £e(^0*

£
Assume th a t d L(d), and d—>^d'. Then as there are no sort rewrites, this must either 

be term or propagation rewriting. We prove the more general result.

If d— d’, then:l—► 4r,cr,p ’

d' =  d [p ^ o r ] ips U V S (d \p)

 ̂ J]  ̂ s   ̂ s
As d' — ► L(d'), then for all x E Dom(o), ox  — ► L (o x ), and as r  E o r — ►

P2 (crr) =  L(crr). Also with upward strong rewriting, VS(d\p) < V S  (or) =  s, so:

d' =  d[p<—or] | p P<S(d|p)

d[p^L(<rr)] |p  VS(d\p)

By matching VS(d\p) < VS(P%(ol)), but as d|p L(d\p) we must have VS(d\p) >

V S (Ps (ol)) as both terms are in syntax normal forms. So, by sort decreasingness, VS(d\p) > 

VS(Ps:(or)), so

dl — >■ d[p<—L(or)]

Pz(d[p^L(or)])

=  L(d[p*— or])

For d E Kers (X), Assume tha t d L(d), and d f ^ r ap^ d ' . Then: 

d! — d[p<—<j/] |p  2><S(d|p)

but as strict rewriting is used, VS(d\p) =  V S  (I), so:
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*  £ £ 
as d' — ► L(d'), which also gives, for any path q /p £ 0(d ')  and p ^  q, d'\q - —*■ L(d '\q)

* £
and as least sorts are preserved d\q — > L(d\q), so:

d' Px{d[p^(jl])

=  L(d\p*—ol])

and we are done.

For term s in V s{X ),  the result holds from either, d £ Ker$(X). which we have shown, 

or else we can assume tha t d £ £s:(X) and by the more general result given above. 

d->u ,Td ' ^  L(d). □

Theorem 8.34. If a set of dynamic rewrite rules R  is sort-decreasing, then it is locally 

coherent on proof terms.

*  £Proof (8.34). By the previous lemma Vdi,d2 £ P s(X ) ,  such th a t di ~  d2, d — ► 

L(d) s  d2, so R  is resolvent confluent on V s(X ).  By Lemma 7.60, R  is coherent on 

V s(X ) .  □

Similarly, we only need generate critical terms which are proof terms. T hat is we only 

need to generate unifiers through proof terms. We can give the following fact about critical 

terms of proof terms.

Lemma 8.35. If R  is a set of sort-decreasing rewrite rules, and if d1? d, d2 £ V s (X ) ,  such 

tha t di<— d—»d2, is a critical overlap, the critical term of the peak, c > L(c).

Proof (8.35). Assume a term-term peak, d\ d—>/2_>s r2)0-2d2, formed by sort-

decreasing rules. Then we know from Lemma 8.33 tha t d t>L(d), so crj, ct2 are substitutions 

which approximate to syntactic least terms, l \ , l2 are syntactic least terms and so the critical 

peak term  c = A ol2] >L(c).  □

Hence the critical term approximates the syntactic least form. Thus for peak terms we 

satisfy the conditions of Lemma 6.55, and we can use the modified unification algorithm of 

Figure 6 .6  to  generate well-sorted unifiers, and well-sorted peak terms.
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8.3 .2  Sort-C onvergent R ules

As noted in Section 3.5, in [CH91b] the notion of sort convergence is shown to be sufficient to 

ensure tha t the confluence of syntactically well-sorted term rewriting satisfies the confluence 

of >V-rewriting, or all well-sorted terms rewrites. We can reproduce these results in a 

dynamic framework.

Definition 8.36. A dynamic term-rewriting system R  is sort convergent if for any /— E 

R  and any E-substitution <r, there is a L-term u such tha t o(l) u L^ — o(r).

This condition is decidable by considering all specialisations of variable in the rules.

Lemma 8.37. If R  is a terminating, sort convergent and confluent modulo sorts set of
*  D

dynamic rewrite rules, and if u E then u — ► w E £ e (X )  is a normal form if and
*  Lonly if u — ► w E is a normal form.

Proof (8.37). Only if direction. By induction on termination ordering >d . If d E 

and d—+ ^ .57.)0.pd', then as R  is sort convergent 3u E Cy.(X) * cr(0 — ► u L<r—  o(r), and 

hence d d[p<— u] and d[p<— u) E £s:(X)- By the induction hypothesis, d[p<— u]

d[p<—u] l R e Cs:(X).

If direction. Clearly, d — > d' implies d d' . We prove by contradiction. Assume tha t 

d' is a normal form for —>L, but not for ~^D, then there is some d" such tha t d!— c pd". 

R  is sort convergent so 3u E £y,(X) ' ^ (0  — ► u L<—  and hence d! ~ ^ L d'[p<— u] 

and d'[p<—u] E ^ e (A ), which contradicts the d' being a normal form for —►L. □

Theorem 8.38. Given a set of terminating and sort convergent dynamic rewrite rules R , 

~^D is confluent modulo sorts if and only — is confluent modulo sorts.

Proof (8.38). A corollary of the previous lemma. □

As a consequence of this theorem, to establish confluence modulo sorts, and hence the 

Church-Rosser property modulo sorts, for proofs of the form t i , t 2 £ T%(X) for sort-
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convergent sets of rules, we need only establish confluence modulo sorts, and hence the 

Church-Rosser property modulo sorts, for the relation — Thus  all proofs are using —>L, 

and by Lemma 7.62, this relation is coherent. Also, we need only generate critical pairs 

from unifying E-substitutions, and hence can use the Standard Abstract rule in generating 

well-sorted unifiers.

8.4 Towards a Conditional M ethod

The above completion procedure is contingent upon the dynamic unifier used to  generate 

critical pairs being well-sorted. However, we have seen tha t in general the well-sortedness of 

unifiers is not decidable, and the unitary dynamic unification algorithm given in Chapter 6 

in general generates ill-sorted unifiers, and ill-sorted unified terms. In this section we 

propose a modified version of dynamic rewriting given in Chapter 7, which allows ill-sorted 

unified terms.

The following example demonstrates the problems which can occur with ill-sorted unifiers. 

Example 8.39. Consider the following specification.

A 

B

?

Dynamically unifying f ( x  : A)mA =  f ( y  : B)*B  generates the dynamic critical pair 

(a»{A, B}, b*{A, 15}). However, a =  b is not a valid equational consequence of the specifi­

cation, as the meet sort A  A B  is uninhabited. □

The problem tha t occurs in Example 8.39 can be captured by noting th a t the maximal 

upward strong unified term of the overlap, f ( z  : {A, P})*{A, B},  is ill-formed and has no 

well-formed instances. Another example is as follows.

Sorts: A B

Operators: a : —► A f  : A

b : -> B  f  : B

Rules: f ( x  : A)*A  —̂  a*A

f ( y  : A ) .B  -*B b .B
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Example 8.40. Extend the specification given in Example 6.33 with the following opera­

tors and rules.

Operators: /  : N at  —> N at

N  : —► Nat  

Rules: f ( y PoS)*Nat *Pos Vpos

f (m o d 2(z : Nat)*Nat)mNat —>Nat N *N at  

This is not confluent since for any n £ IN:

f  (mod2(s2n+1 (0»Nat)92n+1 Pos)9Pos)*Nat

s  \
mod2 (s2n+1 (0« Nat)  • 2n+ 1 Pos) •Pos N *N at

forms a well-sorted critical peak. However, the most-general dynamic unifier gives an ill- 

sorted critical peak:

f (m od2(z : Nat)0Pos)9Nat

/  \
mod2(z : Nat)*Pos N *N at

This peak, equates a well-sorted term N *N at  with an ill-sorted term. □

Thus this critical peak is ill-sorted, and we should not allow this as a valid dynamic equation 

to be added to the current axioms. However, in general we cannot tell whether a unified 

term, or any of its instances, are well-sorted or not.

Our solution is to keep the critical peak term in the resulting equality. Thus we generate 

critical triples rather than critical pairs. When these equalities are oriented into rewrite 

rules, the rule can only apply if the instance of the critical peak term is well-sorted.

To formalise these notions, first we define a constrained equality.

Definition 8.41. Dynamic Constrained Equation.

A Dynamic Constrained Equation is defined to be a quintuple, written MX.C : I =$ r, 

where A  £ X , C  C V E{X), I, r £ P E(* ) , and S  £ S% and X  D Vars(C) U Vars({l, r}) and
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S  D V S ( l)U V S (r ) .

We define Dynamic Constrained Rewrite Rules in a similar fashion, and use them instead 

of normal rewrite rules. The check tha t we have to make when we apply a dynamic rewrite 

rule is tha t all the constraints are well-sorted in the instance the rule is applied. Thus 

dynamic rewriting with constrained rewrite rules becomes similar to conditional rewriting. 

For details on conventional conditional rewriting see for example [Kap87, Gan91a]. We 

only define constrained rewriting for upward strong matching.

Definition 8.42. Given d £ V-z(X) and a constrained dynamic rule VA.C : l - ^ s r:

1 . d constrained term rewrites to df if cf>(l) ^  4>(r), if there is a dynamic substitution 

o : Y —>X)e(A ), and path p £ 0(d),  such tha t IQ# d\p, and Vc £ C  • oc £ V $ (X ),  and 

d' =  or] i p S  U VS(d\p).

2. d constrained sort rewrites to d' if there is a dynamic substitution o : Y —>Vz(X), 

p £ 0(d)  such tha t rC.^d\p, Vc £ C  • oc £ V s (X ) ,  and VS(d)  ^  S,  and d! — d i pS.

Sort propagation rewriting is as before. The union of these three types of rewriting is 

known as Constrained Dynamic Rewriting, written d ~^c  d! .

Clearly, if for all rules in a set of rules R, the set of constraints is empty, then we revert to 

unconstrained dynamic rewriting. We define Critical Triples as follows.

Definition 8.43. Critical Triples.

If constrained dynamic rules VA.Ci : !—■►s>1 r, and VY.C2 : g—>s2d, regarded as unconstrained 

rules, generate a critical pair: (ci,c2), with most general dynamic unifier 6, and critical 

term c, then the Critical Triple is defined to be VA U Y  • OCi U 0C2 U {c} : (c1}c2). The 

constraint c and all subterms of c are said to be derived from rules VA.Ci : l—*slLr t and 

v r .c 2 : g->s2d.

The denotation of constrained dynamic rules is similar to tha t of conditional rewrite rules. 

In this case an instance of a constrained dynamic equation VA.C : I = s r under substitution 

o holds as a dynamic equation ol = 5  or  if and only if oC  C V $(X ),  th a t is, it is well-sorted.
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This interpretation can be seen to be analogous to the situation of empty sorts, sketched 

in Section 2.4. Given an equation VA./ =  r, this holds in all models where the sorts of 

the variables in A  are inhabited, tha t there is a well-sorted ground term of the form t : s 

for each x s E A , so in dynamic terms t*s E V s{X ).  The concept of constrained equations 

extends this concept. Given a constrained equation VA.C : I = r, it (or an instance) is 

valid if the set of well-sorted terms which are instances of the terms in C is non-empty.

Example 8.44. In Example 8.40, the ill-sorted peak can generate the constrained 

equation:

f  (mod2(zNat)»Pos)»Nat : mod2( z ^ at*Pos) = N *N at  

and for each substitution, 0n = {z : Nat  i—> 52n+1 (0 *Aa£)#2n+1Pos}, the peak term: 

0nf(m o d 2(zNat)9Pos)»Nat = f(m od2(s2n+1(Q*Nat)*2nJrlPos)9Pos)*Nat 

is well-sorted, and thus so is the corresponding instance of the equation. □

We can use constrained dynamic equation and rules to reproduce the results of Chapter 7, 

ignoring the condition. Birkhoff’s Theorem trivially holds for such rules as in its proof 

we assume only well-sorted replacements are performed. We can also trivially extend the 

notion of completion modulo sorts to constrained dynamic rules.

Reducing Constrained Dynamic Equations

By using constrained dynamic rules, we have shifted the problem of deciding the well- 

sortedness of dynamic unification to tha t of deciding the well-sortedness of terms, which 

is equally undecidable. Criteria for deciding the well-sortedness of terms is the subject of 

further research. However, we can reduce and possibly eliminate constraints with a (non­

exclusive) set of reduction rules on constrained equations which use the sort information 

already deduced. The reduction rules in Figure 8.3 apply to constrained equations and 

rules.

Lemma 8.45. If a constrained dynamic equation of the form VA.C : I = s r is transformed 

to VA.C' : / = 5  r by the rules of Figure 8.3, then C  E Vs {X)  if or only if C ' E V S {X).
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(1) Approximate.
V X { c 1} c2} U C : I =s r if c2 >  cx 

V X { Cl} U  C : l = s r

(2) Merge.
V X { c i , c 2} U C  : I = s  r if <£(ci) =  <f>(c2)

V X { Cl A c 2} u C  : l = s r

(3) Decompose.
V X { / ( c 1; . . . ,  cn)*T} U C  : I =s  r if T  > CS(f (c,u . . . ,  cn) . T )  

V X { c ! , . . . , c n} u C  : I = s r

(4) Weaken.
V X {/(C ! cB) » r u M } u C : / = 5 r if s > CS( f ( c l t cn) . T)

V X . { / ( c j , . . . , cn)*T} U C  : / = 5  r

(5) Variable.
VX{:r : s} U C : I = s  t  if x G Xs, and s inhabited.

V X C  : / = 5  r

Figure 8.3: Rules for Reducing Constraints.

Proof (8.45). Consider each rule in turn.

Approximate. If c\ G T>s(X) then every d such tha t C\ < d, d G T>s(X)- 

Merge, ci, c2 G Vs { X)  if and only if C\ A c2 G ^ ( - T ) .

Decompose. Clearly, L ( / (c i , . . .  , cn)) G so if C i,... ,cn G then

/ ( c i , . . .  ,cn)* £ S ( /(c i , . . .  ,cn)) G PsO *), so /( c l5. . .  ,cn)#T G X>s(*).

Weaken. A similar argument as for Decompose.

Variable. Trivial. Note th a t s can be an intersection sort. □

By repeated application of the Decompose rule, we can remove conditions c such tha t 

c >L(c) .

The above reduction rules have been of a syntactic nature. We can use the (constrained) 

well-sortedness of the rules generating the constraint to reduce it further. We use the
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concept of a constraint being derived from a rule. The following applies to constraints 

arising from term -term critical triples; similar lemmas and rules can be given for other 

critical triples.

L em m a 8.46. If V X { /(c l r . . ,  cn)#T} U C  : d =$ e  is a constrained equation such th a t 

C i,... ,cn G T>s(X), and / ( c 1?.. .  , cn)*T is derived from MX.C\ : I —>Si and G 0(1) 

such tha t l\p X  and o G DSubsts  • ol\p > / ( c i , . . .  , cn)»T, and V S(l\p) U S\ < T, then 

for any 6 G D Subst£ such tha t 0Ci C X>s(,T), 0 /(c l5. . .  , cn)«T G

P ro o f  (8 .46). As / ( c 1?. . .  , cn)#T is derived from VX.Ci : / —̂  r  from a term -term 

critical triple, then there is a critical peak term c such tha t for some q G 0(1) and o G 

DSubst^, crlq > c, and there is a path <?' G 0(c)  such tha t c\qi < f ( c i , . . .  , cn )«T. Let 

P =  Q'Q'i an(i assume th a t l\p X , so cr/|p ~  / ( c j , . . .  , cn)«T.

If 0Ci G l>s(A), then 6l\p G X>s(<T), so T U Si G <S<S(0/|p), by definition of dynamic 

equation, so as l\p X , T  U Si > <S<S(0/(c1}. . . ,  cn)*T) so if c i , . . . , c n G V $ ( X ), then 

8 f(cu . . . , c n ) .T  e V s (X).  □

We can use this lemma to justify the rule in Figure 8.4.

(6 ) D erived .
VX.{/(c1?. . . ,  cn)*T} U C : d —s  e if f ( c i , . . . ,  cn)*T is derived from V X Ci : I —̂  r 

V X {ci,. . .  ,cn} U C  : d = s e and 3p G 0(1) • l\p < / ( c i , . . .  ,cn)«T,
/|p £  X  and VS(l\p) < T

Figure 8.4: Rule for Reducing a Derived Constraint of Critical Triple.

In this case <rCi, or terms which have been reduced from Ci, is contained within C. Thus 

by the lemma, the term f ( c i , . . .  ,cn)«T is well-sorted in all contexts tha t C  is, and can 

thus be eliminated.

As the well-sortedness of dynamic terms is dependent upon the equational theory, the well- 

sortedness of a term can be determined by rewriting. However, we cannot naively rewrite a 

term to see if it rewrites to  a well-sorted term; as we have seen, ill-sorted terms can rewrite 

to a well-sorted term. Thus, we have to take an equivalent well-sorted term  and see if a
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term rewrites to a term of the appropriate sort.

Lemma 8.47. Given a set of Constrained dynamic rewrite rules R , and d E V e(A'), such 

tha t d = / ( c i , . . .  , cn)#T and c1;. . .  ,cn E X>s(A'), if L(d) and VS(d') < T, then

d e V s {X).

Proof (8.47). Clearly, L(d)  E T>s(X) .  By Lemma 7.17 extended to constrained rewriting, 

tha t if L(d)—̂ d ' then d' E T>s(X) .  Hence, by soundness of dynamic rewriting, L ( d ) * T  > 

L(d)«LS(d') E V S ( X) .  As cj , . . . , cn E V S ( X) ,  so / ( c 1}. . .  ,cn )*T E V S ( X ) .  □

This lemma can be used in a constraint reduction rule given in Figure 8.5. Alternatively, 

instances of constraints can be tested for well-sortedness in this way, during rewriting. We 

give an example in the next chapter.

(7) Rewrite.
V X ( / ( c 1, . . . , c n) » r } u C : l = s r  if L( f ( c l t . . . ,  cn) * T ) - ^ C d and VS(d)  < T  

VX{cl t . . .  ,cn } U C  : I = s r

Figure 8.5: Rule for Reducing Constraint via Rewriting.

Conditional term rewriting introduces the notion of a reductive conditional rewrite rule [Kap87], 

which is a conditional rewrite rule where all terms in conditions are less than the left-hand 

term  of the rule. This condition ensures termination of the rewrite relation and also tha t 

local confluence is equal to global confluence. It can be included within constrained dy­

namic rewriting, so the Orient rule in the completion algorithm is replaced by the stronger 

rule in Figure 8 .6 .

(3a) Constrained Orient.
V X C : d = s e if d > d e, or d ~  e and d /  e, and also Vc E C.l >t c 
V XC : d — e

Figure 8 .6 : Rule for Orienting Critical Triples.

This condition may seem hard to establish, as by the rewriting relation, if ci<—c—>c2 is 

a critical peak, then c >d cj,c2. However, the constraint reduction rules 1-7 above may 

reduce the constraint sufficiently to establish this condition.
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The constrained dynamic rewriting method offers a different path of analysis to the standard 

dynamic rewriting, pushing the boundaries of dynamic order-sorted equational rewriting, 

and allowing us to make further connections with work in other areas. Note for example, 

tha t the constraints are similar to the definedness condition in partial algebras [BW82]. 

There are also similarities to the work on membership constraints of for example [Toy87] 

and [Com90, Com92]. This method is a candidate for further research.

8.5 Comments on Dynamic Rewriting

The formulation of dynamic rewriting gives rise to a choice of rewriting relations, depending 

on which matching algorithm is used. Which rewriting relation is most appropriate in any 

given situation, is dependent on the use of the rewriting. If rewriting only is required, to 

simplify terms for example, without regard to the completeness of the rewriting, then weak 

rewriting provides the largest relation and may result in shorter, more efficient rewriting 

sequences. However, as we have seen, there is no completion established for this relation. 

Upward strong rewriting provides completion modulo sorts, if the coherence and well-sorted 

dynamic unification conditions can be met, either implicitly in the completion algorithm, 

or explicitly in constrained rules. Strict rewriting is the most inefficient rewriting relation, 

but there is a completion procedure associated with it, which used strict matching and uni­

fication. This completion algorithm also requires many more critical pairs than completion 

modulo sorts using upward strong matching. Currently, no special properties have been 

identified for downward strong rewriting, and it is included for completeness.



Chapter 9

Review and Conclusions

In the last chapter of this thesis, we give a roundup of the results presented in the previous 

chapters. We first summarise the contents of each chapter, emphasising the new results. 

Some examples are then revisited illustrating the use of the dynamic order-sorted logic 

and rewriting theory upon some well-known problem cases are then given to support these 

results. Finally, we discuss the conclusions of this thesis and give some possible directions 

for future research in both theory and in how the dynamic rewriting theory could be realised 

within an implementation, extending the existing MERILL system.

9.1 A Summary of the work of this Thesis

We review the work of this thesis and give a summary of the major results.

The context of specification is presented in Chapter 1 where the motivations for chos- 

ing to study order-sorted algebraic specification are presented. The area of order-sorted 

specification has been a well studied area in the past ten years, a body of work sum­

marised in the first part of Chapter 2 . Nevertheless, there are few extant implementations 

of this work; the MERILL system developed as part of this thesis, described in the sec­

229
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ond part of Chapter 2 , is the first implementation of order-sorted completion modulo the 

associative-commutative axioms. This system thus handles a wider range of problems than 

its predecessor ERIL [Dic85, Dic87].

However, as demonstrated in Chapter 3 there is a wide class of problems which are not 

handled by MERILL, not merely due to implementation restrictions within MERILL, but 

because of deep theoretical problems within the standard order-sorted theories themselves, 

whether using the non-overloaded semantics of [SNGM88], or the overloaded semantics 

of [GM89]. The causes of these problems are discussed at length in the same chapter, 

and the existing literature is reviewed in some detail to consider approaches to overcoming 

these difficulties. The conclusions of this chapter are that although there are many inter­

esting attem pts to accommodate these difficulties, which in themselves reveal interesting 

problems, none are entirely satisfactory.

As a consequence, it was decided tha t a reworking of order-sorted theory was required, 

and in Chapter 4 a new approach to order-sorted algebras is presented. This captures 

the intuition of the specifier more closely as it allows unsorted terms as well as sorted, by 

constructing two-tier dynamic algebras. A semantics of sorting which takes into account 

equality is introduced via the notion of sort judgement, and a new dynamic equationa! logic 

is defined. This logic is notable for its simplicity and power; it is shown to be sound and 

complete with respect to the two-tier semantics. This dynamic algebra and logic capture 

precisely what is intuitively meant by order-sorted specification, a claim supported by 

comparing it with Equational Typed Logic [MSS90]. The dynamic logic is the specialisation 

of ETL to order-sorted logic rather than the standard semantics.

To produce a computational analogue to the dynamic semantics, the notion of terms is 

modified to record explicitly the sorts of each subterm. This notion of dynamic terms is 

explored in Chapter 5 where the relationship of a lattice of dynamic terms, ordered by 

the approximation ordering, to each standard term is discussed. Dynamic substitutions 

are introduced, the syntactic sort propagations operations of percolation and balancing are 

described, and dynamic equations are introduced.

In Chapter 6 , dynamic terms are discussed further with the introduction of the concepts
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of dynamic matching and unification. The differences in behaviour between dynamic and 

standard terms become more apparent here. It transpires tha t for these concepts there is 

more than one possible analogue corresponding to the standard definitions, each with their 

own properties. Where there may be a single match in the standard domain, there may 

be several in the dynamic; a canonical match is given representing the ‘best’ available. In 

dynamic unification, although a most general unifier can be defined, unlike in standard 

unification, the unified term is not unique; in some circumstances a best unified term can 

be given. A dynamic unification algorithm is given which is unitary, but may not generate 

well-sorted unifiers, although well-sorted unifiers have a relation to these unifiers. Some 

discussion follows on how to generate well-sorted unifiers, comparing with other approaches 

in the literature.

Chapter 7 defines dynamic term rewriting. Dynamic rewriting is similar to standard term 

rewriting except tha t it can also modify the sorts information in terms. However, this does 

not prove to give a sufficiently strong rewriting relation, and so two other forms of rewriting 

are introduced; sort propagation which performs a sort percolation step, and sort rewriting 

which uses the right-hand side of rules to modify sorts. This combination is shown to 

be the computational analogue of dynamic order-sorted equational logic by the statem ent 

and proof of a Birkhoff Theorem for dynamic rewriting which shows the soundness and 

completeness of dynamic rewriting, without using the compatibility property, required for 

standard rewriting. Termination of dynamic rewriting is briefly discussed and it is shown 

th a t it is sufficient to use standard methods to establish termination.

In order to perform automated rewriting proofs, definitions of the Church-Rosser and con­

fluence properties are given, and in addition, the weaker properties of Church-Rosser and 

confluence modulo sorts are introduced, which will give automated rewriting proofs up to 

identity of underlying terms. This reminds us tha t it is not proofs in the dynamic system 

which are the prime motivation of this work, but proofs in the underlying order-sorted 

algebra. Local confluence proves sufficient to demonstrate confluence in a terminating 

rewrite system; however, the extra condition of local coherence is required for local conflu­

ence modulo sorts to establish confluence modulo sorts. The chapter concludes with the 

demonstration of some local confluence lemmas for special cases of rewriting.
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Work towards generating a decision procedure for dynamic rewriting proofs continues in 

Chapter 8 , where we define critical pairs and note that using the local confluence results 

of Chapter 7, many critical pairs become redundant. We then discuss the critical pair 

lemma for both local confluence and local confluence modulo sorts and prove the latter. 

We then define a completion algorithm and sketch a proof of its correctness. However, this 

completion algorithm is dependent on two conditions: local coherence, and also the well- 

sortedness of unifiers. Criteria can be given in special cases to establish these properties. 

As a more general approach to handling this problem, the unified term is placed in the 

critical pair explicitly as a critical triple. This leads to a modified rewriting method similar 

to conditional or constrained rewriting, where rewriting can only take place if the condition 

terms are well-sorted. Methods of simplifying the conditions are considered at the end of 

the chapter.

9.2 Illustrative Examples

In order to illustrate the dynamic rewriting method, we give some examples of dynamic 

rewriting. This demonstrates tha t it can be used to solve some of the well known problems 

associated with order-sorted specifications. Also some further examples show how it may 

be possible to extend the method.

Example 9.1. It is worth briefly going over Smolka’s Example [SNGM88], discussed in 

Example 2.66. If with the same signature as before, we have dynamic rules:

Rules: a 9 A -^ j J )* B

a'*A-+Ab*B

Then there is the rewriting proof:

f(a*A)*A  —► f(b*A)*A  <— /(a'*A.)*A. 

and rewriting is complete. □

Example 9.2. A motivation for dynamic rewriting was the problem of the restriction of
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sort-decreasing sets of rules. We re-examine Example 3.2 and can now orient the square 

equation in the natural way:

Rules: (rules for  _* _ omitted)

square(x)*Nat -^Nat ix * x)*In t

Thus there is the rewrite sequence:

square(succ(succ(Q*Nat) • Nat) •Nat) *Nat

—> (succ(succ(0*Nat)*Nat)»Nat * succ(succ(0*Nat)»Nat)»Nat)*Nat 

— *■ succ(succ(succ(succ(0*Nat)*Nat)*Nat)*Nat)*Nat

□

Example 9.3. No treatm ent of algebraic specifications is complete without a discussion 

of the Stack example. The stack example is given in dynamic specification as follows:

Sorts: Elem, NeStack, Stack

Subsorts: NeStack < Stack

Operators: empty : —► Stack

push : Elem Stack  —> NeStack  

pop : NeStack —> Stack 

top : NeStack  —► Elem  

Variables: e,el 7e2 : Elem s : Stack

Rules: pop(push{e,s)*NeStack)9Stack —>stack s

top(push(e, s)*NeStack)*Elem —*■Elem e

A well known problem with the standard order-sorted stack example is th a t the term:

t =  pop(pop(push(ei,push(e2 , s))))

is ill-formed syntactically. In Section 3.2 in the similar example of sequences, this is resolved 

using retracts as auxiliary operators to make ill-sorted terms well-sorted. Using dynamic 

rewriting, we give a more elegant solution, by rewriting the least syntactic dynamic term 

for t.

L(t) = pop(pop(push(e^push(e2, s)*NeStack)*NeStack)*Stack)»{}
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yT pop(push(e2, s)*NeStack)*{}  

pop(push(e2,s)*NeStack)*Stack

Ty1 s

Thus t is a well-sorted term of sort Stack. Note also tha t the terms:

L(pop(empty)) =  pop(emptyStack)*{}

L{top{empty)) =  to p (em p ty  Stack) •{}

are valid dynamic terms, but are not rewritable, and are thus ill-sorted. □

E x am p le  9.4. Order-sorted algebras were originally intended to handle partial functions 

and the specification of errors. In this example, we show how such functions can be pre­

sented in dynamic order-sorted specification. We repeat the stack example, but this time 

we do not make pop and top partial, but introduce error supersorts:

Sorts: Elem, ErrElem, Stack, ErrStack

Subsorts: Elem < ErrElem

Stack < ErrStack 

Operators: empty  : —► Stack

push  : Elem  Stack  —> Stack 

pop : Stack  —► ErrStack  

top : Stack —y ErrE lem  

errorelem : —► ErrElem  

underflow : —► ErrStack  

Variables: e, e1?e2 : Elem  s : Stack

Rules: pop (push (e,s)*NeS tack) •  Err S  tack —> s ta c k  s

top(push(e,s)*NeStack)*ErrElem  —►Elem e 

pop{em ptyStack)*Err Stack — >E rrS ta ck  under f l o w  Err  Stack 

top iem ptyStack)*  Err  Elem  —>ErrElem errorelem* Err Elem

The error sort elements can be used as error messages. This is an alternative to Example 9.3 

and has much the same properties, and is equally well-behaved as a dynamic rewriting 

system. □
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E xam ple  9.5. In [CH91b], the following example is given, using the unsorted rules and 

membership constraint notation of [Com92].

y € S  f (g(y))  -»■ b

h(x) —y l (x)

where S  = {/^(a)}. This is not confluent as an unsorted system as:

b <- f{g(h(a)))  -> f(g(l(a)))

Chen and Hsiang point out Comon’s inference rules generate an infinite set of rules involving 

higher-order variables and rightly suggest that this system can be more elegantly expressed 

as an order-sorted specification.

Sorts: S  T

Subsorts: S  < T

Operators: a : —► S  b : —> T

f  : T  h : T  ^  T

g : T  T  h :  S  -♦ S

I : T  T  

Variables: x : T  , y : S

Rules: f(g(y)*T)*T —+t b*T

h(x)*T  —>T l(x)*T

This set of rules is not sort-decreasing, as CS(h(y : S )*T ) = S  < T  = CS( l (y : S)*T).  In 

standard rewriting the non-confluence remains, and Chen and Hsiang solve this by adding 

another rank : I : S  —*■ S  using their completion procedure. However, using dynamic

rewriting, this set of rules is complete. The non-confluent peak shown above is confluent

using dynamic rewriting.

b*T <- f(g(h(a*S)*S)*T)*T  -► f(g(l(a*S)*S)*T)*T -* b*T

Thus in this example, dynamic rewriting is more compact then either Comon’s or Chen 

and Hsiang’s approaches. □

E x am p le  9.6. Dynamic rewriting can be used to capture Term-Sort Declarations, as 

given in Definition 3.20. Consider the Example 3.21 which describes the Even sort. We 

can reformulate this example as a set of dynamic rewrite rules as follows.
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Sorts: Nat, Even

Subsorts: Even < Nat

Operators: 0 : —> Even

succ : N a t  —► N at

Rules: succ(succ(x : Even)*Nat)*Nat —>Even succ(succ(x : Even)*Nat)*Nat

The Term-Sort Declaration t : S  has been transformed into a dynamic rule L (t) =s L(t). 

This rule cannot be used for term rewriting, by Definition 7.3, but it can be used for sort 

rewriting. Thus we can show tha t swcc4 (0) is even as follows:

L(succ(succ(succ(succ ]]]]] = succ(succ(succ(succ(0*Everi)*Nat)*Nat)*Nat)*Nat 

—>s succ(succ{succ(succ{fl*Even)*Nat)*Even)*Nat)*Nat 

~^s  succ(succ(succ(succ(0*Even)*Nat)*Even)*Nat)*Even

Such rewrite rules should be treated exactly as normal rewrite rules. □

Example 9,7. In Chapter 3, term -sort constraints on equations can be generated during 

completion, representing unified terms, the well-sortedness of which are undetermined. 

By allowing such conditions in specifications, we can extend the power of the method 

further. Consider the specification of the subtraction function over the naturals. This is 

a problematic specification as subtraction in the naturals is only well defined if the first 

argument is greater than the second. However, consider the following dynamic specification, 

inspired by a similar example in [MSS90].

73
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Sorts: NzNat, Nat, ErrNat

Subsorts: NzNat < Nat < ErrNat

Operators: 0 : —» Nat

succ : Nat —> NzNat 

pred : NzNat —> Nat 

_ -  _ : ErrNat ErrNat —> ErrNat1 

Variables: m, n : N at

Rules: pred(succ(n)* NzNat)* Nat ~*Nat n

(n — 0*Nat)*ErrNat — n 

(■m — n)*NzNat : (m — succ(n))* ErrNat —+Nat pred((m — n)*NzNat)*Nat

The last rule has a condition tha t (m — n)*NzNat £ Vs {X) .  This condition can be used in 

the following proof, which uses the result of Lemma 8.47 to  show th a t the constraint term  

is well-sorted.

L(succ(succ( 0)) — swcc(0))—>pred(succ(succ(0* Nat)* NzNat)* NzNat — 0 *Nat) 

if (succ(succ(0*Nat)*NzNat)*NzNat — 0*Nat)*NzNat £ Vs { X)  

and since we can rewrite the condition to a well-sorted term of sort NzNat:

succ(succ(Q* Nat)* NzNat)* NzNat — 0 *Nat succ(succ(0* Nat)* NzNat)* NzNat

the condition holds and we can rewrite further:

pred((succ(succ(0* Nat)* NzNat)* NzNat — 0* Nat)* NzNat)* Nat 

—► pred(succ(succ(0* Nat)* NzNat)* NzNat)* Nat 

—*■ succ(0* Nat)* NzNat

This is an elegant solution to the example, and it is speculated th a t this method could be 

exploited further. □

Example 9.8. A further extension could be the addition of conditions on the lattice of 

sorts. For example, we could declare tha t certain subsorts are uninhabited. This could be 

used as a semi-decision procedure for refutational theorem proving.

1This operator declaration for _ — _is somewhat unsatisfactory. It would be preferable to have the least 
syntactic sort of terms involving _ — _ as {} and leave their sorting entirely to the equations. However, our 
definition of signature does not allow this.
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Sorts: Bool, True, Fa/se

Subsorts: True < Bool, False < Bool

Sort Conditions: True txi Fa/se

Operators: t t : —► True

f f : —> Fa/se

The condition True tx Fa/se declares tha t the intersection between these two sorts is empty, 

th a t is we will accept no models which have common elements of both sorts. We can 

thus use this for refutational theorem proving. If during completion the (unconditional) 

equality di = ̂  False} ^2 *s genera-ted., this equality contradicts the hypothesis tha t 

True ex False, and thus the initial set of equations is inconsistent. In [DK88] and [Mat88], 

using the example of Henkin models given in [Pau85], a simple boolean calculus is used to 

show th a t in these models, the binary operator LE  is transitive, using axioms which we 

omit for brevity. Adding the dynamic equalities:

LE(A , B)*Bool =  yn/e tt*True 

LE(B,C)*Bool = j 'rue ttmTrue 

not(LE(A,C)*Bool)*Bool = j 'rue tt*True

for some Skolem constants A, B, C, completion (only standard unification is required), 

results in the generation of the equality:

tt*True ={Tme,False}

In ERIL, an exceptional rule is built into the system to recognise this contradiction. By 

allowing the condition to be placed on the sort in dynamic sorting, we can give a formal 

justification for this and also generalise it to sorts other than Boolean. □

Further extensions to the theory could be developed by allowing greater expressiveness in 

the definition of sort structures. For example, higher-order and dependent sorts could be 

defined. However, these extensions are outside the domain of this thesis and within the gen­

eral domain of extensions to Universal Algebra such as Equational Typed Logic [MSS90]. 

Nevertheless, we can speculate tha t via such extensions, dynamic rewriting could be used 

as a computational method for ETL, perhaps a more satisfactory method than using con­

ditional rewriting as described in [MSS90].
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9.3 Future Research Directions

There are many possible areas for future research on dynamic order-sorted rewriting. We 

suggest below several which immediately present themselves as candidates.

9.3 .1  O utstandin g Issues

Some issues remain outstanding in the theoretical work presented in this thesis. 

Establishing Local Coherence

The establishment of local coherence in more general cases is an outstanding problem. 

This is entirely reasonable property for a dynamic rewriting system to have. Indeed, it is 

in many ways the purpose of dynamic rewriting tha t such the rewriting relation has this 

property: in Examples 7.4 and 7.7, static and dynamic sort rewriting are introduced as a 

result of a lack of local coherence. However, local coherence has proved an elusive property 

to  demonstrate, and further analysis of the dynamic rewriting relation is required to find 

further sufficient conditions for it.

Dynamic Unification

The dynamic unification algorithm which is given in Section 6.2 generates a unifier which 

may not be well-sorted. It is im portant tha t we can distinguish well-sorted unifiers, al­

though in general this is undecidable. The dynamic unifier can be used as a basis to 

analyse particular classes of specifications with a view to developing sufficient conditions 

for well-sortedness.

The analysis would have to concentrate on two rules of the unification algorithm, Intersect 

and Abstract, which are the two rules tha t can generate ill-sorted unifiers. The Intersect 

rule is closely related to Sort Inhabitedness, and sufficient conditions need to be developed
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to  establish tha t property. The Abstract rule is more difficult to analyse. This is dependent 

on whether specific terms, or instances of those terms, are of certain sorts.

Constrained Dynamic Completion

The problem of deciding the well-sortedness of unification is closely related to th a t of 

completion in the presence of term constraints, as described in Chapter 8, and this method 

needs more work to find its strengths and limitations. Constraint simplification can also 

provide an interesting area for future research.

An area closely related to unification is Narrowing [Fay79, Hul80] and other generalised 

unification methods [GS89, Sny91]. A direction of future work would be to explore these 

methods in the dynamic context to solve equations, and may well shed light on the general 

problem of dynamic unification, using the constraint simplification rules as a starting point.

9 .3 .2  E x ten sion s to  D ynam ic R ew ritin g

The theoretical work presented in this thesis could be extended in several ways. 

Termination of Dynamic Rewriting

As mentioned in Section 7.3, it may be possible to exploit the added expressive power of 

dynamic term s to  establish the termination of sets of dynamic rewrite rules. The paper by 

Gnaedig [Gna92b] makes a start in this area in the context of the standard order-sorted 

rewriting theories, and this work could straightforwardly be expressed in terms of the 

dynamic order-sorted method. However, Gnaedig’s method is only defined in the context 

of sets of sort-decreasing rules; in the case of dynamic term-rewriting we are not bound by 

this restriction. It would be interesting to explore new methods of establishing termination 

for dynamic rewriting.
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Dynamic Rewriting modulo Equational Theories

The standard rewriting theory given and implemented in Chapter 2 covers rewriting modulo 

an equational theory, and the associative-commutative theory in particular as a useful 

special case. The dynamic rewriting theory does not consider rewriting modulo equations 

for simplicity in its presentation, and it would be interesting to consider what implications 

working modulo equations would have for dynamic rewriting. As seen in Section 2.6, 

unification modulo equational theories is not straightforward in standard order-sorted logic 

requiring the property of sort compatibility. It is speculated tha t some of these restrictions 

can be ignored in dynamic unification, similar to the removal of the compatibility condition 

on rewrite rules. However, it is likely tha t extra complications will arise, and this area is 

one for future research.

Further Extensions to the M ethod

In Section 9.2 some examples are given which extend the dynamic order-sorted method. 

Adding term-sort declarations is the simplest of these, and indeed they can be included 

without extending dynamic rewriting at all. Nevertheless, it is necessary to reconcile ex­

isting work in this area with this proposed method of handling such declarations.

The further extensions are perhaps more interesting. Adding a term well-sortedness con­

dition into the specification as in Example 9.7 is an small extension to the method, and 

clearly this would be covered in further research into the conditional rewriting method 

sketched in Chapter 8. Adding more sophisticated conditions moves the method further 

into generalised universal algebras such as ETL. As mentioned earlier, it would be inter­

esting to see how far the dynamic rewriting method can be extended into these areas to 

provide a computational analogue to ETL.

Closely related is the idea of extending the notion of sort conditions beyond simple ordering 

conditions, as in Example 9.8. This needs to be worked through to dem onstrate th a t the 

method does work and the theoretical underpinnings need to be verified. Sort disjoint­

ness constraints have been investigated in the related autom ated reasoning technique of
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resolution [BP92]: this could form the basis of the work in dynamic rewriting.

9.3.3 Future D evelopm ents to  MERILL

The MERILL system is still under development and at present provides a basic system for 

equational reasoning using completion. As a base of experience using the system grows, 

changes in adaptability and use will no doubt arise. The system is designed to  be flexible 

and easy to modify for experimenting with new tools in equational reasoning. Future 

developments for MERILL include:

• Tactic Language. Several existing provers, notably ERIL and ORME have a flexible 

system of tactics and configurations to allow the user to adapt the use of the system 

to their own requirements, and it would enhance the usability and applicability of 

MERILL to give it such a tactic language.

• Orderings. The orderings available in the MERILL system are inflexible at present. 

They are tedious to use as they demand the user to set up the precedence and weights 

in advance, and only the limited Associative Knuth-Bendix ordering is applicable in 

the presence of AC operators. Several enhancements could improve this.

1. Further improvements to the implementation of a Incremental Knuth-Bendix 

Ordering. Nick Cropper at the University of St Andrews has been investigating 

this area.

2. Implementation of an automatic Recursive Path Ordering.

3. Investigation and implementation of further AC compatible orderings.

4. Investigation and implementation of further Order-sorted compatible orderings.

• Induction. Inductive proof is a central method of reasoning with equations and it 

would be useful to provide structural induction in the style of the Larch Prover.

User Interface. The teletype user interface is unsophisticated and can be tedious 

to use. It would be desirable to  design and implement a graphical user interface for 

MERILL.
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• Module Support. A longer term plan for the system is to allow for module and 

theory store to be integrated into the system for larger scale program specification 

and refinement.

The major development which awaits MERILL is an implementation of the dynamic rewrit­

ing method outlined in this thesis. Some aspects of this are discussed in Section 9.3.4.

9.3.4 Im plem enting D ynam ic Order-Sorted R ew riting

In this section some of the changes required to implement dynamic equational reasoning 

are discussed.

Changes to the Signature

The main change in the signature’s implementation is to allow sets of sorts to be manipu­

lated as sorts. We give the following data type in Standard ML.

abstype Sort = sort of string \ M  of Sort list

A sort is which has two alternative constructors, either a named sort or a list of sorts, 

minimised using the function meetSort, which calculates M%(Si U-S2) and has the following 

type.

val m eetSort: (Sort * Sort —► bool) —> Sort —> Sort —> Sort

This function takes the current sort ordering and forms the meet of the two argument sorts. 

The rest of the functions for handling sorts are unchanged. These changes are propagated 

into the functions handling operators and variables, so for instance a variable can be of an 

intersection sort.
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Changes to Terms

To represent dynamic terms, the sort of a term is explicitly stored with the term  and may 

change with the history of the term. Thus we have a data type for terms as follows.

abstype Term = VarTerm of Variable

| OpTerm of Opld * (Term list) * Sort

Terms have two constructors, one for variable considered as terms, and the other for com­

pound terms, with an operator symbol and a list of subterms. This constructor also has a 

sort argument, representing the current dynamic sort of the term. We give functions which 

directly manipulate this sort.

(* dynamic functions *) 

val dynam icsort : Term —> Sort 

val assertsort : Signature —> Term —► Sort —► Term

dynam icsort directly returns the current dynamic sort of a term, assert.sort allows us to 

change the sort of a term by taking the meet sort of the current dynamic sort and the sort 

tha t is being asserted for the term.

We also give the static sorting functions which are described in detail in Chapter 7.

(* sort propagation functions *) 

val percolate : Signature —> Term —*■ Term 

val balance : Signature —> Term —» Term

Algorithms are required for these. For sort percolation, the standard least-sort algorithm 

to sort term s suffices, using the current dynamic sorts of subterms and percolating tha t 

information up the tree. For balancing, as it is a global property of the term, this strategy 

is not applicable. To perform balancing efficiently, it is necessary to scan the term from its 

leaves, considering subterms of equal height at each level, and balancing those.



9.3. Future Research Directions 245

The Matching Algorithms

In a naive implementation the algorithms for upward strong and weak matching are straight­

forward modifications of a standard order-sorted matching algorithm which implements the 

rules in Figures 6.1 and 6.2 directly via case analysis of the forms of the pattern  and target 

terms. For weak matching, the variable-term case checks tha t the current dynamic sort of 

the term to be matched by the variable is less than the sort of the variable. This is similar 

to the syntactic case where the least sort of the target term is checked to be less than the 

sort of the variable. Upward strong matching has the extra condition in the term -term  case 

tha t the current dynamic sort of the pattern term has to be greater than or equal to the 

current dynamic sort of the balanced target term.

Dynamic Unification

The unification algorithm is in many ways simpler than tha t for ordinary syntactic order- 

sorted unification. It is unitary so we can follow the same strategy for unification as 

unsorted unification. The implementation currently in MERILL is a naive one with a 

straightforward implementation of the given rules. It should be possible to derive a linear 

algorithm in the style of Paterson and Wegman [PW78] or a quasi-linear one in the style 

of Martelli and Montenari [MM82].

The major difference between these approaches and dynamic unification is th a t dynamic 

unification requires us to derive the unified term as well as the substitution. This also 

is straightforward as we can build the (maximal upward strong) unified term  as we are 

unifying, building the term from the unificands from the root towards the leaves.

Dynam ic Rewriting

Dynamic term rewriting is exactly as ordinary term rewriting, except th a t we use either 

the strong or the weak matching algorithms. The major difference is the introduction of 

sort propagation and rewriting. These steps are carried out in an analogous way to term
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rewriting.

In conventional rewriting, there is a question of which is the best strategy to adopt in 

rewriting, outermost and innermost rewriting being the most well-known strategies, each 

with its advantages and disadvantages. As dynamic rewriting is a combination of three 

rewriting techniques, we have at our disposal a much wider variety of strategies, given th a t 

the order of application of the rules is arbitrary.

For example, one possibility would be to interleave term rewriting and sort normalisation, 

with propagation taking place. After each term-rewriting step, the sorts of resulting terms 

are normalised. A term may also need to be sort-normalised initially to allow a term- 

rewriting step.

Definition 9.9. Alternation Strategy. Given a set of dynamic rewrite rules, R  the
a 1 T * s  * e

Dynamic Alternation Rewriting Relation —» , is given by — ► o (— > U — ► ).

Other strategies can be devised, and which is most appropriate requires more analysis.

9.4 Conclusions

This thesis has given an account of the current state of order-sorted specification, and 

reports the first successful implementation of order-sorted associative-commutative term- 

rewriting and completion in a practical equational theorem proving system.

However, investigation of the standard order-sorted theory soon exposes its difficulties 

and the thesis gives an alternative approach of dynamic order-sorted algebra, logic and 

rewriting. This work has been largely successful; it gives a clean approach to order-sorted 

algebra, with an elegant equational logic, without the extra complication of the more 

ambitious approaches of reformulating the entire paradigm of universal algebra.

This logic is realised for automated theorem proving using dynamic rewriting, a sound and 

complete, but practical approach to the computational aspects of the algebra. The use of
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rewrite rules in two ways to modify terms and sorts is more elegant than using different 

rules for these purposes. It has been demonstrated th a t completion algorithms can be 

defined for dynamic rewriting, and criteria can be given to generate decision procedures 

for order-sorted equations. Two conditions are identified for completion modulo sorts: 

coherence of the rewriting relation and well-sorted unification. This lays the basis for 

sufficient conditions in special classes of rewrite system. We give sufficient conditions for 

larger class of specifications than the standard theory.

A more general approach is offered by constrained dynamic rewriting; again, we have 

identified tha t sufficient conditions for well-sorted constraints are required, and we give 

some rules to reduce constraints

Dynamic order-sorted algebra, logic and rewriting solve the immediate problems of the 

standard method. However, this work is not complete. There remain unsolved problems in 

the area of completion and unification. Further criteria need to be defined to extend the 

class of specifications upon which the dynamic completion algorithms are applicable.

This work makes a contribution to automated theorem proving by laying the theoretical 

foundations for dynamic order-sorted reasoning. Future work can use this framework to 

analyse the intriguing nature of order-sorted specification and more generally typed alge­

braic systems. It is inevitable tha t solutions will be at best partial as we are working on a 

narrow edge between decidability and undecidability.
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