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SUMMARY

The work presented in this thesis is a study of the micromagnetic structure of 

inductive and magnetoresistive playback CoPtCr longitudinal recording media. 

Through the use of Lorentz electron microscopy the magnetic structure of the 

recorded bits can be viewed directly.

An introduction to the theory and properties of ferromagnetic materials and their 

applicability to digital magnetic recording is presented in chapter 1. An overview of 

magnetic recording and the properties required for a good recording media are 

discussed.

Electron microscopy and in particular the Lorentz modes used to view the 

magnetic structure of the media are discussed in chapter 2. Image formation in an 

electron microscope and the Lorentz modes of Fresnel, Foucault and MDPC are 

introduced and explained.

An essential part of electron microscopy is the fabrication of electron 

transparent samples. Chapter 3 describes techniques of fabricating both planar and 

cross-sectional specimens from hard disks. To allow the verification that the integrity 

of the composition of the media has been maintained throughout the preparation an 

EDX analysis method is provided.

In chapter 4 the macroscopic properties of the media types are investigated. The 

film thickness and the magnetic layer composition are verified using the EDX 

techniques outlined in chapter 3. In addition to this, the value of the saturation 

induction in the DC bands in each medium is also verified using the technique of 

LAD.

The Lorentz microscopy results obtained from both media types are presented in 

chapter 5. A tilting method of reducing scratch contrast is introduced and discussed. 

Preliminary magnetic investigations are performed using the Fresnel and Foucault 

modes and images are presented from both media types. Magnetic features such as the 

bit transitions and the side write are examined, discussed and comparisons between 

the media types are drawn. The remainder of the chapter concentrates on the MDPC 

imaging of the media. A technique is presented which verifies the mapping directions 

using the alternate DC banding on the media. A set of characteristic MDPC images 

are established and MDPC images are presented from tracks written over a range of



frequencies. In particular the MDPC technique is applied to imaging the bit transitions 

at high magnifications to determine the magnetic structure in that area. The MDPC 

images also suggest the existence of a slight anisotropy in these media which is seen 

when the head writes off axis or is skewed with respect to the write direction. MFM 

images are also presented to verify some of the result seen in the MDPC images.

Two methods of MDPC image simulation are presented in chapter 6. The results 

are shown from each technique and are compared with the experimental MDPC 

images.

Chapter 7 outlines and shows the result from a reconstruction technique which 

use the curl and divergence of MDPC image sets to produce one possible 

magnetisation map which could produce such a set of MDPC images.

Finally chapter 8 discusses the main conclusions obtained from the previous 

chapters and includes data which is the grounding for future work in this area.



Chapter 1 Ferromagnetism of thin films and their application to digital magnetic recording 

CHAPTER 1

FERROMAGNETISM OF THIN FILMS AND THEIR 

APPLICATION TO DIGITAL MAGNETIC RECORDING

1.1 INTRODUCTION

The topic of magnetism and the study of magnetic materials has shown an

increase in activity in recent years. One part of this increase has been driven by the need 

for high density data storage applications. For this reason, ferromagnetic materials are of 

current interest in the computing industry as these materials can be used to create high 

capacity data storage media and transducers. The following text aims to introduce 

ferromagnetism and show how it can be used for data storage in digital magnetic 

recording applications.

1.2 THE BASICS OF FERROMAGNETISM

A ferromagnet is defined to be a material that exhibits a spontaneous bulk 

magnetisation, a magnetic moment per unit volume, in the absence of an applied 

magnetic field. An explanation of this bulk magnetisation put forward by Weiss known 

as the ‘Weiss Molecular Field Theory’ suggests that an internal field forces parallel 

alignment of the atomic spins resulting in a net magnetisation [Weiss 1907]. Heisenberg 

addressed the theory quantum mechanically with the introduction of an exchange 

between spins [Heisenberg 1928]. The atomic spins can be thought of as interacting 

cooperatively forcing mutual alignment between neighbouring atomic spins. For the 

transition series metals, the atomic spin in a ferromagnet can be associated with an 

unfilled 3d electron shell.

As the temperature of a ferromagnetic material is increased the spin alignment 

becomes energetically less favourable as thermal agitation of the lattice attempts to 

destroy it. At the Curie temperature Tc thermal agitation has exceeded the energy barrier

l Richard J  Neville PhD thesis 1996



Chapter 1 Ferromagnetism of thin films and their application to digital magnetic recording 

producing zero spontaneous magnetisation.

1.3 MICROMAGNETIC THEORY AND ENERGY CONSIDERATIONS

The micromagnetic theory assumes that the magnetic structure of the sample can 

be described by a vector field. At each point unit vectors mi represent the orientation 

and the strength of the magnetisation [Cohen 1970]. The magnitude of each dipole is the 

saturation magnetisation, Ms and mx2+my2+mz2=l. The total magnetisation M is the 

vector sum of all the contributions from the dipoles.

M = MsXm i (1.1)
i

The micromagnetics are defined by the direction and distribution of the vectors on 

the scale of the smallest magnetic particle. The smallest magnetic particle in the thin 

film media of the type being considered in this thesis consist of strongly coupled grains 

acting as single units called clusters. Clusters sizes are typically an order of magnitude 

larger than the grain size of the film.

The micromagnetic theory attempts to determine the direction and distribution of 

the mj by minimising the local energy contributions. These energy contributions arise 

from three main sources and are the subject of the following sections.

1.3.1 Exchange Energy

The exchange force is fundamental to ferromagnetic theory. The energy between 

two atoms having spins Si and Sj can be expressed as

Ee = - 2J I  Sj-Sj (1.2)

where J is the exchange integral. This theory results from a quantum mechanical 

treatment of two electrons with overlapping wavefunctions [Jiles 1989, Chikazumi 

1964]. As a consequence of the Pauli exclusion principle no two electrons can have the

2 Richard J  Neville PhD thesis 1996



Chapter 1 Ferromagnetism of thin films and their application to digital magnetic recording 

same set of quantum numbers. Thus for a ferromagnet the wave function must be 

antisymmetric to allow parallel alignment i.e. J>0 such that the moments can have the 

same orientation; for an antiferromagnet J<0.

Ee is at a minimum when the spins are in parallel alignment. Any variation from 

alignment of the magnetisation will produce a change in the divergent component of the 

magnetisation, VM in either of the x, y or z directions. Thus a second form for the 

exchange energy is:

where A is known as the exchange constant. Thus introducing departure from parallel 

alignment of the magnetisation will be at the expense of exchange energy and minimum 

energy is attained when the magnetisation direction in the sample avoids abrupt 

changes.

1.3.2 Magnetostatic Energy

The second energy contribution to be considered is that due to the magnetostatic 

energy produced by the sample. This energy arises from the stray and internal fields 

produced by the Coulomb interaction of the free poles at discontinuities or divergences 

in the magnetisation, see Fig. 1.1a. The magnetic field forms in the direction opposing 

the magnetisation producing it, hence it is denoted as a demagnetising field. This field 

arises from two sources. The volume charge density a  = M n, where n is the normal to 

the surface and the surface charge density, p = - V-M. This demagnetising field, Hm can 

be expressed in integral form as:

where V and S are the volume and surface area of the sample and r  is the vector

dV (1.3)

dV + —  C f t1 ’11) dS (1.4) 4k  J  r
S

3 Richard J  Neville PhD thesis 1996



Chapter 1 Ferromagnetism of thin films and their application to digital magnetic recording 

between the source and the field points. The magnetostatic energy associated with such 

a field is thus given by:

J Hm M dV (1.5)

Where \io is the permeability of free space. Magnetostatic energy is of particular 

importance in magnetic recording where free poles can exist at discontinuities in the 

magnetisation as will be discussed in section 1.6.2 in this chapter.

1.3.3 Crystalline Anisotropy Energy

A further influence on the minimum energy state of the magnetisation is due to the 

coupling of the atomic spins with the electrostatic charge distribution from the 

surrounding atoms. A minimum energy state occurs when the magnetisation is 

orientated along certain preferred directions, known as the easy axes. As the materials 

considered here form periodic lattice structures, these easy axes continue throughout the 

specimen. This phenomenon is termed crystalline anisotropy where preferred 

magnetisation directions exist which are defined by the crystallographic axes. Similarly, 

magnetisation directions exist which form states of maximum energy known as the hard 

axes which are orthogonal to the easy axes.

The uniaxial anisotropy energy in a particular direction in the sample may be 

written as:

anisotropy constant for the axis. Easy axes are then given by a value of 0 = 0 (or k) and 

the hard axes by 0 = rc/2. This effect is a strong function of the lattice structure. In the 

case where the crystalline field has no preferential orientation axes the sample is termed 

as isotropic where all orientations of the magnetisation form a minimum energy state.

Ea = Ksin20 (1.6)

where 0 is the angle made between the magnetisation direction and the axis and K is the

4 Richard J  Neville PhD thesis 1996



Chapter 1 Ferromagnetism of thin films and their application to digital magnetic recording

1.4 ENERGY MINIMISATION, DOMAINS AND DOMAIN WALLS

The total energy of the system in zero applied field is the sum of all the 

contributions from the aforementioned sections.

^total =  +  E m  +  E a  ( 1 .7 )

The energy is a function of the direction of the magnetisation at each point. 

Ferromagnetic specimens form a stable minimum energy state governed by the balance 

between the energy processes available.

Energy reduction is achieved in zero applied field in several ways. The first is the 

formation of domains in the sample. Consider a uniformly magnetised rectangular block 

of magnetic material, as in Fig. 1.1.a. Due to the non vanishing components of V-M at 

the sample edges, free poles are induced. This results in the demagnetising field 

described in section 1.3.2. As a result of this field, areas of uniform magnetisation form 

known as domains in an attempt to reduce the free pole density. In the creation of these 

domains as in Fig. lb and c

a) b) c)

Fig. 1.1 Possible domain stages in energy minimisation o f a block with uniaxial

in-plane anisotropy, a) uniformly magnetised single domain b) and c)

5 Richard J  Neville PhD thesis 1996



Chapter 1 Ferromagnetism of thin films and their application to digital magnetic recording 

introduction o f domain walls producing reduced magnetostatic energy.

Fig. 1.2 Closure domain configuration o f block with in-plane biaxial anisotropy.

boundaries or domains walls form where the magnetisation direction changes between 

oppositely magnetised domains. These domains walls form at the expense of exchange 

energy and domain splitting occurs in the sample until the decrease in magnetostatic 

energy is less than the energy necessary to create a domain wall. The magnetisation 

across a domain wall rotates over a finite distance determined by the exchange and 

anisotropy energies. An increase in domain wall thickness causes an increase in the 

anisotropy energy and a decrease in the exchange energy. The equilibrium wall width is 

that width that makes the two energies equal [Cohen 1970]. The energy density in a wall 

can be expressed for a bulk sample as:

a w= a e+ aa (1.8)

In the example shown in Fig. 1.2 of a sample with biaxial in-plane anisotropy, 

closed type domain structures can also be formed. This closure occurs if the 

comparisons of the wall and anisotropy energy densities, ow and a a, are such that a w/c a« 

1 [Prutton 1964]. In the above discussion is generally applicable to bulk specimens, no 

mention has been made of the film thickness and its role in energy minimisation. The 

film thickness is a very important parameter and as the subject of this thesis is to 

consider thin ferromagnetic films must be included. Examples from this point on are all 

assumed to be of the thin film type unless otherwise stated.

As already mentioned the magnetisation in a domain wall must rotate between the 

adjacent domains in order to maintain a stable energy minimum. In the example of a one 

dimensional model material with in-plane uniaxial anisotropy, the rotation of the

6 Richard J  Neville PhD thesis 1996



Chapter 1 Ferromagnetism of thin films and their application to digital magnetic recording 

magnetisation between two antiparallel domains occurs in one of two ways.

1) Bloch walls

A Bloch wall forms when the magnetisation rotates out of the plane of the sample 

and produces a component of M normal to the film’s plane, as in Fig. 1.3a. This 

produces a magnetostatic contribution to the wall energy density due to the production 

of free poles at the surface of the film which increases with decreasing film thickness.

Domain 
wall width

Domain 
wall width

a) Bloch wall b) Neel wall.

■ -  -  ------------------------------------------------------------

c) Planar view o f Crosstie wall

Fig. 1.3 Possible 180° wall structures in a sample with in-plane uniaxial

anisotropy .a) Bloch w all: the magnetisation rotates out o f the plane of  

the film and b) Neel w all: the magnetisation rotates in the plane o f the 

film, c) planar view o f the magnetic structure of a crosstie wall

2) Neel walls

Neel walls minimise the magnetostatic energy contribution to the wall by rotation

7 Richard J  Neville PhD thesis 1996



Chapter 1 Ferromagnetism of thin films and their application to digital magnetic recording 

of the magnetisation in the plane, as in Fig. 1.3b. Hence volume poles as opposed to 

surface poles are produced.

The energy densities of both Bloch and Neel walls are thickness dependent as 

shown in Fig. 1.4 for a typical ferromagnetic film. In thin samples, 8 < 200A, the wall 

energy density favours Neel walls, whereas for thick or bulk samples, 8 >850A, the wall 

energy density favours Bloch walls, where 8 is the film thickness. At intermediate film 

thicknesses between Bloch and Neel type walls, cross tie walls can form, as in Fig. 1.3c. 

Crosstie walls arise from the fact that the magnetisation across a Neel wall can rotate in 

one of two directions. In one direction the closure in the sample is in the same sense as 

the magnetisation, as in the vicinity of the Bloch lines denoted as A in Fig. 1.3c. But for 

the opposite direction of rotation for a Neel wall the closure is in the wrong sense to the 

magnetisation producing the crosstie regions denoted as B in Fig. 1.3c.

N eel w all

cross-tie wall

B loch w all

400 800 1200 1600 20000
Film thickness, 8 (A)

Fig. 1.4 Schematic plot o f the energy density o f each wall type as a function of

magnetic layer thickness for a NiFe film [Prutton 1964J.

1.5 HYSTERESIS

A characteristic property of a ferromagnetic material is the response of the 

magnetisation to an externally applied magnetic field which can be non-linear and 

irreversible. Fig. 1.5 shows a plot of the response of the magnetisation M, to an applied

8 Richard J  Neville PhD thesis 1996



Chapter 1 Ferromagnetism of thin films and their application to digital magnetic recording 

field H of a typical ferromagnetic sample with uniaxial anisotropy. At A the sample is 

demagnetised due to the formation of domains within the sample giving a net 

component of zero magnetisation. As the field, H is increased M also increases as 

favourably aligned domains grow at the expense of those unfavourably aligned. The 

domains grow initially by domain wall motion and then by magnetisation rotation 

within favourably aligned domains. This increase in M is initially performed reversibly 

but at higher values of H the response becomes an irreversible process as the domain 

walls overcome energy barriers offered by the sample e.g. inclusions. At B the sample is 

now a single domain state where all the magnetisation in the sample is oriented along 

the axis of H. This is the saturated state where M reaches its maximum value, the 

saturation magnetisation, Ms. Any further increase in H following magnetisation 

saturation produces no further change in M.

-H

Applied field direction

Fig.1.5 The hysteretic response o f the magnetisation o f a uniaxial ferromagnetic

sample Mf to an applied field H.

As H is reduced to zero the magnetisation does not follow the initial magnetising path to

A. Instead a separate curve is followed which allows the sample to retain a remanent 

component of magnetisation, Mr in zero applied field. The magnetisation, M is only 

reduced to zero on the application of the coercive field -Hc at position D. If Ms is not

9 Richard J  Neville PhD thesis 1996



Chapter 1 Ferromagnetism of thin films and their application to digital magnetic recording 

reached by the field the sample forms an intermediate magnetisation configuration. On 

application of a reversed field the magnetisation will again return to zero but at a lower 

value than Hc and a minor hysteresis loop will have been followed. Thus the path of 

magnetising a ferromagnet is dependent on the previous magnetic history of the sample.

Following the removal of the applied field the ferromagnet can retain a component 

of remanent magnetisation which is Mr if the sample has been fully saturated. The 

sample remains magnetised until a field of the order of Hc is applied or the sample is 

brought above it’s Curie temperature.

A material with a high value of Hc is defined as a hard material. Alternatively, a 

material with a relatively low value of He is known as a soft material. Hard disks are 

made from hard materials as large hysteresis loops and large coercive fields are required 

to prevent accidental erasure, generally with He in the order of 1000 to 2000 Oe. 

Reading and writing heads covered in section 1.6, are soft materials as they require to be 

saturated by relatively low fields a few tens of Oe.

1.6 DIGITAL MAGNETIC RECORDING

The remaining sections of this chapter aim to show how the properties of 

ferromagnetic materials lead to their application for high density data storage.

Magnetic recording is the writing, storage and reproduction of information 

utilising the non-linear response of a ferromagnetic material to an applied field. There 

are currently a large variety of recording systems but the most common is longitudinal 

magnetic recording.

1.6.1 Fundamentals of Magnetic Recording

The basic constituents for magnetic recording are a head system to write the 

signal, a magnetic medium to store and a playback system to detect and reproduce the 

recorded signal [C. D. Mee and E. D. Daniel 1987] [Jorgensen 1980]. Fig. 1.6 shows 

such a

10 Richard J  Neville PhD thesis 1996
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Input signal

H ead

track  w idth

m agnetic m edium

Fig. 1.6 Basic longitudinal magnetic recording system

longitudinal recording system. In this case the head consists of a coil of wire wound 

around a ring of soft magnetic material with a gap at the surface facing the medium. The 

head acts as a transducer such that as current is fed to the coil, magnetic flux is induced 

through the ring of magnetic material. A fringing field emanates from the gap, g in the 

head, as in Fig. 1.7. Written bits are recorded by passing a magnetically hard medium 

under the head at a velocity u  and at a separation less than or comparable with the extent 

of the fringing field. The gap fringing field can then enter and magnetise the medium 

from zero to saturation magnetisation or the maximum induced magnetisation due to the

\\w\w

M edium

Substrate

Fig. 1.7 Fringing field emanating from the gap and into the medium

11 Richard J  Neville PhD thesis 1996



Chapter 1 Ferromagnetism of thin films and their application to digital magnetic recording 

fringing field. As the head moves away the applied field reduces to zero and the medium 

retains a component of remanent magnetisation as in section 1.4.

Fig. 1.8 shows a schematic of the conversion of data from the source to the head 

starting from either an analogue or digital signal. The digital signal is a series of zeroes 

and ones which is sent to the head via an amplifier. The alternating current sequence is 

then transferred to the media when a voltage is induced in the head coils corresponding 

to the timing of the input current. A one is recorded when a voltage reversal occurs and 

a zero otherwise.

Modulation

f i r u1101001

V(t) for 
head

Modulation
encoder

A/D
converter

Analogue

Digital

Source

1101001

Fig. 1.8 Schematic o f binary data conversion in digital applications

Stray field

Bit length

Fig.1.9 Written bit structure showing stray field due to free poles induced at head 

on transitions. (Only the stray field above the bits is shown for clarity)

The written bit structure resembles a line of bar magnets placed end to end, 

Fig.1.9. These alternating domains represent the digital recording of the original binary 

signal. At the boundaries where the magnetisation meets head on, free magnetic poles

12 Richard J  Neville PhD thesis 1996
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Where e is the induced voltage, N is the number of turns in the head coil and is the 

flux change through the head due to the stray field. As the stray field enters the ring the 

magnetisation rotates and flux closure occurs round the ring inducing a current in the 

coils.

1.6.2 Longitudinal Hard Disk Recording

The above sections outline the simplest recording system and an ideal magnetic 

recording model but some important problems leading to variations in the real recording 

system have been overlooked. The bit transition is the region between two written and

Fig. 1.10 Schematic o f zig zag structure at bit transitions in a highly anisotropic

are induced, producing stray field above and below each written bit. For reproduction of 

the original recorded data the medium is passed under a head, which can be the write 

head, at a velocity x> allowing the stray field to induce current in the head detecting the 

written bits. This head responds to the rate of change in flux through the ring.

(1.9)

bit transition width

medium.
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oppositely magnetised bits. The magnetisation across the bit transition is ideally 

discontinuous resulting in a high density of free magnetic poles distributed across the 

wall. This discontinuity and the resultant high free magnetic pole density are 

energetically unfavourable. The energy mechanisms in the media attempt to form a 

stable bit transition reducing the large free magnetic pole density and hence the 

magnetostatic energy component associated with the discontinuity. One possible 

magnetisation configuration at the bit transition forms a zig zag or saw tooth structure 

increasing the wall length, as in Fig. 1.10 [R. P. Ferrier et al 1983] [T. C. Amoldussen 

and L. L. Nunnelly 1992]. The result of this increase in wall length is to reduce the free 

pole density along the bit transition. This occurs at the expense of increasing the wall 

energy component to Et0t and again a process of energy minimisation determines the 

final bit transition width and the extent of the zig zag structure. Other energy 

minimising structures can form at the bit transition such as vortex type structures or 

combinations of zig zag and vortex structures which also help to reduce the free 

magnetic pole density. The investigation and characterisation of bit transitions in actual 

materials are part of the subject of this thesis and will be investigated further in chapters 

5. Regardless of the actual structure of the bit transition, energy minimisation has the 

effect of thickening the bit transition and introducing uncertainty in the position of the 

bit boundaries. This introduces an error in playback of the bits.

To increase storage densities, track widths and bit lengths need to be reduced 

implying narrowing of the writing head dimensions and increasing the write frequency. 

Inductive heads of the type shown in Fig. 1.6, consist of a sensing coil wound around the 

magnetic core which can produce inconsistency and unacceptable tolerances in 

manufacture as the head parameters become more critical with reduction. This prompted 

the move to thin film heads giving gaps and track widths of the order of a few microns 

[White 1984].

Thin film heads are fabricated using thin film deposition and lithographic 

techniques developed for VLSI manufacture [White 1984]. Reducing the bit lengths and 

track widths also reduces the stray field emanating from the medium. This decline in 

stray field diminishes the signal that can be reproduced by the inductive head. 

Compensation can be made for this by increasing the head to medium velocity or the
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number of turns in the inductive head coil or by decreasing the head to medium spacing. 

These options become less practical as the areal densities become very high and hence a 

new type of head has been developed.

This new type of head uses the anisotropic magnetoresistive (AMR) effect to 

sense the magnetic flux from the media. The AMR effect is the anisotropic change in 

resistivity as the magnetisation of a saturated ferromagnetic specimen is rotated with 

respect to an applied current [H. N. Bertram 1994]. The magnetisation direction can be

voltage

*

T T T
 > Easy axis direction

Fig.1.11 Schematic diagram o f an MRE sensing a transverse field  //*.

altered by fluctuations in the temperature or the applied field in the magnetoresistive 

element (MRE). The AMR head uses an MRE to sense the magnetic flux from the 

sample by allowing stray field from the written bits to rotate the magnetisation and thus 

change the resistivity of the MRE, see Fig.1.11. [Hunt 1971] [McGuire and Potter 

1975]. The magnetic flux through the MRE is measured by passing a sensing current 

along the easy axis of the MRE, the resulting change in resistivity due to the flux is then 

detected by the change in voltage across the MRE. The magnetic flux sensing can be 

characterised by the resistivities parallel and perpendicular to the magnetisation 

direction, pn and p i respectively. The resistivity of the MRE can be expressed as

p = p± + Apcos20 (1.10)

where Ap = pn - p i  is the difference between the parallel and perpendicular resistivities
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and 0 is the magnetisation rotation angle with respect to the easy axis. The sensed 

voltage is dependent on the angle of magnetisation which is in turn proportional to the 

magnetic flux entering the MRE. Thus the output of an AMR head is proportional to the 

magnetic flux through the head and not the rate of change of flux as in an inductive head

Sensing current

Write direction

easy axis

MRE

Fig.1.12 Diagram of an AMR head with MRE sensing stray field from bit 

transitions.

which follows equation 1.9. The quantity is the normalised, anisotropic

magnetoresistivity ratio and this denotes a measure of the performance of the MR 

element. Typical values of the anisotropic magnetoresistivity ratio fall in the range 2.5 -

3.5 % for NiFe alloys. A schematic of an MRE type head is shown in Fig.1.12. This is 

an AMR head with the easy axis of the MRE perpendicular to the write direction. Real 

MR heads are field biased both in the field sensing direction and along the easy axis of 

the element. For further details on MR head development the reader is referred to the 

following texts [C. D. Mee and E. D. Daniel 1987] [H. N. Bertram 1994]. Current 

developments in MR head design are leading to the use of the giant magnetoresistive 

effect (GMR) in spin valve and dual magnetoresistive (DMR) heads [B. Dieny 1994].
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1.6.3 Magnetic Recording Formats

Magnetic recording has many varied forms; the above sections outlined the most 

common form namely longitudinal recording as in Fig. 1.13a. Longitudinal recording 

writes the magnetisation of the bits parallel or anti parallel to the write direction as in 

Figs. 1.6 and 1.8. The medium has an in-plane anisotropy effectively forcing the

[ — IvP
a) longitudinal recording b) perpendicular recording

Fig.1.13 Schematic cross section o f media showing a) longitudinal and b)

perpendicular recording written bit, self demagnetising effects using bar 

magnet analogy.

magnetisation to remain in-plane. By using different head configurations and a medium 

with anisotropy perpendicular to the surface of the medium, perpendicular recording can 

be performed, as in Fig. 1.13b. The expectation with perpendicular recording is that there 

would be an increased self demagnetising effect when compared to longitudinal 

recording due to the free poles being closer together, Fig.1.13. At the high areal 

densities of today’s media the demagnetising effects of both perpendicular and 

longitudinal recording are little different [Mallinson and Bertram 1994]. Work is still 

continuing in the field of perpendicular recording and commercial drives using 

perpendicular recording are available. The decision as to which method is superior for 

digital recording is still controversial and as yet undecided. Currently the longitudinal 

configuration is still the most widely used.

A further variation on the magnetic recording system is magneto-optic recording
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in which the medium used has perpendicular anisotropy and a Curie temperature not too 

far above room temperature. Prior to recording, the entire medium on the disk is 

uniformly magnetised out of the plane and along the direction of the easy axis. A laser is 

used to locally heat an area of the medium above it’s Curie temperature. A field is then 

applied to the heated area in the opposite sense to that of the initial uniformly 

magnetised state. The laser is removed and the temperature of the heated area brought 

below it’s Curie temperature once more. Information is then read from the disk using the 

magneto-optic Kerr effect detecting the change in the polarisation angle introduced to 

the incident laser beam by the orientation of the magnetisation in the written bits.

1.6.4 High Areal Density Hard Disk Recording

To attain high areal density, factors limiting the performance must be addressed. 

As the subject of this thesis is recording media I shall concentrate on the factors 

affecting media performance.

In high density digital recording thin film media the desire is to record the 

maximum number of bits per unit area of media with an acceptable level of readback 

noise. The reduction of both the bitlength and track width of the recorded bits will 

increase the areal density of the media. The main media limitation in longitudinal 

magnetic recording is noise due to bit transitions [ Ferrier et al 1988]. Section 1.6.2 

introduced the idea that bit transitions have a finite thickness due to energy 

minimisation. The nature of the bit transition and its effect on the written bits as the 

areal density increases is part of the subject of this thesis and will be covered in greater 

detail in later chapters. Reduction of the bit transition width allows smaller bitlengths to 

be recorded.

The ultimate limit for recorded bits results from superparamagnetism due to 

thermal demagnetisation [E Grochowski 1994] [CD Mee and E. D. Daniel 1987]. Each 

written bit consists of an array of magnetic particles. The mean number of particles per 

bit has to remain above a certain statistical limit to avoid the granularity of the particles 

affecting the bit transition width. The grain size must be reduced to maintain the same 

average number of particles in each bit as the bit area is reduced and hence the ultimate
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recording limit is determined by a minimum grain size. The minimum grain size is 

determined by the ratio of the anisotropy energy KV, to the thermal energy kT for each 

grain, where K is the anisotropy constant, V is the mean volume of a grain, k is 

Boltzman’s constant and T is the sample temperature, known as the aftereffect. Whereas 

the super paramagnetic limit occurs at a ratio of <25, in current thin film media the ratio 

is ~ 1000 [P. L. Lu 1994]. The critical volume Vp, below which superparamagnetism 

exists is given by

2 kT 
M,M,HC

Vp = ln(2tf0) „ (1.11)

where t is the time of observation, f0 = 10V1 is the Larmor frequency. Hence increases 

in either or both of Hc or Ms decreases Vp [Murdock et al 1992]. For 10 Gbit/in2 

approximately 1000 grains are needed per bit with a grain diameter of -8-10 nm and a 

film thickness of -10 nm [Murdock et al 1992] [Yogi et al 1993]. The storage life of the 

recorded bit is reduced by a factor of approximately 1016 for a factor of two reduction in 

particle diameter all other parameters being the same, the storage life being the 

statistically determined time over which the particle magnetisation remains stable.

Present advances in magnetic recording have recently produced a demonstration 

of 3 Gbit/in2 density [G Gorman 1995]. Further demonstrations of bit densities of 5 

Gbit/in2 are expected without significant problems in the near future [E Grochowski et 

al 1994] with the use of spin valve type heads and near contact recording.

CHAPTER 1 
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Chapter 2 Electron Microscopy of thin films

CHAPTER 2

ELECTRON MICROSCOPY OF THIN FILMS

2.1 INTRODUCTION

This chapter aims to outline the techniques used in this thesis to characterise the 

magnetic microstructure of hard disk specimens. Modes of electron microscopy 

allowing the physical, chemical and magnetic microstructures to be investigated will be 

included in this chapter together with descriptions of the specific experimental set-up 

and instruments necessary for each technique.

Microscopy is the main tool used to view structures whose size is smaller than can 

be resolved with the naked eye. Optical microscopy was the first branch of microscopy 

to investigate such structures. The resolution of a typical optical system is given by 

equation 2.1.

where X is the wavelength of the incident light, n0 is the refractive index in object space 

and a  is the semi-angle subtended by the object at the lens. For an optical microscope 

using yellow light with X = 550 nm, the resolving power is ~ 0.2pm. In a standard 

optical microscope the images are formed due to the variance in the absorption of light 

in the specimen. Information on the magnetic structure can be obtained by placing a 

colloidal suspension of ferromagnetic particles on the surface of the specimen. The 

particles then delineate the domain walls in the specimen [Bitter 1931]. The main 

drawbacks with this technique are that the structure seen is highly dependent on the 

surface roughness and the results give no indication of the sense of the magnetisation in 

the domains delineated as the particles are attracted to field gradients of both signs. To 

attain higher resolution equation 2.1 implies either the wavelength of the radiation used

Resolving power =
o.6a

(2.1)
n0 sin a
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must be decreased or the numerical aperture (n0sina) must be increased. Different types 

of radiation sources can be used to reduce the wavelength the most important is the use 

of high energy electrons.

Electrons acquire momentum in an electron microscope when they are accelerated 

through a potential difference, V gaining energy equal to eV where e is the electronic 

charge (1.6xlO'19C). A wavelength X, postulated by de Broglie can be associated with 

the electrons when they are subjected to a potential V. With relativistic corrections the 

de Broglie wavelength is given by

X=
(2meVr)

1/2 (2.2)

where

V =V 1+
eV

2m0c:
(2.3)

where h is Planck’s constant (6.626x10 ), nt, is the rest electron mass (1.9x10 kg) 

and c is the speed of light in a vacuum (3xl08ms_I). Table 2.1 shows the variation of 

wavelength with accelerating potential. The wavelength range in typical electron 

microscopy is of the order of picometres a factor of 105 smaller than in optical 

microscopy implying increased resolution, although this is not the only contributing 

factor to the resolution.

V(kV) X(pm)

20 8.588

50 5.355

100 3.702

200 2.508

500 1.421

1000 0.872

Table 2.1 Table o f electron wavelength A, dependence on accelerating voltage V. 

(Grundy and Jones 1976).
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2.2 THE ELECTRON MICROSCOPE

The subject of this section is to outline the typical elements that form a 

transmission electron microscope (TEM). A typical TEM is made up of a number of 

characteristic components. These are:

• An electron source or gun

• The probe forming or condenser lenses

• The objective lens

• The post specimen lenses

• A detection system

The majority of the magnetic imaging presented in this thesis was performed on a highly 

modified Philips CM20 field emission gun (PEG) electron microscope; each of the 

following sections apply to this microscope unless otherwise stated. A JEOL 2000FX 

was also used in parts of this work and reference will be made to this in the appropriate 

sections. This electron microscope is equipped with an objective lens with specially 

designed polepieces which permits the specimen to be located in an area where there is a 

very small magnetic field. The three main areas of interest are the gun, the column and 

the detection system. Since the detection systems used are highly mode dependent, 

discussion of this will be postponed until later in this chapter following the discussion of 

each mode of operation.

2.2.1 The Electron Gun

The electron gun is the first component in any EM system and consists of a source 

called the filament, from which the electrons are to be emitted, an accelerator system 

and an electrostatic lens, shown in Fig.2.1. In the case of the FEG source of the Philips 

CM20, the heated filament is subjected to a strong electric field at its tip area, this 

lowers the work function
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Fig.2.1 Schematic diagram of CM20 Field Emission Gun showing vacuum 

system

allowing electrons to be drawn off from within the metal. Tungsten is a typical material 

for a field emission filament. For a Schottky field emission gun (SFEG) of the type in 

our system, the filament is coated in a layer of zirconia (ZJO2 ) which has the effect of 

decreasing the work function of the filament in comparison to the tungsten [P. M. Mul 

1990]. The resulting source size in our SFEG is larger in comparison to a standard FEG 

source, 20nm as opposed to 3nm but there is an increase in the maximum attainable 

current for a SFEG, 300nA in comparison to 30nA. With the filament held at a fixed 

negative potential, 200kV, the resulting electrons then pass through an anode, an 

electrostatic lens known as the gun lens and an accelerator arrangement. Finally the 

beam passes through beam alignment deflection coils. The disadvantage of using an 

FEG type system is that an ultra high vacuum is required in the tip region.

The source in the JEOL 2000FX EM is a tungsten hairpin or LaB6 filament which 

produces a beam of electrons by thermionic emission. Here the source of the electron 

optics is a beam cross over some distance below the tip. The disadvantage in using this 

system is the considerable increase in source size as a consequence of the low bias 

voltages necessary to reduce the overall energy spread from the tip. Any increase in
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energy spread in the electron beam contributes aberrations to the system, see section 

2.4.4. This lowered bias increases the curved area of the filament contributing to the 

emission and hence the effective size of the tip.

2.2.2 The Column

The column of an EM is the system of lenses, deflection coils and stigmators that 

the electron beam travels through, as shown in Fig.2.2. The interior of the column is 

held at a high vacuum to decrease the perturbing effects of collisions of the electrons in 

the beam with air molecules in the column and also to increase the filament lifetime. 

The series of lenses and stigmators produce the final in-focus image at the imaging 

plane. The column can be divided into three main areas; pre-specimen, specimen (or 

objective) and post-specimen areas, as shown in Fig.2.2.

1st condenser aperture

2nd condenser aperture

specimen area

objective aperture

extractable 
8 segment detectc

selected area aperture—'  *

El

EL

Bl

electron gun 

t t  1st condenser lens 

A-2nd condenser lens PRE­
SPECIMEN

scan coils
^  upper Lorentz lens (UL)

^objective lens SPECIMEN
■ 4 — goniometer 

flo w er Lorentz lens (LL)

escan coils 
4r diffraction lens

intermediate lens 

1st projector lens 

*"2nd projector lens

viewing screen
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SPECIMEN

Fig.2.2 Schematic diagram of the CM20 FEG column.

26 Richard J  Neville PhD thesis 1996



Chapter 2 Electron Microscopy of thin films

The pre-specimen lenses are the probe forming lenses which condense and project 

the electron illumination probe on to the specimen. In our system this comprises two 

condenser lenses and apertures and the Upper Lorentz lens which combine to determine 

the effective size of the illumination spot and its angular convergence at the specimen 

plane.

The objective lens is used to focus the electron beam producing a diffraction 

pattern of the specimen in the Fourier plane which would normally be close to the back 

focal plane of the lens. This lens produces high magnetic fields in the specimen area. As 

the subject of this thesis is the consideration of the magnetic structure of recording 

media, such a lens would bulk erase a sample with written tracks (chapter 1 section 6). 

Previous magnetic investigations overcame this problem by using the EM with the 

objective lens switched off and using a lens below the objective for standard imaging or 

the condenser lenses to focus and form the probe on the specimen for STEM operation 

e.g. [D. Rogers 1990] [D. Donnet 1992]. To overcome this the Philips CM20 FEG is 

equipped with two non immersion mini lenses above and below the specimen area. 

Focusing on the specimen with the objective in an unexcited state is then performed by 

the mini lenses reducing the magnetic field at the specimen area to levels low enough to 

prevent the erasure of even soft materials. This is the mode that will be used when 

magnetic imaging is being considered in all later sections and the lenses will be referred 

to as the Upper and Lower Lorentz lenses (UL and LL respectively).

The final image is transferred to the viewing screen by the post objective lenses 

which determine the magnification of the image on the viewing screen. The settings of 

these lenses become of critical importance in image formation in the scanning mode of 

EM as they also determine the size of the probe on the viewing screen. Images can be 

recorded on photographic film or by an electronic detection system.

2.2.3 Electron Specimen Interactions

In EM the incident electrons can interact with the specimen in a number of 

different ways. The -electrons can be undeviated, transmitted, reflected or absorbed by 

the specimen. Only those electrons which are transmitted are of interest in conventional
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transmission electron microscopy (CTEM) as this is the dominant electron specimen 

interaction in this system. The transmitted electrons have undergone interaction with the 

specimen in three ways; elastic scattering, inelastic scattering and deflection due to the 

Lorentz force. In a crystalline specimen the electron interacts elastically with the 

screened Coulomb potentials of the atoms producing Bragg scattering from the planes of 

atoms. Typical Bragg deflections are angles of the order of -lOmrads. Inelastic 

scattering occurs when the electron transfers some or all of its energy to atoms in the 

specimen. This can result in the production of X-rays a topic covered in section 2.6.

The principal interaction of interest here is that due to the magnetic induction of 

the sample. The electron beam interacts with the magnetic induction of the sample in a 

way that classically can be described by means of the Lorentz force and modes utilising 

this effect fall under the heading of Lorentz electron microscopy. Fig.2.3 shows the path 

of the electrons incident on the specimen along the z axis, passing through a thin film 

specimen. The specimen contains two domains which are oppositely magnetised along 

the y axis.

Fig.2.3 The Lorentz deflection of an incident electron beam passing through a 

thin film specimen containing two oppositely magnetised domains and 

a 180° wall.

Classically, an electron beam incident on the specimen along the z axis is deflected in 

the x axis direction by the y component of magnetic induction in the sample [Chapman 

1984]. The direction and magnitude of the deflection are determined by the direction 

and strength of the magnetic induction in the sample respectively. Magnetisation along 

the y axis results in a deflection, pL in the x axis direction. Correspondingly the
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deflection due to magnetisation along the negative y axis results in a deflection, -pL in

where By is y component of the saturation magnetic induction in the sample, X is the 

wavelength of the electron, 8 is the specimen thickness in the z direction and h is 

Planck’s constant. Equation 2.4 assumes that the magnetic induction is contained in the 

sample and is uniform throughout the thickness of the specimen. The specimens of 

interest in this thesis have stray fields emanating out of the plane of the specimen and 

hence the appropriately modified form of equation 2.4 is:

where Pl(x) is the local Lorentz angle deflection and By(x,z) is the local value of the y 

component of magnetic induction.

The above analysis of Lorentz electron microscopy follows a classical approach to 

the electron magnetic induction interactions. The system was approached quantum 

mechanically by Aharonov and Bohm 1959 producing the following results. They 

suggested that the effect of the magnetic induction of the sample was to introduce a 

phase shift between two electron rays which originate from the same source point but 

travel through different paths in the sample. When the paths of the rays rejoin they 

enclose a magnetic flux N resulting in a phase shift between the two rays, cp given by:

The Aharonov-Bohm effect was extended to include the incidence of a plane electron 

wave propagating along the negative z axis as in Fig.2.3. The phase shift experienced by

the x axis direction. The magnitude of this Lorentz deflection is given by the deflection 

angle:

PL =eBy>,8/h (2.4)

(2.5)
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an electron wave between any two points on the x axis with coordinates xi and X2  is 

given by:

Thus a ferromagnetic specimen can be viewed as a pure phase object and hence Lorentz 

microscopy is a branch of phase contrast microscopy.

Electron microscopy has been shown to be a tool not only to view specimen 

structure in the nanometer range but also to view directly the magnetic induction of the 

sample. The various modes of Lorentz electron microscopy available for such 

characterisation will now be discussed.

The conventional transmission electron microscope (CTEM) mode is highly 

flexible and is described in the following three sections. The first deals with a general 

description of image formation in the CTEM mode and the remainder deal exclusively 

with the CTEM magnetic imaging modes. It should be noted that the magnetic imaging 

modes used for work in this thesis can be denoted as branches of Lorentz microscopy as 

they utilise the Lorentz force-magnetic specimen interaction.

2.3.1 Bright Field imaging

As described in section 2.2.2, image formation in CTEM mode uses the objective 

lens (or the UL and LL lenses if in field-free mode) to focus the transmitted intensity in 

the back focal plane of the objective lens producing the diffraction pattern associated 

with elastic Bragg scattering from the crystal planes [Hawkes 1972]. If a sample consists 

of perfect single crystals the diffraction pattern will resemble a regular array of spots, 

whereas in a polycrystalline sample, concentric rings are formed. In wave optical terms 

the diffraction pattern is the Fourier transform of the wave transmitted by the specimen.

(2.7)

2.3 LORENTZ MICROSCOPY I : CTEM
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The specimen and viewing screen are conjugate planes as the final image is the Fourier 

transform of the diffraction pattern in the back focal plane of the objective lens.

2.3.2 Fresnel Mode

As outlined in section 2.2.3, the electron beam can interact with the magnetic 

induction of the sample. Fig.2.3 showed that a plane wave of electrons incident on a

Az

object planebrightbright

Fig.2.4 Ray diagram o f Fresnel mode o f a magnetic specimen.

dark dark

magnetic specimen converges and diverges at domain walls due to the interaction of the 

incident beam with the magnetic induction from the sample through the Lorentz force. 

The Fresnel mode of Lorentz microscopy uses this effect to produce images containing 

wall contrast. The objective lens (or LL lens) is defocused by an amount Az making the 

object plane lie at this distance from the specimen, as in Fig.2.4. The beam convergence 

or divergence is dependent on the directions of the magnetic induction in the domains 

on either side of the wall. The domain walls show up as bright or dark bands in the 

images for convergent and divergent beam deflections respectively. This allows a 

qualitative evaluation of the magnetic induction of the sample. The Fresnel mode shows 

wall contrast as in Fig.2.5.
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2.3.3 Foucault Mode

The Foucault mode of Lorentz microscopy uses the observation as in Fig.2.3 that 

the deflection from a domain in a specimen is uniform across that domain assuming the 

magnetisation vector is constant across the domain. The domain deflections are focused 

to single spots in the objective back focal plane for each direction of magnetic induction 

in the sample. As these magnetic deflection angles are considerably smaller than the 

Bragg deflection angles (prads compared to mrads), the centre diffraction spot is split 

into several magnetic spots corresponding to each magnetic induction direction. Domain 

contrast is obtained by carefully positioning the objective aperture, in the back focal 

plane of the objective lens, to obscure one of the magnetic spots corresponding to a 

particular magnetic induction direction, as in Fig.2.6a. The deflections due to domains 

with a particular direction of magnetic induction are removed from the image and these 

domains show up as dark contrast in the image. The other spots are transmitted allowing 

the remaining oppositely magnetised domains to show up as bright contrast in the 

image, as in Fig.2.6b. An example of a Foucault image of written tracks is shown in 

Fig.2.7 respectively.
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Fig.2.6 a)Ray diagram of Foucault mode o f a magnetic specimen.

b)Plan view o f objective aperture and magnetic spot configuration.

Fig.2.7 Foucault micrograph.

2.4 LORENTZ MICROSCOPY II : STEM

Modes of fixed beam CTEM Lorentz microscopy have been outlined above but 

Lorentz microscopy can also be implemented in scanning transmission electron 

microscopy (STEM). In STEM, the electron beam is focused to a probe which is 

scanned in a raster fashion across the specimen. The scanned probe interacts with the
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specimen and is transmitted as outlined in section 2.2.3 [D. Rogers 1990]. The Philips 

CM20 FEG as in Fig.2.2 can be used in STEM mode using the pre-specimen lenses and 

scan coils to deflect the beam.

2.4.1 Differential Phase Contrast

A powerful mode of Lorentz microscopy which can be implemented in a STEM 

arrangement is called the differential phase contrast (DPC) mode. This mode was 

outlined by Dekkers and de Lang 1974 and 1977 and applied to magnetic thin films by 

Chapman et al 1979. The system uses a quadrant detector placed in the far field to 

produce image contrast related directly to the magnetic structure of the specimen.

The DPC mode of Lorentz microscopy is shown schematically in Fig.2.8. The 

classical interpretation is as follows. A beam of electrons is focused to a probe onto the 

specimen. A quadrant detector in the far field senses the deflection of the bright field 

cone by taking combinations of difference signals from the four quadrants. In the 

absence of a magnetic specimen, the post-specimen descan coils are set such that the 

bright field cone falls equally on all four quadrants producing zero difference signals. 

When a magnetic specimen is scanned, the bright field cone is deflected by the in-plane 

components of magnetic induction integrated along the electron trajectory, resulting in a 

Lorentz deflection, Pl- In this case the difference signals from the detector are 

proportional to Pl- The deflection is then displayed on a grey scale where white and 

black represent the maximum positive and negative signals respectively and hence grey 

is equivalent to zero signal. The image is then a pixel map of the integrated in-plane 

induction of the specimen shown on a grey scale.

The signals from each quadrant are acquired in parallel, allowing any mixing of 

the signals to occur with perfect registration. Generally three signals are acquired, two 

orthogonally mapped difference signals giving the magnetic image e.g. A-C, D-B, and
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Fig.2.8 Sch ematic o f DPC arrangement.

the sum signal A+B+C+D which forms an incoherent bright field signal showing the 

crystallite structure of the specimen.

detector

Bright
field
cone

Fig.2.9 Schematic o f DPC detector.
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Fig.2.9 shows a schematic of the DPC detector depicting the Lorentz deflection of the 

bright field cone. The current falling on each segment is proportional to the area of the 

bright field disk incident on that segment. The shaded region represents the change in 

the difference signal between the two detector halves ({A+B}-{C+D}) due to the 

introduction of a magnetic specimen. The area of the shaded region is proportional to 

20CoPl and hence the difference signal is proportional to 4(XoPl-

2.4.2 Image Formation in STEM

The previous explanation of Lorentz image formation followed a classical 

approach; here an outline of the quantum mechanical interpretation of STEM image 

formation with particular reference to DPC imaging will be given.

Consider a plane electron wave to be incident on a magnetic specimen, as in 

Fig.2.3. Following the theory of Aharanov and Bohm, a magnetic specimen resembles a 

pure phase object to the incident electron beam as outlined in section 2.3.3. When a 

plane electron wave \\fu is incident and transmitted through a magnetic specimen, the 

phase of the transmitted wave will be modulated by the specimen. Thus the resulting 

transmitted electron wave at the specimen exit plane is given by:

V ,(r) = Vi(r)p(r) (2.8)

where p is the phase imparted to the beam by the specimen such that:

p(r) = exp(-i<|>(r)) (2.9)

where r  is a vector from the optic axis in the specimen plane. The transmitted electron 

wave i|ft now contains information related to the phase imparted by the specimen, which 

is related to the in-plane component of magnetic induction of the specimen. As the beam

is scanned across the specimen this must also be included in equation 2.9, but for

convenience the standard procedure is to view the position of the beam as though the 

specimen were moving with respect to the optic axis. Equation 2.9 is modified such that
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the position of the scanned beam with respect to the optic axis is r0 Hence the 

transmitted beam is given by:

Vi (r > ro ) = Vi (r )P(r  - ro ) (2-10>

The DPC system extracts this phase and hence magnetic information from the modified 

beam. After passing through the post-specimen lenses the transmitted wave is then 

incident on the detector plane. The post-specimen lenses magnify the spot arriving at the 

detector plane by an amount defined by a distance L, known as the camera length. The 

wave arriving at the detector plane is the Fourier transform of the transmitted wave. This 

is expressed as:

Vd (k> r„) = F{Vi (r> ro)}= F{Vi (r)p(r - r0)} (2.11)

where F{quantity} denotes the Fourier transform of that quantity. At this point it is the 

detector response that will produce the phase information from the beam. The detector 

has a response function Dsymra(k) for a symmetric detector. A full discussion of detector 

response functions is given in Morrison [1981] and McFadyen [1986]. Dekkers and de 

Lang [1974] and [1977], proposed the use of a split detector which has an anti 

symmetric response function. This is expressed as:

D- (k) = Dv _(k>lKk) (2.12)

such that:

r+1 fork > 0  
H (k)= - l f o r k < 0  <2' 13>

The DPC image intensity is a convolution of the wave incident on the detector and the 

detector response function. The Fourier transform of the detector response is given by:
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'dM,a(r„) = <l!ymm(r0)*(iJn-or 1 (2.14)

where * denotes the convolution. Reducing this to one dimension, the detector response 

contribution in the DPC image is proportional to x"1. This convolution with x '1 is 

approximately equivalent to differentiation with respect to x. Hence the intensity of a 

pixel in a DPC image is proportional to d/dx of the phase of the beam incident on the 

detector. This phase is proportional to the in-plane integrated component of magnetic 

induction due to the specimen, as in equation (2.7). Hence the intensity in the DPC 

image using a detector with an anti symmetric response function is given by:

oo

Vx(p(x,y) = —“ J* By(x,y,z) dz (2.15a)
-o o

oo

Vycp(x,y) = ̂ p J  Bx(x,y,z) dz (2.15b)
-OO

where Bx and By are the components of magnetic induction in the x and y directions. For 

these conditions to be realised in practice the probe semi-angle at the specimen, a  »  

the Lorentz angle p.

2.4.3 Modified Differential Phase Contrast: MDPC.

DPC images inherently contain non-magnetic contrast such as scattering from an 

electrostatic potential V in the sample. This is due to the crystallites in the sample and 

primarily has the effect of changing the intensity of the bright field cone rather than 

shifting its position. Non-magnetic contrast can be included in the above theoretical 

DPC treatment by the addition of:

v „<p(x,y) = ̂ V ,( t ( x ,y ) ,v ( x ,y ) )  (2.16)
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to equation 2.15a) and a similar form for equation 2.15b) as outlined by Plo(3l [1992] 

and Chapman et al [1992]. This non-magnetic crystallite contrast tends to obscure the 

magnetic information in the images and hence a method to remove this contrast is 

required. It was noticed that the crystallite spatial frequencies are considerably higher 

than the magnetic information of interest. If a method of suppressing these higher spatial 

frequencies can be found while passing low frequencies in the bright field cone then the 

crystallite noise will be suppressed relative to the magnetic signal.

The solution found by simulation and by experiment is to use an eight segment 

detector in place of the quadrant detector of standard DPC [Chapman et al 1990] [I. R. 

McFadyen 1992]. Images are then formed by taking difference signals as before but only 

using the outer quadrants of the detector as the shaded area of fig. 2.10b.

The camera length must be set such that the resulting spot on the detector is only just 

larger than the inner quadrant, as in Fig.2.10c. This provide a non zero signal on all four 

outer quadrants. Justification for the high frequency suppression from this configuration 

can be outlined by consideration of the detector transfer function [Chapman et al 1990]. 

This can be expressed as a function of the single parameter k  given by:

c)

Fig.2.10 Schematic o f

a ) quadrant DPC detector.

b) eight segment MDPC detector.

c) spatial frequency vectors for optimised MDPC.

(2.15)
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where ki is the largest spatial frequency that can fall on the inner detector and ka is the 

maximum spatial frequency of the bright field disk incident on the detector, determined 

by the size of the inner detector and the camera length respectively. Fig.2.11 shows the 

variation of the phase gradient signal to noise ratio with the reduced spatial frequency 

component defined as:

In a purely qualitative sense, this works by reducing the signal level which contains the 

crystallite contrast, for the magnetic signal we are only interested in the difference 

between the "ignals and not the signals themselves. The signal from the centre of the 

detector in D C does not add to the signal and only contributes to the noise.

kr Reduced spatial Frequency 

Fig.2.11 Variation o f phase gradient signal to noise ratio with reduced spatial

frequency for different values o f K k=0 no hole ie using all eight 

segments o f the MDPC detector [Chapman et al 1990],

Fig.2.11 shows that as k is increased, the high frequency contribution to the transfer 

function is suppressed and the signal to noise ratio is enhanced at values of K close to

(2.16)

K=0.95

0 2
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one. A value of k=1 denotes that the bright field cone is equal in size to the inner 

quadrant. The optimum value was found to be at k > 0.8 [Chapman et al 1991].

2.4.4 Resolution in MDPC.

In all electron microscopes there are limitations imposed on the resolution due to 

imperfections in the electron optics. The source in the gun has a finite size and is not 

point like as has been assumed, the lenses in the system suffer from spherical and 

chromatic aberrations, diffraction and astigmatism; all of which contribute to the final 

image characteristics. The imaging imperfections cause the scanned probe incident on 

both the specimen to be broadened in size and to vary in current density across the 

probe.

The beam from the gun is forced to cross over by the gun lens which demagnifies 

the source leaving the gun. In the absence of lens aberrations a circular area of 

approximately uniform current density and diameter do can be defined. The current 

density is uniform over its cross sectional area which is of diameter d0. This is then 

expanded into a circle of least confusion following a path through the electron optics of 

the EM . The main contributors to the imperfections arise from spherical and chromatic 

aberrations, diffraction and astigmatism which are discussed below.

1) Spherical Aberration

Spherical aberration is an effect which shortens the focal length of the lens for off 

axis beams as the outer regions of the lens have a stronger focusing effect. This can be 

expressed as:

ds = t Cscc3 (2.17)

where ds is the diameter of least confusion due to spherical aberration, Cs is the 

spherical aberration coefficient and a  is the probe semi angle defined by the radius of 

the probe forming aperture and the focal length of the probe forming lens.
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2) Chromatic Aberration

Chromatic aberration results from the spread in initial energies of the electrons 

leaving the gun. There is a variation in the focal length of the lens with the variation in 

electron energy. This is expressed as:

8E
dc =Cca ^  (2.19)

E

where dc is the diameter of least confusion due to chromatic aberration, Cc is the 

chromatic aberration coefficient, E is the mean energy of the incident electrons and 8E is 

the energy spread in electron energies. All other quantities are as previously defined.

3) Diffraction

Further beam broadening can occur due to diffraction of the electron beam by the 

finite size of the probe forming aperture. This is expressed as:

061X. (220)
a

where dd is the diameter of least confusion due to diffraction and X is the de Broglie 

wavelength of the electron beam.

4) Astigamtism

Astigmatism in an electron lens can result from an absence of perfect symmetry 

about the optic axis and from inhomogeneties in the magnetic materials used resulting in 

a variation of the lens strength. The effect can be corrected using a quadrupole 

arrangement to counteract this difference in focusing and thus remove the astigmatism 

in the image. In a real system a large amount of the astigmatism can be removed.
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The values can be used to estimate the final diameter of the disc of least confusion 

by summing in quadrature:

d2 = d2+ d 2+ dc2 + d2 (2.21)

The MDPC system using the Lorentz lens system as the probe forming lens is expected 

to give a resolution better than 5nm [Chapman 1993].

2.5 ENERGY DISPERSIVE X-RAY ANALYSIS

X-rays are produced when the electrons in the beam are inelastically scattered 

when passing through the specimen. X-rays are produced by two main interactions, 

Bremsstrahlung or by inner-shell ionisation processes giving continuous and discrete X- 

ray spectra respectively. The inner shell ionisation processes produce sharply defined 

peaks in the X-ray spectra corresponding to the differences between various energy 

levels in the atoms of the specimen. Each element has a characteristic set of energy 

levels and through identification and comparisons of the relative sizes of each peak 

present, estimates can be made of the composition of the sample. Further more in-depth 

analysis of X-ray data will be given in section 3.4 of chapter 3 .

Here a JEOL 1200 CTEM and a VG HB5 STEM were used; essentially both 

systems use the same detection system. A Link Analytical SiLi detector was used in 

both systems.
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CHAPTER 3

SPECIMEN PREPARATION AND COMPOSITIONAL ANALYSIS

3.1 INTRODUCTION

The subject of this chapter is the fabrication of hard disk media and the processes 

involved in creating TEM specimens. Magnetic analysis is performed using planar 

specimens, compositional and structural analysis is obtained using both planar and 

cross-sectional specimens. Separate preparation techniques for planar and cross 

sectional samples are outlined in this chapter. An X-ray analysis technique is also 

discussed using cross-sectional specimens to allow the determination of the ‘as 

deposited’ magnetic layer composition of the samples. With this verification of the 

magnetic layer composition it is then possible to use this information to monitor the 

composition of the planar samples during the various processing stages to specimen 

completion.

3.2 FABRICATION OF A HARD DISK

A magnetic recording hard disk is typically composed of four layers deposited 

onto a non magnetic substrate as in Fig.3.1. Each layer has an important role to play in 

the overall performance of the hard disk and will be discussed individually in order of 

deposition.

The substrates used in this thesis are 950pm thick and 3" in diameter, the bulk of 

which consists of a non-magnetic alloy providing a rigid platform for the magnetic and 

non-magnetic layers. The substrate is generally made of an aluminium manganese (4- 

5% Mn) alloy which is used for its rigidity, low density and low cost. The surface of the 

disk has to be extremely smooth as any defects in the substrate surface will be replicated 

throughout the upper layers and can produce missing or extra readback pulses. For this 

reason the surface of the AlMg disk is uniformly diamond polished and textured to
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minimise topographic defects. The only drawback with the AlMg alloy is that it is too 

soft to withstand even moderate head to media impact [Amoldussen 1987]. To increase 

the substrate hardness the surface of the disk is electroless-plated with a layer of Nickel 

Phosphor (NiP). This amorphous NiP layer is typically 10-25pm thick and is made non­

magnetic

Magnetic layer CoPtCr

Bulk Substrate AlMg

Fig.3.1 Schematic o f Multilayered hard disk deposition structure.

through careful choice of phosphor composition, generally in the range 8-12 at %. This 

layer can be made extremely hard and can be used to smooth out any topographic 

defects in the surface of the AlMg disk. Abrasive polishing and texturing of the NiP 

layer produces a finished surface of 50-100A RMS across ridges [K. E. Johnson 1992]. 

The texturing is used to prevent head stiction during recording or playback as this will 

result in media damage. In anisotropic media circumferential texturing is also used to 

provide the desired circumferential easy axis. In the isotropic media considered here the 

texturing is random to reduce or remove this effect. The lower fly heights less than 

lOOnm demanded by near contact recording tend towards the use of smooth substrates. 

In this case during spin up and spin down of the disk the head is positioned above a 

small area at the inner radius which is deliberately textured to prevent stiction.

A Cr seed underlayer is deposited on the AlMg/NiP textured disk. This underlayer 

promotes the columnar growth of the next successive layer with the preference that the c 

axis of the underlayer lies in the plane of the film for longitudinal media. The seed layer 

has a considerable effect on the properties of the magnetic layer such as the coercivity 

which has been observed to increase with increasing Cr thickness [Davel and Randet
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1970]. The Cr seed layer also influences the size and uniformity of the grains of the 

magnetic layer, parameters which are of considerable importance in the noise 

performance of the media [P. I. Mayo et al 1991].

The magnetic layer is a continuous thin film layer that is sputter deposited on the 

Cr seed layer; the magnetic information will be encoded in the magnetic layer. In all the 

media considered here the magnetic layer is composed of a ternary Co alloy, CoPtCr. 

This layer is predominately the ferromagnetic element Co accounting for -70-80 at %. 

The other components in the alloy enhance the desired magnetic properties and the 

stability of the magnetic layer. The Pt is added substitutionally and has the effect of 

increasing the coercivity by introducing stress into the lattice of the thin film [K. E. 

Johnson 1992]. Pure Co has an He -lOOe [Chikazumi 1964] whereas with Pt added, Hc 

can reach values up to ~20000e. The Cr in the magnetic layer composition is used to 

prevent corrosion of the magnetic layer thus increasing its long-term stability.

3.3 SPECIMEN PREPARATION: PLANAR SAMPLES

To allow any (S)TEM study, the specimens must be electron transparent and this 

places a maximum thickness on suitable specimens. This upper limit on thickness varies 

with specimen density but generally -lOOnrn is the maximum allowed thickness for a 

200kV (S)TEM and for a material of ~8kgm‘3. As the hard disks to be investigated here 

are of the order of 950pm thick, various processing stages must be performed to produce 

(S)TEM samples. Planar samples have been fabricated from hard disk media deposited 

on standard AlMg and silicon substrates, using separate but similar techniques. These 

preparation methods are the subject of the next two sections.

3.3.1 AlMg Substrates

Planar samples are primarily desired for magnetic imaging and for this reason 

throughout the preparation technique it is of prime importance to ensure that the 

integrity of the magnetic layer has been maintained [F. J. Martin 1992]. The preparation 

technique aims to remove the bulk layers below the magnetic layer as in Fig.3.1.
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The first stage in preparation is to remove the AlMg substrate. The disk is fixed to 

a textured aluminium mounting disk using thermal setting glue with the recording 

surface in contact with the mounting disk. This allows the hard disk substrate to be 

turned on a lathed down to a more manageable thickness. Care must be taken not to 

overheat the disk as the glue can degrade resulting in mechanical damage of the disk 

surface. The disk is turned to a thickness of approximately 400-500jim and removed 

from the mounting disk. To remove completely the remaining AlMg substrate the disk is 

floated on a boiling solution of dilute (50%) HC1 taking approximately 5 minutes to etch 

fully. Adhesive tape is placed on top of the magnetic surface for protection as the acid 

solution can leech into the magnetic layer. The adhesive tape can be dissolved in a 

solution of chloroform leaving the magnetic layer clean and intact. The next stage is to 

remove the NiP layer. This layer is removed by floatation on a solution of concentrated 

Nitric acid at room temperature. The etch is complete when the dull NiP surface changes 

to ‘silver’ when viewed from below; this takes between 4 to 6 hours. The sample is then 

floated on a dilute solution of NaOH to neutralise any remaining acid and finally floated 

on water. The sample is then mounted on a folding gold microscope specimen grid.

Percentage Xray Intensity of Cr/Co Ka Lines against 
Sputter rate in Ar

x
x x x

x x

5 10 15 20

Etch rate (mins)

Fig,3,2 Graph of sputter etch rate in Ar.

At this stage the samples are electron transparent being just below the nominal 

maximum thickness of lOOnm at 200kV. At this thickness the magnetic information is 

still masked by non-magnetic scattering arising principally from the Cr substrate. For
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this reason a method of removing the now redundant Cr seed layer was sought to reduce 

the overall sample thickness. As Cr is used in photolithography masks, methods of wet 

Cr etch do exist. Cr masks are etched in a solution of ammonium cerric nitrate, glacial 

acetic acid and [find out what this means] R.O. water. When floated on this solution the 

hard disk samples do etch but the rate is extremely rapid and totally uncontrollable. The 

magnetic layer in the samples is completely leeched out following the etch leaving no 

tracks. A Freon-12 plasma etch had been reported by B. Spangenberg et al [1986] and a 

similar C2F6  plasma etch was observed to etch Cr masks. Again this method was too 

uncontrollable for the sample thickness being considered here. Sputtering in argon 

proved to be the most controllable method of seed layer removal. Fig.3.2 shows a graph 

of etch rate in argon. The previous etches are believed to have all been impeded by the 

formation of an oxide layer of the order of 5nm in thickness. This is removed after 16 

minutes corresponding to the large change in the graph in Fig.3.2. Table 3.1 shows the 

entire preparation process. The final specimens now consist of the magnetic layer and 

the carbon lubricant and are approximately 30-50nm thick.

method of removal layer removed duration

1. lathe 500pm of AlMg 30 minutes

2. boiling HC1 remaining 450pm of 

AlMg

5 minutes

3. room temperature 

Nitric acid

10pm NiP 4-6 hours

4. Ar sputtering Cr seed layer 15-20 minutes 

(see Fig.3.2)

Table 3,1 Table o f stages o f specimen preparation, layer removed and expected 

duration.

3.3.2 Silicon Substrates

As an alternative approach, recording media were deposited on 950pm thick 

silicon wafers with a ~ 4 0 0 A  layer of Si3N4  deposited prior to media sputtering. The disk
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structure shown in Fig.3.1 is similar to that of the silicon substrate samples the 

difference being the replacement of the NiP layer with the SisN4  layer and the addition 

of a protective Si3N4  layer on the carbon surface. All other layers were deposited under 

the same conditions as for the AlMg substrate samples by the IBM corporation. 

Techniques exist for the use of self supporting 200x200Jim2  SisN4  membranes made 

using conventional silicon processing techniques as TEM samples [J. W. M. Jacobs 

1986] [M. W. Cole 1991]. The fabrication of specimens involves the use of 

photolithographic techniques with several complex processing and deposition stages 

finishing with a concentrated NaOH total immersion wet etch. Etching continues until 

the Si3N4  layer under the magnetic layer has been reached and the etch terminates. This 

should eliminate leeching of the magnetic layer as found in some AlMg samples. This 

method proved time consuming and unreliable due to pinholing in the Si3N4  protective 

layers allowing etching through to the magnetic layer surface. The etch is also extremely 

vigorous and this can damage the samples during the etch. A considerably simpler and 

more efficient processing method was to isolate 2 x2 mm2  samples by scribing and then 

breaking the substrate. The individual samples are then float etched on concentrated 

NaOH heated to 70°C. Electron transparency is achieved when the sample glows red 

when lit from below. The samples are then placed on grids as before. These samples are 

particularly fragile and over-etching into the magnetic layers through any pinholes is 

still possible, thus careful observation of the minimum etch period is necessary.

3.4.3 SPECIMEN PREPARATION: CROSS-SECTIONAL SAMPLES

Details of the permitted tolerances in magnetic layer compositions and the 

thicknesses of all the layers deposited were supplied with the disks. In the preparation 

technique described above it is essential to be able to monitor the magnetic layer 

composition and compare with the information provided.

Compositional analysis can be performed using EDX analysis as mentioned in section 

2.6. To determine the ‘as deposited’ magnetic layer composition a cross sectional 

sample must be used as both the magnetic and the seed layers contain Cr making 

determination of the Cr composition in the magnetic layer alone very difficult with a
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planar sample. Using a cross-sectional specimen also allows the thicknesses of the 

deposited layers to be determined using high resolution TEM imaging. The preparation 

technique follows closely the method of cross-section fabrication developed by C. Scott 

[1993] for TiN/Ti multilayers deposited on silicon substrates.

A sample of hard disk ~2.5mm wide and ~25mm long is cut using a Buehler 

“Isomet” low speed circular saw. Cutting is performed without any cutting weight on the 

saw as the hard disk is soft and will easily bend when cut to this thickness. The strip is 

then cut into two parts ~ 12.5mm in length and attached with heated beeswax to a glass 

slide with the magnetic layer side down. The layers are thinned using a hand grinder to a 

thickness of ~250pm. This is the required total thickness of the two strips which are to 

be sandwiched in a ~440pm slot in a molybdenum rod as discussed later. The sections 

are required to be of the same length and width to ensure a tight fit in the slot and to 

allow the sections cut to be normal to the deposited layers. A stainless steel jig  as in Fig. 

3.3, is

1.1 mm 1.1 mm 1.1 mm 1.1 mm

<-------------  4 cm ------------- ►
plan view side view

Fig.3.3 Diagram o f stainless steel grinding jig.

used in conjunction with a handgrinder to shape the samples. The sections are placed 

face to face in the deeper of the two slots in the jig  held with beeswax leaving part of the 

sample protruding from the top surface of the jig. Care is taken to ensure the sections are 

normal to the jig  surface. The samples are then ground until the surface of the jig  is met. 

The samples are then removed and replaced in the second slot with the untouched edge 

facing up and are ground as before. The ends of the sections are squared off by placing 

the sample allowing one end at a time to protrude over the edge of the jig  and grind as 

before. The two samples are now the same shape of ~ 1.8mm by ~12mm and the ends
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are square. Following this the samples are removed and cleaned using a reflux 

condenser with “Inhibisol” as the degreasant. The samples are to be sandwiched in a slot 

cut in a molybdenum rod. The slot is cut using a 375pm (0.015") thick diamond blade. 

The sections are then fixed in the slot in the rod using “5minute Epoxy” resin. The 

whole sandwich is then pushed and glued into a brass rod with an inner diameter 

comparable to the molybdenum rod and an outer diameter of 3mm as in Fig.3.4. The 

brass rod provides an amount of compression forcing the two magnetic layers into the 

close contact required in later processing stages. The sample is then left to cure 

overnight. The disk shaped samples ~300pm thick are then cut from the rod using a 

300pm diamond blade. The cut samples are then fixed using beeswax to a glass slide 

and are thinned to a thickness of ~150-200pm and polished on both sides using 3pm 

diamond paste on a felt lapping cloth rotating at

molybdenum

3 mm

| | p  AlMg substrate

I l __

i i
0.44 mm

Fig.3.4 Diagram o f disk cut from molybdenum/brass rod.

500rpm. A smooth sample then is selected from those cut and fixed to a stub using a 

small amount of beeswax. This is now mounted in a Gatan dimple grinder, a phosphor - 

bronze spherical section grinding wheel with coarse paste is used to dimple the centre of 

the sample. Normally 3pm diamond paste is used but the AlMg substrate is considerably 

softer than the grinding wheel and as a result using diamond paste tends to grind the
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wheel instead of the specimen. Cubic boron nitride paste was found to be a suitable 

alternative and prevented wheel damage. Initially one side is dimpled to ~ 100pm depth. 

The sample is then removed from the stub, refitted dimpled side down and dimpled to a 

depth of ~40-90p,m which is now from the opposite side leaving the central region of 

the sample <10fim thick. Further thinning can be performed but due to the vibration 

during dimpling this can ruin the sample.

The next stage in cross section preparation is to ion mill the sample from both 

sides until the sample is electron transparent. A Gatan 600 series duomill is used for this 

purpose. The optimum thinning conditions were found to be 0.5mA and 4kV per gun 

and ion incidence angle of 12-15°. To ensure that the majority of thinning time is spent 

perpendicular to the magnetic layer interface the sample is rotated at 2rpm over two 80° 

sectors aligned at right angles to the section and lOrpm everywhere else. A laser is used 

to terminate thinning at the point where a hole has just begun to form. This occurs after 

approximately 8 hours. Due to preferential etching this is not the point at which the 

sample is electron transparent in the region of interest. Fig.3.5 shows a diagram of a 

sample stopped at this stage. Due to the NiP layer being considerably harder than the 

AlMg layer the NiP layer remains relatively thick after this length of time whereas the 

AlMg has formed a large hole. Thinning should continue in 30-40minute stages 

checking the sample in a TEM after each stage until the NiP layer is sufficiently thin.

brass

molybdenum 

AlMg substrate 

NiP layer

Thinned region
dimpled region

Fig.3.5 Diagram showing preferential thinning o f disk after completion o f 

ion beam thinning.
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3.5 EDX COMPOSITIONAL ANALYSIS

A valuable tool available in (S)TEM is energy dispersive X-ray analysis (EDX) 

allowing the relative composition of the sample to be investigated. X-ray production 

mechanisms in (S)TEM fall into two separate categories when electrons are incident on 

a specimen. These are Bremsstrahlung continuum X-ray processes and inner-shell 

ionisation processes giving rise to characteristic X-rays.

3.5.1 Continuum X-ray Production

When an electron beam passes through a specimen it can be decelerated by 

interaction with the Coulombic field produced by the atoms in the material. This 

deceleration causes the electrons to bend away from their original path. The energy of 

the exiting electrons is reduced by the bending and electromagnetic radiation is emitted. 

An incident electron can lose any amount of energy from zero to the maximum kinetic 

energy of the electron. Thus the energy of the electromagnetic radiation can take values 

across the full range of energies available. The maximum energy attained in this 

electromagnetic spectrum is an exact measure of the incident electron energy. This 

continuum produces a background component of X-ray Bremsstrahlung radiation over 

the whole region of interest (3-20keV). For our studies the continuum is an unwanted 

component of the spectrum and a method will be outlined in section 3.5.4 to remove its 

effect.

3.5.2 Inner Shell Ionisation X-ray Production

The inner shell ionisation process has the greatest importance in EDX analysis 

since this results in the generation of characteristic X-ray lines identifiable with specific 

elements. An incident electron can interact and eject a tightly bound inner shell electron 

which leaves the atom in an excited state. The atom can relax to its ground state through
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allowed transitions from outer shells to fill the inner shell vacancy. The relaxation 

releases energy and generates a photon of a distinct energy due to the sharply defined 

energy levels in the atom. Two processes can occur before the photon leaves the atom. 

The Auger process transmits the energy from the inner shell photon to an outer shell 

electron which is then ejected from the atom and is known as an Auger electron. In the 

characteristic X-ray process the energy difference is emitted as an X-ray photon of 

defined energy which then leaves the atom without further interaction. The balance 

between Auger electron and X-ray generation is governed by the Auger and the 

fluorescence yields a and co respectively. Such that:

co + a = 1 (3.1)

Typically low atomic numbers favour the Auger process e.g. © carbon ~ 0 .0 0 5  whereas 

for high atomic numbers X-ray process is favoured e.g. CQgermanium ~ 0 .5 .

For our EDX analysis we are interested only in the characteristic X-ray production 

process as this can produce compositional information through characteristic X-rays 

which are unique to each element. Fig.3.6 shows an energy level diagram for a general 

atom depicting some of the possible relaxation routes which result in X-ray production. 

As a result of the Pauli Exclusion Principle, each shell contains a spread of energies; 

except for n = 1. This has been neglected from Fig.3.6 as the energy spread is narrow in 

comparison with the energies of the shells. If a K shell electron is removed the vacancy 

can be filled by an electron relaxing from the L shell resulting in the Ka line. 

Alternatively, an electron from the M shell can fill the K shell vacancy resulting in the 

Kp line. Generally the next higher energy shell has the greatest probability of filling the 

vacancy and hence it would be expected that K« line would be the most intense. 

Similarly for an L shell vacancy.
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r n = 4 (N shell)

[
n = 3 (M shell)

Increasing
energy 1.1 n = 2 (L shell)

n = 1 (K shell)

Fig.3.6 Energy level diagram showing the main transitions in the de-excitation o f  

an atom.

The X-ray intensity resulting from an atom of a particular element is discussed in the 

next section.

3.5.3 A Method of Compositional Determination

Elemental composition can be determined by EDX analysis using the ratio 

technique developed by Cliff and Lorimer [1975] for thin samples. A thin sample is 

defined to be of a thickness such that electrons can pass through without loosing an 

appreciable amount of energy and that a single electron is most likely to excite only one 

photon in its passage through the sample. The basis for the technique is that the 

concentration ratio of two elements in a sample is related to the ratio of the number of 

counts in the characteristic X-ray lines of each element. Through comparison of the 

respective characteristic X-ray peaks for each element a relative composition for the 

specimen can be made. The Cliff-Lorimer equation for the atomic ratio of two elements 

x and y in a specimen is given by:
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Where Px is the number of characteristic X-rays under the peak, Cx is the concentration 

of the element in atomic percent, £ is the detector efficiency taken as 1 0 0 % in the range 

of energies to be used here, sx is the partition function, is the fluorescence yield and 

GiX is the ionisation cross-section in bams (lbam = 1 0 '2 4 cm2) for the characteristic line 

of element x. The partition function, the fluorescence yield and the ionisation cross- 

section combine to give the probability of exciting a specific transition in an element. 

The partition function determines the relative intensities of the lines in a sub-shell and 

the fluorescence yield determines the balance between Auger and X-ray processes as 

described above. The ionisation cross-section initially derived by Bethe (1930) can be 

stated as [Nicholson 1994]:

Gij = 2 Nj7te bjln
r c.T ^JO
v  J

(3.3)

Where Nj is the sub-shell electron occupancy, T0  is the electron energy taken as eV 

where V is the accelerating voltage, Iy is the ionisation energy for sub-shell j of the i* 

shell and bj and Cj are called the Bethe parameters. These parameters are determined by 

fitting equation 3.3 to experimental data measured over a range of overvoltage Uy 

defined as To/Ty. There is significant discussion upon the values of the Bethe parameters 

[C. J. Powell 1990] the values used here are given in table 3.2 are taken from the 

analysis given by J. H Paterson et al 1989. The analysis here will be a comparison 

between the characteristic lines of Co, Cr and Pt. The K shell ionisation energies fall 

within the detector limits of~3-20keV for Cr and Co with ionisation cross-sections of

Shell (4<U<25) bi ci
K 0.62 0.9

L 0.89 0.5

Table 3.2 Values o f non-relativistic Bethe parameters for K  and L shells [from 

J. H. Paterson et al 1989 and J. I. Goldstein et al 1992]
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370 and 261 bams respectively. For Pt the critical ionisation energy at 78.39keV lies 

outwith the detector range. However the PtL ionisation energies lie within the range and 

hence the total L production characteristic lines will be used in the analysis. Equation 

(3.3) applies to both the K and L shells but in the L shell an effective fluorescence yield, 

v is used in place of co as there is the possibility of radiationless Coster-Kronig 

transitions between the three sub-shells in the L-shell. The effective fluorescence yields 

are given by:

Vi = ® L 1 ®L2^12 ^12^23 ) (3.4a)

V2 =(0L2 +(0^23 (3.4b)

v 3 = coL3 (3.4c)

and hence the Ly production cross-section is given by:

<JCIi =  tfu V i ( 3 .5 )

where ocu is the characteristic cross-section, Ou is the ionisation cross-section and Vi is 

the effective fluorescence yield. Platinum emits a large number of characteristic X-ray 

lines but only three are sufficiently intense to be of interest for this analysis. The three 

lines are L a i, L(31 and Lp2.

characteristic line transition ionisation cross- 

section

L ai M5 —>L3 Gl3

Lpl M4  —> L2 <*L2

Lp2 n 5 - > l 3 <*L3

Table 3.3 Platinum L lines and their transitions.

The values of the ionisation cross-sections o(Pt)L2  and a(P t)u are 117 and 298 

bams before correction for radiationless transitions. Using equations 3.4b and 3.4c with
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values from Krause [1979] giving final corrected values for a(Pt)L2  and a(Pt)L3  42 and 

91 bans respectively. It should be noted that the L shell ionisation cross sections are 

difficult to measure and hence these results may vary from other authors. The total L 

shell production cross-section a (P t)L  is equal to 224 bams. Thus from equation (3.2):

C P
^ SL= 0 .9 5 -^

'Co Co

Cp. Pp.
- £L= 0.58—̂

'Co Co

(3.6a)

(3.6b)

where the parameters are defined above. Equations 3.6a and 3.6b allow the composition 

in atomic percent of the CoPtCr samples to be calculated.

3.5.4 Background Subtraction

A simple method has been used throughout this analysis for subtracting the 

background continuum X-rays present in all spectra. The subtraction method estimates 

the background component under the peak of interest by taking windows in the spectra 

either side of the peak. The average background under the peak can then be calculated 

using:

(3.7)

Where bgi and bg2  are the number of counts in the background channels, wi, W2  and 

Wpeak are the widths of the background windows and the width of the peak as defined in 

Fig.3.7.
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bgl bpeak bg2

Fig.3.7 Schematic X-ray diagram o f background subtraction technique.

3.6 CONCLUSION

The above sections have established methods of planar and cross-sectional 

(S)TEM specimen preparation from standard hard disks that will be used throughout 

this thesis. Also a technique has been outlined that allows the composition of the 

specimens to be analysed. The only drawback with this analysis technique is that the 

objective lens has to be used to form the probe on the specimen. This means that 

samples cannot be used for magnetic imaging following EDX characterisation.
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CHAPTER 4

THE PHYSICAL AND BULK MAGNETIC PROPERTIES OF CoPtCr 

RECORDING MEDIA

4.1 INTRODUCTION

The measurement and analysis of the physical and magnetic microstructures of 

two types of hard disk media are the subject of the proceeding chapter. The media can 

be categorised by the method of playback which in this case is either inductive or 

magnetoresistive as outlined in section 1.6. Throughout this and subsequent chapters 

inductive media will be denoted as being of type 1  and magnetoresistive media will be 

denoted as being of type 2. The study of these media is divided into two chapters. This 

chapter considers the bulk physical and magnetic characteristics for both types of media. 

The second chapter examines the magnetic microstructure of both types of media using 

the Lorentz imaging techniques outlined in chapter 2.

4.2 PHYSICAL CHARACTERISTICS

There are several TEM techniques which allow the investigation of the physical 

parameters of the media. The following sections cover the as deposited thin film 

thickness, the chemical composition and the grain size of media of both types.

4.2.1 Film thickness Verification

The thin film production process of sputter deposition produces variation in the 

layer thicknesses on the surface of the hard disk. High resolution TEM modes are used 

to accurately determine the as-deposited film thicknesses and the tolerances in that 

thickness. To allow such a study cross sectional samples are used of both media types 

manufactured using the technique described in section 3.4.3. This preparation method
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ensures that the thin film layers are close to perpendicular to the electron beam when 

placed in the electron microscope allowing accurate thickness values to be obtained.

c

CoPtCr 

Cr

NiP

Fig.4.1 A high resolution TEM micrograph o f type 1 media with a diagram

of the side view o f the cross section showing an approximate side view o f 

the sample and the direction o f ion etching.

■
i jjjPPPpffiv ‘t!- r \  jpf f

i%|

V
Fig.4.2 A high resolution TEM micrograph o f type 2 media.

Using cross sectional specimens created from both media, high resolution 

micrographs as in Figs.4.1 and 4.2 were produced. All the individual layers can be 

distinguished with the exception of the carbon overcoat which due to weak scattering 

and preferential etching shows up only in Fig.4.2. Fig.4.1 shows the approximate shape 

of the sample which tends to be thinned from the carbon edge. Several images are taken 

tilting the sample until the interface is clearly defined between layers to ensure the
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correct sample orientation to the beam. The magnification was calibrated using a the 

structure of a cross grating; at these high magnifications the gratings are too large at 

~0.46|im and internal features of the grating are used. The results for both media are 

given in table 4.1, the carbon thicknesses were determined from other images taken over 

shorter exposure intervals. Comparison with the actual values is not easy as only the 

range of possible thicknesses were given. The carbon overcoat has a range of 2 5 0 - 3 0 0 A  

and the Cr layer has a range of 2 0 0 - 8 0 0 A .  No values for the magnetic layers were 

supplied. The carbon overcoat values determined from the micrographs are lower than 

the range quoted. This is as expected as the cross section preparation process tends to 

thin the samples from the carbon side gradually removing the layer. The measured value 

of the seed layer falls within these tolerances and with errors on the thicknesses of 

approximately 5 %  for both media types. The magnetic layer thicknesses are consistent 

with the values of remnant magnetisationxthickness product discussed in section 4.3.1. 

There is a very clear indication in both Figs. 4.1 and 4.2 of the columnar growth due to 

the Cr seed layer. Particularly in Fig.4.1 where the structure can be seen to continue 

from the seed layer through the magnetic layer as expected.

Media

type

C CoPtCr Cr

1 125 550±5% 350±6%

2 85 255±5% 255+5%

Table 4.1 Thin film layer thicknesses in A as determined from Figs. 4.1 and 4.2.

4.2.2 Chemical Composition

The chemical composition of the magnetic layer has a considerable effect on the 

properties of the hard disk. For this reason it is desirable to establish the as-deposited 

chemical composition. EDX analysis and the Cliff Lorimer ratio technique outlined in 

section 3 .5 .3  of chapter 3  form the basis for a method of compositional determination.
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Aw example X-ray spectrum taken o f the magnetic layer o f a type 1 

sample.

The magnetic layer is a ternary alloy of Co, Pt and Cr. Here we are interested in the 

relative ratio of these elements in the magnetic layer of the media. Again cross-sectional 

samples are used here in attempt to remove the effect of the Cr seed layer on the EDX 

results as both this layer and the magnetic layer contain Cr. Fig.4.3 shows an example 

X-ray spectrum taken of the magnetic layer of a type 1 sample. The spectrum contains 

the Ka and Kp peaks of both Cr and Co in the centre of the detector range between 5 and 

8 KeV. The magnetic layer also includes Pt which has no K peaks in the detector range 

which can be used in the Cliff-Lorimer analysis. The spectrum does contain Pt L shell 

peaks in the detector range. As these L peaks are weak in comparison to the Ka and Kp 

peaks of Cr and Co the total L shell production is used in the method. This has two 

advantages the first being that this reduces the error determining the number of counts in 

in the L shell peak which is taken as the square root of the total number of characteristic 

X-rays under the peak which decreases with the increase in the amount of data collected. 

Secondly this eliminates the need to separate the two Pt Lp peaks simplifying the 

processing.
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The results of the analysis are given in Table 4.2. The compositions quoted are 

all in atomic percent. In both cases there is an increased Cr composition in the Cliff- 

Lorimer result in comparison to the quoted values. This increase could be due to the 

beam spreading in the sample into the Cr seed layer adding to the overall Cr 

composition.

Type 1 media

element Co Pt Cr

target composition 75 1 2 13

sample 72.7±1.0 10.4+0.4 18.0+0.9

Type 2 media

element Co Pt Cr

target composition 73 7 2 0

sample 71.6±1.3 6.1±0.7 22.3±1.3

Table 4,2 Results o f X-ray compositional analysis technique from type 1 and type 

2 media.

The largest drawback of this analysis technique is that due to the large beam 

convergence needed to form a probe to investigate the desired features, the electron 

microscope has to be used with an excited objective lens. Thus any magnetic 

information will be partially or totally erased from the samples after the analysis.
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4.2.3 Grain Size

Fig.4.4 High magnification bright field  images showing the crystallite structure o f

a) medium 1 and b) medium 2.

The thin film media being considered here consist of randomly oriented grains. 

Grains are assemblies of molecules acting as one physical unit. The magnetisation in a 

grain is assumed to be uniform throughout that grain. High magnification micrographs 

of media of type 1 and type 2 are shown in Figs.4.4a and b. The physical size of the 

grains of type 1 and type 2 media are very similar despite their different compositions. 

The average crystallite size of type 1 media is 17nm and the average crystallite size of 

type 2 media is 17 nm with standard deviations of 7.4 nm and 7.8 nm respectively. This 

granularity will effect the minimum magnetic particle size.

4.3 BULK MAGNETIC CHARACTERISTICS

Some of the bulk magnetic properties of the media can be determined by methods 

available to us. A TEM method known as low angle diffraction (LAD) is used to 

provide values of the remnant thickness product M r5 where 8 is the magnetic layer 

thickness.

For completeness it should be noted that the coercivities the media are 1800 and 

1650 Oe for medium 1 and medium2.
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4.3.1 Low Angle Diffraction

As outlined in section 2.3.3 of chapter 2 the electron beam can also be deflected 

by the Lorentz interaction with the magnetic induction of the sample. This Lorentz 

deflection is of the order of only a few jirads which is a factor of 1 0 0 0  smaller than that 

of the diffraction rings shown in Fig.4.6. The magnetic deflection spots are contained in 

the central diffraction spot and thus the camera length in Fig.4.6 is too short and the 

magnetic deflections become part of the central spot. In order to view the Lorentz 

deflections a considerably larger camera length has to be used such that splitting of the 

central spot can be observed. This Lorentz deflection is directly related to the integrated 

magnetic induction due to the sample through equation (4.1) where (3 is the Lorentz 

deflection angle, B is the magnetic induction due to the sample, h is Planck’s constant 

taken as 6.626x1O'34 Js and all other quantities are as previously defined.

p _ e B 8 X (41)

Both sample types have values of Mr8  quoted of 2.5xl0 ' 3 and l.lx lO ' 3 in 

emu/cm2. Using the values of 8  determined in section 4.2.1 this gives the maximum 

magnetic induction Braax as 0.565T and 0.541T for media 1 and media 2 respectively. 

The resultant maximum deflections for these media are 18.8|irads and 8.3prads for 

media 1 and media 2  respectively the difference being due to the variation in 8 .

A LAD diffraction pattern of type 1 media is shown in Fig.4.7a and type two in 

Fig.4.17b at camera lengths of 475 and 949m respectively. A diffraction grating was 

used to calibrate the camera lengths in each case.
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Fig.4.7 Low angle diffraction patterns o f a) typel and b) type 2 media.

Measurements taken from the LAD diffraction patterns of Fig.4.17 give 17.8prads for 

the Lorentz deflection angle for type 1 and 5.87prads for type 2. This is in close 

agreement with the predicted values using the TEM determined values of magnetic layer 

thicknesses of section 4.2.1.

4.4 CONCLUSIONS

In section one analysis has been made of both the physical and the bulk magnetic 

properties of media 1 and media 2. The thin film thicknesses measured were found to be 

within the tolerance limits of fabrication. The Cliff-Lorimer ratio technique was applied 

successfully using the total L production for the platinum lines due to the energies of the 

characteristic lines detectable. The technique produced compositional values well within 

those expected despite this there are variances due to the beam spreading into the Cr 

seed layer which tends to increase the effective Cr composition in both media. The grain 

size of both media was calculated and found to be 17.6 and 17.8 for media 1 and 2 

respectively. There is a large amount of uniformity in the grain size throughout both 

media, this is an advantage in the production of low noise media.
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CHAPTER 5

LORENTZ MICROSCOPY OF CoPtCr THIN FILM RECORDING 

MEDIA

5.1 Introduction

In chapter 4 the bulk magnetic and structural properties of both media types were 

discussed. This chapter adds to the information of the previous through an examination 

of the micromagnetic behaviour of the media and in particular the written bit structures. 

The examinations in this chapter are performed using the techniques available through 

Lorentz electron microscopy. Due to the non-immersion Lorentz lenses used in the 

Philips CM20 and the ‘field free’ objective pole piece of the JEOL 2000 FX electron 

microscopes, the modes used in this study allow the fine detail of the media to be 

explored while retaining the magnetic written bit patterns. Both the modes and the 

instruments they are implemented on are described in chapter 2 .

The study can be divided into two subsections of Lorentz electron microscopy the 

first deals with TEM modes and the second with the MDPC mode of STEM. In both 

sections the desire is to extract from the resulting images as much information as 

possible regarding the written magnetic structure.

5.2 Track Map

Sets of tracks were recorded on disks of each media type by colleagues at IBM 

SSD; the details of the recorded pattern are as follows.

The first step in the recording process is to DC erase the whole disk with the write 

head prior to recording the tracks. This is performed by feeding a constant DC excitation 

to the write head as it flies over the disk. Following this a set of tracks, is written over 

the DC erased region of each disk. This set of tracks is repeated at regular intervals 

across the disk. The set of tracks or track map is shown in binary form in Fig.5.1. A
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head with a trailing pole width of ~6pm was used for all recording with a linear head to 

medium velocity of -1 0 m s '1 on a standard linear writing setup [White]. The initial track 

map written on the first samples consisted of three frequencies producing 5, 1 and 0.5 

pm bit lengths or 200, 1000 and 2000 flux changes per mm (fc/mm). This was then 

refined with the addition of a higher frequency track producing bit lengths of 0.33pm  or

DC +

DC +mmW■ ■
DC +

a nnu l
i i i i i i i i i i i i i i i i

0.98pm 
1020fc/mm 

lpm 
1 OOOfc/mm

5 pm 
200fc/mm

lpm 
1 OOOfc/mm

0.5pm
2000fc/mm

□ magnetisation 
direction key

0.33pm
3000fc/mm

Fig. 5.1 Binary representation o f track map written across both disks.

3000fc/mm together with a DC banding structure alternating in direction of 

magnetisation between tracks; this proved useful in the MDPC setup and for a 

quantitative evaluation of the micromagnetic structure. An over-write experiment where 

one track is partially overwritten with the next was also included. These modifications 

are included in the track map shown in Fig.5.1. Each track is positioned such that its 

centre lies on the transition between the alternate DC erased regions as denoted in 

Fig.5.2.
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direction

D C - □
magnetisation __

direction
D C - ED overwrite

region
DC +

Fig.5.2 Binary representation o f DC erasure and track positioning.

Thus half of each written bit is written over the opposite DC erasure direction. The write 

head generally consists of two pole pieces in which the leading edge is wider across the 

track width than the other to allow for production tolerances, as in Fig.5.3. The flux 

leakage from the trailing pole of the head gives a specific form to the bits and allows the 

approximate write direction to be determined from the direction of the side write lobes 

as marked on Fig.5.3.

trailing poleside write

resulting bit write head

Fig.5.3 Schematic diagram showing the plan view o f the write head and a written 

bit showing the side write lobes. The direction o f the head velocity V with 

respect to the disk is defined as the write direction.
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5.3 CTEM Magnetic Bit Structure Analysis

As discussed in sections 2.3 and 2.4 the Lorentz interaction between the incident 

electron beam and the magnetic induction of the sample can be used to produce images 

containing information on the magnetic structure. In particular two TEM modes, the 

Fresnel mode and the Foucault mode, are useful here. The following sections present 

some results on the magnetic structure of the media using both TEM modes.

5.3.1 Scratch Suppression Through Sample Tilting

As stated in chapter 3, for TEM imaging the samples underwent a short sputtering 

in argon to remove the Cr seed layer. This reduces the sample thickness and any non­

magnetic scattering contrast. If this was not performed the images would contain large 

amounts of contrast due to the texturing scratches which are the order of 100-200nm in 

width. Fig.5.4 shows a bright field image where the sample has been selectively sputter 

etched. The etched region contains less scratch contrast than the unetched as desired. 

Thus initial magnetic imaging sets were obtained with samples which had undergone a

I  m *
• v V i*  . ietched

lpm

Fig. 5.4 Bright field  TEM image o f a sample which has been etched selectively.
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sputter etch. An alternative method of reducing scratch contrast which involves no 

further specimen preparation can also be used. Fig.5.5 displays a set of bright field 

images where the objective aperture is placed concentrically about the central bright 

spot of the diffraction pattern without obscuring any of it. The sample has undergone no 

sputter etching. Both images are of the same sample and essentially the same area. 

Fig.5.5a shows an image where the beam is incident normally on the specimen whereas 

in Fig.5.5b the sample has been tilted about the central axis of the rod by -10° and the 

beam is now incident at an angle of -80° to the plane of the sample. In Fig.5.5a the 

image is dominated by the texturing scratches across the whole sample as expected for

m axis

10pm
Fig.5.5 Bright field  images o f type 1 medium a) before and b) after being tilted 

~10°.

axis

untilted tilted 1 0 '

5 pm
Fig. 5.6 Foucault images o f type 1 medium showing the same area a) before and

b) after tilting.
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an unetched specimen. Whereas in Fig.5.5b of the same area, which has been tilted, the 

scratches have been almost completely suppressed. Contrast seen in the bright field 

image is due to scattering which is removed from the diffraction pattern formed in the 

back focal plane of the objective lens by either the aperture or the sides of the column. 

In the untilted case with no removed portion of the diffraction pattern in the bright field 

image the scratches are very prominent. This implies that following the 10° tilt, part of 

the diffraction pattern containing information regarding the structure of the scratches is 

reintroduced producing images with reduced scratch contrast. This effect is also very 

prominent in the TEM modes of Lorentz electron microscopy. Fig.5.6a shows a

axis.

Fig.5.7 Diffraction patterns taken o f the sample a) untilted and b) tilted by ~10° 

about the axis o f the rod.
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Foucault image of a ferromagnetic sample with recorded tracks where the rod is tilted 

and the beam is incident normally on the sample. In this image the scratch contrast is 

extremely prominent and almost obscures completely the magnetic contrast; the track 

edges are marked by white arrows. In Fig.5.6b the sample has been tilted by -10° about 

the axis of the rod which has reduced the scratch contrast to a minimum and the 

magnetic contrast can now be identified clearly. Further investigation is necessary to 

determine the changes that occur in diffraction pattern through the action of tilting. 

Fig.5.7 shows two typical diffraction patterns of the same sample untilted and tilted 

about the rod axis as above. Fig.5.7a of the untilted case shows a typical concentric ring 

diffraction pattern where the intensity is constant around each ring. In Fig.5.7b, where 

the sample is tilted the diffraction pattern is essentially unchanged with the main 

difference being that following the tilt the intensity of the rings has decreased in the 

direction orthogonal to the tilt.

Thus using this method, it is possible to extract images showing strong magnetic 

contrast from samples which have not undergone any sputter etch and reduce the 

specimen preparation period.

5.3.2 Fresnel Investigation

The first examination of the written media was performed using the Fresnel mode 

of TEM Lorentz electron microscopy. This mode produces image contrast in areas 

where the magnetisation direction changes in the sample. These can be localised as in a 

domain wall or extend across a whole area as in magnetisation ripple [Gillies 1993]. 

This mode is described fully in section 2.3.2.

Fresnel images of the four main frequencies written in medium 1 and medium 2 

are shown in Fig.5.8 and Fig.5.9. The areas of note in Fig.5.8 are expanded 

approximately four times and are shown to the right of each figure. The first area of 

strong contrast occurs between the track and the oppositely magnetised DC erasure 

bands producing a domain boundary at the side of the written bit. This region is 

prominent in all the tracks in Figs.5.7 and 5.9 where it forms a ragged edge. Fig.5.8a 

shows an expanded area taken at the edge of the 5pm track denoted by white lines and
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Fig.5.8 Fresnel images o f medium 1 for each o f the bit sizes.
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5|im

Fig. 5.9 Fresnel images o f medium 2 fo r each o f the bit sizes.

indicated by the black arrow. This suggests that the magnetisation may not be rotating 

smoothly across the domain wall but in a manner referred to as a feathering structure

79 Richard J  Neville PhD thesis 1996



Chapter 5 Lorentz Microscopy o f CoPtCr Thin Film Recording Media 

[Chen 1981]. The theory explaining this feathering pointed towards the formation of 

areas of several grains acting as single magnetic units known as clusters. The 

magnetisation in these clusters then rotates across the wall and their mutual interaction 

produces the discontinuities. The size of these clusters is difficult to estimate from these 

images and due to the nature of this method higher magnification images do not show 

any greater detail but this will be covered in later sections.

The second region of strong contrast occurs again at the region of the written bits 

called the side-write region. This region is formed by the flux leakage from the trailing 

pole of the write head when recording. The size and shape of the side write is strongly 

dependent on the write head dimensions and the write field at the edges of the pole 

pieces. The side write can be seen on each written bit as a lobe extending from one bit 

transition to the next adjacent, this can be seen in the expanded region of Fig.5.8b. As 

the bit length is reduced the lobes of the side write regions meet between alternate bits 

and the bit boundary between the bit and the DC erasure becomes dominated by the side 

write as can be seen in the structures at the edges of the bits in Figs.5.8c and d and in 

Figs.5.9b-d, as in the diagram of Fig.5.10.

5 pm  track

0.5pm  track

V
continuous band

Fig.5.10 Binary diagram showing how the side write lobes can join  as the bit size is 

reduced.

The third area of strong contrast is at the bit transition where the magnetisation in 

the written bits meet head on in the medium. As discussed in section 1.6.2 there is a 

large free pole density associated with the creation of head on transitions and as this is 

energetically unfavourable this is minimised through the formation of various
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magnetisation configurations. In the images of Figs.5.8 and 5.9 the positions of the bit 

transitions are highlighted by necklaces of white and black spots as the electron beam 

converges and diverges across the track width. This observation suggests that the 

magnetisation in the bit transition is alternating in direction over the width of the track. 

From these images it is not possible to determine definitely the structure or the 

orientation of the magnetisation in the bit transition and this area will be closely studied 

using the other imaging modes available in the following sections of this chapter.

The images in Fig.5.9 show similar detail to that of Fig.5.8 but due to the reduced 

Mr8  of media of type 2, the Lorentz deflection is less and hence the corresponding 

contrast is also reduced. In Fig.5.9 a considerably larger defocus is used to produce the 

contrast seen and hence the actual magnification of the image decreases.

5.3.3 Foucault Investigation

Foucault is the final mode used to complete the TEM magnetic analysis of the bit 

structure. This mode generates domain contrast images by removing part of the central 

spot arising from the magnetic scattering contained in the central bright field spot using 

an aperture; this was fully discussed in section 2.2.3. This method has the advantage of 

allowing the approximate direction of the magnetic induction in the resulting images to 

be identified. This is done by noting the position of the aperture with respect to the 

central bright field spot and taking into account any rotation introduced by the lenses. 

Foucault images of medium 1 and medium 2 taken using this technique are shown in 

Figs.5.11 and 5.12 respectively with the corresponding low angle diffraction patterns, 

(LAD). There are again three main areas of interest in these images.

The first area of strong contrast is due to the DC erasure bands which appear in 

Figs.5.11 and 5.12 as dark and bright bands either side of the track. Lorentz deflections 

removed from the central spot by the aperture result in regions of dark contrast in the 

images and conversely Lorentz deflection allowed through by the aperture correspond to 

regions of bright contrast. The direction of the magnetic induction is perpendicular to 

the direction of the Lorentz deflection due to the nature of the Lorentz force. The edge 

of the aperture is positioned along the write direction to allow maximum sensitivity
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along the write direction. The samples contain two DC erasure directions which give 

rise to two Lorentz spots about the central bright field spot as shown in the LAD pattern 

of Fig.5.11 and as seen in section 4.1.3. Thus if the position of the aperture is known 

with respect to the central spot and the track direction then the approximate direction of 

the magnetic induction giving rise to the contrast in the Foucault images can be 

determined. With the aperture positioned as shown in Fig.5.11, the bright contrast is due 

to the upper of the two Lorentz deflection spots. The positive magnetic induction 

direction is taken as being the write direction. Thus magnetic induction in the write 

direction produces the upper of the two Lorentz spots where the electron beam is 

incident into the plane of the page. Thus the bright contrast represents magnetic 

induction in the positive track direction and dark contrast represents magnetic induction

■ "

Fig.5.11 Foucault images o f a) 5/jm and b) IjMn tracks in medium 1. 2pm
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track
apertur& |cI' rectio11

Lorentz
deflections

Fig.5.11 Foucault images o f c) 0.5pm and d) 0.33im  tracks in type 1 medium with

the LAD pattern generated by this medium from the 5pm track.

in the negative write direction. This applies to both sets of images in Figs.5.11 and 5.12.

The second area of interest is at the centre of the track where the expectation is to 

view dark and bright contrast in these images due to the alternating magnetisation of the
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written bits. The total Lorentz deflection above the centre of the written bits is close to 

zero as a result of the space integral of the stray field induction above and below the 

film compensating for the deflection due to the magnetisation in the film. This gives 

grey contrast in the written bits in these regions. This effect also occurs in MDPC 

imaging and further discussion on this subject is given in section 5.4.1. In Fig.5.1 Id

Fig.5.12 Foucault images o f a) 5 [im and b) 1 (dm tracks in medium 2.
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Fig.5.12 Foucault images o f c) 0.5/dm and d) 0.33um tracks in type 2 medium with

the LAD pattern generated by this medium from the 5pm track.

however, the centre of the track does not seem to be the same ‘null’ grey as in the 

previous images and the bit transitions are broken in form across the track suggesting
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that small domains have formed which do not extend across the entire track width. This 

forms the grounds for a more detailed investigation of the 0.33|im track in section 5.4.2.

The final area of interest in these Foucault images is the bit transition which in 

Figs.5.11a-c and 5.12a can be seen as a line of alternate dark and bright contrast in a 

similar manner to the Fresnel images of Figs.5.8 and 5.9 reinforcing the view that the 

magnetic induction in these areas is also changing in direction along the bit transition. In 

the remaining images of medium 2  the bit transition is difficult to distinguish as a result 

of the reduced MR 8  product. The fine structure again cannot be determined using this 

mode as higher magnification images do not show any more contrast. This is due to the 

illumination area remaining constant as it is dictated by the beam convergence at the 

aperture plane and the Lorentz spot removal by the precision of the objective aperture 

position adjustment.

5.4 MDPC Magnetic Bit Structure Analysis

This section highlights the results from the application of the MDPC mode of 

Lorentz electron microscopy. In the MDPC mode the electron beam is scanned in a 

raster across the specimen which is then deflected by the in-plane components of 

magnetic induction integrated along the path of the electron beam. Images are then 

produced by taking difference signals from the opposite quadrants of a detector placed 

in the far field; this allows the in-plane components of magnetic induction to be mapped 

and displayed on a grey scale. The theories of DPC and MDPC were discussed in 

section 2.4. The following sections will cover the imaging characteristics for MDPC, 

how to interpret the images produced and the results and conclusions that can be drawn 

from the images.

5.4.1 MDPC Mapping Directions and Image Interpretation

Throughout the following sections optimised MDPC has been used for all imaging 

and analysis. The images are acquired on a highly modified Philips CM20 equipped 

with an annular quadrant detector as outlined in chapter 2. The data is collected using a
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Macintosh Quadra 950 running Gatan’s Digitalmicrograph software and with Gatan’s 

hardware installed. The MDPC images produced are optimised to be sensitive to a 

particular direction of magnetic induction known as the mapping direction, this 

sensitivity reduces to zero for induction directed orthogonally to the chosen mapping 

direction. The signals from all four annular quadrants are collected and mixed 

electronically to create the desired difference signals and hence mapping directions. This 

allows several images of the same area with maximum sensitivity in different mapping 

directions to be acquired simultaneously. The bright field signal can also be obtained by 

addition of the signals from all four quadrants. The images are collected with an 

accuracy of either eight or sixteen bits running from 0 to 255 or 65535 respectively. The 

images in this thesis are all either acquired as 8  bit or converted to 8  bit images.

In MDPC the aim is to remove as much crystallite or non-magnetic contrast as 

possible from the magnetic images by setting the bright field cone to a size just larger 

than the inner quadrants. This is done by choosing a camera length with a spot larger 

than the inner detector and using the first projector lens to reduce the size of the spot to 

the desired value on the DPC detector. Changing the projector lens settings also 

introduces rotation into the beam which has to be compensated for in the MDPC setup. 

To investigate fully the magnetic induction due to the tracks, images which are ideally 

sensitive to magnetic induction parallel and perpendicular to the write direction are 

required. For this reason it is necessary to establish two orthogonal mapping directions. 

As an amount of rotation is introduced between the detector and the specimen due to the 

projector lens currents, a method is needed to verify the mapping direction sensitivity 

and if necessary to change the sensitivity direction with respect to the specimen as part 

of the MDPC setup.

The disks used here are all written with the same track map shown in Fig.5.1 

containing alternate DC erasure banding and these provide a quick method of verifying 

the mapping directions. In this procedure a DC erasure transition between DC+ and DC- 

is selected. The sample is rotated about an axis perpendicular to the specimen plane, 

keeping the DC transition region in the field of view while two orthogonal mappings are 

visible on the CRT screens. The coarse rotation is complete when one mapping contains 

black and white contrast at the DC transition and the other shows little or no contrast 

variation in the same region. The image in Fig.5.13a is sensitive to induction orthogonal
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write direction
z

Fig.5.13 MDPC images o f DC + and DC - erasure transition allowing the mapping

direction to be checked.
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Fig.5.14 Graph o f the linescan taken across Fig.5.13a mapped orthogonally to the 

write direction and averaged over the whole area.

to the write direction and Fig.5.13b it is sensitive to induction in the write direction, as 

shown by the white arrows. Fig.5.13a shows very little contrast at the DC transition and 

Fig.5.13b shows maximum contrast in the same area. As a more precise check a 

linescan is taken across the mapping as in Fig.5.13a and is averaged over the entire DC
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transition region resulting in the profile as in Fig.5.14. The linescan in Fig.5.14 confirms 

that there is negligible contrast difference at the DC+ to DC- transition region when 

mapping orthogonally to the write direction and that the detector mappings are now set 

to a known and correct orientation. This procedure was performed for each MDPC setup 

prior to DPC image acquisition as the strength of the projector lenses and hence the 

effective detector specimen rotation may be varied.

For consistency throughout the following discussions mapping in the y direction 

is equivalent to mapping in the write direction, mapping in the x direction is 

equivalent to mapping transverse to the write direction and the z direction is 

perpendicular to the plane of the tracks. This convention will be used from this point 

onwards.

When tracks are mapped along and orthogonal to the write direction, the y and x 

directions by the convention just stated, the MDPC images take a characteristic form. 

Two typical images of a 5pm track recorded in type 1 medium are shown in Fig.5.15. 

These images need to be explained fully before any other MDPC images can be 

considered.

2 p m

Fig.5.15 MDPC images o f a) 5pm track mapped in the x direction and b) the y  

directions.

z

u
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The first notable feature in Fig.5.15b is shown in the centre of the track which appears 

as grey contrast implying near null deflection in this area similar to the Foucault images 

in section 5.3.3. This is contrary to the magnetisation pattern recorded on the medium. 

The reason for this apparent paradox is that the MDPC images map the components of 

magnetic induction normal to and integrated along the electron path from source to 

detector. The written bits in these samples do not form magnetically closed structures 

rather free poles exist at the bit transitions, as discussed in section 1 .6 . 1  giving rise to 

stray field which emanates above and below each written bit as shown in Fig.5.16. The 

deflection is due to the space integral of the two components of B; H outside the sample 

and H+M inside the sample. As the stray field, H forms in the opposite direction to the 

magnetic induction in the film it surrounds, the sum can be reduce to zero if the space 

integral of the two components are approximately equal in magnitude shown 

diagramatically in Fig.5.16. This produces near null deflection and grey contrast in the 

images.

The x mapping of Fig.5.15a also contains contrast that is not consistent with the 

expected magnetisation distribution. When mapped in the x direction, neglecting

electron propagation
direction H

@\ stray field

c 0 ^  magnetisation H + M

•track boundaries

0  write direction
.0  stray field

Fig.5.16 Schematic cross-section o f a single track in a thin film medium showing

the effect o f the stray field on the electron trajectory. Only the y  

components of magnetic induction are shown. The sample thickness and 

deflections are exaggerated for clarity.
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dispersion there should be no component of magnetic induction in this direction. This is 

clearly not the case as in Fig.5.15a strong black and white spot contrast exists at the bit 

comers. This can again be explained through an understanding of the nature of the x and 

y components of the stray field [McVitie and Ferrier 1992]. The combined effect of the 

integral of the x components of the stray field produces closure effects at the edges of 

each bit as shown in Fig.5.17. In this diagram the stray field forms closed loops in the 

medium between adjacent bit transitions. The x component of the ‘closure’ is strongest 

at the comers of the bits and it alternates in sign along the track direction. This produces 

the spot contrast seen at the bit comers in Fig.5.15a. This occurs independently of the 

DC erasure outwith the track. There is also a y component of the stray field which can 

be seen in Fig.5.15b.

approximate
magnetisation

boundaries

approximate 
stray field 
boundaries

magnetisation
direction

Fig.5.17 Plan view o f written bits showing the in-plane stray field components. The 

x components are shown by the unfilled arrows.

Fig.5.18 shows a simulated linescan taken across a DPC image at the position 

shown in Fig.5.17. The linescan maps the y components of integrated magnetic 

induction across the track width. At A the deflection is purely due to the DC erasure and 

is directly proportional to M r5, at B the stray field from the written bit forms in the 

opposite direction to the erasure and reduces the total deflection. At position C the 

integral of the stray field and the magnetisation produces null deflection as before. At D

z
U

position of linescan 
in Fig.5.18
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the stray field reduces as the edge of the track is reached; at this point the stray field is 

still in opposition to the magnetisation of the bit, but it is reducing in strength at the 

edges of the track. At E the stray field produced by the written bit is in the same 

direction as before but the DC erasure is now in the negative write direction allowing 

the two components to reinforce. At F the stray field has reduced and the deflection is 

now proportional to -M R5.

250 T

track width
200

150

100 -

50 -

200150 2500 50 1 0 0

distance in pixels

Mr 8

A
+ written bit

-Mr8
DC- T

Fig.5.18 Simulated line scan taken across written bit in a typical MDPC image.
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5.4.2 MDPC Images of Tracks W ritten Over a Range of Frequencies

This section presents images of tracks on both media types written over a range of 

bit lengths. The primary interest here is to determine the effects of reducing the bit 

length on the magnetic bit structure in these media. MDPC images of type 1 media are 

shown in Fig.5.19 and images of type 2 media are shown in Fig.5.20. The images 

generally follow the characteristic forms discussed in the previous section.

Considering the y mappings first, most of the images show grey contrast in the 

centre of the track, explained in the last section using stray field arguments. This 

supports the theory that the space integral of the stray field largely cancels the deflection 

due to the magnetisation for tracks written over the range of bit lengths in the media in 

this area. There are however two notable exceptions to this. Fig.5.19b shows a DPC 

image of the 5pm track mapped in the y direction. In this image there is a difference in 

the contrast levels between adjacent bits. The corresponding LAD pattern produced by 

this track is shown to the right of Fig.5.19b. The LAD pattern contains four spots; the 

two outer spots resulting from the deflection due to the positive and negative DC erasure 

bands either side of the track and two spots close to the centre of the pattern. For 

comparison the LAD pattern produced by the 1pm track where there is no contrast seen 

between adjacent bits, is shown to the right of Fig.5.19d. In the lpm  track LAD pattern 

there are only three spots; the two DC erasure spots and a single central spot as a result 

of the effect of stray field and magnetisation cancellation. Thus the central spot 

separation in the 5pm case confirms the magnetisation deflection is not fully 

compensated due to the large bit length of this track. The reason for this is that the larger 

bit length requires the stray field to cover a larger area but with approximately the same 

free pole density at the bit transition producing it. This results in a reduction in the stray 

field directly above the written bit and this produces the two central spots. Further the 

two central spots in LAD pattern of the 5pm track are rotated by an angle of -20° to the 

axis of the outer spots suggesting that magnetic induction above the track supports an x 

component. This could have one of two sources the first being due to the closure at the 

edges of the bit which is discussed below or that the magnetic induction in the bits could 

support an uncompensated component of magnetic induction which is fully discussed in 

section 5.4.5.
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Fig. 5.19 MDPC images o f a range o f track frequencies in type 1 medium with 

relevant LAD patterns.
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Fig.5.20 MDPC images o f a range o f track frequencies in type 2 medium.
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Secondly Fig.5.19h of the 0.33pm track the image shows areas of either bright or 

dark contrast at the bit centre which are of approximately the same contrast level as the 

DC erasure bands on either side. It appears that the 0.33pm track is composed of small 

domain structures across the track width unlike the continuous structures of the longer 

bit lengths as seen in the Fresnel and Foucault images in section 5.3. The grey levels of 

these domains suggest less stray field is being produced above and below the media as a 

result of this small domain formation or the stray field and magnetisation are at least 

partially in different orientations. It is known that tracks of this frequency can be read 

back successfully, albeit with a lower signal, and hence must produce some amount of 

stray field. High magnification images of the 0.33pm track are shown in Fig.5.21. In the 

y mapping of Fig.5.21b the approximate bit transitions have been marked with arrows. 

This shows that the small domains tend to start and finish at the expected bit transitions 

for this bit length allowing any stray field to be in the correct position. Areas such as at 

A show a large concentration of small domains whereas areas such as at B show less 

smaller domains and closer to the grey contrast due to stray field cancellation. Thus the 

sample supports areas of both high and low stray field for this bit length. This 

interpretation of the results will be supported when MFM images are presented in 

section 5.5; these map only the stray field component at a distance above the sample. 

Secondly the contrast levels of these smaller domains suggest that they are either 

magnetised parallel or anti-parallel to the write direction. The side write region is the 

second prominent feature in the y mapped images. The images in Fig.5.19b and d show 

the side write lobe structure at the comers of the bits as in Fig.5.8b. As the bit length is 

reduced to 0.5pm as in Fig.5.19f, the edges of the side write between alternate bits join 

forming a near continuous band with the DC erasure shown diagramatically in Fig.5.10 

which follows the binary conventions of Figs.5.1 and 5.2. This banding structure also 

occurs in the 0.33pm track in Fig.5.19h. In the MDPC images of type 2 medium of 

Fig.5.20 the side write region is increased and forms a band of ~0.5pm in width along 

side the track. This is consistent with the flux leakage from the write head in these 

regions being less than the coercive field, the domains then form orientated away from 

the track direction. This is consistent with the reduced write field used for this media 

type.
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In the x mappings in Figs.5.19 and .5.20 the bit transition is seen as a thin line of 

black and white spots. This is a region that will be examined further using high 

magnification MDPC images in section 5.3.4. All that can be said about this region from 

these images is that the bit transition has both x and y components of magnetic 

induction as its structure is of the order of 0.1pm in width. As expected there is a 

significant amount of contrast in the x mapping of Fig.5.21a where the domains meet 

which implies that the small domains have not formed completely closed structures but 

produce free poles and stray field. It is considerably more complex to determine the 

position of the bit transition in Fig.5.21a due to the small domain formation.

---------------------  <g>
lpm z

Fig.5.21 High magnification MDPC images o f 0.33/dm track showing the

formation o f small domains across the track width with the approximate 

bit transition positions marked with arrows.

This effect is evident in the x mapped images of both Figs.5.19 and 5.20 where the spot 

contrast at the bit comers is diminished as the bit length is reduced.

The final tracks written in the map are the overwrite tracks where the edges of one 

track meet with the edges of the next. Fig.5.22 shows the over write between a 0.98pm 

track and a 1pm track in type 1 medium. The region between the tracks does not show 

the same closure spot structure as seen at the outer edges of both tracks implying 

reduced stray field components at the bit comers. The side write bands in this area have 

reinforced between similarly magnetised bits also there appears to be little or no stray
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field above the side write which will be investigated in section 5.

  XLljim 0  y

Fig. 5.22 MDPC images o f over written tracks in type 1 media. z
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5.3.4 Bit Transition Investigation.

As has already been discussed in chapter 1, one of the most important parameters 

of any recording medium is the width and nature of the bit transition between adjacent 

bits. These will determine the ultimate performance and the maximum areal density 

attainable in the medium. The bit transition in a typical MDPC set of images of these 

media are delineated by a necklace of black and white dots as in Fig.5.23 and in 

Figs.5.19 and 5.20. Strong contrast is seen in both mapping directions in the bit 

transition region in these images. When MDPC is used at the high magnifications 

required to view this region in detail, contrast from non magnetic sources becomes more 

prominent in the images. For the results of a high magnification MDPC bit transition 

investigation to be conclusive it is necessary to reduce the non magnetic contrast to a 

minimum through careful choice of the size of the spot on the detector.

2 pm
Fig.5.23 A typical set o f MDPC images o f the bit transition in a 5pm track written 

in medium o f type 1.

Fig.5.24 shows a set of high magnification MDPC images of a 1pm track written 

in type 1 medium. The bit transition varies in width from ~0.1pm-0.2pm across the 

track estimated from these images. Considering the y map of Fig.5.24b two areas have
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Fig.5.24 MDPC image o f the bit transitions at high magnification in a 1/dm track.

magnetisation 

stray field

(8)
u

y

Fig. 5.25 Diagram o f the plan view o f the y component o f an MDPC image at a zig­

zag bit transition in highly anisotropic media. Here the stray field  can be 

reinforced by the zig-zag magnetisation.

been highlighted in these images. At area A the bit transition takes on the form of a zig­

zag type structure. Fig.5.25 shows a schematic diagram of a zig-zag transition in a 

highly anisotropic medium. The approximate contrast levels are shown on a grey scale

. ■mmSm ■ ■ ■ M B
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with the magnetisation directions shown in each area using solid arrows. The dashed 

arrows represent the stray field direction above each of the two written bits, which are 

directed in the opposite sense to the magnetisation in each bit. The stray field forms an 

approximately straight boundary across the track width and along the centre of the zig­

zag, as denoted by the double dashed line in Fig.5.25. As the zig-zag infringes over the 

stray field boundary, the magnetisation in the zig-zag is now in the same sense as the 

stray field above the bit. Thus instead of the sum of the space integral of the stray field 

and the magnetisation being null, the magnetisation now reinforces the deflection due to 

the stray field resulting in black or white contrast about the bit transition. It is important 

to notice that the contrast resulting from this type of structure forms black and white 

triangle contrast which is separated distinctly in the y direction by the stray field 

boundary. This magnetisation configuration has been seen in a highly anisotropic 

FeCoCr medium [McVitie 1992] [Martin 1992]. In Fig.5.24b the zig-zag contrast at 

position A is very similar to that seen in these studies suggesting that this could be the 

structure seen there.

At position B the structure is significantly different and both mapping directions 

need to be considered to determine the magnetisation configuration. At position B the y 

mapping of Fig.5.24b shows black and white regions directly above each other centred 

on the same y coordinate, unlike the previous zig-zag case where the spots were 

separated by the stray field line. Similarly Fig.5.24a shows contrast centred about the 

same area but separated in the x direction. One possible magnetisation configuration 

that can produce this type of contrast is shown in Fig.5.26. The magnetisation 

configuration shown in Fig.5.26a is described as a vortex structure where the 

magnetisation circulates about a central point. Simulated MDPC images produced by 

this vortex are show in Figs.5.26b and c, the details of which will be covered in chapter 

6 . When mapped in the x direction, as in Fig.5.24b the MDPC image shows two black 

and white areas of contrast with different y coordinates, separated about the vortex 

centre. For the y mapping a similar spot configuration is seen but the spots have separate 

x coordinates.

Vortex structures have been observed by another researcher [Chen 1981 and 1988] 

considering isotropic CoRe films with Hc < 450Oe and at bit lengths of ~10|im. Their 

results showed a large amount of dispersion within each bit which tend to form feather
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like branches across the bit and vortices form where the branches meet from oppositely 

magnetised bits. The suggestion is that the vortex structure is favourable at the bit 

transition in these media because the gradual rotation of the magnetisation creates a 

domain wall with a lower energy density in comparison to the ~ 180° wall of a zig-zag 

structure. In Figs.5.23a and 5.24a there is some dispersion orthogonal to the write 

direction, as expected and there is also evidence of a cluster forming feathering

/
---------- ►

\
I I • I 1

\ /

mm

Fig.5.26 a) Schematic o f vortex type structure with b) and c) MDPC contrast

simulation images using a method which will be outlined in chapter 6.

structure at the 180° boundary between the bits and the DC erasure, magnetised in the 

opposite direction, as discussed in section 5.3.1 and as seen in the Fresnel images in 

Figs.5.8 and 5.9. It has also been suggested [Miles 1995] that both bit transition 

structures can coexist in the same bit transition forming combinations of both zig-zag 

and vortex wall structures in an attempt to reduce the energy density of the bit transition. 

Fig.5.27 shows a set of images taken of the 5pm track written in medium 1 where the bit 

transition meets the side write region at the corner of a bit. At regions A and B in 

Fig.5.27b the characteristic vortex spots can be seen with the equivalent spots in 

Fig.5.27a. At position C the bit transition approximately meets the side write region of 

the track, with the white area at the bottom of Fig.5.27b signifying the edge of the track. 

At C the bit transition has formed the same structure as that expected from the zig-zag 

magnetisation configuration which continues along the bit transition in Fig.5.27b to
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Fig.5.27
0.5pm

High magnification MDPC images o f side write region in type 1 medium 

o f the 5pm where vortex and zig-zag bit transition configurations exist in 

the same bit transition.

position B where the vortex exists. Hence a combination structure must exist at the 

transition between region B and region C.

5.4.5 DC Erasure Linescan Analysis

The side write region of the written bits is an area at the edge of the track which is 

influenced by the flux leakage from the sides of the trailing pole of the write head. Its 

investigation is hampered by the inclusion of large stray field components in this region. 

To enable a precise mapping direction setup for MDPC both samples contain a plus to 

minus DC erasure transition region, as used in section 5.4.1. The DC erasure transition 

region will have similar magnetic characteristics to the side write magnetisation with the 

main difference that both DC erasure bands have virtually no stray field component
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Fig. 5.28 MDPC images o f the DC erasure transition in type 1 media.

as the bit transition regions are effectively positioned at ± <*>. Fig.5.28 shows a set of 

MDPC images of the DC erasure transition region in type 1 medium. As commented in 

an earlier section in this chapter, the side write region takes a discontinuous ragged form 

at the transition with the DC erasure, as in Figs.5.19 and 5.20. When mapped in the y 

direction the DC erasure transition takes one of two forms, the first is a ragged transition 

shape as in region A and the second is an abrupt change with a flat transition as shown 

in region B in Figs.5.28c and d respectively. The x mapping in Figs.5.28a and c in the 

main part of the DC erasure bands contain grey or null contrast as expected but at the 

transition region again there is a significant difference between regions A and B. In 

Fig.5.28c mapping the x component of magnetic induction there is a component of 

magnetic induction at region A transverse to the wall a component corresponding with 

the position of the structure seen in the y mapping. This suggest that the magnetisation 

rotates towards the x direction as it gets closer to the wall producing free poles and
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hence stray field in this region.
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Fig.5.29 Graph o f line scan along the x axis integrated across the whole y  axis as

shown in Fig.5.28d. The vertical scale is arbitrary and is highly dependent 

on the DC offset used.

A linescan is used to investigate the long range magnetic order of the 180° DC erasure 

domain wall. Fig.5.29 above shows a linescan taken along the x axis of Fig.5.28d 

integrated over the whole y axis of the image shown as the thicker line, the thinner line 

is a fitting commonly used to determine wall thicknesses. The fitting function used here 

is a tanh(x/w) where w is the mean transition width and x is the position value. Here a 

value of w=80nm produced the above fit.

5.4.5 Alternate Bit Contrast Observation

The characteristic forms of two MDPC images mapped in the x and y directions 

were discussed in section 5.4.1. In particular the section highlighted that the only strong 

contrast in the y mapping comes from the closure loops of the in-plane stray field 

components. This section shows that a second and very important observation is also 

apparent in some of the images mapped in this direction.

Fig.5.30 shows a set of low magnification MDPC images of all the frequencies on 

a medium of type 1. Considering the x mapping of Fig.5.30a in which the
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Fig. 5.30 Low magnification MDPC images o f tracks written in type 1 medium.
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5|iim, 1 Jim and 0.5|im tracks are visible. In the centre of the 5pm track the contrast is 

grey as expected and at the comers of each of the bits the same alternate closure spots 

as in Fig.5.15 are seen. When considering the ljim  track in Fig.5.30 the closure spots 

are still visible but in the centre of the track the contrast is no longer grey as before. 

Rather contrast bands exist which delineate the bits across the track width and which 

alternate in contrast along the track. Similarly in Fig.5.30c the 0.5jim and the 0.33pm 

tracks show the same alternating cross-track contrast. It was established in section

5.4.1 that the grey contrast near null deflection in the track centre was a result of 

compensation of the magnetisation deflection due to that of the space integral of the
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stray magnetic induction above and below each bit. Thus this alternate cross-track bit 

contrast could arise if the stray field and the magnetisation in the bits were not aligned 

in the same direction. There are two possible ways that misalignment could occur.

write direction / easy 
axis orientation

axis

magnetisation

stray field

uncompensated
component

y
Fig.5.31 Plan view o f written bits where the magnetisation and the stray field  

directions are no longer coincident arising in an uncompensated 

component o f magnetic induction. The magnitude o f 6 has been 

expanded for clarity.

The first explanation is shown diagramatically in Fig.5.31. In this diagram the 

sample supports an easy axis as shown by the arrow and the tracks are written in the 

direction defined by V, the head to medium velocity. The diagram also shows a set of 

tracks written at an angle to the easy axis. When the track is written the magnetisation 

is directed along the write direction. But on removal of the head field, the 

magnetisation relaxes to become directed along the easy axis of the medium. However 

the stray field direction is determined only by the free pole density at the bit 

transitions. This density would reduce if the situation depicted in Fig.5.31 arose as the 

density of free poles at the ends of the bits would increase. Essentially the stray field 

remains directed along the track direction, denoted by the dotted arrows in the 

diagram. There is now a misalignment between the stray field and the magnetisation
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Fig.5.32 MDPC images o f 1pm track which show alternate bit contrast when 

mapped in the x direction.

in the bits denoted by the grey arrow. This misalignment gives rise to an 

uncompensated component of magnetic induction which is transverse to the write 

direction and which alternates along the track as has been seen in the Figs.5.27a and c. 

The same effect is shown at a higher magnification in Fig.5.32 which shows MDPC 

images of the 1pm track written in type 1 medium. An estimate can be made of the 

amount of skewing using the contrast level of Fig.5.32a which will be compared to

magnetisation

* stray field
uncompensated

component

write direction / easy 
axis orientation

* easy
axis

Fig.5.33 Diagram of magnetic induction pattern when the write head is skewed 

at an angle o f to the x axis.
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skewing simulation covered in chapter 6.

A second possible configuration that could give rise to a misalignment between 

the magnetisation and the stray field occurs if the head is skewed at an angle during 

writing. A diagram of an example of head skewing is shown in Fig.5.33, in which the 

head is skewed at p° to the x axis. The skewed head writes a pattern of magnetisation 

as before but in this case the written bits are also skewed at the same angle to the x

Fig. 5.3 4 MDPC images o f 5pm and lpm  tracks written in medium o f type 2. the 

write head has been skewed at an angle o f ~20° to the x axis producing 

bit contrast in the x mapped images.
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axis as the writing head. The bit transitions are also inclined forcing the stray field to 

lie at approximately (3° to the write direction or y axis. However, the magnetisation 

relaxes back again to the easy axis, which for simplification lies in the y axis. Thus the 

magnetisation and stray field are again misaligned producing an alternate component 

of contrast along the track.

Examples of contrast arising from this configuration are clearly seen in Fig.5.34 

of MDPC images taken of 5pm and 1pm track written type 2 medium. Here the bit 

transitions are skewed at an angle of - 2 0 ° to the x direction which is shown in the y 

mappings of Figs.5.34b and d. In the x mappings of Figs.5.34a and c the contrast in 

alternate bits varies periodically along the track, which is particularly prominent in 

lpm  track. This suggests that the write head may have moved with respect to its 

mounting arm during writing allowing the head to shift its position and angle the bit 

transitions. The effects seen in Figs.5.30, 5.32 and 5.34 imply that both media types 

support weak anisotropy despite the media being essentially isotropic.

5.5 Stray Field Analysis Through MFM Imaging

Section 5.4 has shown that the stray field plays an important role in Lorentz 

electron microscopy imaging of tracks recorded on magnetic media. Thus it would be 

useful if the stray field could be imaged directly. This information can be obtained 

using a magnetic force microscope (MFM), which forms images reflecting the 

interaction of the magnetic tip with the stray field above the sample surface.

Images in an MFM are formed by scanning a sharp ferromagnetic tip over the 

surface of a ferromagnetic sample as depicted in Fig.5.35. The stray field from the 

sample acts on the magnetisation of the tip through the magnetostatic dipole-dipole 

interaction [Griitter 1994]. The forces and force gradients caused by this interaction 

are sensed using mechanical resonance techniques and a map of the stray field above 

the sample is created. To first order the contrast obtained in these images can be 

interpreted as the response of the tip to the z components of the stray field from the 

sample [Schonenberger 1990]. Topographic contrast is reduced by first performing a 

‘tapping’ procedure across the surface of the sample which allows the contours of the 

sample to be determined. This information is used to maintain a constant height above
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the sample surface during the scan of the of the final magnetic image. MFM images in 

this thesis are displayed using an 8  bit grey scale as in the MDPC images in previous 

sections. In the images white contrast denotes maximum field along the positive z axis, 

grey denotes null deflection of the tip and black denotes maximum field in the negative 

z axis direction.

deflection 
sensor “ XT

magnetic
tip

stray f i ^ l d \ ^

■* 4-

flexible cantilever

+ 4-

Fig.5.35 Diagram of the MFM instrument configuration.

Fig.5.36 shows a set of MFM images taken of a sample of type 1 media. This 

sample was taken from the same disk used in section 5.4 for MDPC. As expected for 

recorded tracks, the MFM images show strong black and white contrast bands at the bit 

transition. This is a result of the z component of the stray field emanating from the bit 

transitions which changes sign in the z direction as the magnetisation direction 

alternates between bits along the track direction. In all images the bit transition forms a 

band across the track which does not seem to show as much variation as the MDPC 

images. This confirms the view that the stray field should show much less variation than 

the magnetisation producing it. Images expanded to their full precision are shown of the 

1, 0.5 and 0.33pm bit lengths as insets in Figs.5.36d, e and f. The higher magnification 

images show that the contrast varies across the bit transition and in some areas the band 

is discontinuous. These discontinuities are most prominent in the expanded 0.33|im 

image in agreement with the MDPC image where the magnetisation forms small 

domains which do not extend across the whole track width. The MFM images show that 

the stray field also supports the previous MDPC observation that the small domains tend 

to start and stop at the expected bit transition length for a 0.33|im track as the stray field 

bands have formed at the correct positions.
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A further feature of these images is the contrast seen at the DC erasure transitions 

and at the side write region of the bits. In Fig.5.36a between the DC erasure bands lines 

of contrast exist which implies that there is a component of vertical stray field in these 

areas which must result from the formation of free poles. This is a result of the side 

write region having a small overlap region as the write head DC erases the disk. This is

t

Fig. 5.36 MFM images taken o f medium o f type 1 at a) o f all tracks at a low 

magnification, b) the overwrite tracks and c) the 5m track.
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Fig.5.36 MFM images taken o f medium of type 1 o f d) the 1pm and e) the 0.5pm 

tracks.

113 Richard J  Neville PhD thesis 1996



Chapter 5 Lorentz Microscopy o f CoPtCr Thin Film Recording Media

y.

Fig.5.36 MFM images taken o f medium o f type 1 o f e) the 0.33pm track.[courtesy 

ofDrs T.C.Arnoldussen and T Chang o f IBM corp., SSD, California].

prominent as a region of ~0.5pm in width at the side of all tracks in Figs.5.36b-f. This is 

seen at the edges of all the track and must therefore be independent of the bit length.

5.5 CONCLUSIONS

The aim of this chapter was to investigate the magnetic structure of two types of 

thin film magnetic recording media. A tilting method of reducing scratch contrast in 

TEM and STEM modes was discovered. This reduces considerably the time taken to 

produce TEM results from complete textured hard disk to specimen as the sputter etch 

of the Cr seed layer was not necessary. The reasons for this important observation have 

not yet been ascertained but we believe that the solution lies in the effect of the texturing 

on the diffraction pattern formed in the back focal plane of the objective lens. Fresnel 

and Foucault images were presented of both media types showing important features
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such as the bit transition and the side write regions. The bit transition is estimated to be 

0.15|im in width from these images. Evidence of clustering was also seen in the Fresnel 

images at the side write region.

MDPC imaging was then used to add to the information from the TEM modes. 

A simple but effective way of verifying the mapping directions using alternate DC 

erasure banding was outlined. The MDPC images of both media types take 

characteristic forms when mapped in and orthogonal to the write direction. The stray 

field above each bit tends to cancel the electron deflection due to the magnetisation of 

the written bits producing near null deflection in the centre of the tracks in the MDPC 

images. The stray field is also prominent when mapping orthogonal to the write 

direction and dark and bright spots are formed at the comers of the written bits. This 

applies to all tracks with the exception of the 0.33|im track. In 0.33fxm track small 

domains form which do not extend across the whole track width. Further investigation 

using higher magnification MDPC images showed the small domains tended to start and 

stop to give the expected bit transition length for this track. This effect has occurred at 

almost exactly twice the bit transition width estimated from the other MDPC images and 

the TEM images. High magnification MDPC images were used to examine the magnetic 

structure of the bit transition. It was found that the media supports three main types of 

transition; a zig zag, a vortex and a combination of the two, with experimental images of 

each and simulated data for comparison. A linescan was then taken across the DC 

transition to estimate the mean transition wall width. This was found to be ~80nm in 

width using a tanh(x/w) fitting curve. The final MDPC observation was that of a 

component of magnetic induction orthogonal to the write direction which alternates with 

each written bit along the length of the track. If the stray field direction and the direction 

of the magnetisation in each bit were not parallel then an uncompensated component of 

magnetic induction is created. This could occur if the write direction was angled with 

respect to an easy axis in the sample. The magnetisation in each bit relaxes back to this 

easy axis following writing producing an uncompensated component of magnetic 

induction. Alternatively if the head is skewed at an angle to the write direction then after 

the magnetisation relaxation an uncompensated component of magnetic induction is 

produced as the majority of the stray field remains fixed by the bit transitions. Both 

these explanations require the sample to support at least weak anisotropy. This is
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contrary to the isotropic nature of the sample. However the texturing scratches are 

strong in these sample suggesting that these could give rise to a preferred magnetisation 

orientation in the sample.

Finally MFM images were presented showing the stray field above the sample 

surface. The stray field from the bit transitions showed less structure than in the MDPC 

images as expected. The stray field of the 0.33fim track confirms that the small domains 

form stray field at the expected 0.33|im intervals. There is however some evidence of 

discontinuities
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CHAPTER 6

Chapter 6 Micromagnetic MDPC Simulations

MICROMAGNETIC MDPC SIMULATIONS

6.1 INTRODUCTION

The inherent properties of MDPC image production can cause difficulty when 

interpreting images of recorded tracks due to their magnetically open structures. The 

written bits produce stray field outwith the sample which result in divM *  0 where M is 

the magnetisation vector as discussed in section 1.6. As a result of this the path integral 

of the magnetic flux density, B along the electron beam trajectory contains two 

components; H outside the sample and M+H inside the sample where H is the magnetic 

field vector. Thus due to this open flux configuration MDPC images are not direct 

mappings of M within the recorded tracks. This chapter presents two simulation 

techniques which allow the production of MDPC images from known and variable 

magnetisation vector distributions. The ability to simulate MDPC images from the 

starting point of a magnetisation vector distribution is an extremely useful tool in the 

analysis of experimental MDPC images.

The two methods of MDPC simulation utilise different physical perceptions of the 

interaction between the magnetic induction of the sample and the electron beam. The 

first method uses a current model of the moving electrons and an Amperian current 

representation of the magnetic induction of the sample; the second method uses a phase 

modulation approach, producing MDPC images following differentiation of the 

calculated phase. Both models are presented with a view to using this data as an aid to 

understanding the experimental results and to allow a magnetisation reconstruction 

method to be introduced in Chapter 7. Each method is discussed and following the 

theory, examples of the resulting images and comparisons between them are given in 

section 6.3. The latter sections of this chapter will show results of simulated off-axis 

writing and head skewing experiments performed using the phase modulation approach 

to MDPC. The simulation results are compared with experimental images from both 

CoPtCr media from section 5.4.5.
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6.2 SIMULATION TECHNIQUES

6.2.1 Amperian Current Method

The first simulation method follows the theory developed by Mallinson and Rao 

[1993] which is based on the fundamental electromagnetic equations of Maxwell 

[Corson and Lorrain 1962]. In Maxwell’s electromagnetic theory, he postulates that a 

current carrying conductor induces a circulating magnetic field in the space around the 

conductor. Conversely his theory implies that a magnetic field supports a circulating 

current. The relevant Maxwell’s equations are :

where J  is the current density, D is the electric flux density, E is the electric field 

strength and x represents the cross or vector product. All other parameters are as 

previously defined.

The initial assumption in this theory is that an electron travelling along the path of 

the beam is analogous to a current carrying wire as described by equation (6 .1 ), where 

any time dependence is neglected. Following this theory a sample of magnetic material 

with magnetisation M therefore has a current density J  associated with it expressed as:

Thus M produces circulating Amperian currents over the surface of the magnetised 

material. To apply this theory to Lorentz electron microscopy, consideration must be 

given to the elements representing the magnetic structure of the electron beam and the 

written bits in the medium.

(6.1)

(6.2)

J  = V xM (6.3)
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rl
J =

electron
trajectory

X y

Fig.6.1 Diagrams of the two components in the Amperian current method a) a 

uniformly magnetised block and b) the electron beam /long straight 

conductor.

The entire model system can be constructed using two components; a uniformly

addition of many uniformly magnetised blocks. From equation (6.3) the magnetic flux 

density surrounding the electron beam can be seen to be equivalent to that produced by a 

long straight current carrying conductor with a circulating H field. MDPC images are 

produced by addressing how the Amperian currents of the magnetised blocks interact 

with the current produced by the electron beam or a long straight conductor. Deflection 

of the electron beam due to a uniformly magnetised block can be viewed in this model 

as the action of the current density of a magnetised block on the current produced by the 

electron beam. For ease of calculation the problem can be reversed by applying 

Newton’s law of equal and opposite reaction. Thus the deflection is the result of the 

action of the equivalent electron beam current on the Amperian currents of a magnetised 

block. It should be noted that this is only true where the currents are parallel [Mallinson 

and Rao 1993]. The magnetic flux density from the electron beam is then that of a long 

straight current carrying conductor which can be expressed as:

magnetised block and a single wire as depicted in Fig.6.1. A uniformly magnetised 

block has a surface current density which circulates around the magnetisation direction 

vector as described by equation (6.3). A recording track can then be ‘built’ from the

B = - ^ I x r  
27tR

(6.4)
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where I is the effective current in the electron beam, r  is a unit vector, R is the field 

point position vector and the other parameters are as previously defined. Before any 

calculation it is pertinent to study the interaction geometry of the Amperian currents. 

Through consideration of Fig.6.2 it can be seen that the x and y components of J  

produce Bj_ components which cancel and provide no net contribution to the force on 

the block. Effectively only the components of J  parallel to the electron

i I  ® TJx or Jy

electron beam

B

tJz

B±

!L
a) b)

xory

Fig.6.2 Interaction geometry o f the B components (dashed lines) due to the

Amperian currents J  showing a) cancellation o f the B± components due to 

Jx and Jy and b) the interaction o f the z component o f B± due to Jz.

beam remain uncompensated and contribute to the deflection. Here these parallel 

components are the J z Amperian currents. This creates significant simplification in the 

force calculation which reduces to the problem of considering the force experienced by 

a sheet of Amperian currents due to a single wire in a plane parallel to the sheet. Further, 

by considering a single Amperian current in the sheet the problem becomes the 

interaction between two parallel current carrying wires. Thus the force between an 

element of the sheet Mr8 dx and the electron beam can be expressed as:

dF =  02Ml6dxIr 
R
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The Lorentz force on one electron beam integrated over the whole sheet of charge is 

then given by:

F = 0.2M,8lln
vS, j

F = O.2Mt8l(0, + 02)

(6 .6 a)

(6 .6 b)

where the parameters are defined in Fig.6.3.

electron beam

S, ya

0 x0

S2

Amperian sheet
z
L

Fig.6.3 Plan view o f a single sheet of Amperian current and a single electron

beam defining the parameters used to calculate the Lorentz deflection of  

the electron beam due to a sheet o f length 21 Amperian currents.

The basis for modelling a track is a set of four Amperian current sheets representing the 

magnetisation distribution. Two oppositely magnetised written bits are represented by 

four Amperian current sheets with currents oriented along the z direction as in Fig.6.4a. 

Four further Amperian current sheets oriented in the z direction are added to represent 

the DC erasure bands either side of the track ~ 100pm in width, as in Fig.6.4b. 

Cancellation between Amperian currents occurs along the region where Amperian 

currents of opposing directions meet, as in regions B-C and D-E in Fig.6.4b. As a result 

of this no boundaries are generated in these regions. Conversely, at the regions A-B and 

E-F the Amperian currents are in the same direction and thus reinforce. A complete 

track is constructed by repeating the basis configuration of sheets as in Fig.6.4c. It is 

essential to use such a large array of basis elements to attempt a reduction in the
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presence of any edge effects which would otherwise influence the MDPC images 

produced. The scanning area is then chosen to be at the centre of the tracks where edge 

effects would be expected to be a minimum, denoted by the shaded region in Fig.6.4c. 

The alternate DC erasure bands are required as an aid for use as a reference when 

scaling the images between simulation methods.

100pm

J

f
a)

b)

®

®

100pm

® ■ 7~ A ® <®:® d /
®

i k ® ® J
® R  ® ®
® <8>:® k ® ®
® j ® r
® -

C ®:<§> ® ® F /

T O

T O

T O T
b p f e! f [ "

w

c) u

Fig.6.4 The Amperian current model elements are a) two magnetised bits, b) the

repeating basis and c) a track built from the basis. The shaded area 

represents the area scanned to reduce the edge effects due to a finite track 

length.
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6.2.2 Phase Modulation Method

The second approach to MDPC image simulation interprets the interaction of the 

beam and sample as a phase modulation of the beam due to the sample. Chapter 2 

discussed the Aharonov and Bohm effect [1959] which postulates that two electron 

beams originating from the same source, passing through a magnetic sample, undergo a 

phase change relative to one another when brought together after the sample. The phase 

change produced is proportional to the enclosed magnetic flux between the paths. 

Following this theory a magnetic sample can be viewed as a phase modulating object to 

the incoming electron beam.

The starting point of this theory development is the magnetic vector potential 

expressed in terms of the magnetisation of a general thin film. Through the use of 

Fourier analysis, the phase imparted by the magnetic thin film to the electron beam can 

be calculated [Mansuripur 1991]. The theory can be used to calculate the imparted phase 

function for a thin magnetic film with a defined array of magnetisation vectors which 

can be oriented in any direction with the proviso that the sample is magnetised 

uniformly in the z direction. The theory also incorporates electron beam incidence from 

any angle with respect to the sample. The results were used to produce Fresnel and 

Foucault contrast images. The theory has been extended further by differentiating the 

phase mapping produced to simulate MDPC images [Plopl 1993].

Fig.6.5 Diagram o f a) the magnetisation array and the electron propagation

vector p and b) the magnetisation direction parameters.

The formulae produced from this theory are lengthy and require in-depth

a) b)

y
X
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explanation which is suitably contained in either of the two texts referenced and will not 

be covered here. It is necessary however to define some parameters before any results 

from this theory can be interpreted. The initial magnetisation setup is defined over an 

array of 256 by 256 pixels. At each point in the array two angles defining the orientation 

o f M are specified. The angles are denoted as 0 and <J) defined in Fig.6.5 as those angles 

made with respect to the z axis and the x axis respectively, this completely defines M. In 

the configuration necessary for the track setup M is only oriented in two directions 

either parallel or anti-parallel to the y axis as defined in Fig.6.6.

IS 
=■' *e = 9 0 ‘

<1>=90‘

y t
8 Electron @
trajectory z

Fig.6.6 Diagram of written bit setup in the Phase modulation simulation defining 

the values o f ML

6.3 RESULTS

The MDPC images produced using the two simulation techniques described above 

are presented in this section. The images produced by both simulation methods are 

produced from an area of 10pm x 10pm with a scanning resolution, A = 39nm ( each 

image is 256x256 pixels). The thin film used in each case has a track width of 5pm, a 

film thickness of 35nm and M R8 = 2.5 x 10"3 emu/cm2 as defined by the experimental 

media of chapters 4 and 5. Bit lengths of 1pm and 5pm have been used in both methods 

to check agreement of effects seen at these bit lengths between the model and the 

experimental MDPC images. The images are correctly scaled using the alternate DC 

erasure bands to values of approximately 57 and 200 for the DC- and DC+ values on an 

8 bit grey scale. This gives an expected ‘null deflection’ value of 128 and a maximum 

DC± shift of ±72 from null deflection.

124 Richard J Neville PhD thesis 1996



Chapter 6 Micromagnetic MDPC Simulations

240 -

% 1 8 0 -
ra 160

4̂$
linescan ?? 120
p o s i t i o n w 100 

« 80
o> 60

80 120 160 200 
position in pixels

Fig. 6.7 MDPC imtge mapped in the x direction o f a 1 pm bit length track

produced ising the Amperian Current simulation method with the 

associatedlinescan taken over the image at the marked position.
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Fig. 6.8 MDPC imtge mapped in the x direction o f a lp m  bit length track

produced ising the Phase Modulation simulation method with the 

associated linescan taken over the image at the marked position .

L
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linescan
position1

0 40 80 120 160 200 240
position in pixels

Fig. 6.9 MDPC image mapped in the y direction o f a lp m  bit length track

produced using the Amperian Current simulation method with the 

associated linescan taken over the image at the marked position.
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200 240

Fig. 6.10 MDPC image mapped in the y direction o f a lp m  bit length track 

produced using the Phase Modulation simulation method with the 

associated linescan taken over the image at the marked position .

L

The simulated MDPC images of lpm  tracks are shown in Figs.6.7 - 6.10. Figs.6.7 

and 6.8 show lpm  bit length x mapped MDPC images produced by the Amperian and 

Phase Modulation methods respectively. A linescan is shown to the right of each image 

which is scanned along the positive x axis of each of the images.
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The simulated MDPC images in Figs.6.7 and 6.8 show similar contrast to the 

experimental MDPC images in Fig.6.1 la  and in chapter 5; the x mapped characteristic 

of alternate closure spots at the corners of the written bits and ‘null deflection’ over the 

remainder of the scanned area. Also comparing the linescans produced by each method 

both results are very similar starting at a null contrast level of -128  as expected, peaking 

at the closure spots with a flat profile at -128 in the centre of the linescans confirming 

the ‘null deflection’ expected in that area. Thus both simulations produce x mapped 

MDPC images which are consistent with the experimental x mapped MDPC images of 

chapter 5. In Fig.6.1 la  the closure spots are obscured by the side write configuration at 

the track edges.

* 7 ^ L i n e s c a n  p o s i i

240 
220 
200 

c  180
= 160CO . . _> 140
i  120 
8 100 
ST 8 0  t
o> 60 -■ 

40 -■ 
20 - -  

0 - H-------1-------1-------1-------1—
80 120 160 200 240
position in pixels

Fig.6.11

240 
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« 180 
ra 160 
I 140
S 120 
» 100 
o 80 

60 
40 
20 

0

40 80 120 160
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Experimental MDPC images mapped in a) the x and b) the y  directions o f  

a lpm  bit length track with the associated linescan taken over the image 

at the marked positions .
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Figs.6.9 and 6.10 show y mapped MDPC images resulting from the Amperian 

current and Phase modulation methods respectively. As in the x mappings above, the 

images show very similar contrast to that seen in the experimental y mapped MDPC 

images in Fig.6.1 lb and in chapter 5. A linescan is shown to the right of each image 

which is scanned along the positive x axis of Figs.6.9 and 6.10. The DC + and DC- 

erasure bands can clearly be distinguished in the images of Figs.6.9 and 6.10 and in both 

linescans. The linescans start at the DC erasure value of 200 (DC+), pass through the 

stray field closure, the track edge where the magnetisation changes sign, null deflection 

in the centre of the track at 128 to a value of 57 (DC-) the edge of the scanned area. 

Thus the DC level adds or subtracts 72 to the null deflection in this set of images. Again 

this profile is consistent with the experimental y mapped MDPC results of Fig.6 .1 lb 

chapter 5. The results of the simulation compare well with the experimental results of 

the set of MDPC images. In both experimental linescans in Fig.6.11, the experimental 

noise reduces the clarity of the linescans in comparison to the simulated data.

It was also noticed in the experimental MDPC results of section 5.4.2 that if the 

bit lengths were comparable in size to the track width, the stray field above and below 

each bit would not fully cancel the deflection due to the magnetisation leaving an 

alternate contrast level in the y mapping. This can also be investigated using the 

simulation techniques. Figs.6.12 to 6.15 show sets of images from both simulation 

methods using a 5 pm bit length. Figs.6.12 and 6.13 are the x mapped MDPC images 

produced using the Amperian and the Phase modulation methods respectively. The 

contrast produced is again similar to the experimental images seen in Fig.6.16 and in 

chapter 5. Again there is close agreement between the two simulation methods. There is 

however a significant difference between the images produced at 5pm to those at lpm 

bit lengths. In Figs.6.12 and 6.13 the closure spots cover an area of ~5pm; null 

deflection does occur at the centre of the track but over a very small area of only a few 

pixels in width where each pixel represents 39nm.
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mescan
losi’tion
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position in pixels

Fig.6.12 MDPC image mapped in the x direction o f a 5 pm bit length track 

produced using the Amperian Current simulation method with the 

associated linescan taken over the image at the marked position.

Fig.6.13 MDPC image mapped in the x direction o f a 5 pm bit length track 

produced using the Phase Modulation simulation method with the 

associated linescan taken over the image at the marked position.

Similarly Figs.6.14 and 6.15 show y mapped MDPC images simulated using the 

Amperian and Phase methods respectively with their associated linescans shown to the 

right of each image scanned left to right. The images are again very similar between the 

two methods which is verified by the linescans. Again the linescans suggest a larger 

spreading of the stray field in comparison to that of the lpm  tracks. From the linescans 

taken at position 1, it is apparent that the DC bands contain a large amount of stray field

linescan  -
‘ p o s i t i o n

0 40 80 120 160 200 240
position in pixels Y

2 p m
z
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as the DC-f grey level is 220 and the DC- level is 68 which is an increase of 

approximately 25% of the maximum DC deflection obtained from the lpm  images. 

Taking the phase simulation and scanning across the other track at linescan position 2 

left to right as before, a similar difference is seen and the DC levels are now

"T"-——
. .  ' 
linescan

• 4 aposition 3 linescan position 1

linepcan

0 40 80 120 160 200 240
position in pixels

Fig.6.14 MDPC image mapped in the y direction o f a 5 pm bit length track 

produced using the Amperian Current simulation method with the 

associated linescan taken over the image at the marked position.
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240

15a MDPC image mapped in the y direction o f a 5pm bit length track 

produced using the Phase Modulation simulation method with the 

associated linescan taken over the image at position 1.

u
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Fig.6.15b The associated linescans taken over the image at the position 2. The final 

linescan is the addition o f the linescans taken at positions 1 and 2.
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Fig.6.16 Experimental MDPC images mapped in a) the x and b) the y  directions o f

a 5pm bit length track with the associated linescan taken over the image

at the marked positions .
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180 and 41, approximately a 25% decrease in the grey level with respect to the lpm 

images. Adding the two linescans produces a composite linescan with grey levels of 200 

and 57 at the positions of the DC erasure. The cancellation occurs due to the change in 

the sign of the expected stray field components between linescans at positions 1 and 2  

due to the alternate magnetisation in the written bits. This also confirms that the images 

are correctly scaled with respect to the lpm images as the levels are very similar.

Again comparisons can be drawn between the simulated and experimental MDPC 

results. Fig.6.16 shows a set of MPDC images of a 5pm track. The linescans produced 

are shown to the right of each image as before. The linescans are very similar to the 

results seen in Figs.6.12-14 further confirming the validity of the results.

A third set of simulation linescans taken at position 3 along the negative y axis of 

Figs.6.14 and 6.15, are shown in Figs.6.17 and 6.18. There is significant difference in 

the grey levels between the bits the maximum grey level of -146 and minimum of -109 

on the eight bit scale which is -24% of the maximum DC offset. The maximum grey 

level in Fig.6.17 corresponds to the y position of linescan 2 which has a minimum 

contrast level in the track centre. Similarly the position of minimum contrast 

corresponds to the position of linescan 1. Thus an increase in the stray field outwith the 

bits is compensated by an equivalent decrease in the stray field above the track. The 

lpm  simulated MDPC images scanned over the same area in the y direction produce a 

constant grey level of 128.

150 j
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a>3 135 -
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Fig.6,17 Linescan o f Fig.6.14 at position 3
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0 40 80 120 160 200 240
position in pixels

Fig.6.18 Linescan o f Fig.6.15 at position 3

These results can be compared directly with the experimental results of F ig .6 .19. 

Fig.6.19a shows a y mapped MDPC image of a 5pm bit length and 5pm width track in 

medium of type 1 (Mr8 = 2.5 x 1 0 3 emu/cm2 ). The image is scaled using the linescan 

taken at the DC+ and DC- bands on either side of the track, also shown in Fig.6.19c and 

d. There is close agreement between the experimental linescan in Fig.6.19b and the 

simulated linescans of Figs. 6.17 and 6.18 further confirming the validity of the method 

and the results. A simulated linescan is overlaid on Fig.6.19b.

0 40 80 120 160
position in pixels
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Fig. 6.19 Experimental MDPC y mapped image o f a Sjjm track written in medium 

of type 1 with a track width o f Span with the linescan scanned over the 

centre of the track ( the simulated data is shown by the dotted cuvre). The 

scaling DC+ and DC- linescan averaged over the DC band are also 

shown.

L

6.4 ALTERNATE BIT CONTRAST SIMULATION

6.4.1 Introduction

In the preceding chapter MDPC images were presented which displayed 

significant contrast level difference between alternate bits when mapped in the x 

direction. It was suggested that the depth of contrast seen was the result of one of two 

possible mechanisms; either off-axis writing or head skewing. The explanations 

proposed that these mechanisms introduced a misalignment between the stray field 

above and below the film and the magnetisation within the film creating an 

uncompensated component of magnetic induction in the cross-track direction. Using the 

above techniques these mechanisms can be simulated and the resulting MDPC images 

can be compared with experimental images.

The remainder of this chapter can be divided into three sections; off-axis writing, 

head skewing and a combination of both effects. MDPC images are presented for each 

of the mechanisms.
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6.4.2 Off-axis Writing

The first mechanism resulting in the introduction of misalignment between the 

stray field and the magnetisation is that due to off-axis writing as discussed in section 

5.4.5. The results of chapter 5 postulate the existence of a slight easy axis in the 

isotropic media to explain the cross-track contrast seen in the experimental MDPC 

images. In this case the write direction is inclined in-plane at an angle with respect to the 

direction of the assumed easy axis of the medium. Following removal of the write head 

field, the magnetisation vector can relax from the write direction to the easy axis 

direction of the medium. This produces uncompensated components of magnetic 

induction in the x direction which can give rise to the alternate contrast seen in the x 

mapped MDPC images.

The easiest and quickest of the simulation methods is the phase modulation 

technique. A typical input magnetisation vector distribution which produces off-axis 

writing is shown in Fig.6.20. Here the direction of the easy axis is varied whilst the 

write direction is kept constant for ease of calculation. The off-axis angle, a° is defined 

as the angle between the easy axis and the write direction of the head. This simulation 

method uses a matrix of magnetisation vectors which sum to form the total 

magnetisation of the medium. As a result of the relaxation of the magnetisation, the free 

poles previously concentrated at the bit transitions can redistribute within the film 

allowing free poles to exist at the boundaries with the DC erasure, in regions such as 

shown in Fig.6.20 along A-B and C-D.

The MDPC results from running the Phase Modulation method simulation using 

off-axis write input magnetisation distributions of the type described above are shown in 

Fig. 6.22.
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Fig.6.20 Schematic diagram o f the magnetisation setup fo r  off-axis writing used in

the phase simulation method.

The images in Fig.6.22 are mapped in the x direction and form a series where the off- 

axis angle, a 0 varies from 0° to 25° in steps of 5°. Continuous contrast bands are 

produced across each bit due to the uncompensated components of magnetic induction 

adding to or subtracting from the grey level along the track direction. Before 

comparisons can be made between the images produced by this simulation, the grey 

scale levels must be adjusted. The alternate DC erasure bands allow the images to be 

rescaled. The maximum grey scale value expected from the DC erasure bands can be 

obtained from the y mapped MDPC image with a °  = 0°, this is denoted DC(0°). Using a 

simple coherent rotation model of the magnetisation as in Fig.6.21, the value of D C (a) 

is calculated using equation (6.7). Thus the expected DC band values in both the x and y 

mappings at any value of a °  can be calculated and the images can then be set to these 

values.

D C (a°) = |D C(0°)|*cosao (6.7)

Equation 6.7 is used to set the contrast levels in the of the images in Fig.6.22.
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Maximum DC 
erasure

nt of DC 
x map at

Compone 
erasure in

Fig.6.21 A coherent rotation model approach to the evaluation o f the DC erasure 

level in an x mapped image with an off axis write angle o f oc°.

These simulated x mappings contain very similar contrast effects to those seen in 

the experimental MDPC images of Figs.5.30a, c and 5.32a in section 5.4.5. There is a 

linescan shown to the right of each MDPC image in Fig.6.22 taken along the y direction. 

This allows a closer examination and comparison of the grey levels between each image. 

The linescans are integrated over an area of 80 pixels in the x direction for each 

mapping; this is the maximum extent in the x direction possible before being influenced 

by the closure spots. The integration smooths out any local variations in the contrast 

providing a mean result. The linescans show that as the off-axis angle is increased, the 

difference in the grey contrast levels in the bits also increases, as expected. Fig.6.23 

shows a plot of a° against the difference in the grey levels between alternate bits taken 

from the linescans of Fig.6.22. From this plot it can be seen that there is a linear 

relationship between the off-axis angle and the difference in contrast levels. Thus
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(a) - (c) Simulated MDPC off-axis writing images mapped in the x 

direction with their associated linescans in the x direction.
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Fig.6.22 (d) - (f) Simulated MDPC off-axis writing images mapped in the x

direction with their associated linescans in the x direction.

the approximate off-axis angle in the experimental MDPC images mapped in the x 

direction can be estimated using the difference in the grey level of the alternate bits and
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the plot of Fig.6.23. The experimental data is scaled to the simulated data using the DC 

erasure bands and the grey level of both mapping directions.

Fig.6.24 shows an experimental MDPC image displaying alternate bit contrast as 

described above. The bit transitions are not angled with respect to the y axis thus it is 

more likely that the contrast seen in this image is due to off-axis writing. Each bit in 

Fig.6.24 is -26 pixels in length, the difference in the grey levels of the bits is estimated 

from this image by averaging over each bit as above. The linescan taken across image is 

also shown in Fig.6.25. The grey level difference between alternate bits is defined by the

60 T

50 -
©>«

40 -->»a>k_o>c
<DOc
© 20 - -

10 -

0 10 15 20 255
off axis write angle

Fig.6.23 Plot of difference in grey levels in Fig.6.12 against off-axis writing 

angle, a°.

image in Fig.6.24 to be 56 on an 8  bit scale. Using the plot of Fig.6.23, this gives an 

estimate of the off-axis writing angle to be a° -  23° from the easy axis
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Fig.6.24 MDPC images o f lpm  track which show alternate bit contrast when 

mapped in the x direction.

200

180
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140

120

100
0 50 100 150 200 250

Fig. 6.25 Experimental MDPC image o f lpm  track written in type 1 medium

mapped in the x direction showing alternate bit contrast with the 

associated linescan taken over the area marked.

6.4.3 Head Skewing

There is a second mechanism which could be responsible for the production of 

alternate contrast across a track; this mechanism is head skewing. As discussed in
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chapter 5, head skewing occurs when the pole gap of the write head is not orthogonal to 

the write direction. This is shown diagrammatically in Fig.6.26, where the written bits 

are inclined at an angle p°, to the normal to the write direction. Head skewing is a 

common effect due to the increasing use of rotational drive arm geometries to reduce the 

overall space occupied by the complete drive. In Fig.6.26 the write direction, the easy 

axis and the y axis are all collinear. Thus on removal of the write head field the 

magnetisation remains along the easy axis. However the stray field remains orthogonal 

to the bit transitions and introduces the uncompensated components of magnetic 

induction in the x direction.

write direction / easy 
axis orientation

h

easy
axis

(a)

easy axis 
direction

09 x A

electron  .
trajectory y

(b)

Fig.6.26 Schematic diagram o f a) the head skewing and b) the magnetisation 

configuration produced. This is used as the input magnetisation 

distribution in the phase simulation method.

Throughout this examination the pole pieces are assumed parallel and it is the entire
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Fig.6.27 Simulated MDPC images o f head skewing where the head is skewed at ®
z

angle to the write direction. To the right o f each image the associated 

linescan taken over the area marked is shown .
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Fig.6.27 Simulated MDPC images o f head skewing where the head is skewed at ® 

angle to the write direction. To the right o f each image the associated 

linescan taken over the area marked is shown .

write head which is skewed with respect to the write direction.

Fig.6.27 shows a complete set of head skewing simulated MDPC images using the 

magnetisation input configuration shown in Fig.6.26 mapped in the x direction. The 

skewing angle p° is varied from 0° to 25° in increments of 5° (The 0° image is not 

shown as the standard MDPC track image is produced). Fig.6.27 shows the alternate 

contrast due to the uncompensated component of magnetic induction as expected. As 

before, to allow a numerical examination of the results, linescans are taken over each of 

the images. No scaling is necessary as the magnetisation in the DC erasure bands 

remains essentially unchanged by this effect. To maintain orthogonality with the bit
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transitions the linescan is inclined at an angle of (3°to the write direction. The linescans 

are averaged over an area which has been restricted to 40 pixels in width due to the 

possible influence of the closure spots and to gain a maximum linescan length. As in the 

previous section, the results of the linescans can be compared numerically by averaging 

the difference in contrast along each scan. The results are plotted in Fig.6.28 to provide 

a relationship between the skew angle (3°, and the contrast variation produced. The 

relationship is approximately linear as in the previous off-axis writing case with the 

contrast variation produced by this simulation being very similar.

60

50

40

30

20

10

0

20 250 5 10 15
skew  angle

Fig. 6.28 Plot o f the difference in the grey levels fo r varying head skewing angles

p°.

2 p m

Fig.6.29 MDPC image o f head skew o f the lp m  track in type 2 medium.
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There is a slight decrease in the contrast level difference when the head is skewed in 

comparison to the difference when writing off-axis. This could be due to redistribution 

of the free poles at the bit transitions increasing the x component of the stray field in the

off-axis case.

An example of experimental imaging of head skewing is shown in Fig.6.29. The 

image shows a lpm  track written in type 2 medium where the head has been skewed at 

an angle of -20° to the write direction. The contrast is very similar to that seen in 

Fig.6.29 but with a reduction in the difference of the grey levels due to the reduced Mr8 

of medium 2.

6.4.4 Combination Writing

To complete the simulation analysis of the off-axis writing and head skewing 

effects a set of images are shown in Fig.6.30 where both effects are present. The images 

shown are simulated with a constant head skew angle p =20° and off-axis angles a  

varying from

2 pm

Fig.6.31 Simulated MDPC images with a constant head skewing angle o f 20° with 

stated easy axis directions.
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0°to 25° in Figs.6.31a to e respectively. From these images it is immediately obvious 

that at a  = 20° the alternate contrast is reduced to zero. Thus both effects cancel out 

producing null deflection. This is as expected and merely reinforces the theory that the 

contrast is due to an uncompensated component of magnetic induction. Alternatively if 

the easy axis were to be rotated from a° = 0° to -25° with the same head skewing angle, 

no cancellation would be seen in the x mapping as a result of the rotation.

Fig.6.32 shows a plot of the difference in the grey levels between alternate bits as 

a function of the skewing angle. The plot shows a linear relationship as expected from 

the contrast which falls to zero at a°= 2 0 °.

St 50 -  

& 40 -

I  3 0 -
i  2 0 -

O
£ m  _ _

•H
Q

15 205 100

skewing angle, p°

Fig.6.32 Plot o f the difference in the grey levels for varying head skewing angles 

P° at a constant off axis angle of 20 °.

6.5 CONCLUSIONS

Two methods of MDPC image simulation have been presented and compared in 

this chapter. Images from both the Amperian Current and Phase Modulation methods 

show very similar contrast levels and compare well with the experimental MDPC 

images. There are restrictions to the use of either method. Both methods can be applied 

to general magnetisation distributions however the theory produced for the Amperian 

method is required to be specific to blocks of magnetic material which form open flux
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configurations. Further, the implementation of the Amperian current method is specific 

to recorded tracks making the use of different magnetisation configurations more time 

consuming. The Phase Modulation method is not specific to open flux configurations 

however due to the use of FFT’s to reduced the CPU time the magnetisation distribution 

is effectively infinitely wrapped around during processing. This requires the 

magnetisation distribution to be congruent if artefacts such as saw tooth shading are to 

be avoided.

The simulated images show the characteristic contrast expected from x and y 

mappings of tracks. The experimental MDPC images showed that at a bit length to track 

width ratio of ~ 1  alternate contrast is produced, this too has been observed with in both 

simulation methods further agreeing with the experimental MDPC results.

As an application of the phase simulation method of section 6.4, off-axis writing 

and head skewing MDPC images can be created from known magnetisation 

distributions. These were compared with experimental MDPC images thought to display 

these effects. Thus the simulations have shown off-axis writing and head skewing 

produces MDPC images with very similar contrast characteristics to those seen 

experimentally. Further that when both effects are present cancellation and null 

deflection can occur in the centre of an x mapped track again. This simulation method 

will be used as input data in the following chapter as reconstruction methods are 

discussed.
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CHAPTER 7

MAGNETISATION RECONSTRUCTION

7.1 INTRODUCTION

The subject of this chapter is to present and discuss the theory and results 

obtained from a magnetisation reconstruction method. Chapters 5 and 6  have shown 

that a large amount of both qualitative and quantitative data can be obtained from 

MDPC images of recorded tracks. However, the MDPC mappings do not form a 

direct representation of the magnetisation within the film; this is the problem that this 

chapter addresses.

The following sections discuss a method which aims to extract a magnetisation 

map from MDPC images of written tracks. The reconstruction method discussed and 

implemented is the curl / divergent technique [Amoldussen 1993] which attempts to 

separate the vector components of the magnetisation through vector based image 

processing. The method is then applied to a set of simulated MDPC images.

7.2 CU RL/DIVERGENT METHOD

7.2.1 Introduction

MDPC images are the result of the combined deflection due to the 

magnetisation within the film and the stray field above and below the film, as 

discussed in previous chapters. Thus to obtain a magnetisation mapping from a set of 

MDPC images a reconstruction method must separate the stray field components from 

magnetisation components. In this method the basic assumption is that the magnetic 

induction produced by the thin film can be divided into two types of vector 

components: curl and divergent components [Cohen 1970]. The divergent 

contributions to the MDPC images are comprised of both magnetisation and stray 

field components. The curl component of the MDPC images is produced solely by the 

magnetisation. Thus there is a separation between the stray field and the magnetisation
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when considering their vector components which forms the basis of this 

reconstruction theory.

It should be noted that the curl of a divergent component is zero; conversely the 

divergence of a curl component is also zero. These mathematical relations form a 

critical part of this reconstruction procedure.

7.2.2 Curl / Divergent Reconstruction Method

As discussed above, the Curl / Divergent reconstruction method uses the 

separation of the curl and divergent vector components of the MDPC images to 

attempt a magnetisation reconstruction. The theory of the Curl / Divergent 

reconstruction method is as follows. The magnetisation in a thin film is assumed to 

contain both curl and divergent components as expressed in equation (7.4).

n,ioui(x’y) = mc»ri(x.y)+nidimgem (x, y ) (7.4)

The stray field produced by the thin film is assumed to be a completely divergent

MDPC image

Curl of image 
c( x, y )

Rearrange and use 
FFTs

Rearrange and use 
FFTs

Volume magnetic 
pole density r( x, y )

Fig.7.1 Flow chart showing the progression from MDPC images to 

magnetisation reconstruction.
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component. The MDPC images contain deflections due to both the magnetisation 

within the film and the stray field surrounding the film. Thus the MDPC images 

consist of curl and divergent components from the magnetisation and a further 

divergent component from the stray field, as expressed in (7.5).

^ M D P C  im age(X , y )  "  cu rl(X ’ y )  +  ®  divergent(X >^m agnetisation  +  [ ®  d i v e r g e n t l y ) ] stray field ^

Taking the curl of the MDPC images removes all the divergent components as its curl 

is zero. Thus the stray field contribution to the MDPC images is removed leaving an 

image of [Vxmcurl(x,y)]magnetisation. However, the divergence of the magnetisation

nidivergent(x,y) a ŝo removed through the curl operation and needs to be reintroduced 

to provide mtotai(x,y). The method to perform this is outlined in Fig.7.1 and discussed 

below. Only the x and y components are considered in this discussion as the z 

components of the magnetic induction due to the sample are collinear with the 

propagation direction and have no effect on the x-y deflection of the beam as in the 

MDPC images.

The first step in the theory is to remove all the divergent components by taking 

the curl of the MDPC images. The curl is performed using a composite image created 

from both mappings, each point in the image to be ‘curl’ed contains an x and y 

component from the x and y mapped MDPC images respectively. The curl of the 

MDPC image produces the curl image c(x,y) ( = V xm cUri(x,y) ) as expressed in 

equation 7.6a. However this is not the curl component of the magnetisation. A method 

must be used which can return from the ‘curl’ image to the original curl component of 

the magnetisation, mcUri(x,y). It should also be noted that the divergence of mcUri(x,y) 

is equal to zero as expected, expressed in equation 7.6b. A similar set of equations can 

be written for the mdivergent(x,y) components as in equations 7.6c and 7.6d, where 

r(x,y) is the divergent of m<iivergent(x,y) and the curl of mdivergent(x,y) is zero. An initial 

guess of the divergent component can be made from a basic model which will be 

discussed in greater detail later in this section.

Vx(M DPC image) = V x(m clrl+ m fragw) = V x m cll[l(x,y) = c(x,y) (7.6a)
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V m OTl(x,y) = 0 (7.6b)

Vxmdiv«|ent(x.y) = 0 (7.6c)

divergent (x,y) = r(x,y) (7.6d)

The stray field has now been removed from the MPDC images. The next step in 

the process is to extract the initial mcuri(x,y) and m<iivergent(x>y) components of the 

magnetisation from the c(x,y) and the r(x,y) components. The technique of Fast 

Fourier Transforms, FFT [Brigham 1974] offer such a solution. Taking FFTs of 

equations 7.6a-d, rearranging the equations in transformation or k space and then 

inverse transforming back to real space expressions removes the spatial differential. 

This leaves the mcuri(x,y) and mdivergent(x,y) components of the initial magnetisation. 

Equations 7.7a-d describe the rearrangement relations which extract the original 

magnetisation from the results of equations 7.6a-d.

Where C(kx,ky) and R(kx,ky) are the FFTs of the c(x,y) and the r(x,y) components 

respectively. Thus through equations 7.7a-d the original magnetisation m totai(x,y) can 

be obtained.

As mentioned above the divergent component m<iivergent(x,y) of the 

magnetisation in the MDPC image is removed by the curl operator and thus must be

ly component
(7.7a)

x component
(7.7b)

divergent y component

divergent x component

(7.7c)

(7.7d)
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added back into the system. From fundamental electromagnetic theory [Lorrain and 

Corson 1969] the divergent of the magnetisation can be expressed as:

V-m(x,y) = -p(x,y) (7.8)

where m(x,y) is a general magnetisation distribution and p(x,y) is the free magnetic 

pole density associated with such a distribution. It can be seen that equations 7.6d and 

7.8 are essentially the same. The magnetic free pole density in a set of recorded bits is 

shown diagramatically in Fig.7.2.

free magnetic 
poles.

Fig. 7.2 The model used as the expect free magnetic pole density o f an ideal 

recorded track.

Thus a value of m totai(x,y) can be obtained if the estimate of the free magnetic pole 

density is correct.
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7.2.3 Results

This section presents and discusses the results obtained using the above 

reconstruction technique. The results which are discussed were produced by applying 

the reconstruction technique to a set of simulated MDPC images generated using the 

phase modulation method of chapter 6. Images are presented from each stage in the 

process showing the progression to the completed magnetisation reconstruction image 

set.

The starting point for the reconstruction is a set of x and y mapped MDPC 

images. In this reconstruction a set of simulated MDPC images are used as shown in 

Fig.7.3 where all the dimensions and parameters are as defined in chapter 6. The first 

step in the analysis is to take the curl of the composite image created by combining the 

x and y mapped MDPC images of Fig.7.3. The curl image produced is shown in 

Fig.7.4a. The positions where there is significant contrast correspond to the positions 

where the magnetisation in a bit meets an oppositely magnetised DC band at the track 

edge. The curl of the composite image can be represented as in equation 7.9 where A 

is a general vector in the x-y plane of the composite image. The resulting expression 

shows that the curl measures the rate of change of a vector orthogonally to the

2 pm 2

Fig. 7.3 The input MDPC images simulated using the Phase Modulation

technique described in chapter 6 mapped in the a) x and b )y  directions.
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direction of interest. Considering Fig.7.5a the curl as defined in equation 7.9 can be 

seen to be at a maximum at the boundary where VxA 2*MS8.

V x A(ax,ay,0) =
day 9a,
dx dy (7.9)

The curl process removes the divergent components of the images leaving only the 

curl components as expected. Following the double FFT and rearrangement in k space 

through equations 7.7 a and b, the images in Fig.7.6a and b are produced which show 

the lmcuri(x,y)lx and lmcUri(x,y)ly components of the final magnetisation reconstruction. 

Fig.7.6a shows some spreading of the spot contrast in the y direction. This is possibly 

a wrap around artefact from the use of the FFT’s. Further comment is postponed until 

the magnetisation reconstruction is completed.

The second component to the final reconstruction is obtained from the Divergent 

components. These components are removed from the composite image by the curl 

procedure. Under normal circumstances an estimate must be made of the magnetic 

free pole distribution to represent the divergent component of the MDPC images. As 

this reconstruction uses simulated MDPC image input the exact magnetic free pole 

density can be used, as shown in Fig.7.4b. This can be explained using Fig.7.5b and 

equation 7.10. The divergence measures the rate of change of a vector along the 

direction of consideration and thus the head on magnetisation configuration at the bit 

transitions gives a maximum value.

V .A (a„ayI0) = ̂ - + ^ L + 0  (7.10)
dx dy

Following equations 7.7c and d the FFT is taken of the image, the components are 

then rearranged in k space and the inverse FFT taken of the result. This generates the 

images in Figs.7.7a and b. The curl and the divergent reconstruction images of 

Figs.7.6 and 7.7 are then added to produce the final magnetisation x and y mappings 

from the input MDPC images as shown in Figs.7.8a and b respectively.
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Fig. 7.4

Fig.7.5

u
The images produced by a) the curl o f the MDPC image set o f Fig.7.3 

and b) the divergent contribution from the free pole distribution o f  

Fig. 7.2.

direction of max

l l

imum

i i i
direction of 
maximum-' 

divergence.

a) b)

Representation o f the magnetic induction configuration expected to 

produce the maximum a) curl and b) divergent in Fig.7.4 a) and b) 

respectively.

t
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lias

F/g. 7.6 77? e final a) m curl x b) m curl y. images following the curl processes

outlined in Fig.7.1.

Fig. 7.7 The final a) mdivergent x and b) mdivergent y. images following the curl

processes outlined in Fig.7.1
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Fig.7.8 The final a) mtotal x and b) m total y. images following the curl processes

outlined in Fig.7.1

The contrast in the x mapping of Fig.7.8a is almost constant over the whole area 

verified by the linescan in Fig.7.10a: a constant value of 127 corresponding to zero 

magnetisation as expected. The contrast in Fig.7.8b shows the alternate written bit as 

and the DC erasure bands with two constant levels of -200  and -5 0  as in the 

simulated M PDC images. There is a slight deviation from the expected magnetisation 

which occurs at the positions of the bit comers in the x mapping of Fig.7.8a. The 

linescan in Fig.7.9c shows the area of interest scanned along the x direction with the 

grey scale expanded by a factor of 2 to increase the contrast of the desired feature. The 

linescan shows that there is not complete cancellation in these areas. One possible 

explanation for this anomaly is that this is due to an FFT wrap around effect which 

can be seen as a spreading of the closure spots as in Fig.7.6a. Attempts were made to 

reduce this effect by using a Hanning function to envelope the images and by 

introducing symmetry to the bits to make the images cyclic. The Hanning function 

produced no noticeable improvement in the images. However by maintaining 

symmetry in both the x and y directions reductions were made in the wrap around 

effect. The number of tracks is kept even for symmetry in the y direction. In the x 

direction the image is reflected about its right hand edge effectively producing a 

second track and then reflected about is bottom edge. This creates two tracks in the 

image and a DC+ erasure band at each side which allow the image to be added
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congruently and wrap around. (The final reconstructed image is then taken from only 

one quarter of the image after the FFTs.)

Fig. 7.9
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Linescans of a) Fig.7.8a at position 1, b) Fig.7.8b at position 2 and 

c) Fig.7.8a at position 3.

7.3 CONCLUSIONS

This chapter has presented a method of obtaining a possible magnetisation 

distribution from a set of MDPC images mapped along and orthogonally to the write 

direction. The method was successfully implemented for a simulated set of MDPC 

images where the original magnetisation distribution was known. There is close 

agreement between the original and the reconstructed magnetisation distributions with 

the exception of a spreading effect in the x mapping.
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It was hoped to apply the method to experimental images but due to the time 

constraints for submission of this thesis this was not possible. The method would 

expect to increase the noise present in the experimental MDPC images due to the 

differentials required in the curl of the composite image. In addition the divergent 

component for an experimental image would be considerably more complex than that 

of Figs.7.2 and 7.4b due to the nature of the bit transition as discussed in chapter 7 and 

the inclusion of a side write component at the track edge. To help overcome this an 

iteration method might be feasible to improve the divergent component guess at each 

loop around the process.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 INTRODUCTION

The subject of this thesis is the investigation of the micromagnetic structure of 

longitudinal recording media. This chapter highlights and summarises the results and 

conclusions which have been presented through the course of this thesis. Future 

directions for this work are discussed in the final part of this chapter.

8.2 CONCLUSIONS

To perform Lorentz electron microscopical studies on hard disk media, a 

reliable process for creating good quality usable specimens was required. Chapter 3 

discussed the methods developed and used in this thesis for fabricating planar and 

cross-sectional samples. During the planar sample preparation an oxide layer was 

observed to form on the exposed chrome seed layer thought to be the order of lOnm in 

thickness. This layer could be removed by sputter etching in Argon for 15-20 minutes. 

The planar sample method was refined allowing microscope specimens to be 

produced with 2-3 days preparation. Chapter 3 also outlined a method of EDX 

analysis which allows the verification of the composition of a sample. The method is 

based on the ratio technique presented by Cliff and Lorimer and it results in an 

experimental estimate of the sample composition through comparisons of the 

background corrected peaks of an EDX spectrum. The EDX method of analysis was 

applied successfully to verify the composition of both media types in chapter 4; values 

of 72.7:10.4:17.0 and 71.6:6.1:22.3 for the Co:Pt:Cr compositions in atomic percent 

for media of type 1 and type 2 respectively. Using the cross sectional sample the 

deposited layer thicknesses of each media were found to be 125:550:350 and 

85:255:255 for the C:CoPtCr:Cr layers measured in A. The Mr8  were verified using 

measurements taken of the deflection of the electron beam resulting from the DC 

erasure bands giving values of 17.8 and 5.87 pmrads for deflections from media of
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type 1 and 2 respectively compared with the calculated values of 18.8 and 8.3 pmrads 

respectively.

The experimental Lorentz electron microscopy results were presented and 

discussed in Chapter 5. Preliminary results suggested that the clarity of the Lorentz 

electron microscope images of the hard disk specimens could be greatly enhanced 

through tilting the specimen by approximately 5° with respect to the incident electron 

beam. The tilting of the specimen served to enhance the magnetic contrast and 

suppress the scratch contrast in the images. The diffraction patterns produced by the 

specimen show differences before and after the tilt; but the effect requires more 

detailed investigation for a complete explanation. Images were presented from Fresnel 

and Foucault investigations of both media types. The images from both techniques 

showed very little ripple contrast and large areas of constant magnetisation within the 

bits in all but the 1/3pm tracks. Feathering structures suggested by others workers to 

be an indication of clustering of grains were also distinguished at the side write 

regions over the range of bit lengths. MDPC images were then presented which 

displayed the magnetic features of the media. The first MDPC image sets offered a 

clear view of the bit transitions and the side write lobes and their variation over a 

range of bit lengths from 5 to 1/3 pm; the bit transition width was found to be ~ 

0.15pm over the range of bit lengths. In addition to this the stray field produced above 

and below the written bits was seen to have a significant effect on the MDPC image 

contrast ; cancellation above the written bits and closure spots at the comers of the 

written bits where only a small component of magnetisation is expected. High 

magnification MPDC images of the l/3pm track revealed the formation of small 

domains where alternate bit transitions meet and interfere across the bits. Further 

MDPC imaging of the bit transitions at high magnification suggested three types of bit 

transition: zig zag, vortex and a combination of both. An estimate of the mean 

transition width between alternate DC bands producing a value of ~80nm. An 

alternate contrast effects were observed which are consistent with off axis writing and 

head skewing. These effects suggested the existence of a slight anisotropy in the 

media along the track direction creating uncompensated cross track components of 

magnetic induction. The final part of chapter 5 presented MFM images which map the 

vertical components of the stray field. The results produced compare favourably with
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the MDPC results over the bit transition regions. The bit transitions show some of the 

structure seen in the MDPC images; in particular the l/3|im track show discontinuities 

in the stray field.

Chapter 6  discussed both the Amperian Current and Phase Modulation 

simulation methods which were used to produce two sets of simulated MDPC images. 

The results were very similar when the two methods were compared. Simulated 

results were also compared with experimental MDPC images confirming that both 

simulation methods show the standard image characteristics; stray field cancellation 

which varies with bit length in the y mappings and closure spots in the x mappings. 

The Phase Modulation method was also extended to include off axis writing and head 

skewing producing images which could quantitatively compare with the experimental 

MDPC images.

A method of magnetisation reconstruction which starts from a set of MDPC 

images of written tracks was introduced in chapter 7. The method uses the curl and 

divergent components of the MDPC image sets to produce the final magnetisation 

mapping. A mathematical treatment of the method was presented and the results of the 

method applied to a set of simulated MDPC images generated using the Phase 

Modulation technique. The reconstructed magnetisation was consistent with the input 

magnetisation which produced the simulated MDPC image. The reconstruction 

method could be extended to use experimental MDPC images as an input but this was 

not possible due to time constraints.

8.3 FUTURE WORK

The work of this thesis could be extended in one of several directions. This 

thesis has discussed at length the interpretation of MDPC images in terms of both the 

stray field and the magnetisation and a magnetisation reconstruction technique was 

discussed and implemented on simulated images. An alternative approach to 

magnetisation reconstruction which could be used is the ART Algebraic 

Reconstruction Technique [Gordon 1994].

The ART technique is a general method which attempts to reproduce an N 

dimensional object or field from a series of (N-l) dimensional projections taken from
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various directions with respect to the object, as in Fig.8.1. In this case the objects to be 

reconstructed are the B vectors produced by the recorded tracks in the thin film and 

the result of each projection is an MDPC image pair. Each projection can be thought 

of as being a slice through the reconstruction volume with a value of magnetic 

induction contained in each reconstruction cell. The deflection experienced by the 

electron beam is the sum of the contributions from the magnetic induction of each cell 

entered by the electron beam. The reconstruction field area is represented by a 3 

dimensional grid with the thin film at its centre. Each MDPC image is a projection 

taken through that grid as in Fig. 8.2. The contribution from each cell to the overall 

deflection or the pixels of an MDPC image is proportional to the path length of the 

electron beam within that cell. By varying the angle of the beam to the reconstruction 

area the path length through each cell is varied between projections and as a result the 

contribution from that cell is varied. Through an iterative procedure and using weight 

factors which are proportional to the varying path lengths through each cell, a value of 

the magnetic induction in a cell can be calculated. Taking MDPC images at various 

angles with respect to the thin film provides the required projection series.

2D
projection

projection
direction

projection
direction rotation

axes

2D
projection

Fig.8.1 Diagram showing the production o f 2D projections from a 3D object.
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deflection value
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trajectory B
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area

reconstruction
cell

MDPC image

Fig.8.2 Diagram o f a slice through the reconstruction volume showing the 

path o f single electron beam.

Fig. 8.4 Experimental MDPC images o f a sample o f type 1 tilted by 30° about 

the x axis mapped in the a) x and b )y  directions.
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Fig. 8.5 Experimental MDPC images o f a sample o f type 1 tilted by 30° about

the y axis mapped in the a) x and b )y  directions.

A set of preliminary tilted experimental MDPC images are shown in Figs.8.4 

and 8.5 at a tilt of 30° about the x and y axis respectively; the zero tilt images are 

shown in Fig.8.3. In each case the sample was positioned with the relevant axis 

directed along the axis of the specimen rod in the electron microscope. The post 

specimen lenses are then excited to produce rotation to maintain the correct 

orthogonal mapping directions with respect to the tracks in the sample. In each case 

the expectation is to introduce a z component of magnetic

Fig. 8.6 Simulated MDPC images o f a sample o f type 1 medium with no tilt

mapped in the a) x and b) y  directions.
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Fig.8.7 Simulated MDPC images o f a sample o f type 1 tilted by 30 ° about the x 

axis mapped in the a) x and b) y  directions.

3 pm
Fig.8.8 Simulated MDPC images o f a sample o f type 1 tilted by 30 ° about the y

z
axis mapped in the a) x and b )y  directions.

induction into the y and x mappings respectively. The contrast is reduced as a result of 

the increased path length through the thin film. A set of tilted MDPC images which 

are simulated using the Phase Modulation method of chapter 6 are shown in Figs.8.7 

and 8.8 titled about the x and y axis respectively, with untilted images shown in 

Fig.8.6. There is still a large amount of stray field cancellation following either tilt. 

There is however a reduction in the contrast in the x mapping of the x tilted samples 

and some increase in the stray field spreading at the track edges in the y mappings of 

the y titled images which may be exploited by the ART investigation.
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An alternative method would be to combine MFM imaging with the ART 

reconstruction to give initial values of the stray field above the sample to give a more 

accurate calculation. The MFM images could be taken over a sample at various 

heights to create mappings of the z component of the stray field. This could then be 

used as the first guess in the iteration procedure of the ART of the MDPC images. 

This would require very accurate positioning in both microscopes possibly requiring a 

position marker on the sample which was visible in both microscopes i.e. deliberate 

contamination due to beam damage in three positions for triangulation. The sample 

would also be required to be durable enough to be use in both STEM and MFM 

systems; the tapping procedure to form the topographic image in the MFM causes 

stresses on the sample which may result in irreparable damage to the specimen.
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