

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

SUPERPOWER: Towards a fully integrated model

of planning, action and conversation.

CHARLES G. BUTTON, B.Sc. (Birmingham), M.Sc. (Warwick)

Thesis submitted for the Degree of Doctor of Philosophy, in the

Department of Psychology, Faculty of Science, University of

Glasgow, June 1992.

© Charles G. Button, 1992.

i

ProQuest Number: 10992121

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10992121

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

GLASGOW
UNIVERSITY
library

Contents

Chapter 1 Introduction. 1

1.0 Introduction. 2

1.1 Communication not language. 6

1.2 Summary story. 9

Chapter 2 An empirical investigation. Goals in

conversation: Increments of agreement

and a measure of naturalness. 15

2.0 Introduction. 16

2.1 Levels of goals in conversation. 22

2.2 The categorisation procedure. 24

2.3 Getting in through a closed door task. 29

2.4 Photocopying task. 31

2.5 Description of Experiment. 32

2.6 Subjects and Procedure. 32

2.7 Results of Experiment. 34

2.8 Discussion. 36

Chapter 3 Connectedness in Al dialogue.

3.0 Introduction.

3.1 Early Al models of dialogue.

38

39

40

3.2 Recent developments. 49

3.3 Power’s robot world. 54

3.4 A comparison between Power and

Houghton. 56

3.4.1 The dialogue content. 58

3.4.2 Language generation. 61

3.4.3 Language comprehension. 64

3.4.4 Physical planning. 65

3.4.5 Conversational planning. 71

3.4.6 Meta-planning. 75

3.4.7 Executive Control. 76

3.4.8 Initial setting and Representation. 78

3.4.9 Conflict resolution. 82

3.4.10 Interaction skills. 85

3.4.11 Inference. 87

3.5 SUPERPOWER 89

3.6 Summary. 94

Chapter 4 Time slicing. 95

4.0 Introduction. 96

4.1 Allowing both agents to think in

parallel - an overview. 99

4.1.1 The notion of expecting a reply. 100

ii i

4.1.2

4.1.3

4.1.3.1

4.1.3.2

4.2

Chapter 5

5.0

5.1

5.1.1

5.1.2

5.1.3

5.1.4

5.1.4.1

5.1.4.2

5.1.5

5.2

5.2.1

An increment of time.

Example dialogues with parallel

processing.

How do time speeds give rise to

changes in dialogue?

A Monte Carlo simulation of Power’s

robot world.

The need for level 4.

Kinds of planning.

Introduction.

The four fundamental kinds of joint

planning and the need for conversation.

Planning phase.

Execution.

An example dialogue.

Degrees of interaction between agents.

Action-oriented stance.

Conversation-oriented stance.

Circular planning.

Relation to levels.

Relation to the need for a distinction

between level 2 topics and level 3

iv

102

107

111

115

122

125

126

127

129

131

133

150

151

151

152

158

items of mutual agreement. 159

Chapter 6 Conclusions. 161

6.0 Introduction. 162

6.1 Summary of the main results. 163

6.2 General comments relating to the

empirical investigation. 166

6.3 General comments relating to program

enhancements. 181

6.3.1 Conversation as action 182

6.3.2 Levels of goals. 186

6.3.3 The conversational rule. 194

6.3.4 Physical rules. 197

6.3.5 Asking a question with NEOTELL. 199

6.3.6 Degrees of conflict with NEOTELL. 200

6.3.7 Meta-planning with NEOTELL. 201

6.4 Epilogue. 202

References. 206

Appendices. 224

Appendix 1. A n n o ta te d tra n s c r ip t of task of
g ettin g th rou gh a c losed door
(conversation by humans, one
blindfolded). 224

v

Appendix 2. Annotated transcript of double­
sided photocopying task (conversation
by two humans). 232

Appendix 3. Utterance in the photocopying
conversation, categories assigned by the
experimenters, the number of subjects
assigning each utterance to each
category, and the percentage agreement
of subjects with our categories. 235

Appendix 4. An attached list of dialogue summaries
for the goal of agent John getting the
door open. Each record contains a list
of input and output parameters of the
dialogue. 237

Appendix 5. Program listing of SUPERPOWER V.5.9 241
RUN.p 241
VARIABLES, p 242
TESTS, p 246
MACROS.p 247
SYSTEM.p 248
WORLD.p 251
CONCEPTS.p 252
KNOWI.p 253
KNOW2.p 256
PLAN.p 261
ROUTINES.p 265
ROUTINE.BASIC.p 266
ROUTINE.ACHIEVEp 267
ROUTINE. PLAN.p 270
ROUTINE. FI NDOUT.p 272
ROUTINE.ASSESS.p 273
GAMES.p 278
GAMEGAMEp 279
GAME. ASK p 280
GAMETELLp 281
GAMERULEp 283
GAMEGOALp 284

GAMEPLAN.p 285
AUXFUNS.p 286
EXEC.p 290
WRITE, p 296
DECIPHERp 299
PLAY.p 302
PRINT.p 309

Appendix 6. Modifications for the Monte Carlo
simulation in chapter 4. 311

vii

Figgres

Fig. 1.1

Fig. 1.2

Fig. 1.3

Fig. 1.4

Fig. 1.5

Fig. 1.6

Fig. 1.7

Fig. 1.8

Fig. 1.9

Fig. 1.10

The equivalent action for a call by name
is a tap on the shoulder. 2

Agents Mary and John speak at the same
time. 3

Human purposeful dialogue. 4

Human purposeful monologue. 4

ELIZA, Weizenbaum (1966).
Connectedness in terms of minimal
understanding. 5

SHRDLU, Winograd (1972). Connectedness
in terms of pronoun reference. 5

Natural language generation. 6

Winograd (1972), connectedness in
terms of action. 8

Simplified dialogue of SUPERPOWER (see
program listing given in the appendix)
illustrating experimental joint planning
in which exhausting all permutations by
trial and error allows the goal to be
achieved. 10

P o w e r's robo t w o rld . S im p lif ie d
dia logue illu s tra tin g c lass ica l jo in t
planning techniques for achieving a
single physical goal, without utterance
priming, adapted from Power (1979). 11

viii

Fig. 1.11

Fig. 1.12

Fig 1.13

Fig. 2.1

Fig. 2.1a

Fig. 2.1b

Fig. 2.2

Time slicing dialogue from a run of the
program SUPERPOW ER, listed in the
ap p end ix , illu s tra tin g a fe a tu re of
continuity (i.e. the relative speeds of
thought of the robots) that can be
explained in term s of the program's
dynamic (i.e the alternative dialogues
A and B) and static (i.e. the listing of
the program SUPERPOWER in the
appendix) structural representations. 12

The double-sided photocopying task
(conversation by two humans). 13

The task of getting through a closed
door (conversation by humans, one
blindfolded). 14

Definitions of five categories of
conversational procedure (exchange). 28

Sample human sub-dialogue taken from
the beginning of appendix 1 illustrating
the closed door task. 30

Sample human sub-dialogue taken from
the middle of appendix 2 illustrating
the double-sided photocopying task. 31

Summary of appendix 3 showing the
percentage agreement of subjects with
the experimenter's categories and also
the percentage frequency with which
subjects recorded other categories. The
last column shows the total number of
cases (19 exchanges * 18 subjects =
342) considered for each category. 35

ix

Fig. 2.3

Fig. 3.1

Fig. 3.2

Fig. 3.3

Fig. 3.4

Fig. 3.5

Fig. 3.6

Fig. 3.7

Fig. 3.8

G raph show ing the d is trib u tio n of
percentage agreement. The majority of
the conversational exchanges (over 80%)
could be categorised with over 40%
a g re e m e n t. O ver h a lf of the
co n ve rs a tio n a l exchan ges could be
categorised with between 50 and 70%
agreement, the mean being just over
50%. 36

PROTEUS, Davey (1978). Connectedness
in terms of explanation. 43

Button (1989). Connectedness in terms
of subject matter. 45

Allen & Perrault (1980). Connectedness
in terms of dialogue clarification. 48

Allen and Perrault (1980). Connectedness
in terms of dialogue failure. 48

Shadbolt and Musson (1 9 8 7).
C o n n ected n ess in term s of
communicative postures, multiple goals
and efficiency by constraint
satisfaction, (simplified from dialogue
about plan structures) 53

Power’s Robot world. 54

Comparison of the differences between
Power (1979), Houghton (1986) and
my own system SUPERPOWER. 57

Power (1979). Connectedness in terms of
joint planning and goal-oriented
processes. 59

x

Fig. 3.9

Fig. 3.10a

Fig. 3.10b

Fig. 3.10c

Fig. 3.10d

Fig. 3.1 Oe

Fig. 3.11a

Fig. 3.11b

Fig. 3.11c

Fig. 3 .11d

Houghton (1986). Connectedness in
terms of efficiency and natural
language generation. 61

Achieve goal module. (Adapted from
Power, 1974). 65

Planning module. (Adapted from Power,
1974). 66

Planning module. (Adapted from
Houghton, 1986). 67

D ia g ram il lu s tra t in g som e of the
a lte r n a t iv e w ays in w h ich
conversational and physical planning
can be linked and perceived in relation
to one another. 70

Executive control. (Adapted from Power,
1974). 77

A discussion about a belief in which
the more complicated rule is judged to
be the better one. 83

Action fa ilu re in which one of the
agents believes that an action has not
achieved its intended goal. 84

Being told how to do something
(adapted from Houghton, 1986). 86

Action success (adapted from Power
1974). 87

xi

Fig. 3.12

Fig. 3.13

Fig. 3.14

Fig. 4.1

Fig. 4.2

Fig. 4.3

Tim e slicing illustrating the degree of
parallelism that can exist between one
conversational simulation and another. In
P ow er, contro l sw aps a lte rn a te ly . In
Houghton, control changes when one agent
has reach ed a log ica l con clusion . In
SUPERPOWER one agent can be allocated
more time increments per swap than the
oth er. Thus, with this a llo c a tio n , the
robots are th inking at the sam e tim e
becau se such a s im u la tio n could not
possibly work unless the program code had
been designed so that each robot thought
independently of one another. 91

Instrumental Planning in which not
knowing something generates the need
for both conversation and action. 92

Unexpected Planning in which both
agents have agreed a goal that is
suddenly realised automatically. The task
then becomes a matter of inferring
what has happened.

The general problem of processing events
(utterances or actions). This provides
the mechanism for what to do when
something unexpected happens, thus
improving the robustness of
interaction.

The notion of expecting a reply
illustrating the main processes that an
agent is involved in at the time of an
event (or non-event). Both the process
and the event require reasoning about.

How incoming events and utterances
are processed when robots are allowed
to think in parallel.

xii

93

97

101

102

Fig. 4.4

Fig. 4.5

Fig. 4.6

Fig. 4.7

R e la tiv e speed s of the ag en ts
determ ining (a) utterance order, (b)
utterance content (e.g. dialogue A line 9
and dialogue B line 21, (c) dialogue
length , (d) d ia lo g u e conten t (e .g .
dialogue B lines 11-14 does not appear
in dialogue A), (e) interruption rate
(i.e . d ia logue A lines 7 and 10 are
interruptions whereas dialogue B has
none).

Dialogue of the goal of getting the door
open with the bolt down, illustrating
s im ila r fe a tu re s to fig 4 .4 butw ith
three different speed settings. In A,
Mary dominates by proposing 3 plans,
in B, John dominates by proposing 2
plans, but in C John proposes one plan
and Mary 2. Discussions about beliefs
only occur in A and C.

Relative speed settings can prevent the
main goal from ever being achieved.
Dialogue A contains a circular plan.

Scattergram showing distribution of
conversational procedures/dialogue by
agent and speed setting. This shows
(indicated with a regression line) that
th e c o m b in a tio n s of fa s t /s lo w
slow /fast have a w ider distribution
than slow/slow fast/fast. Although a
one factor ANOVA-Repeated measures
(F<1) indicate no significant difference
in the overall mean (includes zeros for
unsuccessful dialogues) number of CP's
th e re is a c le a r d iffe re n c e in the
kurtosis with more CP's being
allocated to the faster agent,

xiii

108

109

110

117

Fig. 4.8

Fig. 4.9a

Fig. 4.9b

Fig. 4.9c

Fig. 5.1

Fig. 5.2

Fig. 5.3

Fig. 5.4

Fig. 5.5

S um m ary of the num ber of
conversational procedures for a given
leve l of sk ill, sp lit by the various
speed setting s and by agent. For
exam ple, skill level 3 contains any
dialogues that have 3 positive skills
and 3 negative skills, a positive skill
being one of knowledgeable, practical
or perceptive and a negative skill being
one of unknowledgeable, impractical or
imperceptive. A zero indicates that the
dialogue was unsuccessful.

John’s goal of getting the door open.
Mary fast John slow. 7 questions are
asked.

John’s goal of getting the door open.
Mary slow John fast. 3 questions are
asked.

John’s goal of getting the door open.
Equal speed settings. 5 questions are
asked.

The four fundamental planning
mechanisms.

The four fundamental planning styles.

The four main kinds of inference
achieved by knowing three pieces of
information and reasoning correctly
about the fourth.

Circular plan.

A circular plan which can be used
constructively to do an experiment.

xiv

118

119

120

121

126

128

131

153

156

Fig. 5.6

Fig. 6.1

Fig. 6.2

Fig. 6.3

Fig. 6.4

Joint plan tree. Line 297, dialogue from
section 5 .1 .3 . Illustrating the order in
which the physical goal gets executed.
The type of planning mechanism and the
state of the goal are also needed for
unique interpretation. 157

Sample code for an Instrumental Test. 167

Hypothetical dialogue illustrating how
one generic procedure NEOTELL can
generate all conversation for Power's
robot world. Input parameters include a
schem a for causa l ru les about
conversation (that contain variables X
and Y) and the d iffe re n t kinds of
physical planning (that instantiate X and
Y). 193

Asking the question “Is the bolt up?”
using NEOTELL 199

Degrees of conflict with NEOTELL. 200

xv

Acknowledgements.

Keith Oatley assisted with the empirical investigation and

corrected numerous earlier drafts of this work described in

chapter 2.

Simon Garrod offered many helpful comments during the re­

drafting stages. B. Neill and T. Kennedy also assisted with some

proof reading.

Technica l ass is tance in term s of com puting fac ilitie s

w ith in the P s y ch o lo g y d e p a rtm e n t w as a lso g ra te fu lly

appreciated. This work was further supported by a three year

SERC grant from Sept 1987 - Sept 1990.

Finally Steve Draper’s assistance over the last five years

could not possibly be measured or explained, but amongst many

things, acted as my supervisor and provided the main ideas behind

chapters 2, 4, 5 and 6 and constantly supplied me with ideas about

the parallels between conversation and action.

xvi

Abstract:
Following Austin’s work, some theories have attempted to

develop the idea that utterances can be understood as actions. In

Artificial Intelligence there has been a body of work trying to do

this in terms of joint planning. Previous work has been of two

kinds: building up from the basic units of utterances and speech

acts, or building down from external goals and trying to model

connected sequences of utterances i.e. conversation. This thesis

extends the latter tradition.

After an initial empirical investigation, two new claims are

made. Firstly the computer program, listed in the appendix, shows

how time slicing changes dialogue outcome in interesting ways.

Secondly an exhaustive planning framework for Power’s robot

world provides agents with better conversational skills than

those reported so far.

Finally the thesis discusses the drawbacks encountered in

the em pirical investigation and proposes a new basic unit,

NEOTELL, a single generic unit of mutual agreement out of which

whole conversations can be formed and an agents external goals

achieved.

xvii

Chapter 1.

Introduction.

1

1.0 Introduction.

The following thesis stems from the insight due to

Austin (1 9 6 2 ,1 9 7 0) that u tterances are actions and not

propositions. W ithin Artific ial In te lligence this has led to

implementing, Power (1979), a theory of joint planning on a

computer in such a way that it strives to understand how

action sequences are strung together. Finally it should also be

embodied within a theory of purposeful communication as

whole.

Figure 1.1 represents four exam ples of in teraction

b e tw e e n two ro b o ts /h u m a n s . On the le ft s ide is a

conversational exchange and on the right side the couple

interact by touch only. In the first pair of exchanges the

1. John: Mary

2. Mary: Yes

OR
AA

A A
Figure 1.1 The equivalent action for a call bv name is a tap on
the shoulder.

2

in itia tion involves a “sum m ons”: e ith er John calls Mary

(c o n ve rs a tio n a l) or he taps her on the shoulder (non-

conversational). Similarly in the second pair Mary responds

with a “Yes” (conversational) or by nodding her head (non-

conversational). In Figure 1.2 both robots/humans initiate a

summons either by “a call by name” or a “tap on the shoulder”

simultaneously and I am concerned with the problem of how

agents coordinate such communications.

Figure 1.2 Agents Mary and John speak at the same time.

These are crystal clear examples of how communication can

occur through either language or action. Since they are the

simplest I shall be studying them rigorously until a theory

evolves that provides the foundation necessary to build a

complete theory of conversation.

Although throughout the thesis I shall be in the main

considering robot dialogue simulation. I am interested in

1. John. Mary ... 2. Mary. John

3

Figure 1.3 Human purposeful dialogue,

human purposeful dialogue similar to that il lustrated in f igure

1.3 above. I shall be trying to compare this dialogue with the

dialogue generated using a computer simulation.

I am not interested in purposeful monologue as

Figure 1.4 Human purposeful monologue,

i l lustrated in f igure 1.4 above. Nor one-sided dialogue as

il lustrated in Weizenbaum’s (1966) simulation below.

4

1. Human: Men are all alike.
2. Computer: In what way?
3. Human: They're always bugging us about something or other.
4. Computer: Can you think of a specific example?
5. Human: Well, my boyfriend made me come here.
6. Computer: Your boyfriend made you come here.?
7. Human: He says I'm depressed much of the time.
8. Computer: I am sorry to hear you are depressed.
9. Human: It's true. I'm unhappy.
10. Computer: Do you think coming here will help you not to be unhappy?
11. Human: I need some help, that much seems certain.
12. Computer: What would ft mean to you If you got some help?

Figure 1.5 ELIZA. Weizenbaum (1966). Connectedness
in terms of minimal understanding.

Similarly, I am not going to be concerned with sub-dialogues as

illustrated with the Winograd (1972) SHRDLU program below.

' A
l 3 tB *

Put the small block
on the big block.
>Okay.

2 1
3 *

Is the big block
under the small
block?
>Yes.

3 Put the pyramid
on the big block.
>Okay.

J 1

4
Did you touch any
block before you
put the pyramid
on the big block?
>Yes. The small
one.

5
Can the table pick
up blocks?
>No.
Put the pyramid
on the table.
>Okay.

6

JL

Figure 1.6 Connectedness. Winograd (19721.
Connectedness in terms of action.

Finally, before we go any further I should also make it

5

John

Figure 1.7 Natural language generation.

quite clear that we are not going to be concerned with the

above dialogue illustrated in figure 1.7.

1.1 Communication not language.

The f i r s t q u e s t io n I w ish to c o n s id e r is th a t

communication can be expressed either through language or

action and therefore a dialogue system must have both of these

methods at its disposal. Without this feature the dialogue

becom es d i s jo in t 1 (see also chapte r 3 for an in depth

d iscuss ion about other systems). Next is the point that

1 That is to say the program has two different reasoning processes for similar
problems. For example, in Power (1979), looking to see whether the bolt is up
can be reasoned either within the physical planning algorithm or within a
conversational exchange. There is nothing wrong with this except that in some
instances (see also chapter 6) it makes it harder to provide a standard theory.

6

conversational coordination is a feature of dialogue as opposed

to monologue. Thus I shall be concerned with the problem of

whether or not the conversation succeeds as a whole rather

than just in terms of its individual component utterances.

There is also the controversy of efficiency (saying just

enough to communicate the purpose, e.g. “John, open the door now.")

versus explicitness (saying everything that can be said e.g.

“John, Could you please open the door when it is most convenient for you.”) that

was first discussed by Searle (1969,1975) and Grice (1975)

and more recently by (Power 1987, Stubbs 1986). In linguistic

philosophy, this was discussed in terms of direct and indirect

speech acts and the princip le of exp ress ib ility . N atural

conversation was considered as fulfilling the right balance

between what is said and what can be assumed by following

Grice’s maxim of quantity (see Stubbs 1986: p9).

I shall be adopting explicitness which encourages the

idea that a computer model of dialogue must be able to say all

that can be said before it is concerned with efficiency. Other

systems treatment of this are dealt within the discussion of

existing literature in chapter 3.

Then th ere is the question of co h eren ce . How do

utterances hang together? Hirst (1981) studied the problem in

relation to anaphoric reference. Garrod and Anderson (1987)

7

1. Human: What does the box contain?
2. Computer: The blue pyramid and the blue block.
3. Human: What is the pyramid supported by?
4. Computer: The box.
5. Human: How many blocks are not in the box?
6. Computer: Six of them.
7. Human: Can the table pick up blocks?
8. Computer: No.
9. Human: Can a pyramid support a pyramid?
10. Computer: I don't know.
11. Human: Will you please stack both of the red blocks and either

a green cube or a pyramid?
12. Computer: Okay.
13. Human: Had you touched any pyramid before you put the

green one on the little cube?
14. Computer: Yes, the green one.
15. Human: When did you pick it up?
16. Computer: While I was stacking up the red cube, a large red

block and a large green cube.

Figure 1.8 SHRDLU. Winoarad (1972). Connectedness
in terms of pronoun reference.

studied this problem in terms of semantic coordination and

Winograd (1972), see figure 1.8, discussed this in terms of

pronoun reference. In this thesis I shall be studying coherence

by considering conversation as though it were coherent action.

The first stages of this involve considering a lte rn a tiv e

communicative methods for achieving the same goal. On the one

hand simple coordinated action sequences and on the other by

action sequences that are coordinated through discussion.

This work then follows on from Power (1979), who

modelled a kind of conversation that made use of a physical

settin g . In his system , the con versatio n a l and physical

mechanisms were, in the main, detached from one another and

in itia lly I shall be concerned with how to im prove the

8

coordination of both these processes. As a starting point, I

shall consider the programs of Power (1979) and Houghton

(1986). I shall make no contribution to “Artificial Intelligence

Joint planning” nor any contribution to a kind of “planning

a lg o r ith m ” but in s te a d I s h a ll try to a p p ly A r t if ic ia l

Intelligence planning to the development of a theory about

conversational skills.

This thesis will be concerning itself with the problem of

the coordination of semantically planned sentences as opposed

to problems of syntax or natural dialogue generation. Finally I

shall be concerned with the problem of what constitutes a unit

in conversation. A number of definitions have been offered so

far: Power in terms of a conversational procedure and Houghton

in term s of an In teractional fram e. These replaced older

attempts such as the adjacency pair, Sacks, Schegloff and

J e ffe rs o n (1 9 7 4) , and the speech act, S e a r le (1 9 6 9) ,

definitions.

1.2 Summary storv.

The first point to note is that there are physical and

conversational equivalents that allow us to express the same

thing (see the implementation discussion in chapter 5 and the

design chapter 6). For example, in figure 1.9, if you want to

9

(State of the world is
[door shut, bolt up, John out, Mary in])

1. John: Will you help me get in?
2. Mary: By all means.
3. John: I suggest we get the door open and then I move.
4. Mary: All right.
5. Mary: How do you get the door open?
6. John: I don't know.
7. Mary: Shall we do an experiment?
8. John: Okay.
9. Mary: I suggest I push the door.
10. John: All right.

(State of the world is
[door open, bolt up, John out, Mary in])

11. Mary: I have pushed the door.
12. John: I see.
13. Mary: The door has changed position.
14. John: I see.
15. Mary: The door is now open.
16. John: Right.
17. Mary: Pushing the door causes the door to change position,

when you are in.
18. John: I see.

Figure 1.9 Simplified dialogue of SUPERPOWER (see
program listing given in the appendix) illustrating
experimental joint planning in which exhausting all
permutations bv trial and error allows the goal to be
achieved.

know how to do something you can either ask for advice or

experiment until you find the answer.

The next problem to address is how agents assess the

new situation just after an action has occurred (see the

dialogue simulation of time slicing discussed in chapter 4 and

the section on Unexpected planning in chapter 5). For example,

in Power (1979) fig 1.10, this is embedded within the

10

DOOR SHUT

JOHH OUT

& i f
A p ABOLT

UP

1. John: Mary
2. Mary: Yes.
3. John: I want to suggest a goal.
4. Mary: Go ahead.
5. John: Will you help me get In?
6. Mary: By ail means.
7. John: I suggest we get the door open and then

(State of the world is now
[John out, Mary in, bolt up, door shut])

11. Mary: | have pushed the door.
12. John: | see.
13. Mary: The door has changed position.
14. John: Yes.
15. Mary: The door Is now open.
16. John: Right

(State of the world is now
[door open, bolt up, John in, Mary in])

6. Mary: All right.
9. John: I suggest that you push the door.
10 Mary: All right.

(State of the world Is now
[door open, bolt up, John out, Mary in])

I move. 17. John: | have moved.
18. Mary: | see.
19. John: | have changed position.
20. Mary: Yes.
21. John: | am now in.
22. Mary: Right

Figure 1.10 Power's robot world. Simplified dialogue
illustrating classical joint planning techniques for
achieving a single physical goal, without utterance
priming, adapted from Power (1979).

conversational procedure. In a reactive environment they must

also coordinate what they learn. Next is the problem of how one

robot responds to the surprises that are thrown on it. The

problem of reacting and responding to what actually happened

versus what to expect. W hat counts is the combination of

strong expectation versus surprises. The time slicing (see the

M onte Carlo dialogue sim ulation discussed in chapter 4)

illustration, figure 1.11 below, demonstrates robustness

for conversation. This involves the problem of coordinating a

11

discussion in which both ag en ts are a llow ed to th ink

simultaneously. As a first step a definition of an increment of

program code is required, since at any stage a conversational

Dialogue A Dialogue B
Input variation: Input variation:
John Slow Mary Fast John Fast Mary slow

1. John: Mary. 1. John: Mary.
2. Mary: Yes. 2. Mary: Yes.

5. John: Will you help me get the door open? 5. John: Will you help me get the door open?
6. Mary: By all means. 6. Mary: By all means.

9. Mary: I suggest that I push the door. 13. John: Can you push the door?
10. John: Mary. 14. Mary: Yes.
11. Mary: Yes.

19. John: Is the bolt up?
14. John: Is the bolt up? 20. Mary: Yes.
15. Mary: Yes.

21. John: I suggest that you push the door.
16. John: All right. 22. Mary: All right.

(State of the world is now (State of the world is now
[John out, Mary in, bolt up, door open]) [John out, Mary in, bolt up, door opt

Figure 1.11 Time slicing dialogue from a run of the
program SUPERPOWER, listed in the appendix, illustrating
a feature of continuity (i.e. the relative speeds of thought
of the robots ̂ that can be explained in terms of the
program's dynamic (i.e the alternative dialogues A and B)
and static (i.e. the listing of the program SUPERPOWER in
the appendix^ structural representations.

program needs to be able to critically reason about itself. Next

I have extended the way in which robots can use knowledge

through the use of testing (see section on Instrum ental

planning discussed in chapter 5). Thus if an agent and partner

do not know something they can act out a test in order to infer

12

what happens as a consequence of such a test2 .

Finally, there is the general issue about incorporating

different levels of goals that are brought to the conversation

(see the empirical investigation discussed in chapter 2). In

brief, this theory involves defining four levels. At the top

level 1 are the goals external to the conversation, at the next

level 2 are the topics or sub-goals that are achievable through

conversation, at level 3 is the unit of a coordinated exchange

of utterances and finally at level 4 is the coordination of the

mode of communication. In order to explore this notion I have

Could you show me
how to do Double­

sided photocopying ?

By all means^

Figure 1.12. The double-sided photocopying task
(conversation bv two humans).

incorporated an experiment to see whether subjects could be

trained to adhere to this theory of levels. In doing so I have

incorporated two tasks (il lustrated in f igures 1.12 and 1.13)

that require cooperation in order to achieve the main goal. The

2 In answer to a direct question such as “Is the bolt up?” there are four main
alternatives (1) Yes (2) No (3) I don’t know (as mentioned here and discussed in
detail in chapter 5) (4) A meta-action response such as pushing the door
(section 6.3.7).

1 3

conclusions about these cooperative tasks also remind us of

the d i f fe re n ce be tween na tu ra l c o n ve rsa t io n and those

simulated by programs. In particular some of the data could be

i n te rp re te d as th ro w in g d o u b t as to w h e th e r hum an

communications coordinate their activity in

the way that the Artificial Intell igence joint planning theory

currently proposes. This fai lure suggests that we should be

looking for indirect coordinat ion in terms of constrain ts. I

shall be discussing this issue, together with a corresponding

Artif icial Intelligence solution, at the end of the thesis.

Could you push
the door? /

By all
means

Hidden nail, initially unseen
by both participants.

Figure 1.13 The task of getting through a closed
door (conversation bv humans, one blindfolded).

1 4

Chapter 2 .

An empirical investigation. Goals in conversation:

lent and a measure of natui

3 The theory of levels discussed in this chapter is explained in Draper, Oatley and
Garrod (1987). A version of this chapter was submitted to Language and Cognitive
Processes under the same title cited also here as Oatley, Draper and Button (in press).
The main aim of including it here is to provide the reader with some insight into the
problem of independently assessing naturalness in computer dialogue. It builds on the
work of, for example, Hobbs and Evans (1980) since I indicate an explicit rather than
subjective assessment of Al planning in relation to human dialogue transcripts. That is to
say, it compares human dialogue with Al theory in a statistical fashion as opposed to a
direct philosophical interpretation as they and others (e.g. Suchman 1987) did.

15

2.0 Introduction.

D e m o n s tra t in g re la t io n s h ip s b e tw e e n e m p ir ic a l ly

ob served human perform ance and psycholog ica l theory

instantiated in artificial intelligence programs has always been

problematic. Similarly, what actually occurs when people talk

with one another has not always been closely reflected in the

preoccupations of formal linguistics.

In this chapter I hope to contribute to a reduction of both

these shortcomings by relating human conversation to a

program of Power (1979) that simulates conversation. I do this

firstly by offering some clarifying commentary on Power's work

and its relation to other research on conversation and secondly

by proposing that purposeful conversation generally can be

understood in terms of a hierarchy of goals. Finally I describe

an experim ent in which people judged a transcrip t of a

conversation using categories derived from my theory but which

led to an outcome that I had not anticipated.

Three important components are commonly referred to in

discussing the structure of conversation (a general account of

other aspects to these components can be found in Clark

(1985)).

The first is work on speech acts, in which it is claimed

that utterances have an element of purpose. This research was

16

initiated by Austin (1962) and Searle (1969) continued to

develop this idea.

The second is Grice's (1957 ,1968 ,1975) proposal that

conversation is coherent and based on a co-operative principle.

Grice's maxims state that, when conversing, people must say

about the right amount for the purpose in hand, be truthful, be

re levant and be clear. Th ese broad rules help to shape

conversation. If they are not followed the conversation becomes

tedious, or unacceptable.

The third is the idea of Sacks, Schegloff and Jefferson

(1974), that in a conversation each person takes turns to speak.

This has led to work on what a turn might consist of (e.g. Clark

and Schaefer, 1987). Questions include how conversants yield

their turn to the other person, how the end of a turn may be

recognised, and so on.

Influential though all these proposals have been, each

takes us only some of the way towards understanding how

conversation is organised. So the proposal of Austin and Searle

that utterances are purposeful is helpful, but it leaves us with

an image of isolated speakers assuming that hearers have

known prop erties and th a t they can be acted upon

instrumentally. Grice's maxims indicate general rules about how

to make an utterance useful, that is to say effec tive at

17

achieving communicative goals, but they are stated in a very

general way. Furthermore neither the theory of speech acts nor

Grice’s maxims tell us anything about how speakers co-operate,

or what the structure is that holds a set of utterances together

in a con versa tion . Sacks et al. identify the a lte rn a tin g

contributions of participants but say nothing about what goals

these contributions serve.

A partial solution to all these problems was offered by

Power (1979) in an Artificial Intelligence program. He proposed

that purposeful conversation is based on joint planning. In other

words, when conversation is purposeful it is based on the

construction of a plan, of which both speakers hold a copy.

Speakers offer suggestions for construction or repair of any

component of a developing plan. In this paradigm, conversation

is a progressive sequence of moves, each establishing an

increment of agreement in the process of constructing the plan,

and with each person enacting those parts of the joint plan that

can be performed during the conversation.

Power's decisive innovation was to conceptualise the

atomic element of conversation not as a turn, not as a single

utterance, and not as an act by which one person affects

another, but as a set of utterances distributed between the

conversants , each of which estab lishes an increm ent of

18

agreement between them. Typically the heart of a unit is a pair

of utterances, such as a proposal and an assent, a request and a

reply, an announcement and an acknowledgement, and so on. The

proposal thus combines a generalisation of the structural notion

of two turns in an adjacency pair, the notion of utterances as

purposeful actions aimed at achieving conversational goals, and

a focus on co-operation, mutuality and agreement.

Power's proposal is, as it were, structurally deeper than

the idea of taking turns. It is that if conversation achieves a

purpose, i.e. an overall goal, then it can be understood in terms

of the procedures by which sub-goals are achieved. Unlike

planning by a single agent, however, sub-goals are achieved

jointly. The structural notion of turn-taking thus becomes

subordinated to the functional idea of describing how a purpose

that can affect both conversants may be accomplished, when, in

general, neither participant can accomplish this purpose alone.

So one person may not know something. He or she may therefore

ask the other, who may co-operate by providing an answer or by

letting the first know that he or she cannot help. In such an

exchange, what is accomplished is that the first speaker's goal

of acquiring some knowledge is made explicit. At the same time

the first speaker's goal is accepted by the other who may then

help to fulfil it, or say that he or she cannot help. In completing

19

the joint procedure the two conversants achieve a small

increment of agreement between them.

The basic unit of conversation can, as Power suggested,

best be called a 'conversational procedure'. The name draws on

the computational idea of a procedure which is a coherent set of

actions that, when invoked with the right preconditions,

delivers a result which is the goal of the procedure. The

qualifier 'conversational' indicates that the result is achieved

jointly, and by means of speaking. A conversational procedure is

co-operative. It requires two agents to accomplish it. One

initiates and the other participates. The result achieved is an

increment of agreement between the two participants in the

conversation.

The program proceeds by having one or both of the agents

pursue a specific goal within the context of initial conditions

and beliefs. As an example, one agent might be given the goal of

getting into a room, i.e. changing its state from Out to In, but be

unable to change the state of the bolt because it is on the other

side of the door. The agents then converse to negotiate goals,

construct plans, exchange knowledge and act. A recognisable

conversation arises naturally out of attempts by the agents to

co-operate in a mutual plan. More fundamentally, basing the

conversation around the building of a jointly acceptable plan is

20

the most natural way of motivating adherence to Grice's

principle of co-operation.

This idea has been extended by Houghton (1986). He

considered that conversation, rather than being simply a set of

moves by the speaker and hearer, was a series of interaction

frames, comprising an initiation, an addressee and a monitoring

of the uptake of what was said. In each fram e there is

knowledge about the interaction type which helps both the

speaker and the hearer know what is expected within the

conversational procedure. So, for Houghton, the unit of

c o n v e rs a t io n is a c o n v e rs a t io n a l p ro c e d u re w ith in an

interaction frame which, as in Power, can best be described by

the type of conversational goal that it needs to serve. In

Houghton, if one agent needs to know something or get the other

to do something then it finds the corresponding fram e to

achieve it. What distinguishes Houghton from Power in this

respect is that Power's agents do not reason about which

conversational procedure to use or when it is appropriate (but

see Cohen and Perrault 1979a,b), they just use it when needed

and thus the meaning of a unit of conversation in terms of a

conversational procedure is less clear. What is common to both

definitions is that the effects of the exchange are analysed

within the conversational procedure rather than as part of the

21

main action cycle.

2.1 Levels of goals in conversation.

The theoretical proposal I wish to make is that Power's

approach can be elaborated by structuring conversation in terms

of a hierarchy of goals that the conversation achieves. My main

suggestion is to distinguish between atomic conversational

exchanges, and larger units that correspond to a topic. Power

used conversational procedures of varying length for both of

these.

My proposal is to make these levels of goals explicit, and

to show how they are the basis for purposeful conversations

generally. The levels of goals are as follows.

L e v e l 1. T o p le v e l g o a ls : p u r p o s e s o u t s i d e t h e

c o n versa tio n . When a conversation is purposeful, this means

that participants have goals other than the conversation itself.

The goals are the purposes they aim to achieve partly by means

of the conversation. If any such external goals can be agreed,

then these become top level goals of the conversation. In

Power's case, such a goal might be getting one of the agents in

through the c losed and bolted door. A part of many

conversations, therefore, will be the negotiation of which goals

22

are to be agreed as mutual. The Implication is that participants

both join in the conversation to formulate plans that will

achieve these goals. Thus in the simulation the agents might

discuss whether they will jointly adopt the goal of getting

agent John In.

Leve l 2. T o p ic s u b -g o a ls . The next lower level in a goal

hierarchy concerns topics. Topic sub-goals emerge from the

conversation through the initiation of one of the participants. A

topic sub-goal is a component part of the overall plan tree,

which can be initiated once a top-level goal has been agreed. It

is defined in relation to the agreed external goal, and will be a

means by which a step towards achieving it is attempted. If one

agent were to suggest, for example, getting the door open, this

would be an illustration of a level 2 sub-goal within the

conversation.

Level 3. S u b -g o a ls : m in im al in c re m e n ts of a g re e m e n t.

At the next lower level is the atomic unit of conversation. It

provides the functional basis for taking turns. This type of goal,

then, is at the level in the goal hierarchy below the topic goals.

I propose that a conversational procedure is the atomic unit

because its result or goal is a minimal increment of agreement.

Thus in a run of Power's program one agent may ask the other if

it is In. The other replies: 'No'. Thus they accomplish a minimal

23

increment of agreement about the state of the world. Sequences

of such atomic conversational procedures are connected by

means of the topic sub-goals. Each is initiated to construct

parts of the plan tree dominated by a topic. Typically they occur

in groups based on one topic at a time.

Level 4. Low es t level goa ls : s h a r in g the a i r w a v e s .

Whereas level 1 is about an external purpose, and levels 2 and 3

are about the contents of the conversation, this lowest level

goal is about co-operating to use the medium of communication.

Most obviously, two people should aim not to speak at once, or

neither will be able to understand the other. This goal is a

generalisation of the idea of taking turns.

2.2 The categorisation procedure.

If this theory of the structure of conversation is correct,

then I should be able to take transcrip ts of purposeful

conversations and analyse them to identify goals at these

different levels. In this chapter, I concentrate on minimum

increments of agreement. If this is a valid concept, then the

first step would be to identify what constitutes such an

increment.

I will a lso re fer to c o n v e rs a t io n a l p ro ced u res as

'exchanges'. Broadly speaking they fall into the five groups

24

shown below. The notation is as follows. The conversation

involves just two participants, Speaker 1 who initiates the

exchange, and Speaker 2 who participates in it. An utterance is

something said by either speaker and it ends when the speaker

stops or yields to the other. An exchange is a set of one or more

utterances as indicated in square brackets []. Here are the five

groups, with examples.

(i) Utterance plus elision.

Speaker: [Utterance — No effect]

For example: [“Can you pick up some milk?” — ...]. For Speaker 1,

the lack of reply is the most ambiguous of responses. It may or

may not mean that the opening utterance has been received, and

may or may not mean that it will become part of a plan.

(ii) Utterance plus a change in the state of the world.

Speaker: [Utterance — State change]

Here the utterance itself produces a change in the state of the

world as in the kind of example offered by Austin e.g. [“I

pronounce you man and wife”]. More frequent examples also

occur. “I promise to bring the book back tomorrow” has the

effec t of changing the s tate of the world by creating a

commitment.

25

(iii) Utterance plus an action.

Speaker: [Utterance — Action — State change]

Here an utterance is followed by an action which in turn

changes the world, as in [“Pass the salt please”] — followed by

the action, and its effect.

(iv) Two or more utterances involving discussion of some piece

of information.

Speaker 1: [Utterance —

Speaker 2: Utterance]

This is the most easily recognisable, and perhaps commonest

kind. An utterance of Speaker 1 is followed by an utterance of

Speaker 2, for instance: [“It's raining”. — “I'll be OK.”].

(v) Two or more utterances involving the discussion of the

result of some old piece of information (see Power 1984).

Speaker 1: [[Utterance —

Speaker 2: Utterance]

Speaker 1: Utterance]

In this kind of example embedding occurs, so that the opening

utterance picks up a piece of information previously discussed,

26

as in [[“So we won't go to that movie after all.” — “No”] — “All

right then.”].

Although exchanges often relate back to previous parts of

a dialogue, the idea of the minimal increment of mutual

agreement indicates that utterances are not necessarily linked

semantically to one another. In the example given for group (iv),

no amount of semantic machinery could link 'I'll be OK' to

Speaker 1 's utterance 'It's raining'. However, seen as an

acceptance of a warning, or advice to take an umbrella out,

Speaker 2's utterance delivers a perfectly acceptable result of

a conversational procedure.

Like any procedure, conversational procedures are

designed to exit with a result. Such results will be relevant to

building or executing the mutual plan, which provides the

linkages that hold the conversation together, and provides the

basis for the coherence suggested by Grice's maxims.

As all increments are related to plan trees being built in

the conversation, I can postulate that a small number of

distinct categories of conversational procedure are possible,

namely those that are relevant to planning. Conversational

procedures achieve, as their result, an increment of agreement

in one of the following components of planning. They relate

either to Goals (G), Plans (P), Beliefs (B), or to what I call

27

Conversational Housekeeping (H) which is usually a remark

serving to draw attention to, or comment on the intelligibility

of the conversation itself, thus keeping it from going astray. I

also find that some utterances in human conversation do not,

apparently, contribute to a Level 1 goal in any way. These are

not covered by the theory I am advancing. I call these

miscellaneous (M). Figure 2.1 gives the definitions of each of

Category (G) Goal. In exchanges concerning a goal, participants talk about what
they would like to achieve, although without necessarily saying by what plans
they are going to achieve it. A goal is a state of mind, an effect that people would
like to see happen in the world or in their own mind or in the other person's mind.
Goals are achieved by plans and sometimes involve exchange of beliefs.
Category (P) Plan. Exchanges concerning a plan typically involve some question
of what the people might do next, or how they might achieve some effect. Plans
are in general about the future, and about how the world is to be adjusted to fit
some goal. A plan may have just one step, or several. To make a plan, actors
often discuss or negotiate ways of doing something before acting. Often it is
necessary to think about the order in which actions must be performed to have a
desired effect. Plans also sometimes involve considering actions which may not,
in the end, be successful.
Category (B) Belief. Exchanges about beliefs concern information about the world
in the present or past, either about general knowledge or things that can be
known directly. They can be about what people think, suppose, remember or
perceive about the world. Beliefs are essential to plans because plans can only be
constructed on the basis of models of how the world works and the effects of
actions. Questions of belief concern knowledge which may be true or false.
Whereas a goal implies that the world should be changed by a plan to fit a state of
mind, a belief is the opposite. It involves a person's state of mind that could be
changed to fit the world in some way. Hence as well as beliefs being involved in
discussions of plans, they may also be discussed as to their correctness.
Category (H) Conversational Housekeeping. Some conversational procedures are
aimed at controlling the other person's participation in the conversation, for
instance by indicating that a message has not been received. These exchanges are
'meta-content' in the sense that they have nothing directly to do with the topic
under discussion.
Category (M) Miscellaneous. Hardly ever used but can be if the exchange does not
fit into any other category.

Figure 2.1. Definitions of five categories of conversational
procedure (exchange).

28

these categories. I have found that in natural conversation

allowances must be made for exchanges involving more than one

category, referred to as compounds (C). After considerable

discussion and refinement of these concepts, and by applying

them to transcriptions of conversations I have recorded, I

decided to test whether they could be understood and applied by

people outside my research group.

This test, which is like a re liab ility test in content

analysis of text, will also serve to present the application of

these concepts in actual dialogues. I will treat two transcripts,

one a slightly augmented version of Power's task in which two

human conversants discuss how to get one of them through a

closed door and the other a discussion between two people on

how to use a photocopier.

The following two conversations were transcribed to

indicate exchanges, the speaker, the hearer, the action and

changes in the state of the world. Wherever possible the coding

also took into consideration elisions, interruptions, pauses,

sounds, eye movements and gestures.

2.3 Getting in through a closed door task.

In Power's (1979) program two agents, in different rooms

and separated by a door, talk to one another. On one side there is

29

a bolt but the agent John has no means to open the door. From

the other side the agent Mary can push the door but has no

means to see. John's goal is to get into the other room with

Mary's help. When humans are asked to act in such a scenario,

the goal of getting in tends to be completed without speaking. In

Agent Utterance G/P/B/H/C Action Change

John and Mary decide to gain each other’s attention in order to
achieve John's goal of getting Into Mary's room.
1 JOHN: [Mary.
2 MARY: Yeh.] H

John starts by executing a plan, sliding the bolt, and then asking
Mary to assist him achieve his goal of getting in by pushing on the door.
He sees it Is not working, and asks why.

JOHN OPENS BOLT BOLT OPEN
3 JOHN: [Can you push on the door?
4 MARY: [Can I what?
5 JOHN: Can you push on the door, MARY PUSHES DOOR NO CHANGE

Mary?] H
6 MARY: [Push the door?
7 JOHN: Yah...] H

] P MARY PUSHES DOOR NO CHANGE

Figure 2 .1 a Sam ple human sub-d ia loaue taken from the
beginning of appendix 1 illustrating the closed door task.

order to test the theory of minimum increment of mutual

agreement, I have extended this situation to include a large

hidden nail running from the side of the wall into the door and

to test it on human subjects instead of agents (see Figure 2.1a

and appendix 1). I have also included a commentary on what the

speakers’ and hearers’ various sub-goals and intentions were at

each stage. In this dialogue there is no discussion about the

goal which probably explains why Mary appears short-tempered

30

throughout the dialogue. In theoretical terms, plans do not

usually work unless there is a mutually-agreed goal. I used this

tra n s c r ip t to tra in a group of sub jects in c a te g o r is in g

exchanges and then gave them the following transcript to test

whether they were able to sort exchanges into those concerning

goals, plans, beliefs and housekeeping.

2.4 Photocopying task.

In the human dialogue of figure 2.1 b and appendix 2 John is

seeking assistance from Mary to photocopy one piece of A4

Agent Utterance G/P/B/H Action Change

14 MARY:
15 JOHN:

16 MARY

[Pardon?
It's alright. I'm just

learning how to do it
at the moment.
Oh I see.] G

Now the rest is straightforward for both of them.
17 JOHN: [Right, so I put that

down there. Right?
18 MARY: ahm... CLOSES LID LID CLOSED
19 JOHN: And press that do I?
20 MARY: Yes.] P PRESSES START MACHINE STARTS

[Then it collects... ONE SIDED COPY
APPEARSBELOW

and goes back you see.] B
[Now now you turn it.] P

Having successfully completed a photocopy of the first side, John hastily
prepares to press the start button again for the reverse side...
21 JOHN: [What I press again? POINTS TO START
22 MARY: No, no. Well... ha ha ha.] P

Fiaure 2.1b Sample human sub-dialoaue taken from the middle
of appendix 2 illustrating the double-sided photocopying task,

paper w ith text on both s ides . The sam e m ethods of

31

categorisation and exchange marking are applied throughout.

2.5 Description of Experiment.

I now describe an experiment to see whether subjects can

categorise exchanges in the photocopying transcript after some

training with the transcript of getting through the closed door

(see appendix 1 and figure 2.1a).

2.6 Subjects and procedure.

Eighteen final year undergraduates at Glasgow University

were subjects. They were told that they would be asked to judge

some human conversational exchanges, and to assign each to a

category: Goal, Plan, Belief, Housekeeping or Miscellaneous.

They w ere each given a sheet of paper con ta in ing the

descriptions as shown in Figure 2.1. For each category, they

were read out an example of an exchange that could plausibly

have come from two humans negotiating the task of getting

through the closed door.

Subjects were told that the experiment would be in two

parts, the first being a training session of 45 minutes and the

second being the actual experiment taking 15 minutes. The

subjects were given a copy of the transcript of the task of

getting through the closed door, as in appendix 1, with the

32

exchanges marked but without the categories that I had

assigned and without the annotations. Then an audio tape

recording of the human conversation was played with subjects

being asked to follow it in the transcript.

Next, subjects were asked to make up imaginary examples

for each of the five categories of exchange for getting in

through a closed door, to write them down in an order other than

that given in Figure 2.1, and to record separately the category

they had in mind for each example. Then, in pairs, subjects gave

their examples to a partner, who was asked to categorise them.

Subjects then compared their partners categories with their

own, discussed each example, and came to a consensus where

there were differences.

Next, I asked subjects to categorise a transcript of a

conversation about getting in through a closed door, but not the

one given in appendix 1. Again I asked subjects first to assign a

category to each exchange, then to discuss it with their

partners, and then to come to a joint decision. Next the

experimenter ran through the transcript with the whole group of

subjects, giving the categories assigned by the experimenters

to each exchange, and discussing briefly all examples where

s u b je c ts had a s s ig n e d d if fe re n t c a te g o r ie s than the

experimenters.

33

Finally, in the training session, all the steps in the

previous paragraph were completed using the transcript of

appendix 1. I then removed all papers other than that with the

categories (Figure 2 .1). I distributed the transcript of the

photocopying task (appendix 2), again with exchanges marked

but uncategorised, and without annotations. I described the task

briefly, played an audio-recording of the conversation and asked

subjects, without consultation, to categorise the exchanges of

the task.

2.7 Results of Experiment.

Overall, for the 19 exchanges in this transcript, the

percentage agreement between subjects and ourselves was 51%,

and respectively for each category: Goal 46%, Plan 50%, Belief

54%, and Compound (Plan-Belief) 52%. I did not assign any

instances of Housekeeping in this transcript, and consequently

there is no percentage agreement for this. The degree of

agreement for each exchange in the transcript is shown in

appendix 3.

A summary can also be made of the patterns observed

when subjects coded categories that were not in agreement

with my own choice of category. Figure 2.2 shows that there is

some evidence that subjects do not disagree randomly but are

34

coding certain categories. One explanation as to why subjects

coded different categories was that they thought that the

conversational exchange referred to a category that was higher

up the goal hierarchy. This, to some extent, may explain why

subjects chose different combinations of G,P,B,C:B,P from

E
X
P
E
R
I
M
E
N
T
E
R

Figure 2.2. Summary of appendix 3 showing the percentage
agreement of subjects with the experimenter's categories
and also the percentage frequency with which subjects
recorded other categories. The last column shows the total
number of cases (19 exchanges * 18 subjects = 342)
considered for each category.

the experimenters. Differences of categorisation therefore

came, not through subjects’ misunderstanding of what they had

been asked to do but because they genuinely felt that the

exchange referred to another aspect of the main plan further up

the goal hierarchy.

Subjects

G P B C:B,P H O # cases

G 46% 13% 0% 0% 20% 20% 54

P 0% 42% 22% 13% 12% 11% 144

B 0% 13% 51% 2% 14% 19% 90

C:B,P 2% 19% 32% 19% 5% 24% 54

H, 0 - - - - - - 0

35

2.8 Discussion.

I interpret my results as modestly consistent with the

hypotheses concerning the theory of conversation proposed by

Power, and in terms of the hierarchy of goals that have been

proposed. That I was able to obtain fifty one percent agreement,

with a small amount of training and by people who had no

6

5Frequency
4

Conversational
Exchanges $

2

i

o
so 100o 20 40 60

% Agreement

Figure 2 .3 Graph showing the distribution of percentage
agreement. The majority of the conversational exchanges (over
80%) could be categorised with over 40% agreement. Over half
of the conversational exchanges could be categorised with
between 50% and 70% agreement, the mean being just over 50%.

special expertise in making such codings, indicates that the

categories I chose make some intuitive sense (see also figure

2 .3) . By com p ariso n , h ighly tra in e d ra te rs (i .e . the

experimenters who assisted with this experiment) of carefully

constructed interview schedules would expect to achieve about

70% agreement on responses to items of an interview schedule.

There is one final point on the percentage agreement of

36

51%. Closer examination of the data shows that when subjects

did not agree with the judgment of the research group they

tended to go for similar categories which suggests that a

cluster analysis may have been a more appropriate measure than

simply a percentage agreement analysis. This would have

measured not only the degree of agreement with the research

group, as shown in figure 2.2, but also the level of agreement

amongst subjects.

Some confusion obviously existed about the different

categories. For example some subjects found it difficult to

dis tingu ish be tw een a plan and a be lie f. One possib le

im provem ent might there fo re be a further re finem ent in

ca teg o ry d e f in it io n . A be tte r m utua lly exc lu s ive set of

categories might have been Goal, Causality, Propositional

Content, Fact, Conversational Housekeeping. It would have also

been useful to choose new transcripts in which the main

physical goal was known by both participants in advance.

Purposeful human conversations can, to some extent, be

thought of as being made up of exchanges, each of which

achieves an increment of agreement about a goal, a plan or a

belief, as discussed in the introduction to this chapter. I now

move on to discussing some enhancements that I propose to

make to Power’s program that help to reinforce these findings.

37

Chapter 3.

Connectedness in Al dialogue.

38

3.0 Introduction.

In the previous chapter I showed that a joint planning

th e o ry , v iew in g d ia lo g u e as g o a l-d ire c te d , is a useful

description of purposeful human conversation.

In this chap ter, I discuss early work on com puter

dialogues that are not goal-directed and explain the progression

to more recent developments. Particular attention is paid to

describing computer systems that actually have a natural flow

as opposed to those that demonstrate only one aspect of

dialogue. In this chapter I include the non-goal oriented systems

of ELIZA, Weizenbaum (1966), SHRDLU, Winograd (1972),

PROTEUS, Davey (1978) that display monologues or one-sided

dialogues together with techniques that could be used to go into

monologues such as conceptual dependency, Schank and Reisbeck

(1981). I then briefly look at alternative recent developments

for goal-directed systems, e.g. Shadbolt and Musson (1987) and

Carletta (1990) and techniques that go into the components of

d ia lo gu e e .g . Cohen and P errau lt (1 9 7 9) in term s of

conversational planning and Fikes and Nilsson (1971) in terms

of physical planning.

I did not use any of the above , how ever, in the

development of my own system SU PERPO W ER since I was

interested in considering a very simple domain with a very

39

simple main goal and a much greater variety of knowledge and

conversational skills. This explains why my main concern,

however, is to move onto, and discuss, the complete dialogue

system of Power (1979) which was the first goal-directed

account of how joint planning provides a theory for the

structuring of dialogue and is described in section 3.3. The

systems of Houghton (1986,1989), Houghton and Isard (1987)

and Power (1 9 7 4 ,1 9 7 9) are then discussed in a detailed

com parison in section 3 .4 . I then finish the chapter by

explaining how SUPERPOWER (section 3.5 and chapters 4 and 5

listed in the appendix) is an enhancement on these latter two

systems.

3.1 Early Al models of dialogue.

In this section I focus on systems that are more about

monologue, one-sided dialogues, sub-dialogues and the problem

of how to interpret appropriate techniques that can be applied

to these special types of purposeful conversation. Often these

systems can not interact with a copy of themselves and there is

no concept of a mutual plan which is often left up to the human

user.

40

ELIZA4, Weizenbaum (1966), was the first system that

demonstrates connectedness in conversation. It is an attempt to

im itate a psychotherapist interacting with a patient in a

therapeutic conversation similar to those described by Freud

(1904), Jung (1910) and Rogers (1951). It has absolutely no

knowledge of the world and thus, by concealing its lack of

understanding, W eizenbaum can simulate the activity of a

counselling session (see figure 1.5). In this system he shows

how rep etit ion s can be avo ided by random ly choosing

alternatives. He demonstrates a kind of naturalness (chapter 2

in this thesis), since some subjects, when confronted with the

program, have found it hard to believe it originates from a

machine.

In contrast to ELIZA, Winograd’s (1972) SHRDLU 5 knows a

great deal about its domain and which consists of a room full of

blocks of different shapes and sizes. The user can issue a

multitude of instructions and commands such as “Put the big

blue block on the big red block”, or questions such as “Is the

green block on the red b lock?”. H ow ever, a lthough the

discussions are always correct, the dialogue is severely limited

4 PARRY (Parkison, Colby and Faught 1977), a paranoid agent that could engage in
conversation with a psychiatrist was an extension of the same principles behind ELIZA
except that a more generalised pattern matcher was used to pick out a specific
connotation of the utterance rather than its syntactic form. Connectedness was achieved
by interpreting every utterance in a paranoid way.

6 Understanding discourse and text has also been treated as the same thing in
Psycholinguistics; see for example Sanford and Garrod (1981).

41

by the syntax, semantics and planning algorithms of the small

domain. Connectedness is demonstrated by the program’s ability

to remember where all the blocks are, to respond with an

appropriate action or utterance, and finally to use the correct

pronoun reference6. Figure 1.6 illustrates how W inograd ’s

stimulus response mechanisms appear to have more credibility

than those offered by Weizenbaum in that the program exhibits

sensible behaviour within the limited world that it knows

about.

SHRDLU is limited in its simulation of dialogue structure

(i.e. there are exchanges but none of the exchanges relate to one

another and are randomly chosen by the human user). This is due

to the absence of an organised structure of goals for the

dialogue. Winograd’s program does not address the issue that

dialogue is not simply about ordering an agent to do things by

choosing random goals but that it also involves co-operative

activity. Nor is dialogue about choosing random responses (as

Weizenbaum) but on the contrary it has to have an element of

structure in its execution. Winograd does however achieve

connectedness in terms of what the system knows and can do in

the world, as illustrated in Figure 1.8. The element of structure

in dialogue (e.g. a continuing plan) is the main idea in this

8 Anaphoric reference is not discussed in detail here, but see for example Hirst
(1981). Garnham (1985) discusses some of the deficiencies of Winograd’s program in
this respect.

42

thesis which I shall be taking up in more detail in later

chapters.

Another strand of work has considered the problem

of how it is possible for a system to explain itself.7 PROTEUS,

Davey (1978), was one of the first attempts at describing a

^ I 'm going to
start the
game

Your move.
2>

3>
£l

Your move.

4>

3> 9 X
*
0

Your move

65 0 X
0 X X

V

7>
O IX
0 X x

S I o

I have won the
game.

03 SPOUT;

9>
The game started with my
taking a corner, and you
took an adjacent one. I
threatened you by taking
the middle of the edge
opposite that and adjacent
to the one which I had just
taken, but you blocked it
and threatened me. I
blocked your diagonal and
forked you. If you had
blocked mine, you would
have forked me, but you
took the middle of the edge
opposite the corner which I
took first and the one
which you had just taken
and so I won by completing
the diagonal.

Figure 3.1 PROTEUS. Davev (19781. Connectedness
in terms of explanation.

system that generates sentences in a principled manner. This

problem was addressed by Winograd, but only partially (see

7 As an alternative to Al approaches to speech production, Harley (1984) collected
samples of errors occurring in everyday speech and by analysing word frequency he was
able to develop his own top-down theory of speech production. For an overview of other
methods such as pauses or hesitations within Psycholinguistics see Garnham (1985: pps
183-204). Butterworth (1980) also presents a variety of attempts at modelling speech
production including a discussion about early Al work, see also Steedman and Johnson-
Laird (1980: pps 111-139).

43

Davey 1978: pp 33), and also by Weizenbaum, but only in the

form of pattern matching without real understanding. After

providing an exhaustive account of very early Al systems Davey

goes on to show how PROTEUS (figure 3.1) can generate

dialogue to explain the rationale behind its moves in a game of

noughts and crosses. It does so by re ta in in g a plan

representation of how it arrived at each move during the game.

Thus, having decided on an appropriate plan or when the game

was complete, the system can then use a systemic grammar,

Halliday (1961) to decide on an appropriate sentence to

construct (Davey, 1978, Houghton, 1986). The system could

therefore explain its choice of moves at any point during the

course of the game. In the example chosen, the program’s

rational explanation for its choice of moves is given when the

gam e has f in ished , thus il lus tra ting some aspects of a

monologue. It could also have discussed things during the game,

thus allowing the user a chance to learn and make a better

response, thus illustrating some aspects of a dialogue.

The d iagram illus tra tes that there is a flow in the

d ia logue which has e ith er an e lem en t of con versa tion ,

demonstrated by its ability to recall all aspects of the changing

world, or an element of stimulus response, i.e. there is an

action associated with the interaction, as described in previous

44

systems. This flow is similar to the SHRDLU program of the

preceding section except that, whereas Winograd focuses on the

problem of understanding questions, Davey concentrates on how

the hearer might generate intelligent replies.

There are some systems reporting a kind of dialogue that

is not goal-oriented and much more like a monologue. That is to

say, the dialogue is often one-sided. The justification for this

is that early Al dialogue systems were not based on sound

1. COMPUTER: Do you like chips ?
2. LEARNER: Yes.
3. COMPUTER: Do you like kiwi fruit ?
4. LEARNER: What is a kiwi fruit?
5. COMPUTER: It has a brown skin.
6. LEARNER: Yes.
7. COMPUTER: Do you like mango ?
8. LEARNER: Yes.
9. COMPUTER: Do you like pomegranate ?
10. LEARNER: Yes.
11. COMPUTER: Do you like papaya ?
12. LEARNER: No.
13. COMPUTER: Can you make biscuits?
14. LEARNER: You roll out some pastry.

You get some shapes.
You cut out the shapes of pastry.
You put them on a square thing.
You put them in the oven.

15. COMPUTER: Where did you get the pastry from?

Figure 3.2 Button (1989). Connectedness
in terms of subject matter.

semantics and in order to understand natural language a

computer has to not only syntactically understand a sentence

but also interpret it in the light of what it already knows.8 One

®These ideas stemmed from Bartlett (1932) who described memory as an active
organisation of past reactions. For a discussion, in Psycholinguistics, about the
consensus of opinion as to how many different memory systems there are, see Baddley
(1976) and for the critique see Crowder (1982).

45

idea along these lines was developed by Schank (1972), Schank

and Reisbeck (1981) and Schank (1980,1982,1985). According

to Schank, in order to understand a concept it must be related to

another more basic concept. He developed a theory of

conceptual dependency which involves a number of primitives

into which all sentences can be broken down.9 This leads to a

number of attempts at story understanding that meet with

limited success but account for monologue or one-s ided

dialogue. In my own system, described in Button (1989), Button,

Oatley and Draper (1989) and illustrated in figure 3.2, I show

how a simple discussion about eating habits can be modelled

using Schank’s Conceptual Dependency theory. Connectedness is

achieved here through the regularity of the subject matter, thus

allowing direct access to simple memory structures such as

those described by Schank.

Useful techniques for monologues were also explored in

other areas. For example, intelligent continuity can occur if,

within a given domain, an appropriate knowledge representation

such as Conceptual Dependency (Schank 1980), Scripts (Schank

and Abelson 1977), Frames (Brown 1987), Semantic Networks

(Collins and Quillian 1969) or Logic (Cloksin and Mellish 1981,

Turner 1984), is used. Indeed some of these Al techniques have

9 These sorts of ideas have often been compared with the principle of
com positionality proposed by the 19th century philosopher Frege.

46

been applied successfully to one-sided dialogue. For example,

Grosz and Sidner (1986) show how a semantic network can be

used to define the focus of dialogue either in terms of the task

complexity or in terms of the conversation10. GUS (Bobrow,

Kaplan, Kay, Norman, Thompson and Winograd, 1976) shows how

one-sided dialogue can be driven by the use of a frame. All these

techniques, without doubt, offer models of how humans might

conduct conversation if the nature of the main goal of the

conversation is fixed in advance and the task does not consist

of a mutual discovery of how to realise the goal.

There is work which has considered parts of a one-sided

sub-dialogue in the form of question-answering systems (for a

full explanation see Webber 1987). Allen and Perrault (1980)

and Allen (1983,1987) showed that by analysing the intentions

expressed within an utterance, nested conversation (see

exam ples from previous chapter in which conversational

exchanges can be thought of as embedded) can take place. They

then fo llow this up by il lu s tra tin g it with two types of

conversation: (a) that which moves towards clarification, as in

figure 3.3:

10 Within the field of Psycholinguistics this is also discussed in terms of how
conversation is focused. For a full explanation see, for example, Garnham (1985),
Sanford and Garrod (1981) and Grosz (1977) .

47

1. HUMAN: When is the Windsor train?
2. COMPUTER: To Windsor ?
3. HUMAN: Yes.
4. COMPUTER: 3.15.

Figure 3.3 Allen and Perrault (1980)
Connectedness in terms of dialogue
clarification.

and (b) those that are driven by dialogue failure as in figure 3.4:

1. HUMAN: When is the Windsor train?
2. COMPUTER: It leaves at 3.15
3. HUMAN: No, I want to meet the Windsor train.
4. COMPUTER: Ah, in that case it arrives at 3.10.

Figure 3.4 Allen and Perrault (1980)
Connectedness driven bv dialogue failure.

Allen et al. improve the robustness of the system

through the disambiguation of vaguely specified plans. Thus,

they are able to show a more detailed account of a theory of

indirect speech acts than that offered by Searle’s (1969,1975)

theory that I briefly mentioned in Chapter 2.

This now completes my analysis of the body of work that

has described dialogue using non goal-directed techniques. As

Power (1979) correctly observes, the main problem with early

Al work is that none of the programs developed can converse

with a near copy of itself and thus can hardly be considered a

model of purposeful dialogue. From now on I shall only be

discussing goal-directed systems.

48

3.2 Recent developments.

In this section, I look at studies that have examined the

components of a true dialogue system by which I mean a

dialogue system that recognises the need for conversation to be

based in some way on a mutual plan.

As will be seen the problem of this focus on the

components of dialogue is that the systems created are not

actually able to generate English sentences. Some work has

focused on either speaking or listening but not both. For

example Appelt (1985), Cohen and Perrault (1979a,b), Pollack

(1986), Cohen and Levesque (1985), and others show all the

components of what goes into an utterance during the course of

a dialogue about a mechanical task. In particular, Cohen and

Perrault have produced a plan-based definition of a speech act

by considering what it is the speaker really wants and what he

is trying to say. Litman and Allen (1987) and Allen and Perrault

(1980) show methods for understanding underlying plans

occurring in an utterance.

Some studies have considered how to plan an overall task

within a single agent domain by looking at how to plan actions

that achieve a particular goal. Overviews of all the many

different planning systems can be found in Tate (1985) as a

technical description, in Steel (1987) as a beginner’s guide and

49

in Agre (1990) as a philosophical argument for and against

comparing these methods with those of human reasoning.

I shall be referring to this approach as c l a s s i c a l

planning. Some work is particularly prominent in this area and

should be mentioned. STRIPS, Fikes and Nilsson (1971) was the

f irs t system to fo rm a lis e and plan aro u n d a c t io n s ,

preconditions and effects. MOLGEN, Stefik (1980,1981) looks at

the need for meta-planning. ABSTRIPS, Sacerdoti (1974)

F re id la n d and Iw a s a k i (1 9 8 5) looks at a b s tra c t p lan

representations before developing a total plan. NONLIN, Tate

(1976) uses a goal structure. SIPE, Wilkins (1984) looks at

domain-independent planning. The essential feature of all these

systems is that they are trying to plan for a particular goal by

chaining through plan operators or causal rules in a specific

way.

More recent work has studied the problem of reacting to

unexpected changes in the state of the world, what Suchman

(1987) refers to as plans and situated action and what I shall be

referring to as unexpected p lanning in future chapters. These

works include Lansky (1988) on the distinction between events

and processes, Ginsberg and Smith (1986) in terms of reasoning

about action, and Wood (1990) in terms of planning in a rapidly

changing environment.

50

Planning areas not covered by any single agent planners

can be divided into two types. Firstly there is what I shall be

referring to as in s t r u m e n ta l t e s t in g in which agents are

required to perform tests in order to infer new facts about the

world. Secondly, there is e x p e r im e n ta l p la n n in g in which

agents are required to try actions and see what happens in order

to learn about the consequences of a change in the states of the

world. These categories of planning have sometimes been

referred to as replanning and have taken their name in order to

deal with those circum stances that arise when the main

planning routine breaks down. I shall be discussing these four

fu n d a m e n ta l kinds of p lanning (c la ss ica l, ins tru m en ta l,

unexpected and experimental) at the end of the chapter and

again in chapter 5 and show how they can be integrated into the

main action cycle.

In short, using single agent planning techniques causes

serious difficulties in 2-agent dialogue planning since a good

planner needs to be not only good at the job but also flexible and

explicit in conversation.

More recently, research has focused on discussing the

problem of how to communicate the underlying intentions of the

agents. Shadbolt (1984), Shadbolt and Musson (1987) and

Carletta (1990) showed how efficiency (see section 1.1 for

51

precise definition) can be achieved in conversation by using

what Shadbolt refers to as a set of communicative postures.

Utterances are then chosen through the use of Game Theory (e.g.

Charniak and McDermott 1985). The underlying plans are then

passed from one agent to the other. Postures can also have

d i f fe r e n t s e t t in g s so as to a l lo w d i f fe r e n t le v e ls of

communicative competence, hence permitting an interpretation

of explicitness and accounting for different dialogue styies.

One of the d if f ic u lt ie s w ith having a la rge num ber of

alternative settings for a simulated agent is that it is difficult

to know whether or not all combinations of these parameters in

fact give rise to successful dialogue. Furthermore it then

becomes an issue as to how to interpret them. Systematic

parametric studies are needed to test this, although none have

been reported so far. One way of solving this problem is to

illustrate the dialogue with a comprehensive “Monte Carlo”

simulation rather than an exhaustive one. That is to say, a

selection of important initial dialogue settings are chosen as

opposed to all settings (see chapter 4).

For instance, in figure 3.5, Shadbolt and Musson (1987)

illustrate how connectedness can also be achieved by combining

more than one goal in an utterance. However, the more efficient

the computer dialogue the more difficult it becomes to evaluate

52

its robustness under variation.

1. INSTALLER: I'm going to lay the storm drains.
2. DECORATOR: Could you install the rough plumbing instead?
3. INSTALLER: No. I will have to install the drains first.
4. DECORATOR: OK
5. INSTALLER: I have installed the drains.
6. DECORATOR: OK
7. INSTALLER: I have installed the rough plumbing.
8. DECORATOR: OK. Could you install the rough wiring?
9. INSTALLER: OK I have installed the rough wiring.
10. DECORATOR: OK Could you install the air conditioning?
11. INSTALLER: No. You will have to pour the basement floor first.
12. DECORATOR: OK. I have poured the basement floor.
13. INSTALLER: OK I have installed the air conditioning.

Figure 3.5 Shadbolt and Musson (1987).
Connectedness in terms of communicative
postures, multiple goals and efficiency bv
constraint satisfaction. (Simplified from
dialogue about plan structures^.

In short, an efficient dialogue about a complex joint task that

generates utterances based on constraints has an element of

naturalness but is too mechanistic and regular to be believable.

Nevertheless, it is an appropriate model when both participants

know exactly what they are doing and their knowledge is

s im ila r . W h at e f f ic ie n t m odels of c o n v e rs a t io n cann ot

demonstrate is why irregular frills occur in human dialogue.

There are four main reasons: (1) humans think at different

speeds from one another, (2) they conduct conversation in

different ways from each other, (3) they instrumentally manage

topics in different ways, (4) they engage in conversation with

different goals. It is for this reason that I turn the reader’s

53

attention to systems that separate physical and conversational

planning.

I hope to show these questions can be answered by keeping

both the domain and main goal simple and varying the knowledge

and conversational skills of the agents. I now discuss the work

of Power and Houghton as these are the only other two systems

to have done this.

3.3 Power’s robot world.

In contrast to the work discussed in section 3.1, Power

(1979) uses a simulation of computer-to-computer interaction

and is able to demonstrate how conversation is structured as a

whole.

Power's simulated dialogue concerns interactions between

two agents who are on either side of a door locked by a bolt. In

this simple situation, illustrated in figure 3.6 and in earlier

DOOR 3HJT
MARY1 IN

Figure 3.6 Power's robot world.

chapters, there are only four objects, each of which can be in

54

one of two positions. There are the two agents, called John and

Mary. Each agent can be either In or Out. The door can be Open or

Closed. The bolt can be Up or Down. To explore the interactions

of the agents, the program can be started with different initial

conditions: that is, each agent can know or be ignorant of

certain laws of nature, or have a false belief about them. An

agent can acquire or change a belief if informed or persuaded by

the other, or if, after an action, something unexpected happens.

Agents can differ in their perceptual abilities — for instance

one may be able to perceive the state of the world, and the

other may be blind. In this way various aspects of cognition

such as certain kinds of perceptual ability, or knowledge, can be

distributed between the agents.

This, in turn, helps to simulate those ubiquitous

human situations in which an agent cannot accomplish certain

actions or achieve certain results in isolation, but must co­

operate with another person to do so.

Connectedness is achieved through what Power refers to

as conversational procedures (CP)11 which allow the agents to

co-operate with one another to achieve predefined goals.

Furthermore the course of the dialogue can be directed by the

use of simple physical causal rules (for example the bolt must

11 For the sake of brevity, and for future reference, I shall refer to a conversational
procedure as a CP. In the case of Houghton I shall refer to an interactional frame as an IF.

55

be Up to open the door) that the agents use to construct a joint

plan tree. Planning and execution is then represented in the

form of a control stack which in some sense represents the

point of the utterance at any time during the dialogue. The

dialogue, however, lacks efficiency since the conversational

procedures themselves appear as utterances.

These problems of efficiency were taken up by Houghton

(1986) and will be discussed in more detail later. He divides

the problem into three levels i.e. Utterance planning (Davey

1978), Conversational planning (Cohen and Perrault 1979a,b)

and Physical planning (Fikes and Nilsson 1971) and is thus able

to generate speech for this domain in a more natural way.

Houghton’s is the second principal significant body of work

which will be closely studied, along with that of Power, in

order to bring me to SUPERPOWER. These two systems are the

concern of the next section.

3.4 A comparison between Power and Houahton.

Every dialogue system must be structured according to a

number of important components. What these components are is

still an open-ended question since a lot depends on the domain

of the dialogue system being modelled. In this domain, where

the agents are required to negotiate co-operatively through one

56

agreed goal, the components fall into a number of categories.

Agents must produce dialogue and also produce and understand

Power Houghton SUPERPOWER

Dialogue Content
(3.4.1)

Over Explicit. Efficiency, Indirect and
direct speech acts.

Explicit. Dialogue stretches
over several actions.

Language
Generation. (3.4.2)

Unprincipled. System Network and
GPSG

Unprincipled.

Language
Comprehension. (3.4.3)

Unprincipled. Does not exist. Unprincipled.

Physical Planning.
(3.4.4 & ch's 5,6)

Fike8 and Nilsson (1971)
i.e. Uses causal rules.

Fikes and Nilsson(1971). Uses causal rules,
exhaustively but hardwired.

Conversational
Planning.
(3.4.5 & ch's 5,6)

7 detached procedures. 4 Interactional frames
Cohen and Perrautt
(1979a,b).

6 detached procedures.

Meta Planning
(3.4.6)

Distinguishes between
an event and a situation.

Similar to Power. Similar to Power but the time
slicing considerably
assists this.

Executive Control.
(3.4.7 & Ch 4)

Control passed alternately
after each functional unit.

Uses pop11 processes.
Time slicing and the notion of
expecting a reply.
Definition of an increment
of time.

Initial settings and
representation.

(3.4.8)

Some straightforward lists
of data.

Some structure
e.g. know (fred is in)

Knowledge can be known,
given, told, unknown,
estimated, inferred or
undefined.

Conflict resolution.
(3.4.9)

Hardwired In CP. Similar to Power Similar to Power, but with
extra facilities to deal with
interruptions.

Interaction skills.
(3.4.10 & Ch's 4 ,5)

CP's , priming, e.g. "May I
ask you something?" Can
handle partially embedded
conversation, but the same
conversational procedure
cannot be active twice. No
embedding.

IF's, no priming.
Can handle embedded
conversation
but not more than one
action.

Similar to Power plus extra
planning facilities.
CP's, priming, time slicing
Topic has as subgoal, an
action and the successful
completion of the subgoal.
No reasoning abilities,
multiple CP's and actions are
dealt with.

Inference
(3.4.11 & Ch 5)

Hardwired in conversational
procedure.

Hardwired in physical
planner not exhaustive.

Hardwired in physical planner
but exhaustive.

Figure 3.7 Comparison of the main differences between
Power (1979^. Houahton (1986^ and my own system
SUPERPOWER.

57

utterances. In order to do this they need a planning algorithm to

support conversational and physical action. How this is

structured is crucial to all dialogue. Finally, there must be

some kind of meta-planning and coordination to deal with the

cases where agents are required to make choices between

competing courses of action. Knowledge representation is

needed at source for the sake of program clarity. Topic

structure is also needed to progress instrumentally from one

sub-goal to another since to avoid doing so would lead to

p ra g m a tic am b ig u ity . F igure 3 .7 s u m m a ris e s the m ain

differences between Houghton, Power and my own system

SUPERPOWER. Thus the next series of sections discuss the

d ifferences under these headings that reflect the major

components that must go into any dialogue system.

3.4.1 The dialogue content.

It is by no means clear how a dialogue system should

present itself. On the one hand a theory provides evidence of

dialogue principles but it does not systematically demonstrate

the claim in terms of natural utterances (e.g. Searle 1990,

Cohen and Perrault 1979a,b, Cohen and Levesque 1990), while on

the other hand dialogue generation without principles does not

lead us to dialogue understanding (e.g. ELIZA Weizenbaum1966).

58

However, a great deal can be observed from the computer

dialogue provided it is represented in a way that reflects the

theory. One way of overcoming this is to provide a linguistic

interface that displays the theoretical features. For example

(STATE OF WORLD IS NOW [JOHN OUT, 37 JOHN: ALL RIGHT.
MARY IN, BOLT UP, DOOR SHUT]) 38 MARY:

39 JOHN:
SHALL WE MAKE A PLAN ?
OK

1 JOHN: MARY. 40 MARY: I SUGGEST THAT I PUSH THE DOOR
2 MARY: YES 41 JOHN: ALL RIGHT.
3 JOHN: I WANT TO SUGGEST A GOAL (STATE OF WORLD IS NOW
4 MARY: GO AHEAD. [DOOR OPEN, JOHN OUT, MARY IN BOLT UPD
5 JOHN: WILL YOU HELP ME GET IN ? 42 MARY: I WANTTO TELL YOU SOMETHING
6 MARY: BY ALL MEANS. 43 JOHN: GO AHEAD.
7 JOHN: SHALL WE MAKE A PLAN ? 44 MARY: I HAVE PUSHED THE DOOR
8 MARY: JOHN. 45 JOHN: I SEE
9 JOHN: YES 46 MARY: LETS ASSESS THE RESULT OF MY
10 MARY: MAY I ASK YOU SOMETHING ? ACTION.
11 JOHN: GO AHEAD. 47 JOHN: OK
12 MARY: ARE YOU IN? 48 MARY: NOTHING HAS HAPPENED.
13 JOHN: NO. 49 JOHN: MARY.
14 MARY: SHALL WE MAKE A PLAN ? 50 MARY: YES
15 JOHN: OK. 51 JOHN: I WANTTO TELL YOU SOMETHING
16 MARY: JOHN 52 MARY: GO AHEAD.
17 JOHN: YES 53 JOHN: THE DOOR IS OPEN
18 MARY: MAY I ASK YOU SOMETHING ? 54 MARY: I SEE THE DOOR HAS CHANGED POSITION
19 JOHN: GO AHEAD. 55 JOHN: YES
20 MARY: CAN YOU MOVE? 56 MARY: THE DOOR IS NCWOPEN
21 JOHN: YES 57 JOHN: RIGHT.
22 MARY: JOHN (STATE OF WORLD IS NOW
23 JOHN: YES [JOHN IN, MARY IN, BOLT UP, DOOR OPEND
24 MARY: MAY I ASK YOU SOMETHING ? 57 JOHN: I WANTTO TELL YOU SOMETHING
25 JOHN: GO AHEAD. 58 MARY: GO AHEAD.
26 MARY: IS THE DOOR OPEN? 59 JOHN: I HAVE MOVED.
27 JOHN: NO. 60 MARY: I SEE
28 MARY: I SUGGEST THAT WE GET THE DOOR 61 JOHN: LETS ASSESS THE RESULT OF MY ACTION

OPEN AND THEN YOU MOVE. 62 MARY: OK
29 JOHN: MARY. 63 JOHN: 1 HAVE CHANGED POSITION
30 MARY: YES 64 MARY: JOHN
31 JOHN: IWANTTO EXPLAIN SOMETHING 65 JOHN: YES
32 MARY: GO AHEAD. 66 MARY: 1 WANTTO TELL YOU SOMETHING
33 JOHN: IF I MOVE NOTHING HAPPENS. 67 JOHN: GO AHEAD.
34 MARY: I DISAGREE IF YOU MOVE WHEN THE 68 MARY: YOU ARE OUT.

DOOR IS OPEN, YOU CHANGE POSITION 69 JOHN: 1 DISAGREE. 1 HAVE CHANGED POSmON.
35 JOHN: I SEE 70 MARY: YES
36 MARY: I SUGGEST THAT WE GETTHE DOOR 71 JOHN: 1 AM NOW IN.

OPEN ANDTHEN YOU MOVE 72 MARY: RIGHT.

Figure 3.8 Power (1979) Connectedness in terms of
joint planning and aoal-oriented processes.

the distinction between “The bolt must be Up” and “the bolt is

Up” reflects on the surface, and in the dialogue, evidence that

59

the program is using a theory of inference by way of a linguistic

method such as modality (Palmer 1990, Coates 1990, Stubbs

1986). In Power there are some utterances about the type of

conversation that is about to follow and so the dialogue

demonstrates his theory about conversational procedures but

without concern for efficiency. In Houghton features such as

direct and indirect speech acts are demonstrated as an efficient

interaction.

An example of the dialogue generated by Power’s system

can be seen in figure 3.8. Notice that every main exchange is

primed12 with another exchange such as “I want to explain

something” so as to allow agents to be absolutely sure what the

subsequent exchange refers to. This has the effect of making

the dialogue appear over explicit.

In Houghton’s system the dialogue for a similar goal is

more efficient and appears to correspond to how humans would

conduct such a con versa tion . T h e re are a number of

distinguishing features to note about the two dialogues shown

in figures 3.8 and 3.9: (i) Houghton's program can generate all of

Power's dialogue but without using the priming of utterances

such as “Shall we make a plan?” or “I want to suggest a goal”.

12 Using two pairs of utterances to convey one message. As in “I want to explain
something” “By all means” “If you move when the door is shut nothing happens”
“Right”. Priming, however has a much wider definition within pragmatics and is
normally used throughout dialogue to assist the hearer in knowing what to expect next.

60

(ii) It distinguishes between indirect and direct speech acts (as

in lines 11 and 13). (iii) It knows what to do when one and only

one of the two agents can not think of a plan (as in lines 6-9).

Figure 3.9 Houahton (19861. Connectedness in
terms of efficiency and natural language
generation.

However neither of these systems are able to generate

sub-dialogues that relate to the consequences of an action

through the use of inference. Power has one conversational

procedure (game ZGASSESS) but no clear inference within the

planning process. Furthermore neither system can deal with the

cases when both agents are stuck for (a) a plan, (b) a piece of

knowledge or (c) an unexpected event. Thus the choice of who

speaks next is largely determined by the physical goal and

knowledge that the agents are given at the outset rather than by

any differing conversational skill.

3.4.2 Language Generation.

In Power the language generation mechanism is ad hoc.

1. Fred:
2. Doris:
3. Fred:
4. Doris:
5. Fred:
6. Doris:
7. Fred:
8. Doris:
9. Fred:
10. Doris:
11. Fred:
12. Doris:
13. Fred:
14. Doris:

Doris.
Yes.
I want to be in.
I see.
Could you push the yellow door.
No, because the bolt isnt up.
Is there a bolt that is up 7
No.
How do you get a bolt to move 7
You get to be in, then you slide it
Could you slide the green bolt.
OK
Push the door.
OK

61

The system g e n era tes sentences by m atching the plan

description to the utterance in a one-to-one fashion. Such

sen tences conta in a sub ject, a verb and an ob ject, or

alternatively, in a discussion about a belief, the utterance will

have a parallel structure of subject, verb and object or an

“..if..then...” clause. Two sets of exchanges are uttered, one

relating to an appropriate exchange type and the other to its

content. Examples include:

1) 1st exchange contains z g g o a l13 and utters “I want to

suggest a goal.” 2nd exchange contains the goal [John In] and

utters “Will you help me get In?”

2) 1st exchange contains zgask and utters “May I ask you

something?” 2nd exchange contains the question [Is John In] and

utters “Are you In?”

3) 1st exchange contains zg p la n and utters “Shall we

make a plan?” the second exchange contains the plan [undef] and

asks a few questions until a plan has been found.

4) 1st exchange contains z g ru le and utters “I want to

explain something.” 2nd exchange contains the causal rule [evt

[robot push] sit [any] res [nothing]] and utters “If you push the

door nothing happens.”

13 zggoal, zgplan, zgask, zgrule, zgtell, zgassess and zggame are the pop11 function
names of the seven conversational procedures described in Power (1974,1979).
SUPERPOWER, described in chapter 4 and 5 uses six of these and zgassess has been
removed and combined with zgtell and a new inference that assesses the consequences of
an event.

62

5) 1st exchange contains z g te l l and utters “I want to tell

you something”. 2nd exchange contains the action [Mary push]

and utters “I have pushed the door”.

6) 1st exchange contains z g a s s e s s and utters “Let's

assess the consequences of my action.” 2nd exchange contains

the assessment of the action [undef] and utters “Nothing has

happened.”

In all cases utterances are mapped from a plan structure

in an unprincipled one-to-one fashion.

In Houghton’s program the production mechanism is more

principled and uses system networks and a Generalised Phrase

Structured Grammar, see Houghton and Isard (1987:12-15), a

network with a lexicon, and m orphological and syntactic

representations to convert a semantic description into an

English expression. He avoids priming in exchanges and

generates what is to be said in one exchange. The following

information passes to the language production mechanism: the

in itia tor, add ressee , name of the in teraction fram e and

semantic content. Examples similar to the above might be:

1) Doris, Fred, G E T_T0_D 014 , [push Doris door2]: would

generate the sentence “Could you push the yellow door?”

2) Doris, Fred, FINDOUT, [atloc Fred in]: would generate the

14 GET_TO_DO, FINDOUT, MAKEKNOWN and GET_ATTENTION are the pop11 function
names of the four interactional frames described in Houghton (1986).

63

sentence “Are you In?”

3) Doris, Fred, MAKEKNOWN, [havegoal Doris [atloc Doris

in]]: would generate the sentence: “I want to be In.”

4) Doris, Fred, MAKEKNOWN, IF <action movethru robot

door> WHEN [door open] THEN [move robot]: would generate the

sentence “If you go through a door when it is Open then you

move.”

5) Doris, Fred, MAKEKNOWN, [BECAUSE [atloc bolt2 down]]

would generate the sentence “No, because the bolt isn't Up.”

This differs from Power in that grammatically correct

sentences can be generated in a principled manner from a

structured plan. It also takes into consideration current topics.

3.4.3 Language comprehension.

In Power’s program there is a simple parser that maps in

an unprincipled way from an utterance onto a plan structure

that is then passed with relevant factual information onto a

conversational game. As there is only a limited number of

sentences (approximately fifty), choices about which plan

content matches which sentence are relatively easy.

There is no mechanism for this process in Houghton's

program. Instead the plan content is passed directly from one

agent to the other without parsing the sentence itself.

64

3.4.4 Physical Planning.

Power splits the planner into two components; one for

achieving a goal and the other for finding a plan. In order to

achieve a goal the system may look for a plan, carry out an

NO YES
NO

NOYES

NO

YES

EVENT ? ADD PLAN
TO TREE

FAIL GOAL

REPORT RESULT

CARRY OUT ACTION

CAN A GOAL
BE FOUND ?

RECORD STATE

RECORD STATE OF
PARENT GOAL____

LEARN ANY LESSON
FROM EXPERIENCE

RECORD RESULT OF
ACTION

IS MAiN GOAL
ACHIEVED OR
FAILED ?

FIND CURRENT GOAL
AND ITS ACTOR AND
TYPE

PRUNE TREE BY
GETTING RID OF
ACHIEVED OR FAILED
GOALS AND PLANS

Figure 3.10a Achieve goal module (adapted from Power. 1974).

action or update its view of the world in the light of an action.

The second module contains the main planning algorithm that

65

essentially searches for a belief relevant to the goal15. It works

as follows: (1) Input goal, initial conditions and state of the

world. (2) Find a rule whose effect is the same as the current

goal or sub-goal. (3) Check all preconditions are true. (4) If a

precondition not true make it a sub-goal and repeat from step 2

or else continue. (5) Execute action. If action successful, set

current goal or sub-goal as achieved. (6) Is main goal achieved?

If yes finish, if no repeat from step 2.

FIND OUT THE GOAL

DO ALL ACTIONS
YIELD RESULT

EXIT AND
RETURN NO

FIND RELEVANT RULE

CAN ACTION BE DONE

FIND STATE OF THE
SITUATION I.e . THE
PROVISO

IS PROVISO FAILED

HAKE ?LAIfl ■ HAS PLAN BEEN
TRIED AND FAILED

EXIT AND
RETURN PLAN

Figure 3.10b Planning module (adapted from Power. 1974).

Houghton's planner is in principle the same as that of

Power. He refers to “Achieve goal” as the execution phase of

planning. He overcomes circular plans by repeating the planning

18 One weakness with this latter algorithm is that circular plans occur quite
frequently since the beliefs do not specify which agent is to do the plan. See also the end
of chapter 5 for a further discussion on circular plans. I draw the reader’s attention to
this because the problem of cycle detection occurs quite frequently in Artificial
Intelligence problems. Dialogue systems must also give this special treatment since I am
suggesting it is an inherent property of a large class of purposeful conversation.
Sometimes it helps the main goal, sometimes it does not.

66

cycle twice; once for each agent assuming the plan failed first

time around, as illustrated in detail in figure 3.10c. This is not,

however, ideal for multi- as opposed to two-agent planning. It

works, but a more appropriate solution seems to be to detect

EXECUTION PLANNING

t rue

V /
false

false

false
t rue

\ / t r ue

FIND AGENTifalse alse
t rue

t rue

false
t r ue

false t rue
false

false

t r ue

START

GET DONE

CONTINUE

END OF
RUN

V t r ue
IS IT MAIN
GOAL?

MORE
BRANCHES

FIND
STRATEGY

CHANGE
PLAN

HAS GOAL BEEN
ACHIEVED?

INSTANTIATE
PLAN
VARIABLES

Figure 3.10c Planning module (adapted from Houahton
1986).

67

repetitions in the pian tree, instead of waiting for a failure,

then to delete them and remember what to avoid the next time

around. Another difference between Houghton and Power’s

systems is that Power’s does not handle plan failures at all.

For example, one type of plan failure occurs when the other

agent already knows that part of the plan is true. In this

situation Houghton’s system automatically clips the plan tree

and planning continues as though this was not part of the

execution of the plan. In these situations, Power's algorithm

exits from the planner and the agents then simply state that

“w e’ve got muddled”. Houghton’s system, like Power’s, makes

calls to conversational procedures within the planning module.

Although I deal with this situation in more depth in the section

on conversational procedures, it should be emphasised that the

central problem with this and conversational planning is that,

for Power, conversational procedures do not relate to goals. If a

planner is trying to find something out, it makes an explicit call

at the appropriate point within the planner. This is a reflection

of the prog ram m er’s knowing what he would do in such

circumstances, rather than the system’s being able to work it

out. P o w e r ’s system m akes ca lls to s e v e n d if fe re n t

conversational games at different points in both the planning

and execution phases.

68

Houghton has one general function that makes access to a

number of different types of information. Among these are (1)

finding out about the state of the world, (2) finding out whether

something is true, (3) asking or finding out whether somebody

can do something, (4) asking how to do something, (5) getting

somebody to do something, (6) checking whether a plan or

strategy has not been done, (7) linking the preconditions for

speaking with appropriate objects and (8) preparing to invoke an

Interactional fram e to find out, draw attention, get to do

something or to make something known. Houghton's planner is a

substantial improvement on Power because it deals with both

when and how to produce an appropriate utterance whereas

Power's only deals with when.

A theory might treat conversation and action in three

different ways: independently (as in Houghton’s system),

dependently (as in Power’s system) or identically (as in the

“id e a l” system). I take this latter method as a possible

e n h a n c e m e n t in ch ap te r 6. The m ain point is th a t no

conversational calls should be made during the planning and

execution phase but instead at one specific point within the

planner only. In order to do this, static (i.e . param eters

specified at source) and dynamic (i.e. the joint plan tree and

control stack that specify mutuality) knowledge representation

69

needs to include both physical and conversational rules together

and not separately. The planner should then be able to assess

this knowledge representation at the same time and not using

Physical
Planner

Conversational
planner System

zggoal

zgrule
Power

g etjn fo

Own
resource

GET_TO_DO
FINDOUT
MAKEKNOWN

Houghton

\/
--------- «-------

Conversation
and planning
independent

Physical &
Conversational
Planning

+
execution of 4

action or
conversation

+
Inferencing
and
assessing

Conversation is
action

Figure 3.10d Diagram illustrating some of the
alternative wavs in which conversational and
physical planning can be linked and perceived
in relation to one another.

two different planners as implemented both by Houghton and

70

Power. Houghton’s system is slightly better than Power’s in

that only one procedure (ge tjn fo) is used within the physical

planner to search for what it wants.

Thus, the main weakness of these algorithms is that they

both have no method for inference and they also call the

conversational planner whenever they choose to. Ideally a call

to the conversational planner should either be at exactly the

same place or thought of as the same as planning (discussed

more fully in chapter 6 and illustrated in figure 3.10d. The

reason for this is that if such a system were to exist then it

would be fully explicit in the sort of utterances it could make.

It would then be possible to consider the problem of efficiency

that was the concern of Houghton. If a system were not to

fo llow this princ ip le then problem s of coord ination and

reasoning clearly infiltrate when for example the time slicing

dictates an unexpected occurrence of either a physical or

conversational event.

3.4.5 Conversational Planning.

In Power, the planning routines make calls to what he

refers to as conversational procedures or games. They specify

the form the conversation should take, what should be said and

who should say it. There is an initiator and a respondent in each

71

game, which are labelled as white and black. Once a game has

been initiated there is a rigid set of rules that decides what

gets said next. If one agent breaks a rule then the other

interrupts with a suitable error message saying that a muddle

has arisen and that “we'd best start again”. Before actually

playing a game priming takes place as an agent announces his or

her intention to play a game before the game itself takes place.

So a normal human adjacency pair, such as “Is the bolt Up?”,

”No”, would take four utterances due to the two initial lines of

priming i.e. “May I ask you something?”,”By all means”,”ls the

bolt Up?”, “No”. This allows both robots to know which game is

tak in g p lace at any one tim e. Pow er defines seven

conversational procedures. To take an example consider the

procedure ZGASK. It has the following definition:

GAME ZGASK;
1. * W ZGQUERY [ZDQUERY];
2. * B ZGANSWER [ZDSIGN];

3. A W ZGRECORD;

The numbers indicate the order in which things should take

place. The symbols * and A indicate whether an entry or an

utterance should be made. W and B stand for white and black and

indicate who is to carry out the utterance. The main function

ZGQUERY allows for a question to be asked, ZGANSWER allows

for the response and ZGRECORD records what has been said in

response. The functions in brackets determine how to interpret

72

the utterance after it has been made.

In Houghton’s system the implementation is the same as

Power’s except that, instead of using conversational games,

interactional frames are used in conjunction with what is

referred to as a POP11 process. This is an inbuilt process that

allows the programmer to simulate parallelism. So that instead

of using a control stack, as Power did, Houghton creates a

series of sub-processes that can be suspended and reinstated

when required. The advantage of Houghton’s system is that the

code is much easier to understand. The disadvantage is that

agents may be required to reason about the process (e.g. when an

unexpected event occurs), some subset of the process or the

process content and therefore without knowledge of where the

process is, or about parts of its content, this program

representation is not entirely satisfactory. This is why I choose

(and discuss in chapter 4) to continue with Power’s control

stack representation and avoid using processes.

In Houghton’s system, interpreting utterances is ignored,

there is no priming and, when an agent has finished speaking,

the conversational structure is automatically passed to the

other agent whose turn it is to reply. On generating an utterance

each frame has additional rules which determine what has to be

true before such an utterance can be made and what has to be

73

done afterwards. Further details about this can be found in

Cohen and Perrault (1979a,b). In Houghton, there are four

interactional frames: MAKEKNOWN, FINDOUT, GET_TO_DO and

GET_ATTENTION. I give here the definition of MAKEKNOWN:

INTERACTION_FORM
MAKEKNOWN
ROLES speaker=robot hearer=robot prop=fact
GOALOF [know hearer prop]
MEANS [know hearer [know speaker prop]]
PRECOND prec2 knows(speaker, [not [know Ahearer Aprop]]);
RESPONSE [hearer updateworldview speaker check_acceptance]
REPLY_TYPE MAKEKNOWN

In order for an interaction to occur the following steps

need to take place (this is what Houghton refers to as

conversational planning or planning an interaction), (i) find a

suitable interaction for desired goal, (ii) bind variables to the

interaction, (iii) make preconditions true, (iv) make sure we are

not already engaged in a conversation, (v) add instance to stack,

(vi) prepare message structure and (vii) pass to language

generation. A similar sort of conversational planner exists for

responding to a message.

The dilemma all conversational planners must face is

that, on the one hand, there is a need to bind your partner within

a predefined script while, on the other hand, to do so would not

allow your partner freedom to think. The task of a good hearer

is sometimes to think in parallel about both the speaker’s and

the hearer’s needs (e.g. when the speaker is saying something

74

that does not need to be lis tened to and som etim es to

interchange between both the speaker’s and the hearer’s needs

(e.g. when a change in the state of the world occurs but is

unnoticed by the current speaker). A conversational procedure or

an interactional frame as currently implemented by these

systems prohibits this. There has been some discussion about

alternatives to CP’s and IF’s. For example Musson and Shadbolt

(1987) looked at how Power’s model contrasted with Allen’s in

that Power used conversational procedures and Allen did not.

Nevertheless some kind of conversational structure along these

lines is inevitable since to avoid doing so would introduce

serious pragmatic ambiguity and would make coordination and

control difficult if the knowledge or conversational skills

varied significantly.

3.4.6 Meta-planning.

There is very little evidence of m eta-planning, (e.g.

Wilkins 1984, Sacerdoti 1974, Stefik 1980 ,1981) in either

Houghton’s or Power’s systems since they both only deal with

one mutually agreed plan tree at a time. If however agents were

required to keep their own internal plan trees distinct from the

mutually agreed plan trees and both agents were required to

think in parallel, the effect would be to enable them to deal

75

with a variety of interruptions and conflicting plans. Agents

would not interrupt an adjacency pair or conversational

procedure but seizing the initiative should be allowed to occur

between sets of adjacency pairs. To some extent this is

discussed by Power (1987) and referred to as presumption and

efficiency. It is for this reason that there is a need for a

conversational and physical meta-planner that looks at the

overall problem and then plans what conversation, plan or

action to perform next. It is this module that should be

concerned with efficiency in dialogue.

3.4.7 Executive Control.

Whereas Meta-planning is concerned with monitoring the

course of the process or piece of program that is currently

being executed so as to ensure that it proceeds in the right

direction, the excutive provides the mechanism that determines

the next most appropriate course of action.

For Power there is a single queue of goals that are either

“situations” (which need planning) or “events” which just need

execution. For Houghton there is no conscious organisation apart

from the use of the built-in POP11 processes mentioned earlier.

In P o w er’s system he has what he refers to as an

executive. The executive interfaces between the two agents and

76

represents the top level control of the overall dialogue. It is

what Power (1974) referred to as the chairman.

In Power’s program there are two sets of codes, one

for each agent. The executive then provides the coordination

between the two programs determining which one runs at any

given time. By slicing the program into meaningful units the

executive can transfer control from one program to the other

whenever it chooses. However in this implementation, no

considerations over and above swapping alternate ly were

considered. That is to say, each agent could only think for the

same fixed amount of time. Thus the executive could not allow

NO

NO

YES
YES NO

NO

YESYES
EXIT

START

HAS MARY
SWAPPED ?

AROUSE
JOHN

AROUSE MARY

HAS JOHN SWAPPED ?

DID JOHN
SWAP LAST
TIME ?

DID MARY SWAP
LAST TIME ?

Figure 3.1 Qe Executive Control (adapted from Power
19-74),,

for one of the agents to think faster than the other. Although

this configuration is suitable for a metaplanner to reason over

77

he made no claims about this.

In Houghton’s system there is only one set of codes. Each

agent is allowed to speak by constructing more than one

process. In essence there is no chairman since one robot goes on

thinking and speaking until he decides not to do so. This is

achieved by suspending the current process at the point at

which this is convenient. Im m ediately when a process is

suspended the other agent resumes control of the program.

More general issues are relevant to conversation theory

that the meta-planner and the central executive must concern

themselves with. These issues include how to invoke a level of

explicit conversation by the use of presumption and in turn how

to interpret incoming events or conversation that involve a kind

of interruption. This would involve a tran sfe r of control

between leading (i.e. by initiating CP’s) and following (i.e. by

having to respond to C P ’s all the time) the course of the

d ia lo g u e . Th is la tte r con cern form s the basis of the

considerations looked at in chapter 4.

3.4.8 Initial setting and Representation.

In Power, typical knowledge representation at source

(adapted from Power 1979) contains the following:

78

Positions of objects:
[JOHN OUT, MARY IN, DOOR SHUT, BOLT UP]

Perception:
John can see all four objects;
Mary Is blind and cannot see any of them,
e.g. [door bolt robot]->jksee.

Action:
John can MOVE and SLIDE, but not PUSH;
Mary can do all three,
e.g. [move slide]->jkacts.

Goals:
John's goal Is to be in.

Mary's goal is for John to be In.

Beliefs:
John believes that:
If a robot MOVES, nothing happens.
If a robot PUSHES the door,
the door changes position.
If a robot SLIDES the bolt, nothing happens.
Mary believes that:
If a robot MOVES, he changes position
provided the door Is OPEN.
If a robot PUSHES the door,
the door changes position.
If a robot SLIDES the bolt, nothing happens.

In Houghton there is knowledge representation for a

greater variety of uses. It is split into two major categories,

"core" and "variable" knowledge. Examples of different types are

as follows:

i) Core Knowledge reflects what the robots and the system

know about the physical world. This knowledge never changes

throughout the dialogue.

[Fred knows [opp X Y]][opp In out]
[Fred knows [sameloc isa position]]
[Fred knows [hand4 is hand]]
[Doris knows [hand4 partof Fred]]
[Fred knows [hand4 partof Fred]]
[hand4 partof Fred]]
[Fred knows [[door] objof move]]
[Doris knows [in isa position]]
[Doris knows [closed isa doorpos]]
[Fred knows [Fred isa robot]]
[Doris knows [Fred isa robot]]
[Fred isa robot]

ii) Variable knowledge is knowledge that changes during the

course of an interaction. For example, if Doris slides bolt4 and

tells Fred then a component of the variable knowledge changes

to [Fred knows [bolt4 is down]].

79

[Fred knows [Doris can push]]
[Fred knows [bolt4 is up]]
[Fred knows [if [robot push door]

when [bolt up]
then [door move]]]

[bolt4 is down][Doris knows [bolt4 is down]]
Fred knows [Doris can slide]
[Doris knows [Fred can movethru]]
[Fred is out][Doris knows [Fred is out]]
[Doris is in] [door4 is closed]

For a goal of one of the agents getting In, Power has a

maximum of 26 different knowledge representation entries. For

the same domain Houghton has at least twice that many.

Whereas Power has different variables to represent different

types of knowledge, Houghton represents all knowledge in the

form of [Fred knows [fact]] where “fact” is a list that contains

a unique semantic identifier. In Power’s case, the knowledge

representation that Houghton uses is buried either in the

program code or updated as another variable later on as in

knowing what each other can do, for example.

In addition to this Power has no meta-conversational

knowledge to be applied to conversation in terms of when it can

be used. Instead it is directly called upon within the planner. On

the other hand, Houghton has Cohen and Perrault’s (1979a,b)

speech act definitions for his IF's. Thus he has established the

80

preconditions18 for what has to be true before a conversation

can take place.

There is also, in both systems, a dynamic knowledge

representation in the form of a plan tree, which contains

information about physical sub-goals that have a number of

different plan varying facts (failed, notyet and ach ieved)17.

Neither system considers knowledge that has a different status.

Knowledge can come about from different sources, it can arise

through the conversation, it can be told, inferred, estimated,

known, unknown or assumed. For example, knowledge that has

just been given (told) to an agent is not always true after an

action takes place. Another example would be when you need to

keep track of these time varying facts to avoid asking the same

questions. Thus knowledge needs to be represented in such a

w ay as to c a p tu re th is dyn am ic a s p e c t o th e rw is e the

information becomes out of date, as it would do if implemented

18 It is not easy to identify clearly all the preconditions for speaking in spite of the
attempts made by Cohen and Perrault (1979a,b) since this depends on the conversational
and physical goals that are brought to the dialogue at outset. Nevertheless for a limited
domain such as Power’s robot world, specifying the preconditions is relatively easy.
Amongst the most important that I have identified more recently are (1.) Speaker does not
know that the hearer can not do or see it. (2.) Speaker knows hearer is being cooperative. (3.)
Mode of interaction is joint (4.) You have not asked it before. (5.) You can not do it yourself. (6.) You
do not know it yourself. (7.) You are not planning to ask already. (8.) You have not just inferred it. (9.)
Are you being efficient?

Coates (1990) also makes the important point that in human dialogue sometimes the underlying
intention of an exchange is only revealed after the utterances of the speakers are complete. She
backs this argument up by giving an example dialogue in which two speakers are constructing the
same utterance together. However even this example Is also not entirely satisfactory since both
speakers were speaking simultaneously in a dogmatic manner. Thus although the intention is always
unclear at any particular junction in time, the tone often is, e.g. husband says to wife " I am going to
be late tonight darling" Is only understood by how it sounds.

17 More recent systems such as Carletta (1990) have included the following
categories (open, unplanned, unexecuted and executed).

81

using Power and Houghton’s representations. Thus in short

Houghton and Power both allow their knowledge at source to

undergo physical changes. Houghton’s is superior to Power’s in

that the representation is systematised in one database18 . Both

have limitations in that information about the operational

status of knowledge is not retained. By expanding the variety of

knowledge skills of the agents, SU PER PO W ER is forced to

confront this problem in chapter 5.

3.4.9 Conflict Resolution19.

For the successful execution of dialogue it is vital for

partners to establish and maintain agreement about all items

and have ways to agree them, in order to achieve this aim

agents must possess the ability to detect conflict and then

resolve it. There are a number of instances when this problem

occurs in Power and Houghton.

In some cases conflict arises in response to suggesting a

plan of action. Instead of saying "I can't think of one", as Power

18 In POP11, there is a facility that allows for data to be stored in one variable.
There are then library functions that allow the user to access the database in different
ways for example by pattern matching.

19 There has been some work, by Galliers (1987) using modal logic that discusses the
process of trying to either co-operate or resolve conflict in dialogue. This work
concluded that conflict is as co-operative and perhaps even more so than for example
benevolence, since the conflicting negotiation serves to move agents towards a mutually
desired goal. These are certainly the findings of this thesis; in some cases the agents
physically appear to be entering dialogue for long periods of time in which they are both
moving further from the main goal. For further discussions on the nature of mutuality,
see for example Bratman(1987), Searle (1990), Cohen and Levesque (1990) and Power
(1984).

82

does, Houghton comes back with the question "How do you do X

?". However neither system can deal with the case when neither

agent can develop an appropriate plan.

After constructing a joint plan, discussions may arise if

the plan is inconsistent with a belief. Both Houghton and Power

can deal with this in the same way. When humans discuss what

is right or wrong in terms of their beliefs about the world there

is a situation in which they have to make up their minds about

which belief to adopt. In some cases the one that wins is the

rule or belief that offers more specific knowledge. In other

cases it is the rule that “sounds” the better. For Power and

Houghton, agreement and disagreement about beliefs is

1. John: I want to explain something
2. Mary: Go ahead.
3. John: If you move nothing happens
4. Mary: I disagree.
5. John:
6. Mary: If you move when the door is open you

change position.
7. John: I see.

Figure 3.11a A discussion about a
belief in which the more complicated
rule is judged to be the better one.

resolved, usually with the longer rule taking priority. That is to

say, a rule that does not contain a precondition is rejected in

favour of the one that does. Both systems do this. An example,

taken from Power’s system is given in Figure 3.11a above.

After an action takes place there is a need within the

83

planner to infer exactly what has happened in order to resolve

any conflict that might arise from the consequences of the

1. John: Let's assess the consequences of my action.
2. Mary: Go ahead
3. John: Nothing has happened.
4. Mary: I disagree.
5. John:
6. Mary: The bolt has changed position.
7. John: I see.
8. Mary: The bolt is now up.
9. John: Right.

Figure 3.11b Action failure in which one
of the agents believes that an action has
not achieved its intended goal.

new state of the world. In Power’s model, an action failure is

handled within a conversational procedure that is automatically

invoked after the action has taken place, as illustrated in figure

3.11b. Houghton does not consider dialogue after an action has

taken place.

There are other more open-ended senses of conflict too.

Neither system discuss the more common situation in which

both agents are in conflict in the sense that they both know that

they are confused about how to achieve the main goal. As a

corollary to this problem agents may also be confused about

their knowledge or the current state of the world. Some

solutions to this problem are the concern of SUPERPOWER in

chapter 5 and are mentioned later in this chapter.

84

3.4.10 Interaction skills.

Interaction concerns itself not with the preoccupations of

individual speakers or hearers, nor with a sensible plan to

achieve an overall task but with “ev idence for interplay

between participants” (Anderson, Clark and Mullin 1989). Other

important featu res of interaction addressed here include

freedom to seize control and the business of CP’s and IF's being

kept open and at the same time unachieved. In this section, I

look at these s y s tem s ’ ab ilit ies to describe the a g e n ts ’

interchange which is a major focus for SUPERPOWER.

In Power’s system, the first place where interactional

skills can be seen is in turn-taking, with no repetitions of the

same type of CP at any one time. Only one plan (or several sub­

plans) can be active at any one time. Thus interaction is best

described as short and sharp with at most two or three

conversational procedures active at any one time. There is no

level of dominance and the robots are always thinking about the

same plan or conversational procedure one after the other. Co­

operation is achieved through slavery on the part of one or other

of the agents and the ability to interact is restrained to the

reasoning of the conversational procedure itself.

Coordination is achieved by sending one of the agents to

85

“sleep” until the other has caught up to the same point within

the program code. Interruptions are hard-coded into the planner

at appropriate points for naturalness as opposed to some

necessary interruption reasoning process that takes into

considera tion the ram ifications of the other partic ipant.

Interruptions are also modelled in Power when some tacit

disagreement hinders advance towards the goal actively and an

interjection is appropriate, for example, the use of “call by

name” as in “1. John: Mary, 2. Mary: Yes”. There is also some

inferencing after an action takes place that is automatically

and immediately hardwired and executed.

For Houghton, interaction is turn-taking and any number of

interactional frames can be invoked or active at any one time.

Thus conversation can be embedded so that a number of

interactional frames are active at any one time. Just as with

Power, it is not clear to what extent conversation that occurs

before an action can be retained active after that action. Thus

although the interaction frames are clearly embedded at any

number of levels, the assumption is that there has been no

1. John: How do you get to be in?
2. Mary: You open the door and move.

Figure 3.11c Being told how to do
something (adapted from Houghton
1986)-.

change in the current goal. Thus physical planning is the same

86

as for Power. So are dominance, co-operation and coordination.

However reasoning about plans and d ifferent bits of

knowledge can vary considerably. For example, in Figure 3 .11c

John is thinking about how to achieve the goal of being In

whereas Mary is planning how to be in.

In the next two chapters, I show that a critical milestone

for any dialogue system is the ability to interact even when

there is a change in the state of the world. This involves some

improved knowledge representation that reflects new and old

knowledge that retains its validity and a recursive algorithm

for keeping track of conversational procedures that are kept

active for long periods of time over perhaps several actions and

are then needed or completed at a later time.

3.4.11 Inference.

In Power’s system all inference is hardwired within the

conversational procedure. For example, in figure 3.11d, the

follow ing exchange all occurs within one conversational

procedure.

1. John: Let’s assess the consequences of my action.
2. Mary: By all means.
3. John: The door is open.
4. Mary: I see.

Figure 3.11d Action success (adapted from
Power 19741.

87

In Houghton there is no need for inference since the

planner is always good enough (in relation to achieving the main

goal) to avoid this. Later, in SUPERPOWER, all inference is done

exhaustively within the planner. Thus, with Houghton, once all

plans are negotiated it is assumed that the actions will achieve

their desired effect. But with Power’s system an actor engages

in a conversational procedure “zgassess” immediately after it

performs an action with the intention of making sure that both

agents understand what has happened. On completion, both

agents exit from the game, update their plan structure and infer

a new belief about the world if the current change was not what

was expected.

One problem that perhaps has often been underestimated

is that modularising a program often restricts its scope for

cogn itive d e v e lo p m en t. For e xam p le , Houghton (1 9 8 9)

m odularised u tte ran ce planning such that the syntactic

structure of an utterance was determined by a plan that could

be either physical or conversational. Then the utterance could

be generated using Halliday’s systemic grammar. It is not at all

clear whether this took into consideration the circumstances

from which the plan was derived in the first place. For example,

how could it distinguish between “The bolt is Up” and “The bolt

must be Up”? The former might have been an answer to a

88

question and the latter an inference, yet the meaning are the

same. These two sentences are neither given nor new facts but

instead have their grammatical structure rooted within the

dynam ic planning process of inferring som eth ing .20 Thus,

although systemic grammar readily distinguishes between these

two modalities and Davey (1978) applies this in his system it

has not been extensively applied in this particular instance. The

problem of relating the dynamic aspects of planning to modality

in linguistic structure (see also Coates 1990, Palmer 1990 and

Stubbs 1987) is an important milestone for inference since

once the variety of inference increases a respondent will need

cues to understand how an utterance, containing an inference,

was actually made.

I hope to be show ing in fu tu re c h a p te rs th a t

S U P E R P O W E R ’S inference capabilities combined with the

planning mechanisms permit solid support for a more general

account of modality.

3.5SUPERPOWER.

I now focus on the two main differences between my

system and those of Power and Houghton. First to be considered

will be the coordination i.e what Power refers to as the

20 A useful modular account of computational linguistics for reference purposes can
be found within Gazdar and Mellish (1990).

89

executive control in terms of when the agents are allowed to

think. This is the component where any meta-planning that

needs to be done should be done. It is the starting point for

allowing agents to vary the dialogue interaction as a whole.

In terms of coordination, the agents must be able to

interrupt one another w henever they want to. In Pow er’s

system, this is only possible when it is the appropriate agent’s

turn. In Houghton processes are used, but again, only when one

agent has finished speaking is this possible. In SUPERPOWER

both ag en ts are a llo w ed to th ink at the sam e t im e. A

comparative summary is shown in figure 3.12 which indicates a

short bar line when it is the appropriate agent’s turn. Only one

of the agents is actually being allowed to think. In the case of

humans, perfect parallelism can exist, although it is normally

very difficult to talk when you are trying to listen at the

same time, likewise it is very difficult to think about one’s own

goals at the same time as listening. Thus with humans, to be

part of an interaction participants must accept as a minimum

these constraints. Apart from this, they are free to talk or

listen as and when they choose. In Houghton and Power’s

systems there are periods in which both agents can have

absolutely no impact on the dialogue. In SUPERPOWER, I have

allowed the thinking time to be distributed between the two

90

agents allowing them the freedom to think, talk and listen

Time slicing
in which
agents
Alternate
the amount
of thinking
equally.

Time slicing
in which the
speaker
continues
thinking
until it has
something
to say.

Time slicing
in which the
relative
speed of
Mary is three
times faster
than John.

Figure 3.12 Time slicing illustrating the degree of
parallelism that can exist between one conversational
simulation and another. In Power, control swaps
alternately. In Houghton, control changes when one agent
has reached a logical conclusion. In SUPERPOWER one agent
can be allocated more time increments per swap than the
other. Thus, with this allocation, the robots are thinking at
the same time because such a simulation could not possibly
work unless the program code had been designed so that
each robot thought independently of one another.

more independently than before but observing the human

principles of not planning and listening or talking and listening

at the same time.

Houghton (1986)

Robot Plan Type Time increments

Fnad Phusical —
Conversational — -

Pans Phusical
Conversational —

SUPERPOWER

Robot Plan Type Time Increments — >

Slow
John

Phvsical
Conversational

Speedy
Mary

Physical - - - - -
Conversational

Power (1979)

Robot Plan Type Time increments —>

Mary
Physical — * - -
Conversational — -

John
Physical — -
Conversational ■"

91

Secondly, SUPERPOWER has improvements in terms of the

depth of planning and inference techniques that are possible.

Figures 1 .10 (chapter 1), 1.9 (chapter 1), 3 .13 and 3 .1 4

illustrate the main types of dialogue that are addressed. In the

first instance there is classical planning, figure 1.10 (chapter

1), which is the type of algorithm that both Houghton and Power

use. W hereas Instrumental planning relates to the need to

overcome perceptual difficulties, experimental planning relates

to the need to overcome not knowing how to do something.

Within experimental planning Power’s program simply

1. Mary:

(State of the world is now
[Mary in, John out, door open, bolt up])
Is the door open?

2. John: I don't know.
3. Mary: Let's do a test. I suggest I move.
4. John: All right.

5. Mary:

(State of the world is now
[Mary out, John out, door open, bolt up])
I have moved.

6. John: I see.
7. Mary: I have changed position.
8. John: I see.
9. Mary: I am now out.
10. John: Right.
11. Mary: The door must be open.
12. John: Right.

Figure 3.13 Instrumental Planning in which not knowing
something generates the need for both conversation and action.

aborts. In Houghton’s program he considers experimental

planning but only when a single agent does not know how to

plan. In the dialogue illustrated in figure 1.9 (chapter 1) I

demonstrate a new set of dialogue possibilities by generating

92

sentences appropriate for when both agents cannot find a plan.

Then there is instrumental planning (figure 3 .13) in which

neither agent can perceive the current state of an object in the

world and they need to work out how to discover what it is.

Neither Houghton nor Power consider this or the other case

which involves dialogue about what to do when something

(State of the world is
[door shut, Mary in, John in, bolt down])

1. Mary: Will you help me get out?
2. John: By all means.

(State of the world is
[door shut, Mary out, John out, bolt down])

3. Mary: | have changed position.
4. John: | see.
5. Mary: | am now out.
6. John: | see.
7. Mary: Somebody has put me out.
8. John: Really.
9. John: | have changed position.
10. Mary: | see.
11. John: | am now out.
12. Mary: | see.
13. John: Somebody has put me out.
14. Mary: Really.

Figure 3.14 Unexpected Planning in which
both agents have agreed a goal that is
suddenly realised automatically. The task
then becomes a matter of inferring what
has happened.

unexpected occurs. In figure 3.14, both agents are in dialogue

with one another when suddenly they are both placed in the Out

position. The task is then for both agents to assess and infer

exactly what has happened. This falls within the definition of

93

Unexpected planning21.

3.6 Summary.

In this chapter, I looked first at early dialogue systems

that do not consider purposeful conversation in terms of any

theory. Next, I discussed goal-directed systems that do provide

such a theory and some work that went into understanding the

components of a goal-directed system. I explained that one area

not covered by this work is the ability of the agents to enhance

their pragmatic skills as a result of their having been endowed

with different knowledge, perception, action and speed skills. I

then went on to discuss Power’s and Houghton’s systems that

come the closest to achieving this aim.

In chapter 4, I shall discuss the time slicing algorithm

that allows agents to think and converse whenever they choose.

I shall also explain how speed changes and differences in other

skills give rise to different dialogue. Then in chapter 5, I shall

discuss an exhaustive joint planning algorithm for a wider

variety of skills than that reported so far.

21 Unexpected planning has been the interest of Social Scientists recently. For
example, Suchman (1987) suggests that the work in Artificial Intelligence planning has
little to say about how humans perform tasks. By illustrating her theory with dialogue
about photocopying she shows how plans are not developed in advance of the action but
instead as a consequence of the situation. However by simply being familiar with a type
of event and inferring what is happening from past experience robots can also develop
plans *in situ\ Agre (1990) also supports this argument.

94

Chanter 4.

Time slicing.

4.0 Introduction.

In the previous chapter I identified two problems that

other dialogue systems have not considered namely the time

slicing and kinds of planning. In this chapter I discuss the first

of these problems.

Power (1974), both at the end of his thesis and in more

recent artic les, Indicates a number of problems that his

original program failed to address. A better representation than

that first described in Power (1974) could be achieved by

swapping the control from one agent to another at all stages of

planning, thus allowing simulation in parallel. This is what I

refer to as time slicing. Power (1979) also suggests it would be

more satisfactory to have a control stack representing the point

of the utterance rather than a mixture of information about

mutuality, utterances, dialogue, and joint plans and (Power,

1987) discusses the need for the dialogue to be more efficient.

Finally, Power (1984); (see also Power and Dal Martello 1986)

recognises that the problem of what constitutes agreement

still needs to be resolved. Some recent programs have partially

solved some of these problems but not all.

It is with these ideas in mind that this chapter now takes

up the issue of time slicing and explains how different timing

accounts for variety in dialogue. I will describe the computer

96

simulation of Power’s robot world. The program listing in the

appendix is an enhanced version of the program described in

Power (197 4 ,1 9 7 9) and represents dialogue generated by

SUPERPOWER V 5.9, described in this and the next chapter.

Almost all of the original variable names, procedures and

programming conventions that are described in technical detail

in Power (1974) have been retained.

In section 4.1, I discuss the general problem of reasoning

about events and processes which is at the heart of time

slicing. An event may either be independent of, or dependent on,

the current process22. Put simply, does it interrupt something or

is it exactly what an agent was expecting? The main choices

are listed in figure 4.1. Although the agents in SUPERPOWER do

not ac tu a lly reason deep ly about this, there are

mechanisms to access any point within a process provided it

1) An event occurs and the agent was not expecting one.
2) An event occurs and the agent was expecting one.
3) An event does not occur and the agent was expecting one.
4) An event does not occur and the agent was not expecting one.

Figure 4.1 The general problem of processing events (utterances
or actions). This provides the mechanism for what to do when
something unexpected happens, thus improving the robustness
of interaction.

has a reasonable amount of functional significance. Simple

actions such as deleting, advancing, suspending or continuing a

22 Lansky (1986,1988), Georgeff (1987) have taken this issue up theoretically in
GEM PLAN for both single and multi-agent domains but not, however, for problems
relating to dialogue.

97

process, once the executive control has in terpreted how

incoming events relate to existing processes, are included.

Thus, the general problem of reasoning about an event is dealt

with in section 4.1.1 followed by a discussion of when this

occurs as well as how to reason about the current process

(section 4.1.2). Sample dialogues are illustrated to show what

happens if the agents are allowed to think independently in

section 4.1.3. Next, in section 4.1.3.1 and 4.1.3.2 I detail a Monte

Carlo simulation by considering all possible combinations of

agent skills, with speed changes, and show how it is possible

for them to give rise to changes in dialogue.

In the last sec tio n (4 .2) , I e x p la in how th e s e

im provem ents are im portant for organ is ing the d ia logue

according to the four levels discussed in chapter 2. Level 4 is

about occupying the airwaves and so the state of expecting a

reply (section 4.1.1) helps to decide what to do when an event or

utterance occurs. Relative speeds are important at this level,

since, when an event occurs that is independent of internal

processing, it provides a trigger to stop planning and pay

attention to the interrupt. I have not modelled how to reason

about an interruption but have provided a program structure

that could enable this (e.g. figure 4.3).

98

4.1 Allowing both agents to think in parallel - an overview.

A closer simulation of independent robots, processing in

parallel, can be implemented by expanding the central executive

(P ow er 1974: exec) in such a way as to swap control

incrementally from one agent to another. Processing time is

split into small chunks of planning and conversational steps.

Control is not now passed only when an utterance is produced,

as in the earlier models of Houghton (1986) and Power (1974),

but instead after a number of predefined chunks of reasoning

d e te rm in e d by a ro b o t ’s s p eed p a ra m e te r . Th is tests

conversational coordination mechanisms of the agents - there

are now many more moments when the other may speak. They

can be “surprised” and “in terrupted”. This brings out the

theoretical problem of how an agent should respond to an event

(utterance), whether or not it is expected.

In order to achieve all this, a program simulation must be

able to process both existing and input activity at the same

time. This in turn involves relating incoming events (physical

or conversational) to current processes (physical plans or

topics). There is a variety of strategies for dealing with this,

depending on the style of agent that is required. For example,

following Power (1979), one strategy is hardwired into the

program in order to be able to ignore current processing, to

99

respond immediately and to engage actively when an agent is

spoken to. He refers to this as call by name (Mary says: “John”,

John rep lies : “Y e s ” and suspends his curren t in te rn a l

processing). Situations often arise where this strategy might

not be appropriate, and in this case the agents would have to

know how to reason at this level. I do not consider this problem

here but instead expand the notion of expecting a reply in the

central executive of the agents.

Next, I introduce the reader to the problem of defining an

increment of time that can be used as a method of simulating

parallel activity. Later on I shall be showing that one of the

most striking conclusions from this is that what gets said in a

dialogue is dependent on the relative speeds of the participants,

even when all other initial conditions remain constant. This is

surprising, since one might expect only the order of dialogue to

be affected. Furthermore, in some instances, even the outcome

of the dialogue can be determined by the relative speeds of the

agents.

4.1.1 The notion of expecting a reply.

In human dialogue the hearer is always confronted with

the problem of how to balance resources between listening to

100

Given that:
1) An event has just occurred and the agent was not expecting it. Then:

e.g. 1. The agent could have been finishing off interpreting another message,
e.g. 2. The agent could have been thinking about something else,
e.g. 3. The agent could have been preparing to say something.

2) An event has just occurred and the agent was expecting it. Then:
e.g. 1. The agent could have been planning, assessing or saying something else,
e.g. 2. The agent might simply be waiting for the event.

3) No new event occurs but the agent is expecting one. Then:
e.g. 1. The agent could have been waiting for the other to say something,
e.g. 2. The agent could have been waiting for the other to perform an action.

4) No new event occurs but the agent is not expecting one. Then:
e.g. 1. The agent could have been interpreting a previous utterance,
e.g. 2. The agent could have been preparing to make an utterance,
e.g. 3. The agent could have been planning to make an utterance.
e.g. 4. The agent could have been preparing to make an utterance but was still
planning or assessing.

Figure 4.2 The notion of expecting a reply illustrating
the main processes that an agent is involved in at the
time of an event (or non-event). Both the process and
the event require reasoning about.

the speaker and preparing to speak himself. In SUPERPOWER, I

pave the way for this problem by introducing the notion of

e x p e c t in g a rep ly . F u rth e rm o re , a ll p ro c e s s e s w ith in

SUPERPOWER are subdivided into functional units that can be

suspended at any time. Thus, if an event should warrant it, a

new process can start and when it is finished the old process

can be resumed. There is nothing new in this idea except that in

SUPERPOWER the dialogue can be more explicit. The program

always recognises the type of event that has just occurred

and therefore responds accordingly. The various cases that an

agent’s executive (Power 1979) must consider, when control is

101

Yes

Yes

Assess event

Update and
replan.

Was it expected ?

Infer anything new ?

Continue from
before

Event (E) or Utterance (U) ?

Load in new
Conversational
procedure

Figure 4.3 How incoming events and utterances are
processed when robots are allowed to think in parallel.

handed back to it, are illustrated in figures 4.2 and 4.3 above.

4.1.2 An increment of time.

The problem of simulating the processes of two agents in

parallel is not obvious. Processes must be simulated in such a

way as to alternate the amount of CPU time each agent’s

conversational program can occupy. This in turn means that each

agent’s process must be allocated a certain amount of the CPU

time each time the simulator’s chairman hands over control to

an agent’s program. This then poses the problem of how to

102

define how much of this processing represents one time unit?

On the one hand, the increment should not be too small since

conversation has very little to do with computer machine code

and on the other it should not be too large since it would not

test the flexibility of the mechanisms very much.

Thus, at one extreme every machine code instruction

could count as an increment. At the other is Houghton’s (1986)

definition based on control being passed only when agents have

finished a process of making an utterance. A third definition

(P ow er 1 9 7 9) could be based on the idea that every

instantiation of a plan step or a conversational procedure

constitutes one increment. An even smaller increment might be

useful in certain situations (e.g. Mary might be looking up some

knowledge while John tells her what she is trying to find out).

SUPERPOWER uses Power’s (1979) definition but is designed so

that any definition would be easy to implement.

Although there is considerable debate as to what this

could actually mean, an increment of time in conversation is

nevertheless usefully defined when, on execution, a segment of

a conversational program takes on a meaning that can be

reasoned about. This provides the basis for a variety of

situations which would otherwise not be handled by dialogue

systems. For example, a difficult situation could arise if one

103

stupid agent is very much faster than a clever but slow agent.

The question arises of whether or not to remain within the

conversation dictated by the stupid but fast agent. Although

more related issues such as pauses, hesitations or interruptions

(Butterworth 1980) are not directly considered here, a clever

agent would not acquiesce but pause and think. Similarly, human

conversation becomes more efficient as a consequence of

reasoning about chunks of e a rlie r d iscussions. Thus an

important feature of any computer program that generates

dialogue is for it to be structured in such a way that each

conversationally meaningful function is segmented as a time

unit that can be reasoned about. For example, if one unit related

to responding to an utterance it means that the functional unit

is conversational rather than physical or mental.

At the heart of all computer models of conversation there

is a problem. Within the interactionist approaches such as

S h adb olt and C a r le t ta there is no a llo w an ce for speed

disparities or differing knowledge skills. These are models of

conversation only between identically-trained conversants. On

the other hand, models that have an element of disparity

between the speaker and the hearer by way of an interaction

frame or a conversational procedure suffer from other kinds of

defects. Namely, once an agent is in a CP or IF it has no way of

104

getting out and is forced to respond in a direct way.

Part of this same problem is the dilemma between an

elliptical and an explicit approach to modelling dialogue. An

interactionist model is elliptical since it strives to specify all

the important elements, such as Shadbolt’s communicative

postures, of an efficient dialogue system without exhaustive

i l lustration of any con versational techn ique . My explic it

approach with S U P E R P O W E R is to strive for fewer initial

settings but greater amounts of explicitness for how a setting

such as time slicing can be adequately tested through the use of

a Monte Carlo simulation.

In the interactionist models such as Shadbolt and Musson

(1987) there are no conversational procedures at all. The model

relies on a form of constructive interaction. The job of each

planner is to contribute to the previous utterance which is

expressed in the form of a plan. Also it is not clear how they

distinguish between listening and speaking at all. Thus it is a

form of monologue, not dialogue, in this respect. The drawback

with this method is that the planners cannot act differently, in

the conversational sense, from one another. Agents can

contribute provided their knowledge is similar. If, however, the

knowledge of agents were varied, this method would not fulfil a

sense of explicitness (since varied knowledege inevitably

105

means a greater diversity in dialogue). By contrast, in models

such as those of Power and Houghton conversational planning is

treated independently from physical planning. In the former

situation (i.e . Shadbolt and Musson 1 9 8 7), the th inking

processes associated with speaking are assumed to be the same.

In the latter case, (i.e. Power 1979; Houghton 1986; Carletta

1990), a clear distinction is made between a planner that

listens, by way of being bound to a conversational procedure or

interactional frame, and a planner that prepares to speak. The

advantage of binding within a CP (i.e. no control can be passed

to a different point in the program once in a CP) is that time

slicing becomes possible whereas without a CP or IF time

slicing is impossible and therefore control or coordination

106

cannot be illustrated within dialogue,23

4.1.3 Example dialogues with parallel processing.

I now demonstrate, through the use of SUPERPOWER what

happens when agents are allowed to process independently of

one another. Intuitively, the only difference would be the order

in which things w ere said. This is not the case at all.

Unexpected phenomena occur within dialogue when all factors

28 One further important step forward is to minimise the amount of processing
time spent within a CP or IF, and then to force this minimal procedure to behave
just like a joint action. In other words there is a planner that reasons about
conversation in the same way that it reasons about action. It also executes
conversation rather like a joint action. Also within the program code, action is
physically performed in the same place as the conversation (unlike Power and
Houghton in which action and conversation are intermingled throughout the
program code). Furthermore, for every physical plan of achieving a goal there is
also a corresponding conversational method. Efficiency or ellipsis can then be
improved by developing a theory of the hearer that knows when to interrupt
combined with a theory about presumption, (Power 1987: 10), that assists the
speaker in making elisions. This has the effect of allowing an infinite amount of
explicitness that can then and only then be made efficient by developing
conversational rules for situations such as a thoughtful hearer dealing with an
uneducated, precipitous speaker. Minimising the amount of agreeing that occurs
within a CP or IF is the main concern (discussed for future research in chapter
6) but, for the purpose of this section, part of the process of being more explicit
means that each plan step, such as checking that preconditions are satisfied, must
expose itself to be reasoned about. There are no short cuts, which is why in
SUPERPOWER every process and joint plan is broken down into functional units so
that more explicit conversation, if ever the need should arise, can appropriately
be invoked. The listener then has two choices either to respond within the C.P. or
metaplan his/her way out of it. This will be the concern of chapter 6.

107

*** what John's capabilities are ***
1. Goal: Help me get the door open.
2. Position of objects:

door: shut: seen, John: out: seen, Mary: undef: undef, bolt: undef: undef
3. Consequences of events:

push: If you push the door when the bolt is up, the door changes position,
slide: If you slide the bolt when you are in, the bolt changes postion.
move: If you move when the door is open, you change position.

4. Range of actions:
move: Yes, slide: Yes, push: No,

*** what Mary's capabilities are ***
1. Goal: None
2. Position of objects:

door: shut: seen, John: undef: undef, Mary: in: seen, bol: up: seen
3. Consequences of events:

push: If you push the door, the door changes position,
slide: If you slide the bolt, the bolt changes position,
move: If you move when the door is open, you change position.

4. Range of actions:
move: Yes, slide: No, push: Yes,

Dialogue A Dialogue B
parallel processing set parallel processing set
John's speed = 1 John's speed * 3
Mary's speed = 3 Mary's speed = 1

1. John: Mary. 1. John: Mary.
2. Mary: Yes. 2. Mary: Yes.
3. John: I want to suggest a goal. 3. John: I want to suggest a goal.
4. Mary: Go ahead 4. Mary: Go ahead
5. John: Will you help me get the door open? 5. John: Will you help me get the door open?
6. Mary: By all means. 6. Mary: By aH means.
7. Mary: Shall we make a plan? 7. John: Shall we make a plan?
8. John: OK 8. Mary: OK
9. Mary: I suggest that I push the door. 9. John: Mary.
10. John: Mary. 10. Mary: Yes.
11. Mary: Yes. 11. John: May I ask you something?
12. John: May I ask you something? 12. Mary: Go ahead
13. Mary: Go ahead 13. John: Can you push the door?
14. John: Is the bolt up? 14. Mary: Yes.
15. Mary: Yes. 15. John: Mary.
16. John: All right. 16. Mary: Yes.

17. John: May I ask you something?
(State of the world is now 18. Mary: Go ahead
[John out, Mary in, bolt up, door open]) 19. John: Is the bolt up?

20. Mary: Yes.
21. John: I suggest that you push the door.
22. Mary: All right.

(State of the world is now
[John out, Mary in, bolt up, door open])

Figure 4.4 Relative speeds of the agents determining (a)
utterance order, (b) utterance content (e.g. dialogue A line
9 and dialogue B line 21). (c) dialogue iength. (cfl dialogue
content (e.g. dialogue B lines 11-14 does not appear in
dialogue A), (e) interruption rate (i.e. dialogue A lines 7
and10 are interruptions whereas dialogue B has none).

remain the same except the relative speeds of the agents.

108

Figure 4 .4 illustrates contrasting discussions in which the

speeds of thought, which are m easured in increments of

program code (Sect 4.1.2 p103), of the agent in the left dialogue

are reversed (all other factors remaining constant). It clearly

Dialogue A Dialogue B Dialogue C
parallel processing set parallel proceeslng set parallel processing set
John's speed ■ 1 Mary's speed ■ 3 John's speed « 3 Mary's speed « 1 John's speed » 1 Mary's speed ■ 1

1. John: Mary. 1. John: Mary. 1. John: Mary.
2. Mary: Yes. 2. Mary: Yes 2. Mary: Yes
3. John: 1 want to suggest a goal. 3. John: I want to suggest a goal. 3. John: I want to suggest a goal.
4. Mary: Go ahead. 4. Mary: Go ahead. 4. Mary: Go ahead.
5. John: Will you help me get the door 5. John: Will you help me get the door 5. John: WUI you help me get the door open?

open? open? 6. Mary: By all means
6. Mary: By all means 6. Mary: By all means. 7. Mary: Shall we make a plan?
7. Mary: Shall we make a plan? 7. John: Shall we make a plan? 8. John: OK
8. John: OK 8. Mary: OK 9. Mary: I suggest that I push the door.
8. Mary: 1 suggest that 1 push the door. 9. John: Mary. 10. John: Mary.
10. John: Mary. 10. Mary: Yes 11. Mary: Yes
11. Mary: Yes 11. John: May I ask you something? 12. John: May I ask you something?
12. John: May 1 ask you something? 12. Mary: Go ahead. 13. Mary: Go ahead.
13. Mary: Go ahead. 13. John: Can you push the door? 14. John: Is the bolt up?
14. John: Is the bolt up? 14. Mary: Yes 15. Mary: No.
15. Mary: No. 15. John: Mary. 16. John: Mary.
16. John: Mary. 16. Mary: Yes 17, Mary: Yes
17. Mary: Yes 17. John: May I ask you something? 18. John: 1 want to explain something.
18. . John: 1 want to explain something. 18. Mary: Go ahead. 19. Maiy: Go ahead.
19. Mary: Go ahead. 19. John: Is the bolt up? 20. John: If you push the door when the bolt
20. John: If you push the door when the 20. Mary: No. Is up, the door changes position.

bolt Is up, the door changes 21. John: I suggest that we get the bolt 21. Mary: Ises
position. up and then you push the door.22. Mary: I suggest that we get the bolt up

21. Mary: Ises 22. Mary: All right and then I push the door.
22. Mary: 1 suggest that we get the bolt 23. John: Shall we make a plan? 23. John: All right

up and then 1 push the door. 24. Mary: OK 24. John: Shall we make a plan?
23. John: All right 25. John: Mary. 25. Mary: OK
24. Mary: Shall we make a plan? 26. Mary: Yes 26. John: Mary.
25. John: OK 27. John: May I ask you something? 27. Maiy: Yes
26. Mary: 1 suggest that 1 slide the bolt 28. Mary: Go ahead. 28. John: May I ask you something?
27 John: All right 29. John: Can you slide the bolt? 29. Mary: Go ahead.

30. Mary: Yes. 30. John: Can you slide the bolt?
31. John: I suggest that you slide 31. Mary: Yes

the bolt. 32. John: I suggest that you slide the bolt.
32. Mary: All right 33. Mary: All right

Figure 4.5 Dialogue of the goal of getting the door open
with the bolt down, illustrating similar features to fig 4.4
but with three different speed settings. In A. Marv
dominates bv proposing 3 plans, in B. John dominates bv
proposing 2 plans, but in C John proposes 1 plan and Marv 2.
Discussions about beliefs only occur in A and C.

shows that the number of utterances, the order in which they

occur, what gets said and agreed, what is explained, how a plan

is realised are all different. Further complications arise when

planning gets more involved. Depending on the circumstances,

109

*** what John's capabilities are ***
1. Goal: Help me get the door open.
2. Position of objects: door: shut: seen, John: out: seen,

Mary: undef: undef, bolt: undef: undef,
3. Consequences of events:

push: If you push the door when the bolt Is up, the door changes position,
slide: If you slide the bolt when you are In, the bolt changes position,
move: If you move when the door Is open, you change position.

4. Range of actions: move: Yes, slide: Yes, push: No,

*** what Mary's capabilities are ***
1. Goal: None
2. Position of objects: door: shut: seen, John: undef: undef,

Mary: In: seen, bolt: down: seen,
3. Consequences of events:

push: If you push the door, the door changes position.
slide: If you slide the bolt, the bolt changes position.
move: If you move when the door is open, you change position.

4. Range of actions: move: Yes, slide: Yes, push: Yes,

(State of the world Is now [John out, Mary In, bolt down, door shut])

Dialogue A
parallel processing set
John's speed ■ 3 Mary's speed * 1

Dialogue B
parallel processing set
John's speed - 1 Mary's speed - 3

1. John: Mary. 1. John: Mary.
2. Mary; Yes. 2. Maiy: Yes.
3. John: I want to suggest a goal. 3. John: 1 want to suggest a goal.
4. Mary: Go ahead. 4. Maiy: Go ahead.
5. John: Will you help me get the door open? 5. John: Will you help me get the door open?
6. Mary: By all means. 6. Mary: By aH means.
7. John: ShaH we make a plan? 7. Mary: Shall ws make a plan?
8. Mary: OK 8. John: OK
9. John: Mary. 9. Mary: 1 suggest that 1 push the door.
10. Mary: Yes. 10. John: Mary.
11. John: May I ask you something? 11. Mary: Yes.
12. Mary: Go ahead. 12. John: May 1 ask you something?
13. John: Can you push the door? 13. Mary: Go ahead.
14. Mary: Yes. 14. John: Is the bolt up?
15. John: Mary. 15. Mary: No.
16. Mary: Yes. 16. John: Mary.
17. John: May I ask you something? 17. Mary: Yes.
18. Mary: Go ahead. 18. John: 1 want to explain something.
19. John: Is the bolt up? 19. Mary: Go ahead.
20. Mary: No. 20. John: If you push the door when the bolt Is up,
21. John: I suggest that we get the bolt up and the door changes position.

then you push the door. 21. Mary: Isee.
22. Mary: All right. 22. Maty: 1 suggest that we get the bolt up and
23. John: Shall we make a plan? then 1 push the door.
24. Mary: OK 23. John: All right.
25. John: I suggest that we get me In and then I slide 24. Maiy: ShaH we make a plan?

the bolt. 25. John: OK
26. Mary: All right. 26. Mary: 1 suggest that 1 slide the bolt
27. John: Shall we make a plan? 27. John: Mary.
28. Mary: John. 28. Mary: Yes.
29. John: Yes. 29. John: May 1 ask you something?
30. Mary: May 1 ask you something? 30. Mary: Go ahead.
31. John: Go ahead. 31. John: Are you In?
32. Mary: Are you In? 32. Mary: Yes.
33. John: No. 33. John: All right.
34. John: Shall we make a plan?
35. Mary: OK
36. John: I suggest that we get the door open

and then I move.
37. Mary: All right.
38. John: Shall we make a plan?
39. Mary: OK
40. John: I suggest that we get the bolt up and

then you push the door.
41. Mary: All right.

Figure 4.6 Relative speed settings can prevent the
main goal from ever being achieved. Dialogue A
contains a circular plan.

110

agents take the initiative at different points in the dialogue

(figure 4.5). Thus a mixture of dominance would arise when the

relative speeds of the agents are the same. In some cases the

speed settings can determine whether or not the goal is ever

achieved, for example a hasty and ignorant agent may direct the

dialogue into a circular plan (see figure 4.6).

But whatever the speed settings, an agent must develop an

understanding of itself so that it can interrupt its own thinking

purposefully. In SUPERPOWER this is achieved with a demon in

the executive that ensures that repetitiveness within the joint

plan tree does not occur. Thus an important component in

addition to circular planning for the understanding of dialogue

structure is for agents to be allowed to think, act and speak in

p a ra lle l, as ou tlin ed here . Th is all im portan t tim ing in

purposeful conversation and action is at the heart of level 4.

4.1.3.1 How do time speeds give rise to changes in dialogue?

From the previous computer dialogue transcripts, it is

a p p aren t that a num ber of fe a tu re s change as a direct

consequence of altering the initial relative speed settings of

the agents. These include (1) utterance content, (2) dialogue

order, (3) u tte ra n c e count, (4) d ia lo g u e ou tcom e, (5)

interruption rate and (6) dialogue interaction. I now discuss

111

this in more detail.

(1) The utterance content changes since, in the case of

agents with similar knowledge, questions about who is to carry

out a plan depends on who is thinking the fastest. Thus “John:

Could you push the door ?”, when John is fast, would be replaced

by “Mary: I suggest I push the door”, when Mary is fast.

(2) Dialogue order is affected by the speed settings since

agents with different sets of knowledge are liable to want to

say things in a different order. An agent who has a great deal of

perceptual knowledge but a poor belief system (i.e. causal rules

for planning purposes) will want to clarify planning strategies

first. An agent with poor perceptual abilities, however, will

want to discuss knowledge first. Thus by adjusting the timing

accordingly one can determine the order of the dialogue.

(3) A fast and intelligent agent who cannot do many things

is going to use additional conversational resources in order to

achieve something that it would not otherwise be able to do. For

example, a similar agent able to do the task of opening the door

would not need to ask the question “Can I push the door?”

whereas an agent unable to push the door would have to ask the

question “Can you push the door?”. Thus the utterance count is

affected by the relative speeds of the agents since in the

former case one less question needs to be asked.

112

(4) The dialogue outcome or the final goal states of the

agents and the physical state of the world are also affected by

the relative speeds of the agents. An interaction between a fast

agent who is incapable of achieving the goal and a slow but

competent agent may in the end prove unsuccessful if agents

are not sufficiently intelligent to recognise when the dialogue

is repeating itself. However, on reversing speeds, the dialogue

can be successful since the intelligent agent now has control

and thus guides it to a predictable outcome. A more intelligent

system would detect circularity and act more appropriately.

In some instances the dialogue may fail on one speed

setting and succeed on another. For example, see the dialogue in

figures 4 .9a ,4 .9b,4 .9c, where both robots know nothing about

how to do things but can see and do things. One is In, the other

is Out, the door is Shut and the bolt is Up. The goal is to get the

door Open. In this case, if Mary is fast the task will not succeed

if she decides to experiment with the bolt first since she learns

correctly about the bolt but fails to appreciate what happens

when she pushes the door. If John is fast then sliding the bolt

has no effect, since he is Out. Thus pushing the door causes it to

open and the main goal is achieved. A more intelligent system

would take note of all situations that are true when an action

takes place and not just the one that seems the most relevant.

113

Thus in both these examples, although what I discuss is

true for SUPERPOWER as currently implemented, it would not

necessarily remain this way if the system were made more

advanced since in both cases the dialogue could be made to

finish successfully. But my discussion remains the same since I

could construct a more complex environment in which the

outcome was successful for one speedy agent and not for the

other. Thus my conclusions still remain valid even if I were to

make the program deal with these two cases in such a way as to

make the outcome similar for either speed setting.

(5) Interruption rates can be measured from computer

dialogue by considering the number of times the agents switch

control from one to another outside the normal adjacency pair

sequences of John/Mary/John/Mary etc. Altering the relative

speeds of agents introduces artificial control into the dialogue

even when the content and situation do not warrant it. Thus, in

order for the dialogue to reach a successful outcome one agent

will often have to interrupt and supply relevant information. For

example, consider a situation where John cannot slide the bolt

or push the door and Mary’s belief about the world is suspect.

When John is speedy he needs to invest resources in asking how

to do things, when Mary is speedy John needs to interrupt her

since she suggests a plan that will not work. Thus, the mix of

114

knowledge, skills and timing explain how the interruption rate

may change in the model.

(6) This exam ple also illustrates how the d ialogue

interaction may alter as a direct consequence of the relative

speeds. In one situation the dialogue may involve asking your

partner about actions while for another situation it could be

about discussing beliefs. The only change at the input stage is

in the relative speeds of the agents.

4.1.3.2 A Monte Carlo simulation of Power’s robot world.

In this section, I provide a more robust demonstration of

how the speed settings lead to variations in dialogue. It would

not be feasible to test all dialogue variations since there are

too many combinations (1021) of inputs possible to the model.

We can however summarise the dialogue by choosing input

parameters in such a way as to represent the domain as a whole.

In the following simulation, two speed settings were

chosen, Fast (referred to as F) and Slow (referred to as S), two

belief settings were chosen, one in which the agent knew the

effect of the action of pushing the door (referred to as KNW) and

the other in which the agent did not know (referred to as UNK).

Two perceptual abilities were chosen, one in which the agent

can see everything (referred to as PER) and the other in which

115

the agent can only see itself (referred to as IMPER), along with

two action abilities, one in which the agent can do everything

(referred to as PRA) and the other in which the agent can only

move (referred to as IMPRA). John was positioned as In, Mary

was positioned as Out, the door was Closed and the bolt was Up.

John was given the simple goal of getting the door open24.

Thus the range of skills related to perception, knowledge

and action, with two a lte rn a tiv e settings for each skill,

generates sixty four groups containing four dialogues for each

 23---------------------------------

Total possible dialogue outcomes =
2x2x2x2x5x5x5x5x5x5x41x41x41x41x41x41x41x41x3x3x21x21x21x21x21x21x300

Possible Settings Input parameter Possible
combinations

[bolt up/down door open/shut
Mary in/out John in/out]

Positions of objects 2x2x2x2

Push door any nothing
undef
door

bolt up nothing
door

Beliefs 5x5x5x5x5x5

[Bolt Door John Mary] Own Perception 4!x4!

[Bolt Door John Mary] Perception of partner's
perception. 4!x4!

[Push Move Slide] Own Actions 4!x4!

[Push Move Slide] Perception of partner's
action 4!x4!

[3,2 ,1] Relative Speeds 3x3

Door in/out Bolt up/down robot in/out Goals 2!x2!x2!x2!x2!x2!

push door slide bolt move robot
at utterance 1
...........utterance 100

Unexpected Events
- 3 0 0

116

of the four different speed settings fast/slow (FS), slow/fast

(SF), slow/slow (SS) and fast/fast (FF) for the two agents. FS

O John Fast Mary Slow
□ John Slow Mary Slow
& John Slow Mary Fast
O John Fast Mary Fast

35
John Slow Mary Fast

30

O □25

of 20
CP's
insti-15
gated □□

John Fast Mary SlowMary

0-,

305 250 5 10 15 20

of CP's instigated by John

Speed
Setting

Mean Standard
Deviation

Kurtosis

Total SF 14.1 15.8 .12
Total SS 14.7 16.7 .38
Total FF 14.4 16.2 .33
Total FS 14.8 15.5 .12

Figure 4.7 Scatteraram showing distribution of
conversational procedures/dialogue bv agent and speed
setting. This shows (indicated with a regression linel
that the combinations of fast/slow slow/fast have a
wider distribution than slow/slow fast/fast. Although a
one factor ANOVA-Repeated measures (Fen indicate no
significant difference in the overall mean (includes
zeros for unsuccessful dialogues) number of CP's there
is a clear difference in the kurtosis with more CP's
being allocated to the faster agent.

is considered to be a different case from SF because agents are

faced with different environmental constraints. Then for the

117

same level of skill the number of conversational procedures

were counted, both in total and for the distribution between the

agents, and split by the four combinations of speeds. Figure 4.7

shows the overall distribution of conversational procedures

instigated by the agents in relation to speed setting. The main

result is that more C P ’s are allocated to the agent with the

faster speed setting. Figure 4.8 shows that there is no

Skill
level

John Slow/ Mary Fast
CP's by CP's by
John Mary Total

John Fast/ Mary Slow
CP's by CP's by
John Mary Total

John Slow/ Mary Slow
CPs by CP's by
John Mary Total

John
CP's
John

Fast/ Mary Fast
by CP's by

Mary Total

6 2 8 10 10 0 10 6 4 10 6 4 10

5 4 8 12 9 4 13 6 5 11 6 5 11

4 7 10 17 11 5 16 9 7 16 9 7 16

3 11 15 26 17 8 25 14 13 27 13 12 25

2 16 25 41 27 13 40 23 20 43 22 19 41

1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4.8 Summary of the number of conversational
procedures for a given level of skill, split bv the various
speed settings and bv agent. For example, skill level 3
contains any dialogues that have 3 positive skills and 3
negative skills, a positive skill being one of knowledgeable,
practical or perceptive and a negative skill being one of
unknowledoeable. impractical or imperceptive. A zero
indicates that the dialogue was unsuccessful.

significant (a repeated measures factor analysis of variance

revealed that F<1) difference in the number of conversational

procedures executed per dialogue, for each of the different

speed settings and for a given level of overall skill for the

118

agents. There is, however, a significant difference in the

distribution of the number of conversational procedures

between the agents. More conversational procedures are

allocated to the faster agent.

1. John: Mary. 55. Mary: May I ask you something?
2. Mary: Yes. 56. John: Go ahead
3. John: I want to suggest a goal. 57. Mary: Is the bolt up?
4. Mary: Go ahead. 58. John: Yes.
5. John: Will you help me get the door open? 59. John: I want to tell you something.
6. Mary: By all means. 60. Mary: Go ahead.
7. Mary: May I ask you something? 61. John: Nothing has happened.
6. John: Go ahead. 62. Mary: I see.
9. Mary: Is the door open? 63. Mary: Shall we do an experiment?
10. John: No. 64. John: Go ahead.
11. Mary: Shall we make a plan? 65. Mary: John.
12. John: OK 66. John: Yes.
13. Mary: I cant think of one. 67. Mary: May I ask you something?
14. John: I will then. 68. John: Go ahead.
15. John: I cant think of one. 69. Mary: Can you push the door?
16. Mary: Oh 70. John: Yes.
17. Mary: Shall we do an experiment? 71. Mary: John
18. John: Go ahead. 72. John: Yes.
19. Mary: John. 73. Mary: May I ask you something?
20. John: Yes. 74. John: Go ahead.
21. Mary: May I ask you something? 75. Mary: Is the door open?
22. John: Go ahead. 76. John: No.
23. Mary: Can you slide the bolt? 77. Mary: I suggest that you push the door.
24. John: Yes. 78. John: All right.
25. Mary: John. 79. Mary:
26. John: Yes.
27. Mary: May I ask you something?
28. John: Go ahead.
29. Mary; Is the bolt up? 94. Mary:
30. John: Yes.
31. Mary: I suggest that you slide the bolt (State of the world is now
32. John: All right. [door open, John out, Mary In, bolt
33. Mary:

95. Mary:
96. John: I want to tell you something.
97. Mary: Go ahead.

49. Mary: 98. John: I have pushed the door.
99. Mary: I see.

(State of the world is now 100. Mary: May I ask you something?
[John out, Mary in, bolt up, 101. John: Go ahead.

doors hut]) 102. Mary: Is the door open?
103. John: Yes.

50. Mary: 104. John: I want to tell you something.
51. John: I want to tell you something. 105. Mary: Go ahead.
52. Mary: Go ahead. 106. John: The door has changed position.
53. John: I have slid the bolt. 107. Mary: I see.
54. Mary: I see. ***** Plan successful *****

Fiaure 4.9a John's aoal of aettina the door open. Marv
fast John slow. 7 questions are asked.

These results provide a more robust demonstration of

119

what was shown in previous sections. There is, however, one

further conclusion from this simulation that I now want to

discuss and that is why there is variation within the same skill

level. The table in appendix 4 shows the same information split

further by skill mix and sorted by level of skill. The results

show that, for a given skill level, certain mixes of skills,

when combined with a fast/slow speed setting, can shorten or

lengthen the dialogue. Figures 4.9a, 4.9b and 4.9c illustrate this

John:
Mary:
John:
Mary:
John:
Mary:
John:
Mary:
John:

10. Mary:
11. John:
12. Mary:
13. John:
14. John:
15. Mary:
16. John:
17. Mary:
18. Mary:
19. John:
20. John:
21. Mary:
22. John:
23. Mary:

24. John:
25. Mary:
26. John:
27. Mary:

Mary.
Yes.
I want to suggest a goal.
Go ahead
Will you help me get the door open?
By all means.
ShaH we make a plan?
John.
Yes.
May I ask you something?
Go ahead
Is the door open?
No.
Shall we make a plan?
OK
I can't think of one.
I will then.
I can't think of one.
Oil
Shall we do an experiment?
Go ahead
I suggest that I slide the bolt.
All right.

(State of the world is now
[John out, Mary in, bolt up, door shut])

I want to tell you something.
Go ahead
I have slid the bok.
I see.

28. John: I want to tell you something.
29. Mary: Go ahead.
30. John: Nothing has happened.
31. Mary: John.
32. John: Yes.
33. Mary: May I ask you something?
34. John: Go ahead.
35. Mary: Is the bolt up?
36. John: Yes.
37. Mary: I see.
38. John: Shall we do an experiment?
39. Mary: Go ahead.
40. John: I suggest that I push the door.
41. Mary: All right.

(State of the world is now
[door open, John out, Mary in, bolt up])

42. John: I want to tell you something.
43. Mary: Go ahead.
44. John: I have pushed the door.
45. Mary: I see.
46. John: I want to tell you something.
47. Mary: Go ahead.
48. John: The door has changed position.
49. Mary: John.
50. John: Yes.
51. Mary: May I ask you something?
52. John: Go ahead.
53. Mary: Is the door open?
54. John: Yes.
55. Mary: I see.

Plan successful

Figure 4.9b John's aoaal of getting the door open.
Marv slow John fast . 3 Questions are asked.

point. I consider the setting in which both John and Mary are

120

ignorant, John is practical and perceptive, Mary is impractical

and imperceptive. Figure 4.9a illustrates the case where John

is slow and Mary is fast (5 calls by name, 1 goal, 1 plan, 2

experiments, 7 asks and 4 teils are made). Figure 4.9b

1. John: Mary.
2. Mary: Yes.
3. John: I want to suggest a goal.
4. Mary: Go ahead.
5. John: Will you help me get the door open?
6. Mary: By all means.
7. Mary: May 1 ask you something?
8. John: Go ahead.
9. Mary: Is the door open?
10. John: No.
11. John: Shall we make a plan?
12. Mary: OK
13. John: 1 can't think of one.
14. Mary: 1 will then.
15. Mary: 1 cant think of one.
16. John: OK
17. John: Shall we do an experiment?
18. Mary: Go ahead.
19. John: 1 suggest that 1 slide the bolt.
20. Mary: All right.
21. Mary:

36. Mary:
37. John:
36. Mary:
39. John:
40. Mary:
41. John:
42. Mary:
43. John:
44. Mary:
45. John:
46. Mary:
47. John:
48. Mary:
49. John:
50. Mary:
51. John:
52. Mary:

Shall we do an experiment?
Go ahead.
John
Yes.
May I ask you something?
Go ahead.
Can you push the door?
Yes.
John
Yes.
May I ask you something?
Go ahead.
Is the door open?
No.
I suggest that you push the door.
All right.

(State of the world is now
[door open, John out, Mary in, bolt up])

53. John: I want to tell you something.

(State of the world is now 54. Mary: Go ahead.

[John out, Mary in, bolt up, door shut]) 55, J°^n: I have pushed the door.
56. Mary: I see.

22. John: I want to tell you something. 57. John: I want to tell you something.

23. Mary: Go ahead. 58. Mary: Go ahead

24. John: I have slid the bolt. 59. John: The door has changed positk

25. Mary: I see 60. Mary: John.

26. John: I want to tell you something. 61. John: Yes.

27. Mary: Go ahead. 62. Mary: May I ask you something?

28. John: Nothing has happened. 63. John: Go ahead.

29. Mary: John. 64. Mary: Is the door open?

30. John: Yes. 65. John: Yes.

31. Mary: May I ask you something? 66. Mary: I see.

32. John: Go ahead.
33. Mary: Is the bolt up? ***** Plan successful *****

34. John: Yes.
35. Mary: I see.

Fiaure 4.9c John's aoal of aettina the door ooen.
Equal speed settings. 5 questions are asked.

illustrates the case where John is fast and Mary is slow (4

calls by name, 1 goal, 1 plan, 2 experiments, 3 asks and 4 tells

are made). Figure 4.9c considers the case when the speed

121

settings of the agents are the same (5 calls by name, 1 goal, 1

plan, 2 experiments, 5 asks and 4 tells are made). The only

difference between the dialogues is in the number of questions

that are asked. This tells us that when skills are kept constant

and speed settings are adjusted it is the environm ent in

relation to the agents skill that determines how quickly the

dialogue finishes. Similar features were illustrated in the

dialogues of figure 4.5 mentioned earlier.

The results from this simulation confirm the findings

mentioned in the previous section in a more robust manner.

Furtherm ore the sca tte rg ram dem on stra tes that speeds

accentuate the mix of skills and provide new distributions of

utterances within dialogue, in terms of length and content, that

would otherwise not be seen in Al models of dialogue. Lengthy

dialogue occurs when a fast agent has poor skills such as being

impractical and ignorant. Brief dialogue occurs when a fast

agent has good skills. To this extent the outcome of the

sim ulation produces results that are consistent with our

expectations.

4.2 The need for level 4 .

In this section I lay down the foundation of all the

components that have been considered (in terms of levels) so

122

far in SUPERPOWER and cover level 4 (occupying the airwaves as

defined in section 2.2). Issues about how to reason at this level

are not covered but ideas about how to proceed are mentioned in

the concluding chapter.

In section 4.1, I explained how SUPERPOWER has explored

some of the problems arising if agents are to be free to talk,

listen or act whenever they want. If an agent must deal with

something unexpected then it must reason about it in relation to

its own thoughts. So also must an intelligent hearer, if it

wishes to speak. In addition, the system reacts to unexpected

events instantaneously without thinking by channelling within

the execu tive certa in event types such as an action or

conversational procedure appropriately.

Thus, I have shown a need for level 4 in SUPERPOWER by

i l lustra ting that tim ing is a critical factor in purposeful

dialogue (figures 4 .4 ,4 .5 ,4 .6) . Next I have provided some

groundwork for reasoning intelligently at level 4 by starting to

define what is meant by a quantum increment of time. The next

stage was to provide a much more explicit theory of how to

decide between the demand for external events, including

utterances and internal plans. Finally I backed up my findings

about how speeds influence dialogue by means of a Monte Carlo

simulation. I concluded that speed settings do not affect the

123

d ia lo g u e o v e ra l l , for a g iven skill le v e l, but th a t th e

distribution of the decisions as to which agent instigates the

procedures is affected. I also concluded that certain speed

settings may accentuate good and bad dialogue for certain skill

combinations that relate either favourably or unfavourably with

the agents’ environment.

In this chapter I have provided a horizontal account of

SU PERPO W ER with the intention of trying to convey to the

reader its maximum capabilities. Now in the penultim ate

chapter I will consider a vertical interpretation of how the

planning mechanisms are invoked at various stages within the

dialogue.

124

Chapter 5 .

Kinds of Planning.

125

5.0 Introduction.

In this chapter, I extend and generalise the planning

mechanisms by using all possible combinations of the three

components of causal rules (actions, preconditions and effects).

1) Given a rule, an action and a precondition, what can we predict
about the corresponding effect? (Normal classical planning)

2) Given a rule, an action and an effect, what can we infer
about the corresponding precondition? (Instrumental testing)

3) Given a precondition, an action and an effect, what can we induce
about the corresponding rule? (Experimenting)

4) Given a rule, a precondition and an effect, what can we infer
about an observed action? (Unexpected or reative planning)

Figure 5.1 The four fundamental planning mechanisms.

F igure 5.1 lists possib le w ays to reason from p lann ing

knowledge. I will show how these generate new requirements

for conversational and action-related mechanisms. This, then,

provides an exhaustive framework for what conversation is

possible in purposeful dialogue. It is the groundwork to level 3.

Although the main concern of this chapter is to explain why

these four planning mechanisms form the basis of purposeful

dialogue, two additional sections have been included to deal with

the problems of conversational stance and the methods for

addressing circular planning. Conversational stance dictates

w hat sort of role an agen t is going to play. Is it solo,

cooperative or somewhere in between? In this system, agents

start out in solo and when they realise the goal cannot be

achieved they begin to cooperate. New dialogue can also be

126

generated if a role parameter is introduced that increases the

level of cooperation every time the main goal fails. The section

on c ircu lar p lanning is included to make the s im u la tion

mentioned in Ch. 4 feasible. That is to say a demon is needed to

detect plans that repeat themselves. These two features are

needed to make the system as a whole more robust. They are not,

however, the main concern but are mentioned as separate

sections later on.

The purpose of this chapter is to discuss the extension of

the planning mechanisms that lead to dialogues which justify the

distinction between processing a topic24 (level 2) and processing

an item for mutual agreement (level 3). These prerequisites for a

satisfactory account of level 3 and to some extent level 2 are

expressed as preliminary conclusions in section 5.2.1.

5.1. The four fundamental kinds of joint planning and the need for

conversation.

There are only four types of joint planning possible and I

now describe how they work in some detail. First I shall

24 In extended computer dialogue there is a danger that wrong inferences are made because of pragmatic ambiguity
(e.g. fig 5.6 summarises the point of the dialogue in which two parts of the tree have the same label [door open] but
different plan types (Classical and Instrumental). A reasoning process that wants to detect circularity must identify
both the label and the plan type otherwise a valid plan tree would be rejected on the grounds of circularity.

In human dialogue this is dealt with satisfactorily by instrumentally managing topics (the empirical investigation of
chapter 2 briefly defines a topic). In SUPERPOWER (ch 4 and 5) it means: A collection of goals that are used to achieve
one and only one of the four fundamental types of plans (fig. 5.2). It starts at the beginning of the particular plan type
and ends when the top goal is achieved. Thus in some cases it can extend for quite a long time, particularly when more
topics are needed to clarify other aspects of the initial topic. In chapter 6 this definition is refined even further to mean
a single goal of mutually agreeing something and contains an agenda of items to say or said, to do or done. As this
chapter was only a hypothetical design I was unable at this stage to define exactly how this latter definition would avoid
pragmatic ambiguity.

127

describe how they w ere orig ina lly im p lem ented as fixed

sequential algorithms within the planner. However in the next

chapter I will develop physical and conversational rules, made up

of the three components defined in Power (1979), (actions

preconditions and effects), that the planner can use for each kind

of planning. The four kinds of planning are:

(1) Classical planning as described by Houghton and Power, i.e.

selecting actions to achieve an effect.

(2) In s tru m e n ta l te s t in g in w h ich th e re is in s u ff ic ie n t

knowledge. Agents select actions that can reveal the state of an

object that cannot, for example, be seen.

(3) E xp erim en ta l p lanning in w hich there is insu ffic ien t

knowledge about the effects of actions. In this situation the

agents try experimenting with actions to discover their effects.

1) John: I suggest we get the bolt up.
Mary: All Right. Classical Planning

2) John: Is the bolt up?
Marv: I don't know. Instrumental Testing

3) John: How do I get the bolt up?
Mary: I don't know. Experimental Planning

4) John: The door has changed position
unexpectedly. Unexpected Planning

Figure 5.2 The four fundamental planning styles.

(4) U n e x p e c te d p lann ing in w hich ag en ts are in fe rr ing

unobserved actions from their effects. I only model one event

here that happens reasonably infrequently. Planning in a rapidly

changing (physical but not conversational) environment has been

128

addressed, by Wood (1990).

Figure 5.2, illustrates the sort of conversation that might

invoke each of these planning mechanisms. The physical planning

methods used to process these types of planning are now

described in more detail.

5.1 T1 Planning, phase.

Once the top goal is known, it is passed directly to the

planner to find an appropriate course of action. It may be about

finding out something, learning the consequences of performing

an action, furthering the physical goal d irectly or doing

inferences about something unexpected. Whatever the type, it

must fall into one of the four categories described in figure 5.1.

If the task is for a change in the state of the world, then a

plan or action may be devised to construct an effect such that if

the event were to take place then the original goal would be

achieved. This I refer to as classical planning. In this case, the

planner finds a rule that produces the desired effect. It checks

whether the precondition is true and, if it is true, it then

sug ges ts the even t re la te d s e g m en t of the rule . If the

precondition is not true, it finds a rule that satis fies the

precondition part, treats this as the main goal and repeats the

129

whole cycle.

If the goal is to find something out, then an action may be

found which will enable the system to infer something that is

not already known. This is instrumental testing. It follows this

sequence: find a rule that contains a precondition that is the

same as the unknown information; then suggest the action

relevent to this rule. This may be iterative if an agent can not

see whether the result of this rule is true.

If the objective is to learn new rules about effects, then by

improvising actions whose effects are unknown, the agent’s main

goal may sometimes be assisted. This is experimental planning.

In this case, the planner finds a rule that has an effect that an

agent does not know about and returns it.

If som eth ing unexpected happens, then it must be

assimilated into the main goal. No planning is required before an

action occurs, but instead the unexpected event is treated as

though an action had just occurred. Then the agents search for a

rule whose effect matches the event just observed, and infer

that the corresponding action was performed. Pruning then

follows.

Thus by extending the “planner” to use the available

knowledge about actions in not just one but in all four possible

130

ways, an agent can reason and act to extend Its knowledge, as

well as achieve physical goals.

5.1.2 Execution.

After an event occurs, assessment is needed in order to

establish exactly what has happened.

Plan type Precondition event effect rule

Classical Known Known Unknown Known
Testing Unknown Known Known Known
Experimental Known Known known Unknown
Unexpected Known Unknown Known Known

Figure 5.3 The four main kinds of inference achieved bv
knowing three pieces of information and reasoning correctly
about the fourth.

SUPERPOWER proceeds by comparing all information about the

state of the world before the action took place with what

happened after the action took place. Inferences then take place

based on the action, precondition, expected effect, actual effect

and rule that were used to construct the plan in the first place.

Figure 5.3 summarises the situation.

In classical inferencing, agents are required to assess the

consequences of an action. Comparisons are made between the

expected and actual effects. If the effect is what was expected,

then the goal is considered achieved, and the other agent will be

told, if this is appropriate. If this is not yet appropriate, then

131

the rule base is updated accordingly, and the other agent is told

when appropriate. If the effect is undefined then the other agent

is asked for more information.

In instrumental inferencing agents infer the truth in the

world. That is to say, they are required to find out whether or

not the situation is true or not and must decide whether the rule

used to perform the action produces a change in the state of the

world. If it does, then the precondition must be true, otherwise

it is false.

In experimental inferencing, agents try to infer how an

action affects the main goal. The change in the state of the

world reflects the effect of performing such an action in the

first place. Thus a rule relating the action to its corresponding

effect should be recorded.

In unexpected inferencing, agents analyse events. A change

has taken place; that is, an effect has come about which has a

rule that explains what action is appropriate to cause this

effect. This may or may not affect the main goal. If it does,

pruning the plan tree may be necessary and telling the other

agent about the action and its effect may also be desirable.

Thus by extending the “inference” process to use the

available changes in the state of the world in not just one but

132

four possible ways, an agent can acquire information as well as

change the world physically.

5.1.3 An example dialogue

In section 5.1.1 I explained how the system plans actions

and that these methods allow the agents a basis for physical

mechanisms for achieving a goal. In section 5.1.2 I provided an

inference process that allows the system to react appropriately

as a consequence of an action. Now in this section I provide a

com prehensive example dialogue that illustrates all these

mechanisms in operation.25

The first five lines are to initialise the program.

Compiling /users/Charles/Power/backup/Power.V.5.9/tests.p
Classical/Experimental/lnstrumental/Unexpected 1
parallel processing set
John’s speed = 3 Mary’s speed = 1
(State of the world is now [John out Mary in bolt up door shut])

The structure of the next set of headings is similar to Power;

except that in part two, John can see that he is Out (“seen”) and

does not know, for example, that the bolt is Up (“undef”). He may,

however, be “told” that the bolt is Up or he can “infer” it after

some action occurs. In SUPERPOWER, agents do not just “know

th ings” or “not know th ings” as in Houghton and P o w er’s

25 The reader may compare this transcript with that explained in Chapter 3, listed in
appendix 1 in which there are two humans, one blindfolded, and the other trying to
negotiate his way through a closed door jammed by a nail.

133

knowledge representations, but instead, beliefs may have a range

of status. The possible states are: “kno w n7“s e e n ”, “to ld”,

“inferred”, “estimated”, “unknown”, ”undef”.

*** what John’s capabilities are ***
1. Goal: Help me get in.
2. Position of objects:

John: out: seen, Mary: undef: undef, bolt: undef: undef, door: undef: undef,
3. Consequences of events:

slide: undef
push: If you push the door when the bolt is up, the door changes position,
move: If you move when the door is open, you change position.

4. Range of actions:
move: Yes, slide: No, push: No,

Mary does not know anything but can do everything and she

cannot see John, the bolt or the door. John also cannot see the

bolt or the door.

*** what Mary’s capabilities are ***
1. Goal: None
2. Position of objects:

Mary: in: seen, bolt: undef: undef, door: undef: undef, John: undef: undef,
3. Consequences of events:

slide: undef
push: undef
move: undef

4. Range of actions:
move: Yes, slide: Yes, push: Yes,

The settings have been chosen to maximise the amount of

interaction. Everything proceeds exactly as it did with Power and

since John is deliberating three times as fast as Mary, he often

takes the initiative in proposing things.

1 John: Mary.
2 Mary: Yes.
3 John: I want to suggest a goal.
4 Mary: Go ahead.

134

5 John: Will you help me get in?
6 Mary: By all means.
7 John: Shall we make a plan?
8 Mary: John.
9 John: Yes.
10 Mary: May I ask you something?
11 John: Go ahead.
12 Mary: Are you in?
13 John: No.
14 John: Shall we make a plan?
15 Mary: Ok.
16 John: Mary.
17 Mary: Yes.
18 John: May I ask you something?
19 Mary: Go ahead.
20 John: Is the door open?
21 Mary: I don’t know.

At this point, neither agent knows whether or not the door is

Open and so they have to digress a little and use their knowledge

about action in order to find out whether or not the door is Open.

22 John: Mary.
23 Mary: Yes.
24 John: Shall we do a test?
25 Mary: Go ahead.
26 John: Mary.
27 Mary: Yes.
28 John: May I ask you something?
29 Mary: Go ahead.
30 John: Can you move?
31 Mary: Yes.
32 John: Mary.
33 Mary: Yes.
34 John: May I ask you something?
35 Mary: Go ahead.
36 John: Are you in?
37 Mary: Yes.
38 John: I suggest that you move.
39 Mary: John.
40 John: Yes.
41 Mary: I want to explain something.
42 John: Go ahead.
43 Mary: If you move, nothing happens.
44 John: I disagree.
45 Mary: —.
46 John: If you move when the door is open, you change position.
47 Mary: I see.
48 John: I suggest that you move.
49 Mary: All right.

135

John now waits for 16 increments of time (blank utterance

numbers 50-66) before Mary moves. Meanwhile, and at the same

time, Mary is thinking about what she has to do.

50 John:--.

66 John: --.

(State of the world is now [John out Mary in bolt up door shut])

67 Mary: John.
68 John: Yes.
69 Mary: I want to tell you something.
70 John: Go ahead.
71 Mary: I have moved.
72 John: I see.
73 John: Mary.
74 Mary: Yes.
75 John: May I ask you something?
76 Mary: Go ahead.
77 John: Are you in?
78 Mary: Yes.
79 Mary: John.
80 John: Yes.
81 Mary: I want to tell you something.

Mary is about to tell John that the door must be shut when an

unexpected event occurs, (the programmer intervenes manually

in the simulation), namely the bolt is moved from Up to Down.

Analysis reveals nothing...

(State of the world is now [bolt down door shut John out Mary in])

82 John: Mary.
83 Mary: Yes.
84 John: May I ask you something?
85 Mary: Go ahead.
86 John: Are you in?
87 Mary: Yes.

This could be regarded as blatant repetition but is not, since a

136

new event has occurred and the agents need to check that it has

not affected the situation. Hence there is a need for better topic

management.

88 John: Mary.
89 Mary: Yes.
90 John: I want to tell you something.
91 Mary: Go ahead.
92 John: The door is shut.
93 Mary: I see.

At last, both agents have inferred that the door is Shut and John

attempts to finish the plan that he started at line 7. Perhaps line

92 should read “the door must be shut”26 since that would be a

more appropriate utterance for this inference. “The door is shut”

would indicate that the utterance was obtained from direct

perception. In any case, both agents update their respective

knowledge status about the door to “John knows door shut

inferred” and “Mary knows door shut told”. If an event occurs

m eanw hile , then this status must go back to “door shut

estimated” since it is then no longer absolutely certain that the

door is Shut.

94 John: I suggest that we get the door open and then I move.
95 Mary: All right.
96 John: Shall we make a plan?
97 Mary: John.
98 John: Yes.

26 Palmer (1990) considers this point in terms of dynamic necessity. The basic
framework makes the distinction between epistemic and deontic modality and dynamic
possibility and necessity. Some aspects of modality can be explained in terms of how the
sentences were constructed when in operation. Davey (1978) and Houghton (1986) have
dealt with aspects of this but not the particular example I give here that refers to dynamic
necessity.

137

99 Mary: May I ask you something?
100 John: Go ahead.
101 Mary: Is the door open?
102 John: No.

Mary is slow to assess the situation.

103 John: Shall we make a plan?
104 Mary: Ok.
105 John: Mary.
106 Mary: Yes.
107 John: May I ask you something?
108 Mary: Go ahead.
109 John: Can you push the door?
110 Mary: Yes.
111 John: Mary.
112 Mary: Yes.
113 John: May I ask you something?
114 Mary: Go ahead.
115 John: Is the bolt up?
116 Mary: I don’t know.

The second instrumental test, in which Mary now pushes the door

to see whether or not the bolt is Up or not.

117 John: Mary.
118 Mary: Yes.
119 John: Shall we do a test?
120 Mary: Go ahead.
121 John: I suggest that you push the door.
122 Mary: John.
123 John: Yes.
124 Mary: I want to explain something.
125 John: Go ahead.
126 Mary: If you push the door, nothing happens.
127 John: I disagree.
128 Mary:
129 John: If you push the door when the bolt is up, the door changes position.
130 Mary: I see.
131 John: I suggest that you push the door.
132 Mary: All right.
133 John:

149 John:

(State of the world is now [bolt down door shut John out Mary in])

150 Mary: John.
151 John: Yes.

138

152 Mary: I want to tell you something.
153 John: Go ahead.
154 Mary: I have pushed the door.
155 John: I see.
156 John: Mary.
157 Mary: Yes.
158 John: May I ask you something?
159 Mary: Go ahead.
160 John: Is the door open?
161 Mary: I don’t know.

The problem is further complicated because they cannot assess

whether the bolt is Up unless they know whether the door is

Open.

162 John: Mary.
163 Mary: Yes.
164 John: Shall we do a test?
165 Mary: Go ahead.
166 John: Mary.
167 Mary: Yes.
168 John: May I ask you something?
169 Mary: Go ahead.
170 John: Are you in?
171 Mary: Yes.
172 John: I suggest that you move.
173 Mary: All right.
174 John:

189 John:

(State of the world is now [bolt down door shut John out Mary in])

190 Mary: John.
191 John: Yes.
192 Mary: I want to tell you something.
193 John: Go ahead.
194 Mary: I have moved.
195 John: I see.
196 John: Mary.
197 Mary: Yes.
198 John: May I ask you something?
199 Mary: Go ahead.
200 John: Are you in?
201 Mary: Yes.
202 Mary: John.
203 John: Yes.
204 Mary: I want to tell you something.

139

205 John: Go ahead.
206 Mary: Nothing has happened.
207 John: I see.

Lines 202-207: Mary has established that nothing happened when

she moved.

208 John: Mary.
209 Mary: Yes.
210 John: I want to tell you something.
211 Mary: Go ahead.
212 John: The door is shut.
213 Mary: I see.

Lines 208-213: John infers that the door is Shut again because

Mary just moved to no avail. The end of a topic occurs when the

goal that instigated the new topic has been achieved and deleted

from the plan tree. By way of an example given on the next page

as a pop11 list, I consider how the topic structure, see also

Reichman (1978,1986), might look at line 208. The names of the

routines, the main goal and all the sub-goals together with their

corresponding actions are indicated in bold. The notation is

similar to that used in Power (1979) to describe the control

stack, “zrfindout” is a new routine that is used to plan to know

things through action and conversation. This illustrates how

planning generates the need not only for conversation but also

for the management of topics. The point is that John must have

at least two topics active in this example since “zrassess” has

been c a lle d re c u rs iv e ly tw ice : f irs t ly to assess the

consequences of Mary pushing in order to know whether or not

140

the bolt is Up and secondly to assess the consequences of

Mary moving in order to know whether or not the door is Open.

As can be seen from the current control stack.

[(
name zggame expectreply <true> colour white kind game place 1 entries [2 0 1 Q]]

[;;; Assessing the action of Mary moving.
name zrassess kind routine place 11 goaltype test entries [11 [learned] 10 [achieved] 9 [nothing] 8 [done]
7 [Mary in told bolt undef asked door undef asked John out seen] 6 [evt [robot move] sit [door open] res
[robot]] 5 [Mary] 4 [door open] 3 [Mary] 2 [Mary move] 1 [door open] 12 □]]

[;;; Finding out if the door Is open
name zrfindout kind routine place 2 goaltype test entries [2 [undef] 1 [door open] 3 Q]]

[;;; Assessing the action of Mary push the door to see if the bolt is up
name zrassess kind routine place 9 goaltype test entries [8 [done] 7 [bolt undef asked door shut inferred
John out seen Mary in told] 6 [evt [robot push] sit [bolt up] res [door]] 5 [door] 4 [bolt up] 3 [Mary] 2 [Mary
push] 1 [bolt up] 12 Q 11 □ 10 □ 9 □]]

[;;; Finding out if the bolt Is up
name zrfindout kind routine place 2 goaltype test entries [2 [undef] 1 [bolt up] 3 Dl)

[;;; Planning to get the door open
name zrplan kind routine place 4 goaltype plan entries [3 [evt [Mary push] sit [bolt up] res [door]] 2 [evt
[robot push] sit [bolt up] res [door]] 1 [door open] 4 fl]]

[;;; Asking agreement to get the door open
name zgplan colour white kind game place 1 expectreply <false> entries [2D 1Q]]

[;;; Hoping to plan to get the door open
name zrachieve kind routine place 5 goaltype plan entries [4 [sitn] 3 [notyet] 2 [both] 1 [door open] 7 Q 5
DU

[;;; Main goal of getting John in
name zrbasic kind routine place 8 entries [1 [John in] 8 D 8 [yes] 4 [failed]]]
]

This captures the point of an utterance, the point of the topic

and the point of the dialogue all in one representation.

214 John: Mary.
215 Mary: Yes.
216 John: I want to tell you something.
217 Mary: Go ahead.
218 John: The bolt is down.
219 Mary: I see.

Lines 214-219: Since he knows that the door is Shut and since

Mary pushed the door at line 150 John correctly infers that the

141

bolt must be Down. He then returns once again to his original

plan that still has some more techn ica l d iff icu lties . This

indicates the need to manage topics in order to avoid repetitive

dialogue or to interpret an inference in the wrong way.

I have chosen a joint plan tree to represent the main goals

and sub-goals (e.g. figure 5.6 later on), a control stack (e.g.

diagram after line 214) to represent the point of the dialogue

(see Power 1979), and a topic structure containing an agenda of

things both said and to be said that defines criteria over a topic

and rep resen ts the point of an u tte rance (currently not

implemented but as part of the plan tree). This seems to me the

most intuitive representation both in terms of how humans

conduct conversation and in terms of an implementable model.

220 John: I suggest that we get the bolt up and then you push the door.
221 Mary: All right.
222 John: Shall we make a plan?
223 Mary: Ok.
224 John: I can't think of one.
225 Mary: I will then.
226 Mary: I can't think of one.
227 John: Oh.

Lines 222-227: Neither John nor Mary know how to slide the bolt.

They have established at line 94 that they must open the door

and then John can move In and a fte r a fa ir am ount of

instrumental investigation they know they must get the bolt Up

and then Mary should push the door. They don’t know what to do

next so they improvise; by sliding the bolt, pushing the door and

142

moving randomly to see whether or not any of these actions

assist the main plan. Fortunately they choose to slide the bolt

first.

228 John: Shall we do an experiment?
229 Mary: Go ahead.
230 John: Mary.
231 Mary: Yes.
232 John: May I ask you something?
233 Mary: Go ahead.
234 John: Can you slide the bolt?
235 Mary: Yes.
236 John: I suggest that you slide the bolt.
237 Mary: All right.
238 John: ~.

254 John:

(State of the world is now [bolt up door shut John out Mary in])

255 John: ~.
256 Mary: I want to tell you something.
257 John: Go ahead.
258 Mary: I have slid the bolt.
259 John: I see.

In order to establish whether or not the bolt is Up, they must

repeat some nested instrumental planning. This time, however,

progress becomes swifter since the bolt is now Up and therefore

pushing and moving helps the main goal as well as establishing

knowledge.

260 John: May I ask you something?
261 Mary: Go ahead.
262 John: Is the bolt up?
263 Mary: I don’t know.
264 John: Shall we do a test?
265 Mary: Go ahead.
266 John: Mary.
267 Mary: Yes.
268 John: May I ask you something?
269 Mary: Go ahead.

143

270 John: Is the door open?
271 Mary: I don’t know.

Although this question has been ra ised before at lines

20,101,160 and will be raised later at lines 357 and 426 it is a

necessary repetition since knowledge that is “in ferred” or

“told” is no longer valid after another action. So, after any

change in the world, know ledge status must change to

“estimated". A clever program would revert this knowledge

status to what it was before, if the intervening event was

subsequently discovered to be irrelevant.

272 John: Mary.
273 Mary: Yes.
274 John: Shall we do a test?
275 Mary: Go ahead.
276 John: Mary.
277 Mary: Yes.
278 John: May I ask you something?
279 Mary: Go ahead.
280 John: Are you in?
281 Mary: Yes.
282 John: I suggest that you move.
283 Mary: All right.
284 John:

300 John:

(State of the world is now [bolt up door shut John out Mary in])

301 Mary: John.
302 John: Yes.
303 Mary: I want to tell you something.
304 John: Go ahead.
305 Mary: I have moved.
306 John: I see.
307 John: Mary.
308 Mary: Yes.
309 John: May I ask you something?
310 Mary: Go ahead.

144

311 John: Are you in?
312 Mary: Yes.
313 Mary: John.
314 John: Yes.
315 Mary: I want to tell you something.
316 John: Go ahead.
317 Mary: Nothing has happened.
318 John: I see.
319 John: Mary.
320 Mary: Yes.
321 John: I want to tell you something.
322 Mary: Go ahead.
323 John: The door is shut.
324 Mary: I see.

Having established that the door is Shut the agents now return to

the original problem which was testing whether or not the bolt

is Up.

325 John: May I ask you something?
326 Mary: Go ahead.
327 John: Is the bolt up?
328 Mary: I don’t know.
329 John: Shall we do a test?
330 Mary: Go ahead.
331 John: I suggest that you push the door.
332 Mary: All right.
333 John:

349 John: —.

(State of the world is now [door open John out Mary in bolt up])

350 John:
351 Mary: I want to tell you something.
352 John: Go ahead.
353 Mary: I have pushed the door.
354 John: I see.

Now, of course, pushing the door causes the door to move since

the bolt is already Up. But they still have not established what

happens when you slide the bolt. But it does not matter anyway

145

since some of the higher level goals have been realised. Lines

357 - 368 dem onstrate the first exam ple of a convoluted

derivative - two goals are achieved in one go.

355 John: May I ask you something?
356 Mary: Go ahead.
357 John: Is the door open?
358 Mary: I don’t know.
359 John: Shall we do a test?
360 Mary: Go ahead.
361 John: Mary.
362 Mary: Yes.
363 John: May I ask you something?
364 Mary: Go ahead.
365 John: Are you in?
366 Mary: Yes.
367 John: I suggest that you move.
368 Mary: All right.
369 John: —.

385 John:

(State of the world is now [Mary out bolt up door open John out])

386 John:
387 Mary: I want to tell you something.
388 John: Go ahead.
389 Mary: I have moved.
390 John: I see.
391 John: May I ask you something?
392 Mary: Go ahead.
393 John: Are you in?
394 Mary: No.
395 Mary: I want to tell you something.
396 John: Go ahead.
397 Mary: I have changed position.
398 John: I see.

Lines 399-421: John is a swift thinker and finally realises that,

in the process of planning experimentally to slide the bolt, the

main goal can now be accomplished since some of the sub-goals

of his orig inal plan w ere ach ieved through resolving the

146

positions of the bolt and the door.

399 John: I want to tell you something.
400 Mary: Go ahead.
401 John: The door is open.
402 Mary: I see.
403 Mary: I want to tell you something.
404 John: Go ahead.
405 Mary: The door has changed position.
406 John: I see.
407 John: I want to tell you something.
408 Mary: Go ahead.
409 John: The door is open.
410 Mary: I see.

Now, “the door is open” is repeated at lines 401 and 409 since

John has just been told that a change in the state of the world

has taken place.

411 John: I want to tell you something.
412 Mary: Go ahead.
413 John: Somebody has pushed the door.
414 Mary: I see.

In this version of SUPERPOWER, no consideration has gone into

e ff ic ie n c y . But the prob lem is more s u b tle than th is .

Preconditions for speaking, Cohen and Perrault (1979), are only

considered as fixed algorithms within the planner or inferencer.27

(State of the world is now [John in Mary out bolt up door open])

415 John: I want to tell you something.
416 Mary: Go ahead.
417 John: I have moved.
418 Mary: I see.
419 John: I want to tell you something.
420 Mary: Go ahead.

27 It is more likely that this is a bug in SUPERPOWER. It crops up here and in no other
place since I probably had not hardwired the correct precondition for speaking at this
particular point within the inference process. The problem is more involved than this. The
reader may, however, wish to consult the appendix: ROUTINE.ASSESS.p (4 of 5), function
zrlesson.

147

421 John: I have changed position.

Mary has not fully realised the state of the situation and since

John has moved she now no longer knows whether or not the door

is Open. John however has realised the state of the situation and

knows that all he had to do was to move and his main goal would

be achieved. Being a co-operative agent, John returns to

assisting Mary with her smaller problem of establishing whether

or not the door is Open. Thus Mary does not know that John is In

and the main goal achieved, since she cannot see him and has

other goals still active which take a higher priority over

inferring that John is now In.

422 Mary: John.
423 John: Yes.
424 Mary: May I ask you something?
425 John: Go ahead.
426 Mary: Is the door open?
427 John: I don’t know.

A change in the state of the world has occurred, so Mary still

needs to know if the door is open.

428 John: Mary.
429 Mary: Yes.
430 John: Shall we do a test?
431 Mary: Go ahead.
432 John: Mary.
433 Mary: Yes.
434 John: May I ask you something?
435 Mary: Go ahead.
436 John: Are you in?
437 Mary: No.
438 John: I suggest that you move.
439 Mary: All right.
440 John:

148

456 John:

(State of the world is now [Mary in bolt up door open John in])

457 John:
458 Mary: I want to tell you something.
459 John: Go ahead.
460 Mary: I have moved.
461 John: I see.
462 John: Mary.
463 Mary: Yes.
464 John: May I ask you something?
465 Mary: Go ahead.
466 John: Are you in?
467 Mary: Yes.
468 John: Mary.
469 Mary: Yes.
470 John: I want to tell you something.
471 Mary: Go ahead.
472 John: You have changed position.
473 Mary: I see.
474 John: Mary.
475 Mary: Yes.
476 John: I want to tell you something.
477 Mary: Go ahead.
478 John: The door is open.
479 Mary: I see.

John, having helped Mary with her problem knows that he is In.

Mary now realises that the main goal has being achieved and can

thus establish that John is now In. The program is stopped

automatically when both robots have marked the main goal as

achieved.

Thus I have demonstrated an introduction to the kind of

stilted but effective conversation that SUPERPOWER achieves so

far. I now discuss the two additional features that give the

system a further sense of robustness.

149

5.1.4 Degrees of interaction between agents.

Affecting the conversational stance that agents play in

this type of dialogue is the degree of interaction that they are

prepared to extend and accept, to and from each other. This is

what Shadbolt and Carletta’s models refer to as communicative

postures. In SUPERPOW ER, the stance of the agents can be

adjusted to include a number of d ifferen t proxim ities of

interaction. On one extreme, the agents are uncommitted to one

another and perform the main goal on their own. On the other,

they are endlessly interactive and require extensive dialogue if

ever the goal is to be realised. Thus it would be possible to start

the agents off independently and if the goal still can not be

accomplished then a role parameter is incremented in such a way

as to improve the closeness of interaction. This simple extension

has not been fully implemented in version 5.9 discussed here.

In SUPERPOWER there are two main types of stances. Those

that focus on the task and those that are heavily engaged in

conversation. In the former case agents are largely acting in

what Power refers to as solo mode. In the latter case, skills are

considerably varied and discussion must ensue. I now discuss

these two distinctions in more detail.

150

5.1.4.1 Action-oriented stance.

Action-oriented stances are those in which there is little

need to talk, since the tasks can in the main be performed as

though the agents were behaving individually. Only one of the

agents is allowed to talk while the other has to proclaim things

through action. The top goal may not have been agreed, in which

case there is no planning help, but actions and discussions are

allowed. Finally, the more normal case that I have considered

extensively here allows mutual agreement. This is a simple role

parameter that was not fully implemented in version 5.9.

5.1.4.2 Conversation-oriented stance.

In any dialogue, at the outset, the participants must decide

upon the level of co-operation that they are prepared to engage

in with their partner. With no co-operation28, Conversational

Procedures, Interactional Frames, or items for mutual agreement

are not much use. The models described by Shadbolt and Musson

(1987) and Clark and Schaefer (1987) probably are useful,

however, since the agents make contributions based on their own

plans. With perfect co-operation, CP’s, IF ’s or items of mutual

agreement are useful since the agents are willing to engage in

any conversation knowing that each agent sees things roughly in

“ Compare this type of interaction with that explained in Chapter 2, listed in appendix
2 about two humans, one of them trying to help the other photocopy an A4 sheet of paper.

151

the same way. In SUPERPOWER, I have modelled perfect co­

operation In that the agents accept all items of mutual

agreement. At a later stage, it may be possible to model a

mixture of this, since rules about hearing could be incorporated

in the same way as rules about planning to converse.

5.1.5 Circular Planning.

Central to the operation of a computer model of dialogue

and also to humans being able to conduct conversation

purposefully is the general problem of circularity, repetition or

cycle-detection. I take repetition to mean utterances that repeat

themselves more than once, circularity to mean that the dialogue

starts to repeat itself over a period of time and cycle-detection

to mean that the computer program enters an infinite loop. This

has not been properly addressed in dialogue research. The reason

for this is that new sorts of these problems are continually

evolving everyday. This section hopes to introduce some of these

ideas.

O ne a t tr ib u te of c o n v e rs a t io n is th a t , h o w ever

sophisticated the model, it must at some stage be vulnerable to

an e lem ent of c ircu larity under certa in inputs, w here the

conversation becomes locked into infinite repetitions of the

152

same loop of dialogue.

The following dialogue (Figure 5.4) represents an example

John: I suggest that we get me in and then I slide the bolt.
Mary: All right.
John: I suggest that we get the door open and then I move.
Mary: All right.
John: I suggest that we get the bolt up and then I push the door.
Mary: All right.
John: I suggest that we get me In and then I slide the bolt.
Mary: All right.

Figure 5.4 Circular plan,

of a circular plan generated from SUPERPOWER. One solution to

this problem is for John to consider whether Mary can perform

any parts of the joint plan. In this example, it would have been

better if John had asked Mary to slide the bolt. Another solution

is for Mary to actively interrupt the plan when she knows she can

carry out any of its parts. The more general solution to this

problem is for the hearer to interrupt and take control of the

joint plan when he or she knows that a circular plan exists.

However, the other agent may also then develop the dialogue

further into a more complicated circular plan.

In figure 5.4, John's problem was as follows. He wants to

slide the bolt but he can not because he is not In. Thus, he needs

to move, but is hampered because the door is not Open. So he

needs to push the door but would be thwarted because the bolt

would not be Up and so it goes on. All plans are plausible to Mary

since she never knows, and has no reason to doubt, whether

153

John’s suggestions will work. However, should she be able to

sense the same plan being suggested twice she ought to do

something and so should John. This shows that there is a need to

keep a record not only of the current plan but also of failed plans

in a given situation.

Quite often, in joint tasks and in habitual everyday

conversation, situations occur in which conversation or action

does not seem to be getting anywhere. I am meandering along the

street and someone is approaching me. I swerve to the left, and

at the same time she shifts in the same direction. We both then

retract to the right and so on. Eventually, hopefully, the human

agents recognise the multiple repetition of the same actions and

take corrective action to break out of this non-progressive loop.

There are also examples where these repeating sequences are the

only way to achieve the goal. For example, when installing a

kitchen sink the pipes have to be judged to be the right distance

away from the wall. The basin then slots in on top. The only way

to get the pipes in the right position is by trial and error.

Superficially this is a circular loop but it differs from figure

4.10 in that the plumber, through his trial and error process, is

continuously gathering and acting upon fresh information and

refining his actions to achieve the goal. The input he receives

154

varies all the time and increases in subtlety until he gets it

right. With the robots in SUPERPOWER the information input can

only be a limited choice of options such as “Yes”, “No” or ”1

don’t know” and their circular plan is truly an infinite repetition.

A more appropriate example might be, for example, the action of

going to sleep every day with the goal of not being tired. It is

both purposeful and circular but unlike the plumbing example

there is no refinement process in the action. The goal can only be

achieved through repetition. In joint planning, these are just

some of the many situations in everyday life that can create

action-oriented circular plans.

Of course the plans just described are problem-oriented

with very little conversational content. There are examples

which are conversationally-oriented and largely independent of

any task. Sometimes they assist, sometimes they do not. For

example, saying “good morning” to an eminent lady whenever you

happen to meet may offer a long term benefit. On the other hand,

the problem arising when you phone a large organisation asking

for information about something and they put you through to

somebody on extension 1, who then puts you through to extension

3 who then inadvertently refers you back to extension 1, and so

on, is a good example of a conversation-oriented circular plan.

155

Again, the human agent would recognise the repetitive cycle and

act to break out of it. In complex everyday life however they do

not always manage to do this, for example in cases of drug

addiction.

In brief therefore facilities must be provided to enable

agents to recognise when repetition is occurring and progress

towards the main goal being achieved. When such detection

occurs, mechanisms must be in place to both avoid (by detecting

when they occur) and evade (by executing alternative action)

such habits where and when it is deemed appropriate. However,

the problem is still more complex than this since sometimes

repetition is useful (e.g. figure 5.5), as in trial and error tasks or

1. John: Shall we make a plan?
2. Mary: OK
3. John: I can’t think of one.
4. Mary: I will then.
5. John: OK
6. Mary: I can’t think of one.
7. John: Oh.
8. Mary: Shall we do an experiment ?

Figure 5.5 A circular plan which
can be used constructively to do
an experiment.

saying good morning to important people. Sometimes avoiding

repetition is not so easy, as in the examples of someone

approaching you in a busy street and the phone extensions

problem.

156

A destructive conversation or action-oriented circular plan

must be detected and the appropriate goals marked as failed. A

constructive solution must be encouraged. The groundwork of

this open-ended type of planning is an unproblematic extension

(not fully implemented in version 5.9) that could be inserted as a

demon in the central executive. This demon serves to trap as

[John in]
Classical
notyet

Classical
notyet

[John move]
Classical
notyet

[Mary push]
Classical
notyet

[bolt up]
Classical
notyet

[undef]
Experimental
notyet v\

[Mary slide]
Experimental
achieved

[bolt up]
Instrumental
notyet

[door open]
Instrumental
notyet

[Mary move]
Instrumental
notyet

Fia 5.6 Joint plan tree. Line 297. dialogue from section
5.1.3. Illustrating the order in which the physical goal
gets executed. The type of planning mechanism and the
state of the goal are also needed for unique interpretation.

early as possible any situation in which circularity occurs

within the main joint plan tree.

157

The solution to the problem is by no means simple.

Consider, for exam ple, the joint plan tree taken from the

dialogue described in section 5.1.3 and illustrated in figure 5.6.

Simply detecting when the same sub-goal occurs will not work

since the sub-goal may be syntactically similar, e.g. [door open]

is mentioned twice, but actually used for a slightly different

purpose (in the first case for classical planning and the second

for in s tru m e n ta l p la n n in g) . O ne im proved d e f in it io n of

circularity is a repetitive sequence of plans (i.e. connected for

more than one leaf on the tree) counts as circularity. But I have

shown that in some circumstances this type of definition can

produce useful dialogue. And so the argument goes on.

5.2 Relation to levels.

In this section I lay down the foundation of all the

components that have been considered so far in SUPERPOWER in

terms of levels. At level 3 I have considerably improved on

existing systems in terms of the variety of conversation by

considering how a joint planner might utilise all combinations of

a simple causal rule about physical action. At level 2 I show how

a variety of topics can exist at any one time during the dialogue.

At level 1 I make no new contribution. Simple goals such as

158

those described in Houghton and Power are considered. However

the need to distinguish between level 2 and level 3 has to be

addressed.

5.2.1 Relation to the need for a distinction between level 2

topics and level 3 items of mutual agreement.

In section 5.2, I explored all the four possible types of

planning mechanisms that are possible and thus extended

SUPERPOWER’S conversational variety. In doing so, I illustrated

how all four types can generate a need for conversation.

Furtherm ore no planning or inference algorithm can exist

without a clear distinction between a topic and a conversational

exchange. To avoid doing so would eventually lead to pragmatic

ambiguity when com paring the sem antics of syntactica lly

similar utterances. It is obvious from the detailed dialogue in

section 5.1.3 that given a more complex task the program would

either confuse the meaning of an item in one topic with that in

another or chunks of dialogue would have to be renegotiated. As

currently implemented, a new topic starts when a physical

action occurs and ends when the next action occurs. In this

implementation, it is only really needed to avoid confusion when

inferencing about changes in the state of the world. In the next

159

chapter by defining an item of mutual agreem ent we can

substantially improve on this definition and at the same time,

start to reason intelligently about topics as well as items of

mutual agreement.

O v e ra ll , I have d e m o n s tra te d the n e c e s s ity of

distinguishing between these three levels and started to provide

a framework for thinking about how to implement such a program

with explicit consideration of a theory of levels, both in program

code and dialogue. I have drawn the reader’s attention to how

complex human conversation might be generated, by illustrating

four basic planning and reasoning tools that provide the ability

to reason and act in order to both extend knowledge and also

perceive probable states of the world. This, together with

simulating in parallel, forms the basis of levels 4 and 3 and

indicates the need for level 2. I have also illustrated how a new

class of utterances along with dialogue examples might arise.

160

Chapter 6.

5B Parts of this chapter have been adapted from Oatley, Draper and Button (in press), Button
and Draper (1990) and Draper and Button (1990). I am indebted to both Steve Draper for providing
the idea about conversation is action (Section 6.3) and to Keith Oatley for the discussion about
human conversation being about constraint programming (Section 6.2).

161

6.0 Introduction.

This chapter outlines the achievements of my thesis

which can be expressed in terms of the theory of levels

mentioned in chapter 2. In that chapter I proposed that there are

four distinct conceptual levels to understand. At level 1, the top

level, are the goals external to the conversation. At this level

S U P E R P O W E R illustrates these goals chiefly in terms of

physical goals but also the following input parameters: relative

speeds, beliefs, perception of partner’s action, own action

skills, perception of partner’s perception, own perception,

unexpected actions and positions of objects. Next at level 2 are

the topics or sub-goals into which the conversation is divided.

In chapter 5, I simulated a dialogue in which different sub­

goals are active at the same time. At level 3 are the basic

exchanges that go into conversation. In chapter 2 I explained

how a conversational procedure or an interactional frame such

as that described in Power and Houghton is an explanation at

this level. At level 4, co-operation in the use of the medium of

com m unication is described in term s of the tim e slicing

covered in depth in chapter 4.

I now summarise the main results and will follow that

with a review of the empirical investigation of the thesis and

additional observations on program enhancements and further

162

theoretical considerations regarding conversation as action.

6.1 Summary of the main results.

In chapter 2, I provided an empirical investigation that

shows that subjects can agree (51%) with the theory that

purposeful conversation can be construed as goal-directed with

four distinct levels. Level 1 concerns goals external to the

conversation, level 2 is about topics that instrum entally

manage the dialogue, level 3 is about conversational exchanges

and finally level 4 is about occupying the airwaves. One

explanation as to why the percentage level of agreement for the

analysis of level 3 was not higher is that subjects imagined

that the particular exchange which they were trying to code in

some way referred to a different goal higher up the plan tree.

In chapter 3 I reviewed early Al work and indicated the

shortfalls in terms of these older programs not being able to

interact with a copy of themselves. Later in the chapter, I

suggested that the more recent goal-directed dialogue systems

are restricted in two ways: (a) they can not accommodate

two agents thinking independently from one another and (b) the

planning algorithms are not always exhaustive for a dialogue

system as a whole. For example, none of these systems provides

examples of English dialogue that cover the situation where

163

both agents are lacking either a skill or piece of knowledge. I

then provided a detailed comparison between two systems

(Power and Houghton) that have tried to detail a model of

dialogue for a simple domain and a single physical goal. I

describe some of their limitations and outlined my proposal to

improve on these two systems in terms of time slicing and by

incorporating a more exhaustive planning algorithm.

In chapter 4, I described how the relative speeds of the

agents affect utterance order, dialogue content, dialogue

outcome, number of utterances, distribution of who instigates

conversational procedures, what gets said, what gets done,

what gets explained and so on. I then went on to look at

coordination more genera lly by generating 256 d ifferent

dialogues in order to see whether any further pattern emerges. I

concluded from the simulation that there is no significant

difference in the total number of conversational procedures per

dialogue when the speeds of the agents are changed, and the

overall skill level is fixed, but that differences emerge in

term s of the d is tr ib u tion of c o n v e rs a tio n a l procedures

instigated by the two agents. Within specific skill levels there

is some varia t ion in the total number of conversational

procedures executed by the agents when the speeds are changed.

G e n e ra l ly a F a s t /S lo w com b in a tio n is e ith e r b e tte r (if

164

environmental factors are favourable) or poorer (if they are not)

than the Slow/Slow or Fast/Fast combinations. This led me to

c o n c lu d e th a t it is the s p e e d sk ills c o m b in e d w ith

environmental restrictions and not knowledge, perception or

action skills that determine the quality of the interaction. I

also concluded that this work must form the basis for the level

4 mentioned in chapter 2.

In chapter 5, I described a generalised planning algorithm

that allows agents to have wider conversational skills than

reported so far. By considering an exhaustive use of causal

rules, I was able to identify the four kinds of planning possible,

namely: Classical, Instrumental, Experimental and Unexpected

planning. A dialogue containing all these mechanisms was

presented to show how a number of different topics can be

active at any one time. I then went on to discuss more general

issues about c ircu larity and co n ve rs a tio n a l s tan ce and

concluded that there is a theoretical difficulty in defining

precisely what a circular plan is. I concluded that there is a

need to distinguish between levels 2 and 3 in order to avoid

pragmatic ambiguity.

In chapters 4 and 5 I outlined the two most important

enhancements to the work of Power and Houghton. These concern

understanding how the agents can have better knowledge skills

165

and allowing better coordination between agents. It also

demonstrates how time slicing is in fact a pragmatic feature of

dialogue as a whole and is, moreover what I referred to in

chapter 1 as the first principle of coherence which is that there

is a definition of an increment of program code that can be

reasoned about so as to permit all that can be said. Dialogue

also becomes coherent in every way if all four planning

algorithms are considered since whatever the initial settings

some kind of discussion is generated. The program is, therefore,

robust. This relates to the other principle of coherence which is

that for every piece of conversation there is a corresponding

action method of achieving the same goal.

Th e re m a in d e r of th is c h a p te r d is c u s s e s fu r th e r

conclusions of the empirical work by discussing the limitations

of computer models of dialogue and in particular some of the

drawbacks of conversational procedures. The next section then

discusses possible ways of enhancing SUPERPOWER to cater for

problems encountered with the empirical investigation in terms

of a generic procedure NEOTELL, which forms the basis of future

work that incorporates conversation as action.

6.2 General comments relating to the empirical investigation.

The fact that I was not able to achieve better than 51%

166

agreement in the empirical investigation in chapter 2 indicates

that naturally-occurring human conversation might be more

com plex than anything generated com putationally . At its

simplest one of Power's agents will generate utterances

designed to agree about a goal, a plan or a belief but will not

generate compounds. As the derivations from Power's program

function at present each conversational procedure has a single

objective which exits when this objective is achieved. Matters

that are irrelevant to building the plan tree and executing the

plan in a strictly piecemeal fashion simply do not occur. Let me

illustrate this with a piece of dialogue from SUPERPOWER

16 JOHN: [Mary.
17 MARY: Yes.]
18 JOHN: [May I ask you something.
19 MARY: Go ahead.]
20 JOHN: [Is the door open.
21 MARY: I don't know.]
22 JOHN: [Mary.
23 MARY: Yes.]
24 JOHN: [Shall we do a test.]
25 MARY: Go ahead.]
26 JOHN : [I suggest I move]
27 MARY : [okay]

Figure 6.1 Sample code for an
instrumental test.

enabling agents to carry out test actions on the world in order

to observe effects, and hence to improve their beliefs. The

segment, shown in figure 6.1, is from near the beginning of a

run of the program, and starts after a goal of getting John In

has been agreed.

167

Both agents are blind, and it has been established by Mary

that the goal is not already achieved. Utterances 16 and 17 are a

housekeep ing exchange — John calls M ary's a tten tion ,

interrupting any private thoughts she might have. She responds,

and this ind ica tes that she will c o -o p e ra te in the next

conversational procedure. Utterance 18 is a request to co­

operate on a lower level goal. Mary assents, so that the

exchange delivers an agreement to co-operate. Then 20 and 21

constitute a further housekeeping exchange. Utterance 22 is

John's opening of an exchange about a plan to test the world by

doing an action and finding out what happens... which they go on

to do next.

N o tice th a t in the c o m p u ta t io n a l e x a m p le each

conversational procedure is designed to achieve exactly one

inc re m e n t of a g re e m e n t, e x c lu s iv e ly e ith e r a p iece of

housekeeping, or something about a goal, a plan or a belief.

Moreover, the utterances are driven by the building of the plan

tree, with each piece of the agenda for the construction of a

plan tree being negotiated explicitly. So if a goal is agreed,

then the question arises 'Is it achieved yet?' If a precondition is

necessary for a plan, then the agents will see if they know that

it is satisfied, if not, as in this sequence they each ask the

other, and if the state is still not known, they start to try and

168

test actions. In this case the agents plan for John to move, and

if he changes position from Out to In, they will know the door is

Open. Few in ferences are m ade, and th e re fo re no

misunderstandings occur. Moreover a reader of the transcript,

trained in the categorisation system I have suggested in figure

2.1, would have no difficulty in categorising each exchange.

C o m p are this w ith the hum an c o n v e rs a tio n about

photocopying (see appendix 2). First John asks about a goal. All

seems straightforward except that 'photocopying' is a complex

a c tiv ity . U n like u tte ra n c e s about goals in the a g e n ts '

conversation, 'do the photocopying' does not specify any exact

state of the world. It may be for this reason that Mary asks for

more details about John's goal: 'Double-sided?' she asks. John

seems not to understand fully. His response, 'Yes, and then the

other side' seems at least to introduce unnecessary redundancy.

Next, in utterance 4, Mary makes a characteristically human

remark: 'I don't know, some or...' It is difficult to interpret this.

It would indeed be impossible except for the context. In fact she

is politely trying to stop John from being too precipitate, and

hence wasting a copy, while at the same time she tries to

understand what it is that John really wants. She understands

that in asking for her to agree on a goal, he does not know

everything he might need to know for any specific goal to be

169

described accurately. For instance, is he asking for a general

course on photocopying, or a brief tutorial about some aspect,

or just for help with a single item? And what does he know

about photocopying already?

John, it turns out, though having apparently negotiated a

goal, also has another, which he has not specified. He knows

about single-sided photocopying, and thinks that double-sided

copying is a simple extension of it, perhaps just involving an

extra button press. He wants to photocopy just a single page,

double-sided. His other goals are (a) that he wants to transfer

his previous skills, unmentioned in the conversation, in a direct

way and (b) that he wants to do the copy quickly and press the

buttons immediately. So instead of specifying all his goals and

asking about Mary's at the beginning of the dialogue, as a

computer program might, he proceeds, firstly assuming that

Mary knows that he knows how to do single-sided photocopying,

secondly as though Mary knows that he is only learning, thirdly

as though Mary would agree with him that the problem is a

simple matter involving a small amount of practical guidance,

as is the case in most “normal business environments”.

Despite these misunderstandings, which emerge gradually

in the early part of the conversation, the conversation is in the

end successful, and a version of John's goal is achieved. Mary

170

succeeds in another goal, namely giving John part of a general

course on photocopying which she believes was implied by his

initial request. Thus in the end three goals are achieved: (a)

getting John's double sided original copied onto a double-sided

copy, (b) John being taught that topological considerations must

be taken into account with double-sided copying in order, for

example, not to get the copy on one side upside down in relation

to the other, and (c) John being shown where various things

happen, for example that in the course of this kind of copying,

the page with a copy on one side is collected in a special

hopper, and then runs through the machine again but upside down

to receive the copy of the second side. What happens, then, is

that John and Mary sometimes accomplish pieces of agreement

about more than one goal in the same exchange, and they

sometimes accomplish pieces of agreement about plans and

beliefs in the same exchange.

So, for example, Mary's utterance 10 is about a belief, but

also has a purposive element, first so that she may teach John

about topological issues and also possibly to proceed with the

immediate plan. So when it comes to coding such an exchange it

might be in terpre ted as a b e lie f or a suggestion to do

something.

It is the ambiguity of interpretation of many, perhaps

171

most, utterances in human dialogue that makes it difficult to

assign human exchanges to a unique category. This ambiguity is

reflected in the severa l d ifferent codes assigned by the

eighteen subjects to each exchange. These categorisations were

the outcome of extensive discussions about each exchange in

the two transcripts presented here. Perhaps the reader will

have found som e tro u b le in a g re e in g w ith all the

categorisations suggested. The necessity for discussion, and the

possibility of disagreement with the judgments by readers can

therefore be taken as further evidence for the assertion that

human utterances, unlike those of Power's program, while they

increase agreement in general, are ambiguous, and can not

always be uniquely assigned to categories of agreement.

Similarly in the photocopying transcript, in discussing the

consequences of a plan, Mary's utterance 20 and John's reply

in d ica te M ary 's kno w ledg e of how the m ach ine w orks.

Apparently the minimal increment of the immediate plan has

been agreed. Other unagreed goals, however, for example of

training John about the topological issues, are still alive.

In judging the transcript about photocopying, the subjects

used the housekeeping category 13% of the time. Here again,

although I coded none of the exchanges in this way, there are

interpretations of some of them which have the quality of

172

meta-comments on the conversation, and it is understandable

that some subjects thought this was the salient aspect in some

exchanges. So Mary's interrupted utterance 4, 'I don't know,

some or...'; also exchanges 14, 15, 16 starting with Mary's

'Pardon...'; and also the single word exchange 27 by John, 'Right',

were all judged by many or most of subjects to be Housekeeping.

I decided to minimise the number of exchanges that I assigned

to this category, and had judged all these as serving to achieve

increments of agreement about plans.

The data shows, in general, that whereas all but one

subject was clear that the first exchange was about a goal,

subjects did not achieve more than 72% agreement with us on

any other exchange. Subjects are not, in other words, unanimous

about whether to code exchanges as beliefs, plans or compound

beliefs plus plans. Normally in psychological studies which

require content analysis, lack of agreement is a signal to define

categories more rigorously, or improve the subjects' training.

At first I did this: category definitions went through a long

series of improvements, and I tried several training methods,

before settling on the rather e la b o ra te tra in ing schem e

described here.

I have concluded, however, that it is not the procedures

that are at fault. Subjects are correct in their lack of unanimity

173

about their judgments. Their variety of judgments reflects the

variety of in terpretations of human utterances. Making a

decision about whether or not there is any element of purpose in

an exchange depends on what interpretation one makes of the

u tte ra n c e . T h is w as not a fa i lu re of t ra in in g , or of

conceptualisation. Rather, even in purposeful dialogues, many

human utterances are multiply ambiguous, and they carry

variab le amounts of weight about beliefs and plans, and

sometimes other components. If one is making forced choices

about categories, the choice depends crucially on which of

several interpretations seems salient. By contrast since each

utterance of Power's program is designed to achieve an

agreement exclusively about housekeeping, or a goal, or a plan,

or a belief, the category of the utterance is unambiguous.

In summary, then, Power's work does indeed offer a basis

for the structure of purposeful conversation. His proposal

offers a v iab le and bas ica lly convincing theory of how

utterances are connected together in conversation. There is no

better theory about the connectedness of conversation .

Fu rth erm o re I have shown tha t people are m o d e ra te ly

successful in being able to assign categories to the atomic

units of conversation, at the third level of the goal hierarchy

th a t I have p o s tu la te d to c la r i fy the b as is of th is

174

connectedness.

This study also reveals, however, several Important ways

in which human conversants differ from Power's agents. First,

whereas computational goals must always be stated exactly,

human goals may be stated very vaguely. Secondly, whereas

Power's program and its derivatives are driven by just one top

level goal that is agreed and then p lanned for, human

conversants typically have several active goals at any time.

This seems to make it more likely that each utterance has not

just one interpretation, but several. The hearer of the utterance

may choose an interpretation, and allow just one increment to

be agreed, but equally the other goals held by either partner may

rem ain a c tive and ab le to in f lu en ce exp re s s io n s and

in terpretations later in the conversation. Conversation is

capable of carrying forward these multiple meanings, to be

clarified and elaborated in the light of further utterances by

both participants. To understand conversation, then, one must be

alert to a variety of interpretations of each utterance. Thus

categorisation of exchanges is not straightforward. In fact

categorising any one utterance, even in the context of others is

rather a hard task, since a judge is constantly in conflict about

which interpretation to choose. The variety of interpretations

by these eighteen subjects indicates the range over which each

175

exchange can be understood.

Though the variety of interpretations of human utterances

has been discussed widely by ethnomethodologists, for example

Garfinkel (1967), I hope here to have brought this issue into the

c o n tex t of C o g n it iv e S c ie n c e so tha t th e s tru c tu re of

conversation is recognisable s im ultaneously from both a

computational and a human perspective.

The developments reported here derive from a tradition of

Artificial Intelligence research on planning, in which the usual

assumption is that goals are pursued one at a time. The

assumption fits broadly with the mainstream of Computer

Science and with typical planning algorithm s in Artific ial

Intelligence which search exhaustively for one solution at a

time. Computational procedures are usually functions that begin

from a c e rta in in it ia l co n d it io n , as s p e c if ie d by th e ir

arguments, or in planning, from the state of the world plus a

desired goal state. They then compute a definite end point such

as a result, or in planning, a plan to achieve the goal. The

conclusion here is that even though purposeful conversation can

fruitfully be construed as a kind of planning, and seen as

constructed from units which are conversational procedures, it

seems that the situation is not so simple.

First, people may have more than one goal at any given

176

level. They then seek plans that simultaneously achieve several

or all of them. In conversation, it is possible to cover a number

of related points in a single utterance. It is even usual to

achieve a range of effects, for instance to inform, warn, and

show concern, in one utterance or short stretch of conversation.

Artificial intelligence work exploring this problem of pursuing

multiple goals is not wholly absent — see, for instance

Wilensky, (1983), or Elsom-Cook, (1984), but these are not yet

standard. More specifically in dialogue, balancing resources

between listening and speaking is an ongoing human problem

that current com puter m odels of d ia lo gu e have not yet

addressed. That is to say, no account has been offered as to how

it is possible to plan a speech act not only in relation to

planning one’s own goals (as do those proposed by Austin,

Searle, Power, Houghton, Cohen and Perrault) but also with

respect to the goals of the hearer. More generally, the hearer

always has two choices, either to respond directly or to respond

with respect to private plans. In either case it is more a

question of how many resources one wants to put in to listening

which is also determined by the constraints of the situation.

Secondly, unlike the idealised s ituations that much

Artificial Intelligence planning addresses, in which the effects

of actions are fully known in advance, in conversation speakers

177

typically do not know enough to construct reliable plans, and

have to e laborate creative ly from the situation as it has

developed so far (Suchman, 1987). When we converse the main

source of uncertainty is our partner. We do not know how that

person will respond to an utterance. They may decline our

choice of topic, not know the answer to a question, or they may

spring a new piece of information on us that changes the goal

we thought we had. This lack of know ledge is a major

shortcoming of the theory of speech acts, in which it is

assumed that effects of a speech act can be reliably known. It

is also a problem with Power's approach.

Attempts to overcome this problem have been made by

Appelt (1987) who makes the interesting point that we can at

least make an assessment as to the success criteria of an

effect based on the referents of the goal. Thus, when we speak

although we cannot predict entirely the effect of what we say

we do presumably make some predictions about the likely

alternatives an utterance might have by the goals it is intended

to serve. For example if I want to say “Is the bolt Up?” I know

that the likely response is one of “Yes”, “No” or “I don’t know”.

Thus, as Appelt clearly demonstrates, although we do not know

for sure the actual effect of a speech act we have a good idea

about the likely alternative responses to it. The careful speaker

178

would not otherwise have made the utterance in the first place.

By contrast, the human conversations I have recorded

show people constructing a joint plan by adding constraints

rather than, as orig ina lly postu lated , by the successive

agreement or rejection of small definite proposals. Utterances

are ambiguous not only to third-party listeners, but to the

conversants themselves. Utterances are ambiguous as to what

is meant, as well as to which goal or goals they are related to.

Succeeding utterances often serve less to accept or reject

proposals, than to allow the conversants to discover together

what they themselves mean. A plan emerges from the process of

clarification. Thus rather than traditional programming based

on functions, conversation is like constraint-programming in

which constraints are added and it is left to the system to

resolve them and find a solution consistent with them all.

This conclusion, however, is made with reservation since

both the transcripts used perhaps led me to it and in both cases

the participants did not fully understand the main goal before

they started the dialogue. Further transcripts would be needed

to confirm this interpretation in cases where the main goal is

fully understood. In this situation the theory would be more

likely to be correct.

Nevertheless, if this interpretation is upheld, then we can

179

still understand conversation in terms of levels of goals, but

some of the goals will not form a strict hierarchy. Furthermore,

although the conversational procedure is a conception that is

superior to those of other atomic units of conversation, such as

speech acts or adjacency pairs, I have revised my view of the

effects that a conversational procedure has. It is clear that

such procedures need not exit with a small increment of

definite agreement, which is then fully established. Instead, an

exchange accomplishes a constraint on how the conversation is

to be understood. Thus in the photocopying transcript, Mary's

utterance 12: 'Yer, it must be in sequence' constrains John's

understanding of why Mary seem s not to have been as

straightforward in her instructions as he expected, and in the

second part of this utterance: 'I suppose if you...', she indicates

explicitly that she is continuing to search for interpretations of

what has been going on, in order to make sense of the

interaction so far. John's utterance 13 'Right, well I'm only

doing one sheet' further constrains for Mary her understanding

of why John has been acting as he has.

Although constraint satisfaction has been taken up by a

number of Al workers who are trying to simulate dialogue it

could hardly be considered to be a complete theory of dialogue

since it can not explain how it is that humans jump from one

180

level of conversation to another in dialogue. Even if it was the

theory, attempting a computational account of how to speak in

relation to what has just been said may be about doing away

with increments of agreement or conversational procedures

altogether, and replacing them with a process of interpreting

each utterance by the constraints of the overall joint plan,

rather than just responding to the initial goal of the exchange

as current Al programs do.

Some formalisms in planning have been specifically

designed to deal with this very problem. For example, in single­

agent planning, Lansky (1988) shows how sensible plans can be

devised by choosing from existing plans according to what she

refers to as constraint satisfaction. Another way to deal with

this is to think of d ialogue as the e ffic ient exchange of

intentions that are chosen using game theory (see Shadbolt

1984).

In th e next s e c t io n I w ill show th a t c o n s tra in t

programming can also be dealt with by considering a theory that

relates conversation and action more closely than previously

discussed.

6.3 General comments relating to program enhancements.

Suchman (1987) claims that models run into difficulties

181

when conversation is required to be developed in situ . Coates

(1990) explains that models cannot explain how it is that

utterances can be developed by more than one speaker and that

the underlying intention is only known to participants after the

utterance has taken place and not before (see also Searle 1990).

My empirical work on constraints discussed in the previous

section also supports these two v iew s of the a p p aren t

im p o s s ib il i ty of a m odel th a t p ro v id e s a s a t is fa c to ry

explanation as to how it can react spontaneously to these types

of conditions.

I now propose a system design that will address these

problems.

6.3.1 Conversation as action.

Austin (1962, 1970) established the idea that utterances

should be analysed as actions. For those working in Al, this

constitutes an implicit but long-standing challenge. Al work in

planning seeks to develop a particular and detailed model of

what it is to act rationally and purposefully, that is to choose

and execute actions that are calculated to achieve the agent's

goals. Can a theory of utterances be developed that develops

Austin's basic idea in this way? Such a theory will be a theory

of (a kind of) conversation, both because utterances have an

182

effect only through the presence and cooperation of a hearer or

c o -c o n v e rs a tio n a lis t , and because a planning theory is

e sse n tia lly a theory of how basic actions (in this case

utterances) are strung together in a sequence to achieve some

overall effect not achievable by a single action. W e must

therefore be concerned with a theory of conversation, not of

isolated speakers or isolated utterances: the latter kind of

theory would be a theory of certa in actions, but not of

purposeful, planned action sequences.

A theory of purposeful conversation should aim to develop

Austin's view by showing how utterances can be considered as

actions in exactly the same way as physical actions. The agent

must be able to achieve goals by acting, and to choose actions

by generating a plan linking a set of actions to a final goal.

Thus in a planning theory of conversation the agent must be able

to ach ieve goals by conversing, and to generate a plan

integrating conversational with physical actions and effects. A

theory will most fully achieve these aims if a single planner

reasons about both physical and conversational actions, and if

for every goal and sub-goal there is both a conversational and a

non-conversational method of achieving it. For instance the goal

of moving a block might be achieved either by pushing it

oneself, or by persuading another agent to move it on one's

183

behalf. The goal of getting information might be achieved either

by asking a question or by examining the world through

perception and experiment. Similarly the goal of communicating

inform ation can be done e ither verbally by answering a

q u e s tio n , or at t im es by po in ting to the a n s w e r or

demonstrating it. A call by name would have the equivalent

action of a tap on the shoulder. Even mutually agreeing an item

can often be achieved non-verbally - for instance by catching

someone’s eye as you approach a door while heavily laden.

However this kind of example would then depend heavily on the

respondant making correct goal inferences. This important

aspect on conversation has been neglected here since the focus

is intended to be on explicitness rather than efficiency. Thus,

whatever the conversational feature there is an equivalent

alternative by way of action.

Even in stating these aims, some of what must be involved

begins to emerge. For instance the set of possible states and

goals that must be explicitly modelled includes states of

knowledge or belief. The main effect of many conversational

actions is to change what an agent knows. Furthermore in an

integrated theory such states need to play the role not only of

effects but also of goals. The planner must be capable of

recognising the need for knowledge as a prerequisite for

184

achieving other goals so as to generate plans that include

acquiring it purposefully. Since knowledge is above all a

prerequis ite for planning, the theory must include m e ta ­

planning (planning how to plan). This also entails that the

theory must deal with mixed planning and execution (in contrast

to early simple Al planning, where all the planning was done in

a first phase, followed by all the execution), since actions that

acquire information must be executed before further planning

can proceed. Mixed planning and execution is also required to

deal with surprises, that is events that the agent did not cause

or predict. C onversation in trins ica lly involves surprises

because hearers cannot always know when the other will speak

or what kind of thing they will say. Having knowledge as a goal

that can be planned for, further suggests that perception should

be treated as an explicit action. Finally, conversation is a

coordinated activity and the theory must deal with the nature of

the coordination. Is it implicit or is it planned and negotiated

like the content of mutually agreed physical plans? If it is

wholly implicit, then the conversation cannot be said to be

planned in any deep sense. Contrariwise, however an infinite

regress threatens any attempt to make the conversation wholly

explicit e.g. asking agreement to having a conversation to agree

a plan In what sense are hearers engaging in planned action if

185

they acquiesce in responding to an unexpected and unsolicited

utterance?

6.3,2 Four levels of goals.

In approaching a solution to these aims and problems, it

seems crucial to use the distinction mentioned in chapter 2

between the different levels of goal which the agents may have.

A complete planning theory would link actions to goals at all

levels to the top level, level 1, the external goal which an agent

brings to the conversation (hoping to achieve it). For instance,

a robot might begin with the goal of getting into another room

and undertake a conversation in order to enlist help with this.

(In more complex models, not developed here, agents might have

multiple such goals and attempt to satisfy more than one at a

time; or might have traits such as a homing instinct that tend

to generate specific goals in a given situation.)

At the centre of a theory of conversation is the level of

what can be achieved in an elementary unit of conversation

(level 3). An obvious candidate for these elementary actions is

the speech act. However this does not capture the essentially

two-agent nature of the unit. Something closer to an adjacency

pair seems appropriate. I will define a level 3 goal to be the

achievement in a single utterance pair (half of which may

186

sometimes be silent) of mutual agreement of a single item: a

joint goal, a planned action, a (belief about a) fact. I will also

define a level 2 goal in the same way (as the mutual agreement

of a s ing le item) excep t that it may ta ke a pro longed

interchange. This might be because the particular agents do not

have a conversational method for achieving it directly, or more

probably because initial attempts fail, that is a plan may

require justification before being accepted by the other. Thus

leve l 2 goals o rgan ise s tre tch e s of con v e rs a tio n often

consisting of a number of level 3 actions, some of which fail

(by not achieving mutual agreement of their content). This

organisation corresponds to some of the intuitive notion of a

topic (a number of utterances concerning the same thing), but

differs from the more declarative treatments of that notion

which have been developed to account for such things as

anaphoric reference.

Finally level 4 will refer to those aspects of turn taking

and coordination below level 3. For instance work on pauses

(e.g. Bennett 1981) belongs here. From a planning perspective,

these goals concern the management of the medium. One aspect

of this is agreeing vocabulary and methods of referring.

A n o th e r is tu rn - ta k in g in the s e n s e of not p h y s ic a lly

interrupting each other. If literal interruption occurs, agents

187

will not be able to hear the words the other utters. This is

distinct from the turn-taking problem at higher levels. One such

problem concerns how to tell if an utterance is the reply to an

earlier one, and if so which one. This is the level 3 problem of

sorting utterances into "adjacency pairs" even when they are

not adjacent. Another is the level 2 issue of who gets to

determine the topic, and the management of topic-nesting and

sw itch ing . The leve l 4 issue is s tr ic tly about phys ica l

interruption, and is bound to the medium, for example there is

no such issue when letters are exchanged since the fact of

letters crossing in the mail does not render them illegible, nor

is there such an issue in current computer interfaces that allow

the user to type input simultaneously with system output

scrolling on the screen.

In this model there will be only a single generic action at

level 328. This is an exchange or conversational procedure called

NEOTELL. All other conversational actions are constructed out

of it. In NEOTELL, the speaker proposes (tells) an elementary

item of some type, and the other agent accepts or rejects it. In

the former case, the item becomes mutually agreed. In the

latter, the action fails and there is no direct effect. Thus

asserting a fact, proposing a plan, and suggesting a joint goal

are all cases of this generalised "tell" with different types of

26 Unlike Power who had 7 CP’s and Houghton who had 4 IF’s.

188

item. Questions are treated as two consecutive NEOTELL's — as a

request to tell a fact: White proposes as a joint conversational

goal that Black tells a fact, Black agrees, Black tells the fact,

White agrees (or not, if Black's factual assertion is somehow

inconsistent with White's existing beliefs). In some instances,

neither participant knows how to accept or reject an item. For

example, neither robot may be able to see whether the door is

Open. In which case, the task is then for the robots to find out

whether the door is Open. Alternatively they may not know what

the bolt is for in which case the task is to perform an

experiment in order to discover what physical effect the bolt

may have. Perhaps the most comparable literature at this level,

in Psycholinguistics, would be Sacks, Schegloff and Jefferson

(1974) or Clark and Schaefer (1987).

An agent's planner will generate conversational goals of

the basic type of achieving mutual agreement about an item.

For instance to agree a plan to open the door. The planner then

searches for a way of achieving this. It may find a single action

to do this and propose the action via NEOTELL. If this succeeds,

a single level 3 action was enough. However if it fails (for

example the other agent objects to the plan proposal), the goal

persists as a level 2 goal until the agents find a way of

satisfying it. For instance the other agent may propose an

189

alternative plan if it is accepted as mutual the goal of agreeing

a plan. The first agent may ask the other to propose a plan, that

is, the first direct conversational plan of proposing a physical

plan failed so the second plan is analogous to a question and

consists of a request to propose a plan, followed by the

proposal. Longer sequences may ensue if other physical plans

can be found to propose.

Both planning and inferring at all stages will be done

whether an item is a physical or conversational action. Thus the

task of the planner, if the goal is conversational, is to plan how

to speak by mutually agreeing an item. If on the other hand it is

to shut the door then the task of the planner is to perform this

action. Likewise, the inference task, if the current action is

physical, is to assess the changes in the state of the world. If

on the other hand the current action was a joint conversational

action to discuss whether the door is Open, then the inference

task would be to see whether any goals on the joint plan tree

had been achieved, it should also compare the new constraint

with the old knowledge states of the world and infer new facts

about the w orld as a d ire c t c o n s e q u e n c e of the jo in t

conversational action that has just taken place.

Thus, the program should have a number of components: a

planner that plans physical and conversational actions, an

190

inference module that assesses the effects of physical and

conversational actions, a joint plan tree that represents the

point of an utterance or physical plan, an agenda of items27

already said or to say or do or to be done which together

represent the state of the topic and a control stack that

represents the state of the dialogue and the status of the

overall goal.

K now ledge re p re s e n ta t io n should be provided for

conversational rules about how to mutually agree something

together with physical rules about how to do something, how to

cause an effect, what to do if something unexpected happens

and how to find something out. Meta-rules are also provided in

order to make decisions about when to plan, when to infer when

to act and when to talk. For example if an inference is made

about a change in the state of the world and it is known that the

other robot does not know about it, it must start talking rather

than continue inferring or planning.

Thus level 1 should be thought of in terms of the goals

that are brought to the conversation, the planning algorithm and

knowledge representation that acts upon the goals and sub­

goals that participants must achieve. Level 3's only concern is

to mutually agree items. Level 2 is automatically generated by

27 This is what Searle (1983,1990), Cohen and Levesque (1990) refer to as Intentionallty. For a
criticism of similar definitions see Bratman (1987).

191

the mechanism described: any sub-goal will persist until

achieved, even if this requires a sequence of level 3 actions

(NEOTELL's). Such a sequence corresponds to a topic so the sub­

goal corresponds to a level 2 goal.

The program should distinguish the control stack whose

purpose is to control the whole dialogue from an agenda whose

purpose is to coordinate the execution of a topic and from a

joint plan tree whose purpose is simply to decide what to do

next (which can be speaking, acting, planning or inferring). A

topic begins when a sub-goal appears on the plan tree and a sub­

goal is defined as any situation that needs to be achieved apart

from the main goal. It may be finding something out or having a

situation to be true. A topic ends when the sub-goal is achieved.

In Linguistics, unlike previous work that either considered

how utterances are generated in isolation, see Searle (1969,

1975), Cohen and Perrault (1979) or in which a limited number

of dialogue transcripts were analysed for similar patterns, see

Clark and Schaefer (1987), Sacks, Schegloff and Jefferson

(1 9 7 4), I argue that all u tterances can be generated by

considering conversation as action through dialogue. This

fundam ental principle can then be applied in an Artificial

Intelligence simulation, by considering conversational structure

in terms of levels.

192

John's speed = 3 Mary's speed = 1

*** what John’s capabilities are ***
1. Goal: None
2. Position of objects:
Mary: In: seen, bolt: undef: undef, door: undef:

undef, zggoal: Q: agreed, zgplan: Q: agreed,
zgexperiment: Q: agreed, zgtest: fl: agreed,
zgask: Q: agreed, zgtell: Q: agreed, zggame: 0:
agreed, zgrule: Q: agreed, John: out: seen,
3. Consequences of events:
If you [[perform [robot slide]]] when [[is[any]] then
[[changes[Undef]]]
If you [[perform [robot push]] when [[is[any]] then
[[changes[nothing]]]
If you[[perform [robot move]] when [[is[door is
open]]] then [[changes[robot]]
If you [[perform [robot slide]]] when [[cansee
[bolt]]] then [[know [robot]]]
If you [[perform [robot push]]] when Qcansee
[door]]] then [[know [bolt]]]
If you [[perform [robot move]]] when [[cansee
[robot]]] then [[know [door]]]
If you [[perform [robot slide]]] when [[cando [bolt]]]
then [[knowhow [bolt]]]
If you [[perform [robot push]]] when [[cando [door]]]
then [[knowhow [door]]]
If you [[perform [robot move]]] when [[cando
[robot]]] then [[knowhow [robot]]]
If you [[Neotell [Y]]] when [[Gricean [robot]]] then
[[MutAgree [X]]]
4. Range of actions: move: Yes, slide: No, push:
Yes, Neotell: Yes

*** what Mary's capabilities are ***
1. Goal: Help me get the bolt up.
2. Position of objects: bolt: up: seen, door: shut:
seen, zggoal: Q: agreed, zgplan: Q: agreed,
zgexperiment: Q: agreed, zgtest: []: agreed,
zgask: Q: agreed, zgtell: Q: agreed, zggame: Q:
agreed, zgrule: Q: agreed, John: out: seen, Mary:
In: seen,
3. Consequences of events:
If you [[perform [robot slide]]] when [[is [any]]] then
[[changes [undef]]].
If you [[perform [robot push]]] when [[is [bolt up]]]
then [[changes [door]]].
If you [[perform[robot move]]] when Q is [any]]], then
[[changes [nothing]]].
If you [[perform [robot slide]]] when [[cansee
[bolt]]] then [[know [robot]]]
If you [[perform [robot push]]] when Qcansee [door]]]
then [[know [bolt]]]
If you [[perform [robot move]]] when Qcansee
[robot]]] then [[know [door]]]
If you [[perform [robot slide]]] when [[cando [bolt]]]
then [[knowhow [bolt]]]
If you [[perform [robot push]]] when Qcando [door]]]
then [[knowhow [door]]]
If you [[perform [robot move]]] when [[cando
[robot]]] then [[knowhow [robot]]]
If you [[Neotell [Y]]] when [[Gricean [robot]]] then
[[MutAgree [X]]]
4. Range of actions: move: Yes, slide: Yes, push:
Yes, Neotell: Yes, _____

1. John:

2. Mary:
3. John:
4. Mary:
5. Mary:

6 . John:
7. John:

8. Mary:
9. Mary:
10. John:
11. Mary:
12 . John:
13. John:

14. Mary:
15. John:
16. Mary:
17. Mary:

18. John:

Figure

(State of the world is now ig. Mary:
[John out, Mary in, bolt up, door shut])

20. John:
I propose the following joint conversational 21. John:
goal: we agree whether the bolt is up. 22. Mary:
OK
I propose you tell me if the bolt Is up.
OK 23 John:
I propose we find a test for seeing whether the 24 Mary:
bolt is up. 25 John:
OK 26 Mary:
I propose we experiment to see what happens 27. John:
when the door is pushed.
OK 28. Mary:
John. 29. John:
Yes. 30. Mary:
I suggest we push the door and see if it opens. 31. John:
OK
I suggest we plan for me to tell you about what 32. Mary:
happens when you push the door. 3 3 . John:
O K 34. Mary.
Nothing happens. 3 5 . John:
I disagree. 36. John:
I suggest we plan for me to tell you about what 3 7 . Mary:
happens when you push the door. 38. Mary:
OK

If you push the door when the bolt Is up
it changes position.

I see.
I suggest I push the door.
OK
(State of the world is now

[John out, Mary In, bolt up, door open])
I propose to tell you what has happened.
OK
I have pushed the door.
I see.
I propose to tell you the consequences of what
happened when I pushed the door.
Go ahead.
The door changed position.
I see.
I propose the following joint conversational
goal: we agree whether the door is open.
OK
I propose for me to tell you if the door is open.
OK
The door is now open.
I propose for you to tell me if the bolt is up.
OK
The bolt must be up.

39. John: Right
6.2 Hypothetical dialogue illustrating how one generic

procedure NEOTELL can generate all conversation for Power's
robot world. Input parameters include a schema for causal rules
about conversation (that contain variables X and Y) and the
different kinds of physical planning (that instantiate X and Y).

193

Figure 6 .2 il lus tra tes a hypothetica l d ia logue with

thirteen causal rules organised into four sets, one for each kind

of planning. Each set then contains one rule for each of the three

types of physical actions: pushing, moving and sliding. The

preconditions and effects are defined in chapter 5. The

thirteenth rule is the joint action for executing a piece of

conversation. The goal is to m utually agree and the

precondition is similar to Cohen and Perrault (1979). Thus, for

all physical planning or inference there is a corresponding

reasoning process for conversation that is instantiated in the

same algorithm. Thus conversation can also be a goal of

m utuality and that the equ iva lent action, solo mode, for

mutually agreeing such a goal should be instigated before the

conversational goal is considered. This could then be determined

as a p a ra m e te r of c o o p e ra t io n s im ila r to S h a d b o l t ’s

com m unicative postures that reflect the desired level of

communication.

I now discuss the components of the rules given in figure

6.2.

6.3.3 The conversational rule.

This rule is composed of three parts:

If you do something, when such and such is true then the result is such and such

194

An action referred to as “evt” previously and “if you” in figure

6.2. A precondition referred to as “sit” previously and “when”

in figure 6.2. An effect referred to as “res” previously and

“then” in figure 6.2.

The middle “sit” component, GRICEAN (see footnote p81),

which expresses the degree of co-operativeness or sensibility,

is the precondition which must be true before the “evt” action

component can be executed. For example, do not mutually agree

with your partner about telling you some fact if you know he

does not know it in the first place. More specifically, the

preconditions for asking a question about getting your partner

to do something are: do not plan for your partner to tell you

something if you know he “can ’t do it” (tell you it). O lder

systems have used different preconditions for telling and

asking. Here, this is now no longer necessary with NEOTELL.

T h e action , N E O T E L L , is s tru c tu ra lly s im ila r to a

conversational procedure except most of the reasoning is done

outside it, but nevertheless, still within the main physical

planner. For example, conversational procedures such as

GAME.ASSESS, Power (1979), are no longer needed because all

the assessing is done in the planning stage. Similarly GAME.RULE

is not needed since it is s im ilar to te lling an item and

disagreem ents are handled as fa iled goals for which an

195

a lte rn a tiv e plan must be gen era ted . Unlike in Power or

Houghton, White utters an item for mutual agreement. Black

does some goal recognition to identify the item and then

evaluates in relation to its own knowledge. If it is okay, then

the item is agreed. White then validates the reply. Both agents

then take the item to be agreed and assess its consequences in

just the same way as they would have assessed an action. The

result is that the goal to mutually agree that particular item

has been achieved. One advantage of doing things like this is

that when mutually agreeing a goal the hearer has a better

chance of taking the initiative in the dialogue. On the other

hand, in the older systems, such as Power (1979) and Houghton

(1986), agents are bound to reason either in a conversational

procedure or within the planner. This disjointed reasoning

process (i.e. partially reasoning within the physical planner and

partially within the conversational procedure) means that

agents are never able to contemplate whether or not to stay

within a CP or IF. Mixed initiative joint planning, as illustrated

in fig 6 .2 and discussed in detail in chapter 5, although

impossible with these systems is now easily achieved since

facilities to process in parallel would be provided.

The “res” component (its effect) of N E O TELL is the

original goal of talking about something that is treated just as

196

any other type of physical goal would be. Just as the goal of, for

example, opening the door must be planned for, so also does the

goal of, for example, mutually agreeing to slide the bolt.

6.3.4 Physical rules.

The classical rules work in exactly the same way as

described in Power (1979). The word “perform”, is used here,

see figure 6.2, as part of the action since in the planning phase

the predicate means one thing (who can do it) and in the

execution phase it means another (who or what has been done).

The precondition for the instrumental predicate “cansee”, see

figure 6.2, is used to check whether or not the action can be

assessed properly and is s im ilar to H o u g h to n ’s (1 9 8 6)

“g e t j n f o ”. The resulting predicate “know”, see figure 6 .2 ,

means that the agent knows a particular fact after assessing

the consequences of performing that action. In experimental

planning the precondition predicate “cando”, see figure 6.2, is

similar to Houghton’s (1986) interactional frame “gettodo”,

that is to say one needs to find an agent that can perform the

action. Unlike Houghton these last two predicates do not make

explicit calls to do further conversing but instead construct

new goals to mutually agree items that the m eta-p lanner

directs control over (when appropriate) and the whole cycle

197

begins again.

Even assessing the con sequences of a p iece of

conversation is dealt with in the same way as with action. The

task here, when a conversational exchange has taken place, is to

assess its effects in exactly the same way as with an action, by

comparing the old knowledge status with the new and updating

accordingly. This is done within the inference and not the

conversational procedure as currently implemented.

This also has the effect of providing a clearer definition,

than the one mentioned in chapter 5, of what a topic at level 2

is, since the sub-goal is an item that needs to be mutually

agreed and it closes when this goal has been achieved. In the

definition in chapter 5 the topic closes when the conversational

procedure finishes on the control stack. In this proposed

representation, both the physical goal and the mutual goal now

appear on the joint plan tree.

At first sight the hypothetical dialogue illustrated in

f igure 6 .2 appears to be s im ilar to S h a d b o lt ’s d ia logue

illustrated in figure 3 .5 in that it is almost efficient (like

Houghton’s dialogue), certainly regular and mechanistic in

appearance and definitely more explicit than even Power. There

are however some differences. The dialogue is more robust for

two reasons: firstly either agent can seize the initiative at any

198

time during execution (chapter 4), secondly if an agent is in

difficulties alternative plans can be constructed whether or not

the agent’s partner is being helpful (chapter 5).

6.3.5 Asking a question with NEOTELL.

The following tree diagram (figure 6.3) shows how it

would be possible to ask a question with NEOTELL. In every

NEOTELL
1. John: I propose the following joint conversational goal: we
agree whether the bolt is up.
2. Mary: Okay.

Speedy Mary.
3. Mary: The bolt is up/down.
4. John: I see.

Speedy John
3. John: I propose you tell me if

the bolt is up.
4. Mary: OK.
5. Mary: The bolt is up/down.
6. John: I see.

Speedy and unknowledgeable Mary.
3. Mary: I propose we find a test for

seeing whether the bolt is up.
4. John: OK.
5. Mary : I suggest we push the door and

see if it opens.
6. John: OK.

Speedy John, unknowledgeable Mary
3. John: I propose you tell me if

the bolt is up.
4. Mary: OK.
5. Mary: I propose we find a test

for seeing whether the
bolt is up.

6. John: OK.
7. John: I suggest we push the

door and see if it opens.
8. Mary: OK._____________________

Figure 6.3 Asking the question "Is the bolt up?"
using NEOTELL.

situation the agent can plan or discuss depending on the

conversational skills that are applied as input parameters.

199

6.3.6 Degrees of conflict resolution with NEOTELL.

Similar diagrams to figure 6.3 can also be constructed for

inferring the consequences of an action and for degrees of

conflict resolution (figure 6.4).

1. John: I propose the following conversational goal: we
agree about what happens when you push the door.

Agreeing by way of action

2 . Mary: Okay.
3. Mary: I propose we experiment to see what

happens when the door Is pushed.
4. John: Okay.
5. Mary: I suggest we push the door and see

what happens.
6 . John: Okay.

Agreeing by way of conversation

2 . Mary: Okay.
3. Mary: I suggest we plan for me to tell

you abodt what happens when you
push the door.

4. John: Okay.
5. Mary: If you push the door when the bolt

is up It changes position.
6 . John: I see.

Interrupting for the sake of efficiency

2 . Mary: If I help you agree about the door, can
you push the door ?

3. John: No.
4. Mary: No.

Explicitly undoing

2 . Mary: Okay.
3. John: Can you push the door
4. Mary: No.
5. John: I suggest we plan to undo my

goal of agreeing about the door.
6 . Mary: Okay.

Clarifying

2 . Mary. Okay.
3. John: I propose the joint conversation goal:

we agree about the position of the bolt
4. Mary: Okay.

Disagreeing

2 . Mary. Okay.
3. John: I suggest we plan for me to tell

you about what happens when you push
the door.

4. Mary: Okay.
5. John: Nothing happens.
6 . Mary: I disagree.
7. Mary: I suggest we plan for me to tell

you about what happens when you push
the door.

8 . John: Okay.
9. Mary: If you push the door when the bolt is up

it changes position.
10. John: I see.

Figure 6.4 Degrees of Conflict resolution with NEOTELL.

200

6.3.7 Meta-plannina with NEOTELL.

John is out and Mary is in. The bolt is up and the door is

shut. Mary is speedy relative to John. Mary and John’s top goal is

for the door to be open which has already been mutually agreed

by both participants. John’s current sub-goal is to know

whether or not the bolt is up since he is out and cannot see it.

Mary’s current sub-goal is to push the door. Before Mary can

push the door John says “I suggest we mutually agree a goal to

find out if the bolt is up?” How should Mary reply?

As mentioned earlier a meta-planner is needed to plan

about what to plan for next. A meta-inference process is also

needed to control the cases of multiple inferences. It is here

that the satisfaction of constraints would be appropriate. Since

in this case the meta-planner would be faced with a number of

simultaneous alternatives. Mary can do two things. She can

either mutually agree with John’s goal or she can make a meta­

action response by pushing the door. This not only achieves her

own goal but also indirectly indicates to John that the bolt is up

since the result of the door being open is that the bolt must be

up.

Hence the corresponding action for mutually agreeing is

conveying the message through direct action which may involve

miming, a planned action, acting in solo mode or any other form

201

of non-verbal communication. But whatever the conversation,

from a psychological point of view and if this model is upheld,

there is always a corresponding action for achieving it.

Thus the resp on s ib ility of the m e ta -p la n n e r is for

efficiency (see also the example in figure 6.4 “interrupting for

the sake of efficiency”) and this can be achieved through

constraint programming as part of the existing inference

mechanism already implemented within SUPERPOWER.

6.4 Epilogue.

This NEOTELL dialogue is slightly more general than the

dialogue of chapters 4 and 5 in that a fast agent can attempt to

answer a question that it is pondering by way of its own

resources before its partner has replied. It thus introduces even

more com plications to exe rc is e the a g e n t ’s ab il it ie s to

coo rd ina te skills c o o p era tive ly . Thus the v a r ia t io n and

distribution of conversational procedures, skills and speeds

amongst agents is even larger than indicated in chapter 4. It

also begs the question “For a given level of overall skill and an

arbitrary selection of goals and unexpected events, how do the

relative speeds and the configuration of skills amongst the

agents affect the dialogue outcome in terms of the distribution

of conversational procedures instigated by each agent?”. In

202

Chapter 4, there were some initial conclusions about this, but

much more information still needs to be gathered on this. With

this proposed enhancement the number of shifts in which an

agent is leading the dialogue would be much greater.

There is also the general issue about equivalent actions

for mutually agreeing an item. Does every utterance have a way

of being expressed in terms of some action? Dumb people may

agree. Sometimes a glance of an action can represent a

lifetime’s insight. With other important insights it can be just

one word. The computational design described in this chapter is

an attempt at addressing this important psychological question

of whether or not every piece of conversation can be expressed

in terms of an action and vice versa.

By way of application to Cognitive Science, this is also a

question that is important for understanding human transcripts

(Anderson, Clark and Mullin 1989) by helping us to identify a

model of true planned conversation we can identify poor and

good in te rac tio n skills . It also has ap p lic a tio n both in

intelligent language tutoring systems (see Button and Draper

1990) that use communicative teaching strategies, (see Ward

1989 for some empirical work that justifies this approach to

la n g u a g e te a c h in g) . It m ay even be of in te re s t to

Psycholinguists. It has application to Psychology since any

203

S o c ia l th e o ry of m utua l in te n t io n m ust e x p la in its

corresponding action and up until now these problems have been

dealt with differently.

It can be app lied to con s tra in t s a t is fa c t io n s ince

conversational and physical goals are expressed in such a way

as to make them amenable to reasoning in relation to the

constraints of the overall situation. It is at this point that

meta-planning is useful to make the dialogue efficient. Goals do

not need to be specified as explicitly as in Power’s model,

since conversational exchanges can be trea ted just like

unexpected actions and assessed accordingly. The system is

thus reactive to the current situation. The task of the inference

process is to use constraint programming as a way of resolving

goal conflict. The inference and the meta-planner with this

system would thus be the “constraint programmer” mentioned

in chapter 2. It ’s just that we need to define an explicit

program that can say all that there is to say for dialogue

structure first.

However, a process that carries forward multiple goals,

and p ro g ress ive ly d is a m b ig u a te s m ean ing by m aking

contributions that add new constraints to the understanding of

a developing plan, while easily accom plished by human

conversation partners, takes us far beyond any simulation of

204

conversational procedures that has been implemented so far.

However, I have also argued that an explicit account of simple

levels of goals is technically possible and is the way forward

for any Al model of dialogue that wishes to account for true

planned conversation and action, as opposed to simply

understanding planned action and conversation separately. It

must, at all times, follow principles of coherence in terms of

theory, program structure and example dialogue. And when the

possibilities become too large, com prehensive statis tica l

summaries must also be made.

205

References.

Agre, P.E., (1990). Book Review of Suchman (1987). A rt if ic ia l

Intelligence. 43, 369-384.

Allen, J.F., (1983). Recognising intentions from natural

language utterances. In Computational Models of Discourse.

(Eds.), M. Brady and R.C. Berwick, 107-166. Cambridge, MA:

MIT Press.

Allen, J., (1987). Natural Language Understanding. Menlo

Park: Benjamin Cummings.

Allen, J.F. and Perrault, C.R., (1980). Analysing intention in

u tte ra n c e s . A r t i f ic ia l In t e l l ig e n c e . 1 5 (3) , 1 4 3 -1 7 8 .

Reprinted in Readings in Natural Language Processing. (Eds.)

B.J. Grosz, K. Sparck-Jones and B.L. Webber (1986), 441-458.

Los Altos, CA: Morgan Kaufmann.

Anderson, A .S ., Clark, A., and Mullin, J., (1989). The

d e v e lo p m e n t of r e fe re n t ia l c o m m u n ic a t io n s k il ls :

interactions between speakers and listeners in extended

dialogues. Paper presented at the 3rd E.A.R.L.I. Conference.

Madrid 4-7th Sept.

206

Appelt, D.E., (1985). Planning English Sentences. Cambridge:

Cambridge University Press.

Appelt, D .E ., (1 987). Towards a p lan-based theory of

referring actions. In Natural Language Generation. pp63-70,

(Ed.), G. Kempen. Also in Proc. Third International Workshop

on Natural Language G eneration . Aug. 1 2 -2 3 1 9 8 6 .

Netherlands: Martinus Nijhoff.

Austin, J.L., (1962). How to do things with words. Oxford:

Oxford University Press.

Austin, J.L., (1970). Philosophical papers. Oxford: Clarendon

Press. Also reprinted from Proc. Aristotelian Society, suppl.

xxxii, (1957-1958).

Baddley, A.D., (1976). The Psychology of memory. New York:

Basic books.

Bartlett, F.C., (1932). Remembering: A study in Experimental

and Social Psychology. Cambridge, England: University Press.

207

Bennet, A., (1981). Interruptions and the interpretation of

discourse. Discourse Processes. 4, 177-188.

Bobrow, D.G., Kaplan, R.M., Kay, M., Norman, D.A., Thompson, H.,

and Winograd, T., (1976). GUS, A frame-driven Dialogue

system. A rtif ic ia l Intelligence. 8. 155-173.

Bratman, M., (1987). Intentions. Plans and Practical reason.

Cambridge, MA: Harvard University Press.

Brown, F.M., (1987). Procs. of the 1987 workshop on the

Frame problem in Artificial In te ll igen ce . Los Altos, CA:

Morgan Kaufmann.

Bull, P. and Mayer, K., (1988). Interruptions in Political

Interviews: A study of Margaret Thatcher and Neil Kinnock.

Paper presented to the B.P.S. Leeds, 15-18 April.

Butterworth. B.L., (1980). Language Production. Vol. 1: Speech

and Talk. London: Academic Press.

Button, C.G., (1989). An intelligent tutoring system for

helping children aged 7 to 15 to acquire a second language.

Instructional Science. 18(1), 27-43.

208

Button, C.G., Oatley, K. and Draper, S.W., (1989). Applying

fe a tu re s of purposefu l conversa tion to an in te ll ig en t

tutoring system for ch ild ren ’s acquisition of a second

language. Cognitive Systems. 2(3), 261-273.

Button, C .G . and Draper, S .W ., (1 99 0). Tow ards a

com putational theory of the constituents in a unit of

purposeful conversation. Paper presented at the NATO

sponsored ^workshop on In te lligent Language tutoring

systems. Washington D.C., Sept 1990.

Carletta, J., (1990). A general architecture for Interactive

Explanations. Unpublished technical report. Department of

Artificial Intelligence, University of Edinburgh.

Charniak, E. and McDermott, D.V., (1985). Introduction to

Artificial Intelligence. Reading, MA: Addison Wesley.

Clark, H.H., (1985). Language use and language users. In G.

Lindsey and E. Aronson, The Handbook of Social Psychology

(3rd edition, Vol. 2), 179-231 . Hillsdale, NJ: Lawrence

Erlbaum and Associates.

209

Clark, H.H. and Schaefer, E.F., (1987). Collaborating on

contributions to conversations. Language and Cognitive

Processes. 2,19-41.

Clocksin, W.F. and Mellish, C.S., (1981). Programming in

Prolog. Berlin: Springer-Verlag.

Coates, J., (1990). Modal Meaning: The Semantic-Pragmatic

Interface. Journal of Semantics. 7, 53-63.

Cohen, P.R. and Levesque, H.J., (1985). Speech acts and

rationality. A.C.L Procs.. 23rd Annual Meeting, 49-60.

Cohen, P.R. and Levesque, H.J., (1990). Intention is Choice

with Commitment. Artificial Intelligence. 42, 213-261.

Cohen, P.R. and Perrault, C.R., (1979a). Elements of a plan-

based theory of speech acts. In Readings in Natural Language

Processing. (Ed.), B.J. Grosz, K. Sparck-Jones and B.L. Webber

(1986), 423-440. Los Altos, CA: Morgan Kaufmann.

Cohen, P.R. and Perrault, C.R., (1979b). Elements of a plan

based theory of speech acts. Cognitive Science. 3, 177-212.

210

Collins, A. M. and Quillian, M.R., (1969). Retrieval time from

semantic memory. Journal of Verbal Learning and Verbal

Behaviour. 8, 240-247.

Crowder, R.G., (1982). The demise of short-term memory.

Acta Psvcholoaica. 50, 291-323.

Davey, A., (1978). Discourse Production: A computer model of

some aspects of a speaker. Edinburgh: Edinburgh University

Press.

Draper, S.W. and Button, C.G., (1990). Conversation as planned

action: planning utterances within dialogue. NATO sponsored

workshop. Trento Italy, November 1990.

Draper, S.W., Oatley, K. and Garrod, S.C., (1987). 4 goal levels

- designing the research. Unpublished Mimeo. Department of

Psychology, University of Glasgow.

Elsom-Cook, M.T. (1984). Design considerations of an

intelligent tutoring system for programming languages.

Unpublished PhD thesis. University of Warwick.

211

Fikes, R. and Nilsson, N.J., (1971). STRIPS: a new approach to

the application of theorem proving to problem solving.

Artificial Intelligence. 2, 189-208.

Freidland, P.E. and Iwasaki, Y., (1985). The concept and

implementation of skeletal plans. Journal of Automated

Reasoning. 1, 161-208.

Freud, S., (1904). The psychopathology of everyday life. In J.

Strachey et al. (Eds.) The standard edition of the complete

psychological works of Siamund Freud. Vol. 4. London:

Hogarth Press. Also in the Institute of Psychoanalysis. 1953,

pp. 107-118.

Galliers, J.R., (1987). Modelling Dialogue involving conflict

and co-operation. Working Paper H.C.R.L. Open University.

Garfinkel, H., (1967). Studies of the routine grounds of

everyday activ ities. In H. G arfinkel, (Ed.), S tud ies in

ethnomethodoloov. Englewood Cliffs, NJ: Prentice Hall.

Garnham, A., (1985). Psycholinguistics , central to p ic s .

London: Mentuen.

212

Garrod, S. and Anderson, A., (1987). Saying what you mean in

dialogue: a study in conceptual and semantic coordination.

Cognition. 27, 181-218.

Garrod, S. and Sanford, A.J., (1985). Thematic subjecthood

and cognitive constraints on discourse structure. Journal of

Pragmatics. 12, 357-372.

Gazdar, G. and Mellish, C., (1990). Natural Language

Processing in POP11. An introduction to computational

linguistics. Wokingham, England: Addison-Wesley.

Georgeff, M.P., (1987). Actions, processes and causality. In

M.P Georgeff and A.L. Lansky, (Eds.), Reasoning about actions

and plans. 99-122 Proc. 1986 Workshop. Los Altos, CA: Morgan

Kaufmann.

Ginsberg, M.L. and Smith, D.E., (1986). Reasoning about action

II: the Qualification problem. Technical Report 86-66, KSL,

Stanford University. Also in M.P. Georgeff and A.L. Lansky,

(Eds.), Reasoning about actions and plans Procs. of 1986

Workshop.1987. Los Altos, CA: Morgan Kaufmann. Also in

Artificial Intelligence. 35(3), 1988.

213

Grice, H.P., (1957). Meaning. Philosophical Review. 66, 377-

388.

Grice, H.P., (1968). Utterers meaning, sentence meaning and

word meaning. In J. Searle, (Ed.), The Philosophy of Language.

pp 1-18. London: Oxford University Press. Also printed in

Foundations of language. 4, 225-242.

Grice, H.P., (1975). Logic and conversation. In P. Cole and J.L.

Morgan, (Eds.), Syntax and semantics 3: Speech acts. 41-58.

New York: Academic Press.

Grosz, B., (1977). The representation and use of focus for

understanding dialogs. Proc. f ifth In te rn a t io n a l Joint

C o n fe re n c e on A r t i f ic ia l In te l l ig e n c e . C am bridge,

Massachusetts, pp 67-76. Los Altos, CA: Morgan Kaufmann.

Grosz, B.J. and Sidner, C.L., (1986). Attentions, intentions,

and the s tru c tu re of d isco u rs e . C o m p u ta tio n a l

Linouistics.12(31. 175-204.

Grosz, B.J., Sparck-Jones, K., and Webber, B.L., (1986).

Readings in Natural Language Processing. Los Altos, CA:

214

Morgan Kaufmann.

Halliday, M.A.K., (1961). Categories of the theory of grammar.

Word. 17.

Halliday, M.A.K., and Hasan, R., (1976). Cohesion in English.

London: Longman.

Harley, T.A., (1984). A critique of Top-down Independent

levels Models of Speech Production: Evidence from Non-plan

Internal Speech Errors. Cognitive Science. 8,191-219.

Hirst, G., (1981). Anaphora in natural language understanding,

a survey. Lecture notes in Computer Science. Vol. 119.

Berlin and New York: Springer Verlag.

Hobbs, J. and Evans, D., (1980). Conversation as planned

behaviour. Cognitive Science. 4, 349-377.

Houghton, G., (1986). The production of language in dialogue:

a computational study. Ph.D. thesis. University of Sussex.

Houghton, G. and Isard S., (1987). Why to speak, What to say

215

and How to say it : modelling language production in

discourse. In P.Morris, (Ed.), Modelling Cognition. Chichester:

Wiley.

Houghton, G., (1989). A Computational Model of Discourse

Production. Norwood, NJ: Ablex.

Jung, C.G., (1910). The association method. In H. Read et al,

(Eds.), The collected works of C.G. Juno. Vol. 2. Experimental

Researches. (1973), 439-465. Princeton, N.J.: Princeton

University Press.

Lansky, A.L., (1986). A representation of parallel activity

based on events, structure and causality. Technical note 401 .

December 1986, SRI International.

Lansky, A.L., (1988). Localised event-based reasoning for

multiagent domains. Technical note 423 . January 1988, SRI

International.

Litman, D.J. and Allen J.F., (1987). A plan recognition model

for subdialogues in conversations. Cognitive Science. 11,

163-200.

216

Musson, C. and Shadbolt, N., (1987). A summary and

comparison of the work of J.F. Allen and R. Power High-level

dialogue. Technical Report. Department of Psychology,

University of Nottingham.

Oatley, K., Draper, S.W. and Button, C.G., (in press). Goals in

conversation: Increments of agreement and the satisfaction

of constra in ts . Unpublished report. Dept. Psychology,

University of Glasgow.

Palmer, F.R., (1990). Modality and the English Modals. Second

Edition, London-Longman.

Parkison, R.C., Colby, K.M., and Faught, W .S ., (1977).

Conversational Language Comprehension Using Integrated

Pattern-Matching and Parsing, A rtif ic ia l In te ll igen ce . 9,

111-134.

Pollack, M.E., (1986). Inferring Domain Plans in Question-

Answering. Ph.D. thesis. University of Pennsylvania.

Power, R.J.D., (1974). A Computer model of Conversation.

Ph.D. thesis. University of Edinburgh.

217

Power, R .J .D ., (1979). The organisation of purposeful

dialogues. Linguistics. 17(1),107-152.

Power, R.J.D., (1984). Mutual Intention. Journal for the

Theory of Social Behaviour. 14, 85-102.

Power, R.J.D., (1987). Efficiency in Conversation. Alvev

Workshop on Explanation. Surrey University, January 8-9,

1987.

Power, R.J.D. and Dal Martello, M.F., (1986). Some criticisms

of Sacks, Schegloff, and Jefferson on turn taking. Semiotica.

58, 29-40.

Reichman, R., (1978). Conversational Coherency. Cognitive

Science. 2. 283-327.

Reichman, R., (1986). Communication paradigms for a

window system. In User Centred System Design. (Eds.),

Norman, D. and Draper, S. London: Lawrence Erlbaum and

Associates.

Rogers, C., (1951). Client Centred Therapy: Current Practice.

218

Implications and Theory. Boston, Houghton Mifflin.

Sacerdoti, E.D., (1974). Planning in a hierarchy of abstraction

spaces. Artificial Intelligence. 5, 115-135.

Sacks, E., Schegloff, E. and Jefferson, G., (1974). A simplest

s y s te m a t ic s for the o rg a n is a t io n of turn ta k in g in

conversation. Language. 50, 696-735.

Sanford, A.J. and Garrod, S.C., (1981). Understanding Written

Language. Chichester: Wiley.

Schank, R.C., (1972). Conceptual dependency: a theory of

natural language understanding. Cognitive Psychology. 3,

552-631.

Schank, R.C. and Abelson, R., (1977). Scripts. Plans. Goals and

U n d e rs ta n d in g . H illsda le , NJ: Law rence Erlbaum and

Associates.

Schank, R.C., (1980). Language and Memory. Cognitive

Science. 4, 243-284.

219

Schank, R.C. and Reisbeck, C.K., (1981). Inside Computer

U n ders tan d in g . H illsdale, N J: Laurance Erlbaum and

Associates.

Schank, R.C., (1982). Dynamic Memory: A theory of Learning in

Computers and People. Cambridge: Cambridge University

Press.

Schank, R.C., (1985). Reminding and Memory Organisation. In

A.M. Aitkenhead and J.M. Slack, (Eds.), Issues in Cognitive

modelling. Hillsdale, NJ: Lawrence Erlbaum and Associates.

Searle, J.R., (1969). Speech acts: An essav in the philosophy

of language. Cambridge: Cambridge University Press.

Searle, J.R., (1975). Indirect speech acts. In P. Cole and J.

Morgan, (Eds.), Syntax and semantics. Vol. 3: Speech acts, pp

59-82. New York: Academic Press.

S earle , J .R ., (1 98 3). In te n t io n a litv : An E ssav in the

Philosophy of Mind. New York: Cambridge University Press.

Searle, J.R., (1990). Collective Intentionality. In P.R. Cohen,

220

J. Morgan and M.E. Pollack, (Eds.), In te n t io n s in

Communication. Cambridge, MA: MIT Press.

Shadbolt, N.R., (1984). Constituting Reference in Natural

Language: the problem of referential opacity. Ph.D. thesis.

University of Edinburgh.

Shadbolt, N.R. and Musson C.L.D.L., (1987). co-operative

Planning: a foundation for communicative negotiation. Procs.

of the 6th Alvev SIGPLAN meeting. Cambridge.

Steedman, M. and Johnson-Laird, P., (1980). The Production of

Sentences, Utterances and Speech Acts: Have Computers

anything to say? In B.L. Butterworth, (Ed.), Language

Production. Vol. 1: Speech and Talk. London: Academic Press.

Steel, S., (1987). The bread and butter of planning. Al

Review. 1, 159-181.

Stefik, M., (1980). Planning with constraints. Stanford

University Computer Science Department Technical Report.

Stefik, M., (1981). Planning and meta-planning, MOLGEN: part

2. Artificial Inte lligence. 12, 141-169.

221

Stubbs, M., (1986). A matter of prolonged fieldwork: notes

towards a modal grammar of English. Applied linguistics, 7,

1-25.

Suchman, L.A., (1987). Plans and situated actions: the

problem of human m achine com m unication. Cambridge:

Cambridge University Press.

Tate, A., (1976). Project planning using a hierarchic non­

linear planner. Dept. At memo no 25. University of Edinburgh.

Tate, A., (1985). A review of Knowledge-Based Planning

techniques. Knowledge Engineers Review. Vol 1, No 2, 1985.

Turner, R., (1 98 4). Logics fo r A r t if ic ia l In te l l ig e n c e .

Chichester: Ellis Horwood.

Ward R.D., (1989). Some uses of natural language interfaces

in com puter assisted language learn ing . In s tru c tio n a l

Science. 18: 45-61.

Webber, B. L., (1987). Question answering. In Encyclopaedia

222

of Artificial Intelligence. (Ed.), S. C. Shapiro, pp. 814-822.

New York: Wiley.

Weizenbaum, J., (1966). ELIZA - a computer program for the

study of natural language communication between man and

machine. Communications of the ACM. 9(1), 36-45.

Wilensky, R., (1983). Planning and Understanding. Reading

Mass: Addison Wesley.

W ilk ins , D .E ., (1 9 8 4). D o m a in -In d ep e n d e n t P lanning:

Representation and Plan Generation. A rtificial In te llig en ce .

22, 269-303.

Winograd, T., (1972). Understanding Natural Language. New

York: Academic Press.

Wood, S., (1990). Planning in a rapidly changing environment.

Ph.D. thesis. University of Sussex.

223

Appendix 1.

Annotated transcript of task of getting through a closed door
(conversation bv humans, one blindfolded).

224

Agent Utterance G/P/B/H/C Action Change

1 JOHN:
2 MARY:

3 JOHN:
4 MARY:
5 JOHN:

6 MARY:
7 JOHN:

8 MARY:

9 JOHN:

10 MARY:

John and Mary decide to gain each other’s attention In order
to achieve John's goal of getting into Mary's room.

[Mary.
Yeh.] H

John starts by executing a plan, sliding the bolt, and then
asking Mary to assist him achieve his goal of getting in by
pushing on the door. He sees It Is not working, and asks why.

JOHN OPENS BOLT BOLT OPEN
[Can you push on the door?
[Can I what?

Can you push on the door, MARY PUSHES DOOR
Mary?] H
[Push the door?
Yah...] H

] I
[Keep pushing.

] P
[Is anything wrong?

I can't get through.] B
John modifies his plan, then tries to find out what Is wrong
by Introducing new knowledge.

[Well, try pushing a bit lower.
] P MARY PUSHES DOOR NO CHANGE

[Is it stuck?

MARY PUSHES DOOR

MARY PUSHES DOOR

NO CHANGE

NO CHANGE

NO CHANGE

Yeh.] B
They compare their beliefs about the state of the world, and
conclude the door is jammed.

225

Agent Utterance G/P/B/H/C Action Change

11 JOHN: [Where do you think it's stuck?
12 MARY: [Where I think it's stuck?
13 JOHN: Yeh...] H

[Is it stuck down the bottom?
14 MARY: ...According to the crack

obviously it's
not locked.] B

] B
They continue to discuss beliefs about appearances on either
side of the door.

15 JOHN: [No it's not locked. I've got it open this side.
But it's stuck somewhere.

16 MARY: Yeah I think it's the bottom because
the upper part is
free.] B

17 JOHN: [Can you give it a push from the bottom...
] P MARY PUSHES DOOR NO CHANGE
[It's actually stuck where the lock is, about 2 inches

below the Yale lock... About 6 inches below.
18 MARY: So?] B
19 JOHN: [Have you got a handle your side?
20 MARY: A handle! No.] B
21 JOHN: [My handle's undone as well.

] B
Mary is at a loss as to what to do. John continues to try and
clarify things. Finally they agree that It is not Mary who
needs to do something but John.

22 MARY: [What shall I do?
23 JOHN: [What can you see from your side?
24 MARY: See? I'm not supposed to see

anything.] B
Mary was blindfolded!

25 JOHN: [Okay. Can you see anything that's stopping it?
26 MARY: Stopping it! Obviously you're

stopping it not me.] B
] P

Finally John stumbles on the solution. He modifies his beliefs
and plans to achieve his goal of getting in by removing the
hidden nail from the side of the door.

27 JOHN: [Oh wait a minute there's a
nail in the side.] B JOHN REMOVES NAIL

MARY PUSHES DOOR DOOR OPEN
JOHN MOVES JOHN IN

226

Appendix 2.

Annotated transcript of double-sided photocopying task
(conversation bv two humans^.

227

Agent Utterance G/P/B/H/C Action Change

John and Mary start conversing about photocopying both sides
of a sheet of paper. Mary knows how to do this. John's goal Is
to learn how to do it for himself. After the first few utterances
it emerges that John knows how to do one-sided photocopying.
Mary t r ie s to gu ide John from b e lie fs about s in g le -s id e d
photocopying to beliefs about double-sided photocopying which
in v o lv e to p o lo g ic a l p ro b le m s a b o u t th e o r ie n ta t io n and
sequencing of originals. Further complications arise because
Mary is unaware that John only Intends to photocopy one sheet
rather than many ...

1 JOHN:

MARY:
JOHN:

MARY:

[Could you show me how to
do the photocopying?

[Double-sided?
Eh, Yer, I want to do,

to do double-sided.]
]

[Uhm, I don't know,
some or]

John interrupts Mary's goal-c lariflcatlon. He uses his beliefs about s ingle-
sided photocopying to develop a plan to achieve his goal, with an additional
unstated sub-goal of doing the task as quickly as possible. He knows that of
four keys, three are relevant to single-sided photocopying and infers that
the fourth must concern double-sided photocopying...
5 JOHN: [Sorry, what do you do here?
6 MARY: This one. SELECTS DUPLEX 2 DUPLEX

SCREENAT2
But eh eh... some turn
the other way round.

You must have it.] C:B,P OPENS LID LID OPEN
Mary has In mind that double-sided copying is not as simple as
single-sided, because documents to be copied double-sided must
be In sequence.

[So what do I do just put
that one there? Like that. POSITIONS PAPER PAPER ON GLASS
] P SETS KEY TO A4 SET TO A4

Mary checks that the first sheet Is in position. John Is now
confused as to why Mary is so concerned about the sequencing
of the originals.

[Which way did you put it?
It doesn't really matter

which way you put it.] C:P,B
[Does it?

Yer, it must be in sequence.] B
[I suppose if you...

Right well, I'm only doing
one sheet.] C:B,P

Mary Is at last able to understand more of John's goals and that
the confusion between them over-sequencing Is not Important
when photocopying one sheet of paper. However she Is stil l
perplexed as to why someone should go to great lengths to
photocopy just one sheet of paper double-sided.

7 JOHN:

8 MARY:

10 MARY:
11 JOHN:

12 MARY:

13 JOHN:

228

Agent Utterance G/P/B/H Action Change

14 MARY:
15 JOHN:

16 MARY

17 JOHN:

18 MARY:
19 JOHN:
20 MARY:

21 JOHN:
22 MARY:
23 JOHN:

24 MARY:

24 MARY:

25 JOHN:

26 MARY:
27 JOHN:
28 MARY:

29 JOHN:

30 MARY:

[Pardon?
It's alright. I'm just

learning how to do it
at the moment.
Oh I see.] G
Now the rest Is straightforward for both of them.

[Right, so I put that
down there. Right?
ahm...
And press that do I?
Yes.] F
[Then it collects...

CLOSES LID LID CLOSED

PRESSES START MACHINE STARTS
ONE SIDED COPY

APPEARSBELOW
and goes back you see.] B

[Now now you turn it.] P
Having successfully completed
John hastily prepares to press
reverse side...
[What I press again?
No, no. Well... ha ha ha.] P
[I have to turn it over,
do I, first.

a photocopy of the first side,
the start button again for the

POINTS TO START

OPENS LID
TURNS SHEET

LID OPEN
SHEETTURNED

Right.
Ha Ha.] P

Mary wants to make sure that when John turns the sheet over
he puts it the right way round to avoid having the reverse side
copied upside down.
[So it might be you have
to turn it the other way
round but I'm not sure.
Oh. What you mean we
might get it the wrong
way up. Right.] POSITIONS PAPER

CLOSES LID
PAPER ON GLASS
LID CLOSED

[So I press it again.
Yes.] P

[... Right.] P
[So it comes out here.

Sorry.
It comes out where,
Sorry?] B

[It takes much longer.] B

PRESSES START MACHINE STARTS

DOUBLE-SIDEDCOPY
APPEARS AT TOP

MARY POINTS

229

Appendix 3.

Utterance in the photocopying conversation, categories assigned
by the experimenters, the number of subjects assigning each
utterance to each category, and the percentage agreement of

subjects with our categories.

230

Agent Utterance Cat Q P H B C:B,P O %Agrmt

JOHN: [Could you show me how to do the photocopying?
MARY: -] Q 17 1 0 0 0 0 94
MARY: [Double-sided?
JOHN: Er, Yer, I want to do,to do, double sided]

G 7 6 2 0 0 3 44
MARY: [I dont know, some o r...
JOHN: -] B 0 1 8 6 0 3 33
JOHN: [Sorry, what do you do here?
MARY: This one. But eh , eh... some turn the other way round.
You must have it.] C:P,B 0 8 0 2 5 3 64
JOHN: [So what do I do just put that one there? Like that
MARY: -] P 0 9 1 6 0 2 53
MARY: [Which way did you put it?
JOHN: It doesn't really matter which way you put it.]

CP.B 0 1 1 11 2 3 50
JOHN: [Does it ?
MARY: Yes it must be in

sequence.] B 0 6 0 8 0 4 56
MARY: [I suppose if you...
JOHN: Right well I'm only

doing one sheet] C:B,P 1 1 2 4 3 7 42
MARY: [Pardon?
JOHN: Ifs alright I'm just learning how to do it at the moment
MARY: Oh I see.] G 1 0 9 0 0 8 6
JOHN: [Right so I put that down there. Right?
MARY: ahm
JOHN: And press that do I?
MARY: Yes] P 0 10 1 5 1 1 58
MARY: [Then it collects down here and goes back you see.]

B 0 2 0 13 0 3 72
MARY: [Now you turn it] P 0 11 3 3 1 0 64
JOHN: [What I press again.
MARY: No. Ha ha ha.] P 0 5 1 4 4 4 44
JOHN: [I have to turn over again first Right.
MARY: Ha Ha] P 0 11 0 4 0 3 61
MARY: [So it might be you have to turn it the other way round, but I'm not sure.
JOHN: Oh you mean we might get it the wrong way up.

Right.] P 0 3 0 5 9 1 44
JOHN: [So I press it again.
MARY: Yes] P 0 10 1 3 4 0 67
JOHN: [Right.] P 0 1 10 2 0 5 6
MARY: [So it comes out here.
JOHN: Sorry, it comes out where,

Sorry.] B 0 2 0 12 1 3 69
MARY: [It takes much

longer.] B 0 1 5 7 1 4 42

Totals 26 89 44
Notes: Cat = cateaories aareed bv the authors: G.P.B.H. & C:B.P =

95 31 57
coding categories assigned by subjects as

the text; O = coding categories assigned by subjects other than the foregoing; %Agrmt = percentage agreement between
subjects' categorisations and the authors', with half points being given for a partially correct assignment, e.g. where we
assigned a single category and a subject assigned a compound containing this category.

231

Appendix 4.

An attached list of dialogue summaries
for the goal of agent John getting the door open. Each record

contains a list of input and output parameters of the
dialogue.

232

< MIX OF SKILLS— >......<.......... MIX OF SPEEDS— >
Knowledge Action Perception Total CP’s CP’s by John CP’s by Mary

SF FS SS FF SF FS SS FF SF FS SS •n Tl

KNW KNW PRA PRA PER PER 10 10 10 10 2*10* 6 6 8* 0 4 4

Skill level = 6 Av # of CPs 10 10 10 10 2 10 6 6 8 0 4 4

KNW UNK PRA PRA PER PER 11 10 11 11 5 10* 5 5 6* 0 6* 6*
KNW KNW PRAIMPRA PER PER 12 10$12 12 4*10* 4* 8 8* 0 8* 4
KNW KNW PRA PRA PERIMPER 19$15 14 14 6 9 8 8 13* 6 6 6
UNK KNW PRA PRA PER PER 10 11 10 10 2* 8* 6 6 8* 3* 4 4
KNW KNWIMPRA PRA PER PER 10 12$10 10 2*10* 6 6 8* 2* 4 4
KNW KNW PRA PRAIMPER PER 15 14 15 14 8 8 8 8 7 6 7 6

Skill level = 5 Av # of CPs 12 13 12 11 4 9 6 6 8 4 5 5

KNW UNK PRAIMPRA PER PER 11 10 11 11 5 10* 5 5 6* 0 6* 6*
KNW UNK PRA PRA PERIMPER 13 13 12 12 7 9 8 8 6* 4 4 4
KNW KNW PRAIMPRA PERIMPER 16 15 14 14 6 9 8 8 10* 6 6 6
UNK KNWIMPRA PRA PER PER 10 11 10 10 2* 8* 6 6 8* 3* 4 4
UNK KNW PRA PRAIMPER PER 13 12 13 12 6 6 6 6 7 6 7 6
KNW KNWIMPRA PRAIMPER PER 15 14 15 14 8 8 8 8 7 6 7 6
UNK KNW PRAIMPRA PER PER 12 13 12 12 4*10* 6 8 8* 3* 6 4
UNK KNW PRA PRA PERIMPER 19 21 20 20 6 9 8 8 13 12 12 12
KNW UNKIMPRA PRA PER PER 13 12 13 13 5*10* 7 9 8* 2* 6 4
KNW UNK PRA PRAIMPER PER 21 20 21 20 14 14 14 14 7 6 7 6
UNK UNK PRA PRA PER PER 0 19$ 0 0 0 18* 0 0 0 1* 0 0
KNW KNWIMPRA PRA PERIMPER 19$17 16 16 6 9 8 8 13* 8 8 8
KNW KNW PRAIMPRAIMPER PER 17 16 17 16 10 10 10 10 7 6 7 6
KNW KNWIMPRAIMPRA PER PER 0 0 0 0 0 0 0 0 0 0 0 0
KNW KNW PRA PRAIMPERIMPER 46 46 48 48 16*32*26 22 30*14*22 26

Skill level = 4 Av # of CPs 17 17 17 16 7 11 9 !9 10 5 7 7

Notes. Each line represents a group of 4 dialogues, one for each of four different speed
settings (SF,FS,SS,FF) e.g SF = John slow Mary fast). Each skill level or major subgroup
measures dialogues in which agents have similar skills (e.g. KNW UNK means John is
knowledgeable about the door and Mary is not). In general John always appears first.
Mark $ when # of CP’s > 10% deviation from the mean of the 4-group. Mark * when # of
CP’s > 25% deviation from the mean of the 4-group. Data sorted in descending order of
skill level (award 1 point for a positive skill, 0 otherwise e.g. KNW UNK PRA PRA PER
PER is 1+0+1+1+1+1 = group 5)

233

Knowledge Action Perception Total CP’s CP’s by John CP’s by Mary
SF FS SS FF SF FS SS FF SF FS SS FF

KNW UNK PRAIMPRA PERIMPER 13 13 12 12 7 9 8 8 6* 4 4 4
UNK KNWIMPRA PRAIMPER PER 13 12 13 12 6 6 6 6 7 6 7 6
UNK KNW PRAIMPRA PERIMPER 16 18 17 17 6 9 8 8 10 9 9 9
KNW UNKIMPRA PRA PERIMPER 15 15 14 14 7 9 8 8 8 6 6 6
KNW UNK PRAIMPRAIMPER PER 21 20 21 20 14 14 14 14 7 6 7 6
KNW UNKIMPRAIMPRA PER PER 0 0 0 0 0 0 0 0 0 0 0 0
KNW UNK PRA PRAIMPERIMPER 48 46 50 50 21 32 28 24 27 14*22 26
UNK UNK PRAIMPRA PER PER 23 19$21I 23 7*18* 9 13 16* 1*12 10
UNK UNK PRA PRA PERIMPER 10 24$25$25$ 0 17*12 12 0 7’ 13*13*
KNW KNW PRAIMPRAIMPERIMPER 48 46 50 50 18*32*26 22 30 14*24 28
KNW KNWIMPRAIMPRA PERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
UNK KNWIMPRA PRA PERIMPER 19 21 20 20 6 9 8 8 13 12 12 12
UNK KNW PRAIMPRAIMPER PER 15 14 15 14 8 8 8 8 7 6 7 6
UNK KNWIMPRAIMPRA PER PER 0 0 0 0 0 0 0 0 0 0 0 0
UNK KNW PRA PRAIMPERIMPER 46 48t 51 47 16*29 25 27 30*19 26 20
KNW UNKIMPRA PRAIMPER PER 18 17 18 17 11 11 11 11 7 6 7 6
UNK UNKIMPRA PRA PER PER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNK PRA PRAIMPER PER 0 27$ 0 0 0 21*' 0 0 0 6* 0 0
KNW KNWIMPRA PRAIMPERIMPER 46 48 52 50 16*32*26 22 30 16*26 28
KNW KNWIMPRAIMPRAIMPER PER 0 0 0 0 0 0 0 0 0 0 0 0

Skill level = 3 Av # of CPs :26 25 27 26 11 17 14 13 15 8 13 12

KNW UNK PRAIMPRAIMPERIMPER 48 46 50 50 21 32 28 24 27 14*22 26
KNW UNKIMPRAIMPRA PERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNK PRAIMPRA PERIMPER 31$24$27 27 11 17 14 1AI 20* 7*13 13
UNK KNWIMPRA PRAIMPERIMPER 46 48 51 47 16*29 25 27 30*19 26 20
UNK KNWIMPRAIMPRAIMPER PER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNKIMPRA PRAIMPER PER 0 0 0 0 0 0 0 0 0 0 0 0
UNK KNW PRAIMPRAIMPERIMPER 48 50 51 49 18*31 27 29 30*19 24 20
UNK KNWIMPRAIMPRA PERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
KNW UNKIMPRA PRAIMPERIMPER 50 48 54 52 21 32 28 26 29 16*26 26
KNW UNKIMPRAIMPRAIMPER PER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNKIMPRA PRA PERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNK PRAIMPRAIMPER PER 28 27 28 27 13 21 17 17 15* 6*11 10
UNK UNKIMPRAIMPRA PER PER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNK PRA PRAIMPERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
KNW KNWIMPRAIMPRAIMPERIMPER 0 0 0 0 0 0 0 0 0 0 0 0

Skill level = 2 Av # of CPs 41 40 43 42 16 27 23 22 25 13 20 19

KNW UNKIMPRAIMPRAIMPERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNK PRAIMPRAIMPERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNKIMPRAIMPRA PERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
UNK KNWIMPRAIMPRAIMPERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNKIMPRA PRAIMPERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNKIMPRAIMPRAIMPER PER 0 0 0 0 0 0 0 0 0 0 0 0

Skill level = 1 Av # of CPs 0 0 CI 0 0 0 0 0 0 0 0 0

UNK UNKIMPRAIMPRAIMPERIMPER 0 0 0 0 0 0 0 0 0 0 0 0

234

Appendix 5.
Program Listing of SUPERPOWER V.S.92e

28 In addition to SUPERPOW ER V.5.9 reported here, the following program listings
could easily be made available on request, with author’s permission, in machine readable
format, both on SUN POPLOG V13.13.6 running under UNIX and those marked with an
asterisk on a Macintosh Plus, running under Alphapop V.1.2, containing

(1*) Cohen and Perrault(1979) .
(2*) Power (1979,1974).
(3) Houghton (1987).
(4*) Modularised version of Houghton illustrating various processes working.
(5*) Power dialogue using Houghton’s language generator.
(6*) Power(1979,1974) -> SUPERPOWER version development, illustrating all the

developments discussed in chapter 5.
(7*) ELIZA
(8) SHRDLU
(9*) Gazdar and Mellish (1990)
(10*) The generic procedure NEOTELL illustrating all the developments discussed in

chapter 6. However, as of writing, a complete dialogue has not yet been tested.
(11*) Help files
For the time-being the attached program listing is available on a floppy disk together

with the POP11 demonstration software.

235

* * * run .p (1 o f 1)***

;;; The main compilation procedure.

mycom pile(popfolder<>,Power(V.5.9):VARIABLES.p');
mycom pi le(popfolder<>' Power(V. 5.9): M ACROS. p');
mycomplle(popfolder<>,Power(V.5.9):SYSTEM.pl);
mycom pile(popfolder<>' Power(V. 5.9) WORLD, p');
mycompile(popfolder<>,Power(V.5.9):CONCEPTS.p');
mycom pile(popfolder<>,Power(V.5.9):AUXFUNS.p');
mycom plle(popfolder<>,Power(V.5.9):EXEC.p');
mycomplle(popfolder<>'Power(V.5.9):PLAN.p');
mycom pile(popfolder<>'Power(V.5.9):KNOW1.p');
mycom plle(popfolder<>,Power(V.5.9):KNOW2.p');
mycom plletpopfoldero'Power^.S.g^WRITE.p');
mycom pile(popfoldero'Power(V.5.9): PLAY.p1) ;
mycom pile(popfoldero'Power(V.5.9) iPRINT.p1) ;
mycompile(popfolder<>'Power(V.5.9):DECIPHER.p');
mycom plle(popfolder<>,Power(V.5.9):ROL^^NE.ACHIEVE.p,);
mycom pile(popfolder<>'Power{V.5.9):ROLmNE.ASSESS.p,):
mycom pile(pop1blder<>'Power(V.5.9):ROU■^NE.BASIC.p,);
m ycom pile(popfoldero'Power(V. 5.9): ROUTIN E. FI NDOUT. p');
mycom plle(popfolder<>lPower(V.5.9):ROUTINE.PLAN.p');
mycompile(popfolder<>’Power(V.5.9):ROUTINES.p');
mycom pile(popfolder<>'Power(V. 5.9) :GAM ES.p');
mycom pile(popfolder<>'Power(V.5.9):GAM E. GAM E. p');
mycom pile(popfolder<>' Power(V. 5.9): GAM E. AS K. p1);
mycom plle(popfolder<>’Power(V.5.9):GAME.TELLp’);
mycompile(popfoldero'Power(V.5.9):GAME.RULE.p');
mycom pile(popfo!der<>,Power(V.5.9):GAME.GOAL.p');
mycom plle(popfolder<>,Power(V.5.9):GAME.PLAN.p');

236

*** VARIABLES.p (1 of 4) ***
;;;plan8
vars mpcurr,mpgoal,mptree,mpstate,mpactor,inpplan,mpcircular,mp8trategy;
vars jpcurr,|pgoal,]ptree,jp8tate,jpactor,jpplan,jpclrcular,jp8trategy;
vars zpcurr,zpgoal, zptree,zpstate, zpactor,zpplan,zpcircular, zpstrategy;
vars spcurr.spgoal.sptree.spstate.spactor.spplan.spcircular.spstrategy;
;;;mental plans
vara zpmgoai,jpmgoal,mpmgoal,spmgoal;
vars zpgoaltype, jpgoaltype, m pgoaltype.spgoaltype;
vars z_l_have_tried,j_i_have_tried,mj_have_tried,s_i_have_tried;
;;; Who is to start
vars zpstart;
;;; who we are,do,see and want
vars mkme.mkyou.mkacts.mksee.mkgoal;
vars Jkme.jkyou.jkacts.jksee.jkgoal;
vars zkm e,zkyou, zkacts,zksee,zkgoal;
vars skme.skyou.skacts.sksee.skgoal;
vars zginformation.sginformatlon.jginformation.mginformation;
vars ztoplcs.stoplcs.jtoplcs.mtoplcs;
;;; whats In the world and what we believe
vars mkworld.mkrules;
vars jkworld.Jkrules;
vars zkworld.zkrules;
vars skworld.skrules;

;;; what your partner does,sees,believes and wants,
vars mkxacts.mkxsee.mkxrules.mkxgoal;
vars jkxacts.jkxsee.jkxrulesjkxgoal;
vars zkxacts.zkxsee.zkxrules.zkxgoal;
vars skxacts.skxsee.skxrules.skxgoal;

;;; variables for working memory
vars mecontrol,m ebox, m eagain,m enext, m ejolnt, megam e1,m em ovel, m ehold,m eplace;
vars jecontrol,jebox,jeagain,jenext,jejoint,jegame1 .jemovel ,jehold,jeplace;
vars zecontrol,zebox,zeagain,zenext,zejolnt,zegame1 .zemovel ,zehold,zeplace;
vars secontrol,8ebox,seagEUn,8enext,8ejoint,8egame1 .semovel ,sehold,seplace;
;;; planning index
vars macount;
vars jacount;
vars zacount;
vars sacount;
;;; actions,objects,types of objects,relative positions,
;;; objects relative positions,world structure,control game structure,
;;; control routine structure, belief structure.
vars mcrshell,munexpected_event;
vars jcrshell,junexpected_event;
vars 8crshell,sunexpected_event,zunexpected_event;
vars zcacts,zctobjs,zcobjs,zctypes,zcprops,zctprops,
zcw8hell,jcwshell,mcw8hell,zcf8hell,zcgshell,zcrshell;

;;; utterance count, when to stop, print out games, print out what type
;;; of process is going on, more printouts.

vars count,stop,pro,ppro,prw1,jt,mt,8t,mspeed,jspeed,sspeed,Unexpected_events;

;;; an utterance, the state of the world,

vars wmessage.wobjects;

237

* ** VA RIAB LES.p (2 of 4) * **

;;; load Mary's dynamic variables into active memory,

define mawakeO;
mglnformatlon->zglnformatlon;mtopics->ztopics;munexpected_event->zunexpected_event;
m pgoaltype->zpgoaltype;
mpcurr->zpcurr;mpgoal->zpgoal;mptree->zptree;mpstate->zp8tate;mpactor->zpactor;
mpplan->zpplan;mpcircular->zpclrcular;mp8trategy->zp8trategy;macount->zacount;
mpmgoal->zpmgoal;m_i_have_trled->z_i_have_tried;
mkme->zkme;mkyou->zkyou;mkact3->zkacts;mksee->zksee;mkgoal->zkgoal;
m kworld->zkworld; m krules->zkrules;
mkxacts->zkxacts;mkx8ee->zkxsee;mkxrule8->zkxrule8;mkxgoal->zkxgoal;
mecontrol->zecontrol;mebox->zebox;meagain->zeagain;menext->zenext;
mejoint->zejoint;megame1->zegame1;memove1->zemove1;mehold->zehold;
meplace->zeplace;
mcr8hell->zcrshell;
enddefine;

;;; load John's dynamic variables into active memory,

define jawakeO;
jglnformation->zginformation;jtopics->ztoplcs;junexpected_event->zunexpected_event;
jpgoaltype->zpgoaltype;
)pcurr->zpcurr;jpgoal->zpgoal;jptree->zptree;jp8tate->zpstate;Jpactor->zpactor;
|pplan->zpplan;|pcircular->zpcircular;|p8trategy->zpstrategy;jacount->zacount;
Jpm goal->zpm goal;) _l_have_tried ->z_l_have_trled;
jkme->zkme;)kyou->zkyou;jkact8->zkacts;jksee->zksee;)kgoal->zkgoal;jkworld->zkworld;
|krules->zkrule8;
jkxacts->zkxacts;jkxsee->zkxsee;jkxrules->zkxrules;jkxgoal->zkxgoal;
jecontrol->zecontrol;|ebox->zebox;jeagain->zeagaln;jenext->zenext;
jejoint->zejoint;jegam e1 ->zegame1 ;jemove1 ->zemove1 ;jehold->zehold;
jeplace->zeplace;
jcr8hell->zcrshell;
enddefine;

;;; Swap John out.

define jasleepO;
zginformation->jginformation;ztopic8->jtopics;zunexpected_event->junexpected_event;
zpgoaltype->jpgoaltype;
zpcurr->jpcurr;zpgoal->jpgoal;zptree->jptree;zpstate->jpstate;zpactor->jpactor;
zpplan->jpplan;zpcircular->jpcircular;zpstrategy->jpstrategy;zacount->jacount;
zpmgoal->jpmgoal;z_l_have_tried->j_l_have_tried;
zkme->jkme;zkyou->jkyou;zkacts->jkacts;zksee->jksee;zkgoal->jkgoal;zkworld->jkworld;
zkrule8->jkrufes;
zkxact8->jkxacts;zkxsee->jkxsee;zkxrules->jkxrules;zkxgoal->jkxgoal;
zecontrol->jecontrol;zebox->jebox;zeagain->jeagain;zenext->jenext;
zejolnt->jejoint;zegame1 ->jegame1 ;zemove1 ->jemove1 ;zehold->jehold;
zeplace->jeplace;
zcrshell->jcrshell;
enddefine;

;;; Swap Mary out.

define masleepO;
zglnformation->mginformatlon;ztopics->mtopics;zunexpected_event->munexpected_event;zpgoaltype->mpgoaltype;
zpcurr->mpcurr;zpgoal->mpgoal;zptree->mptree;zpstate->mpstate;zpactor->mpactor;
zpplan->m pplan;zpcircular->mpcircular;zpstrategy->mpstrategy;zacount->macount;
zpmgoal->mpmgoal;z_i_have_tried->m _i_have_tried;
zkme->mkme;zkyou->mkyou;zkacts->mkacts;zksee->mksee;zkgoal->mkgoal;zkworld->mkworld;zkrules->mkrules;
zkxacts->mkxact8;zkxsee->mkxsee;zkxrules->mkxrules;zkxgoal->mkxgoal;
zecontrol->mecontrol;zebox->mebox;zeagain->meagain;zenext->menext;
zejoint->mejoint;zegame1->megame1;zemove1->memove1;zehold->mehold;
zeplace->m eplace;
zcrshell->mcrshell;enddefine;

238

* ** VA RIAB LES.p (3 o f 4) * **

;;; load Super Robots's dynamic variables Into active memory,

define sawakeO;
8glnformation->zginformatlon;stopics->ztoplcs;sunexpected_event->zunexpected_event;
spgoaltype->zpgoaltype;
8pcurr->zpcurr;spgoal->zpgoal;8ptree->zptree;sp8tate->zpstate;8pactor->zpactor;
8pplan->zpplan;8pclrcular->zpclrcular;8p8trategy->zp8trategy;sacount->zacount;
8pmgoal->zpmgoal;8_l_have_trled->z_l_have_tried;
8kme->zkme;8kyou->zkyou;8kacts->zkacts;sksee->zk8ee;skgoal->zkgoal;skworld->zkworld;
skrule8->zkrule8;
8kxact8->zkxact8;8kx8ee->zkxsee;8kxrule8'>zkxrule8;skxgoal->zkxgoal;
8econtrol->zecontrol;sebox->zebox;8eagain->zeagain;senext->zenext;
8ejolnt->zejolnt;8egame1 ->zegame1 ;semove1->zemove1 ;8ehold->zehold;
seplace->zeplace;
8cr8hell->zcr8hell;
enddefine;

;;; swap Super Robot out

define sasleepQ;
zginformation->8glnformation;ztopic8->8topic8;zunexpected_event->8unexpected_event;
zpgoaltype->spgoaltype;
zpcurr->8pcurr;zpgoal->8pgoal;zptree->sptree;zp8tate->8p8tate;zpactor->8pactor;
zpplan->8pplan;zpcircular->8pcircular;zp8trategy->sp8trategy;zacount->8acount;
zpm goal - >8pm goal; z_l_have_t ried - >8_l_have_tried;
zkme->8kme;zkyou->8kyou;zkacts->8kacts;zk8ee->8ksee;zkgoal->8kgoal;zkworld->8kworld;
zkrules->skrules;
zkxact8->skxacts;zkxsee->8kxsee;zkxrule8->skxrules;zkxgoal->8kxgoal;
zecontrol->secontrol;zebox->sebox;zeagain->seagain;zenext->senext;
zejoint->8ejoint;zegame1 ->segam e1 ;zemove1 ->8emove1 ;zehold->sehold;
zeplace->8eplace;
zcrshell->scrshell;
enddefine;

;;; odd functions that are still used before they are defined

vars zepo8t,zo8p,zobug,zoptead;
vars mmginformation,jjginformation,mmunexpected_event,jjunexpected_event;
vars m m pgoaltype,jjpgoaltype;
vars m m pcurr, m m pgoal, m m ptree, m m pstate, m m pactor, m m pplan, m m pcircular, m m pstrategy;
vars jjpcurr.jjpgoal.jjptree.jjpstate.jjpactor.jjpplan.jjpcircular.jjpstrategy;
;;;mental plans
vars jjpmgoal.mmpmgoal.mm_i_have_trled,Jj_i_have_tried;
vars m m km e, m m kyou.m m kacts, m m ksee, m m kgoal;
vars jjkme,JjkyouPjjkacts,jjksee,jjkgoal;
vars mmkworld.mmkrules;
vars jjkworld.jjkrules;
vars m mkxacts, m m kxsee, m m kxrules.m m kxgoal;
vars jjkxactsjjkxseejjkxrulesjjkxgoal;
vars mmecontrollmmebox,mmeagain,mmenext,mmejoint,mmegame1,mmemove1,mmehold,mmeplace;
vars jjecontrol,|jebox,jjeagaintjjenext,jjejoint,jjegame1 ,jjemove1 ,jjehold,j]eplace;
vars mmacount;
vars jjacount;
vars mmcrsheli;
vars jjcrshell;

239

*** VARIABLES.p (4 of 4) ***
define gsaveO;
jginformation->jjginformation;|unexpected_event->jjunexpected_event;
jpgoaltype->j)pgoaltype;
jpcurr->jjpcurr;jpgoal->jjpgoal;jptree->]Jptree;jpstate->JJp8tate;)pactor->jjpactor;
jpplan->jJpplan;Jpclrcular->jjpclrcular;jp8trategy->jJp8trategy;jacount->jjacount;
jpmgoal->jjpmgoal;j_l_have_tried->jj_i_have_tried;
jkme->jjkme;jkyou->Jjkyou;jkact8->jjkact8;Jk8ee->jjk8ee;jkgoal->JJkgoal;Jkworld->J|kworld;
jkrules->jjkrules;
jkxact8->|jkxact8;jkx8ee->jjkX8ee;jkxrule8->jjkxrule8;jkxgoal->|jkxgoal;
]econtrol->jjecontrol;jebox->jjebox;Jeagain->jjeagain;|enext->jjenext;
jejoint->)jeJoint;jegame1 ->j|egame1 ;)emove1 ->jjemove1 ;)ehold->jjehold;
jeplace->jjeplace;
jcrshell->JJcrshell;
mginformatfon->mmgfnformation;munexpected_event->mmunexpected_event;
mpgoaltype->m m pgoaitype;
m pcurr->m m pcurr;m pgoal->m m pgoal ;m ptree->m m ptree; m pstate->m m pstate;m pactor->m m pactor;
m pplan->m m pplan; m pcircular->m m pcircular;m pstrategy->m m pstrategy ;m acount->m m acount;
mpmgoal->mmpmgoal;m_i_have_tried->mm_i_have_trled;
mkme->mmkme;mkyou->mmkyou;mkact8->mmkact8;mksee->mmk8ee;mkgoal->mmkgoal;mkworld->mmkworld;
m krules->m m krules;
mkxact8->mmkxacts;mkxsee->mmkxsee;mkxrule8->mmkxrules;mkxgoal->mmkxgoal;
mecontrol->mmecontrol;mebox->mmebox;meagain->mmeagain;menext->mmenext;
mejoint->mmejoint;megame1 ->mmegame1 ;memove1 ->mmemove1 ;mehold->mmehold;
meplace->m m eplace;
mcrshell-xnmcrshell;
enddefine;
define gstartO;
)jginformation->jginformation;jjunexpected_event->)unexpected_event;
]]pgoaltype->jpgoaltype;
jjpcurr->)pcurr;))pgoal->jpgoal;])ptree->jptree;Jjpstate->jpstate;|jpactor->)pactor;
jjpplan->jpplan;jjpcircular->jpcircular;)jp8trategy->jp8trategy;)jacount->jacount;
jjpm goal-> jpm goal; Jj_i_have_tried->j_i_have_tried;
jjkme->jkme;jjkyou->jkyou;jjkact8->jkacts;jjksee->)ksee;]jkgoal->jkgoal;J)kworld->jkworld;
jjkrule8->jkrules;
jjkxacts->jkxact8;jjkx8ee->jkX8ee;jjkxrule8->jkxrule8;jjkxgoal->jkxgoal;
jjecontrol->jecontrol;jjebox->jebox;jjeagain->jeagain;jjenext->jenext;
jje)olnt->je|oint;)jegame1 ->jegame1 ;jjemove1->jemove1 ;|jehold->jehold;
jjeplace->)eplace;
jjcrsh©tl->)crshell;
mmginformation->mginformation;mmunexpectd'd_event->munexpected_event;
m m pgoaltype->m pgoaitype;
mmpcurr->mpcurr;mmpgoal->mpgoal;mmptree->mptree;mmpstate->m pstate;mmpactor->m pactor;
m m pplan->m pplan;m m pcircular->m pcircular;m m pstrategy->m pstrategy ;m m acount->macount;
mmpmgoal->mpmgoal;mm_i_have_tried->m_i_have_trled;
mmkme->mkme;mmkyou->mkyou;mmkact8->mkacts;mmksee->mk8ee;mmkgoal->mkgoal;mmkworld->mkworld;
m m krules->m krules;
mmkxact8->mkxacts;mmkxsee->mkxsee;mmkxrule8*>mkxrules;mmkxgoal->mkxgoal;
mmecontrol->mecontrol;mmebox->mebox;mmeagain->meagain;mmenext->menext;
mmejoint->mejoint;mmegame1 ->megame1 ;mmemove1 ->memove1 ;mmehold->mehold;
m m eplace->m eplace;
mmcrshell->mcrshell;
enddefine;

240

* * * te s ts .p (1 o f 1)** *

;;; How to execute SUPERPOWER along the lines described in chapter 5.

npr('Cla8sical/Experimental/lnstrumental/Unexpected 1');
define resetl;
John, John->Jkm e->m kyou;
Mary,Mary->mkme->jkyou;
[John in]->jkgoal; [none]->mkgoal;
[John out Mary in bolt up door shut]->wobjects;
nil->wmessage;
[move]->jkacts;[push slide move]->mkacts;
[[evtfrobot slide]8it[any]res[undef]]
[evt[robot push]sit[bolt up]res[door]]
[evt[robot move]slt[door open]res[robot]]]->jcrshell;
[[evt[robot sllde]8lt[any]res[undef]]
[evtfrobot push]sft[any]res[undef]]
[evt[robot move]sit[any]res[undef]]]->mcrshell;
[John]->)ksee;
[Mary]->mksee;
1 ->count;500->8top;false->prw1 ;false->pro;

false->ppro;
0->mt;
0->jt;
;;; Q->oldp;
[]->mptree;
[81 [robot slide]]->Unexpected_events;
[J->jptree;
1->macount;
1->jacount;
1->m8peed;
3->)speed;
if ppro=true then [1 2 3 4 5 6 7 8 9 10 11 12 13]->ppro;else 0->ppro;endif;
if mtcmspeed and jt<jspeed then nl(1);pr('parallel processing set1);
nl(1);pr(‘Johns speed = ');pr(jspeed);pr(' Marys speed = ^prfmspeed);
else nl(1);pr('parailel processing not sef);endif;
enddefine;
run1();

241

* * * m acros.p (1 o f 1)** *

;;; (see Power 1974 p260)

define macro constants;
vars x;
c1:
itemread()->x;
if x/=";" then

"vars", x,
hd({"]), x, hd(["]), x,
goto c1;

endlf;
enddefine;

define macro game;
vars name,x,g,l;
itemreadO->name;
nll,nll->g->l;
erase(itemreadO);
g1:
itemread()->x;
if x="b" then "black"->x endif; if x="w" then "white"->x endif;
If x/="end"
then if x/=";"

then if x/="."
then lo[% x%]->l
endif;
goto g1;

else g<>[%hd(l),tl(l)%]->g;nil->l; goto g1;
endif

else "vars",name,";"Ig,“->"Iname;
endif;
enddefine;

define macro routineO;
"game";
enddefine;

242

* ** S Y S TE M , p (1 of 3)***

;;; See (Power 1974 p261)

constants John Mary Dick both door bolt In out open shut
up down name kind colour place entries mark white
black achieved failed notyet push slide move sit res
evt expectreply goaltype actor;

;;; memb is true if x is member of I and false if not;
;;; e.g 1. if memb("a"t[a b c]) then npr([true]) else npr([false]) endif;
;;; e.g 2. memb("d",[a b c])=>;

define memb(x,l);
while (ispair(l) and hd(l)/=x) do; tl(l)->l; endwhlle;
ispair(l);

enddefine;

;;; runs a piece of program in list I
;;; popval is the same as eval now

vars eval; popval->eval;

;;; returns item succeeding x In I. only works for odd words.
;;; e.g. npr(suc([a b c d e f g h],"e"));

define suc(l,x);
while (ispair(l) and hd(l)/=x) do; tl(ti(l))->l; endwhlle;
if null(l) then undef else hd(tl(l)); endif;
enddefine;

;;; returns item one succeeding of x In I. Only works
for triplets.

define suc2(l,x);
while (ispair(l) and hd(l)/=x) do; tl(tl(tl(l)))->l; endwhlle;
if null(l) then undef else hd(tl(l)); endif;
enddefine;

;;; returns item succeeding the succedant of x in I. Only works
;;; for triplets.

define suc3(l.x);
while (i8pair(l) and hd(l)/=x) do; tl(tl(tl(l)))->l; endwhile;
if null (I) then undef else hd(tl(tl(l»); endif;
enddefine;

;;; returns item preceding n in I. works for odd words (change tl(tl
;;; to tl for odd and even words.
;;; e.g. npr(pre([a b c d e f g h],"e"));

define pre(l,n);
while ispair(i) and hd(tl(l))/=n do; tl(tl(l))->l; endwhile;
if null(l) then undef else hd(l); endif;
enddefine;

;;; deletes n and its successor from I
;;; e.g. 1. npr(det([[a b] [c d] [e fj [g h] [i j]],[c d]));
;;; e.g. 2. npr(del([a b c d e f g h],"c"));

define del(l.n);
if not(memb(n,l)) then return(l);endif;
while hd(l)/=n do; tl(tl(l)) <> [%hd(l),hd(tl(l))%]->l;endwhile;
tl(tl(l));
enddefine;

243

*** S Y S TE M .p (2 of 3)***

;;; deletes n and its two successors from I

define del2(l,n);
if not(memb(n,l)) then return(l);endif;
while hd(l)/=n do; tl(tl(tl(l))) <> [%hd(l),hd(tl(l)),hd(tl(tl(l)))%]->l;endwhile;

tl(tl(tl(l)));
enddefine;

replaces successor of n with x in I
e.g. npr(rep([[a b] [c d] [e f] [g hj [i j]],[e f],[nnnnn]));

define rep(l,n,x);
[%n,x%]<>del(l,n);
enddefine;

;;; replaces successor of n with x,y in I

define rep2(l,n,x,y);
[%n,x,y%]<>del2(l,n);
enddefine;

substitutes x after n in list named w
e.g. [[a bj [c d] [e f) [g hJJ->g;
8ub("g“,[e f], [wow wof]);

g=>;

define sub(w,n,x);
rep(valof (w), n, x) ->valof (w);
enddefine;

;;; substitutes x,y after n in list named w

define sub2(w,n,x,y);
rep2(valof (w), n, x,y) ->valof (w);
enddefine;

;;; exchanges x2 for x1 at all levels of list I
;;; e.g. xch([a b [c b] dj,"b","z");=>;

define xch (I,x1,x2) -> II;
nil->ll;rev(l)->l;

while ispair(l) do;
if islist(hd(l)) then xch(hd(l),x1,x2);
elself hd(l)=x1 then x2 else hd(l)
endif; ::ll->ll;tl(l)->l; endwhile;
enddefine;

;;; print routines

define prs(x); spr(x); enddefine;

define prl(x);
while ispair(x) do;pr(hd(x)) ;tl(x)->x; endwhile;
enddefine;

244

*** S Y S TE M .p (3 of 3)***

define pra(l);

while Ispairfl) do; sp(2); pr(hd(l));sp(1) ;pr(hd(tl(l)));tl(tl(l))->l;
endwhlle;enddeflne;

define prb (I);
vars x y;
valof (sue (I, nam e))->x;
8uc(l,entrles)->l;
rev(l)->l;
pr8('entrles');

while ispairfl) do
If i8pair(hd(l)) then

nl(1);sp(1);pr(hd(tl(l)));prs('. ');
8uc(x,hd(tl(x)))->y;
if lspalr(y) then

ti(y)->y;
if memb(hd(y),[white black])
then hd<tl(y» else hd(y);
endif;

else 1 - 1
endif; .pr;
sp(2); pr(hd(l));

endif;
tl(tl(l))->l;

endwhlle; nl(1);
enddefine;

define prg (I);
nl(1);prs('game ’);pr(suc(l,name));
nl(1);prs('current place:');pr(suc(l,place));
nl(1);prs('my colour: ');pr(suc(l,colour));
nl(1);prb(l);
enddefine;

define prf (I);
vars x;
nl(1);prs('routine ,);pr(suc(l,name));
nl(1);prs('current place:');pr(suc(l,place));
nl(1);prs('marked place: ');
if null(zeplace) then sp(1);"none"
elseif
hd(zeplace)=suc(l,name) then hd(tl(zeplace)) else sp(1);Hnone";endif;
pr();nl(1);prb(l);
enddefine;

define prc(l);
if suc(l,kind)="game" then prg(l) else prf(l) endif;
enddefine;

define prw;
true->prw1 ;prs('(State of the world is now ');pr(wobjects);prs(')');
if pro then nl(1) endlf;nl(1);
enddefine;

245

* ** W O R L D .p (1 of 1)***

***** Objects in the world ********
see (Power 1974 p264)

;;; The functions wmove.wpush and wslide defined below
;;; represent the actual laws of the universe: that is the
;;; the three kinds of actions and their consequences

define wpos x;
8Uc(wob]ects,x);
enddefine;

define wsub n x;
sub("wobjects", n,x);
enddefine;

define wmove (robot);
if wpo8(door)=open
then if wpos(robot)=ln or wpos(robot)="in"

then wsub(robot,out)
else w8ub(robot,"in")
endif;

endif;
enddefine;

define wpush (robot);
if wpos (bolt) =up
then if wpos (door) =open

then wsub(door.shut)
else wsub(door,open)
endif;

endif;
enddefine;

define wslide (robot);
if wpos(robot)=ln or wpos(robot)="in" or wpos (robot)=undef
then if wpos(bolt)=up

then wsub(bolt,down)
else wsub (bolt, up)
endif;

endif;
enddefine;

246

CONCEPTS.p (1 of 1)***

... m h [concepts] (Power 1974 p 265)

[move slide push] ->zcacts;
[John Mary door bolt] ->zcobjs;
[slide [bolt] move [robot] push [door]] ->zctobjs;
[robot door bolt] ->zctypes;
[In out up down open shut] ->zcprops;
[robot[ln out] door[open shut] bolt[up down]] ->zctprops;
[John undef undef Mary undef undef bolt undef undef door undef undef]
->zcwshell;
[kind routine name undef place undef entries undef] ->zcfshell;
[kind game name undef place undef entries undef colour undef}->zcgshell;

define zctypof x;
If Xsundef then return(x) endif;
if memb(x,zctypes) then x else "robot" endif;
enddefine;

define zcobject x;
if islist(x) and length(x)>1 then return(false) endif;
if i8palr(x) then hd(x)->x;endlf;
memb(x,[nothing]<>[robot]ozcobj8);
enddefine;

define zcpropof(p.x);
memb(p,suc(zctprops,x));
enddefine;

define zcevent(x);
if i8ll8t(x) and length(x)>1 and memb(hd(tl(x)),zcacts)
then true else false endif;
enddefine;

define zctgame;
vars l,c;
zecontrol->l;0->c;
if suc(hd(l),kind)="routine" and zehold/=Q then return(0);endif;
while ispair(l) do
if 8uc(hd(l),name)="zras8es8" or suc(hd(l),name)="zrachieve"
then return(c);endif;
If 8uc(hd(l),kind)="game" and suc(hd(l),expectreply)=true then
0->i;1+c->c;endif;
if c=0 and suc(hd(l),kind)="game" and suc(hd(l),expectreply)=false then
return(c);endif;tl(l)->l;

endwhile;c
enddefine;

define zcgame(x);
memb(x,[zgplan zgtest zgexperlment zggoal zggame zgrule zgassess zgtell zgcheck zgask]);
enddefine;

247

* * * K N O W I.p (1 o f 3)* * *

;;; The first batch of functions are used to initialise the
;;; above variables;

;;; This function takes a fresh look at what one can see

define zklook;
vars v;
zksee->v;
while Ispair(v) do sub("zkworld“,hd(v),wpos(hd(v)));tl(v)->v;endwhile;
enddefine;

;;; This function demotes the status of what you can see to undefined
;;; if you have either estimated or being told about the position of
;;; an object

define demote;
vars v n s;
zkworld->v;
while ispair(v) do
if hd(tl(tl(v)))/*"seen" then

if hd(tl(tl(v)))="told" or hd(tl(tl(v)))="lnferred" then
sub2("zkworld\hd(v)thd(tl(v)), "estimated");

endif;
;;; if hd(tl(tl(v)))=“estlmated" then
;;; sub2("zkworld", hd (v), hd (tl (v)), "undef);
;;; endif;
endif;
tl(tl(tl(v)))->v;
endwhile;
enddefine;

;;; The new version of zklook that checks that preconditions are true
;;; before one can see an object.

define zklook;
vars v;
zksee->v;
demoteO;
while ispair(v) do
if ispair(tl(v)) and islist(hd(tl(v))) then

if wpos(hd(hd(tl(v))))=hd(tl(hd(tl(v)))) then
sub2(,,zkworldH,hd(v),wpo8(hd(v)),,’seen"); ;;; precondition true
else
sub2("zkworld",hd(v)1undef1"seen"); ;;; precondition untrue
endif;
tl(v)->v;

else
8ub2("zkworld,,Ihd(v),wpos(hd(v)),,,seen"); ;;; no precondition at all

endif;
tl(v)->v;
endwhile;
enddefine;

;;; This function prepares the k variables at start of run

define zkprep;
zcwshell->zkworld ;zklook 0;
zcrshell->zkrules;[]->zehold;Q->ztopics;
[John undef Mary undef bolt undef door undef]->zkxsee;
false->z_i_have_tried;[]->zginformation;
nil->zkxgoal;
if zpstart/="Super" then nil->zkxacts;
nil->zkxrules;endif;
enddefine;

248

* * * K N O W I.p (2 o f 3)** *

The next functions are concerned with finding out whether goals]
are done or or whether they can be done; sometimes a function sets up
game zgask in order to get the answer.

;;; This function finds the truth value of statement s in world w

define zktval(s,w);
vars p;
unless ispair(s) then return (undef); endunless; ;;; defend against bad arg. swd
If 8uc3(w,hd(8))="8een" or suc3(w,hd(s))="told" or suc3(w,hd(s))="lnferred"

then
8uc2(w,hd(8))->p; else undef->p;

endif;
if p=undef then undef else p=hd(tl(s)) endif;
enddefine;

This function finds out whether 8 is true or is the case
in own resources.

define zkls1(s);
zktval(s,zkworld);
enddefine;

;;; Finds out if goal g can be done using own resources
;;; should return true or false, but sue does not

define zkcan1(g);
if zcevent(g)

then
if hd(g)=zkme
then memb(hd(tl(g)),zkacts)
else suc(zkxacts,hd(tl(g)))
endif;

else if suc(zpstate,pre(zpgoal,g))=[failed] then false else true
endif;

endif;
enddefine;

;;; Finds out if s is the case, asking if necessary unless it is
;;; known that partner also doesn't know.

define zkis(s);
vars a;
zkisl (s)->a;
if a/=undef then return(a) endif;
[% (zpcurr+1): :s%] ozpm goal->zpm goal;
s->zemove1;
zeloadf'zrfindout"); [asked];
enddefine;

;;; Finds out If goal g can be done, asking if necessary

define zkcan(g);
vars a;
zkcan1(g)->a;
if a/=undef then a else
[%(zpcurr+1)::g%]ozpmgoal->zpmgoal;
zeplay("zgask",[can]og); [asked] endif;
enddefine;

249

* * * K N O W I.p (3 of 3)** *

Finds out and enters state of goal g, asking any necessary questions

define zkstate(g);
vars a;
zkis(g)->a;
if a=[asked] then return
elself a=undef then zaenter([falled]); return
elseif a=1 or a=true then zaenter([achieved]); return;
endif;
zkcan(g)->a;
If a=[asked] then return;
elseif a=0 or a=false then zaenter([failed])
else zaenter([notyet])
endif;
enddefine;

;;; Checks to see whether something has already been asked,
;;; or just been told.

define zkinfoasked(i);
vare z t a;
zglnformatlon->z;
while lspair(z) do

hd(z)->t;
if hd(t)="zgask" or hd(t)=Mzgtell" then

hd(tl(tl(t)))->a;hd(tl(t))->t;
if tl(t)=Q or tl(l)=[] then
if t=i then return ([asked]) endif;

else
if tl(tl(t))=i or (tl(tl(t))=zkopp(i) and a=[no]) or

(tl(t)=zkopp(i) and a=[no]) or tl(t)=i or t=i
then return([a8ked]);

endif;
endif;

elseif hd(t)="zgrule" then
hd(tl(t))->t;
if t=i then
return ([asked]);

endif;
endif;

tl(z)->z;
endwhile;
return([notasked]);
enddefine;

250

* ** K N O W 2.p (1 o f 5) * **

The third batch of functions is for accessing and
updating the theory of how the world works, and the model
of the other robots theory, these theories are held in zkrules
and zkxrules respectively.(Power 1974 p269)

;;; Given list of rules I and event e, returns relevant rule, or undef
;;; if there is none.

define zkrulel(l.e);
while i8pair(l) and suc(hd(l),evt)/=([robot]<>tl(e)) do tl(l)->l; endwhile;
If null(l) then undef else hd(l) endif;
enddefine;

;;; Given rule r and event e, makes rule specific to e

define zkspec(r.e);
xch (r," robot", hd(e));
enddefine;

;;; Finds own rule for event e

define zkrule(e);
zkrule1(zkrule8,e);
enddefine;

;;; Finds own specific rule for event e

define zksrule(e);
zkspec(zkrule(e),e);
enddefine;

;;; Finds partners rule for e, or undef if not known.

define zkxrule(e);
zkrulel (zkxrules, e);
enddefine;

;;; Finds partners specific rule for e, if known, and undef if not.

define zkxsrule(e)->r;
zkxrule(e)->r;
if r/=undef then zkspec(r,e)->r endif;
enddefine;

;;; Deletes rule for event e from list I (Power 1974 p270)

define zkdel(l,e)->ll;
nil->ll;
while ispair(l)
do if suc(hd(l),evt)/=([robot]otl(e))
then llo[%hd(l)%]->ll
endif;
tl(l)->l; endwhile;
enddefine;

251

* * * K N 0 W 2 .p (2 o f 5)** *

;;; Gives inverse form of rule.

define zkinvert(r);
vars e,s,c;
suc(r,evt)->e; suc(r,sit)->s; suc(r,res)->c;
if 8=[any] then return (r) endif;
if c=[nothlng] then suc([move robot slide bolt push door],hd(tl(e))) :: nil
else [nothing]
endif;->c;
8Uc(zctprops,hd(s))->r;
If hd(tl(s))*hd(r) then hd(t((r)) else hd(r) endif; ->r;
[%evt,e,8it,[%hd(8),r%],re8>c%];
enddefine;

;;; Puts new rule r In list named n.

define zkadd1(n,r);
if 8uc(r,sit)/=[any] and suc(r,res)=[nothing]
then zklnvert(r)->r endif;
r::(zkdel(valof(n),8uc(r,evt)))->valof(n);
enddefine;

;;; Puts rule r in robots theory,

define zkadd(r);
pr(zkme);pr(' adding rule in (zkrules) : ');npr(r);
zkadd 1 ("zkrules", r);
enddefine;

;;; Puts rule r in model of partners theory.(Power 1974 p271)

define zkxadd(r);
pr(zkme);pr(' adding rule in (zkxrules) : ');npr(r);
zkadd 1 ("zkxrules", r);
enddefine;

;;; Predicted result of event in world w by specific rule r.

define zkpredl(w.r);
vars t,s;
suc(r,sit)->s;
if s=[any] then return(suc(r,res)) endif;
zktval(s,w)->t;
if t=undef then [undef]<>8
elseif t or t=1 then suc(r,res) else [nothing]
endif;
enddefine;

;;; Result of event e in world w as predicted by own rules.

define zkpred(e,w);
zkpredl (w.zksrule(e));
enddefine;

;;; Result of event e in world w as predicted by partners rules if
;;; known: undef if not. really, of course, the result is that
;;; predicted by model of partners theory.

define zkxpred(e,w);
vars r;zkxsrule(e)->r;
if r=undef then undef else zkpredl (w,r) endif;
enddefine;

252

* * * K N O W 2 .p (3 o f 5)** *

;;; Returns false If all actions in rules produce no result and true otherwise
;;; (Power 1974 p27l)

define zkflufd;
vars r; zkrules->r;
while l8pair(r) and suc(hd(r),res)=[nothing] do tl(r)->r endwhile;
Ispair(r);
enddefine;

;;; Finds opposite of situation s.

define zkopp(s);
vars p;
if zcevent(8) or zcobject(s) then return(s);endif;
suc(zctprop8,zctypof(hd(8)))->p;
if hd(tl(s))=hd(p) then hd(tl(p)) else hd(p) endlf;::(%hd(s)%];revO;
enddefine;

;;; Finds rule to achieve specified result c, returning undef
;;; if none exists (p272). zkinvert added by CGB 'cos you
;;; won't find a rule if the Inverse res is nothing.

define zkres (c);
vars t;
zkrule8->t;
while ispair(t) and suc(hd(t),res)/=c and suc(zkinvert(hd(t)),res)/=c then tl(t)->t endwhile;
if null(t) then undef else
If suc(hd(t),res)=[nothlng] then zkinvert(hd(t)) else hd(t) endif; endif;
enddefine;

;;; Finds rule in which the situation is true

define zksit (c);
vars t;
zkrules->t;
while ispair(t) and suc(hd(t),sit)/=c then tl(t)->t endwhile;
If null(t) then undef else hd(t) endif;
enddefine;

;;; Rnds rule In which the event is true

define zkevt (c);
vars t;
zkrules->t;
while Ispair(t) and suc(hd(t),evt)/=c then tl(t)->t endwhile;
if null(t) then undef else hd(t) endif;
enddefine;

253

* * * K N O W 2 .p (4 o f 5)* * *

;;; Changes theory to fit experience, e is the event which has just
;;; occurred and c is its consequence (or res), ee, cc. ss are the
;;; evt, res and sit of the old rule rr. the function alters rr and
;;; puts the new rule in zkrules.

define zkponder(e.c);
vars ee,cc,88,rr,l,x;
zkrule(e)->rr;
if c/=[nothing] then

l%zctypof(hd(c))%J->c; ;;; converts Mary to robot in new rule
endif;
8uc(rr,evt)->ee;suc(rr,sit)->8s;suc(rr,res)->cc;
if cc=[undef] then zkadd(rep(rr,res,c));retum(1) endif;
If cc/=c and c/=[nothing] and cc/=[nothlng]

then rep(rr,res,[%zctypof(hd(c))%])->rr;
zkadd(rep(rr,sit, [any]));
return (1);
endif;

c->cc;rep(rr,res,cc)->rr;
zctypes->l;
while hd(l)=hd(cc) or hd(l)=hd(ss) do tl(l)->l endwhile;
if hd(l)="robot" then hd(e) else hd(l) endlf;->e;
if 8uc2(zkworld,e)sundef then zeplay("zgask",zamakeq(e)); return ([asked]);
endif;
[%hd(l),8uc2(zkworld,e)%]->8s;
zkadd (rep (rr, s It, ss));
1;
enddefine;

Judges whether plan p will achieve goal g.(Power 1974 p273)

define zkjudge(p.g);
vars e.s.w.k;
if not(.zkfluid) then return(undef) endif;
zpevt(p)->e;zpsit(p)->s;
zkworld->w;
if 8/=undef then rep2(w,hd(s),hd(tl(s)),"told")->w endif;
zkpred(e,w)->s;
if hd(s)=undef and tl(s)/=[]
and 8uc(zpgoaltype,zpnextgl0)/="test"

then if zkinfoasked(tl(s))/=[asked] then zkis(tl(s));endif;
;;;zeplay("zgask",[is]<>tl(s));[asked]
else hd(s)=hd(g)
endif;
if suc(zpgoaltype,zpnextgt())="test" then
suc(zkevt(zctypof(hd(zpevt(p)))::tl(hd(tl(p)))),res)->k;
if k=[nothing] or k=[undef] then else
if k=[robot] then [%hd(p)%]->k;endif;
if zkinfoasked(tl(zamakeq(hd(k))))/=[asked] then tl(zamakeq(hd(k))).zkis;endif;endif;
endif;
enddefine;

254

* * * K N 0 W 2 .p (5 of 5) * **

;;; A refinement on zktval to decide whether situation s is true in world w

define zkdiff(s,w);
if 8=[any] then return (true) ;endif;

;;; This one doesn't give strict truth but at least one of the robots
;;; fit the bill.

If hd(s)s"robot" then zkme::tl(s)->s;if zktval (s,w)=true then return (true) ;endif;
zkyou::tl(s)->s;retum(zktval(s,w));endlf;
zktval (s,w);
enddefine;

define zkbetter(rule1,rule2);
vars 8l,r1,82,r2,p1,p2;
if rule1=undef then return(false) elseif ruie2=undef then return(true) endif;
if suc(rule1,res)=[undef] then return(false) elseif
8uc(rule2,re8)=[undef] then return(true) endif;
if zaequal(rule1 ,rule2) then return(undef) endif;
If 8UC(rule1,res)=[nothing] then zkfnvert(rute1)->rule1;endif;
If suc(rule2,re8)=[nothing] then zkinvert(ruie2)->rule2;endif;
suc(rule1,re8)->r1;8uc(rule2,res)->r2;suc(rule1,sit)->8l;suc(rule2,sit)->s2;
if zkdiff(8l,zkworld) then
if r1=[nothing] then

if s1 =[any] then
4->p1;el8e 2->p1;
endif;

else
if 81 =(any] then
3->p1 else 2->p1;
endif;

endif;
else
1 ->p1;
endif;
if zkdiff(82,zkworld) then

if r2=[nothing] then
if s2=[any] then
4->p2;el8e 2->p2;
endif;

else
if s2=[any] then
3->p2 else 2->p2;
endif;

endif;
else
1 ->p2;
endif;
pr(p1);pr(' rule 1 :');npr(rule1);
pr(p2);pr(‘ rule 2 :');npr(rule2);
if p1=p2 then undef else p1<p2 endif;
enddefine;

255

* * * P LA N .p (1 of 4) * **

(Power 1974 274-275) These are general routines for tidying up a joint plan tree,
and are largely called at the end of routine achieve.

;;; Read plan tree from the last goal back to the first goal.

define zpreadtreeO;
vars c;
zpnextg!0->c;
while c/=0 do
pr(c);pr(' ');npr(suc(zpgoal,c));
zpprevious(c)->c;
endwhile;
enddefine;

;;; Returns index number of next goal to attempt.

define zpnextgl->n1;
vars n2;[0]->n2;
while n2/=undef do hd(n2)->n1; suc(zptree,n1)->n2 endwhile;
enddefine;

;;; Returns parent of node n in zptree.

define zpparent (n);
vars t; zptree->t;
while i8pair(t) and not(memb(n,hd(tl(t)))) do tl(tl(t))->t endwhile;
if null(t) then undef else hd(t) endif;
enddefine;

;;; Returns index number of previous goal.

define zpprevious (n);
vars t;zptree->t;
while Ispair(t) and not(memb(n,hd(tl(t)))) do tl(tl(t»->t endwhile;
if null(t) then undef else if ispair(tl(hd(tl(t»)> and not(memb(n,tl(hd(tl(t)))))
then
hd (tl (hd (tl (t)))) else hd(t) endif;endif;
enddefine;

;;; Returns a list of plans and goals after p.In order of seniority. i.e. the
;;; plan at the back of the list is the one highest up the tree and the goal
;;; nearest to the main goal.

define zplist(p);
vars 11;
zptree->t;8uc(zpgoaltype,p)::nil->l;suc(zpgoal,p)::l->l;
while hd(hd(tl(t)))/=p
do
8uc(zpgoaltype,hd(hd(tl(t))))::l->l;
suc(zpgoal,hd(hd(tl(t))))::l->l;
if ispair(tl(hd(tl(t)))> then
if hd(tl(hd(tl(t))))/=p then
suc(zpgoaltype,hd(tl(hd(tl(t)))))::l->l;
suc(zpgoal,hd(tl(hd(tl(t»)))::l->l;
else
return (I);
endif;
endif;
tl(tl(t))->t;
endwhlle;
return(l);
enddefine;

256

* * * PLA N .p (2 of 4) * * *

;;; Takes a list of Conversational games c and a plan tree t and finds
;;; the first occurrence in the plan tree.

define zpworkthrupublic(t,c);
vars h I 8 z gt;t->s;10000->h;10000->i;
while ispalr(c) do
hd(tl(tl(tl(hd(c)))))->gt;
if hd(hd(c))s"zga8k" and hd(hd(tl(hd(c))))/="can" then
if hd(tl(tl(hd(c))))=[no] then
tl(hd(tl(hd(c)))).zkopp->z;
zpsearch(s,z,gt)->h;endif;
if hd(tl(tl(hd(c))))a[yes] then
tl(hd(tl(hd(c))))->z;
zpsearch (s, z, gt) - >h; endif;
endif;
if hd(hd(c))="zgteM" then
if ((hd(hd(tl(hd(c))))=false or hd(hd(ti(hd(c))))=0) and
(hd(tl(tl(hd(c))))>[yes] or hd(tl(tl(hd(c))))=[undef])) or ((hd(hd(tl(hd(c))))-true or hd(hd(tl(hd(c))))=1) and
hd(tl(tl(hd(c))))*[no])
then
tl(tl(hd(tl(hd(c))))).zkopp->z;
zpsearch (s ,z, gt) - >h; end if;
If ((hd(hd(tl(hd(c))))=true or hd(hd(tl(hd(c))))=1) and
(hd(tl(tl(hd(c))))=[yes] or hd(tl(tl(hd(c))))=[undef]))

or ((hd(hd(tl(hd(c))))cfalse or hd(hd(tl(hd(c))))=0) and hd(tl(tl(hd(c))))=[no])
then
tl(tl(hd(tl(hd(c)))))->z;
zpsearch (s, z, gt) - >h ;endif;
if zcevent(hd(tl(hd(c)))) then
hd(tl(hd(c)))->z;
zp8earch(s,z,gt)->h;endff;
endif;
npr(z);
if h<i then h else I endif;->i;
tl(c)->c;
endwhlle;
return(i);
enddefine;

;;; This function works through zkworld ones private view of the world
;;; and zpgoal the plan tree and decides the earliest plan that has
;;; succeeded.

define zpworkthruprivate(t,c);
vars h i 8 z;t->s;10000->h;10000->i;
while ispair(c) do
r(h d (c)) A(hd(tl(c)))J->z;
if memb(hd(tl(tl(c))),[seen told inferred estimated]) then

zpsearch (s, z, [any]) ->h;
else

10000->h;
endif;
if h<i then h else i endif;->i;
tl(tl(tl(c)))->c;
endwhlle;
return(i);
enddefine;

257

* * * P LA N .p (3 of 4) * **

;;; Searches through plan tree to find first occurence of goal g.

define zpsearch(t,g,gt);
vars c q;t->q;10000->c;
while i8pair(q) do
if g«hd(tl(q)) or
(suc(zpgoaltype,hd(q))s"test" and lsllst(hd(tl(q))) and g*hd(tl(q)).zkopp)

then if zcevent(g) then
If 8uc(zpgoaltype,hd(q))=hd(gt) or gt=[any] then
if c>hd(q) then hd(q)->c;endif;
endif;

else
if c>hd(q) then hd(q)->c;endif;

endif;
endif;
tl(tl(q))->q;
endwhlle;
return (c);
;;;if c/= 10000 then return(c) else return(zpnextglO);endlf;
enddefine;

;;; Hangs plan p on node n of zptree with goaitype t

define zphang(p,n,t);
vars l,q;
nll->l;
If 8uc(zpgoaltype,zpnextgl0)-t
and memb(suc(zpgoal,zpnextglO),p) then return; endif;
while ispair(p) do
zaindexO->q;l<>[%q%]->l;
sub ("zpactor", q, hd (p)) ;tl (p) -> p;
sub("zpgoal",q, hd (p)) ;tl(p) ->p;
sub("zpstate", q, noty et);
8ub("zpgoaltype",q,t);
endwhlle;
sub(nzptree",n,l);
enddefine;

;;; Deletes all tree below node n.

define zpdelete(n);
vars s;
zptree,n.suc->s;
If s=undef then return else del(zptree,n)->zptree endif;
while Ispair(s) do zpdelete(hd(8));tl(s)->s endwhlle;
enddefine;

;;; Removes terminal node n from tree,

define zpchop (n);
vars p,8;zpparent(n)->p;zptree,p.suc.tl->s;
if null(s) then zpdelete(p) else sub("zptree",p,s) endif;
enddefine;

;;; Returns node of plan in zpgoal.

define zpfplan (p);
vars t; zpgoal->t;
while ispair(t) and not(p = hd(tl(t))) do
tl(tl(t))->t endwhlle;
If null(t) then undef else hd(t) endif;
enddefine;

258

*** PLAN.p (4 o f 4)

;;; Brings about event e.

define zpdo (e);
hd(e);hd(tl(e))->e;
if e=push then wpushO
eteeif e=8lide then wslideO
el8eif e=move then wmoveO
endif;
nl(1);prw();nl(1);
enddefine;

;;; Finds the event in plan p.

define zpevt (p);
hd(rev(p));
enddefine;

;;; Finds the sitn, if any, in plan p.

define zpsit (p);
if length(p)=2 then undef else hd(tl(p)) endif;
;;;if length(p)<2 then undef else hd(tl(p)) endif;
enddefine;

Clears away information about old goals.

define zpprune;
vars t,l,p,q;
nil->l;zptree->t;
while ispairft) do lohd(tl(t))->l; tl(tl(t))->t endwhlle;
[zpgoal zpactor zpstate zpgoa!type]->p;

until null(p) do
valof(hd(p))->t;nil->q;
while ispairft) do

If memb(hd(t),l) then [%hd(t),hd(tl(t))%]oq->q endif;
tl(tl(t))-> t

endwhlle;
q->valof(hd(p));
ti(p)->p;

enduntil;
enddefine;

259

*** R O U TIN E S .p (1 of 1) ***

(Power 1974, p276) ROUTINES

routine zrbasic;
1. * zrmaingl;
2. A zrprep;
3. A zrprep 1;
4. * zrachgl;
5. A zrmovel;
6. * zrappeal;
7. A zrprep2;
8. * zrachgl;
9. A zrhalt;
end;

routine zrachic
1. * zrcurrgl;
2. * zractor;
3. * zrstate;
4. * zrkind;
5. * zrplan 1;
6. A zrretum;
7. * zrprune;
8. A zrclean;
end;

routine zrassess;
1. * zrgoalintended;
2. * zraction;
3. * zractor;
4. * zrprecondition;
5. * zrobject;
6. * zrrules;
7. * zrbefore;
8. * zract;
9. * zrresult;
10. * zrparent;
11. * zrlesson;
12. * zrprune;
13. A zrclean;
end;

routine zrplan;
1. * zrgoal;
2. * zrrule;
3. * zrapec;
4. * zrsit;
5. * zrcomp;
end;

routine zrfindout;
1. * zrlnformation;
2. * zrask;
3. * zrtry;
4. * zrconclude;
end;

*** R O U TIN E.B A SIC (1 of 1) ***

;;; 1. Enters the main goal.

define zrmalngl;
zaenter(zkgoal);
enddefine;

;;; 2. Prepares world model Initialises k variables.

define zrprep;
.zkprep;zagoto(3);
enddefine;

;;; 3. If there is a main goal, prepares for solo attempt.

define zrprepl;
vars n;
if zaentry(1)=[none] then return(zagoto(9)) endif;
.zaindex->n;
nil.nil,nil,nil,nil,nil->zpgoaltype->zpstate->zpgoal->zptree->zpactor->zpm goal;
8ub(Hzpmgoal",n,zkgoal);8ub("zpgoari,n,zkgoal);sub("zptree",0,[%n%]);
8ub(,'zp8tate",n,notyet);8ub("zpactor",n,zkme);8ub("zpgoaltype,,,n,,,plan");
false->zejoint; zagoto(4);
enddefine;

;;; 4 & 6. Attempts goal, entering [achieved] or [failed],

define zrachgl;
zeloadfzrachleve");
enddefine;

;;; 5. If solo attempt succeeds, halt; if not, seek help,

define zrmovel;
if zaentry(4)=[achieved] then zagoto(9) else zagoto(6) endif;
enddefine;

;;; 6. Arranges game to appeal for help, game enters yes or no.

define zrappeal;
zeplay("zggoal",zkgoal);
enddefine;

;;; 7. If appeal succeeds, prepare for joint attempt, if not halt.

define zrprep2;
vars n;
if zaentry(6)=[no] and not(zejoint or zejoint=1) then return(zagoto(9)); endif;
.zaindex->n;
nil.nil, nil, nil, nil, nil->zpgoaltype->zpgoal->zptree->zpstate->zpactor->zpm goal;
8ub("zpmgoal",n,zkgoal);sub("zpgoal",n,zkgoal);sub("zptree",0,[%n%]);sub("zpstate",n,notyet);
8ub("zpactor", n, both) ;sub("zpgoaltype", n, "plan");
true->zejoint;
zaenterl ("zrbasic'M ,zkgoal);zagoto(8);
enddefine;

;;; 9. Keeps swapping. This is just to tell chairman that the goal
;;; has been achieved and one of the robots wants to stop talking.

define zrhalt;
if zaentry(4)=[achieved] or zaentry(6)=[no] then npr(jtopics);npr(mtopics);stop+1->count;endlf;
enddefine;

261

*** ROUTINE. A CH IEVE.p (1 of 3) ***

1. Enters next goal to be tackled. (Power 1974,p279)

define zrcurrgl;
vars g;
zpnextgl()->zpcurr;
zpgoal.zpcurr. 8uc->g;
zaenter(g);
zaput(goalty pe.zpgoalty pe, zpcurr. sue);
enddefine;

;;; 2. Enters actor for current goal,

define zractor;
(zpactor.zpcurr.suc :: nil).zaenter;
enddefine;

;;; 3. Enters state of goal, asks If necessary.

define zrstate;
vars a b n s;
0->a;
zaentry(1)->b;zpparent(zpcurr)->n; zpgoal,n.suc-> s;
If zat ake (g oalty pe)=" p I an" then

if zcevent(b) then
If zehold=Q then

zkstate(8) else
zaenter([notyet]);

endif;
else

zk8tate(b);
endif;

else
zaenter([notyet]);

endif;
enddefine;

262

*** R O U TIN E.A C H IEVE.p (2 of 3) ***

;;; 4. Enters kind of goal: [event] or [sltn];
;;; and branch to planning or execution.

define zrkind;
vara a b n s;
zaentry(1)->b;zpparent(zpcurr)->n; zpgoal,n.suc-> s;
zaentry(3)->a;
If i8pair(a) then sub("zp8tate,,,zpcurrlhd(a)) endif;
if a=[achleved] then

zpdelete(zpcurr);zpchop(zpcurr);.zpprune;
.zeexit;
if zptree=[] then
,zejump;zagoto(8); zaenter(a)

else
zeload(Hzrachieven);zaput(goaltype,"plan");

endif;
endif;
if zcevent(zaentry(1)) then

if as[achieved] and suc3(zkworldIhd(8))="seen" then
if suc(zkx8ee,hd(8))=true or suc(zkx8ee,hd(s))=1 then else

If zehold=Q and zkinfoasked(8)/=[asked]
then zeplay("zgtell",[1 is]<>s);endif;

endif;
endif;

else
if a=[achieved] and suc3(zkworld,hd(b))="seen" then

if 8uc(zkx8ee,hd(b))=true or suc(zkxsee,hd(b))=1 then else
if zehold=Q and zklnfoasked (b)/=[asked]

then zeplay("zgtell",[1 is]ob);endif;
endif;

endif;
endif;
if zcevent(zaentry(1)) then

zaenter([event]);
if a=[notyet] then

.zeexit;zeload("zras3ess");
endif;

else if a=[notyet] then
zaenter([sftn]) ;endif;

endif;
enddefine;

;;; 5. Sets up routine or game to find plan, entry is a plan or [no].
;;; (Power p280)

define zrplanl;
if zaentry(3)/=[notyet] then return(zagoto(7)) endif;
if zaentry(2)=[both] then

if zatake(goaltype)="plan" then zeplay("zgplan",undef)
elseif zatake(goaltype)="experiment" then
zeplay("zgexperiment", undef)

else zeplay("zgtest",zaentry(1));
endif;

else
zeloadfzrplan");
endif;
enddefine;

263

*** R OUTINE. A CH IEVE.p (3 of 3) ***

;;; 6. Examines plan in tree; fails the goal if no plan was found,
;;; or reloads routine for Iterative action Q
;;; expand plan to do preconditions, or execution of plan.

define zrreturn;
vars p gt;
zatake(goaltype)->gt;
zaentry(5)->p;
If p=[no] and gt/="plan" then

return(sub("zp8tate",hd(zptree,0.suc),failed),zagoto(7))
endif;
if p»[no] then

zphang([both [undef]],zpnextgl(), "experiment")
else

zphang(p.zpnextglO.gt);
endif;
zagoto(7);
enddefine;

;;; 7. Prune tree. Function defined as for Assess.

8. Prune control stack. Function defined as for Assess.

264

* ** R O U T IN E P L A N .p (1 of 2) ***

;;; 1 Enters goal for which plan Is needed.

define zrgoalO;
zpgoal, zpcurr. sue. zaenter;
zaput(goalty pe.zpgoaltype, zpcurr. sue);
enddefine;

;;; 2 Finds rule to achieve required result: if none fails.
;;; if desperate, use rules with undef as result
;;; If still desperate, use rules with nothing as result.

define zrruleO;
vars r o;
zctypof(hd(zaentry(1)))->o;
if not(zkfluid() or zkfluid0=1) then zeexit();return(zaenter([no]));endif;
if zatake(goaltype) ="plan" or zatake(goaltype)="experlment" then

zkre8([%o%])->r;
endif;
if zatake(goaltype)="test" then zksit(o::tl(zaentry(1)))->r;endif;
zaenter (r);
if r/=undef then zkdel(zkrules,suc(r,evt))<>[%r%]->zkrules;endif;
enddefine;

;;; 3 Decides who does the action, and enters a specific rule.

define zrspecO;
vars r,e,a;
zaentry(2)->r;
if r=undef then retum(.zeexit,zaenter([no]),zaput(expectreply,true));endif;
zkme::(tl(suc(r,evt)))->e;

;;; No point trying to do it yourself if your partner can do it more
;;; easily - CGB.

if suc(r,res)=[robot] then (hd(zaentry(1))::tl(e))->e;endif;
if hd(suc(r,evt))="robot" and hd(suc(r,sit))="robot" then

if zktval(zkme::(tl(suc(r,8it))),zkworld)=true then zkme::(tl(suc(r,evt)))->e; endif;
if zktval(zkyou::(tl(suc(r,sit))),zkworld)=true then zkyou::(tl(suc(r,evt)))->e;endif;

endif;
if hd(e)=zkme then goto me else goto him endif;

;;; this was a bug 'cos it assumes zkme can do the event under the
;;; constraints of the situation. See note on zkcan.

me:
if zkcan(suc(zksrule(e),evt)) then

if suc(zk8rule(e),8it)/=[any] and zatake(goaltype)/="test" then
if zki8(suc(zksrule(e),8it))/=[asked]
then return (zaenter(zkspec(r,e))) ;else
return(zawlpe ("zrplan"));
endif;

else return(zaenter(zkspec(r,e)));
endif;

endif;
him: if zejoint
then zkyou::tl(e)->e;zkcan(e)->a;
if a=[asked] then return;

elseif a=1 or a=true then return(zaenter(zkspec(r,e)));
else return(.zeexit,zaenter([no]),zaput(expectreply,true))
endif;

else .zeexit;zaenter([no]);
endif;
enddefine;

265

*** R O U TIN E. PLAN.p (2 of 2)**

;;; 4 Enters the state of the sit, asking If necessary.

define zrsit;
vars s a;

If zatake(goaltype)="plan" then
8Uc(zaentry(3),8it)->8;
if 8=[any] then zaenter([achieved]) else
if zkinfoasked(8)/=[asked] then zkstate(s) else

if zkis1(s)=undef then zaenter([failed]) endif;
if zki8l(s)sfal8e or zkis1(s)s0 then zaenter([notyet]) endif;
if zki8l(s)=true or zkis1(s)=1 then zaenter([achieved]) endif;

endif;
endif;

elseif zatake(goaitype)="te8t" then
8 uc (zaentry (3), res) ->s; zae nter ([ac h leved]);
if zkinfoasked(tl(zamakeq(hd(s))))/B[a8ked] then zkis(tl(zamakeq(hd(s))));
else if zkisi (tl(zamakeq(hd(8))))=undef then zaenter([failed]);endif;
endif;

elseif zatake(goaltype)=“experiment" then
8UC(zaentry(3),evt)->s;suc(zctobj8,hd(tl(8)))->8;
if s°[robot] then [A(hd(suc(zaentry(3),evt)))]->s;endif;
zaenter ([achieved]);
if zklnfoasked(tl(zamakeq(hd(s))))/s[asked] then zkis(tl(zamakeq(hd(s))));
else if zki8l(tl(zamakeq(hd(s))))sundef then zaenter([failed])endif;
endif;

endif;
enddefine;

;;; 5. Completes plan and enters In the calling f/g.

define zrcomp;
vars p,r;
if zaentry(4)=[failed] then [no]->p;
else

zaentry(3)->r; nil->p;
if zaentry(4)=[notyet]then

[%suc(r,8it)%]->p;
if zejoint or zejoint=1 then both else zkme endif; ::p->p;

endif;

suc(r.evt) -> r; po[%r.hd, r%] -> p;
endif;
.zeexit;zaenter(p);zaput(expectreply,true);
enddefine;

266

*** R O U TIN E.F IN D O U T.p (1 of 1) ***

;;; load information that is required or the goal.

define zrinformation;
zaenter(zemovel);
enddefine;

;;; Unless your partner doesn't know ask him.

define zrask;
vars a;
zaentry(1)->a;
;;; If suc(zkxsee,hd(a))/=0 and suc(zkxsee,hd(a))/=false then

zeplay(Hzgask",[is]<>a);
;;; else
;;; zaenter([unde1]);
;;; endif;
enddefine;

;;; If you both don't know then do a test.

define zrtry;
vars a;
zaentry(2)->a;
if hd(a)=undef then
if zkis1(a)=true or zklsl (a)=1 then zaenter(a);return;
elseif zklsl (a)=false or zklsl (a)=0 then zaenter(zkopp(a));return;
endif; zaput (goalty pe, "test");

zphang([both A(zaentry(1))],zpnextgl0,"test");
zeload("zrachleve");
return;

else
zaenter(a)

endif;
enddefine;

;;; Conclude.

define zrconclude;
vars a;
zpnextgl()->zpcurr;
if zaentry(2) =[undef] and zaentry(3)=[undefJ then [failed]->a;endif;
if zaentry(2)=[undef] and zaentry(3)/=[undef] then

if zaentry(3)/=zaentry(1) then
[notyet]->a;
else
[achieved]->a;

endif;
endif;
if zaentry(2)/=[undef] then

if zaentry(2)/=zaentry(1) then
[notyet]->a;
else
[achieved]->a;

endif;
endif;
.zeexit;
if zatake(kind)="routine" and zatake(place)/=9 and zatake(goaltype)/="experiment" and zatake(goaltype)/=”test" then
zaenter(a);
endif;
if zatake(place)=12 then zaenter(a);endif;
enddefine;

267

*** R O U TIN E.A SSESS.p (1 of 5) ***

;;; 1. Enter intended goal that the action was supposed to achieve if there
;;; is one.

define zrgoalintended;
if zatake(goaltype)="none" then return(zaenter([undefj));endif;
zpnextgi()->zpcurr;
zaenter(zpgoal,zpparent(zpcurr).suc);
enddefine;

;;; 2. Enter action, In the case of an unepected event enter undef.

define zraction;
if zatake(goaltype)="none"
then return(zaenter([undef]));endif;
zaenter(zpgoal,zpcurr.8uc);
zaput(goalty pe.zpgoaltype, zpcurr. sue);
enddefine;

;;; 3. Enter actor as defined in Achieve.

;;; 4. Enters precondition for action to succeed. Entering undef when the
;;; the goal is undefined.

define zrprecondition;
if zatake(goaitype)="plan" then

zaenter(suc(zkres([A(zctypof(hd(zaentry(1))))]),8it));
return;

endif;
if zatake(goaltype)=Htest" then

zaenter(zaentry (1));
return;

endif;
if zatake(goaltype)="experiment" then

zaenter ([any]);
return;

endif;
if zatake(goaltype)="none“ then

zaenter([undef]);
return;

endif;
enddefine;

;;; 5. Enters object of action that was supposed to be under examination,

define zrobject;
if zatake(goaltype)="plan" then

zaenter(hd(zaentry(1))::nil);
endif;
if zatake(goaltype)="test" then

zaenter(suc(zksit(zaentry(1)),res));
endif;
if zatake(goaltype)="experiment“ then

zaenter(suc(zctobjs,hd(tl(zaentry(2)))));
endif;
if zatake(goaltype)="none" then

zaenter([undef]);
endif;
if zaentry(5)=[robot] then zaenter(zaentry(3));endif;
if suc3(zkworld,hd(zaentry(5)))="estimated“
then 8ub2("zkworld",hd(zaentry(5)),wpos(hd(zaentry(5))),undef);endif;
enddefine;

268

*** R O U TIN E.A SSESS.p (2 of 5) ***

;;; 6. Enters rule used to achieve intended goal.

define zrrules;
vars p;
zctypof(hd(zaentry(2)))::tl(zaentry(2))->p;
if zatake(goaltype)s"plan" then

zaenter(zkevt(p));
return;

endif;
if zatake(goaltype)="te8t" then

zaenter(zkevt(p));
return;

endif;
if zatake(goaltype)="experiment" then

zaenter(zkevt(p));
return;

endif;
if zatake(goaltype)="none" then

zaenter([undef]);
return;

endif;
enddefine;

;;; 7. Enters current value of world model for later comparison.

define zrbefore;
zaenter(zkworld);
[GOAL A (zaentry (1)) GOALTYPE A(zatake(goattype)) ACTOR Azkme NAME A(zatake(name)) EFFECTS unknown ITEMS
AzgInformation STATUS open]::ztopics->ztopics;
enddefine;

;;; 8. Whoever is to do the action tells the other when it is done

define zract;
;;;if zatake(goaltype)/="none" then
Q->zginformation; ;;; Initialise agenda of things "said" and "to say".
;;;endlf;
if zatake(goaltype)="none" then return(zaenter([done]),.zklook);endif;
If zaentry(3)=[%zkyou%] then
retum(zepost([-])) endif;
zpdo (zaentry (2));
.zklook;
zaenter([done]);
subC'zpstate", zpcurr, achieved);
if zejoint or zejoint=1 and zehold=Q then zeplay("zgtell",zaentry(2)) endif;
enddefine;

269

*** R O U TIN E.A SSESS.p (3 of 5)

;;; 9. Enters name of object which changed position, or [nothing] if
;;; none did.

define zrresult;
vars d;
if hd(zaentry(5))/=undef and suc3(zkworld,hd(zaentry(5)))/="seen" and
zkinfoasked(tl(zam akeq(hd(zaentry(5)))))/=[asked] then
zki8(tl(zamakeq(hd(zaentry(5)))))->d;
if d=[a8ked] then return;endif;
endif;
zadiff(zaentry(7),zkworld)->d;
if hd(d)=undef then [nothing]->d;endif;
if d/=[nothing] and (zejoint or zejoint=1) and zehold=[]

and zkinfoasked (d)/= [asked] then
zeplay("zgtell"ld);return;

endif;
if d=[nothlng] and hd(zaentry(5))/=undef and

suc3(zkworld, hd (zaentry (5)))="seen" and
(zejoint or zejoint=1) and zehold=Q and
zkinfoasked(d)/=[asked] then

zeplay("zgteir,d);return;
endif;
if d=zaentry(5) or zaentry(5)=[undef] then

zaenter(d);
else
zaenter([nothing]);

endif;
if d/=[nothing] then

[A(hd(d)) A(suc2(zkworld,d.hd))]->d;
if (zejoint or zejoint=1) and zehold=[] and zkinfoasked(d)/=[asked] then

zeplay("zgtell",[1 is jo d) ;return;
endif;

endif;
enddefine;

;;; 10. finds state of parent goal and puts state on tree.
;;; (Power 1974 p281)

define zrparent;
vars a,s,p,e,n;
if zatake(goaltype)="none" then return(zaenter([achieved]));endif;
zpparent(zpcurr)->n; ;;; Goal number
zaentry(1)->s; ;;; Current goal
zaentry(4)->p; ;;; Precondition
zaentry(5)->e; ;;; effect
if hd(s)/=undef then

if s=p then
zaenter([achievedj);

else
zkstate(s); ;;; calc, and enter state of parent's goal,

endif;
else

zaenter ([achieved]);
endif;
zaentry(10)->a; ;;; fetch copy of result
if i8pair(a) then sub("zpstate",n,hd(a)) endif; ;;; enter it in globals.
if s/=[undef] and s/=p and a=[achieved] and zkinfoasked(s)/=[asked] then

zeplay("zgtell",[1 is]o s)
endif;
enddefine;
define zrparent;
zaenter([achieved]);
enddefine;

270

*** R O U TIN E.A SSESS.p (4 of 5)

11. Learns lesson from seeing result of event, if partner is known to
believe a rule which predicts the wrong result, teaches him a better rule.

define zrlesson;
vars p 8 a o;
zaentry(2)->a; ;;; Action
zaentry(1)->s; ;;; Current Goal
zaentry(4)->p; ;;; Precondition for goal to succeed
zaentry(5)->o; ;;; Object of action under investigation

First inference in which the action is not known.

If a=[undef] then
if zaentry(9)/=[nothing] then
hd(zaentry(9))::[A(suc2(zkworld,hd(zaentry(9))))]->s;
if zehold=n and zkinfoasked(s)/=[asked] then zeplay("zgteir,[1 is]os);retum;endif;

if zaentry(9).hd.zctypof="robot" then
[A(hd(zaentry(9))) A(pre(zctobjs,[A(zctypof(hd(zaentry(9))))]))]->a;

else
[robot A(pre(zctobjs,[A(zctypof(hd(zaentry(9))))]))]->a;

endif;
zaenter([learned]);
if zehold=[] and zkinfoasked(a)/=[asked] then zeplay("zgtell",a);endif;
return;
else
return(zaenter([nothinglearned]));
endif;

else

Second inference in which the precondition is not known, there is an action and we know it’s effect

if a/=[undef] and p/=[any] and suc3(zkworld,p.hd)/="seenH and
(suc3(zkworld,o.hd)="seen" or suc3(zkworld,o.hd)="told" or
suc3(zkworld,o.hd)="lnferred“) then

if zaentry(10)=[achieved] then
zaenter([learned]);
if zaentry(9)=[nothing] then
zkopp(s)->8;
endif;
sub2(,,zkworld",hd(s),hd(tl(s)),"inferred");
if zehold=[] and zkinfoasked(s)/=[asked] then zeplay("zgtell",[1 is]os);endlf;

else
return(zaenter([nothinglearned]));
endif;

return;
endif;

endif;

Third and fourth inferences in which there is an action, the precondition
is known but we don’t know it’s effect

if zaentry(1)=[undef] or (zaentry(2)/=[undef) and (suc3(zkworld,p.hd)="seen"
or suc3(zkworld,p.hd)="told" or suc3(zkworld,p.hd)="inferred"))
then
if zkpred(a,zaentry(7))/=zaentry(9)
then zkponder(a,zaentry(9))->p; if p=[asked] then return endif;
endif;
zaenter ([learned]) ;zkxpred (a, zaentry (7)) ->p;
if p/=undef and p/=zaentry(9) and zkinfoasked(zkrule(a))/=[asked]
then zeplay("zgrule",zkrule(a))
endif;
endif;
enddefine;

271

* ** ROUTINE. ASSESS.p (5 of 5) ***

;;; 12. Prunes plan tree up to the highest achieved goal.Based on what has
;;; been said and what goals are known to be true and also what one
;;; believes to be true privately.

define zrprune;
vars I p 8;10000->p;
zpsearch (zpstate, "ach ieved", [any]) ->s;
if zatake(name)/="zrachieve" then

zpworkthrupublic(zpgoal,zginformation)->p;
endif;
zpworkth rupri vate (zpgoal, zkworld) -> I;
if 8<p then s else p endif;->p;
if l<p then I else p endlf;->p;
if zatake(name)="zrachieve" and zatake1("zrassess",place)/=undef and

zatakel ("zra8sess".place)>=8 then
10000->p;

endif;
;;; don't prune if you're in the middle of assessing something,
if p<=zpnextglO then

zaenter(zplist(p));zpdelete(p);zpchop(p);.zpprune;
zpnextgl()->zpcurr;npr(zaentry(12));

else
zaenter([none]);

endif;
enddefine;

;;; 13. Prunes control stack for conversational procedures that relate
;;; to plans that are now achieved.

define zrclean;
vars p;
zaentry(zatake(place)-1)->p;
[GOAL A (zaentry (1)) GOALTYPE A(zatake(goaltype)) ACTOR Azkme NAME A(zatake(name)) EFFECTS Ap ITEMS
Azginformation STATUS closed]::ztopics->ztopics;
if zptree=Q then

.zejump;zagoto(8);zaenter([achieved]);return;
endif;
if p/=[none] then

zaworkthru(p)->p;
endif;
if p/=[none] then

zaklllafter(p);
else if zatake(nam e)="zrachieve" then

.zeexit;
zeloadfzrachieve");
else
.zeexit;
endif;

endif;
enddefine;

272

* ** G A M E S .p (1 of 1)***

;;; (Power 1974 p284) GAMES Macros

game zggame;
1. * w zgname [zdgame];
2. * b zgready [zdsign];
3. * w zgload;
end;

game zgask;
1. * w zgquery [zdquery];
2. * b zganswer [zdsign];
3. A w zgrecord;
end;

game zgtell;
1. * w zgrelate [zdfact zdevent zdobj];
2. * b zgexamine [zdsign];
3. A w zgrelook;
end;

game zgrule;
1. * w zgwrule [zdrule];
2. * b zgbreply [zdsign];
3. * w zgwnote ;
4. * b zgbrule [zdrule];
5. * w zgwreply [zdsign];
6. A b zgbnote;
end;

game zggoal;
1. * w zgplead [zdsitn];
2. * b zgreact [zdsign];
3. A w zgreport;
end;

game zgplan;
1. * w zgsuggest [zdplan zdsign];
2. * b zgrespond [zdsign];
3. A w zgreturn;
end;

game zgexperiment;
1. * w zgsuggest [zdplan zdsign];
2. * b zgrespond [zdsign];
3. A w zgreturn;
end;

game zgtest;
1. * w zgsuggest [zdplan zdsign];
2. * b zgrespond [zdsign];
3. A w zgreturn;
end;

273

* ** G A M E .G A M E .p (1 of 1) * **

Used to get another game loaded, can be used anywhere.
(dot notation used in all game routines) (Power 1974 p285).

;;; White names the game.

define zgname;
zaput(expectreply.true);
zegamel. zaenter;
enddefine;

;;; Black agrees to play, possibly after a delay while he reaches a
;;; suitable point in his routines, loads the game taking black and
;;; exits from mggame.

define zgready;
vars g;1.zaentry->g;
if g=[|ump] then g.zaenter;return(.zejump) endif;
if g=[zggoal] and zatake1(l'zrbasicH,place)=1 then

zemark([zrbasic 3]);return
elseif (g=[zgplan] or g=[zgtest] or g=[zgexperiment])

and zatakel ("zrachieve",place)/=5
then return([zrachleve 5].zemark) endif;
If memb(hd(g),[zgrule zgtell])
and suc(zecontrol.tl.hd,kind)-"gamen
then zawipe(suc(zecontrol.tl.hd,name))
endif;
false->z_f_have_trled;[ye8].zaenter;.zeexit; g.hd.zeload; zaput(colour,black);
zaput(expectreply, true);
enddefine;

;;; White loads the game, taking white, and exits.

define zgload;
vars g; 1.zaentry->g;
if g=[]ump] then .zejump else .zeexit;false->z_i_have_tried; g.hd.zeload endif;
enddefine;

274

* ** G A M E .A S K .p (1 of 1) * **

;;; Used anywhere, asks either can or is questions.
;;; learns not only the answer, but whether or not the other
;;; robot knows the answer.
;;; (Power 1974, p286)

;;; 1. Asks question.

define zgquery;
zaput(expectreply .true);
zemovel. zaenter;
enddefine;

;;; 2. Tries to find answer, using own resources only, if it is an
;;; "is question, records the fact that white didnt know the answer.
;;; Need to record that although white didn't know it he does now.CGB.

define zganswer;
vars q g;
1.zaentry->q;tl(q)->g;
if q.hd="is"
then 8ub("zkxsee",q.tl.hd,0) ;q.tl.zkis1
else q.tl.zkcanl
endif;->q;
[%q.zoyn%],zaenter;
.zeexit;if q=undef then
sub2("zkworld",g.hd,suc(zkworld,g.hd), "asked");
zeload ("zrfi ndout") ;zaenter(g);

zagoto (2) ;zaenter ([undef]) ;.zrtry ;endif;
enddefine;

;;; 3. Records the answer and whether black knew it.

define zgrecord;
vars q,a,g;
1.zaentry->q;
2.zaentry->a;
if a=[undef] then undef else (a=[yes]) endif;->a;
if q.hd="can" then sub("zkxacts",q.tl.tl.hd,a);return(.zeexit) endif;
;;; this does the following:
;;; if your partner doesnt know then it's time to do a test
;;; find a rule in which the precondition is true
;;; and is the same as what you are asking
;;; find it's corresponding effect call it result.
;;; find the action
;;; decide who's to do it
;;; perform it
q.tl->q;8ub("zkX8ee'',q.hd, (a/=undef));
if a=0 or a=false then q.zkopp->q endif;
if a/=undef then sub2("zkworld",q.hd,q.tl.hd,"told''); endif;
.zeexit;if a=undef then sub2("zkworld",q.hd,suc(zkworld,q.hd),"asked");zaenter([undef]);.zrtry; else zaenter(q);endif;
enddefine;

275

*** GAME.TELLp (1 of 2) ***
;;; (Power 1974, p287)

;;; White enters a fact.

define zgrelate;
zaput(expectreply .true);
zemovel. zaenter;
enddefine;

;;; Black updates his models of object positions, and of white,
;;; and responds to what white told him.

define zgexamine;
vars d,f;1.zaentry->f;
if zatakel ("zrassess",place)=undef then

[zrassess 1].zemark;zeload("zrassess");
zaput(goaltype,"none");zerevert();

endif;
if zcobject(f)
then if zatakel ("zrassess",place)>=10

then
[undef]. zaenter; .zeexit;
if f/=[nothlng] then zagoto(9);f.zaenter;zagoto(10);endif;
else
[zrassess 10].zemark;
while zatake(name)/= "zrassess" do tl(zecontrol)->zecontrol endwhlle;
endif;

return 0;
endif;
if zcevent(f)
then if zatakel ("zrassess",place)=8

then
[]->zginformation;

if zatakel ("zrassess",goaltype)/="none" then sub("zkxacts",f.tl.hd,1); subfzpstate",zpcurr,achieved);endif;
[undef].zaenter;.zeexit;[done],zaenter; .zklook;
else if zatakel ("zrassess",place)>8 then [zrassess 1].zemark;zeload("zrassess");

zaput(goaltype,”none");zerevert();endif;
[zrassess 8].zemark;
while zatake(name)/="zrassess" do tl(zecontrol)->zecontrol endwhile;
endif;

return ();
endif;
if f.tl.hd="is"
then if f.hd=1 or f.hd=true then f.tl.tl else f.tl.tl.zkopp endif;->f;

if memb(f.hd,zksee)
then if f.zkisi

then [yes];if suc(zkxsee,f.hd)/=0 and suc(zkxsee,f.hd)/=false then
sub("zkxsee“,f.hd,1);endif;
else [no];8ub("zkxsee",f.hd,0);
endif;

else [undef];if suc(zkxsee,f.hd)/=0 and suc(zkxsee,f.hd)/=false then
sub("zkxsee",f. hd, 1) ;endlf;

sub2("zkworld",f. hd,f.tl.hd,"told")
endif;

else if f.tl.tl.hd=zkme
then if memb(f.tl.tl.tl.hd,zkacts)=f.hd

then [yes]
else [no]
endif;

else [undef]; subfzkxacts",f.tl.tl.tl.hd.f.hd);
endif;
endif;
.zaenter;. zeexit;
if f=8Uc(zpgoal,zpcurr) then zawipe("zrachieve");endif;
enddefine;

276

* ** G A M E .T E L L p (2 of 2) ***

;;; White updates his models of object positions, and of black, in
;;; the light of blacks response.

define zgrelook;
vars f,a;1 .zaentry->f;2.zaentry->a;
if f.hd.zcobject then return (.zeexit) endif;
if f.zcevent then return (.zeexit) endif;
if f.tl.hd="is"
then If a=[no]

then subfzkxsee",f.tl.tl.hd,not(memb(f.tl.tl.hd,zksee)));
If 8uc(zkx8ee,f.tl.tl.hd)
then if f.hd=0 then f.tl.tl else f.tl.tl.zkopp endif;

->f;8ub2("zkworld",f.hd,f.tl.hd,"told")
endif;

else subfzkxsee",f.tl.tl.hd,(a=[yes]))
endif;

else If f.tl.tl.hd=zkyou and a=[no]
then 8ub("zkxact8",f.tl.tl.tl.hd,f.hd.not)
endif;

endif;
.zeexit;
enddefine;

277

*** G A M E .R U LE .p (1 of 1) ***

;;; Used to explain, or compare views on, the rules which specify the
;;; consequences of actions, can be played anywhere.
;;; (Power 1974, p289)

;;; White announces a rule that he wants black to adopt

define zgwrule;
zaput(expectreply,true);
zemovel.zaenter;
enddefine;

;;; Black agrees, exiting the game if he agrees.

define zgbreply;
vars r1,r2,b;
1 .zaentry->r1; r1 ,evt.suc.zkrule->r2;
M.zkxadd; zkbetter(r1,r2)->b;
if zaequal(r1,r2) then [yes].zaenter;.zeexit
elseif b=undef then r1.zkxadd;[undef].zaenter;.zeexit
elseif b=true or b=1 then rl.zkadd; [undef],zaenter;.zeexit
else zaput(expectreply.true) ;[no].zaenter;
endif;
enddefine;

;;; If black agreed, white updates his model of blacks rules and exits.
;;; If not, he goes to 4 and allows black to announce his rule.

define zgwnote;
if 2.zaentry=[no] then zepost([-]);zaput(expectreply,true);
4.zagoto else 1.zaentry.zkxadd;.zeexit endif;
enddefine;

;;; Black announces his version of the rule white announced at 1.

define zgbrule;
zaput(expectreply, tr ue);
1 .zaentry ,evt.sue.zkrule.zaenter;
enddefine;

;;; White responds, updates his world model in a way depending on
;;; whose rule was better, and exits.

define zgwreply;
vars r1,r2,b;
4.zaentry->r1;
1.zaentry->r2;
r1.zkxadd;zkbetter(r1,r2)->b; if b=true or b=1 then rl.zkadd endif;
if b=undef and not(zaequal(r1,r2)) then false->b endif;
if b=undef then [yes] elseif b=true or b=1 then [undef] else [no] endif;
.zaenter;.zeexit;
enddefine;

;;; Black updates his model of whites rules, then exits,

define zgbnote;
if 5.zaentry=[undef] then 4.zaentry.zkxadd endif;.zeexit;
enddefine;

278

*** G A M E .G O A L.p (1 of 1) ***

;;; Played with white at zrbasic 6 and black anywhere

;;; 1. White announces his god

define zgplead;
zaput(expectreply, true);
zemovel. zaenter;
enddefine;

;;; 2. If black has a different goal he refuses; if not, he accepts
;;; and goes to zrbasic 7.

define zgreact;
1 .zaentry->zkxgoal;
if zkgoal=[none] then zkxgoal->zkgoal endif;
if zkgoakzkxgoal then [yes] else [no] endif; .zaenter;
if zkgoal=zkxgoal then true->zejoint;return(.zejump) endif;
.zeexit;
enddefine;

;;; 3. Updates model of partners goal, and enters his reply
;;; in zrbasic 6.

define zgreport;
vars r; 2.zaentry->r;
if r=[ye8] then zkgoal->zkxgoal;true->zejoint endif;
.zeexit;r. zaenter;
enddefine;

279

* ** G A M E .P LA N .p (1 of 1) * **

;;; Played with both robots at zrachieve 5. used to agree on a plan
;;; experiment or Instrumental test.
;;; (Power 1974, p292)

;;; White loads zrplan, which makes and enters the plan.

define zgsuggest;
"zrplan".zeload;
enddefine;

;;; Black judges the plan and either agrees with it and enters I In
;;; zrachieve 5, or arranges zgrule to explain the rule by which he
;;; rejects it.

define zgrespond;
vars p,a,n;
zatake(name)->n;
1.zaentry->p;
If 8Uc(hd(tl(zecontrol)),name)/="zrachieve" then
if suc(hd(tl(zecontrol)),place)/=5 then

zemark([zrachieve 5]);return;
endif;endif;
if p=[noJ
then

If .zkfiuid and z_i_have_trled=false
then [yes],zaenter;.zeexit;n.zeload
else [no].zaenter;.zeexit;[no].zaenter;6.zagoto
endif;false->z_i_have_tried;

else If p.zpevt.zkcan1=false
then
[%(zpcurr+1)::p.zpevt%]ozpmgoal->zpmgoal;

zeplay("zgteli",(0 can]op.zpevt);n.zawipe;
endif;
zkjudge(p,suc(zpgoal,zpnextglO))->a;
if a=[asked] then returnO endif;
if (a=0 or a=false) and zkbetter(p.zpevt.zkrule,p.zpevt.zkxrule)=true
and (sue (p. zpevt. zk rule, res)/=[undef]

or (zatake(name)="zgtest" and
suc(p.zpevt.zkrule,res)=[undef])

)
then p.zpevt.zkrule->a;

if 8UC(a,res)=[nothing] then azkinvert->a endif;
[%(zpcurr+1)::a%]ozpmgoal->zpmgoal;
zeplay ("zgrule",a);n.zawipe

else [yes].zaenter;.zeexit;p.zaenter;6.zagoto
endif;

endif;
enddefine;

;;; White makes an entry in zrachieve 5, and exits.

define zgreturn;
vars p n;
zatake(name)->n;
1.zaentry->p;
if p=[no] and 2.zaentry=[yes]
then true->z_i_have_tried;.zeexit;n.zeload;
zaput(colour, black) ;zaput(expectreply, true);
else false->z_i_have_tried;.zeexit;5.zagoto;p.zaenter;6.zagoto;
endif;
enddefine;

280

* ** A U X F U N S .p (1 of 4) ***

;;; (Power 1974, p295)

Puts x after n in routine/game w in control

define zaput1(w,n,x);
vars 11,12,13;
zecontrol->l2;
nil->H;
loop:
if null(i2) then return endif;
hd(l2)->l3;
if suc(l3,name)=w
then rep(l3,n,x)->l3;
rev(l1)<>(l3::tl(l2))->zecontrol
else I3::l1->l1;tl(l2)->l2; goto loop
endif;
enddefine;

define zatakel (w.n);
vars 11;
zecontrol->i1;
while ispair(h) and suc(hd(l1),name)/=w then tl(l1)->l1 endwhiie;
if null(H) then undef else suc(hd(H),n) endif;
enddefine;

Finds item after n in routine/game w in control.

;;; Puts in x at n in entries of w.

define zaenter1(w,n,x);
zaputl (w,entries, rep(zatake1 (w, entries), n.x));
enddefine;

;;; Finds entry at n in routine/game w.

define zaentry1(w,n);
suc(zatake1 (w, entries), n);
enddefine;

;;; Finds item after n in top r/g of control.

define zatake(n);
suc(hd(zecontrol),n);
enddefine;

;;; Puts x after n in top r/g of control.

define zaput(n.x);
zaputl (zatake(name),n,x);
enddefine;

281

*** A U X F U N S .p (2 of 4) ***

;;; (Power 1974, p298) Arranges for entry x to be translated Into english
;;; then posts ft in zebox.

;;; Changes the name of z?name... by substituting W for g.

define zautter(x);
vars n;
if zatake(kind)="routine" then return;endif;
valof(zatake(name))->n;
if (n,place.zatake.suc.tl.hd/=zatake(colour)) then return;endif;
[% destword(hd(tl(tl(suc(n, zatake(place)))))) %]->n;
(hd(n) :: (('w') :: tl(tl(n)))) ->n;
while ispafr(n) do hd(n);tl(n)->n endwhile;consword()->n;
;; ;zepost(popval([% x,". ”, n%]));
[%x,".",n%] -> n;
popval(n) -> n; zepost(n);
enddefine;

;;; Enters x at current place In top r/g

define zaenter(x);
if pro then zosp0 ;pr(zatake(place));sp(1);pr(x);
prs(' entered by ');pr(zkme); endif;
zaenter1 (zatake(name),zatake(place),x);zautter(x);
enddefine;

;;; Finds entry at place n in top r/g

define zaentry(n);
zaentryl (zatake(name).n);
enddefine;

;;; Kills any r/g named w.

define zakill(w);
vars 11;
nil->l1 ;
while ispair(zecontrol) and zatake(name)/=w do
hd(zecontrol)::l1 ->l1 ;tl(zecontrol)->zecontrol endwhile;
if ispair(zecontrol) then tl(zecontroQ->zecontrol endif;
rev(H)<>zecontrol->zecontrol;
enddefine;

;;; Kills any routine or game positioned after w on zecontrol.
;;; It also deletes w from zecontrol.

define zakillafter(w);
vars 12;
rev(zecontrol)->zecontrol;
nil->l2 ;
while ispair(zecontrol) and
not(zatake(name)=hd(w) and zaentry(1)=hd(tl(w))) do
hd(zecontrol)::l2 ->l2 ;tl(zecontrol)->zecontrol;
endwhile;
l2 ->zecontrol;
enddefine;

282

*** A U X F U N S .p (3 of 4) * **

;;; Finds first occurrence of goal x in zecontrol.

define zaworkthru(p);
vars 12 p1 ;p->p1 ;zecontrol->l2 ;rev(zecontrol)->zecontrol;
while ispafr(zecontrol) do
while ispair(pl) do
if zaentry(1)=hd(p1) and zatake(goaltype)=hd(tl(p1)) then
return(zatake(name)::[A(zaentry(1))],l2 ->zecontrol) endif;

tl(tl(P1))-> p 1 ;
endwhile;
tl(zecontrol)->zecontrol;p->p1 ;
endwhile;
if zecontrol=Q then l2 ->zecontrol;return([none]);endlf;
enddefine;

;;; Works out list of empty entries for r/g w.

define zaents(w)->l;
nil->l;
valof(w)->w;
while lspair(w) do
if hd(hd(tl(w)))=,‘*" then hd(w)::(nil::l)->l endif;
tl(tl(w))->w;
endwhile;
enddefine;

;;; Used to move place In a routine or game.

define zagoto(n);
zaput (place, n);
enddefine;

;;; Provides new numbers for use as indexes

vars zacount; 1 ->zacount;
define zaindex;

zacount; zacount* 1 ->zacount;
enddefine;

;;; Compares two world situations and returns the factor on which they
;;; differ, or [nothing] if they are the same.

define zadiff(11,12);
while ispair(H) do

if hd(tl(l1))/=suc2 (l2 ,hd(l1))
then

if suc2 (l2 ,hd(l1))=undef
or suc2 (l1 ,hd(i1))=undef

then [%undef,hd(l1)%]
else [%hd(l1)%]
endif; return
else tl(tl(tl(l1)))-> l1 ;

endif;
endwhile;[nothing]
enddefine;

;;; Jumps to r/g x, killing procedures above x in control

define zajump(x);
while length(zecontrol)> 1 and zatake(name)/=x
do tl(zecontrol)->zecontrol;
endwhile;
enddefine;

283

*** A U X F U N S .p (4 o f 4) * **

;;; Tests two association lists for equality.
;;; (used for rules)

define zadiffs(l1 ,l2);
while ispair(H) do

if hd(tl(l1))/=suc(l2,hd(H))
then if suc(l2 ,hd(l1))=undef

then [%undef,hd(H)%]
else [%hd(H)%]
endif; return
else tl(tl(l1))-> l1 ;

endif;
endwhile;[nothing]
enddefine;
define zaequal(H,l2);
zadiffs(l1 ,12)=[nothing];
enddefine;

;;; Makes a question to discover the position of x.(p298)

define zamakeq(x);
[ls]<>[%x,zctprops,x.zctypof.suc.hd%];
enddefine;

;;; Returns true if there is no game in progress and false otherwise.

define zanogame;
vars l;zecontrol->l;
while ispair(l)
do If suc(hd(l),kind)="game" then return(false);endif;tl(l)->l;
endwh lie; n ull(ze place);
enddefine;

;;; Removes entries in structure x and begins at 1.

define zawipe(x);
zaput1 (x, place, 1);
zaputl (x,entries, zaents(x));
if zenogameO then return; endif;
if zatake1 (x,colour)="black" then zaputl (x, expect re ply, true)
else zaputl (x,expectreply,false);endif;
enddefine;

284

*** E X E C .p (1 of 6) * **

;;; (Power 1974,p299) Executive functions which interpret the routines and games

vars zecontrol,zebox,zeagaintzenext,zejolnt,zegame1 ,zemove1 ,zehold,zeplace;

;;; Exits from the current game or routine(p302)

define zeexlt;
if pro or pro=1 then zospO; sp(1); pr(zatake(name));
prs(' ended by '); pr(zkme) ; endif;
if zatakel ("zras8 ess",name)="zra8 ses8 " or zatakel ("z^achieve",name)="zrachieve>,

then
if (zatake(name)="zgrule" or zatake(name)="zgaskH or zatake(name)3 "zgtell")
then if zaentry(1)/=[] and zaentry(2)/=Q then

[% zatake (nam e), zae nt ry (1) ,zae nt ry (2),
if zatakel (l,zra8 8 ess",name)="zra8 8e8 8 u then

[A(zatake1 (,lzra8 sess",goaltype))]
else

[A (zatakel ("zrachleve",goalty pe))]
endif

%]::zginformation
->zglnformation;

endif;
endif;

else
endif;
tl(zecontrol) -> zecontrol;
enddefine;

;;; Returns true if top procedure in control is not a game else false

define zenogame;
zatake (kind)="routine";
enddefine;

;;; Returns true if place reached is marked and false if not

define zeatmark;
[%zatake(name),zatake(place)%)=zeplace;
enddefine;

;;; Restores the interrupted game when a mark is reached.

define zerevert;
zehold::zecontrol->zecontrol;
nil->zeplace;
nil->zehold;
enddefine;

;;; Interpreter for routines

define zeroutO;
vars c,n;
if zeatmarkO or zeatmarkO =1 then return(zerevert());endlf;
zatake(place)->n;
suc(valof(zatake(name)),n)->c;
if hd(c)="*" and (zaentry(n)/=nll)
then zaput(place,n-i-1);
else zobugO; popval([%".",hd(ti(c))%]);
endif;
enddefine;

285

* ** E X E C .p (2 of 6) * **

;;; Translates message from english into an entry, using the list of
;;; functions t obtained from the game definitions. (p304)

vars oldmessage, oldtestfns;
define zeread(t);
vars m,e;
wmessage -> oldmessage; t -> oldtestfns;
wmessage->m;
nil->wmessage;
If null(m) then return(nil) ;endtf;

while i8 pair(t) do
popval([%m,".",hd(t)%])->e;
if e /= undef then return(e);
else tl(t)->t; endif;

endwhile;
prfzeread: message: ■); pr(oldme8 sage);
pr(' failed tests: '); npr(oldtestfns);
return([inapt]); ;;;if null(t)
enddefine;

;;; Loads game or routine w into zecontrol

define zek>ad(w);
If pro or pro=1 then nl(0);sp(1+(length(zecontrol)*2));pr(w);
prs(' loaded by ');pr(zkme);endif;
if w="zggame" then zakill(w); endif;
if zcgame(w) or zcgame(w)=1 then goto xgame endif;
xroutine:
rep(zcfshell,name,w) :: zecontrol->zecontrol;
zaput(place,1);
zaput(entries,zaents(w));
return;
xgame:
rep(zcg8 hell, name,w)::zecontrol->zecontrol;
zaput(place,1);
zaput(colour, white);
zaput(entrie8 ,zaents(w));
zaput(expectreply .false);
enddefine;

;;; Calls the other robot by name

define zecall;
zepo8 t([%zkyou%]);
zeloadfzggame");
zaput(expectreply,true);
enddefine;

286

* * * E X E C .p (3 of 6) * **

;;; Arranges for game g to be played with first move m, calling partner
;;; if necessary In order to get zggame loaded.

define zeplay(g,m);
[%g%J->zegame1 ;m->zemove1 ;
if zegame1 =[zgask] and hd(zemove1)="is" then
if zkinfoa8 ked(tl(zemove1))=[asked] then .popready;npr('*1*');return(.zeexit);endif;
endif;
if zegame1=[zgask] and hd(zemove1)="can" then
if zkinfoa8 ked(zemove1)=[asked] then npr('*2 *');return;endif;
endif;
if zegame1 =[zgtell] and tl(zemove1)/=Q and hd(tl(zemove1))="is" then
if zkinfoa8 ked(tl(tl(zemove1)))=[a8 ked] then nprC^'^retumiendlf;
endif;
if zegamel =[zgtell] and (tl(zemove1)=[] or tl(tl(zemove1))=[]) then
if zklnfoasked(zemove1)s[asked] then npr('*4*');return;endtf;
endif;
if zegamel =[zgrule] then
if zkinfoasked(zemove1)=[asked] then npr('*5*'); ret urn; endif;
endif;
if (zejoint or zejoint=1) and (zanogameO or zanogame0=1) and g/="jump"
then zeload("zggame");[.zecont]->zenext;
else .zecall;endif;
if ispair(zehold) and suc(zehold,name)="zggame"then nil->zehold;nil->zeplace;endif;
enddefine;

;;; Interpreter for games

define zegameO;
vars c,n,mine,entry.made.message,tests;
begin:
zatake (place)->n;
suc(valof (zatake(name)), n)->c;
if c=undef then zeexitO endif;
(hd(c)="*")->entry;
if entry or entry=1 then (ispair(zaentry(n)))->made endif;
(hd(tl(c))=zatake(colour))->mine;
if mine or mine=1

then if entry or entry=1

then if made or made=1 then goto advance else goto perform endif;
else goto perform
endif;

else if entry or entry=1

then if made or made=1 then goto advance else goto read endif;
else goto advance
endif;

endif;
perform:
zobugO;
popval([%".",hd(tl(tl(c)))%l); return;
advance:
zaput(place,n+1); return;
read:
rev(tl(rev(tl(tl(tl(tl(c)))))))->tests;
ze read (tests) - > m essage;
if null(message) then goto swap;
elseif message=[inapt] then goto moan ;
else return(if zctgam e()>0 then zaput(expectreply.false) endif,zaenter(message));
endif;
moan:
pr(' moaning... message = '); npr(message);zeplay("jump",undef); return;
swap:
zepost([-]);
enddefine;

287

* ** E X E C .p (4 of 6) * **

;;; Returns true if robot has been called by partner and false if not.

define zecalled;
wmessage=[%zkme%];
enddefine;

;;; Loads zggame and takes black

define zealert;
zeloadfzggame");
zaput(colour, black);
enddefine;

;;; Posts message m;

define zepost(m);
m->zebox;
false ->zeagain;
zebox->wmessage;
undef->zebox;
[.zecont]->zenext;

enddefine;

;;; Responds to being called.

define zeready;
zealert ();zepost ([yes]);
enddefine;

;;; Used to initialise the ze variables before a run.

define zeprep;
nll->zecontroi;Q->zehold;false->zunexpected_event;
zeloadfzrbasic"); false->zejoint;
[.zecont]->zenext; nil->zeplace; true->zeagain;
enddefine;

;;; Gives control to structure below current one and marks it at place n

define zemark(p);
p->zeplace;hd(zecontrol)->zehold;tl(zecontrol)->zecontrol;
enddefine;

;;; Jumps back to zrbasic 7. used when an inappropriate remark has been
;;; made.

define zejump;
zajump("zrbasic");zagoto(7);
enddefine;

;;; master function used by chairman to arouse robot

;;; Runs either zecall,zesend or zecont depending on which was
;;; last put into zenext.

define zeexec;
if (zenogameO) then zeroutO; else zegame();endif;
enddefine;

288

* ** E X E C .p (5 of 6) * **

;;; Main arousal mechanism called by chairman.
;;; The robot reacts according to the value of expectreply
;;; on the control stack. The main choices are:

;;; (1) A call by name.
;;; (2) There is a message and we wanted It
;;; (3) There is a message and we didn't want it
;;; (4) There is no message and we want one.
;;; (5) There is no message and we don't want one.

define zearouse;
If zecalledO or zecalled0=1 then ;;; call by name,
if member(9,ppro) then pr(mt+1);pr(’ ■);
pr('*9*');pr(zkme);pr(' is responding to being called');nl(1);
endif;if zatake(expectrepty)=false and zatake(place) /= 1 then

repeat forever
if member(5,ppro) then pr(mt+1);pr(* *);

prC*5* ’);pr(zkme);pr(' is finishing off an old conversational procedure');
nl(1);

endif;
zegame();c|uitunless(zatake(expectreply)=fal8e);
endrepeat;endif;

return(zereadyO);
else
if zunexpected_event then

until
not (zatake (kind)="game'' or zatake (name)="zrplan"
or zatake(name)="zrfindout") do .zeexit;

enduntil;nil->wmessage;
fal8 e->zunexpected_event;zeload("zras8e8 8 ");
zaput(goaltype,"none");.zerout;return;

else
if wmessage=nil or wmessage=[--] then

if zctgam e()>0 then ;;; no message but we want one.
if member(1 ,ppro) then pr(mt+1);pr(' ');
pr('*1* ');pr(zkme);pr(' is waiting for an utterance ,);nl(1);
endif;
if wmessage=[-] then ;;; a message that's not worth reading
nil->wmessage;if zenogameO then zeroutO

else zaput(place,zatake(place)+2);zegame0 ;endif;
else return(fal8 e->zeagain);
endif;

else ;;; no message and we don't want one.
If member(2 ,ppro) then pr(mt+1);pr(' ');
pr(’*2 * ');pr(zkme);pr(' is planning ’);nl(1);
endif;
if wmessage=[~] and member(1 ,ppro) then
prC*1* ^prfckme^prC is waiting for a goal or an actfon');nl(1);
endif;
nil->wmessage;

endif;
else

289

*** EXEC.p (6 of 6) ***
if zctgame()> 0 then ;;; there is a message and we want it

if zenogameO then repeat forever zeroutO;quitunless(zenogameO);
endrepeat;else zegameO ;endtf;
if member(3,ppro) then pr(mt+1);pr(’ ');
pr(’*3* expected utterance for l);pr(zkme);nl(1);
endif;

else ;;; a message and we weren't expecting I.
if member(4,ppro) then pr(mt+1);pr(' ');
pr('*4* unexpected utterance for ');pr(zkme);nl(1);
endif;

if zenogameO and zatake(place) /= 8

then repeat forever zerout0 ;quitunle8 8 (zenogame0 and zatake(place)/=8);
endrepeat;

if zatake(expectreply)=true then return(zegameO);endlf;
endif;

if zatake(expectreply)=fal8e and zatake(place) /= 1 then
repeat forever

if member(5,ppro) then pr(mt+1);pr(' ');
pr('*5* ');pr(zkme);pr(' is finishing off an old conversational procedure');
nl(1);

endif;
zegame() ;qu)tunles8 (zatake(expectreply) =false);
endrepeat;
if zatake(expectreply)/=true then zealertO;

if member(6 ,ppro) then
pr(mt+1);pr(' ');
prC*6 * ');pr(zkme);pr(' has no other conversational procedures to contend with^nlO);
endif;

else
if member(7,ppro) then
pr(mt+1);pr(' ');
pr('*7* ');pr(zkme);pr(' has other conversational procedures to contend with1);
nl(1);
endif;

endif;
else

if member(9,ppro) then
pr(mt+1);pr(' ’);

pr('*9* ');pr(zkme);pr(' has no conversational procedures to contend with');
nl(1);
endif;

zealertO;
endif;

endif;
endif;

endif;
endif;
zeexecO;
enddefine;

290

* * * W R IT E , p (1 of 3) * **

These functions translate game entries into english in an
unprincipled manner.(Power 1974, p305)

III zggame 1 and 2;
define zwname x;
[zgask [may I ask you something]
zgtell [I want to tell you something]
zgrule [I want to explain something]
zggoal [I want to suggest a goal]
zgassess [%if zkme=suc(zpactor,zpcurr) then
"lets"I ,,a8 se8 s"I"the,,P"re8 ult","of,,,"my"p"action"

else "let8 “p"a8 8 es8 "P"the"p"re8 ult"p"of,,p"your"P"action" endif;%]
zgplan [shall we make a plan]
zgexperiment [shall we do an experiment]
zgtest [shall we do a test]
jump [we have got muddled; lets start again]],
hd(x).suc;
enddefine;

define zw ready x;
if memb(hd(zaentry(1))p[zgplan zgcheck zgassess jump])
then [ok] else [go ahead] endif;
enddefine;

;;; zgask 1 and 2

define zwquery(x);
vars v,g;
hd(x)->v;tl(x)->g;
;;; the elseif 4 lines down doesn't work when Mary's goal is to open
;;; the door. - cb.
if hd(g)=zkme then

[l]o tl(g)->g ;
if v="is" then "am"->v endif;endif;

if hd(g)=zkyou then
[you]otl(g)->g;
If v="is" then "are"->v endif;

endif;
If memb(hd(g),[door bolt]) then [the]og->g endif;
if hd(tl(g))=push then go[th e door]->g
elseif hd(tl(g))=slide then g o[the bolt]->g endif;
v::g;
enddefine;

define zwanswer(x);
if x=[undef] then [I dont know] else x endif;
enddefine;

;;; zggoal 1 and 2

define zwplead(x);
if hd(x)=zkme then tl(x)
elseif hd(x)=zkyou then [you]otl(x)
else [th e]o x
endif;->x;
[will you help me getjox;
enddefine;

define zwreact(x);
If x=[yes] then [by all means] else [no]; endif;
enddefine;

291

* ** W R IT E , p (2 of 3) * **

;;; zgtell 1 and 2

define zwrelate(x);
If zcevent(x) then If hd(x)=zkme then return(suc(

[push [I have pushed the door] slide [I have slid the bolt] move [I have moved]], hd(tl(x))));
endif;
If hd(x)=zkyou then return(suc(
[push [you have pushed the door]
slide [you have slid the bolt]
move [you have moved]],

hd(tl(x»));
else return(suc(
[push [somebody has pushed the door]
slide [somebody has slid the bolt]
move [somebody has been moved]],

hd(tl(x))));
endif;

endif;
if zcobject(x)
then return(zwchange(x));endif;
vars t; hd(x)->t;
zwquery(tl(x))->x;
if hd(tl(x))="the“
then [the]o[%hd(tl(tl(x))),hd(x)%]; tl(tl(tl(x)))->x
else [%hd(tl(x)),hd(x)%];tl(tl(x))->x;
endif;
If t=0 or t=false then <>[not] endif;
o x ;

enddefine;

define zwwreply(x);
8 uc([ye8 [I already know that]

no [I disagree]
undef [I see]],

hd(x));
enddefine;

define zwexamine (x);
zwwreply(x);

enddefine;

;;; zgrule 1,2,3,4 and 5

define zwwrule(x);
vars e,s,r;
suc(x,evt)->e;suc(x,sit)->s;suc(x, res)->r;
[if]otl(zwquery("can"::(zkyou::tl(e))))->e;
if s=[any]
then nil
elseif hd(s)/=”robot" then [%"when",Mthe",hd(s),"is",hd(tl(s))%]
else [when you are]o[%hd(tl(s))%]
endif;->s;
if r=[nothing] or r=[undef] then [, nothing happens]
else if hd(r)="robot" then [, you change] else [, th e]o r
ofchanges] endif;o[posltion] endif;->r;e<>s<>r;
enddefine;

define zwbrule(x);
zwwrule(x);
enddefine;

define zwwnote(x);
[umm [I see]],x.hd.8 uc;
enddefine;

292

* ** W R IT E , p (3 of 3) * **

define zwbreply(x);
zwwreply(x);
enddefine;

;;; zgplan 1 and 2

define zw8 uggest(x);
vars s;
if x=[no] then return([I cant think of one]) endif;
zpsit(x)->s;
if 8 /=undef
then tl(zwquery([ls]<>8))->8 ;if hd(s)="l" then
"me"::tl(8) -> 8 endif;

[we get]<>8<>[and then]
else nil
endif;->s;
zpevt(x)->x;
tl(zwquery([can]ox))->x;
[I suggest th a tjo s o x ;

enddefine;

define zwrespond(x);
vars p;zaentry(1)->p;
if p=[no] then [yes [I will then] no [oh]]
else [yes [all right] no [I disagree]]
endif; hd(x).sue;
enddefine;

;;; zgtest 1 and 2

vars zwstart zwparticipate; zwsugge8t->zw8tart;zwrespond->zwparticipate;

;;; zgexperiment 1 and 2

vars zwmake zwaccept;zwsuggest->zwmake;zwrespond->zwaccept;

;;; zgassess 1,2,3 and 4

define zwchange(x);
if x=[nothing] then return([nothing has happened])
elseif hd(x)=zkme then [I have]
elseif hd(x)=zkyou then [you have]
else [th e]o x o [h a s]
endif;o[changed position];
enddefine;

define zwconfirm(x);
[yes [yes] no [I disagree]],hd(x).suc;
enddefine;

define zwparent(x);
rev(zwrelate(x)) - >x; hd (x);
if memb("not",x) then ::[yet] else ::[now] endif;
<>tl(x)->x;rev(x);
enddefine;

define zwbenter(x);
[right];
enddefine;

293

* ** D E C IP H E R p (1 of 3) ***

The following functions are used to decode english utterances.

define zdhalf(l,x);
while hd(l)/=x do tl(l)->l endwhile;tl(l);
enddefine;

;;; returns lists of the words before and after x in I

define zdsplit(l,x);
zdhalf(l.x) ;rev(zdhalf (rev(l) ,x));
enddefine;

;;; Used mainly to replace variant forms of a word (e.g. am,are)
;;; with a standard one is.

define zdclean (x);
vars I1,l2;nil->I1;

;;; replace variant word forms
x,"slid",slide.xch; "pushed",push.xch; "moved",move.xch->x;
x,"am","i8 ".xch; "areM,"isH.xch->x;
x,HAre","ls".xch->x;

;;; remove 4 lead words from help sentences
if memb("help",x) and length(x)>4 then tl(tl(tl(tl(x))))->x endif;

;;; remove 2 lead words from suggest/want sentences
if length(x)> 1 and memb(hd(tl(x)),[suggest want]) then tl(tl(x))->x endif;

;;; reorder clauses in slide/push sentences
if memb(sllde,x) then zdspllt(x,slide)->l1 ->l2 ;l1 o[slide]-> i1

elseif memb(push,x) then zdsplit(x,pu8h)->l1->l2; I1<>[push]->I1 endif;

If i8pair(l1) and Iength(l2)>1 then I1<>tl(tl(l2))->x endif;
;;;if ispair(U) then
;;; pr('zdclean: '); pr(U); sp(2); npr(l2);
;;; if Iength(l2) > 1 then tl(tl(l2)) -> 12; endif;
;;; 11 <> 12 -> x;
;;;endif;

x;
enddefine;

;;; Replaces pronouns with their referents,

define zdprons (I);
l,T,zkyou.xch; ,,me,,,zkyou.xch;"l,,,zkyou.xch; "you”,zkme.xch;
,,wen,both.xch;"somebody","robot".xch;

enddefine;

;;; Given a list of words x and an english expression I,
;;; returns the first word in x which is also in I, and
;;; undef if none are.

define zdfind(l.x);
while ispair(x)
do if memb(hd(x),l) then hd(x); return else tl(x)->x endif;
endwhile; undef;
enddefine;

294

* ** D E C IP H E R .p (2 of 3) ***

The following functions are used to decode different kinds of
utterances, if the english expression x can be construed as the
kind of entry wanted, the entry is returned; if not, undef
is returned, thus zdgame tries to interpret x as a game suggestion
zdquery tries to interpret I as a query, and so on.

define zdgame(x);
vars I;
[ask zgask goal zggoal next zgcheck explain zgrule tell zgtell assess
zgassess plan zgplan experiment zgexperiment test zgtest start jump]->l;
8 uc(l,zdfind(l,x))->l;
if l=undef then undef else l::nil endif;
enddefine;

define zdsitn(x);
zdpron8 (zdclean(x))->x; xo[%zkyou%]->x;
if length(x) < 2 then return(undef); endif;
(zdfind(zcobjs,x))::[%zdfind(zcprops,x)%]->x;

if memb(undef,x) or not(zcpropof(hd(tl(x)),zctypof(hd(x))))
then undef else x endif;

enddefine;

define zdevent (x);
zdprons(zdclean(x))->x;
if length(x) < 2 then return(undef); endif;
(zdfind([John Mary robot],x))::[%zdfind(zcacts,x)%]->x;
if memb(undef.x) then undef else x endif;
enddefine;

define zdquery (x);
vars a;
zdprons(zdclean(x))->x;
if length(x)<3 or not(memb(hd(x),[can is])) then return(undef) endif;
if hd(x)="canH then zdevent(tl(x)) else zdsitn(tl(x)) endif;->a;
if a=undef then undef else hd(x)::a endif;
enddefine;

define zdrule(x);
vars e,s,r;
xch(zdclean(x),"you"I"robot,,)->x;xch(x,,,oneII,"robot")->x;xch(x,"l","robot")->x;
if hd(x)/=,,if” or not(memb(",",x)) then return(undef); endif;
zdsplit(x,",")->e->r;
if memb("when",e) then zdsplit(e,"when")->e->s else [any]->s endif;
zdfind(zcact8 ,e)->x;
if memb("robot",e) and x/=undef

then [robot]o[%x%]->e
else retum(undef);

endif;
if s/=[any]
then (zdfind(zctypes,s))::[%zdfind(zcprops,s)%]->s;

if memb(undef.s) or not(zcpropof(hd(tl(s)),hd(s)))
then return(undef);
endif;

endif;
zdfind("nothing"::zctypes,r)::nil->r;
if r=undef then return(undef) endif;
[%evt,e,sit,8 ,re8 ,r%];

enddefine;

295

*** D EC IP H E R , p (3 of 3) ***

define zdplan (x);
vars s,f;
zdprons(zdclean(x))->x;
if memb(Mand",x) then zdsplit(x,"and")->s->e
elseif memb("then",x) then zdsplit(x,Hthenn)->s->e
else nil->s;x->e;
endif;
if i8 pair(s) then zdsitn(s)->s endif;
zdevent(e)->e;
if s=undef or e=undef then return(undef) endif;
if ispair(s) then both::[%s%]-> 8 endif;
8 <>[%hd(e),e%]
enddefine;

define zdsign(x);
vars y,n;
if x=[l see] then return([undef]) endif;
if memb("dontn,x) and memb("known,x) then return([undef]) endif;
[know yes agree good can will right fine splendid ok go by]->y;
[no disagree cant wont bad oh lousy faulty sllly]->n;
zdflnd(noy,x)->x;
if x=undef then undef elseif memb(x,y) then [yes] else [no] endif;
enddefine;

define zdfact(x);
vars t;
zdclean(x)->x;
not(memb("not",x))->t;
zdquery(zdfind(x,[can is]) :: x) -> x;
if x=undef then undef else t::x endif;
enddefine;

define zdobj (x);
zdfind([nothing]<>zcobjs,zdpron8 (x)); ::nil;
enddefine;

296

* ** P LA Y .p (1 o f 7) * **

;;; (Power 1974, p317) various functions for starting the simulation in different ways

;;; Prints out a robots utterances.

define write(l);
vars I;
if l=undef then return(prs(l<undef>'));
elseif null(l) then retum(prs('

endif;
co nsst ri ng (destwo rd (hd (I))) - > hd(I);
lowertoupper(subscrs(1 ,hd (!)))->
8 ubscrs(1 ,hd(l));
if hd^s'Lets1 then 'LetVs'->hd(l); endif;
pr(hd(l));
con8 word(deststrlng(hd(l)))->hd(l);
if memb(hd(l),[Shall Are Will May Can Is]) then [AA(I) ?]->! else
[AA(I) .]->!;

endif;

if memb(hd(l),[Mary John I]) then else
consstring(destword(hd(l)))->hd(l);
uppertolower(subscr8 (1 ,hd(l)))->
subscrs(1 ,hd(l));
consword(dest8 tring(hd(l)))->hd(l);
if wmessage/=nil then
consstring(destword(hd(wmessage)))->hd(wmessage);
uppertolower(8 ub8crs(1 ,hd(wme8 8 age)))->
subscrs(1 , hd(wmessage));
consword(dest8tring(hd(wmes8age)))->hd(wmessage);

endif;
endif;
ti(i)->i;
while ispair(l)
do
if memb(hd(t),[cant]) then 'canYt'->hd(l) endif;
if hd(l)="somethin" then prs(' something')
elseif hd(l)="," or hd(l)=":" or hd(l)="." or hd(l)="?" then pr(hd(l))
else sp(1); pr(hd(l)) endif;tl(l)->l;
endwhile;
enddefine;
vars zostart;

297

* ** P LA Y .p (2 o f 7) * **

;;; The chairman

define replay;
jawake0 ;zo8 tart0 ;jasleep0 ;mawake0 ;zo8tart0 ;masleep0 ;
if erase(count//2) > 0 then goto john else goto mary endif;

John:
if count>stop then return(nl(2)) endif;
true->jeagain;
if ispair(Unexpected_event8) and count>hd(Unexpected_events)
then
if zcevent(hd(tl(Unexpected_events))) then zpdo(hd(tl(Unexpected_event8)));
else
wsub(hd(hd(tl(Unexpected_events))),hd(tl(hd(tl(Unexpected_events)))));.prw;
endif;
tl(tl(Unexpected_event8))->Unexpected_event8 ;frue->munexpected_event;true->junexpected_event;
endif;
JawakeO;
repeat forever
if zaentry(8) =[achleved] then
returntnlOJ.nprC***** Plan successful *****'), npr(jtoplcs),npr(mtopics));endif;
If zptree/=nll then
if (8 uc(zp8 tate,hd(suc(zptree,0)))) = "achieved" then
retum(nl(1),npr('***** Plan successful ♦****'),npr(Jtopics),npr(mtopics));endif;
if (suc(zp8 tate,hd(8 uc(zptree,0)))) = "failed" then
return(nl(1),npr('***** Plan unsuccessful *****’)) ;endlf;
endif;
if zatake(place)= 1 and zatake(cok>ur)="white"
and zatake(expectreply)/=true and member(zatake(name),
[zgask zgtest zgexperiment zggoal zgcheck zgrule zgtell zgassess zgplan zggame])
and wmessage=nil then nl(1);endif,

.zearouse;1 +]t->jt; if jt=jspeed then 0 ->jt;false->zeagain;endif;
quitunles8 (zeagain or zeagain=1);
endrepeat;
jasleepO;
if null(wme8sage)then goto mary;endif;if pro then nl(1); endif;pr(count);
1+count->count;pr8(' John:'); false->prw1;write(wmessage);nl(1); If pro then nl(1); endif;
mary:
if count>8 top then return(nl(3)) endif;true->meagain;mawakeO;
repeat forever
if zae ntry (8) =[ac hieved] then
return(nl(1),npr('***** Plan successful *****'),npr(jtopics),npr(mtopic8));endif;
if zptree/=nll then
if (8 uc(zpstate,hd(8 uc(zptree,0)))) = "achieved" then
return^lOJ.nprC***** Plan successful *****'),npr(jtopics),npr(mtopics));endif;
if (8 uc(zpstate>hd(suc(zptree,0)))) = "failed" then
return(nl(1),npr('***** Plan unsuccessful *****'));endif;
endif;

if zatake(place)= 1 and zatake(cok>ur)="white"
and zatake(expectreply)/=true and member(zatake(name),
[zgask zgtest zgexperiment zggoal zgcheck zgrule zgtell zgassess zgplan zggame])
and wmessage=nil then nl(1);endif; .zearouse; 1+mt->mt;

If mt=mspeed then 0->mt;false->zeagain;endif;
quitunles8 (zeagain or zeagain=1);endrepeat;
masleepO;
if null(wmessage)then goto john; endif;if pro then nl(1); endif;
pr(count);1+count->count;prs(' Mary:'); false->prw1;write(wmessage);nl(1);if pro then nl(1) endif;
goto john;enddefine;

298

* ** PLA Y .p (3 of 7) * **

;;; Runs a conversation with the first initial setting.

define run1 ;
resetl ();
.zeprep;zaenter1 ("zrbasic",4,[failed]);
zunexpected_event->munexpected_event;zunexpected_event->junexpected_event;
zecontrol->mecontrol;zecontrol->jecontrol;
zeJolnt->mejoint;zeJoint->jejoint;zehold->jehold;zehold->mehold;
zenext->menext;zenext->jenext;
zeplace->meplace;zeplace->jeplace;
zeagain->meagain;zeagain->jeagain;
nl(3);.prw;replay();
enddefine;
define run2 ;
resetl 0 ;1 ->count; zaenterl ("zrbasic",4,[failed]);
zecontrol->]econtrol;
nl(3);.prw;gstart();
John, John->]kme->mkyou;
Mary, Mary->m kme->jkyou;
[John in]->jkgoal; [none]->mkgoal;
[John out Mary in bolt down door shut]->wobjects;
nil->wmessage;
[move]->]kacts;[push slide move]->mkacts;
[[evt[robot push]sit[bolt up]res[door]]
[evt[robot slide]sit[any]res[bolt]]
[evt[robot move]sit[any]res[nothing]]]->jcrshell;
[[evt[robot push]sit[any]res[nothing]]
[evt[robot slide]sit[any]res[boit]]
[evt[robot move]sit[door open]res[robot]]]->mcrshell;
[door John Mary]->jksee;
[Mary]->mksee;

]cw8 hell->]kworld;zklook0 ;
]crshell->]krule8 ;
jcwshell->]kxsee;
nil->jkxgoal;
if zp8 tart/="Super" then nil->jkxacts;
nil->jkxrules;endif;
mcwshell->mkworld;zklookO;
mcrshell->zkrules;
mews hell->zkx8 ee;
nil->mkxgoal;
if zpstart/="Super" then nll->mkxacts;
nll->mkxrules;endif;
replay ();
enddefine;

;;; The following functions allow interaction with the computer only,

vars stdmsgs;
[[ok][Mary][l want to ask you something][l want to tell you something] [I want to explain something]
(lets assess the result of my action] [shall we make a plan?]
[are you in?] [can you move?][is the door open?][the door is shut]
[if you push when the bolt is up, the door moves] [I want to suggest a goal]
[go ahead] [will you help me get in?] [by all means] [yes]
[no] [John] [the door is open] [you are out][l am now in] [I have moved]
[I have pushed the door] [I suggest that we get the door open and then you move]
[I suggest that I push the door] [nothing has happened] [the door has changed positfc>n][the door is now open]
[is the door shut?][is the bolt up?] [is the bolt down?] [are you in?]
[are you out?][will you help me get the door open?]
[will you help me get the door shut?] [if you push when the bolt is down, nothing happens]
[if you move , nothing happens] [I disagree] [I suggest that we get the door open and then I move]
[If you move when the door is open , you change posftion] [I have changed position]
[I see] [all right] [right][l disagree . if you move when the door is open , you change position .]] -> stdmsgs;

299

*** PLAY.p (4 of 7) ***
define read;
vars x,l, n, i;
nil->l; length(stdmsgs) -> n;

until (.ltemread.dup->x, x="." or x="?") do
If x="-" then retum(nil);
elseif l=nll and isinteger(x) then

if x= 0 then for i from 1 to n do
pr(i); pr(': '):
appli8t(8 tdm8gs(i), sp(%1%) <> pr); nl(1);
endfor;

elseif x<=n then
;;; npr(stdmsgs(x));
appli8 t(8tdmsg8 (x), sp(%1%) <> pr); p r n l (1);
return(8tdm8 gs(x));

else x::l->l;
endif;

else x::l->l;
endif;

enduntil;
rev (I);
enddefine;

;;; The chairman

define play;
vars x;

erase(count//2)->x; nl(1); .prw; ni(1);
computer:

if count>stop then nl(2); returnO endif;
if x> 0 then

zearouseO;
if (wmessage/=nil) or (zkgoal=[none])
then goto human else goto computer endif;

human:
if pro then nl(1) endif;

nl(1);pr(count);prs(' ');pr(zkme);prs(':'); write(wme3sage); count+1 ->count;
else 1 ->x
endif;
nl(2);
if count>stop then returnO endif;
pr(count); prs(' ');pr(zkyou); readO->wmessage; count+1 ->count;
goto computer;

enddefine;

;;; mgo assumes the computer is mary jgo assumes computer to be John.
;;; One can type numbers (see Power's linguistics 17 for coding);
;;; remembering to type run before typing mgo or jgo and then when
;;; a physical action occurs: to get to popready <optk>n .> followed by
;;; the appropriate action .wpush,.wslide,wmove and to continue again
;;; <return>

define mgo;
re8 et1 ();zecontrol->mecontrol;0 ->jspeed;0 ->mspeed;
zae nte r 1 (" z r bas ic", 4, [f a i led]);
1 ->count;mawake();true->zeagain;true->meagain;1 ->count;play0 ;
enddefine;

define jgo;
resetl ();zecontroi->jecontrol;0 ->mspeed;0 ->jspeed;
zae nte r1 ("zrbasic",4, [failed]);
1 ->count;jawake();true->zeagain;true->jeagain;1 ->count;play0 ;
enddefine;

300

* ** P LA Y .p (5 of 7) * **

;;; The following functions are for use by the Super Robot.
;;; New function to combine two sets of rules s & t into one better set
;;; contained in scrshell.

define srules(s,t);
vars r1 ,r2 ;
while s/=nil do
hd(s)->r1 ;zkrule1 (t,r1 ,evt.suc)->r2 ;
If zaequal(r1 ,r2) then [%r1 %]<>8 cr8 hell->8crsheil;
elseif zkbetter(r1 ,r2) then [%r1%]<>8cr8 hell->8 crshell;
else [%r2 %]<>8cr8 hell->8 crshell;
endif;tl(8)->s;
endwhile;
enddefine;

;;; This function is used to make sure that each robot knows what they can
;;; do before the start of a run. zkprep is also modified.

define sactsO;
vars a;
mkact8 ->a;nil->jkxact8 ;
while a/=nil do
8 ub(Hjkxacts",hd(a),true);tl(a)->a;
endwhile;
jkacts->a;nil->mkxacts;
while a/=nil do
sub(”mkxact8 ",hd(a),true);tl(a)->a;
endwhile;
enddefine;

;;; Circular function that checks the internal plan tree zpgoal
;;; and sees whether the current goal is already in the plan tree.

define newcircular(t,g);
vars c;0 ->c;
while ispair(t) do
if g=hd(tl(t)) then c+1 ->c; endif;
tl(tl(t))->t;
endwhile;
if c>1 then return(true) else retum(false);endif;
enddefine;

;;; This function is used to print out what the super robot knows
;;; about the state of the two ordinary robots minds.

define zsstart;
nl(2); prs('*** what ');pr(Jkme);prs(' capabilities are ***');nl(2);prs('1. Goal:');
if null(jkgoal) or jkgoal=[none] then prs(' None') else write(zoplead(jkgoal)) endif;
nl(2); prs('2. Range of actions:');nl(1); zcacts->x;
while i8 pair(x) do 8p(3);pr(hd(x));pr8('; ');
if member(hd(x),jkacts) then pr('Ye8 ');el8 e prfNo'^endjf-.prf,'); tl(x)->x;
endwhile;
nl(3);nl(2); prs('*** what l);pr(mkme);pr8 (' capabilities are ***');nl(2);prs('1. Goal:');
if null(mkgoal) or mkgoal=[none] then prsf None') else write(zoplead(mkgoal)) endif;
nl(2); prs('2. Range of actions:');nl(1); zcacts->x;
while ispair(x) do sp(3);pr(hd(x));prs(': ');
if member(hd(x),mkacts) then pr('Yes');else pr('No');endif;pr(','); tl(x)->x;
endwhile;
nl(3);prs(‘ Consequences of events:');nl(1);zcrshell->x;
while ispair(x) do nl(1);sp(3);pr(hd(tl(suc(hd(x),evt))));prs(':');nl(1);sp(2);
if suc(hd(x),res)=[undef] then prs(' undef') else write(zwwrule(hd(x)))
endif; tl(x)->x;
endwhile;nl(3);prs(' ******** Super plan prediction **********');nl(3);
enddefine;

301

* * * P LA Y .p (6 of 7) * **

;;; splay is simplified from replay so that it only prints the relevant
;;; plan.

define splay;
Q->mptree;[]->jptree;
Jawake 0; Jaslee p 0; mawake 0; m as leep() ;zsstart 0;
if erase(count//2) > 0 then goto john else goto mary endif;

john:
zpgoal.zpcurr. suc->g;
If newcircular(zpgoal,g)=true then return(pr('circular plan detetected...'));
endif;
If zptree/=nil then
If (8uc(zpstate,hd(suc(zptree,0)))) = "achieved" then return(nl(1),npr('***** Plan successful *****,));endif;
endif;
If count>8 top then return(nl(2)) endif;
true->jeagain;
jawakeO;

repeat forever
.zearouse;

1+Jt->jt;
If jt=Jspeed then 0->jt;false->zeagaln;endif;

quitunless(zeagain or zeagain=1);
endrepeat;
JasleepO;
If null(wme88age)
then goto mary;
endif;ff pro then nl(1); endif;
;;;pr(count);
;;; 1+count->count;prs(' John:');
false->prw1 ;
If zatake(name)="zgplan" and zatake(place)= 1 and zatake(colour)="white" then
nl(1);npr('Robot John suggests the following plan i1);
npr(zaentry(1)); write(wmessage);nl(1);endif; if pro then nl(1); endif;
mary:
if count>8 top then return(nl(3)) endif;
true->meagain;
mawakeO;
repeat forever

.zearouse;1 +mt->mt;
If mt=mspeed then 0->mt;false->zeagain;endif;

quitunless(zeagaln or zeagain=1);
endrepeat;
masleepO;
if null(wme8sage)
then goto john; endlf;if pro then nl(1); endif;
fal8 e->prw1 ;
If zatake(name)="zgplan" and zatake(place)=1 and zatake(colour)="whlte"then nl(1);
npr('Robot Mary suggests the following plan :');npr(zaentry(1));write(wmes8age)
;nl(1);endif;if pro then nl(1) endif;
goto john;
enddefine;

;;; smerge combines goals, what it can see, what the ordinary robots believe
;;; and what they can do.

define smergeO;
[John Mary door bolt]->sksee;
if mkgoal=[none] then jkgoal->skgoal;jkgoal->jkxgoal else mkgoal->skgoal;
m kgoal->m kxgoal;endif;
[]->scrshell;
8 rules(Jcr8 hell,mcrshell);
sactsO;
enddefine;

302

*** PLAY.p (7 of 7) ***
;;; Perfect knowledge iB passed back to each robot and a simulation then
;;; follows.

define resetsr;
nl(3);
npr('Super R obot...');
"Super"->zpstart;
smergeO;
scrshell->mcrshell;
scrshell->jcrshell;
sksee->jksee;
sksee->mksee;
zecontrol->mecontrol;zecontrol->jecontrol;
zejoint->mejoint;zejoint->]ejolnt;
zenext->menext;zenext->jenext;
zeplace->meplace;zeplace->jeplace;
zeagain->meagain;zeagain->jeagaln;
enddefine;

define sgoO;
resetl 0 ;resetsr();1 ->count;
zaenterl ("zrbasic".4, [failed));
zecontrol->jecontrol;
nl(3);.prw;splay0;
enddefine;

303

*** P R IN T .p (1 of 2) * **

Various functions used to print out the state of the program (e.g.
zoknow prints out a robots world model). (Power 1974, p317-318)

define zoplead (x);
tl(tl(zwplead(x))) ->x;
if length(x)=3 then [%hd(x),hd(tl(x)),zkme,hd(tl(tl(x)))%] else x endif;
enddefine;

;;; Prints states of programs

define zosp;
nl(1);8 p(length(tl(zecontrol))*2);
enddefine;

define zobug;
if pro then zospO; pr(zatake(place));prs(' called by ');pr(zkme); endif;
enddefine;

define zoyn(x);
if x=1 or x=true then "yes" elseif x= 0 or x=false then "no" else undef endif;
enddefine;

define zoknowO;
vars x,y;
nl(2); prs('*** what ');pr(zkme);pr8 (’ knows ***');
nl(2); prsfa wortd');nl(2);prs(' 1 . position of objects');
nl(1); zkworld->x;
while ispair(x) do nl(1); sp(3);pr(hd(x));prs(': ');pr(hd(tl(x)));
prs(': ');pr(hd(tl(tl(x))));tl(t!(tl(x)))->x;
endwhile;
nl(2);prs(' 2 .consequences of events');nl(1);zkrule8 ->x;
while ispair(x) do nl(1);sp(3);pr(hd(tl(suc(hd(x)tevt))));pr8(,:');nl(1);
»P(2);
if 8 uc(hd(x),re8)=[undef] then prs(' undef) else write(zwwrule(hd(x)))
endif; tl(x)->x;
endwhile;
nl(2); prs('b. ,);pr(zkyou);nl(2);prs(’ 1 . goal:');
if null(zkxgoal) then prs(' undef) else write(zoplead(zkxgoal)) endif;
nt(2); prs(' 2 . range of actions');nl(1); zcacts->x;
while i3 pair(x) do nl(1);sp(3);pr(hd(x));prs(': ');
pr(zoyn(suc(zkxacts, hd(x)))); tl(x)->x;
endwhile;
nl(2);prs(' 3. knowledge of object positions');nl(1);
zkxsee->x;
while ispair(x) do nl(1); sp(3); pr(hd(x)); prsf: ');
pr(zoyn(hd(tl(x))));tl(tl(x))->x;
endwhile;
nl(2);prs(' 4. beliefs about consequences of events');
nl(1);zkxrules->x;nll->y;
while ispair(x)
do nl(1);8p(3);hd(ti(suc(hd(x),evt)))::y->y; pr(hd(y));prs(';');
nl(1);sp(2);write(zwwrule(hd(x)));tl(x)->x;
endwhile;zcacts->x;
while ispair(x)
do if memb(hd(x),y) then else nl(1);sp(3);pr(hd(x));prs(':');nl(1);
8p(3);pr(undef); endif;tl(x)->x;
endw hile;nl(2) ;p rs ('** ** ** ** ** ** ** ** ** ** ** ** ** ** *** ** * ');n l(2);
enddefine;

304

* ** P R IN T .p (2 of 2) ***

define zoplan;
prs('*** ');pr(zkme);prs('s plan ***');
nl(1);pr8 ('goal8 involved');pra(zpgoal);
nl(1);pr8 ('8 ubgoal8 of each goal');pra(zptree);
nl(1);pr8 ('actor8 responsible');pra(zpactor);
nl(1);pr8 ('8tate of each goal');pra(zpstate);
n l(1) ; prs ('* ') ; n l(1);
enddefine;

define zocont;
vars x;
prs('*** ');pr(zkme);pr8 ('s control structure ***');
rev(zecontrol)->x;
while i8 palr(x) do prc(hd(x));tl(x)->x; endwhile;
p rs C ** ') ;n l(1);
enddefine;

define zomind;
nl(4);
prs('*** current state of ');pr(zkme);prs('s mind ***');
zoknowO ;zoplanO ;zocontO;
enddefine;

define zostart;
nl(2); prs(’*** what ');pr(zkme);prs(' capabilities are ***');
nl(2);prsC1. Goal:');
if null(zkgoal) or zkgoal=[none] then prs(' None') else write(zoplead(zkgoal)) endif;
nl(2);pr8('2. Position of objects:1);
nl(1);.zkprep; .zklook;zkworld->x;
while ispair(x) do sp(3);pr(hd(x));prs(': ');pr(hd(tl(x)));prs(': ');
pr(hd(tl(tl(x))));pr(',');
tl(tl(tl(x)))->x;
endwhile;
nl(2);prs('3. Consequences of event8:');nl(1);zcrshell->x;
while ispair(x) do nl(1);sp(3);pr(hd(tl(suc(hd(x),evt))));prs(':');nl(1);
sp(2);
if 8 uc(hd(x),res)=[undef] then prs(' undef') else write(zwwrule(hd(x)))
endif; tl(x)->x;
endwhile;
nl(2); prs('4. Range of actions:');nl(1); zcacts->x;
while ispair(x) do sp(3);pr(hd(x));prs(': ');
if member(hd(x),zkact8) then pr('Yes');else pr('No');endif;pr(','); tl(x)->x;
endwhile;
nl(3);
enddefine;

305

Appendix 6
The following modificatiens perferm the Monte Carlo simulation.

306

* * * exhaustivetest .p (1 o f 3) * * *

;;; The following modifications perform the Monte_Cario simulation.
;;; To execute type: "
;;; jglbalO;

vars glbalact8 ,glbalsee,glbalspeed,glbalrule,file8 :

^Al.daf 'A2.daf'A3.dat1 'A4.dat1 'A5.dat' 'A6 .dat'
'A7.daf 'AS.daf 'A9.dat* 'A10.dat1 'A11 .dat1
'A12.dat' 'A13.dat1 'A14.daf
'A15.dat' 'A16.dat1 'A17.dat1 A18.daf
'A19.dat' 'A20.dat' 'A21.dat' 'A22.dat' 'A23.dat' 'A24.dat'
'A25.dat' 'A26.dat1 'A27.daf 'A28.daf
'A29.dat' 'A30.dat' 'A31.dat' 'A32.dat' 'A33.dat' 'A34.dat'
'A35.dat' 'A36.dat1 ,A37.dat‘ 'A38.dat'
'A39.dat' 'A40.dat' 'A41.dat' 'A42.dat' 'A43.dat' 'A44.dat1
'A45.dat' 'A46.dat1 'A47.daf 'A48.dat1
’A49.dat’ 'A50.dat' 'A51.dat' 'A52.dat' 'A53.dat' 'A54.dat'
'A55.dat1->flles;
vars cr If;
cons_with consstring {% 13 %} -> cr;
cons_with consstring {% 10 %} -> If;
lib datafile;
lib filellstsin;
[move push slide][move]]->glbalacts;
[door bolt]Q]->glbalsee;
3 1]->glbalspeed;

evtfrobot slldelslt[any]res[undef]]
evtfrobot pushjsftrbolt up]res[door]]
evt[robot move]sit[door open]res[robot]]

evtjrobot slidejsit[any|res[undefl]
evtfrobot pushjsmanyjrestundef]]
evtfrobot move]sit[door open]res[robot]]

]->glbalrule;

define Jglbal;
vars xx,ww,yy,zz,x1 ,w1 ,y1,z1 ,cntlfilecnt,tmpout,tmp2 out,writeout,write2 outt
dd,uttlist,utterancecnt,actioncnt,interruptloncnt,waitcnt,mcpcnt,Jcpcntlmskill8 ,jskill8 ;
nprfhere1);
0->cnt;0->filecnt;[]->tmpout;D->tmp2out;n->writeout;[]->write2out;

f]->jkacts;n->jksee;n->jspeed;Q->jcrshell;
or xx in glbalact8 do;

xx->jkacts;
for yy in glbalsee do;[John A'yy]->jksee;
for ww in glbalrule do;ww->Jcrsnell;
for zz In glbalspeed do;zz->Jspeed;

(|->mkacts;[]->mksee;D->mspeed;D->mcrshell;
or x1 in glbalacts do;x1->mkacts;

for y1 In glbabee do;[Mary AAy1]->mksee;
forwl In glbalrule do;w1->mcrshell;
for z1 in glbalspeed do; z1->mspeed;

cnt+1 ->cnt;if cnt < 1 then goto skip endif;
npr(cnt) ;fllecnt+ 1 ->filecnt;
if filecnt=5 then npr('...');write2oiit->datafiie(popfolder<>'Power(V.5.9):,<>hd(files));
prfWriting I);pr(cnt-filecnt);pr('-,);pr(cnt-1);pr(recstofile 'Jinprfpopfoldero'PowerO/.S.OJi'ohd(files));
tl(files)->Tiles;D->writeout;[]->write2out;0->filecnt;
endif;
0 ->)skills;0 ->mskiils;
if sucfhdftl(Jcrshell)1,res)= [undef] then jskills->jskills else 1+jskills-> is kills endif;
if suc(hd(tl(mcrshelf)),res)= [undef] then mskills->mskilis else 1+mskills->mskills endif;
if Iength(jkact8)= 1 then jskills->Jskills else 1+|skills->jskills endif;
if length(mkacts)= 1 then mskills->mskills else 1-t-mskills->mskflls endif;
if length(jksee)= 1 then jskills->jskllls else 1-t-jskills->jskills endif;
if Iength(mk8ee)= 1 then m8 kills->mskills else 1+mskills-xnskills endif;
[Acnt (if suc(hd(tl(jcrshelO),res)= [undef] then "UNK" else “KNW" endif)

A(if suc(hd(tl(mcrshell)),res)= [undef] then "UNK" else "KNW" endiO
A(if length(jkacts)= 1 then IMPRACT" else "PRACT" endtf)
A(if iength(mkact8)= 1 then "IMPRACTelse "PRACT" endif)
A(if length(jksee)= 1 then "IMPERC" else "PERC" endif)
A(if length(mksee)= 1 then "IMPERC* else "PERC" endif)
A(if jspeed= 1 then "SLOW" else "FAST" endif)
A(if mspeed= 1 then "SLOW" ebe "FAST" endif) Ajskills Amskills

]->tmp2out;
reset2 0 ;

skip;
endfor;
endfor;
endfor;
endfor;

endfor;
endfor;
endfor;
endfor;
nl(1);pr(Total number of dialogues = ');npr(cntl;
write2out->datafile(popfolder<>,Power(V.5.9):<>hd(files));
prfWriting ,);pr(cnt-rilecnt);pr(,-,);pr(cnt-1);pr(recstofite l);npr(popfolder<>,Power(\/.5.9):,<>hd(files));
tl(nles)->files;D->writeout;Q->write2out;0->filecnt;0->cnt;
enddefine;

307

*** exhaustivetest .p (2 of 3) ***
define reset2 ;
John,John->jkme->mkyou;
Mary, Mary->m kme->lkyou;
[door openl->jkqoal; [none]->mkgoal;
[John out Mary in bofc up door snut]->wobjects;
nil->wmes8 age;
1 ->count;300->stop;false->prw1 ;false->pro;

fal8e->ppro;0 ->mt; 0 ->jt;
J]->mptree;0->mp8tate;O->mpgoal;O->mpcurr;
Q->Unexpected events;

1->jptree;n->jp8larte;0 ->jpgoal;[j->jpcurr;
•>zptree|Q->zpstate;[]->zpgoal;Q->zpcurr;

->zecontrol;
->macount;1 ->jacount;

if ppio=tme then [1 2 3 4 5 6 7 8 9 10 11 12 13]->ppro;else []->ppro;endif;
zunexpected_event->munexpected_event;zunexpected_event->junexpected_event;
zecontrol->mecontrol;zecontrol->jecontrol; ~
zejoint->mejoint;zejoint->jejoint;zehold->jehold;zehold->mehold;
ze next->m e next;ze next->Je next;
zeplace->meplace;zeplace->Jeplace;
zeagain->meagain;zeagain->Jeagain;
0 ->waltcnt;0 ->utterancecnt;0 ->interruptioncnt;0 ->actioncnt;[[x x xj]->uttiist;
0 ->mcpcnt;0 ->jcpcnt;
replay20;[AAtmp2out Afif rwt(member(last(tmp2out),[CIRCULAR SUCCESSFUL UNSUCCESSFUL])) then
■INCOMPLETE" endiQ Autterancecnt Ainterruptioncnt Aactioncnt Awaitcnt
Ajcpcnt Amcpcnt A(rev(uttlist))]->tmp2out;[AAwnte2out Atmp2out]->write2 out;
enddeflne;
define replay2 ;
vars g;
jawakeQ;.zeprep;.zrmaingl;.zrprep;.zrprep1 ;zaenter1 ("zrbasic",4,[failed]);;
jasleep0;mawake0;.zeprep;.zrmaingl;.zrprep;.zrprep1 ;zaenter1 ("zrfoasrc’ ,4, [failed]);
masleepO;
if erase(count//2) > 0 then goto John else goto maty endif;

John:
zpgoaltype,zpcurr.suc->gt;zpgoal,zpcurr.suc->g;
if newcircular(zpgoal,zpgoaltype,g,gt)=true then return(
tmp2out<>[CIRCULAR]->tmp2out,
prfcircular plan detetected...Dialogue ').npr(cnt));
endif;
if count>stop then retum(nl(2)) end if ;true->)e again;
If ispair(Unexpected events) and count>hd(Unexpected events)
then if zceventfhd(t1(Unexpected_events))) then zpdo(h3(tl(Unexpected events)));
else wsub(hd(ha(ti(Unexpected events))),nd(tl(hd(tl(Unexpected_events)y)));.prw;
endif;
tl(tl(Unexpected_events))->Unexpected events;true->munexpected_event;true->junexpected_event;
endif;
JawakeO;
repeat forever
if zaentry(8)=[achieved] then return(tmp2outo[SUCCESSFUL]->tmp2out);endif;
if zptree/=nil then
if fsucfzpstate.hdfsucfzptree.O)))) = 'achieved" then return(tmp2out<>[SUCCESSFUL]->tmp2out);endif;
if (8uc(zp8tate,hd(suc(zptree,0)))) = "failed" then return(tmp2outo[UNSUCCESSFUL]->tmp2out);endif;
endif;

.zearouse;
1+Jt->jt;

If Jt=Jspeed then 0->jt;false->zeagain;endif;
quitunless(zeagain or zeagain=1);
end repeat;
jasleepO;
if null(wmessage)
then goto mary;
endif;

if hd(wmessage)=’- ' then waitcnt-i-1 ->waitcnt endif;
1+count->count;utterancecnt+1 ->utterancecnt;
if hd(tl(hd(uttli8t)))='John' then interruptioncnt+1 ->interruptioncnt;endif;

{% (count-1), 'John',' i^Jowmessage-xid;
%dd%]outtlist->uttlist;

;
mary;
zpgoattype,zpcurr.suc->gt;zpgoal,zpcurr.suc->g;
if newcircular(zpgoal,zpgoaltype,g,gt)=true then return(tmp2outo[CIRCULAR]->tmp2ouL
pr('circular plan detetected...Dialogue ^.np^cnt));
endif;
if courrt>stop then retum(nl(3)) endif;true->meagain;mawakeO;
repeat forever
if zaentry(8)=[achieved] then return(tmp2out<>[SUCCESSFUL]->tmp2out);endif;
if zptree/=nil then
if fsucfzpstate.hdfsucfzptree.O)))) = "achieved" then return(tmp2outo[SUCCESSFUL]->tmp2out);endif;
if (suc(zpstate,hd(8uc(zptree,0)))) = "failed" then return(tmp2outo[UNSUCCESSFUL]->tmp2out);endlf;
endif;

.zearouse;1+mt->mt; if mt=mspeed then 0 ->mt;fa!se->zeagain;endif;
quitunless(zeagain or zeagain=1);
end repeat;
masleepO;
if null(wmessage)
then goto john; endif;

if hd(wmessage)="-"then waitcnt+1 ->waRcnt endif;
1+count->count;utterancecnt+1 ->utterancecnt;

if hdftl(hd(uttlist)))='Mary' then
interruptioncnt-i-1->interruptioncnt;endif;[%(count-1),'Mary1,' :'%]<>wmessage->dd;[%dd%Jouttlist->uttlist;

false->prw1 ; goto john;
enddeflne;

308

*** exhaustivetest .p (3 of 3) ***
define zpdo (e);
actioncnt+ 1 ->actloncnt;
hd(e);hd(tl(e))->e;
If e=push then wpushQ
elseif esslide then wslideO
elseif e=move then wmoveO
endif;
enddeflne;

define zegameO;
vars c.n,mine,entry,made,message,tests;
begin:
zatake(place)->n;
suc(valof(zatake(name)),n)->c;
if c=undef then zeexitO endif;
(hd(c)="**)->entry;
if entry or entry=1 then (ispair(zaentry(n)))->made endif;
fhdftl(c))=zatake(colour))->mine;
if mine or mine=1
then if entry or entry=1

then if made or made=1 then goto advance else goto perform endif;
else goto perform
endif;

else if entry or entry=1
then if made or made=1 then goto advance else goto read endif;
else goto advance
endif;

endif;
perform:
zobugO;
if n=1 and zatake(colour)=white then
if zkme=’John" then Jcpcnt+1->jcpcnt endif;
if zkmes'Mary* then mcpcnt+1->mcpcnt endif;
endif;
popval([%a.",hd(tl(tl(c)))%]); return;
advance:
zaput(place,n+1); return;
read:
rev(tl(rev(tl(U(tl(tl(c)))))))->te8ts;
zeread (tests)->m essage;
if null(message) then goto swap;
elseif me8saae=[inapt] then goto moan ;
else return(if zctgame()> 0 then zaput(expectrepiy,false) endif,zaenter(message));
endif;
moan:
prf moaning... message = *); npr(message);
zeplayfjump",undef); return
swap:
zeposta-]);
enddeflne;

define newcircular(t,tt,g,gt);
vars c;0 ->c;
while ispair(t) do
if g=’undef* then [undef]->g endif;
if gt='undeP then [undef]->gt endif;
if (f%gt%l<>g=[%hd(tl(tt))%l<>hd(tl(t))) then c+1 ->c; endif;
tl(tfft))->t;tl(tl(tt))->tt;
endwhile;
if c>1 then retum(true) else return(false);endif;
enddeflne;

define prw;
true->prw1 ;
;;;prs((State of the world is now ^prfwobje^iprsO1);
;;;if pro then nl(1) endif;nl(1);
enddefine;

GLASGOW
UNIVERSITY
LIBRARY

309

