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Abstract:
Following Austin’s work, some theories have attempted to 

develop the idea that utterances can be understood as actions. In 

Artificial Intelligence there has been a body of work trying to do 

this in terms of joint planning. Previous work has been of two 

kinds: building up from the basic units of utterances and speech 

acts, or building down from external goals and trying to model 

connected sequences of utterances i.e. conversation. This thesis 

extends the latter tradition.

After an initial empirical investigation, two new claims are 

made. Firstly the computer program, listed in the appendix, shows 

how time slicing changes dialogue outcome in interesting ways. 

Secondly an exhaustive planning framework for Power’s robot 

world provides agents with better conversational skills than 

those reported so far.

Finally the thesis discusses the drawbacks encountered in 

the em pirical investigation and proposes a new basic unit, 

NEOTELL, a single generic unit of mutual agreement out of which 

whole conversations can be formed and an agents external goals 

achieved.

xvii



Chapter 1. 

Introduction.
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1.0 Introduction.

The following thesis stems from the insight due to 

Austin (1 9 6 2 ,1 9 7 0 ) that u tterances are actions and not 

propositions. W ithin Artific ial In te lligence this has led to 

implementing, Power (1979), a theory of joint planning on a 

computer in such a way that it strives to understand how 

action sequences are strung together. Finally it should also be 

embodied within a theory of purposeful communication as 

whole.

Figure 1.1 represents four exam ples of in teraction  

b e tw e e n  two ro b o ts /h u m a n s . On the le ft s ide  is a 

conversational exchange and on the right side the couple 

interact by touch only. In the first pair of exchanges the

1. John: Mary

2. Mary: Yes

OR
AA

A A
Figure 1.1 The equivalent action for a call bv name is a tap on 
the shoulder.
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in itia tion  involves a “sum m ons”: e ith er John calls  Mary  

(c o n ve rs a tio n a l) or he taps her on the shoulder (non- 

conversational). Similarly in the second pair Mary responds 

with a “Yes” (conversational) or by nodding her head (non- 

conversational). In Figure 1.2 both robots/humans initiate a 

summons either by “a call by name” or a “tap on the shoulder” 

simultaneously and I am concerned with the problem of how 

agents coordinate such communications.

Figure 1.2 Agents Mary and John speak at the same time.

These are crystal clear examples of how communication can 

occur through either language or action. Since they are the 

simplest I shall be studying them rigorously until a theory 

evolves that provides the foundation necessary to build a 

complete theory of conversation.

Although throughout the thesis I shall be in the main 

considering robot dialogue simulation. I am interested in

1. John. Mary ... 2. Mary. John

3



Figure 1.3 Human purposeful dialogue, 

human purposeful dialogue similar to that il lustrated in f igure

1.3 above. I shall be trying to compare this dialogue with the 

dialogue generated using a computer simulation.

I am not interested in purposeful monologue as

Figure 1.4 Human purposeful monologue, 

i l lustrated in f igure 1.4 above. Nor one-sided dialogue as 

il lustrated in Weizenbaum’s (1966) simulation below.

4



1. Human: Men are all alike.
2. Computer: In what way?
3. Human: They're always bugging us about something or other.
4. Computer: Can you think of a specific example?
5. Human: Well, my boyfriend made me come here.
6. Computer: Your boyfriend made you come here.?
7. Human: He says I'm depressed much of the time.
8. Computer: I am sorry to hear you are depressed.
9. Human: It's true. I'm unhappy.
10. Computer: Do you think coming here will help you not to be unhappy?
11. Human: I need some help, that much seems certain.
12. Computer: What would ft mean to you If you got some help?

Figure 1.5 ELIZA. Weizenbaum (1966). Connectedness 
in terms of minimal understanding.

Similarly, I am not going to be concerned with sub-dialogues as 

illustrated with the Winograd (1972) SHRDLU program below.

' A 
l 3  tB *

Put the small block 
on the big block. 
>Okay.

2  1  
3  *

Is the big block 
under the small 
block?
>Yes.

3 Put the pyramid 
on the big block. 
>Okay.

J 1

4
Did you touch any 
block before you 
put the pyramid 
on the big block? 
>Yes. The small 
one.

5
Can the table pick 
up blocks?
>No.
Put the pyramid 
on the table. 
>Okay.

6

JL

Figure 1.6 Connectedness. Winograd (19721. 
Connectedness in terms of action.

Finally, before we go any further I should also make it

5



John

Figure 1.7 Natural language generation.

quite clear that we are not going to be concerned with the 

above dialogue illustrated in figure 1.7.

1.1 Communication not language.

The f i r s t  q u e s t io n  I w ish  to c o n s id e r  is th a t  

communication can be expressed either through language or 

action and therefore a dialogue system must have both of these 

methods at its disposal. Without this feature the dialogue 

becom es d i s jo in t 1 (see also chapte r  3 for an in depth 

d iscuss ion  about other systems).  Next is the point that

1 That is to say the program has two different reasoning processes for similar 
problems. For example, in Power (1979), looking to see whether the bolt is up 
can be reasoned either within the physical planning algorithm or within a 
conversational exchange. There is nothing wrong with this except that in some 
instances (see also chapter 6) it makes it harder to provide a standard theory.

6



conversational coordination is a feature of dialogue as opposed 

to monologue. Thus I shall be concerned with the problem of 

whether or not the conversation succeeds as a whole rather 

than just in terms of its individual component utterances.

There is also the controversy of efficiency (saying just 

enough to communicate the purpose, e.g. “John, open the door now.") 

versus explicitness (saying everything that can be said e.g. 

“John, Could you please open the door when it is most convenient for you.”) that 

was first discussed by Searle (1969,1975) and Grice (1975) 

and more recently by (Power 1987, Stubbs 1986). In linguistic 

philosophy, this was discussed in terms of direct and indirect 

speech acts and the princip le  of exp ress ib ility . N atural 

conversation was considered as fulfilling the right balance 

between what is said and what can be assumed by following 

Grice’s maxim of quantity (see Stubbs 1986: p9).

I shall be adopting explicitness which encourages the 

idea that a computer model of dialogue must be able to say all 

that can be said before it is concerned with efficiency. Other 

systems treatment of this are dealt within the discussion of 

existing literature in chapter 3.

Then th ere  is the question of co h eren ce . How do 

utterances hang together? Hirst (1981) studied the problem in 

relation to anaphoric reference. Garrod and Anderson (1987)

7



1. Human: What does the box contain?
2. Computer: The blue pyramid and the blue block.
3. Human: What is the pyramid supported by?
4. Computer: The box.
5. Human: How many blocks are not in the box?
6. Computer: Six of them.
7. Human: Can the table pick up blocks?
8. Computer: No.
9. Human: Can a pyramid support a pyramid?
10. Computer: I don't know.
11. Human: Will you please stack both of the red blocks and either 

a green cube or a pyramid?
12. Computer: Okay.
13. Human: Had you touched any pyramid before you put the 

green one on the little cube?
14. Computer: Yes, the green one.
15. Human: When did you pick it up?
16. Computer: While I was stacking up the red cube, a large red 

block and a large green cube.

Figure 1.8 SHRDLU. Winoarad (1972). Connectedness 
in terms of pronoun reference.

studied this problem in terms of semantic coordination and 

Winograd (1972), see figure 1.8, discussed this in terms of 

pronoun reference. In this thesis I shall be studying coherence 

by considering conversation as though it were coherent action. 

The first stages of this involve considering a lte rn a tiv e  

communicative methods for achieving the same goal. On the one 

hand simple coordinated action sequences and on the other by 

action sequences that are coordinated through discussion.

This work then follows on from Power (1979 ), who 

modelled a kind of conversation that made use of a physical 

settin g . In his system , the con versatio n a l and physical 

mechanisms were, in the main, detached from one another and 

in itia lly  I shall be concerned with how to im prove the

8



coordination of both these processes. As a starting point, I 

shall consider the programs of Power (1979) and Houghton 

(1986). I shall make no contribution to “Artificial Intelligence  

Joint planning” nor any contribution to a kind of “planning 

a lg o r ith m ” but in s te a d  I s h a ll try  to a p p ly  A r t if ic ia l  

Intelligence planning to the development of a theory about 

conversational skills.

This thesis will be concerning itself with the problem of 

the coordination of semantically planned sentences as opposed 

to problems of syntax or natural dialogue generation. Finally I 

shall be concerned with the problem of what constitutes a unit 

in conversation. A number of definitions have been offered so 

far: Power in terms of a conversational procedure and Houghton 

in term s of an In teractional fram e. These replaced older 

attempts such as the adjacency pair, Sacks, Schegloff and 

J e ffe rs o n  (1 9 7 4 ) , and the  speech  act, S e a r le  (1 9 6 9 ) ,  

definitions.

1.2 Summary storv.

The first point to note is that there are physical and 

conversational equivalents that allow us to express the same 

thing (see the implementation discussion in chapter 5 and the 

design chapter 6). For example, in figure 1.9, if you want to

9



(State of the world is
[door shut, bolt up, John out, Mary in])

1. John: Will you help me get in?
2. Mary: By all means.
3. John: I suggest we get the door open and then I move.
4. Mary: All right.
5. Mary: How do you get the door open?
6. John: I don't know.
7. Mary: Shall we do an experiment?
8. John: Okay.
9. Mary: I suggest I push the door.
10. John: All right.

(State of the world is
[door open, bolt up, John out, Mary in])

11. Mary: I have pushed the door.
12. John: I see.
13. Mary: The door has changed position.
14. John: I see.
15. Mary: The door is now open.
16. John: Right.
17. Mary: Pushing the door causes the door to change position,

when you are in.
18. John: I see.

Figure 1.9 Simplified dialogue of SUPERPOWER (see 
program listing given in the appendix) illustrating 
experimental joint planning in which exhausting all 
permutations bv trial and error allows the goal to be 
achieved.

know how to do something you can either ask for advice or 

experiment until you find the answer.

The next problem to address is how agents assess the 

new situation just after an action has occurred (see the  

dialogue simulation of time slicing discussed in chapter 4 and 

the section on Unexpected planning in chapter 5). For example, 

in Power (1979) fig 1.10, this is embedded within the
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DOOR SHUT

JOHH OUT

& i f
A p ABOLT

UP

1. John: Mary
2. Mary: Yes.
3. John: I want to suggest a goal.
4. Mary: Go ahead.
5. John: Will you help me get In?
6. Mary: By ail means.
7. John: I suggest we get the door open and then

(State of the world is now 
[John out, Mary in, bolt up, door shut])

11. Mary: | have pushed the door.
12. John: | see.
13. Mary: The door has changed position.
14. John: Yes.
15. Mary: The door Is now open.
16. John: Right

(State of the world is now
[door open, bolt up, John in, Mary in])

6. Mary: All right.
9. John: I suggest that you push the door.
10 Mary: All right.

(State of the world Is now 
[ door open, bolt up, John out, Mary in])

I move. 17. John: | have moved.
18. Mary: | see.
19. John: | have changed position.
20. Mary: Yes.
21. John: | am now in.
22. Mary: Right

Figure 1.10 Power's robot world. Simplified dialogue 
illustrating classical joint planning techniques for 
achieving a single physical goal, without utterance 
priming, adapted from Power (1979).

conversational procedure. In a reactive environment they must

also coordinate what they learn. Next is the problem of how one

robot responds to the surprises that are thrown on it. The

problem of reacting and responding to what actually happened

versus what to expect. W hat counts is the combination of

strong expectation versus surprises. The time slicing (see the

M onte Carlo dialogue sim ulation discussed in chapter 4)

illustration, figure 1.11 below, demonstrates robustness

for conversation. This involves the problem of coordinating a

11



discussion in which both ag en ts  are  a llow ed  to th ink  

simultaneously. As a first step a definition of an increment of 

program code is required, since at any stage a conversational

Dialogue A Dialogue B
Input variation: Input variation:
John Slow Mary Fast John Fast Mary slow

1. John: Mary. 1. John: Mary.
2. Mary: Yes. 2. Mary: Yes.

5. John: Will you help me get the door open? 5. John: Will you help me get the door open?
6. Mary: By all means. 6. Mary: By all means.

9. Mary: I suggest that I push the door. 13. John: Can you push the door?
10. John: Mary. 14. Mary: Yes.
11. Mary: Yes.

19. John: Is the bolt up?
14. John: Is the bolt up? 20. Mary: Yes.
15. Mary: Yes.

21. John: I suggest that you push the door.
16. John: All right. 22. Mary: All right.

(State of the world is now (State of the world is now
[John out, Mary in, bolt up, door open]) [John out, Mary in, bolt up, door opt

Figure 1.11 Time slicing dialogue from a run of the 
program SUPERPOWER, listed in the appendix, illustrating 
a feature of continuity (i.e. the relative speeds of thought 
of the robots  ̂ that can be explained in terms of the 
program's dynamic (i.e the alternative dialogues A and B) 
and static (i.e. the listing of the program SUPERPOWER in 
the appendix^ structural representations.

program needs to be able to critically reason about itself. Next

I have extended the way in which robots can use knowledge

through the use of testing (see section on Instrum ental

planning discussed in chapter 5). Thus if an agent and partner

do not know something they can act out a test in order to infer

12



what happens as a consequence of such a test2 .

Finally, there is the general issue about incorporating 

different levels of goals that are brought to the conversation 

(see the empirical investigation discussed in chapter 2). In 

brief, this theory involves defining four levels. At the top 

level 1 are the goals external to the conversation, at the next 

level 2 are the topics or sub-goals that are achievable through 

conversation, at level 3 is the unit of a coordinated exchange 

of utterances and finally at level 4 is the coordination of the 

mode of communication. In order to explore this notion I have

Could you show me 
how to do Double­

sided photocopying ?

By all means^

Figure 1.12. The double-sided photocopying task 
(conversation bv two humans).

incorporated an experiment to see whether subjects could be 

trained to adhere to this theory of levels. In doing so I have 

incorporated two tasks (il lustrated in f igures 1.12 and 1.13) 

that require cooperation in order to achieve the main goal. The

2 In answer to a direct question such as “Is the bolt up?” there are four main 
alternatives (1) Yes (2) No (3) I don’t know (as mentioned here and discussed in 
detail in chapter 5) (4) A meta-action response such as pushing the door 
(section 6.3.7).
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conclusions about these cooperative tasks also remind us of 

the d i f fe re n ce  be tween na tu ra l  c o n ve rsa t io n  and those 

simulated by programs. In particular some of the data could be 

i n te rp re te d  as th ro w in g  d o u b t  as to w h e th e r  hum an 

communications coordinate their activity in

the way that the Artificial Intell igence joint planning theory 

currently proposes. This fai lure suggests that we should be 

looking for indirect coordinat ion in terms of constrain ts. I 

shall be discussing this issue, together with a corresponding 

Artif icial Intelligence solution, at the end of the thesis.

Could you push 
the door? /

By all 
means

Hidden nail, initially unseen 
by both participants.

Figure 1.13 The task of getting through a closed 
door (conversation bv humans, one blindfolded).
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Chapter 2 .

An empirical investigation. Goals in conversation:

lent and a measure of natui

3 The theory of levels discussed in this chapter is explained in Draper, Oatley and 
Garrod (1987). A version of this chapter was submitted to Language and Cognitive 
Processes under the same title cited also here as Oatley, Draper and Button (in press). 
The main aim of including it here is to provide the reader with some insight into the 
problem of independently assessing naturalness in computer dialogue. It builds on the 
work of, for example, Hobbs and Evans (1980) since I indicate an explicit rather than 
subjective assessment of Al planning in relation to human dialogue transcripts. That is to 
say, it compares human dialogue with Al theory in a statistical fashion as opposed to a 
direct philosophical interpretation as they and others (e.g. Suchman 1987) did.

15



2.0 Introduction.

D e m o n s tra t in g  re la t io n s h ip s  b e tw e e n  e m p ir ic a l ly  

ob served  human perform ance  and psycholog ica l theory  

instantiated in artificial intelligence programs has always been 

problematic. Similarly, what actually occurs when people talk 

with one another has not always been closely reflected in the 

preoccupations of formal linguistics.

In this chapter I hope to contribute to a reduction of both 

these shortcomings by relating human conversation to a 

program of Power (1979) that simulates conversation. I do this 

firstly by offering some clarifying commentary on Power's work 

and its relation to other research on conversation and secondly 

by proposing that purposeful conversation generally can be 

understood in terms of a hierarchy of goals. Finally I describe 

an experim ent in which people judged a transcrip t of a 

conversation using categories derived from my theory but which 

led to an outcome that I had not anticipated.

Three important components are commonly referred to in 

discussing the structure of conversation (a general account of 

other aspects to these components can be found in Clark 

(1985)).

The first is work on speech acts, in which it is claimed 

that utterances have an element of purpose. This research was
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initiated by Austin (1962) and Searle  (1969) continued to 

develop this idea.

The second is Grice's (1957 ,1968 ,1975) proposal that 

conversation is coherent and based on a co-operative principle. 

Grice's maxims state that, when conversing, people must say 

about the right amount for the purpose in hand, be truthful, be 

re levant and be clear. Th ese  broad rules help to shape  

conversation. If they are not followed the conversation becomes 

tedious, or unacceptable.

The third is the idea of Sacks, Schegloff and Jefferson 

(1974), that in a conversation each person takes turns to speak. 

This has led to work on what a turn might consist of (e.g. Clark 

and Schaefer, 1987). Questions include how conversants yield 

their turn to the other person, how the end of a turn may be 

recognised, and so on.

Influential though all these proposals have been, each 

takes us only some of the way towards understanding how 

conversation is organised. So the proposal of Austin and Searle 

that utterances are purposeful is helpful, but it leaves us with 

an image of isolated speakers assuming that hearers have 

known prop erties  and th a t they  can be acted  upon  

instrumentally. Grice's maxims indicate general rules about how 

to make an utterance useful, that is to say effec tive  at
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achieving communicative goals, but they are stated in a very 

general way. Furthermore neither the theory of speech acts nor 

Grice’s maxims tell us anything about how speakers co-operate, 

or what the structure is that holds a set of utterances together 

in a con versa tion . Sacks et al. identify  the a lte rn a tin g  

contributions of participants but say nothing about what goals 

these contributions serve.

A partial solution to all these problems was offered by 

Power (1979) in an Artificial Intelligence program. He proposed 

that purposeful conversation is based on joint planning. In other 

words, when conversation is purposeful it is based on the 

construction of a plan, of which both speakers hold a copy. 

Speakers offer suggestions for construction or repair of any 

component of a developing plan. In this paradigm, conversation 

is a progressive sequence of moves, each establishing an 

increment of agreement in the process of constructing the plan, 

and with each person enacting those parts of the joint plan that 

can be performed during the conversation.

Power's decisive innovation was to conceptualise the 

atomic element of conversation not as a turn, not as a single 

utterance, and not as an act by which one person affects  

another, but as a set of utterances distributed between the 

conversants , each of which estab lishes an increm ent of
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agreement between them. Typically the heart of a unit is a pair 

of utterances, such as a proposal and an assent, a request and a 

reply, an announcement and an acknowledgement, and so on. The 

proposal thus combines a generalisation of the structural notion 

of two turns in an adjacency pair, the notion of utterances as 

purposeful actions aimed at achieving conversational goals, and 

a focus on co-operation, mutuality and agreement.

Power's proposal is, as it were, structurally deeper than 

the idea of taking turns. It is that if conversation achieves a 

purpose, i.e. an overall goal, then it can be understood in terms 

of the procedures by which sub-goals are achieved. Unlike 

planning by a single agent, however, sub-goals are achieved 

jointly. The structural notion of turn-taking thus becomes  

subordinated to the functional idea of describing how a purpose 

that can affect both conversants may be accomplished, when, in 

general, neither participant can accomplish this purpose alone. 

So one person may not know something. He or she may therefore 

ask the other, who may co-operate by providing an answer or by 

letting the first know that he or she cannot help. In such an 

exchange, what is accomplished is that the first speaker's goal 

of acquiring some knowledge is made explicit. At the same time 

the first speaker's goal is accepted by the other who may then 

help to fulfil it, or say that he or she cannot help. In completing
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the joint procedure the two conversants achieve a small 

increment of agreement between them.

The basic unit of conversation can, as Power suggested, 

best be called a 'conversational procedure'. The name draws on 

the computational idea of a procedure which is a coherent set of 

actions that, when invoked with the right preconditions, 

delivers a result which is the goal of the procedure. The  

qualifier 'conversational' indicates that the result is achieved 

jointly, and by means of speaking. A conversational procedure is 

co-operative. It requires two agents to accomplish it. One 

initiates and the other participates. The result achieved is an 

increment of agreement between the two participants in the 

conversation.

The program proceeds by having one or both of the agents 

pursue a specific goal within the context of initial conditions 

and beliefs. As an example, one agent might be given the goal of 

getting into a room, i.e. changing its state from Out to In, but be 

unable to change the state of the bolt because it is on the other 

side of the door. The agents then converse to negotiate goals, 

construct plans, exchange knowledge and act. A recognisable 

conversation arises naturally out of attempts by the agents to 

co-operate in a mutual plan. More fundamentally, basing the 

conversation around the building of a jointly acceptable plan is
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the most natural way of motivating adherence to Grice's  

principle of co-operation.

This idea has been extended by Houghton (1986). He 

considered that conversation, rather than being simply a set of 

moves by the speaker and hearer, was a series of interaction 

frames, comprising an initiation, an addressee and a monitoring 

of the uptake of what was said. In each fram e there  is 

knowledge about the interaction type which helps both the 

speaker and the hearer know what is expected within the 

conversational procedure. So, for Houghton, the unit of 

c o n v e rs a t io n  is a c o n v e rs a t io n a l  p ro c e d u re  w ith in  an  

interaction frame which, as in Power, can best be described by 

the type of conversational goal that it needs to serve. In 

Houghton, if one agent needs to know something or get the other 

to do something then it finds the corresponding fram e to 

achieve it. What distinguishes Houghton from Power in this 

respect is that Power's agents do not reason about which 

conversational procedure to use or when it is appropriate (but 

see Cohen and Perrault 1979a,b), they just use it when needed 

and thus the meaning of a unit of conversation in terms of a 

conversational procedure is less clear. What is common to both 

definitions is that the effects of the exchange are analysed 

within the conversational procedure rather than as part of the
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main action cycle.

2.1 Levels of goals in conversation.

The theoretical proposal I wish to make is that Power's 

approach can be elaborated by structuring conversation in terms 

of a hierarchy of goals that the conversation achieves. My main 

suggestion is to distinguish between atomic conversational 

exchanges, and larger units that correspond to a topic. Power 

used conversational procedures of varying length for both of 

these.

My proposal is to make these levels of goals explicit, and 

to show how they are the basis for purposeful conversations 

generally. The levels of goals are as follows.

L e v e l  1. T o p  le v e l  g o a ls :  p u r p o s e s  o u t s i d e  t h e  

c o n versa tio n . When a conversation is purposeful, this means 

that participants have goals other than the conversation itself. 

The goals are the purposes they aim to achieve partly by means 

of the conversation. If any such external goals can be agreed, 

then these become top level goals of the conversation. In 

Power's case, such a goal might be getting one of the agents in 

through the c losed and bolted door. A part of many  

conversations, therefore, will be the negotiation of which goals
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are to be agreed as mutual. The Implication is that participants 

both join in the conversation to formulate plans that will 

achieve these goals. Thus in the simulation the agents might 

discuss whether they will jointly adopt the goal of getting 

agent John In.

Leve l 2. T o p ic  s u b -g o a ls .  The next lower level in a goal 

hierarchy concerns topics. Topic sub-goals emerge from the 

conversation through the initiation of one of the participants. A 

topic sub-goal is a component part of the overall plan tree, 

which can be initiated once a top-level goal has been agreed. It 

is defined in relation to the agreed external goal, and will be a 

means by which a step towards achieving it is attempted. If one 

agent were to suggest, for example, getting the door open, this 

would be an illustration of a level 2 sub-goal within the 

conversation.

Level 3. S u b -g o a ls :  m in im al in c re m e n ts  of a g re e m e n t.

At the next lower level is the atomic unit of conversation. It 

provides the functional basis for taking turns. This type of goal, 

then, is at the level in the goal hierarchy below the topic goals. 

I propose that a conversational procedure is the atomic unit 

because its result or goal is a minimal increment of agreement. 

Thus in a run of Power's program one agent may ask the other if 

it is In. The other replies: 'No'. Thus they accomplish a minimal
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increment of agreement about the state of the world. Sequences 

of such atomic conversational procedures are connected by 

means of the topic sub-goals. Each is initiated to construct 

parts of the plan tree dominated by a topic. Typically they occur 

in groups based on one topic at a time.

Level  4. Low es t  level  goa ls :  s h a r in g  the a i r w a v e s .

Whereas level 1 is about an external purpose, and levels 2 and 3 

are about the contents of the conversation, this lowest level 

goal is about co-operating to use the medium of communication. 

Most obviously, two people should aim not to speak at once, or 

neither will be able to understand the other. This goal is a 

generalisation of the idea of taking turns.

2.2 The categorisation procedure.

If this theory of the structure of conversation is correct, 

then I should be able to take  transcrip ts  of purposeful 

conversations and analyse them to identify goals at these  

different levels. In this chapter, I concentrate on minimum 

increments of agreement. If this is a valid concept, then the 

first step would be to identify what constitutes such an 

increment.

I will a lso re fer to c o n v e rs a t io n a l p ro ced u res  as 

'exchanges'. Broadly speaking they fall into the five groups
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shown below. The notation is as follows. The conversation  

involves just two participants, Speaker 1 who initiates the 

exchange, and Speaker 2 who participates in it. An utterance is 

something said by either speaker and it ends when the speaker 

stops or yields to the other. An exchange is a set of one or more 

utterances as indicated in square brackets [ ]. Here are the five 

groups, with examples.

(i) Utterance plus elision.

Speaker: [ Utterance — No effect ]

For example: [“Can you pick up some milk?” — ... ]. For Speaker 1, 

the lack of reply is the most ambiguous of responses. It may or 

may not mean that the opening utterance has been received, and 

may or may not mean that it will become part of a plan.

(ii) Utterance plus a change in the state of the world.

Speaker: [ Utterance — State change ]

Here the utterance itself produces a change in the state of the 

world as in the kind of example offered by Austin e.g. [“I 

pronounce you man and wife”]. More frequent examples also 

occur. “I promise to bring the book back tomorrow” has the 

effec t of changing the s tate  of the world by creating  a 

commitment.
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(iii) Utterance plus an action.

Speaker: [ Utterance — Action — State change ]

Here an utterance is followed by an action which in turn 

changes the world, as in [“Pass the salt please”] — followed by 

the action, and its effect.

(iv) Two or more utterances involving discussion of some piece 

of information.

Speaker 1: [ Utterance —

Speaker 2: Utterance ]

This is the most easily recognisable, and perhaps commonest 

kind. An utterance of Speaker 1 is followed by an utterance of 

Speaker 2, for instance: [“It's raining”. — “I'll be OK.”].

(v) Two or more utterances involving the discussion of the 

result of some old piece of information (see Power 1984).

Speaker 1: [[ Utterance —

Speaker 2: Utterance ]

Speaker 1: Utterance ]

In this kind of example embedding occurs, so that the opening 

utterance picks up a piece of information previously discussed,
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as in [[“So we won't go to that movie after all.” — “No”] — “All 

right then.”].

Although exchanges often relate back to previous parts of 

a dialogue, the idea of the minimal increment of mutual 

agreement indicates that utterances are not necessarily linked 

semantically to one another. In the example given for group (iv), 

no amount of semantic machinery could link 'I'll be OK' to 

Speaker 1 's utterance 'It's raining'. However, seen as an 

acceptance of a warning, or advice to take an umbrella out, 

Speaker 2's utterance delivers a perfectly acceptable result of 

a conversational procedure.

Like any procedure, conversational procedures are  

designed to exit with a result. Such results will be relevant to 

building or executing the mutual plan, which provides the  

linkages that hold the conversation together, and provides the 

basis for the coherence suggested by Grice's maxims.

As all increments are related to plan trees being built in 

the conversation, I can postulate that a small number of 

distinct categories of conversational procedure are possible, 

namely those that are relevant to planning. Conversational 

procedures achieve, as their result, an increment of agreement 

in one of the following components of planning. They relate 

either to Goals (G), Plans (P), Beliefs (B), or to what I call
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Conversational Housekeeping (H) which is usually a remark 

serving to draw attention to, or comment on the intelligibility 

of the conversation itself, thus keeping it from going astray. I 

also find that some utterances in human conversation do not, 

apparently, contribute to a Level 1 goal in any way. These are 

not covered by the theory I am advancing. I call these  

miscellaneous (M). Figure 2.1 gives the definitions of each of

Category (G) Goal. In exchanges concerning a goal, participants talk about what 
they would like to achieve, although without necessarily saying by what plans 
they are going to achieve it. A goal is a state of mind, an effect that people would 
like to see happen in the world or in their own mind or in the other person's mind. 
Goals are achieved by plans and sometimes involve exchange of beliefs.
Category (P) Plan. Exchanges concerning a plan typically involve some question 
of what the people might do next, or how they might achieve some effect. Plans 
are in general about the future, and about how the world is to be adjusted to fit 
some goal. A plan may have just one step, or several. To make a plan, actors 
often discuss or negotiate ways of doing something before acting. Often it is 
necessary to think about the order in which actions must be performed to have a 
desired effect. Plans also sometimes involve considering actions which may not, 
in the end, be successful.
Category (B) Belief. Exchanges about beliefs concern information about the world 
in the present or past, either about general knowledge or things that can be 
known directly. They can be about what people think, suppose, remember or 
perceive about the world. Beliefs are essential to plans because plans can only be 
constructed on the basis of models of how the world works and the effects of 
actions. Questions of belief concern knowledge which may be true or false. 
Whereas a goal implies that the world should be changed by a plan to fit a state of 
mind, a belief is the opposite. It involves a person's state of mind that could be 
changed to fit the world in some way. Hence as well as beliefs being involved in 
discussions of plans, they may also be discussed as to their correctness.
Category (H) Conversational Housekeeping. Some conversational procedures are 
aimed at controlling the other person's participation in the conversation, for 
instance by indicating that a message has not been received. These exchanges are 
'meta-content' in the sense that they have nothing directly to do with the topic 
under discussion.
Category (M) Miscellaneous. Hardly ever used but can be if the exchange does not 
fit into any other category.

Figure 2.1. Definitions of five categories of conversational 
procedure (exchange).
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these categories. I have found that in natural conversation 

allowances must be made for exchanges involving more than one 

category, referred to as compounds (C). After considerable 

discussion and refinement of these concepts, and by applying 

them to transcriptions of conversations I have recorded, I 

decided to test whether they could be understood and applied by 

people outside my research group.

This test, which is like a re liab ility  test in content  

analysis of text, will also serve to present the application of 

these concepts in actual dialogues. I will treat two transcripts, 

one a slightly augmented version of Power's task in which two 

human conversants discuss how to get one of them through a 

closed door and the other a discussion between two people on 

how to use a photocopier.

The following two conversations were transcribed to 

indicate exchanges, the speaker, the hearer, the action and 

changes in the state of the world. Wherever possible the coding 

also took into consideration elisions, interruptions, pauses, 

sounds, eye movements and gestures.

2.3 Getting in through a closed door task.

In Power's (1979) program two agents, in different rooms 

and separated by a door, talk to one another. On one side there is

29



a bolt but the agent John has no means to open the door. From 

the other side the agent Mary can push the door but has no 

means to see. John's goal is to get into the other room with 

Mary's help. When humans are asked to act in such a scenario, 

the goal of getting in tends to be completed without speaking. In

Agent Utterance G/P/B/H/C Action Change

John and Mary decide to gain each other’s attention in order to 
achieve John's goal of getting Into Mary's room.
1 JOHN: [Mary.
2 MARY: Yeh.] H

John starts by executing a plan, sliding the bolt, and then asking 
Mary to assist him achieve his goal of getting in by pushing on the door. 
He sees it Is not working, and asks why.

JOHN OPENS BOLT BOLT OPEN
3 JOHN: [Can you push on the door?
4 MARY: [Can I what?
5 JOHN: Can you push on the door, MARY PUSHES DOOR NO CHANGE

Mary?] H
6 MARY: [Push the door?
7 JOHN: Yah... ] H

] P MARY PUSHES DOOR NO CHANGE

Figure 2 .1 a  Sam ple  human sub-d ia loaue  taken from the  
beginning of appendix 1 illustrating the closed door task.

order to test the theory of minimum increment of mutual 

agreement, I have extended this situation to include a large 

hidden nail running from the side of the wall into the door and 

to test it on human subjects instead of agents (see Figure 2.1a 

and appendix 1). I have also included a commentary on what the 

speakers’ and hearers’ various sub-goals and intentions were at 

each stage. In this dialogue there is no discussion about the 

goal which probably explains why Mary appears short-tempered
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throughout the dialogue. In theoretical terms, plans do not 

usually work unless there is a mutually-agreed goal. I used this 

tra n s c r ip t  to tra in  a group of sub jects  in c a te g o r is in g  

exchanges and then gave them the following transcript to test 

whether they were able to sort exchanges into those concerning 

goals, plans, beliefs and housekeeping.

2.4 Photocopying task.

In the human dialogue of figure 2.1 b and appendix 2 John is 

seeking assistance from Mary to photocopy one piece of A4

Agent Utterance G/P/B/H Action Change

14 MARY:
15 JOHN:

16 MARY

[Pardon?
It's alright. I'm just 

learning how to do it 
at the moment.
Oh I see.] G

Now the rest is straightforward for both of them.
17 JOHN: [Right, so I put that

down there. Right?
18 MARY: ahm... CLOSES LID LID CLOSED
19 JOHN: And press that do I?
20 MARY: Yes. ] P PRESSES START MACHINE STARTS

[Then it collects... ONE SIDED COPY
APPEARSBELOW

and goes back you see.] B
[Now now you turn it.] P

Having successfully completed a photocopy of the first side, John hastily
prepares to press the start button again for the reverse side...
21 JOHN: [What I press again? POINTS TO START
22 MARY: No, no. Well... ha ha ha.] P

Fiaure 2.1b Sample human sub-dialoaue taken from the middle
of appendix 2 illustrating the double-sided photocopying task, 

paper w ith text on both s ides . The  sam e m ethods of
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categorisation and exchange marking are applied throughout.

2.5 Description of Experiment.

I now describe an experiment to see whether subjects can 

categorise exchanges in the photocopying transcript after some 

training with the transcript of getting through the closed door 

(see appendix 1 and figure 2.1a).

2.6 Subjects and procedure.

Eighteen final year undergraduates at Glasgow University 

were subjects. They were told that they would be asked to judge 

some human conversational exchanges, and to assign each to a 

category: Goal, Plan, Belief, Housekeeping or Miscellaneous. 

They w ere each given a sheet of paper con ta in ing  the  

descriptions as shown in Figure 2.1. For each category, they 

were read out an example of an exchange that could plausibly 

have come from two humans negotiating the task of getting 

through the closed door.

Subjects were told that the experiment would be in two 

parts, the first being a training session of 45 minutes and the 

second being the actual experiment taking 15 minutes. The 

subjects were given a copy of the transcript of the task of 

getting through the closed door, as in appendix 1, with the
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exchanges marked but without the categories that I had 

assigned and without the annotations. Then an audio tape 

recording of the human conversation was played with subjects 

being asked to follow it in the transcript.

Next, subjects were asked to make up imaginary examples 

for each of the five categories of exchange for getting in 

through a closed door, to write them down in an order other than 

that given in Figure 2.1, and to record separately the category 

they had in mind for each example. Then, in pairs, subjects gave 

their examples to a partner, who was asked to categorise them. 

Subjects then compared their partners categories with their 

own, discussed each example, and came to a consensus where 

there were differences.

Next, I asked subjects to categorise a transcript of a 

conversation about getting in through a closed door, but not the 

one given in appendix 1. Again I asked subjects first to assign a 

category to each exchange, then to discuss it with their 

partners, and then to come to a joint decision. Next the 

experimenter ran through the transcript with the whole group of 

subjects, giving the categories assigned by the experimenters 

to each exchange, and discussing briefly all examples where 

s u b je c ts  had a s s ig n e d  d if fe re n t  c a te g o r ie s  than  the  

experimenters.
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Finally, in the training session, all the steps in the 

previous paragraph were completed using the transcript of 

appendix 1. I then removed all papers other than that with the 

categories (Figure 2 .1 ). I distributed the transcript of the 

photocopying task (appendix 2), again with exchanges marked 

but uncategorised, and without annotations. I described the task 

briefly, played an audio-recording of the conversation and asked 

subjects, without consultation, to categorise the exchanges of 

the task.

2.7 Results of Experiment.

Overall, for the 19 exchanges in this transcript, the 

percentage agreement between subjects and ourselves was 51%, 

and respectively for each category: Goal 46%, Plan 50%, Belief 

54%, and Compound (Plan-Belief) 52%. I did not assign any 

instances of Housekeeping in this transcript, and consequently 

there is no percentage agreement for this. The degree of 

agreement for each exchange in the transcript is shown in 

appendix 3.

A summary can also be made of the patterns observed 

when subjects coded categories that were not in agreement 

with my own choice of category. Figure 2.2 shows that there is 

some evidence that subjects do not disagree randomly but are
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coding certain categories. One explanation as to why subjects 

coded different categories was that they thought that the 

conversational exchange referred to a category that was higher 

up the goal hierarchy. This, to some extent, may explain why 

subjects chose different combinations of G,P,B,C:B,P from

E 
X 
P 
E 
R 
I
M 
E 
N 
T 
E 
R

Figure 2.2. Summary of appendix 3 showing the percentage 
agreement of subjects with the experimenter's categories 
and also the percentage frequency with which subjects 
recorded other categories. The last column shows the total 
number of cases (19 exchanges * 18 subjects = 342) 
considered for each category.

the experimenters. Differences of categorisation therefore  

came, not through subjects’ misunderstanding of what they had 

been asked to do but because they genuinely felt that the 

exchange referred to another aspect of the main plan further up 

the goal hierarchy.

Subjects

G P B C:B,P H O # cases

G 46% 13% 0% 0% 20% 20% 54

P 0% 42% 22% 13% 12% 11% 144

B 0% 13% 51% 2% 14% 19% 90

C:B,P 2% 19% 32% 19% 5% 24% 54

H, 0 - - - - - - 0
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2.8 Discussion.

I interpret my results as modestly consistent with the 

hypotheses concerning the theory of conversation proposed by 

Power, and in terms of the hierarchy of goals that have been 

proposed. That I was able to obtain fifty one percent agreement, 

with a small amount of training and by people who had no

6

5Frequency
4

Conversational
Exchanges $

2

i

o
so 100o 20 40 60

% Agreement

Figure 2 .3  Graph showing the distribution of percentage  
agreement. The majority of the conversational exchanges (over 
80%) could be categorised with over 40% agreement. Over half 
of the conversational exchanges could be categorised with 
between 50% and 70% agreement, the mean being just over 50%.

special expertise in making such codings, indicates that the 

categories I chose make some intuitive sense (see also figure 

2 .3 ) .  By com p ariso n , h ighly tra in e d  ra te rs  ( i .e .  the  

experimenters who assisted with this experiment) of carefully 

constructed interview schedules would expect to achieve about 

70% agreement on responses to items of an interview schedule. 

There is one final point on the percentage agreement of
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51%. Closer examination of the data shows that when subjects 

did not agree with the judgment of the research group they 

tended to go for similar categories which suggests that a 

cluster analysis may have been a more appropriate measure than 

simply a percentage agreement analysis. This would have 

measured not only the degree of agreement with the research 

group, as shown in figure 2.2, but also the level of agreement 

amongst subjects.

Some confusion obviously existed about the different 

categories. For example some subjects found it difficult to 

dis tingu ish  be tw een  a plan and a be lie f. One possib le  

im provem ent might there fo re  be a further re finem ent in 

ca teg o ry  d e f in it io n . A be tte r  m utua lly  exc lu s ive  set of 

categories might have been Goal, Causality, Propositional 

Content, Fact, Conversational Housekeeping. It would have also 

been useful to choose new transcripts in which the main 

physical goal was known by both participants in advance.

Purposeful human conversations can, to some extent, be 

thought of as being made up of exchanges, each of which 

achieves an increment of agreement about a goal, a plan or a 

belief, as discussed in the introduction to this chapter. I now 

move on to discussing some enhancements that I propose to 

make to Power’s program that help to reinforce these findings.
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Chapter 3. 

Connectedness in Al dialogue.
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3.0 Introduction.

In the previous chapter I showed that a joint planning 

th e o ry , v iew in g  d ia lo g u e  as g o a l-d ire c te d ,  is a useful  

description of purposeful human conversation.

In this chap ter, I discuss early  work on com puter  

dialogues that are not goal-directed and explain the progression 

to more recent developments. Particular attention is paid to 

describing computer systems that actually have a natural flow 

as opposed to those that demonstrate only one aspect of 

dialogue. In this chapter I include the non-goal oriented systems 

of ELIZA, Weizenbaum (1966), SHRDLU, Winograd (1972), 

PROTEUS, Davey (1978) that display monologues or one-sided 

dialogues together with techniques that could be used to go into 

monologues such as conceptual dependency, Schank and Reisbeck 

(1981). I then briefly look at alternative recent developments 

for goal-directed systems, e.g. Shadbolt and Musson (1987) and 

Carletta (1990) and techniques that go into the components of 

d ia lo gu e  e .g . Cohen and P errau lt  (1 9 7 9 )  in term s of 

conversational planning and Fikes and Nilsson (1971) in terms 

of physical planning.

I did not use any of the above , how ever, in the  

development of my own system SU PERPO W ER since I was 

interested in considering a very simple domain with a very
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simple main goal and a much greater variety of knowledge and 

conversational skills. This explains why my main concern, 

however, is to move onto, and discuss, the complete dialogue 

system of Power (1979) which was the first goal-directed  

account of how joint planning provides a theory for the 

structuring of dialogue and is described in section 3.3. The 

systems of Houghton (1986,1989), Houghton and Isard (1987) 

and Power (1 9 7 4 ,1 9 7 9 )  are then discussed in a detailed  

com parison in section 3 .4 . I then finish the chapter by 

explaining how SUPERPOWER (section 3.5 and chapters 4 and 5 

listed in the appendix) is an enhancement on these latter two 

systems.

3.1 Early Al models of dialogue.

In this section I focus on systems that are more about 

monologue, one-sided dialogues, sub-dialogues and the problem 

of how to interpret appropriate techniques that can be applied 

to these special types of purposeful conversation. Often these 

systems can not interact with a copy of themselves and there is 

no concept of a mutual plan which is often left up to the human 

user.
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ELIZA4, Weizenbaum (1966), was the first system that 

demonstrates connectedness in conversation. It is an attempt to 

im itate a psychotherapist interacting with a patient in a 

therapeutic conversation similar to those described by Freud 

(1904), Jung (1910) and Rogers (1951). It has absolutely no 

knowledge of the world and thus, by concealing its lack of 

understanding, W eizenbaum  can simulate the activity of a 

counselling session (see figure 1.5). In this system he shows 

how rep etit ion s  can be avo ided  by random ly choosing  

alternatives. He demonstrates a kind of naturalness (chapter 2 

in this thesis), since some subjects, when confronted with the 

program, have found it hard to believe it originates from a 

machine.

In contrast to ELIZA, Winograd’s (1972) SHRDLU 5 knows a 

great deal about its domain and which consists of a room full of 

blocks of different shapes and sizes. The user can issue a 

multitude of instructions and commands such as “Put the big 

blue block on the big red block”, or questions such as “Is the 

green block on the red b lock?”. H ow ever, a lthough the  

discussions are always correct, the dialogue is severely limited

4 PARRY (Parkison, Colby and Faught 1977), a paranoid agent that could engage in
conversation with a psychiatrist was an extension of the same principles behind ELIZA 
except that a more generalised pattern matcher was used to pick out a specific 
connotation of the utterance rather than its syntactic form. Connectedness was achieved 
by interpreting every utterance in a paranoid way.

6 Understanding discourse and text has also been treated as the same thing in 
Psycholinguistics; see for example Sanford and Garrod (1981).
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by the syntax, semantics and planning algorithms of the small 

domain. Connectedness is demonstrated by the program’s ability 

to remember where all the blocks are, to respond with an 

appropriate action or utterance, and finally to use the correct 

pronoun reference6. Figure 1.6 illustrates how W inograd ’s 

stimulus response mechanisms appear to have more credibility 

than those offered by Weizenbaum in that the program exhibits 

sensible behaviour within the limited world that it knows 

about.

SHRDLU is limited in its simulation of dialogue structure 

(i.e. there are exchanges but none of the exchanges relate to one 

another and are randomly chosen by the human user). This is due 

to the absence of an organised structure of goals for the 

dialogue. Winograd’s program does not address the issue that 

dialogue is not simply about ordering an agent to do things by 

choosing random goals but that it also involves co-operative 

activity. Nor is dialogue about choosing random responses (as 

Weizenbaum) but on the contrary it has to have an element of 

structure in its execution. Winograd does however achieve  

connectedness in terms of what the system knows and can do in 

the world, as illustrated in Figure 1.8. The element of structure 

in dialogue (e.g. a continuing plan) is the main idea in this

8 Anaphoric reference is not discussed in detail here, but see for example Hirst 
(1981). Garnham (1985) discusses some of the deficiencies of Winograd’s program in 
this respect.
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thesis which I shall be taking up in more detail in later 

chapters.

Another strand of work has considered the problem 

of how it is possible for a system to explain itself.7 PROTEUS, 

Davey (1978), was one of the first attempts at describing a

^  I 'm going to 
start the 
game

Your move.
2>

3>
£l

Your move.

4>

3> 9 X
*
0

Your move

65 0 X
0 X X

V

7>
O IX
0 X x

S I o

I have won the 
game.

03 SPOUT;

9>
The game started with my 
taking a corner, and you 
took an adjacent one. I 
threatened you by taking 
the middle of the edge 
opposite that and adjacent 
to the one which I had just 
taken, but you blocked it 
and threatened me. I 
blocked your diagonal and 
forked you. If you had 
blocked mine, you would 
have forked me, but you 
took the middle of the edge 
opposite the corner which I 
took first and the one 
which you had just taken 
and so I won by completing 
the diagonal.

Figure 3.1 PROTEUS. Davev (19781. Connectedness 
in terms of explanation.

system that generates sentences in a principled manner. This 

problem was addressed by Winograd, but only partially (see

7 As an alternative to Al approaches to speech production, Harley (1984) collected 
samples of errors occurring in everyday speech and by analysing word frequency he was 
able to develop his own top-down theory of speech production. For an overview of other 
methods such as pauses or hesitations within Psycholinguistics see Garnham (1985: pps 
183-204). Butterworth (1980) also presents a variety of attempts at modelling speech 
production including a discussion about early Al work, see also Steedman and Johnson- 
Laird (1980: pps 111-139).
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Davey 1978: pp 33), and also by Weizenbaum, but only in the 

form of pattern matching without real understanding. After 

providing an exhaustive account of very early Al systems Davey 

goes on to show how PROTEUS (figure 3.1) can generate 

dialogue to explain the rationale behind its moves in a game of 

noughts and crosses. It does so by re ta in in g  a plan  

representation of how it arrived at each move during the game. 

Thus, having decided on an appropriate plan or when the game 

was complete, the system can then use a systemic grammar, 

Halliday (1961) to decide on an appropriate  sentence to 

construct (Davey, 1978, Houghton, 1986). The system could 

therefore explain its choice of moves at any point during the 

course of the game. In the example chosen, the program’s 

rational explanation for its choice of moves is given when the 

gam e has f in ished , thus il lus tra ting  some aspects  of a 

monologue. It could also have discussed things during the game, 

thus allowing the user a chance to learn and make a better 

response, thus illustrating some aspects of a dialogue.

The d iagram  illus tra tes  that there  is a flow in the  

d ia logue which has e ith er  an e lem en t of con versa tion ,  

demonstrated by its ability to recall all aspects of the changing 

world, or an element of stimulus response, i.e. there is an 

action associated with the interaction, as described in previous
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systems. This flow is similar to the SHRDLU program of the 

preceding section except that, whereas Winograd focuses on the 

problem of understanding questions, Davey concentrates on how 

the hearer might generate intelligent replies.

There are some systems reporting a kind of dialogue that 

is not goal-oriented and much more like a monologue. That is to 

say, the dialogue is often one-sided. The justification for this 

is that early Al dialogue systems were not based on sound

1. COMPUTER: Do you like chips ?
2. LEARNER: Yes.
3. COMPUTER: Do you like kiwi fruit ?
4. LEARNER: What is a kiwi fruit?
5. COMPUTER: It has a brown skin.
6. LEARNER: Yes.
7. COMPUTER: Do you like mango ?
8. LEARNER: Yes.
9. COMPUTER: Do you like pomegranate ?
10. LEARNER: Yes.
11. COMPUTER: Do you like papaya ?
12. LEARNER: No.
13. COMPUTER: Can you make biscuits?
14. LEARNER: You roll out some pastry.

You get some shapes.
You cut out the shapes of pastry.
You put them on a square thing.
You put them in the oven.

15. COMPUTER: Where did you get the pastry from?

Figure 3.2 Button (1989). Connectedness 
in terms of subject matter.

semantics and in order to understand natural language a 

computer has to not only syntactically understand a sentence 

but also interpret it in the light of what it already knows.8 One

®These ideas stemmed from Bartlett (1932) who described memory as an active 
organisation of past reactions. For a discussion, in Psycholinguistics, about the 
consensus of opinion as to how many different memory systems there are, see Baddley 
(1976) and for the critique see Crowder (1982).
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idea along these lines was developed by Schank (1972), Schank 

and Reisbeck (1981) and Schank (1980,1982,1985). According 

to Schank, in order to understand a concept it must be related to 

another more basic concept. He developed a theory of 

conceptual dependency which involves a number of primitives 

into which all sentences can be broken down.9 This leads to a 

number of attempts at story understanding that meet with 

limited success but account for monologue or one-s ided  

dialogue. In my own system, described in Button (1989), Button, 

Oatley and Draper (1989) and illustrated in figure 3.2, I show 

how a simple discussion about eating habits can be modelled 

using Schank’s Conceptual Dependency theory. Connectedness is 

achieved here through the regularity of the subject matter, thus 

allowing direct access to simple memory structures such as 

those described by Schank.

Useful techniques for monologues were also explored in 

other areas. For example, intelligent continuity can occur if, 

within a given domain, an appropriate knowledge representation 

such as Conceptual Dependency (Schank 1980), Scripts (Schank 

and Abelson 1977), Frames (Brown 1987), Semantic Networks 

(Collins and Quillian 1969) or Logic (Cloksin and Mellish 1981, 

Turner 1984), is used. Indeed some of these Al techniques have

9 These sorts of ideas have often been compared with the principle of 
com positionality proposed by the 19th century philosopher Frege.
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been applied successfully to one-sided dialogue. For example, 

Grosz and Sidner (1986) show how a semantic network can be 

used to define the focus of dialogue either in terms of the task 

complexity or in terms of the conversation10. GUS (Bobrow, 

Kaplan, Kay, Norman, Thompson and Winograd, 1976) shows how 

one-sided dialogue can be driven by the use of a frame. All these 

techniques, without doubt, offer models of how humans might 

conduct conversation if the nature of the main goal of the 

conversation is fixed in advance and the task does not consist 

of a mutual discovery of how to realise the goal.

There is work which has considered parts of a one-sided 

sub-dialogue in the form of question-answering systems (for a 

full explanation see Webber 1987). Allen and Perrault (1980) 

and Allen (1983,1987) showed that by analysing the intentions 

expressed within an utterance, nested conversation (see  

exam ples from previous chapter in which conversational  

exchanges can be thought of as embedded) can take place. They 

then  fo llow  this up by il lu s tra tin g  it with two types  of 

conversation: (a) that which moves towards clarification, as in 

figure 3.3:

10 Within the field of Psycholinguistics this is also discussed in terms of how 
conversation is focused. For a full explanation see, for example, Garnham (1985), 
Sanford and Garrod (1981) and Grosz (1977) .
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1. HUMAN: When is the Windsor train?
2. COMPUTER: To Windsor ?
3. HUMAN: Yes.
4. COMPUTER: 3.15.

Figure 3.3 Allen and Perrault (1980)
Connectedness in terms of dialogue 
clarification.

and (b) those that are driven by dialogue failure as in figure 3.4:

1. HUMAN: When is the Windsor train?
2. COMPUTER: It leaves at 3.15
3. HUMAN: No, I want to meet the Windsor train.
4. COMPUTER: Ah, in that case it arrives at 3.10.

Figure 3.4 Allen and Perrault (1980)
Connectedness driven bv dialogue failure.

Allen et al. improve the robustness of the system  

through the disambiguation of vaguely specified plans. Thus, 

they are able to show a more detailed account of a theory of 

indirect speech acts than that offered by Searle’s (1969,1975) 

theory that I briefly mentioned in Chapter 2.

This now completes my analysis of the body of work that 

has described dialogue using non goal-directed techniques. As 

Power (1979) correctly observes, the main problem with early 

Al work is that none of the programs developed can converse 

with a near copy of itself and thus can hardly be considered a 

model of purposeful dialogue. From now on I shall only be 

discussing goal-directed systems.
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3.2 Recent developments.

In this section, I look at studies that have examined the 

components of a true dialogue system by which I mean a 

dialogue system that recognises the need for conversation to be 

based in some way on a mutual plan.

As will be seen  the  problem  of this focus on the  

components of dialogue is that the systems created are not 

actually able to generate English sentences. Some work has 

focused on either speaking or listening but not both. For 

example Appelt (1985), Cohen and Perrault (1979a,b), Pollack

(1986), Cohen and Levesque (1985), and others show all the 

components of what goes into an utterance during the course of 

a dialogue about a mechanical task. In particular, Cohen and 

Perrault have produced a plan-based definition of a speech act 

by considering what it is the speaker really wants and what he 

is trying to say. Litman and Allen (1987) and Allen and Perrault 

(1980) show methods for understanding underlying plans 

occurring in an utterance.

Some studies have considered how to plan an overall task 

within a single agent domain by looking at how to plan actions 

that achieve a particular goal. Overviews of all the many 

different planning systems can be found in Tate (1985) as a 

technical description, in Steel (1987) as a beginner’s guide and

49



in Agre (1990) as a philosophical argument for and against 

comparing these methods with those of human reasoning.

I shall be referring to this approach as c l a s s i c a l  

planning. Some work is particularly prominent in this area and 

should be mentioned. STRIPS, Fikes and Nilsson (1971) was the 

f irs t  system  to fo rm a lis e  and plan aro u n d  a c t io n s ,  

preconditions and effects. MOLGEN, Stefik (1980,1981) looks at 

the need for meta-planning. ABSTRIPS, Sacerdoti (1974)  

F re id la n d  and Iw a s a k i (1 9 8 5 )  looks at a b s tra c t  p lan  

representations before developing a total plan. NONLIN, Tate  

(1976) uses a goal structure. SIPE, Wilkins (1984) looks at 

domain-independent planning. The essential feature of all these 

systems is that they are trying to plan for a particular goal by 

chaining through plan operators or causal rules in a specific 

way.

More recent work has studied the problem of reacting to 

unexpected changes in the state of the world, what Suchman

(1987) refers to as plans and situated action and what I shall be 

referring to as unexpected p lanning in future chapters. These 

works include Lansky (1988) on the distinction between events 

and processes, Ginsberg and Smith (1986) in terms of reasoning 

about action, and Wood (1990) in terms of planning in a rapidly 

changing environment.
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Planning areas not covered by any single agent planners 

can be divided into two types. Firstly there is what I shall be 

referring to as in s t r u m e n ta l  t e s t in g  in which agents are 

required to perform tests in order to infer new facts about the 

world. Secondly, there is e x p e r im e n ta l  p la n n in g  in which 

agents are required to try actions and see what happens in order 

to learn about the consequences of a change in the states of the 

world. These categories of planning have sometimes been 

referred to as replanning and have taken their name in order to 

deal with those circum stances that arise when the main 

planning routine breaks down. I shall be discussing these four 

fu n d a m e n ta l kinds of p lanning (c la ss ica l, ins tru m en ta l,  

unexpected and experimental) at the end of the chapter and 

again in chapter 5 and show how they can be integrated into the 

main action cycle.

In short, using single agent planning techniques causes 

serious difficulties in 2-agent dialogue planning since a good 

planner needs to be not only good at the job but also flexible and 

explicit in conversation.

More recently, research has focused on discussing the 

problem of how to communicate the underlying intentions of the 

agents. Shadbolt (1984), Shadbolt and Musson (1987) and 

Carletta (1990) showed how efficiency (see section 1.1 for
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precise definition) can be achieved in conversation by using 

what Shadbolt refers to as a set of communicative postures. 

Utterances are then chosen through the use of Game Theory (e.g. 

Charniak and McDermott 1985). The underlying plans are then 

passed from one agent to the other. Postures can also have 

d i f fe r e n t  s e t t in g s  so as to a l lo w  d i f fe r e n t  le v e ls  of 

communicative competence, hence permitting an interpretation 

of explicitness and accounting for different dialogue styies. 

One of the  d if f ic u lt ie s  w ith having  a la rge  num ber of 

alternative settings for a simulated agent is that it is difficult 

to know whether or not all combinations of these parameters in 

fact give rise to successful dialogue. Furthermore it then 

becomes an issue as to how to interpret them. Systematic  

parametric studies are needed to test this, although none have 

been reported so far. One way of solving this problem is to 

illustrate the dialogue with a comprehensive “Monte Carlo” 

simulation rather than an exhaustive one. That is to say, a 

selection of important initial dialogue settings are chosen as 

opposed to all settings (see chapter 4).

For instance, in figure 3.5, Shadbolt and Musson (1987) 

illustrate how connectedness can also be achieved by combining 

more than one goal in an utterance. However, the more efficient 

the computer dialogue the more difficult it becomes to evaluate
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its robustness under variation.

1. INSTALLER: I'm going to lay the storm drains.
2. DECORATOR: Could you install the rough plumbing instead?
3. INSTALLER: No. I will have to install the drains first.
4. DECORATOR: OK
5. INSTALLER: I have installed the drains.
6. DECORATOR: OK
7. INSTALLER: I have installed the rough plumbing.
8. DECORATOR: OK. Could you install the rough wiring?
9. INSTALLER: OK I have installed the rough wiring.
10. DECORATOR: OK Could you install the air conditioning?
11. INSTALLER: No. You will have to pour the basement floor first.
12. DECORATOR: OK. I have poured the basement floor.
13. INSTALLER: OK I have installed the air conditioning.

Figure 3.5 Shadbolt and Musson (1987).
Connectedness in terms of communicative 
postures, multiple goals and efficiency bv 
constraint satisfaction. (Simplified from 
dialogue about plan structures^.

In short, an efficient dialogue about a complex joint task that 

generates utterances based on constraints has an element of 

naturalness but is too mechanistic and regular to be believable. 

Nevertheless, it is an appropriate model when both participants 

know exactly what they are doing and their knowledge is 

s im ila r .  W h at e f f ic ie n t  m odels  of c o n v e rs a t io n  cann ot  

demonstrate is why irregular frills occur in human dialogue. 

There are four main reasons: (1) humans think at different 

speeds from one another, (2) they conduct conversation in 

different ways from each other, (3) they instrumentally manage 

topics in different ways, (4) they engage in conversation with 

different goals. It is for this reason that I turn the reader’s

53



attention to systems that separate physical and conversational 

planning.

I hope to show these questions can be answered by keeping 

both the domain and main goal simple and varying the knowledge 

and conversational skills of the agents. I now discuss the work 

of Power and Houghton as these are the only other two systems 

to have done this.

3.3 Power’s robot world.

In contrast to the work discussed in section 3.1, Power 

(1979) uses a simulation of computer-to-computer interaction 

and is able to demonstrate how conversation is structured as a 

whole.

Power's simulated dialogue concerns interactions between 

two agents who are on either side of a door locked by a bolt. In 

this simple situation, illustrated in figure 3.6 and in earlier

DOOR 3HJT
MARY1 IN

Figure 3.6 Power's robot world. 

chapters, there are only four objects, each of which can be in
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one of two positions. There are the two agents, called John and 

Mary. Each agent can be either In or Out. The door can be Open or 

Closed. The bolt can be Up or Down. To explore the interactions 

of the agents, the program can be started with different initial 

conditions: that is, each agent can know or be ignorant of 

certain laws of nature, or have a false belief about them. An 

agent can acquire or change a belief if informed or persuaded by 

the other, or if, after an action, something unexpected happens. 

Agents can differ in their perceptual abilities — for instance 

one may be able to perceive the state of the world, and the 

other may be blind. In this way various aspects of cognition 

such as certain kinds of perceptual ability, or knowledge, can be 

distributed between the agents.

This, in turn, helps to simulate those ubiquitous 

human situations in which an agent cannot accomplish certain 

actions or achieve certain results in isolation, but must co­

operate with another person to do so.

Connectedness is achieved through what Power refers to 

as conversational procedures (CP)11 which allow the agents to 

co-operate with one another to achieve predefined goals. 

Furthermore the course of the dialogue can be directed by the 

use of simple physical causal rules (for example the bolt must

11 For the sake of brevity, and for future reference, I shall refer to a conversational 
procedure as a CP. In the case of Houghton I shall refer to an interactional frame as an IF.
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be Up to open the door) that the agents use to construct a joint 

plan tree. Planning and execution is then represented in the 

form of a control stack which in some sense represents the 

point of the utterance at any time during the dialogue. The 

dialogue, however, lacks efficiency since the conversational 

procedures themselves appear as utterances.

These problems of efficiency were taken up by Houghton 

(1986) and will be discussed in more detail later. He divides 

the problem into three levels i.e. Utterance planning (Davey 

1978), Conversational planning (Cohen and Perrault 1979a,b) 

and Physical planning (Fikes and Nilsson 1971) and is thus able 

to generate speech for this domain in a more natural way. 

Houghton’s is the second principal significant body of work 

which will be closely studied, along with that of Power, in 

order to bring me to SUPERPOWER. These two systems are the 

concern of the next section.

3.4 A comparison between Power and Houahton.

Every dialogue system must be structured according to a 

number of important components. What these components are is 

still an open-ended question since a lot depends on the domain 

of the dialogue system being modelled. In this domain, where 

the agents are required to negotiate co-operatively through one
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agreed goal, the components fall into a number of categories.

Agents must produce dialogue and also produce and understand

Power Houghton SUPERPOWER

Dialogue Content 
(3.4.1 )

Over Explicit. Efficiency, Indirect and 
direct speech acts.

Explicit. Dialogue stretches 
over several actions.

Language
Generation. (3.4.2)

Unprincipled. System Network and 
GPSG

Unprincipled.

Language
Comprehension. (3.4.3)

Unprincipled. Does not exist. Unprincipled.

Physical Planning. 
(3.4.4 & ch's 5,6)

Fike8 and Nilsson (1971) 
i.e. Uses causal rules.

Fikes and Nilsson(1971). Uses causal rules, 
exhaustively but hardwired.

Conversational
Planning.
(3.4.5 & ch's 5,6)

7 detached procedures. 4 Interactional frames 
Cohen and Perrautt 
(1979a,b).

6 detached procedures.

Meta Planning 
(3.4.6)

Distinguishes between 
an event and a situation.

Similar to Power. Similar to Power but the time 
slicing considerably 
assists this.

Executive Control. 
(3.4.7 & Ch 4)

Control passed alternately 
after each functional unit.

Uses pop11 processes.
Time slicing and the notion of 
expecting a reply.
Definition of an increment 
of time.

Initial settings and 
representation. 

(3.4.8)

Some straightforward lists 
of data.

Some structure 
e.g. know (fred is in)

Knowledge can be known, 
given, told, unknown, 
estimated, inferred or 
undefined.

Conflict resolution. 
(3.4.9)

Hardwired In CP. Similar to Power Similar to Power, but with 
extra facilities to deal with 
interruptions.

Interaction skills. 
(3.4.10 & Ch's 4 ,5)

CP's , priming, e.g. "May I 
ask you something?" Can 
handle partially embedded 
conversation, but the same 
conversational procedure 
cannot be active twice. No 
embedding.

IF's, no priming.
Can handle embedded
conversation
but not more than one
action.

Similar to Power plus extra 
planning facilities.
CP's, priming, time slicing 
Topic has as subgoal, an 
action and the successful 
completion of the subgoal.
No reasoning abilities, 
multiple CP's and actions are 
dealt with.

Inference 
(3.4.11 & Ch 5)

Hardwired in conversational 
procedure.

Hardwired in physical 
planner not exhaustive.

Hardwired in physical planner 
but exhaustive.

Figure 3.7 Comparison of the main differences between 
Power (1979^. Houahton (1986^ and my own system 
SUPERPOWER.
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utterances. In order to do this they need a planning algorithm to 

support conversational and physical action. How this is 

structured is crucial to all dialogue. Finally, there must be 

some kind of meta-planning and coordination to deal with the 

cases where agents are required to make choices between 

competing courses of action. Knowledge representation is 

needed at source for the sake of program clarity. Topic 

structure is also needed to progress instrumentally from one 

sub-goal to another since to avoid doing so would lead to 

p ra g m a tic  am b ig u ity . F igure  3 .7  s u m m a ris e s  the m ain  

differences between Houghton, Power and my own system 

SUPERPOWER. Thus the next series of sections discuss the 

d ifferences  under these headings that reflect the major 

components that must go into any dialogue system.

3.4.1 The dialogue content.

It is by no means clear how a dialogue system should 

present itself. On the one hand a theory provides evidence of 

dialogue principles but it does not systematically demonstrate 

the claim in terms of natural utterances (e.g. Searle 1990, 

Cohen and Perrault 1979a,b, Cohen and Levesque 1990), while on 

the other hand dialogue generation without principles does not 

lead us to dialogue understanding (e.g. ELIZA Weizenbaum1966).
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However, a great deal can be observed from the computer 

dialogue provided it is represented in a way that reflects the 

theory. One way of overcoming this is to provide a linguistic 

interface that displays the theoretical features. For example

(STATE OF WORLD IS NOW [JOHN OUT, 37 JOHN: ALL RIGHT.
MARY IN, BOLT UP, DOOR SHUT]) 38 MARY:

39 JOHN:
SHALL WE MAKE A PLAN ? 
OK

1 JOHN: MARY. 40 MARY: I SUGGEST THAT I PUSH THE DOOR
2 MARY: YES 41 JOHN: ALL RIGHT.
3 JOHN: I WANT TO SUGGEST A GOAL (STATE OF WORLD IS NOW
4 MARY: GO AHEAD. [DOOR OPEN, JOHN OUT, MARY IN BOLT UPD
5 JOHN: WILL YOU HELP ME GET IN ? 42 MARY: I WANTTO TELL YOU SOMETHING
6 MARY: BY ALL MEANS. 43 JOHN: GO AHEAD.
7 JOHN: SHALL WE MAKE A PLAN ? 44 MARY: I HAVE PUSHED THE DOOR
8 MARY: JOHN. 45 JOHN: I SEE
9 JOHN: YES 46 MARY: LETS ASSESS THE RESULT OF MY
10 MARY: MAY I ASK YOU SOMETHING ? ACTION.
11 JOHN: GO AHEAD. 47 JOHN: OK
12 MARY: ARE YOU IN? 48 MARY: NOTHING HAS HAPPENED.
13 JOHN: NO. 49 JOHN: MARY.
14 MARY: SHALL WE MAKE A PLAN ? 50 MARY: YES
15 JOHN: OK. 51 JOHN: I WANTTO TELL YOU SOMETHING
16 MARY: JOHN 52 MARY: GO AHEAD.
17 JOHN: YES 53 JOHN: THE DOOR IS OPEN
18 MARY: MAY I ASK YOU SOMETHING ? 54 MARY: I SEE THE DOOR HAS CHANGED POSITION
19 JOHN: GO AHEAD. 55 JOHN: YES
20 MARY: CAN YOU MOVE? 56 MARY: THE DOOR IS NCWOPEN
21 JOHN: YES 57 JOHN: RIGHT.
22 MARY: JOHN (STATE OF WORLD IS NOW
23 JOHN: YES [JOHN IN, MARY IN, BOLT UP, DOOR OPEND
24 MARY: MAY I ASK YOU SOMETHING ? 57 JOHN: I WANTTO TELL YOU SOMETHING
25 JOHN: GO AHEAD. 58 MARY: GO AHEAD.
26 MARY: IS THE DOOR OPEN? 59 JOHN: I HAVE MOVED.
27 JOHN: NO. 60 MARY: I SEE
28 MARY: I SUGGEST THAT WE GET THE DOOR 61 JOHN: LETS ASSESS THE RESULT OF MY ACTION

OPEN AND THEN YOU MOVE. 62 MARY: OK
29 JOHN: MARY. 63 JOHN: 1 HAVE CHANGED POSITION
30 MARY: YES 64 MARY: JOHN
31 JOHN: IWANTTO EXPLAIN SOMETHING 65 JOHN: YES
32 MARY: GO AHEAD. 66 MARY: 1 WANTTO TELL YOU SOMETHING
33 JOHN: IF I MOVE NOTHING HAPPENS. 67 JOHN: GO AHEAD.
34 MARY: I DISAGREE IF YOU MOVE WHEN THE 68 MARY: YOU ARE OUT.

DOOR IS OPEN, YOU CHANGE POSITION 69 JOHN: 1 DISAGREE. 1 HAVE CHANGED POSmON.
35 JOHN: I SEE 70 MARY: YES
36 MARY: I SUGGEST THAT WE GETTHE DOOR 71 JOHN: 1 AM NOW IN.

OPEN ANDTHEN YOU MOVE 72 MARY: RIGHT.

Figure 3.8 Power (1979) Connectedness in terms of 
joint planning and aoal-oriented processes.

the distinction between “The bolt must be Up” and “the bolt is 

Up” reflects on the surface, and in the dialogue, evidence that
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the program is using a theory of inference by way of a linguistic 

method such as modality (Palmer 1990, Coates 1990, Stubbs 

1986). In Power there are some utterances about the type of 

conversation that is about to follow and so the dialogue  

demonstrates his theory about conversational procedures but 

without concern for efficiency. In Houghton features such as 

direct and indirect speech acts are demonstrated as an efficient 

interaction.

An example of the dialogue generated by Power’s system 

can be seen in figure 3.8. Notice that every main exchange is 

primed12 with another exchange such as “I want to explain 

something” so as to allow agents to be absolutely sure what the 

subsequent exchange refers to. This has the effect of making 

the dialogue appear over explicit.

In Houghton’s system the dialogue for a similar goal is 

more efficient and appears to correspond to how humans would 

conduct such a con versa tion . T h e re  are a number of 

distinguishing features to note about the two dialogues shown 

in figures 3.8 and 3.9: (i) Houghton's program can generate all of 

Power's dialogue but without using the priming of utterances 

such as “Shall we make a plan?” or “I want to suggest a goal”.

12 Using two pairs of utterances to convey one message. As in “I want to explain 
something” “By all means” “If you move when the door is shut nothing happens” 
“Right”. Priming, however has a much wider definition within pragmatics and is 
normally used throughout dialogue to assist the hearer in knowing what to expect next.
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(ii) It distinguishes between indirect and direct speech acts (as 

in lines 11 and 13). (iii) It knows what to do when one and only 

one of the two agents can not think of a plan (as in lines 6-9).

Figure 3.9 Houahton (19861. Connectedness in 
terms of efficiency and natural language 
generation.

However neither of these systems are able to generate 

sub-dialogues that relate to the consequences of an action 

through the use of inference. Power has one conversational 

procedure (game ZGASSESS) but no clear inference within the 

planning process. Furthermore neither system can deal with the 

cases when both agents are stuck for (a) a plan, (b) a piece of 

knowledge or (c) an unexpected event. Thus the choice of who 

speaks next is largely determined by the physical goal and 

knowledge that the agents are given at the outset rather than by 

any differing conversational skill.

3.4.2 Language Generation.

In Power the language generation mechanism is ad hoc.

1. Fred:
2. Doris:
3. Fred:
4. Doris:
5. Fred:
6. Doris:
7. Fred:
8. Doris:
9. Fred:
10. Doris:
11. Fred:
12. Doris:
13. Fred:
14. Doris:

Doris.
Yes.
I want to be in.
I see.
Could you push the yellow door. 
No, because the bolt isnt up.
Is there a bolt that is up 7 
No.
How do you get a bolt to move 7 
You get to be in, then you slide it 
Could you slide the green bolt. 
OK
Push the door.
OK
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The system g e n era tes  sentences  by m atching the plan  

description to the utterance in a one-to-one fashion. Such 

sen tences  conta in  a sub ject, a verb and an ob ject, or 

alternatively, in a discussion about a belief, the utterance will 

have a parallel structure of subject, verb and object or an 

“..if..then...” clause. Two sets of exchanges are uttered, one 

relating to an appropriate exchange type and the other to its 

content. Examples include:

1) 1st exchange contains z g g o a l13 and utters “I want to 

suggest a goal.” 2nd exchange contains the goal [John In] and 

utters “Will you help me get In?”

2) 1st exchange contains zgask and utters “May I ask you 

something?” 2nd exchange contains the question [Is John In] and 

utters “Are you In?”

3) 1st exchange contains zg p la n  and utters “Shall we 

make a plan?” the second exchange contains the plan [undef] and 

asks a few questions until a plan has been found.

4) 1st exchange contains z g ru le  and utters “I want to 

explain something.” 2nd exchange contains the causal rule [evt 

[robot push] sit [any] res [nothing]] and utters “If you push the 

door nothing happens.”

13 zggoal, zgplan, zgask, zgrule, zgtell, zgassess and zggame are the pop11 function 
names of the seven conversational procedures described in Power (1974,1979). 
SUPERPOWER, described in chapter 4 and 5 uses six of these and zgassess has been 
removed and combined with zgtell and a new inference that assesses the consequences of 
an event.
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5) 1st exchange contains z g te l l  and utters “I want to tell 

you something”. 2nd exchange contains the action [Mary push] 

and utters “I have pushed the door”.

6) 1st exchange contains z g a s s e s s  and utters “Let's 

assess the consequences of my action.” 2nd exchange contains 

the assessment of the action [undef] and utters “Nothing has 

happened.”

In all cases utterances are mapped from a plan structure 

in an unprincipled one-to-one fashion.

In Houghton’s program the production mechanism is more 

principled and uses system networks and a Generalised Phrase 

Structured Grammar, see Houghton and Isard (1987:12-15), a 

network with a lexicon, and m orphological and syntactic  

representations to convert a semantic description into an 

English expression. He avoids priming in exchanges and 

generates what is to be said in one exchange. The following 

information passes to the language production mechanism: the 

in itia tor, add ressee , name of the in teraction  fram e and  

semantic content. Examples similar to the above might be:

1) Doris, Fred, G E T_T0_D 014 , [push Doris door2]: would 

generate the sentence “Could you push the yellow door?”

2) Doris, Fred, FINDOUT, [atloc Fred in]: would generate the

14 GET_TO_DO, FINDOUT, MAKEKNOWN and GET_ATTENTION are the pop11 function 
names of the four interactional frames described in Houghton (1986).
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sentence “Are you In?”

3) Doris, Fred, MAKEKNOWN, [havegoal Doris [atloc Doris 

in]]: would generate the sentence: “I want to be In.”

4) Doris, Fred, MAKEKNOWN, IF <action movethru robot 

door> WHEN [door open ] THEN [move robot]: would generate the 

sentence “If you go through a door when it is Open then you 

move.”

5) Doris, Fred, MAKEKNOWN, [BECAUSE [atloc bolt2 down]] 

would generate the sentence “No, because the bolt isn't Up.”

This differs from Power in that grammatically correct 

sentences can be generated in a principled manner from a 

structured plan. It also takes into consideration current topics.

3.4.3 Language comprehension.

In Power’s program there is a simple parser that maps in 

an unprincipled way from an utterance onto a plan structure 

that is then passed with relevant factual information onto a 

conversational game. As there is only a limited number of 

sentences (approximately fifty), choices about which plan 

content matches which sentence are relatively easy.

There is no mechanism for this process in Houghton's 

program. Instead the plan content is passed directly from one 

agent to the other without parsing the sentence itself.
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3.4.4 Physical Planning.

Power splits the planner into two components; one for 

achieving a goal and the other for finding a plan. In order to

achieve a goal the system may look for a plan, carry out an

NO YES
NO

NOYES

NO

YES

EVENT ? ADD PLAN 
TO TREE

FAIL GOAL

REPORT RESULT

CARRY OUT ACTION

CAN A GOAL 
BE FOUND ?

RECORD STATE

RECORD STATE OF 
PARENT GOAL____

LEARN ANY LESSON 
FROM EXPERIENCE

RECORD RESULT OF 
ACTION

IS MAiN GOAL 
ACHIEVED OR 
FAILED ?

FIND CURRENT GOAL 
AND ITS ACTOR AND 
TYPE

PRUNE TREE BY 
GETTING RID OF 
ACHIEVED OR FAILED 
GOALS AND PLANS

Figure 3.10a Achieve goal module (adapted from Power. 1974). 

action or update its view of the world in the light of an action. 

The second module contains the main planning algorithm that
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essentially searches for a belief relevant to the goal15. It works 

as follows: (1) Input goal, initial conditions and state of the 

world. (2) Find a rule whose effect is the same as the current 

goal or sub-goal. (3) Check all preconditions are true. (4) If a 

precondition not true make it a sub-goal and repeat from step 2 

or else continue. (5) Execute action. If action successful, set 

current goal or sub-goal as achieved. (6) Is main goal achieved? 

If yes finish, if no repeat from step 2.

FIND OUT THE GOAL

DO ALL ACTIONS 
YIELD RESULT

EXIT AND 
RETURN NO

FIND RELEVANT RULE

CAN ACTION BE DONE

FIND STATE OF THE 
SITUATION I.e . THE 
PROVISO

IS PROVISO FAILED 

HAKE ?LAIfl ■ HAS PLAN BEEN 
TRIED AND FAILED

EXIT AND 
RETURN PLAN

Figure 3.10b Planning module (adapted from Power. 1974).

Houghton's planner is in principle the same as that of 

Power. He refers to “Achieve goal” as the execution phase of 

planning. He overcomes circular plans by repeating the planning

18 One weakness with this latter algorithm is that circular plans occur quite 
frequently since the beliefs do not specify which agent is to do the plan. See also the end 
of chapter 5 for a further discussion on circular plans. I draw the reader’s attention to 
this because the problem of cycle detection occurs quite frequently in Artificial 
Intelligence problems. Dialogue systems must also give this special treatment since I am 
suggesting it is an inherent property of a large class of purposeful conversation. 
Sometimes it helps the main goal, sometimes it does not.
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cycle twice; once for each agent assuming the plan failed first 

time around, as illustrated in detail in figure 3.10c. This is not, 

however, ideal for multi- as opposed to two-agent planning. It 

works, but a more appropriate solution seems to be to detect

EXECUTION PLANNING

t rue

V /
false

false

false
t rue

\ / t r  ue 

FIND AGENTifalse alse
t rue

t rue

false
t r ue

false t rue
false

false

t r ue

START

GET DONE

CONTINUE

END OF 
RUN

V  t r ue  
IS IT MAIN 
GOAL?

MORE
BRANCHES

FIND
STRATEGY

CHANGE
PLAN

HAS GOAL BEEN 
ACHIEVED?

INSTANTIATE
PLAN
VARIABLES

Figure 3.10c Planning module (adapted from Houahton 
1986).
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repetitions in the pian tree, instead of waiting for a failure, 

then to delete them and remember what to avoid the next time 

around. Another difference between Houghton and Power’s 

systems is that Power’s does not handle plan failures at all. 

For example, one type of plan failure occurs when the other 

agent already knows that part of the plan is true. In this 

situation Houghton’s system automatically clips the plan tree 

and planning continues as though this was not part of the 

execution of the plan. In these situations, Power's algorithm 

exits from the planner and the agents then simply state that 

“w e’ve got muddled”. Houghton’s system, like Power’s, makes 

calls to conversational procedures within the planning module. 

Although I deal with this situation in more depth in the section 

on conversational procedures, it should be emphasised that the 

central problem with this and conversational planning is that, 

for Power, conversational procedures do not relate to goals. If a 

planner is trying to find something out, it makes an explicit call 

at the appropriate point within the planner. This is a reflection 

of the prog ram m er’s knowing what he would do in such 

circumstances, rather than the system’s being able to work it 

out. P o w e r ’s system  m akes  ca lls  to s e v e n  d if fe re n t  

conversational games at different points in both the planning 

and execution phases.
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Houghton has one general function that makes access to a 

number of different types of information. Among these are (1) 

finding out about the state of the world, (2) finding out whether 

something is true, (3) asking or finding out whether somebody 

can do something, (4) asking how to do something, (5) getting 

somebody to do something, (6) checking whether a plan or 

strategy has not been done, (7) linking the preconditions for 

speaking with appropriate objects and (8) preparing to invoke an 

Interactional fram e to find out, draw attention, get to do 

something or to make something known. Houghton's planner is a 

substantial improvement on Power because it deals with both 

when and how to produce an appropriate utterance whereas  

Power's only deals with when.

A theory might treat conversation and action in three  

different ways: independently ( as in Houghton’s system ), 

dependently ( as in Power’s system) or identically (as in the 

“id e a l” system ). I take this latter method as a possible  

e n h a n c e m e n t in ch ap te r  6. The  m ain point is th a t  no 

conversational calls should be made during the planning and 

execution phase but instead at one specific point within the 

planner only. In order to do this, static (i.e . param eters  

specified at source) and dynamic (i.e. the joint plan tree and 

control stack that specify mutuality) knowledge representation
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needs to include both physical and conversational rules together 

and not separately. The planner should then be able to assess 

this knowledge representation at the same time and not using

Physical
Planner

Conversational
planner System

zggoal

zgrule
Power

g etjn fo

Own 
resource

GET_TO_DO
FINDOUT
MAKEKNOWN

Houghton

\/
--------- «-------

Conversation 
and planning 
independent

Physical & 
Conversational
Planning

+
execution of 4

action or
conversation

+
Inferencing
and
assessing

Conversation is 
action

Figure 3.10d Diagram illustrating some of the 
alternative wavs in which conversational and 
physical planning can be linked and perceived 
in relation to one another.

two different planners as implemented both by Houghton and
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Power. Houghton’s system is slightly better than Power’s in 

that only one procedure (ge tjn fo ) is used within the physical 

planner to search for what it wants.

Thus, the main weakness of these algorithms is that they 

both have no method for inference and they also call the 

conversational planner whenever they choose to. Ideally a call 

to the conversational planner should either be at exactly the 

same place or thought of as the same as planning (discussed 

more fully in chapter 6 and illustrated in figure 3.10d. The  

reason for this is that if such a system were to exist then it 

would be fully explicit in the sort of utterances it could make. 

It would then be possible to consider the problem of efficiency 

that was the concern of Houghton. If a system were not to 

fo llow  this princ ip le  then problem s of coord ination  and  

reasoning clearly infiltrate when for example the time slicing 

dictates an unexpected occurrence of either a physical or 

conversational event.

3.4.5 Conversational Planning.

In Power, the planning routines make calls to what he 

refers to as conversational procedures or games. They specify 

the form the conversation should take, what should be said and 

who should say it. There is an initiator and a respondent in each
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game, which are labelled as white and black. Once a game has 

been initiated there is a rigid set of rules that decides what 

gets said next. If one agent breaks a rule then the other 

interrupts with a suitable error message saying that a muddle 

has arisen and that “we'd best start again”. Before actually 

playing a game priming takes place as an agent announces his or 

her intention to play a game before the game itself takes place. 

So a normal human adjacency pair, such as “Is the bolt Up?”, 

”No”, would take four utterances due to the two initial lines of 

priming i.e. “May I ask you something?”,”By all means”,”ls the 

bolt Up?”, “No”. This allows both robots to know which game is 

tak in g  p lace at any one tim e. Pow er defines  seven  

conversational procedures. To take an example consider the 

procedure ZGASK. It has the following definition:

GAME ZGASK;
1. * W ZGQUERY [ZDQUERY];
2. * B ZGANSWER [ZDSIGN];

3. A W ZGRECORD;

The numbers indicate the order in which things should take 

place. The symbols * and A indicate whether an entry or an 

utterance should be made. W and B stand for white and black and 

indicate who is to carry out the utterance. The main function 

ZGQUERY allows for a question to be asked, ZGANSWER allows 

for the response and ZGRECORD records what has been said in 

response. The functions in brackets determine how to interpret
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the utterance after it has been made.

In Houghton’s system the implementation is the same as 

Power’s except that, instead of using conversational games, 

interactional frames are used in conjunction with what is 

referred to as a POP11 process. This is an inbuilt process that 

allows the programmer to simulate parallelism. So that instead 

of using a control stack, as Power did, Houghton creates a 

series of sub-processes that can be suspended and reinstated 

when required. The advantage of Houghton’s system is that the 

code is much easier to understand. The disadvantage is that 

agents may be required to reason about the process (e.g. when an 

unexpected event occurs), some subset of the process or the 

process content and therefore without knowledge of where the 

process is, or about parts of its content, this program  

representation is not entirely satisfactory. This is why I choose 

(and discuss in chapter 4) to continue with Power’s control 

stack representation and avoid using processes.

In Houghton’s system, interpreting utterances is ignored, 

there is no priming and, when an agent has finished speaking, 

the conversational structure is automatically passed to the 

other agent whose turn it is to reply. On generating an utterance 

each frame has additional rules which determine what has to be 

true before such an utterance can be made and what has to be

73



done afterwards. Further details about this can be found in 

Cohen and Perrault (1979a,b). In Houghton, there are four 

interactional frames: MAKEKNOWN, FINDOUT, GET_TO_DO and 

GET_ATTENTION. I give here the definition of MAKEKNOWN:

INTERACTION_FORM
MAKEKNOWN
ROLES speaker=robot hearer=robot prop=fact 
GOALOF [know hearer prop]
MEANS [know hearer [know speaker prop]]
PRECOND prec2 knows(speaker, [not [know Ahearer Aprop]]); 
RESPONSE [hearer updateworldview speaker check_acceptance] 
REPLY_TYPE MAKEKNOWN

In order for an interaction to occur the following steps 

need to take place (this is what Houghton refers to as 

conversational planning or planning an interaction), (i) find a 

suitable interaction for desired goal, (ii) bind variables to the 

interaction, (iii) make preconditions true, (iv) make sure we are 

not already engaged in a conversation, (v) add instance to stack, 

(vi) prepare message structure and (vii) pass to language  

generation. A similar sort of conversational planner exists for 

responding to a message.

The dilemma all conversational planners must face is 

that, on the one hand, there is a need to bind your partner within 

a predefined script while, on the other hand, to do so would not 

allow your partner freedom to think. The task of a good hearer 

is sometimes to think in parallel about both the speaker’s and 

the hearer’s needs (e.g. when the speaker is saying something
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that does not need to be lis tened to and som etim es to 

interchange between both the speaker’s and the hearer’s needs 

(e.g. when a change in the state of the world occurs but is 

unnoticed by the current speaker). A conversational procedure or 

an interactional frame as currently implemented by these  

systems prohibits this. There has been some discussion about 

alternatives to CP’s and IF’s. For example Musson and Shadbolt 

(1987) looked at how Power’s model contrasted with Allen’s in 

that Power used conversational procedures and Allen did not. 

Nevertheless some kind of conversational structure along these 

lines is inevitable since to avoid doing so would introduce 

serious pragmatic ambiguity and would make coordination and 

control difficult if the knowledge or conversational skills 

varied significantly.

3.4.6 Meta-planning.

There is very little evidence of m eta-planning, (e.g. 

Wilkins 1984, Sacerdoti 1974, Stefik 1980 ,1981) in either  

Houghton’s or Power’s systems since they both only deal with 

one mutually agreed plan tree at a time. If however agents were 

required to keep their own internal plan trees distinct from the 

mutually agreed plan trees and both agents were required to 

think in parallel, the effect would be to enable them to deal
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with a variety of interruptions and conflicting plans. Agents 

would not interrupt an adjacency pair or conversational 

procedure but seizing the initiative should be allowed to occur 

between sets of adjacency pairs. To some extent this is 

discussed by Power (1987) and referred to as presumption and 

efficiency. It is for this reason that there is a need for a 

conversational and physical meta-planner that looks at the 

overall problem and then plans what conversation, plan or 

action to perform next. It is this module that should be 

concerned with efficiency in dialogue.

3.4.7 Executive Control.

Whereas Meta-planning is concerned with monitoring the 

course of the process or piece of program that is currently 

being executed so as to ensure that it proceeds in the right 

direction, the excutive provides the mechanism that determines 

the next most appropriate course of action.

For Power there is a single queue of goals that are either 

“situations” (which need planning) or “events” which just need 

execution. For Houghton there is no conscious organisation apart 

from the use of the built-in POP11 processes mentioned earlier.

In P o w er’s system he has what he refers to as an 

executive. The executive interfaces between the two agents and
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represents the top level control of the overall dialogue. It is 

what Power (1974) referred to as the chairman.

In Power’s program there are two sets of codes, one 

for each agent. The executive then provides the coordination 

between the two programs determining which one runs at any 

given time. By slicing the program into meaningful units the 

executive can transfer control from one program to the other 

whenever it chooses. However in this implementation, no 

considerations over and above swapping alternate ly  were  

considered. That is to say, each agent could only think for the 

same fixed amount of time. Thus the executive could not allow

NO

NO

YES
YES NO

NO

YESYES
EXIT

START

HAS MARY 
SWAPPED ?

AROUSE
JOHN

AROUSE MARY

HAS JOHN SWAPPED ?

DID JOHN 
SWAP LAST 
TIME ?

DID MARY SWAP 
LAST TIME ?

Figure 3.1 Qe Executive Control (adapted from Power 
19-74),,

for one of the agents to think faster than the other. Although 

this configuration is suitable for a metaplanner to reason over
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he made no claims about this.

In Houghton’s system there is only one set of codes. Each 

agent is allowed to speak by constructing more than one 

process. In essence there is no chairman since one robot goes on 

thinking and speaking until he decides not to do so. This is 

achieved by suspending the current process at the point at 

which this is convenient. Im m ediately  when a process is 

suspended the other agent resumes control of the program.

More general issues are relevant to conversation theory 

that the meta-planner and the central executive must concern 

themselves with. These issues include how to invoke a level of 

explicit conversation by the use of presumption and in turn how 

to interpret incoming events or conversation that involve a kind 

of interruption. This would involve a tran sfe r  of control 

between leading (i.e. by initiating CP’s) and following (i.e. by 

having to respond to C P ’s all the time) the course of the 

d ia lo g u e . Th is  la tte r  con cern  form s the basis of the  

considerations looked at in chapter 4.

3.4.8 Initial setting and Representation.

In Power, typical knowledge representation at source 

(adapted from Power 1979) contains the following:
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Positions of objects:
[JOHN OUT, MARY IN, DOOR SHUT, BOLT UP] 

Perception:
John can see all four objects;
Mary Is blind and cannot see any of them, 
e.g. [door bolt robot]->jksee.

Action:
John can MOVE and SLIDE, but not PUSH; 
Mary can do all three, 
e.g. [move slide]->jkacts.

Goals:
John's goal Is to be in.

Mary's goal is for John to be In.

Beliefs:
John believes that:
If a robot MOVES, nothing happens.
If a robot PUSHES the door, 
the door changes position.
If a robot SLIDES the bolt, nothing happens. 
Mary believes that:
If a robot MOVES, he changes position 
provided the door Is OPEN.
If a robot PUSHES the door, 
the door changes position.
If a robot SLIDES the bolt, nothing happens.

In Houghton there is knowledge representation for a 

greater variety of uses. It is split into two major categories, 

"core" and "variable" knowledge. Examples of different types are

as follows:

i) Core Knowledge reflects what the robots and the system 

know about the physical world. This knowledge never changes

throughout the dialogue.

[Fred knows [opp X Y]][opp In out]
[Fred knows [ sameloc isa position]]
[Fred knows [ hand4 is hand]]
[Doris knows [ hand4 partof Fred]]
[Fred knows [hand4 partof Fred]]
[hand4 partof Fred]]
[Fred knows [[door] objof move]]
[Doris knows [in isa position]]
[Doris knows [closed isa doorpos]]
[Fred knows [Fred isa robot]]
[Doris knows [Fred isa robot]]
[Fred isa robot]

ii) Variable knowledge is knowledge that changes during the 

course of an interaction. For example, if Doris slides bolt4 and 

tells Fred then a component of the variable knowledge changes

to [Fred knows [bolt4 is down]].
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[Fred knows [ Doris can push]]
[Fred knows [bolt4 is up]]
[Fred knows [ if [ robot push door] 

when [bolt up] 
then [door move]]]

[bolt4 is down][Doris knows [bolt4 is down]] 
Fred knows [Doris can slide]
[Doris knows [Fred can movethru]]
[Fred is out][Doris knows [ Fred is out]] 
[Doris is in] [door4 is closed]

For a goal of one of the agents getting In, Power has a 

maximum of 26 different knowledge representation entries. For 

the same domain Houghton has at least twice that many. 

Whereas Power has different variables to represent different 

types of knowledge, Houghton represents all knowledge in the 

form of [Fred knows [fact]] where “fact” is a list that contains 

a unique semantic identifier. In Power’s case, the knowledge 

representation that Houghton uses is buried either in the 

program code or updated as another variable later on as in 

knowing what each other can do, for example.

In addition to this Power has no meta-conversational 

knowledge to be applied to conversation in terms of when it can 

be used. Instead it is directly called upon within the planner. On 

the other hand, Houghton has Cohen and Perrault’s (1979a,b) 

speech act definitions for his IF's. Thus he has established the
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preconditions18 for what has to be true before a conversation

can take place.

There is also, in both systems, a dynamic knowledge 

representation in the form of a plan tree, which contains  

information about physical sub-goals that have a number of 

different plan varying facts (failed, notyet and ach ieved)17. 

Neither system considers knowledge that has a different status. 

Knowledge can come about from different sources, it can arise 

through the conversation, it can be told, inferred, estimated, 

known, unknown or assumed. For example, knowledge that has 

just been given (told) to an agent is not always true after an 

action takes place. Another example would be when you need to 

keep track of these time varying facts to avoid asking the same 

questions. Thus knowledge needs to be represented in such a 

w ay as to c a p tu re  th is  dyn am ic  a s p e c t o th e rw is e  the  

information becomes out of date, as it would do if implemented

18 It is not easy to identify clearly all the preconditions for speaking in spite of the 
attempts made by Cohen and Perrault (1979a,b) since this depends on the conversational 
and physical goals that are brought to the dialogue at outset. Nevertheless for a limited 
domain such as Power’s robot world, specifying the preconditions is relatively easy. 
Amongst the most important that I have identified more recently are (1.) Speaker does not 
know that the hearer can not do or see it. ( 2.) Speaker knows hearer is being cooperative. (3.) 
Mode of interaction is joint (4.) You have not asked it before. (5.) You can not do it yourself. (6.) You 
do not know it yourself. (7.) You are not planning to ask already. (8.) You have not just inferred it. (9.) 
Are you being efficient?

Coates (1990) also makes the important point that in human dialogue sometimes the underlying 
intention of an exchange is only revealed after the utterances of the speakers are complete. She 
backs this argument up by giving an example dialogue in which two speakers are constructing the 
same utterance together. However even this example Is also not entirely satisfactory since both 
speakers were speaking simultaneously in a dogmatic manner. Thus although the intention is always 
unclear at any particular junction in time, the tone often is, e.g. husband says to wife " I am going to 
be late tonight darling" Is only understood by how it sounds.

17 More recent systems such as Carletta (1990) have included the following 
categories (open, unplanned, unexecuted and executed).
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using Power and Houghton’s representations. Thus in short 

Houghton and Power both allow their knowledge at source to 

undergo physical changes. Houghton’s is superior to Power’s in 

that the representation is systematised in one database18 . Both 

have limitations in that information about the operational 

status of knowledge is not retained. By expanding the variety of 

knowledge skills of the agents, SU PER PO W ER is forced to 

confront this problem in chapter 5.

3.4.9 Conflict Resolution19.

For the successful execution of dialogue it is vital for 

partners to establish and maintain agreement about all items 

and have ways to agree them, in order to achieve this aim 

agents must possess the ability to detect conflict and then 

resolve it. There are a number of instances when this problem 

occurs in Power and Houghton.

In some cases conflict arises in response to suggesting a 

plan of action. Instead of saying "I can't think of one", as Power

18 In POP11, there is a facility that allows for data to be stored in one variable. 
There are then library functions that allow the user to access the database in different 
ways for example by pattern matching.

19 There has been some work, by Galliers (1987) using modal logic that discusses the 
process of trying to either co-operate or resolve conflict in dialogue. This work 
concluded that conflict is as co-operative and perhaps even more so than for example 
benevolence, since the conflicting negotiation serves to move agents towards a mutually 
desired goal. These are certainly the findings of this thesis; in some cases the agents 
physically appear to be entering dialogue for long periods of time in which they are both 
moving further from the main goal. For further discussions on the nature of mutuality, 
see for example Bratman(1987), Searle (1990), Cohen and Levesque (1990) and Power 
(1984).
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does, Houghton comes back with the question "How do you do X  

?". However neither system can deal with the case when neither 

agent can develop an appropriate plan.

After constructing a joint plan, discussions may arise if 

the plan is inconsistent with a belief. Both Houghton and Power 

can deal with this in the same way. When humans discuss what 

is right or wrong in terms of their beliefs about the world there 

is a situation in which they have to make up their minds about 

which belief to adopt. In some cases the one that wins is the 

rule or belief that offers more specific knowledge. In other 

cases it is the rule that “sounds” the better. For Power and 

Houghton, agreement and disagreement about beliefs is

1. John: I want to explain something
2. Mary: Go ahead.
3. John: If you move nothing happens
4. Mary: I disagree.
5. John:
6. Mary: If you move when the door is open you

change position.
7. John: I see.

Figure 3.11a A discussion about a 
belief in which the more complicated 
rule is judged to be the better one.

resolved, usually with the longer rule taking priority. That is to 

say, a rule that does not contain a precondition is rejected in 

favour of the one that does. Both systems do this. An example, 

taken from Power’s system is given in Figure 3.11a above.

After an action takes place there is a need within the
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planner to infer exactly what has happened in order to resolve 

any conflict that might arise from the consequences of the

1. John: Let's assess the consequences of my action.
2. Mary: Go ahead
3. John: Nothing has happened.
4. Mary: I disagree.
5. John:
6. Mary: The bolt has changed position.
7. John: I see.
8. Mary: The bolt is now up.
9. John: Right.

Figure 3.11b Action failure in which one
of the agents believes that an action has
not achieved its intended goal.

new state of the world. In Power’s model, an action failure is 

handled within a conversational procedure that is automatically 

invoked after the action has taken place, as illustrated in figure 

3.11b. Houghton does not consider dialogue after an action has 

taken place.

There are other more open-ended senses of conflict too. 

Neither system discuss the more common situation in which 

both agents are in conflict in the sense that they both know that 

they are confused about how to achieve the main goal. As a 

corollary to this problem agents may also be confused about 

their knowledge or the current state of the world. Some  

solutions to this problem are the concern of SUPERPOWER in 

chapter 5 and are mentioned later in this chapter.

84



3.4.10 Interaction skills.

Interaction concerns itself not with the preoccupations of 

individual speakers or hearers, nor with a sensible plan to 

achieve an overall task but with “ev idence  for interplay  

between participants” (Anderson, Clark and Mullin 1989). Other 

important featu res  of interaction addressed here include  

freedom to seize control and the business of CP’s and IF's being 

kept open and at the same time unachieved. In this section, I 

look at these s y s tem s ’ ab ilit ies  to describe the a g e n ts ’ 

interchange which is a major focus for SUPERPOWER.

In Power’s system, the first place where interactional 

skills can be seen is in turn-taking, with no repetitions of the 

same type of CP at any one time. Only one plan (or several sub­

plans) can be active at any one time. Thus interaction is best 

described as short and sharp with at most two or three  

conversational procedures active at any one time. There is no 

level of dominance and the robots are always thinking about the 

same plan or conversational procedure one after the other. Co­

operation is achieved through slavery on the part of one or other 

of the agents and the ability to interact is restrained to the 

reasoning of the conversational procedure itself.

Coordination is achieved by sending one of the agents to
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“sleep” until the other has caught up to the same point within 

the program code. Interruptions are hard-coded into the planner 

at appropriate points for naturalness as opposed to some 

necessary interruption reasoning process that takes into 

considera tion  the ram ifications of the other partic ipant.  

Interruptions are also modelled in Power when some tacit 

disagreement hinders advance towards the goal actively and an 

interjection is appropriate, for example, the use of “call by 

name” as in “1. John: Mary, 2. Mary: Yes”. There is also some 

inferencing after an action takes place that is automatically 

and immediately hardwired and executed.

For Houghton, interaction is turn-taking and any number of 

interactional frames can be invoked or active at any one time. 

Thus conversation can be embedded so that a number of 

interactional frames are active at any one time. Just as with 

Power, it is not clear to what extent conversation that occurs 

before an action can be retained active after that action. Thus 

although the interaction frames are clearly embedded at any 

number of levels, the assumption is that there has been no

1. John: How do you get to be in?
2. Mary: You open the door and move.

Figure 3.11c Being told how to do 
something (adapted from Houghton 
1986 )-.

change in the current goal. Thus physical planning is the same
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as for Power. So are dominance, co-operation and coordination. 

However reasoning about plans and d ifferent bits of 

knowledge can vary considerably. For example, in Figure 3 .11c 

John is thinking about how to achieve the goal of being In 

whereas Mary is planning how to be in.

In the next two chapters, I show that a critical milestone 

for any dialogue system is the ability to interact even when 

there is a change in the state of the world. This involves some 

improved knowledge representation that reflects new and old 

knowledge that retains its validity and a recursive algorithm 

for keeping track of conversational procedures that are kept 

active for long periods of time over perhaps several actions and 

are then needed or completed at a later time.

3.4.11 Inference.

In Power’s system all inference is hardwired within the 

conversational procedure. For example, in figure 3.11d, the 

follow ing exchange all occurs within one conversational 

procedure.

1. John: Let’s assess the consequences of my action.
2. Mary: By all means.
3. John: The door is open.
4. Mary: I see.

Figure 3.11d Action success (adapted from
Power 19741.
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In Houghton there is no need for inference since the 

planner is always good enough (in relation to achieving the main 

goal) to avoid this. Later, in SUPERPOWER, all inference is done 

exhaustively within the planner. Thus, with Houghton, once all 

plans are negotiated it is assumed that the actions will achieve 

their desired effect. But with Power’s system an actor engages 

in a conversational procedure “zgassess” immediately after it 

performs an action with the intention of making sure that both 

agents understand what has happened. On completion, both 

agents exit from the game, update their plan structure and infer 

a new belief about the world if the current change was not what 

was expected.

One problem that perhaps has often been underestimated 

is that modularising a program often restricts its scope for 

cogn itive  d e v e lo p m en t. For e xam p le , Houghton (1 9 8 9 )  

m odularised  u tte ran ce  planning such that the syntactic  

structure of an utterance was determined by a plan that could 

be either physical or conversational. Then the utterance could 

be generated using Halliday’s systemic grammar. It is not at all 

clear whether this took into consideration the circumstances 

from which the plan was derived in the first place. For example, 

how could it distinguish between “The bolt is Up” and “The bolt 

must be Up”? The former might have been an answer to a
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question and the latter an inference, yet the meaning are the 

same. These two sentences are neither given nor new facts but 

instead have their grammatical structure rooted within the 

dynam ic planning process of inferring som eth ing .20 Thus, 

although systemic grammar readily distinguishes between these 

two modalities and Davey (1978) applies this in his system it 

has not been extensively applied in this particular instance. The 

problem of relating the dynamic aspects of planning to modality 

in linguistic structure (see also Coates 1990, Palmer 1990 and 

Stubbs 1987) is an important milestone for inference since 

once the variety of inference increases a respondent will need 

cues to understand how an utterance, containing an inference, 

was actually made.

I hope to be show ing  in fu tu re  c h a p te rs  th a t  

S U P E R P O W E R ’S inference capabilities combined with the 

planning mechanisms permit solid support for a more general 

account of modality.

3.5SUPERPOWER.

I now focus on the two main differences between my 

system and those of Power and Houghton. First to be considered 

will be the coordination i.e what Power refers to as the

20 A useful modular account of computational linguistics for reference purposes can 
be found within Gazdar and Mellish (1990).

89



executive control in terms of when the agents are allowed to 

think. This is the component where any meta-planning that 

needs to be done should be done. It is the starting point for 

allowing agents to vary the dialogue interaction as a whole.

In terms of coordination, the agents must be able to 

interrupt one another w henever they want to. In Pow er’s 

system, this is only possible when it is the appropriate agent’s 

turn. In Houghton processes are used, but again, only when one 

agent has finished speaking is this possible. In SUPERPOWER  

both ag en ts  are  a llo w ed  to th ink  at the sam e t im e. A 

comparative summary is shown in figure 3.12 which indicates a 

short bar line when it is the appropriate agent’s turn. Only one 

of the agents is actually being allowed to think. In the case of 

humans, perfect parallelism can exist, although it is normally 

very difficult to talk when you are trying to listen at the 

same time, likewise it is very difficult to think about one’s own 

goals at the same time as listening. Thus with humans, to be 

part of an interaction participants must accept as a minimum 

these constraints. Apart from this, they are free to talk or 

listen as and when they choose. In Houghton and Power’s 

systems there are periods in which both agents can have 

absolutely no impact on the dialogue. In SUPERPOWER, I have 

allowed the thinking time to be distributed between the two
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agents allowing them the freedom to think, talk and listen

Time slicing 
in which 
agents 
Alternate 
the amount 
of thinking 
equally.

Time slicing 
in which the 
speaker 
continues 
thinking 
until it has 
something 
to say.

Time slicing 
in which the 
relative 
speed of 
Mary is three 
times faster 
than John.

Figure 3.12 Time slicing illustrating the degree of 
parallelism that can exist between one conversational 
simulation and another. In Power, control swaps 
alternately. In Houghton, control changes when one agent 
has reached a logical conclusion. In SUPERPOWER one agent 
can be allocated more time increments per swap than the 
other. Thus, with this allocation, the robots are thinking at 
the same time because such a simulation could not possibly 
work unless the program code had been designed so that 
each robot thought independently of one another.

more independently than before but observing the human 

principles of not planning and listening or talking and listening 

at the same time.

Houghton (1986)

Robot Plan Type Time increments

Fnad Phusical —
Conversational — -

Pans Phusical
Conversational —

SUPERPOWER

Robot Plan Type Time Increments — >

Slow
John

Phvsical
Conversational

Speedy
Mary

Physical - - - - -
Conversational

Power (1979)

Robot Plan Type Time increments —>

Mary
Physical — * - -
Conversational — -

John
Physical — -
Conversational ■"
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Secondly, SUPERPOWER has improvements in terms of the 

depth of planning and inference techniques that are possible. 

Figures 1 .10 (chapter 1), 1.9 (chapter 1), 3 .13  and 3 .1 4  

illustrate the main types of dialogue that are addressed. In the 

first instance there is classical planning, figure 1.10 (chapter 

1), which is the type of algorithm that both Houghton and Power 

use. W hereas Instrumental planning relates to the need to 

overcome perceptual difficulties, experimental planning relates 

to the need to overcome not knowing how to do something.

Within experimental planning Power’s program simply

1. Mary:

(State of the world is now
[Mary in, John out, door open, bolt up])
Is the door open?

2. John: I don't know.
3. Mary: Let's do a test. I suggest I move.
4. John: All right.

5. Mary:

(State of the world is now
[Mary out, John out, door open, bolt up])
I have moved.

6. John: I see.
7. Mary: I have changed position.
8. John: I see.
9. Mary: I am now out.
10. John: Right.
11. Mary: The door must be open.
12. John: Right.

Figure 3.13 Instrumental Planning in which not knowing 
something generates the need for both conversation and action.

aborts. In Houghton’s program he considers experimental 

planning but only when a single agent does not know how to 

plan. In the dialogue illustrated in figure 1.9 (chapter 1) I 

demonstrate a new set of dialogue possibilities by generating
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sentences appropriate for when both agents cannot find a plan. 

Then there is instrumental planning (figure 3 .13) in which 

neither agent can perceive the current state of an object in the 

world and they need to work out how to discover what it is. 

Neither Houghton nor Power consider this or the other case 

which involves dialogue about what to do when something

(State of the world is
[door shut, Mary in, John in, bolt down])

1. Mary: Will you help me get out?
2. John: By all means.

(State of the world is
[door shut, Mary out, John out, bolt down])

3. Mary: | have changed position.
4. John: | see.
5. Mary: | am now out.
6. John: | see.
7. Mary: Somebody has put me out.
8. John: Really.
9. John: | have changed position.
10. Mary: | see.
11. John: | am now out.
12. Mary: | see.
13. John: Somebody has put me out.
14. Mary: Really.

Figure 3.14 Unexpected Planning in which
both agents have agreed a goal that is
suddenly realised automatically. The task 
then becomes a matter of inferring what 
has happened.

unexpected occurs. In figure 3.14, both agents are in dialogue 

with one another when suddenly they are both placed in the Out 

position. The task is then for both agents to assess and infer 

exactly what has happened. This falls within the definition of
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Unexpected planning21.

3.6 Summary.

In this chapter, I looked first at early dialogue systems 

that do not consider purposeful conversation in terms of any 

theory. Next, I discussed goal-directed systems that do provide 

such a theory and some work that went into understanding the 

components of a goal-directed system. I explained that one area 

not covered by this work is the ability of the agents to enhance 

their pragmatic skills as a result of their having been endowed 

with different knowledge, perception, action and speed skills. I 

then went on to discuss Power’s and Houghton’s systems that 

come the closest to achieving this aim.

In chapter 4, I shall discuss the time slicing algorithm 

that allows agents to think and converse whenever they choose. 

I shall also explain how speed changes and differences in other 

skills give rise to different dialogue. Then in chapter 5, I shall 

discuss an exhaustive joint planning algorithm for a wider 

variety of skills than that reported so far.

21 Unexpected planning has been the interest of Social Scientists recently. For 
example, Suchman (1987) suggests that the work in Artificial Intelligence planning has 
little to say about how humans perform tasks. By illustrating her theory with dialogue 
about photocopying she shows how plans are not developed in advance of the action but 
instead as a consequence of the situation. However by simply being familiar with a type 
of event and inferring what is happening from past experience robots can also develop 
plans *in situ\  Agre (1990) also supports this argument.
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Chanter 4. 

Time slicing.



4.0 Introduction.

In the previous chapter I identified two problems that 

other dialogue systems have not considered namely the time 

slicing and kinds of planning. In this chapter I discuss the first 

of these problems.

Power (1974), both at the end of his thesis and in more 

recent artic les, Indicates a number of problems that his 

original program failed to address. A better representation than 

that first described in Power (1974) could be achieved by 

swapping the control from one agent to another at all stages of 

planning, thus allowing simulation in parallel. This is what I 

refer to as time slicing. Power (1979) also suggests it would be 

more satisfactory to have a control stack representing the point 

of the utterance rather than a mixture of information about 

mutuality, utterances, dialogue, and joint plans and (Power, 

1987) discusses the need for the dialogue to be more efficient. 

Finally, Power (1984); (see also Power and Dal Martello 1986) 

recognises that the problem of what constitutes agreement 

still needs to be resolved. Some recent programs have partially 

solved some of these problems but not all.

It is with these ideas in mind that this chapter now takes 

up the issue of time slicing and explains how different timing 

accounts for variety in dialogue. I will describe the computer

96



simulation of Power’s robot world. The program listing in the 

appendix is an enhanced version of the program described in 

Power (197 4 ,1 9 7 9 ) and represents dialogue generated by 

SUPERPOWER V 5.9, described in this and the next chapter. 

Almost all of the original variable names, procedures and 

programming conventions that are described in technical detail 

in Power (1974) have been retained.

In section 4.1, I discuss the general problem of reasoning 

about events and processes which is at the heart of time 

slicing. An event may either be independent of, or dependent on, 

the current process22. Put simply, does it interrupt something or 

is it exactly what an agent was expecting? The main choices 

are listed in figure 4.1. Although the agents in SUPERPOWER do 

not ac tu a lly  reason deep ly  about this, there  are  

mechanisms to access any point within a process provided it

1) An event occurs and the agent was not expecting one.
2) An event occurs and the agent was expecting one.
3) An event does not occur and the agent was expecting one.
4) An event does not occur and the agent was not expecting one.

Figure 4.1 The general problem of processing events (utterances 
or actions). This provides the mechanism for what to do when 
something unexpected happens, thus improving the robustness 
of interaction.

has a reasonable amount of functional significance. Simple 

actions such as deleting, advancing, suspending or continuing a

22 Lansky (1986,1988), Georgeff (1987) have taken this issue up theoretically in 
GEM PLAN for both single and multi-agent domains but not, however, for problems 
relating to dialogue.
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process, once the executive control has in terpreted  how 

incoming events relate to existing processes, are included. 

Thus, the general problem of reasoning about an event is dealt 

with in section 4.1.1 followed by a discussion of when this 

occurs as well as how to reason about the current process 

(section 4.1.2). Sample dialogues are illustrated to show what 

happens if the agents are allowed to think independently in 

section 4.1.3. Next, in section 4.1.3.1 and 4.1.3.2 I detail a Monte 

Carlo simulation by considering all possible combinations of 

agent skills, with speed changes, and show how it is possible 

for them to give rise to changes in dialogue.

In the last sec tio n  (4 .2 ) ,  I e x p la in  how th e s e  

im provem ents are im portant for organ is ing the d ia logue  

according to the four levels discussed in chapter 2. Level 4 is 

about occupying the airwaves and so the state of expecting a 

reply (section 4.1.1) helps to decide what to do when an event or 

utterance occurs. Relative speeds are important at this level, 

since, when an event occurs that is independent of internal 

processing, it provides a trigger to stop planning and pay 

attention to the interrupt. I have not modelled how to reason 

about an interruption but have provided a program structure 

that could enable this (e.g. figure 4.3).
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4.1 Allowing both agents to think in parallel - an overview.

A closer simulation of independent robots, processing in 

parallel, can be implemented by expanding the central executive 

(P ow er 1974: exec) in such a way as to swap control  

incrementally from one agent to another. Processing time is 

split into small chunks of planning and conversational steps. 

Control is not now passed only when an utterance is produced, 

as in the earlier models of Houghton (1986) and Power (1974), 

but instead after a number of predefined chunks of reasoning 

d e te rm in e d  by a ro b o t ’s s p eed  p a ra m e te r .  Th is  tests  

conversational coordination mechanisms of the agents - there 

are now many more moments when the other may speak. They 

can be “surprised” and “in terrupted”. This brings out the 

theoretical problem of how an agent should respond to an event 

(utterance), whether or not it is expected.

In order to achieve all this, a program simulation must be 

able to process both existing and input activity at the same 

time. This in turn involves relating incoming events (physical 

or conversational) to current processes (physical plans or 

topics). There is a variety of strategies for dealing with this, 

depending on the style of agent that is required. For example, 

following Power (1979), one strategy is hardwired into the 

program in order to be able to ignore current processing, to
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respond immediately and to engage actively when an agent is 

spoken to. He refers to this as call by name (Mary says: “John”, 

John rep lies : “Y e s ” and suspends his curren t in te rn a l  

processing). Situations often arise where this strategy might 

not be appropriate, and in this case the agents would have to 

know how to reason at this level. I do not consider this problem 

here but instead expand the notion of expecting a reply in the 

central executive of the agents.

Next, I introduce the reader to the problem of defining an 

increment of time that can be used as a method of simulating 

parallel activity. Later on I shall be showing that one of the 

most striking conclusions from this is that what gets said in a 

dialogue is dependent on the relative speeds of the participants, 

even when all other initial conditions remain constant. This is 

surprising, since one might expect only the order of dialogue to 

be affected. Furthermore, in some instances, even the outcome 

of the dialogue can be determined by the relative speeds of the 

agents.

4.1.1 The notion of expecting a reply.

In human dialogue the hearer is always confronted with 

the problem of how to balance resources between listening to
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Given that:
1) An event has just occurred and the agent was not expecting it. Then: 

e.g. 1. The agent could have been finishing off interpreting another message, 
e.g. 2. The agent could have been thinking about something else, 
e.g. 3. The agent could have been preparing to say something.

2) An event has just occurred and the agent was expecting it. Then:
e.g. 1. The agent could have been planning, assessing or saying something else, 
e.g. 2. The agent might simply be waiting for the event.

3) No new event occurs but the agent is expecting one. Then:
e.g. 1. The agent could have been waiting for the other to say something, 
e.g. 2. The agent could have been waiting for the other to perform an action.

4) No new event occurs but the agent is not expecting one. Then: 
e.g. 1. The agent could have been interpreting a previous utterance, 
e.g. 2. The agent could have been preparing to make an utterance, 
e.g. 3. The agent could have been planning to make an utterance.
e.g. 4. The agent could have been preparing to make an utterance but was still 
planning or assessing.

Figure 4.2 The notion of expecting a reply illustrating 
the main processes that an agent is involved in at the 
time of an event (or non-event). Both the process and 
the event require reasoning about.

the speaker and preparing to speak himself. In SUPERPOWER, I 

pave the way for this problem by introducing the notion of 

e x p e c t in g  a rep ly . F u rth e rm o re , a ll p ro c e s s e s  w ith in  

SUPERPOWER are subdivided into functional units that can be 

suspended at any time. Thus, if an event should warrant it, a 

new process can start and when it is finished the old process 

can be resumed. There is nothing new in this idea except that in 

SUPERPOWER the dialogue can be more explicit. The program 

always recognises the type of event that has just occurred 

and therefore responds accordingly. The various cases that an 

agent’s executive (Power 1979) must consider, when control is
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Yes

Yes

Assess event

Update and 
replan.

Was it expected ?

Infer anything new ?

Continue from 
before

Event (E) or Utterance (U) ?

Load in new 
Conversational 
procedure

Figure 4.3 How incoming events and utterances are 
processed when robots are allowed to think in parallel.

handed back to it, are illustrated in figures 4.2 and 4.3 above.

4.1.2 An increment of time.

The problem of simulating the processes of two agents in 

parallel is not obvious. Processes must be simulated in such a 

way as to alternate the amount of CPU time each agent’s 

conversational program can occupy. This in turn means that each 

agent’s process must be allocated a certain amount of the CPU 

time each time the simulator’s chairman hands over control to 

an agent’s program. This then poses the problem of how to
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define how much of this processing represents one time unit? 

On the one hand, the increment should not be too small since 

conversation has very little to do with computer machine code 

and on the other it should not be too large since it would not 

test the flexibility of the mechanisms very much.

Thus, at one extreme every machine code instruction 

could count as an increment. At the other is Houghton’s (1986) 

definition based on control being passed only when agents have 

finished a process of making an utterance. A third definition 

(P ow er 1 9 7 9 )  could be based on the idea  that every  

instantiation of a plan step or a conversational procedure 

constitutes one increment. An even smaller increment might be 

useful in certain situations (e.g. Mary might be looking up some 

knowledge while John tells her what she is trying to find out). 

SUPERPOWER uses Power’s (1979) definition but is designed so 

that any definition would be easy to implement.

Although there is considerable debate as to what this 

could actually mean, an increment of time in conversation is 

nevertheless usefully defined when, on execution, a segment of 

a conversational program takes on a meaning that can be 

reasoned about. This provides the basis for a variety  of 

situations which would otherwise not be handled by dialogue 

systems. For example, a difficult situation could arise if one
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stupid agent is very much faster than a clever but slow agent. 

The question arises of whether or not to remain within the 

conversation dictated by the stupid but fast agent. Although 

more related issues such as pauses, hesitations or interruptions 

(Butterworth 1980) are not directly considered here, a clever 

agent would not acquiesce but pause and think. Similarly, human 

conversation becomes more efficient as a consequence of 

reasoning about chunks of e a rlie r  d iscussions. Thus an 

important feature of any computer program that generates  

dialogue is for it to be structured in such a way that each  

conversationally meaningful function is segmented as a time 

unit that can be reasoned about. For example, if one unit related 

to responding to an utterance it means that the functional unit 

is conversational rather than physical or mental.

At the heart of all computer models of conversation there 

is a problem. Within the interactionist approaches such as 

S h adb olt and C a r le t ta  there  is no a llo w an ce  for speed  

disparities or differing knowledge skills. These are models of 

conversation only between identically-trained conversants. On 

the other hand, models that have an element of disparity  

between the speaker and the hearer by way of an interaction 

frame or a conversational procedure suffer from other kinds of 

defects. Namely, once an agent is in a CP or IF it has no way of
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getting out and is forced to respond in a direct way.

Part of this same problem is the dilemma between an 

elliptical and an explicit approach to modelling dialogue. An 

interactionist model is elliptical since it strives to specify all 

the important elements, such as Shadbolt’s communicative 

postures, of an efficient dialogue system without exhaustive 

i l lustration  of any con versational techn ique . My explic it  

approach with S U P E R P O W E R  is to strive for fewer initial 

settings but greater amounts of explicitness for how a setting 

such as time slicing can be adequately tested through the use of 

a Monte Carlo simulation.

In the interactionist models such as Shadbolt and Musson 

(1987) there are no conversational procedures at all. The model 

relies on a form of constructive interaction. The job of each 

planner is to contribute to the previous utterance which is 

expressed in the form of a plan. Also it is not clear how they 

distinguish between listening and speaking at all. Thus it is a 

form of monologue, not dialogue, in this respect. The drawback 

with this method is that the planners cannot act differently, in 

the conversational sense, from one another. Agents can 

contribute provided their knowledge is similar. If, however, the 

knowledge of agents were varied, this method would not fulfil a 

sense of explicitness (since varied knowledege inevitably
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means a greater diversity in dialogue). By contrast, in models 

such as those of Power and Houghton conversational planning is 

treated independently from physical planning. In the former 

situation (i.e . Shadbolt and Musson 1 9 8 7 ),  the th inking  

processes associated with speaking are assumed to be the same. 

In the latter case, (i.e. Power 1979; Houghton 1986; Carletta 

1990), a clear distinction is made between a planner that 

listens, by way of being bound to a conversational procedure or 

interactional frame, and a planner that prepares to speak. The 

advantage of binding within a CP (i.e. no control can be passed 

to a different point in the program once in a CP) is that time 

slicing becomes possible whereas without a CP or IF time 

slicing is impossible and therefore control or coordination
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cannot be illustrated within dialogue,23

4.1.3 Example dialogues with parallel processing.

I now demonstrate, through the use of SUPERPOWER what 

happens when agents are allowed to process independently of 

one another. Intuitively, the only difference would be the order 

in which things w ere said. This is not the case at all. 

Unexpected phenomena occur within dialogue when all factors

28 One further important step forward is to minimise the amount of processing 
time spent within a CP or IF, and then to force this minimal procedure to behave 
just like a joint action. In other words there is a planner that reasons about 
conversation in the same way that it reasons about action. It also executes 
conversation rather like a joint action. Also within the program code, action is 
physically performed in the same place as the conversation (unlike Power and 
Houghton in which action and conversation are intermingled throughout the 
program code). Furthermore, for every physical plan of achieving a goal there is 
also a corresponding conversational method. Efficiency or ellipsis can then be 
improved by developing a theory of the hearer that knows when to interrupt 
combined with a theory about presumption, (Power 1987: 10), that assists the 
speaker in making elisions. This has the effect of allowing an infinite amount of 
explicitness that can then and only then be made efficient by developing 
conversational rules for situations such as a thoughtful hearer dealing with an 
uneducated, precipitous speaker. Minimising the amount of agreeing that occurs 
within a CP or IF is the main concern (discussed for future research in chapter
6) but, for the purpose of this section, part of the process of being more explicit 
means that each plan step, such as checking that preconditions are satisfied, must 
expose itself to be reasoned about. There are no short cuts, which is why in 
SUPERPOWER every process and joint plan is broken down into functional units so 
that more explicit conversation, if ever the need should arise, can appropriately 
be invoked. The listener then has two choices either to respond within the C.P. or 
metaplan his/her way out of it. This will be the concern of chapter 6.
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*** what John's capabilities are ***
1. Goal: Help me get the door open.
2. Position of objects:

door: shut: seen, John: out: seen, Mary: undef: undef, bolt: undef: undef
3. Consequences of events:

push: If you push the door when the bolt is up, the door changes position, 
slide: If you slide the bolt when you are in, the bolt changes postion. 
move: If you move when the door is open, you change position.

4. Range of actions:
move: Yes, slide: Yes, push: No,

*** what Mary's capabilities are ***
1. Goal: None
2. Position of objects:

door: shut: seen, John: undef: undef, Mary: in: seen, bol: up: seen
3. Consequences of events:

push: If you push the door, the door changes position, 
slide: If you slide the bolt, the bolt changes position, 
move: If you move when the door is open, you change position.

4. Range of actions:
move: Yes, slide: No, push: Yes,

Dialogue A Dialogue B
parallel processing set parallel processing set
John's speed = 1 John's speed *  3
Mary's speed = 3 Mary's speed = 1

1. John: Mary. 1. John: Mary.
2. Mary: Yes. 2. Mary: Yes.
3. John: I want to suggest a goal. 3. John: I want to suggest a goal.
4. Mary: Go ahead 4. Mary: Go ahead
5. John: Will you help me get the door open? 5. John: Will you help me get the door open?
6. Mary: By all means. 6. Mary: By aH means.
7. Mary: Shall we make a plan? 7. John: Shall we make a plan?
8. John: OK 8. Mary: OK
9. Mary: I suggest that I push the door. 9. John: Mary.
10. John: Mary. 10. Mary: Yes.
11. Mary: Yes. 11. John: May I ask you something?
12. John: May I ask you something? 12. Mary: Go ahead
13. Mary: Go ahead 13. John: Can you push the door?
14. John: Is the bolt up? 14. Mary: Yes.
15. Mary: Yes. 15. John: Mary.
16. John: All right. 16. Mary: Yes.

17. John: May I ask you something?
(State of the world is now 18. Mary: Go ahead
[John out, Mary in, bolt up, door open]) 19. John: Is the bolt up?

20. Mary: Yes.
21. John: I suggest that you push the door.
22. Mary: All right.

(State of the world is now
[John out, Mary in, bolt up, door open])

Figure 4.4 Relative speeds of the agents determining (a) 
utterance order, (b) utterance content (e.g. dialogue A line 
9 and dialogue B line 21). (c) dialogue iength. (cfl dialogue 
content (e.g. dialogue B lines 11-14 does not appear in 
dialogue A), (e) interruption rate (i.e. dialogue A lines 7 
and10 are interruptions whereas dialogue B has none).

remain the same except the relative speeds of the agents.
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Figure 4 .4 illustrates contrasting discussions in which the 

speeds of thought, which are m easured in increments of 

program code (Sect 4.1.2 p103), of the agent in the left dialogue 

are reversed (all other factors remaining constant). It clearly

Dialogue A Dialogue B Dialogue C
parallel processing set parallel proceeslng set parallel processing set
John's speed ■ 1 Mary's speed ■ 3 John's speed « 3 Mary's speed « 1 John's speed » 1 Mary's speed ■ 1

1. John: Mary. 1. John: Mary. 1. John: Mary.
2. Mary: Yes. 2. Mary: Yes 2. Mary: Yes
3. John: 1 want to suggest a goal. 3. John: I want to suggest a goal. 3. John: I want to suggest a goal.
4. Mary: Go ahead. 4. Mary: Go ahead. 4. Mary: Go ahead.
5. John: Will you help me get the door 5. John: Will you help me get the door 5. John: WUI you help me get the door open?

open? open? 6. Mary: By all means
6. Mary: By all means 6. Mary: By all means. 7. Mary: Shall we make a plan?
7. Mary: Shall we make a plan? 7. John: Shall we make a plan? 8. John: OK
8. John: OK 8. Mary: OK 9. Mary: I suggest that I push the door.
8. Mary: 1 suggest that 1 push the door. 9. John: Mary. 10. John: Mary.
10. John: Mary. 10. Mary: Yes 11. Mary: Yes
11. Mary: Yes 11. John: May I ask you something? 12. John: May I ask you something?
12. John: May 1 ask you something? 12. Mary: Go ahead. 13. Mary: Go ahead.
13. Mary: Go ahead. 13. John: Can you push the door? 14. John: Is the bolt up?
14. John: Is the bolt up? 14. Mary: Yes 15. Mary: No.
15. Mary: No. 15. John: Mary. 16. John: Mary.
16. John: Mary. 16. Mary: Yes 17, Mary: Yes
17. Mary: Yes 17. John: May I ask you something? 18. John: 1 want to explain something.
18. . John: 1 want to explain something. 18. Mary: Go ahead. 19. Maiy: Go ahead.
19. Mary: Go ahead. 19. John: Is the bolt up? 20. John: If you push the door when the bolt
20. John: If you push the door when the 20. Mary: No. Is up, the door changes position.

bolt Is up, the door changes 21. John: I suggest that we get the bolt 21. Mary: Ises
position. up and then you push the door.22. Mary: I suggest that we get the bolt up

21. Mary: Ises 22. Mary: All right and then I push the door.
22. Mary: 1 suggest that we get the bolt 23. John: Shall we make a plan? 23. John: All right

up and then 1 push the door. 24. Mary: OK 24. John: Shall we make a plan?
23. John: All right 25. John: Mary. 25. Mary: OK
24. Mary: Shall we make a plan? 26. Mary: Yes 26. John: Mary.
25. John: OK 27. John: May I ask you something? 27. Maiy: Yes
26. Mary: 1 suggest that 1 slide the bolt 28. Mary: Go ahead. 28. John: May I ask you something?
27 John: All right 29. John: Can you slide the bolt? 29. Mary: Go ahead.

30. Mary: Yes. 30. John: Can you slide the bolt?
31. John: I suggest that you slide 31. Mary: Yes

the bolt. 32. John: I suggest that you slide the bolt.
32. Mary: All right 33. Mary: All right

Figure 4.5 Dialogue of the goal of getting the door open 
with the bolt down, illustrating similar features to fig 4.4 
but with three different speed settings. In A. Marv 
dominates bv proposing 3 plans, in B. John dominates bv 
proposing 2 plans, but in C John proposes 1 plan and Marv 2. 
Discussions about beliefs only occur in A and C.

shows that the number of utterances, the order in which they 

occur, what gets said and agreed, what is explained, how a plan 

is realised are all different. Further complications arise when 

planning gets more involved. Depending on the circumstances,
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*** what John's capabilities are ***
1. Goal: Help me get the door open.
2. Position of objects: door: shut: seen, John: out: seen,

Mary: undef: undef, bolt: undef: undef,
3. Consequences of events:

push: If you push the door when the bolt Is up, the door changes position, 
slide: If you slide the bolt when you are In, the bolt changes position, 
move: If you move when the door Is open, you change position.

4. Range of actions: move: Yes, slide: Yes, push: No,

*** what Mary's capabilities are ***
1. Goal: None
2. Position of objects: door: shut: seen, John: undef: undef,

Mary: In: seen, bolt: down: seen,
3. Consequences of events:

push: If you push the door, the door changes position.
slide: If you slide the bolt, the bolt changes position.
move: If you move when the door is open, you change position.

4. Range of actions: move: Yes, slide: Yes, push: Yes,

(State of the world Is now [John out, Mary In, bolt down, door shut])

Dialogue A
parallel processing set
John's speed ■ 3 Mary's speed *  1

Dialogue B
parallel processing set
John's speed -  1 Mary's speed -  3

1. John: Mary. 1. John: Mary.
2. Mary; Yes. 2. Maiy: Yes.
3. John: I want to suggest a goal. 3. John: 1 want to suggest a goal.
4. Mary: Go ahead. 4. Maiy: Go ahead.
5. John: Will you help me get the door open? 5. John: Will you help me get the door open?
6. Mary: By all means. 6. Mary: By aH means.
7. John: ShaH we make a plan? 7. Mary: Shall ws make a plan?
8. Mary: OK 8. John: OK
9. John: Mary. 9. Mary: 1 suggest that 1 push the door.
10. Mary: Yes. 10. John: Mary.
11. John: May I ask you something? 11. Mary: Yes.
12. Mary: Go ahead. 12. John: May 1 ask you something?
13. John: Can you push the door? 13. Mary: Go ahead.
14. Mary: Yes. 14. John: Is the bolt up?
15. John: Mary. 15. Mary: No.
16. Mary: Yes. 16. John: Mary.
17. John: May I ask you something? 17. Mary: Yes.
18. Mary: Go ahead. 18. John: 1 want to explain something.
19. John: Is the bolt up? 19. Mary: Go ahead.
20. Mary: No. 20. John: If you push the door when the bolt Is up,
21. John: I suggest that we get the bolt up and the door changes position.

then you push the door. 21. Mary: Isee.
22. Mary: All right. 22. Maty: 1 suggest that we get the bolt up and
23. John: Shall we make a plan? then 1 push the door.
24. Mary: OK 23. John: All right.
25. John: I suggest that we get me In and then I slide 24. Maiy: ShaH we make a plan?

the bolt. 25. John: OK
26. Mary: All right. 26. Mary: 1 suggest that 1 slide the bolt
27. John: Shall we make a plan? 27. John: Mary.
28. Mary: John. 28. Mary: Yes.
29. John: Yes. 29. John: May 1 ask you something?
30. Mary: May 1 ask you something? 30. Mary: Go ahead.
31. John: Go ahead. 31. John: Are you In?
32. Mary: Are you In? 32. Mary: Yes.
33. John: No. 33. John: All right.
34. John: Shall we make a plan?
35. Mary: OK
36. John: I suggest that we get the door open

and then I move.
37. Mary: All right.
38. John: Shall we make a plan?
39. Mary: OK
40. John: I suggest that we get the bolt up and

then you push the door.
41. Mary: All right.

Figure 4.6 Relative speed settings can prevent the 
main goal from ever being achieved. Dialogue A 
contains a circular plan.
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agents take the initiative at different points in the dialogue 

(figure 4.5). Thus a mixture of dominance would arise when the 

relative speeds of the agents are the same. In some cases the 

speed settings can determine whether or not the goal is ever 

achieved, for example a hasty and ignorant agent may direct the 

dialogue into a circular plan (see figure 4.6).

But whatever the speed settings, an agent must develop an 

understanding of itself so that it can interrupt its own thinking 

purposefully. In SUPERPOWER this is achieved with a demon in 

the executive that ensures that repetitiveness within the joint 

plan tree does not occur. Thus an important component in 

addition to circular planning for the understanding of dialogue 

structure is for agents to be allowed to think, act and speak in 

p a ra lle l,  as ou tlin ed  here . Th is all im portan t tim ing in 

purposeful conversation and action is at the heart of level 4.

4.1.3.1 How do time speeds give rise to changes in dialogue?

From the previous computer dialogue transcripts, it is 

a p p aren t that a num ber of fe a tu re s  change as a direct  

consequence of altering the initial relative speed settings of 

the agents. These include (1) utterance content, (2) dialogue 

order, (3) u tte ra n c e  count, (4) d ia lo g u e  ou tcom e, (5) 

interruption rate and (6) dialogue interaction. I now discuss

111



this in more detail.

(1) The utterance content changes since, in the case of 

agents with similar knowledge, questions about who is to carry 

out a plan depends on who is thinking the fastest. Thus “John: 

Could you push the door ?”, when John is fast, would be replaced 

by “Mary: I suggest I push the door”, when Mary is fast.

(2) Dialogue order is affected by the speed settings since 

agents with different sets of knowledge are liable to want to 

say things in a different order. An agent who has a great deal of 

perceptual knowledge but a poor belief system (i.e. causal rules 

for planning purposes) will want to clarify planning strategies 

first. An agent with poor perceptual abilities, however, will 

want to discuss knowledge first. Thus by adjusting the timing 

accordingly one can determine the order of the dialogue.

(3) A fast and intelligent agent who cannot do many things 

is going to use additional conversational resources in order to 

achieve something that it would not otherwise be able to do. For 

example, a similar agent able to do the task of opening the door 

would not need to ask the question “Can I push the door?” 

whereas an agent unable to push the door would have to ask the 

question “Can you push the door?”. Thus the utterance count is 

affected by the relative speeds of the agents since in the 

former case one less question needs to be asked.
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(4) The dialogue outcome or the final goal states of the 

agents and the physical state of the world are also affected by 

the relative speeds of the agents. An interaction between a fast 

agent who is incapable of achieving the goal and a slow but 

competent agent may in the end prove unsuccessful if agents 

are not sufficiently intelligent to recognise when the dialogue 

is repeating itself. However, on reversing speeds, the dialogue 

can be successful since the intelligent agent now has control 

and thus guides it to a predictable outcome. A more intelligent 

system would detect circularity and act more appropriately.

In some instances the dialogue may fail on one speed 

setting and succeed on another. For example, see the dialogue in 

figures 4 .9a ,4 .9b,4 .9c, where both robots know nothing about 

how to do things but can see and do things. One is In, the other 

is Out, the door is Shut and the bolt is Up. The goal is to get the 

door Open. In this case, if Mary is fast the task will not succeed 

if she decides to experiment with the bolt first since she learns 

correctly about the bolt but fails to appreciate what happens 

when she pushes the door. If John is fast then sliding the bolt 

has no effect, since he is Out. Thus pushing the door causes it to 

open and the main goal is achieved. A more intelligent system 

would take note of all situations that are true when an action 

takes place and not just the one that seems the most relevant.
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Thus in both these examples, although what I discuss is 

true for SUPERPOWER as currently implemented, it would not 

necessarily remain this way if the system were made more 

advanced since in both cases the dialogue could be made to 

finish successfully. But my discussion remains the same since I 

could construct a more complex environment in which the 

outcome was successful for one speedy agent and not for the 

other. Thus my conclusions still remain valid even if I were to 

make the program deal with these two cases in such a way as to 

make the outcome similar for either speed setting.

(5) Interruption rates can be measured from computer 

dialogue by considering the number of times the agents switch 

control from one to another outside the normal adjacency pair 

sequences of John/Mary/John/Mary etc. Altering the relative 

speeds of agents introduces artificial control into the dialogue 

even when the content and situation do not warrant it. Thus, in 

order for the dialogue to reach a successful outcome one agent 

will often have to interrupt and supply relevant information. For 

example, consider a situation where John cannot slide the bolt 

or push the door and Mary’s belief about the world is suspect. 

When John is speedy he needs to invest resources in asking how 

to do things, when Mary is speedy John needs to interrupt her 

since she suggests a plan that will not work. Thus, the mix of
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knowledge, skills and timing explain how the interruption rate 

may change in the model.

(6) This exam ple also illustrates how the d ialogue  

interaction may alter as a direct consequence of the relative 

speeds. In one situation the dialogue may involve asking your 

partner about actions while for another situation it could be 

about discussing beliefs. The only change at the input stage is 

in the relative speeds of the agents.

4.1.3.2 A Monte Carlo simulation of Power’s robot world.

In this section, I provide a more robust demonstration of 

how the speed settings lead to variations in dialogue. It would 

not be feasible to test all dialogue variations since there are 

too many combinations (1021) of inputs possible to the model. 

We can however summarise the dialogue by choosing input 

parameters in such a way as to represent the domain as a whole.

In the following simulation, two speed settings were  

chosen, Fast (referred to as F) and Slow (referred to as S), two 

belief settings were chosen, one in which the agent knew the 

effect of the action of pushing the door (referred to as KNW) and 

the other in which the agent did not know (referred to as UNK). 

Two perceptual abilities were chosen, one in which the agent 

can see everything (referred to as PER) and the other in which
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the agent can only see itself (referred to as IMPER), along with 

two action abilities, one in which the agent can do everything 

(referred to as PRA) and the other in which the agent can only 

move (referred to as IMPRA). John was positioned as In, Mary 

was positioned as Out, the door was Closed and the bolt was Up. 

John was given the simple goal of getting the door open24.

Thus the range of skills related to perception, knowledge 

and action, with two a lte rn a tiv e  settings for each skill, 

generates sixty four groups containing four dialogues for each

 23---------------------------------

Total possible dialogue outcomes =
2x2x2x2x5x5x5x5x5x5x41x41x41x41x41x41x41x41x3x3x21x21x21x21x21x21x300

Possible Settings Input parameter Possible
combinations

[bolt up/down door open/shut 
Mary in/out John in/out]

Positions of objects 2x2x2x2

Push door any nothing 
undef 
door

bolt up nothing 
door

Beliefs 5x5x5x5x5x5

[Bolt Door John Mary] Own Perception 4!x4!

[Bolt Door John Mary] Perception of partner's 
perception. 4!x4!

[Push Move Slide] Own Actions 4!x4!

[Push Move Slide] Perception of partner's 
action 4!x4!

[3,2 ,1] Relative Speeds 3x3

Door in/out Bolt up/down robot in/out Goals 2!x2!x2!x2!x2!x2!

push door slide bolt move robot 
at utterance 1 
...........utterance 100

Unexpected Events
- 3 0 0
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of the four different speed settings fast/slow (FS), slow/fast 

(SF), slow/slow (SS) and fast/fast (FF) for the two agents. FS

O John Fast Mary Slow
□  John Slow Mary Slow
& John Slow Mary Fast
O John Fast Mary Fast

35
John Slow Mary Fast

30

O □25

# of 20 
CP's 
insti-15 
gated □□

John Fast Mary SlowMary

0-,

305 250 5 10 15 20

# of CP's instigated by John

Speed
Setting

Mean Standard
Deviation

Kurtosis

Total SF 14.1 15.8 .12
Total SS 14.7 16.7 .38
Total FF 14.4 16.2 .33
Total FS 14.8 15.5 .12

Figure 4.7 Scatteraram showing distribution of 
conversational procedures/dialogue bv agent and speed 
setting. This shows (indicated with a regression linel 
that the combinations of fast/slow slow/fast have a 
wider distribution than slow/slow fast/fast. Although a 
one factor ANOVA-Repeated measures (Fen indicate no 
significant difference in the overall mean (includes 
zeros for unsuccessful dialogues) number of CP's there 
is a clear difference in the kurtosis with more CP's 
being allocated to the faster agent.

is considered to be a different case from SF because agents are

faced with different environmental constraints. Then for the
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same level of skill the number of conversational procedures 

were counted, both in total and for the distribution between the 

agents, and split by the four combinations of speeds. Figure 4.7 

shows the overall distribution of conversational procedures 

instigated by the agents in relation to speed setting. The main 

result is that more C P ’s are allocated to the agent with the 

faster speed setting. Figure 4.8 shows that there is no

Skill
level

John Slow/ Mary Fast 
CP's by CP's by 
John Mary Total

John Fast/ Mary Slow 
CP's by CP's by 
John Mary Total

John Slow/ Mary Slow 
CPs by CP's by 
John Mary Total

John
CP's
John

Fast/ Mary Fast 
by CP's by 

Mary Total

6 2 8 10 10 0 10 6 4 10 6 4 10

5 4 8 12 9 4 13 6 5 11 6 5 11

4 7 10 17 11 5 16 9 7 16 9 7 16

3 11 15 26 17 8 25 14 13 27 13 12 25

2 16 25 41 27 13 40 23 20 43 22 19 41

1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 4.8 Summary of the number of conversational 
procedures for a given level of skill, split bv the various 
speed settings and bv agent. For example, skill level 3 
contains any dialogues that have 3 positive skills and 3 
negative skills, a positive skill being one of knowledgeable, 
practical or perceptive and a negative skill being one of 
unknowledoeable. impractical or imperceptive. A zero 
indicates that the dialogue was unsuccessful.

significant (a repeated measures factor analysis of variance 

revealed that F<1) difference in the number of conversational 

procedures executed per dialogue, for each of the different 

speed settings and for a given level of overall skill for the
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agents. There is, however,  a significant difference in the

distribution of the number of conversational procedures  

between the agents. More conversational procedures are  

allocated to the faster agent.

1. John: Mary. 55. Mary: May I ask you something?
2. Mary: Yes. 56. John: Go ahead
3. John: I want to suggest a goal. 57. Mary: Is the bolt up?
4. Mary: Go ahead. 58. John: Yes.
5. John: Will you help me get the door open? 59. John: I want to tell you something.
6. Mary: By all means. 60. Mary: Go ahead.
7. Mary: May I ask you something? 61. John: Nothing has happened.
6. John: Go ahead. 62. Mary: I see.
9. Mary: Is the door open? 63. Mary: Shall we do an experiment?
10. John: No. 64. John: Go ahead.
11. Mary: Shall we make a plan? 65. Mary: John.
12. John: OK 66. John: Yes.
13. Mary: I cant think of one. 67. Mary: May I ask you something?
14. John: I will then. 68. John: Go ahead.
15. John: I cant think of one. 69. Mary: Can you push the door?
16. Mary: Oh 70. John: Yes.
17. Mary: Shall we do an experiment? 71. Mary: John
18. John: Go ahead. 72. John: Yes.
19. Mary: John. 73. Mary: May I ask you something?
20. John: Yes. 74. John: Go ahead.
21. Mary: May I ask you something? 75. Mary: Is the door open?
22. John: Go ahead. 76. John: No.
23. Mary: Can you slide the bolt? 77. Mary: I suggest that you push the door.
24. John: Yes. 78. John: All right.
25. Mary: John. 79. Mary:
26. John: Yes.
27. Mary: May I ask you something?
28. John: Go ahead.
29. Mary; Is the bolt up? 94. Mary:
30. John: Yes.
31. Mary: I suggest that you slide the bolt (State of the world is now
32. John: All right. [door open, John out, Mary In, bolt
33. Mary:

95. Mary:
96. John: I want to tell you something.
97. Mary: Go ahead.

49. Mary: 98. John: I have pushed the door.
99. Mary: I see.

(State of the world is now 100. Mary: May I ask you something?
[John out, Mary in, bolt up, 101. John: Go ahead.

doors hut]) 102. Mary: Is the door open?
103. John: Yes.

50. Mary: 104. John: I want to tell you something.
51. John: I want to tell you something. 105. Mary: Go ahead.
52. Mary: Go ahead. 106. John: The door has changed position.
53. John: I have slid the bolt. 107. Mary: I see.
54. Mary: I see. ***** Plan successful *****

Fiaure 4.9a John's aoal of aettina the door open. Marv
fast John slow. 7 questions are asked.

These results provide a more robust demonstration of
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what was shown in previous sections. There is, however, one 

further conclusion from this simulation that I now want to 

discuss and that is why there is variation within the same skill 

level. The table in appendix 4 shows the same information split 

further by skill mix and sorted by level of skill. The results 

show that, for a given skill level, certain mixes of skills, 

when combined with a fast/slow speed setting, can shorten or 

lengthen the dialogue. Figures 4.9a, 4.9b and 4.9c illustrate this

John: 
Mary: 
John: 
Mary: 
John: 
Mary: 
John: 
Mary: 
John:

10. Mary:
11. John:
12. Mary:
13. John:
14. John:
15. Mary:
16. John:
17. Mary:
18. Mary:
19. John:
20. John:
21. Mary:
22. John:
23. Mary:

24. John:
25. Mary:
26. John:
27. Mary:

Mary.
Yes.
I want to suggest a goal.
Go ahead
Will you help me get the door open?
By all means.
ShaH we make a plan?
John.
Yes.
May I ask you something?
Go ahead 
Is the door open?
No.
Shall we make a plan?
OK
I can't think of one.
I will then.
I can't think of one.
Oil
Shall we do an experiment?
Go ahead
I suggest that I slide the bolt.
All right.

(State of the world is now 
[John out, Mary in, bolt up, door shut])

I want to tell you something.
Go ahead 
I have slid the bok.
I see.

28. John: I want to tell you something.
29. Mary: Go ahead.
30. John: Nothing has happened.
31. Mary: John.
32. John: Yes.
33. Mary: May I ask you something?
34. John: Go ahead.
35. Mary: Is the bolt up?
36. John: Yes.
37. Mary: I see.
38. John: Shall we do an experiment?
39. Mary: Go ahead.
40. John: I suggest that I push the door.
41. Mary: All right.

(State of the world is now
[door open, John out, Mary in, bolt up])

42. John: I want to tell you something.
43. Mary: Go ahead.
44. John: I have pushed the door.
45. Mary: I see.
46. John: I want to tell you something.
47. Mary: Go ahead.
48. John: The door has changed position.
49. Mary: John.
50. John: Yes.
51. Mary: May I ask you something?
52. John: Go ahead.
53. Mary: Is the door open?
54. John: Yes.
55. Mary: I see.

Plan successful

Figure 4.9b John's aoaal of getting the door open. 
Marv slow John fast . 3 Questions are asked.

point. I consider the setting in which both John and Mary are
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ignorant, John is practical and perceptive, Mary is impractical 

and imperceptive. Figure 4.9a illustrates the case where John 

is slow and Mary is fast (5 calls by name, 1 goal, 1 plan, 2 

experiments, 7 asks and 4 teils are made). Figure 4.9b

1. John: Mary.
2. Mary: Yes.
3. John: I want to suggest a goal.
4. Mary: Go ahead.
5. John: Will you help me get the door open?
6. Mary: By all means.
7. Mary: May 1 ask you something?
8. John: Go ahead.
9. Mary: Is the door open?
10. John: No.
11. John: Shall we make a plan?
12. Mary: OK
13. John: 1 can't think of one.
14. Mary: 1 will then.
15. Mary: 1 cant think of one.
16. John: OK
17. John: Shall we do an experiment?
18. Mary: Go ahead.
19. John: 1 suggest that 1 slide the bolt.
20. Mary: All right.
21. Mary:

36. Mary:
37. John: 
36. Mary:
39. John:
40. Mary:
41. John:
42. Mary:
43. John:
44. Mary:
45. John:
46. Mary:
47. John:
48. Mary:
49. John:
50. Mary:
51. John:
52. Mary:

Shall we do an experiment?
Go ahead.
John
Yes.
May I ask you something?
Go ahead.
Can you push the door?
Yes.
John
Yes.
May I ask you something?
Go ahead.
Is the door open?
No.
I suggest that you push the door. 
All right.

(State of the world is now
[door open, John out, Mary in, bolt up])

53. John: I want to tell you something.

(State of the world is now 54. Mary: Go ahead.

[John out, Mary in, bolt up, door shut]) 55, J°^n: I have pushed the door.
56. Mary: I see.

22. John: I want to tell you something. 57. John: I want to tell you something.

23. Mary: Go ahead. 58. Mary: Go ahead

24. John: I have slid the bolt. 59. John: The door has changed positk

25. Mary: I see 60. Mary: John.

26. John: I want to tell you something. 61. John: Yes.

27. Mary: Go ahead. 62. Mary: May I ask you something?

28. John: Nothing has happened. 63. John: Go ahead.

29. Mary: John. 64. Mary: Is the door open?

30. John: Yes. 65. John: Yes.

31. Mary: May I ask you something? 66. Mary: I see.

32. John: Go ahead.
33. Mary: Is the bolt up? ***** Plan successful *****

34. John: Yes.
35. Mary: I see.

Fiaure 4.9c John's aoal of aettina the door ooen.
Equal speed settings. 5 questions are asked. 

illustrates the case where John is fast and Mary is slow (4 

calls by name, 1 goal, 1 plan, 2 experiments, 3 asks and 4 tells 

are made). Figure 4.9c considers the case when the speed

121



settings of the agents are the same (5 calls by name, 1 goal, 1 

plan, 2 experiments, 5 asks and 4 tells are made). The only 

difference between the dialogues is in the number of questions 

that are asked. This tells us that when skills are kept constant 

and speed settings are adjusted it is the environm ent in 

relation to the agents skill that determines how quickly the 

dialogue finishes. Similar features were illustrated in the 

dialogues of figure 4.5 mentioned earlier.

The results from this simulation confirm the findings 

mentioned in the previous section in a more robust manner. 

Furtherm ore  the sca tte rg ram  dem on stra tes  that speeds  

accentuate the mix of skills and provide new distributions of 

utterances within dialogue, in terms of length and content, that 

would otherwise not be seen in Al models of dialogue. Lengthy 

dialogue occurs when a fast agent has poor skills such as being 

impractical and ignorant. Brief dialogue occurs when a fast 

agent has good skills. To this extent the outcome of the 

sim ulation produces results that are consistent with our 

expectations.

4.2 The need for level 4 .

In this section I lay down the foundation of all the  

components that have been considered (in terms of levels) so

122



far in SUPERPOWER and cover level 4 (occupying the airwaves as 

defined in section 2.2). Issues about how to reason at this level 

are not covered but ideas about how to proceed are mentioned in 

the concluding chapter.

In section 4.1, I explained how SUPERPOWER has explored 

some of the problems arising if agents are to be free to talk, 

listen or act whenever they want. If an agent must deal with 

something unexpected then it must reason about it in relation to 

its own thoughts. So also must an intelligent hearer, if it 

wishes to speak. In addition, the system reacts to unexpected 

events instantaneously without thinking by channelling within 

the execu tive  certa in  event types such as an action or 

conversational procedure appropriately.

Thus, I have shown a need for level 4 in SUPERPOWER by 

i l lustra ting  that tim ing is a critical factor in purposeful 

dialogue (figures 4 .4 ,4 .5 ,4 .6 ) .  Next I have provided some 

groundwork for reasoning intelligently at level 4 by starting to 

define what is meant by a quantum increment of time. The next 

stage was to provide a much more explicit theory of how to 

decide between the demand for external events, including 

utterances and internal plans. Finally I backed up my findings 

about how speeds influence dialogue by means of a Monte Carlo 

simulation. I concluded that speed settings do not affect the
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d ia lo g u e  o v e ra l l ,  for a g iven  skill le v e l,  but th a t  th e  

distribution of the decisions as to which agent instigates the 

procedures is affected. I also concluded that certain speed  

settings may accentuate good and bad dialogue for certain skill 

combinations that relate either favourably or unfavourably with 

the agents’ environment.

In this chapter I have provided a horizontal account of 

SU PERPO W ER with the intention of trying to convey to the 

reader its maximum capabilities. Now in the penultim ate  

chapter I will consider a vertical interpretation of how the 

planning mechanisms are invoked at various stages within the 

dialogue.
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Chapter 5 . 

Kinds of Planning.
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5.0 Introduction.

In this chapter, I extend and generalise the planning  

mechanisms by using all possible combinations of the three 

components of causal rules (actions, preconditions and effects).

1) Given a rule, an action and a precondition, what can we predict 
about the corresponding effect? (Normal classical planning)

2) Given a rule, an action and an effect, what can we infer 
about the corresponding precondition? (Instrumental testing)

3) Given a precondition, an action and an effect, what can we induce 
about the corresponding rule? (Experimenting)

4) Given a rule, a precondition and an effect, what can we infer
about an observed action? (Unexpected or reative planning)

Figure 5.1 The four fundamental planning mechanisms.

F igure  5.1 lists possib le  w ays to reason from p lann ing  

knowledge. I will show how these generate new requirements 

for conversational and action-related mechanisms. This, then, 

provides an exhaustive framework for what conversation is 

possible in purposeful dialogue. It is the groundwork to level 3.

Although the main concern of this chapter is to explain why 

these four planning mechanisms form the basis of purposeful 

dialogue, two additional sections have been included to deal with 

the problems of conversational stance and the methods for 

addressing circular planning. Conversational stance dictates 

w hat sort of role an agen t is going to play. Is it solo, 

cooperative or somewhere in between? In this system, agents 

start out in solo and when they realise the goal cannot be 

achieved they begin to cooperate. New dialogue can also be
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generated if a role parameter is introduced that increases the 

level of cooperation every time the main goal fails. The section 

on c ircu lar p lanning is included to make the s im u la tion  

mentioned in Ch. 4 feasible. That is to say a demon is needed to 

detect plans that repeat themselves. These two features are 

needed to make the system as a whole more robust. They are not, 

however, the main concern but are mentioned as separate  

sections later on.

The purpose of this chapter is to discuss the extension of 

the planning mechanisms that lead to dialogues which justify the 

distinction between processing a topic24 (level 2) and processing 

an item for mutual agreement (level 3). These prerequisites for a 

satisfactory account of level 3 and to some extent level 2 are 

expressed as preliminary conclusions in section 5.2.1.

5.1. The four fundamental kinds of joint planning and the need for 

conversation.

There are only four types of joint planning possible and I 

now describe how they work in some detail. First I shall

24 In extended computer dialogue there is a danger that wrong inferences are made because of pragmatic ambiguity 
(e.g. fig 5.6 summarises the point of the dialogue in which two parts of the tree have the same label [door open] but 
different plan types (Classical and Instrumental). A reasoning process that wants to detect circularity must identify 
both the label and the plan type otherwise a valid plan tree would be rejected on the grounds of circularity.

In human dialogue this is dealt with satisfactorily by instrumentally managing topics (the empirical investigation of 
chapter 2 briefly defines a topic). In SUPERPOWER (ch 4 and 5) it means: A collection of goals that are used to achieve 
one and only one of the four fundamental types of plans (fig. 5.2). It starts at the beginning of the particular plan type 
and ends when the top goal is achieved. Thus in some cases it can extend for quite a long time, particularly when more 
topics are needed to clarify other aspects of the initial topic. In chapter 6 this definition is refined even further to mean 
a single goal of mutually agreeing something and contains an agenda of items to say or said, to do or done. As this 
chapter was only a hypothetical design I was unable at this stage to define exactly how this latter definition would avoid 
pragmatic ambiguity.
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describe  how they w ere  orig ina lly  im p lem ented  as fixed  

sequential algorithms within the planner. However in the next 

chapter I will develop physical and conversational rules, made up 

of the three components defined in Power (1979), (actions 

preconditions and effects), that the planner can use for each kind 

of planning. The four kinds of planning are:

(1) Classical planning as described by Houghton and Power, i.e. 

selecting actions to achieve an effect.

(2) In s tru m e n ta l  te s t in g  in w h ich  th e re  is in s u ff ic ie n t  

knowledge. Agents select actions that can reveal the state of an 

object that cannot, for example, be seen.

(3) E xp erim en ta l p lanning in w hich there  is insu ffic ien t  

knowledge about the effects of actions. In this situation the 

agents try experimenting with actions to discover their effects.

1) John: I suggest we get the bolt up. 
Mary: All Right. Classical Planning

2) John: Is the bolt up?
Marv: I don't know. Instrumental Testing

3) John: How do I get the bolt up?
Mary: I don't know. Experimental Planning

4) John: The door has changed position 
unexpectedly. Unexpected Planning

Figure 5.2 The four fundamental planning styles.

(4) U n e x p e c te d  p lann ing  in w hich ag en ts  are  in fe rr ing  

unobserved actions from their effects. I only model one event 

here that happens reasonably infrequently. Planning in a rapidly 

changing (physical but not conversational) environment has been
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addressed, by Wood (1990).

Figure 5.2, illustrates the sort of conversation that might 

invoke each of these planning mechanisms. The physical planning 

methods used to process these types of planning are now 

described in more detail.

5.1 T1 Planning, phase.

Once the top goal is known, it is passed directly to the 

planner to find an appropriate course of action. It may be about 

finding out something, learning the consequences of performing 

an action, furthering  the physical goal d irectly  or doing  

inferences about something unexpected. Whatever the type, it 

must fall into one of the four categories described in figure 5.1.

If the task is for a change in the state of the world, then a 

plan or action may be devised to construct an effect such that if 

the event were to take place then the original goal would be 

achieved. This I refer to as classical planning. In this case, the 

planner finds a rule that produces the desired effect. It checks 

whether the precondition is true and, if it is true, it then  

sug ges ts  the even t re la te d  s e g m en t of the rule . If the  

precondition is not true, it finds a rule that satis fies  the  

precondition part, treats this as the main goal and repeats the
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whole cycle.

If the goal is to find something out, then an action may be 

found which will enable the system to infer something that is 

not already known. This is instrumental testing. It follows this 

sequence: find a rule that contains a precondition that is the 

same as the unknown information; then suggest the action 

relevent to this rule. This may be iterative if an agent can not 

see whether the result of this rule is true.

If the objective is to learn new rules about effects, then by 

improvising actions whose effects are unknown, the agent’s main 

goal may sometimes be assisted. This is experimental planning. 

In this case, the planner finds a rule that has an effect that an 

agent does not know about and returns it.

If som eth ing unexpected  happens, then it must be 

assimilated into the main goal. No planning is required before an 

action occurs, but instead the unexpected event is treated as 

though an action had just occurred. Then the agents search for a 

rule whose effect matches the event just observed, and infer 

that the corresponding action was performed. Pruning then 

follows.

Thus by extending the “planner” to use the available  

knowledge about actions in not just one but in all four possible
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ways, an agent can reason and act to extend Its knowledge, as 

well as achieve physical goals.

5.1.2 Execution.

After an event occurs, assessment is needed in order to 

establish exactly what has happened.

Plan type Precondition event effect rule

Classical Known Known Unknown Known
Testing Unknown Known Known Known
Experimental Known Known known Unknown
Unexpected Known Unknown Known Known

Figure 5.3 The four main kinds of inference achieved bv 
knowing three pieces of information and reasoning correctly 
about the fourth.

SUPERPOWER proceeds by comparing all information about the 

state of the world before the action took place with what 

happened after the action took place. Inferences then take place 

based on the action, precondition, expected effect, actual effect 

and rule that were used to construct the plan in the first place. 

Figure 5.3 summarises the situation.

In classical inferencing, agents are required to assess the 

consequences of an action. Comparisons are made between the 

expected and actual effects. If the effect is what was expected, 

then the goal is considered achieved, and the other agent will be 

told, if this is appropriate. If this is not yet appropriate, then
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the rule base is updated accordingly, and the other agent is told 

when appropriate. If the effect is undefined then the other agent 

is asked for more information.

In instrumental inferencing agents infer the truth in the 

world. That is to say, they are required to find out whether or 

not the situation is true or not and must decide whether the rule 

used to perform the action produces a change in the state of the 

world. If it does, then the precondition must be true, otherwise 

it is false.

In experimental inferencing, agents try to infer how an 

action affects the main goal. The change in the state of the 

world reflects the effect of performing such an action in the 

first place. Thus a rule relating the action to its corresponding 

effect should be recorded.

In unexpected inferencing, agents analyse events. A change 

has taken place; that is, an effect has come about which has a 

rule that explains what action is appropriate to cause this 

effect. This may or may not affect the main goal. If it does, 

pruning the plan tree may be necessary and telling the other 

agent about the action and its effect may also be desirable.

Thus by extending the “inference” process to use the 

available changes in the state of the world in not just one but
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four possible ways, an agent can acquire information as well as 

change the world physically.

5.1.3 An example dialogue

In section 5.1.1 I explained how the system plans actions 

and that these methods allow the agents a basis for physical 

mechanisms for achieving a goal. In section 5.1.2 I provided an 

inference process that allows the system to react appropriately 

as a consequence of an action. Now in this section I provide a 

com prehensive example dialogue that illustrates all these  

mechanisms in operation.25 

The first five lines are to initialise the program.

Compiling /users/Charles/Power/backup/Power.V.5.9/tests.p 
Classical/Experimental/lnstrumental/Unexpected 1 
parallel processing set 
John’s speed = 3 Mary’s speed = 1
(State of the world is now [John out Mary in bolt up door shut])

The structure of the next set of headings is similar to Power; 

except that in part two, John can see that he is Out (“seen”) and 

does not know, for example, that the bolt is Up (“undef”). He may, 

however, be “told” that the bolt is Up or he can “infer” it after 

some action occurs. In SUPERPOWER, agents do not just “know 

th ings” or “not know th ings” as in Houghton and P o w er’s

25 The reader may compare this transcript with that explained in Chapter 3, listed in 
appendix 1 in which there are two humans, one blindfolded, and the other trying to 
negotiate his way through a closed door jammed by a nail.
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knowledge representations, but instead, beliefs may have a range 

of status. The possible states are: “kno w n7“s e e n ”, “to ld”, 

“inferred”, “estimated”, “unknown”, ”undef”.

*** what John’s capabilities are ***
1. Goal: Help me get in.
2. Position of objects:

John: out: seen, Mary: undef: undef, bolt: undef: undef, door: undef: undef,
3. Consequences of events: 

slide: undef
push: If you push the door when the bolt is up, the door changes position, 
move: If you move when the door is open, you change position.

4. Range of actions:
move: Yes, slide: No, push: No,

Mary does not know anything but can do everything and she 

cannot see John, the bolt or the door. John also cannot see the 

bolt or the door.

*** what Mary’s capabilities are ***
1. Goal: None
2. Position of objects:

Mary: in: seen, bolt: undef: undef, door: undef: undef, John: undef: undef,
3. Consequences of events: 

slide: undef
push: undef 
move: undef

4. Range of actions:
move: Yes, slide: Yes, push: Yes,

The settings have been chosen to maximise the amount of 

interaction. Everything proceeds exactly as it did with Power and 

since John is deliberating three times as fast as Mary, he often 

takes the initiative in proposing things.

1 John: Mary.
2 Mary: Yes.
3 John: I want to suggest a goal.
4 Mary: Go ahead.

134



5 John: Will you help me get in?
6 Mary: By all means.
7 John: Shall we make a plan?
8 Mary: John.
9 John: Yes.
10 Mary: May I ask you something?
11 John: Go ahead.
12 Mary: Are you in?
13 John: No.
14 John: Shall we make a plan?
15 Mary: Ok.
16 John: Mary.
17 Mary: Yes.
18 John: May I ask you something?
19 Mary: Go ahead.
20 John: Is the door open?
21 Mary: I don’t know.

At this point, neither agent knows whether or not the door is 

Open and so they have to digress a little and use their knowledge 

about action in order to find out whether or not the door is Open.

22 John: Mary.
23 Mary: Yes.
24 John: Shall we do a test?
25 Mary: Go ahead.
26 John: Mary.
27 Mary: Yes.
28 John: May I ask you something?
29 Mary: Go ahead.
30 John: Can you move?
31 Mary: Yes.
32 John: Mary.
33 Mary: Yes.
34 John: May I ask you something?
35 Mary: Go ahead.
36 John: Are you in?
37 Mary: Yes.
38 John: I suggest that you move.
39 Mary: John.
40 John: Yes.
41 Mary: I want to explain something.
42 John: Go ahead.
43 Mary: If you move, nothing happens.
44 John: I disagree.
45 Mary: —.
46 John: If you move when the door is open, you change position.
47 Mary: I see.
48 John: I suggest that you move.
49 Mary: All right.
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John now waits for 16 increments of time (blank utterance  

numbers 50-66) before Mary moves. Meanwhile, and at the same 

time, Mary is thinking about what she has to do.

50 John:--.

66 John: --.

(State of the world is now [John out Mary in bolt up door shut])

67 Mary: John.
68 John: Yes.
69 Mary: I want to tell you something.
70 John: Go ahead.
71 Mary: I have moved.
72 John: I see.
73 John: Mary.
74 Mary: Yes.
75 John: May I ask you something?
76 Mary: Go ahead.
77 John: Are you in?
78 Mary: Yes.
79 Mary: John.
80 John: Yes.
81 Mary: I want to tell you something.

Mary is about to tell John that the door must be shut when an 

unexpected event occurs, (the programmer intervenes manually 

in the simulation), namely the bolt is moved from Up to Down. 

Analysis reveals nothing...

(State of the world is now [bolt down door shut John out Mary in])

82 John: Mary.
83 Mary: Yes.
84 John: May I ask you something?
85 Mary: Go ahead.
86 John: Are you in?
87 Mary: Yes.

This could be regarded as blatant repetition but is not, since a
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new event has occurred and the agents need to check that it has 

not affected the situation. Hence there is a need for better topic 

management.

88 John: Mary.
89 Mary: Yes.
90 John: I want to tell you something.
91 Mary: Go ahead.
92 John: The door is shut.
93 Mary: I see.

At last, both agents have inferred that the door is Shut and John 

attempts to finish the plan that he started at line 7. Perhaps line 

92 should read “the door must be shut”26 since that would be a 

more appropriate utterance for this inference. “The door is shut” 

would indicate that the utterance was obtained from direct 

perception. In any case, both agents update their respective 

knowledge status about the door to “John knows door shut 

inferred” and “Mary knows door shut told”. If an event occurs 

m eanw hile , then this status must go back to “door shut 

estimated” since it is then no longer absolutely certain that the 

door is Shut.

94 John: I suggest that we get the door open and then I move.
95 Mary: All right.
96 John: Shall we make a plan?
97 Mary: John.
98 John: Yes.

26 Palmer (1990) considers this point in terms of dynamic necessity. The basic 
framework makes the distinction between epistemic and deontic modality and dynamic 
possibility and necessity. Some aspects of modality can be explained in terms of how the 
sentences were constructed when in operation. Davey (1978) and Houghton (1986) have 
dealt with aspects of this but not the particular example I give here that refers to dynamic 
necessity.
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99 Mary: May I ask you something?
100 John: Go ahead.
101 Mary: Is the door open?
102 John: No.

Mary is slow to assess the situation.

103 John: Shall we make a plan?
104 Mary: Ok.
105 John: Mary.
106 Mary: Yes.
107 John: May I ask you something?
108 Mary: Go ahead.
109 John: Can you push the door?
110 Mary: Yes.
111 John: Mary.
112 Mary: Yes.
113 John: May I ask you something?
114 Mary: Go ahead.
115 John: Is the bolt up?
116 Mary: I don’t know.

The second instrumental test, in which Mary now pushes the door 

to see whether or not the bolt is Up or not.

117 John: Mary.
118 Mary: Yes.
119 John: Shall we do a test?
120 Mary: Go ahead.
121 John: I suggest that you push the door.
122 Mary: John.
123 John: Yes.
124 Mary: I want to explain something.
125 John: Go ahead.
126 Mary: If you push the door, nothing happens.
127 John: I disagree.
128 Mary:
129 John: If you push the door when the bolt is up, the door changes position.
130 Mary: I see.
131 John: I suggest that you push the door.
132 Mary: All right.
133 John:

149 John:

(State of the world is now [bolt down door shut John out Mary in])

150 Mary: John.
151 John: Yes.
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152 Mary: I want to tell you something.
153 John: Go ahead.
154 Mary: I have pushed the door.
155 John: I see.
156 John: Mary.
157 Mary: Yes.
158 John: May I ask you something?
159 Mary: Go ahead.
160 John: Is the door open?
161 Mary: I don’t know.

The problem is further complicated because they cannot assess 

whether the bolt is Up unless they know whether the door is 

Open.

162 John: Mary.
163 Mary: Yes.
164 John: Shall we do a test?
165 Mary: Go ahead.
166 John: Mary.
167 Mary: Yes.
168 John: May I ask you something?
169 Mary: Go ahead.
170 John: Are you in?
171 Mary: Yes.
172 John: I suggest that you move.
173 Mary: All right.
174 John:

189 John:

(State of the world is now [bolt down door shut John out Mary in])

190 Mary: John.
191 John: Yes.
192 Mary: I want to tell you something.
193 John: Go ahead.
194 Mary: I have moved.
195 John: I see.
196 John: Mary.
197 Mary: Yes.
198 John: May I ask you something?
199 Mary: Go ahead.
200 John: Are you in?
201 Mary: Yes.
202 Mary: John.
203 John: Yes.
204 Mary: I want to tell you something.

139



205 John: Go ahead.
206 Mary: Nothing has happened.
207 John: I see.

Lines 202-207: Mary has established that nothing happened when 

she moved.

208 John: Mary.
209 Mary: Yes.
210 John: I want to tell you something.
211 Mary: Go ahead.
212 John: The door is shut.
213 Mary: I see.

Lines 208-213: John infers that the door is Shut again because 

Mary just moved to no avail. The end of a topic occurs when the 

goal that instigated the new topic has been achieved and deleted 

from the plan tree. By way of an example given on the next page 

as a pop11 list, I consider how the topic structure, see also 

Reichman (1978,1986), might look at line 208. The names of the 

routines, the main goal and all the sub-goals together with their 

corresponding actions are indicated in bold. The notation is 

similar to that used in Power (1979) to describe the control 

stack, “zrfindout” is a new routine that is used to plan to know 

things through action and conversation. This illustrates how 

planning generates the need not only for conversation but also 

for the management of topics. The point is that John must have 

at least two topics active in this example since “zrassess” has 

been c a lle d  re c u rs iv e ly  tw ice : f irs t ly  to assess  the  

consequences of Mary pushing in order to know whether or not
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the bolt is Up and secondly to assess the consequences of 

Mary moving in order to know whether or not the door is Open. 

As can be seen from the current control stack.

[ (
name zggame expectreply <true> colour white kind game place 1 entries [2 0 1 Q]]

[ ;;; Assessing the action of Mary moving.
name zrassess kind routine place 11 goaltype test entries [11 [learned] 10 [achieved] 9 [nothing] 8 [done]
7 [Mary in told bolt undef asked door undef asked John out seen] 6 [evt [robot move] sit [door open] res 
[robot]] 5 [Mary] 4 [door open] 3 [Mary] 2 [Mary move] 1 [door open] 12 □]]

[ ;;; Finding out if the door Is open
name zrfindout kind routine place 2 goaltype test entries [2 [undef] 1 [door open] 3 Q]]

[ ;;; Assessing the action of Mary push the door to see if the bolt is up
name zrassess kind routine place 9 goaltype test entries [8 [done] 7 [bolt undef asked door shut inferred 
John out seen Mary in told] 6 [evt [robot push] sit [bolt up] res [door]] 5 [door] 4 [bolt up] 3 [Mary] 2 [Mary 
push] 1 [bolt up] 12 Q 11 □ 10 □ 9 □]]

[ ;;; Finding out if the bolt Is up
name zrfindout kind routine place 2 goaltype test entries [2 [undef] 1 [bolt up] 3 Dl)

[ ;;; Planning to get the door open
name zrplan kind routine place 4 goaltype plan entries [3 [evt [Mary push] sit [bolt up] res [door]] 2 [evt 
[robot push] sit [bolt up] res [door]] 1 [door open] 4 fl]]

[ ;;; Asking agreement to get the door open
name zgplan colour white kind game place 1 expectreply <false> entries [2D 1Q]]

[ ;;; Hoping to plan to get the door open
name zrachieve kind routine place 5 goaltype plan entries [4 [sitn] 3 [notyet] 2 [both] 1 [door open] 7 Q 5
DU

[ ;;; Main goal of getting John in
name zrbasic kind routine place 8 entries [1 [John in] 8 D 8 [yes] 4 [failed]] ]
]

This captures the point of an utterance, the point of the topic 

and the point of the dialogue all in one representation.

214 John: Mary.
215 Mary: Yes.
216 John: I want to tell you something.
217 Mary: Go ahead.
218 John: The bolt is down.
219 Mary: I see.

Lines 214-219: Since he knows that the door is Shut and since 

Mary pushed the door at line 150 John correctly infers that the
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bolt must be Down. He then returns once again to his original 

plan that still has some more techn ica l d iff icu lties . This  

indicates the need to manage topics in order to avoid repetitive 

dialogue or to interpret an inference in the wrong way.

I have chosen a joint plan tree to represent the main goals 

and sub-goals (e.g. figure 5.6 later on), a control stack (e.g. 

diagram after line 214) to represent the point of the dialogue 

(see Power 1979), and a topic structure containing an agenda of 

things both said and to be said that defines criteria over a topic 

and rep resen ts  the point of an u tte rance  (currently  not 

implemented but as part of the plan tree). This seems to me the 

most intuitive representation both in terms of how humans 

conduct conversation and in terms of an implementable model.

220 John: I suggest that we get the bolt up and then you push the door.
221 Mary: All right.
222 John: Shall we make a plan?
223 Mary: Ok.
224 John: I can't think of one.
225 Mary: I will then.
226 Mary: I can't think of one.
227 John: Oh.

Lines 222-227: Neither John nor Mary know how to slide the bolt. 

They have established at line 94 that they must open the door 

and then  John can move In and a fte r  a fa ir  am ount of 

instrumental investigation they know they must get the bolt Up 

and then Mary should push the door. They don’t know what to do 

next so they improvise; by sliding the bolt, pushing the door and
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moving randomly to see whether or not any of these actions 

assist the main plan. Fortunately they choose to slide the bolt 

first.

228 John: Shall we do an experiment?
229 Mary: Go ahead.
230 John: Mary.
231 Mary: Yes.
232 John: May I ask you something?
233 Mary: Go ahead.
234 John: Can you slide the bolt?
235 Mary: Yes.
236 John: I suggest that you slide the bolt.
237 Mary: All right.
238 John: ~.

254 John:

(State of the world is now [bolt up door shut John out Mary in])

255 John: ~.
256 Mary: I want to tell you something.
257 John: Go ahead.
258 Mary: I have slid the bolt.
259 John: I see.

In order to establish whether or not the bolt is Up, they must 

repeat some nested instrumental planning. This time, however, 

progress becomes swifter since the bolt is now Up and therefore 

pushing and moving helps the main goal as well as establishing 

knowledge.

260 John: May I ask you something?
261 Mary: Go ahead.
262 John: Is the bolt up?
263 Mary: I don’t know.
264 John: Shall we do a test?
265 Mary: Go ahead.
266 John: Mary.
267 Mary: Yes.
268 John: May I ask you something?
269 Mary: Go ahead.
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270 John: Is the door open?
271 Mary: I don’t know.

Although this question  has been ra ised  before  at lines  

20,101,160 and will be raised later at lines 357 and 426 it is a 

necessary repetition since knowledge that is “in ferred” or 

“told” is no longer valid after another action. So, after any 

change in the world, know ledge status must change to 

“estimated". A clever program would revert this knowledge  

status to what it was before, if the intervening event was 

subsequently discovered to be irrelevant.

272 John: Mary.
273 Mary: Yes.
274 John: Shall we do a test?
275 Mary: Go ahead.
276 John: Mary.
277 Mary: Yes.
278 John: May I ask you something?
279 Mary: Go ahead.
280 John: Are you in?
281 Mary: Yes.
282 John: I suggest that you move.
283 Mary: All right.
284 John:

300 John:

(State of the world is now [bolt up door shut John out Mary in])

301 Mary: John.
302 John: Yes.
303 Mary: I want to tell you something.
304 John: Go ahead.
305 Mary: I have moved.
306 John: I see.
307 John: Mary.
308 Mary: Yes.
309 John: May I ask you something?
310 Mary: Go ahead.
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311 John: Are you in?
312 Mary: Yes.
313 Mary: John.
314 John: Yes.
315 Mary: I want to tell you something.
316 John: Go ahead.
317 Mary: Nothing has happened.
318 John: I see.
319 John: Mary.
320 Mary: Yes.
321 John: I want to tell you something.
322 Mary: Go ahead.
323 John: The door is shut.
324 Mary: I see.

Having established that the door is Shut the agents now return to 

the original problem which was testing whether or not the bolt 

is Up.

325 John: May I ask you something?
326 Mary: Go ahead.
327 John: Is the bolt up?
328 Mary: I don’t know.
329 John: Shall we do a test?
330 Mary: Go ahead.
331 John: I suggest that you push the door.
332 Mary: All right.
333 John:

349 John: —.

(State of the world is now [door open John out Mary in bolt up])

350 John:
351 Mary: I want to tell you something.
352 John: Go ahead.
353 Mary: I have pushed the door.
354 John: I see.

Now, of course, pushing the door causes the door to move since 

the bolt is already Up. But they still have not established what 

happens when you slide the bolt. But it does not matter anyway
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since some of the higher level goals have been realised. Lines 

357 - 368 dem onstrate the first exam ple of a convoluted  

derivative - two goals are achieved in one go.

355 John: May I ask you something?
356 Mary: Go ahead.
357 John: Is the door open?
358 Mary: I don’t know.
359 John: Shall we do a test?
360 Mary: Go ahead.
361 John: Mary.
362 Mary: Yes.
363 John: May I ask you something?
364 Mary: Go ahead.
365 John: Are you in?
366 Mary: Yes.
367 John: I suggest that you move.
368 Mary: All right.
369 John: —.

385 John:

(State of the world is now [Mary out bolt up door open John out])

386 John:
387 Mary: I want to tell you something.
388 John: Go ahead.
389 Mary: I have moved.
390 John: I see.
391 John: May I ask you something?
392 Mary: Go ahead.
393 John: Are you in?
394 Mary: No.
395 Mary: I want to tell you something.
396 John: Go ahead.
397 Mary: I have changed position.
398 John: I see.

Lines 399-421: John is a swift thinker and finally realises that, 

in the process of planning experimentally to slide the bolt, the 

main goal can now be accomplished since some of the sub-goals 

of his orig inal plan w ere ach ieved through resolving the
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positions of the bolt and the door.

399 John: I want to tell you something.
400 Mary: Go ahead.
401 John: The door is open.
402 Mary: I see.
403 Mary: I want to tell you something.
404 John: Go ahead.
405 Mary: The door has changed position.
406 John: I see.
407 John: I want to tell you something.
408 Mary: Go ahead.
409 John: The door is open.
410 Mary: I see.

Now, “the door is open” is repeated at lines 401 and 409 since 

John has just been told that a change in the state of the world 

has taken place.

411 John: I want to tell you something.
412 Mary: Go ahead.
413 John: Somebody has pushed the door.
414 Mary: I see.

In this version of SUPERPOWER, no consideration has gone into 

e ff ic ie n c y .  But the  prob lem  is more s u b tle  than  th is . 

Preconditions for speaking, Cohen and Perrault (1979), are only 

considered as fixed algorithms within the planner or inferencer.27

(State of the world is now [John in Mary out bolt up door open])

415 John: I want to tell you something.
416 Mary: Go ahead.
417 John: I have moved.
418 Mary: I see.
419 John: I want to tell you something.
420 Mary: Go ahead.

27 It is more likely that this is a bug in SUPERPOWER. It crops up here and in no other 
place since I probably had not hardwired the correct precondition for speaking at this 
particular point within the inference process. The problem is more involved than this. The 
reader may, however, wish to consult the appendix: ROUTINE.ASSESS.p (4 of 5), function 
zrlesson.
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421 John: I have changed position.

Mary has not fully realised the state of the situation and since 

John has moved she now no longer knows whether or not the door 

is Open. John however has realised the state of the situation and 

knows that all he had to do was to move and his main goal would 

be achieved. Being a co-operative  agent, John returns to 

assisting Mary with her smaller problem of establishing whether 

or not the door is Open. Thus Mary does not know that John is In 

and the main goal achieved, since she cannot see him and has 

other goals still active which take a higher priority over 

inferring that John is now In.

422 Mary: John.
423 John: Yes.
424 Mary: May I ask you something?
425 John: Go ahead.
426 Mary: Is the door open?
427 John: I don’t know.

A change in the state of the world has occurred, so Mary still 

needs to know if the door is open.

428 John: Mary.
429 Mary: Yes.
430 John: Shall we do a test?
431 Mary: Go ahead.
432 John: Mary.
433 Mary: Yes.
434 John: May I ask you something?
435 Mary: Go ahead.
436 John: Are you in?
437 Mary: No.
438 John: I suggest that you move.
439 Mary: All right.
440 John:
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456 John:

(State of the world is now [Mary in bolt up door open John in])

457 John:
458 Mary: I want to tell you something.
459 John: Go ahead.
460 Mary: I have moved.
461 John: I see.
462 John: Mary.
463 Mary: Yes.
464 John: May I ask you something?
465 Mary: Go ahead.
466 John: Are you in?
467 Mary: Yes.
468 John: Mary.
469 Mary: Yes.
470 John: I want to tell you something.
471 Mary: Go ahead.
472 John: You have changed position.
473 Mary: I see.
474 John: Mary.
475 Mary: Yes.
476 John: I want to tell you something.
477 Mary: Go ahead.
478 John: The door is open.
479 Mary: I see.

John, having helped Mary with her problem knows that he is In. 

Mary now realises that the main goal has being achieved and can 

thus establish that John is now In. The program is stopped 

automatically when both robots have marked the main goal as 

achieved.

Thus I have demonstrated an introduction to the kind of 

stilted but effective conversation that SUPERPOWER achieves so 

far. I now discuss the two additional features that give the 

system a further sense of robustness.
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5.1.4 Degrees of interaction between agents.

Affecting the conversational stance that agents play in 

this type of dialogue is the degree of interaction that they are 

prepared to extend and accept, to and from each other. This is 

what Shadbolt and Carletta’s models refer to as communicative 

postures. In SUPERPOW ER, the stance of the agents can be 

adjusted to include a number of d ifferen t proxim ities  of 

interaction. On one extreme, the agents are uncommitted to one 

another and perform the main goal on their own. On the other, 

they are endlessly interactive and require extensive dialogue if 

ever the goal is to be realised. Thus it would be possible to start 

the agents off independently and if the goal still can not be 

accomplished then a role parameter is incremented in such a way 

as to improve the closeness of interaction. This simple extension 

has not been fully implemented in version 5.9 discussed here.

In SUPERPOWER there are two main types of stances. Those 

that focus on the task and those that are heavily engaged in 

conversation. In the former case agents are largely acting in 

what Power refers to as solo mode. In the latter case, skills are 

considerably varied and discussion must ensue. I now discuss 

these two distinctions in more detail.
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5.1.4.1 Action-oriented stance.

Action-oriented stances are those in which there is little 

need to talk, since the tasks can in the main be performed as 

though the agents were behaving individually. Only one of the 

agents is allowed to talk while the other has to proclaim things 

through action. The top goal may not have been agreed, in which 

case there is no planning help, but actions and discussions are 

allowed. Finally, the more normal case that I have considered 

extensively here allows mutual agreement. This is a simple role 

parameter that was not fully implemented in version 5.9.

5.1.4.2 Conversation-oriented stance.

In any dialogue, at the outset, the participants must decide 

upon the level of co-operation that they are prepared to engage 

in with their partner. With no co-operation28, Conversational 

Procedures, Interactional Frames, or items for mutual agreement 

are not much use. The models described by Shadbolt and Musson 

(1987) and Clark and Schaefer (1987) probably are useful, 

however, since the agents make contributions based on their own 

plans. With perfect co-operation, CP’s, IF ’s or items of mutual 

agreement are useful since the agents are willing to engage in 

any conversation knowing that each agent sees things roughly in

“ Compare this type of interaction with that explained in Chapter 2, listed in appendix 
2 about two humans, one of them trying to help the other photocopy an A4 sheet of paper.
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the same way. In SUPERPOWER, I have modelled perfect co­

operation  In that the agents  accept all items of mutual 

agreement. At a later stage, it may be possible to model a 

mixture of this, since rules about hearing could be incorporated 

in the same way as rules about planning to converse.

5.1.5 Circular Planning.

Central to the operation of a computer model of dialogue 

and also to humans being able  to conduct conversation  

purposefully is the general problem of circularity, repetition or 

cycle-detection. I take repetition to mean utterances that repeat 

themselves more than once, circularity to mean that the dialogue 

starts to repeat itself over a period of time and cycle-detection 

to mean that the computer program enters an infinite loop. This 

has not been properly addressed in dialogue research. The reason 

for this is that new sorts of these problems are continually 

evolving everyday. This section hopes to introduce some of these 

ideas.

O ne a t tr ib u te  of c o n v e rs a t io n  is th a t ,  h o w ever  

sophisticated the model, it must at some stage be vulnerable to 

an e lem ent of c ircu larity  under certa in  inputs, w here the 

conversation becomes locked into infinite repetitions of the
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same loop of dialogue.

The following dialogue (Figure 5.4) represents an example

John: I suggest that we get me in and then I slide the bolt.
Mary: All right.
John: I suggest that we get the door open and then I move.
Mary: All right.
John: I suggest that we get the bolt up and then I push the door.
Mary: All right.
John: I suggest that we get me In and then I slide the bolt.
Mary: All right.

Figure 5.4 Circular plan, 

of a circular plan generated from SUPERPOWER. One solution to 

this problem is for John to consider whether Mary can perform 

any parts of the joint plan. In this example, it would have been 

better if John had asked Mary to slide the bolt. Another solution 

is for Mary to actively interrupt the plan when she knows she can 

carry out any of its parts. The more general solution to this 

problem is for the hearer to interrupt and take control of the 

joint plan when he or she knows that a circular plan exists. 

However, the other agent may also then develop the dialogue 

further into a more complicated circular plan.

In figure 5.4, John's problem was as follows. He wants to 

slide the bolt but he can not because he is not In. Thus, he needs 

to move, but is hampered because the door is not Open. So he 

needs to push the door but would be thwarted because the bolt 

would not be Up and so it goes on. All plans are plausible to Mary 

since she never knows, and has no reason to doubt, whether
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John’s suggestions will work. However, should she be able to 

sense the same plan being suggested twice she ought to do 

something and so should John. This shows that there is a need to 

keep a record not only of the current plan but also of failed plans 

in a given situation.

Quite often, in joint tasks and in habitual everyday  

conversation, situations occur in which conversation or action 

does not seem to be getting anywhere. I am meandering along the 

street and someone is approaching me. I swerve to the left, and 

at the same time she shifts in the same direction. We both then 

retract to the right and so on. Eventually, hopefully, the human 

agents recognise the multiple repetition of the same actions and 

take corrective action to break out of this non-progressive loop. 

There are also examples where these repeating sequences are the 

only way to achieve the goal. For example, when installing a 

kitchen sink the pipes have to be judged to be the right distance 

away from the wall. The basin then slots in on top. The only way 

to get the pipes in the right position is by trial and error. 

Superficially this is a circular loop but it differs from figure 

4.10 in that the plumber, through his trial and error process, is 

continuously gathering and acting upon fresh information and 

refining his actions to achieve the goal. The input he receives
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varies all the time and increases in subtlety until he gets it 

right. With the robots in SUPERPOWER the information input can 

only be a limited choice of options such as “Yes”, “No” or ”1 

don’t know” and their circular plan is truly an infinite repetition. 

A more appropriate example might be, for example, the action of 

going to sleep every day with the goal of not being tired. It is 

both purposeful and circular but unlike the plumbing example 

there is no refinement process in the action. The goal can only be 

achieved through repetition. In joint planning, these are just 

some of the many situations in everyday life that can create 

action-oriented circular plans.

Of course the plans just described are problem-oriented 

with very little conversational content. There are examples  

which are conversationally-oriented and largely independent of 

any task. Sometimes they assist, sometimes they do not. For 

example, saying “good morning” to an eminent lady whenever you 

happen to meet may offer a long term benefit. On the other hand, 

the problem arising when you phone a large organisation asking 

for information about something and they put you through to 

somebody on extension 1, who then puts you through to extension 

3 who then inadvertently refers you back to extension 1, and so 

on, is a good example of a conversation-oriented circular plan.
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Again, the human agent would recognise the repetitive cycle and 

act to break out of it. In complex everyday life however they do 

not always manage to do this, for example in cases of drug 

addiction.

In brief therefore facilities must be provided to enable  

agents to recognise when repetition is occurring and progress 

towards the main goal being achieved. When such detection 

occurs, mechanisms must be in place to both avoid (by detecting 

when they occur) and evade (by executing alternative action) 

such habits where and when it is deemed appropriate. However, 

the problem is still more complex than this since sometimes 

repetition is useful (e.g. figure 5.5), as in trial and error tasks or

1. John: Shall we make a plan?
2. Mary: OK
3. John: I can’t think of one.
4. Mary: I will then.
5. John: OK
6. Mary: I can’t think of one.
7. John: Oh.
8. Mary: Shall we do an experiment ?

Figure 5.5 A circular plan which 
can be used constructively to do 
an experiment.

saying good morning to important people. Sometimes avoiding 

repetition is not so easy, as in the examples of someone  

approaching you in a busy street and the phone extensions 

problem.
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A destructive conversation or action-oriented circular plan 

must be detected and the appropriate goals marked as failed. A 

constructive solution must be encouraged. The groundwork of 

this open-ended type of planning is an unproblematic extension 

(not fully implemented in version 5.9) that could be inserted as a 

demon in the central executive. This demon serves to trap as

[John in] 
Classical 
notyet

Classical
notyet

[John move]
Classical
notyet

[Mary push]
Classical
notyet

[bolt up] 
Classical 
notyet

[undef] 
Experimental 
notyet v\

[Mary slide]
Experimental
achieved

[bolt up]
Instrumental
notyet

[door open]
Instrumental
notyet

[Mary move] 
Instrumental 
notyet

Fia 5.6 Joint plan tree. Line 297. dialogue from section 
5.1.3. Illustrating the order in which the physical goal 
gets executed. The type of planning mechanism and the
state of the goal are also needed for unique interpretation.

early as possible any situation in which circularity occurs 

within the main joint plan tree.
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The solution to the problem is by no means simple. 

Consider, for exam ple, the joint plan tree taken from the  

dialogue described in section 5.1.3 and illustrated in figure 5.6. 

Simply detecting when the same sub-goal occurs will not work 

since the sub-goal may be syntactically similar, e.g. [door open] 

is mentioned twice, but actually used for a slightly different 

purpose (in the first case for classical planning and the second 

for in s tru m e n ta l p la n n in g ) .  O ne im proved  d e f in it io n  of 

circularity is a repetitive sequence of plans (i.e. connected for 

more than one leaf on the tree) counts as circularity. But I have 

shown that in some circumstances this type of definition can 

produce useful dialogue. And so the argument goes on.

5.2 Relation to levels.

In this section I lay down the foundation of all the  

components that have been considered so far in SUPERPOWER in 

terms of levels. At level 3 I have considerably improved on 

existing systems in terms of the variety of conversation by 

considering how a joint planner might utilise all combinations of 

a simple causal rule about physical action. At level 2 I show how 

a variety of topics can exist at any one time during the dialogue. 

At level 1 I make no new contribution. Simple goals such as
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those described in Houghton and Power are considered. However 

the need to distinguish between level 2 and level 3 has to be 

addressed.

5.2.1 Relation to the need for a distinction between level 2 

topics and level 3 items of mutual agreement.

In section 5.2, I explored all the four possible types of 

planning mechanisms that are possible and thus extended  

SUPERPOWER’S conversational variety. In doing so, I illustrated 

how all four types can generate  a need for conversation. 

Furtherm ore no planning or inference algorithm can exist 

without a clear distinction between a topic and a conversational 

exchange. To avoid doing so would eventually lead to pragmatic 

ambiguity when com paring the sem antics of syntactica lly  

similar utterances. It is obvious from the detailed dialogue in 

section 5.1.3 that given a more complex task the program would 

either confuse the meaning of an item in one topic with that in 

another or chunks of dialogue would have to be renegotiated. As 

currently implemented, a new topic starts when a physical 

action occurs and ends when the next action occurs. In this 

implementation, it is only really needed to avoid confusion when 

inferencing about changes in the state of the world. In the next
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chapter by defining an item of mutual agreem ent we can 

substantially improve on this definition and at the same time, 

start to reason intelligently about topics as well as items of 

mutual agreement.

O v e ra ll ,  I have d e m o n s tra te d  the  n e c e s s ity  of 

distinguishing between these three levels and started to provide 

a framework for thinking about how to implement such a program 

with explicit consideration of a theory of levels, both in program 

code and dialogue. I have drawn the reader’s attention to how 

complex human conversation might be generated, by illustrating 

four basic planning and reasoning tools that provide the ability 

to reason and act in order to both extend knowledge and also 

perceive probable states of the world. This, together with 

simulating in parallel, forms the basis of levels 4 and 3 and 

indicates the need for level 2. I have also illustrated how a new 

class of utterances along with dialogue examples might arise.
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Chapter 6.

5B Parts of this chapter have been adapted from Oatley, Draper and Button ( in press), Button 
and Draper (1990) and Draper and Button (1990). I am indebted to both Steve Draper for providing 
the idea about conversation is action (Section 6.3) and to Keith Oatley for the discussion about 
human conversation being about constraint programming (Section 6.2).

161



6.0 Introduction.

This chapter outlines the achievements of my thesis 

which can be expressed in terms of the theory of levels  

mentioned in chapter 2. In that chapter I proposed that there are 

four distinct conceptual levels to understand. At level 1, the top 

level, are the goals external to the conversation. At this level 

S U P E R P O W E R  illustrates these goals chiefly in terms of 

physical goals but also the following input parameters: relative 

speeds, beliefs, perception of partner’s action, own action 

skills, perception of partner’s perception, own perception, 

unexpected actions and positions of objects. Next at level 2 are 

the topics or sub-goals into which the conversation is divided. 

In chapter 5, I simulated a dialogue in which different sub­

goals are active at the same time. At level 3 are the basic 

exchanges that go into conversation. In chapter 2 I explained 

how a conversational procedure or an interactional frame such 

as that described in Power and Houghton is an explanation at 

this level. At level 4, co-operation in the use of the medium of 

com m unication is described in term s of the tim e slicing  

covered in depth in chapter 4.

I now summarise the main results and will follow that 

with a review of the empirical investigation of the thesis and 

additional observations on program enhancements and further
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theoretical considerations regarding conversation as action.

6.1 Summary of the main results.

In chapter 2, I provided an empirical investigation that 

shows that subjects can agree (51%) with the theory that 

purposeful conversation can be construed as goal-directed with 

four distinct levels. Level 1 concerns goals external to the 

conversation, level 2 is about topics that instrum entally  

manage the dialogue, level 3 is about conversational exchanges 

and finally level 4 is about occupying the airwaves. One 

explanation as to why the percentage level of agreement for the 

analysis of level 3 was not higher is that subjects imagined 

that the particular exchange which they were trying to code in 

some way referred to a different goal higher up the plan tree.

In chapter 3 I reviewed early Al work and indicated the 

shortfalls in terms of these older programs not being able to 

interact with a copy of themselves. Later in the chapter, I 

suggested that the more recent goal-directed dialogue systems 

are restricted in two ways: (a) they can not accommodate  

two agents thinking independently from one another and (b) the 

planning algorithms are not always exhaustive for a dialogue 

system as a whole. For example, none of these systems provides 

examples of English dialogue that cover the situation where
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both agents are lacking either a skill or piece of knowledge. I 

then provided a detailed comparison between two systems 

(Power and Houghton) that have tried to detail a model of 

dialogue for a simple domain and a single physical goal. I 

describe some of their limitations and outlined my proposal to 

improve on these two systems in terms of time slicing and by 

incorporating a more exhaustive planning algorithm.

In chapter 4, I described how the relative speeds of the 

agents affect utterance order, dialogue content, dialogue  

outcome, number of utterances, distribution of who instigates 

conversational procedures, what gets said, what gets done, 

what gets explained and so on. I then went on to look at 

coordination more genera lly  by generating  256  d ifferent  

dialogues in order to see whether any further pattern emerges. I 

concluded from the simulation that there is no significant 

difference in the total number of conversational procedures per 

dialogue when the speeds of the agents are changed, and the 

overall skill level is fixed, but that differences emerge in 

term s of the d is tr ib u tion  of c o n v e rs a tio n a l procedures  

instigated by the two agents. Within specific skill levels there 

is some varia t ion  in the total number of conversational  

procedures executed by the agents when the speeds are changed. 

G e n e ra l ly  a F a s t /S lo w  com b in a tio n  is e ith e r  b e tte r  (if
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environmental factors are favourable) or poorer (if they are not) 

than the Slow/Slow or Fast/Fast combinations. This led me to 

c o n c lu d e  th a t it is the  s p e e d  sk ills  c o m b in e d  w ith  

environmental restrictions and not knowledge, perception or 

action skills that determine the quality of the interaction. I 

also concluded that this work must form the basis for the level 

4 mentioned in chapter 2.

In chapter 5, I described a generalised planning algorithm 

that allows agents to have wider conversational skills than 

reported so far. By considering an exhaustive use of causal 

rules, I was able to identify the four kinds of planning possible, 

namely: Classical, Instrumental, Experimental and Unexpected 

planning. A dialogue containing all these mechanisms was 

presented to show how a number of different topics can be 

active at any one time. I then went on to discuss more general 

issues about c ircu larity  and co n ve rs a tio n a l s tan ce  and  

concluded that there is a theoretical difficulty in defining 

precisely what a circular plan is. I concluded that there is a 

need to distinguish between levels 2 and 3 in order to avoid 

pragmatic ambiguity.

In chapters 4 and 5 I outlined the two most important 

enhancements to the work of Power and Houghton. These concern 

understanding how the agents can have better knowledge skills
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and allowing better coordination between agents. It also 

demonstrates how time slicing is in fact a pragmatic feature of 

dialogue as a whole and is, moreover what I referred to in 

chapter 1 as the first principle of coherence which is that there 

is a definition of an increment of program code that can be 

reasoned about so as to permit all that can be said. Dialogue 

also becomes coherent in every way if all four planning  

algorithms are considered since whatever the initial settings 

some kind of discussion is generated. The program is, therefore, 

robust. This relates to the other principle of coherence which is 

that for every piece of conversation there is a corresponding 

action method of achieving the same goal.

Th e  re m a in d e r  of th is  c h a p te r  d is c u s s e s  fu r th e r  

conclusions of the empirical work by discussing the limitations 

of computer models of dialogue and in particular some of the 

drawbacks of conversational procedures. The next section then 

discusses possible ways of enhancing SUPERPOWER to cater for 

problems encountered with the empirical investigation in terms 

of a generic procedure NEOTELL, which forms the basis of future 

work that incorporates conversation as action.

6.2 General comments relating to the empirical investigation.

The fact that I was not able to achieve better than 51%
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agreement in the empirical investigation in chapter 2 indicates 

that naturally-occurring human conversation might be more 

com plex than anything generated  com putationally . At its 

simplest one of Power's agents will generate  utterances  

designed to agree about a goal, a plan or a belief but will not 

generate compounds. As the derivations from Power's program 

function at present each conversational procedure has a single 

objective which exits when this objective is achieved. Matters 

that are irrelevant to building the plan tree and executing the 

plan in a strictly piecemeal fashion simply do not occur. Let me 

illustrate this with a piece of dialogue from SUPERPOWER

16 JOHN: [Mary.
17 MARY: Yes.]
18 JOHN: [May I ask you something.
19 MARY: Go ahead.]
20 JOHN: [Is the door open.
21 MARY: I don't know.]
22 JOHN: [Mary.
23 MARY: Yes.]
24 JOHN: [Shall we do a test.]
25 MARY: Go ahead.]
26 JOHN : [I suggest I move]
27 MARY : [okay]

Figure 6.1 Sample code for an
instrumental test.

enabling agents to carry out test actions on the world in order 

to observe effects, and hence to improve their beliefs. The 

segment, shown in figure 6.1, is from near the beginning of a 

run of the program, and starts after a goal of getting John In 

has been agreed.
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Both agents are blind, and it has been established by Mary 

that the goal is not already achieved. Utterances 16 and 17 are a 

housekeep ing  exchange —  John calls  M ary's a tten tion ,  

interrupting any private thoughts she might have. She responds, 

and this ind ica tes  that she will c o -o p e ra te  in the next 

conversational procedure. Utterance 18 is a request to co­

operate on a lower level goal. Mary assents, so that the 

exchange delivers an agreement to co-operate. Then 20 and 21 

constitute a further housekeeping exchange. Utterance 22 is 

John's opening of an exchange about a plan to test the world by 

doing an action and finding out what happens... which they go on 

to do next.

N o tice  th a t  in the c o m p u ta t io n a l e x a m p le  each  

conversational procedure is designed to achieve exactly one 

inc re m e n t of a g re e m e n t,  e x c lu s iv e ly  e ith e r  a p iece of 

housekeeping, or something about a goal, a plan or a belief. 

Moreover, the utterances are driven by the building of the plan 

tree, with each piece of the agenda for the construction of a 

plan tree being negotiated explicitly. So if a goal is agreed, 

then the question arises 'Is it achieved yet?' If a precondition is 

necessary for a plan, then the agents will see if they know that 

it is satisfied, if not, as in this sequence they each ask the 

other, and if the state is still not known, they start to try and

168



test actions. In this case the agents plan for John to move, and 

if he changes position from Out to In, they will know the door is 

Open. Few in ferences  are m ade, and th e re fo re  no 

misunderstandings occur. Moreover a reader of the transcript, 

trained in the categorisation system I have suggested in figure 

2.1, would have no difficulty in categorising each exchange.

C o m p are  this w ith the hum an c o n v e rs a tio n  about  

photocopying (see appendix 2). First John asks about a goal. All 

seems straightforward except that 'photocopying' is a complex 

a c tiv ity .  U n like  u tte ra n c e s  about goals  in the  a g e n ts '  

conversation, 'do the photocopying' does not specify any exact 

state of the world. It may be for this reason that Mary asks for 

more details about John's goal: 'Double-sided?' she asks. John 

seems not to understand fully. His response, 'Yes, and then the 

other side' seems at least to introduce unnecessary redundancy. 

Next, in utterance 4, Mary makes a characteristically human 

remark: 'I don't know, some or...' It is difficult to interpret this. 

It would indeed be impossible except for the context. In fact she 

is politely trying to stop John from being too precipitate, and 

hence wasting a copy, while at the same time she tries to 

understand what it is that John really wants. She understands 

that in asking for her to agree on a goal, he does not know 

everything he might need to know for any specific goal to be
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described accurately. For instance, is he asking for a general 

course on photocopying, or a brief tutorial about some aspect, 

or just for help with a single item? And what does he know 

about photocopying already?

John, it turns out, though having apparently negotiated a 

goal, also has another, which he has not specified. He knows 

about single-sided photocopying, and thinks that double-sided 

copying is a simple extension of it, perhaps just involving an 

extra button press. He wants to photocopy just a single page, 

double-sided. His other goals are (a) that he wants to transfer 

his previous skills, unmentioned in the conversation, in a direct 

way and (b) that he wants to do the copy quickly and press the 

buttons immediately. So instead of specifying all his goals and 

asking about Mary's at the beginning of the dialogue, as a 

computer program might, he proceeds, firstly assuming that 

Mary knows that he knows how to do single-sided photocopying, 

secondly as though Mary knows that he is only learning, thirdly 

as though Mary would agree with him that the problem is a 

simple matter involving a small amount of practical guidance, 

as is the case in most “normal business environments”.

Despite these misunderstandings, which emerge gradually 

in the early part of the conversation, the conversation is in the 

end successful, and a version of John's goal is achieved. Mary
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succeeds in another goal, namely giving John part of a general 

course on photocopying which she believes was implied by his 

initial request. Thus in the end three goals are achieved: (a) 

getting John's double sided original copied onto a double-sided 

copy, (b) John being taught that topological considerations must 

be taken into account with double-sided copying in order, for 

example, not to get the copy on one side upside down in relation 

to the other, and (c) John being shown where various things 

happen, for example that in the course of this kind of copying, 

the page with a copy on one side is collected in a special 

hopper, and then runs through the machine again but upside down 

to receive the copy of the second side. What happens, then, is 

that John and Mary sometimes accomplish pieces of agreement 

about more than one goal in the same exchange, and they 

sometimes accomplish pieces of agreement about plans and 

beliefs in the same exchange.

So, for example, Mary's utterance 10 is about a belief, but 

also has a purposive element, first so that she may teach John 

about topological issues and also possibly to proceed with the 

immediate plan. So when it comes to coding such an exchange it 

might be in terpre ted  as a b e lie f  or a suggestion to do 

something.

It is the ambiguity of interpretation of many, perhaps
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most, utterances in human dialogue that makes it difficult to 

assign human exchanges to a unique category. This ambiguity is 

reflected in the severa l d ifferent codes assigned by the 

eighteen subjects to each exchange. These categorisations were 

the outcome of extensive discussions about each exchange in 

the two transcripts presented here. Perhaps the reader will 

have found som e tro u b le  in a g re e in g  w ith all the  

categorisations suggested. The necessity for discussion, and the 

possibility of disagreement with the judgments by readers can 

therefore be taken as further evidence for the assertion that 

human utterances, unlike those of Power's program, while they 

increase agreement in general, are ambiguous, and can not 

always be uniquely assigned to categories of agreement.

Similarly in the photocopying transcript, in discussing the 

consequences of a plan, Mary's utterance 20 and John's reply 

in d ica te  M ary 's  kno w ledg e  of how the m ach ine  w orks.  

Apparently the minimal increment of the immediate plan has 

been agreed. Other unagreed goals, however, for example of 

training John about the topological issues, are still alive.

In judging the transcript about photocopying, the subjects 

used the housekeeping category 13% of the time. Here again, 

although I coded none of the exchanges in this way, there are 

interpretations of some of them which have the quality of
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meta-comments on the conversation, and it is understandable 

that some subjects thought this was the salient aspect in some 

exchanges. So Mary's interrupted utterance 4, 'I don't know, 

some or...'; also exchanges 14, 15, 16 starting with Mary's 

'Pardon...'; and also the single word exchange 27 by John, 'Right', 

were all judged by many or most of subjects to be Housekeeping. 

I decided to minimise the number of exchanges that I assigned 

to this category, and had judged all these as serving to achieve 

increments of agreement about plans.

The data shows, in general, that whereas all but one 

subject was clear that the first exchange was about a goal, 

subjects did not achieve more than 72% agreement with us on 

any other exchange. Subjects are not, in other words, unanimous 

about whether to code exchanges as beliefs, plans or compound 

beliefs plus plans. Normally in psychological studies which 

require content analysis, lack of agreement is a signal to define 

categories more rigorously, or improve the subjects' training. 

At first I did this: category definitions went through a long 

series of improvements, and I tried several training methods, 

before  settling on the rather e la b o ra te  tra in ing  schem e  

described here.

I have concluded, however, that it is not the procedures 

that are at fault. Subjects are correct in their lack of unanimity
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about their judgments. Their variety of judgments reflects the 

variety  of in terpretations of human utterances. Making a 

decision about whether or not there is any element of purpose in 

an exchange depends on what interpretation one makes of the 

u tte ra n c e .  T h is  w as not a fa i lu re  of t ra in in g ,  or of 

conceptualisation. Rather, even in purposeful dialogues, many 

human utterances are multiply ambiguous, and they carry 

variab le  amounts of weight about beliefs and plans, and 

sometimes other components. If one is making forced choices 

about categories, the choice depends crucially on which of 

several interpretations seems salient. By contrast since each 

utterance of Power's program is designed to achieve an 

agreement exclusively about housekeeping, or a goal, or a plan, 

or a belief, the category of the utterance is unambiguous.

In summary, then, Power's work does indeed offer a basis 

for the structure of purposeful conversation. His proposal 

offers a v iab le  and bas ica lly  convincing theory  of how 

utterances are connected together in conversation. There is no 

better theory about the connectedness of conversation . 

Fu rth erm o re  I have shown tha t people  are  m o d e ra te ly  

successful in being able to assign categories to the atomic 

units of conversation, at the third level of the goal hierarchy 

th a t  I have  p o s tu la te d  to c la r i fy  the  b as is  of th is
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connectedness.

This study also reveals, however, several Important ways 

in which human conversants differ from Power's agents. First, 

whereas computational goals must always be stated exactly, 

human goals may be stated very vaguely. Secondly, whereas 

Power's program and its derivatives are driven by just one top 

level goal that is agreed  and then p lanned for, human  

conversants typically have several active goals at any time. 

This seems to make it more likely that each utterance has not 

just one interpretation, but several. The hearer of the utterance 

may choose an interpretation, and allow just one increment to 

be agreed, but equally the other goals held by either partner may 

rem ain  a c tive  and ab le  to in f lu en ce  exp re s s io n s  and  

in terpretations later in the conversation. Conversation is 

capable of carrying forward these multiple meanings, to be 

clarified and elaborated in the light of further utterances by 

both participants. To understand conversation, then, one must be 

alert to a variety of interpretations of each utterance. Thus 

categorisation of exchanges is not straightforward. In fact 

categorising any one utterance, even in the context of others is 

rather a hard task, since a judge is constantly in conflict about 

which interpretation to choose. The variety of interpretations 

by these eighteen subjects indicates the range over which each
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exchange can be understood.

Though the variety of interpretations of human utterances 

has been discussed widely by ethnomethodologists, for example 

Garfinkel (1967), I hope here to have brought this issue into the 

c o n tex t of C o g n it iv e  S c ie n c e  so tha t th e  s tru c tu re  of 

conversation is recognisable s im ultaneously from both a 

computational and a human perspective.

The developments reported here derive from a tradition of 

Artificial Intelligence research on planning, in which the usual 

assumption is that goals are pursued one at a time. The 

assumption fits broadly with the mainstream of Computer  

Science and with typical planning algorithm s in Artific ial 

Intelligence which search exhaustively for one solution at a 

time. Computational procedures are usually functions that begin 

from a c e rta in  in it ia l  co n d it io n , as s p e c if ie d  by th e ir  

arguments, or in planning, from the state of the world plus a 

desired goal state. They then compute a definite end point such 

as a result, or in planning, a plan to achieve the goal. The 

conclusion here is that even though purposeful conversation can 

fruitfully be construed as a kind of planning, and seen as 

constructed from units which are conversational procedures, it 

seems that the situation is not so simple.

First, people may have more than one goal at any given
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level. They then seek plans that simultaneously achieve several 

or all of them. In conversation, it is possible to cover a number 

of related points in a single utterance. It is even usual to 

achieve a range of effects, for instance to inform, warn, and 

show concern, in one utterance or short stretch of conversation. 

Artificial intelligence work exploring this problem of pursuing 

multiple goals is not wholly absent —  see, for instance  

Wilensky, (1983), or Elsom-Cook, (1984), but these are not yet 

standard. More specifically in dialogue, balancing resources 

between listening and speaking is an ongoing human problem 

that current com puter m odels of d ia lo gu e  have not yet 

addressed. That is to say, no account has been offered as to how 

it is possible to plan a speech act not only in relation to 

planning one’s own goals (as do those proposed by Austin, 

Searle, Power, Houghton, Cohen and Perrault) but also with 

respect to the goals of the hearer. More generally, the hearer 

always has two choices, either to respond directly or to respond 

with respect to private plans. In either case it is more a 

question of how many resources one wants to put in to listening 

which is also determined by the constraints of the situation.

Secondly, unlike the idealised s ituations that much 

Artificial Intelligence planning addresses, in which the effects 

of actions are fully known in advance, in conversation speakers
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typically do not know enough to construct reliable plans, and 

have to e laborate  creative ly  from the situation as it has 

developed so far (Suchman, 1987). When we converse the main 

source of uncertainty is our partner. We do not know how that 

person will respond to an utterance. They may decline our 

choice of topic, not know the answer to a question, or they may 

spring a new piece of information on us that changes the goal 

we thought we had. This lack of know ledge is a major  

shortcoming of the theory of speech acts, in which it is 

assumed that effects of a speech act can be reliably known. It 

is also a problem with Power's approach.

Attempts to overcome this problem have been made by 

Appelt (1987) who makes the interesting point that we can at 

least make an assessment as to the success criteria of an 

effect based on the referents of the goal. Thus, when we speak 

although we cannot predict entirely the effect of what we say 

we do presumably make some predictions about the likely 

alternatives an utterance might have by the goals it is intended 

to serve. For example if I want to say “Is the bolt Up?” I know 

that the likely response is one of “Yes”, “No” or “I don’t know”. 

Thus, as Appelt clearly demonstrates, although we do not know 

for sure the actual effect of a speech act we have a good idea 

about the likely alternative responses to it. The careful speaker
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would not otherwise have made the utterance in the first place.

By contrast, the human conversations I have recorded 

show people constructing a joint plan by adding constraints 

rather than, as orig ina lly  postu lated , by the successive  

agreement or rejection of small definite proposals. Utterances 

are ambiguous not only to third-party listeners, but to the 

conversants themselves. Utterances are ambiguous as to what 

is meant, as well as to which goal or goals they are related to. 

Succeeding utterances often serve less to accept or reject 

proposals, than to allow the conversants to discover together 

what they themselves mean. A plan emerges from the process of 

clarification. Thus rather than traditional programming based 

on functions, conversation is like constraint-programming in 

which constraints are added and it is left to the system to 

resolve them and find a solution consistent with them all.

This conclusion, however, is made with reservation since 

both the transcripts used perhaps led me to it and in both cases 

the participants did not fully understand the main goal before 

they started the dialogue. Further transcripts would be needed 

to confirm this interpretation in cases where the main goal is 

fully understood. In this situation the theory would be more 

likely to be correct.

Nevertheless, if this interpretation is upheld, then we can
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still understand conversation in terms of levels of goals, but 

some of the goals will not form a strict hierarchy. Furthermore, 

although the conversational procedure is a conception that is 

superior to those of other atomic units of conversation, such as 

speech acts or adjacency pairs, I have revised my view of the 

effects that a conversational procedure has. It is clear that 

such procedures need not exit with a small increment of 

definite agreement, which is then fully established. Instead, an 

exchange accomplishes a constraint on how the conversation is 

to be understood. Thus in the photocopying transcript, Mary's 

utterance 12: 'Yer, it must be in sequence' constrains John's 

understanding of why Mary seem s not to have been as 

straightforward in her instructions as he expected, and in the 

second part of this utterance: 'I suppose if you...', she indicates 

explicitly that she is continuing to search for interpretations of 

what has been going on, in order to make sense of the  

interaction so far. John's utterance 13 'Right, well I'm only 

doing one sheet' further constrains for Mary her understanding 

of why John has been acting as he has.

Although constraint satisfaction has been taken up by a 

number of Al workers who are trying to simulate dialogue it 

could hardly be considered to be a complete theory of dialogue 

since it can not explain how it is that humans jump from one
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level of conversation to another in dialogue. Even if it was the 

theory, attempting a computational account of how to speak in 

relation to what has just been said may be about doing away 

with increments of agreement or conversational procedures 

altogether, and replacing them with a process of interpreting 

each utterance by the constraints of the overall joint plan, 

rather than just responding to the initial goal of the exchange 

as current Al programs do.

Some formalisms in planning have been specifically  

designed to deal with this very problem. For example, in single­

agent planning, Lansky (1988) shows how sensible plans can be 

devised by choosing from existing plans according to what she 

refers to as constraint satisfaction. Another way to deal with 

this is to think of d ialogue as the e ffic ient exchange of 

intentions that are chosen using game theory (see Shadbolt 

1984).

In th e  next s e c t io n  I w ill  show  th a t  c o n s tra in t  

programming can also be dealt with by considering a theory that 

relates conversation and action more closely than previously 

discussed.

6.3 General comments relating to program enhancements.

Suchman (1987) claims that models run into difficulties
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when conversation is required to be developed in situ . Coates 

(1990) explains that models cannot explain how it is that 

utterances can be developed by more than one speaker and that 

the underlying intention is only known to participants after the 

utterance has taken place and not before (see also Searle 1990). 

My empirical work on constraints discussed in the previous 

section  also supports these  two v iew s of the a p p aren t  

im p o s s ib il i ty  of a m odel th a t  p ro v id e s  a s a t is fa c to ry  

explanation as to how it can react spontaneously to these types 

of conditions.

I now propose a system design that will address these 

problems.

6.3.1 Conversation as action.

Austin (1962, 1970) established the idea that utterances 

should be analysed as actions. For those working in Al, this 

constitutes an implicit but long-standing challenge. Al work in 

planning seeks to develop a particular and detailed model of 

what it is to act rationally and purposefully, that is to choose 

and execute actions that are calculated to achieve the agent's 

goals. Can a theory of utterances be developed that develops 

Austin's basic idea in this way? Such a theory will be a theory 

of (a kind of) conversation, both because utterances have an

182



effect only through the presence and cooperation of a hearer or 

c o -c o n v e rs a tio n a lis t ,  and because  a planning theory  is 

e sse n tia lly  a theory  of how basic actions (in this case  

utterances) are strung together in a sequence to achieve some 

overall effect not achievable by a single action. W e must 

therefore be concerned with a theory of conversation, not of 

isolated speakers or isolated utterances: the latter kind of 

theory would be a theory of certa in  actions, but not of 

purposeful, planned action sequences.

A theory of purposeful conversation should aim to develop 

Austin's view by showing how utterances can be considered as 

actions in exactly the same way as physical actions. The agent 

must be able to achieve goals by acting, and to choose actions 

by generating a plan linking a set of actions to a final goal. 

Thus in a planning theory of conversation the agent must be able 

to ach ieve goals by conversing, and to generate  a plan 

integrating conversational with physical actions and effects. A 

theory will most fully achieve these aims if a single planner 

reasons about both physical and conversational actions, and if 

for every goal and sub-goal there is both a conversational and a 

non-conversational method of achieving it. For instance the goal 

of moving a block might be achieved either by pushing it 

oneself, or by persuading another agent to move it on one's
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behalf. The goal of getting information might be achieved either 

by asking a question or by examining the world through  

perception and experiment. Similarly the goal of communicating 

inform ation can be done e ither verbally  by answering a 

q u e s tio n , or at t im es  by po in ting  to the a n s w e r or 

demonstrating it. A call by name would have the equivalent 

action of a tap on the shoulder. Even mutually agreeing an item 

can often be achieved non-verbally - for instance by catching 

someone’s eye as you approach a door while heavily laden. 

However this kind of example would then depend heavily on the 

respondant making correct goal inferences. This important 

aspect on conversation has been neglected here since the focus 

is intended to be on explicitness rather than efficiency. Thus, 

whatever the conversational feature there is an equivalent 

alternative by way of action.

Even in stating these aims, some of what must be involved 

begins to emerge. For instance the set of possible states and 

goals that must be explicitly modelled includes states of 

knowledge or belief. The main effect of many conversational 

actions is to change what an agent knows. Furthermore in an 

integrated theory such states need to play the role not only of 

effects but also of goals. The planner must be capable of 

recognising the need for knowledge as a prerequisite for
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achieving other goals so as to generate plans that include 

acquiring it purposefully. Since knowledge is above all a 

prerequis ite  for planning, the theory must include m e ta ­

planning (planning how to plan). This also entails that the 

theory must deal with mixed planning and execution (in contrast 

to early simple Al planning, where all the planning was done in 

a first phase, followed by all the execution), since actions that 

acquire information must be executed before further planning 

can proceed. Mixed planning and execution is also required to 

deal with surprises, that is events that the agent did not cause 

or predict. C onversation  in trins ica lly  involves surprises  

because hearers cannot always know when the other will speak 

or what kind of thing they will say. Having knowledge as a goal 

that can be planned for, further suggests that perception should 

be treated as an explicit action. Finally, conversation is a 

coordinated activity and the theory must deal with the nature of 

the coordination. Is it implicit or is it planned and negotiated 

like the content of mutually agreed physical plans? If it is 

wholly implicit, then the conversation cannot be said to be 

planned in any deep sense. Contrariwise, however an infinite 

regress threatens any attempt to make the conversation wholly 

explicit e.g. asking agreement to having a conversation to agree 

a plan .... In what sense are hearers engaging in planned action if
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they acquiesce in responding to an unexpected and unsolicited 

utterance?

6.3,2 Four levels of goals.

In approaching a solution to these aims and problems, it 

seems crucial to use the distinction mentioned in chapter 2 

between the different levels of goal which the agents may have. 

A complete planning theory would link actions to goals at all 

levels to the top level, level 1, the external goal which an agent 

brings to the conversation (hoping to achieve it). For instance, 

a robot might begin with the goal of getting into another room 

and undertake a conversation in order to enlist help with this. 

(In more complex models, not developed here, agents might have 

multiple such goals and attempt to satisfy more than one at a 

time; or might have traits such as a homing instinct that tend 

to generate specific goals in a given situation.)

At the centre of a theory of conversation is the level of 

what can be achieved in an elementary unit of conversation 

(level 3). An obvious candidate for these elementary actions is 

the speech act. However this does not capture the essentially 

two-agent nature of the unit. Something closer to an adjacency 

pair seems appropriate. I will define a level 3 goal to be the 

achievement in a single utterance pair (half of which may
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sometimes be silent) of mutual agreement of a single item: a 

joint goal, a planned action, a (belief about a) fact. I will also 

define a level 2 goal in the same way (as the mutual agreement 

of a s ing le  item ) excep t that it may ta ke  a pro longed  

interchange. This might be because the particular agents do not 

have a conversational method for achieving it directly, or more 

probably because initial attempts fail, that is a plan may 

require justification before being accepted by the other. Thus 

leve l 2 goals o rgan ise  s tre tch e s  of con v e rs a tio n  often  

consisting of a number of level 3 actions, some of which fail 

(by not achieving mutual agreement of their content). This 

organisation corresponds to some of the intuitive notion of a 

topic (a number of utterances concerning the same thing), but 

differs from the more declarative treatments of that notion 

which have been developed to account for such things as 

anaphoric reference.

Finally level 4 will refer to those aspects of turn taking 

and coordination below level 3. For instance work on pauses 

(e.g. Bennett 1981) belongs here. From a planning perspective, 

these goals concern the management of the medium. One aspect 

of this is agreeing vocabulary and methods of referring. 

A n o th e r  is tu rn - ta k in g  in the  s e n s e  of not p h y s ic a lly  

interrupting each other. If literal interruption occurs, agents
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will not be able to hear the words the other utters. This is 

distinct from the turn-taking problem at higher levels. One such 

problem concerns how to tell if an utterance is the reply to an 

earlier one, and if so which one. This is the level 3 problem of 

sorting utterances into "adjacency pairs" even when they are 

not adjacent. Another is the level 2 issue of who gets to 

determine the topic, and the management of topic-nesting and 

sw itch ing . The  leve l 4 issue is s tr ic tly  about phys ica l  

interruption, and is bound to the medium, for example there is 

no such issue when letters are exchanged since the fact of 

letters crossing in the mail does not render them illegible, nor 

is there such an issue in current computer interfaces that allow 

the user to type input simultaneously with system output 

scrolling on the screen.

In this model there will be only a single generic action at 

level 328. This is an exchange or conversational procedure called 

NEOTELL. All other conversational actions are constructed out 

of it. In NEOTELL, the speaker proposes (tells) an elementary 

item of some type, and the other agent accepts or rejects it. In 

the former case, the item becomes mutually agreed. In the 

latter, the action fails and there is no direct effect. Thus  

asserting a fact, proposing a plan, and suggesting a joint goal 

are all cases of this generalised "tell" with different types of

26 Unlike Power who had 7 CP’s and Houghton who had 4 IF’s.
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item. Questions are treated as two consecutive NEOTELL's —  as a 

request to tell a fact: White proposes as a joint conversational 

goal that Black tells a fact, Black agrees, Black tells the fact, 

White agrees (or not, if Black's factual assertion is somehow 

inconsistent with White's existing beliefs). In some instances, 

neither participant knows how to accept or reject an item. For 

example, neither robot may be able to see whether the door is 

Open. In which case, the task is then for the robots to find out 

whether the door is Open. Alternatively they may not know what 

the bolt is for in which case the task is to perform an 

experiment in order to discover what physical effect the bolt 

may have. Perhaps the most comparable literature at this level, 

in Psycholinguistics, would be Sacks, Schegloff and Jefferson 

(1974) or Clark and Schaefer (1987).

An agent's planner will generate conversational goals of 

the basic type of achieving mutual agreement about an item. 

For instance to agree a plan to open the door. The planner then 

searches for a way of achieving this. It may find a single action 

to do this and propose the action via NEOTELL. If this succeeds, 

a single level 3 action was enough. However if it fails (for 

example the other agent objects to the plan proposal), the goal 

persists as a level 2 goal until the agents find a way of 

satisfying it. For instance the other agent may propose an
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alternative plan if it is accepted as mutual the goal of agreeing 

a plan. The first agent may ask the other to propose a plan, that 

is, the first direct conversational plan of proposing a physical 

plan failed so the second plan is analogous to a question and 

consists of a request to propose a plan, followed by the  

proposal. Longer sequences may ensue if other physical plans 

can be found to propose.

Both planning and inferring at all stages will be done 

whether an item is a physical or conversational action. Thus the 

task of the planner, if the goal is conversational, is to plan how 

to speak by mutually agreeing an item. If on the other hand it is 

to shut the door then the task of the planner is to perform this 

action. Likewise, the inference task, if the current action is 

physical, is to assess the changes in the state of the world. If 

on the other hand the current action was a joint conversational 

action to discuss whether the door is Open, then the inference 

task would be to see whether any goals on the joint plan tree 

had been achieved, it should also compare the new constraint 

with the old knowledge states of the world and infer new facts 

about the w orld  as a d ire c t  c o n s e q u e n c e  of the jo in t  

conversational action that has just taken place.

Thus, the program should have a number of components: a 

planner that plans physical and conversational actions, an
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inference module that assesses the effects of physical and 

conversational actions, a joint plan tree that represents the 

point of an utterance or physical plan, an agenda of items27 

already said or to say or do or to be done which together 

represent the state of the topic and a control stack that  

represents the state of the dialogue and the status of the 

overall goal.

K now ledge re p re s e n ta t io n  should be provided for  

conversational rules about how to mutually agree something 

together with physical rules about how to do something, how to 

cause an effect, what to do if something unexpected happens 

and how to find something out. Meta-rules are also provided in 

order to make decisions about when to plan, when to infer when 

to act and when to talk. For example if an inference is made 

about a change in the state of the world and it is known that the 

other robot does not know about it, it must start talking rather 

than continue inferring or planning.

Thus level 1 should be thought of in terms of the goals 

that are brought to the conversation, the planning algorithm and 

knowledge representation that acts upon the goals and sub­

goals that participants must achieve. Level 3's only concern is 

to mutually agree items. Level 2 is automatically generated by

27 This is what Searle (1983,1990), Cohen and Levesque (1990) refer to as Intentionallty. For a 
criticism of similar definitions see Bratman (1987).
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the mechanism described: any sub-goal will persist until 

achieved, even if this requires a sequence of level 3 actions 

(NEOTELL's). Such a sequence corresponds to a topic so the sub­

goal corresponds to a level 2 goal.

The program should distinguish the control stack whose 

purpose is to control the whole dialogue from an agenda whose 

purpose is to coordinate the execution of a topic and from a 

joint plan tree whose purpose is simply to decide what to do 

next (which can be speaking, acting, planning or inferring). A 

topic begins when a sub-goal appears on the plan tree and a sub­

goal is defined as any situation that needs to be achieved apart 

from the main goal. It may be finding something out or having a 

situation to be true. A topic ends when the sub-goal is achieved.

In Linguistics, unlike previous work that either considered 

how utterances are generated in isolation, see Searle (1969, 

1975), Cohen and Perrault (1979) or in which a limited number 

of dialogue transcripts were analysed for similar patterns, see 

Clark and Schaefer (1987), Sacks, Schegloff and Jefferson 

(1 9 7 4 ),  I argue that all u tterances can be generated  by 

considering conversation as action through dialogue. This 

fundam ental principle can then be applied in an Artificial 

Intelligence simulation, by considering conversational structure 

in terms of levels.
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John's speed = 3 Mary's speed = 1

*** what John’s capabilities are ***
1. Goal: None
2. Position of objects:
Mary: In: seen, bolt: undef: undef, door: undef: 

undef, zggoal: Q: agreed, zgplan: Q: agreed, 
zgexperiment: Q: agreed, zgtest: fl: agreed, 
zgask: Q: agreed, zgtell: Q: agreed, zggame: 0: 
agreed, zgrule: Q: agreed, John: out: seen,
3. Consequences of events:
If you [[perform [robot slide]]] when [[is[any]] then 
[[changes[Undef]]]
If you [[perform [robot push]] when [[is[any]] then 
[[changes[nothing]]]
If you[[perform [robot move]] when [[is[ door is 
open]]] then [[changes[robot]]
If you [[perform [robot slide]]] when [[cansee 
[bolt]]] then [[know [robot]]]
If you [[perform [robot push]]] when Qcansee 
[door]]] then [[know [bolt]]]
If you [[perform [robot move]]] when [[cansee 
[robot]]] then [[know [door]]]
If you [[perform [robot slide]]] when [[cando [bolt]]] 
then [[knowhow [bolt]]]
If you [[perform [robot push]]] when [[cando [door]]] 
then [[knowhow [door]]]
If you [[perform [robot move]]] when [[cando 
[robot]]] then [[knowhow [robot]]]
If you [[Neotell [Y]]] when [[Gricean [robot]]] then 
[[MutAgree [X]]]
4. Range of actions: move: Yes, slide: No, push: 
Yes, Neotell: Yes

*** what Mary's capabilities are ***
1. Goal: Help me get the bolt up.
2. Position of objects: bolt: up: seen, door: shut: 
seen, zggoal: Q: agreed, zgplan: Q: agreed, 
zgexperiment: Q: agreed, zgtest: []: agreed, 
zgask: Q: agreed, zgtell: Q: agreed, zggame: Q: 
agreed, zgrule: Q: agreed, John: out: seen, Mary: 
In: seen,
3. Consequences of events:
If you [[perform [robot slide]]] when [[is [any]]] then 
[[ changes [undef]]].
If you [[perform [robot push]]] when [[ is [bolt up]]] 
then [[changes [door]]].
If you [[perform[robot move]]] when Q is [any]]], then 
[[changes [nothing]]].
If you [[perform [robot slide]]] when [[cansee 
[bolt]]] then [[know [robot]]]
If you [[perform [robot push]]] when Qcansee [door]]] 
then [[know [bolt]]]
If you [[perform [robot move]]] when Qcansee 
[robot]]] then [[know [door]]]
If you [[perform [robot slide]]] when [[cando [bolt]]] 
then [[knowhow [bolt]]]
If you [[perform [robot push]]] when Qcando [door]]] 
then [[knowhow [door]]]
If you [[perform [robot move]]] when [[cando 
[robot]]] then [[knowhow [robot]]]
If you [[Neotell [Y]]] when [[Gricean [robot]]] then 
[[MutAgree [X]]]
4. Range of actions: move: Yes, slide: Yes, push: 
Yes, Neotell: Yes, _____

1. John:

2. Mary:
3. John:
4. Mary:
5. Mary:

6 . John:
7. John:

8. Mary:
9. Mary:
10. John:
11. Mary:
12 . John:
13. John:

14. Mary:
15. John:
16. Mary:
17. Mary:

18. John:

Figure

(State of the world is now ig. Mary:
[John out, Mary in, bolt up, door shut])

20. John:
I propose the following joint conversational 21. John: 
goal: we agree whether the bolt is up. 22. Mary:
OK
I propose you tell me if the bolt Is up.
OK 23 John:
I propose we find a test for seeing whether the 24 Mary:
bolt is up. 25 John:
OK 26 Mary:
I propose we experiment to see what happens 27. John: 
when the door is pushed.
OK 28. Mary:
John. 29. John:
Yes. 30. Mary:
I suggest we push the door and see if it opens. 31. John: 
OK
I suggest we plan for me to tell you about what 32. Mary: 
happens when you push the door. 3 3 . John:
O K  34. Mary.
Nothing happens. 3 5 . John:
I disagree. 36. John:
I suggest we plan for me to tell you about what 3 7 . Mary: 
happens when you push the door. 38. Mary:
OK

If you push the door when the bolt Is up 
it changes position.

I see.
I suggest I push the door.
OK
(State of the world is now 

[John out, Mary In, bolt up, door open])
I propose to tell you what has happened.
OK
I have pushed the door.
I see.
I propose to tell you the consequences of what 
happened when I pushed the door.
Go ahead.
The door changed position.
I see.
I propose the following joint conversational 
goal: we agree whether the door is open.
OK
I propose for me to tell you if the door is open. 
OK
The door is now open.
I propose for you to tell me if the bolt is up. 
OK
The bolt must be up.

39. John: Right
6.2 Hypothetical dialogue illustrating how one generic

procedure NEOTELL can generate all conversation for Power's 
robot world. Input parameters include a schema for causal rules 
about conversation (that contain variables X and Y) and the 
different kinds of physical planning (that instantiate X and Y).
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Figure 6 .2  il lus tra tes  a hypothetica l d ia logue with  

thirteen causal rules organised into four sets, one for each kind 

of planning. Each set then contains one rule for each of the three 

types of physical actions: pushing, moving and sliding. The  

preconditions and effects are defined in chapter 5. The  

thirteenth rule is the joint action for executing a piece of 

conversation. The goal is to m utually agree  and the  

precondition is similar to Cohen and Perrault (1979). Thus, for 

all physical planning or inference there is a corresponding 

reasoning process for conversation that is instantiated in the 

same algorithm. Thus conversation can also be a goal of 

m utuality and that the equ iva lent action, solo mode, for 

mutually agreeing such a goal should be instigated before the 

conversational goal is considered. This could then be determined 

as a p a ra m e te r  of c o o p e ra t io n  s im ila r  to S h a d b o l t ’s 

com m unicative postures that reflect the desired level of 

communication.

I now discuss the components of the rules given in figure

6.2.

6.3.3 The conversational rule.

This rule is composed of three parts:

If  you do something, when such and such is true then the result is such and such
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An action referred to as “evt” previously and “if you” in figure 

6.2. A precondition referred to as “sit” previously and “when” 

in figure 6.2. An effect referred to as “res” previously and 

“then” in figure 6.2.

The middle “sit” component, GRICEAN (see footnote p81), 

which expresses the degree of co-operativeness or sensibility, 

is the precondition which must be true before the “evt” action 

component can be executed. For example, do not mutually agree 

with your partner about telling you some fact if you know he 

does not know it in the first place. More specifically, the 

preconditions for asking a question about getting your partner 

to do something are: do not plan for your partner to tell you 

something if you know he “can ’t do it” (tell you it). O lder  

systems have used different preconditions for telling and 

asking. Here, this is now no longer necessary with NEOTELL.

T h e  action , N E O T E L L , is s tru c tu ra lly  s im ila r  to a 

conversational procedure except most of the reasoning is done 

outside it, but nevertheless, still within the main physical 

planner. For example, conversational procedures such as 

GAME.ASSESS, Power (1979), are no longer needed because all 

the assessing is done in the planning stage. Similarly GAME.RULE 

is not needed since it is s im ilar to te lling an item and  

disagreem ents  are handled as fa iled  goals for which an
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a lte rn a tiv e  plan must be gen era ted . Unlike in Power or 

Houghton, White utters an item for mutual agreement. Black 

does some goal recognition to identify the item and then  

evaluates in relation to its own knowledge. If it is okay, then 

the item is agreed. White then validates the reply. Both agents 

then take the item to be agreed and assess its consequences in 

just the same way as they would have assessed an action. The 

result is that the goal to mutually agree that particular item 

has been achieved. One advantage of doing things like this is 

that when mutually agreeing a goal the hearer has a better 

chance of taking the initiative in the dialogue. On the other 

hand, in the older systems, such as Power (1979) and Houghton 

(1986), agents are bound to reason either in a conversational 

procedure or within the planner. This disjointed reasoning  

process (i.e. partially reasoning within the physical planner and 

partially within the conversational procedure) means that 

agents are never able to contemplate whether or not to stay 

within a CP or IF. Mixed initiative joint planning, as illustrated 

in fig 6 .2 and discussed in detail in chapter 5, although  

impossible with these systems is now easily achieved since 

facilities to process in parallel would be provided.

The “res” component (its effect) of N E O TELL is the  

original goal of talking about something that is treated just as
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any other type of physical goal would be. Just as the goal of, for 

example, opening the door must be planned for, so also does the 

goal of, for example, mutually agreeing to slide the bolt.

6.3.4 Physical rules.

The classical rules work in exactly the same way as 

described in Power (1979). The word “perform”, is used here, 

see figure 6.2, as part of the action since in the planning phase 

the predicate means one thing (who can do it) and in the 

execution phase it means another (who or what has been done). 

The precondition for the instrumental predicate “cansee”, see 

figure 6.2, is used to check whether or not the action can be 

assessed  properly  and is s im ilar to H o u g h to n ’s (1 9 8 6 )  

“g e t j n f o ”. The resulting predicate “know”, see figure 6 .2 , 

means that the agent knows a particular fact after assessing 

the consequences of performing that action. In experimental 

planning the precondition predicate “cando”, see figure 6.2, is 

similar to Houghton’s (1986) interactional frame “gettodo”, 

that is to say one needs to find an agent that can perform the 

action. Unlike Houghton these last two predicates do not make 

explicit calls to do further conversing but instead construct 

new goals to mutually agree items that the m eta-p lanner  

directs control over (when appropriate) and the whole cycle
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begins again.

Even assessing the con sequences  of a p iece of 

conversation is dealt with in the same way as with action. The 

task here, when a conversational exchange has taken place, is to 

assess its effects in exactly the same way as with an action, by 

comparing the old knowledge status with the new and updating 

accordingly. This is done within the inference and not the 

conversational procedure as currently implemented.

This also has the effect of providing a clearer definition, 

than the one mentioned in chapter 5, of what a topic at level 2 

is, since the sub-goal is an item that needs to be mutually 

agreed and it closes when this goal has been achieved. In the 

definition in chapter 5 the topic closes when the conversational 

procedure finishes on the control stack. In this proposed  

representation, both the physical goal and the mutual goal now 

appear on the joint plan tree.

At first sight the hypothetical dialogue illustrated in 

f igure  6 .2  appears  to be s im ilar to S h a d b o lt ’s d ia logue  

illustrated in figure 3 .5 in that it is almost efficient (like  

Houghton’s dialogue), certainly regular and mechanistic in 

appearance and definitely more explicit than even Power. There 

are however some differences. The dialogue is more robust for 

two reasons: firstly either agent can seize the initiative at any
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time during execution (chapter 4), secondly if an agent is in 

difficulties alternative plans can be constructed whether or not 

the agent’s partner is being helpful (chapter 5).

6.3.5 Asking a question with NEOTELL.

The following tree diagram (figure 6.3) shows how it 

would be possible to ask a question with NEOTELL. In every

NEOTELL
1. John: I propose the following joint conversational goal: we 
agree whether the bolt is up.
2. Mary: Okay.

Speedy Mary.
3. Mary: The bolt is up/down.
4. John: I see.

Speedy John
3. John: I propose you tell me if

the bolt is up.
4. Mary: OK.
5. Mary: The bolt is up/down.
6. John: I see.

Speedy and unknowledgeable Mary.
3. Mary: I propose we find a test for

seeing whether the bolt is up.
4. John: OK.
5. Mary : I suggest we push the door and

see if it opens.
6. John: OK.

Speedy John, unknowledgeable Mary
3. John: I propose you tell me if

the bolt is up.
4. Mary: OK.
5. Mary: I propose we find a test

for seeing whether the 
bolt is up.

6. John: OK.
7. John: I suggest we push the

door and see if it opens.
8. Mary: OK._____________________

Figure 6.3 Asking the question "Is the bolt up?" 
using NEOTELL.

situation the agent can plan or discuss depending on the

conversational skills that are applied as input parameters.
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6.3.6 Degrees of conflict resolution with NEOTELL.

Similar diagrams to figure 6.3 can also be constructed for 

inferring the consequences of an action and for degrees of 

conflict resolution (figure 6.4).

1. John: I propose the following conversational goal: we 
agree about what happens when you push the door.

Agreeing by way of action

2 . Mary: Okay.
3. Mary: I propose we experiment to see what

happens when the door Is pushed.
4. John: Okay.
5. Mary: I suggest we push the door and see

what happens.
6 . John: Okay.

Agreeing by way of conversation

2 . Mary: Okay.
3. Mary: I suggest we plan for me to tell

you abodt what happens when you
push the door.

4. John: Okay.
5. Mary: If you push the door when the bolt

is up It changes position.
6 . John: I see.

Interrupting for the sake of efficiency

2 . Mary: If I help you agree about the door, can
you push the door ?

3. John: No.
4. Mary: No.

Explicitly undoing

2 . Mary: Okay.
3. John: Can you push the door
4. Mary: No.
5. John: I suggest we plan to undo my

goal of agreeing about the door.
6 . Mary: Okay.

Clarifying

2 . Mary. Okay.
3. John: I propose the joint conversation goal:

we agree about the position of the bolt
4. Mary: Okay.

Disagreeing

2 . Mary. Okay.
3. John: I suggest we plan for me to tell

you about what happens when you push
the door.

4. Mary: Okay.
5. John: Nothing happens.
6 . Mary: I disagree.
7. Mary: I suggest we plan for me to tell

you about what happens when you push
the door.

8 . John: Okay.
9. Mary: If you push the door when the bolt is up

it changes position.
10. John: I see.

Figure 6.4 Degrees of Conflict resolution with NEOTELL.
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6.3.7 Meta-plannina with NEOTELL.

John is out and Mary is in. The bolt is up and the door is 

shut. Mary is speedy relative to John. Mary and John’s top goal is 

for the door to be open which has already been mutually agreed 

by both participants. John’s current sub-goal is to know 

whether or not the bolt is up since he is out and cannot see it. 

Mary’s current sub-goal is to push the door. Before Mary can 

push the door John says “I suggest we mutually agree a goal to 

find out if the bolt is up?” How should Mary reply?

As mentioned earlier a meta-planner is needed to plan 

about what to plan for next. A meta-inference process is also 

needed to control the cases of multiple inferences. It is here 

that the satisfaction of constraints would be appropriate. Since 

in this case the meta-planner would be faced with a number of 

simultaneous alternatives. Mary can do two things. She can 

either mutually agree with John’s goal or she can make a meta­

action response by pushing the door. This not only achieves her 

own goal but also indirectly indicates to John that the bolt is up 

since the result of the door being open is that the bolt must be 

up.

Hence the corresponding action for mutually agreeing is 

conveying the message through direct action which may involve 

miming, a planned action, acting in solo mode or any other form
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of non-verbal communication. But whatever the conversation, 

from a psychological point of view and if this model is upheld, 

there is always a corresponding action for achieving it.

Thus the resp on s ib ility  of the m e ta -p la n n e r  is for 

efficiency (see also the example in figure 6.4 “interrupting for 

the sake of efficiency”) and this can be achieved through 

constraint programming as part of the existing inference  

mechanism already implemented within SUPERPOWER.

6.4 Epilogue.

This NEOTELL dialogue is slightly more general than the 

dialogue of chapters 4 and 5 in that a fast agent can attempt to 

answer a question that it is pondering by way of its own 

resources before its partner has replied. It thus introduces even 

more com plications  to exe rc is e  the a g e n t ’s ab il it ie s  to 

coo rd ina te  skills c o o p era tive ly . Thus the v a r ia t io n  and 

distribution of conversational procedures, skills and speeds 

amongst agents is even larger than indicated in chapter 4. It 

also begs the question “For a given level of overall skill and an 

arbitrary selection of goals and unexpected events, how do the 

relative speeds and the configuration of skills amongst the 

agents affect the dialogue outcome in terms of the distribution 

of conversational procedures instigated by each agent?”. In
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Chapter 4, there were some initial conclusions about this, but 

much more information still needs to be gathered on this. With 

this proposed enhancement the number of shifts in which an 

agent is leading the dialogue would be much greater.

There is also the general issue about equivalent actions 

for mutually agreeing an item. Does every utterance have a way 

of being expressed in terms of some action? Dumb people may 

agree. Sometimes a glance of an action can represent a 

lifetime’s insight. With other important insights it can be just 

one word. The computational design described in this chapter is 

an attempt at addressing this important psychological question 

of whether or not every piece of conversation can be expressed 

in terms of an action and vice versa.

By way of application to Cognitive Science, this is also a 

question that is important for understanding human transcripts 

(Anderson, Clark and Mullin 1989) by helping us to identify a 

model of true planned conversation we can identify poor and 

good in te rac tio n  skills . It also has ap p lic a tio n  both in 

intelligent language tutoring systems (see Button and Draper 

1990) that use communicative teaching strategies, (see Ward 

1989 for some empirical work that justifies this approach to 

la n g u a g e  te a c h in g ) .  It m ay even  be of in te re s t to 

Psycholinguists. It has application to Psychology since any
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S o c ia l th e o ry  of m utua l in te n t io n  m ust e x p la in  its 

corresponding action and up until now these problems have been 

dealt with differently.

It can be app lied  to con s tra in t s a t is fa c t io n  s ince  

conversational and physical goals are expressed in such a way 

as to make them amenable to reasoning in relation to the 

constraints of the overall situation. It is at this point that 

meta-planning is useful to make the dialogue efficient. Goals do 

not need to be specified as explicitly as in Power’s model, 

since conversational exchanges can be trea ted  just like 

unexpected actions and assessed accordingly. The system is 

thus reactive to the current situation. The task of the inference 

process is to use constraint programming as a way of resolving 

goal conflict. The inference and the meta-planner with this 

system would thus be the “constraint programmer” mentioned 

in chapter 2. It ’s just that we need to define an explicit 

program that can say all that there is to say for dialogue 

structure first.

However, a process that carries forward multiple goals, 

and p ro g ress ive ly  d is a m b ig u a te s  m ean ing  by m aking  

contributions that add new constraints to the understanding of 

a developing plan, while easily  accom plished by human  

conversation partners, takes us far beyond any simulation of
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conversational procedures that has been implemented so far. 

However, I have also argued that an explicit account of simple 

levels of goals is technically possible and is the way forward 

for any Al model of dialogue that wishes to account for true 

planned conversation  and action, as opposed to simply  

understanding planned action and conversation separately. It 

must, at all times, follow principles of coherence in terms of 

theory, program structure and example dialogue. And when the 

possibilities become too large, com prehensive statis tica l 

summaries must also be made.
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Appendix 1.

Annotated transcript of task of getting through a closed door 
(conversation bv humans, one blindfolded).

224



Agent Utterance G/P/B/H/C Action Change

1 JOHN:
2 MARY:

3 JOHN:
4 MARY:
5 JOHN:

6 MARY:
7 JOHN:

8 MARY:

9 JOHN:

10 MARY:

John and Mary decide to gain each other’s attention In order 
to achieve John's goal of getting into Mary's room.

[Mary.
Yeh.] H

John starts by executing a plan, sliding the bolt, and then 
asking Mary to assist him achieve his goal of getting in by 
pushing on the door. He sees It Is not working, and asks why.

JOHN OPENS BOLT BOLT OPEN
[Can you push on the door?
[Can I what?

Can you push on the door, MARY PUSHES DOOR 
Mary?] H
[Push the door?
Yah... ] H

] I
[Keep pushing.

] P
[Is anything wrong?

I can't get through.] B
John modifies his plan, then tries to find out what Is wrong 
by Introducing new knowledge.

[Well, try pushing a bit lower.
] P MARY PUSHES DOOR NO CHANGE

[Is it stuck?

MARY PUSHES DOOR

MARY PUSHES DOOR

NO CHANGE

NO CHANGE

NO CHANGE

Yeh.] B
They compare their beliefs about the state of the world, and 
conclude the door is jammed.
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Agent Utterance G/P/B/H/C Action Change

11 JOHN: [Where do you think it's stuck?
12 MARY: [Where I think it's stuck?
13 JOHN: Yeh...] H

[Is it stuck down the bottom?
14 MARY: ...According to the crack

obviously it's 
not locked.] B

] B
They continue to discuss beliefs about appearances on either 
side of the door.

15 JOHN: [No it's not locked. I've got it open this side.
But it's stuck somewhere.

16 MARY: Yeah I think it's the bottom because
the upper part is 
free.] B

17 JOHN: [Can you give it a push from the bottom...
] P MARY PUSHES DOOR NO CHANGE
[It's actually stuck where the lock is, about 2 inches 

below the Yale lock... About 6 inches below.
18 MARY: So?] B
19 JOHN: [Have you got a handle your side?
20 MARY: A handle! No.] B
21 JOHN: [My handle's undone as well.

] B
Mary is at a loss as to what to do. John continues to try and 
clarify things. Finally they agree that It is not Mary who 
needs to do something but John.

22 MARY: [What shall I do?
23 JOHN: [What can you see from your side?
24 MARY: See? I'm not supposed to see

anything.] B
Mary was blindfolded!

25 JOHN: [Okay. Can you see anything that's stopping it?
26 MARY: Stopping it! Obviously you're

stopping it not me.] B
] P

Finally John stumbles on the solution. He modifies his beliefs 
and plans to achieve his goal of getting in by removing the
hidden nail from the side of the door.

27 JOHN: [Oh wait a minute there's a
nail in the side. ] B JOHN REMOVES NAIL

MARY PUSHES DOOR DOOR OPEN
JOHN MOVES JOHN IN
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Appendix 2.

Annotated transcript of double-sided photocopying task 
(conversation bv two humans^.
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Agent Utterance G/P/B/H/C Action Change

John and Mary start conversing about photocopying both sides  
of a sheet of paper. Mary knows how to do this. John's goal Is 
to learn how to do it for himself. After the first few utterances  
it emerges that John knows how to do one-sided photocopying. 
Mary t r ie s  to gu ide  John from b e lie fs  about s in g le -s id e d  
photocopying to beliefs about double-sided photocopying which 
in v o lv e  to p o lo g ic a l  p ro b le m s  a b o u t th e  o r ie n ta t io n  and  
sequencing of originals. Further complications arise because  
Mary is unaware that John only Intends to photocopy one sheet 
rather than many ...

1 JOHN:

MARY:
JOHN:

MARY:

[Could you show me how to 
do the photocopying? 

[Double-sided?
Eh, Yer, I want to do, 

to do double-sided. ]
]

[Uhm, I don't know, 
some or ]

John interrupts Mary's goal-c lariflcatlon. He uses his beliefs about s ingle- 
sided photocopying to develop a plan to achieve his goal, with an additional 
unstated sub-goal of doing the task as quickly as possible. He knows that of 
four keys, three are relevant to single-sided photocopying and infers that 
the fourth must concern double-sided photocopying...
5 JOHN: [Sorry, what do you do here?
6 MARY: This one. SELECTS DUPLEX 2 DUPLEX

SCREENAT2
But eh eh... some turn 
the other way round.

You must have it.] C:B,P OPENS LID LID OPEN
Mary has In mind that double-sided copying is not as simple as 
single-sided, because documents to be copied double-sided must 
be In sequence.

[So what do I do just put 
that one there? Like that. POSITIONS PAPER PAPER ON GLASS
] P SETS KEY TO A4 SET TO A4

Mary checks that the first sheet Is in position. John Is now 
confused as to why Mary is so concerned about the sequencing 
of the originals.

[Which way did you put it?
It doesn't really matter 

which way you put it.] C:P,B
[Does it?

Yer, it must be in sequence. ] B 
[I suppose if you...

Right well, I'm only doing 
one sheet.] C:B,P

Mary Is at last able to understand more of John's goals and that 
the confusion between them over-sequencing Is not Important 
when photocopying one sheet of paper. However she Is stil l  
perplexed as to why someone should go to great lengths to  
photocopy just one sheet of paper double-sided.

7 JOHN:

8 MARY:

10 MARY:
11 JOHN:

12 MARY:

13 JOHN:
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Agent Utterance G/P/B/H Action Change

14 MARY:
15 JOHN:

16 MARY

17 JOHN:

18 MARY:
19 JOHN:
20 MARY:

21 JOHN:
22 MARY:
23 JOHN:

24 MARY:

24 MARY:

25 JOHN:

26 MARY:
27 JOHN:
28 MARY:

29 JOHN:

30 MARY:

[Pardon?
It's alright. I'm just 

learning how to do it 
at the moment.
Oh I see.] G
Now the rest Is straightforward for both of them.

[Right, so I put that 
down there. Right? 
ahm...
And press that do I?
Yes. ] F
[Then it collects...

CLOSES LID LID CLOSED

PRESSES START MACHINE STARTS 
ONE SIDED COPY 

APPEARSBELOW
and goes back you see.] B

[Now now you turn it.] P
Having successfully completed  
John hastily prepares to press 
reverse side...
[What I press again?
No, no. Well... ha ha ha.] P 
[I have to turn it over, 
do I, first.

a photocopy of the first side, 
the start button again for the

POINTS TO START

OPENS LID 
TURNS SHEET

LID OPEN 
SHEETTURNED

Right.
Ha Ha.] P

Mary wants to make sure that when John turns the sheet over 
he puts it the right way round to avoid having the reverse side 
copied upside down.
[So it might be you have 
to turn it the other way 
round but I'm not sure.
Oh. What you mean we 
might get it the wrong 
way up. Right.] POSITIONS PAPER 

CLOSES LID
PAPER ON GLASS 
LID CLOSED

[So I press it again.
Yes.] P

[... Right.] P
[So it comes out here.

Sorry.
It comes out where,
Sorry?] B

[It takes much longer. ] B

PRESSES START MACHINE STARTS

DOUBLE-SIDEDCOPY 
APPEARS AT TOP

MARY POINTS
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Appendix 3.

Utterance in the photocopying conversation, categories assigned 
by the experimenters, the number of subjects assigning each 
utterance to each category, and the percentage agreement of 

subjects with our categories.
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Agent Utterance Cat Q P H B C:B,P O  %Agrmt

JOHN: [Could you show me how to do the photocopying?
MARY: -] Q 17 1 0 0 0 0 94
MARY: [Double-sided?
JOHN: Er, Yer, I want to do,to do, double sided]

G 7 6 2 0 0 3 44
MARY: [I dont know, some o r...
JOHN: -] B 0 1 8 6 0 3 33
JOHN: [Sorry, what do you do here?
MARY: This one. But eh , eh... some turn the other way round.
You must have it.] C:P,B 0 8 0 2 5 3 64
JOHN: [So what do I do just put that one there? Like that
MARY: -] P 0 9 1 6 0 2 53
MARY: [Which way did you put it?
JOHN: It doesn't really matter which way you put it.]

CP.B 0 1 1 11 2 3 50
JOHN: [Does it ?
MARY: Yes it must be in

sequence.] B 0 6 0 8 0 4 56
MARY: [I suppose if you...
JOHN: Right well I'm only

doing one sheet] C:B,P 1 1 2 4 3 7 42
MARY: [Pardon?
JOHN: Ifs alright I'm just learning how to do it at the moment
MARY: Oh I see.] G 1 0 9 0 0 8 6
JOHN: [Right so I put that down there. Right?
MARY: ahm
JOHN: And press that do I?
MARY: Yes] P 0 10 1 5 1 1 58
MARY: [Then it collects down here and goes back you see. ]

B 0 2 0 13 0 3 72
MARY: [Now you turn it] P 0 11 3 3 1 0 64
JOHN: [What I press again.
MARY: No. Ha ha ha.] P 0 5 1 4 4 4 44
JOHN: [I have to turn over again first Right.
MARY: Ha Ha] P 0 11 0 4 0 3 61
MARY: [So it might be you have to turn it the other way round, but I'm not sure.
JOHN: Oh you mean we might get it the wrong way up.

Right.] P 0 3 0 5 9 1 44
JOHN: [So I press it again.
MARY: Yes] P 0 10 1 3 4 0 67
JOHN: [Right.] P 0 1 10 2 0 5 6
MARY: [So it comes out here.
JOHN: Sorry, it comes out where,

Sorry.] B 0 2 0 12 1 3 69
MARY: [It takes much

longer.] B 0 1 5 7 1 4 42

Totals 26 89 44 
Notes: Cat = cateaories aareed bv the authors: G.P.B.H. & C:B.P =

95 31 57 
coding categories assigned by subjects as

the text; O = coding categories assigned by subjects other than the foregoing; %Agrmt = percentage agreement between 
subjects' categorisations and the authors', with half points being given for a partially correct assignment, e.g. where we 
assigned a single category and a subject assigned a compound containing this category.
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Appendix 4.

An attached list of dialogue summaries 
for the goal of agent John getting the door open. Each record 

contains a list of input and output parameters of the
dialogue.
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<  MIX OF SKILLS— >......<.......... MIX OF SPEEDS— >
Knowledge Action Perception Total CP’s CP’s by John CP’s by Mary

SF FS SS FF SF FS SS FF SF FS SS •n Tl

KNW KNW PRA PRA PER PER 10 10 10 10 2*10* 6 6 8* 0 4 4

Skill level = 6 Av # of CPs 10 10 10 10 2 10 6 6 8 0 4 4

KNW UNK PRA PRA PER PER 11 10 11 11 5 10* 5 5 6* 0 6* 6*
KNW KNW PRAIMPRA PER PER 12 10$12 12 4*10* 4* 8 8* 0 8* 4
KNW KNW PRA PRA PERIMPER 19$15 14 14 6 9 8 8 13* 6 6 6
UNK KNW PRA PRA PER PER 10 11 10 10 2* 8* 6 6 8* 3* 4 4
KNW KNWIMPRA PRA PER PER 10 12$10 10 2*10* 6 6 8* 2* 4 4
KNW KNW PRA PRAIMPER PER 15 14 15 14 8 8 8 8 7 6 7 6

Skill level = 5 Av # of CPs 12 13 12 11 4 9 6 6 8 4 5 5

KNW UNK PRAIMPRA PER PER 11 10 11 11 5 10* 5 5 6* 0 6* 6*
KNW UNK PRA PRA PERIMPER 13 13 12 12 7 9 8 8 6* 4 4 4
KNW KNW PRAIMPRA PERIMPER 16 15 14 14 6 9 8 8 10* 6 6 6
UNK KNWIMPRA PRA PER PER 10 11 10 10 2* 8* 6 6 8* 3* 4 4
UNK KNW PRA PRAIMPER PER 13 12 13 12 6 6 6 6 7 6 7 6
KNW KNWIMPRA PRAIMPER PER 15 14 15 14 8 8 8 8 7 6 7 6
UNK KNW PRAIMPRA PER PER 12 13 12 12 4*10* 6 8 8* 3* 6 4
UNK KNW PRA PRA PERIMPER 19 21 20 20 6 9 8 8 13 12 12 12
KNW UNKIMPRA PRA PER PER 13 12 13 13 5*10* 7 9 8* 2* 6 4
KNW UNK PRA PRAIMPER PER 21 20 21 20 14 14 14 14 7 6 7 6
UNK UNK PRA PRA PER PER 0 19$ 0 0 0 18* 0 0 0 1* 0 0
KNW KNWIMPRA PRA PERIMPER 19$17 16 16 6 9 8 8 13* 8 8 8
KNW KNW PRAIMPRAIMPER PER 17 16 17 16 10 10 10 10 7 6 7 6
KNW KNWIMPRAIMPRA PER PER 0 0 0 0 0 0 0 0 0 0 0 0
KNW KNW PRA PRAIMPERIMPER 46 46 48 48 16*32*26 22 30*14*22 26

Skill level = 4 Av # of CPs 17 17 17 16 7 11 9 !9 10 5 7 7

Notes. Each line represents a group of 4 dialogues, one for each of four different speed 
settings (SF,FS,SS,FF) e.g SF = John slow Mary fast). Each skill level or major subgroup 
measures dialogues in which agents have similar skills (e.g. KNW UNK means John is 
knowledgeable about the door and Mary is not). In general John always appears first. 
Mark $ when # of CP’s > 10% deviation from the mean of the 4-group. Mark * when # of 
CP’s > 25% deviation from the mean of the 4-group. Data sorted in descending order of 
skill level (award 1 point for a positive skill, 0 otherwise e.g. KNW UNK PRA PRA PER 
PER is 1+0+1+1+1+1 = group 5)
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Knowledge Action Perception Total CP’s CP’s by John CP’s by Mary
SF FS SS FF SF FS SS FF SF FS SS FF

KNW UNK PRAIMPRA PERIMPER 13 13 12 12 7 9 8 8 6* 4 4 4
UNK KNWIMPRA PRAIMPER PER 13 12 13 12 6 6 6 6 7 6 7 6
UNK KNW PRAIMPRA PERIMPER 16 18 17 17 6 9 8 8 10 9 9 9
KNW UNKIMPRA PRA PERIMPER 15 15 14 14 7 9 8 8 8 6 6 6
KNW UNK PRAIMPRAIMPER PER 21 20 21 20 14 14 14 14 7 6 7 6
KNW UNKIMPRAIMPRA PER PER 0 0 0 0 0 0 0 0 0 0 0 0
KNW UNK PRA PRAIMPERIMPER 48 46 50 50 21 32 28 24 27 14*22 26
UNK UNK PRAIMPRA PER PER 23 19$21I 23 7*18* 9 13 16* 1*12 10
UNK UNK PRA PRA PERIMPER 10 24$25$25$ 0 17*12 12 0 7’ 13*13*
KNW KNW PRAIMPRAIMPERIMPER 48 46 50 50 18*32*26 22 30 14*24 28
KNW KNWIMPRAIMPRA PERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
UNK KNWIMPRA PRA PERIMPER 19 21 20 20 6 9 8 8 13 12 12 12
UNK KNW PRAIMPRAIMPER PER 15 14 15 14 8 8 8 8 7 6 7 6
UNK KNWIMPRAIMPRA PER PER 0 0 0 0 0 0 0 0 0 0 0 0
UNK KNW PRA PRAIMPERIMPER 46 48t  51 47 16*29 25 27 30*19 26 20
KNW UNKIMPRA PRAIMPER PER 18 17 18 17 11 11 11 11 7 6 7 6
UNK UNKIMPRA PRA PER PER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNK PRA PRAIMPER PER 0 27$ 0 0 0 21*' 0 0 0 6* 0 0
KNW KNWIMPRA PRAIMPERIMPER 46 48 52 50 16*32*26 22 30 16*26 28
KNW KNWIMPRAIMPRAIMPER PER 0 0 0 0 0 0 0 0 0 0 0 0

Skill level = 3 Av # of CPs :26 25 27 26 11 17 14 13 15 8 13 12

KNW UNK PRAIMPRAIMPERIMPER 48 46 50 50 21 32 28 24 27 14*22 26
KNW UNKIMPRAIMPRA PERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNK PRAIMPRA PERIMPER 31$24$27 27 11 17 14 1AI 20* 7*13 13
UNK KNWIMPRA PRAIMPERIMPER 46 48 51 47 16*29 25 27 30*19 26 20
UNK KNWIMPRAIMPRAIMPER PER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNKIMPRA PRAIMPER PER 0 0 0 0 0 0 0 0 0 0 0 0
UNK KNW PRAIMPRAIMPERIMPER 48 50 51 49 18*31 27 29 30*19 24 20
UNK KNWIMPRAIMPRA PERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
KNW UNKIMPRA PRAIMPERIMPER 50 48 54 52 21 32 28 26 29 16*26 26
KNW UNKIMPRAIMPRAIMPER PER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNKIMPRA PRA PERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNK PRAIMPRAIMPER PER 28 27 28 27 13 21 17 17 15* 6*11 10
UNK UNKIMPRAIMPRA PER PER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNK PRA PRAIMPERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
KNW KNWIMPRAIMPRAIMPERIMPER 0 0 0 0 0 0 0 0 0 0 0 0

Skill level = 2 Av # of CPs 41 40 43 42 16 27 23 22 25 13 20 19

KNW UNKIMPRAIMPRAIMPERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNK PRAIMPRAIMPERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNKIMPRAIMPRA PERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
UNK KNWIMPRAIMPRAIMPERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNKIMPRA PRAIMPERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
UNK UNKIMPRAIMPRAIMPER PER 0 0 0 0 0 0 0 0 0 0 0 0

Skill level = 1 Av # of CPs 0 0 CI 0 0 0 0 0 0 0 0 0

UNK UNKIMPRAIMPRAIMPERIMPER 0 0 0 0 0 0 0 0 0 0 0 0
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Appendix 5. 
Program Listing of SUPERPOWER V.S.92e

28 In addition to SUPERPOW ER V.5.9 reported here, the following program listings 
could easily be made available on request, with author’s permission, in machine readable 
format, both on SUN POPLOG V13.13.6 running under UNIX and those marked with an 
asterisk on a Macintosh Plus, running under Alphapop V.1.2, containing

(1*) Cohen and Perrault(1979) .
(2*) Power (1979,1974).
(3) Houghton (1987).
(4*) Modularised version of Houghton illustrating various processes working.
(5*) Power dialogue using Houghton’s language generator.
(6*) Power(1979,1974) -> SUPERPOWER version development, illustrating all the 

developments discussed in chapter 5.
(7*) ELIZA
(8) SHRDLU
(9*) Gazdar and Mellish (1990)
(10*) The generic procedure NEOTELL illustrating all the developments discussed in 

chapter 6. However, as of writing, a complete dialogue has not yet been tested.
(11*) Help files
For the time-being the attached program listing is available on a floppy disk together 

with the POP11 demonstration software.
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* * *  run .p  (1 o f 1 )***

;;; The main compilation procedure.

mycom pile(popfolder<>,Power(V.5.9):VARIABLES.p'); 
mycom pi le(popfolder<>' Power(V. 5.9): M ACROS. p'); 
mycomplle(popfolder<>,Power(V.5.9):SYSTEM.pl); 
mycom pile(popfolder<>' Power(V. 5.9) WORLD, p'); 
mycompile(popfolder<>,Power(V.5.9):CONCEPTS.p'); 
mycom pile(popfolder<>,Power(V.5.9):AUXFUNS.p'); 
mycom plle(popfolder<>,Power(V.5.9):EXEC.p'); 
mycomplle(popfolder<>'Power(V.5.9):PLAN.p'); 
mycom pile(popfolder<>'Power(V.5.9):KNOW1.p'); 
mycom plle(popfolder<>,Power(V.5.9):KNOW2.p'); 
mycom plletpopfoldero'Power^.S.g^WRITE.p'); 
mycom pile(popfoldero'Power(V.5.9): PLAY.p1) ; 
mycom pile(popfoldero'Power(V.5.9) iPRINT.p1) ; 
mycompile(popfolder<>'Power(V.5.9):DECIPHER.p'); 
mycom plle(popfolder<>,Power(V.5.9):ROL^^NE.ACHIEVE.p,); 
mycom pile(popfolder<>'Power{V.5.9):ROLmNE.ASSESS.p,): 
mycom pile(pop1blder<>'Power(V.5.9):ROU■^NE.BASIC.p,); 
m ycom pile(popfoldero'Power(V. 5.9): ROUTIN E. FI NDOUT. p'); 
mycom plle(popfolder<>lPower(V.5.9):ROUTINE.PLAN.p'); 
mycompile(popfolder<>’Power(V.5.9):ROUTINES.p'); 
mycom pile(popfolder<>'Power(V. 5.9) :GAM ES.p'); 
mycom pile(popfolder<>'Power(V.5.9):GAM E. GAM E. p'); 
mycom pile(popfolder<>' Power(V. 5.9): GAM E. AS K. p1); 
mycom plle(popfolder<>’Power(V.5.9):GAME.TELLp’); 
mycompile(popfoldero'Power(V.5.9):GAME.RULE.p'); 
mycom pile(popfo!der<>,Power(V.5.9):GAME.GOAL.p'); 
mycom plle(popfolder<>,Power(V.5.9):GAME.PLAN.p');
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*** VARIABLES.p (1 of 4) ***
;;;plan8
vars mpcurr,mpgoal,mptree,mpstate,mpactor,inpplan,mpcircular,mp8trategy; 
vars jpcurr,|pgoal,]ptree,jp8tate,jpactor,jpplan,jpclrcular,jp8trategy; 
vars zpcurr,zpgoal, zptree,zpstate, zpactor,zpplan,zpcircular, zpstrategy; 
vars spcurr.spgoal.sptree.spstate.spactor.spplan.spcircular.spstrategy;
;;;mental plans
vara zpmgoai,jpmgoal,mpmgoal,spmgoal;
vars zpgoaltype, jpgoaltype, m pgoaltype.spgoaltype;
vars z_l_have_tried,j_i_have_tried,mj_have_tried,s_i_have_tried;
;;; Who is to start 
vars zpstart;
;;; who we are,do,see and want
vars mkme.mkyou.mkacts.mksee.mkgoal;
vars Jkme.jkyou.jkacts.jksee.jkgoal;
vars zkm e,zkyou, zkacts,zksee,zkgoal;
vars skme.skyou.skacts.sksee.skgoal;
vars zginformation.sginformatlon.jginformation.mginformation;
vars ztoplcs.stoplcs.jtoplcs.mtoplcs;
;;; whats In the world and what we believe 
vars mkworld.mkrules; 
vars jkworld.Jkrules; 
vars zkworld.zkrules; 
vars skworld.skrules;

;;; what your partner does,sees,believes and wants, 
vars mkxacts.mkxsee.mkxrules.mkxgoal; 
vars jkxacts.jkxsee.jkxrulesjkxgoal; 
vars zkxacts.zkxsee.zkxrules.zkxgoal; 
vars skxacts.skxsee.skxrules.skxgoal;

;;; variables for working memory
vars mecontrol,m ebox, m eagain,m enext, m ejolnt, megam e1,m em ovel, m ehold,m eplace; 
vars jecontrol,jebox,jeagain,jenext,jejoint,jegame1 .jemovel ,jehold,jeplace; 
vars zecontrol,zebox,zeagain,zenext,zejolnt,zegame1 .zemovel ,zehold,zeplace; 
vars secontrol,8ebox,seagEUn,8enext,8ejoint,8egame1 .semovel ,sehold,seplace;
;;; planning index 
vars macount; 
vars jacount; 
vars zacount; 
vars sacount;
;;; actions,objects,types of objects,relative positions,
;;; objects relative positions,world structure,control game structure,
;;; control routine structure, belief structure.
vars mcrshell,munexpected_event;
vars jcrshell,junexpected_event;
vars 8crshell,sunexpected_event,zunexpected_event;
vars zcacts,zctobjs,zcobjs,zctypes,zcprops,zctprops,
zcw8hell,jcwshell,mcw8hell,zcf8hell,zcgshell,zcrshell;

;;; utterance count, when to stop, print out games, print out what type 
;;; of process is going on, more printouts.

vars count,stop,pro,ppro,prw1,jt,mt,8t,mspeed,jspeed,sspeed,Unexpected_events;

;;; an utterance, the state of the world, 

vars wmessage.wobjects;
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* **  VA RIAB LES.p (2 of 4) * **

;;; load Mary's dynamic variables into active memory,

define mawakeO;
mglnformatlon->zglnformatlon;mtopics->ztopics;munexpected_event->zunexpected_event; 
m pgoaltype->zpgoaltype;
mpcurr->zpcurr;mpgoal->zpgoal;mptree->zptree;mpstate->zp8tate;mpactor->zpactor; 
mpplan->zpplan;mpcircular->zpclrcular;mp8trategy->zp8trategy;macount->zacount; 
mpmgoal->zpmgoal;m_i_have_trled->z_i_have_tried; 
mkme->zkme;mkyou->zkyou;mkact3->zkacts;mksee->zksee;mkgoal->zkgoal; 
m kworld->zkworld; m krules->zkrules;
mkxacts->zkxacts;mkx8ee->zkxsee;mkxrule8->zkxrule8;mkxgoal->zkxgoal;
mecontrol->zecontrol;mebox->zebox;meagain->zeagain;menext->zenext;
mejoint->zejoint;megame1->zegame1;memove1->zemove1;mehold->zehold;
meplace->zeplace;
mcr8hell->zcrshell;
enddefine;

;;; load John's dynamic variables into active memory,

define jawakeO;
jglnformation->zginformation;jtopics->ztoplcs;junexpected_event->zunexpected_event;
jpgoaltype->zpgoaltype;
)pcurr->zpcurr;jpgoal->zpgoal;jptree->zptree;jp8tate->zpstate;Jpactor->zpactor;
|pplan->zpplan;|pcircular->zpcircular;|p8trategy->zpstrategy;jacount->zacount;
Jpm goal->zpm goal;) _l_have_tried ->z_l_have_trled;
jkme->zkme;)kyou->zkyou;jkact8->zkacts;jksee->zksee;)kgoal->zkgoal;jkworld->zkworld;
|krules->zkrule8;
jkxacts->zkxacts;jkxsee->zkxsee;jkxrules->zkxrules;jkxgoal->zkxgoal;
jecontrol->zecontrol;|ebox->zebox;jeagain->zeagaln;jenext->zenext;
jejoint->zejoint;jegam e1 ->zegame1 ;jemove1 ->zemove1 ;jehold->zehold;
jeplace->zeplace;
jcr8hell->zcrshell;
enddefine;

;;; Swap John out.

define jasleepO;
zginformation->jginformation;ztopic8->jtopics;zunexpected_event->junexpected_event;
zpgoaltype->jpgoaltype;
zpcurr->jpcurr;zpgoal->jpgoal;zptree->jptree;zpstate->jpstate;zpactor->jpactor;
zpplan->jpplan;zpcircular->jpcircular;zpstrategy->jpstrategy;zacount->jacount;
zpmgoal->jpmgoal;z_l_have_tried->j_l_have_tried;
zkme->jkme;zkyou->jkyou;zkacts->jkacts;zksee->jksee;zkgoal->jkgoal;zkworld->jkworld;
zkrule8->jkrufes;
zkxact8->jkxacts;zkxsee->jkxsee;zkxrules->jkxrules;zkxgoal->jkxgoal;
zecontrol->jecontrol;zebox->jebox;zeagain->jeagain;zenext->jenext;
zejolnt->jejoint;zegame1 ->jegame1 ;zemove1 ->jemove1 ;zehold->jehold;
zeplace->jeplace;
zcrshell->jcrshell;
enddefine;

;;; Swap Mary out.

define masleepO;
zglnformation->mginformatlon;ztopics->mtopics;zunexpected_event->munexpected_event;zpgoaltype->mpgoaltype; 
zpcurr->mpcurr;zpgoal->mpgoal;zptree->mptree;zpstate->mpstate;zpactor->mpactor; 
zpplan->m pplan;zpcircular->mpcircular;zpstrategy->mpstrategy;zacount->macount; 
zpmgoal->mpmgoal;z_i_have_tried->m _i_have_tried;
zkme->mkme;zkyou->mkyou;zkacts->mkacts;zksee->mksee;zkgoal->mkgoal;zkworld->mkworld;zkrules->mkrules;
zkxacts->mkxact8;zkxsee->mkxsee;zkxrules->mkxrules;zkxgoal->mkxgoal;
zecontrol->mecontrol;zebox->mebox;zeagain->meagain;zenext->menext;
zejoint->mejoint;zegame1->megame1;zemove1->memove1;zehold->mehold;
zeplace->m eplace;
zcrshell->mcrshell;enddefine;
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* **  VA RIAB LES.p (3 o f 4) * **

;;; load Super Robots's dynamic variables Into active memory,

define sawakeO;
8glnformation->zginformatlon;stopics->ztoplcs;sunexpected_event->zunexpected_event;
spgoaltype->zpgoaltype;
8pcurr->zpcurr;spgoal->zpgoal;8ptree->zptree;sp8tate->zpstate;8pactor->zpactor;
8pplan->zpplan;8pclrcular->zpclrcular;8p8trategy->zp8trategy;sacount->zacount;
8pmgoal->zpmgoal;8_l_have_trled->z_l_have_tried;
8kme->zkme;8kyou->zkyou;8kacts->zkacts;sksee->zk8ee;skgoal->zkgoal;skworld->zkworld;
skrule8->zkrule8;
8kxact8->zkxact8;8kx8ee->zkxsee;8kxrule8'>zkxrule8;skxgoal->zkxgoal;
8econtrol->zecontrol;sebox->zebox;8eagain->zeagain;senext->zenext;
8ejolnt->zejolnt;8egame1 ->zegame1 ;semove1->zemove1 ;8ehold->zehold; 
seplace->zeplace;
8cr8hell->zcr8hell;
enddefine;

;;; swap Super Robot out

define sasleepQ;
zginformation->8glnformation;ztopic8->8topic8;zunexpected_event->8unexpected_event;
zpgoaltype->spgoaltype;
zpcurr->8pcurr;zpgoal->8pgoal;zptree->sptree;zp8tate->8p8tate;zpactor->8pactor; 
zpplan->8pplan;zpcircular->8pcircular;zp8trategy->sp8trategy;zacount->8acount; 
zpm goal - >8pm goal; z_l_have_t ried - >8_l_have_tried;
zkme->8kme;zkyou->8kyou;zkacts->8kacts;zk8ee->8ksee;zkgoal->8kgoal;zkworld->8kworld;
zkrules->skrules;
zkxact8->skxacts;zkxsee->8kxsee;zkxrule8->skxrules;zkxgoal->8kxgoal;
zecontrol->secontrol;zebox->sebox;zeagain->seagain;zenext->senext;
zejoint->8ejoint;zegame1 ->segam e1 ;zemove1 ->8emove1 ;zehold->sehold;
zeplace->8eplace;
zcrshell->scrshell;
enddefine;

;;; odd functions that are still used before they are defined

vars zepo8t,zo8p,zobug,zoptead;
vars mmginformation,jjginformation,mmunexpected_event,jjunexpected_event; 
vars m m pgoaltype,jjpgoaltype;
vars m m pcurr, m m pgoal, m m ptree, m m pstate, m m pactor, m m pplan, m m pcircular, m m pstrategy; 
vars jjpcurr.jjpgoal.jjptree.jjpstate.jjpactor.jjpplan.jjpcircular.jjpstrategy;
;;;mental plans
vars jjpmgoal.mmpmgoal.mm_i_have_trled,Jj_i_have_tried; 
vars m m km e, m m kyou.m m kacts, m m ksee, m m kgoal; 
vars jjkme,JjkyouPjjkacts,jjksee,jjkgoal; 
vars mmkworld.mmkrules; 
vars jjkworld.jjkrules;
vars m mkxacts, m m kxsee, m m kxrules.m m kxgoal; 
vars jjkxactsjjkxseejjkxrulesjjkxgoal;
vars mmecontrollmmebox,mmeagain,mmenext,mmejoint,mmegame1,mmemove1,mmehold,mmeplace;
vars jjecontrol,|jebox,jjeagaintjjenext,jjejoint,jjegame1 ,jjemove1 ,jjehold,j]eplace;
vars mmacount;
vars jjacount;
vars mmcrsheli;
vars jjcrshell;
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*** VARIABLES.p (4 of 4) *** 
define gsaveO;
jginformation->jjginformation;|unexpected_event->jjunexpected_event;
jpgoaltype->j)pgoaltype;
jpcurr->jjpcurr;jpgoal->jjpgoal;jptree->]Jptree;jpstate->JJp8tate;)pactor->jjpactor;
jpplan->jJpplan;Jpclrcular->jjpclrcular;jp8trategy->jJp8trategy;jacount->jjacount;
jpmgoal->jjpmgoal;j_l_have_tried->jj_i_have_tried;
jkme->jjkme;jkyou->Jjkyou;jkact8->jjkact8;Jk8ee->jjk8ee;jkgoal->JJkgoal;Jkworld->J|kworld;
jkrules->jjkrules;
jkxact8->|jkxact8;jkx8ee->jjkX8ee;jkxrule8->jjkxrule8;jkxgoal->|jkxgoal;
]econtrol->jjecontrol;jebox->jjebox;Jeagain->jjeagain;|enext->jjenext;
jejoint->)jeJoint;jegame1 ->j|egame1 ;)emove1 ->jjemove1 ;)ehold->jjehold;
jeplace->jjeplace;
jcrshell->JJcrshell;
mginformatfon->mmgfnformation;munexpected_event->mmunexpected_event; 
mpgoaltype->m m pgoaitype;
m pcurr->m m pcurr;m pgoal->m m pgoal ;m ptree->m m ptree; m pstate->m m pstate;m pactor->m m pactor; 
m pplan->m m pplan; m pcircular->m m pcircular;m pstrategy->m m pstrategy ;m acount->m m acount; 
mpmgoal->mmpmgoal;m_i_have_tried->mm_i_have_trled;
mkme->mmkme;mkyou->mmkyou;mkact8->mmkact8;mksee->mmk8ee;mkgoal->mmkgoal;mkworld->mmkworld; 
m krules->m m krules;
mkxact8->mmkxacts;mkxsee->mmkxsee;mkxrule8->mmkxrules;mkxgoal->mmkxgoal;
mecontrol->mmecontrol;mebox->mmebox;meagain->mmeagain;menext->mmenext;
mejoint->mmejoint;megame1 ->mmegame1 ;memove1 ->mmemove1 ;mehold->mmehold;
meplace->m m eplace;
mcrshell-xnmcrshell;
enddefine;
define gstartO;
)jginformation->jginformation;jjunexpected_event->)unexpected_event;
]]pgoaltype->jpgoaltype;
jjpcurr->)pcurr;))pgoal->jpgoal;])ptree->jptree;Jjpstate->jpstate;|jpactor->)pactor; 
jjpplan->jpplan;jjpcircular->jpcircular;)jp8trategy->jp8trategy;)jacount->jacount; 
jjpm goal-> jpm goal; Jj_i_have_tried->j_i_have_tried;
jjkme->jkme;jjkyou->jkyou;jjkact8->jkacts;jjksee->)ksee;]jkgoal->jkgoal;J)kworld->jkworld;
jjkrule8->jkrules;
jjkxacts->jkxact8;jjkx8ee->jkX8ee;jjkxrule8->jkxrule8;jjkxgoal->jkxgoal;
jjecontrol->jecontrol;jjebox->jebox;jjeagain->jeagain;jjenext->jenext;
jje)olnt->je|oint;)jegame1 ->jegame1 ;jjemove1->jemove1 ;|jehold->jehold;
jjeplace->)eplace;
jjcrsh©tl->)crshell;
mmginformation->mginformation;mmunexpectd'd_event->munexpected_event; 
m m pgoaltype->m pgoaitype;
mmpcurr->mpcurr;mmpgoal->mpgoal;mmptree->mptree;mmpstate->m pstate;mmpactor->m pactor; 
m m pplan->m pplan;m m pcircular->m pcircular;m m pstrategy->m pstrategy ;m m acount->macount; 
mmpmgoal->mpmgoal;mm_i_have_tried->m_i_have_trled;
mmkme->mkme;mmkyou->mkyou;mmkact8->mkacts;mmksee->mk8ee;mmkgoal->mkgoal;mmkworld->mkworld; 
m m krules->m krules;
mmkxact8->mkxacts;mmkxsee->mkxsee;mmkxrule8*>mkxrules;mmkxgoal->mkxgoal;
mmecontrol->mecontrol;mmebox->mebox;mmeagain->meagain;mmenext->menext;
mmejoint->mejoint;mmegame1 ->megame1 ;mmemove1 ->memove1 ;mmehold->mehold;
m m eplace->m eplace;
mmcrshell->mcrshell;
enddefine;
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* * *  te s ts .p  (1 o f 1 )** *

;;; How to execute SUPERPOWER along the lines described in chapter 5.

npr('Cla8sical/Experimental/lnstrumental/Unexpected 1'); 
define resetl;
John, John->Jkm e->m kyou;
Mary,Mary->mkme->jkyou;
[John in]->jkgoal; [none]->mkgoal;
[John out Mary in bolt up door shut]->wobjects; 
nil->wmessage;
[ move ]->jkacts;[push slide move]->mkacts;
[[evtfrobot slide]8it[any]res[undef]]
[evt[robot push]sit[bolt up]res[door]]
[evt[robot move]slt[door open]res[robot]]]->jcrshell;
[[evt[robot sllde]8lt[any]res[undef]]
[evtfrobot push]sft[any]res[undef]]
[evt[robot move]sit[any]res[undef]]]->mcrshell;
[John]->)ksee;
[Mary]->mksee;
1 ->count;500->8top;false->prw1 ;false->pro; 

false->ppro;
0->mt;
0->jt;
;;; Q->oldp;
[]->mptree;
[81 [robot slide] ]->Unexpected_events;
[J->jptree;
1->macount;
1->jacount;
1->m8peed;
3->)speed;
if ppro=true then [1 2 3 4 5 6 7 8 9  10 11 12 13]->ppro;else 0->ppro;endif;
if mtcmspeed and jt<jspeed then nl(1);pr('parallel processing set1);
nl(1);pr(‘Johns speed = ');pr(jspeed);pr(' Marys speed = ^prfmspeed);
else nl(1);pr('parailel processing not sef);endif;
enddefine;
run1();
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* * *  m acros.p  (1 o f 1 )** *

;;; (see Power 1974 p260)

define macro constants; 
vars x; 
c1:
itemread()->x; 
if x/=";" then

"vars", x,
hd({"]), x, hd(["]), x, 
goto c1;

endlf;
enddefine;

define macro game;
vars name,x,g,l;
itemreadO->name;
nll,nll->g->l;
erase(itemreadO);
g1:
itemread()->x;
if x="b" then "black"->x endif; if x="w" then "white"->x endif; 
If x/="end" 
then if x/=";"

then if x/="."
then lo[% x% ]->l
endif;
goto g1;

else g<>[%hd(l),tl(l)%]->g;nil->l; goto g1; 
endif

else "vars",name,";"Ig,“->"Iname;
endif;
enddefine;

define macro routineO;
"game";
enddefine;
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* **  S Y S TE M , p (1 of 3 )***

;;; See (Power 1974 p261)

constants John Mary Dick both door bolt In out open shut 
up down name kind colour place entries mark white 
black achieved failed notyet push slide move sit res 
evt expectreply goaltype actor;

;;; memb is true if x is member of I and false if not;
;;; e.g 1. if memb("a"t[a b c]) then npr([true]) else npr([false]) endif;
;;; e.g 2. memb("d",[a b c])=>;

define memb(x,l);
while (ispair(l) and hd(l)/=x) do; tl(l)->l; endwhlle; 
ispair(l);

enddefine;

;;; runs a piece of program in list I
;;; popval is the same as eval now

vars eval; popval->eval;

;;; returns item succeeding x In I. only works for odd words.
;;; e.g. npr(suc([a b c d e f g h ],"e"));

define suc( l,x);
while (ispair(l) and hd(l)/=x) do; tl(ti(l))->l; endwhlle; 
if null(l) then undef else hd(tl(l)); endif; 
enddefine;

;;; returns item one succeeding of x In I. Only works
for triplets.

define suc2( l,x);
while (ispair(l) and hd(l)/=x) do; tl(tl(tl(l)))->l; endwhlle;
if null(l) then undef else hd(tl(l)); endif;
enddefine;

;;; returns item succeeding the succedant of x in I. Only works
;;; for triplets.

define suc3( l.x);
while (i8pair(l) and hd(l)/=x) do; tl(tl(tl(l)))->l; endwhile; 
if null (I) then undef else hd(tl(tl(l»); endif; 
enddefine;

;;; returns item preceding n in I. works for odd words (change tl(tl
;;; to tl for odd and even words.
;;; e.g. npr(pre([a b c d e f g h ],"e"));

define pre(l,n);
while ispair(i) and hd(tl(l))/=n do; tl(tl(l))->l; endwhile;
if null(l) then undef else hd(l); endif;
enddefine;

;;; deletes n and its successor from I
;;; e.g. 1. npr(det([[a b] [c d] [e fj [g h] [i j]],[c d]));
;;; e.g. 2. npr(del( [a b c d e f g h],"c"));

define del(l.n);
if not(memb(n,l)) then return(l);endif;
while hd(l)/=n do; tl(tl(l)) <> [%hd(l),hd(tl(l))%]->l;endwhile;
tl(tl(l));
enddefine;
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***  S Y S TE M .p  (2 of 3 )***

;;; deletes n and its two successors from I

define del2(l,n);
if not(memb(n,l)) then return(l);endif;
while hd(l)/=n do; tl(tl(tl(l))) <> [%hd(l),hd(tl(l)),hd(tl(tl(l)))%]->l;endwhile;

tl(tl(tl(l)));
enddefine;

replaces successor of n with x in I
e.g. npr(rep([[a b] [c d] [e f] [g hj [i j]],[e f],[nnnnn]));

define rep(l,n,x);
[%n,x%]<>del(l,n);
enddefine;

;;; replaces successor of n with x,y in I

define rep2(l,n,x,y);
[%n,x,y%]<>del2(l,n);
enddefine;

substitutes x after n in list named w 
e.g. [[a bj [c d] [e f) [g hJJ->g; 
8ub("g“,[e f], [wow wof]); 

g=>;

define sub(w,n,x); 
rep(valof (w), n, x) ->valof (w); 
enddefine;

;;; substitutes x,y after n in list named w

define sub2(w,n,x,y); 
rep2(valof (w), n, x,y) ->valof (w); 
enddefine;

;;; exchanges x2 for x1 at all levels of list I
;;; e.g. xch([a b [ c b ] dj,"b","z");=>;

define xch (I,x1,x2) -> II;
nil->ll;rev(l)->l; 

while ispair(l) do;
if islist(hd(l)) then xch(hd(l),x1,x2); 
elself hd(l)=x1 then x2 else hd(l) 
endif; ::ll->ll;tl(l)->l; endwhile; 
enddefine;

;;; print routines

define prs(x); spr(x); enddefine;

define prl(x);
while ispair(x) do;pr(hd(x)) ;tl(x)->x; endwhile; 
enddefine;
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***  S Y S TE M .p  (3 of 3 )***

define pra(l);

while Ispairfl) do; sp(2); pr(hd(l));sp(1) ;pr(hd(tl(l)));tl(tl(l))->l; 
endwhlle;enddeflne;

define prb (I); 
vars x y;
valof (sue (I, nam e))->x;
8uc(l,entrles)->l;
rev(l)->l;
pr8('entrles');

while ispairfl) do
If i8pair(hd(l)) then

nl(1);sp(1);pr(hd(tl(l)));prs('. '); 
8uc(x,hd(tl(x)))->y; 
if lspalr(y) then

ti(y )->y;
if memb(hd(y),[white black]) 
then hd<tl(y» else hd(y); 
endif; 

else 1 - 1 
endif; .pr; 
sp(2); pr(hd(l)); 

endif; 
tl(tl(l))->l; 

endwhlle; nl(1); 
enddefine;

define prg (I);
nl(1);prs('game ’);pr(suc(l,name)); 
nl(1);prs('current place:');pr(suc(l,place)); 
nl(1);prs('my colour: ');pr(suc(l,colour)); 
nl(1);prb(l); 
enddefine;

define prf (I); 
vars x;
nl(1);prs('routine ,);pr(suc(l,name)); 
nl(1);prs('current place:');pr(suc(l,place)); 
nl(1);prs('marked place: '); 
if null(zeplace) then sp(1);"none" 
elseif
hd(zeplace)=suc(l,name) then hd(tl(zeplace)) else sp(1);Hnone";endif;
pr();nl(1);prb(l);
enddefine;

define prc(l);
if suc(l,kind)="game" then prg(l) else prf(l) endif; 
enddefine;

define prw;
true->prw1 ;prs('(State of the world is now ');pr(wobjects);prs(')');
if pro then nl(1) endlf;nl(1);
enddefine;
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* **  W O R L D .p  (1 of 1 )***

***** Objects in the world ******** 
see (Power 1974 p264)

;;; The functions wmove.wpush and wslide defined below 
;;; represent the actual laws of the universe: that is the 
;;; the three kinds of actions and their consequences

define wpos x;
8Uc(wob]ects,x);
enddefine;

define wsub n x; 
sub("wobjects", n,x); 
enddefine;

define wmove (robot); 
if wpo8(door)=open
then if wpos(robot)=ln or wpos(robot)="in" 

then wsub(robot,out) 
else w8ub(robot,"in") 
endif; 

endif; 
enddefine;

define wpush (robot); 
if wpos (bolt) =up 
then if wpos (door) =open 

then wsub(door.shut) 
else wsub(door,open) 
endif; 

endif; 
enddefine;

define wslide (robot);
if wpos(robot)=ln or wpos(robot)="in" or wpos (robot)=undef 
then if wpos(bolt)=up 

then wsub(bolt,down) 
else wsub (bolt, up) 
endif; 

endif; 
enddefine;
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CONCEPTS.p (1 of 1)***

... m h  [concepts] (Power 1974 p 265)

[move slide push] ->zcacts;
[John Mary door bolt] ->zcobjs;
[slide [bolt] move [robot] push [door]] ->zctobjs;
[robot door bolt] ->zctypes;
[In out up down open shut] ->zcprops;
[robot[ln out] door[open shut] bolt[up down]] ->zctprops;
[John undef undef Mary undef undef bolt undef undef door undef undef] 
->zcwshell;
[kind routine name undef place undef entries undef] ->zcfshell;
[kind game name undef place undef entries undef colour undef}->zcgshell;

define zctypof x;
If Xsundef then return(x) endif;
if memb(x,zctypes) then x else "robot" endif;
enddefine;

define zcobject x;
if islist(x) and length(x)>1 then return(false) endif; 
if i8palr(x) then hd(x)->x;endlf; 
memb(x,[nothing]<>[robot]ozcobj8); 
enddefine;

define zcpropof(p.x);
memb(p,suc(zctprops,x));
enddefine;

define zcevent(x);
if i8ll8t(x) and length(x)>1 and memb(hd(tl(x)),zcacts)
then true else false endif;
enddefine;

define zctgame; 
vars l,c;
zecontrol->l;0->c;
if suc(hd(l),kind)="routine" and zehold/=Q then return(0);endif; 
while ispair(l) do
if 8uc(hd(l),name)="zras8es8" or suc(hd(l),name)="zrachieve" 
then return(c);endif;
If 8uc(hd(l),kind)="game" and suc(hd(l),expectreply)=true then 
0->i;1+c->c;endif;
if c=0 and suc(hd(l),kind)="game" and suc(hd(l),expectreply)=false then
return(c);endif;tl(l)->l;

endwhile;c
enddefine;

define zcgame(x);
memb(x,[zgplan zgtest zgexperlment zggoal zggame zgrule zgassess zgtell zgcheck zgask]); 
enddefine;
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* * *  K N O W I.p  (1 o f 3 )* * *

;;; The first batch of functions are used to initialise the
;;; above variables;

;;; This function takes a fresh look at what one can see

define zklook; 
vars v; 
zksee->v;
while Ispair(v) do sub("zkworld“,hd(v),wpos(hd(v)));tl(v)->v;endwhile; 
enddefine;

;;; This function demotes the status of what you can see to undefined
;;; if you have either estimated or being told about the position of
;;; an object

define demote;
vars v n s;
zkworld->v;
while ispair(v) do
if hd(tl(tl(v)))/*"seen" then

if hd(tl(tl(v)))="told" or hd(tl(tl(v)))="lnferred" then 
sub2("zkworld\hd(v)thd(tl(v)), "estimated"); 

endif;
;;; if hd(tl(tl(v)))=“estlmated" then 
;;; sub2("zkworld", hd (v), hd (tl (v)), "undef);
;;; endif; 
endif;
tl(tl(tl(v)))->v;
endwhile;
enddefine;

;;; The new version of zklook that checks that preconditions are true
;;; before one can see an object.

define zklook; 
vars v; 
zksee->v;
demoteO; 
while ispair(v) do
if ispair(tl(v)) and islist(hd(tl(v))) then

if wpos(hd(hd(tl(v))))=hd(tl(hd(tl(v)))) then 
sub2(,,zkworldH,hd(v),wpo8(hd(v)),,’seen"); ;;; precondition true 
else
sub2("zkworld",hd(v)1undef1"seen"); ;;; precondition untrue 
endif; 
tl(v)->v; 

else
8ub2("zkworld,,Ihd(v),wpos(hd(v)),,,seen"); ;;; no precondition at all 

endif; 
tl(v)->v; 
endwhile; 
enddefine;

;;; This function prepares the k variables at start of run

define zkprep;
zcwshell->zkworld ;zklook 0;
zcrshell->zkrules;[]->zehold;Q->ztopics;
[John undef Mary undef bolt undef door undef]->zkxsee;
false->z_i_have_tried;[]->zginformation;
nil->zkxgoal;
if zpstart/="Super" then nil->zkxacts;
nil->zkxrules;endif;
enddefine;
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* * *  K N O W I.p  (2  o f 3 )** *

The next functions are concerned with finding out whether goals ] 
are done or or whether they can be done; sometimes a function sets up 
game zgask in order to get the answer.

;;; This function finds the truth value of statement s in world w

define zktval(s,w); 
vars p;
unless ispair(s) then return (undef); endunless; ;;; defend against bad arg. swd 
If 8uc3(w,hd(8))="8een" or suc3(w,hd(s))="told" or suc3(w,hd(s))="lnferred" 

then
8uc2(w,hd(8))->p; else undef->p; 

endif;
if p=undef then undef else p=hd(tl(s)) endif; 
enddefine;

This function finds out whether 8 is true or is the case 
in own resources.

define zkls1(s);
zktval(s,zkworld);
enddefine;

;;; Finds out if goal g can be done using own resources
;;; should return true or false, but sue does not

define zkcan1(g); 
if zcevent(g) 

then
if hd(g)=zkme
then memb(hd(tl(g)),zkacts) 
else suc(zkxacts,hd(tl(g))) 
endif;

else if suc(zpstate,pre(zpgoal,g))=[failed] then false else true 
endif;

endif;
enddefine;

;;; Finds out if s is the case, asking if necessary unless it is
;;; known that partner also doesn't know.

define zkis(s); 
vars a; 
zkisl (s)->a;
if a/=undef then return(a) endif;
[% (zpcurr+1): :s%] ozpm  goal->zpm goal; 
s->zemove1;
zeloadf'zrfindout"); [asked]; 
enddefine;

;;; Finds out If goal g can be done, asking if necessary

define zkcan(g); 
vars a;
zkcan1(g)->a; 
if a/=undef then a else 
[%(zpcurr+1)::g%]ozpmgoal->zpmgoal; 
zeplay("zgask",[can]og); [asked] endif; 
enddefine;
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* * *  K N O W I.p  (3  of 3 )** *

Finds out and enters state of goal g, asking any necessary questions

define zkstate(g); 
vars a; 
zkis(g)->a;
if a=[asked] then return
elself a=undef then zaenter([falled]); return
elseif a=1 or a=true then zaenter([achieved]); return;
endif;
zkcan(g)->a;
If a=[asked] then return;
elseif a=0 or a=false then zaenter([failed])
else zaenter([notyet])
endif;
enddefine;

;;; Checks to see whether something has already been asked,
;;; or just been told.

define zkinfoasked(i); 
vare z t a; 
zglnformatlon->z; 
while lspair(z) do 

hd(z)->t;
if hd(t)="zgask" or hd(t)=Mzgtell" then 

hd(tl(tl(t)))->a;hd(tl(t))->t; 
if tl(t)=Q or tl(l)=[] then 
if t=i then return ([asked]) endif; 

else
if tl(tl(t))=i or (tl(tl(t))=zkopp(i) and a=[no]) or 

(tl(t)=zkopp(i) and a=[no]) or tl(t)=i or t=i 
then return([a8ked]); 

endif; 
endif;

elseif hd(t)="zgrule" then 
hd(tl(t))->t; 
if t=i then 
return ([asked]); 

endif; 
endif; 

tl(z)->z; 
endwhile;
return([notasked]);
enddefine;
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* **  K N O W 2.p  (1 o f 5) * **

The third batch of functions is for accessing and 
updating the theory of how the world works, and the model 
of the other robots theory, these theories are held in zkrules 
and zkxrules respectively.(Power 1974 p269)

;;; Given list of rules I and event e, returns relevant rule, or undef
;;; if there is none.

define zkrulel(l.e);
while i8pair(l) and suc(hd(l),evt)/=([robot]<>tl(e)) do tl(l)->l; endwhile;
If null(l) then undef else hd(l) endif; 
enddefine;

;;; Given rule r and event e, makes rule specific to e

define zkspec(r.e); 
xch (r," robot", hd(e)); 
enddefine;

;;; Finds own rule for event e

define zkrule(e);
zkrule1(zkrule8,e);
enddefine;

;;; Finds own specific rule for event e

define zksrule(e);
zkspec(zkrule(e),e);
enddefine;

;;; Finds partners rule for e, or undef if not known.

define zkxrule(e); 
zkrulel (zkxrules, e); 
enddefine;

;;; Finds partners specific rule for e, if known, and undef if not.

define zkxsrule(e)->r; 
zkxrule(e)->r;
if r/=undef then zkspec(r,e)->r endif; 
enddefine;

;;; Deletes rule for event e from list I (Power 1974 p270)

define zkdel(l,e)->ll; 
nil->ll;
while ispair(l)
do if suc(hd(l),evt)/=([robot]otl(e))
then llo[%hd(l)%]->ll
endif;
tl(l)->l; endwhile; 
enddefine;
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* * *  K N 0 W 2 .p  (2  o f 5 )** *

;;; Gives inverse form of rule.

define zkinvert(r); 
vars e,s,c;
suc(r,evt)->e; suc(r,sit)->s; suc(r,res)->c; 
if 8=[any] then return (r) endif;
if c=[nothlng] then suc([move robot slide bolt push door],hd(tl(e))) :: nil 
else [nothing] 
endif;->c;
8Uc(zctprops,hd(s))->r;
If hd(tl(s))*hd(r) then hd(t((r)) else hd(r) endif; ->r;
[%evt,e,8it,[%hd(8),r%],re8>c%];
enddefine;

;;; Puts new rule r In list named n.

define zkadd1(n,r);
if 8uc(r,sit)/=[any] and suc(r,res)=[nothing] 
then zklnvert(r)->r endif; 
r::(zkdel(valof(n),8uc(r,evt)))->valof(n); 
enddefine;

;;; Puts rule r in robots theory,

define zkadd(r);
pr(zkme);pr(' adding rule in (zkrules) : ');npr(r);
zkadd 1 ("zkrules", r);
enddefine;

;;; Puts rule r in model of partners theory.(Power 1974 p271)

define zkxadd(r);
pr(zkme);pr(' adding rule in (zkxrules) : ');npr(r);
zkadd 1 ("zkxrules", r);
enddefine;

;;; Predicted result of event in world w by specific rule r.

define zkpredl(w.r); 
vars t,s; 
suc(r,sit)->s;
if s=[any] then return(suc(r,res)) endif;
zktval(s,w)->t;
if t=undef then [undef]<>8
elseif t or t=1 then suc(r,res) else [nothing]
endif;
enddefine;

;;; Result of event e in world w as predicted by own rules.

define zkpred(e,w); 
zkpredl (w.zksrule(e)); 
enddefine;

;;; Result of event e in world w as predicted by partners rules if
;;; known: undef if not. really, of course, the result is that
;;; predicted by model of partners theory.

define zkxpred(e,w); 
vars r;zkxsrule(e)->r;
if r=undef then undef else zkpredl (w,r) endif; 
enddefine;

252



* * *  K N O W 2 .p  (3  o f 5 )** *

;;; Returns false If all actions in rules produce no result and true otherwise
;;; (Power 1974 p27l)

define zkflufd; 
vars r; zkrules->r;
while l8pair(r) and suc(hd(r),res)=[nothing] do tl(r)->r endwhile;
Ispair(r);
enddefine;

;;; Finds opposite of situation s.

define zkopp(s); 
vars p;
if zcevent(8) or zcobject(s) then return(s);endif; 
suc(zctprop8,zctypof(hd(8)))->p;
if hd(tl(s))=hd(p) then hd(tl(p)) else hd(p) endlf;::(%hd(s)%];revO; 
enddefine;

;;; Finds rule to achieve specified result c, returning undef
;;; if none exists (p272). zkinvert added by CGB 'cos you
;;; won't find a rule if the Inverse res is nothing.

define zkres (c); 
vars t; 
zkrule8->t;
while ispair(t) and suc(hd(t),res)/=c and suc(zkinvert(hd(t)),res)/=c then tl(t)->t endwhile; 
if null(t) then undef else
If suc(hd(t),res)=[nothlng] then zkinvert(hd(t)) else hd(t) endif; endif; 
enddefine;

;;; Finds rule in which the situation is true

define zksit (c); 
vars t; 
zkrules->t;
while ispair(t) and suc(hd(t),sit)/=c then tl(t)->t endwhile;
If null(t) then undef else hd(t) endif; 
enddefine;

;;; Rnds rule In which the event is true

define zkevt (c); 
vars t; 
zkrules->t;
while Ispair(t) and suc(hd(t),evt)/=c then tl(t)->t endwhile;
if null(t) then undef else hd(t) endif;
enddefine;
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* * *  K N O W 2 .p  (4  o f 5 )* * *

;;; Changes theory to fit experience, e is the event which has just
;;; occurred and c is its consequence (or res), ee, cc. ss are the
;;; evt, res and sit of the old rule rr. the function alters rr and
;;; puts the new rule in zkrules.

define zkponder(e.c); 
vars ee,cc,88,rr,l,x; 
zkrule(e)->rr; 
if c/=[nothing] then

l%zctypof(hd(c))%J->c; ;;; converts Mary to robot in new rule 
endif;
8uc(rr,evt)->ee;suc(rr,sit)->8s;suc(rr,res)->cc; 
if cc=[undef] then zkadd(rep(rr,res,c));retum(1) endif;
If cc/=c and c/=[nothing] and cc/=[nothlng] 

then rep(rr,res,[%zctypof(hd(c))%])->rr; 
zkadd(rep(rr,sit, [any])); 
return (1); 
endif;

c->cc;rep(rr,res,cc)->rr;
zctypes->l;
while hd(l)=hd(cc) or hd(l)=hd(ss) do tl(l)->l endwhile; 
if hd(l)="robot" then hd(e) else hd(l) endlf;->e;
if 8uc2(zkworld,e)sundef then zeplay("zgask",zamakeq(e)); return ([asked]); 
endif;
[%hd(l),8uc2(zkworld,e)%]->8s; 
zkadd (rep (rr, s It, ss));
1;
enddefine;

Judges whether plan p will achieve goal g.( Power 1974 p273)

define zkjudge(p.g); 
vars e.s.w.k;
if not(.zkfluid) then return(undef) endif;
zpevt(p)->e;zpsit(p)->s;
zkworld->w;
if 8/=undef then rep2(w,hd(s),hd(tl(s)),"told")->w endif; 
zkpred(e,w)->s; 
if hd(s)=undef and tl(s)/=[] 
and 8uc(zpgoaltype,zpnextgl0)/="test" 

then if zkinfoasked(tl(s))/=[asked] then zkis(tl(s));endif; 
;;;zeplay("zgask",[is]<>tl(s));[asked] 
else hd(s)=hd(g) 
endif;
if suc(zpgoaltype,zpnextgt())="test" then 
suc(zkevt(zctypof(hd(zpevt(p)))::tl(hd(tl(p)))),res)->k; 
if k=[nothing] or k=[undef] then else 
if k=[robot] then [%hd(p)%]->k;endif;
if zkinfoasked(tl(zamakeq(hd(k))))/=[asked] then tl(zamakeq(hd(k))).zkis;endif;endif;
endif;
enddefine;
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* * *  K N 0 W 2 .p  (5 of 5) * **

;;; A refinement on zktval to decide whether situation s is true in world w

define zkdiff(s,w);
if 8=[any] then return (true) ;endif;

;;; This one doesn't give strict truth but at least one of the robots
;;; fit the bill.

If hd(s)s"robot" then zkme::tl(s)->s;if zktval (s,w)=true then return (true) ;endif;
zkyou::tl(s)->s;retum(zktval(s,w));endlf;
zktval (s,w);
enddefine;

define zkbetter(rule1,rule2); 
vars 8l,r1,82,r2,p1,p2;
if rule1=undef then return(false) elseif ruie2=undef then return(true) endif; 
if suc(rule1,res)=[undef] then return(false) elseif 
8uc(rule2,re8)=[undef] then return(true) endif; 
if zaequal(rule1 ,rule2) then return(undef) endif;
If 8UC(rule1,res)=[nothing] then zkfnvert(rute1)->rule1;endif;
If suc(rule2,re8)=[nothing] then zkinvert(ruie2)->rule2;endif; 
suc(rule1,re8)->r1;8uc(rule2,res)->r2;suc(rule1,sit)->8l;suc(rule2,sit)->s2; 
if zkdiff(8l,zkworld) then 
if r1=[nothing] then 

if s1 =[any] then 
4->p1;el8e 2->p1; 
endif; 

else
if 81 =(any] then
3->p1 else 2->p1; 
endif;

endif;
else
1 ->p1;
endif;
if zkdiff(82,zkworld) then 

if r2=[nothing] then 
if s2=[any] then
4->p2;el8e 2->p2; 
endif;

else
if s2=[any] then 
3->p2 else 2->p2; 
endif; 

endif; 
else
1 ->p2;
endif;
pr(p1);pr(' rule 1 :');npr(rule1); 
pr(p2);pr(‘ rule 2 :');npr(rule2); 
if p1=p2 then undef else p1<p2 endif; 
enddefine;
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* * *  P LA N .p (1 of 4) * **

(Power 1974 274-275) These are general routines for tidying up a joint plan tree, 
and are largely called at the end of routine achieve.

;;; Read plan tree from the last goal back to the first goal.

define zpreadtreeO; 
vars c;
zpnextg!0->c; 
while c/=0 do
pr(c);pr(' ');npr(suc(zpgoal,c));
zpprevious(c)->c;
endwhile;
enddefine;

;;; Returns index number of next goal to attempt.

define zpnextgl->n1; 
vars n2;[0]->n2;
while n2/=undef do hd(n2)->n1; suc(zptree,n1)->n2 endwhile; 
enddefine;

;;; Returns parent of node n in zptree.

define zpparent (n); 
vars t; zptree->t;
while i8pair(t) and not(memb(n,hd(tl(t)))) do tl(tl(t))->t endwhile;
if null(t) then undef else hd(t) endif;
enddefine;

;;; Returns index number of previous goal.

define zpprevious (n); 
vars t;zptree->t;
while Ispair(t) and not(memb(n,hd(tl(t)))) do tl(tl(t»->t endwhile;
if null(t) then undef else if ispair(tl(hd(tl(t»)> and not(memb(n,tl(hd(tl(t)))))
then
hd (tl (hd (tl (t)))) else hd(t) endif;endif; 
enddefine;

;;; Returns a list of plans and goals after p.In order of seniority. i.e. the
;;; plan at the back of the list is the one highest up the tree and the goal
;;; nearest to the main goal.

define zplist(p); 
vars 11;
zptree->t;8uc(zpgoaltype,p)::nil->l;suc(zpgoal,p)::l->l; 
while hd(hd(tl(t)))/=p 
do
8uc(zpgoaltype,hd(hd(tl(t))))::l->l;
suc(zpgoal,hd(hd(tl(t))))::l->l;
if ispair(tl(hd(tl(t)))> then
if hd(tl(hd(tl(t))))/=p then
suc(zpgoaltype,hd(tl(hd(tl(t)))))::l->l;
suc(zpgoal,hd(tl(hd(tl(t»)))::l->l;
else
return (I);
endif;
endif;
tl(tl(t))->t;
endwhlle;
return(l);
enddefine;
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* * *  PLA N .p (2  of 4) * * *

;;; Takes a list of Conversational games c and a plan tree t and finds
;;; the first occurrence in the plan tree.

define zpworkthrupublic(t,c);
vars h I 8 z gt;t->s;10000->h;10000->i;
while ispalr(c) do
hd(tl(tl(tl(hd(c)))))->gt;
if hd(hd(c))s"zga8k" and hd(hd(tl(hd(c))))/="can" then
if hd(tl(tl(hd(c))))=[no] then
tl(hd(tl(hd(c)))).zkopp->z;
zpsearch(s,z,gt)->h;endif;
if hd(tl(tl(hd(c))))a[yes] then
tl(hd(tl(hd(c))))->z;
zpsearch (s, z, gt) - >h; endif;
endif;
if hd(hd(c))="zgteM" then
if ((hd(hd(tl(hd(c))))=false or hd(hd(ti(hd(c))))=0) and
(hd(tl(tl(hd(c))))>[yes] or hd(tl(tl(hd(c))))=[undef])) or ((hd(hd(tl(hd(c))))-true or hd(hd(tl(hd(c))))=1) and
hd(tl(tl(hd(c))))*[no])
then
tl(tl(hd(tl(hd(c))))).zkopp->z; 
zpsearch (s ,z, gt) - >h; end if;
If ((hd(hd(tl(hd(c))))=true or hd(hd(tl(hd(c))))=1) and 
(hd(tl(tl(hd(c))))=[yes] or hd(tl(tl(hd(c))))=[undef]))

or ((hd(hd(tl(hd(c))))cfalse or hd(hd(tl(hd(c))))=0) and hd(tl(tl(hd(c))))=[no]) 
then
tl(tl(hd(tl(hd(c)))))->z;
zpsearch (s, z, gt) - >h ;endif;
if zcevent(hd(tl(hd(c)))) then
hd(tl(hd(c)))->z;
zp8earch(s,z,gt)->h;endff;
endif;
npr(z);
if h<i then h else I endif;->i;
tl(c)->c;
endwhlle;
return(i);
enddefine;

;;; This function works through zkworld ones private view of the world
;;; and zpgoal the plan tree and decides the earliest plan that has
;;; succeeded.

define zpworkthruprivate(t,c); 
vars h i 8 z;t->s;10000->h;10000->i; 
while ispair(c) do 
r(h d (c )) A(hd(tl(c)))J->z;
if memb(hd(tl(tl(c))),[seen told inferred estimated]) then 

zpsearch (s, z, [any]) ->h; 
else 

10000->h; 
endif;
if h<i then h else i endif;->i;
tl(tl(tl(c)))->c;
endwhlle;
return(i);
enddefine;
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* * *  P LA N .p (3  of 4) * **

;;; Searches through plan tree to find first occurence of goal g.

define zpsearch(t,g,gt); 
vars c q;t->q;10000->c; 
while i8pair(q) do 
if g«hd(tl(q)) or
(suc(zpgoaltype,hd(q))s"test" and lsllst(hd(tl(q))) and g*hd(tl(q)).zkopp) 

then if zcevent(g) then
If 8uc(zpgoaltype,hd(q))=hd(gt) or gt=[any] then 
if c>hd(q) then hd(q)->c;endif; 
endif; 

else
if c>hd(q) then hd(q)->c;endif; 

endif;
endif;
tl(tl(q))->q; 
endwhlle; 
return (c);
;;;if c/= 10000 then return(c) else return(zpnextglO);endlf; 
enddefine;

;;; Hangs plan p on node n of zptree with goaitype t

define zphang(p,n,t);
vars l,q;
nll->l;
If 8uc(zpgoaltype,zpnextgl0)-t
and memb(suc(zpgoal,zpnextglO),p) then return; endif;
while ispair(p) do
zaindexO->q;l<>[%q%]->l;
sub ("zpactor", q, hd (p)) ;tl (p) -> p;
sub("zpgoal",q, hd (p)) ;tl(p) ->p;
sub("zpstate", q, noty et);
8ub("zpgoaltype",q,t);
endwhlle;
sub(nzptree",n,l);
enddefine;

;;; Deletes all tree below node n.

define zpdelete(n); 
vars s;
zptree,n.suc->s;
If s=undef then return else del(zptree,n)->zptree endif; 
while Ispair(s) do zpdelete(hd(8));tl(s)->s endwhlle; 
enddefine;

;;; Removes terminal node n from tree,

define zpchop (n);
vars p,8;zpparent(n)->p;zptree,p.suc.tl->s;
if null(s) then zpdelete(p) else sub("zptree",p,s) endif;
enddefine;

;;; Returns node of plan in zpgoal.

define zpfplan (p); 
vars t; zpgoal->t;
while ispair(t) and not(p = hd(tl(t))) do 
tl(tl(t))->t endwhlle;
If null(t) then undef else hd(t) endif; 
enddefine;
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***  PLAN.p (4 o f 4)

;;; Brings about event e.

define zpdo (e); 
hd(e);hd(tl(e))->e; 
if e=push then wpushO 
eteeif e=8lide then wslideO 
el8eif e=move then wmoveO 
endif;
nl(1);prw();nl(1);
enddefine;

;;; Finds the event in plan p.

define zpevt (p);
hd(rev(p));
enddefine;

;;; Finds the sitn, if any, in plan p.

define zpsit (p);
if length(p)=2 then undef else hd(tl(p)) endif; 
;;;if length(p)<2 then undef else hd(tl(p)) endif; 
enddefine;

Clears away information about old goals.

define zpprune; 
vars t,l,p,q; 
nil->l;zptree->t;
while ispairft) do lohd(tl(t))->l; tl(tl(t))->t endwhlle;
[zpgoal zpactor zpstate zpgoa!type]->p; 

until null(p) do
valof(hd(p))->t;nil->q; 
while ispairft) do

If memb(hd(t),l) then [%hd(t),hd(tl(t))%]oq->q endif; 
tl(tl(t))-> t

endwhlle;
q->valof(hd(p));
ti(p)->p;

enduntil;
enddefine;
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***  R O U TIN E S .p  (1 of 1) ***

(Power 1974, p276) ROUTINES

routine zrbasic;
1. * zrmaingl;
2. A zrprep;
3. A zrprep 1;
4. * zrachgl;
5. A zrmovel;
6. * zrappeal;
7. A zrprep2;
8. * zrachgl;
9. A zrhalt;
end;

routine zrachic
1. * zrcurrgl;
2. * zractor;
3. * zrstate;
4. * zrkind;
5. * zrplan 1;
6. A zrretum;
7. * zrprune;
8. A zrclean;
end;

routine zrassess;
1. * zrgoalintended;
2. * zraction;
3. * zractor;
4. * zrprecondition;
5. * zrobject;
6. * zrrules;
7. * zrbefore;
8. * zract;
9. * zrresult;
10. * zrparent;
11. * zrlesson;
12. * zrprune;
13. A zrclean; 
end;

routine zrplan;
1. * zrgoal;
2. * zrrule;
3. * zrapec;
4. * zrsit;
5. * zrcomp; 
end;

routine zrfindout;
1. * zrlnformation;
2. * zrask;
3. * zrtry;
4. * zrconclude; 
end;



***  R O U TIN E.B A SIC  (1 of 1) ***

;;; 1. Enters the main goal.

define zrmalngl; 
zaenter(zkgoal); 
enddefine;

;;; 2. Prepares world model Initialises k variables.

define zrprep;
.zkprep;zagoto(3);
enddefine;

;;; 3. If there is a main goal, prepares for solo attempt.

define zrprepl; 
vars n;
if zaentry(1)=[none] then return(zagoto(9)) endif;
.zaindex->n;
nil.nil,nil,nil,nil,nil->zpgoaltype->zpstate->zpgoal->zptree->zpactor->zpm goal;
8ub(Hzpmgoal",n,zkgoal);8ub("zpgoari,n,zkgoal);sub("zptree",0,[%n%]);
8ub(,'zp8tate",n,notyet);8ub("zpactor",n,zkme);8ub("zpgoaltype,,,n,,,plan");
false->zejoint; zagoto(4);
enddefine;

;;; 4 & 6. Attempts goal, entering [achieved] or [failed],

define zrachgl;
zeloadfzrachleve");
enddefine;

;;; 5. If solo attempt succeeds, halt; if not, seek help,

define zrmovel;
if zaentry(4)=[achieved] then zagoto(9) else zagoto(6) endif; 
enddefine;

;;; 6. Arranges game to appeal for help, game enters yes or no.

define zrappeal;
zeplay("zggoal",zkgoal);
enddefine;

;;; 7. If appeal succeeds, prepare for joint attempt, if not halt.

define zrprep2; 
vars n;
if zaentry(6)=[no] and not(zejoint or zejoint=1) then return(zagoto(9)); endif;
.zaindex->n;
nil.nil, nil, nil, nil, nil->zpgoaltype->zpgoal->zptree->zpstate->zpactor->zpm goal; 
8ub("zpmgoal",n,zkgoal);sub("zpgoal",n,zkgoal);sub("zptree",0,[%n%]);sub("zpstate",n,notyet); 
8ub("zpactor", n, both) ;sub("zpgoaltype", n, "plan"); 
true->zejoint;
zaenterl ("zrbasic'M ,zkgoal);zagoto(8); 
enddefine;

;;; 9. Keeps swapping. This is just to tell chairman that the goal
;;; has been achieved and one of the robots wants to stop talking.

define zrhalt;
if zaentry(4)=[achieved] or zaentry(6)=[no] then npr(jtopics);npr(mtopics);stop+1->count;endlf; 
enddefine;
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***  ROUTINE. A CH IEVE.p (1 of 3) ***

1. Enters next goal to be tackled. (Power 1974,p279)

define zrcurrgl; 
vars g;
zpnextgl()->zpcurr; 
zpgoal.zpcurr. 8uc->g; 
zaenter(g);
zaput(goalty pe.zpgoalty pe, zpcurr. sue); 
enddefine;

;;; 2. Enters actor for current goal,

define zractor;
(zpactor.zpcurr.suc :: nil).zaenter; 
enddefine;

;;; 3. Enters state of goal, asks If necessary.

define zrstate; 
vars a b n s;
0->a;
zaentry(1)->b;zpparent(zpcurr)->n; zpgoal,n.suc-> s; 
If zat ake (g oalty pe)=" p I an" then 

if zcevent(b) then 
If zehold=Q then 

zkstate(8) else 
zaenter([notyet]); 

endif; 
else 

zk8tate(b); 
endif; 

else
zaenter([notyet]);

endif;
enddefine;

262



*** R O U TIN E.A C H IEVE.p (2 of 3) ***

;;; 4. Enters kind of goal: [event] or [sltn];
;;; and branch to planning or execution.

define zrkind; 
vara a b n s;
zaentry(1)->b;zpparent(zpcurr)->n; zpgoal,n.suc-> s; 
zaentry(3)->a;
If i8pair(a) then sub("zp8tate,,,zpcurrlhd(a)) endif; 
if a=[achleved] then 

zpdelete(zpcurr);zpchop(zpcurr);.zpprune;
.zeexit;
if zptree=[] then 
,zejump;zagoto(8); zaenter(a) 

else
zeload(Hzrachieven);zaput(goaltype,"plan");

endif;
endif;
if zcevent(zaentry(1)) then 

if as[achieved] and suc3(zkworldIhd(8))="seen" then 
if suc(zkx8ee,hd(8))=true or suc(zkx8ee,hd(s))=1 then else 

If zehold=Q and zkinfoasked(8)/=[asked] 
then zeplay("zgtell",[1 is]<>s);endif; 

endif; 
endif; 

else
if a=[achieved] and suc3(zkworld,hd(b))="seen" then 

if 8uc(zkx8ee,hd(b))=true or suc(zkxsee,hd(b))=1 then else 
if zehold=Q and zklnfoasked (b)/=[asked] 

then zeplay("zgtell",[1 is]ob);endif; 
endif; 

endif; 
endif;
if zcevent(zaentry(1)) then 

zaenter([event]); 
if a=[notyet] then

.zeexit;zeload("zras3ess");
endif;

else if a=[notyet] then 
zaenter([sftn]) ;endif; 

endif; 
enddefine;

;;; 5. Sets up routine or game to find plan, entry is a plan or [no].
;;; (Power p280)

define zrplanl;
if zaentry(3)/=[notyet] then return(zagoto(7)) endif; 
if zaentry(2)=[both] then 

if zatake(goaltype)="plan" then zeplay("zgplan",undef) 
elseif zatake(goaltype)="experiment" then 
zeplay("zgexperiment", undef) 

else zeplay("zgtest",zaentry(1)); 
endif; 

else
zeloadfzrplan");
endif;
enddefine;
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*** R OUTINE. A CH IEVE.p (3 of 3) ***

;;; 6. Examines plan in tree; fails the goal if no plan was found,
;;; or reloads routine for Iterative action Q
;;; expand plan to do preconditions, or execution of plan.

define zrreturn; 
vars p gt;
zatake(goaltype)->gt;
zaentry(5)->p;
If p=[no] and gt/="plan" then 

return(sub("zp8tate",hd(zptree,0.suc),failed),zagoto(7)) 
endif;
if p»[no] then 

zphang([both [undef]],zpnextgl(), "experiment") 
else

zphang(p.zpnextglO.gt);
endif;
zagoto(7);
enddefine;

;;; 7. Prune tree. Function defined as for Assess.

8. Prune control stack. Function defined as for Assess.
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* **  R O U T IN E P L A N .p  (1 of 2) ***

;;; 1 Enters goal for which plan Is needed.

define zrgoalO; 
zpgoal, zpcurr. sue. zaenter; 
zaput(goalty pe.zpgoaltype, zpcurr. sue); 
enddefine;

;;; 2 Finds rule to achieve required result: if none fails.
;;; if desperate, use rules with undef as result
;;; If still desperate, use rules with nothing as result.

define zrruleO; 
vars r o;
zctypof(hd(zaentry(1)))->o;
if not(zkfluid() or zkfluid0=1) then zeexit();return(zaenter([no]));endif; 
if zatake(goaltype) ="plan" or zatake(goaltype)="experlment" then 

zkre8([%o%])->r; 
endif;
if zatake(goaltype)="test" then zksit(o::tl(zaentry(1)))->r;endif; 
zaenter (r);
if r/=undef then zkdel(zkrules,suc(r,evt))<>[%r%]->zkrules;endif; 
enddefine;

;;; 3 Decides who does the action, and enters a specific rule.

define zrspecO; 
vars r,e,a; 
zaentry(2)->r;
if r=undef then retum(.zeexit,zaenter([no]),zaput(expectreply,true));endif; 
zkme::(tl(suc(r,evt)))->e;

;;; No point trying to do it yourself if your partner can do it more
;;; easily - CGB.

if suc(r,res)=[robot] then (hd(zaentry(1))::tl(e))->e;endif; 
if hd(suc(r,evt))="robot" and hd(suc(r,sit))="robot" then 

if zktval(zkme::(tl(suc(r,8it))),zkworld)=true then zkme::(tl(suc(r,evt)))->e; endif; 
if zktval(zkyou::(tl(suc(r,sit))),zkworld)=true then zkyou::(tl(suc(r,evt)))->e;endif; 

endif;
if hd(e)=zkme then goto me else goto him endif;

;;; this was a bug 'cos it assumes zkme can do the event under the
;;; constraints of the situation. See note on zkcan.

me:
if zkcan(suc(zksrule(e),evt)) then 

if suc(zk8rule(e),8it)/=[any] and zatake(goaltype)/="test" then 
if zki8(suc(zksrule(e),8it))/=[asked] 
then return (zaenter(zkspec(r,e))) ;else 
return(zawlpe ("zrplan")); 
endif;

else return(zaenter(zkspec(r,e))); 
endif; 

endif;
him: if zejoint
then zkyou::tl(e)->e;zkcan(e)->a; 
if a=[asked] then return;

elseif a=1 or a=true then return(zaenter(zkspec(r,e))); 
else return(.zeexit,zaenter([no]),zaput(expectreply,true)) 
endif;

else .zeexit;zaenter([no]);
endif;
enddefine;
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***  R O U TIN E. PLAN.p (2 of 2 )**

;;; 4 Enters the state of the sit, asking If necessary.

define zrsit; 
vars s a;

If zatake(goaltype)="plan" then 
8Uc(zaentry(3),8it)->8; 
if 8=[any] then zaenter([achieved]) else 
if zkinfoasked(8)/=[asked] then zkstate(s) else 

if zkis1(s)=undef then zaenter([failed]) endif; 
if zki8l(s)sfal8e or zkis1(s)s0 then zaenter([notyet]) endif; 
if zki8l(s)=true or zkis1(s)=1 then zaenter([achieved]) endif; 

endif; 
endif;

elseif zatake(goaitype)="te8t" then
8 uc (zaentry (3), res) ->s; zae nter ([ac h leved]);
if zkinfoasked(tl(zamakeq(hd(s))))/B[a8ked] then zkis(tl(zamakeq(hd(s)))); 
else if zkisi (tl(zamakeq(hd(8))))=undef then zaenter([failed]);endif; 
endif;

elseif zatake(goaltype)=“experiment" then
8UC(zaentry(3),evt)->s;suc(zctobj8,hd(tl(8)))->8; 
if s°[robot] then [A(hd(suc(zaentry(3),evt)))]->s;endif; 
zaenter ([achieved]);
if zklnfoasked(tl(zamakeq(hd(s))))/s[asked] then zkis(tl(zamakeq(hd(s)))); 
else if zki8l(tl(zamakeq(hd(s))))sundef then zaenter([failed])endif; 
endif; 

endif; 
enddefine;

;;; 5. Completes plan and enters In the calling f/g.

define zrcomp; 
vars p,r;
if zaentry(4)=[failed] then [no]->p; 
else

zaentry(3)->r; nil->p; 
if zaentry(4)=[notyet]then 

[%suc(r,8it)%]->p;
if zejoint or zejoint=1 then both else zkme endif; ::p->p;

endif;

suc(r.evt) -> r; po[%r.hd, r%] -> p;
endif;
.zeexit;zaenter(p);zaput(expectreply,true);
enddefine;
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*** R O U TIN E.F IN D O U T.p (1 of 1) ***

;;; load information that is required or the goal.

define zrinformation;
zaenter(zemovel);
enddefine;

;;; Unless your partner doesn't know ask him.

define zrask; 
vars a;
zaentry(1)->a;
;;; If suc(zkxsee,hd(a))/=0 and suc(zkxsee,hd(a))/=false then 

zeplay(Hzgask",[is]<>a);
;;; else
;;; zaenter([unde1]);
;;; endif; 
enddefine;

;;; If you both don't know then do a test.

define zrtry; 
vars a;
zaentry(2)->a; 
if hd(a)=undef then
if zkis1(a)=true or zklsl (a)=1 then zaenter(a);return;
elseif zklsl (a)=false or zklsl (a)=0 then zaenter(zkopp(a));return;
endif; zaput (goalty pe, "test");

zphang([both A(zaentry(1))],zpnextgl0,"test");
zeload("zrachleve");
return;

else
zaenter(a)

endif;
enddefine;

;;; Conclude.

define zrconclude; 
vars a;
zpnextgl()->zpcurr;
if zaentry(2) =[undef] and zaentry(3)=[undefJ then [failed]->a;endif; 
if zaentry(2)=[undef] and zaentry(3)/=[undef] then 

if zaentry(3)/=zaentry(1) then 
[notyet]->a; 
else
[achieved]->a; 

endif; 
endif;
if zaentry(2)/=[undef] then 

if zaentry(2)/=zaentry(1) then 
[notyet]->a; 
else
[achieved]->a; 

endif; 
endif;
.zeexit;
if zatake(kind)="routine" and zatake(place)/=9 and zatake(goaltype)/="experiment" and zatake(goaltype)/=”test" then
zaenter(a);
endif;
if zatake(place)=12 then zaenter(a);endif; 
enddefine;
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*** R O U TIN E.A SSESS.p (1 of 5) ***

;;; 1. Enter intended goal that the action was supposed to achieve if there
;;; is one.

define zrgoalintended;
if zatake(goaltype)="none" then return(zaenter([undefj));endif;
zpnextgi()->zpcurr;
zaenter(zpgoal,zpparent(zpcurr).suc);
enddefine;

;;; 2. Enter action, In the case of an unepected event enter undef.

define zraction;
if zatake(goaltype)="none"
then return(zaenter([undef]));endif;
zaenter(zpgoal,zpcurr.8uc);
zaput(goalty pe.zpgoaltype, zpcurr. sue);
enddefine;

;;; 3. Enter actor as defined in Achieve.

;;; 4. Enters precondition for action to succeed. Entering undef when the
;;; the goal is undefined.

define zrprecondition; 
if zatake(goaitype)="plan" then 

zaenter(suc(zkres([A(zctypof(hd(zaentry(1))))]),8it)); 
return; 

endif;
if zatake(goaltype)=Htest" then 

zaenter(zaentry (1)); 
return; 

endif;
if zatake(goaltype)="experiment" then 

zaenter ([any]); 
return; 

endif;
if zatake(goaltype)="none“ then 

zaenter([undef]); 
return; 

endif; 
enddefine;

;;; 5. Enters object of action that was supposed to be under examination,

define zrobject;
if zatake(goaltype)="plan" then 

zaenter(hd(zaentry(1))::nil); 
endif;
if zatake(goaltype)="test" then 

zaenter(suc(zksit(zaentry(1)),res)); 
endif;
if zatake(goaltype)="experiment“ then 

zaenter(suc(zctobjs,hd(tl(zaentry(2))))); 
endif;
if zatake(goaltype)="none" then 

zaenter([undef]); 
endif;
if zaentry(5)=[robot] then zaenter(zaentry(3));endif; 
if suc3(zkworld,hd(zaentry(5)))="estimated“
then 8ub2("zkworld",hd(zaentry(5)),wpos(hd(zaentry(5))),undef);endif; 
enddefine;
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***  R O U TIN E.A SSESS.p (2 of 5) ***

;;; 6. Enters rule used to achieve intended goal.

define zrrules; 
vars p;
zctypof(hd(zaentry(2)))::tl(zaentry(2))->p; 
if zatake(goaltype)s"plan" then 

zaenter(zkevt(p)); 
return; 

endif;
if zatake(goaltype)="te8t" then 

zaenter(zkevt(p)); 
return; 

endif;
if zatake(goaltype)="experiment" then 

zaenter(zkevt(p)); 
return; 

endif;
if zatake(goaltype)="none" then 

zaenter([undef]); 
return; 

endif; 
enddefine;

;;; 7. Enters current value of world model for later comparison.

define zrbefore; 
zaenter(zkworld);
[GOAL A (zaentry (1)) GOALTYPE A(zatake(goattype)) ACTOR Azkme NAME A(zatake(name)) EFFECTS unknown ITEMS
AzgInformation STATUS open]::ztopics->ztopics;
enddefine;

;;; 8. Whoever is to do the action tells the other when it is done

define zract;
;;;if zatake(goaltype)/="none" then
Q->zginformation; ;;; Initialise agenda of things "said" and "to say".
;;;endlf;
if zatake(goaltype)="none" then return(zaenter([done]),.zklook);endif;
If zaentry(3)=[%zkyou%] then 
retum(zepost([-])) endif; 
zpdo (zaentry (2));
.zklook;
zaenter([done]); 
subC'zpstate", zpcurr, achieved);
if zejoint or zejoint=1 and zehold=Q then zeplay("zgtell",zaentry(2)) endif; 
enddefine;
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***  R O U TIN E.A SSESS.p (3 of 5)

;;; 9. Enters name of object which changed position, or [nothing] if
;;; none did.

define zrresult; 
vars d;
if hd(zaentry(5))/=undef and suc3(zkworld,hd(zaentry(5)))/="seen" and
zkinfoasked(tl(zam akeq(hd(zaentry(5)))))/=[asked] then
zki8(tl(zamakeq(hd(zaentry(5)))))->d;
if d=[a8ked] then return;endif;
endif;
zadiff(zaentry(7),zkworld)->d; 
if hd(d)=undef then [nothing]->d;endif; 
if d/=[nothing] and (zejoint or zejoint=1) and zehold=[] 

and zkinfoasked (d)/= [asked] then 
zeplay("zgtell"ld);return; 

endif;
if d=[nothlng] and hd(zaentry(5))/=undef and

suc3(zkworld, hd (zaentry (5)))="seen" and 
(zejoint or zejoint=1) and zehold=Q and 
zkinfoasked(d)/=[asked] then 

zeplay("zgteir,d);return; 
endif;
if d=zaentry(5) or zaentry(5)=[undef] then 

zaenter(d); 
else
zaenter([nothing]);

endif;
if d/=[nothing] then

[A(hd(d)) A(suc2(zkworld,d.hd))]->d;
if (zejoint or zejoint=1) and zehold=[] and zkinfoasked(d)/=[asked] then 

zeplay("zgtell",[1 is jo d ) ;return; 
endif; 

endif; 
enddefine;

;;; 10. finds state of parent goal and puts state on tree.
;;; (Power 1974 p281)

define zrparent; 
vars a,s,p,e,n;
if zatake(goaltype)="none" then return(zaenter([achieved]));endif; 
zpparent(zpcurr)->n; ;;; Goal number 
zaentry(1)->s; ;;; Current goal
zaentry(4)->p; ;;; Precondition
zaentry(5)->e; ;;; effect
if hd(s)/=undef then 

if s=p then 
zaenter([achievedj); 

else
zkstate(s); ;;; calc, and enter state of parent's goal,

endif; 
else

zaenter ([achieved]); 
endif;
zaentry(10)->a; ;;; fetch copy of result
if i8pair(a) then sub("zpstate",n,hd(a)) endif; ;;; enter it in globals. 
if s/=[undef] and s/=p and a=[achieved] and zkinfoasked(s)/=[asked] then 

zeplay("zgtell",[1 is ]o s )  
endif; 
enddefine; 
define zrparent; 
zaenter([achieved]); 
enddefine;
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*** R O U TIN E.A SSESS.p (4 of 5)

11. Learns lesson from seeing result of event, if partner is known to 
believe a rule which predicts the wrong result, teaches him a better rule.

define zrlesson; 
vars p 8 a o;
zaentry(2)->a; ;;; Action
zaentry(1)->s; ;;; Current Goal
zaentry(4)->p; ;;; Precondition for goal to succeed
zaentry(5)->o; ;;; Object of action under investigation

First inference in which the action is not known.

If a=[undef] then 
if zaentry(9)/=[nothing] then
hd(zaentry(9))::[A(suc2(zkworld,hd(zaentry(9))))]->s;
if zehold=n and zkinfoasked(s)/=[asked] then zeplay("zgteir,[1 is]os);retum;endif; 

if zaentry(9).hd.zctypof="robot" then 
[A(hd(zaentry(9))) A(pre(zctobjs,[A(zctypof(hd(zaentry(9))))]))]->a; 

else
[robot A(pre(zctobjs,[A(zctypof(hd(zaentry(9))))]))]->a; 

endif; 
zaenter([learned]);
if zehold=[] and zkinfoasked(a)/=[asked] then zeplay("zgtell",a);endif;
return;
else
return(zaenter([nothinglearned]));
endif;

else

Second inference in which the precondition is not known, there is an action and we know it’s effect

if a/=[undef] and p/=[any] and suc3(zkworld,p.hd)/="seenH and 
(suc3(zkworld,o.hd)="seen" or suc3(zkworld,o.hd)="told" or 
suc3(zkworld,o.hd)="lnferred“) then 

if zaentry(10)=[achieved] then 
zaenter([learned]); 
if zaentry(9)=[nothing] then 
zkopp(s)->8; 
endif;
sub2(,,zkworld",hd(s),hd(tl(s)),"inferred");
if zehold=[] and zkinfoasked(s)/=[asked] then zeplay("zgtell",[1 is]os);endlf; 

else
return(zaenter([nothinglearned]));
endif;

return;
endif;

endif;

Third and fourth inferences in which there is an action, the precondition 
is known but we don’t know it’s effect

if zaentry(1)=[undef] or (zaentry(2)/=[undef) and (suc3(zkworld,p.hd)="seen"
or suc3(zkworld,p.hd)="told" or suc3(zkworld,p.hd)="inferred"))
then
if zkpred(a,zaentry(7))/=zaentry(9)
then zkponder(a,zaentry(9))->p; if p=[asked] then return endif; 
endif;
zaenter ([learned]) ;zkxpred (a, zaentry (7)) ->p;
if p/=undef and p/=zaentry(9) and zkinfoasked(zkrule(a))/=[asked]
then zeplay("zgrule",zkrule(a))
endif;
endif;
enddefine;
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* **  ROUTINE. ASSESS.p (5 of 5) ***

;;; 12. Prunes plan tree up to the highest achieved goal.Based on what has
;;; been said and what goals are known to be true and also what one
;;; believes to be true privately.

define zrprune; 
vars I p 8;10000->p; 
zpsearch (zpstate, "ach ieved", [any]) ->s; 
if zatake(name)/="zrachieve" then 

zpworkthrupublic(zpgoal,zginformation)->p; 
endif;
zpworkth rupri vate (zpgoal, zkworld) -> I; 
if 8<p then s else p endif;->p; 
if l<p then I else p endlf;->p;
if zatake(name)="zrachieve" and zatake1("zrassess",place)/=undef and 

zatakel ("zra8sess".place)>=8 then
10000->p;

endif;
;;; don't prune if you're in the middle of assessing something, 
if p<=zpnextglO then

zaenter(zplist(p));zpdelete(p);zpchop(p);.zpprune;
zpnextgl()->zpcurr;npr(zaentry(12));

else
zaenter([none]);

endif;
enddefine;

;;; 13. Prunes control stack for conversational procedures that relate
;;; to plans that are now achieved.

define zrclean; 
vars p;
zaentry(zatake(place)-1)->p;
[GOAL A (zaentry (1)) GOALTYPE A(zatake(goaltype)) ACTOR Azkme NAME A(zatake(name)) EFFECTS Ap ITEMS 
Azginformation STATUS closed]::ztopics->ztopics; 
if zptree=Q then 

.zejump;zagoto(8);zaenter([achieved]);return; 
endif;
if p/=[none] then 

zaworkthru(p)->p; 
endif;
if p/=[none] then 

zaklllafter(p); 
else if zatake(nam e)="zrachieve" then 

.zeexit;
zeloadfzrachieve");
else
.zeexit;
endif;

endif;
enddefine;
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* **  G A M E S .p  (1 of 1 )***

;;; (Power 1974 p284) GAMES Macros

game zggame;
1. * w zgname [zdgame];
2. * b zgready [zdsign];
3. * w zgload; 
end;

game zgask;
1. * w zgquery [zdquery];
2. * b zganswer [zdsign];
3. A w zgrecord; 
end;

game zgtell;
1. * w zgrelate [zdfact zdevent zdobj];
2. * b zgexamine [zdsign];
3. A w zgrelook; 
end;

game zgrule;
1. * w zgwrule [zdrule];
2. * b zgbreply [zdsign];
3. * w zgwnote ;
4. * b zgbrule [zdrule];
5. * w zgwreply [zdsign];
6. A b zgbnote; 
end;

game zggoal;
1. * w zgplead [zdsitn];
2. * b zgreact [zdsign];
3. A w zgreport; 
end;

game zgplan;
1. * w zgsuggest [zdplan zdsign];
2. * b zgrespond [zdsign];
3. A w zgreturn; 
end;

game zgexperiment;
1. * w zgsuggest [zdplan zdsign];
2. * b zgrespond [zdsign];
3. A w zgreturn; 
end;

game zgtest;
1. * w zgsuggest [zdplan zdsign];
2. * b zgrespond [zdsign];
3. A w zgreturn; 
end;
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* **  G A M E .G A M E .p  (1 of 1) * **

Used to get another game loaded, can be used anywhere.
(dot notation used in all game routines) (Power 1974 p285).

;;; White names the game.

define zgname; 
zaput(expectreply.true); 
zegamel. zaenter; 
enddefine;

;;; Black agrees to play, possibly after a delay while he reaches a
;;; suitable point in his routines, loads the game taking black and
;;; exits from mggame.

define zgready; 
vars g;1.zaentry->g;
if g=[|ump] then g.zaenter;return(.zejump) endif; 
if g=[zggoal] and zatake1(l'zrbasicH,place)=1 then 

zemark([zrbasic 3]);return
elseif (g=[zgplan] or g=[zgtest] or g=[zgexperiment]) 

and zatakel ("zrachieve",place)/=5 
then return([zrachleve 5].zemark) endif;
If memb(hd(g),[zgrule zgtell]) 
and suc(zecontrol.tl.hd,kind)-"gamen 
then zawipe(suc(zecontrol.tl.hd,name)) 
endif;
false->z_f_have_trled;[ye8].zaenter;.zeexit; g.hd.zeload; zaput(colour,black);
zaput(expectreply, true);
enddefine;

;;; White loads the game, taking white, and exits.

define zgload; 
vars g; 1.zaentry->g;
if g=[]ump] then .zejump else .zeexit;false->z_i_have_tried; g.hd.zeload endif; 
enddefine;
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* **  G A M E .A S K .p  (1 of 1) * **

;;; Used anywhere, asks either can or is questions.
;;; learns not only the answer, but whether or not the other
;;; robot knows the answer.
;;; (Power 1974, p286)

;;; 1. Asks question.

define zgquery; 
zaput(expectreply .true); 
zemovel. zaenter; 
enddefine;

;;; 2. Tries to find answer, using own resources only, if it is an
;;; "is question, records the fact that white didnt know the answer.
;;; Need to record that although white didn't know it he does now.CGB.

define zganswer; 
vars q g;
1.zaentry->q;tl(q)->g; 
if q.hd="is"
then 8ub("zkxsee",q.tl.hd,0) ;q.tl.zkis1
else q.tl.zkcanl
endif;->q;
[%q.zoyn%],zaenter;
.zeexit;if q=undef then
sub2("zkworld",g.hd,suc(zkworld,g.hd), "asked"); 
zeload ("zrfi ndout") ;zaenter(g); 

zagoto (2) ;zaenter ([undef]) ;.zrtry ;endif; 
enddefine;

;;; 3. Records the answer and whether black knew it.

define zgrecord; 
vars q,a,g;
1.zaentry->q;
2.zaentry->a;
if a=[undef] then undef else (a=[yes]) endif;->a;
if q.hd="can" then sub("zkxacts",q.tl.tl.hd,a);return(.zeexit) endif;
;;; this does the following:
;;; if your partner doesnt know then it's time to do a test
;;; find a rule in which the precondition is true
;;; and is the same as what you are asking
;;; find it's corresponding effect call it result.
;;; find the action
;;; decide who's to do it
;;; perform it
q.tl->q;8ub("zkX8ee'',q.hd, (a/=undef));
if a=0 or a=false then q.zkopp->q endif;
if a/=undef then sub2("zkworld",q.hd,q.tl.hd,"told''); endif;
.zeexit;if a=undef then sub2("zkworld",q.hd,suc(zkworld,q.hd),"asked");zaenter([undef]);.zrtry; else zaenter(q);endif; 
enddefine;
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*** GAME.TELLp (1 of 2) ***
;;; (Power 1974, p287)

;;; White enters a fact.

define zgrelate; 
zaput(expectreply .true); 
zemovel. zaenter; 
enddefine;

;;; Black updates his models of object positions, and of white,
;;; and responds to what white told him.

define zgexamine; 
vars d,f;1.zaentry->f; 
if zatakel ("zrassess",place)=undef then 

[zrassess 1].zemark;zeload("zrassess"); 
zaput(goaltype,"none");zerevert(); 

endif;
if zcobject(f)
then if zatakel ("zrassess",place)>=10 

then
[undef]. zaenter; .zeexit;
if f/=[nothlng] then zagoto(9);f.zaenter;zagoto(10);endif; 
else
[zrassess 10].zemark;
while zatake(name)/= "zrassess" do tl(zecontrol)->zecontrol endwhlle; 
endif;

return 0; 
endif;
if zcevent(f)
then if zatakel ("zrassess",place)=8 

then
[]->zginformation;

if zatakel ("zrassess",goaltype)/="none" then sub("zkxacts",f.tl.hd,1); subfzpstate",zpcurr,achieved);endif; 
[undef].zaenter;.zeexit;[done],zaenter; .zklook;
else if zatakel ("zrassess",place)>8 then [zrassess 1].zemark;zeload("zrassess"); 

zaput(goaltype,”none");zerevert();endif;
[zrassess 8].zemark;
while zatake(name)/="zrassess" do tl(zecontrol)->zecontrol endwhile; 
endif; 

return (); 
endif;
if f.tl.hd="is"
then if f.hd=1 or f.hd=true then f.tl.tl else f.tl.tl.zkopp endif;->f; 

if memb(f.hd,zksee) 
then if f.zkisi

then [yes];if suc(zkxsee,f.hd)/=0 and suc(zkxsee,f.hd)/=false then
sub("zkxsee“,f.hd,1);endif;
else [no];8ub("zkxsee",f.hd,0);
endif;

else [undef];if suc(zkxsee,f.hd)/=0 and suc(zkxsee,f.hd)/=false then 
sub("zkxsee",f. hd, 1) ;endlf; 

sub2("zkworld",f. hd,f.tl.hd,"told") 
endif; 

else if f.tl.tl.hd=zkme
then if memb(f.tl.tl.tl.hd,zkacts)=f.hd 

then [yes] 
else [no] 
endif;

else [undef]; subfzkxacts",f.tl.tl.tl.hd.f.hd); 
endif; 
endif;
.zaenter;. zeexit;
if f=8Uc(zpgoal,zpcurr) then zawipe("zrachieve");endif; 
enddefine;
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* **  G A M E .T E L L p  (2 of 2) ***

;;; White updates his models of object positions, and of black, in
;;; the light of blacks response.

define zgrelook;
vars f,a;1 .zaentry->f;2.zaentry->a; 
if f.hd.zcobject then return (.zeexit) endif; 
if f.zcevent then return (.zeexit) endif; 
if f.tl.hd="is" 
then If a=[no]

then subfzkxsee",f.tl.tl.hd,not(memb(f.tl.tl.hd,zksee)));
If 8uc(zkx8ee,f.tl.tl.hd)
then if f.hd=0 then f.tl.tl else f.tl.tl.zkopp endif;

->f;8ub2("zkworld",f.hd,f.tl.hd,"told")
endif;

else subfzkxsee",f.tl.tl.hd,(a=[yes])) 
endif;

else If f.tl.tl.hd=zkyou and a=[no]
then 8ub("zkxact8",f.tl.tl.tl.hd,f.hd.not) 
endif; 

endif;
.zeexit;
enddefine;
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***  G A M E .R U LE .p (1 of 1) ***

;;; Used to explain, or compare views on, the rules which specify the
;;; consequences of actions, can be played anywhere.
;;; (Power 1974, p289)

;;; White announces a rule that he wants black to adopt

define zgwrule; 
zaput(expectreply,true); 
zemovel.zaenter; 
enddefine;

;;; Black agrees, exiting the game if he agrees.

define zgbreply; 
vars r1,r2,b;
1 .zaentry->r1; r1 ,evt.suc.zkrule->r2;
M.zkxadd; zkbetter(r1,r2)->b;
if zaequal(r1,r2) then [yes].zaenter;.zeexit
elseif b=undef then r1.zkxadd;[undef].zaenter;.zeexit
elseif b=true or b=1 then rl.zkadd; [undef],zaenter;.zeexit
else zaput(expectreply.true) ;[no].zaenter;
endif;
enddefine;

;;; If black agreed, white updates his model of blacks rules and exits.
;;; If not, he goes to 4 and allows black to announce his rule.

define zgwnote;
if 2.zaentry=[no] then zepost([-]);zaput(expectreply,true);
4.zagoto else 1.zaentry.zkxadd;.zeexit endif; 
enddefine;

;;; Black announces his version of the rule white announced at 1.

define zgbrule; 
zaput(expectreply, tr ue);
1 .zaentry ,evt.sue.zkrule.zaenter; 
enddefine;

;;; White responds, updates his world model in a way depending on
;;; whose rule was better, and exits.

define zgwreply; 
vars r1,r2,b;
4.zaentry->r1;
1.zaentry->r2;
r1.zkxadd;zkbetter(r1,r2)->b; if b=true or b=1 then rl.zkadd endif;
if b=undef and not(zaequal(r1,r2)) then false->b endif;
if b=undef then [yes] elseif b=true or b=1 then [undef] else [no] endif;
.zaenter;.zeexit;
enddefine;

;;; Black updates his model of whites rules, then exits,

define zgbnote;
if 5.zaentry=[undef] then 4.zaentry.zkxadd endif;.zeexit; 
enddefine;
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***  G A M E .G O A L.p  (1 of 1) ***

;;; Played with white at zrbasic 6 and black anywhere

;;; 1. White announces his god

define zgplead; 
zaput(expectreply, true); 
zemovel. zaenter; 
enddefine;

;;; 2. If black has a different goal he refuses; if not, he accepts
;;; and goes to zrbasic 7.

define zgreact;
1 .zaentry->zkxgoal;
if zkgoal=[none] then zkxgoal->zkgoal endif; 
if zkgoakzkxgoal then [yes] else [no] endif; .zaenter; 
if zkgoal=zkxgoal then true->zejoint;return(.zejump) endif;
.zeexit;
enddefine;

;;; 3. Updates model of partners goal, and enters his reply
;;; in zrbasic 6.

define zgreport; 
vars r; 2.zaentry->r;
if r=[ye8] then zkgoal->zkxgoal;true->zejoint endif;
.zeexit;r. zaenter; 
enddefine;
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* **  G A M E .P LA N .p (1 of 1) * **

;;; Played with both robots at zrachieve 5. used to agree on a plan
;;; experiment or Instrumental test.
;;; (Power 1974, p292)

;;; White loads zrplan, which makes and enters the plan.

define zgsuggest;
"zrplan".zeload;
enddefine;

;;; Black judges the plan and either agrees with it and enters I  In
;;; zrachieve 5, or arranges zgrule to explain the rule by which he
;;; rejects it.

define zgrespond; 
vars p,a,n; 
zatake(name)->n;
1.zaentry->p;
If 8Uc(hd(tl(zecontrol)),name)/="zrachieve" then 
if suc(hd(tl(zecontrol)),place)/=5 then 

zemark([zrachieve 5]);return; 
endif;endif; 
if p=[noJ 
then

If .zkfiuid and z_i_have_trled=false 
then [yes],zaenter;.zeexit;n.zeload 
else [no].zaenter;.zeexit;[no].zaenter;6.zagoto 
endif;false->z_i_have_tried; 

else If p.zpevt.zkcan1=false 
then
[%(zpcurr+1)::p.zpevt%]ozpmgoal->zpmgoal; 

zeplay("zgteli",(0 can]op.zpevt);n.zawipe; 
endif;
zkjudge(p,suc(zpgoal,zpnextglO))->a; 
if a=[asked] then returnO endif;
if (a=0 or a=false) and zkbetter(p.zpevt.zkrule,p.zpevt.zkxrule)=true 
and (sue (p. zpevt. zk rule, res)/=[undef] 

or (zatake(name)="zgtest" and 
suc(p.zpevt.zkrule,res)=[undef])

)
then p.zpevt.zkrule->a;

if 8UC(a,res)=[nothing] then azkinvert->a endif; 
[%(zpcurr+1)::a%]ozpmgoal->zpmgoal; 
zeplay ("zgrule",a);n.zawipe 

else [yes].zaenter;.zeexit;p.zaenter;6.zagoto 
endif; 

endif; 
enddefine;

;;; White makes an entry in zrachieve 5, and exits.

define zgreturn; 
vars p n;
zatake(name)->n;
1.zaentry->p;
if p=[no] and 2.zaentry=[yes]
then true->z_i_have_tried;.zeexit;n.zeload;
zaput(colour, black) ;zaput(expectreply, true);
else false->z_i_have_tried;.zeexit;5.zagoto;p.zaenter;6.zagoto;
endif;
enddefine;
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* **  A U X F U N S .p  (1 of 4) ***

;;; (Power 1974, p295)

Puts x after n in routine/game w in control

define zaput1(w,n,x);
vars 11,12,13;
zecontrol->l2;
nil->H;
loop:
if null(i2) then return endif;
hd(l2)->l3;
if suc(l3,name)=w
then rep(l3,n,x)->l3;
rev(l1)<>(l3::tl(l2))->zecontrol
else I3::l1->l1;tl(l2)->l2; goto loop
endif;
enddefine;

define zatakel (w.n); 
vars 11; 
zecontrol->i1;
while ispair(h) and suc(hd(l1),name)/=w then tl(l1)->l1 endwhiie;
if null(H) then undef else suc(hd(H),n) endif;
enddefine;

Finds item after n in routine/game w in control.

;;; Puts in x at n in entries of w.

define zaenter1(w,n,x);
zaputl (w,entries, rep(zatake1 (w, entries), n.x)); 
enddefine;

;;; Finds entry at n in routine/game w.

define zaentry1(w,n); 
suc(zatake1 (w, entries), n); 
enddefine;

;;; Finds item after n in top r/g of control.

define zatake(n);
suc(hd(zecontrol),n);
enddefine;

;;; Puts x after n in top r/g of control.

define zaput(n.x);
zaputl (zatake(name),n,x);
enddefine;
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***  A U X F U N S .p  (2 of 4 ) ***

;;; (Power 1974, p298) Arranges for entry x to be translated Into english
;;; then posts ft in zebox.

;;; Changes the name of z?name... by substituting W for g.

define zautter(x); 
vars n;
if zatake(kind)="routine" then return;endif; 
valof(zatake(name))->n;
if (n,place.zatake.suc.tl.hd/=zatake(colour)) then return;endif;
[% destword(hd(tl(tl(suc(n, zatake(place)))))) %]->n;
(hd(n) :: ( ('w') :: tl(tl(n)))) ->n;
while ispafr(n) do hd(n);tl(n)->n endwhile;consword()->n;
;; ;zepost(popval([% x,". ”, n%]));
[%x,".",n%] -> n; 
popval(n) -> n; zepost(n); 
enddefine;

;;; Enters x at current place In top r/g

define zaenter(x);
if pro then zosp0 ;pr(zatake(place));sp(1 );pr(x); 
prs(' entered by ');pr(zkme); endif; 
zaenter1 (zatake(name),zatake(place),x);zautter(x); 
enddefine;

;;; Finds entry at place n in top r/g

define zaentry(n); 
zaentryl (zatake(name).n); 
enddefine;

;;; Kills any r/g named w.

define zakill(w); 
vars 11; 
nil->l1 ;
while ispair(zecontrol) and zatake(name)/=w do 
hd(zecontrol)::l1 ->l1 ;tl(zecontrol)->zecontrol endwhile; 
if ispair(zecontrol) then tl(zecontroQ->zecontrol endif; 
rev(H )<>zecontrol->zecontrol; 
enddefine;

;;; Kills any routine or game positioned after w on zecontrol.
;;; It also deletes w from zecontrol.

define zakillafter(w); 
vars 12;
rev(zecontrol)->zecontrol;
nil->l2 ;
while ispair(zecontrol) and
not(zatake(name)=hd(w) and zaentry(1)=hd(tl(w))) do
hd(zecontrol)::l2 ->l2 ;tl(zecontrol)->zecontrol;
endwhile;
l2 ->zecontrol;
enddefine;
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***  A U X F U N S .p  (3 of 4) * **

;;; Finds first occurrence of goal x in zecontrol.

define zaworkthru(p);
vars 12 p1 ;p->p1 ;zecontrol->l2 ;rev(zecontrol)->zecontrol; 
while ispafr(zecontrol) do 
while ispair(pl) do
if zaentry(1)=hd(p1) and zatake(goaltype)=hd(tl(p1)) then 
return(zatake(name)::[A(zaentry(1 ))],l2 ->zecontrol) endif; 

tl(tl(P1 ))-> p 1 ; 
endwhile;
tl(zecontrol)->zecontrol;p->p1 ; 
endwhile;
if zecontrol=Q then l2 ->zecontrol;return([none]);endlf; 
enddefine;

;;; Works out list of empty entries for r/g w.

define zaents(w)->l; 
nil->l;
valof(w)->w; 
while lspair(w) do
if hd(hd(tl(w)))=,‘*" then hd(w)::(nil::l)->l endif;
tl(tl(w))->w;
endwhile;
enddefine;

;;; Used to move place In a routine or game.

define zagoto(n); 
zaput (place, n); 
enddefine;

;;; Provides new numbers for use as indexes

vars zacount; 1 ->zacount; 
define zaindex;

zacount; zacount* 1 ->zacount;
enddefine;

;;; Compares two world situations and returns the factor on which they
;;; differ, or [nothing] if they are the same.

define zadiff(11,12); 
while ispair(H) do

if hd(tl(l1 ))/=suc2 (l2 ,hd(l1 )) 
then

if suc2 (l2 ,hd(l1 ))=undef 
or suc2 (l1 ,hd(i1 ))=undef

then [%undef,hd(l1)%] 
else [%hd(l1)%] 
endif; return 
else tl(tl(tl(l1 )))-> l1 ;

endif;
endwhile;[nothing]
enddefine;

;;; Jumps to r/g x, killing procedures above x in control

define zajump(x);
while length(zecontrol)> 1  and zatake(name)/=x
do tl(zecontrol)->zecontrol;
endwhile;
enddefine;
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***  A U X F U N S .p  (4 o f 4) * **

;;; Tests two association lists for equality.
;;; (used for rules)

define zadiffs(l1 ,l2 ); 
while ispair(H) do

if hd(tl(l1))/=suc(l2,hd(H)) 
then if suc(l2 ,hd(l1))=undef 

then [%undef,hd(H)%] 
else [%hd(H)%] 
endif; return 
else tl(tl(l1))-> l1 ; 

endif; 
endwhile;[nothing] 
enddefine;
define zaequal(H,l2); 
zadiffs(l1 ,12)=[nothing]; 
enddefine;

;;; Makes a question to discover the position of x.(p298)

define zamakeq(x);
[ls]<>[%x,zctprops,x.zctypof.suc.hd%];
enddefine;

;;; Returns true if there is no game in progress and false otherwise.

define zanogame; 
vars l;zecontrol->l; 
while ispair(l)
do If suc(hd(l),kind)="game" then return(false);endif;tl(l)->l;
endwh lie; n ull(ze place);
enddefine;

;;; Removes entries in structure x and begins at 1.

define zawipe(x); 
zaput1 (x, place, 1); 
zaputl (x,entries, zaents(x)); 
if zenogameO then return; endif;
if zatake1 (x,colour)="black" then zaputl (x, expect re ply, true)
else zaputl (x,expectreply,false);endif;
enddefine;
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***  E X E C .p  (1 of 6) * **

;;; (Power 1974,p299) Executive functions which interpret the routines and games

vars zecontrol,zebox,zeagaintzenext,zejolnt,zegame1 ,zemove1 ,zehold,zeplace;

;;; Exits from the current game or routine(p302)

define zeexlt;
if pro or pro=1 then zospO; sp(1); pr(zatake(name)); 
prs(' ended by '); pr(zkme) ; endif;
if zatakel ("zras8 ess",name)="zra8 ses8 " or zatakel ("z^achieve",name)="zrachieve>, 

then
if (zatake(name)="zgrule" or zatake(name)="zgaskH or zatake(name)3 "zgtell") 
then if zaentry(1 )/=[] and zaentry(2 )/=Q then 

[% zatake (nam e), zae nt ry (1) ,zae nt ry (2 ), 
if zatakel (l,zra8 8 ess",name)="zra8 8e8 8 u then 

[A(zatake1 (,lzra8 sess",goaltype))] 
else

[A (zatakel ("zrachleve",goalty pe))] 
endif

%]::zginformation
->zglnformation;

endif;
endif;

else
endif;
tl(zecontrol) -> zecontrol; 
enddefine;

;;; Returns true if top procedure in control is not a game else false

define zenogame; 
zatake (kind)="routine"; 
enddefine;

;;; Returns true if place reached is marked and false if not

define zeatmark;
[%zatake(name),zatake(place)%)=zeplace;
enddefine;

;;; Restores the interrupted game when a mark is reached.

define zerevert;
zehold::zecontrol->zecontrol;
nil->zeplace;
nil->zehold;
enddefine;

;;; Interpreter for routines

define zeroutO; 
vars c,n;
if zeatmarkO or zeatmarkO =1 then return(zerevert());endlf;
zatake(place)->n;
suc(valof(zatake(name)),n)->c;
if hd(c)="*" and (zaentry(n)/=nll)
then zaput(place,n-i-1);
else zobugO; popval([%".",hd(ti(c))%]);
endif;
enddefine;
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* **  E X E C .p  (2 of 6) * **

;;; Translates message from english into an entry, using the list of
;;; functions t obtained from the game definitions. (p304)

vars oldmessage, oldtestfns; 
define zeread(t); 
vars m,e;
wmessage -> oldmessage; t -> oldtestfns;
wmessage->m;
nil->wmessage;
If null(m) then return(nil) ;endtf;

while i8 pair(t) do
popval([%m,".",hd(t)%])->e; 
if e /= undef then return(e); 
else tl(t)->t; endif;

endwhile;
prfzeread: message: ■); pr(oldme8 sage); 
pr(' failed tests: '); npr(oldtestfns); 
return([inapt]); ;;;if null(t) 
enddefine;

;;; Loads game or routine w into zecontrol

define zek>ad(w);
If pro or pro=1 then nl(0);sp(1+(length(zecontrol)*2));pr(w);
prs(' loaded by ');pr(zkme);endif;
if w="zggame" then zakill(w); endif;
if zcgame(w) or zcgame(w)=1 then goto xgame endif;
xroutine:
rep(zcfshell,name,w) :: zecontrol->zecontrol;
zaput(place,1);
zaput(entries,zaents(w));
return;
xgame:
rep(zcg8 hell, name,w)::zecontrol->zecontrol;
zaput(place,1);
zaput(colour, white);
zaput(entrie8 ,zaents(w));
zaput(expectreply .false);
enddefine;

;;; Calls the other robot by name

define zecall; 
zepo8 t([%zkyou%]); 
zeloadfzggame"); 
zaput(expectreply,true); 
enddefine;
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* * *  E X E C .p  (3  of 6) * **

;;; Arranges for game g to be played with first move m, calling partner
;;; if necessary In order to get zggame loaded.

define zeplay(g,m);
[%g%J->zegame1 ;m->zemove1 ; 
if zegame1 =[zgask] and hd(zemove1 )="is" then
if zkinfoa8 ked(tl(zemove1))=[asked] then .popready;npr('*1*');return(.zeexit);endif; 
endif;
if zegame1=[zgask] and hd(zemove1)="can" then
if zkinfoa8 ked(zemove1)=[asked] then npr('*2 *');return;endif;
endif;
if zegame1 =[zgtell] and tl(zemove1 )/=Q and hd(tl(zemove1))="is" then 
if zkinfoa8 ked(tl(tl(zemove1)))=[a8 ked] then nprC^'^retumiendlf; 
endif;
if zegamel =[zgtell] and (tl(zemove1 )=[] or tl(tl(zemove1 ))=[]) then 
if zklnfoasked(zemove1)s[asked] then npr('*4*');return;endtf; 
endif;
if zegamel =[zgrule] then
if zkinfoasked(zemove1)=[asked] then npr('*5*'); ret urn; endif; 
endif;
if (zejoint or zejoint=1) and (zanogameO or zanogame0=1) and g/="jump" 
then zeload("zggame");[.zecont]->zenext; 
else .zecall;endif;
if ispair(zehold) and suc(zehold,name)="zggame"then nil->zehold;nil->zeplace;endif; 
enddefine;

;;; Interpreter for games

define zegameO;
vars c,n,mine,entry.made.message,tests; 
begin:
zatake (place)->n; 
suc(valof (zatake(name)), n)->c; 
if c=undef then zeexitO endif;
(hd(c)="*")->entry;
if entry or entry=1 then (ispair(zaentry(n)))->made endif; 
(hd(tl(c))=zatake(colour))->mine; 
if mine or mine=1 

then if entry or entry=1

then if made or made=1 then goto advance else goto perform endif;
else goto perform
endif;

else if entry or entry=1

then if made or made=1 then goto advance else goto read endif;
else goto advance
endif;

endif;
perform:
zobugO;
popval([%".",hd(tl(tl(c)))%l); return; 
advance:
zaput(place,n+1); return; 
read:
rev(tl(rev(tl(tl(tl(tl(c)))))))->tests; 
ze read (tests) - > m essage; 
if null(message) then goto swap; 
elseif message=[inapt] then goto moan ;
else return( if zctgam e()>0  then zaput(expectreply.false) endif,zaenter(message));
endif;
moan:
pr(' moaning... message = '); npr(message);zeplay("jump",undef); return; 
swap:
zepost([-]);
enddefine;
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* **  E X E C .p  (4 of 6) * **

;;; Returns true if robot has been called by partner and false if not.

define zecalled;
wmessage=[%zkme%];
enddefine;

;;; Loads zggame and takes black

define zealert; 
zeloadfzggame"); 
zaput(colour, black); 
enddefine;

;;; Posts message m;

define zepost(m); 
m->zebox; 
false ->zeagain; 
zebox->wmessage; 
undef->zebox;
[.zecont]->zenext;

enddefine;

;;; Responds to being called.

define zeready; 
zealert ();zepost ([yes]); 
enddefine;

;;; Used to initialise the ze variables before a run.

define zeprep;
nll->zecontroi;Q->zehold;false->zunexpected_event; 
zeloadfzrbasic"); false->zejoint;
[.zecont]->zenext; nil->zeplace; true->zeagain; 
enddefine;

;;; Gives control to structure below current one and marks it at place n

define zemark(p);
p->zeplace;hd(zecontrol)->zehold;tl(zecontrol)->zecontrol;
enddefine;

;;; Jumps back to zrbasic 7. used when an inappropriate remark has been
;;; made.

define zejump;
zajump("zrbasic");zagoto(7);
enddefine;

;;; master function used by chairman to arouse robot

;;; Runs either zecall,zesend or zecont depending on which was
;;; last put into zenext.

define zeexec;
if (zenogameO) then zeroutO; else zegame();endif; 
enddefine;
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* **  E X E C .p  (5 of 6) * **

;;; Main arousal mechanism called by chairman.
;;; The robot reacts according to the value of expectreply
;;; on the control stack. The main choices are:

;;; (1) A call by name.
;;; (2) There is a message and we wanted It
;;; (3) There is a message and we didn't want it
;;; (4) There is no message and we want one.
;;; (5) There is no message and we don't want one.

define zearouse;
If zecalledO or zecalled0=1 then ;;; call by name,
if member(9,ppro) then pr(mt+1);pr(’ ■); 
pr('*9*');pr(zkme);pr(' is responding to being called');nl(1); 
endif;if zatake(expectrepty)=false and zatake(place) /= 1  then 

repeat forever
if member(5,ppro) then pr(mt+1 );pr(* *); 

prC*5* ’);pr(zkme);pr(' is finishing off an old conversational procedure'); 
nl(1); 

endif;
zegame();c|uitunless(zatake(expectreply)=fal8e);
endrepeat;endif;

return(zereadyO);
else
if zunexpected_event then 

until
not (zatake (kind)="game'' or zatake (name)="zrplan" 
or zatake(name)="zrfindout") do .zeexit; 

enduntil;nil->wmessage; 
fal8 e->zunexpected_event;zeload("zras8e8 8 "); 
zaput(goaltype,"none");.zerout;return; 

else
if wmessage=nil or wmessage=[--] then 

if zctgam e()>0 then ;;; no message but we want one. 
if member(1 ,ppro) then pr(mt+1);pr(' '); 
pr('*1* ');pr(zkme);pr(' is waiting for an utterance ,);nl(1 ); 
endif;
if wmessage=[-] then ;;; a message that's not worth reading 
nil->wmessage;if zenogameO then zeroutO

else zaput(place,zatake(place)+2 );zegame0 ;endif; 
else return(fal8 e->zeagain); 
endif;

else ;;; no message and we don't want one.
If member(2 ,ppro) then pr(mt+1);pr(' '); 
pr(’*2 * ');pr(zkme);pr(' is planning ’);nl(1); 
endif;
if wmessage=[~] and member(1 ,ppro) then
prC*1* ^prfckme^prC is waiting for a goal or an actfon');nl(1);
endif;
nil->wmessage;

endif;
else
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*** EXEC.p (6  of 6 ) *** 
if zctgame( )> 0  then ;;; there is a message and we want it 

if zenogameO then repeat forever zeroutO;quitunless(zenogameO); 
endrepeat;else zegameO ;endtf; 
if member(3,ppro) then pr(mt+1);pr(’ '); 
pr(’*3* expected utterance for l);pr(zkme);nl(1); 
endif;

else ;;; a message and we weren't expecting I.
if member(4,ppro) then pr(mt+1);pr(' '); 
pr('*4* unexpected utterance for ');pr(zkme);nl(1); 
endif;

if zenogameO and zatake(place) /= 8

then repeat forever zerout0 ;quitunle8 8 (zenogame0  and zatake(place)/=8 ); 
endrepeat;

if zatake(expectreply)=true then return(zegameO);endlf; 
endif;

if zatake(expectreply)=fal8e and zatake(place) /= 1  then 
repeat forever 

if member(5,ppro) then pr(mt+1);pr(' '); 
pr('*5* ');pr(zkme);pr(' is finishing off an old conversational procedure');
nl(1);

endif;
zegame() ;qu)tunles8 (zatake(expectreply) =false); 
endrepeat;
if zatake(expectreply)/=true then zealertO; 

if member(6 ,ppro) then 
pr(mt+1 );pr(' ');
prC*6 * ');pr(zkme);pr(' has no other conversational procedures to contend with^nlO); 
endif; 

else
if member(7,ppro) then 
pr(mt+1);pr(' ');
pr('*7* ');pr(zkme);pr(' has other conversational procedures to contend with1);
nl(1);
endif;

endif;
else

if member(9,ppro) then 
pr(mt+1);pr(' ’);

pr('*9* ');pr(zkme);pr(' has no conversational procedures to contend with');
nl(1);
endif;

zealertO;
endif;

endif;
endif;

endif;
endif;
zeexecO;
enddefine;
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* * *  W R IT E , p (1 of 3) * **

These functions translate game entries into english in an 
unprincipled manner.(Power 1974, p305)

III zggame 1 and 2; 
define zwname x;
[zgask [may I ask you something] 
zgtell [I want to tell you something] 
zgrule [I want to explain something] 
zggoal [I want to suggest a goal] 
zgassess [%if zkme=suc(zpactor,zpcurr) then 
"lets"I ,,a8 se8 s"I"the,,P"re8 ult","of,,,"my"p"action" 

else "let8 “p"a8 8 es8 "P"the"p"re8 ult"p"of,,p"your"P"action" endif;%] 
zgplan [shall we make a plan] 
zgexperiment [shall we do an experiment] 
zgtest [shall we do a test] 
jump [we have got muddled; lets start again]], 
hd(x).suc; 
enddefine;

define zw ready x;
if memb(hd(zaentry(1))p[zgplan zgcheck zgassess jump])
then [ok] else [go ahead] endif;
enddefine;

;;; zgask 1 and 2

define zwquery(x); 
vars v,g;
hd(x)->v;tl(x)->g;
;;; the elseif 4 lines down doesn't work when Mary's goal is to open 
;;; the door. - cb. 
if hd(g)=zkme then

[l]o tl(g )->g ;
if v="is" then "am"->v endif;endif; 

if hd(g)=zkyou then
[you]otl(g)->g;
If v="is" then "are"->v endif;

endif;
If memb(hd(g),[door bolt]) then [the]og->g endif;
if hd(tl(g))=push then go[th e  door]->g
elseif hd(tl(g))=slide then g o[the  bolt]->g endif;
v::g;
enddefine;

define zwanswer(x);
if x=[undef] then [I dont know] else x endif; 
enddefine;

;;; zggoal 1 and 2

define zwplead(x);
if hd(x)=zkme then tl(x)
elseif hd(x)=zkyou then [you]otl(x)
else [th e ]o x
endif;->x;
[will you help me getjox; 
enddefine;

define zwreact(x);
If x=[yes] then [by all means] else [no]; endif; 
enddefine;
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* **  W R IT E , p (2 of 3) * **

;;; zgtell 1 and 2

define zwrelate(x);
If zcevent(x) then If hd(x)=zkme then return(suc(

[push [I have pushed the door] slide [I have slid the bolt] move [I have moved]], hd(tl(x))));
endif;
If hd(x)=zkyou then return(suc(
[push [you have pushed the door] 
slide [you have slid the bolt] 
move [you have moved]], 

hd(tl(x» )); 
else return(suc(
[push [somebody has pushed the door] 
slide [somebody has slid the bolt] 
move [somebody has been moved]], 

hd(tl(x)) )); 
endif;

endif;
if zcobject(x)
then return(zwchange(x));endif; 
vars t; hd(x)->t; 
zwquery(tl(x))->x; 
if hd(tl(x))="the“
then [the]o[%hd(tl(tl(x))),hd(x)%]; tl(tl(tl(x)))->x
else [%hd(tl(x)),hd(x)%];tl(tl(x))->x;
endif;
If t=0 or t=false then <>[not] endif; 
o x ;

enddefine;

define zwwreply(x);
8 uc([ye8  [I already know that] 

no [I disagree] 
undef [I see]],

hd(x));
enddefine;

define zwexamine (x);
zwwreply(x);

enddefine;

;;; zgrule 1,2,3,4 and 5

define zwwrule(x); 
vars e,s,r;
suc(x,evt)->e;suc(x,sit)->s;suc(x, res)->r;
[if]otl(zwquery("can"::(zkyou::tl(e))))->e; 
if s=[any] 
then nil
elseif hd(s)/=”robot" then [%"when",Mthe",hd(s),"is",hd(tl(s))%]
else [when you are]o[%hd(tl(s))%]
endif;->s;
if r=[nothing] or r=[undef] then [, nothing happens] 
else if hd(r)="robot" then [, you change] else [, th e ]o r 
ofchanges] endif;o[posltion] endif;->r;e<>s<>r; 
enddefine;

define zwbrule(x);
zwwrule(x);
enddefine;

define zwwnote(x);
[umm [I see]],x.hd.8 uc; 
enddefine;
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* **  W R IT E , p (3 of 3) * **

define zwbreply(x);
zwwreply(x);
enddefine;

;;; zgplan 1 and 2

define zw8 uggest(x); 
vars s;
if x=[no] then return([ I cant think of one]) endif;
zpsit(x)->s;
if 8 /=undef
then tl(zwquery([ls]<>8))->8 ;if hd(s)="l" then 
"me"::tl(8 ) -> 8  endif;

[we get]<>8<>[and then]
else nil
endif;->s;
zpevt(x)->x;
tl(zwquery([can]ox))->x;
[I suggest th a tjo s o x ;  

enddefine;

define zwrespond(x);
vars p;zaentry(1)->p;
if p=[no] then [yes [I will then] no [oh]]
else [yes [all right] no [I disagree]]
endif; hd(x).sue;
enddefine;

;;; zgtest 1 and 2

vars zwstart zwparticipate; zwsugge8t->zw8tart;zwrespond->zwparticipate; 

;;; zgexperiment 1 and 2

vars zwmake zwaccept;zwsuggest->zwmake;zwrespond->zwaccept;

;;; zgassess 1,2,3 and 4

define zwchange(x);
if x=[nothing] then return([nothing has happened])
elseif hd(x)=zkme then [I have]
elseif hd(x)=zkyou then [you have]
else [th e ]o x o [h a s ]
endif;o[changed position];
enddefine;

define zwconfirm(x);
[yes [yes] no [I disagree]],hd(x).suc; 
enddefine;

define zwparent(x);
rev(zwrelate(x)) - >x; hd (x);
if memb("not",x) then ::[yet] else ::[now] endif;
<>tl(x)->x;rev(x);
enddefine;

define zwbenter(x);
[right];
enddefine;
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* **  D E C IP H E R p  (1 of 3) ***

The following functions are used to decode english utterances.

define zdhalf(l,x);
while hd(l)/=x do tl(l)->l endwhile;tl(l); 
enddefine;

;;; returns lists of the words before and after x in I

define zdsplit(l,x);
zdhalf(l.x) ;rev(zdhalf (rev(l) ,x));
enddefine;

;;; Used mainly to replace variant forms of a word (e.g. am,are)
;;; with a standard one is.

define zdclean (x); 
vars I1,l2;nil->I1;

;;; replace variant word forms 
x,"slid",slide.xch; "pushed",push.xch; "moved",move.xch->x; 
x,"am","i8 ".xch; "areM,"isH.xch->x; 
x,HAre","ls".xch->x;

;;; remove 4 lead words from help sentences 
if memb("help",x) and length(x)>4 then tl(tl(tl(tl(x))))->x endif;

;;; remove 2  lead words from suggest/want sentences 
if length(x)> 1  and memb(hd(tl(x)),[suggest want]) then tl(tl(x))->x endif;

;;; reorder clauses in slide/push sentences 
if memb(sllde,x) then zdspllt(x,slide)->l1 ->l2 ;l1 o[slide]-> i1 

elseif memb(push,x) then zdsplit(x,pu8h)->l1->l2; I1<>[push]->I1 endif;

If i8pair(l1) and Iength(l2)>1 then I1<>tl(tl(l2))->x endif;
;;;if ispair(U) then
;;; pr('zdclean: '); pr(U); sp(2); npr(l2);
;;; if Iength(l2 ) > 1 then tl(tl(l2 )) -> 12; endif;
;;; 11 <> 12 -> x;
;;;endif;

x;
enddefine;

;;; Replaces pronouns with their referents,

define zdprons (I);
l,T,zkyou.xch; ,,me,,,zkyou.xch;"l,,,zkyou.xch; "you”,zkme.xch; 
,,wen,both.xch;"somebody","robot".xch; 

enddefine;

;;; Given a list of words x and an english expression I,
;;; returns the first word in x which is also in I, and
;;; undef if none are.

define zdfind(l.x); 
while ispair(x)
do if memb(hd(x),l) then hd(x); return else tl(x)->x endif;
endwhile; undef;
enddefine;
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* **  D E C IP H E R .p  (2 of 3) ***

The following functions are used to decode different kinds of 
utterances, if the english expression x can be construed as the 
kind of entry wanted, the entry is returned; if not, undef 
is returned, thus zdgame tries to interpret x as a game suggestion 
zdquery tries to interpret I  as a query, and so on.

define zdgame(x); 
vars I;
[ask zgask goal zggoal next zgcheck explain zgrule tell zgtell assess
zgassess plan zgplan experiment zgexperiment test zgtest start jump]->l;
8 uc(l,zdfind(l,x))->l;
if l=undef then undef else l::nil endif;
enddefine;

define zdsitn(x);
zdpron8 (zdclean(x))->x; xo[%zkyou%]->x; 
if length(x) < 2  then return(undef); endif; 
(zdfind(zcobjs,x))::[%zdfind(zcprops,x)%]->x;

if memb(undef,x) or not(zcpropof(hd(tl(x)),zctypof(hd(x)))) 
then undef else x endif;

enddefine;

define zdevent (x);
zdprons(zdclean(x))->x;
if length(x) < 2  then return(undef); endif;
(zdfind([John Mary robot],x))::[%zdfind(zcacts,x)%]->x;
if memb(undef.x) then undef else x endif;
enddefine;

define zdquery (x); 
vars a;
zdprons(zdclean(x))->x;
if length(x)<3 or not(memb(hd(x),[can is])) then return(undef) endif; 
if hd(x)="canH then zdevent(tl(x)) else zdsitn(tl(x)) endif;->a; 
if a=undef then undef else hd(x)::a endif; 
enddefine;

define zdrule(x);
vars e,s,r;
xch(zdclean(x),"you"I"robot,,)->x;xch(x,,,oneII,"robot")->x;xch(x,"l","robot")->x; 
if hd(x)/=,,if” or not(memb(",",x)) then return(undef); endif; 
zdsplit(x,",")->e->r;
if memb("when",e) then zdsplit(e,"when")->e->s else [any]->s endif; 
zdfind(zcact8 ,e)->x; 
if memb("robot",e) and x/=undef 

then [robot]o[%x%]->e 
else retum(undef);

endif; 
if s/=[any]
then (zdfind(zctypes,s))::[%zdfind(zcprops,s)%]->s;

if memb(undef.s) or not(zcpropof(hd(tl(s)),hd(s)))
then return(undef);
endif;

endif;
zdfind("nothing"::zctypes,r)::nil->r; 
if r=undef then return(undef) endif;
[%evt,e,sit,8 ,re8 ,r%];

enddefine;
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***  D EC IP H E R , p (3 of 3) ***

define zdplan (x); 
vars s,f;
zdprons(zdclean(x))->x;
if memb(Mand",x) then zdsplit(x,"and")->s->e
elseif memb("then",x) then zdsplit(x,Hthenn)->s->e
else nil->s;x->e;
endif;
if i8 pair(s) then zdsitn(s)->s endif; 
zdevent(e)->e;
if s=undef or e=undef then return(undef) endif; 
if ispair(s) then both::[%s% ]-> 8  endif; 
8 <>[%hd(e),e%] 
enddefine;

define zdsign(x); 
vars y,n;
if x=[l see] then return([undef]) endif;
if memb("dontn,x) and memb("known,x) then return([undef]) endif; 
[know yes agree good can will right fine splendid ok go by]->y;
[no disagree cant wont bad oh lousy faulty sllly]->n; 
zdflnd(noy,x)->x;
if x=undef then undef elseif memb(x,y) then [yes] else [no] endif; 
enddefine;

define zdfact(x); 
vars t;
zdclean(x)->x; 
not(memb("not",x))->t; 
zdquery(zdfind(x,[can is]) :: x) -> x; 
if x=undef then undef else t::x endif; 
enddefine;

define zdobj (x);
zdfind([nothing]<>zcobjs,zdpron8 (x)); ::nil; 
enddefine;
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* **  P LA Y .p (1 o f 7) * **

;;; (Power 1974, p317) various functions for starting the simulation in different ways

;;; Prints out a robots utterances.

define write(l); 
vars I;
if l=undef then return(prs(l<undef>')); 
elseif null(l) then retum(prs(' 

endif;
co nsst ri ng (destwo rd (hd (I))) - > hd( I); 
lowertoupper(subscrs(1 ,hd (!)))->
8 ubscrs(1 ,hd(l));
if hd^s'Lets1 then 'LetVs'->hd(l); endif; 
pr(hd(l));
con8 word(deststrlng(hd(l)))->hd(l);
if memb(hd(l),[Shall Are Will May Can Is]) then [AA(I) ?]->! else 
[AA(I) .]->!; 

endif;

if memb(hd(l),[Mary John I]) then else 
consstring(destword(hd(l)))->hd(l); 
uppertolower(subscr8 (1 ,hd(l)))-> 
subscrs(1 ,hd(l));
consword(dest8 tring(hd(l)))->hd(l); 
if wmessage/=nil then
consstring(destword(hd(wmessage)))->hd(wmessage); 
uppertolower(8 ub8crs(1 ,hd(wme8 8 age)))-> 
subscrs(1 , hd(wmessage));
consword(dest8tring(hd(wmes8age)))->hd(wmessage); 

endif; 
endif; 
ti(i)->i; 
while ispair(l) 
do
if memb(hd(t),[cant]) then 'canYt'->hd(l) endif;
if hd(l)="somethin" then prs(' something')
elseif hd(l)="," or hd(l)=":" or hd(l)="." or hd(l)="?" then pr(hd(l))
else sp(1); pr(hd(l)) endif;tl(l)->l;
endwhile;
enddefine;
vars zostart;
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* **  P LA Y .p  (2 o f 7) * **

;;; The chairman

define replay;
jawake0 ;zo8 tart0 ;jasleep0 ;mawake0 ;zo8tart0 ;masleep0 ; 
if erase(count//2 ) > 0  then goto john else goto mary endif;

John:
if count>stop then return(nl(2 )) endif; 
true->jeagain;
if ispair(Unexpected_event8) and count>hd(Unexpected_events) 
then
if zcevent(hd(tl(Unexpected_events))) then zpdo(hd(tl(Unexpected_event8))); 
else
wsub(hd(hd(tl(Unexpected_events))),hd(tl(hd(tl(Unexpected_events)))));.prw;
endif;
tl(tl(Unexpected_event8 ))->Unexpected_event8 ;frue->munexpected_event;true->junexpected_event;
endif;
JawakeO; 
repeat forever
if zaentry(8 ) =[achleved] then
returntnlOJ.nprC***** Plan successful *****'), npr(jtoplcs),npr(mtopics));endif;
If zptree/=nll then
if (8 uc(zp8 tate,hd(suc(zptree,0 )))) = "achieved" then
retum(nl(1),npr('***** Plan successful ♦****'),npr(Jtopics),npr(mtopics));endif;
if (suc(zp8 tate,hd(8 uc(zptree,0 )))) = "failed" then
return(nl(1),npr('***** Plan unsuccessful *****’) ) ;endlf;
endif;
if zatake(place)= 1  and zatake(cok>ur)="white"
and zatake(expectreply)/=true and member(zatake(name),
[zgask zgtest zgexperiment zggoal zgcheck zgrule zgtell zgassess zgplan zggame]) 
and wmessage=nil then nl(1);endif,

.zearouse;1 +]t->jt; if jt=jspeed then 0 ->jt;false->zeagain;endif; 
quitunles8 (zeagain or zeagain=1); 
endrepeat; 
jasleepO;
if null(wme8sage)then goto mary;endif;if pro then nl(1); endif;pr(count);
1+count->count;pr8(' John:'); false->prw1;write(wmessage);nl(1); If pro then nl(1); endif; 
mary:
if count>8 top then return(nl(3)) endif;true->meagain;mawakeO; 
repeat forever
if zae ntry (8 ) =[ac hieved] then
return(nl(1),npr('***** Plan successful *****'),npr(jtopics),npr(mtopic8 ));endif; 
if zptree/=nll then
if (8 uc(zpstate,hd(8 uc(zptree,0 )))) = "achieved" then
return^lOJ.nprC***** Plan successful *****'),npr(jtopics),npr(mtopics));endif;
if (8 uc(zpstate>hd(suc(zptree,0 )))) = "failed" then
return(nl(1),npr('***** Plan unsuccessful *****'));endif;
endif;

if zatake(place)= 1  and zatake(cok>ur)="white" 
and zatake(expectreply)/=true and member(zatake(name),
[zgask zgtest zgexperiment zggoal zgcheck zgrule zgtell zgassess zgplan zggame]) 
and wmessage=nil then nl(1);endif; .zearouse; 1+mt->mt;

If mt=mspeed then 0->mt;false->zeagain;endif; 
quitunles8 (zeagain or zeagain=1);endrepeat; 
masleepO;
if null(wmessage)then goto john; endif;if pro then nl(1); endif;
pr(count);1+count->count;prs(' Mary:'); false->prw1;write(wmessage);nl(1);if pro then nl(1) endif; 
goto john;enddefine;
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* **  PLA Y .p (3 of 7 ) * **

;;; Runs a conversation with the first initial setting.

define run1 ; 
resetl ();
.zeprep;zaenter1 ("zrbasic",4,[failed]);
zunexpected_event->munexpected_event;zunexpected_event->junexpected_event;
zecontrol->mecontrol;zecontrol->jecontrol;
zeJolnt->mejoint;zeJoint->jejoint;zehold->jehold;zehold->mehold;
zenext->menext;zenext->jenext;
zeplace->meplace;zeplace->jeplace;
zeagain->meagain;zeagain->jeagain;
nl(3);.prw;replay();
enddefine;
define run2 ;
resetl 0 ;1  ->count; zaenterl ("zrbasic",4,[failed]);
zecontrol->]econtrol;
nl(3);.prw;gstart();
John, John->]kme->mkyou;
Mary, Mary->m kme->jkyou;
[John in]->jkgoal; [none]->mkgoal;
[John out Mary in bolt down door shut]->wobjects; 
nil->wmessage;
[ move ]->]kacts;[push slide move]->mkacts;
[[evt[robot push]sit[bolt up]res[door]]
[evt[robot slide]sit[any]res[bolt]]
[evt[robot move]sit[any]res[nothing]]]->jcrshell;
[[evt[robot push]sit[any]res[nothing]]
[evt[robot slide]sit[any]res[boit]]
[evt[robot move]sit[door open]res[robot]]]->mcrshell;
[door John Mary]->jksee;
[Mary]->mksee;

]cw8 hell->]kworld;zklook0 ;
]crshell->]krule8 ;
jcwshell->]kxsee;
nil->jkxgoal;
if zp8 tart/="Super" then nil->jkxacts;
nil->jkxrules;endif;
mcwshell->mkworld;zklookO;
mcrshell->zkrules;
mews hell->zkx8 ee;
nil->mkxgoal;
if zpstart/="Super" then nll->mkxacts;
nll->mkxrules;endif;
replay ();
enddefine;

;;; The following functions allow interaction with the computer only,

vars stdmsgs;
[ [ ok][Mary][l want to ask you something][l want to tell you something] [I want to explain something]
(lets assess the result of my action] [shall we make a plan?]
[are you in?] [can you move?][is the door open?][the door is shut]
[if you push when the bolt is up, the door moves] [I want to suggest a goal]
[go ahead] [will you help me get in?] [by all means] [yes]
[no] [John] [the door is open] [you are out][l am now in] [I have moved]
[I have pushed the door] [I suggest that we get the door open and then you move]
[I suggest that I push the door] [nothing has happened] [the door has changed positfc>n][the door is now open] 
[is the door shut?][is the bolt up?] [is the bolt down?] [are you in?]
[are you out?][will you help me get the door open?]
[will you help me get the door shut?] [if you push when the bolt is down, nothing happens]
[if you move , nothing happens] [I disagree] [I suggest that we get the door open and then I move]
[If you move when the door is open , you change posftion] [I have changed position]
[I see] [all right] [right][l disagree . if you move when the door is open , you change position .] ] -> stdmsgs;
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*** PLAY.p (4 of 7) *** 
define read; 
vars x,l, n, i;
nil->l; length(stdmsgs) -> n;

until (.ltemread.dup->x, x="." or x="?") do 
If x="-" then retum(nil); 
elseif l=nll and isinteger(x) then 

if x= 0  then for i from 1 to n do
pr(i); pr(': '):
appli8t(8 tdm8gs(i), sp(%1%) <> pr); nl(1); 
endfor; 

elseif x<=n then
;;; npr(stdmsgs(x));
appli8 t(8tdmsg8 (x), sp(%1%) <> pr); p r n l ( 1); 
return(8tdm8 gs(x)); 

else x::l->l; 
endif; 

else x::l->l; 
endif; 

enduntil; 
rev (I); 
enddefine;

;;; The chairman

define play; 
vars x;

erase(count//2 )->x; nl(1); .prw; ni(1); 
computer:

if count>stop then nl(2 ); returnO endif; 
if x> 0  then 

zearouseO;
if (wmessage/=nil) or (zkgoal=[none]) 
then goto human else goto computer endif;

human:
if pro then nl(1 ) endif;

nl(1);pr(count);prs(' ');pr(zkme);prs(':'); write(wme3sage); count+1 ->count;
else 1 ->x
endif;
nl(2 );
if count>stop then returnO endif;
pr(count); prs(' ');pr(zkyou); readO->wmessage; count+1 ->count; 
goto computer; 

enddefine;

;;; mgo assumes the computer is mary jgo assumes computer to be John.
;;; One can type numbers (see Power's linguistics 17 for coding);
;;; remembering to type run before typing mgo or jgo and then when
;;; a physical action occurs: to get to popready <optk>n .> followed by
;;; the appropriate action .wpush,.wslide,wmove and to continue again
;;; <return>

define mgo;
re8 et1 ();zecontrol->mecontrol;0 ->jspeed;0 ->mspeed; 
zae nte r 1 (" z r bas ic", 4, [f a i led]);
1 ->count;mawake();true->zeagain;true->meagain;1 ->count;play0 ;
enddefine;

define jgo;
resetl ();zecontroi->jecontrol;0 ->mspeed;0 ->jspeed; 
zae nte r1 ("zrbasic",4, [failed]);
1 ->count;jawake();true->zeagain;true->jeagain;1 ->count;play0 ;
enddefine;
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* **  P LA Y .p  (5  of 7) * **

;;; The following functions are for use by the Super Robot.
;;; New function to combine two sets of rules s & t into one better set
;;; contained in scrshell.

define srules(s,t); 
vars r1 ,r2 ; 
while s/=nil do
hd(s)->r1 ;zkrule1 (t,r1 ,evt.suc)->r2 ;
If zaequal(r1 ,r2 ) then [%r1 %]<>8 cr8 hell->8crsheil;
elseif zkbetter(r1 ,r2 ) then [%r1%]<>8cr8 hell->8 crshell;
else [%r2 %]<>8cr8 hell->8 crshell;
endif;tl(8 )->s;
endwhile;
enddefine;

;;; This function is used to make sure that each robot knows what they can
;;; do before the start of a run. zkprep is also modified.

define sactsO; 
vars a;
mkact8 ->a;nil->jkxact8 ; 
while a/=nil do
8 ub(Hjkxacts",hd(a),true);tl(a)->a;
endwhile;
jkacts->a;nil->mkxacts; 
while a/=nil do
sub(”mkxact8 ",hd(a),true);tl(a)->a;
endwhile;
enddefine;

;;; Circular function that checks the internal plan tree zpgoal
;;; and sees whether the current goal is already in the plan tree.

define newcircular(t,g);
vars c;0 ->c;
while ispair(t) do
if g=hd(tl(t)) then c+1 ->c; endif;
tl(tl(t))->t;
endwhile;
if c>1 then return(true) else retum(false);endif; 
enddefine;

;;; This function is used to print out what the super robot knows
;;; about the state of the two ordinary robots minds.

define zsstart;
nl(2); prs('*** what ');pr(Jkme);prs(' capabilities are ***');nl(2);prs('1. Goal:'); 
if null(jkgoal) or jkgoal=[none] then prs(' None') else write(zoplead(jkgoal)) endif; 
nl(2); prs('2. Range of actions:');nl(1); zcacts->x; 
while i8 pair(x) do 8p(3);pr(hd(x));pr8('; ');
if member(hd(x),jkacts) then pr('Ye8 ');el8 e prfNo'^endjf-.prf,'); tl(x)->x; 
endwhile;
nl(3);nl(2); prs('*** what l);pr(mkme);pr8 (' capabilities are ***');nl(2);prs('1. Goal:'); 
if null(mkgoal) or mkgoal=[none] then prsf None') else write(zoplead(mkgoal)) endif; 
nl(2); prs('2. Range of actions:');nl(1); zcacts->x; 
while ispair(x) do sp(3);pr(hd(x));prs(': ');
if member(hd(x),mkacts) then pr('Yes');else pr('No');endif;pr(','); tl(x)->x; 
endwhile;
nl(3);prs(‘ Consequences of events:');nl(1);zcrshell->x; 
while ispair(x) do nl(1);sp(3);pr(hd(tl(suc(hd(x),evt))));prs(':');nl(1);sp(2); 
if suc(hd(x),res)=[undef] then prs(' undef') else write(zwwrule(hd(x))) 
endif; tl(x)->x;
endwhile;nl(3);prs(' ******** Super plan prediction **********');nl(3); 
enddefine;
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* * *  P LA Y .p (6 of 7) * **

;;; splay is simplified from replay so that it only prints the relevant
;;; plan.

define splay;
Q->mptree;[]->jptree;
Jawake 0; Jaslee p 0; mawake 0; m as leep() ;zsstart 0; 
if erase(count//2 ) > 0  then goto john else goto mary endif; 

john:
zpgoal.zpcurr. suc->g;
If newcircular(zpgoal,g)=true then return(pr('circular plan detetected...')); 
endif;
If zptree/=nil then
If (8uc(zpstate,hd(suc(zptree,0)))) = "achieved" then return(nl(1),npr('***** Plan successful *****,));endif; 
endif;
If count>8 top then return(nl(2)) endif;
true->jeagain;
jawakeO;

repeat forever 
.zearouse;

1+Jt->jt;
If jt=Jspeed then 0->jt;false->zeagaln;endif; 

quitunless(zeagain or zeagain=1); 
endrepeat;
JasleepO;
If null(wme88age)
then goto mary;
endif;ff pro then nl(1); endif;
;;;pr(count);
;;; 1+count->count;prs(' John:');
false->prw1 ;
If zatake(name)="zgplan" and zatake(place)= 1  and zatake(colour)="white" then 
nl(1);npr('Robot John suggests the following plan i1); 
npr(zaentry(1)); write(wmessage);nl(1);endif; if pro then nl(1); endif; 
mary:
if count>8 top then return(nl(3)) endif; 
true->meagain; 
mawakeO; 
repeat forever 

.zearouse;1 +mt->mt;
If mt=mspeed then 0->mt;false->zeagain;endif; 

quitunless(zeagaln or zeagain=1); 
endrepeat; 
masleepO; 
if null(wme8sage)
then goto john; endlf;if pro then nl(1); endif; 
fal8 e->prw1 ;
If zatake(name)="zgplan" and zatake(place)=1 and zatake(colour)="whlte"then nl(1); 
npr('Robot Mary suggests the following plan :');npr(zaentry(1));write(wmes8age)
;nl(1);endif;if pro then nl(1) endif;
goto john;
enddefine;

;;; smerge combines goals, what it can see, what the ordinary robots believe
;;; and what they can do.

define smergeO;
[John Mary door bolt]->sksee;
if mkgoal=[none] then jkgoal->skgoal;jkgoal->jkxgoal else mkgoal->skgoal; 
m kgoal->m kxgoal;endif;
[]->scrshell;
8 rules(Jcr8 hell,mcrshell);
sactsO;
enddefine;
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*** PLAY.p (7 of 7) ***
;;; Perfect knowledge iB passed back to each robot and a simulation then
;;; follows.

define resetsr; 
nl(3);
npr(' ..................................Super R obot...........................................');
"Super"->zpstart;
smergeO;
scrshell->mcrshell;
scrshell->jcrshell;
sksee->jksee;
sksee->mksee;
zecontrol->mecontrol;zecontrol->jecontrol;
zejoint->mejoint;zejoint->]ejolnt;
zenext->menext;zenext->jenext;
zeplace->meplace;zeplace->jeplace;
zeagain->meagain;zeagain->jeagaln;
enddefine;

define sgoO;
resetl 0 ;resetsr();1  ->count; 
zaenterl ("zrbasic".4, [failed)); 
zecontrol->jecontrol; 
nl(3);.prw;splay0; 
enddefine;
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***  P R IN T .p  (1 of 2) * **

Various functions used to print out the state of the program (e.g. 
zoknow prints out a robots world model). (Power 1974, p317-318)

define zoplead (x); 
tl(tl(zwplead(x))) ->x;
if length(x)=3 then [%hd(x),hd(tl(x)),zkme,hd(tl(tl(x)))%] else x endif; 
enddefine;

;;; Prints states of programs

define zosp;
nl(1 );8 p(length(tl(zecontrol))*2 );
enddefine;

define zobug;
if pro then zospO; pr(zatake(place));prs(' called by ');pr(zkme); endif; 
enddefine;

define zoyn(x);
if x=1 or x=true then "yes" elseif x= 0  or x=false then "no" else undef endif; 
enddefine;

define zoknowO; 
vars x,y;
nl(2 ); prs('*** what ');pr(zkme);pr8 (’ knows ***'); 
nl(2 ); prsfa wortd');nl(2 );prs(' 1 . position of objects'); 
nl(1); zkworld->x;
while ispair(x) do nl(1); sp(3);pr(hd(x));prs(': ');pr(hd(tl(x)));
prs(': ');pr(hd(tl(tl(x))));tl(t!(tl(x)))->x;
endwhile;
nl(2 );prs(' 2 .consequences of events');nl(1);zkrule8 ->x;
while ispair(x) do nl(1);sp(3);pr(hd(tl(suc(hd(x)tevt))));pr8(,:');nl(1);
»P(2);
if 8 uc(hd(x),re8)=[undef] then prs(' undef) else write(zwwrule(hd(x)))
endif; tl(x)->x;
endwhile;
nl(2 ); prs('b. ,);pr(zkyou);nl(2 );prs(’ 1 . goal:');
if null(zkxgoal) then prs(' undef) else write(zoplead(zkxgoal)) endif;
nt(2 ); prs(' 2 . range of actions');nl(1); zcacts->x;
while i3 pair(x) do nl(1);sp(3);pr(hd(x));prs(': ');
pr(zoyn(suc(zkxacts, hd(x)))); tl(x)->x;
endwhile;
nl(2);prs(' 3. knowledge of object positions');nl(1);
zkxsee->x;
while ispair(x) do nl(1); sp(3); pr(hd(x)); prsf: ');
pr(zoyn(hd(tl(x))));tl(tl(x))->x;
endwhile;
nl(2);prs(' 4. beliefs about consequences of events');
nl(1 );zkxrules->x;nll->y;
while ispair(x)
do nl(1);8p(3);hd(ti(suc(hd(x),evt)))::y->y; pr(hd(y));prs(';'); 
nl(1 );sp(2 );write(zwwrule(hd(x)));tl(x)->x; 
endwhile;zcacts->x; 
while ispair(x)
do if memb(hd(x),y) then else nl(1);sp(3);pr(hd(x));prs(':');nl(1); 
8p(3);pr(undef); endif;tl(x)->x;
endw hile;nl(2 ) ;p rs ( '** ** ** ** ** ** ** ** ** ** ** ** ** ** *** ** * ');n l(2 );
enddefine;

304



* **  P R IN T  .p (2 of 2 ) ***

define zoplan;
prs( '*** ');pr(zkme);prs('s plan ***'); 
nl(1);pr8 ('goal8 involved');pra(zpgoal); 
nl(1);pr8 ('8 ubgoal8 of each goal');pra(zptree); 
nl(1 );pr8 ('actor8 responsible');pra(zpactor); 
nl(1);pr8 ('8tate of each goal');pra(zpstate); 
n l(1 ) ; prs ( '* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ') ;  n l(1 ); 
enddefine;

define zocont; 
vars x;
prs('*** ');pr(zkme);pr8 ('s control structure ***'); 
rev(zecontrol)->x;
while i8 palr(x) do prc(hd(x));tl(x)->x; endwhile; 
p rs C ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ')  ;n l(1 ); 
enddefine;

define zomind; 
nl(4);
prs('*** current state of ');pr(zkme);prs('s mind ***');
zoknowO ;zoplanO ;zocontO;
enddefine;

define zostart;
nl(2 ); prs(’*** what ');pr(zkme);prs(' capabilities are ***'); 
nl(2);prsC1. Goal:');
if null(zkgoal) or zkgoal=[none] then prs(' None') else write(zoplead(zkgoal)) endif; 
nl(2);pr8('2. Position of objects:1); 
nl(1 );.zkprep; .zklook;zkworld->x;
while ispair(x) do sp(3);pr(hd(x));prs(': ');pr(hd(tl(x)));prs(': ');
pr(hd(tl(tl(x))));pr(',');
tl(tl(tl(x)))->x;
endwhile;
nl(2);prs('3. Consequences of event8:');nl(1);zcrshell->x;
while ispair(x) do nl(1);sp(3);pr(hd(tl(suc(hd(x),evt))));prs(':');nl(1);
sp(2 );
if 8 uc(hd(x),res)=[undef] then prs(' undef') else write(zwwrule(hd(x)))
endif; tl(x)->x;
endwhile;
nl(2); prs('4. Range of actions:');nl(1); zcacts->x; 
while ispair(x) do sp(3);pr(hd(x));prs(': ');
if member(hd(x),zkact8) then pr('Yes');else pr('No');endif;pr(','); tl(x)->x;
endwhile;
nl(3);
enddefine;
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Appendix 6
The following modificatiens perferm the Monte Carlo simulation.
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* * *  exhaustivetest .p (1 o f 3) * * *

;;; The following modifications perform the Monte_Cario simulation.
;;; To execute type: "
;;; jglbalO;

vars glbalact8 ,glbalsee,glbalspeed,glbalrule,file8 :

^Al.daf 'A2.daf'A3.dat1 'A4.dat1 'A5.dat' 'A6 .dat'
'A7.daf 'AS.daf 'A9.dat* 'A10.dat1 'A11 .dat1 
'A12.dat' 'A13.dat1 'A14.daf 
'A15.dat' 'A16.dat1 'A17.dat1 A18.daf 
'A19.dat' 'A20.dat' 'A21.dat' 'A22.dat' 'A23.dat' 'A24.dat'
'A25.dat' 'A26.dat1 'A27.daf 'A28.daf
'A29.dat' 'A30.dat' 'A31.dat' 'A32.dat' 'A33.dat' 'A34.dat'
'A35.dat' 'A36.dat1 ,A37.dat‘ 'A38.dat'
'A39.dat' 'A40.dat' 'A41.dat' 'A42.dat' 'A43.dat' 'A44.dat1
'A45.dat' 'A46.dat1 'A47.daf 'A48.dat1
’A49.dat’ 'A50.dat' 'A51.dat' 'A52.dat' 'A53.dat' 'A54.dat'
'A55.dat1->flles; 
vars cr If;
cons_with consstring {% 13 %} -> cr; 
cons_with consstring {% 10  %} -> If; 
lib datafile; 
lib filellstsin;
[move push slide][move]]->glbalacts;
[door bolt]Q]->glbalsee;
3 1]->glbalspeed;

evtfrobot slldelslt[any]res[undef]] 
evtfrobot pushjsftrbolt up]res[door]] 
evt[robot move]sit[door open]res[robot]]

evtjrobot slidejsit[any|res[undefl] 
evtfrobot pushjsmanyjrestundef]] 
evtfrobot move]sit[door open]res[robot]]

]->glbalrule;

define Jglbal;
vars xx,ww,yy,zz,x1 ,w1 ,y1,z1 ,cntlfilecnt,tmpout,tmp2 out,writeout,write2 outt
dd,uttlist,utterancecnt,actioncnt,interruptloncnt,waitcnt,mcpcnt,Jcpcntlmskill8 ,jskill8 ;
nprfhere1);
0->cnt;0->filecnt;[]->tmpout;D->tmp2out;n->writeout;[]->write2out;

f]->jkacts;n->jksee;n->jspeed;Q->jcrshell; 
or xx in glbalact8 do; 

xx->jkacts;
for yy in glbalsee do;[John A'yy]->jksee; 
for ww in glbalrule do;ww->Jcrsnell; 
for zz In glbalspeed do;zz->Jspeed;

(|->mkacts;[]->mksee;D->mspeed;D->mcrshell; 
or x1 in glbalacts do;x1->mkacts; 

for y1 In glbabee do;[Mary AAy1]->mksee; 
forwl In glbalrule do;w1->mcrshell; 
for z1 in glbalspeed do; z1->mspeed; 

cnt+1 ->cnt;if cnt < 1 then goto skip endif; 
npr(cnt) ;fllecnt+ 1 ->filecnt;
if filecnt=5 then npr('...');write2oiit->datafiie(popfolder<>'Power(V.5.9):,<>hd(files));
prfWriting I);pr(cnt-filecnt);pr('-,);pr(cnt-1);pr( recstofile 'Jinprfpopfoldero'PowerO/.S.OJi'ohd(files));
tl(files)->Tiles;D->writeout;[]->write2out;0->filecnt;
endif;
0 ->)skills;0 ->mskiils;
if sucfhdftl(Jcrshell)1,res)= [undef] then jskills->jskills else 1+jskills-> is kills endif; 
if suc(hd(tl(mcrshelf)),res)= [undef] then mskills->mskilis else 1+mskills->mskills endif; 
if Iength(jkact8)= 1 then jskills->Jskills else 1+|skills->jskills endif; 
if length(mkacts)= 1 then mskills->mskills else 1-t-mskills->mskflls endif; 
if length(jksee)= 1 then jskills->jskllls else 1-t-jskills->jskills endif; 
if Iength(mk8ee)= 1 then m8 kills->mskills else 1+mskills-xnskills endif;
[Acnt (if suc(hd(tl(jcrshelO),res)= [undef] then "UNK" else “KNW" endif)

A(if suc(hd(tl(mcrshell)),res)= [undef] then "UNK" else "KNW" endiO 
A(if length(jkacts)= 1 then IMPRACT" else "PRACT" endtf)
A(if iength(mkact8)= 1 then "IMPRACTelse "PRACT" endif)
A(if length(jksee)= 1 then "IMPERC" else "PERC" endif)
A(if length(mksee)= 1 then "IMPERC* else "PERC" endif)
A(if jspeed= 1 then "SLOW" else "FAST" endif)
A(if mspeed= 1 then "SLOW" ebe "FAST" endif) Ajskills Amskills 

]->tmp2out;
reset2 0 ;

skip;
endfor;
endfor;
endfor;
endfor;

endfor;
endfor;
endfor;
endfor;
nl(1);pr(Total number of dialogues = ');npr(cntl; 
write2out->datafile(popfolder<>,Power(V.5.9):<>hd(files));
prfWriting ,);pr(cnt-rilecnt);pr(,-,);pr(cnt-1);pr( recstofite l);npr(popfolder<>,Power(\/.5.9):,<>hd(files));
tl(nles)->files;D->writeout;Q->write2out;0->filecnt;0->cnt;
enddefine;
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*** exhaustivetest .p (2 of 3) *** 
define reset2 ;
John,John->jkme->mkyou;
Mary, Mary->m kme->lkyou;
[door openl->jkqoal; [none]->mkgoal;
[John out Mary in bofc up door snut]->wobjects; 
nil->wmes8 age;
1 ->count;300->stop;false->prw1 ;false->pro; 

fal8e->ppro;0 ->mt; 0 ->jt;
J]->mptree;0->mp8tate;O->mpgoal;O->mpcurr;
Q->Unexpected events;

1->jptree;n->jp8larte;0 ->jpgoal;[j->jpcurr;
•>zptree|Q->zpstate;[]->zpgoal;Q->zpcurr;

->zecontrol;
->macount;1 ->jacount;

if ppio=tme then [1 2 3 4 5 6 7 8 9  10 11 12 13]->ppro;else []->ppro;endif; 
zunexpected_event->munexpected_event;zunexpected_event->junexpected_event; 
zecontrol->mecontrol;zecontrol->jecontrol; ~
zejoint->mejoint;zejoint->jejoint;zehold->jehold;zehold->mehold; 
ze next->m e next;ze next->Je next; 
zeplace->meplace;zeplace->Jeplace; 
zeagain->meagain;zeagain->Jeagain;
0 ->waltcnt;0 ->utterancecnt;0 ->interruptioncnt;0 ->actioncnt;[[x x xj]->uttiist;
0 ->mcpcnt;0 ->jcpcnt;
replay20;[AAtmp2out Afif rwt(member(last(tmp2out),[CIRCULAR SUCCESSFUL UNSUCCESSFUL])) then
■INCOMPLETE" endiQ Autterancecnt Ainterruptioncnt Aactioncnt Awaitcnt
Ajcpcnt Amcpcnt A(rev(uttlist))]->tmp2out;[AAwnte2out Atmp2out]->write2 out;
enddeflne;
define replay2 ;
vars g;
jawakeQ;.zeprep;.zrmaingl;.zrprep;.zrprep1 ;zaenter1 ("zrbasic",4,[failed]);; 
jasleep0;mawake0;.zeprep;.zrmaingl;.zrprep;.zrprep1 ;zaenter1 ("zrfoasrc’ ,4, [failed]); 
masleepO;
if erase(count//2) > 0 then goto John else goto maty endif;

John:
zpgoaltype,zpcurr.suc->gt;zpgoal,zpcurr.suc->g;
if newcircular(zpgoal,zpgoaltype,g,gt)=true then return(
tmp2out<>[CIRCULAR]->tmp2out,
prfcircular plan detetected...Dialogue ').npr(cnt));
endif;
if count>stop then retum(nl(2)) end if ;true->)e again;
If ispair(Unexpected events) and count>hd(Unexpected events)
then if zceventfhd(t1(Unexpected_events))) then zpdo(h3(tl(Unexpected events)));
else wsub(hd(ha(ti(Unexpected events))),nd(tl(hd(tl(Unexpected_events)y)));.prw;
endif;
tl(tl(Unexpected_events))->Unexpected events;true->munexpected_event;true->junexpected_event; 
endif;
JawakeO; 
repeat forever
if zaentry(8)=[achieved] then return(tmp2outo[SUCCESSFUL]->tmp2out);endif; 
if zptree/=nil then
if fsucfzpstate.hdfsucfzptree.O)))) = 'achieved" then return(tmp2out<>[SUCCESSFUL]->tmp2out);endif; 
if (8uc(zp8tate,hd(suc(zptree,0)))) = "failed" then return(tmp2outo[UNSUCCESSFUL]->tmp2out);endif; 
endif;

.zearouse;
1+Jt->jt;

If Jt=Jspeed then 0->jt;false->zeagain;endif; 
quitunless(zeagain or zeagain=1); 
end repeat; 
jasleepO; 
if null(wmessage) 
then goto mary; 
endif;

if hd(wmessage)=’- '  then waitcnt-i-1 ->waitcnt endif;
1+count->count;utterancecnt+1 ->utterancecnt;
if hd(tl(hd(uttli8t)))='John' then interruptioncnt+1 ->interruptioncnt;endif;

{% (count-1), 'John',' i^Jowmessage-xid;
%dd%]outtlist->uttlist;

;
mary;
zpgoattype,zpcurr.suc->gt;zpgoal,zpcurr.suc->g;
if newcircular(zpgoal,zpgoaltype,g,gt)=true then return(tmp2outo[CIRCULAR]->tmp2ouL
pr('circular plan detetected...Dialogue ^.np^cnt));
endif;
if courrt>stop then retum(nl(3)) endif;true->meagain;mawakeO; 
repeat forever
if zaentry(8 )=[achieved] then return(tmp2out<>[SUCCESSFUL]->tmp2out);endif; 
if zptree/=nil then
if fsucfzpstate.hdfsucfzptree.O)))) = "achieved" then return(tmp2outo[SUCCESSFUL]->tmp2out);endif; 
if (suc(zpstate,hd(8uc(zptree,0)))) = "failed" then return(tmp2outo[UNSUCCESSFUL]->tmp2out);endlf; 
endif;

.zearouse;1+mt->mt; if mt=mspeed then 0 ->mt;fa!se->zeagain;endif; 
quitunless(zeagain or zeagain=1); 
end repeat; 
masleepO; 
if null(wmessage) 
then goto john; endif;

if hd(wmessage)="-"then waitcnt+1 ->waRcnt endif;
1+count->count;utterancecnt+1 ->utterancecnt; 

if hdftl(hd(uttlist)))='Mary' then 
interruptioncnt-i-1->interruptioncnt;endif;[%(count-1),'Mary1,' :'%]<>wmessage->dd;[%dd%Jouttlist->uttlist; 

false->prw1 ; goto john; 
enddeflne;
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*** exhaustivetest .p (3 of 3) *** 
define zpdo (e); 
actioncnt+ 1 ->actloncnt; 
hd(e);hd(tl(e))->e;
If e=push then wpushQ 
elseif esslide then wslideO 
elseif e=move then wmoveO 
endif; 
enddeflne;

define zegameO;
vars c.n,mine,entry,made,message,tests; 
begin:
zatake(place)->n; 
suc(valof(zatake(name)),n)->c; 
if c=undef then zeexitO endif;
(hd(c)="**)->entry;
if entry or entry=1 then (ispair(zaentry(n)))->made endif; 
fhdftl(c))=zatake(colour))->mine; 
if mine or mine=1 
then if entry or entry=1

then if made or made=1 then goto advance else goto perform endif;
else goto perform
endif;

else if entry or entry=1
then if made or made=1 then goto advance else goto read endif;
else goto advance
endif;

endif;
perform:
zobugO;
if n=1 and zatake(colour)=white then 
if zkme=’John" then Jcpcnt+1->jcpcnt endif; 
if zkmes'Mary* then mcpcnt+1->mcpcnt endif; 
endif;
popval([%a.",hd(tl(tl(c)))%]); return; 
advance:
zaput(place,n+1); return; 
read:
rev(tl(rev(tl(U(tl(tl(c)))))))->te8ts; 
zeread (tests)->m essage; 
if null(message) then goto swap; 
elseif me8saae=[inapt] then goto moan ;
else return( if zctgame()> 0  then zaput(expectrepiy,false) endif,zaenter(message));
endif;
moan:
prf moaning... message = *); npr(message);
zeplayfjump",undef); return
swap:
zeposta-]);
enddeflne;

define newcircular(t,tt,g,gt);
vars c;0 ->c;
while ispair(t) do
if g=’undef* then [undef]->g endif;
if gt='undeP then [undef]->gt endif;
if (f%gt%l<>g=[%hd(tl(tt))%l<>hd(tl(t))) then c+1 ->c; endif;
tl(tfft))->t;tl(tl(tt))->tt;
endwhile;
if c>1 then retum(true) else return(false);endif; 
enddeflne;

define prw; 
true->prw1 ;
;;;prs( (State of the world is now ^prfwobje^iprsO1);
;;;if pro then nl(1) endif;nl(1);
enddefine;
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