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In the Name of God, the Most Beneficent the Most Merciful

« It is He Who sends down rain from the sky, and with it We bring forth 

vegetation o f all kinds, and out o f it We bring forth green stalks, from which 

We bring forth thick clustered grain, and out o f the date-palm and its spathe 

come forth clusters o f dates hanging low and near, and gardens o f grapes, 

olives and pomegranates, each similar (in kind) yet different (in variety and 

taste). Look at their fruits when they begin to bear, and the ripeness thereof 

Verily! In these things there are signs fo r people who believe » .

Qur*an, Chapter 6: Verse 99.
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SUMMARY

The relative tolerances of two lines of wild barley (Hordeum 

spontaneum), B19909 and 1-17-40 and one cultivated barley (Hordeum 

vulgare), cv. Prisma infected by Blumeria graminis f.sp. hordei (syn. 

Erysiphe graminis f.sp. hordei) were investigated by growth analysis.

Mildew development was assessed as percentage leaf area colonised, and by 

numbers of conidia produced. At all stages of plant growth, the percentage 

leaf area colonised by the mildew was slightly higher on the wild line 

B19909 than on cv. Prisma and much more than on the wild line 1-17-40. 

When mildew was measured as conidial production, line B19909 was found 

to support more fungal biomass than cv. Prisma and cv. Prisma much more 

than line 1-17-40.

Although line B19909 supported the development of more fungal biomass 

than cv. Prisma and line 1-17-40, its total dry weight was reduced less by 

infection than either of the latter lines, even cv. Prisma. The growth 

components of line 1-17-40 were reduced to the same level as line B19909 or 

less presumably because it supported the lowest levels of infection and 

lowest levels of conidial production. The reduction in total plant dry weight 

was reflected in reduced primary shoot height, fewer tillers, and reductions in 

leaf area. All these reductions occurred to a lesser extent in line B19909 than 

in cv. Prisma and sometimes to a greater extent than in line 1-17-40. Root dry 

weight was also reduced less in line B19909 than in cv. Prisma, but least in 

line 1-17-40. Root development was inhibited more than shoot development 

in all the lines but the least difference occurred in line B19909. Total length
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and surface area of the seminal roots as well as the number of laterals on the 

seminal roots were reduced in line B19909 to about the same level as in line 

1-17-40 but much less than in cv. Prisma. Number, total length, diameter and 

surface area of nodal roots were also reduced much less in line B19909 than 

in the other two lines.

The reductions in the vegetative parts were not reflected in reductions in 

yield components such as number and dry weight of grains on the primary 

shoot, total number and total dry weight of grains on tillers and the 

proportion of total biomass converted to grain (harvest index). Although 

reductions in all these components occurred in cv. Prisma they were not 

affected in the wild lines.

The reductions in dry matter production were partly due to reductions in leaf 

development and partly to reductions in the rate of photosynthesis per unit 

leaf area. The effects of infection on the rates of photosynthesis were 

investigated in three cultivated barleys, Golden Promise, Prisma and 

Triumph, and in three wild barleys, line B19909, 1-17-40 and B8893. 

Photosynthesis was reduced more in cvs Prisma, Golden Promise and 

Triumph and in the moderately resistant line 1-17-40 than in line B19909, 

although the latter supported the highest levels of infection. Although cv. 

Golden Promise supported the production of a similar number of conidia as 

line B19909, its rate of photosynthesis was more reduced. In contrast, the 

most resistant line B8893 that supported the production of very few conidia 

was not affected.

High levels of infection increased the rate of dark respiration less in line 

B19909 than low levels of infection in cv. Prisma. In contrast, the low levels
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of infection on line 1-17-40 increased dark respiration more than did higher 

levels of infection on cvs Golden Promise and Triumph. Dark respiration was 

not affected in the wild line B8893.

Infection increased stomatal resistance in the light in all three lines indicating 

that mildew induced stomatal closure and consequently limiting CO2 

diffusion to the carboxylation sites and causing a decline in the rates of 

photosynthesis. In contrast, stomata foiled to close completely in the dark in 

all three lines.

The compensatory photosynthesis in uninfected fourth leaf of infected plants 

was also investigated in cv. Prisma and the two wild lines B19909 and 1-17- 

40. Infection of the three lower leaves increased the rate of photosynthesis as 

well as the quantum efficiency in the more tolerant line B19909 only. This 

indicates that compensatory photosynthesis may play an important role in 

tolerance of the parasite.

Thus both from growth analysis and from measurements of photosynthesis 

and respiration it appears that line B19909 was more tolerant of mildew 

infection than the other lines.



Chapter 1
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INTRODUCTION

1.1. The importance of barley as a crop and the economic 

significance of barley mildew (Blumeria graminis f.sp. hordei)

Barley (Hordeum vulgare), a small-grain cereal, belongs to the tribe 

Hordeae of the family Gramineae. It is a major world crop and ranks as the 

most important cereal after rice, wheat and maize (Bengtsson, 1992). Barley 

is widely cultivated, being grown extensively in Europe, around the 

Mediterranean rim, and in Ethiopia, Russia, China, India and North America 

(Harlan, 1995). In Britain, barley has been the crop with the largest land 

acreage for a considerable period of time and still represents today, together 

with wheat, one of the major crops.

It has been suggested that cultivated barley originated from the wild 

barley, Hordeum spontaneum C. Koch, which has its centre of origin in the 

Fertile Crescent of the Middle East (Zohary, 1969), with scattered stands over 

a much wider area from Tunisia to Afghanistan and with doubtful occurrence 

in Morocco and Abyssinia (Clarke, 1967; Harlan & Zohary, 1966).

The fungus Blumeria graminis (DC.) Speer f.sp. hordei Marchal (Syn. 

Erysiphe graminis DC. f.sp. hordei Marchal) (Braun, 1995) causes powdery 

mildew, the most important disease of barley throughout the world where the 

crop is grown (Brooks, 1970).

The importance of powdery mildew on barley was recognised at the 

beginning of this century when the disease was observed to cause economic
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losses (Wolfe & Schwarzbach, 1978). Since then barley mildew has remained 

a constant problem in many parts of the world, including Europe. For 

example, annual losses of about 9% are reported in England and Wales (King, 

1972; 1977), 10% in Denmark (Slootmaker & Essen, 1969), 25% in USA 

(Schaller, 1951) and 30% in North Africa (Yahyaoui et al., 1997). Even 

greater yield reductions have been found in experimental studies and losses in 

grain yield in excess of 50% have been reported (Rea & Scott, 1973).

1.2. Interactions between barley and B. graminis f.sp. hordei

The responses of barley to infection by B. graminis have been found to be 

extremely varied. Some cuhivars may be highly susceptible and support high 

levels of fungal development resulting in the death of the host, while others 

may be immune. In between the two extremes there is a continuous range of 

cultivars which support all levels of fungal development (Jones & Clifford, 

1983a).

1.2.1. Host resistance

Resistance of a host to a parasite is defined by Agrios (1997) to be the 

ability of the host to prevent, completely or in some degree, the growth and 

development of that parasite. Different types of resistance in barley to 

infection by B. graminis f.sp. hordei have been noted from complete 

resistance to varying levels of partial resistance.
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1.2.1.1. Complete resistance

In many instances, complete or near complete resistance has been found to 

be controlled by one or at most two or three genes with major effect. This 

type of resistance is often called race-specific resistance or major gene 

resistance and is often expressed as a hypersensitive reaction (Jones, 1987).

The specificity of most types of major gene resistance suggests that there 

is some relationship between specific avirulence genes in the different 

physiologic races of the pathogen and the different resistance genes in the host 

cultivars incorporating them.

Many B. graminis fisp. hordei avirulence alleles and barley resistance 

genes were found to follow a gene-for-gene relationship, a relationship which 

was first demonstrated by Flor in 1956 between flax and flax rust (Moseman, 

1957,1959).

The application of Flor’s gene-for-gene hypothesis has facilitated the 

identification of specific resistance genes in barley and their corresponding 

pathogenicity genes in B. graminis fisp. hordei. In this way, a large number of 

resistance genes in cultivated barley and wild species of barley have been 

identified and mapped (Giese, 1981; Giese et al., 1981; Wolfe, 1972; Sog&rd 

& Jorgensen, 1987).

Resistance to at least some variants of B. graminis fisp. hordei is 

determined by alleles located in at least seven loci. At least five of these loci 

appear to be located on the long arm of chromosome 5, whereas the other 

two loci, Ml-g and Ml-o, are located on chromosome 4 (Wolf, 1972). The 

resistance alleles are designated after the cultivar or line in which they were
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first identified; eg. Ml-a (cv. Algerian), Ml-at (cv. Atlas), Ml-g (cv. Goldfoil), 

Ml-h (cv. Hanna), Ml-k (cv. Kwan), Ml-p (cv. Psaknon) and Ml-o (McIntosh,

1978).

Plant breeders produce new resistant cultivars by incorporating single 

major genes derived from Hordeum spontaneum. These resistant cultivars are 

extensively used, particularly in Europe and North America, because 

resistance provides the cheapest and the most effective means of controlling 

pathogens, particularly powdery mildews of cereals. However, the cultivation 

of resistant cultivars on a large scale imposes a strong selection pressure on 

the pathogen population for virulent races that can overcome the resistance. 

In general, major gene resistance remains effective for only a few years before 

a virulent race of the mildew pathogen arises which can overcome the 

resistance. This was first observed in the case of the major resistance gene Ml- 

g, which was introduced into European barley varieties in the 1930s (Wolfe & 

Schwarzbach, 1978). For example in Germany, when the area under 

cultivation with cultivars with Ml-g gene was still small during the 1930s and 

1940s, it remained effective. However, when areas under cultivation in the 

late 1940s started to increase rapidly, this resistance gene was defeated 

(Wolfe & Schwarzbach, 1978; Wolfe, 1984). The instability of major gene 

resistance has caused plant breeders to look for ways to use it, which might 

make it more durable.

Three methods have been used to improve the durability of major gene 

resistance, pyramiding resistance genes, multiline varieties and variety 

mixtures. Pyramiding resistance genes consists of breeding as many of the
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genes as possible into a cultivar before releasing it into commercial 

production. This means that the parasite must overcome all the resistance 

genes before it becomes virulent.

Multiline varieties are formed as combinations of isogenic lines, identical 

in all agronomic characters but differing in the race-specific resistance gene 

they contain (Jones & Clifford, 1983b and Manners, 1993). In order to break 

down the resistance of the multiline, the pathogen must acquire enough 

different virulence alleles to overcome all the resistance genes present.

Variety mixtures consist of several varieties, which are similar to each 

other in agronomic characters, but which have different resistance genes. 

Mixed varieties have been shown to have reduced levels of infection and 

consequently reduced yield loss of the individual components of the mixture, 

when compared to the mean yield from pure stands (Wolf 1985). However, 

mixed varieties, like multiline varieties and pyramiding, could lead to the 

development of new and more virulent races (super-races) that are virulent on 

all of the varieties in the mixture (Groth, 1976). This possibility was 

supported experimentally by the work of Huang et al. (1994) who suggested 

that super-races would dominate a mildew population when the same cultivar 

mixtures or multilines were used continuously over long periods and large 

areas. The search for more durable forms of resistance should continue.

1.2.1.2. Partial resistance

Many barley varieties have been found to be partially resistant to B. 

graminis pathotypes. Such varieties support the growth of the fungus but the
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growth is limited. Partial resistance tends to be more durable than race 

specific resistance (Roberts & Caldwell 1970). It is in feet not specific and 

affects several of the pathogen infection processes, pathogenicity and 

sporulation. It is believed to be controlled by a number of genes each with 

small effect (Parlevliet, 1981) and it is sometimes referred to as polygenic 

resistance (Asher & Thomas, 1987). Partial resistance is more durable 

because the pathogen has to undergo several genetic changes to overcome the 

resistance (Jorgensen, 1994).

Partial resistance has been transmitted to new varieties in breeding 

programs (Roberts & Caldwell, 1970). Unfortunately, this type of resistance 

rarely provides an adequate level of resistance. It is also difficult to evaluate 

its level in the field without growing the plants to maturity and it is more 

difficult than major gene resistance to manipulate in breeding programs 

(Jones, 1987). However, if supported by other control measures, such as the 

use of fungicides, it can give useful mildew control

Since partially resistant cultivars are susceptible in wild populations, 

genotypes which are least affected by that level of infection are likely to have 

the higher reproductive output and thus have a selective advantage over 

genotypes which are affected more. Genotypes which are least affected are 

the most tolerant genotypes and thus tolerance is likely to play a significant 

role in a host’s survival strategy and could be used as a crop protection 

measure.
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1.2.2. Tolerance of the parasite

Tolerance of the parasite in plants is defined as the ability of a plant to 

endure the effects of levels of parasitic development, which if they occur at 

equivalent levels in other plants of the same or of similar species would cause 

greater impairment of growth or yield (Clarke, 1986).

I.2.2.I. Evidence for tolerance in crop plants

That some cultivars of some crops may vary in their tolerance of infection 

has been suggested for many years. One of the first reports of tolerant 

cultivars in cereals is that of Salmon & Laude (1932). They claimed that 

Fulhard wheat was more tolerant of leaf rust (P. recondita) than were other 

cultivars used in a trial. These results were verified and supported by Caldwell 

e ta l (1934).

Newton et al. (1945) compared the reactions of six barley cultivars to leaf 

rust (P. hordei) and concluded that two cultivars (Mensury and O.A.C.21) 

were more tolerant than the other four cultivars. Similarly, Kramer et al.

(1980) compared the reactions of fifteen spring barley cultivars to leaf rust (P. 

hordei) and observed that some cultivars appeared to have stable tolerance 

which was expressed in each season, while others expressed unstable 

tolerance which was expressed in one season but not in another.

Simons (1966) examined 24 oat cultivars for their reactions to crown rust 

(P. coronata) and concluded that cv. Cherokee and several other cultivars 

with susceptible reactions were significantly more tolerant of given levels of 

infection, as measured by kernel weight ratio, than cvs Clinton and Benton.
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However, in none of these cases, were the rates of development of 

parasite biomass and or disease examined. Clarke (1986) concluded that none 

of the studies clearly established that the named cultivars were really more 

tolerant of infection than some of the other cultivars with which they were 

compared. In contrast, the experiments carried out on oat plants by Sabri et 

al. (1993, 1995 and 1997) in which reductions in host plant growth and 

changes in photosynthesis and respiration were related to parasite biomass 

development, gave results which clearly showed that one cultivar cv. Lustre 

was more tolerant of given levels of mildew infection than another, cv. 

Peniarth.

I.2.2.2. Evidence for tolerance in native plants

It has been commonly observed (Tarr, 1972) that some wild plants can be 

very susceptible to a parasite yet appear to be little affected by it. This general 

view that wild plants may be more tolerant of parasitic infection than 

cultivated plants gained some support experimentally from the work of Ben- 

Kalio & Clarke (1979) on the effects of the powdery mildew fungus Erysiphe 

fischeri on the growth and development of Senecio vulgaris (groundsel). 

They observed that up to 30% mildew cover had no effect on plant growth. 

Even heavy levels of infection, when up to 75% of total leaf area were 

colonised, did not effect chlorophyll levels in the leaves nor the rate of dry- 

matter production per unit area of leaf, and nor did they affect photoassimilate 

distribution between the different parts of the plant. However, leaf expansion 

was reduced and so total plant growth and number of flowers and fruits were
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reduced.

Similarly, comparative studies of the effects of powdery mildews on 

willow herb (Epilobium montanum) and couch grass (Elymus repens) 

indicated that infection did not reduce growth until more than 30% of the 

aerial surfaces were colonised (Clarke, 1988). Levels of infection above 30% 

progressively reduced growth but to a lesser extent compared to crop plants 

such as cereals, where growth is generally depressed substantially even by low 

levels of infection (Ayres, 1984).

More recently, Sabri (1993), (Sabri et al., 1995) compared the effects of 

B. graminis f.sp. avenae on the growth of one wild line of oat (Avena fatud) 

and two cultivated oats Lustre and Peniarth (A. sativa) and found that 

although the wild oat supported the highest levels of mildew development, its 

growth and yield were reduced less than those of the two cultivated oats 

particularly cv. Peniarth. Thus the wild line appeared to be much more 

tolerant of given levels of mildew infection than either of the two cultivated 

oats particularly cv. Peniarth.

Since reductions in growth were due to the effects of mildew infection on 

leaf development and function, Sabri (1993), (Sabri et al., 1997) investigated 

the effects of infection on photosynthesis and respiration in the three oat lines. 

The results indicated that gross and net photosynthesis and chlorophyll levels 

were reduced by infection in all three lines, but to the greatest extent in cv. 

Peniarth, to a lesser extent in cv. Lustre and to the least extent in the wild oat 

despite the latter supporting the development of the highest level of mildew 

biomass. This study supported the results of the growth analysis that wild oat
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possessed more tolerance of infection than either of the two cultivated oats. It 

was also found that for given levels of mildew biomass development, cv. 

Lustre was less affected than cv. Peniarth indicating that cultivars may differ 

in their tolerance. From these studies on tolerance of wild plants, it was 

concluded that wild plants might possess higher levels of tolerance of 

parasites than crop plants.

1.3. How pathogens affect the growth and yield of susceptible 

hosts

13.1. Effects on the shoot growth and yield

Detailed growth analysis on some important crop species has been carried 

out to investigate just how pathogens affect the growth and development of 

the plant.

In glasshouse experiments, Last (1962) studied the effects of B. graminis 

f.sp. hordei on the growth and development of spring barley plants. He 

showed that although total plant dry weight of infected plants continued to 

increase, final dry weights were reduced by about 59% compared to the 

uninfected controls by 11 weeks after inoculation. At this stage the mean level 

of infection, measured as percentage mildew cover, was about 30%. Infected 

plants also produced shorter primary shoots, fewer shoots per plant and 

developed a smaller leaf area per shoot than the uninfected controls. The 

reduced dry weight of the shoot system of infected plants was found to be 

closely paralleled by a reduced leaf area. During the early stages of infection, 

reduced growth was attributed mainly to fewer shoots per plant, but later,
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also to reductions in total leaf area as well as to fewer shoots. The mean unit 

leaf rate or net assimilation rate was also reduced by infection, by about 27% 

compared to the uninfected plants. Unexpectedly, infection reduced root 

growth more than shoot growth. The reductions in leaf area, net assimilation 

rate and root growth were reflected in smaller grain yields, due to the 

production of smaller and fewer ears. The average decreases in dry weight per 

ear and in number of ears per infected plant were about 21% and 12% 

respectively.

Although Paulech (1969) obtained similar results to Last, the results of 

both workers were open to criticism for three reasons. Firstly, the experiments 

were carried out in glasshouses where mildew developed more severely than 

in the field. Secondly, plants were grown in pots and so may be qualitatively 

and quantitatively different from those grown in the field. Thirdly, the effects 

on growth depend on the growth stage at which infection occurs (Brooks, 

1972).

Working with spring barley in field trials, Brooks (1972) found that the 

growth and yield of winter barley, which can be subject to severe mildew 

attack in both autumn and in spring, was significantly reduced. He observed 

that when an early and severe attack was contained for the whole season, 

there was about 26% increase in the yield because of the increased numbers of 

fertile tillers produced and the increased ear weight. When mildew infection 

occurred late in plant development, reductions in grain size were the only 

effect. In general, Brooks (1972) confirmed the observations on pot grown 

plants made by Last (1962) and Paulech (1969).
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Griffiths et al. (1975), in pot experiments, investigated the effects of 

mildew epidemics of different duration and with varying times of inoculum 

arrival on grain production. They showed that an early mildew attack not only 

reduced tiller number but also grain size and number of grains per tiller, but 

late mildew attack reduced only the number of fertile tillers with no significant 

effect on grain size or number. The change in the plant response to mildew 

infection was found to occur about G.S. 5.0, i.e. at the end of tillering, but 

after this stage, the effect of mildew epidemics on tillering was much reduced. 

This was due to the fact that tillering in barley is completed at G.S. 3.0 

(Zadoks et al., 1974).

These studies were confirmed and investigated in more details by Scott et 

al. (1980) who found that significant reductions in grain number and size 

could occur even with late mildew attack because of the effects of infection 

on photoassimilate production during the period of grain filling.

The greatest effect of mildew is to accelerate leaf senescence so that green 

leaf area (GLA) is reduced (Last, 1962; Brooks, 1972). Many studies have 

revealed close relationships between GLA or GLA duration and crop yield 

losses (e.g. Rea & Scott, 1973; Jenkyn, 1976; Carver et al., 1981, 1982; Lim 

& Gaunt, 1986; Waggoner & Berger, 1987). For example, Carver et al.

(1981) examined the relationships, using greenhouse grown barley plants, 

between the severity of powdery mildew, green leaf area (GLA) and grain 

yield. The results showed that mildew reduced GLA in proportion to its 

severity and there was an almost complete correlation (r = 0.99) between 

GLA and grain yield in both primary shoots and tillers. There was also a good
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correlation between disease progress and total yield of primary shoots (r = 

0.95). Detailed analyses of the data indicated a dominant role for GLA pre- 

anthesis on grain yield associated with mildew epidemics. GLA before 

anthesis determined the amount of stored photosynthate generated before 

anthesis and available for retranslocation to the developing grain.

However, field-grown plants generally differ from those grown in the 

glasshouse in the development of smaller leaves due to the effects of 

temperature and light intensity (Carver et al., 1982) and so it is important to 

establish whether the responses of field grown plants to mildew attack are 

similar to those of glasshouse grown plants. For this reason, spring barley 

plants, cv. Julia, were grown in micro-plots in the field (Carver et al., 1982), 

but the observations from these field experiments confirmed almost all the 

details gained from greenhouse experiments (Carver et al., 1981).

In contrast to the findings of Carver and Griffiths (1981, 1982), that late 

mildew epidemics had only small effects on grain yield, Wanzhoug (1988) 

using cv. Triumph, observed that although early mildew attacks were more 

damaging to plant growth and yields than late attacks, late epidemics also 

caused significant losses in most yield components. The difference in yield 

responses to late mildew epidemics found between Carver et a/.’s (1981) and 

Wanzhoug’s (1988) experiments may be explained by different degrees of 

tolerance between the cvs Julia and Triumph or by differences in 

environmental conditions.
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1.3.2. Effects on root growth and physiology

The effects of powdery mildews and other foliar pathogens on plant 

growth were usually considered in relation to the leaf environment and little 

thought was given to possible effects on root growth. Roots take up water 

and nutrients and transport these to the shoots together with certain plant 

growth regulators that they synthesise (Ayres, 1984). The growth and 

physiological efficiency of cereal roots can be disrupted directly by root 

parasites (Asher, 1972; Clarkson et al., 1975; Fitt et al., 1978) or indirectly by 

foliar parasites such as powdery mildew (Last, 1962; Paulech, 1969; Brooks, 

1972; Walters & Ayres, 1981a).

Last (1962) was the first to note that mildew infection of the leaves 

reduced root growth relatively more than shoot growth. He found that root 

dry weight per unit leaf area was decreased in infected plants by up to about 

32% of the level in uninfected plants. He suggested that some of the efficiency 

of the assimilatory apparatus could be affected by the large reductions in the 

absorbing systems (roots). Paulech (1969) and Brooks (1972) confirmed that 

roots were affected more than shoots by mildew infection in barley plants.

The branching pattern of roots was also found to be affected by mildew 

infection. Viz£rov£ & Minartic (1974) observed that in barley plants, four 

days after inoculation with B. graminis fisp. hordei, the rate of elongation of 

the seminal roots was reduced as also was the growth and formation of lateral 

roots. They also noticed that the diameters of the roots were smaller and thus 

that the roots had a much smaller stele than the roots of healthy plants. 

MinarCic & Paulech (1975) also observed this reduction in the stele size.
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More detailed investigations of the effects of mildew on the growth of 

barley roots were carried out by Walters (1981) and Walters & Ayres 

(1981a). They observed that total root dry weight, total root length, as well as 

the length of individual roots (seminals, nodals and laterals) were significantly 

decreased by mildew infection. The numbers of seminal and nodal roots were 

not affected by infection but there was a significant reduction in the number of 

primary and secondary laterals formed by both types of roots. Reduced stele 

size was also reported which was in agreement with the results of Vizdrovd & 

MinarCic (1974) and MinarCic & Paulech (1975). The results presented by 

Walters (1981) showed that mildew infection lead to a reduction in the 

number and size of the inner metaxylem vessels and in the size of the 

endodermis.

The effects of mildew infection on mitotic cell division in the apical 

meristems of the roots of barley plants were first investigated by MinarCic & 

Paulech (1975). They observed that infection reduced mitotic cell division in 

the apical root meristems of a highly susceptible barley cultivar in response to 

mildew infection and Walters (1981) obtained similar results. Lewis & 

Deacon (1982) investigated the effects of mildew infection on the senescence 

of the root cortex of barley seedlings, but found little difference from 

uninfected plants. Last (1962) suggested that the reductions in the root 

systems in barley caused by mildew infection was a secondary effect of the 

lower unit leaf rates, but a stage may, however, be reached when the smaller 

root system itself affects leaf efficiency. Fric (1975), attributed effects on root 

growth to the reduction in the quantity of photoassimilates reaching the root,
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but he also suggested that other factors might be responsible such as 

disturbances to the hormonal balance of the roots. Vizarova & Minardic 

(1974) in feet found that treatment of healthy barley with cytokinin did result 

in alterations in the root system which were similar to those observed in 

mildewed plants. Thus, the increase in cytokinin levels detected around four 

days after inoculation in infected plants may be associated with the 

morphological changes observed in the roots. However, the level of 

cytokinins was observed to decrease later and thus effects on root growth 

must be due to other factors. The reduction in the mitotic cell division of the 

root apices may also be attributable to a decreased photoassimilate supply 

from the shoots to the roots (MinarSic & Paulech, 1975) and such a reduction 

was later reported by Walters (1981) who observed a reduced supply of 14C 

photoassimilates to the root tips of infected plants.

Undoubtedly, the changes in root anatomy and growth of mildewed barley 

plants would have an effect on root physiology. In the work carried out by 

Walters (1981), it was shown that roots of mildewed barley were taking up 

more 32P-labelled phosphate than uninfected plants by 24 hours after 

inoculation. He suggested that this increase was due primarily to the creation 

of a sink in the shoot system created by the mildew infection and secondly to 

ammonium ions, which were found, to accumulate in roots of infected plants. 

It was also noticed that mildewed plants absorbed more potassium and 

chloride from the growth medium than healthy plants, and consequently, the 

ionic content of the tissues of infected plants was greater than those of 

uninfected plants (Walters, 1981). In contrast, infection by powdery mildew
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was found to decrease nitrate uptake thereby lowering the nitrate content of 

roots and this was explained by the lack of photassimilates received by the 

roots from infected leaves (Walters & Ayres, 1980). However, sodium uptake 

and content was unaffected by infection (Walters, 1981). Walters (1981) did 

suggest that the increased levels of indole-acetic acid (Shaw et al, 1958) and 

cytokinin (Vizdrovd & MinarCic, 1974) found in infected plants could cause 

increases in the movement of inorganic and organic nutrients to sites of 

mildew infection.

Other physiological processes in the roots were found to be altered by 

infection, e.g. respiration which increased in the roots of barley plants whose 

shoots were infected by mildew (Fric, 1975; Walters, 1981).

From all the studies presented here, it is clear that the roots of barley are 

significantly altered morphologically, anatomically and physiologically by 

infection with powdery mildew fungi. These changes must have a detrimental 

effect on the growth of the plants and thus on yield.

1.3.3. Functional equilibrium between roots and shoots of infected plants

Shoots, together with the roots, constitute the entire plant structure and 

the ro o t: shoot ratio can provide an index of the performance of each organ 

in a given growth environment.

Based on the work of Davidson (1969) and Thomley (1972), several 

workers have demonstrated a functional equilibrium between root and shoot 

growth and the development of uninfected plants (e.g. Richards, 1977, 1978). 

Ayres (1984) suggested that the equilibrium between root and shoot growth is
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mediated by water and nutrients moving from root to shoot, by 

photoassimilates moving from shoot to root and by growth regulators moving 

in both directions. However, it was mentioned earlier that the dry weights of 

the roots of barley plants infected with B. graminis f.sp. hordei were reduced 

more than shoot dry weights and consequently, the ro o t: shoot ratio had been 

decreased by infection. It has already been noted that nutrient uptake, 

photoassimilate distribution and the balance between growth regulators were 

all altered following infection.

Walters (1985) suggested that, powdery mildew infected barley plants 

might be able to maintain a functional equilibrium between root and shoot 

growth during the early stages of infection, but that the equilibrium may 

become increasingly unstable as the pathogen colonises the majority of the 

plant’s leaf area and the host’s physiology becomes increasingly altered.

In contrast to the findings on the effects of powdery mildew infection in 

cereals, some wild plants have been observed to have their roots and shoots 

more or less equally affected by infection e.g. infection by B. graminis f.sp. 

avenae had no effect on the root to shoot ratio in a wild oat line compared to 

the cultivated oats (Sabri et a l, 1995). Erysiphe fischeri had also no effect on 

the root to shoot ratio in Senecio vulgaris (groundsel) (Ben-Kalio et al.,

1979). A similar result was reported for willow-herb infected with the 

powdery mildew, Sphaerotheca epilobii (Clarke, 1988). The failure of 

powdery mildew infection to alter root to shoot ratios in wild oat, groundsel 

and willow-herb was explained by the ability of these hosts to tolerate 

infection.
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1.4. The effects of infection on host metabolism

Invasion of plants by parasitic micro-organisms alters the metabolism of 

the host in various ways. Infections by necrotrophic fungi are generally 

associated with extensive damage and the rapid death of affected tissues, but 

relatively simple changes in metabolism (Manners, 1993). In contrast, 

biotrophic fungi obtain their nutrients from living cells and appear to be able 

to manipulate their host's metabolism to a significant extent in order to ensure 

a continued supply of carbohydrates and nutrients (Ayres et al., 1996).

Biotrophic fungi certainly alter most of the physiological and biochemical 

processes of their host, including photosynthesis (Ahmad et al., 1983; 

Buchanan et al., 1981; Ayres et al., 1996; Scholes et al., 1985; Scholes, 

1992), respiration (Last, 1963; Daly, 1976; Kosuge et al., 1981; Raggi,

1980), carbohydrate metabolism (Farrar, 1985; Whipps et aL, 1981; Scholes, 

1992; Ayres et al., 1996), transport systems (Farrar, 1984), water relations 

(Ayres 1981a; Duniway et al., 1971b), nucleic acid metabolism (Chakravorty 

and Scott, 1982; Higgins et al., 1985) and protein synthesis (Manners and 

Scott, 1984). Since this project deals with the effects of B. graminis f.sp. 

hordei infection on photosynthesis and respiration in barley, this review will 

concentrate mainly on these two processes and only refer to effects on other 

systems where they impinge on these processes. Furthermore, because of the 

extensive literature on biotrophic parasites, only the effects of powdery 

mildews and rusts will be considered in detail in this introduction.
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1.4.1. Effects on carbon gain through photosynthesis

1.4.1.1. Effects on photosynthesis in infected leaves

Since photosynthesis is the process by which green plants obtain their 

energy, any pathogen interference with this process will clearly have adverse 

effects on the plant, leading to decreased growth and yield. Powdery mildew 

and rust infections have generally been found to reduce the rates of 

photosynthesis in their host (Allen, 1942; Gordon et al., 1982a and 1982b; 

Owera et al., 1981; Daly, 1976; Magyarosy et al., 1976; Habeshaw, 1979, 

1984; Mitchell, 1979; Ellis et al., 1981; Ahmad et a l 1983).

In the case of powdery mildews, Allen (1942) reported that the rate of 

photosynthesis declined rapidly in wheat leaves heavily infected with B. 

graminis f.sp. tritici, but in lightly infected leaves the rate of photosynthesis 

still declined but more slowly. Similarly, when barley leaves were infected 

with B. graminis f  sp. hordei, the rate of photosynthesis began to decline 

progressively from two days after inoculation according to Scott & Smillie 

(1966), but not until four days after inoculation according to Last (1963) and 

Hibberd et al. (1996). Habeshaw (1979) examining the effects of B. graminis 

f.sp. hordei on the susceptible cultivar Golden Promise also found that 

infection decreased the rate of photosynthesis from a very early stage of 

infection. A biphasic inhibition of photosynthesis was observed by Edwards 

(1970) in barley leaves infected with B. graminis f.sp. hordei. The first phase 

occurred within 24 hours after inoculation and the second phase occurred six 

days after inoculation when fimgus sporulation on the leaf had reached its 

maximum.
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In the case of oat plants, the effect of infection was delayed in comparison 

with barley. Haigh et al. (1991) reported that photosynthesis did not decline 

in leaves of oat plants infected with B. graminis f.sp. avenae until five days 

after inoculation. Similarly, Sabri et a l, (1997) observed that the rates of 

maximum gross and net photosynthesis following infection by B. graminis 

fisp. avenae decreased eight days after inoculation in one cultivar, but not 

until ten days after inoculation in another (Sabri et a l, 1997).

Working with pea (Pisum sativum) plants infected with Erysiphe pisi, 

Ayres (1976) showed that the rate of photosynthesis reduced rapidly from 24 

hours of inoculation and had decreased to less than one third of that in 

uninfected plants by the seventh day after inoculation. Similar reductions have 

been observed in powdery mildew-infected (Erysiphe polygoni DC) sugar 

beet leaves {Beta vulgaris L) (Magyarosy et al., 1976).

Rust fiingi have been reported to have the same effects on photosynthesis 

as powdery mildew fungi. Wheat leaves infected with Puccinia graminis fisp. 

tritici were shown to have a reduced rate o f photosynthesis together with 

reduced chlorophyll content from the third day after inoculation (Mitchell, 

1979). Barley plants infected with the brown rust fungus, P. hordei, at the 

first leaf stage showed no reduction in photosynthesis until nine days after 

inoculation after which the rate of photosynthesis declined to about half that 

of the uninfected leaf (Owera et al., 1981). Scholes et a l (1985) reported that 

the reduction in the rate of photosynthesis, both per unit leaf area and per unit 

of chlorophyll, and the changes in vivo chlorophyll fluorescence kinetics 

clearly indicated that photosynthesis was being progressively inhibited within
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developing pustules of Uromyces muscari on bluebell leaves [Hyacinthoides 

non-scripta (L.) Chouard ex Rothm.].

It appears that results even for the same species are contradictory both 

concerning the time and the rate at which changes in photosynthesis occur 

following infection. Some of these differences could be due to the use of 

different cultivars with varying degrees of susceptibility and which differed in 

their level of tolerance of infection.

The reductions in photosynthesis, caused by biotrophic fungi, are 

sometimes preceded by an increased rate during the very early stages of 

infection particularly when high concentrations of CO2 were used (Scott & 

Smillie, 1966). This effect of high CO2 concentration was shown for bean 

leaves infected by Uromyces phaseoli (Livne, 1964), wheat leaves infected by 

Puccinia striiformis (Doodson et al. 1965), wheat leaves infected by B. 

graminis f.sp. tritici (Allen, 1942) and barley leaves infected by B. gramins 

f.sp. hordei (Scott & Smillie, 1966). Studies on barley leaves infected with B. 

graminis f.sp. hordei by Edwards (1970), using ambient CO2 concentration, 

observed no initial stimulation but instead a biphasic inhibition. However, 

when a high concentration of CO2 (1%) was used stimulation was observed. 

This stimulation in photosynthesis was attributed to an impairment in 

glycollate metabolism in infected leaves especially at high CO2 concentrations.

1.4.1.2. Causes of changes in photosynthesis

A variety of mechanisms have been considered to be responsible for the 

decrease observed in photosynthesis following infection. Photosynthesis can
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be described as a diffusion process where the flux of CO2 into leaf is driven by 

the concentration gradient between the atmosphere and the carboxylation 

sites. Models of this diffusion pathway have been applied to the analysis of 

photosynthesis in several host-pathogen systems (Duniway & Slater, 1971; 

Hall & Loomis, 1972; Gordon & Duniway, 1982a). For example, in powdery 

mildew infection, stomatal resistance was increased by infection, but this 

change was not apparent until three days after inoculation in barley (Ayres,

1979), four days after inoculation in pea (Ayres, 1976) and six days after 

inoculation in oak (Hewitt & Ayres, 1975). In powdery mildew-infected sugar 

beet leaves, the decline in net photosynthesis was attributed not to increased 

stomatal resistance but mainly to increases in mesophyll resistance to CO2 

(Gordon & Dunway, 1982a). Similarly, in barley infected with Puccinia 

hordei, diffusion of CO2 into the leaf was found not to be an important 

limiting factor in photosynthesis. The main effect of infection, in this case, was 

to increase CO2 concentrations in the intercellular spaces and to double 

mesophyll resistance (Owera, Farrar & Whitbread, 1981).

In certain infections, particularly those caused by powdery mildew, the 

decrease observed in the rate of photosynthesis has been partly attributed to a 

reduction in the amount of irradiance reaching the chloroplasts due to the 

shading effect of the fungal mycelium present over the surface of the leaf 

(Misaghi, 1982). However, in powdery mildew of apples, removal of the 

mycelium did not lead to any increase in the rate of photosynthesis and so a 

reduction in light reaching the chloroplasts was not a factor in this case.

It is widely recognised that infection by fungal biotrophs causes a
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reduction in chlorophyll content although some evidence is contradictory. The 

rate of photosynthesis expressed per unit of chlorophyll was reported to 

decrease in barley leaves infected with B. graminis f.sp. hordei (Allen, 1942). 

Scott & Smillie (1963) reported a similar effect in barley, but after 

recalculation of their data, Waygood et al. (1974) found that net 

photosynthesis per milligram of chlorophyll was actually 50% higher in 

infected than in uninfected leaves.

Other researchers (Paulech & Haspelovd - Harvatovi&ovd, 1970) found 

that total chlorophyll was reduced by B. graminis f.sp. hordei in barley leaves 

before photosynthesis had begun to decline. In contrast, in oak (Quercus 

robur L.) leaves infected with the powdery mildew (Microsphaera 

alphitoides\ total chlorophyll content only began to reduce after 

photosynthesis had begun to decline and changes in the chlorophyll a : b ratio 

were not found until six days after inoculation (Hewitt, 1976).

Even more contradictory results have been reported in the case of rust 

fungal infections. For example, in Vigna sesquipedalis infected by Uromyces 

appendiculatus, the reduction in photosynthesis was significantly correlated 

with the reduction in chlorophyll content between 0 and 14 days after 

inoculation (So & Thrower, 1976). Similarly, in wheat infected with stem rust 

(P. graminis f.sp. tritici), the decline in the rate of photosynthesis per unit of 

chlorophyll was directly correlated with chlorophyll loss, suggesting that loss 

of chlorophyll was a major contributory factor to the reduction in 

photosynthesis (Mitchell, 1979).

In contrast, no correlation was observed between the reduction in
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photosynthesis and the reduction in chlorophyll levels in wheat infected by P. 

striiformis (Doodson, Manners & Myers, 1964). Owera et al. (1981) also 

observed that although chlorophyll content was depressed in barley leaves 

infected with P. hordei, both net and gross photosynthesis, when expressed 

per unit green leaf area, or per chlorophyll content, increased slightly. This is 

in agreement with the findings by Last (1963) on the effects of B. graminis 

fisp. hordei on photosynthesis in barley leaves.

Results from studies on the effects of downy mildews on photosynthesis in 

their hosts are also contradictory. In lettuce infected by Bremia lactucae, 

chlorophyll levels were found to be significantly reduced by six days after 

inoculation (Mason, 1973), but in cabbage infected with Peronospora 

parasitica, no chlorophyll loss was observed up to seven days following 

inoculation although chlorophyll content may have been altered in the later 

stages of infection.

However, although reducing chlorophyll content is one of the features of 

powdery mildew infections of crop plants, it was not shown by some wild 

plants in response to infection; eg. no loss of chlorophyll following infection 

was found in the case of willow-herb, couch grass or groundsel (Clarke, 

1988).

Other evidence suggests that changes in the enzyme activities of the 

chloroplasts and of alterations to chloroplast structure may play a role in the 

decline of photosynthesis. Powdery mildew infection of sugar beet was found 

to result in a substantial reduction in the activity of ribulose-l,5-bisphosphate 

carboxylase (RuBPcase), a key enzyme in the reductive pentose phosphate
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pathway (Gordon & Dunway, 1982b). This decrease was attributed to a 

reduction in the concentration of RuBPcase as there was no apparent change 

in the specific activity of this enzyme in infected tissue. Similar effects were 

observed in barley leaves infected with powdery mildew (Walters & Ayres, 

1984). Following infection, there was a progressive reduction in host mRNAs 

encoding both large and small subunits of RuBPcase. Stem rusts have also 

been reported to reduce the activity of RuBPcase in wheat (Wrigley & 

Webster, 1966).

Reductions in the amount of RuBPcase were reported to be caused by 

reductions in plant nitrogen in barley infected with B. graminis fisp. hordei 

(Walters & Ayres, 1980) and in barley infected with P. hordei (Ahmad et al., 

1982). The pathogen may also affect the retranslocation of nitrogen out of 

infected leaves (e.g. Ahmad et al., 1983).

Gordon & Duniway (1982b) have suggested that changes in RuBPcase 

activity may not be entirely responsible for limiting carbon flux through the 

reductive pentose phosphate cycle (RPPC) in mildewed barley, since the 

activities of RPPC enzymes may also be reduced by infection. Walters & 

Ayres (1984) in feet noted that the activities of some enzymes of the pathway 

were reduced by mildew infection of barley leaves e.g. 3-phosphoglycerate 

kinase and NADP -  glyceraldehyde phosphate dehydrogenase (GAPDH).

A further explanation for the decline in photosynthesis could be fungal 

sequestration of inorganic phosphate (Pi) from the host tissues. Whipps & 

Lewis (1981) suggested that fungal infection of the leaf induces Pi-deficiency 

since biotrophic pathogens act as a sink for Pi. Thus the fungus could reduce
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the concentration of host cytosolic and thus chloroplastic Pi, causing a 

reduction in the rate of photosynthesis. On the other hand, other 

investigations do not support this work. For example, in powdery mildew- 

infected barley and wheat leaves the Pi content of the leaf was either 

unaffected or slightly increased by the time of fungal sporulation (Walters & 

Ayres, 1981b; Zulu et al., 1991; Scholes et al., 1992; Wright, 1992). 

Furthermore, in barley leaves infected with P. hordei (Ahmad et al., 1982, 

1984) and in wheat leaves infected with P. graminis tritici (Beimet & Scott, 

1971), Pi was found to have at least doubled in concentration compared to 

uninfected leaves. Additionally, when Pi was fed to rusted leaves of barley 

(Scholes & Farrar, 1986) and to mildewed wheat (Zulu et al., 1991), the rate 

of photosynthesis did not increase. Other examples have been discussed by 

Scholes (1992), who concluded that Pi is not the primary factor responsible 

for the decline in photosynthesis following infection.

Studies of the effects of biotrophic pathogens on the photochemical 

reactions of photosynthesis are limited and there is little agreement as to their 

effects. Montalbini et al. (1974) and Magyarosy et al. (1976) reported that 

infection of broad bean leaves by Uromyces fabae and sugar beet leaves 

infected by Erysiphe polygoni led to a preferential inhibition of non-cyclic 

photophosphorylation (non-cyclic electron transport chain) as measured in 

isolated chloroplasts. Magyarosy et al. (1978) investigated the effects of E. 

polygoni infection on sugar beet further and found that the cytochrome 

content of the electron transport chain was reduced by 33% in comparison to 

the controls. This would suggest that infection by biotrophic pathogens
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specifically alters the content of certain carriers involved in electron transport, 

and consequently reduces the rate of non-cyclic electron transport. This view 

however is not supported by the work of Wynn (1963) using chloroplasts 

isolated from rust-infected oat leaves, or of Ahmad et al. (1983) using barley 

leaves infected with brown rust, or of Holloway et al. (1992) using 

chloroplasts from mildewed-barley leaves. All these authors observed no 

reduction in non-cyclic electron transport.

Recently, Scholes (1992) reviewed possible mechanisms responsible for 

the reduced photosynthesis in infected plants and suggested that the enzyme 

invertase could play a central and linked role in both reducing photosynthesis 

and in retaining photoassimilates within infected tissues (see section 1.5). 

Increased invertase activity in powdery mildew infected barley leaves resulted 

in the accumulation of sucrose, glucose and fructose, causing down-regulation 

of the Calvin cycle by end-product inhibition and by a direct effect on genes 

encoding photosynthetic enzymes (Scholes, 1992).

These contradictory results concerning the effect of infection on 

photosynthesis and the mechanisms responsible could well be explained by the 

feet that the different cultivars were used of the species investigated.

1.4.2. Compensatory photosynthesis in uninfected parts of infected 

plants

The reductions in the rates of photosynthesis described above have been 

measured in the infected leaves. It is always possible that uninfected tissues of 

that leaf or the uninfected leaves may develop increased rates of
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photosynthesis to compensate for the losses from the infected tissues. In this 

way infected plants may provide sufficient photosynthates to satisfy all or 

most sinks at least for some time following infection.

For example, Williams & Ayres (1981) demonstrated that net 

photosynthesis was stimulated in the uninfected third leaf of barley plants 

whose lower two leaves were heavily infected by B. graminis f.sp. hordei. 

This stimulation was greater in water-stressed than in well-watered plants. 

Similarly, infections by Erysiphe pisi on the lower three leaves of pea (Pisum 

sativum L.) stimulated photosynthesis in the uninfected fourth leaf (Ayres, 

1981b).

Different mechanisms have been suggested to explain stimulated 

photosynthesis in the uninfected leaves of infected plants. Walters & Ayres 

(1983) suggested that this stimulation in the uninfected upper leaves of 

mildewed barley plants could be due, in part, to a transient increase in the 

content and activity of RuBPcase in these leaves. Increases in the activities of 

phosphoenol pyruvate (PEP) carboxylase and NADP malic enzyme were also 

observed in this study.

Walters (1985) suggested that changes in the nitrate : ammonium balance 

in infected shoots may also affect the activity of RuBPcase. Furthermore, an 

increased uptake of 32P-labelled phosphate in barley could stimulate net 

photosynthesis, either by increasing RuBPcase activity or by affecting the 

ratio of ATP : ADP.

Williams & Ayres (1981) suggested that this stimulated photosynthetic 

activity in uninfected leaves may allow the plant to compensate for the
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reductions in photosynthesis in infected tissues and for the loss of 

photoassimilates due to the pathogen acting as a sink. Such compensatory 

activity could well serve to protect the yield of lightly infected plants (Ayres 

& Zadoks, 1979).

1.4.3. Effects on carbon loss through dark respiration

1.4.3.1. Changes in dark respiration

Another universal effect of biotrophic fungi is an increase in the rate of 

dark respiration (Daly, 1976; Farrar & Lewis, 1987). Increased dark 

respiration in diseased plants means that as infection progresses, an increasing 

proportion of newly fixed assimilates is lost via respiratory processes 

(Walters, 1985).

An increase in dark respiration in infected plants may be expected, because 

in addition to the host, the fungus will have an energy demand for growth. 

Furthermore, the host, in addition to normal activities, will have a demand to 

support defence reactions. Such increases in dark respiration would provide 

both energy [NAD(P)H and ATP] and the carbon skeletons needed for the 

necessary biosynthesis (Farrar & Rayns,1987).

One of the earliest reports of increased dark respiration in response to 

infection is that of Yarwood (1934) who showed that infection of clover by 

powdery mildew (Erysiphe polygoni) increased dark respiration up to 50% 

above the levels of the controls. Working with wheat infected with B. 

graminis f.sp. tritici, Allen & Goddard (1938) showed that infected leaves 

respired four-to five-fold more than equivalent uninfected leaves. Other
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authors have confirmed these results for barley infected with B. graminis f.sp. 

hordei (Millerd & Scott, 1956; Scott, 1965; Bushnell & Allen, 1962). 

Increased respiration has also been reported in oak leaves infected with 

Microsphaera alphitoides (Hewitt & Ayres, 1975).

With powdery mildew infections, it is possible to wipe the surface fungal 

mycelium from the surface of the leaf leaving only the haustoria in the 

epidermal cells. The leaf phis haustoria have been found to respire at a rate 

little short of that occurring before removing the superficial mycelium, and so 

most of the increased respiration can be attributed to the host (Daly, 1976). 

Furthermore, protoplasts isolated from barley leaves infected with B. graminis 

f.sp. hordei were found to respire fester than those from uninfected leaves 

(McAinsh et al., 1989).

Dark respiration was also found to increase in hosts infected with rusts. 

The rate of dark respiration in whole barley leaves infected with P. hordei at 

the time of sporulation was found to be at least twice that of uninfected 

tissues (Scholes, 1985). Similar values were reported for wheat leaves 

infected with P. graminis tritici (Mitchell, 1979; Shaw & Samborski, 1957), 

for wheat leaves infected with P. recondita tritici (Staples, 1957) and for 

barley leaves infected with P. hordei (Owera et al., 1981).

The rate of dark respiration is also substantially higher within individual 

pustules of rusts on many hosts than in surrounding uninfected tissues. For 

example, within pustules of P. hordei on leaves of barley (Scholes, 1985; 

Scholes & Farrar, 1986), of Uromyces muscari on leaves of bluebell (Scholes 

& Farrar, 1985) and of Puccinia allii on leaves of leek (Roberts & Walters,
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1988). These findings lead researchers to hypothesise that in contrast to 

mildew infections, most of the increase in respiratory activity in rusted tissues 

is contributed by the fungus (Owera et al. 1981; Raggi, 1980). However, it is 

not possible to test this hypothesis, since separating rust fungal tissue from 

host tissues is not yet possible. However, since the uninfected regions in 

wheat around P. graminis tritici pustules (Bushnell, 1970) and in barley 

around P. hordei pustules (Scholes, 1985; Scholes & Farrar, 1986) also show 

increased respiration, the host is clearly contributing to the overall increase in 

respiration. Respiration was found to increase in the regions between pustules 

at both flecking and sporulation stages, but was negligible in these regions at 

the green island stage (Scholes, 1985).

1.4.3. 2. Causes of changes in respiratory rates

Different mechanisms have been proposed to explain the rise in dark 

respiration following infection. Allen & Goddard (1938) suggested that the 

increased dark respiration in wheat leaves infected with B. graminis fisp. 

tritici was due to substances produced by the fungus, which diffused into the 

mesophyll. Similarly, the accumulation of metabolites, often in mobile form, in 

uninfected cells adjacent to the mildew colonies and in the tissues immediately 

below, led Bushnell & Allen (1962) to suggest that the fungus produced 

diffusible toxic substances that caused the rise in the rate of respiration. Later, 

Allen (1953) suggested that the toxin increased dark respiration by 

uncoupling respiration from energy-requiring processes through activities on 

oxidative phosphorylation. These activities prevented ATP synthesis and lead
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to ADP accumulation and a higher rate of respiration. A high ADP : ATP 

ratio was in feet found by Poszar & Kiraly (1958) in wheat leaves infected 

with P. graminis f.sp. tritici.

On the other hand, Scott (1972) suggested that the increase could be due 

to quantitative changes in the existing pathways or, alternatively, to 

qualitative changes in respiratory pathways. Daly (1976) in fact suggested that 

the most likely cause of the rise in dark respiration is a shift from the 

glycolytic pathway to the pentose phosphate pathway with increased activity 

of the latter pathway. The involvement of the pentose phosphate pathway in 

the rise in rates of respiration is supported by the finding that the activities of 

the enzymes of this pathway increased after infection. Indeed, Scott (1965) 

reported a two to three fold increase in the activities of glucose-6-P 

dehydrogenase and 6-phosphogluconate dehydrogenase.

The pentose phosphate pathway seems to be located in the cytosol and is 

limited by the availability of NADP+. The rise in the respiratory activity 

observed in mildewed barley leaves may be a direct response to the change in 

the NADP+ : NADPH balance (Scott & Smillie, 1966; Dyer & Scott, 1972). 

Ryrie & Scott (1968) suggested that the enhanced activity of the pentose 

phosphate pathway observed in rust and mildew infections could be due to the 

release of NADP+ into the cytosol following chloroplast breakdown, the latter 

was observed by Dyer & Scott (1972).

Chakravorty & Scott (1982) suggested that the decline in photosynthesis 

in rusted and mildewed leaves could also lead to increased respiration, since it 

could lead to the release of control mechanisms on glucose-6-P
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dehydrogenase and 6-phosphogluconate dehydrogenase and consequently an 

increased activity of the pathway. However, as well as increases in the 

pentose phosphate pathway, Daly (1976) suggested that in the later stages of 

infection there may be some uncoupling of oxidative phosphorylation.

In the investigation carried out by Farrar & Rayns (1987) on barley 

infected with powdery mildew, dark respiration was increased by about 80% 

during fungus sporulation. About half of the increase was due to increased 

electron flow through the cytochrome chain and about half through the 

alternative pathway. The latter showed increased engagement following 

infection but no increase in capacity. The authors suggested that the increase 

in activity of the cytochrome path was due to adenylate regulation, but that of 

the alternative pathway was not understood.

In conclusion, whatever the mechanism or mechanisms behind the 

increased respiratory activity following infection, it results in the loss of 

photosynthate that would otherwise be utilised for plant growth.

1.4.4. Effects on carbon loss through photorespiration

1.4.4.1. Changes in photorespiration

The effects of plant infections on photorespiration have not been widely 

investigated and the existing reports are contradictory. Most reports in fact 

indicate that leaves infected with biotrophic fungi have lower rates of 

photorespiration than equivalent uninfected leaves (Daly, 1976; Farrar & 

Lewis, 1987). For example, reductions were found in barley leaves infected 

with B. graminis f.sp. hordei (Ayres, 1979; Walters & Ayres, 1984) and also
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in oak leaves infected with M  alphitoides (Hewitt & Ayres, 1975). Similarly, 

some rust fungi e.g. Melampsora lini in flax were found to decrease the rate 

of photoresoiration (Kakkar, 1966).

However, in a few cases increases in the rate of photorespiration following 

infection have been reported. Thus Ayres (1976) observed an increase in pea 

leaves infected with the powdery mildew Erysiphe pisi, while a similar 

increase was observed in barley leaves infected with P. hordei (Owera et al., 

1981). To add to the confusion, Mitchell (1979) found no differences in rates 

of photorespiration between healthy wheat leaves and leaves infected by P. 

graminis f.sp. tritici.

I.4.4.2. Causes of changes in photorespiration

Walters (1985) reported that reductions in photorespiration in infected 

plants could be due to reductions in the activities of associated enzymes. For 

example, in barley leaves infected with B. graminis f.sp. hordei (Walters & 

Ayres, 1984) and in oak leaves infected with M. alphitoides (Hewitt & Ayres, 

1977), the activity of the enzyme glycolate oxidase was found to be lower 

than in uninfected tissues. The activity of this enzyme was reported to have 

decreased in wheat leaves infected with P. graminis tritici (Kiraly & Farkas, 

1957). In addition, Walters & Ayres (1984) found that the activities of 

glyoxylate reductase and RuBPoxygenase also decreased following infection, 

however, the mechanism responsible for the stimulation of photorespiration in 

barley leaves infected with P. hordei reported by (Owera et al., 1981) has not 

been not understood.
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1.5. Effects of infection on translocation

The effects of biotrophic pathogens on the translocation and distribution 

patterns of assimilates throughout the plant have been investigated by many 

workers (eg. Crowdy & Manners, 1971; Manners & Myers, 1973; Whipps et 

al., 1981; Farrar, 1984; Farrar, 1992). Because an infected leaf typically has a 

lowered rate of photosynthesis, an additional sink for assimilates in the form 

of the pathogen, and an increased rate of dark respiration, less translocation 

from it would be expected. In general, infection by biotrophic fungi results not 

only in a reduction in the export of assimilates from infected leaves (Doodson 

et al., 1965), but it also promotes imports into those tissues (Livne et al., 

1966; Shaw et al., 1956).

In the case of powdery mildew infections, Fric (1975) observed that 

export from the first leaves of barley plants infected with B. graminis fisp. 

hordei was less, although export from uninfected second leaves was greater, 

five days after inoculation.

Rust fungi were found to behave in the same way as powdery mildews. 

Thus Doodson et al. (1965) found that when a single leaf of a wheat plant 

was infected with Puccinia striiformis, the proportion of the assimilates 

exported was only 0.4% compared with 20% from a corresponding healthy 

leaf on an uninfected plant. It has also been shown that uninfected primary 

leaves of Phaseolus vulgaris fed with 14C-labelled CO2 exported 50% of the 

label in a five-hour period, whereas primary leaves infected with Uromyces 

appendiculatus exported less than 2% in a similar time interval (Livne et a l, 

1966).
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In some cases infection may not only reduce export of carbohydrates 

from an organ, but also promote import into that organ. For example, in oak 

plants infected with M. alphitoides, Hewitt & Ayres (1976) observed that 

assimilates continued to be imported from uninfected leaves into infected 

leaves. Similarly, Livne et al. (1966) observed that when 14C-labelled CO2 was 

fed to uninfected trifoliate leaves of bean plants the label accumulated in 

primary leaves infected with U. appendiculatus. Siddiqui & Manners (1971) 

also showed that infection of wheat leaves by Puccinia striiformis increased 

the amount of 14C-labelled assimilates moving to infected leaves. However, 

when single leaves of wheat were infected with P. striiformis they did not 

attract assimilate movement from other leaves (Doodson et al., 1965).

Inorganic ions have also been shown to preferentially move to infected 

parts of the plant (Gerwitz et al., 1965; Yarwood et al., 1955). For example, 

Ahmad et al. (1982) demonstrated that not only carbohydrates but also 

nitrogen, phosphorus and potassium were retained to a greater extent in 

barley leaves infected with P. hordei than in uninfected leaves as the leaves 

age.

Conversely, other workers demonstrated a decrease in sugar content of 

leaves infected by rusts. Thus Murphy (1936) observed a decrease in soluble 

sugars in oat plants infected with Puccinia coronata. Similarly, the total sugar 

content and especially the sucrose fraction, decreased only slightly in leaves of 

a resistant wheat cultivar infected with P. graminis but to a significant extent 

in a susceptible one (Krog et al., 1961).

The reduction of assimilate export from infected organs and the increased
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import of assimilates to that organ would deprive other organs, such as roots, 

of required assimilates. In the case of powdery mildew infections, reductions 

in the percentage of assimilates translocated to roots were observed in barley 

plants by Edwards (1971) and Fric (1975) and in wheat by Lupton et al. 

(1973). Edwards (1971) attempted an analysis of the fete of imported 

assimilates within roots of barley plants infected by B. graminis f.sp. hordei. 

He found that when 14CC>2 was fed to the tips of infected leaves, labelling of 

ethanol-soluble compounds was reduced much more than that of ethanol- 

insoluble compounds when import was reduced. Fric (1975) observed that 

when barley leaves were infected with B. graminis f.sp. hordei, the absolute 

amount of labelled assimilate reaching the roots from the infected leaves in the 

24 hours after feeding was reduced by 27% following infection, while the 

amount remaining in the shoots was reduced by 20%. Walters & Ayres (1982) 

concluded that reduction in the growth of primary roots of barley infected 

with B. graminis f.sp. hordei was due to a reduction in the specific activity of 

different assimilates fractions within the roots (soluble, storage and 

structural). Similarly, infection of wheat leaves with B. graminis f.sp. tritici, 

also reduced the percentage of labelled assimilates exported to the roots in 

three susceptible cultivars fed 14CC>2 at the third, fifth or flag leaf stages 

(Lupton ef al., 1973).

Rust ftingi were also reported to reduce the amount of assimilates 

translocated to roots. For example, Siddiqui & Manners (1971) showed that 

infection of wheat leaves by Puccinia striiformis decreased the amount of 

14C-labelled assimilates moving to the roots.
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The magnitude of changes in assimilate translocation in response to 

biotrophic pathogen attack may depend on many factors, including 

environmental conditions, level of infection, level of host resistance and level 

of host tolerance of the parasite.

From the considerable experimental evidence currently available, several 

mechanisms have been proposed to be responsible for the disruption of 

assimilates translocation in infected plants. Firstly, Thrower (1965) attributed 

the reduced translocation from infected leaves to the rest of the plant simply 

to the direct effect of the pathogen providing an active sink for nutrient 

substances. This was experimentally demonstrated by the work of Edwards et 

al. (1966) who found that carbon transfer from infected barley leaves to B. 

graminis f.sp. hordei was very rapid.

In contrast, Farrar (1984) and Whipps & Lewis (1981) proposed a number 

of combinations of mechanisms, which may be responsible e.g. changes in 

growth regulator concentrations, altered permeability of infected cells, 

increased activity of invertase and amylase and changes in the concentration 

of orthophosphate (Pi).

1.6. Effects of infection on water relations

Water plays a very important role in all physiological processes in plants 

including photosynthesis, respiration, translocation, partitioning of 

metabolites, stomatal behaviour, protein synthesis, cell division, cell 

elongation and cell wall synthesis. Water stress will lead to the perturbation of 

all or some of these physiological processes and consequently will lead to
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reductions in plant growth and yield (Kramer, 1983).

Healthy plants can protect themselves against the development of water 

stress by regulating stomatal aperture. The stomata are sensitive structures 

that represent the greatest variable resistance in the pathway of water 

movement through the plant (Ayres, 1981a) and any biotic or abiotic factor 

causing changes in the pattern of stomatal behaviour will affect plant water 

relations and consequently perturb growth and development. Many 

investigations have been carried out to determine the effects of obligate 

biotrophs on stomatal behaviour. These effects have been found to differ 

from one pathogen to another and from one host to another.

1.6.1. Effects on stomatal opening and closure

Infections of barley leaves by Rhynchosporium secalis (Ayres et al., 1975) 

and of potato by the blight fungus, Phytophthora infestans (Farrell et al., 

1969) caused an increase in the rate of transpiration from the infected area of 

the leaf both in the light and in the dark. This increase was attributed to an 

increase in the mean stomatal aperture in the infected area in the light and the 

failure of the stomata to close in the dark. The downy mildew fungus 

Peronospora tabacina has also been found to affect stomatal opening in the 

leaves of its host tobacco in a similar manner (Cruickshank et al., 1961).

In contrast, stomatal opening in the light has been reported to be inhibited 

by rust and powdery mildew infections as well as by some viruses such as 

sugar beet yellows virus (Hall et al., 1972).

Transpiration in rust and powdery mildew infected tissues usually follows
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the pattern of stomatal behaviour, decreasing in the light and increasing in the 

dark (Walters, 1985). Rust fungi enter their hosts through stomatal pores, 

develop mainly in the intercellular spaces of the leaf and inhibit stomatal 

movements progressively until eventually the stomata became fixed in an 

almost closed position (Duniway et al., 1971a). However, with rust fungi, 

once fungal sporulation has ruptured the cuticle, non-stomatal transpiration 

increases and becomes the significant factor (Johnson et al., 1934, 1940 and 

Murphy, 1935).

Paul et al. (1984) showed that after sporulation, groundsel (Senecio 

vulgaris) leaves infected with Puccinia lagenophorae transpired much more 

rapidly than did healthy controls. The same results were shown by Duniway et 

al. (1971a) in bean {Phaseolus vulgaris) leaves infected with Uromyces 

phaseolus.

Powdery mildew infections result generally in a failure of stomata to open 

fully in the light and to close fully in the dark (Majemick, 1971; Ayres, 1976). 

Wheat leaves infected with B. graminis fisp. tritici were shown to have a 

significantly reduced stomatal opening within three to six hours after 

inoculation (Martin et al., 1975). Majemick (1965) working with barley 

leaves infected with B. graminis f.sp. hordei reported that stomatal 

transpiration had reduced within one day after inoculation. Ayres (1979) also, 

using barley leaves infected with B. graminis fisp. hordei, observed that 

reduced stomatal opening was not apparent until three days after inoculation. 

Other plant species other than cereals showed similar responses to mildew 

infection. For example, although garden pea (Pisum sativum) leaves infected
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with E. pisi showed an initial increase in stomatal opening within the first 48 

hours of inoculation, the stomatal opening became progressively reduced in 

the light and stomata foiled to close completely in the dark (Ayres, 1976). 

Thomas et al. (1982) observed a 50% reduction in stomatal aperture five days 

after inoculation in sugar beet {Beta vulgaris) leaves infected with E. 

polygoni. Similar responses were observed in leaves of oak plants infected 

with Microsphaera alphitoides, but not until six days after inoculation, 

although, transpiration rates increased within two to three days after 

inoculation (Hewitt et al., 1975).

1.6.2. Causes of changes in stomatal function

Ayres (1972 and 1975) investigated stomatal functioning in barley leaves 

infected with Rhynchosporium secalis and suggested that in the early stages 

of infection the increase in stomatal aperture was a result of the loss of 

osmotically active solutes from the epidermal cells of diseased leaves which 

consequently altered the turgor relations between guard cells and their 

surrounding epidermal cells. The increase in transpiration at later stages of 

infection was attributed to water loss through the ruptured cuticle (Ayres, 

1975).

In the case of barley infected with B. graminis f.sp. hordei, Majemick 

(1965) suggested that a volatile product was involved in the inhibition of 

stomatal opening in the light. A similar suggestion was made by Martin et al. 

(1975) for wheat leaves infected with B. graminis fisp. tritici.

The increased stomatal opening in the light that occurs in pea leaves



Chapter 1 Introduction 43

infected with E. pisi 48 hours after inoculation contrasts with the reduced 

stomatal opening in wheat within 6 hours of inoculation (Martin et al., 1975) 

and in barley within 24 hours after inoculation (Majemick, 1965) with the 

cereal powdery mildew. The difference between peas and cereals (barley and 

wheat) was attributed to the lack of production of a volatile substances in 

peas infected with Erysiphe pisi or to the differences in the turgor pressures 

of guard cells and epidermal cells (Ayres, 1976). Furthermore, Ayres (1980) 

suggested that stomatal opening could be inhibited by substances synthesised 

by the host such as pisatin (a pterocarpan) which accumulates in pea leaves 

infected with E. pisi.

The increased rate of transpiration observed in barley leaves infected with 

B. graminis f.sp. hordei when 50% of the leaf was covered by mildew, was 

attributed to cuticular injuries caused by the infection (Paulech et al., 1970; 

Majemick, 1965). In contrast, the increase in the rate of transpiration 

observed in oak leaves infected with Microsphaera alphitoides was attributed 

mainly to the fungal mycelium itself (Hewitt et al., 1975).

Many of the differences in host response to different pathogens are most 

likely to be mainly due to the different ways the pathogens grow and develop 

on or within their host’s tissues. However, the experimental differences in 

host response reported for particular pathogens are also likely to be due to an 

extent to the experimental procedures used, but are also likely to be due to the 

feet that different cultivars were used.

One significant factor missing from most of the studies was any measure 

of the way in which or the rate at which parasite biomass accumulated during
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the course of the experiments. Even when parasite biomass accumulated to 

similar extents in the different cultivars used, reactions may be different due to 

different tolerances of the parasite in the tissues.

1.7. Aim of the project

The aim of this study was to investigate the levels of tolerance of B. 

graminis f.sp. hordei in wild barley lines compared with cultivated barley 

lines. Wild and cultivated barley lines are very close relatives, crossable, 

morphologically similar and infection by B. graminis f.sp. hordei progresses in 

the same manner on both taxons.

Studying tolerance in such systems would increase our understanding of 

tolerance and help us to identify tolerance characteristics, which could be 

useful in breeding programs. All components of vegetative growth of both 

shoots and roots were investigated as well as yield.

The photosynthesis and respiration rates in both wild and cultivated 

barley lines were determined as well as stomatal resistance to CO2 diffusion 

through the leaf, which is an important photosynthesis-limiting facto r. The 

effect of infection on cell division and elongation in leaves was checked by 

counting the number of stomata and epidermal cells other than stomata per 

leaf area. The compensation of uninfected leaves of infected plants was 

investigated by measuring photosynthesis rate in the fourth uninfected leaf of 

infected plants.
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GENERAL MATERIALS AND METHODS

2.1. Plant material

The lines of wild barley {Hordeum spontaneum) and of cultivated 

barley (Hordeum vulgare) used in this study were obtained either from the 

John Innes Centre, Norwich Research Park or from the Scottish Crop 

Research Institute, Invergowrie, Dundee. Before use, the wild lines were 

inbred for two generations to ensure that, as far as possible, genetically 

uniform populations of plants were used in the experiments.

2.2. Growth media

2.2.1. Solid media

Peat based potting compost (Levington Horticulture Ltd.) was used 

for all experiments except where it was necessary to harvest the root 

systems. Several rooting media were investigated for the ease with which 

the root systems could be harvested for analysis.

Horticultural grade sand (Silvaperl) alone was a very poor medium in 

which to grow plants because of the difficulty of maintaining an adequate 

water supply. In sand, the nutrient solution drained rapidly; growth was 

very slow, and the plants were clearly stressed because necrotic spots 

developed on the leaves. In contrast, a medium consisting of a 50:50 

mixture of equal parts of horticultural grade sand and horticultural grade 

perlite (Celite) was found to allow good water retention and growth. The
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nutrient solution used for this rooting medium was that recommended by 

the Agricultural Research Council, Letcombe Laboratory (Table 1). It was 

added 3 times a week, up to 8  weeks after planting and then once a week 

until the end of the experiment. The rooting medium was kept moist by 

adding water twice a day. The medium surface was covered with circular 

sheets of black plastic to prevent evaporation as well as algal growth.

2.2.2. Hydroponic solution

For the study of the mitotic index of root tips, plants were grown 

hydroponically in the Letcombe nutrient solution. Pregerminated grains 

were placed on a platform, which was then submerged in a tank containing 

33 litres of the nutrient solution. The medium was aerated through a 

plastic tube fixed in the bottom of the tank, which was connected to an air 

pump.

The pH was maintained between 5.3 and 5.5 by the addition of 

concentrated H2SO4 as required, and the solution was changed weekly.

2.3. Plant growth

2.3.1. Grain germination and plant growth

Cultivated barley: Grains were germinated on damp filter paper in trays 

and incubated in the growth cabinet for four days before transplanting into 

the required growth medium.

Wild barlev: Initial treatments were required to break the dormancy of the 

grain. Grains were placed on filter paper moistened with distilled water in
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Petri dishes and allowed to imbibe for half an hour. The dishes were then 

wrapped in plastic film to conserve moisture, and placed in a refrigerator 

at 4°C for 7 days. After chilling, the vernalised grains were germinated in 

the same way as the cultivated barley grains. This method gave high 

percentage germination.

After germination, both cultivated and wild barley seedlings were 

transplanted into pots as required.

For growth analysis experiments, plants were grown singly in 12.7-cm 

plastic pots containing sand and perlite mixture (section 2.2.1).

For measurements of photosynthesis and stomatal resistance, 

germinated seedlings of both wild and cultivated lines were planted in 12.7 

or 15-cm plastic pots containing Levington potting compost. Two 

seedlings were planted per pot. A week later, the seedlings were thinned 

to one per pot all of equal size or left as two per pot as required and any 

non growing seedlings were replaced. No supplementary feeding was 

carried out as most of the experiments lasted five to six weeks only.

2.3.2. Growth conditions

All the experiments were carried out in the same growth cabinet at a 

temperature of 20°C ± 2°C. The cabinet was illuminated during a 16h 

photoperiod by Kolorarc high-pressure mercury vapour lamps giving 130 

pmol quanta m~2 s"1 of PAR at plant leveL The relative humidity within 

the cabinet ranged between 65% and 80%.
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Table 1: Composition ofLetcombe Laboratory nutrient solution:

Compound Formula mmoles I-1

M acronutrients

Calcium nitrate CaCN03)2 4H20 1.5

Potassium nitrate KNOs 5.0

Potassium di-hydrogen ortho­
phosphate

KH2P04 1.0

Magnesium sulphate MgS04 7H20 1.5

Sodium nitrate NaN03 2.0

Micronutrients umoles T1

Ferric EDTA CifiHnOgNjFeNaHzO 9.220

Boric acid H3BO3 9.220

Cupric sulphate CuS04 5H20 0.160

Potassium chloride KC1 14.100

Manganese sulphate MnS04 4H20 3.600

Ammonium molybdate (NH4)6Mo70 24 H20 0.016

Zinc sulphate ZnS04 7H20 0.770
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2.4. Experimental design

The pots in the growth cabinet were arranged in a randomised design 

with three or four replicates and re-randomised at weekly intervals to 

ensure even growth-

2.5. Growth analysis

After each harvest, the plants were dissected and the following 

measurements were made:

2.5.1. Shoot and reproductive structures

1. Primary shoot height: The height of the primary shoot was 

measured from the rooting medium to the base of the youngest leaf 

or to the base of the flag leaf after ear emergence.

2. Number of leaves: Number of leaves was determined only for the 

primary shoots.

3. Leaf blade area: Leaf blade area of individual leaves on the primary 

shoot as well as total leaf blade area on all tillers was determined. 

Either a Delta-T flat bed scanner or a Delta-T photoelectric leaf 

area meter (Delta-T Devices Ltd. 128 Low Road, Burwell, 

Cambridge CB5 OEJ, England) was used. Leaf images were saved 

as tagged image files (TIFF) and Delta-T scan image software was 

used to calculate leaf area. Total green leaf blade area, including 

that affected by mildew, of each leaf on the primary shoot and total 

green leaf area of the tillers was measured. Prior to green leaf
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blade area measurements, yellow and brown areas were excised 

from the leaves.

4. Number of tillers: Number of tillers per plant was recorded 

visually.

5. Dry weight: Plant parts were dried at 70°C in an oven for 48 

hours, after which the dry weights were obtained.

6. Grain yield components: Counts and measurements were made 

when the grains were fully ripened in the ears of cv. Prisma. 

Because of possible grain loss through shattering from the wild 

lines, the grains were collected just before they were fully dried. 

For both cultivated and wild lines, ten plants of each treatment and 

each line were sampled and the following measurements made:

• Number of fertile ears.

• Number of grains per primary shoot ear.

• Dry grain weight of primary shoot.

• Thousand-grain dry weight on primary shoot:

[(grain weight/number of grains) x 1000]

• Number of fertile and unfertile tillers.

• Total number of grains produced on all tillers.

• Total grain dry weight on all tillers.

• Thousand-grain dry weights on all tillers:

[(grain weight/number of grains) x 1000]

• Total dry weight of grains per plant.

• The harvest index (HI), calculated from the equation:
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jtj _ ”grain 

Ytotal

Where: Ygmu,: Total grain dry weight.

Ytotai: Total plant dry weight.

2.5.2. Measurements of Root production:

The roots were recovered from the sand and perlite mixture by 

washing using a Delta-T root washer (Fig. 1). The root washer consisted 

of 4 buckets, each with a water supply and a central overflow pipe. Two 

jets in the base of the bucket created an upward turbulent flow that 

separated the roots from the sand and perlite. The lighter roots floated 

into the central overflow pipe, and were caught on a filter with a 550 pm 

mesh in a funnel under the table. The root washer was provided with an 

electric water pump to ensure adequate water pressure and a recirculation 

tank for conserving the water. After collection, the seminal and nodal 

roots were separated and counted manually. The nodal and seminal roots 

were stained with methylene blue to facilitate measurements using the 

Delta-T splash proof flatbed scanner. Root images were saved in the same 

way as the leaves and Delta-T scan image software was used to calculate 

the various parameters: root length, root surface area, root diameter or 

thickness and the number of lateral roots of both seminal and nodal roots.
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Fig. 1: Delta-T Root Washer
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1. Root length: Root lengths were determined according to the 

procedure of Newman et al. (1966) with the correction introduced by 

Harris & Campbelle (1989), which takes account of roots that overlap.

♦

2. Root Surface area: Root surface area was calculated from the 

formula: S = 7i.T.Ls

Where T is the thickness and Ls is the total length of the sample.

3. Average root diameter: Average root diameters were determined 

separately for nodal and seminal roots including their laterals.

4. Number of lateral roots: Numbers of lateral roots on the intact nodal 

and seminal roots were determined using the Deha-T scan from root 

tip counts. The numbers of nodal and seminal root tips were 

subtracted from the total values given by the scanning image analysis 

to give an estimate of the number of lateral roots alone.

2.6. Growth indices

2.6.1. Relative growth rate (RGR)

The most important parameter in classical growth analysis is the 

RGR, first introduced by Blackman (1919) as an efficiency index. It is 

defined as the increase in plant dry weight relative to the total dry weight 

of that plant at a single time point (Fisher, 1921). In practice, RGR is 

estimated as a mean RGR between two time points. RGR is calculated
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using the following equation:

RGR=—^ —
*2~fl

UlogeW)
t2 - t x

Where: Wi = total plant dry weight at the first harvest.

W2 = total plant dry weight at the second harvest. 

t2-ti = the time interval between the two harvests, 

loge = natural logarithm, with base e.

2.6.2. Unit leaf rate (ULR)

The ULR is the rate of plant dry matter production per unit of

assimilatory area (leaf) and is often called net assimilatory rate. Williams

(1946) provided a formula to estimate the ULR from measurements at 

two harvests:

Where: LAi = total leaf area at the first harvest.

La2 = total leaf area at the second harvest.

Radford (1967) has pointed out, that this relationship can not be 

integrated unless total leaf area and total plant weight are linearly related 

over the time between measurements. In this study, since W and LA of 

barley were linearly related over the short period of 7 days (Appendix 

Fig.l), the equation was applied. Radford (1967), Evans (1972), Coombe 

(1960) and Hughes et al. (1962) have listed other formulae for the

ULR -  e L a 2 ~i°g e L A\)
(LA 2 ~ LA\) i t2 - t\ )
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calculation of ULR where the relationship between W and LA is not 

linear.

2.6.3. Simple ratios 

Leaf area ratio (LAR):

LAR is the ratio between the assimilatory area (leaf area) and total dry 

matter. It is a morphological index of the leafiness of the plant (Hunt, 

1990). It describes the relative size of the assimilatory apparatus (Briggs 

et al. 1920b) and is calculated by the equation:

LAR = L l  
W

Where: LA = total leaf area.

W = total plant dry weight.

Specific leaf area (SLA):

SLA is the ratio between total leaf area per plant and total leaf dry 

weight per plant (Hunt, 1990). It is an index of leaf thickness and is 

derived from the equation:

SLA = ^ ~
Lw

Where: L a = total leaf area.

Lw = leaf dry weight.

Leaf weight ratio fLWR):

LWR is the ratio between total leaf dry weight per plant and total dry 

weight per plant (Hunt, 1990). It represents the mean fraction of the
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plant’s total dry matter distributed between the photosynthetic apparatus 

and the rest of the plant. LWR is calculated from the equation:

LWR w
Where: Lw = total plant dry weight.

W = leaf dry weight.

The growth indices described above are interrelated as follows:

LAR = SLA x LWR 

RGR = ULR x LAR

Root: Shoot ratio (RSR):

RSR is one of several ratios, which give estimates of the distribution 

of dry matter between the different plant organs. It is a measure of the 

distribution of dry matter between the root and the shoot systems and it is 

calculated by the equation:

RSR =
S  dw

Where: Rdw = root dry weight 

=  shoot dry weight

Shoot weight ratio (SWR):

SWR is the ratio between total shoot dry weight per plant and total 

dry weight per plant. It is an index of shootiness and is calculated by the 

equation:
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s w
S W R  = —f -  

W

Where: Sw = total shoot dry weight.

W = total plant dry weight.

Root weight ratio fRWR):

RWR is the ratio between total root dry weight per plant and total dry 

weight per plant. It is an index of rootiness and is calculated by the 

equation:

Rur
R W R  = —7 -  

W

Where: Rw = total root dry weight.

W = total plant dry weight

Root area ratio (RAR):

RAR is a further morphological index of the rootiness of the plant 

being defined as the ratio between total root area per plant and total dry 

weight per plant (Evans 1972). It is calculated from the formula:

RAR 
W

Where: Ra= total root area.

W = total plant dry weight.

Specific root area (SRA):

SRA is defined as the ratio of total root area to total root dry weight
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(Evans 1972) and is calculated from the formula:

SRA = 
R w

Where: Ra = total root area.

Rw = total root dry weight.

Specific root length (SRL);

SRL is the ratio of total root length to total dry weight of the roots 

and is calculated from the formula:

SRL = - £ i -  
R w

Where: Rl = total root length.

Rw= total root dry weight.

Root length ratio (RLR):

RLR is the ratio between total root length per plant to total plant dry 

weight per plant and is calculated from the formula:

RLR = ^ ~  
W

Where: Rl = total root length.

W = total dry weight of the plant.

2.7. Determination of the mitotic index of root tips

The mitotic index of the root tips was examined in root preparations
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made by a rapid squash technique using lacto-propionic orcein as a 

chromosome stain (Prakash 1986). Root tips, 2 mm in length, were 

detached and immersed in 0.2% colchicine for 2 hours and then fixed in 

Farmer’s fluid (3 parts absolute alcohol :1 part glacial acetic acid) 

overnight. After removing from the fixing solution, the root tips were 

rinsed in distilled water and softened in IN HCL at 60°C for 5 minutes. 

Finally, the tissues were mounted on a clean glass slide and a drop of 

lacto-propionic orcein was added. After 2 minutes a cover glass was 

applied and the root tips were squashed and heated gently. The numbers 

of cells undergoing cell division (metaphase, anaphase or telophase) were 

counted at a magnification of x 312.5.
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2.8. Measurement of photosynthetic oxygen evolution

2.8.1. The principle of O2 evolution measurements

Photosynthetic rates were determined polarographically using a 

Hansatech LD2 leaf disc O2 electrode (Hansatech Ltd., Paxman Road, 

Hardwick Industrial Estate, King’s Lynn, Nofolk, UK) designed by Delieu 

and Walker (1981,1983).

The O? electrode:

The O2 electrode (Fig. 2) is a conventional Clark-type Pt/Ag/AgCh 

electrode (Delieu and Walker, 1972). It comprises a relatively large (2 

mm) platinum cathode and a silver anode immersed in, and linked by, a 

KC1 bridge. Both electrodes are set in a plastic (epoxy resin) disc; the 

cathode at the centre of a dome and the silver anode in a circular groove 

(electrolyte reservoir). The two electrodes are separated from the reaction 

medium by a Teflon membrane, which is permeable to oxygen. A cigarette 

paper “spacer” is usually placed beneath the membrane in order to provide 

a uniform layer of electrolyte between the electrodes. When a small 

voltage of 600-700 mV is applied, oxygen is reduced at the platinum 

surface, initially to hydrogen peroxide so that the polarity tends to 

discharge as electrons are donated to oxygen, which acts as an electron 

acceptor. The current which then flows is stoichiometrically related to the 

oxygen consumed at the cathode (Walker, 1987; Delieu & Walker, 1972).
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The leaf-disc electrode 
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Fig. 2: The apparatus is made of anodised aluminium. Above and below 

the leaf chamber, circulating water maintains a constant temperature. A disc 

or piece of leaf is accommodated immediately below a window in the top 

section and immediately above the Clark-type O2 electrode. The O2 electrode 

measures the partial pressure of O2 within the closed chamber (Walker, D. A. 

1993).
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The leaf chamber:

The leaf chamber is made of anodised aluminium, and good 

temperature control is provided by circulating thermostatically controlled 

water through it (25 ± 0.01°C). The electrode lies beneath the leaf 

chamber with its Pt cathode exposed to the atmosphere. An effective air­

tight seal is produced by pressing the electrode against an O-ring. The leaf 

chamber is cylindrical and accommodates a leaf disc of 10 cm2 area, or 

smaller pieces of leaf supported on a stainless steel grid and capillary 

matting, which presses the leaf against the temperature controlled water 

jacketed roof of the chamber. During use, the water-jacketed roof, 

through which the leaf is illuminated, is held down on the walls of the 

chamber by two clips, thereby compressing an O-ring in order to form a 

seal. Carbon dioxide can be generated within the chamber from a 

bicarbonate buffer or supplied in the gas-phase or both (Walker, 1987).

Calibration procedure:

The leaf chamber is fitted with two taps that communicate with the 

external atmosphere. These allow the chamber to be flushed with N2, air 

or a CO2 / air mixture. The nitrogen line and the air line on the chart 

recorder were obtained by flushing N2 and air respectively. The difference 

between the electrical output of the electrode in air and N2 is a measure of 

the partial pressure of O2 in the internal atmosphere (Delieu and Walker, 

1981). The deflection recorded in millivolts on the chart, caused by 

flushing N2 (zero oxygen) and air corresponds to the number of moles of
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O2 at a particular temperature (T°C).

Calculations relating to volume and calibration:

The O2 electrode measures concentration but it is also necessary to 

know the effective volume of the chamber. For this purpose, successive 

200-pl volumes of air were introduced into the chamber using a 1-ml gas- 

tight syringe. This causes a deflection of the electrode trace that is 

proportional to the number of pmoles of O2 present in the added air. The 

effective volume of the chamber is calculated using the general equation 

given by Walker (1987,1993):

_  R , -  [ R 2 x ( l - K  ) ]

” '  * 2  -  * 1

Where: Ri = the initial electrode output.

R2 = the electrode output when the plunger is depressed, 

v = the effective volume of the chamber.

V = the volume of air injected by the syringe.

At the standard temperature and pressure the volume of O2 in 1 ml of 

atmospheric air (21%, by volume) is 210 pi. This volume is equivalent to 

9.37 pmol of O2 . Therefore, the amount of O2 can be determined at any 

temperature (T) from the equation 9.37 x (273/273+T). If the temperature 

inside the chamber is 25°C and the volume is 5ml, the amount of O2 is 

given by:

5x[9.37x(273/273+25)]“  42.920 pmoles of 0 2
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2.8.2. Photosynthesis measurements

All measurements were made at a constant temperature (25 ±0.01°C). 

Illumination was provided by 24° 50 Watt dichroic quartz halogen lamps 

(Wotan) and different light intensities, ranging from 1 to 1363 pmol 

quanta m'2 s'1, were obtained using neutral light filters (Balzar, 

Lichtenstein).

The CO2 concentration in the chamber was kept constant by mixing 

CCVfree air with 10% CO2 in air to give the desired CO2 partial pressures 

(5 kPa).

After determining the chamber volume by the air injection method (see 

Hansatech LD2 instruction manual), the chamber containing the leaf disc 

was purged with air containing the desired CO2 partial pressure (50 ml 

min-1) for 5 minutes. The chamber was then closed and the leaf disc 

illuminated with 150 pmol quanta m'2 s’1 until a steady rate of O2 

evolution was obtained. The leaf disc was then darkened for 15 minutes to 

obtain a steady rate of O2 consumption in order to determine dark 

respiration rate, and the light response of O2 evolution was measured 

during a sequence of PPFD light intensities up to 1363 pmol quanta m‘2 

s’1.

After measurement at each light level, the leaf chamber was opened to 

relieve any build up of pressure and purged again for 1 minute with the air 

at the desired CO2 partial pressure. Eight light levels between 1 and 180 

pmol quanta m'2 s'1 were used to obtain a reliable estimate of the quantum

efficiency a .
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2.8.3. Modelling photosynthesis

Different models have been proposed to describe the photosynthesis 

light response (PLR) curve. Blackman (1905) derived one of the earliest 

models which describes a response of photosynthesis which increases 

linearly with irradiance (light-limited) until the CO2 supply becomes 

limiting (CCVlimited). This model is inadequate, because the PLR curve 

shows no sharp discontinuity between the light-limited and CCVlimited 

regions. For these reasons, other models were proposed:

2.8.3.1. The linear or rectangular hyperbola model

A later model proposed by Rabinowich (1951) describes the 

relationship between photosynthesis and irradiance in terms of a 

rectangular hyperbola (Fig. 3). This model, known as the linear model, 

was derived from the Michaelis-Menten relation between the rate of an 

enzyme-catalysed reaction and the concentration of its substrate. It defines 

two parameters, Pmax the maximum (gross or net) photosynthesis rate and 

the quantum efficiency:

P n -x a x I
Pn = ---------------

P n - + a x l  ^

Where Pn is net photosynthesis, P iw  is the maximum rate of net 

photosynthesis, a  is the quantum efficiency at low irradiance and I is the 

irradiance.

Gross photosynthesis (Pg) is defined by the equation:
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Fig. 3: The light response curve of the net photosynthesis in The cultivated barley cv.

Prisma, (x) Is the experimental data. Pq Is the maximum rate of gross photosynthesis,

a  is the quantum efficiency calculated from the inintial slope of the PLR curve, Rd is the 

dark respiration and 0 Is the convexity of the PLR curve (rp / rp + rx).
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Pg -  Pn + Rd (2)

Where Rd is the rate of dark respiration. 

Equations (1) and (2) combine to become:

_ Pn _x a  x I
Pg = ---------------- + R d

Pn _+ a  x /  P)

By using equation (3), the linear model can be used to estimate a third 

parameter, dark respiration (Rd). However, this model has been shown to 

be a poor description of the PLR curve at certain saturating levels of CO2 

by some workers (Thomley, 1976; Chartier, 1970). Working with the flag 

leaf of winter wheat, Marshall and Biscoe (1980) demonstrated that the 

linear model over estimates the quantum efficiency (a), the maximum rate 

of photosynthesis (Pmax) and dark respiration (Rd), and underestimates the 

rate of photosynthesis at the intermediate light-levels (100-500 pmol m'2 

s*1 PPFD) range. This is because the model describes only the 

biochemistry of photosynthesis, taking no account of CO2 transfer from 

the atmosphere to the chloroplasts. Other attempts have been made to find 

adequate mathematical models to describe the PLR curve. Using a general 

asymptote, Peat (1970) was able to obtain a more accurate description of 

the PLR curve of tomatoes, as did Biscoe et al. (1975) using barley.
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2.8.3.2. Non linear model or non-rectangular hyperbola

This model was derived by Thomley (1976b) who realised that the 

actual PLR curve was better described by a quadratic model with three 

parameters, Pgnuu, oc and 0, where 0 is a term that governs the ‘convexity’ 

of the PLR curve:

When set at the limit where 0 = 0, the response degenerates into the 

rectangular hyperbola response described above, but at the other limit, 

where 0 = 1, the response becomes a Blackman-type curve (Blackman, 

1905). This model combines a simplified description of the biochemical 

reactions occurring within the chloroplasts with the physical diffusion of 

CO2 from the stomata to the chloroplasts. Marshall and Biscoe (1980) 

later extended this model to include estimates of dark respiration rate and 

therefore Pn. A derivation of the non-linear model is described here:

The model of Rabinowich was modified by Thomley (1976a,b) to 

give:

P'O  -  (a  .1 + P}max )P + a  . I .P max = 0 (4)

max
max

Where: Cf = is the CO2 concentration at the site of fixation.

rx = is the chemical or carboxylation resistance.

If: Pg =  Pn + Rd
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a* Ix
Pn + Rd =

c'/,
Then: a x  I  + % (5)

The net flux of CO2 from the atmosphere to the site o f fixation is:

■ _ C a - C f  
Pn = ------------ J—

and ^  f  ~ Ca Pn x rp

If Cf is eliminated from the equation (5), then:

a  x I  x (C ,/rr -  Pnx rn fr r )
P n+ Rd=  --------- £ - ^ 4

a x I  + \pa /rx - P n x r p / r x ) (°)

To remove uncertainties created by rx the numerator and denominator 

are multiplied by rx/ (rp+rx) to give:

n ,  a x l x ( p g  nax - 9 x P n )
a x / x ( l - # ) +  (Pg j n a x  - O x P n )  V)

Where: ^ m a x  “  Q* + rx )  and ^  rP f y p  ~*~rx )  

If equation (7) is expanded, equation (8) is obtained:
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OP^n -  CPgmax + a J -  0Jld)Pn + aJ.Pgm̂  -  (l -  G)Rd.Pgxmx = 0 (g) 

In equation (8), a , the initial slope, is the quantum efficiency at zero 

irradiance, 0 is the ratio of physical-to-total resistance (also called the

convexity or rate of bending of the PLR curve) where, Pgm« is the 

maximum rate of net photosynthesis calculated from the equation of the 

asymptote:

P nmax ~ ^Smax ~ (l ~  $ ) x R d  (9)

When 0 is zero, the carboxylation resistance rx is greater than the 

physical resistance rp and equation (8) reduces to a rectangular hyperbola, 

but when 0 is unity, rp is greater than rx and equation (8) reduces to a 

Blackman type response. The model is in a quadratic form:

Y -  a.Pn^ + bJPn + c = 0  (io)

Where: a —0^

b = - {Pgm„ + a . I - 9 .Rd)

c — & • I  * Pg max — — Rd • Pg max

Equation (10) can then be solved for P. as:
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2.9. Chlorophyll analysis

Chlorophyll concentration was determined in extracts made using hot 

methanol as described by Hipkins and Baker (1986), since hot methanol 

was found to result in rapid chlorophyll extraction.

Healthy and infected leaf samples used for photosynthesis 

measurements were cut into small pieces before placing in 10-ml methanol 

in 15 ml centrifuge tubes to allow the solvent to penetrate the tissues. The 

tubes were wrapped in aluminium foil to avoid light-induced breakdown 

of chlorophyll, and placed in a water bath heated to 60°C for 40 minutes. 

The chlorophyll/methanol solution was allowed to cool to room 

temperature and then centrifuged at 1500 rpm for 5 minutes in order to 

remove the leaf tissues. The supernatant was poured into a 15-ml 

volumetric flask and made up to a known volume. Chlorophyll content 

was determined spectrophotometrically using methanol as a standard at 

650 and 665 nm.

From the specific absorption coefficients given by Mackinney (1941) 

for chlorophyll a and b in methanol, equations similar to those used for 

80% acetone solutions (Amon, 1949) have been derived (Holden, 1965):

Chlorophyll a (mg T1)  = 16.5 x D66S - 8.3xD6so 

Chlorophyll b (mg t 1)  = 33.8 x D ŝo - 12.5 x £>665 

Total Chlorophyll (m g t1) -  25.5 x D 650 - 4.0xD665
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2.10. Stomatal measurements

2.10.1. Epidermal cell size

The numbers of epidermal cells and stomata per unit area of the 

lower epidermis of the third leaf of uninfected and infected barley plants 

were determined microscopically. Clear nail varnish was applied to the 

lower epidermis and left for two hours to dry. The epidermal imprints 

were then peeled off with fine forceps and placed in distilled water on a 

microscope slide. A cover slip was then placed over the imprints to 

prevent curling or blowing away. Numbers of stomata and epidermal cells 

other than stomata were counted per field of view (0.623 mm2) at x 126 

magnification.

2.10.2. Stomatal resistance

An automatic diffusion porometer MK3 Delta-T Devices (128, Low 

Road, Burwell, Cambridge CB5 OEJ, UK) was used to measure stomatal 

diffusive resistance.

2.10.2.1. Principle of the measurements

The diffusion porometer measures the approximate rate of diffusion 

of water vapour through the stomata. Its operation assumes that water 

vapour diffusion out of a leaf into dry air is regulated by the degree of 

opening of the stomata (neglecting cuticular transpiration). A small 

chamber containing a relative humidity sensor is clamped to the leaf. Prior 

to reading, a small electric diaphragm pump blows a stream of air, dried
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by passing through silica gel, into the chamber. Water vapour emitted by 

the transpiring leaf surface causes the relative humidity (RH) within the 

chamber to rise and the sensor becomes moist. As the sensor becomes 

moist its conductivity increases and the rate of increase in conductivity to 

a set value is directly proportional to the rate of outward diffusion of 

water vapour through the stomata. The difference in temperature between 

the leaf and the cup is measured by two thermistors, which are built into 

the leaf clamp.

2.10.2.2. Porometer calibration

The porometer is supplied with a moulded polypropylene calibration 

plate with six groups of holes each of known diffusion resistance. A 

source of water vapour is provided by backing the plate with damp filter 

paper, which is sealed to the plate with waterproof tape. The sensor head 

is clipped onto the calibration plate and readings are taken from each set 

of holes. A calibration graph of plate resistances is plotted against the 

corresponding counts (Automatic porometer MK3 operating manual,) and 

this graph is used to convert the counts obtained from the leaf 

measurements into diffusion resistance values.

2.10.3.Experimental procedure

Fifty seedlings were raised as described in section 2.3. When two 

weeks old, the fully expanded third leaves on 25 plants of each line were 

inoculated in the middle region of the adaxial surface, using a camel hair
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brush (section 2.11.3.2). The tip and the base of the leaf blades were kept 

free of mildew. The other 25 plants of each line were kept free of mildew 

by adding 0.05% Benlate solution to the pots at weekly intervals. The 

inoculated and uninoculated plants were then placed randomly in the 

growth cabinet.

The stomatal resistance measurements were taken from four plants per 

treatment per line. The first measurements in the light were made 24 hours 

after inoculation, and then the same plants were placed in a dark room for 

24 hours after which porometer measurements were made under green 

light. Subsequent measurements were made at two-day intervals until 5 

sets of measurements had been made.

Stomatal resistances were measured in the middle and tip of both 

adaxial and abaxial surfaces of infected and uninfected third leaves on each 

plant line.
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2.11. Mildew cultures

2.11.1. Single-spore isolation

The initial mildew inoculum was obtained from naturally infected 

barley plants growing in the greenhouse. The inoculum used in all the 

experiments was derived from a single conidial chain in an attempt to 

ensure genetic purity. Each single conidial chain isolate was first cultured 

on a detached leaf maintained on benzimidazole agar in a Petri dish (See 

below). The conidia produced from that generation were then used to 

inoculate either, other detached leaves, or whole plants grown in an 

isolation plant propagator. In this way, the large amounts of inoculum 

required for the inoculation of plants in all the experiments were 

produced.

2.11.2. Maintenance of mildew isolates

2.11.2.1. On whole plants using a Burkard isolation plant propagator

An isolation plant propagator (Burkard Manufacturing Co Ltd.) of a 

type devised by Jenkyn et al. (1973) was used to maintain mildew on 

whole plants. Seedlings of the susceptible barley cv. Golden Promise were 

grown in the propagator pots in a growth cabinet free from mildew. When 

12 days old, the seedlings were inoculated, covered with a transparent 

polystyrene cover and placed on the propagator. The multiple units of 

plant pots were provided with filtered moistened air under positive 

pressure thus keeping the plants within the units free from contamination. 

The plants were watered from below using wicks of absorbent cotton.
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Mildewed plants were replaced every four to five weeks with a set of 

newly inoculated young seedlings.

2.11.2.2. On detached leaf pieces

Detached leaves were cut into pieces of approximately 2-cm length 

and placed, 4 per Petri dish, on 0.5% water agar containing 100 mg T1 

benzimidazole. The benzimidazole was included in the agar in order to 

delay the senescence of the leaf segments (Person et al., 1957) and thus, 

to allow appropriate development of the mildew. The agar medium was 

prepared by boiling distilled water containing 0.5%-powdered agar while 

stirring until the agar was completely dissolved. After cooling to 50°C, 

benzimidazole was added to give a concentration of 100 mg T1, and the 

medium was poured into Petri dishes. After inoculating the leaf segments, 

the dishes were incubated for 10 to 14 days in a growth room maintained 

at 20 ± 2°C with a 16 hours photoperiod providing a PPFD of 130 pmol 

quanta m'2 s'1. Mildew colonies were apparent 5 days after inoculation and 

by the 10th day, leaf segments had developed large sporulating colonies.

2.11.3. Methods of inoculation

Three different inoculation procedures were used depending upon 

whether whole plants or parts of plants were being inoculated.

2.11.3.1. Whole plants

Whole plants for growth analysis experiments were inoculated by
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shaking heavily infected young seedlings over them daily over a period of 

one week.

2.11.3.2. Individual leaves on whole plants

This method was used to inoculate the middle region of the third 

leaves for stomatal resistance measurements. Inoculations were made 

using a soft camel-hair brush to transfer conidia from recently produced 

colonies on whole plants or on detached leaves to the part of the leaf 

required. The brush after sterilising in 95% ethanol, was stroked over the 

surface of an infected leaf to pick up conidia, and then tapped lightly to 

dislodge the spores as it was passed above the adaxial surface of the leaf 

to be inoculated. This method produces a relatively uniform distribution of 

conidia (Russell et al. 1975).

2.11.33. Spore-settling tower

This method was used to inoculate the third leaves of plants used for 

photosynthesis and respiration measurements. The spore-settling tower 

produced relatively uniform distributions of conidia over individual leaves.

The leaves to be inoculated were aligned horizontally, with their 

adaxial side uppermost on the inoculation table of the tower. Newly 

produced conidia from two-week-old (from planting) heavily mildewed 

seedlings were used as inoculum; older conidia were removed by shaking 

the infected plants 24 hours prior to inoculation so that only conidia 

produced during the intervening 24 hours were used as inoculum. Conidia
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were blown into the tower using a blowing brush and allowed to settle for 

three minutes. A coverslip covered in Vaseline grease was also placed in 

the tower and the amount of inoculum landing on the leaves was estimated 

by counting conidia that had settled on the coverslip. The density was 

generally 5-8 conidia per mm2 in all the experiments. After inoculation, the 

plants were grown on in the growth room.

2.11.4. Mildew assessment

Two methods were used to estimate the amount of mildew growth on 

infected leaves: Visual assessment of mildew cover on the leaves and 

assessment of fungal biomass produced from counts of the number of 

conidia produced on the leaves.

2.11.4.1. Visual assessment of mildew cover

Visual assessment of the level of mildew present on the leaf is 

relatively rapid but is a subjective method and liable to error. The method 

involves comparing standard diagrams (Fig. 4) defining specific levels of 

mildew cover on leaves and stems, with infected leaves to determine 

percentage leaf blade area covered by mildew colonies. Pustules on the 

main stem were not included in the assessment since stem area contributes 

only a negligible portion of the total photosynthetic area of the plant. Leaf 

area of each leaf on the main axis was measured either using a 

photoelectric leaf area meter or the Delta-T scanner. Total percentage 

area of all leaf blades covered by mildew was calculated as follows:
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z  = j y a ,  + y 2-a2 + y 3.a3 + .....  y n.a n
a y + a 2 + a 3 +  a n

Where yi, yi, y3...yn are the percentage areas of the leaf blade of 

leaves 1, 2, 3,...n (on the primary shoot) with leaf blade areas of ai, a2, 

a3,...a„ covered by mildew colonies.

To estimate the percentage leaf segment covered by mildew in the 

photosynthesis experiment, the diagram in Fig. 5 was used.

2.11.4.2. Measuring mildew biomass production

Several methods of collecting conidia were tried. Initially a small 

cyclone collector was made and tested, but it proved difficult to collect 

conidia from one leaf without disturbing other leaves and dislodging their 

conidia. In the method finally adopted, infected leaves were inserted singly 

into glass tubes, which were long and wide enough to insert the leaves 

without loss of conidia. The leaves were then cut carefully from the plant 

using a new razor blade and the tubes sealed prior to transfer to the 

laboratory. Using a vortex mixer, conidia were detached from the leaves 

into distilled water containing the wetting agent Tween 80; the wetting 

agent facilitates conidia dislodgement. The conidial suspension was then 

centrifuged at 1000 rpm for 10 minutes, the supernatant discarded and the 

pellet of conidia resuspended in 5 ml distilled water and the number of 

conidia present in the suspension was determined using a hemocytometer. 

Ten counts were made per leaf sample and the mean number of conidia 

per unit leaf area was calculated. The washed leaves were blotted dry and
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the leaf area was determined using the Delta-T scanner.

2.11.5. Maintenance of mildew-free control plants

The control uninfected plants were maintained free of mildew using 

fungicides. The main fungicide used was Benlate (Benomyl; methyl-1- 

(butycarbamoyl)-2-benzimidazole-carbamate). It is a systemic fungicide, 

which is absorbed through the foliage or roots, converted to carbendazim 

(MBC) and translocated within the plant through the xylem. It inhibits the 

growth of sensitive fungi by blocking nuclear division. It is non-phytotoxic 

when applied at low but fungitoxic concentrations (Thanassoupoulos et al. 

1970; Reyes, 1975; Ben-Kalio, 1976; Fraser, 1981 and Paul et al. 1989). 

Meek (1981) observed that when applied at low concentration (0.02%), it 

did not affect the growth of barley, while Cameron (1993) demonstrated 

that it could be used at even higher concentrations (0.05%) without 

growth being affected.

In this study, Benomyl was applied weekly as a soil drench at 0.05% 

concentration. The pots were placed on saucers to ensure that the fungicide 

did not transfer from treated to untreated pots. Sometimes Benomyl 

treatments did not control mildew completely over the whole experiment in 

growth analysis experiments, and an application of the systemic fungicide 

Patrol (Fenpropidin) was then applied. Fenpropidin is based on piperidine 

whose activity is directed at the disruption of the synthesis and function of 

fungal cell membranes by the inhibition of ergosterol biosynthesis. When 

applied at low concentrations (0.1%), Fenpropidin has been found to be non­
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phytotoxic to oats (Sabri 1993). Prior to spraying, the plants requiring 

treatment were moved to another growth cabinet, sprayed and then returned.

To investigate compensatory photosynthesis in the fourth leaves of 

plants whose three lower leaves were inoculated, applications of yellow 

sulphur were applied weekly to the fourth leaf as finely ground dust. 

When the fourth leaves were fully expanded, the lower three leaves of one 

set of plants were inoculated (section 2.11.3.2). The fourth leaves were 

covered with a plastic bag to protect them from the inoculum during 

inoculation. Tillers appearing in addition to the main shoot were removed 

to maintain a constant ratio of healthy to infected tissues.



Chapter 3
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REACTIONS OF BARLEY LINES 

TO MILDEW INFECTION 

3.1. Introduction

A number of wild and cultivated spring barley lines were tested for their 

reactions to powdery mildew in order to select lines expressing a range of 

different reactions for study (Table 2).

Three seedlings of each line were grown in the greenhouse and 

inoculated by shaking heavily infected seedlings over them (see Materials 

and Methods).

3.2. Results

3.2.1. Cultivated barley

Four cultivars were tested for their reaction to mildew infection:

1) Golden Promise: A highly susceptible cultivar (plate 1) with no known 

resistance genes. It is a mutant of the cultivar Maythorpe being produced 

using gamma rays.

21 Prisma: A very susceptible cultivar (Plate 2), with at least one defeated 

resistance gene. It was derived from a hybrid between cv. Triumph x cv. 

Cambrinus crossed with cv. Piccolo.

3) Triumph: A moderately susceptible cultivar (Plate 3), with at least one 

defeated resistance gene. It develops considerable necrosis in response to 

mildew infection. It was derived from cv. Diamant x St. 14029/64/9.



Plate 1: Infected leaf of cv. Golden Promise

Plate 2: Infected leaf of cv. Prisma



Plate 3: Infected leaf o f cv. Triumph

Plate 4: Infected leaf of the wild barley line B19909
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4) Camareue: A highly resistant cultivar (Immune) to powdery mildew 

infection. When inoculated with mildew conidia, it shows no sign of necrosis 

or mycelium development It was derived from a hybrid between cv. 

Diamant x l4029/64/6 crossed with Km 1192.

Only the first three cultivars were used in this investigation.

3.2.2. Wild lines

Twenty five wild barley lines were tested for their reaction to powdery 

mildew infection. The reactions of all the wild and cultivated lines were 

summarised in Table 2.

The tests showed a range of reactions from highly susceptible through 

high levels of partial resistance to complete resistance. The two most 

susceptible wild lines B19909 (Plate 4) and 1-17-40 and line B8893 (Plate 5), 

which reacts hypersensitively to B. graminis f.sp. hordei were selected for 

use.



Plate 5: Infected leaves of the wild barley line B8893.
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Table 2: Reactions of barley lines to powdery mildew.

Plant line Reaction to mildew (scores)

Wild lines

8876 0
D-49 0
8861 1
8878 1
8894 1
8895 1
8925 1
19917 1
8854 2
8858 2
8888 2
8893 2
8911 2
8919 2
8936 2
8937 2
8938 2
19926 2
8850 3
19905 3
19935 3
19937 3
1-16 3

19909 4
1-17-40 4

Cul tivated cultivars
Golden Promise 4

Prisma 4
Triumph 3
Camargue 0

0: Very resistant 1: Resistant. 2: Moderately resistant. 

3: Moderately susceptible. 4: very susceptible.
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2 and 3 show hypersensitive necrosis to B. gram inis mycelium. 

The lines selected are shown in bold type.
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THE EFFECTS OF MILDEW INFECTION ON THE 
GROWTH AND DEVELOPMENT OF THREE 

BARLEY LINES.

4.1. Introduction

The effects of powdery mildew infection on host growth and 

development were studied in one cultivated barley, cv. Prisma and two lines 

of wild barley, 1-17-40 and B19909. The experiment was carried out in a 

growth cabinet and the results are presented in Text Table 3 and Appendix 

Tables 1 to 10, and summarised in Appendix Tables 13 A and 13B.

4.2. Mildew development

4.2.1. Levels of infection

Percentage mildew cover on each leaf surface at each harvest is presented 

in Fig. 6A. The levels of infection developing on the growth cabinet grown 

plants were much higher than those developing on plants grown in the 

greenhouse.

The plants were inoculated two weeks after planting when the third 

leaves were fully expanded. Within five days of inoculation small isolated 

mildew colonies were visible scattered over the whole plant. From four 

weeks after inoculation, about 27% of the leaf blades on the primary shoot of 

cv. Prisma and line 1-17-40 was covered by mildew and about 34% on line 

B19909. The fungal colonies continued to increase rapidly on cv. Prisma and 

line B19909 until about six weeks after inoculation when the experiment was 

terminated, the levels of infection had reached about 40% on both.
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30
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10
21 3 4 65

B19909

M7-40

W eeks after inoculation

Fig. 6A: The percentage green leaf area affected by mildew infection. 
Each datum point is the mean of three replicates. The vertical bars are the

standard errors.
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In contrast, mildew cover developed differently on line 1-17-40. Although 

it reached 27% by the fourth week after inoculation the same as cv. Prisma, it 

then decreased dramatically falling to 15% six weeks after inoculation, 

because of the high level of adult plant resistance expressed by the upper 

leaves.

4.2.2. The development of fungal biomass

4.2.2.I. On the primary shoot

Measurements of conidial production involved destructive sampling, and 

so a different set of plants from those used for the growth analysis was used 

for this study. Conidial production per unit area of the individual infected 

leaves on the primary shoot of the three lines is plotted in Fig. 6B while the 

cumulative number of conidia produced on the whole primary shoot of each 

line is plotted in Fig. 6C.

Fig. 6B shows that individual leaves of line B19909 generally produced 

more conidia than those of cv. Prisma, which in turn produced more conidia 

than those of line 1-17-40. However, four weeks after inoculation, leaf five 

of cv. Prisma and line 1-17-40 had produced about the same number of 

conidia, while that of line B19909 had produced a slightly higher number. As 

infection progressed, the older leaves supported the production of more 

conidia in line B19909 than in cv. Prisma or line 1-17-40, the latter producing 

the lowest number of conidia.

The total number of conidia produced on the primary shoot of line 

B19909, by each sampling time, was significantly higher (p < 0.001) than on 

line 1-17-40, and also higher than on cv. Prisma (Fig. 6C). By the end of the
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B19909
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Weeks after inoculation 

[■Li BL2 BL3 D U  BLS CL6 HL7 □ L8 BL9 BL10 DL11 BL12]

Fig. 6B: The number of spores produced by mildew on 

the individual leaves expanded on the primary shoot of 

the three barley lines.
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I.OE+O81

8.0E+07

6.0E+07

4.0E+07

2.0E+07-
B19909

Prisma

1-17-40

Weeks after inoculation 
B 1-17-40 B Prisma DB19909

Fig. 6C: The cumulative number of spores produced 

by mildew on the leaves of the primary shoot of the 

three barley lines.
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experiment (six weeks after inoculation), the total number of conidia 

produced by line B19909 was about 9.1xl07, by cv. Prisma about 8.3xl07 

and by line 1-17-40 about 1.7xl07.

4.2.2.2. On the whole plant

The cumulative number of conidia produced on each plant was calculated 

from total green leaf areas of tillers and primary shoots assuming that 

conidial production on the leaves of each tiller followed the same pattern as 

on the primary shoot.

The results plotted in Fig. 6D, show significantly higher (p < 0.05) 

conidial production on line B19909 compared to the other two lines, with 

line 1-17-40 supporting the production of the lowest number of conidia. At 

the final harvest, the total number of conidia produced was about 1.4x108 on 

line 1-17-40, about 3.1xl08 on cv. Prisma and about 4.5xl08 on line B19909. 

Clearly B19909 supports more mildew development than cv. Prisma and 

much more than line 1-17-40.

4.3. The effects of infection on plant growth and development

4.3.1. Effects of infection on shoot morphology

Measurements on shoot components of infected and uninfected plants of 

each line, at each harvest, are plotted graphically in Figs. 7, 8 and 10, while 

certain details of leaf development are recorded in Table 3.
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6 .E+O8-1

5.E+08-

4.E+08-
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1.E+08-
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B19909

Prisma

1-17-40

Weeks after inoculation 
01-17-40 S  Prisma DB19909

Fig. 6D: The cumulative number of conidia 

produced per plant.
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4.3.1.1. Primary shoot growth

4.3.1.1.1. Primary shoot height

The primary shoot of uninfected plants continued to elongate throughout 

the experiment in both cv. Prisma and line B19909 (Fig. 7) with that of line 

B19909 showing accelerated growth from week seven after planting (five 

weeks after inoculation). The primary shoot of cv. Prisma and line B19909 

showed relatively little increase in height after inoculation and were 

significantly shorter (p < 0.05) than those of uninoculated plants from four 

and six weeks after inoculation respectively. The primary shoot height of 

uninoculated plants of line 1-17-40 was much shorter than those of the other 

two lines throughout the experiment The primary shoot of this line did not 

begin to elongate significantly until a week after the experiment was 

terminated, and during the period of the experiment there was no significant 

difference in height between infected and uninfected plants. -

4.3.1.1.2. Number of leaves expanded on the primary shoot

Both infected and uninfected plants of all three lines had expanded about 

the same number of leaves by seven weeks after planting (five weeks after 

inoculation) (Taible 3), about 10 to 11 leaves on cv. Prisma and line B19909 

and about 11 leaves on line 1-17-40. By eight weeks after planting (six weeks 

after inoculation), uninfected plants of both cv. Prisma and line B19909 had 

expanded a further 1 to 2 leaves, but no further leaves expanded on the 

infected plants. An analysis of variance showed that the differences between 

infected and control plants were significant in cv. Prisma (p < 0.05) and in
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B19909

50 t

40--

3 0 -

2 0 -

10-

3 4

Weeks after inoculation 

—O—control —

Fig. 7: Tha effects of infection on primary shoot height
Each datum Is the mean of three replicates.
Vertical bars are the standard errors.
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T a b le  3 1 Leaf development on infected (I) and control (C) plants of the 

three barley lines at weekly intervals. Each reading is the mean of three 

replicates ± SE.

| Weeks 
after 

inoculation

Total number of leaves Number of senescent leaves |

1-17-40 Prisma B19909 1-17-40 Prisma B19909

C

2>d

7.0 ±0.0 7.0 ± 0.0 6.0 ±0.0 0.0 ± 0.0 0.0 ±0.0 0.0 ± 0.0

I 7.0 ± 0.0 7.0 ± 0.0 6.3 ± 0.3 0.7 ± 0.3 0.7 ± 0.3 0.7 ± 0.3

C

-jrd

8.3 ± 0.3 8.3 ±0.3 7.7 ± 0.3 1.0 ±0.0 0.3 ±0.3 1.0 ±0.0

I 9.0 ±0.0 8.0 ±0.0 7.0 ± 0.0 3.3 ±0.3 4.0 ± 0.0 3.0 ± 0.0

c

4th

10.3 ±0.3 9.3 ± 0.3 9.3 ± 0.3 3.0 ±0.0 3.7 ±0.3 4.0 ± 0.0

I 9.3 ± 0.3 9.0 ±0.0 8.7 ±0.3 6.3 ±0.3 6.0 ± 0.0 6.0 ±0.0

C

5th

11.0 ±0.0 10.3 ±0.3 10.7 ±0.3 6.0 ±0.7 6.0 ±0.0 6.0 ±0.0

I 11.0 ±0.0 10.0 ±0.0 10.0 ±0.0 8.0 ±0.0 7.7 ±0.3 7.0 ±0.0

C

6th

11.3 ±0.3 11.7 ±0.3 11.7 ±0.3 6.7 ±0.3 7.0 ±0.0 7.0 ±0.0

I 11.3 ±0.3 10.0 ±0.0 10.3 ±0.3 8.3 ± 0.3 8.0 ±0.0 8.0 ±0.0
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line B19909 (p < 0.01). However, by the end of the experiment both 

inoculated and uninoculated plants of line B19909 had expanded the same 

number of leaves, the differences between the two groups being in the time 

of leaf expansion. In contrast, because of the heavy level of infection in the 

growth cabinet grown plants, the primary shoots of inoculated plants of cv. 

Prisma died just after the tenth leaf had expanded and so no further leaves 

were produced.

Infected and uninfected plants of line 1-17-40 produced the same number 

of leaves on the primary shoot with no significant delay in leaf expansion in 

response to infection.

As infection progressed, the lower leaves on inoculated plants senesced 

earlier than on uninoculated plants. Senescence began in infected plants two 

weeks after inoculation and the number of leaves senescing was significantly 

higher than on uninoculated plants from the third week after inoculation 

(Table 3).

4.3.1.1.3. Green leaf blade area (GLA) on the primary shoot

Total GLA on the primary shoots of uninfected plants was generally 

higher in cv. Prisma than in the wild lines at all harvests (Fig. 8). In cv. 

Prisma, total GLA increased rapidly between the first and the second 

harvests, and then as plants matured it declined progressively due to the 

senescence of the lower leaves. In contrast, no changes were observed in 

GLA of the two wild lines during the course of the experiment

Infection decreased total GLA in all three lines, with cv. Prisma being
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Fig. 8: The effects of Infection on green leaf area of 

the primary sh o o t Each datum point Is the mean of 

three replicates. The vertical bars are the standard 

errors.
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more affected than the wild lines. An analysis of variance showed highly 

significant (p < 0.001) differences for all lines between infected and 

uninfected plants from three weeks after inoculation. Four weeks after 

inoculation, the percentage reduction in total GLA over the controls was 

about 69% in line 1-17-40, 65% in cv. Prisma and 50% in line B19909. At 

this stage, the percentage leaf area covered with mildew was about 27% in 

both cv. Prisma and line 1-17-40 and about 34% in line B19909. Infection 

eventually progressed to the upper leaves where lower percentage mildew 

cover developed due to the greater resistance of the upper leaves than the 

lower leaves. Because of this, differences in total GLA between infected and 

controls became smaller and less significant, especially in the wild lines.

4.3.I.2. Tiller production

4.3.L2.1. Number of tillers

The first tillers emerged before the first measurements were made. Fig. 9 

shows that in all lines, tiller production by uninfected plants continued to 

increase during the course of the experiment with the exception of line 

B19909, which developed no further tillers after the sixth week from planting 

(fourth week after inoculation).

The number of tillers produced by inoculated plants of all three lines was 

lower than that on uninoculated plants with the differences becoming 

significant from three weeks after inoculation in line 1-17-40 and line 

B19909 at a time when 17% of the leaf area was colonised in line 1-17-40 

(p<0.05) and 26% in line B19909 (p<0.01). The differences became
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M7-40
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1 2 3 4 S 6

Prisma
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B19909
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Weeks after inoculation 

■v“  control -v —im^cwa

Fig. 9: The effects of Infection on tiller production.

Each datum point la the mean of throe replicates.

Vertical bars are the standard errors.



Chapter 4 Growth Analysis 102

significant about a week later in cv. Prisma when 27 % of the leaf area was 

colonised (p < 0.005). Although, the difference in the number of tillers 

produced by infected and uninfected plants of line 1-17-40 was not 

significant at the last harvest, this was probably due to the high variation 

between replicates at this harvest compared to the earlier harvests.

4.3.L2.2. Total green leaf blade area (GLA) on the tillers

The production of leaf blades on the tillers (Fig. 10) showed a similar 

response to infection as leaf blade production on the primary shoots. Apart 

from the first harvest, infection lowered GLA on the tillers significantly (p < 

0.01) in all three lines, with line 1-17-40 and cv. Prisma being more affected 

than line B19909. At the final harvest, total GLA was reduced over the 

uninfected controls by about 76% in cv. Prisma, 49% in line 1-17-40 and 

32% in line B19909. The reduction in total GLA between the penultimate 

and the last harvest in the control plants of line B19909 was mainly due to 

the greater loss in this line of the lower leaves due to senescence.

4.3.2. Effects on root production

4.3.2.I. Seminal roots

Measurements of the different morphological components of the seminal 

roots of infected and uninfected plants are plotted graphically in Figs. 11 to 

15.
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Chapter 4 Growth Analysis 104

4.3.2.1.1 Number of seminal roots

Emergence of the seminal roots was completed before the plants were 

inoculated, and therefore their number shows only random variation between 

infected and uninfected plants at each harvest (Fig. 11). Plants of line 1-17-40 

and cv. Prisma produced between 6 to 8 seminal roots, while those of line 

B 19909 produced between 5 to 8 seminal roots.

4.3.2.1.2. Number of laterals on the seminal roots

Uninfected and infected plants of all three lines produced both primary 

and secondary laterals on the seminal roots, with the numbers increasing with 

time (Fig. 12).

Infection reduced the number of lateral roots produced per plant in cv. 

Prisma and line B19909, but the reduction was more pronounced in the 

former. An analysis of variance shows that the differences between infected 

and uninfected plants became significant from around the fourth week after 

inoculation in both cv. Prisma (p < 0.01) and line B19909 (p < 0.05), and by 

the sixth week, cv. Prisma had produced about 51% fewer lateral roots and 

line B19909 about 27% fewer lateral roots.

None of the differences between infected and uninfected plants of line I- 

17-40 were significant at any harvest.

4.3.2.1.3. Total length of the seminal root system

The total length of the seminal root system of uninfected and infected 

plants increased as the experiment progressed in all three lines (Fig. 13). 

Infection reduced seminal root length significantly in both cv. Prisma (p <
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1-17-40

2 3 4 6 6

Prisma

*1

2 3 4 6 6

B19909

*1

2 3 4 6 6
Weeks after inoculation 

□control B Infected

Fig. 11: The effect of infection on seminal root production.
Each datum point Is the mean of three replicates,
vertical bars are the standard errors.
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Fig. 12: The effects of infection on the development of seminal

lateral roots.Each datum point Is the mean of the three replicates.

Vertical bars are the standard errors.
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Fig. 13: Tha effects of Infection on seminal root length.
Each datum point is the mean of three replicates.
Vertical bars are the standard errors.
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0.005) and line B19909 (p < 0.05). By the sixth week after inoculation the 

percentage reduction over the controls was about 65% in cv. Prisma but only 

47% in line B19909. However, Seminal root length was not reduced 

significantly by infection in line 1-17-40.

4.3.2.1.4. Mean seminal root diameter

The mean diameter of the seminal roots including laterals reduced with 

time due to the greater proportion of thinner laterals produced by the older 

plants (Fig. 14). Infection did not affect diameters significantly in any line at 

any harvest except at the last harvest in line 1-17-40 (p < 0.05). The failure to 

show any effects of infection on seminal root diameters could be due to the 

large number of laterals with approximately the same diameters.

4.3.2.1.5. Surface area of the seminal root system

Total seminal root area (including laterals) of uninfected plants increased 

as the number and lengths of the seminal roots and their laterals increased 

during growth (Fig. 15). However, there were large fluctuations between 

harvests due to the high level of variability between replicates.

Infection decreased seminal root surface area significantly in both wild 

lines (p < 0.01) and in cv. Prisma (p < 0.001). This decrease become 

significant from the fourth week after inoculation in line 1-17-40 and cv. 

Prisma, but not until the fifth week after inoculation in line B19909. It 

appears that cv. Prisma was more affected by infection than the two wild 

lines. The reduced seminal root surface area of infected plants was partly due 

to the reduction in seminal root length (Fig. 13) as well as in the number of 

laterals produced (Fig. 12).
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Fig. 14: The effects of infection on mean seminal root

diameter. Each datum is the mean of three replicates.

Vertical bars are the standard errors.
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Prisma
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Fig. 15: The effects of infection on the surface area of the

seminal root system. Each datum point is the mean of three

replicates. Vertical bars are the standard errors.
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4.3.2.2. Nodal roots

Measurements of the different morphological components of the nodal 

roots of infected and uninfected plants are plotted graphically in Figs. 16 to 

20.

4.3.2.2.1. Number of nodal roots

The number of nodal roots on uninfected plants increased progressively 

in all lines as the experiment progressed (Fig. 16). The slight decrease in the 

number of nodal roots shown by line B19909 at the end of the experiment 

was probably due to random variation.

Infection decreased the total number of nodal roots in all lines. An 

analysis of variance showed that the reduction was significant from three 

weeks after inoculation in cv. Prisma (p < 0.0001) and in wild lines B19909 

and 1-17-40 (p < 0.05). By the sixth week after inoculation, the percentage 

reduction was about 74% in cv. Prisma, 46% in 1-17-40 but only 31% in line 

B19909.

4.3.2.2.2. Number of laterals on the nodal roots

Uninfected and infected plants of all three lines produced primary and 

secondary laterals on the nodal roots; tertiary laterals developed on all 

occasionally.

Infection reduced the total number of nodal root laterals produced per 

plant in cv. Prisma but not in the two wild lines (Fig. 17). An analysis of 

variance showed that by the sixth week after inoculation, infection had
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Fig. 16: The effects of infection on the production of nodal roots.

Each datum point is the mean of three replicates. Vertical bars

are the standard errors.
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Fig. 17: The effects of infection on the production of nodal

lateral roots. Each datum point is the mean of three replicates.

Vertical bars are the standard errors.
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significantly reduced (p < 0.01) lateral root production on the nodal roots of 

cv. Prisma by up to 71 %.

4.3.2.2.3. Total length of the nodal root system

The total length of the nodal root system of uninfected and infected plants 

continued to increase throughout the course of the experiment (Fig. 18). 

However, infection reduced the total length produced in all lines and an 

analysis of variance showed that the reductions were significant (p < 0.005) 

in cv. Prisma from the third week after inoculation, in line 1-17-40 (p < 0.05) 

from the fourth week after inoculation but not until the sixth week after 

inoculation in line B19909 (p < 0.05). At the last harvest, total lengths of the 

nodal root system were reduced by 78% in cv. Prisma but only by about 39% 

in line 1-17-40 and about 27% in line B19909.

4.3.2.2.4. Mean nodal root diameter

The mean diameters of the nodal roots, including laterals, in cv. Prisma 

and line 1-17-40 appeared to be little affected by infection at any harvest 

probably because of the high level of variation (Fig. 19). Infection appeared 

to decrease significantly (p < 0.001) the diameter of nodal roots on infected 

plants of line B19909 at the first harvest, but from then on the differences 

were insignificant
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Fig. 18: Tha offsets of Infection on the nodal root length.

Each datum point is the mean of three replicates.

Vertical bare are the standard errors.
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4.3.2.2.5. Total surface area of the nodal root system

The total surface area of the nodal root system on uninfected plants of all 

lines increased with time (Fig. 20).

Infection reduced total surface area, the reduction becoming significant 

from around the third week after inoculation in all lines. At the end of the 

experiment, an analysis of variance showed that the reductions were highly 

significant in cv. Prisma (p < 0.0001) but less so in the two wild lines (p < 

0.05). At this stage, total surface area was reduced by about 80 % in cv. 

Prisma, 60% in line 1-17-40 and 41% in line B19909.

4.3.2.3. Total number of lateral roots

Infection reduced the total number of all lateral roots per plant (sum of 

nodal and seminal laterals) in cv. Prisma more than in the other two lines 

(Fig. 21). An analysis of variance showed that the total number of lateral 

roots produced per plant in cv. Prisma was significantly reduced (p < 0.005) 

by up to 60% at the sixth week after inoculation, but infection had no 

significant effect on the number of lateral roots produced by the two wild 

lines at any harvest

4.3.2.4. Total root length

Infection reduced total root length in all lines with the reductions 

becoming significant in cv. Prisma (p < 0.002) by the fourth week after 

inoculation and in line B19909 (p < 0.05) by the fifth week after inoculation 

(Fig. 22). As infection increased, the differences in total root length between 

infected and uninfected plants became more marked and by the end of the
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Fig. 20: The effects of infection on the total surface of the

nodal root system. Each datum point Is the mean of three

replicates. Vertical bars are the standard errors.
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Fig. 21: The effects of Infection on the development of lateral roots.
Each datum point In the mean of three replicates. Vertical bars are
the standard errors.
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experiment (six weeks after inoculation), total root lengths of infected plants 

were reduced by about 72% in cv. Prisma and about 45% in line B19909. In 

contrast, at the end of the experiment there was no significant reduction in 

total root length in line 1-17-40.

4.3.2.5. Total surface area of the whole root system

The total surface area of the whole root system was reduced by infection 

in all three lines (Fig. 23). An analysis of variance showed that these 

reductions were significant in cv. Prisma (p < 0.0001), line 1-17-40 (p < 0.01) 

and line B19909 (p < 0.01). By the end of the experiment, the reductions 

were greatest in cv. Prisma where the total surface area was reduced by 80%. 

In line 1-17-40, the total surface area was reduced by 57% and in line B19909 

by 50%.

4.3.3. Effects on dry matter accumulation

The dry weights of shoots and roots and total plant dry weight of infected 

and uninfected plants of each line, at each harvest, are plotted graphically in 

Figs. 24A, 24B and 24C.

4.3.3.1. Shoot dry weight

Shoot dry weights of infected and control plants of all lines, continued to 

increase throughout the experiment (Fig. 24 A). Infection began to decrease 

shoot dry weight significantly (p < 0.05) in cv. Prisma from the fourth week 

after inoculation, and by the sixth week after inoculation, it was reduced by
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Fig. 23: The effects of Infection on total root surface
Each datum point is the mean of three replicates.
Vertical bare are the standard errors.
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Fig. 24A: Tha affects of infection on shoot dry weight Each
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about 60% of the levels of uninfected plants. Infection had also reduced 

shoot dry weight in line 1-17-40 but only at the fourth week after inoculation 

but it had no significant effect on line B19909.

4.3.3.2. Root dry weight

Root dry weights of uninfected plants increased slowly with age in all 

lines. However, those of infected plants either showed no increase e.g. cv. 

Prisma and line B19909 or as in line 1-17-40 increased only slightly over the 

period of the experiment (Fig. 24 B). The differences between infected and 

uninfected plants became significant from the fourth week after inoculation 

in cv. Prisma and the fifth week in line B19909. Line 1-17-40 showed a high 

level of variation, particularly at the last two harvests and although root dry 

weights of infected plants were consistently lower than those of uninfected 

plants, the differences were significant (p < 0.05) only at the fourth week 

after inoculation. By the end of the experiment, the percentage reduction in 

root dry weight was about 30% in line B19909 but around 83% in cv. 

Prisma.

4.3.3.3. Total plant dry weight

Fig. 24 C. shows that the total dry weights of uninfected plants of all the 

three lines continued to increase throughout the experiment but no increase 

was observed in the infected plants except in line 1-17-40. However, apart 

from the first harvest, two weeks after inoculation, the dry weights of 

infected plants were always lower than those of uninfected plants, although 

the differences did not become significant until four weeks after inoculation
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Fig. 24C: The effects of Infection on total plant dry weight
Each datum point is the mean of three replicates. Vertical
bars are the standard errors.
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in cv. Prisma and line B19909. By the end of experiment, the percentage 

reductions in the total dry weights of infected plants compared to uninfected 

plants was 63% in cv. Prisma but only 58% in line B19909. Although the 

total dry weights of infected plants of line 1-17-40 were lower than the 

controls at all harvests, the differences were significant only at the fourth 

week after inoculation.

4.3.4. Effects of infection on the efficiency of growth

Changes in the efficiency of growth of infected and uninfected plants of 

each line, at each sampling time are plotted graphically in Figs. 25 A. and B.

4.3.4.1. Relative growth rates (RGR)

The rate of increase in biomass per unit of biomass (RGR) decreased with 

age in the uninfected plants of all lines between the fourth and seventh week 

after planting (the second and the fifth week after inoculation) (Fig. 25 A). 

This was probably due to a gradual increase in the proportion of non­

photosynthetic tissues. Thereafter, the RGR increased slightly up to ear 

emergence.

Infection lead to a more rapid reduction in the RGR up to the period 

between the third and the fourth week after inoculation in all the lines. This 

greater reduction than in the controls probably reflected the increasing 

proportion of non-assimilatory tissues due to the senescence of infected 

leaves. However, from about the fourth week after inoculation, the RGR 

increased again, but this increase was short lived and from the fifth week
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after inoculation, particularly in cv. Prisma and line B19909, it decreased 

again. The short period of increase in cv. Prisma and line B19909 coincided 

with the period of primary shoot elongation but the rapid final fall was 

probably due to the loss of senescent infected leaves, reduced tiller formation 

and root growth.

4.3.4.2. Unit leaf rate (ULR)

ULR is an estimate of the production of dry matter per unit leaf area. In 

uninfected plants of all three lines, ULRs decreased up to around the period 

between the sixth and the seventh week after planting (fourth and the fifth 

week after inoculation) after which it increased slightly (Fig. 25 B).

Infection lead to a more rapid reduction in ULR up to the period between 

the third and the fourth week after inoculation in all three lines. This rapid 

fall was followed by a transient but marked increase between the fourth and 

the fifth week followed by a further reduction particularly in cv. Prisma and 

line B19909. The marked increase in ULR from the fourth to the fifth week 

occurred when the level of infection was high. At this stage there were 

significantly lower green leaf areas on infected than uninfected plants and so 

that green leaf area must be more efficient than that of the controls probably 

reflecting compensatory photosynthesis.

4.3.5. Effects of infection on dry matter distribution

Changes in the distribution of dry matter in infected and uninfected plants 

of each line, at each harvest are plotted graphically in Figs. 26 to 33.
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4.3.5.1. R oot: shoot ratio

In uninfected plants, the proportion of dry matter transported to the roots 

decreased with age in cv. Prisma and line B19909, but this trend was less 

clear in line 1-17-40 (Fig. 26).

The proportion of dry matter partitioned to the roots compared to the 

shoots in infected plants had reduced significantly in cv. Prisma by the third 

week after inoculation (p < 0.005) and in line 1-17-40 by the fifth week after 

inoculation (p < 0.05). In comparison, although infected plants of line 

B19909 showed a consistent, slight reduction in the root : shoot ratio, the 

differences were never significant at any stage.

4.3.5.2. Leaf weight ratio (LWR)

The LWR (ratio of leaf dry weight to total plant dry weight) of uninfected 

plants remained relatively constant during the whole period of the 

experiment in all three lines (Fig. 27). This constant LWR indicates that the 

proportion of dry matter allocated to the production of photosynthetic tissue 

(leaves) did not change significantly with age.

LWRs of infected plants were slightly higher than those of uninfected 

plants in all lines with the differences becoming significant (p < 0.005) by 

the fourth week after inoculation. The percentage increase in LWR of 

infected plants over uninfected plants at the last harvest was about 13% in 

line 1-17-40,36% in cv. Prisma and 132% in line B19909.

The increase in LWR in the infected plants indicates that the relative 

proportion of dry matter invested in largely respiring organs e.g. roots and
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stems, was slightly smaller than the amount allocated to the 

photosynthesising organs (leaves) compared to the uninfected controls.

4.3.5.3. Leaf area ratio (LAR)

The LAR (ratio of leaf blade area to total plant dry weight, which is a 

measure of the leafiness of the plant) in uninfected plants remained relatively 

constant in the wild lines but decreased progressively in cv. Prisma over the 

period of the experiment This indicates that the amount of dry matter 

allocated to the development of photosynthetic tissues (leaves) decreased 

with age in cv. Prisma but not in the two wild lines (Fig. 28).

LARs were reduced by infection in both cv. Prisma and line 1-17-40, with 

the latter being more affected than the former. An analysis of variance 

showed that the LARs of these two lines were significantly reduced (p < 

0.05) by three weeks after inoculation. Infection also consistently reduced the 

LAR in line B19909, but the differences were not significant at any time.

4.3.5.4. Specific leaf area (SLA)

The SLA (ratio of leaf area to leaf dry weight, which is a measure of leaf 

thickness) of the uninfected plants of all three lines decreased with age (Fig. 

29). Thus as the plants aged, their leaves became heavier per unit area.

The SLA of infected plants, after a slightly significant increase (p < 0.05) 

in line 1-17-40, decreased more rapidly than in the controls. The differences 

became significant from the third week after inoculation in both cv. Prisma 

and line 1-17-40 (p< 0.005). Infection also lead to a reduced SLA inline
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B19909 (p < 0.01), but the differences were not so large as for the other two 

lines.

The reduction in SLAs of the infected plants was partly due to the greater 

loss of the lower leaves by senescence and partly to the accumulation of 

more dry matter in the relatively small remaining leaves. Whether the 

relative increase in dry matter in the leaves per unit area was structural (cell 

wall, vascular tissues...etc) or non-structural (storage carbohydrates) was not 

determined.

4.3.5.5. Root weight ratio (RWR)

In general, the RWR (ratio of root dry weight to total plant dry weight) of 

uninfected plants of all three lines decreased with time indicating that as 

plants aged less dry matter was allocated to the root system (Fig. 30).

Infection reduced the RWR compared to the controls in both cv. Prisma 

and line 1-17-40 and an analysis of variance showed that the differences were 

significant in cv. Prisma (p < 0.005) and in line 1-17-40 (p < 0.05). However, 

the RWRs of infected plants of line B19909 were not significantly different 

from the controls at any harvest.

4.3.5.6. Ratio of root weight to leaf area

The weight of roots per unit leaf area in uninfected plants increased 

progressively as the plants aged in all the lines (Fig. 31).

In infected plants, this ratio decreased in all three lines particularly in cv. 

Prisma. An analysis of variance showed that the differences between infected
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and uninfected plants were highly significant in cv. Prisma (p < 0.0001) and 

line B19909 (p < 0.005), but less significant in line 1-17-40 (p < 0.05). By the 

fifth week after inoculation, infection had reduced the dry weight of roots per 

unit leaf area by about 48% in line 1-17-40, 61% in line B19909 and 63% in 

cv. Prisma. Thus although infection reduced GLA, it induced a relatively 

greater reduction in root development.

4.3.5.7. Root area ratio (RAR)

Fig. 32 shows that the RAR of uninfected plants remained constant 

throughout the course of the experiment. The RARs of infected plants of line 

1-17-40 and cv. Prisma were consistently lower than those of the controls 

from the third harvest, but an analysis of variance showed that the differences 

were only significant (p < 0,05) from the sixth week after inoculation. The 

RAR of infected plants of line B19909 was not significantly different from 

the controls at any harvest

4.3.5.8. Specific Root Area (SRA)

Fig. 33 shows that the SRA remained relatively constant in both 

uninfected and infected plants throughout the period of experiment. The 

values were consistently higher for infected plants, but the differences were 

never significant
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4.3.S.9. Specific root length (SRL)

Fig. 34 shows that the SRL (the ratio of total root length to total root dry 

weight) of uninfected plants generally remained constant in line 1-17-40 and 

cv. Prisma throughout growth. In contrast, line B19909 showed a slight 

increase over the course of the experiment

The SRLs of infected plants of both cv. Prisma and line B19909 were 

consistently higher than those of uninfected plants, but the difference was 

only significant (p < 0.05) in cv. Prisma from the sixth week after 

inoculation; it was never significant in line B19909 and no significance was 

measurable in line 1-17-40.

The increase in SRL of infected plants in cv. Prisma and to an extent in 

line B19909, indicates that the roots of infected plants tended to be thinner 

than those of the uninfected plants.

4.3.6. Effects of infection on cell division in the apical 

meristems of the roots

In order to compare the rates of mitotic cell divisions in the apical 

meristems of the nodal root tips of infected and uninfected plants, the mitotic 

index of seedlings eight days after inoculation were compared with controls. 

The results are summarised graphically in Fig. 35.

Eight days after inoculation, the mitotic indices of uninfected control 

plants were 9.75 for cv. Prisma, 7.0 for line 1-17-40 and 11.5 for line 

B19909. In contrast, the mitotic indices of infected plants were about half 

these values 4.75 for cv. Prisma, 3.75 for line 1-17-40 and 5.5 for line
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Fig. 34: Tha offsets of Infection on specific root length (SRL).
Each datum point la the mean of three replicates.
Vertical bare are the standard errors.
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1-17-40

1 8 -r

1 2 -

9 -

a-

control

Prisma

18 T

1 2 -

9"

control

B19909

18 x

1 2 -

Infected control

Fig. 35: The percentage of meristematic cells in mitosis (mitotic 
index) of 20 day-old seedlings of the three barley lines, following 
8 days after inoculation with powdery mildew conidia. Each datum 
point Is the mean of three replicates. Vertical bars are the standard 
errors.
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B19909. However, because of the variability statistical analyses 

demonstrated that the differences in mitotic indices between infected and 

uninfected plants were significant (p < 0.05) for line B19909 only.

4.3.7. Effects of infection on the components of plant yield

Yield components of infected and uninfected plants of each line are 

plotted graphically in Figs. 36 to 44.

4.3.7.1. Grain production by the primary shoot

4.3.7.1.1. Total number of grains

Fig. 36 shows that on uninfected plants most grains were produced per 

primary shoot ear by line 1-17-40 and the least by line B19909; cv. Prisma 

was intermediate for this character.

Infection reduced the number of grains per primary shoot ear in cv. 

Prisma by about 36%, and a statistical analysis showed that this difference 

was highly significant (p < 0.01). However, infection did not significantly 

affect the number of grains per primary shoot ear in the two wild lines.

4.3.7.1.2. Total dry weight of grains

Fig. 37 shows that the total dry weight of grain produced per primary 

shoot ear on infected plants of cv. Prisma was significantly reduced by about 

41% (p < 0.005). In contrast the total dry weight of grains per primary shoot 

ear in line 1-17-40 was not altered by infection, while in infected plants of 

B19909 it was significantly greater by about 24% (p < 0.05).
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4.3.7.1.3. Thousand-grain weight

Infection slightly increased the thousand-grain weight of line B19909, by 

about 12% (p < 0.05), but it had no effect on thousand grain weights of the 

other two lines (Fig. 38).

4.3.7.2. Grain production by the tillers

4.3.7.2.1. Number of fertile tillers

Uninfected plants of the two wild lines produced higher numbers of 

fertile tillers than cv. Prisma (Fig. 39A).

The infected plants of the three lines produced slightly fewer fertile tillers 

than the uninfected plants, although the differences were not significant, 

probably because of the large variation between plants in fertile tiller 

production. The number of sterile tillers produced per plant was not affected 

by infection in any line (Fig. 39B).

4.3.7.2.2. Total number of grains

The total number of grains produced by all fertile tiller ears was 

consistently reduced by infection in all three lines (Fig. 40). However, the 

reduction was only significant in cv. Prisma (p < 0.02). The decrease in the 

total number of grains in the tiller ears of cv. Prisma was mainly due to fewer 

grains per ear.
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Fig. 39 A

1-17-40 Prisma B19909

Fig. 39 B

n i hii■ i— 'i i i i
Prisma B19909

Fig. 39: Number of fertile (A) and unfertile (B) tillers per plant 

Uninfected □  Infected ■
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4.3.7.2.3. Total dry weight of grains

Fig. 41 shows that infection slightly reduced the total dry weight of grain 

produced by all tillers of lines 1-17-40 and B19909, but the reductions were 

not significant. In contrast, total grain production by cv. Prisma was reduced 

by about 55%, a reduction that was highly significant (p < 0.0001).

4.3.7.2.4. Thousand-grain weight

Infection had no significant effect on the thousand-grain weight of any 

line (Fig. 42).

4.3.7.3. Grain production on the whole plant

4.3.7.3.1. Total grain dry weight per plant

Infection reduced total grain dry weight per plant of lines 1-17-40 and 

B19909, but the reductions were not significant (Fig. 43). In contrast, 

infection significantly reduced total grain dry weight of cv. Prisma by 52% 

(p < 0.001). The decrease in total grain dry weight per plant was mainly due 

to fewer grains per ear, particularly in tiller ears.

4.3.7.3.2. Harvest Index

Fig. 44 shows that the ratio of dry weight of grain to total dry matter 

(harvest index) was higher in uninfected plants of line B19909 than in the 

other two lines. Infection significantly reduced (p < 0.01) the harvest index 

of cv. Prisma by about 43%, but it had no effect on the harvest index of 

either wild line. The lower harvest index of cv. Prisma was due mainly to 

fewer grains per ear and a lower total grain dry weight.
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THE EFFECTS OF INFECTION ON LEAF EXPANSION 

5.1. Introduction

The reduced expansion of leaf blades formed after inoculation could be 

due to either a reduction in cell expansion in the leaf or to a reduction in the 

numbers of cells produced from the leaf blade meristem or both.

Since the ratio between stomatal number and epidermal cell number 

(stomatal index) is a constant (Wilkinson, 1979), counts of stomata and 

epidermal cells per unit area of leaf together with measurements of total leaf 

area, were used to determine the approximate numbers of stomata and 

epidermal cells per leaf.

5.2. Results

Counts of stomata and epidermal cells per field of view are presented in 

Table 4. The ratio between numbers of stomata and numbers of epidermal 

cells per field of view was relatively constant and the stomatal indices are 

presented in Table 4.

The number of epidermal cells per field of view were higher in the 

uninfected lower epidermis o f the infected third leaf than in the 

corresponding uninfected leaf in all three lines. An analysis of variance 

showed that the differences between uninfected and infected leaves in each 

line, were significant (p < 0.001). The higher number of stomata per field of 

view for the infected leaves in the three lines is due to the reduced expansion 

of the epidermal cells with the relative increase in number indicating the 

extent of this reduction. The percentage reductions were between 13 and



Chapter 5 Leaf Expansion 153

Table 4: Mean number of stomata and epidermal cells per field of 
view in the lower epidermis of the third leaf of cv. Prisma and the two 
wild lines B19909 and 1-17-40.

L
in

es

Uninfected plants Iniected plants
Days after 
inoculation 8 11 13 8 11 13

%
Mildew 0 0 0 25 50 75

1-
17

-4
0

Stomata 15.6±0.581 15.0±0.843 15.1^0.458 18.9±0.433 17.9±0.348 18.8±0.359

Epidermal
cells

59.9±2.861 52.5± 1.851 51.4±1.318 69.2±0.712 62.3±2.216 68.7±2.140

Stomatal
Index 0.26±0.013 0.29±0.012 0.30±0.011 0.27±0.004 0.29±0.009 0.27±0.005

C
v.

 P
ri

sm
a

Stomata 14.2±0.573 14.7±0.253 16.0±0.494 17.8±0.573 17.3±0.199 18.0±0.537

Epidermal
cells 50.4±0.819 59.7± 1.267 57.7±1.571 68.3± 1.944 71.4±0.914 69.2±2.308

Stomatal
Index 0.28±0.010 0.25±0.004 0.28±0.007 0.26±0.007 0.24±0.003 0.26±0.012

B
19

90
9

Stomata 16.9±0.640 14.9±0.586 14.6±0.221 18.3±0.597 19.5±0.582 17.7±0.396

Epidermal
cells

51.7±1.415 49.6± 1.024 51.2±0.467 57.6±0.636 63,4± 1.634 58.6±0.670

Stomatal
Index 0.33±0.017 0.30±0.009 0.29±0.003 0.32±0.009 0.31±0.009 0.30±0.005
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25% in line 1-17-40, between 16 and 26% in cv. Prisma and between 10 and 

22% in line B19909 (Table 5).

The approximate number of epidermal cells per leaf in each line was 

calculated from counts of epidermal cells per field of view together with 

measurements of total leaf area (Table 5). The results show that there were 

about 5% fewer cells in the lower epidermis of infected than uninfected 

leaves of line 117-40, between 2 and 7% in cv. Prisma and between 5 and 

10% in line B19909. Thus the reduced leaf area was due to a reduction in cell 

division in the leaf blade meristem as well as to reduced cell expansion.
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EFFECTS OF INFECTION ON THE 

PHOTOSYNTHESIS AND RESPIRATION OF THE THIRD 

AND FOURTH LEAVES OF SEX BARLEY LINES.

6.1. INTRODUCTION

The growth analyses reported in chapter 4 showed that infection altered 

the growth and development of both the wild and the cultivated barley lines. 

The reduced dry matter accumulation in different organs was related to 

reductions in photosynthetic tissue due to the premature senescence of the 

infected leaves, reduced leaf expansion and to reductions in unit leaf rate, 

which is a measure of net photosynthesis. This section describes a series of 

experiments on the effects of infection on photosynthesis, specifically the 

following: (1) gross and net photosynthesis, (2) quantum efficiency, which is a 

measure of the number of moles of O2 evolved per mole quanta of absorbed 

photosynthetically active radiation, (3) the ratio of physical to total resistance 

of CO2 diffusion into the leaf and (4) the chlorophyll content of the leaf. In 

addition dark respiration in the leaf was measured. Changes in the measured 

parameters were related to the amount of fungal biomass produced on the leaf 

during the course of the infection.

Two experiments were carried out. In the first, the effects of infection on 

the different photosynthetic parameters were measured in the third leaf o f the 

three lines used for the growth analysis study, the two wild lines B19909 and
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1-17-40 and cv. Prisma. Line 1-17-40 has a high level of adult plant resistance, 

while line B19909 and cv. Prisma are relatively susceptible, line B19909 being 

the most susceptible.

In the second experiment, the effects of infection were measured on the 

fourth leaf of three barley lines, which exhibited different levels of partial 

resistance: cv. Golden Promise a highly susceptible cultivated barley, cv. 

Triumph showing intermediate resistance in response to inoculation, and the 

wild line B8893, which has a high level of resistance. A summary of the 

results is presented in the Appendix Table 14.



Chapter 6 Photosynthesis 158

6.2. RESULTS

EXPERIMENT-I

6.2.1. Development of fungal biomass on the third leaf of cv. 

Prisma and the two wild lines 1-17-40 and B19909.

The cumulative number of conidia produced per unit leaf area (cm2) on 

each barley line, by each harvest is plotted in Fig. 45.

Four to six days after inoculation the mildew had developed a uniform 

mycelial cover over the inoculated leaf surface, but little sporulation was 

occurring. Conidial production increased rapidly from the sixth day after 

inoculation onwards on all three lines with that on cv. Prisma and line B19909 

continuing to increase up to sixteen days after inoculation. In contrast, the leaf 

of line 1-17-40 ceased to support conidial production from about twelve days 

after inoculation due to leaf senescence. By the twelfth day after inoculation, 

line B19909 had produced about 31.6 x 105 conidia cm'2, cv. Prisma about 16 

x 105 conidia cm'2 while line 1-17-40 had produced only 10.4 x 105 conidia cm' 

2. The differences were significant (p < 0.05) between the three lines. By the 

sixteenth day after inoculation, the number of conidia had increased per cm2 

leaf area to about 41.6 x 105 conidia on line B19909 and about 26 x 105 

conidia on cv. Prisma.
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4.2E+06 t

3.5E+06 - •

O.OE+OO
4 8 12 16

Days after inoculation

-•-Prisma -O-B19909 -0-1-17-40

Fig. 45: The cumulative number of spores produced by each 

harvest (days after inoculation) on the third leaves of three barley 

lines. Each datum point Is the mean of three replicates.
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6.2.2. Effects of infection on photosynthesis

6.2.2.1. Maximum rates of gross photosynthesis (Pgmax)

P g m a x  (pmol of O2 evolved m'2 s'1) in uninfected leaves was relatively 

constant for up to ten days after the third leaf was fully expanded in all lines 

and then, it declined progressively in cv. Prisma (Fig. 46A). After ten days, 

measurements were not continued in line 1-17-40 because the infected leaves 

had senesced.

P g m a x  in the infected leaves of each line was not affected by infection until 

six days after inoculation when it began to decline in all three lines and from 

then on declined rapidly. By ten days after inoculation, Pgmax in the infected 

leaves had reduced significantly to about 17% of the levels in uninfected 

leaves in line 1-17-40 (p < 0.01), to about 26% of the levels in uninfected 

leaves in cv. Prisma (p < 0.001) and to about 30% of that in uninfected leaves 

in line B19909 (p < 0.001). After ten days, the infected leaves of line 1-17-40 

had senesced to such an extent that no further measurements were possible. 

However, measurements were possible with the other two lines up to fourteen 

days after inoculation, but then senescence of their leaves also precluded any 

further measurements.

At fourteen days after inoculation, infection had reduced gross 

photosynthesis to about 20% of the level in uninfected leaves in both cv. 

Prisma and line B19909 (P < 0.002).

When related to the amount of chlorophyll present in the leaf (Fig. 46B), 

although Pgmax fluctuated between sampling times due to random variation no 

significant differences were observed in any line at any stage.
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1-17-40

+ + + + +
0 2 4 6 8 10 12 14

Prisma

m
E

27- •

0 2 4 8 10 12 14

B19909
46

38

18

0
0 2 4 8 10 12 14

Days after inocuattion 

-O-control -^ in fec ted

Fig. 4 6 A : E ffects o f infection on maximum g r o ss  p h otosyn thesis per unit area 

o f infected and uninfected third leaves o f the three barley lines. Each datum point 

is  the m ean o f three replicates.
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1-17-40
0.1*

0.12

0.06

0.10

0.12

0.00

0.04

0.00

10 12 14

0.10..

0.12

0.00.

0.04

0
B19909

10 12 14

4 0 0

Days alter Inoculation

-^-Control -

10 12 14

Fig. 46B: Eftecte of infection on maximum gross photosynthesis par 

unit mass of total chlorophyll of Infected and uninfected third leaves of 

the three barley lines. Each darum point Is the mean of three replicates.
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6.2.2.2. Maximum rates of net photosynthesis (P n ^ )

P i W  per unit leaf area of uninfected leaves followed the same pattern as 

P g m a x  declining progressively as leaves aged (Fig. 47A). Infection reduced 

P i W  in all three lines in the same way as P g m a x .  The reductions became 

significant (p < 0.02) from 6, 8 and 10 days after inoculation in cv. Prisma, I- 

17-40 and B19909 respectively.

As with P g m a x ,  Pnmax per milligram of chlorophyll (Fig. 47B) fluctuated 

between harvests but at no stage were any significant differences found 

between infected and uninfected lines.

6.2.2.3. Relationship between Pgmax and fungal biomass

The reduction in the rate of maximum gross photosynthesis during 

infection in each line was linearly correlated (p < 0.01) with increasing fungal 

biomass, measured as conidial production, in the infected third leaves (Table 6 

and Fig. 48).

The slopes of the regression lines of cv. Prisma and the wild line 1-17-40 

were similar, but that of line B19909 was significantly different (p < 0.05) 

from both.

6.2.2.4. Quantum efficiency of photosynthesis (a )

The quantum efficiency (or quantum yield) of photosynthesis (a ) in the

uninfected leaves of each line remaining relatively constant up to the fourth 

day after the third leaf was fully expanded (fourth day after inoculation) in line
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1-17-40

32. .

8 < •

+ + + + +
0 2 4 6 8 10 12 14

Prisma

3 2 .  .

24> >

0 2 4 8 10 12 14

B19909

4 0  x

3 2 .  .

24* >

16. >

8> >

0 2 4 8 10 12 148
Days after inoculation 

-O -control -+-infoctod

Fig. 47A: Effects of infection on maximum net photosynthesis per unit area 

of infected and uninfected third leaves of the three barley lines. Each datum 

point is the mean of three replicates.
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1-17-40

0.15

0.09

0.06

Prisma

10 12

10 12

B19909

0.12

0.06

0.06

4 6 6 10
Days after inoculation 

-o-Control -

12 14

Fig. 47B: Effects of Infection on maxim um nst photosynthssis par unit mass of

total chlorophyll of infected and uninfected third tssvss of ths thrss barisy linos.

Each datum point Is ths msan of thrss rsplicatas.
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16

B19909

Prisma

1-17-40

Number of spores x 104 m'2 

•  1-17-40 AB19909 ♦Prism a

Fig. 48: Relationship between gross photosynthesis and conidial 

production on the infected third leaf of the three lines.
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Table 6.

Regression analyses of maximum gross photosynthesis ( P g m a x )  and 

fungal spore production in cv. Prisma and the two wild lines 1-17-40 and 

B19909.

Regression

Parameters
1-17-40 Prisma B19909

Intercept (a) 24.402 31.043 27.655

Slope (b) -3 x 10*5 -3 x lO’5 -2 x 10*5

Coefficient of 

Correlation (R2)
0.5905 0.6704 0.5534

Degrees of 

Freedom
11 14 14

F ratio 14.42 26.44 16.11

P <0.01 < 0.001 <0.01
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1-17-40 and up to the tenth day in cv. Prisma and line B19909. From then on 

a  declined slowly (Fig. 49).

Infection decreased a  in all three lines, but the reduction was less marked

in line B19909 than in the other two lines. Ten days after inoculation, a  had

been reduced to about 23% of the value in uninfected leaves in line 1-17-40 (p 

< 0.05), to about 21% in cv. Prisma (p < 0.005) and to about 35% of the 

value in uninfected leaves in line B19909 (p < 0.05). From the tenth day after 

inoculation, cv. Prisma showed a further decrease to about 20% of the control 

value, but no further decrease over the 35% occurred in line B19909. In this 

line the values in the uninfected leaves also declined and the difference at the 

last harvest was no longer significant.

6.2.2.5. The convexity (6) or the ratio of physical to total resistance to 

CO2 diffusion.

Fig. 50 Shows that 0 began to increase in all three lines very soon after

inoculation and the higher rate than the uninfected controls persisted more or 

less throughout the period of measurement. However, an analysis of variance 

showed that only the differences for cv. Prisma were significant (p < 0.005) 

becoming so from the fourth day after inoculation and remained so until 

fourteen days after inoculation when the differences were no longer significant 

because of an increase in the values in the controls.
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1-17-40
0.2

0.1S

0.1

0.06

0 2 4 10 12 14

Prisma
0.2

0.1S

0.1

0.06

0
0 2 4 6 10 12 14

B19909

0.2

0.16

0.1

0.06

0
0 2 4 10 12 14

Days after inoculation
“O" control -^infected

Fig. 49: Effects of infection on quantum efficiency of infected

and uninfected third leaves of the three lines. Each datum point

represents the mean of three replicates.
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Fig. 50: Effects of infection on thsta of infectsd and unlnfectod

third leaves of the three lines. Each datum point represents the

mean of three replicates.
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6.2.3. Effects of infection on chlorophyll content

6.2.3.1. Total chlorophyll content

Fig. 51A shows that total chlorophyll levels in uninfected leaves increased 

during the early stages of the experiment in all three lines but decreased from 

about ten days onwards in both cv. Prisma and line B19909. Because of 

senescence in the infected leaves, total chlorophylls in the infected leaves of 

all three lines were reduced by infection with the reductions becoming 

significant (p < 0.05) slightly earlier in cv. Prisma than in the two wild lines, 

and the overall reductions were greater in cv. Prisma than in the wild lines. 

The overall effect of infection, at ten days after inoculation, was to reduce 

total chlorophyll levels to about 23% of the controls in infected leaves in line 

1-17-40, to about 30% in cv. Prisma and to about 37% in line B19909. 

Because of senescence no further measurements were made on line 1-17-40, 

but fourteen days after inoculation, chlorophyll levels in infected leaves of 

both cv. Prisma and the wild line B19909 had fallen to 15% of the levels in 

uninfected leaves.

6.2.3.2. Chlorophylls a and b

Chlorophylls a and b increased slowly in the uninfected control leaves in 

all three lines during the course of the experiment. In contrast, levels reduced 

dramatically in infected leaves in all lines (Figs. 5IB and 51C). An analysis of 

variance showed significant reductions in both chlorophylls a and b as 

infection progressed.

For chlorophyll a, the differences became significant from four to six days
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Fig. S1A: Effacts of Infection on total chlorophyll par unit area

of Infected and uninfected third leavee of the three lines. Each

datum point represents the mean of three replicates.
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Fig. 51B: Effects of infection on chlorophyll a per leaf area of

Infected and uninfected third leaves of the three lines. Each datum

point represents the mean of three replicates.
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after inoculation in cv. Prisma and from six days after inoculation in the two 

wild lines (Fig. 5 IB). Ten days after inoculation, the percentage reductions of 

chlorophyll a in infected leaves compared to the uninfected leaves, were about 

66% in line B19909, 71% in cv. Prisma and 84% in line 1-17-40. By the 

fourteenth day after inoculation, about 87% of chlorophyll a was lost in 

infected leaves of both cv. Prisma and the wild line B19909.

For chlorophyll b (Fig. 51C), the differences between infected and 

uninfected leaves were not significant until about eight days after inoculation 

in all three lines (p < 0.05). By the tenth day after inoculation, infection had 

reduced levels by about 55% in line B19909, 60% in line 1-17-40 and 65% in 

cv. Prisma. By the fourteenth day after inoculation, levels were down to 26% 

of the control levels in line B19909 and 16% in cv. Prisma.

6.2.3.3. Ratio of chlorophyll a : b

Infection consistently reduced the ratios of chlorophyll a : b in the leaves 

of all three lines but the reductions were only significant in line 1-17-40 from 

the eighth day after inoculation(Fig. 5ID).
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Fig. S1C: Effects of infection on chlorophyll b per leaf area of

Infected and uninfected third leaves of the three lines. Each datum

point represents the mean of three replicates.
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Fig. 61 D: Effects of infection on ths ratio of chlorophylls a:b

of Infected and uninfected third leaves of the three line*. Each

datum point represents the mean of three replicates.
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6.2.4. Effects of infection on dark respiration (Rd)

The rates of Rd in the third leaf of infected and uninfected plants of the 

three lines are shown in Fig. 52.

Dark respiration in uninfected control leaves of the three lines remained 

relatively constant throughout the course of the experiment. However, Rd 

began to increase in infected leaves of the three lines from the fourth day after 

inoculation onwards. As infection progressed, the rates continued to increase 

reaching a maximum in cv. Prisma six days after inoculation and in the two 

wild lines six to eight days after inoculation, after which Rd decreased in all 

lines. An analysis of variance showed that the differences between infected 

and uninfected plants were significant in all lines with the level of significance 

being p < 0.05 in line 1-17-40 and p < 0.005 in the other two lines. The 

percentage increase in Rd of infected compared to the uninfected leaves was 

about 70% in line 1-17-40 and about 106% in line B19909 eight days after 

inoculation, and about 178% in cv. Prisma six days after inoculation.
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Fig. 52: Effects of infection on dark respiration per unit area of

infected and uninfected third leaves of the three lines. Each datum

point represents the mean of three replicates.
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EXPERIMENT -II 

6.2.6. Development of fungal biomass on the fourth leaf of cvs 

Golden Promise and Triumph and wild line B8893.

Conidial production per cm2 leaf area was determined on the fourth leaf of 

each line, at each sampling time and the results are presented graphically in 

Fig. 53.

Conidial production was highest on cv. Golden Promise and lowest on line 

B8893 with intermediate numbers being produced on cv. Triumph. The 

differences between the lines were statistically significant (p < 0.05) from the 

eighth day after inoculation onwards. Line B8893, reacted to the inoculum, by 

producing small necrotic lesions, although much less necrosis than cv. 

Triumph and very little mildew mycelium developed. Mildew developed freely 

over the leaf surface of cv. Golden Promise, but cv. Triumph reacted to the 

inoculum with a high level of necrosis, and the amount of mildew mycelium 

developed was lower.

6.2.7. Effects of infection on photosynthesis

6.2.7.I. Maximum rates of gross photosynthesis (Pg«*x)

Rates of Pgmax were higher in uninfected leaves of cv. Golden Promise and 

line B8893 than in cv. Triumph and showed little decrease throughout the 

experiment (Fig. 54A).

From about six days after inoculation, Pgm« began to reduce in cvs
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Fig. 53: The cumulative number of spores produced on the 

fourth leaf of three barley lines differing in their susceptibility 

to mildew infection.
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Days after Inoculation 
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Fig. 54A. The effects  of mildew Infection on the rataa of maximum gross 

photosynthesis (PSm >) par unit area in ths fourth leaf of 3 barley lines: Cv. 

Goldsn Prom Is# (vary susceptible), cv. Triumph (moderately resistant) and 

wild line B8893 (very rselstant).
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Golden Promise and Triumph compared to the controls. As infection 

progressed, this reduction became greater falling to the same level in both 

cultivars. An analysis of variance showed that the differences in P g m a x  between 

infected and uninfected leaves became significant (p < 0.05) in both lines from 

around eight days after inoculation. By the end of the experiment (14 days 

after inoculation), it was reduced by about 89% in cv. Golden Promise and by 

85% in cv. Triumph. An analysis of variance showed significant differences (p 

< 0.01) between the degrees of reductions caused by infection in the two 

cultivated lines.

In contrast, infection did not alter Pgmax significantly in line B8893 except 

perhaps at six days after inoculation. However, this difference was probably 

due to random variation.

Pgmx per unit of chlorophyll (Fig. 54B) appeared to increase in infected 

leaves of both cv. Golden Promise and line B8893, but the increase was only 

significant (p < 0.01) in B8893. By the last harvest, Pgmax per unit of 

chlorophyll had decreased significantly (p < 0.02) in infected leaves of cv. 

Golden Promise. In cv. Triumph, Pgmax per unit of chlorophyll fluctuated 

between harvests but no significant changes occurred at any stage in response 

to infection.
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Fig. 54B. The effects of mildew Infection on P g ^ . per milligram of 

chlorophyll In the fourth leaf of 3 barley lines: Cv. Golden Promise 

(very susceptib le), cv. Triumph (moderately resistant) and the  

wild line B8893 (very resistant).
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6.2.7.2. Maximum rates of net photosynthesis (Pnmax)

Fig. 55A shows that infection significantly (p < 0.03) reduced P iw  in 

infected leaves of both cv. Golden Promise and cv. Triumph from the eighth 

day after inoculation. P iw  in infected leaves of the wild line B8893 

fluctuated between sampling times but revealed no significant differences 

between infected and uninfected leaves.

Primax when expressed per milligram of chlorophyll (Fig. 55B) followed the 

same pattern as Pgmax per milligram of chlorophyll (Fig. 54B).

6.2.7.3. Relationship between Pgmax and fungal biomass

The regression lines are plotted in Fig. 55C and the regression parameters 

are presented in Table 7.

The reduction in the rate of maximum gross photosynthesis during 

infection in each of the two cultivars was found to be linearly correlated with 

fungal biomass, measured as conidial production, but not in the wild line. 

This correlation was higher in cv. Golden Promise than in cv. Triumph, 

probably due the feet that factors other than fungal development, such as 

tissue necrosis, were affecting photosynthesis in leaves of cv. Triumph.

The slope of the regression line of cv. Golden Promise was significantly 

different from that of cv. Triumph (p < 0.05) due to the high correlation 

between Pgmax and fimgal production in the former.
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Golden Promise

30 . .

2 8 104 12 14

Triumph
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Fig. 55A: The effects of mildew infection on the rates of maximum net 

photosynthesis (Pgm J per unit area In the fourth leaf of 3 barley lines: Cv. 

Golden Promise (very susceptible), cv. Triumph (moderately resistant) and 

wild line B8893 (very resistant).
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Fig. 55B. The e ffects of mildew Infection on Pn per milligram of

chlorophyll In the fourth leaf of 3 barley lines: Cv. Golden Promise 

(very susceptib le), cv. Triumph (moderately resistant) and the  

wild line B8893 (very resistant).
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Fig. 55C : Relationship between gross photosynthesis and conidial

production on the infected fourth leaf of the two lines.
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Table 7.

Regression analyses of maximum gross photosynthesis ( P g m a x )  and 

fungal spore production in cvs. Golden Promise and Triumph and the 

wild line B8893.

Regression

Parameters

Golden

Promise
Triumph B8893

Intercept (a) 27.455 31.043 27.655

Slope (b) -1 x lO'5 -3 x 10'5 -2 x 10*5

Coefficient of 

Correlation (R2)
0.6934 0.3607 0.1125

Degrees of 

Freedom
11 11 11

F ratio 22.61 5.64 1.27

P < 0.001 <0.05 NS

NS : not significant
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6.2.7.4. Quantum efficiency of photosynthesis (a)

Infection had no significant effect on a in either cv. Triumph or line

B8893, the two lines which reacted necrotically to infection (Fig. 56). 

However, cv. Triumph showed a significant (p < 0.05) decrease fourteen days 

after inoculation when infected leaves showed large areas of necrosis. In cv.

Golden Promise, a decreased significantly (p < 0.001) from the sixth day after

inoculation. Thus quantum efficiency was most affected in cv. Golden 

Promise.

6.2.7.5. The ratio of physical to total resistance to CO2 diffusion (6)

Infection increased 9 in cv. Triumph from the sixth day after inoculation 

and in cv. Golden Promise from the eighth day after inoculation (Fig. 57). An 

analysis of variance showed that the increases in 0 in infected leaves were 

significant (p < 0.005) despite the high level of variation between replicates in 

cv. Triumph. In the highly resistant line B8893, 0 was generally reduced by

attempted infection, but none of the differences between inoculated and 

uninoculated plants was significant.

6.2.8. Effects of infection on chlorophyll content

6.2.8.1. Total chlorophyll content

Fig. 58A shows that infection significantly reduced total chlorophyll 

content from six days after inoculation in cv. Golden Promise (p < 0.001) and
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Fig. 56: The effec ts  o f  mildew infection on the quantum efficiency  

in the fourth leaf o f  3 barley lines: Cv. G olden Prom ise (very susceptib le), 

cv . Triumph (m oderately resistant) and wild line B8893 (very resistant).
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Fig. 57: The effec ts  o f m ildew infection on theta in the fourth leaf 

o f  3 barley lines: Cv. G olden Prom ise (very susceptib le), cv . Triumph 

(moderately resistant) and wild line B8893 (very resistant).
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Fig. 58A: The effects of mildew infection on total chlorophyll In the 

fourth leaf of 3 barley lines: Cv. Golden Promise (very susceptible), 

cv. Triumph (moderately resistant) and wild line B8893 (very resistant).
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from eight days after inoculation in line B8893 and cv. Triumph (p < 0.01). 

The overall effect of infection, at fourteen days after inoculation, was to 

reduce total chlorophyll content of the infected leaves of wild line B8893 by 

about 41%, of cv. Triumph by about 62% and of cv. Golden Promise by 

about 83%.

6.2.8.2. Chlorophylls a and b

Fig. 58B and Fig. 58C show that both chlorophylls a and b were reduced 

in infected leaf tissues of all three lines and an analysis of variance showed 

that the reductions were significant.

For chlorophyll a (Fig. 58B), the differences became significant from four 

days after inoculation in cv. Golden Promise (p < 0.001) and from six days 

after inoculation in cv. Triumph and the wild line B8893 (p < 0.001). By the 

end of the experiment, fourteen days after inoculation, the percentage 

reductions in chlorophyll a were around 44% in line B8893, 67% in cv. 

Triumph and 85% in cv. Golden Promise.

For chlorophyll b (Fig. 58C), the reductions also became significant from 

four days after inoculation in cv. Golden Promise (p < 0.005) and from eight 

days after inoculation in cv. Triumph (p < 0.03) and the wild line B8893 (p < 

0.01). By the fourteenth day after inoculation, infection had reduced 

chlorophyll b by about 33% in line B8893, 51% in cv. Triumph and 79% in 

cv. Golden Promise.
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Fig. 58B: Th* offsets of mlktew infection on chlorophyll a in th* 

fourth loaf of 3 bartey linos: Cv. Golden Promiao (very susceptible), 

cv. Triumph (moderately resistant) and wild lino B8883 (vary resistant).
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Fig. 58C: The effects of mildew infection on chlorophyll b In the 

fourth leaf of 3 barley lines: Cv. Golden Promise (very susceptible), 

cv. Triumph (moderately resistant) and wild line B8893 (very resistant).
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6.2.8.3. Ratio of chlorophyll a : b

Infection significantly reduced the chlorophyll a:b ratio in infected leaves 

of cv. Golden Promise from four days after inoculation (Fig. 58D), but the 

reductions in the other two lines were not significant until around ten days 

after inoculation (p < 0.005).

6.2.9. Effects of infection on dark Respiration (Rd)

Infection increased Rd slightly but significantly (p < 0.05) in cv. Golden 

Promise, and this increase was maintained during the whole period of 

measurements (Fig. 59). In infected leaves of cv. Triumph, Rd fluctuated 

between harvests, with a slight transient increase between the sixth and the 

tenth day after inoculation, but the increase was only significant (p < 0.05) at 

the sixth day after inoculation. In line B8893, no significant differences were 

found.
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Fig. 68 D: Tho offsets of mildew infection on th# ratio of chlorophylls 

a and b in the fourth loaf of 3 barley lines: Cv. Golden Promise (very 

susceptible), cv. Triumph (moderately resistanl) and wild line B8893 

(very resistant).



Da
rk 

re
sp

ira
tio

n 
(^

m
ol

 0
2m

'2s
'1

)
Chapter 6 Photosynthesis 198

Golden Promise
9.0 y

7.5 • •

6.0 • •

4 .5 * .

3.0

1.5

o . o 4 -------------------- 1---------------------1-------------------- 1------------------ 1--------------------1--------------------1
2 4 6 8 10 12 14

Triumph
9.0 j

7.5 • •

6.0 - >

4 .5 - .

3.0 -

1.5-

0.0- 
2

B8893
9.0

7.5-

6.0 «

4.5 •

3.0 •

1.5-

0.0 4*
2

Fig. 59. The effects of mildew infection on dark respiration per unit 
area in the fourth leaf of 3 barley lines: Cv. Golden Promise (very 
susceptible), cv. Triumph (moderately resistant) and wild line B8893 

(very resistant). _
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THE EFFECTS OF INFECTION ON STOMATAL 

RESISTANCE IN THREE BARLEY LINES, CV. PRISMA 

AND WILD LINES B19909 AND 1-17-40.

7.1. Introduction

The object of these experiments was to examine how stomatal resistance 

changed in infected leaves compared to uninfected leaves in both light and 

dark, and to determine how much changes in stomatal behaviour following 

infection could be involved in the reductions in photosynthesis reported in 

Chapter 6 and consequently in reduced dry matter production.

The effects of infection on stomatal resistance were determined in the two 

wild barley lines 1-17-40 and B19909, and in the cultivated barley cv. Prisma. 

The experiment was carried out twice, with similar results being obtained on 

each occasion. Only the results of the second experiment are presented.
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7.2. Results

Stomatal resistance was measured in the middle and tip regions of infected 

and uninfected leaves of the three lines. The results are given in Appendix 

Tables 11 A, 1 IB and 15, and plotted graphically in Figs 60A and 60B.

7.2.1. Ontogenetic changes in stomatal function in the uninfected third 

leaf

7.2.1.1. Changes in the light

Stomatal resistance in the light in both the middle and tip regions of 

uninfected leaves remained relatively constant throughout the period of 

measurement, in all three lines (Figs. 60A and 60B).

7.2.1.2. Changes in the dark

In contrast, in the dark, marked changes occurred as the leaves aged in 

line 1-17-40 and cv. Prisma at both the middle and the tip regions (Figs. 60A 

and 60B). For cv. Prisma and line 1-17-40, at the beginning of the experiment, 

the stomatal resistances increased reaching a maximum two days later, but 

from then on, resistances declined and then an approximately steady state was 

reached and maintained to the end of the experiment.

In line B19909, stomatal resistance increased rapidly in the middle region 

from the second to the seventh day after inoculation and then stayed at a 

relatively constant state. In contrast to the other two lines, stomatal resistance 

in the tips of the leaves of line B19909 remained at an almost constant level 

during the whole period of the experiment.
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Fig. 60A: Stomatal resistanca in tha third laavaa (middle region) of the three barley

lines in tight (>............ ) or In darkness ( ) following Inoculation with B. gnmlnls

f.sp honM. Each darum is the mean of four replicates, with standard error.

(0 ) uninfected, ( ♦ )  infected.
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horxtoi. Each darum la tha mean of four replicates, with standard error.

(0 ) uninfected, (0 ) infected.
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7.2.2. Effects of infection on stomatal function in the light

7.2.2.1. Stomatal resistance in the middle, inoculated region, of the leaf

Within 24 hours of inoculation, stomatal resistance had significantly (p < 

0.01) increased in infected leaves when compared to uninfected leaves in all 

three lines, but then as infection progressed it began to decrease. By the 

eighth day after inoculation it was similar to that of uninfected leaves in both 

cv. Prisma and line B19909, but in line 1-17-40, it was still slightly higher ten 

days after inoculation. From the eighth day, the stomatal resistance of cv. 

Prisma continued to decrease to levels significantly (p < 0.05) below 

uninfected leaves. In contrast, stomatal resistance in line B19909 remained at 

control levels.

7.2.2.2. Stomatal resistance at the leaf tip

Infection in the centre of the leaf increased stomatal resistance in the 

uninfected tip of that leaf in all three lines (Fig. 60B) although the increase did 

not become significant, until around 10 days after inoculation (p < 0.05).

7.2.3. Effects of infection on stomatal function in the dark

7.2.3.I. Stomatal resistance in the middle inoculated region of the leaf

The high stomatal resistances of uninfected leaves in the dark indicate that 

the stomata were probably closed (Fig. 60A). Infection decreased the stomatal 

resistance of infected leaves significantly (p < 0.02) in both the wild line 1-17- 

40 and cv. Prisma. As infection progressed the differences became smaller but 

still remained significant. In contrast, by two days after inoculation, stomatal
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resistance in leaves of line B19909 had increased significantly above control 

levels (p < 0.001), but as infection progressed, it decreased again and 

followed the same pattern as in the other two lines.

The results suggest that infection by powdery mildew prevented the 

stomata from closing in the dark as fully as those in uninfected leaves.

1,23.2. Stomatal resistance at the leaf tip

Infection had little effect on stomatal resistance in the uninfected tip 

regions of inoculated leaves of the wild line 1-17-40. In contrast, infection 

decreased stomatal resistance, in uninfected tips of infected leaves, both of cv. 

Prisma and line B19909. These decreases became significant (p < 0.05) 

between seven and nine days after inoculation.
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COMPENSATORY PHOTOSYNTHESIS 

AND DARK RESPIRATION IN THE THIRD LEAF 

OF CV. PRISMA AND THE WILD LINES B19909

AND 1-17-40

8.1. Introduction

Livne (1964) reported that photosynthesis was stimulated in uninfected 

leaves of heavily infected rusted bean plants. Similarly, photosynthesis in the 

upper, uninfected leaves of powdery mildew infected barley and pea plants, 

was also reported to be stimulated significantly (Ayres, 1981b; Williams & 

Ayres, 1981; Walters & Ayres, 1983). Recent work on wild and cultivated oat 

lines, showed that the rate of photosynthesis in adjacent uninfected parts of 

infected leaves was reduced by powdery mildew infection but not to the same 

extent as photosynthesis in the infected tissues (Sabri, 1993).

These increases, referred to as compensatory photosynthesis, are possible 

mechanisms whereby the plant can compensate for photosynthates lost to the 

parasites in infected tissues. Compensatory photosynthesis could thus be a 

component of tolerance.

In the present investigation, photosynthesis and dark respiration were 

measured in the uninfected fourth leaves on plants whose lower three leaves 

had been inoculated and in plants in which the lower leaves were not 

inoculated of wild barley lines 1-17-40 and B19909 and cv. Prisma. A 

summary of the results is presented in Appendix Table 16.
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8.2. RESULTS

8.2.1. Effects of infection on photosynthesis

8.2.1.1. Maximum gross and net photosynthesis

Maximum rates of gross ( P g m a x )  and net ( P n m a x )  photosynthesis per unit 

leaf area or per milligram of chlorophyll, in the uninfected fourth leaf of 

inoculated and uninoculated plants are plotted in Figs. 61A-C. There were no 

significant differences in Pgmax per unit leaf area (Fig. 61 A) between infected 

and uninfected plants up to eight days after inoculation. By the eleventh day 

after inoculation, the rates o f maximum gross photosynthesis were higher in 

the uninfected fourth leaves of infected than in the same leaf on uninfected 

plants of both cv. Prisma and line B19909, but the difference was only 

significant (p < 0.05) in line B19909. In contrast, infection of the lower three 

leaves did not affect photosynthesis in the uninfected fourth leaf of line 1-17- 

40 at any time during the experiment.

The effects on P iw  per unit leaf area followed essentially the same 

pattern as on Pgmax in all three lines (Fig. 61B).

These results suggest that in line B19909, infection of the first three leaves 

stimulated photosynthesis in uninfected leaves to compensate for the 

photosynthetic losses which occurred in infected tissues.

When related to chlorophyll levels, the maximum rates of gross 

photosynthesis in the uninfected fourth leaf of infected plants were not 

significantly different from those in the fourth leaf of the uninfected plants 

(Fig. 61C).
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H7-40

36 ■ •

2 4 -

12 —

1 3 5 7 9 11

Prisma
60 t

49 «•

3 6 -

2 4 -

12 —

1 3 9 7 11

B 19909

4 9 -

2 4 -

1 2 -

1 3 5 7 9 11

Days after inoculation  

-O-control -^ In iK S d

Fig. 61A: The rates of gross photosynthesis per unit area in fourth

leaves of three barley lines with lower three leaves infected by mildew.

Each datum point is the mean of three replicates.
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Fig. 61B: Tha rate* of n*t photosynthasls par unit araa in fourth laavas of

thraa barlay tin** with lowar threa laavas intected by miktew. Each datum

point is th* maan of thr*a raplicatas.
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1-17-40
0.210 i

0.175 •

0.140 •

0.105 -
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0.035

0.000
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Prisma
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0.035 ‘

0.000
113 7 91 5

B19909
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0.140 -

0.105 •

0.070 <

0.035

0.000 T 1
1 3 5 7 9 11

Days aftsr inoculation  

-̂ Control ^Wnfsctsd

Fig. 61C: Tha rata of gross photosynthsls par milligram chlorophyll 
In fourth Isaves of thres barley lines with tha lower three leaves 
Infected by mildew. Each datum point Is the mean of three replicates.
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8.2.1.2. Quantum efficiency or photochemical efficiency of 

photosynthesis (a).

The quantum efficiency of photosynthesis a  of the three lines at each 

sampling time is plotted in Fig. 62. An analysis of variance showed that only 

in B 19909, had a  increased significantly (p < 0.05). In all other lines none of 

the differences was significant.

8.2.1.3. The physical and biochemical resistance to CO2 diffusion (0)

Changes in 0 (a measure of the ratio of physical to total resistance to CO2

diffiision into the leaf) in the uninfected fourth leaf of infected and uninfected 

plants are plotted in Fig. 63.

Infection of the lower three leaves increased 0 in the uninfected fourth leaf 

of plants of both line 1-17-40 and cv. Prisma up to the fifth and the eighth day 

after inoculation, respectively. Line B19909 showed fluctuating changes in 0

to infection of lower leaves between the second and the eighth day after 

inoculation, but none of the differences were significant. Although the 

analyses of variance showed that the differences were significant (p < 0.05) in 

both line 1-17-40 and cv. Prisma but not in the wild line B19909, it is difficult 

to draw a conclusion because of the range in values found.
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1 3 S 7 9 11

Prisma
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0.00
1 3 5 7 9 11

B19909

0.24

0.18

0.12

0.06

1 3 5 7 9 11

Days after Inoculation 

c o n tr o lI n fe c te d

Fig. 62: The Quantum efficiency of photosynthesis in ths fourth

leaf of three barley lines whose lower three leaves were Infected

by mildew. Each datum point Is the mean of three replicates.
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1-17-40

0.8- •

0.6 «•

0.4

1 3 8 7 9 11

Prisma

0.8

0.6 • >

1 3 6 7 11

B19909

0.8 ■ •

0.6 ■ >

1 3 5 7 9 11

Day* after inoculation 

control -^Infected

Fig. 63: The ratio of physical to total resistance to COj diffusion

(0) in fourth leaves of three barisy lines whose lower leaves were

Infected by mildew. Each datum point Is the mean of three replicates.
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8.2.I.4. Chlorophyll content

Changes in chlorophyll content of the uninfected fourth leaves of infected 

and uninfected plants of each line, at each sampling time, are plotted 

graphically in Figs. 64A to 64D.

Fig. 64A shows that during the course of the experiment, chlorophyll a 

levels per unit leaf area in the uninfected fourth leaf of both infected and 

uninfected plants of all three lines increased. Infection did not significantly 

affect this increase except in the wild line 1-17-40, which showed a significant 

reduction (p < 0.05) by the eleventh day following inoculation of the lower 

leaves.

The effects of infection on chlorophyll b levels (Fig. 64B) in the uninfected 

fourth leaf was generally similar to that of chlorophyll a (Fig. 64A). However, 

the slight increase in chlorophyll b observed in the fourth leaf of line 1-17-40 

eleven days after inoculation was not significant (p > 0.05).

It follows that infection had no effects on total chlorophyll content (Fig. 

64C) or on the chlorophyll a : b ratio (Fig. 64D).

8.2.2. Effects of infection on dark respiration

The rates of dark respiration in the uninfected fourth leaves of both 

infected and control plants of each line, are plotted in Fig. 65. Infection had 

no significant effect on dark respiration in the uninfected fourth leaf of 

infected plants compared to the controls in any of the three lines.
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4 0 0  -

200 -
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Days after inoculation 
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Fig. 64A: The chlorophyll a in fourth leaves of three barle;

lines with the lower three leaves infected by mildew. Each

datum point is the mean of three replicates.
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Fig. 64B: The chlorophyll b in fourth leaves of three barle;

lines with the lower three leaves infected by mildew. Each

datum point is the mean of three replicates.
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1 3 5 7 9 11

Days after inoculation
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Fig. 64C: Total chlorophyll in fourth leaves of three barley

lines with the lower three leaves infected by mildew. Each

datum point is the mean of three replicates.
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1-17-40
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1 3 6 7 9 11

Days after inoculation 
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Fig. 64D: The chlorophyll a:b ratio in fourth leaves of three barle;

lines with the lower three leaves infected by mildew. Each datum

point is the mean of three replicates.
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1-17-40
2.0 T
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0.0 1------------1-1  1--------------------- 1
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B19909
2.0

0.0
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Days after Inoculation 
-^■control -* -ln f*ct*d

Fig. 65: Dark respiration per unit area in fourth leaves of three 

barley lines with lower three leaves infected by mildew. Each

datum point is the mean of three replicates.
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DISCUSSION 

9.1. Levels of tolerance

The relative levels of tolerance of the two wild barleys and one cultivated 

barley to B. graminis f.sp. hordei were determined by comparing the effects 

of different levels of infection on the growth and development of the lines.

9.1.1. Mildew development

Generally, mildew infection followed similar progressions on both the wild 

and the cultivated barleys, developing heavy infections on the lower leaves but 

becoming lighter on the upper leaves. However, the way the leaf blade area 

was colonised by the mildew differed between the lines. By four weeks after 

inoculation, 34% of the leaf blade area of line B19909 was covered by mildew 

and about 27% of both cv. Prisma and line 1-17-40. The mildew continued to 

increase on both cv. Prisma and line B19909 to cover about 40% of the leaf 

blade area five weeks after inoculation, but as infection progressed further, the 

percentage GLA area colonised fell on both lines partly due to the loss of the 

heavily infected lower leaves through enhanced senescence but also to slower 

and lower levels of infection on the upper leaves. On line 1-17-40, after 

reaching 27% leaf blade area cover, the reduction in GLA colonised was more 

dramatic, since much less infection developed on its upper leaves compared to 

cv. Prisma and line B19909 and the plants also lost their heavily infected 

lower leaves due to premature senescence. Thus, overall, line B19909 

supported a higher percentage of leaf area colonised than line 1-17-40 at all
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stages and slightly more than cv. Prisma.

In greenhouse experiments using three cultivated barleys Proctor, Plumage 

Archer and Haisa II, Last (1962) observed that B. graminis f.sp. hordei 

infections, measured as percentage mildew cover, increased rapidly after 

inoculation so that within four weeks 30% of their leaf surfaces were 

colonised. After this stage, many of the heavily infected lower leaves died 

prematurely, leaving the upper comparatively lightly infected young leaves, 

and so as in this study the percentage of GLA covered by mildew decreased. 

The percentage of GLA colonised by mildew was also found to follow a 

similar pattern in greenhouse grown plants of the barley cvs Proctor, Deba 

Abed, Sultan, Zephyr, Midas and Julia (Scott et al., 1980; Carver et al., 1981; 

1982).

Observations on one wild oat (A. fatua) and two cultivated oats (A. 

sativa) infected with B. graminis f.sp. avenae indicated that similar levels of 

infection, measured as percentage GLA covered by mildew, were achieved on 

both species (Sabri, 1993; Sabri et al., 1995). When the oat plants were ten 

weeks old, the fungus had colonised approximately 40% of the leaf blade area 

of the wild oat and of one of the cultivated oats, cv. Lustre, although only 

about 30% of the leaf surfaces of the other cultivated oat cv. Peniarth. 

However, the lower leaves of cv. Peniarth were at least as susceptible, if not 

more so, than those of the other two lines but the upper leaves, including the 

flag leaf developed much lower levels of infection.

Other studies carried out by Ben-Kalio et al. (1979) and Harry et al. 

(1992), on the wild plant Senecio vulgaris revealed that the powdery mildew,
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Erysiphe fischeri, developed much higher levels of mildew than have been 

recorded for cereals. Thus, eleven weeks after inoculation between 75 and 

100% of the leaf area had become colonised with the upper leaves developing 

similar levels of infection to the lower leaves.

In addition to following the percentage GLA colonised, mildew 

development in this study was measured in terms of the number of conidia 

produced during the course of the infection. This is a far better measure of 

fungal biomass production than percentage GLA colonised. The results 

showed that conidial production on the primary shoot leaves of the wild line 

B19909 (9 x 107 conidia) was higher than on cv. Prisma (8 x 107 conidia) and 

much higher than on line 1-17-40 (1.8 x 107 conidia). Conidial production on 

the whole plant showed approximately the same pattern as on the primary 

shoot.

Sabri (Sabri, 1993; Sabri et al., 1995) also determined conidial production 

on the two oat cultivars, Lustre and Peniarth, and on one wild oat line. 

Conidial production on cv. Peniarth was little more than half that on cv. 

Lustre while the wild oat produced the highest number although only slightly 

more than cv. Lustre.
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9.1.2. The effects of mildew infection on the growth of the three lines

9.I.2.I. Shoot production and the development of leaf tissue

Mildew infection caused significant reductions in shoot development and 

these effects were evident in reduced primary shoot height, fewer tillers, and 

reductions in leaf area although these reductions were not entirely reflected in 

yield components and in final grain yield. Infection reduced primary shoot 

height more in cv. Prisma than in the other two lines, with line 1-17-40 being 

the least affected. The number of tillers per plant was also reduced in all three 

lines but strangely to the greatest extent in the least infected wild line 1-17-40. 

The overall reductions in total plant growth were greater in cv. Prisma than in 

line B19909 although the former, while developing similar levels of leaf area 

infected, supported lower conidial production than the latter. The lower 

growth reductions in line 1-17-40, except in relation to tiller development, 

could be expected because this line supported the lowest levels of mildew 

biomass production.

Similar reductions were observed by Last (1962) who reported that B. 

graminis f.sp. hordei reduced the primary shoot height of barley cvs Proctor 

and Plumage Archer by about 34% and tiller production by about 27% when 

the percentage leaf area covered by mildew was over 20%. Sabri et al. (1995) 

also reported that B. graminis f.sp. avenae reduced primary shoot height and 

tiller production in two cultivated oats and a wild oat line with the latter being 

the least affected although it supported the greatest production of conidia. 

This suggests some similarities between the wild oat line and the wild barley 

line B19909 used in the present study. Similarly, Ben-Kalio et al. (1976)
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observed that high levels of infection by E. fischeri were required before the 

mean stem height and the number of branches produced by Senecio vulgaris 

were reduced.

The production of leaves on the primary shoot of both barley cv. Prisma 

and line B19909, but not of line 1-17-40, occurred at a slower rate on infected 

plants than on the controls. By six weeks after inoculation, the infected plants 

of both cv. Prisma and line B19909 had expanded 1 or 2 leaves fewer than the 

uninoculated controls, but by the end of the experiment, both infected and 

uninfected plants of line B19909 had expanded the same number of leaves. 

The infected plants of cv. Prisma never caught up with the controls because 

the primary shoot died after the tenth leaf had expanded, presumably because 

of the very heavy infections developing on the plants in the growth cabinet. 

Infected and uninfected plants of the more resistant line 1-17-40 produced 

about the same number of leaves on the primary shoot with no significant 

delay in leaf production. It is possible that lines had developed all leaf 

primordia by the time of inoculation and the infections on line B19909 and cv. 

Prisma simply delayed leaf expansion compared to the controls. However, the 

growing points were not dissected to investigate this possibility.

Total leaf area on the primary shoot, by the end of the experiment, was 

reduced by infection in all three lines but again to different extents. When 

conidial production had reached about 55 x 107 conidia, the leaf area was 

reduced by about 42% in line B19909 but lower conidial production of about 

40 x 107 reduced leaf area by about 60% in cv. Prisma. An even lower level of 

conidial production of about 16 x 107 on line 1-17-40 reduced leaf area on the
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primary shoot by about 69%. The effect of infection on the total GLA 

produced by the tillers followed the same pattern as on the primary shoot, 

except that, strangely, line 1-17-40 showed the greatest reduction. The 

reduced leaf area was due mainly to premature senescence of the lower 

heavily infected leaves. Cv. Prisma and line 1-17-40 showed slightly higher 

levels of leaf senescence than line B19909 and the delayed senescence in some 

cultivars has been suggested to be a possible basis for the breeding of tolerant 

cultivars (Finney, 1973).

The reductions in leaf size in the three barley lines were found to be due to 

reductions in both cell expansion and cell division. Cell size was reduced 

between 13 and 25% in line 1-17-40, between 16 and 26% in cv. Prisma and 

between 10 and 22% in line B19909. It was also calculated from numbers of 

epidermal cells per lea£ that cell division was reduced by about 6% in line I- 

17-40, by about 7% in cv. Prisma but about 10% in line B19909. These 

results are not in agreement with the early observations that growth 

components were less affected in line B19909 than in the other lines and 

particularly cv. Prisma.

Sabri (1993) showed that infection of oats by B. graminis f.sp. avenae 

also caused the leaves to senesce more rapidly, particularly the lower leaves, 

on both the primary shoot and the tillers, with the senescence being greater in 

the two cultivated oats Lustre and Peniarth than in the wild oat, although the 

latter supported the highest level of conidial production. High levels of 

infection were also found to occur on Senecio vulgaris before reductions in 

leaf area were evident in response to infection with E. flscheri (Ben-Kalio et
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al.9 1979 and Harry et al., 1992).

There has been a conflict between researchers concerning the effects of 

mildew infection on leaf size and green leaf area of the crop. For example, 

Last (1962) reported a reduction in individual leaf size in barley due to 

mildew infectioa However, Carver & Griffiths (1981) showed that 30% 

mildew cover on barley cv. Julia affected neither the number nor the size of 

leaves. The only obvious effect being a reduction in green leaf area due to the 

loss of the lower leaves due to premature senescence.

Sabri (Sabri, 1993; Sabri et al., 1995) observed reductions in leaf blade 

area in cvs Peniarth and Lustre and in wild oat in response to infection with B. 

graminis f.sp. avenae. She also showed that in the wild oat and cv. Peniarth, 

as in this study, the reductions in individual leaf blade area were due to 

reductions in both cell division and cell expansion. Cell division was reduced 

by about 13% in the wild oat and about 17% in cv. Peniarth, when about 75% 

of the leaf area was covered by mildew. Studies with S. vulgaris infected with 

E. fischeri also revealed that the size of epidermal cells in infected leaves was 

reduced between 21 and 33% and cell division between 10 and 15% with the 

topmost, youngest, leaves being affected the most (Harry et al., 1992).

The process of cell division and cell expansion are both very sensitive to 

changes in water potential (Ayres, 1981a) and changes in water potential are 

frequently observed to be caused by infection (Ayres, 1972; Ayres, 1978). In 

the present study, powdery mildew infection certainly affected stomatal 

function and this may well, through increased rates of transpiration, have 

lowered leaf water potentials. This could have inhibited leaf expansion by
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inhibiting cell expansion, which depends on the attainment of high turgor, and 

also cell division. However, all the plants were watered regularly and 

sufficiently and so some of the increased loss of water should have been 

compensated for by increased uptake unless root function was affected and 

several workers have obtained evidence for this (e.g. Walters, 1981).

Mildew infection not only reduced leaf size but it also affected the 

photosynthetic efficiency of the remaining leaf tissue in all three lines. Thus, 

ULR was reduced by 99% in line 1-17-40, 57% in cv. Prisma and 60% in line 

B19909 in the period between the third and the fourth week after inoculation. 

At this stage the fungal biomass produced had reached about 9 x 107 conidia 

on line 1-17-40, 11 x 107 in cv. Prisma and about 16 x 107 conidia on line 

B19909. As infection progressed, infected leaves on both lines became 

transiently as efficient as those of the controls and then the rates of ULR 

decreased again. However, as conidial production decreased dramatically on 

the more resistant upper leaves of line 1-17-40, ULR increased to a level 

higher than that of the controls probably reflecting compensatory 

photosynthesis.

Last (1962) also found that infection of barley by B. graminis f.sp. hordei 

reduced the mean ULR by about 27% compared to the controls. The lower 

effect of infection on the ULR in Last’s experiment compared to the present 

study is probably due to lower levels of infection achieved in last’s study, 

which did not exceed 30% of the leaf area colonised at any time. In studies 

(Cameron, 1993) involving two barley, cvs Proctor and Triumph, infected 

with B. graminis f.sp. hordei, the ULR was found to be reduced in both
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cultivars but to different extents. Although cv. Triumph supported more 

mildew than cv. Proctor, its ULR was reduced by about 5% but that of cv. 

Proctor was reduced by about 48%. Similarly, Sabri et al. (1995) observed 

that infection of oat cvs Peniarth and Lustre and a wild oat by B. graminis 

f.sp. avenae reduced ULR in all three lines, with the latter being less affected 

than the former two cultivars although it supported the production of the 

most mildew biomass. In contrast, studies on the effects of E. fischeri 

infection on Senecio vulgaris showed that even when 90% of the host plants 

leaf area was colonised by mildew the ULR was not different from control 

uninfected plants.

Although the leaves were smaller, the dry matter content of the infected 

leaves per unit plant dry weight (LWR) increased in all lines and particularly 

in line B19909. These increases could be attributed partly to the amount of 

mildew, which had developed, and partly to the accumulation of soluble or 

insoluble carbohydrates within the leaves. The ratio of leaf area to leaf dry 

weight, or SLA, which is a measure of leaf thickness, was also found to 

decrease in all lines, but line B19909 was the least affected while cv. Prisma 

was the most affected. The reduction in SLA in the infected plants was mainly 

due to the greater loss of the lower leaves by senescence but also to the 

accumulation of more dry matter in the relatively small leaves. How much the 

relative increases in dry matter per unit area of leaf was due to additional 

structural materials, such as cell walls and vascular tissues, or to non- 

structural, storage carbohydrates or to fungal development was not 

determined. Infection reduced the leaf area ratio (LAR) in cv. Prisma and line
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1-17-40, suggesting that leaf area was smaller compared to the size of the 

plants relative to the controls. In contrast, LAR was not affected in line 

B19909, indicating that the reduction in leaf area was proportional to the 

reduction in the size of the plant in this line.

Last (1962) observed that the LARs of barley cvs Proctor and Plumage 

Archer infected with B. graminis f.sp. hordei, were reduced by about 10% 

when the percentage leaf area covered by mildew was between 20 and 30%. 

Sabri (Sabri, 1993; Sabri et al., 1995) also found that B. graminis f.sp. 

avenae infections reduced the LWR of infected plants of cvs Lustre and 

Peniarth beginning from the sixth week after inoculation particularly in cv. 

Peniarth. These reductions in LWR in the cultivated oats were attributed to 

the greater loss of leaves through senescence rather than to changes in the 

proportions of dry matter allocated to the leaves. In contrast, infection did not 

affect the LWR of the wild oat and no significant differences in LAR or SLA 

between infected and uninfected plants of cultivated or wild oats were found. 

These results contrast with the present study, which revealed significant 

changes in LWR and SLA in all lines including the wild barley B19909. In S. 

vulgaris, infections with E. fischeri affected LWR, LAR and SLA slightly but 

only when over 75% of the leaf surfaces had been colonised (Ben-Kalio, 

1976). Harry (1980) however, later reported that E. fischeri had no effect on 

these growth indices in S. vulgaris, but this was probably because the 

experiment was terminated a week earlier than Ben-Kalio’s experiment. Thus 

although infection by E. fischeri reduced the total leaf area of groundsel, the 

size of the leaves remained proportional to the size o f the plant, and infection
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did not appear to alter the allocation of photosynthates to the leaf relative to 

the rest of the plant.

9.1.2.2. Root production

Infection caused significant reductions in root growth in all three barley 

lines. Although the total number of seminal roots was not affected by 

infection, as the number in each line was determined before the seedlings were 

inoculated, the number of lateral roots produced on the seminal roots was 

reduced. Both cv. Prisma and line B19909 produced 51% fewer lateral roots 

on seminal roots than uninfected plants, but infection had no effect on the 

number produced on the more lightly infected line 1-17-40. The total length of 

the seminal roots was reduced by about 65% in cv. Prisma and 47% in line 

B19909 although again no significant reduction was observed in infected 

plants of line 1-17-40. Mean seminal root diameter did not appear to be 

affected by infection in any line, probably because any differences were 

masked by the large number of thin laterals with relatively uniform diameters, 

which were produced. Because infection reduced the total length of the 

seminal roots and their laterals, the surface area of the seminal root system 

was reduced with cv. Prisma being more affected than the other two lines.

Infection affected all morphological components of the nodal roots. 

Infected plants of cv. Prisma produced about 74% fewer nodal roots and line 

B19909 about 31% fewer nodal roots than the uninfected controls. However, 

line 1-17-40, despite the light infection, showed a 46% reduction. Numbers of 

nodal lateral roots were reduced by about 71% by infection in cv. Prisma, but
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no significant reductions occurred in the two wild lines. Infection however did 

reduce the total lengths of nodal roots in all lines, but to different extents. The 

length of the nodal roots was reduced by about 78% in cv. Prisma but only 

about 27% in line B19909 when fungal biomass had reached about 40 x 107 

conidia per plant on cv. Prisma and about 55 x 107 conidia per plant on line 

B19909. At this stage, line 1-17-40 had supported the production of only 

about 16 x 107 conidia but the total length of its nodal root system was 

reduced by 39%, a greater reduction than line B19909. Similarly, infection 

reduced the surface areas of nodal roots in all lines, but to the least extent in 

line B19909. However, as with the seminal roots, infection had no significant 

effect on overall nodal root diameter in any line.

Unfortunately, no other study on the effects of powdery mildew infections 

on the development of the host’s root system has involved measurements of 

the amount of parasite present, and so a direct comparison with other studies 

is not possible. In those few studies where the level of infection or of fungal 

biomass production was measured only root dry weights were determined.

However, some less detailed studies have revealed similar effects on the 

branching pattern of roots in response to mildew infection to those noted in 

this study. Thus, Vizarova & Minardic (1974) observed that mildew infections 

inhibited the elongation of seminal roots together with the growth and 

formation of lateral roots in barley plants. A decrease in the diameter of 

seminal roots was also noted, a result which contrasts with that of the present 

study. However, the failure to detect effects on root diameter in this study 

could be because the diameters of the larger seminal or nodal roots, which
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might have changed, were measured together with a large number of thinner 

lateral roots with uniform diameters, so that any reductions in diameter in the 

larger roots may have been masked. A more detailed study of the effects of 

mildew infections on the growth of barley roots was carried out by Walters 

(1981) and Walters & Ayres (1981a). They observed that total root dry 

weight, total root length, as well as the length of nodal and seminal roots 

individually were significantly decreased by infection. Their results were in 

agreement with the present study. However, the numbers of nodal roots were 

found to be unaffected by infection in contrast to the present study where the 

number of nodal roots was found to be reduced in all lines but to different 

extents.

The amount of dry matter allocated to roots per unit leaf area was also 

reduced by mildew in all three lines but to the greatest extent in cv. Prisma. 

Similarly, root surface area per unit of total plant dry weight was affected by 

infection in the same way as root dry weight per unit of total plant dry weight. 

Infection had increased root length per unit of root dry weight in cv. Prisma 

when 40% of the leaf area was colonised by mildew, but it had no effect on 

the two wild lines. This increase in specific root length suggests that a 

relatively lower proportion of photoassimilates was allocated to the relatively 

longer thinner root systems.

Last (1962) also reported that the RWR of barley infected with B. 

graminis f.sp. hordei had been reduced by about 33% by the time the 

percentage leaf area colonised by mildew had reached about 23%. This 

indicates that as plants grew older and as total plant dry weight increased, the
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amount of dry matter accumulating in the roots diminished. The ratio of root 

dry weight to leaf area was also found to have decreased by about 46% when 

the percentage leaf area colonised by mildew was about 23%.

The reductions in root length could be due to reductions in cell expansion 

and or in cell division. In the present study, even when 50% of the leaf area 

was colonised by mildew, the rates of mitotic cell division in the apical 

meristems of the nodal root tips were not reduced either in cv. Prisma or line 

1-17-40, although a slight but significant reduction was observed in line 

B19909. The only other detailed investigations on the effects of infection by 

B. graminis fisp. hordei on cell division in the apical meristems of barley roots 

are those of Minar£ic & Paulech (1975) and Walters (1981) although, neither 

related the effect of different levels of infection on root cell division. Both 

studies revealed decreases in the rates of cell division in the root tips and this 

contrasts with this study. These discrepancies may be due simply to the feet 

that in this study only one set of measurements were taken eight days after 

inoculation. The reductions found by Minardic & Paulech (1975) and Walters 

(1981) were attributed to the reduction in the quantity of photoassimilates 

reaching the root system (Fric, 1975). A reduced supply of 14C 

photoassimilates reaching the root tips of mildewed barley plants was 

indicated to be the major cause of the reduced meristematic activity of the 

root tips (Minardic & Paulech, 1975). In contrast, Vizarova & Minardic 

(1974) attributed the morphological changes in the roots of barley plants in 

response to mildew infection to increases in cytokinins brought about by 

infection.
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Undoubtedly, the altered root morphology and anatomy in mildewed 

barley would depress root physiology. Walters (1981) found that roots of 

mildewed barley plants took up more 32P-labelled phosphate, more potassium 

and more chloride, and consequently the ionic content of the tissues was 

higher than that of uninfected plants. A decrease in nitrate uptake, thereby 

lowering the nitrate content of the roots, was also found. These changes were 

explained by the lack of photoassimilates received by the roots from the 

infected leaves (Walters & Ayres, 1980). In contrast, sodium uptake and 

accumulation in the roots were unaltered by mildew infection. Other 

physiological processes such as root tissue respiration, were observed to 

increase in response to mildew infection in barley plants (Walters, 1981). 

However, none of these physiological processes were investigated in this 

study.

The alterations in root morphology, anatomy and physiology resulting 

from infection are likely to play a role in host growth and yielding capacity. 

Last (1962) suggested that as reductions in the root system developed, a stage 

could be reached when the reduction could affect leaf efficiency.

9.1.2.3. Dry matter production

As expected from the reductions in the shoot and root systems, infection 

substantially reduced total plant dry matter accumulation in both the 

cultivated and the wild barley compared to the controls although to different 

extents in the three lines. Six weeks after inoculation, when conidial 

production had reached about 40 x 107 conidia on cv. Prisma and about 55 x
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107 conidia on line B19909, the percentage reduction in total dry matter was 

about 63% in cv. Prisma and about 58% in line B19909. In the case of line I- 

17-40, total plant dry matter was reduced four weeks after inoculation by 

about 55% when conidial production had reached its maximum of 9 x 107 

conidia per plant; after this total plant dry matter caught up with the controls 

presumably due to compensatory photosynthesis in the upper leaves, which 

supported little infection. Thus although line B19909 supported more conidial 

production than cv. Prisma, its dry matter content was reduced less indicating 

the presence of a higher level of tolerance.

The reductions in total plant dry matter accumulation affected both shoot 

and root development in the three lines but to different extents in each. A low 

total conidial production of 40 x 107 conidia reduced shoot dry weight in cv. 

Prisma by about 60%, but the higher levels of conidial production of 55 x 107 

conidia on line B19909 had no significant effect on its shoot dry weight. Line 

1-17-40 was also affected and when conidial production reached a maximum 

of about 9 x 107 conidia, shoot dry weight was reduced by about 54%.

Total root dry weight was reduced by infection in all the three lines but to 

different extents in each line. The root dry weight of line 1-17-40 was reduced 

by about 59%, while that of cv. Prisma was reduced by about 83% in cv. 

Prisma. However, line B19909, which supported the development of the 

highest fungal biomass, was hardly affected. Clearly, the proportion of dry 

matter partitioned between the roots and shoots (expressed as root : shoot 

ratio) was decreased significantly by infection in both cv. Prisma and line 1-17- 

40, but in comparison, line B19909, despite supporting the highest level of
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mildew infection showed no significant changes in its root : shoot ratio 

indicating the extent to which this line can tolerate the presence of high levels 

of infection without the distribution of dry matter between root and shoot 

being affected.

Infection began to reduce the rates of dry matter production soon after 

inoculation. Thus, the relative growth rates (RGR) relative to the controls 

began to fell between the second and the fourth week after inoculation in all 

three lines, concomitantly with a reduction in tiller formation as well as with 

the increase in the proportion of non-photosynthetic to photosynthetic tissue. 

During this period, the RGRs were reduced by about 60% in line 1-17-40, 

about 57% in cv. Prisma and about 54% in line B19909. By this time, fimgal 

biomass production on line 1-17-40 had attained its maximum level of about 9 

x 107, but on cv. Prisma, it was about 11 x 107 conidia and rising on line 

B19909 to about 16 x 107 conidia. When stem elongation began, RGR began 

to increase again in both the infected as well as the uninfected plants of the 

three lines. A later reduction occurred in cv. Prisma and line B19909 

associated with the loss of the infected leaves due to enhanced senescence and 

to reduced tiller development.

Last (1962) reported similar effects of B. graminis fisp. hordei infection 

on the susceptible spring barley cultivars Proctor and Plumage Archer. When 

25% of the leaf areas were colonised by mildew, total plant dry weight had 

been reduced by about 59% and shoot dry weight by about 50% compared to 

the controls. Sabri (1995) also reported that B. graminis f.sp. avenae reduced 

total plant dry weight and shoot dry weight of wild and cultivated oats but to
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different extents. Thus, high conidial production of about 18 x 109 conidia 

reduced total plant dry weight by about 45% in the wild oat but lower conidial 

production of about 16 x 109 and 8 x 109 conidia reduced total plant dry 

weight by about 61% in cv. Lustre and about 55% in cv. Peniarth 

respectively. These results showed clearly that the wild oat was more tolerant 

of infection than the oat cultivars.

As in this study, infection of barley with B. graminis f.sp. hordei has been 

reported to reduce root dry weight by several workers (e.g. Last, 1962; 

Paulech, 1969; Brooks, 1972; Walters & Ayres, 1981a). Last (1962) found 

that mildew infection of barley cvs Proctor and Plumage Archer reduced root 

dry weights by about 70% when the percentage leaf area colonised was only 

between 20 and 25%. Sabri (1993) also showed that five weeks after 

inoculation with B. graminis fisp. avenae, root dry weight was reduced 

significantly compared to controls in oat cvs Lustre and Peniarth when the 

percentage mildew cover was about 20% in cv. Peniarth and about 23% in cv. 

Lustre but not until the sixth week after inoculation in a wild oat line when the 

percentage mildew cover was about 30%. The reductions became more 

pronounced as infection progressed, especially in cvs Lustre and Peniarth. 

Root growth was signficantly inhibited in cv. Peniarth when mildew cover was 

20% or more but it was not affected in either cv. Lustre or the wild oat. 

Studies on the reactions of S.vulgaris to infection by E. fischeri also showed 

that the distribution of dry matter in relation to the development of roots or 

other organs was not affected by infection even when 90% of the leaf area 

was infected (Ben-Kalio et al., 1979; Harry et al., 1992). The reactions of the
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wild barley line B19909, the wild oat and the groundsel contrast with those of 

many crop plants where even low levels of infection reduce the proportion of 

dry matter allocated to the roots e.g. the barley cultivars studied by Last 

(1962), and the oat cv. Peniarth studied by Sabri (1993) and the barley cv. 

Prisma used in the present study.

The RGR was also reported to reduce in wild and cultivated oats infected 

with B. graminis f.sp. avenae, but the wild oat was least affected although it 

supported the highest conidial production (Sabri, 1993). In another study 

(Cameron, 1993) on two cultivated barleys, cv. Proctor and cv. Triumph, 

infection with B. graminis f.sp. hordei was also found to reduce the RGR, 

with cv. Proctor being affected more than cv. Triumph despite the latter 

supporting more mildew growth.

Infections in other wild plants have also been found to reduce the RGR 

but the reduction relative to the uninfected plants occurred at a late stage of 

infection. Thus, Harry (1980) reported that infection of Senecio vulgaris by 

E. fischeri did not affect RGR until the percentage leaf area colonised by the 

mildew was over 73%. This was taken to indicate the ability of the host to 

tolerate the high levels of infection. Other workers have reported reductions 

in the RGR by powdery mildew infections on barley plants similar to those 

found in this study, but close comparisons are not possible because the levels 

of mildew development were not reported (Walters & Ayres, 1981a and 

Hibberd et al., 1996).
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9.I.2.4. Production of yielding structures

The effects of infection on all yield components were also determined in 

this study. Infection reduced the number of grains produced by the primary 

shoot by about 36% in cv. Prisma, but had no significant effect on this yield 

component in either of the wild lines, even though fungal biomass production 

was greater on line B19909 than on cv. Prisma. The total dry weight of grains 

was also decreased by about 41% in cv. Prisma. Surprisingly, total dry weight 

of grains per primary shoot was increased significantly in infected plants of 

line B19909. Thousand-grain weight, a measure of grain size, was also 

slightly increased by infection in line B19909, but not in the other two lines.

The number of fertile tillers was not significantly reduced by infection in 

any line, probably due to the large variation in numbers of fertile tillers 

produced between plants. The total number of grains and total dry weight of 

grains produced by the tillers were both reduced by infection in cv. Prisma but 

not in the two wild lines. The percentage reduction in total dry weight of 

grains in cv. Prisma was about 55%. Thousand-grain weight was not affected 

by infection in any line indicating that infection had no effect on grain size. 

Although infection reduced the development of the vegetative structures e.g. 

green leaf area, shoot dry weight, root dry weight and total plant dry weight, 

the proportion of total biomass converted to grain, i.e., the harvest index, was 

significantly reduced by infection only in cv. Prisma and not in the two wild 

lines. It appears that infection had no effect on any of the yield components of 

the two wild lines even though line B19909 supported the development of the 

highest levels of fungal biomass. Clearly, in relation to reproductive output
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line B19909 is much more tolerant of mildew infection than cv. Prisma. It is 

also interesting that line 1-17-40 whose vegetative growth was significantly 

affected by infection suffered no effects on yield. This is not in agreement with 

what was reported by several workers that an early mildew attack reduced 

grain size and number of grains per tiller (Griffiths et al., 1975). These 

discrepancies could be explained only by the fact that the wild line 1-17-40 has 

some level of tolerance, which enabled later growth to compensate for early 

vegetative loss.

The similar study carried, out on wild and cultivated oats infected with B. 

graminis f.sp. avenae by Sabri et al. (1995) also found that the wild oat 

produced a significantly higher number of grain on the primary shoot and on 

the whole plant than either of the two cultivars, Lustre and Peniarth, although 

the former supported the greater fungal biomass. However, the individual 

grains were much smaller and total yield per plant, in terms of the weight of 

grain produced, was significantly lower. Furthermore, the harvest index of the 

wild oat was slightly lower than that of the two cultivars and it was not 

reduced significantly by infection in any line. However, the percentage 

reduction brought about by infection in all yield structures and in total dry 

weight o f grain produced by infected plants was lower in the wild oat than in 

the two cultivars. Thus these results are similar to those of the present study 

in that they show that, in relation to the development of yielding structures, 

the wild lines may be more tolerant of infection than the cultivated lines.
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9.2. Photosynthesis and respiration in infected leaves

The reductions in shoot and root development and in yield or reproductive 

output in response to infection are the consequences of underlying changes in 

physiological processes of the host including photosynthesis, respiration and 

stomatal function. An understanding of the ways in which infection affects 

these processes may lead to a better understanding of the causes of how some 

lines are able to tolerate infection better than others. For this reason, the 

effects of mildew infection on photosynthesis, respiration and stomatal 

function in barley were investigated in the third leaf of the same lines, cv. 

Prisma and the two wild lines B19909 and 1-17-40, as were used in the 

growth analysis study. In addition, a further three lines, cv Golden Promise, 

cv. Triumph and the wild line B8893 were studied in the same way but in their 

case the fourth leaf was used.

9.2.1. Mildew development

Line B19909 and cv. Golden Promise were the most susceptible to mildew 

infection of all the lines with the leaf used for measurement producing about 

42 x 10s conidia cm*2 leaf area by the end of the experiment. Cultivars Prisma 

and Triumph were also susceptible, but less so, producing about 24 x 105 

conidia.cm*2 leaf area Line 1-17-40 supported an even lower conidial 

production of about 10 x 105 conidia, while line B8893 was highly resistant 

and produced only about 1 x 105 conidia. Slight necrotic flecking was 

produced on the leaf of line B8893 in response to inoculation, but the leaf of 

cv. Triumph developed significant necrosis in association with the developing
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mycelium. None of the other lines developed necrosis in response to infection.

9.2.2. Effects on photosynthesis

The effect of infection on the rate of photosynthesis in the third or the 

fourth leaf was different in the six lines. When the rate of photosynthesis was 

related to fungal biomass production, the rate of decline in Pgmax and P iw  in 

line B19909 was slower than in cv. Prisma and line 1-17-40 (Fig. 48). The 

mean effect of similar high levels of conidial production decreased the rates of 

P g m a x  and P iw  by about 63% in cv. Golden Promise but by only 41% in line 

B19909. Furthermore a low level of conidial production decreased the rates 

of P g m a x  and P iw  by about 61% in cv. Triumph, about 52% in cv. Prisma and 

an even lower level of conidial production than on Triumph and Prisma 

reduced the rates of Pgmax and P iw  by about 50% in line 1-17-40. In contrast, 

P g m a x  and P iw  were not affected in the most resistant line B8893 which 

supported a very low level of conidial production compared to the other lines 

and cultivars. These results show clearly that there are differences in the 

tolerance of the photosynthetic mechanisms of the lines to mildew 

development and that line B19909 was relatively more tolerant than the other 

lines since relative to fungal development its photosynthesis was least 

affected.

Many workers have reported that the rates of photosynthesis in many 

hosts are reduced by powdery mildew infections. However, these 

investigations have rarely related the degree of reduction to the level of 

infection supported. Last (1963) observed that when 30% of the leaf area of
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susceptible barley cultivars was colonised by B. graminis f.sp. hordei, the rate 

of photosynthesis was decreased by about 43% of the levels in uninfected 

control plants. Habeshaw (1979) investigated the effects of different 

percentages of leaf colonisation by B. graminis f.sp. hordei on the rate of net 

photosynthesis in the very susceptible cv. Golden Promise and the moderately 

resistant cv. Maris Mink, the later expressing a necrotic response to infection. 

He found that the percentage reduction in net photosynthesis was equal to the 

percentage of leaf area colonised in cv. Golden Promise, indicating that the 

impairment in photosynthetic capacity was confined to the infected parts of 

the leaf, whereas in cv. Maris Mink, the reduction occurred in both colonised 

tissues and the necrotic tissues. Similar differences in the response of 

photosynthesis were found between cv. Prisma and cv. Triumph in this study. 

Although both of these cultivars supported similar levels of fungal biomass 

development, cv. Triumph showed the greater reduction in photosynthesis 

probably because of the additional loss due to the necrotic response to the 

infection. However, studies carried out by Scott & Smillie (1966), on a major 

gene resistant barley cultivar inoculated with B. graminis fisp. hordei showed 

no effects on photosynthesis, probably because cell collapse in the infection 

courts appeared to be too small to cause a significant decrease in the 

photosynthetic rate of the leaf. The highly resistant wild barley B8893 used in 

this study reacted to inoculation by producing small necrotic lesions but no 

reduction in the rate of photosynthesis was measured. Haigh et al. (1991) 

observed that oat lines, cv. Mostyn and breeding lines 1621 and 1674, each 

developing similar levels of infection, between 240-245 haustoria mm"2 of the
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second leaf, had their photosynthesis inhibited to different extents. Thus, that 

of cv. Mostyn was inhibited by about 60% within five days of inoculation, but 

that of line 1621 was inhibited by only 39% nine days after inoculation, while 

line 1674 showed no significant response. The fourth line, the more resistant 

cv. Maldwyn, which supported the development of 131 haustoria mm'2 of 

leaf, had its rate of photosynthesis inhibited by about 18% nine days after 

inoculation. It appears that these oat lines not only differed in their degree of 

partial resistance but also in their degree of tolerance of that level of mildew 

infection, which did develop.

The most detailed study, clearly relating the amount of fungal biomass 

produced to effects on photosynthesis, was that of Sabri (Sabri, 1993; Sabri et 

al., 1997). She showed that infection of susceptible wild and cultivated oat 

lines with B. graminis f.sp. avenae reduced the rates of gross and net 

photosynthesis in all lines, but to different extents in each. Fifteen days after 

inoculation, Pgmax expressed per unit area of leaf was reduced by about 36% 

in cv. Peniarth, but only about 27% in cv. Lustre, and about 26% in the wild 

oat. At these stages, cv. Peniarth had supported the production of about 3131 

conidia mm'2 lea£ cv. Lustre about 3388 conidia mm'2 leaf and the wild oat 

about 3568 conidia mm'2 leaf. Photosynthesis in the wild oat was reduced the 

least yet it supported the production of the highest mildew biomass indicating 

that it was more tolerant of mildew infection than were the two cultivated 

oats. Also, cv. Lustre showed a higher level of tolerance than cv. Peniarth.

The inhibitory effects on photosynthesis demonstrated for leaf segments in 

the O2 electrode are clearly not directly related to the amounts of mildew
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biomass produced on the leaves. This raises the question of what properties or 

mechanisms the more tolerant line, B19909, possesses that protects its 

photo synthetic system better than those of the less tolerant cultivars.

In the present study, all measurements of photosynthesis were carried out 

using leaf segments under conditions of saturating CO2 (Delieu & Walker, 

1981) and so any changes in rate were unlikely to be due to reductions in CO2 

supply or enhanced photorespiration, but to changes within the chloroplasts. 

Two models, the linear and the non-linear, have been developed to describe 

the photosynthetic light-response curves obtained using the O2 electrode. The 

linear model, rectangular hyperbola, derived by Rabinowich (1951) from the 

hyperbolic relationship between the rate of an enzyme-catalysed reaction and 

the concentration of its substrate, assumes that resistance to CO2 diflusion to 

the carboxylation sites, 0, is equal to zero. However, the alternative, non­

linear model (non-rectangular hyperbola), derived by Thomley (1976) and 

Marshall and Bisco (1980), assumes that the resistance to CO2 diflusion to the

carboxylation sites, expressed as the ratio of physical to total resistance (0 = 

rp / rp + rx), is always greater than zero as explained in detail in Materials and 

Methods. Both models were applied to analyse the photosynthetic light 

response curves (PLRC) obtained in this study and since the results were 

more consistent with the second than the first only the results for the second 

model are presented here. The results showed that the values of 0 in the

infected tissues were not significantly different from those in the uninfected 

tissues at any stage in wild lines B19909,1-17-40 and B8893, indicating that
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the decline in the rate o f photosynthesis was unlikely to be due to decreasing 

amounts of CO2 reaching the carboxylation sites. However, 0 values for cvs.

Golden Promise, Prisma and Triumph were significantly higher in infected 

tissues than in the controls indicating that either the physical resistance to CO2 

reaching the carboxylation sites or biochemical resistance or both were altered 

by infection. According to the predicted effects o f changes in the physical 

resistance (rp) and biochemical resistance (rx) on the rate o f photosynthesis, 

and the value o f 0, given in Appendix Table 12, it can be concluded that both

rp and rx were affected by infection, and further that rp was equal to rx in cvs 

Golden Promise, Prisma and Triumph. This suggests that although CO2 was 

used at saturating levels, CO2 supply to the chloroplasts o f infected leaves was 

still limiting in these cultivars. This was not the case in the wild lines, which 

showed no changes in the values o f 0, indicating that the CO2 supply was not 

limiting.

The value o f 0 was found to increase in leaves o f sugar beet infected by

beet yellows virus (Hall & Loomis, 1972) and peach infected by prune dwarf 

virus (Smith & Neales, 1977), but leaves o f tobacco plants infected with 

Sonchus yellow net virus showed no significant effects (Askeer, 1993). Other 

studies on a range o f hosts have found that infection by different pathogens 

may alter the value o f 0, but the results are contradictory. For example, 

studies on mildew infections o f wild and cultivated oats (Sabri, 1993; Sabri et 

al., 1997) demonstrated that 0  was not affected in the most tolerant wild oat 

and nor in cv. Lustre, but it was decreased by infection in the less tolerant cv.
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Peniarth, although not until the twelfth day after inoculation just prior to the 

leaf tissue becoming flaccid and chlorotic. This result for cv. Peniarth is at 

variance with the increases found in the cultivated barleys in this study. How 

infection affects 0 in some lines and not in others is not known.

Reductions in the maximum photochemical efficiency of photosynthetic O2 

evolution (quantum efficiency or quantum yield) in response to infection were 

revealed in this study. Thus, it was reduced less in line B19909 (27%) and line 

1-17-40 (28%) than in cv. Golden Promise (53%), cv. Prisma (46%) and cv. 

Triumph (30%). Such reductions indicate that, the reductions in 

photosynthesis could be due to either a decrease in the light-harvesting 

capacity of the chloroplasts, a reduction in photosynthetic electron transport 

rates, or, to a lesser extent, a decrease in carboxylation efficiency, or to a 

combination of these processes. At low light intensity, the number of quanta 

of light reaching the reaction centres determines the rate of electron transport 

and this is dependent upon the amount of light-harvesting complex present. In 

the present study, the decreased quantum efficiency resulting from infection 

could be due to a loss of light-harvesting complex, either from those 

complexes that are proximal or distal to the reaction centres of PSI and PSII 

and consequently to a reduced light-harvesting capacity.

Sabri (Sabri, 1993; Sabri et al., 1997) in her comparative study of wild 

and cultivated oats showed similar results in response to mildew. Fifteen days 

after inoculation, the quantum yield in cv. Peniarth was reduced by about 

27%, but in cv. Lustre and the wild oat it was only reduced by about 18%. In 

cv. Lustre the quantum efficiency continued to fell, to about 26% less than the
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uninfected controls by twenty days after inoculation, but no further decrease 

occurred in the wild oat although it had supported the highest level of fungal 

biomass production. Reductions in quantum efficiency have been noted in 

other host parasite interactions e.g. Erysiphe polygoni on sugar beet and so 

such reductions may be a common response to infection in crop plants, but 

none of the studies have related the degree of reduction to the amount of 

parasite developed.

As indicated above the reductions in quantum efficiency could be to 

differences in effects on the light-harvesting capacity or simply to the loss of 

the photosynthetic units (chloroplasts), since the maximum rate of gross 

photosynthesis expressed per unit of chlorophyll was not altered at any stage 

in any line, except in one line. This line, the highly resistant line B8893 

showed an increase in the rate of photosynthesis per unit of chlorophyll. 

However, the amount of chlorophyll present in the infected leaves of all lines 

was reduced by infection. For example, fourteen days after inoculation, the 

percentage reduction in total chlorophylls was about 41% in line B8893, 

about 62% in cv. Triumph and about 85% in cvs. Prisma and Golden Promise 

and in line B19909. At the time of the last measurement in line 1-17-40, ten 

days after inoculation, the percentage reduction was about 77% 

(measurements were not continued after ten days in this line because the leaf 

had by then senesced). These results show that chlorophyll loss from cv. 

Prisma was as high in response to infection as that from line B19909 and cv. 

Golden Promise although cv. Prisma supported the lowest level of fungal 

biomass production.
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The loss of chlorophyll involved both chlorophylls a and b in all lines with 

the loss of chlorophyll a being relatively greater than chlorophyll b in cvs 

Golden Promise, Triumph and line 1-17-40. Thus, the reduced photochemical 

efficiency of these cultivars could be due to both the loss of the light- 

harvesting complex, which contains chlorophylls a and b, as well as the loss of 

chlorophyll a from the light-harvest complex more proximal to the 

photosystem PSIL However, this could not be the case in lines B19909 and 

cv. Prisma since in these lines infection reduced chlorophylls a and b equally 

indicating that chlorophyll a was lost from the light-harvesting complex but 

not from the PSII antenna matrices. Although the rate of photosynthesis in 

line B8893 was not affected by infection, the levels of both chlorophyll a and 

b fell with the former being more reduced. This suggests that despite this loss, 

the light-harvesting capacity was still as efficient as that o f the uninfected 

controls.

In contrast to the finding in the present study which showed that the 

reduction in chlorophylls occurred to similar extents in both the more tolerant 

line B19909 and the less tolerant cvs Golden Promise and Prisma, Sabri et al. 

(1997) observed that the chlorophyll content of the wild oat, which appeared 

to be more tolerant o f B. graminis f.sp. avenae infection than the two 

cultivated oats, was reduced the least. Although infection reduced both 

chlorophylls a and b, in the three oat lines they were reduced to similar 

extents. This is in agreement with the findings with cv. Prisma and line 

B19909 to mildew infection in the present study. Similarly, a study of barley 

plants infected with B. graminis fisp. hordei, Holloway et al. (1992) showed
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that both chlorophylls a and b were reduced following infection, but both to 

similar extents. In contrast, Scholes & Farrar (1985) observed that although 

both chlorophylls a and b declined in bluebell leaves infected with Uromyces 

muscari, chlorophyll a declined to the greater extent.

It was mentioned earlier that the differences in the mildew-induced 

suppression of photosynthesis rates (expressed per unit leaf area) were not 

apparent when they were expressed on a chlorophyll basis. However, 

measurements of chlorophylls a and b in the infected plants showed that in 

some cases differences were reflected in significantly reduced chlorophyll a : b 

ratios. Taken together, these two findings are difficult to reconcile. Infection 

induced differences in the per unit leaf area photosynthesis rates, but not the 

per milligram chlorophyll photosynthesis rates, can be explained simply by 

suggesting a loss of complete photosynthetic units from the photosynthetic 

membranes, or, more likely, the loss of whole chloroplasts (P. Dominy, 

personnel communication). However, this should not result in changes in the 

chlorophyll a : b ratios. But this study has presented evidence that significant 

decreases in chlorophyll a : b ratio accompany infection in cvs Golden 

Promise and Triumph, and in the wild lines 1-17-40 and B8893. In these plants 

an increased loss of chlorophyll a over chlorophyll b, but no changes in 

maximum photosynthesis rates expressed on a per milligram chlorophyll basis 

is perplexing. The reasons for these discrepancies are unclear and a more 

detailed analysis of the types of pigment proteins present may be required 

before this issue can be fully resolved (P. Dominy, personnel communication).

Reductions in photosynthesis in whole leaves have been attributed to



Chapter 9 Discussion 250

reduced rates of CO2 diffusion into the leaf through the stomata (Gordon & 

Duniway, 1982b). However, redcutions in photosynthesis found in the O2 

electrode studies could not have resulted solely from changes in stomatal 

resistance since, in these studies leaf segments not whole leaves were used.

Measurements of stomatal function in whole leaves of the three lines cv. 

Prisma and the two wild lines, B19909 and 1-17-40 following inoculation 

showed significant alterations as the result of infection. Stomatal resistance in 

the light in the inoculated middle region of infected leaves was initially 

increased by infection in all three lines, but as the leaves became more heavily 

infected, it began to decrease to a level similar to that of uninfected plants in 

line B19909 but lower than the uninfected plants in cv. Prisma. In contrast, 

stomatal resistance in the dark in the inoculated middle regions of infected 

leaves began to M in  both line 1-17-40 and cv. Prisma from two and four 

days after inoculation respectively, but not until seven days after inoculation in 

line B19909. However, stomatal resistance eventually fell to lower levels in 

line B19909 than in the other two lines.

The initial increase in stomatal resistance in infected leaves in the light is 

likely to reduce the diffusion of CO2 to the mesophyll cells and could thus be 

partly responsible for the decline in photosynthesis that occurs following 

inoculation. However, the subsequent reductions in stomatal resistance should 

allow increased CO2 uptake. Altered stomatal behaviour following infection 

could also be expected to alter the rate of transpiration and the leaf water 

content, and reductions in leaf water content could affect rates of 

photosynthesis.
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The transpiration rate from leaves usually follows the pattern of stomatal 

behaviour (Ayres, 1976). Thus in mildew infected barley leaves transpiration 

would be expected to initially decrease in the light because infection causes 

the stomata to close. It would also increase in the dark, when the stomata 

failed to close completely. Changes in transpiration in infected leaves could 

also result partly from the increase in the boundary layer resistance caused by 

the presence of the fungal mycelium over the leaf surface and partly from the 

mycelium itself which also provides an increased route for water loss. In the 

light, stomatal resistance increased significantly from 24 hours after 

inoculation when mildew development was very limited in all three lines, 

suggesting that the stomata provided the main control over water loss during 

the early stages of infection. However, in the dark, stomatal resistance 

decreased from 48 hours after inoculation in cv. Prisma, but not until 72 hours 

after inoculation in line 1-17*40 and 168 hours after inoculation in line 

B19909. Thus stomatal function was impaired at a much earlier stage in cv. 

Prisma than in leaves of line B19909, the latter being able to control water 

loss up to quite a late stage of infection when 25% or more of the leaf area 

was colonised by mildew.

The increased stomatal closure in the light from 24 hours after inoculation 

of barley leaves is in agreement with the observations of Majemik (1965) who 

found that B. graminis fisp. hordei decreased stomatal opening of barley 

leaves from 24 hours after inoculation. Martin et al. (1975) also observed that 

mildew infection decreased stomatal opening but from around six hours after 

inoculation slightly earlier than reported by Majemik (1965). However,
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neither of these studies related changes in stomatal function to the amount of 

mildew present at the time of stomatal resistance change and also they used 

different cultivars to the ones used here.

Infection also decreased stomatal opening in the light in mildewed pea 

leaves from three days after inoculation (Ayres, 1976) and from five days after 

inoculation in mildewed oat plants (Sabri, 1993). However, an initial increase 

in stomatal apperture was observed in pea leaves 48 hours after inoculation 

with Erysiphe pisi (Ayres, 1976) and in oat plants 72 hours after inoculation 

(Sabri, 1993). Martin et al. (1975) and Majemik (1965) in studies of wheat 

infected with B. graminis f.sp. tritici suggested that a volatile product of the 

fungus could be involved in the alteration of stomatal behaviour. If this is so, 

it may be that B. graminis f.sp. hordei produces a similar substance. 

However, other causes have been suggested, such as infection induced 

changes in the turgor pressures of the guard cells and of other epidermal cells 

(Ayres, 1976).

Mechanisms other than reductions in the rates of CO2 diffusion into the 

leaf and in chlorophyll content could be responsible for the decline in 

photosynthesis in infected leaves. For example, decreases in the turnover of 

the C-3 cycle, either by a direct effect on one or more of the key steps in the 

process, or by a reduction in the supply of NADPH and/or ATP. However, 

these possibilities were not investigated in this study.

9.2.3. Effects on dark respiration

In contrast to the reductions in photosynthesis, the rates of dark
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respiration increased significantly in the infected tissues of all lines except the 

highly resistant line B8893, with cv. Prisma being most affected. The 

maximum percentage increase in the rate of respiration was reached six days 

after inoculation in cv. Triumph and cv. Prisma, the rates being 64% higher in 

cv. Triumph and about 178% in cv. Prisma. The fungal biomass at this stage 

was about 4.8 x 104 conidia cm 2 leaf area in cv. Triumph and about 5.6 x 104 

conidia in cv. Prisma. However, in the other lines the increase was slower 

reaching a maximum of 70% two days later in line 1-17-40, 106% in line 

B19909 and 40% in cv. Golden Promise. The fungal biomass at this stage was 

about 4.4 x 104 conidia in 1-17-40, about 9.3 x 104 in cv. Golden Promise but 

about 20 x 104 conidia in line B19909.

Increased respiration in leaves, is a feature of most infections including 

powdery mildew infections. Such increases were suggested to be required to 

provide the carbon skeletons needed for biosynthesis by both the host and the 

pathogen, the host for defence and the fungus for growth (Farrar & Raynes, 

1987). The greater increase in respiration shown by the more tolerant line 

B19909 than the less tolerant cv. Golden Promise, could have been to meet 

the energy demand for the higher levels of fungal development than on the 

latter. The moderately resistant cv. Triumph showed a high rise in dark 

respiration even more than the very susceptible cv. Golden Promise, but this 

higher level was transient. Line 1-17-40 which supported a relatively low level 

of mildew development and so appears to have some level of partial 

resistance, also expressed a high level of respiration. This respiration could 

reflect resistance reactions or intolerance to the fungus. The highly resistant
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line B8893 showed no increase at all in respiration. These results show that 

the effect of infection on dark respiration differs from cultivar to cultivar, 

probably depending on the level of fungal biomass developed, level of 

tolerance of the host to the parasite as well as the level of active resistance 

expressed by the host.

While workers agree generally about respiratory responses in susceptible 

plants, there is much less agreement for resistant plants even among authors 

working with the same host-pathogen system. Working with a major-gene 

resistant cultivar of barley inoculated with an avirulent race of B. graminis 

f.sp. hordei, Smedegaard-Petersen (1980) and his group (1981) found a rapid 

initial rise in dark respiration, which returned to control rates a few days later. 

Millerd & Scott (1956) found a major gene resistant barley cultivar which 

supported no mildew growth showed the same pattern. However, Millerd & 

Scott (1956) found that a cultivar with high partial resistance in which cell 

collapse takes place over a long period of time as mildew progresses, showed 

no difference between control and infected in respiration rates up to four days 

after inoculation, and a less resistant cultivar, which supported some fungal 

growth and very slow cell collapse, reacted the same way as a fairly 

susceptible cultivar with an increase in respiration after 48 hours. Similarly, 

Scott & Smillie (1966) observed that a resistant barley cultivar showed a 

small early increase in the respiratory rate in response to mildew inoculation 

compared to the control, but the magnitude of this increase was less than the 

eventual rise in respiratory rate of a susceptible cultivar. B. graminis f.sp. 

avenae was also found to increase the rate of dark respiration nine days after
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inoculation in two cultivated oats but not in the wild oat (Sabri et al., 1997).

Haigh et al. (1991), measured changes in respiration in the fifth leaf of 

several oat cultivars that supported different levels of B. graminis fisp. avenae 

growth, measured as the number of haustoria per unit leaf area. Cv. Mostyn 

with 28 haustoria mm*2 leaf area and line 1621 with 12.5 haustoria mm*2 leaf 

area had respiration rates increased by about 33% of the controls nine and 

three days after inoculation respectively. Similarly, cv. Maldwyn with 12.3 

haustoria mm'2 leaf area, had its respiration rates had increased by about 30% 

by five days after inoculation. However, no effects on the rate of respiration 

were measured in the oat line 1674 which supported 22.5 haustoria mm*2. It 

appears that the increases in respiration are not related to the amount of 

mildew development and so the differences between cultivars could reflect 

difference in tolerance.

The decline in photosynthesis following infection has been proposed to be 

a possible cause of respiratory increases in response to mildew infection in 

barley (Scott & Smillie, 1963). Thus, using mildewed barley leaves, Scott & 

Smillie (1966) suggested that the reduced rate of photosynthesis in a 

susceptible barley cultivar could lead to a higher NADP+/NADPH ratio and 

consequently an increase in the activity of the pentose phosphate pathway. 

The pentose phosphate pathway has been found to be involved in the 

respiratory increases in other hosts following infection (Daly, 1976). Scholes 

& Farrar (1986) suggested that the loss of chlorophyll from infected leaves 

could result in an increased respiratory activity similar to that reported to 

occur during the senescence process (Farkas et al., 1964).
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9.3. Compensatory photosynthesis in uninfected leaves of 

infected plants

Many authors have shown that the rates of photosynthesis in uninfected 

parts of infected plants are stimulated by infection and clearly the more 

capacity a plant has for compensatory photosynthesis the higher the level of 

tolerance of infection it might possess. In the present study, infection of the 

three lower leaves was found to increase the rate of photosynthesis in an 

uninfected upper fourth leaf. The rates of maximum net and gross 

photosynthesis, expressed per unit leaf area, in the uninfected leaf on the 

infected plants were higher than in the corresponding leaf of uninfected plants 

in line B19909 but not in cv. Prisma and line 1-17-40. The Quantum efficiency

of photosynthesis (a ) was also found to be slightly increased in the uninfected

leaf of the infected plants of the wild barley B19909 but not in the other two 

lines. These increases may be attributed to an increase in light-harvesting 

capacity, a stimulation of photosynthetic electron transport, an increase in 

carboxylation efficiency, or a combination of these processes. When 

compared with controls, the uninfected fourth leaf of infected plants had 

similar chlorophyll levels and similar values of P g m a x  and P i i m a x  expressed per 

unit chlorophyll. The ratios of physical resistance to total resistance to CO2 

diflusion into the leaf (0) varied steadily between replicates but no significant

differences were found between infected and uninfected plants in any line. 

Thus, the amount of CO2 reaching the carboxylation sites appears not to be 

affected. Other mechanisms must be involved in the stimulation of
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photosynthesis in uninfected parts of infected plants in line B19909.

Although infection of the lower leaves gave a consistent slight increase in 

dark respiration in the uninfected fourth leaf in cv. Prisma and line B19909, 

none of the differences were significant. Thus, apart from the increase in the 

rate of Pgmax, PiW  and quantum efficiency in B19909, none of the parameters 

of photosynthesis measured were affected in any line.

These results are in line with those from previous studies, which have 

shown that powdery mildew infections of barley and also of pea stimulated 

photosynthesis in the upper, uninfected leaves of infected plants (Ayres, 

1981b; Williams & Ayres, 1981; Walters & Ayres, 1983).

However, although line 1-17-40 was shown in growth analysis experiments 

to compensate for the loss in vegetative growth caused in the early stages by 

mildew infection, no significant compensatory photosynthesis was observed in 

its uninfected fourth leaf on infected plants of this line. This could be 

explained by the feet that the mechanism or mechanisms responsible for 

compensatory photosynthesis occur in its higher order and flag leaf.

The stimulation of net photosynthesis in uninfected leaves of mildewed 

barley plants was attributed, in part, to an increase in the amount and activity 

of RuBPcase (Walters & Ayres, 1983). An increase in the activities of 

phospho-enol-pyruvate carboxylase (PePcase) and NADP malic enzyme was 

also observed. Walters (1985) suggested that the changes in the 

nitrate/ammonium balance in infected shoots may have affected the activities 

of RuBPcase. He suggested also that the increased uptake of 32P-labelled 

phosphate in mildewed barley could stimulate photosynthesis, either by
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increasing RuBPcase activity or by affecting the ratio of ATP/ADP.

The stimulation of photosynthesis in uninfected leaves of infected plants 

observed in wild barley B19909 and in other susceptible cultivars in other 

studies, may allow the plant to compensate for the loss o f activity in the 

infected tissues and for the loss of photoassimilates to the pathogen. The 

increase in the compensatory photosynthesis in uninfected tissues of infected 

plants of the wild barley B19909 must play at least some part in compensating 

for plant growth losses to the pathogen. Thus compensatory activity may play 

a role in tolerance.
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9.4. Conclusions

In conclusion, this study has shown that growth and development as well 

as photosynthesis, respiration and stomatal function responded differently to 

given levels of mildew infection in the different lines (see Appendix Tables 13 

to 16). The wild line B19909 was the least affected by even heavy levels of 

fungus development indicating that this line is more tolerant of infection than 

the other lines. These results support the suggestion that some wild relatives 

of crop plants may possess higher levels of tolerance of parasites than crop 

plants do. Since tolerance was reflected in the responses of a range of growth 

and metabolic processes, it is likely to be determined polygenically and 

therefore it could be difficult to breed for. However, a genetic analysis of 

tolerance in the wild barley line B19909 is urgently needed to see how 

tolerance is inherited and this could indicate the potential value of tolerance as 

a breeding objective for crop improvement.

The feet that tolerance is not likely to provide a high level of disease 

protection suggests that it should be used in combination with other measures 

such as incomplete resistance, variety mixtures and fungicide.
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Appendix Tables 1 to 3

Data on some primary values of growth of Blumeria graminis infected and 

uninfected plants of wild and cultivated barleys taken at weekly intervals 

during the growth period between the second and the sixth week after 

inoculation (the fourth and the eighth week after planting).

LS : Leaf sheaths + Primary shoot tissues

SLB : Leaf blades of the primary shoot

LT : Leaf sheaths + Tillers tissues

TLB : Leaf blades of tillers
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Appendix Tables 4 to 6

Data on the effects of infection on the development of individual leaves on 

the primary shoot. Measurements were taken at weekly intervals during the 

growth period between the second and the sixth week after inoculation (the 

fourth and the eighth week after planting).
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Appendix Tables 7 to 9

Data on the effects o f infection on the primary shoot height, on the number o f 

tillers and on total leaf blade area on tillers. Measurements were taken at 

weekly intervals during the growth period between the second and the sixth 

week after inoculation (the fourth and the eighth week after planting).



Appendix: Table 7: Line 1-17-40
(A)

Repl. %
Mildew

Stem Height (cm) 
Cont. Infec.

Tillers No. / Plant 
Cont. Infec.

. . .— . 
L.a. on Tillers (cm )

Cont. Infec.
1 4.62 11.0 10.5 6 6 122.35 126.12
2 15.11 10.5 12.0 7 6 133.55 129.12
3 9.71 9.0 11.0 8 6 123.50 135.56

Mean 9.81 10.17 11.17 7.00 6.00 126.47 130.27
SE 3.03 0.601 0.441 0.577 0.000 3.557 2.785

M

Repl. %
Mildew

Stem Height (cm) 
Cont. Infec.

Tillers No. / Plant 
Cont. Infec.

L.a. on Tillers (cm2) 
Cont. Infec.

1 19.18 13.00 12.25 17 10 414.62 245.35
2 14.48 12.25 11.75 18 11 417.46 231.63
3 17.49 13.00 14.25 14 9 391.51 237.21

Mean 17.05 12.75 12.75 16.33 10.00 407.86 238.06
SE 1.37 0.250 0.764 1.202 0.577 8.218 3.984

Repl. %
Mildew

Stem Height (cm) 
Cont. Infec.

Tillers No. / Plant 
Cont. Infec.

L.a. on Tillers (cm2) 
Cont. Infec.

1 25.77 14.5 12.25 25 14 682.29 241.42
2 21.01 17.0 15.00 31 14 755.40 251.31
3 36.24 14.0 16.50 27 13 722.50 271.74

Mean 27.67 15.17 14.58 27.67 13.67 720.06 254.82
SE 4.50 0.928 1.244 1.764 0.333 21.140 8.927

Repl. %
Mildew

Stem Height (cm) 
Cont. Infec.

Tillers No. / Plant 
Cont. Infec.

L.a. on Tillers (cm2) 
Cont. Infec.

1 31.43 18.0 18.00 30 18 903.60 456.60
2 22.22 19.0 17.25 23 12 775.04 349.98
3 12.17 18.5 18.00 29 17 1037.3 450.43

Mean 21.94 18.50 17.75 27.33 15.67 905.31 419.00
SE 5.56 0.289 0.250 2.186 1.856 75.713 34.558

Repl. % Stem Height (cm) Tillers No. / Plant L.a. on Tillers (cm2)
Mildew Cont. Infec. Cont. Infec. Cont. Infec.

1 10.10 18.5 17.50 49 29 1143.7 598.7
2 22.71 24.5 18.25 31 38 782.3 547.2
3 11.70 17.5 19.00 41 12 1080.8 397.3

Mean 14.84 20.17 18.25 40.33 26.33 1002.27 514.40
SE 3.96 2.186 0.433 5.207 7.623 111.472 60.408



Appendix: Table 8: Cv. Prisma
(A)

Repl. %
Mildew

Stem Height (cm) 
Cont. Infec.

Tillers No. / Plant 
Cont. Infec.

L.a. on Tillers (cm2) 
Cont. Infec.

1 11.16 12.5 17.5 5 5 130.30 150.87
2 12.69 17.5 18.0 4 2 129.24 68.92
3 11.51 16.0 15.5 4 4 67.60 136.61

Mean 11.79 15.33 17.00 4.33 3.67 109.05 118.80
SE 0.461 1.481 0.764 0.333 0.882 20.726 25.277

Repl. %
Mildew

Stem Height (cm) 
Cont. Infec.

Tillers No. /Plant 
Cont. Infec.

L.a. on Tillers (cm2) 
Cont. Infec.

1 27.12 21.00 22.00 6 6 266.60 151.26
2 28.70 22.75 21.00 9 7 379.41 180.97
3 27.19 22.25 20.75 6 5 280.41 135.94

Mean 27.67 22.00 21.25 7.00 6.00 308.81 156.06
SE 0.516 0.520 0.382 1.000 0.577 35.526 13.218

Repl. %
Mildew

Stem Height (cm) 
Cont. Infec.

Tillers No. / Plant 
Cont. Infec.

L.a. on Tillers (cm1) 
Cont. Infec.

1 23.46 27.00 23.5 9 6 470.16 144.18
2 34.09 30.25 21.0 8 5 557.06 170.03
3 23.00 26.00 21.0 8 5 592.30 155.79

Mean 26.85 27.75 21.83 8.33 5.33 539.84 156.67
SE 3.622 1.283 0.833 0.333 0.333 36.295 7.475

Repl. %
Mildew

Stem Height (cm) 
Cont. Infec.

Tillers No. / Plant 
Cont. Infec.

L.a. on Tillers (cm2) 
Cont. Infec.

1 32.75 40.5 28.25 10 6 695.05 275.91
2 45.59 30.0 23.00 8 5 590.50 258.04
3 38.79 37.0 26.75 8 7 550.73 335.51

Mean 39.04 35.83 26.00 8.67 6.00 612.09 289.82
SE 3.708 3.087 1.561 0.667 0.577 43.038 23.420

Repl. %
Mildew

Stem Height (cm) 
Cont. Infec.

Tillers No. / Plant 
Cont. Infec.

L.a. on Tillers (cm2) 
Cont. Infec.

1 57.11 49.25 21.5 13 5 604.4 110.92
2 27.19 48.00 18.5 12 5 735.4 129.67
3 37.20 40.50 31.0 12 7 645.3 234.600

Mean 40.50 45.92 23.67 12.33 5.67 661.70 158.40
SE 8.794 2.732 3.768 0.333 0.667 38.695 38.484



Appendix: Table 9: Line B19909.
(A)

Repl. %
Mildew

Stem Height (cm) 
Cont. Infec.

Tillers No. / Plant 
Cont. Infec.

L.a. on Tillers (cm2) 
Cont. Infec.

1 10.72 11 10.00 3 4 83.09 122.41
2 11.78 12 11.00 4 5 60.73 98.70
3 14.05 10 11.75 5 5 112.64 118.85

Mean 12.18 11.00 10.92 4.00 4.67 85.49 113.32
SE 0.981 0.577 0.507 0.577 0.333 15.033 7.382

Repl. %
Mildew

Stem Height (cm) 
Cont. Infec.

Tillers No. / Plant 
Cont. Infec.

L.a. on Tillers (cm2) 
Cont. Infec.

1 25.47 10.25 12.5 10 6 277.61 180.70
2 28.35 10.75 12.0 10 6 268.04 140.02
3 24.39 12.00 13.0 10 7 255.57 162.27

Mean 26.07 11.00 12.50 10.00 6.33 267.07 161.00
SE 1.181 0.520 0.289 0.000 0.333 6.381 11.761

Repl. %
Mildew

Stem Height (cm) 
Cont. Infec.

Tillers No. / Plant 
Cont. Infec.

L.a. on Tillers (cm2) 
Cont. Infec.

1 43.51 15.00 13.25 15 10 455.63 205.04
2 31.34 15.00 13.50 21 9 481.45 270.16
3 27.20 26.25 15.00 20 11 502.34 276.11

Mean 34.02 18.75 13.92 18.67 10.00 479.81 250.44
SE 4.895 3.750 0.546 1.856 0.577 13.509 22.763

Repl. %
Mildew

Stem Height (cm) 
Cont. Infec.

Tillers No. / Plant 
Cont. Infec.

L.a. on Tillers (cm2) 
Cont. Infec.

1 33.77 20.25 23.50 25 7 676.78 172.02
2 31.80 27.00 16.25 23 13 696.35 260.82
3 54.46 25.00 17.50 16 10 500.77 295.39

Mean 40.01 24.08 19.08 21.33 10.00 624.63 242.74
SE 7.247 2.002 2.238 2.728 1.732 62.189 36.743

Repl. % Stem Height (cm) Tillers No./Plant L.a. on Tillers (cm2)
Mildew Cont. Infec. Cont. Infec. Cont. Infec.

1 44.06 46.5 26.5 21 10 578.70 269.03
2 35.85 48.5 14.5 17 14 351.60 362.20
3 51.63 42.0 23.5 19 11 452.47 305.64

Mean 43.85 45.67 21.50 19.00 11.67 460.92 312.29
SE 4.556 1.922 3.606 1.155 1.202 65.694 27.101



Appendix Table 10

Primary values on the effects of Blumeria graminis on yield components and 

final grain yield of infected (Infec.) and control (Cont.) plants of three barley 

lines cv. Prisma, line 1-17-40 and line B19909.
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Appendix Tables 11 to 12

Data on the effects of infection on stomatal resistance in the light (Table 

11 A) and in the dark (Table 11B). Table 12 shows the predicted effects of 

changes in rp and rx on PgmM and 0.



Appendix: Table 11 A.

Measurements in the light of stomatal resistances (s cm'1) of infected and 

uninfected third leaf of cv. Prisma and the wild lines 1-17-40 and B19909.

Days 1-17-40 Cv. Prisma B19909
after Repli. Control Infected Control Infected Control Infected

inocuL M T M T M T M T M T M T
1 1.18 2.78 3.08 3.06 2.63 3.58 3.27 2.28 1.80 2.42 5.05 3.76
2 1.42 2.09 5.72 2.74 2.28 2.83 4.60 4.47 1.95 1.24 4.98 5.68

1
3 2.65 3.07 5.91 4.73 2.83 3.09 5.51 4.65 1.78 4.07 4.66 2.71
4 2.77 3.08 4.56 3.72 2.77 2.89 6.23 3.99 2.40 2.97 4.37 1.60

Mean 2.01 2.76 4.82 3.56 2.63 3.10 4.90 3.85 1.98 2.67 4.76 3.44
SE 0.41 0.23 0.65 0.44 0.12 0.17 0.64 0.54 0.14 0.59 0.16 0.87
1 2.60 4.98 5.90 3.27 2.39 5.87 4.39 7.43 2.52 4.34 5.11 5.60
2 2.55 4.10 4.57 5.60 3.98 6.74 5.06 10.8 3.22 4.99 4.54 5.13

3
3 2.96 3.30 3.75 5.72 3.93 4.74 5.41 7.97 2.34 4.24 5.07 6.43
4 2.78 4.56 6.17 3.99 3.17 4.27 5.50 8.09 2.54 4.57 5.16 5.83

Mean 2.72 4.23 5.10 4.65 3.37 5.40 5.09 8.57 2.66 4.53 4.97 5.75
SE 0.09 0.36 0.57 0.60 0.37 0.56 0.25 0.75 0.20 0.16 0.15 0.27
1 0.87 0.14 4.87 2.49 0.75 2.61 3.35 3.94 0.25 1.65 2.58 1.74
2 0.45 0.58 2.84 3.39 1.53 2.90 3.49 2.58 0.97 1.75 3.71 3.05

6
3 0.24 0.47 4.27 1.09 1.11 3.82 7.39 5.01 1.29 1.14 3.03 3.05
4 0.87 0.99 3.92 -0.5 1.26 2.59 4.74 1.36 1.02 1.34 1.78 1.54

Mean 0.61 0.54 3.97 1.63 1.16 2.98 4.74 3.22 0.88 1.47 2.77 2.35
SE 0.16 0.17 0.43 0.84 0.16 0.29 0.94 0.80 0.22 0.14 0.40 0.41
1 2.54 3.89 4.18 3.78 3.53 5.20 5.69 5.16 2.06 2.88 4.43 3.81
2 2.79 3.18 3.88 3.97 4.40 4.60 2.21 3.17 2.04 3.08 2.45 3.63

8
3 2.07 3.49 3.84 3.58 2.84 3.89 2.20 2.53 1.97 3.17 0.96 1.26
4 2.40 3.75 3.97 5.50 4.11 4.57 3.61 2.40 2.11 3.45 3.63 3.12

Mean 2.45 3.58 3.97 4.21 3.72 4.56 3.43 3.32 2.04 3.15 2.87 2.96
SE 0.15 0.15 0.08 0.44 0.35 0.27 0.82 0.64 0.03 0.12 0.76 0.58
1 1.17 2.68 3.91 5.98 3.94 4.19 3.87 4.01 0.72 3.91 0.57 1.64
2 1.09 2.78 2.94 6.11 3.50 4.94 0.65 -0.5 1.90 2.00 0.79 -0.2

10
3 2.05 3.36 1.69 3.45 5.26 3.74 2.69 2.42 1.08 2.09 0.52 0.64
4 0.98 1.28 1.69 3.01 5.37 5.24 1.37 1.00 1.27 1.85 0.56 1.15

Mean 1.32 2.52 2.56 4.64 4.51 4.53 2.15 1.73 1.24 2.46 0.61 0.82
SE 0.25 0.44 0.54 0.82 0.47 0.34 0.71 0.96 0.25 0.48 0.06 0.38

M: Middle region of the leaf, T : Tip of the leaf



Appendix: Table 11B.

Measurements in the dark of stomatal resistances (s cm'1) of infected and 

uninfected third leaf of cv. Prisma and the wild lines 1-17-40 and B19909.

Days 1-17-40 Cv. Prisma B19909
after Repli. Control Infected Control Infected Control Infected

inocul. M T M T M T M T M T M T
1 13.14 8.32 11.4 18.3 12.2 10.9 8.67 13.8 8.71 10.6 8.54 9.26
2 12.37 9.00 11.5 17.1 12.4 10.7 8.47 6.62 6.43 9.23 8.42 9.01
3 8.35 7.66 6.11 9.99 6.99 9.61 7.93 8.55 8.15 9.53 8.60 10.8

it 4 7.01 12.9 5.45 8.95 8.23 9.94 8.30 8.17 11.9 10.5 9.46 18.9
Mean 10.22 9.47 8.61 13.6 9.96 10.3 8.34 9.29 8.80 9.98 8.76 12.0

SE 1.50 1.18 1.64 2.40 1.38 0.30 0.16 1.56 1.15 0.36 0.24 2.33
1 18.2 26.9 11.0 24.4 16.3 21.4 8.45 15.5 12.7 13.6 11.3 13.8
2 15.9 21.1 10.1 26.1 15.4 23.3 11.7 14.2 13;4 30.0 7.70. 25.1

A 3 15.3 22.0 9.28 25.6 21.8 18.9 12.6 24.4 12.0 17.8 6.65 19.0
4 17.5 22.6 8.07 22.9 15.8 19.8 7.91 18.3 7.40 24.8 7.60 20.0

Mean 16.7 23.2 9.61 24.7 17.3 20.8 10.2 18.1 11.4 21.6 8.30 19.5
SE 0.66 1.29 0.62 0.71 1.52 0.96 1.17 2.26 1.36 3.63 1.01 2.32
1 10.3 10.9 9.54 8.52 11.3 11.2 10.6 11.2 12.6 14.1 7.82 6.61
2 15.3 13.6 8.44 7.49 11.3 15.9 9.18 10.8 9.67 7.59 7.19 9.56

n 3 11.3 9.22 7.13 9.68 12.3 15.5 9.37 11.5 10.8 11.4 7.50 9.82
/ 4 11.0 10.1 7.80 8.50 12.3 10.4 9.77 11.0 8.62 9.48 7.21 9.59

Mean 12.0 10.9 8.23 8.55 11.8 13.2 9.74 11.1 10.4 10.6 7.43 8.89
SE 1.13 0.94 0.51 0.45 0.29 1.42 0.32 0.14 0.86 1.39 0.15 0.76
1 8.89 9.04 6.75 5.65 12.4 13.2 9.47 7.09 15.7 19.0 6.66 9.00
2 8.68 8.87 6.29 6.02 14.2 14.6 7.20 8.89 14.2 18.9 7.69 9.07

Q 3 10.2 8.80 7.16 7.39 12.6 12.2 7.42 8.60 13.7 14.8 7.50 9.35
y 4 10.6 8.95 7.64 8.54 10.9 11.1 8.68 9.95 11.9 15.2 7.41 8.78

Mean 9.59 8.92 6.96 6.90 12.5 12.8 8.19 8.63 13.9 17.0 7.32 9.05
SE 0.48 0.05 0.29 0.66 0.67 0.74 0.54 0.59 0.78 1.16 0.23 0.12
1 8.11 7.62 6.45 9.33 11.0 14.3 7.75 8.72 13.5 14.3 7.00 9.67
2 7.71 10.5 7.18 9.79 11.1 15.9 8.04 12.0 8.74 14.1 6.47 9.45

11
3 9.17 14.7 7.00 8.97 12.7 13.4 6.95 7.43 11.7 19.0 9.71 8.72
4 8.17 15.1 7.37 9.01 14.6 15.5 8.29 10.5 12.1 16.2 6.42 6.86

Mean 8.29 12.0 7.00 9.27 12.3 14.8 7.76 9.67 11.5 15.9 7.40 8.67
SE 0.31 1.78 0.20 0.19 0.84 0.57 0.29 1.01 1.01 1.14 0.78 0.64

M: Middle region of the leaf, T : Tip of the leaf



Appendix: Table 12.

The predicted effects o f changes in rp and rx on Pgmax and 0.

Assumption Changes
Expected Changes

Pgmax 0

rP V -

rP > rx

rx - -

rP V V
rp~ rx

rx V V
rP - V

rP< rx

rx V V
Where rp = physical resistance, rx = biochemical resistance, 

V = significant changes, (-) = insignificant changes.



Appendix Tables 13 to 16

Summary tables of the results of growth analyses, photosynthesis and

stomatal resistance.



Table 13 A: Growth analyses summary table

Effects o f infection on the growth and development

L in e s B19909 cv. Prisma 1-17-40

Mildew development
%GLA colonised +++ +-H- +

Conidial production +++ ++ +
Shoot production

Primary shoot height -------- -

Number of tillers - —

GLA on primary 
shoot - -------- --

GLA on all tillers -------- —

Senescence of leaves + + ++
No of leaves on the 

primary shoot 1 or 2 less 1 or 2 less similar

No of epidermal cells 10 % fewer 7 % fewer 6 % fewer
Size of epidermal 

cells - —

Root production
No of seminal roots 0 0 0

No of laterals on 
seminal roots - — 0

Total length of 
seminal roots

— -
Diameter of seminal 

roots 0 0 0

Surface area of 
seminal roots

— -

No of nodal roots - ---------

No of laterals on 
nodal roots 0 0

Total length of nodal 
roots - —

Diameter of nodal 
roots 0 0 0

Surface area of nodal 
roots - —

Dry matter accumulation
Shoot dry weight 0 --------- -

Root dry weight — -

Total plant dry 
weight

— -

Root: shoot ratio 0 —

+ : Increase
: Decrease

0 : No changes



Table 13B: Growth analyses summary table

Effects o f infection on the growth and development

L in e s B19909 cv. Prisma 1-17-40

Efficiency of growth
Relative growth rate 

(RGR) - - - and +

Unit leaf rate (ULR) - - - and +
Dry matter distribution

Leaf weight ratio 
(LWR)

+++ ++ +

Leaf area ratio 
(LAR) 0 --

Specific leaf area 
(SLA) - —

Root weight ratio 
(RWR) 0 -

Root area ratio 
(RAR) 0 - -

Specific root area 
(SRA) 0 0 0

Specific root length 
(SRL) 0 + 0

Root tip cell division - 0 0
Yield components

No of grains per 
primary shoot 0 0

Dry weight of grains 
on the primary shoot

+ 0

1000-grain weight on 
the primary shoot

+ 0 0

No of fertile tillers 0 0 0
No of unfertile tillers 0 0 0
No of grains on tillers 0 - 0
Dry weight of grains 

on tillers 0 0

1000-grain weight on 
tillers 0 0 0

Total grain dry 
weight per plant 0 0

Harvest index 0 0
+ : Increase

: Decrease

0 : No changes



Table 14: Photosynthesis summary table

Photosynthesis in infected third or fourth leaf

Lines
Golden
Promise
(4th leaf)

B19909

(3rd leaf)

cv. Prisma

(3rd leaf)

cv. Triumph

(4th leaf)

1-17-40

(3rd leaf)

B8893

(4th leaf)

Fungal biomass
(Number of conidia)

42 x 103 42 x 103 24 x 103 23 x 103 10 x 103 lx lO 3

Pgm ax 
(per leaf area) -89% - 80 % -80% - 85 % - 83 % 0

PgflMX
(per mg chlorophyll) 0 0 0 0 0 + 49%

Quantum efficiency 
(a) - 53 % -27% -46% -30% -28% 0

Convexity
<o>

+ 0 + + 0 0

Total chlorophyll -84% - 85 % - 85 % -62% -77% -41%

Chlorophyll a - 85 % -87% -87% -67% -84% -44%

Chlorophyll b -79% -84% -84% -51% -60% - 33 %

Chlorophyll a : b 
ratio - 0 0 - - -

Dark respiration + 40% +106% +178% +64% +70% 0

+ : Increase

: Decrease 

0 : No changes



Table 15: Stomatal resistance summary table

Stomatal resistance in infected middle region and uninfected tip
region of the third leaf

Lines B19909 cv. Prisma 1-17-40

Light

Middle region + + + + + +

Tip region + + +

D a rk

Middle region - - -

Tip region 0 - -

+ : Increase (Stomatal closure)

: Decrease (Stomatal opening) 

0 : No changes



Table 16: Compensatory photosynthesis summary table

Photosynthesis in uninfected fourth leaf o f infected and uninfected
plants

Lines B19909 cv. Prisma 1-17-40

Pgmu 
(per leaf area) 0 0 +

Pgmax
(per mg chlorophyll) 0 0 0

Quantum efficiency 
(a) 0 0 +

Convexity
<P)

+ + 0

Total chlorophyll 0 0 0

Chlorophyll a - 0 0

Chlorophyll b 0 0 0

Chlorophyll a : b 
ratio 0 0 0

Dark respiration 0 0 0

+ : Increase

: Decrease 

0 : No changes
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Introduction

Photosynthesis rates are often used as measures of the well-being of plants 

and so their determination is important in many disciplines within plant 

science research. Frequently, one of two methods is used to determine 

photosynthesis rates. In laboratories where the main focus of interest is on 

photosynthesis, infra red gas analysers (IRGAs) are routinely used as they 

have excellent sensitivity and are versatile. However, IRGAs and the required 

accompanying gas mixing / delivery systems are expensive, and are, therefore, 

not the choice for plant biologists with interests that lie outside 

photosynthesis. Consequently, the leaf O2 electrode has gained wide 

acceptance in many laboratories where photosynthesis rates are only 

occasionally measured as they are relatively inexpensive and simple to 

operate.

The leaf O2 electrode is a closed chamber system that was first introduced by 

Delieu and Walker (1981). A detached leaf or leaf piece, is sealed in a 

chamber containing an atmosphere which should saturate the CO2 

requirement for photosynthesis ( 1 - 5  kPa partial pressure CO2, Delieu and 

Walker, 1981). As there is no simple way of regulating CO2 levels during an 

experiment, photosynthesis rates are usually measured as a function of 

incident light intensity (I), i.e. light response curves (P versus I) are often 

measured. Several methods can then be used to determine important 

photosynthetic parameters such as the apparent quantum yield of 

photosynthesis (a ‘), the maximum net photosynthesis rate (P iw ) and the 

dark respiration rate (Rd). Often, a  and P iw  are derived by linearization of 

the data, which assumes a linear (hyperbolic) relationship between Pn and I 

(e.g. Rabinowitch, 1951).

Thomley (1976), however, has pointed out that Pg (gross photosynthesis 

rate) versus I plots are rarely hyperbolic, but are better described by a non­

linear (quadratic) function, which allows for the often-observed sharp 

discontinuity between the initial near linear slope (a ’) and the final near-linear 

asymtote ( P g m a x ) .  This discontinuity provides an additional photosynthetic
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parameter 0, or the convexity parameter, which can vary between a value of 0 

and 1. When 0 = 0, the Pg versus I curve degenerates into a linear 

(hyperbolic) function; when 0=1, the relationship converts to a Blackman 

response (Chartier, 1968). Thomley (1976), and later Marshall and Biscoe 

(1980) who extended the model to describe the Pn versus I relationship, 

viewed 0 as a parameter that expresses the relative limitations placed on 

rubisco turn-over by the supply of NADPH, ATP and ribulose 1,5- 

bisphosphate (biochemical processes) and the supply of CO2 (physical 

processes). When 0 = 0 ,  only the biochemical processes are limiting; when 

0 = 1, only the physical processes are limiting. However, this view has been 

challenged (Terashima & Saeki, 1983; Vogelman et a l , 1989; Leverenze, 

1987 & 1988). These groups have provided evidence that both leaf 

development and architecture can cause changes in the light gradient 

penetrating into green tissues and have suggested that these give rise to 

changes in 0. More recent work has suggested that changes in the intensity 

and direction of illumination during growth can affect 0, but also provide 

evidence for a strong dependence of 0 on atmospheric CO2 partial pressures 

(Ca; Ogren, 1994; Ogren & Evans, 1993; Palmquist et a l, 1994). The 

interpretation of 0 is thus still unclear and probably arises from several 

factors.

In our laboratory, the light response curves from a range of 

monocotyledonous and dicotyledonous species, determined using the leaf O2 

electrode, rarely conform to either a linear (hyperbolic) or a Blackman 

relationship. Therefore, the non-linear (quadratic) formulation proposed by 

Thomley (1976) and Marshall and Biscoe (1980) may provide a better 

description. The observation that hyperbolic responses are rarely measured in 

leaf O2 electrodes when the recommended chamber CO2 partial pressures are 

used (CB <5 kPa) may be interpreted in two ways. Firstly, Ca is saturating 

(Delieu & Walker, 1980) but 0 is unrelated to the supply of CO2 (Terashima 

& Saeki, 1983; Vogelman et al., 1989; Leverenze, 1987 & 1988). Secondly,
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the supply of CO2 is limiting photosynthesis when Ca is <5 kPa, and 0 is a 

function of CO2 supply (Thomley, 1976; Marshall & Biscoe, 1980). In either 

case, methods for the extraction of Pma* and a  from P versus I curves that are 

based on an assumption of a hyperbolic relationship will incur errors that may 

prove to be serious.

In this paper we report an investigation using barley, bean (both C-3) and 

maize (C-4) to investigate the relationship between 0, Ca and the model 

underlying Pn versus I plots determined with a leaf O2 electrode. Firstly, we 

established what effect changes in chamber Ca has on 0. Secondly, we show 

that serious errors can arise when P iw  and a  are determined from data 

assuming a linear (hyperbolic) relationship at the recommended levels of Ca, 

and make suggestions on how to minimize these errors.

M aterials and methods.

Plant material Seeds of barley (Hordeum vulgare L.) cv. Golden Promise, 

(Phaseolus coccineus) cv. Scarlet runner bean and maize (Zea mays) cv. , 

were placed on moistened filter paper and germinated in a growth cabinet. 

Seedlings, selected for uniformity, were transplanted singly in 15 cm (barley 

and bean) or 18 cm (maize) plastic pots containing Levington potting 

compost. The pots were placed in a growth cabinet maintained at a 

temperature of 19 ± 2°C, which provided RH between 60 to 70%, and a 

photoperiod of 16 hours (130 pmol quanta m'2 s'1).

Photosynthetic measurements. Photosynthesis rates were determined from 

measurements o f O2 evolution obtained using a Hansatech LD2 leaf disc 

electrode system (Hansatech Ltd., Paxman Road, Hardwick Industrial Estate, 

King’s Lynn, Nofolk, UK) designed by Delieu and Walker (1981,1983).

All measurements were made at a constant temperature (25 ± 0.05°C). 

Illumination of the chamber was provided by a 50W 24° dispersion halogen 

dichroic lamp (Osram) emitting through a water bath to remove infrared heat.
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Neutral density filters (Balzar, Lichtenstein) were used at the surface of the 

chambers to attenuate the light to the desired levels (0-1363 nmol quanta in2 

s"1). Fresh leaf samples were cut (6-10 cm’2) just prior to use and placed in 

the thermostatted chamber. Chamber volumes were determined using the 

volume injection method (Delieu & Walker, 1981). Gas mixtures containing 

the desired CO2 partial pressures (1, 5 and 10 kPa) were mixed using 

compressed air and 10% CO2 in compressed air cylinders. The mixtures were 

humidified at room temperature {ca. 20°C) by bubbling through water traps 

before passing into the leaf chambers. The chambers were purged at 100 ml 

min'1 for 3 minutes to equilibrate before sealing the valves. All measurements 

were made as follows. Samples were initially irradiated at 150 pmol quanta m' 

2 s’1 for approximately 5 minutes, and then left to dark adapt for at least 15 

minutes until a steady rate of dark respiration was attained. The chamber was 

then flushed for 3 minutes with fresh gas, sealed and the sample then exposed 

to a new light level until a steady state rate of O2 evolution was reached. 

Generally, illumination was altered sequentially, from dark to high light.

Data Analyses. Two models were used in this study to calculate 

photosynthetic parameters.

Linear (hyperbolic) ModeL This model was proposed by Rabinowich (1952), 

and predicts that at high CO2 partial pressures, photosynthesis rates are 

governed by light intensity. Three parameters are included: Pmax (gross or net), 

the maximum rate of photosynthesis: a , the quantum efficiency: Rd, the dark 

respiration rate.

p  Pm

(1)
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Where P is the (net or gross) photosynthesis rate, is the maximum rate of 

photosynthesis, a  is the quantum efficiency at low irradiance, and I is the 

irradiance (PPFD). The gross or net photosynthesis rates (Pg and Pn, 

respectively) are related as Pg = Pn + Rd where Rd is the rate of dark 

respiration.

Thomley (1976) pointed out that the observed light response curve is better 

described by a quadratic function, viz.

OP2- ( P ^  +cd)P+(PmBai) = 0

(2)

where 0 is the convexity term. Marshall and Biscoe (1980) extended this 

model to describe Pn versus I, viz.

6Pn2 - (Pgm* + cd-6Rd)Pn+(aI(Pgm  -{ \-9 )R d )-R d P g m  = 0 

(3)

PiW  is calculated as P iw  = Pgmax - (1- 0)Rd (Marshall and Biscoe, 1980). 

When 0 is zero, equation (3) degenerates into equation (1), when it is unity, 

equation (3) describes a Blackman curve. Equation (3) is a quadratic (second 

order polynomial) of the form

y = ax2 + bx + c = 0

(5)

which can be solved for its roots using

x = -b ± y lb 2 -4 a c
2a

(6)
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Equation (6) was used to solve for Pgmax, a , 0 and Rd using the non-linear 

Solver routine in Microsoft Excel version 5 (Newon Raphson method, 

forward derivatives, scaled); solutions were found by minimising the data- 

minus-fit sum of squares by successive itteratioa Values for Piimax were then 

calculated using the relationship given above. In addition, the linear 

hyperbolic model (1) was fitted to the same data sets using both an itterative 

method (Solver) and linear regression techniques after transforming to a linear 

form.

Results.

The relationships between incident light intensity and net photosynthetic 

oxygen evolution when bean, barley and maize leaves were exposed to 1, 5 

and lOkPa partial pressure CO2 are presented in Fig. 1. Each curve is the 

average of 5 separate plots (± standard errors) that were determined from 5 

separate leaves. Table 1 presents a summary of the differences in Pn, Pg, a , 0 

and Rd for each species at each CO2 partial pressure.

The Effect o f  Ca on Photosynthesis. The effect of changes in C* on the 

photosynthetic parameters determined by the non-linear model are presented 

in Table 1 and Figure 1. Increasing the CO2 partial pressure from 1 to 10 kPa 

produced no significant (p>0.05) increase in P iw  for bean. In contrast, P iw  

for maize and barley increased significantly (p< 0.01) over the same CO2 

concentration range; a similar pattern of change was observed when the effect 

of Ca on the maximum gross photosynthesis rate was examined (Table 1). 

Increasing Ca also produced significant (p<0.05) changes in the apparent 

quantum efficiency, a ‘, for barley and bean, but not for maize. No significant 

changes (p> 0.05) were observed for the dark respiration rates (Rd) for any of 

the species with increasing CO2 partial pressures. However, C, had a 

dramatic effect on the convexity term 0 (Table 1 & Fig. 2). Increasing Cs



Comparisons 

Between CO2 

Levels (kPa)

Pn Pg a e Rd

Bean 1 vs: 5 n/s n/s n/s 0 . 1 n/s
5 vs. 10 n/s n/s n/s 0 . 5 n/s
1 vs: 10 n/s n/s 0.05 0 . 1 0 n/s

Barley 1 vs: 5 n/s n/s 0.05 0 . 1 n/s
5 vs: 10 n/s n/s n/s 0 . 1 n/s
1 vs: 10 0.01 0.01 n/s 0 . 1 n/s

Maize 1 vs. 5 0.01 0.01 n/s 0 . 1 n/s
5 vs: 10 0.01 0.01 n/s 0 . 1 n/s
1 vs. 10 0.01 0.01 n/s 0 . 1 n/s

Table 1. Summary of the Statistical Analyses of the Effects of CO2 

Partial Pressures on Photosynthetic Parameters from Bean, Barley and 

Maize.

The non-linear model of Marshall and Biscoe (1980) was used to determine 

values for P g m a x ,  P g m a x ,  oc\ 0 and Rd from each of the 45 light response 

curves presented in Figure 1. Analysis of variance was performed on each of 

these parameters using the GLM routine in Minitab 10.0



Figure 1. Photosynthetic Light Response Curves for Bean, Barley and 

Maize Measured with Leaf Oxygen Electrodes.

Samples were taken at random from plants in a growth room and immediately placed in the 

thermostatted leaf chamber (25 ± 0.05°C) and exposed to the initial light and dark pre­

adaptation regime as described in the text. The chambers were flushed for three minutes 

(100 ml. min-1) with fresh humidified gas of 1 (a,d & g), 5 (b,e &h) or 10 (c,f & i) kPa 

partial pressure CO2 in air. The chambers were then sealed and exposed to one of the light 

levels indicated until a steady rate of net oxygen exchange (Pn) was attained. The 

chambers were then flushed with fresh gas and Pn determined at another light level. Panel 

a-c, bean: panel d-f, barley: panel g-i, maize. Each panel presents the average and standard 

errors of the pooled data from 5 separate response curves determined from five separate 

leaves. Superimposed on these data are the fitted responses: solid line, non-linear model 

fit: broken line, linear model.
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Figure 2. The Effect of CO2 Partial Pressures on the Convexity 

Param eter, 6.

Each data point represents the average (± standard error) value from 5 

separate leaf samples at each CO2 partial pressure.
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from 1 to 10 kPa produced a significant (p<0.01) linear decrease in 0 (from 

0.697 to 0.222 for bean, from 0.936 to 0.352 for barley and from 0.686 to 

0.162 for maize).

Comparison o f the Models. At 1 kPa partial pressure CO2 (Fig. la, Id & lg), 

the level recommended for use with the leaf O2 electrode, the linear model 

tended to underestimate photosynthesis in the 100- 500 pmol quanta m'2 s*1 

PPFD light range, and over-estimate photosynthesis in the low and high 

PPFD range. Therefore, one consequence of using the linear model will be 

the persistent over-estimation of a ’, the apparent quantum efficiency. For all 

data sets, the observed data were used to fit both the linear and non-linear 

models, and in all cases it was found that the linear model gave a poorer fit (n 

= 45 ). An analysis of variance test was performed on the residual errors for 

each fit and a significant reduction was found with the non-linear model (p<

0.004).

Figure 3 shows that the discrepancies generated by the two models were most 

noticeable at low CO2 partial pressures. As CO2 levels were increased, the 

average residual errors that arise from the linear model decreased, so that in 

all cases at lOkPa CO2, no significant differences (p>0.05) were observed 

between the linear and non-linear model

Discussion.

In this report we provide evidence that for all three species studied here, 0 is 

strongly inversely related to external CO2 partial pressures. These 

observations are consistent with the assertion originally proposed by Thomley 

(1976) and Marshall & Biscoe (1980) that 0 reports the physical diffusive 

resistance of CO2 supply to the site of carboxylation. For the experiments we 

report here, leaf pieces were taken randomly from plants in the growth room



Figure 3. The Effect of CO2 Partial Pressures on the Linear and Non- 

Linear Model Residual Errors.

The residual errors were calculated as the mean sum-of-squares. Each data 

point is the average (± standard error) calculated from the residual errors of 5 

separate data sets.
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just prior to measurement, and so differences in 0 cannot be attributed to light 

gradients within the leaves.

A dependence of 0 on Ca has been reported before (Ogren & Evans, 1994). In 

their experiments 0 was estimated from measurements on CO2 exchange using 

four different partial pressures of CO2 (—20, -40, 100 and 5000 Pa) and was 

shown to decrease as Ca was increased from 20 to 100 Pa. However, on 

changing Ca from 100 to 5000 Pa, 0 increased from -0.6 to -0.95 (Fig. 2 in 

Ogren & Evans, 1994; c f  Fig. 2 presented here). There appears to be some 

discrepancy regarding the behaviour of 0 at high values of Ca and these 

differences may arise from differences associated with the plant material used, 

the range of Ca employed, or the methodology (IRGA versus leaf O2 

electrode).

The residual errors that were generated when curves were fitted to the data 

using the linear and non-linear models clearly indicate that the latter provides 

a better description of the Pn versus I relationship. The data presented here 

suggest that only at lOkPa CO2, as the non-linear model degenerates into the 

linear form (i.e. 0 —> 0), are the two models equivalent in terms of their 

accuracy. Therefore, if Pn measurements are made using the CO2 levels 

recommended with the manufacturer’s instructions (Hansatech, 1984; Delieu 

& Walker, 1981), then the non-linear model should be used. Failure to do this 

will result in a 50 to 100 % increase in the residual errors and errors will also 

be propagated in the estimates of Pm,* and a ’. Table 2 presents the average 

values for Pgm« and a ’ determined from the same data sets by the two models 

(n=45). It is clear that when Ca is 1 kPa, a ’ can be significantly over­

estimated by the linear model in barley by as much as 60% (p<0.001) although 

bean (25%, p=0.045) and maize (21%, p=0.003) are also significantly 

affected. Similarly, Pgm*x is significantly over-estimated at 1 kPa CO2 when 

the linear model is used with bean (28%, p=0.015); a similar pattern was 

observed with barley (60%, p=0.053) and maize (37%, p=0.635) but here, 

although large, the differences were not significant. With increasing CO2



Linear

Bean

Non-

Linear

% Linear

Barley

Non-

Linear

% Linear

Maize

Non-

Linear

%

Pgmax 1 42.00 32.78 28.1 21.68 13.52 60.4 40.42 29.55 36.8

5 32.69 28.03 16.6 24.50 21.29 15.1 51.42 41.37 24.3

10 33.44 31.54 6.0 36.88 35.64 3.5 54.12 68.40 -20.9

a 1 0.1111 0.0890 24.8 0.1473 0.0926 59.1 0.0805 0.066 21.1

5 0.1146 0.1010 13.5 0.1607 0.1164 38.1 0.0745 0.070 5.8

10 0.1213 0.1154 5.1 0.1368 0.1132 20.8 0.0566 0.049 14.6

Table 2. Comparison of the Estimates of Pgmu and a ’ from the Linear 

and Non-linear Models.

In this analysis values of Pgmax and a ’ were determined using both the linear 

and non-linear models for each individual data set (n= 45). The values 

presented are the average of the 5 independent estimates of Pgmax and a ’ 

(note: the values presented here are somewhat different to those presented in 

Fig. 1 due to the different ways in which the data were grouped and analysed; 

however, the trends are similar). Two-factor analysis of variance was then 

performed on the data for each species using ‘CO2 partial pressures’ and 

‘Model’ as the main factors.
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levels, the discrepancies between the values of Pgmax and a ’ decreased and 

were not significant at 10 kPa CO2 .

Figure 1 shows that the Pn versus I curves o f maize are unusual as Pn does 

not saturate even at high light intensities, and Pnmax increases dramatically as 

CO2 partial pressure is increased. The reason for this probably lies with the 

acidification o f the mesophyll cell cytoplasm by the action o f PEP 

carboxylase. The high partial pressures o f CO2 used here are clearly 

physiological and may have led to an irreversible acidification of the 

cytoplasm. It is clear that if the photosynthesis rates o f maize leaves is to be 

determined using a leaf O2 electrode, it should be done using 1 pKa CO2 

partial pressure or perhaps less.

In conclusion, to those investigators using leaf O2 electrodes we recommend 

the following:

When chamber CO2 partial pressures o f around lkPa are used, the non-linear 

(quadratic) model (equations 2 or 3) should be employed. This general rule 

should apply for monocot and dicot plants.

If higher chamber CO2 partial pressures o f around lOkPa are used, the linear 

(hyperbolic) model (equation 1) adequately describes the Pn versus I 

relationship o f C-3 monocots and dicots. However, we would urge caution 

with this approach when C-4 plants are under investigation.

Our data are consistent with the contention that for CO2 partial pressures of 

lkPa and above, 0 estimates the relative importance o f CO2 difiiision to the 

site o f carboxylation in the rate o f CO2 fixation. It is therefore likely that 0 is a 

meaningful and significant photosynthetic parameter and its routine 

measurement may provide important indicators o f plant physiology and 

pathology.
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